Sample records for positioning system technology

  1. Navigation studies based on the ubiquitous positioning technologies

    NASA Astrophysics Data System (ADS)

    Ye, Lei; Mi, Weijie; Wang, Defeng

    2007-11-01

    This paper summarized the nowadays positioning technologies, such as absolute positioning methods and relative positioning methods, indoor positioning and outdoor positioning, active positioning and passive positioning. Global Navigation Satellite System (GNSS) technologies were introduced as the omnipresent out-door positioning technologies, including GPS, GLONASS, Galileo and BD-1/2. After analysis of the shortcomings of GNSS, indoor positioning technologies were discussed and compared, including A-GPS, Cellular network, Infrared, Electromagnetism, Computer Vision Cognition, Embedded Pressure Sensor, Ultrasonic, RFID (Radio Frequency IDentification), Bluetooth, WLAN etc.. Then the concept and characteristics of Ubiquitous Positioning was proposed. After the ubiquitous positioning technologies contrast and selection followed by system engineering methodology, a navigation system model based on Incorporate Indoor-Outdoor Positioning Solution was proposed. And this model was simulated in the Galileo Demonstration for World Expo Shanghai project. In the conclusion, the prospects of ubiquitous positioning based navigation were shown, especially to satisfy the public location information acquiring requirement.

  2. WLAN Positioning Methods and Supporting Learning Technologies for Mobile Platforms

    ERIC Educational Resources Information Center

    Melkonyan, Arsen

    2013-01-01

    Location technologies constitute an essential component of systems design for autonomous operations and control. The Global Positioning System (GPS) works well in outdoor areas, but the satellite signals are not strong enough to penetrate inside most indoor environments. As a result, a new strain of indoor positioning technologies that make use of…

  3. Global Positioning Systems (GPS) Technology to Study Vector-Pathogen-Host Interactions

    DTIC Science & Technology

    2016-12-01

    Award Number: W81XWH-11-2-0175 TITLE: Global Positioning Systems (GPS) Technology to Study Vector-Pathogen-Host Interactions PRINCIPAL...Positioning Systems (GPS) Technology to Study Vector-Pathogen-Host Interactions 5b. GRANT NUMBER W81XWH-11-2-0175 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...objective of this project is to examine the evolutionary consequences of introducing a tetravalent live- attenuated dengue virus vaccine into children in

  4. A research on the positioning technology of vehicle navigation system from single source to "ASPN"

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Li, Haizhou; Chen, Yu; Chen, Hongyue; Sun, Qian

    2017-10-01

    Due to the suddenness and complexity of modern warfare, land-based weapon systems need to have precision strike capability on roads and railways. The vehicle navigation system is one of the most important equipments for the land-based weapon systems that have precision strick capability. There are inherent shortcomings for single source navigation systems to provide continuous and stable navigation information. To overcome the shortcomings, the multi-source positioning technology is developed. The All Source Positioning and Navigaiton (ASPN) program was proposed in 2010, which seeks to enable low cost, robust, and seamless navigation solutions for military to use on any operational platform and in any environment with or without GPS. The development trend of vehicle positioning technology was reviewed in this paper. The trend indicates that the positioning technology is developed from single source and multi-source to ASPN. The data fusion techniques based on multi-source and ASPN was analyzed in detail.

  5. Advanced Video Technology for Safe and Efficient Surgical Operating Rooms

    DTIC Science & Technology

    2005-03-01

    should be easy to integrate into the system by non-technical personnel. " Disruptive Technologies - Such technologies can have both positive and negative...integrate new, emerging, and otherwise " disruptive technologies ." " Medical Manufacturer Markups - In some cases, potential vendor pricing of...POSITIVE disruptive technologies as they would, in some cases, eliminate the need for monitor screens. NETWORK BANDWIDTH j% J a The System must be able to

  6. Trust in technology-mediated collaborative health encounters: constructing trust in passive user interactions with technologies.

    PubMed

    Montague, Enid; Asan, Onur

    2012-01-01

    The present study investigated factors that explain patient trust in health technology and the relationship between patient trust in technology and trust in their care provider. Sociotechnical systems theory states that changes in one part of the system are likely related to other parts of the system. Therefore, attitudes about technologies, like trust, are likely related to other aspects of the system. Contributing to appropriate trust at the technological, interpersonal, and system levels can potentially lead to positive health outcomes. The study described in this manuscript used data collected from 101 patients with a Trust in Medical Technology instrument. The instrument measured patients' trust in (1) their providers, (2) the technology, and (3) how their providers used the technology. Measure 3 was positively associated with measures 1 and 2, while measures 1 and 2 were not positively or negatively associated with one another. These results may indicate that patient assessments of the trustworthiness of care providers and technologies are based on their observations of how providers use technologies. Though patients are not active users of technologies in health care, the results of this study show that their perceptions of how providers use technology are related to their trust in both technology and the care provider. Study findings have implications for how trust is conceptualised and measured in interpersonal relationships and in technologies.

  7. Lane-Level Vehicle Positioning : Integrating Diverse Systems for Precision and Reliability

    DOT National Transportation Integrated Search

    2013-05-13

    Integrated global positioning system/inertial navigation system (GPS/INS) technology, the backbone of vehicle positioning systems, cannot provide the precision and reliability needed for vehicle-based, lane-level positioning in all driving environmen...

  8. The DGPS based navigation and positioning system of the Helsinki University of Technology Short SC7 Skyvan research aircraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tauriainen, S.; Ahola, P.; Hallikainen, M.

    1996-10-01

    The typical airborne remote sensing measurements conducted by the Helsinki University of Technology laboratory of space technology require very precise navigation over the selected measurement sites. This means that both system performance as far as positioning is concerned and the actual flight track of the aircraft has to be within 10 meters. To meet these requirements, a custom made navigation system was designed and installed in the SHORT SC7 Skyvan research aircraft of the Helsinki University of Technology. The system is based on the Finnish national Differential GPS network providing positioning accuracy within a few meters within Finland. For pilotmore » guidance, a graphical user interface with mission specific software is used to give the pilots an overview of the relative position and orientation to the measurement target. In addition, the system is used to synchronize the scientific instruments and record the actual flight track. 2 refs., 2 figs.« less

  9. A study on the attitude of use the mobile clinic registration system in Taiwan.

    PubMed

    Lai, Yi-Horng; Huang, Fen-Fen; Yang, Hsieh-Hua

    2015-01-01

    Mobile apps provide diverse services and various convenient functions. This study applied the modified technology acceptance model (MTAM) in information systems research to the use of the mobile hospital registration system in Taiwan. The MTAM posits that perceived ease of use and perceived usefulness of technology influence users' attitudes toward using technology. Research studies using MTAM have determined information technology experience as a factor in predicting attitude. The objective of this present study is to test the validity of the MTAM model when it is being applied to the mobile registration system. The data was collected from 501 patients in a Taiwan's medical center. Path analysis results have shown that TAM is an applicable model in examining factors influencing users' attitudes of using the mobile registration system. It can be found that the perceived usefulness and the perceived ease of use are positively associated with users' attitudes toward using the mobile registration system, and they can improve users' attitudes of using it. In addition, the perceived ease of use is positively associated with the perceived usefulness. As for the personal prior experience, the information technology experience is positively associated with perceived usefulness and the perceived ease of use.

  10. Platform Architecture for Decentralized Positioning Systems.

    PubMed

    Kasmi, Zakaria; Norrdine, Abdelmoumen; Blankenbach, Jörg

    2017-04-26

    A platform architecture for positioning systems is essential for the realization of a flexible localization system, which interacts with other systems and supports various positioning technologies and algorithms. The decentralized processing of a position enables pushing the application-level knowledge into a mobile station and avoids the communication with a central unit such as a server or a base station. In addition, the calculation of the position on low-cost and resource-constrained devices presents a challenge due to the limited computing, storage capacity, as well as power supply. Therefore, we propose a platform architecture that enables the design of a system with the reusability of the components, extensibility (e.g., with other positioning technologies) and interoperability. Furthermore, the position is computed on a low-cost device such as a microcontroller, which simultaneously performs additional tasks such as data collecting or preprocessing based on an operating system. The platform architecture is designed, implemented and evaluated on the basis of two positioning systems: a field strength system and a time of arrival-based positioning system.

  11. Platform Architecture for Decentralized Positioning Systems

    PubMed Central

    Kasmi, Zakaria; Norrdine, Abdelmoumen; Blankenbach, Jörg

    2017-01-01

    A platform architecture for positioning systems is essential for the realization of a flexible localization system, which interacts with other systems and supports various positioning technologies and algorithms. The decentralized processing of a position enables pushing the application-level knowledge into a mobile station and avoids the communication with a central unit such as a server or a base station. In addition, the calculation of the position on low-cost and resource-constrained devices presents a challenge due to the limited computing, storage capacity, as well as power supply. Therefore, we propose a platform architecture that enables the design of a system with the reusability of the components, extensibility (e.g., with other positioning technologies) and interoperability. Furthermore, the position is computed on a low-cost device such as a microcontroller, which simultaneously performs additional tasks such as data collecting or preprocessing based on an operating system. The platform architecture is designed, implemented and evaluated on the basis of two positioning systems: a field strength system and a time of arrival-based positioning system. PMID:28445414

  12. MDOT implementation plan for global positioning systems (GPS) technology in planning, design, and construction delivery.

    DOT National Transportation Integrated Search

    2010-09-13

    Global Positioning System (GPS) technology offers advantages to transportation agencies in the planning, design and construction stages of project delivery. This research study will develop a guide for Mississippi Department of Transportation (MDOT) ...

  13. The Global Positioning System: Assessing National Policies,

    DTIC Science & Technology

    1995-01-01

    WASSEM • MONICA PINTO CRITICAL TECHNOLOGIES INSTITUTE RAND The research described in this report was supported by RAND’s Critical...MONICA PINTO Prepared for the Executive Office of the President Office of Science and Technology Policy CRITICAL TECHNOLOGIES INSTITUTE RAND...National Research Council Committee on the Future of the Global Positioning System, Washington, D.C., July 28-30,1994. Barbier, Jacques , and Thierry

  14. An Investigation of The Use of Global Positioning System (GPS) Technology and Its Augmentations Within State and Local Transportation Departments

    DOT National Transportation Integrated Search

    2000-07-01

    This report summarizes Global Positioning System (GPS) technology and its augmentation-related activities within State and local transportation agencies. In general, the following items are addressed for each State that participated in this investiga...

  15. The Evolution of Global Positioning System (GPS) Technology.

    ERIC Educational Resources Information Center

    Kumar, Sameer; Moore, Kevin B.

    2002-01-01

    Describes technological advances in the Global Positioning System (GPS), which is also known as the NAVSTAR GPS satellite constellation program developed in 1937, and changes in the nature of our world by GPS in the areas of agriculture, health, military, transportation, environment, wildlife biology, surveying and mapping, space applications, and…

  16. Location Based Service in Indoor Environment Using Quick Response Code Technology

    NASA Astrophysics Data System (ADS)

    Hakimpour, F.; Zare Zardiny, A.

    2014-10-01

    Today by extensive use of intelligent mobile phones, increased size of screens and enriching the mobile phones by Global Positioning System (GPS) technology use of location based services have been considered by public users more than ever.. Based on the position of users, they can receive the desired information from different LBS providers. Any LBS system generally includes five main parts: mobile devices, communication network, positioning system, service provider and data provider. By now many advances have been gained in relation to any of these parts; however the users positioning especially in indoor environments is propounded as an essential and critical issue in LBS. It is well known that GPS performs too poorly inside buildings to provide usable indoor positioning. On the other hand, current indoor positioning technologies such as using RFID or WiFi network need different hardware and software infrastructures. In this paper, we propose a new method to overcome these challenges. This method is using the Quick Response (QR) Code Technology. QR Code is a 2D encrypted barcode with a matrix structure which consists of black modules arranged in a square grid. Scanning and data retrieving process from QR Code is possible by use of different camera-enabled mobile phones only by installing the barcode reader software. This paper reviews the capabilities of QR Code technology and then discusses the advantages of using QR Code in Indoor LBS (ILBS) system in comparison to other technologies. Finally, some prospects of using QR Code are illustrated through implementation of a scenario. The most important advantages of using this new technology in ILBS are easy implementation, spending less expenses, quick data retrieval, possibility of printing the QR Code on different products and no need for complicated hardware and software infrastructures.

  17. Evaluation of Emerging Technologies for Traffic Crash Reporting

    DOT National Transportation Integrated Search

    1998-02-01

    An evaluation was performed of the effect of emerging technologies on traffic accident reporting. The technologies evaluated were standard laptop and pen-based portable computers, Global Positioning Systems (GPS), Geographic Information Systems (GIS)...

  18. Advances in structural monitoring with Global Positioning System technology: 1997-2006

    NASA Astrophysics Data System (ADS)

    Ogaja, Clement; Li, Xiaojing; Rizos, Chris

    2007-11-01

    Over the last decade, users of the Global Positioning System (GPS) have developed the technology capable of meeting stringent requirements to study the dynamics of tall buildings, towers, and bridges during earthquakes, wind-induced deformation and traffic loading. Dynamic measurements of relative displacements of structures is currently possible using real-time kinematic (RTK) positioning techniques, now advanced to record typically at 10-20 Hz (or higher - e.g., 100 Hz) with an accuracy of ±1 cm horizontally and ±2 cm vertically. With further advances in the technology and improvements in sampling capability, it is possible to meet the needs of real-time displacement information for the structural engineering community. After a decade of great strides in proving the feasibility of the technology, focus is moving to sensor integration and operational systems. Several investigators are now routinely researching the integration of GPS with other sensors (accelerometers, fibre optics, pseudolites, etc.) to utilise the complementary benefits and overcome limitations of the individual systems. Examples of real-time operational systems exist to demonstrate the significance of GPS technology in measuring the dynamic behaviour of large engineering structures.

  19. Global positioning system and associated technologies in animal behaviour and ecological research

    PubMed Central

    Tomkiewicz, Stanley M.; Fuller, Mark R.; Kie, John G.; Bates, Kirk K.

    2010-01-01

    Biologists can equip animals with global positioning system (GPS) technology to obtain accurate (less than or equal to 30 m) locations that can be combined with sensor data to study animal behaviour and ecology. We provide the background of GPS techniques that have been used to gather data for wildlife studies. We review how GPS has been integrated into functional systems with data storage, data transfer, power supplies, packaging and sensor technologies to collect temperature, activity, proximity and mortality data from terrestrial species and birds. GPS ‘rapid fixing’ technologies combined with sensors provide location, dive frequency and duration profiles, and underwater acoustic information for the study of marine species. We examine how these rapid fixing technologies may be applied to terrestrial and avian applications. We discuss positional data quality and the capability for high-frequency sampling associated with GPS locations. We present alternatives for storing and retrieving data by using dataloggers (biologging), radio-frequency download systems (e.g. very high frequency, spread spectrum), integration of GPS with other satellite systems (e.g. Argos, Globalstar) and potential new data recovery technologies (e.g. network nodes). GPS is one component among many rapidly evolving technologies. Therefore, we recommend that users and suppliers interact to ensure the availability of appropriate equipment to meet animal research objectives. PMID:20566494

  20. Global positioning system and associated technologies in animal behaviour and ecological research

    USGS Publications Warehouse

    Tomkiewicz, Stanley M.; Fuller, Mark R.; Kie, John G.; Bates, Kirk K.

    2010-01-01

    Biologists can equip animals with global positioning system (GPS) technology to obtain accurate (less than or equal to 30 m) locations that can be combined with sensor data to study animal behaviour and ecology. We provide the background of GPS techniques that have been used to gather data for wildlife studies. We review how GPS has been integrated into functional systems with data storage, data transfer, power supplies, packaging and sensor technologies to collect temperature, activity, proximity and mortality data from terrestrial species and birds. GPS 'rapid fixing' technologies combined with sensors provide location, dive frequency and duration profiles, and underwater acoustic information for the study of marine species. We examine how these rapid fixing technologies may be applied to terrestrial and avian applications. We discuss positional data quality and the capability for high-frequency sampling associated with GPS locations. We present alternatives for storing and retrieving data by using dataloggers (biologging), radio-frequency download systems (e.g. very high frequency, spread spectrum), integration of GPS with other satellite systems (e.g. Argos, Globalstar) and potential new data recovery technologies (e.g. network nodes). GPS is one component among many rapidly evolving technologies. Therefore, we recommend that users and suppliers interact to ensure the availability of appropriate equipment to meet animal research objectives.

  1. Head-Disk Interface Technology: Challenges and Approaches

    NASA Astrophysics Data System (ADS)

    Liu, Bo

    Magnetic hard disk drive (HDD) technology is believed to be one of the most successful examples of modern mechatronics systems. The mechanical beauty of magnetic HDD includes simple but super high accuracy positioning head, positioning technology, high speed and stability spindle motor technology, and head-disk interface technology which keeps the millimeter sized slider flying over a disk surface at nanometer level slider-disk spacing. This paper addresses the challenges and possible approaches on how to further reduce the slider disk spacing whilst retaining the stability and robustness level of head-disk systems for future advanced magnetic disk drives.

  2. Wireless technology applied to GIS

    NASA Astrophysics Data System (ADS)

    Casademont, Jordi; Lopez-Aguilera, Elena; Paradells, Josep; Rojas, Alfonso; Calveras, Anna; Barceló, Francisco; Cotrina, Josep

    2004-07-01

    At present, there is a growing interest in wireless applications, due to the fact that the technology begins to support them at reasonable costs. In this paper, we present the technology currently available for use in wireless environments, focusing on Geographic Information Systems. As an example, we present a newly developed platform for the commercialization of advanced geographical information services for use in portable devices. This platform uses available mobile telephone networks and wireless local area networks, but it is completely scalable to new technologies such as third generation mobile networks. Users access the service using a vector map player that runs on a Personal Digital Assistant with wireless access facilities and a Global Positioning System receiver. Before accessing the information, the player will request authorization from the server and download the requested map from it, if necessary. The platform also includes a system for improving Global Positioning System localization with the Real Time Differential Global Positioning System, which uses short GSM messages as the transmission medium.

  3. Design studies for a technology assessment receiver for global positioning system

    NASA Technical Reports Server (NTRS)

    Painter, J. H.

    1981-01-01

    The operational conditions of a radio receiver - microprocessor for the global positioning system are studied. Navigation fundamentals and orbit characterization are reviewed. The global positioning system is described with emphasis upon signal structure and satellite positioning. Ranging and receiver processing techniques are discussed.

  4. The Global Positioning System: Theory and operation

    NASA Astrophysics Data System (ADS)

    Tucker, Lester Plunkett

    Scope and method of study. The purpose of this study is to document the theory, development, and training needs of the United States Global Positioning System for the United States Air Force. This subject area had very little information and to assess the United States Air Force training needs required an investigation into existing training accomplished on the Global Positioning System. The United States Air Force has only one place to obtain the data at Headquarters Air Education and Training Command. Findings and conclusion. The United States Air Force, at the time of this study, does not have a theory and operations course dealing with the newest technology advancement in world navigation. Although this new technology is being provided on aircraft in the form of new navigation hardware, no official course of study is provided by the United States Air Force to it's pilots and navigators dealing with theory and operation. Based on the latest reports dealing with the Global Positioning System, a course on the Global Positioning System was developed in the Instructional Systems Design format to provide background information and understanding of this new technology. Readers of this study must be aware that the information contained in this study is very dynamic. Technology is advancing so fast in this area that it might make this information obsolete in a short amount of time.

  5. An indoor positioning technology in the BLE mobile payment system

    NASA Astrophysics Data System (ADS)

    Han, Tiantian; Ding, Lei

    2017-05-01

    Mobile payment system for large supermarkets, the core function is through the BLE low-power Bluetooth technology to achieve the amount of payment in the mobile payment system, can through an indoor positioning technology to achieve value-added services. The technology by collecting Bluetooth RSSI, the fingerprint database of sampling points corresponding is established. To get Bluetooth module RSSI by the AP. Then, to use k-Nearest Neighbor match the value of the fingerprint database. Thereby, to help businesses find customers through the mall location, combined settlement amount of the customer's purchase of goods, to analyze customer's behavior. When the system collect signal strength, the distribution of the sampling points of RSSI is analyzed and the value is filtered. The system, used in the laboratory is designed to demonstrate the feasibility.

  6. Airborne Digital Sensor System and GPS-aided inertial technology for direct geopositioning in rough terrain

    USGS Publications Warehouse

    Sanchez, Richard D.

    2004-01-01

    High-resolution airborne digital cameras with onboard data collection based on the Global Positioning System (GPS) and inertial navigation systems (INS) technology may offer a real-time means to gather accurate topographic map information by reducing ground control and eliminating aerial triangulation. Past evaluations of this integrated system over relatively flat terrain have proven successful. The author uses Emerge Digital Sensor System (DSS) combined with Applanix Corporation?s Position and Orientation Solutions for Direct Georeferencing to examine the positional mapping accuracy in rough terrain. The positional accuracy documented in this study did not meet large-scale mapping requirements owing to an apparent system mechanical failure. Nonetheless, the findings yield important information on a new approach for mapping in Antarctica and other remote or inaccessible areas of the world.

  7. Positioning performance of a maglev fine positioning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wronosky, J.B.; Smith, T.G.; Jordan, J.D.

    1996-12-01

    A wafer positioning system was recently developed by Sandia National Laboratories for an Extreme Ultraviolet Lithography (EUVL) research tool. The system, which utilizes a magnetically levitated fine stage to provide ultra-precise positioning in all six degrees of freedom, incorporates technological improvements resulting from four years of prototype development experience. System enhancements, implemented on a second generation design for an ARPA National Center for Advanced Information Component Manufacturing (NCAICM) project, introduced active structural control for the levitated structure of the system. Magnetic levitation (maglev) is emerging as an important technology for wafer positioning systems in advanced lithography applications. The advantages ofmore » maglev stem from the absence of physical contact. The resulting lack of friction enables accurate, fast positioning. Maglev systems are mechanically simple, accomplishing full six degree-of-freedom suspension and control with a minimum of moving parts. Power-efficient designs, which reduce the possibility of thermal distortion of the platen, are achievable. Manufacturing throughput will be improved in future systems with the addition of active structural control of the positioning stages. This paper describes the design, implementation, and functional capability of the maglev fine positioning system. Specifics regarding performance design goals and test results are presented.« less

  8. Verification of the Usefulness of the Trimble Rtx Extended Satellite Technology with the Xfill Function in the Local Network Implementing Rtk Measurements

    NASA Astrophysics Data System (ADS)

    Siejka, Zbigniew

    2014-12-01

    The paper presents the method of satellite measurements, which gives users the ability of GNSS continuous precise positioning in real time, even in the case of short interruptions in receiving the correction of the local ground system of measurements support. The proposed method is a combination of two satellite positioning technologies RTN GNSS and RTX Extended. In technology RTX Extended the xFill function was used for precise positioning in real time and in the local reference system. This function provides the ability to perform measurement without the need for constant communication with the ground support satellite system. Test measurements were performed on a test basis located in Krakow, and RTN GNSS positioning was done based on the national network of reference stations of the ASGEUPOS. The solution allows for short (up to 5 minutes) interruptions in radio or internet communication. When the primary stream of RTN correction is not available, then the global corrections Trimble xFill broadcasted by satellite are used. The new technology uses in the real-time data from the global network of tracking stations and contributes significantly to improving the quality and efficiency of surveying works. At present according to the authors, technology Trimble CenterPoint RTX can guarantee repeatability of measurements not worse than 3.8 cm (Trimble Survey Division, 2012). In the paper the comparative analysis of measurement results between the two technologies was performed: RTN carried out in the classic way, which was based on the corrections of the terrestrial local network of the Polish system of active geodetic network (ASG-EUPOS) and RTK xFill technology. The results were related to the data of test network, established as error free. The research gave satisfactory results and confirmed the great potential of the use of the new technology in the geodetic work realization. By combining these two technologies of GNSS surveying the user can greatly improve the overall performance of real-time positioning.

  9. The Global Positioning System--Direction for the Future [and] GPS Technology and Agriculture.

    ERIC Educational Resources Information Center

    Edmondson, Paul R.; Ginsburg, Alan

    1996-01-01

    Edmondson introduces a satellite-based radio navigation, positioning, and timing system that can be integrated into a variety of curriculum areas. Ginsburg describes how the global positioning system brings far-reaching benefits for crop growers and the environment. (Author)

  10. Contrastive Analysis and Research on Negative Pressure Beam Tube System and Positive Pressure Beam Tube System for Mine Use

    NASA Astrophysics Data System (ADS)

    Wang, Xinyi; Shen, Jialong; Liu, Xinbo

    2018-01-01

    Against the technical defects of universally applicable beam tube monitoring system at present, such as air suction in the beam tube, line clogging, long sampling time, etc., the paper analyzes the current situation of the spontaneous combustion fire disaster forecast of mine in our country and these defects one by one. On this basis, the paper proposes a research thought that improving the positive pressure beam tube so as to substitute the negative pressure beam tube. Then, the paper introduces the beam tube monitoring system based on positive pressure technology through theoretical analysis and experiment. In the comparison with negative pressure beam tube, the paper concludes the advantage of the new system and draws the conclusion that the positive pressure beam tube is superior to the negative pressure beam tube system both in test result and test time. At last, the paper proposes prospect of the beam tube monitoring system based on positive pressure technology.

  11. High accuracy autonomous navigation using the global positioning system (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, Son H.; Hart, Roger C.; Shoan, Wendy C.; Wood, Terri; Long, Anne C.; Oza, Dipak H.; Lee, Taesul

    1997-01-01

    The application of global positioning system (GPS) technology to the improvement of the accuracy and economy of spacecraft navigation, is reported. High-accuracy autonomous navigation algorithms are currently being qualified in conjunction with the GPS attitude determination flyer (GADFLY) experiment for the small satellite technology initiative Lewis spacecraft. Preflight performance assessments indicated that these algorithms are able to provide a real time total position accuracy of better than 10 m and a velocity accuracy of better than 0.01 m/s, with selective availability at typical levels. It is expected that the position accuracy will be increased to 2 m if corrections are provided by the GPS wide area augmentation system.

  12. Development of a congestion management system using GPS technology

    DOT National Transportation Integrated Search

    1997-04-01

    This report describes the results of a study undertaken to demonstrate the feasibility of using global positioning system (GPS) and geographic information system (GIS) technologies to measure travel time and speed data on urban highways. The methodol...

  13. Vehicle telematics as a platform for road use fees : final report.

    DOT National Transportation Integrated Search

    2016-11-01

    Vehicle telematics systems are composed of various onboard communications, positioning technologies, and computing technologies. Much of the data generated and/or gathered by these systems can be used to determine travel. These systems enable a range...

  14. The Science and technology Behind Galileo - Europes GPS

    NASA Astrophysics Data System (ADS)

    Saaj, C.; Underwood, C. I.; Noakes, C.; Park, D. W. G.; Moore, T.

    Over recent years, the public has become increasingly aware of the existence of global satellite positioning systems, such as the American Global Positioning System (GPS), for which the generic term is Global Navigation Satellite System (GNSS). This is primarily due to high-profile use in various military conflicts, the acceptance of the technology by the leisure market (hill walking, yachting, etc) and the rapid development of mass-market applications (such as in-vehicle navigation). However, the public is still largely unaware of how GNSS is currently being utilized by researchers across a wide range of scientific applications. The aim of this paper is to provide answers to public's basic questions on GNSS and thereby raise public awareness on the science and technology behind the nascent Galileo project; a European initiative to design, build and deploy a global satellite positioning system similar to the GPS.

  15. The Design of WORKER'S Behavior Analysis Method in Workplace Using Indoor Positioning Technology

    NASA Astrophysics Data System (ADS)

    Tabata, K.; Konno, H.; Nakajima, M.

    2016-06-01

    This study presents a method for analyzing workers' behavior using indoor positioning technology and field test in the workplace. Recently, various indoor positioning methods, such as Wi-Fi, Bluetooth low energy (BLE), visible light communication, Japan's indoor messaging system, ultra-wide band (UWB), and pedestrian dead reckoning (PDR), have been investigated. The development of these technologies allows tracking of movement of both people and/or goods in indoor spaces, people and/or goods behavior analysis is expected as one of the key technologies for operation optimization. However, when we use these technologies for human tracking, there are some problem as follows. 1) Many cases need to use dedicated facilities (e.g. UWB). 2) When we use smartphone as sensing device, battery depletion is one of the big problem (especially using PDR). 3) the accuracy is instability for tracking (e.g. Wi-Fi). Based on these matters, in this study we designed and developed an indoor positioning system using BLE positioning. And, we adopted smartphone for business use as sensing device, developed a smartphone application runs on android OS. Moreover, we conducted the field test of developed system at Itoki Corporation's ITOKI Tokyo Innovation Center, SYNQA, office (Tokyo, Japan). Over 40 workers participated in this field test, and worker tracking log data were collected for 6 weeks. We analyzed the characteristics of the workers' behavior using this log data as a prototyping.

  16. Geospatial Technologies and Higher Education in Argentina

    ERIC Educational Resources Information Center

    Leguizamon, Saturnino

    2010-01-01

    The term "geospatial technologies" encompasses a large area of fields involving cartography, spatial analysis, geographic information system, remote sensing, global positioning systems and many others. These technologies should be expected to be available (as "natural tools") for a country with a large surface and a variety of…

  17. Development of a congestion management system using GPS technology : technical summary.

    DOT National Transportation Integrated Search

    1996-11-01

    The overall goal of this research study was to demonstrate the feasibility of using global positioning system (GPS) and geographic information system (GIS) technologies to measure travel time and speed data on urban highways.Compared to more traditio...

  18. Improved Navigational Technology and Air Traffic Control: A Description of Controller Coordination and Workload

    DOT National Transportation Integrated Search

    1995-04-01

    Improved navigational technology, such as microwave landing systems (MLS) or : global positioning systems (GPS), installed in today's commercial aircraft : enable the air traffic control (ATC) system to better utilize its airspace. : This increased e...

  19. Development of a congestion management system using GPS technology : volume I.

    DOT National Transportation Integrated Search

    1997-04-01

    This report describes the results of a study undertaken to demonstrate the feasibility of using global positioning system( GPS) and geographic information system (CIS) technologies to measure travel time and speed data on urban highways. Compared to ...

  20. Application of DGPS for Collision Avoidance in Intelligent Transportation Systems In a Wireless Environment

    DOT National Transportation Integrated Search

    2001-02-19

    The Global Positioning System (GPS) is a satellite based radio-navigation system. A relatively large number of vehicles are already equipped with GPS devices. This project evaluated the application of Global Positing System (GPS) technology in collis...

  1. Mapping where We Live and Play with GPS Technology

    ERIC Educational Resources Information Center

    Gentry, Deborah J.

    2006-01-01

    As a result of technological advances such as the Global Positioning System (GPS) and the Geographic Information System (GIS), mapping practices and applications have become far more sophisticated. This article suggests family and consumer sciences students and professionals consider using GPS technology to map their communities as a strategy to…

  2. The Global Positioning System and Its Integration into College Geography Curricula.

    ERIC Educational Resources Information Center

    Wikle, Thomas A.; Lambert, Dean P.

    1996-01-01

    Introduces global positioning system (GPS) technology to nonspecialist geographers and recommends a framework for implementing GPS instructional modules in college geography courses. GPS was developed as a worldwide satellite-based system by the U.S. Department of Defense to simplify and improve military and civilian navigation and positioning.…

  3. Geospatial Technology

    ERIC Educational Resources Information Center

    Reed, Philip A.; Ritz, John

    2004-01-01

    Geospatial technology refers to a system that is used to acquire, store, analyze, and output data in two or three dimensions. This data is referenced to the earth by some type of coordinate system, such as a map projection. Geospatial systems include thematic mapping, the Global Positioning System (GPS), remote sensing (RS), telemetry, and…

  4. Battlefield Object Control via Internet Architecture

    DTIC Science & Technology

    2002-01-01

    superiority is the best way to reach the goal of competition superiority. Using information technology (IT) in data processing, including computer hardware... technologies : Global Positioning System (GPS), Geographic Information System (GIS), Battlefield Information Transmission System (BITS), and Intelligent...operational environment. Keywords: C4ISR Systems, Information Superiority, Battlefield Objects, Computer - Aided Prototyping System (CAPS), IP-based

  5. Future of printing: changes and challenges, technologies and markets

    NASA Astrophysics Data System (ADS)

    Kipphan, Helmut

    1998-01-01

    Digitalization within the graphic arts industry is described and it is explained how it is improving and changing the print production strategies and which new kinds of print production systems are developed or can be expected. The relationship of printed media and electronic media is analyzed and a positioning for the next century is given. The state of the art of conventional printing technologies, especially using direct imagine techniques, and their position within the digital workflow are shortly described. Non-impact printing multicolor printing systems are explained, based on general design criteria and linked to existing and newly announced equipment. The use of high-tech components for building up successful systems with high reliability, high quality and low production costs is included with some examples. Digital printing systems open many opportunities in print production: distributed printing, personalization, print and book on demand are explained as examples. The overview of the several printing technologies and their positioning regarding quality and productivity leads to the scenario about the important position of printed media, also in the distant future.

  6. Bathymetric surveys of Morse and Geist Reservoirs in central Indiana made with acoustic Doppler current profiler and global positioning system technology, 1996

    USGS Publications Warehouse

    Wilson, J.T.; Morlock, S.E.; Baker, N.T.

    1997-01-01

    Acoustic Doppler current profiler, global positioning system, and geographic information system technology were used to map the bathymetry of Morse and Geist Reservoirs, two artificial lakes used for public water supply in central Indiana. The project was a pilot study to evaluate the use of the technologies for bathymetric surveys. Bathymetric surveys were last conducted in 1978 on Morse Reservoir and in 1980 on Geist Reservoir; those surveys were done with conventional methods using networks of fathometer transects. The 1996 bathymetric surveys produced updated estimates of reservoir volumes that will serve as base-line data for future estimates of storage capacity and sedimentation rates.An acoustic Doppler current profiler and global positioning system receiver were used to collect water-depth and position data from April 1996 through October 1996. All water-depth and position data were imported to a geographic information system to create a data base. The geographic information system then was used to generate water-depth contour maps and to compute the volumes for each reservoir.The computed volume of Morse Reservoir was 22,820 acre-feet (7.44 billion gallons), with a surface area of 1,484 acres. The computed volume of Geist Reservoir was 19,280 acre-feet (6.29 billion gallons), with a surface area of 1,848 acres. The computed 1996 reservoir volumes are less than the design volumes and indicate that sedimentation has occurred in both reservoirs. Cross sections were constructed from the computer-generated surfaces for 1996 and compared to the fathometer profiles from the 1978 and 1980 surveys; analysis of these cross sections also indicates that some sedimentation has occurred in both reservoirs.The acoustic Doppler current profiler, global positioning system, and geographic information system technologies described in this report produced bathymetric maps and volume estimates more efficiently and with comparable or greater resolution than conventional bathymetry methods.

  7. Concepts for fast acquisition in optical communications systems

    NASA Astrophysics Data System (ADS)

    Wilkerson, Brandon L.; Giggenbach, Dirk; Epple, Bernhard

    2006-09-01

    As free-space laser communications systems proliferate due to improved technology and transmission techniques, optical communication networks comprised of ground stations, aircraft, high altitude platforms, and satellites become an attainable goal. An important consideration for optical networks is the ability of optical communication terminals (OCT) to quickly locate one another and align their laser beams to initiate the acquisition sequence. This paper investigates promising low-cost technologies and novel approaches that will facilitate the targeting and acquisition tasks between counter terminals. Specifically, two critical technology areas are investigated: position determination (which includes location and attitude determination) and inter-terminal communications. A feasibility study identified multiple-antenna global navigation satellite system (GNSS) systems and GNSS-aided inertial systems as possible position determination solutions. Personal satellite communication systems (e.g. Iridium or Inmarsat), third generation cellular technology (IMT-2000/UMTS), and a relatively new air traffic surveillance technology called Autonomous Dependent Surveillance-Broadcast (ADS-B) were identified as possible inter-terminal communication solutions. A GNSS-aided inertial system and an ADS-B system were integrated into an OCT to demonstrate their utility in a typical optical communication scenario. Testing showed that these technologies have high potential in future OCTs, although improvements can be made to both to increase tracking accuracy.

  8. GPS Software Packages Deliver Positioning Solutions

    NASA Technical Reports Server (NTRS)

    2010-01-01

    "To determine a spacecraft s position, the Jet Propulsion Laboratory (JPL) developed an innovative software program called the GPS (global positioning system)-Inferred Positioning System and Orbit Analysis Simulation Software, abbreviated as GIPSY-OASIS, and also developed Real-Time GIPSY (RTG) for certain time-critical applications. First featured in Spinoff 1999, JPL has released hundreds of licenses for GIPSY and RTG, including to Longmont, Colorado-based DigitalGlobe. Using the technology, DigitalGlobe produces satellite imagery with highly precise latitude and longitude coordinates and then supplies it for uses within defense and intelligence, civil agencies, mapping and analysis, environmental monitoring, oil and gas exploration, infrastructure management, Internet portals, and navigation technology."

  9. Global Positioning Systems: Keeping Us on Track. Resources in Technology.

    ERIC Educational Resources Information Center

    Valesey, Brigitte G.

    1998-01-01

    The Global Positioning System is a satellite-based system used to determine location, speed, and precise time in any weather, anywhere on earth. Developed by the U.S. Air Force as a defense system, it is now available for civilian and commercial uses. (JOW)

  10. Electromagnetic free suspension system for space manufacturing. Volume 1: Technology department

    NASA Technical Reports Server (NTRS)

    Buerger, E. H.; Frost, R. T.; Lambert, R. H.; Oconnor, M. F.; Odell, E. L. G.; Napaluch, L. J.; Stockhoff, E. H.; Wouch, G.

    1972-01-01

    The technology developed in defining a facility to be used on the Skylab mission for electromagnetic suspension of small, molten spheres in the weightless space environment is described. The technologies discussed include: four-coil optimization, four-coil versus six-coil configuration comparison, four-coil position servocontrol, four-coil breadboard, position sensing and servosystem, two-color pyrometer, and specimen toration mode analysis.

  11. 3D vision system for intelligent milking robot automation

    NASA Astrophysics Data System (ADS)

    Akhloufi, M. A.

    2013-12-01

    In a milking robot, the correct localization and positioning of milking teat cups is of very high importance. The milking robots technology has not changed since a decade and is based primarily on laser profiles for teats approximate positions estimation. This technology has reached its limit and does not allow optimal positioning of the milking cups. Also, in the presence of occlusions, the milking robot fails to milk the cow. These problems, have economic consequences for producers and animal health (e.g. development of mastitis). To overcome the limitations of current robots, we have developed a new system based on 3D vision, capable of efficiently positioning the milking cups. A prototype of an intelligent robot system based on 3D vision for real-time positioning of a milking robot has been built and tested under various conditions on a synthetic udder model (in static and moving scenarios). Experimental tests, were performed using 3D Time-Of-Flight (TOF) and RGBD cameras. The proposed algorithms permit the online segmentation of teats by combing 2D and 3D visual information. The obtained results permit the teat 3D position computation. This information is then sent to the milking robot for teat cups positioning. The vision system has a real-time performance and monitors the optimal positioning of the cups even in the presence of motion. The obtained results, with both TOF and RGBD cameras, show the good performance of the proposed system. The best performance was obtained with RGBD cameras. This latter technology will be used in future real life experimental tests.

  12. Monitoring invasive plants using hand-held GIS technology

    Treesearch

    Theresa M. Mau-Crimmins; Barron J. Orr

    2005-01-01

    Successful control of invasive species requires a clear picture of the spatial extent of infestations. The latest mapping technology involves coupling global position systems and handheld computers running geographic information systems software in the field. A series of workshops applying this technology to mapping weeds was developed and presented to Weed Management...

  13. Using Geo-Spatial Technologies for Field Applications in Higher Geography Education

    ERIC Educational Resources Information Center

    Karatepe, Akif

    2012-01-01

    Today's important geo-spatial technologies, GIS (Geographic Information Systems), GPS (Global Positioning Systems) and Google Earth have been widely used in geography education. Transferring spatially oriented data taken by GPS to the GIS and Google Earth has provided great benefits in terms of showing the usage of spatial technologies for field…

  14. Creating Hybrid Learning Experiences in Robotics: Implications for Supporting Teaching and Learning

    ERIC Educational Resources Information Center

    Frerichs, Saundra Wever; Barker, Bradley; Morgan, Kathy; Patent-Nygren, Megan; Rezac, Micaela

    2012-01-01

    Geospatial and Robotics Technologies for the 21st Century (GEAR-Tech-21), teaches science, technology, engineering and mathematics (STEM) through robotics, global positioning systems (GPS), and geographic information systems (GIS) activities for youth in grades 5-8. Participants use a robotics kit, handheld GPS devices, and GIS technology to…

  15. Development of SPIES (Space Intelligent Eyeing System) for smart vehicle tracing and tracking

    NASA Astrophysics Data System (ADS)

    Abdullah, Suzanah; Ariffin Osoman, Muhammad; Guan Liyong, Chua; Zulfadhli Mohd Noor, Mohd; Mohamed, Ikhwan

    2016-06-01

    SPIES or Space-based Intelligent Eyeing System is an intelligent technology which can be utilized for various applications such as gathering spatial information of features on Earth, tracking system for the movement of an object, tracing system to trace the history information, monitoring driving behavior, security and alarm system as an observer in real time and many more. SPIES as will be developed and supplied modularly will encourage the usage based on needs and affordability of users. SPIES are a complete system with camera, GSM, GPS/GNSS and G-Sensor modules with intelligent function and capabilities. Mainly the camera is used to capture pictures and video and sometimes with audio of an event. Its usage is not limited to normal use for nostalgic purpose but can be used as a reference for security and material of evidence when an undesirable event such as crime occurs. When integrated with space based technology of the Global Navigational Satellite System (GNSS), photos and videos can be recorded together with positioning information. A product of the integration of these technologies when integrated with Information, Communication and Technology (ICT) and Geographic Information System (GIS) will produce innovation in the form of information gathering methods in still picture or video with positioning information that can be conveyed in real time via the web to display location on the map hence creating an intelligent eyeing system based on space technology. The importance of providing global positioning information is a challenge but overcome by SPIES even in areas without GNSS signal reception for the purpose of continuous tracking and tracing capability

  16. Development and Testing of the Phase 0 Autonomous Formation Flight Research System

    NASA Technical Reports Server (NTRS)

    Petersen, Shane; Fantini, Jay; Norlin, Ken; Theisen, John; Krasiewski, Steven

    2004-01-01

    The Autonomous Formation Flight (AFF) project was initiated in 1995 to demonstrate at least 10-percent drag reduction by positioning a trailing aircraft in the wingtip vortex of a leading aircraft. If successful, this technology would provide increased fuel savings, reduced emissions, and extended flight duration for fleet aircraft flying in formation. To demonstrate this technology, the AFF project at NASA Dryden Flight Research Center developed a system architecture incorporating two F-18 aircraft flying in leading-trailing formation. The system architecture has been designed to allow the trailing aircraft to maintain station-keeping position relative to the leading aircraft within +/-10 ft. Development of this architecture would be directed at the design and development of a computing system to feed surface position commands into the flight control computers, thereby controlling the longitudinal and lateral position of the trailing aircraft. In addition, modification to the instrumentation systems of both aircraft, pilot displays, and a means of broadcasting the leading aircraft inertial and global positioning system-based positional data to the trailing aircraft would be needed. This presentation focuses on the design and testing of the AFF Phase 0 research system.

  17. Integrating different tracking systems in football: multiple camera semi-automatic system, local position measurement and GPS technologies.

    PubMed

    Buchheit, Martin; Allen, Adam; Poon, Tsz Kit; Modonutti, Mattia; Gregson, Warren; Di Salvo, Valter

    2014-12-01

    Abstract During the past decade substantial development of computer-aided tracking technology has occurred. Therefore, we aimed to provide calibration equations to allow the interchangeability of different tracking technologies used in soccer. Eighty-two highly trained soccer players (U14-U17) were monitored during training and one match. Player activity was collected simultaneously with a semi-automatic multiple-camera (Prozone), local position measurement (LPM) technology (Inmotio) and two global positioning systems (GPSports and VX). Data were analysed with respect to three different field dimensions (small, <30 m 2 to full-pitch, match). Variables provided by the systems were compared, and calibration equations (linear regression models) between each system were calculated for each field dimension. Most metrics differed between the 4 systems with the magnitude of the differences dependant on both pitch size and the variable of interest. Trivial-to-small between-system differences in total distance were noted. However, high-intensity running distance (>14.4 km · h -1 ) was slightly-to-moderately greater when tracked with Prozone, and accelerations, small-to-very largely greater with LPM. For most of the equations, the typical error of the estimate was of a moderate magnitude. Interchangeability of the different tracking systems is possible with the provided equations, but care is required given their moderate typical error of the estimate.

  18. Spacecraft applications of advanced global positioning system technology

    NASA Technical Reports Server (NTRS)

    Huth, Gaylord; Dodds, James; Udalov, Sergei; Austin, Richard; Loomis, Peter; Duboraw, I. Newton, III

    1988-01-01

    The purpose of this study was to evaluate potential uses of Global Positioning System (GPS) in spacecraft applications in the following areas: attitude control and tracking; structural control; traffic control; and time base definition (synchronization). Each of these functions are addressed. Also addressed are the hardware related issues concerning the application of GPS technology and comparisons are provided with alternative instrumentation methods for specific functions required for an advanced low earth orbit spacecraft.

  19. The Role of New Technologies to Foster Positive Youth Development

    ERIC Educational Resources Information Center

    Bers, Marina Umaschi

    2006-01-01

    This article describes a developmental systems approach to applied developmental science (ADS), which provides a framework to design and evaluate technology-rich programs that promote positive development by emphasizing the strengths and assets of young people instead of focusing on diminishing or preventing risk-taking behaviors. Until now, most…

  20. A "Neogeographical Education"? The Geospatial Web, GIS and Digital Art in Adult Education

    ERIC Educational Resources Information Center

    Papadimitriou, Fivos

    2010-01-01

    Neogeography provides a link between the science of geography and digital art. The carriers of this link are geospatial technologies (global navigational satellite systems such as the global positioning system, Geographical Information System [GIS] and satellite imagery) along with ubiquitous information and communication technologies (such as…

  1. 27th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    NASA Technical Reports Server (NTRS)

    Sydnor, Richard L. (Editor)

    1996-01-01

    This document is a compilation of technical papers presented at the 27th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, held November 29 - December 1, 1995 at San Diego, CA. Papers are in the following categories: Recent developments in rubidium, cesium, and hydrogen-based frequency standards; and in cryogenic and trapped-ion technology; International and transnational applications of PTTI technology with emphasis on satellite laser tracking, GLONASS timing, intercomparison of national time scales and international telecommunications; Applications of PTTI technology to the telecommunications, power distribution, platform positioning, and geophysical survey industries; Applications of PTTI technology to evolving military communications and navigation systems; and Dissemination of precise time and frequency by means of Global Positioning System (GPS), Global Satellite Navigation System (GLONASS), MILSTAR, LORAN, and synchronous communications satellites.

  2. Online Teacher Training: The Early Childhood Technology Integrated Instructional System--Phase 3

    ERIC Educational Resources Information Center

    Daytner, Gary; Robinson, Linda; Schneider, Carol; Johanson, Joyce

    2009-01-01

    Legislation, research, and practice support access to technology by young children with disabilities. Yet barriers to technology use--lack of training, inadequate funding, failure to acknowledge technology as a relevant issue, or disbelief that technology can positively impact young children with disabilities--often prevail among many disciplines…

  3. DARPA Emerging Technologies

    DTIC Science & Technology

    2016-01-01

    development requires wind tunnels and ranges that do not currently exist. Furthermore, continued technology matura- tion is needed for thermal management...designed with conceptual design engine model (at existing technology level), or existing propul- sion system, or modified propulsion system (e.g...internal cameras reading gauges and dials and switch positions , directly tapping into current or future avion- ics service buses and integrating

  4. Understanding Technology and People Issues in Hospital Information System (HIS) Adoption: Case study of a tertiary hospital in Malaysia.

    PubMed

    Zakaria, Nasriah; Mohd Yusof, Shafiz Affendi

    Hospital Information Systems (HIS) can improve healthcare outcome quality, increase efficiency, and reduce errors. The government of Malaysia implemented HIS across the country to maximize the use of technology to improve healthcare delivery, however, little is known about the benefits and challenges of HIS adoption in each institution. This paper looks at the technology and people issues in adopting such systems. The study used a case study approach, using an in-depth interview with multidisciplinary medical team members who were using the system on a daily basis. A thematic analysis using Atlas.ti was employed to understand the complex relations among themes and sub-themes to discover the patterns in the data. . Users found the new system increased the efficiency of workflows and saved time. They reported less redundancy of work and improved communication among medical team members. Data retrieval and storage were also mentioned as positive results of the new HIS system. Healthcare workers showed positive attitudes during training and throughout the learning process. From a technological perspective, it was found that medical workers using HIS has better access and data management compared to the previously used manual system. The human issues analysis reveals positive attitudes toward using HIS among the users especially from the physicians' side. Copyright © 2016. Published by Elsevier Ltd.

  5. Components of spatial information management in wildlife ecology: Software for statistical and modeling analysis [Chapter 14

    Treesearch

    Hawthorne L. Beyer; Jeff Jenness; Samuel A. Cushman

    2010-01-01

    Spatial information systems (SIS) is a term that describes a wide diversity of concepts, techniques, and technologies related to the capture, management, display and analysis of spatial information. It encompasses technologies such as geographic information systems (GIS), global positioning systems (GPS), remote sensing, and relational database management systems (...

  6. Design and Implementation of a Smart Home System Using Multisensor Data Fusion Technology.

    PubMed

    Hsu, Yu-Liang; Chou, Po-Huan; Chang, Hsing-Cheng; Lin, Shyan-Lung; Yang, Shih-Chin; Su, Heng-Yi; Chang, Chih-Chien; Cheng, Yuan-Sheng; Kuo, Yu-Chen

    2017-07-15

    This paper aims to develop a multisensor data fusion technology-based smart home system by integrating wearable intelligent technology, artificial intelligence, and sensor fusion technology. We have developed the following three systems to create an intelligent smart home environment: (1) a wearable motion sensing device to be placed on residents' wrists and its corresponding 3D gesture recognition algorithm to implement a convenient automated household appliance control system; (2) a wearable motion sensing device mounted on a resident's feet and its indoor positioning algorithm to realize an effective indoor pedestrian navigation system for smart energy management; (3) a multisensor circuit module and an intelligent fire detection and alarm algorithm to realize a home safety and fire detection system. In addition, an intelligent monitoring interface is developed to provide in real-time information about the smart home system, such as environmental temperatures, CO concentrations, communicative environmental alarms, household appliance status, human motion signals, and the results of gesture recognition and indoor positioning. Furthermore, an experimental testbed for validating the effectiveness and feasibility of the smart home system was built and verified experimentally. The results showed that the 3D gesture recognition algorithm could achieve recognition rates for automated household appliance control of 92.0%, 94.8%, 95.3%, and 87.7% by the 2-fold cross-validation, 5-fold cross-validation, 10-fold cross-validation, and leave-one-subject-out cross-validation strategies. For indoor positioning and smart energy management, the distance accuracy and positioning accuracy were around 0.22% and 3.36% of the total traveled distance in the indoor environment. For home safety and fire detection, the classification rate achieved 98.81% accuracy for determining the conditions of the indoor living environment.

  7. An Indoor Location-Based Control System Using Bluetooth Beacons for IoT Systems.

    PubMed

    Huh, Jun-Ho; Seo, Kyungryong

    2017-12-19

    The indoor location-based control system estimates the indoor position of a user to provide the service he/she requires. The major elements involved in the system are the localization server, service-provision client, user application positioning technology. The localization server controls access of terminal devices (e.g., Smart Phones and other wireless devices) to determine their locations within a specified space first and then the service-provision client initiates required services such as indoor navigation and monitoring/surveillance. The user application provides necessary data to let the server to localize the devices or allow the user to receive various services from the client. The major technological elements involved in this system are indoor space partition method, Bluetooth 4.0, RSSI (Received Signal Strength Indication) and trilateration. The system also employs the BLE communication technology when determining the position of the user in an indoor space. The position information obtained is then used to control a specific device(s). These technologies are fundamental in achieving a "Smart Living". An indoor location-based control system that provides services by estimating user's indoor locations has been implemented in this study (First scenario). The algorithm introduced in this study (Second scenario) is effective in extracting valid samples from the RSSI dataset but has it has some drawbacks as well. Although we used a range-average algorithm that measures the shortest distance, there are some limitations because the measurement results depend on the sample size and the sample efficiency depends on sampling speeds and environmental changes. However, the Bluetooth system can be implemented at a relatively low cost so that once the problem of precision is solved, it can be applied to various fields.

  8. An Indoor Location-Based Control System Using Bluetooth Beacons for IoT Systems

    PubMed Central

    Huh, Jun-Ho; Seo, Kyungryong

    2017-01-01

    The indoor location-based control system estimates the indoor position of a user to provide the service he/she requires. The major elements involved in the system are the localization server, service-provision client, user application positioning technology. The localization server controls access of terminal devices (e.g., Smart Phones and other wireless devices) to determine their locations within a specified space first and then the service-provision client initiates required services such as indoor navigation and monitoring/surveillance. The user application provides necessary data to let the server to localize the devices or allow the user to receive various services from the client. The major technological elements involved in this system are indoor space partition method, Bluetooth 4.0, RSSI (Received Signal Strength Indication) and trilateration. The system also employs the BLE communication technology when determining the position of the user in an indoor space. The position information obtained is then used to control a specific device(s). These technologies are fundamental in achieving a “Smart Living”. An indoor location-based control system that provides services by estimating user’s indoor locations has been implemented in this study (First scenario). The algorithm introduced in this study (Second scenario) is effective in extracting valid samples from the RSSI dataset but has it has some drawbacks as well. Although we used a range-average algorithm that measures the shortest distance, there are some limitations because the measurement results depend on the sample size and the sample efficiency depends on sampling speeds and environmental changes. However, the Bluetooth system can be implemented at a relatively low cost so that once the problem of precision is solved, it can be applied to various fields. PMID:29257044

  9. Design and Implementation of a Smart Home System Using Multisensor Data Fusion Technology

    PubMed Central

    Chou, Po-Huan; Chang, Hsing-Cheng; Lin, Shyan-Lung; Yang, Shih-Chin; Su, Heng-Yi; Chang, Chih-Chien; Cheng, Yuan-Sheng; Kuo, Yu-Chen

    2017-01-01

    This paper aims to develop a multisensor data fusion technology-based smart home system by integrating wearable intelligent technology, artificial intelligence, and sensor fusion technology. We have developed the following three systems to create an intelligent smart home environment: (1) a wearable motion sensing device to be placed on residents’ wrists and its corresponding 3D gesture recognition algorithm to implement a convenient automated household appliance control system; (2) a wearable motion sensing device mounted on a resident’s feet and its indoor positioning algorithm to realize an effective indoor pedestrian navigation system for smart energy management; (3) a multisensor circuit module and an intelligent fire detection and alarm algorithm to realize a home safety and fire detection system. In addition, an intelligent monitoring interface is developed to provide in real-time information about the smart home system, such as environmental temperatures, CO concentrations, communicative environmental alarms, household appliance status, human motion signals, and the results of gesture recognition and indoor positioning. Furthermore, an experimental testbed for validating the effectiveness and feasibility of the smart home system was built and verified experimentally. The results showed that the 3D gesture recognition algorithm could achieve recognition rates for automated household appliance control of 92.0%, 94.8%, 95.3%, and 87.7% by the 2-fold cross-validation, 5-fold cross-validation, 10-fold cross-validation, and leave-one-subject-out cross-validation strategies. For indoor positioning and smart energy management, the distance accuracy and positioning accuracy were around 0.22% and 3.36% of the total traveled distance in the indoor environment. For home safety and fire detection, the classification rate achieved 98.81% accuracy for determining the conditions of the indoor living environment. PMID:28714884

  10. Integrating GPS, GYRO, vehicle speed sensor, and digital map to provide accurate and real-time position in an intelligent navigation system

    NASA Astrophysics Data System (ADS)

    Li, Qingquan; Fang, Zhixiang; Li, Hanwu; Xiao, Hui

    2005-10-01

    The global positioning system (GPS) has become the most extensively used positioning and navigation tool in the world. Applications of GPS abound in surveying, mapping, transportation, agriculture, military planning, GIS, and the geosciences. However, the positional and elevation accuracy of any given GPS location is prone to error, due to a number of factors. The applications of Global Positioning System (GPS) positioning is more and more popular, especially the intelligent navigation system which relies on GPS and Dead Reckoning technology is developing quickly for future huge market in China. In this paper a practical combined positioning model of GPS/DR/MM is put forward, which integrates GPS, Gyro, Vehicle Speed Sensor (VSS) and digital navigation maps to provide accurate and real-time position for intelligent navigation system. This model is designed for automotive navigation system making use of Kalman filter to improve position and map matching veracity by means of filtering raw GPS and DR signals, and then map-matching technology is used to provide map coordinates for map displaying. In practical examples, for illustrating the validity of the model, several experiments and their results of integrated GPS/DR positioning in intelligent navigation system will be shown for the conclusion that Kalman Filter based GPS/DR integrating position approach is necessary, feasible and efficient for intelligent navigation application. Certainly, this combined positioning model, similar to other model, can not resolve all situation issues. Finally, some suggestions are given for further improving integrated GPS/DR/MM application.

  11. PTC test bed upgrades to provide ACSES testing support capabilities at transportation technology center.

    DOT National Transportation Integrated Search

    2015-06-01

    FRA Task Order 314 upgraded the Positive Train Control (PTC) Test Bed at the Transportation Technology Center to support : testing of PTC systems, components, and related equipment associated with the Advanced Civil Speed Enforcement System : (ACSES)...

  12. A case study on the feasibility and performance of an UWB-AoA real time location system for resources management of civil construction projects

    NASA Astrophysics Data System (ADS)

    Mok, Esmond; Xia, Linyuan; Retscher, Guenther; Tian, Hui

    2010-06-01

    The application of integrated satellite and modern wireless positioning technologies for ubiquitous real-time resources management in large scale civil engineering projects can greatly optimize the time and cost in the construction process, and is now the trend for modern construction project management. As the outdoor conditions of most civil construction sites are open to sky, satellite positioning with the popularly used Global Positioning System (GPS) has been proved to be very efficient and effective. However, the condition in indoor and underground construction site is very complicated due to the fact that different construction activities would be carried out in different congested areas, involving heavy construction plant, equipment, professionals and technical personnel. Nowadays different emerging technologies such as Wi-Fi and ZigBee can be adopted for position and tracking in indoor environments. Nevertheless, under the very complicated construction site conditions these technologies may fail due to movement of human resources and construction plant, variation of metrological conditions, and serious multipath effects of signals. It is considered that Ultra Wide Band (UWB) technology is more suitable for indoor construction site environments. In this paper, a case study on the attempt of integrating GPS with Ubisense Real-time Location System (RTLS) for resources management in an underground railway construction site is discussed. Laboratory and field tests have shown that the RTLS can provide better resources management capability in terms of positioning accuracy and stability than Wi-Fi and ZigBee technologies under complicated construction environments. The test results show that the system can normally achieve better than 15 cm accuracy, and better than 1 m under adverse geometrical site condition. However, the high instrumental set up cost and the requirement for high quality data transmission cable for high precision time synchronization between sensors may deter wide application of similar system for resources management in construction sites.

  13. OAST Space Theme Workshop 1976

    NASA Technical Reports Server (NTRS)

    Sadin, S. R.

    1977-01-01

    Papers that provide a technical foundation including research and technology base candidates for each of six space themes - space power, space industrialization, search for extraterrestrial intelligence, exploration of the solar system, global service, and advanced transportation systems - are presented. The material is mainly intended for further use by workshop participants and NASA elements concerned with space research and technology. While the data presented do not represent official plans or positions, they are part of the process of evolving such plans and positions. The information contained reflects the efforts of workshop participants and should be an aid in the successful implementation and execution of the Agency's near- and far-term advanced technology program.

  14. Technology in the Classroom: Teachers and Technology--A Technological Divide

    ERIC Educational Resources Information Center

    Clarke, Gregory, Sr.; Zagarell, Jesse

    2012-01-01

    The education system in the United States continues to grapple with adapting to change, especially when it comes to integrating technology in the curriculum. The United States needs to use its resources to stay competitive in the increasingly technological world, particularly in the classroom. Lefebvre, Deaudelin, and Loiselle (2006) posit that…

  15. An Indoor Positioning-Based Mobile Payment System Using Bluetooth Low Energy Technology

    PubMed Central

    Winata, Doni

    2018-01-01

    The development of information technology has paved the way for faster and more convenient payment process flows and new methodology for the design and implementation of next generation payment systems. The growth of smartphone usage nowadays has fostered a new and popular mobile payment environment. Most of the current generation smartphones support Bluetooth Low Energy (BLE) technology to communicate with nearby BLE-enabled devices. It is plausible to construct an Over-the-Air BLE-based mobile payment system as one of the payment methods for people living in modern societies. In this paper, a secure indoor positioning-based mobile payment authentication protocol with BLE technology and the corresponding mobile payment system design are proposed. The proposed protocol consists of three phases: initialization phase, session key construction phase, and authentication phase. When a customer moves toward the POS counter area, the proposed mobile payment system will automatically detect the position of the customer to confirm whether the customer is ready for the checkout process. Once the system has identified the customer is standing within the payment-enabled area, the payment system will invoke authentication process between POS and the customer’s smartphone through BLE communication channel to generate a secure session key and establish an authenticated communication session to perform the payment transaction accordingly. A prototype is implemented to assess the performance of the proposed design for mobile payment system. In addition, security analysis is conducted to evaluate the security strength of the proposed protocol. PMID:29587399

  16. An Indoor Positioning-Based Mobile Payment System Using Bluetooth Low Energy Technology.

    PubMed

    Yohan, Alexander; Lo, Nai-Wei; Winata, Doni

    2018-03-25

    The development of information technology has paved the way for faster and more convenient payment process flows and new methodology for the design and implementation of next generation payment systems. The growth of smartphone usage nowadays has fostered a new and popular mobile payment environment. Most of the current generation smartphones support Bluetooth Low Energy (BLE) technology to communicate with nearby BLE-enabled devices. It is plausible to construct an Over-the-Air BLE-based mobile payment system as one of the payment methods for people living in modern societies. In this paper, a secure indoor positioning-based mobile payment authentication protocol with BLE technology and the corresponding mobile payment system design are proposed. The proposed protocol consists of three phases: initialization phase, session key construction phase, and authentication phase. When a customer moves toward the POS counter area, the proposed mobile payment system will automatically detect the position of the customer to confirm whether the customer is ready for the checkout process. Once the system has identified the customer is standing within the payment-enabled area, the payment system will invoke authentication process between POS and the customer's smartphone through BLE communication channel to generate a secure session key and establish an authenticated communication session to perform the payment transaction accordingly. A prototype is implemented to assess the performance of the proposed design for mobile payment system. In addition, security analysis is conducted to evaluate the security strength of the proposed protocol.

  17. Wireless as Enabler of Innovation in 21.

    PubMed

    Ball, Eddie; Vasileiadis, Athanasios

    2017-01-01

    This paper overviews new and emerging wireless technologies that could positively impact on the lives of the elderly or disabled, as Social Care users of Assistive Technology (AT) for 'independent living'. Novel Internet of Things (IoT) radio systems and wireless locating systems being researched at The University of Sheffield are discussed in the context of Social Care technology use-cases.

  18. A case study evaluation of a Critical Care Information System adoption using the socio-technical and fit approach.

    PubMed

    Yusof, Maryati Mohd

    2015-07-01

    Clinical information systems have long been used in intensive care units but reports on their adoption and benefits are limited. This study evaluated a Critical Care Information System implementation. A case study summative evaluation was conducted, employing observation, interview, and document analysis in operating theatres and 16-bed adult intensive care units in a 400-bed Malaysian tertiary referral centre from the perspectives of users (nurses and physicians), management, and information technology staff. System implementation, factors influencing adoption, fit between these factors, and the impact of the Critical Care Information System were evaluated after eight months of operation. Positive influences on system adoption were associated with technical factors, including system ease of use, usefulness, and information relevancy; human factors, particularly user attitude; and organisational factors, namely clinical process-technology alignment and champions. Organisational factors such as planning, project management, training, technology support, turnover rate, clinical workload, and communication were barriers to system implementation and use. Recommendations to improve the current system problems were discussed. Most nursing staff positively perceived the system's reduction of documentation and data access time, giving them more time with patients. System acceptance varied among doctors. System use also had positive impacts on timesaving, data quality, and clinical workflow. Critical Care Information Systems is crucial and has great potentials in enhancing and delivering critical care. However, the case study findings showed that the system faced complex challenges and was underutilised despite its potential. The role of socio-technical factors and their fit in realizing the potential of Critical Care Information Systems requires continuous, in-depth evaluation and stakeholder understanding and acknowledgement. The comprehensive and specific evaluation measures of the Human-Organisation-Technology Fit framework can flexibly evaluate Critical Care Information Systems. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Scuba Weights

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Attitude Adjuster is a system for weight repositioning corresponding to a SCUBA diver's changing positions. Compact tubes on the diver's air tank permit controlled movement of lead balls within the Adjuster, automatically repositioning when the diver changes position. Manufactured by Think Tank Technologies, the system is light and small, reducing drag and energy requirements and contributing to lower air consumption. The Mid-Continent Technology Transfer Center helped the company with both technical and business information and arranged for the testing at Marshall Space Flight Center's Weightlessness Environmental Training Facility for astronauts.

  20. Remote sensing for detecting and mapping whitefly (Bemisia tabaci) infestations

    USDA-ARS?s Scientific Manuscript database

    Remote sensing technology has long been used for detecting insect infestations on agricultural crops. With recent advances in remote sensing sensors and other spatial information technologies such as Global Position Systems (GPS) and Geographic Information Systems (GIS), remote sensing is finding mo...

  1. From Consciousness to Technology: The Implications of Wave Periodicity Research for Communication Studies.

    ERIC Educational Resources Information Center

    Cooper, Thomas W.

    Attempting to introduce a new viewpoint to communication studies, this speculative and philosophical paper posits technology as an "echo of consciousness." Section one examines technology as a manifestation of attitude, presenting the premise that technologies, consciousness, and systems are not separate components, but products of…

  2. Space Technology 7 Disturbance Reduction System - precision control flight Validation

    NASA Technical Reports Server (NTRS)

    Carmain, Andrew J.; Dunn, Charles; Folkner, William; Hruby, Vlad; Spence, Doug; O'Donnell, James; Markley, Landis; Maghami, Peiman; Hsu, Oscar; Demmons, N.; hide

    2005-01-01

    The NASA New Millennium Program Space Technology 7 (ST7) project will validate technology for precision spacecraft control. The Disturbance Reduction System (DRS) will be part of the European Space Agency's LISA Pathfinder project. The DRS will control the position of the spacecraft relative to a reference to an accuracy of one nanometer over time scales of several thousand seconds. To perform the control, the spacecraft will use a new colloid thruster technology. The thrusters will operate over the range of 5 to 30 micro-Newtons with precision of 0.1 micro- Newton. The thrust will be generated by using a high electric field to extract charged droplets of a conducting colloid fluid and accelerating them with a precisely adjustable voltage. The control reference will be provided by the European LISA Technology Package, which will include two nearly freefloating test masses. The test mass positions and orientations will be measured using a capacitance bridge. The test mass position and attitude will be adjustable using electrostatically applied forces and torques. The DRS will control the spacecraft position with respect to one test mass while minimizing disturbances on the second test mass. The dynamic control system will cover eighteen degrees of freedom: six for each of the test masses and six for the spacecraft. After launch in late 2009 to a low Earth orbit, the LISA Pathfinder spacecraft will be maneuvered to a halo orbit about the Earth-Sun L1 Lagrange point for operations.

  3. Advancing Measurement Science to Assess Monitoring, Diagnostics, and Prognostics for Manufacturing Robotics

    PubMed Central

    Qiao, Guixiu; Weiss, Brian A.

    2016-01-01

    Unexpected equipment downtime is a ‘pain point’ for manufacturers, especially in that this event usually translates to financial losses. To minimize this pain point, manufacturers are developing new health monitoring, diagnostic, prognostic, and maintenance (collectively known as prognostics and health management (PHM)) techniques to advance the state-of-the-art in their maintenance strategies. The manufacturing community has a wide-range of needs with respect to the advancement and integration of PHM technologies to enhance manufacturing robotic system capabilities. Numerous researchers, including personnel from the National Institute of Standards and Technology (NIST), have identified a broad landscape of barriers and challenges to advancing PHM technologies. One such challenge is the verification and validation of PHM technology through the development of performance metrics, test methods, reference datasets, and supporting tools. Besides documenting and presenting the research landscape, NIST personnel are actively researching PHM for robotics to promote the development of innovative sensing technology and prognostic decision algorithms and to produce a positional accuracy test method that emphasizes the identification of static and dynamic positional accuracy. The test method development will provide manufacturers with a methodology that will allow them to quickly assess the positional health of their robot systems along with supporting the verification and validation of PHM techniques for the robot system. PMID:28058172

  4. Advancing Measurement Science to Assess Monitoring, Diagnostics, and Prognostics for Manufacturing Robotics.

    PubMed

    Qiao, Guixiu; Weiss, Brian A

    2016-01-01

    Unexpected equipment downtime is a 'pain point' for manufacturers, especially in that this event usually translates to financial losses. To minimize this pain point, manufacturers are developing new health monitoring, diagnostic, prognostic, and maintenance (collectively known as prognostics and health management (PHM)) techniques to advance the state-of-the-art in their maintenance strategies. The manufacturing community has a wide-range of needs with respect to the advancement and integration of PHM technologies to enhance manufacturing robotic system capabilities. Numerous researchers, including personnel from the National Institute of Standards and Technology (NIST), have identified a broad landscape of barriers and challenges to advancing PHM technologies. One such challenge is the verification and validation of PHM technology through the development of performance metrics, test methods, reference datasets, and supporting tools. Besides documenting and presenting the research landscape, NIST personnel are actively researching PHM for robotics to promote the development of innovative sensing technology and prognostic decision algorithms and to produce a positional accuracy test method that emphasizes the identification of static and dynamic positional accuracy. The test method development will provide manufacturers with a methodology that will allow them to quickly assess the positional health of their robot systems along with supporting the verification and validation of PHM techniques for the robot system.

  5. The Evolution of Image-Free Robotic Assistance in Unicompartmental Knee Arthroplasty.

    PubMed

    Lonner, Jess H; Moretti, Vincent M

    2016-01-01

    Semiautonomous robotic technology has been introduced to optimize accuracy of bone preparation, implant positioning, and soft tissue balance in unicompartmental knee arthroplasty (UKA), with the expectation that there will be a resultant improvement in implant durability and survivorship. Currently, roughly one-fifth of UKAs in the US are being performed with robotic assistance, and it is anticipated that there will be substantial growth in market penetration of robotics over the next decade. First-generation robotic technology improved substantially implant position compared to conventional methods; however, high capital costs, uncertainty regarding the value of advanced technologies, and the need for preoperative computed tomography (CT) scans were barriers to broader adoption. Newer image-free semiautonomous robotic technology optimizes both implant position and soft tissue balance, without the need for preoperative CT scans and with pricing and portability that make it suitable for use in an ambulatory surgery center setting, where approximately 40% of these systems are currently being utilized. This article will review the robotic experience for UKA, including rationale, system descriptions, and outcomes.

  6. Global Positioning System for Personal Travel Surveys: Lexington Area Travel Data Collection Test, Final Report

    DOT National Transportation Integrated Search

    1997-09-15

    This report describes the development and field test of an automated data : collection device that includes Global Positioning System (GPS) technology for : the collection of personal travel data. This project configured an automatic : data collectio...

  7. Factors influencing nurses' attitudes towards healthcare information technology.

    PubMed

    Huryk, Laurie A

    2010-07-01

    This literature review examines the current trend in nurses' attitudes toward healthcare information technology (HIT). HIT implementation and expansion are at the core of global efforts to improve healthcare quality and patient safety. As a large portion of the healthcare workforce, nurses' attitudes towards HIT are likely to have a major impact on the electronic health record (EHR) implementation process. A search of PubMed, CINAHL and Medline databases produced 1930 combined hits. Returned articles were scanned for relevancy and applicability. Thirteen articles met all criteria and were subsequently reviewed in their entirety. In accordance with two change theories, if HIT implementation projects are to be successful, nurses must recognize that incorporating EHRs into their daily practice is beneficial to patient outcomes. Overall, the attitudes of nurses toward HIT are positive. Increased computer experience is the main demographic indicator for positive attitudes. The most common detractors are poor system design, system slowdown and system downtime. Nurses are also fearful that the use of technology will dehumanize patient care. Involving nurses in system design is likely to improve post-implementation satisfaction. Creating a positive, supportive atmosphere appears to be instrumental to sustainability.

  8. Air Force space power and thermal management technology - Requirements for the early 21st century

    NASA Astrophysics Data System (ADS)

    Herrera, Ernest D.; Kuck, Inara

    Typical projections for military space power and thermal management technologies have posited requirements for high powered and highly survivable systems. Recent changes in defense needs, however, will require spacecraft that are smaller, lower powered, less survivable, and highly proliferated. Technologies will be developed to provide low cost, ultra-light, high power density, 'smart' conventional power systems. Compact nuclear power systems will also be developed to meet higher power needs.

  9. The Use of PDAs to Assess in Physical Education

    ERIC Educational Resources Information Center

    DerVanik, Rick

    2005-01-01

    Technology in the 21st century is dominating the way we live our lives. Computers, Internet, cell phones, global positioning systems, and video game programs all shape the way we view the world. As technology advances, expectations for the use of technology and the data that technology provides advance. Technology is making it easier for our…

  10. A Novel Method for Constructing a WIFI Positioning System with Efficient Manpower

    PubMed Central

    Du, Yuanfeng; Yang, Dongkai; Xiu, Chundi

    2015-01-01

    With the rapid development of WIFI technology, WIFI-based indoor positioning technology has been widely studied for location-based services. To solve the problems related to the signal strength database adopted in the widely used fingerprint positioning technology, we first introduce a new system framework in this paper, which includes a modified AP firmware and some cheap self-made WIFI sensor anchors. The periodically scanned reports regarding the neighboring APs and sensor anchors are sent to the positioning server and serve as the calibration points. Besides the calculation of correlations between the target points and the neighboring calibration points, we take full advantage of the important but easily overlooked feature that the signal attenuation model varies in different regions in the regression algorithm to get more accurate results. Thus, a novel method called RSSI Geography Weighted Regression (RGWR) is proposed to solve the fingerprint database construction problem. The average error of all the calibration points’ self-localization results will help to make the final decision of whether the database is the latest or has to be updated automatically. The effects of anchors on system performance are further researched to conclude that the anchors should be deployed at the locations that stand for the features of RSSI distributions. The proposed system is convenient for the establishment of practical positioning system and extensive experiments have been performed to validate that the proposed method is robust and manpower efficient. PMID:25868078

  11. A novel method for constructing a WIFI positioning system with efficient manpower.

    PubMed

    Du, Yuanfeng; Yang, Dongkai; Xiu, Chundi

    2015-04-10

    With the rapid development of WIFI technology, WIFI-based indoor positioning technology has been widely studied for location-based services. To solve the problems related to the signal strength database adopted in the widely used fingerprint positioning technology, we first introduce a new system framework in this paper, which includes a modified AP firmware and some cheap self-made WIFI sensor anchors. The periodically scanned reports regarding the neighboring APs and sensor anchors are sent to the positioning server and serve as the calibration points. Besides the calculation of correlations between the target points and the neighboring calibration points, we take full advantage of the important but easily overlooked feature that the signal attenuation model varies in different regions in the regression algorithm to get more accurate results. Thus, a novel method called RSSI Geography Weighted Regression (RGWR) is proposed to solve the fingerprint database construction problem. The average error of all the calibration points' self-localization results will help to make the final decision of whether the database is the latest or has to be updated automatically. The effects of anchors on system performance are further researched to conclude that the anchors should be deployed at the locations that stand for the features of RSSI distributions. The proposed system is convenient for the establishment of practical positioning system and extensive experiments have been performed to validate that the proposed method is robust and manpower efficient.

  12. The Space Technology-7 Disturbance Reduction System Precision Control Flight Validation Experiment Control System Design

    NASA Technical Reports Server (NTRS)

    O'Donnell, James R.; Hsu, Oscar C.; Maghami, Peirman G.; Markley, F. Landis

    2006-01-01

    As originally proposed, the Space Technology-7 Disturbance Reduction System (DRS) project, managed out of the Jet Propulsion Laboratory, was designed to validate technologies required for future missions such as the Laser Interferometer Space Antenna (LISA). The two technologies to be demonstrated by DRS were Gravitational Reference Sensors (GRSs) and Colloidal MicroNewton Thrusters (CMNTs). Control algorithms being designed by the Dynamic Control System (DCS) team at the Goddard Space Flight Center would control the spacecraft so that it flew about a freely-floating GRS test mass, keeping it centered within its housing. For programmatic reasons, the GRSs were descoped from DRS. The primary goals of the new mission are to validate the performance of the CMNTs and to demonstrate precise spacecraft position control. DRS will fly as a part of the European Space Agency (ESA) LISA Pathfinder (LPF) spacecraft along with a similar ESA experiment, the LISA Technology Package (LTP). With no GRS, the DCS attitude and drag-free control systems make use of the sensor being developed by ESA as a part of the LTP. The control system is designed to maintain the spacecraft s position with respect to the test mass, to within 10 nm/the square root of Hz over the DRS science frequency band of 1 to 30 mHz.

  13. Advanced Integration of WiFi and Inertial Navigation Systems for Indoor Mobile Positioning

    NASA Astrophysics Data System (ADS)

    Evennou, Frédéric; Marx, François

    2006-12-01

    This paper presents an aided dead-reckoning navigation structure and signal processing algorithms for self localization of an autonomous mobile device by fusing pedestrian dead reckoning and WiFi signal strength measurements. WiFi and inertial navigation systems (INS) are used for positioning and attitude determination in a wide range of applications. Over the last few years, a number of low-cost inertial sensors have become available. Although they exhibit large errors, WiFi measurements can be used to correct the drift weakening the navigation based on this technology. On the other hand, INS sensors can interact with the WiFi positioning system as they provide high-accuracy real-time navigation. A structure based on a Kalman filter and a particle filter is proposed. It fuses the heterogeneous information coming from those two independent technologies. Finally, the benefits of the proposed architecture are evaluated and compared with the pure WiFi and INS positioning systems.

  14. Review of MRI positioning devices for guiding focused ultrasound systems.

    PubMed

    Yiallouras, C; Damianou, C

    2015-06-01

    This article contains a review of positioning devices that are currently used in the area of magnetic resonance imaging (MRI) guided focused ultrasound surgery (MRgFUS). The paper includes an extensive review of literature published since the first prototype system was invented in 1991. The technology has grown into a fast developing area with application to any organ accessible to ultrasound. The initial design operated using hydraulic principles, while the latest technology incorporates piezoelectric motors. Although, in the beginning there were fears regarding MRI safety, during recent years, the deployment of MR-safe positioning devices in FUS has become routine. Many of these positioning devices are now undergoing testing in clinical trials. Existing MRgFUS systems have been utilized mostly in oncology (fibroids, brain, liver, kidney, bone, pancreas, eye, thyroid, and prostate). It is anticipated that, in the near future, there will be a positioning device for every organ that is accessible by focused ultrasound. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Rethinking Technology-Enhanced Physics Teacher Education: From Theory to Practice

    ERIC Educational Resources Information Center

    Milner-Bolotin, Marina

    2016-01-01

    This article discusses how modern technology, such as electronic response systems, PeerWise system, data collection and analysis tools, computer simulations, and modeling software can be used in physics methods courses to promote teacher-candidates' professional competencies and their positive attitudes about mathematics and science education. We…

  16. Professional Development: Teachers Use of GIS to Enhance Student Learning

    ERIC Educational Resources Information Center

    McClurg, Patricia A.; Buss, Alan

    2007-01-01

    This article explains a professional development experience of fifth to twelfth grade teachers in using geographic information systems (GIS) and global positioning systems (GPS) technologies to enhance classroom teaching and learning environments. A key challenge faced by the developers was whether teachers would value the technology tools enough…

  17. Advancing Technology: GPS and GIS Outreach Training for Agricultural Producers

    ERIC Educational Resources Information Center

    Flynn, Allison; Arnold, Shannon

    2010-01-01

    The use of the Global Positioning System (GPS) and Global Information Systems (GIS) has made significant impacts on agricultural production practices. However, constant changes in the technologies require continuing educational updates. The outreach program described here introduces the operation, use, and applications of GPS receivers and GIS…

  18. Geospatial Technologies: Real Projects in Real Classrooms

    ERIC Educational Resources Information Center

    Kolvoord, Bob

    2008-01-01

    Geospatial technologies of geographic information systems, global positioning systems, and remote sensing are just a few of the projects that evoke an unexpected drive and devotion from high school students in Virginia. Their integration into different curricular areas lets students focus on understanding their community and the many issues that…

  19. Technology Resource Teachers: Is This a New Role for Instructional Technologists?

    ERIC Educational Resources Information Center

    Moallem, Mahnaz; And Others

    Public schools have created the position of the Technology Resource Teacher (TRT) in an attempt to establish a technical and instructional support system at the school level to assure the proper usage of technology (particularly computers) by both teachers and students. This study explores the roles and responsibilities of the Technology Resource…

  20. The development of small-scale mechanization means positioning algorithm using radio frequency identification technology in industrial plants

    NASA Astrophysics Data System (ADS)

    Astafiev, A.; Orlov, A.; Privezencev, D.

    2018-01-01

    The article is devoted to the development of technology and software for the construction of positioning and control systems for small mechanization in industrial plants based on radio frequency identification methods, which will be the basis for creating highly efficient intelligent systems for controlling the product movement in industrial enterprises. The main standards that are applied in the field of product movement control automation and radio frequency identification are considered. The article reviews modern publications and automation systems for the control of product movement developed by domestic and foreign manufacturers. It describes the developed algorithm for positioning of small-scale mechanization means in an industrial enterprise. Experimental studies in laboratory and production conditions have been conducted and described in the article.

  1. LADOTD GPS technology management plan.

    DOT National Transportation Integrated Search

    2012-02-01

    Over many years, Global Positioning System (GPS) technology has been adopted by different sections within the Louisiana : Department of Transportation and Development (DOTD), with no uniform standards for accuracy, operation, hardware, or : software....

  2. Applying the Extended Technology Acceptance Model to the Use of Clickers in Student Learning: Some Evidence from Macroeconomics Classes

    ERIC Educational Resources Information Center

    Wu, Xiaoyu; Gao, Yuan

    2011-01-01

    This paper applies the extended technology acceptance model (exTAM) in information systems research to the use of clickers in student learning. The technology acceptance model (TAM) posits that perceived ease of use and perceived usefulness of technology influence users' attitudes toward using and intention to use technology. Research subsequent…

  3. Validating the Technology Acceptance Model in the Context of the Laboratory Information System-Electronic Health Record Interface System

    ERIC Educational Resources Information Center

    Aquino, Cesar A.

    2014-01-01

    This study represents a research validating the efficacy of Davis' Technology Acceptance Model (TAM) by pairing it with the Organizational Change Readiness Theory (OCRT) to develop another extension to the TAM, using the medical Laboratory Information Systems (LIS)--Electronic Health Records (EHR) interface as the medium. The TAM posits that it is…

  4. Lawrence Livermore National Laboratory ULTRA-350 Test Bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, D J; Wulff, T A; Carlisle, K

    2001-04-10

    LLNL has many in-house designed high precision machine tools. Some of these tools include the Large Optics Diamond Turning Machine (LODTM) [1], Diamond Turning Machine No.3 (DTM-3) and two Precision Engineering Research Lathes (PERL-1 and PERL-11). These machines have accuracy in the sub-micron range and in most cases position resolution in the couple of nanometers range. All of these machines are built with similar underlying technologies. The machines use capstan drive technology, laser interferometer position feedback, tachometer velocity feedback, permanent magnet (PM) brush motors and analog velocity and position loop servo compensation [2]. The machine controller does not perform anymore » servo compensation it simply computes the differences between the commanded position and the actual position (the following error) and sends this to a D/A for the analog servo position loop. LLNL is designing a new high precision diamond turning machine. The machine is called the ULTRA 350 [3]. In contrast to many of the proven technologies discussed above, the plan for the new machine is to use brushless linear motors, high precision linear scales, machine controller motor commutation and digital servo compensation for the velocity and position loops. Although none of these technologies are new and have been in use in industry, applications of these technologies to high precision diamond turning is limited. To minimize the risks of these technologies in the new machine design, LLNL has established a test bed to evaluate these technologies for application in high precision diamond turning. The test bed is primarily composed of commercially available components. This includes the slide with opposed hydrostatic bearings, the oil system, the brushless PM linear motor, the two-phase input three-phase output linear motor amplifier and the system controller. The linear scales are not yet commercially available but use a common electronic output format. As of this writing, the final verdict for the use of these technologies is still out but the first part of the work has been completed with promising results. The goal of this part of the work was to close a servo position loop around a slide incorporating these technologies and to measure the performance. This paper discusses the tests that were setup for system evaluation and the results of the measurements made. Some very promising results include; slide positioning to nanometer level and slow speed slide direction reversal at less than 100nm/min with no observed discontinuities. This is very important for machine contouring in diamond turning. As a point of reference, at 100 nm/min it would take the slide almost 7 years to complete the full designed travel of 350 mm. This speed has been demonstrated without the use of a velocity sensor. The velocity is derived from the position sensor. With what has been learned on the test bed, the paper finishes with a brief comparison of the old and new technologies. The emphasis of this comparison will be on the servo performance as illustrated with bode plot diagrams.« less

  5. Lawrence Livermore National Laboratory ULTRA-350 Test Bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, D J; Wulff, T A; Carlisle, K

    2001-04-10

    LLNL has many in-house designed high precision machine tools. Some of these tools include the Large Optics Diamond Turning Machine (LODTM) [1], Diamond Turning Machine No.3 (DTM-3) and two Precision Engineering Research Lathes (PERL-I and PERL-II). These machines have accuracy in the sub-micron range and in most cases position resolution in the couple of nanometers range. All of these machines are built with similar underlying technologies. The machines use capstan drive technology, laser interferometer position feedback, tachometer velocity feedback, permanent magnet (PM) brush motors and analog velocity and position loop servo compensation [2]. The machine controller does not perform anymore » servo compensation it simply computes the differences between the commanded position and the actual position (the following error) and sends this to a D/A for the analog servo position loop. LLNL is designing a new high precision diamond turning machine. The machine is called the ULTRA 350 [3]. In contrast to many of the proven technologies discussed above, the plan for the new machine is to use brushless linear motors, high precision linear scales, machine controller motor commutation and digital servo compensation for the velocity and position loops. Although none of these technologies are new and have been in use in industry, applications of these technologies to high precision diamond turning is limited. To minimize the risks of these technologies in the new machine design, LLNL has established a test bed to evaluate these technologies for application in high precision diamond turning. The test bed is primarily composed of commercially available components. This includes the slide with opposed hydrostatic bearings, the oil system, the brushless PM linear motor, the two-phase input three-phase output linear motor amplifier and the system controller. The linear scales are not yet commercially available but use a common electronic output format. As of this writing, the final verdict for the use of these technologies is still out but the first part of the work has been completed with promising results. The goal of this part of the work was to close a servo position loop around a slide incorporating these technologies and to measure the performance. This paper discusses the tests that were setup for system evaluation and the results of the measurements made. Some very promising results include; slide positioning to nanometer level and slow speed slide direction reversal at less than 100nm/min with no observed discontinuities. This is very important for machine contouring in diamond turning. As a point of reference, at 100 nm/min it would take the slide almost 7 years to complete the full designed travel of 350 mm. This speed has been demonstrated without the use of a velocity sensor. The velocity is derived from the position sensor. With what has been learned on the test bed, the paper finishes with a brief comparison of the old and new technologies. The emphasis of this comparison will be on the servo performance as illustrated with bode plot diagrams.« less

  6. An assessment of technology-based service encounters & network security on the e-health care systems of medical centers in Taiwan

    PubMed Central

    Chang, Hsin Hsin; Chang, Ching Sheng

    2008-01-01

    Background Enhancing service efficiency and quality has always been one of the most important factors to heighten competitiveness in the health care service industry. Thus, how to utilize information technology to reduce work load for staff and expeditiously improve work efficiency and healthcare service quality is presently the top priority for every healthcare institution. In this fast changing modern society, e-health care systems are currently the best possible way to achieve enhanced service efficiency and quality under the restraint of healthcare cost control. The electronic medical record system and the online appointment system are the core features in employing e-health care systems in the technology-based service encounters. Methods This study implemented the Service Encounters Evaluation Model, the European Customer Satisfaction Index, the Attribute Model and the Overall Affect Model for model inference. A total of 700 copies of questionnaires from two authoritative southern Taiwan medical centers providing the electronic medical record system and the online appointment system service were distributed, among which 590 valid copies were retrieved with a response rate of 84.3%. We then used SPSS 11.0 and the Linear Structural Relationship Model (LISREL 8.54) to analyze and evaluate the data. Results The findings are as follows: (1) Technology-based service encounters have a positive impact on service quality, but not patient satisfaction; (2) After experiencing technology-based service encounters, the cognition of the service quality has a positive effect on patient satisfaction; and (3) Network security contributes a positive moderating effect on service quality and patient satisfaction. Conclusion It revealed that the impact of electronic workflow (online appointment system service) on service quality was greater than electronic facilities (electronic medical record systems) in technology-based service encounters. Convenience and credibility are the most important factors of service quality in technology-based service encounters that patients demand. Due to the openness of networks, patients worry that transaction information could be intercepted; also, the credibility of the hospital involved is even a bigger concern, as patients have a strong sense of distrust. Therefore, in the operation of technology-based service encounters, along with providing network security, it is essential to build an atmosphere of psychological trust. PMID:18419820

  7. An assessment of technology-based service encounters & network security on the e-health care systems of medical centers in Taiwan.

    PubMed

    Chang, Hsin Hsin; Chang, Ching Sheng

    2008-04-17

    Enhancing service efficiency and quality has always been one of the most important factors to heighten competitiveness in the health care service industry. Thus, how to utilize information technology to reduce work load for staff and expeditiously improve work efficiency and healthcare service quality is presently the top priority for every healthcare institution. In this fast changing modern society, e-health care systems are currently the best possible way to achieve enhanced service efficiency and quality under the restraint of healthcare cost control. The electronic medical record system and the online appointment system are the core features in employing e-health care systems in the technology-based service encounters. This study implemented the Service Encounters Evaluation Model, the European Customer Satisfaction Index, the Attribute Model and the Overall Affect Model for model inference. A total of 700 copies of questionnaires from two authoritative southern Taiwan medical centers providing the electronic medical record system and the online appointment system service were distributed, among which 590 valid copies were retrieved with a response rate of 84.3%. We then used SPSS 11.0 and the Linear Structural Relationship Model (LISREL 8.54) to analyze and evaluate the data. The findings are as follows: (1) Technology-based service encounters have a positive impact on service quality, but not patient satisfaction; (2) After experiencing technology-based service encounters, the cognition of the service quality has a positive effect on patient satisfaction; and (3) Network security contributes a positive moderating effect on service quality and patient satisfaction. It revealed that the impact of electronic workflow (online appointment system service) on service quality was greater than electronic facilities (electronic medical record systems) in technology-based service encounters. Convenience and credibility are the most important factors of service quality in technology-based service encounters that patients demand. Due to the openness of networks, patients worry that transaction information could be intercepted; also, the credibility of the hospital involved is even a bigger concern, as patients have a strong sense of distrust. Therefore, in the operation of technology-based service encounters, along with providing network security, it is essential to build an atmosphere of psychological trust.

  8. Development of a precision reverse offset printing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyunchang; Lee, Eonseok; Choi, Young-Man

    2016-01-15

    In printed electronics technology, the overlay accuracy of printed patterns is a very important issue when applying printing technology to the production of electric devices. In order to achieve accurate positioning of the printed patterns, this study proposes a novel precision reverse offset printing system. Furthermore, the study evaluates the effects of synchronization and printing force on position errors of the printed patterns, and presents methods of controlling synchronization and printing force so as to eliminate positional errors caused by the above-mentioned reasons. Finally, the printing position repeatability of 0.40 μm and 0.32 μm (x and y direction, respectively) atmore » a sigma level is obtained over the dimension of 100 mm under repeated printing tests with identical printing conditions.« less

  9. Eight-cm mercury ion thruster system technology

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The technology status of 8 cm diameter electron bombardment ion thrusters is presented. Much of the technology resulting from the 5 cm diameter thruster has been adapted and improved upon to increase the reliability, durability, and efficiency of the 8 cm thruster. Technology discussed includes: dependence of neutralizer tip erosion upon neutralizer flow rate; impregnated and rolled-foil insert cathode performance and life testing; neutralizer position studies; thruster ion beam profile measurements; high voltage pulse ignition; high utilization ion machined accelerator grids; deposition internal and external to the thruster; thruster vectoring systems; thruster cycling life testing and thruster system weights for typical mission applications.

  10. Factors Influencing Laboratory Information System Effectiveness Through Strategic Planning in Shiraz Teaching Hospitals.

    PubMed

    Bahador, Fateme; Sharifian, Roxana; Farhadi, Payam; Jafari, Abdosaleh; Nematolahi, Mohtram; Shokrpour, Nasrin

    This study aimed to develop and test a research model that examined 7effective factors on the effectiveness of laboratory information system (LIS) through strategic planning. This research was carried out on total laboratory staff, information technology staff, and laboratory managers in Shiraz (a city in the south of Iran) teaching hospitals by structural equation modeling approach in 2015. The results revealed that there was no significant positive relationship between decisions based on cost-benefit analysis and LIS functionality with LIS effectiveness, but there was a significant positive relationship between other factors and LIS effectiveness. As expected, high levels of strategic information system planning result in increasing LIS effectiveness. The results also showed that the relationship between cost-benefit analysis, LIS functionality, end-user involvement, and information technology-business alignment with strategic information system planning was significant and positive.

  11. Some considerations for various positioning systems and their science capabilities

    NASA Technical Reports Server (NTRS)

    Rey, Charles A.; Merkley, D. R.; Danley, T. J.

    1990-01-01

    Containerless processing of materials at elevated temperatures is discussed with emphasis on high temperature chemistry, thermophysical properties, materials science, and materials processing. Acoustic and electromagnetic positioning of high temperature melts are discussed. Results from recent ground based experiments, including KC-135 testing of an acoustic levitator, are presented. Some current positioning technologies and the potential for enhancing them are considered. Further, a summary of these technologies and their science capabilities for the development of future experiments is given.

  12. DOTD standards for GPS data collection accuracy : research project capsule.

    DOT National Transportation Integrated Search

    2013-12-01

    Global Navigational Satellite Systems (GNSS), which includes GPS technologies : maintained by the United States, are used extensively throughout government : and industry. These technologies continue to revolutionize positional data : collection acti...

  13. UWB Technology and Applications on Space Exploration

    NASA Technical Reports Server (NTRS)

    Ngo, Phong; Phan, Chau; Gross, Julia; Dusl, John; Ni, Jianjun; Rafford, Melinda

    2006-01-01

    Ultra-wideband (UWB), also known as impulse or carrier-free radio technology, is one promising new technology. In February 2002, the Federal Communications Commission (FCC) approved the deployment of this technology. It is increasingly recognized that UWB technology holds great potential to provide significant benefits in many terrestrial and space applications such as precise positioning/tracking and high data rate mobile wireless communications. This talk presents an introduction to UWB technology and some applications on space exploration. UWB is characterized by several uniquely attractive features, such as low impact on other RF systems due to its extremely low power spectral densities, immunity to interference from narrow band RF systems due to its ultra-wide bandwidth, multipath immunity to fading due to ample multipath diversity, capable of precise positioning due to fine time resolution, capable of high data rate multi-channel performance. The related FCC regulations, IEEE standardization efforts and industry activities also will be addressed in this talk. For space applications, some projects currently under development at NASA Johnson Space Center will be introduced. These include the UWB integrated communication and tracking system for Lunar/Mars rover and astronauts, UWB-RFID ISS inventory tracking, and UWB-TDOA close-in high resolution tracking for potential applications on robonaut.

  14. Geospatial Technologies as a Vehicle for Enhancing Graduate Education and Promoting the Value of Geography

    ERIC Educational Resources Information Center

    Oberle, Alex P.; Joseph, Sue A.; May, David W.

    2010-01-01

    Geospatial technologies (GSTs), such as geographic information systems, global positioning systems and remote sensing, present an avenue for expanding the already strong interdisciplinary nature of geography. This paper discusses how GSTs served as a common thread for a crosscutting faculty institute that was established to enhance graduate…

  15. The Global Positioning System and Education in the 21st Century.

    ERIC Educational Resources Information Center

    Wikle, Thomas A.

    2000-01-01

    Students should have an understanding of basic Global Positioning System (GPS) principles as well as an awareness of how the technology will impact society in the future. Provides a brief overview of the evolution, principles, and applications of GPS together with suggested activities. (Contains 25 references.) (Author/WRM)

  16. Implementation and Validation of a Real-Time Wireless Non-Invasive Physiological Monitoring System in a High-G Environment

    DTIC Science & Technology

    2003-03-01

    51 Figure 30. SpO2 vs G Profile...and physiological monitoring. The system will be composed of a shirt having non- invasive physiological sensors , Global Positioning System (GPS...Positioning System (GPS)), and other sensor technology. It is now possible to transmit large amounts of data at a high rate in real-time. These

  17. Promoting Independence through Assistive Technology: Evaluating Audio Recorders to Support Grocery Shopping

    ERIC Educational Resources Information Center

    Bouck, Emily C.; Satsangi, Rajiv; Bartlett, Whitney; Weng, Pei-Lin

    2012-01-01

    In light of a positive research base regarding technology-based self-operating prompting systems (e.g., iPods), yet a concern about the sustainability of such technologies after a research project is completed, this study sought to explore the effectiveness and efficiency of an audio recorder, a low-cost, more commonly accessible technology to…

  18. Precision Positioning and Inertial Guidance Sensors. Technology and Operational Aspects

    DTIC Science & Technology

    1981-03-01

    Ueberlingen, GE EVALUATION D’UN SYSTEME EUROPEEN DE NAVIGATION HYBRIDE A - - GYROLASER POUR HELICOPTERE: "SEXTAN" by D Regnault, Centre d’Essais en Vol de...NAVIGATION SYSTEM AND STANDARD STATE ELEMENT DEVIATIONMEASUREMENT SOURCES( Dead-reckoning with position fxP fy 5000 En ]TAS, heading and wind scale...Reproduction Ltd ilarford House. 7-9 Charlotte St. London. WIP JIHD [i Ii THEME A new class of precision positioning systems , including GPS (Global

  19. CLASSICAL AREAS OF PHENOMENOLOGY: Correcting dynamic residual aberrations of conformal optical systems using AO technology

    NASA Astrophysics Data System (ADS)

    Li, Yan; Li, Lin; Huang, Yi-Fan; Du, Bao-Lin

    2009-07-01

    This paper analyses the dynamic residual aberrations of a conformal optical system and introduces adaptive optics (AO) correction technology to this system. The image sharpening AO system is chosen as the correction scheme. Communication between MATLAB and Code V is established via ActiveX technique in computer simulation. The SPGD algorithm is operated at seven zoom positions to calculate the optimized surface shape of the deformable mirror. After comparison of performance of the corrected system with the baseline system, AO technology is proved to be a good way of correcting the dynamic residual aberration in conformal optical design.

  20. Women as a resource for the flexibility required for high technology innovation

    NASA Technical Reports Server (NTRS)

    Marlaire, Ruth Dasso

    1994-01-01

    What do women scientists need to know for career advancement into senior level positions? Our declining economic conditions have been the cause for major political and technological changes. The U.S. Congress is turning toward technology to increase our competitive edge in the world. Allowing women scientists, and women engineers in particular, more voice in the decision making process may be an innovative alternative for the diversity and flexibility needed for the unknown technological problems of the future. But first women scientists need to know how the system measures scientific achievement and how to identify the processes needed to increase our technological capability in order for them to formidably compete and win higher ranking positions.

  1. Positive displacement type general-aviation engines: Summary and concluding remarks

    NASA Technical Reports Server (NTRS)

    Kempke, E. E., Jr.

    1980-01-01

    The activities of programs investigating various aspects of aircraft internal combustion engines are briefly described including developments in fuel injection technology, cooling systems and drag reduction, turbocharger technology, and stratified-charge rotary engines.

  2. LADOTD GPS technology management plan : tech summary.

    DOT National Transportation Integrated Search

    2012-02-01

    Global Positioning System (GPS) technology has been adopted by diff erent sections within the Louisiana : Department of Transportation and Development (LADOTD) over the last decade with no uniform standards : for their use, procurement, training, and...

  3. Tactical Application of Gaming Technologies for Improved Battlespace Management

    DTIC Science & Technology

    2007-01-01

    the Digital Scene Matching Area Correlation (DSMAC) and the Global Positioning Satellite (GPS) System are coupled to the guidance systems to...Game Engine technology is driven by a huge market of consumers and the technology continues to improve each year. Commercially available Game...has largely been due to the emergence of a new class of middleware called “physics engines”. Used in games such as Gran Turismo 4 (GT4), these

  4. Autonomous Navigation of the SSTI/Lewis Spacecraft Using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Hart, R. C.; Long, A. C.; Lee, T.

    1997-01-01

    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) is pursuing the application of Global Positioning System (GPS) technology to improve the accuracy and economy of spacecraft navigation. High-accuracy autonomous navigation algorithms are being flight qualified in conjunction with GSFC's GPS Attitude Determination Flyer (GADFLY) experiment on the Small Satellite Technology Initiative (SSTI) Lewis spacecraft, which is scheduled for launch in 1997. Preflight performance assessments indicate that these algorithms can provide a real-time total position accuracy of better than 10 meters (1 sigma) and velocity accuracy of better than 0.01 meter per second (1 sigma), with selective availability at typical levels. This accuracy is projected to improve to the 2-meter level if corrections to be provided by the GPS Wide Area Augmentation System (WAAS) are included.

  5. The Informal Workplace Learning Experiences of Virtual Team Members: A Look at the Role of Collaborative Technologies

    ERIC Educational Resources Information Center

    Jones, Frankie S.

    2007-01-01

    This qualitative study explored how collaborative technologies influence the informal learning experiences of virtual team members. Inputs revealed as critical to virtual informal learning were integrated, collaborative technological systems; positive relationships and trust; and organizational support and virtual team management. These inputs…

  6. Developing Emotion-Aware, Advanced Learning Technologies: A Taxonomy of Approaches and Features

    ERIC Educational Resources Information Center

    Harley, Jason M.; Lajoie, Susanne P.; Frasson, Claude; Hall, Nathan C.

    2017-01-01

    A growing body of work on intelligent tutoring systems, affective computing, and artificial intelligence in education is exploring creative, technology-driven approaches to enhance learners' experience of adaptive, positively-valenced emotions while interacting with advanced learning technologies. Despite this, there has been no published work to…

  7. The Role of Trust and Interaction in Global Positioning System Related Accidents

    NASA Technical Reports Server (NTRS)

    Johnson, Chris W.; Shea, Christine; Holloway, C. Michael

    2008-01-01

    The Global Positioning System (GPS) uses a network of satellites to calculate the position of a receiver over time. This technology has revolutionized a wide range of safety-critical industries and leisure applications. These systems provide diverse benefits; supplementing the users existing navigation skills and reducing the uncertainty that often characterizes many route planning tasks. GPS applications can also help to reduce workload by automating tasks that would otherwise require finite cognitive and perceptual resources. However, the operation of these systems has been identified as a contributory factor in a range of recent accidents. Users often come to rely on GPS applications and, therefore, fail to notice when they develop faults or when errors occur in the other systems that use the data from these systems. Further accidents can stem from the over confidence that arises when users assume automated warnings will be issued when they stray from an intended route. Unless greater attention is paid to the role of trust and interaction in GPS applications then there is a danger that we will see an increasing number of these failures as positioning technologies become integral in the functioning of increasing numbers of applications.

  8. Architecture for multi-technology real-time location systems.

    PubMed

    Rodas, Javier; Barral, Valentín; Escudero, Carlos J

    2013-02-07

    The rising popularity of location-based services has prompted considerable research in the field of indoor location systems. Since there is no single technology to support these systems, it is necessary to consider the fusion of the information coming from heterogeneous sensors. This paper presents a software architecture designed for a hybrid location system where we can merge information from multiple sensor technologies. The architecture was designed to be used by different kinds of actors independently and with mutual transparency: hardware administrators, algorithm developers and user applications. The paper presents the architecture design, work-flow, case study examples and some results to show how different technologies can be exploited to obtain a good estimation of a target position.

  9. Development of a Wafer Positioning System for the Sandia Extreme Ultraviolet Lithography Tool

    NASA Technical Reports Server (NTRS)

    Wronosky, John B.; Smith, Tony G.; Darnold, Joel R.

    1996-01-01

    A wafer positioning system was recently developed by Sandia National Laboratories for an Extreme Ultraviolet Lithography (EUVL) tool. The system, which utilizes a magnetically levitated fine stage to provide ultra-precise positioning in all six degrees of freedom, incorporates technological improvements resulting from four years of prototype development. This paper describes the design, implementation, and functional capability of the system. Specifics regarding control system electronics, including software and control algorithm structure, as well as performance design goals and test results are presented. Potential system enhancements, some of which are in process, are also discussed.

  10. Solar array technology evaluation program for SEPS (Solar Electrical Propulsion Stage)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An evaluation of the technology and the development of a preliminary design for a 25 kilowatt solar array system for solar electric propulsion are discussed. The solar array has a power to weight ratio of 65 watts per kilogram. The solar array system is composed of two wings. Each wing consists of a solar array blanket, a blanket launch storage container, an extension/retraction mast assembly, a blanket tensioning system, an array electrical harness, and hardware for supporting the system for launch and in the operating position. The technology evaluation was performed to assess the applicable solar array state-of-the-art and to define supporting research necessary to achieve technology readiness for meeting the solar electric propulsion system solar array design requirements.

  11. The monocular visual imaging technology model applied in the airport surface surveillance

    NASA Astrophysics Data System (ADS)

    Qin, Zhe; Wang, Jian; Huang, Chao

    2013-08-01

    At present, the civil aviation airports use the surface surveillance radar monitoring and positioning systems to monitor the aircrafts, vehicles and the other moving objects. Surface surveillance radars can cover most of the airport scenes, but because of the terminals, covered bridges and other buildings geometry, surface surveillance radar systems inevitably have some small segment blind spots. This paper presents a monocular vision imaging technology model for airport surface surveillance, achieving the perception of scenes of moving objects such as aircrafts, vehicles and personnel location. This new model provides an important complement for airport surface surveillance, which is different from the traditional surface surveillance radar techniques. Such technique not only provides clear objects activities screen for the ATC, but also provides image recognition and positioning of moving targets in this area. Thereby it can improve the work efficiency of the airport operations and avoid the conflict between the aircrafts and vehicles. This paper first introduces the monocular visual imaging technology model applied in the airport surface surveillance and then the monocular vision measurement accuracy analysis of the model. The monocular visual imaging technology model is simple, low cost, and highly efficient. It is an advanced monitoring technique which can make up blind spot area of the surface surveillance radar monitoring and positioning systems.

  12. Potential Hardware and Software Improvements of Inertial Positioning and Gravity Vector Determination,

    DTIC Science & Technology

    1981-08-17

    P. 1979b. Inertial Surveying Systems - Experience and Prognosis. Paper, presented at the FIG-Symposium on Modern Technology for Cadastre and Land... Information Systems , Ottawa, Canada, Oct. 2-5, 1979. Schwarz, K. P. 1980. Gravity Field Approximation Using Inertial Survey System . The Canadian...higher performance gyroscope; and accelerometers in the horizontal channels of Litton’s local-level inertial positioning system and the resulting

  13. Indoor location-aware medical systems for smart homecare and telehealth monitoring: state-of-the-art.

    PubMed

    Santoso, Fendy; Redmond, Stephen J

    2015-10-01

    This paper presents a comprehensive literature review of current progress in the application of state-of-the-art indoor positioning systems for telecare and telehealth monitoring. This review is the first in the literature that provides a comprehensive discussion on how existing wireless indoor positioning systems can benefit the development of home-based care systems. More specifically, this review provides an in-depth comparative study of how both system users and medical practitioners can get benefit from indoor positioning technologies; e.g. for real-time monitoring of patients suffering chronic cardiovascular conditions, general monitoring of activities of daily living (ADLs), fall detection systems for the elderly as well as indoor navigation systems for those suffering from visual impairments. Furthermore, it also details various aspects worth considering when choosing a certain technology for a specific healthcare application; e.g. the spatial precision demanded by the application, trade-offs between unobtrusiveness and complexity, and issues surrounding compliance and adherence with the use of wearable tags. Beyond the current state-of-the-art, this review also rigorously discusses several research opportunities and the challenges associated with each.

  14. MDOT implementation plan for GPS technology in planning, design, and construction delivery

    DOT National Transportation Integrated Search

    2010-09-13

    Global Positioning System (GPS) technology offers advantages to transportation agencies in the planning, design and construction stages of project delivery. This research study will develop a guide for Mississippi Department of Transportation (MDOT) ...

  15. [Integration of nursing in science and technology policies].

    PubMed

    Rocha, Semíramis Melani Melo; Ogata, Márcia Niituma; Arantes, Cássia Irene Spinelli

    2003-01-01

    Brazilian nursing is included in the national science and technology system, as part of the health knowledge area. Its scientific production is reknown but is yet to strengthen its position. Among the strategies to be used, we can emphasize: study different ways to promote a closer relationship between university and services; create or intensify interfacing between clinical and academic nurses; promote strategic research for the use of technological innovations, continuing education of human resources, and implement studies on Nursing care while integrating skills required by complex technological systems and intersubjectivity, acting in a therapeutic way.

  16. Clickers in the Classroom: The Use of Student Response Systems in Teaching Psychology

    ERIC Educational Resources Information Center

    Watling, Rosamond; Clarke, Richard; Rowell, Christopher

    2014-01-01

    Student response systems (SRSs) have been used in a number of disciplines in higher education and, generally, the literature reports this technology leading to very positive outcomes for student engagement and learning. Learning outcomes are particularly enhanced if the technology is used to promote higher order cognitive skills. Here, we discuss…

  17. Possibilities and Implications of Using a Motion-Tracking System in Physical Education

    ERIC Educational Resources Information Center

    Chow, Jia Yi; Tan, Clara Wee Keat; Lee, Miriam Chang Yi; Button, Chris

    2014-01-01

    Advances in technology have created new opportunities for enhanced delivery of teaching to improve the acquisition of game skills in physical education (PE). The availability of a motion-tracking system (i.e. the A-Eye), which determines positional information of students in a practice context, might offer a suitable technology to support…

  18. Ultra-wideband technology radio frequency interference effects to global positioning system receivers and interference encounter scenario development : second interim report

    DOT National Transportation Integrated Search

    2001-03-27

    The Global Positioning System (GPS) is significant because it is a key element in the development of the Free Flight" air traffic management structure of the future which is needed to enable the expected growth of air travel and alleviate the current...

  19. Causes and consequences of timing errors associated with global positioning system collar accelerometer activity monitors

    Treesearch

    Adam J. Gaylord; Dana M. Sanchez

    2014-01-01

    Direct behavioral observations of multiple free-ranging animals over long periods of time and large geographic areas is prohibitively difficult. However, recent improvements in technology, such as Global Positioning System (GPS) collars equipped with motion-sensitive activity monitors, create the potential to remotely monitor animal behavior. Accelerometer-equipped...

  20. E-Resources Management: How We Positioned Our Organization to Implement an Electronic Resources Management System

    ERIC Educational Resources Information Center

    White, Marilyn; Sanders, Susan

    2009-01-01

    The Information Services Division (ISD) of the National Institute of Standards and Technology (NIST) positioned itself to successfully implement an electronic resources management system. This article highlights the ISD's unique ability to "team" across the organization to realize a common goal, develop leadership qualities in support of…

  1. NHSA Position Paper: The Design of a Head Start Training and Technical Assistance System.

    ERIC Educational Resources Information Center

    NHSA Journal, 1994

    1994-01-01

    This position paper examines the current Head Start training and technical assistance (TTA) system and proposes specific improvements. These include the creation of regional TTA offices, the use of satellite and interactive communications technology, and a reevaluation of the role of teaching centers, national training contracts, and Head Start…

  2. Accuracy, intra- and inter-unit reliability, and comparison between GPS and UWB-based position-tracking systems used for time-motion analyses in soccer.

    PubMed

    Bastida Castillo, Alejandro; Gómez Carmona, Carlos D; De la Cruz Sánchez, Ernesto; Pino Ortega, José

    2018-05-01

    There is interest in the accuracy and inter-unit reliability of position-tracking systems to monitor players. Research into this technology, although relatively recent, has grown exponentially in the last years, and it is difficult to find professional team sport that does not use Global Positioning System (GPS) technology at least. The aim of this study is to know the accuracy of both GPS-based and Ultra Wide Band (UWB)-based systems on a soccer field and their inter- and intra-unit reliability. A secondary aim is to compare them for practical applications in sport science. Following institutional ethical approval and familiarization, 10 healthy and well-trained former soccer players (20 ± 1.6 years, 1.76 ± 0.08 cm, and 69.5 ± 9.8 kg) performed three course tests: (i) linear course, (ii) circular course, and (iii) a zig-zag course, all using UWB and GPS technologies. The average speed and distance covered were compared with timing gates and the real distance as references. The UWB technology showed better accuracy (bias: 0.57-5.85%), test-retest reliability (%TEM: 1.19), and inter-unit reliability (bias: 0.18) in determining distance covered than the GPS technology (bias: 0.69-6.05%; %TEM: 1.47; bias: 0.25) overall. Also, UWB showed better results (bias: 0.09; ICC: 0.979; bias: 0.01) for mean velocity measurement than GPS (bias: 0.18; ICC: 0.951; bias: 0.03).

  3. An investigation on task-technology fit of mobile nursing information systems for nursing performance.

    PubMed

    Hsiao, Ju-Ling; Chen, Rai-Fu

    2012-05-01

    This study investigates factors affecting the fit between nursing tasks and mobile nursing information systems and the relationships between the task-technology fit of mobile nursing information systems and nurse performance from the perspective of task-technology fit. Survey research recruited nursing staffs as subjects from selected case hospital. A total of 310 questionnaires were sent out, and 219 copies were obtained, indicating a valid response rate of 70.6%. Collected data were analyzed using the structural equation modeling technique. Our study found that dependence tasks have positive effects on information acquisition (γ=0.234, P<.05) and information identification (γ=0.478, P<.001), and independent tasks have significant effects on information acquisition (γ=0.213, P<.05). Therefore, the introduction of mobile nursing information systems in assisting nursing practices can help facilitate both independent and dependent nursing tasks. Our study discovered that the supporting functions of mobile nursing information systems have positive effects on information integration and interpretation (γ=0.365, P<.001), as well as information acquisition (γ=0.253, P<.05). The service supports of mobile nursing information systems have positive effects on information acquisition (γ=0.318, P<.001) and information integration and interpretation (γ=0.143, P<.01). Furthermore, information identification (β=.055, P<.05), information acquisition (β=.176, P<.001), and information integration and interpretation (β=.706, P<.001) provided using mobile nursing information systems have positive effects on nursing performance, indicating 83.2% of totally explained variance. As shown, the use of mobile nursing information systems could provide nursing staffs with real-time and accurate information to increase efficiency and effectiveness in patient-care duties, further improving nursing performance.

  4. LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments.

    PubMed

    Tang, Jian; Chen, Yuwei; Niu, Xiaoji; Wang, Li; Chen, Liang; Liu, Jingbin; Shi, Chuang; Hyyppä, Juha

    2015-07-10

    A new scan that matches an aided Inertial Navigation System (INS) with a low-cost LiDAR is proposed as an alternative to GNSS-based navigation systems in GNSS-degraded or -denied environments such as indoor areas, dense forests, or urban canyons. In these areas, INS-based Dead Reckoning (DR) and Simultaneous Localization and Mapping (SLAM) technologies are normally used to estimate positions as separate tools. However, there are critical implementation problems with each standalone system. The drift errors of velocity, position, and heading angles in an INS will accumulate over time, and on-line calibration is a must for sustaining positioning accuracy. SLAM performance is poor in featureless environments where the matching errors can significantly increase. Each standalone positioning method cannot offer a sustainable navigation solution with acceptable accuracy. This paper integrates two complementary technologies-INS and LiDAR SLAM-into one navigation frame with a loosely coupled Extended Kalman Filter (EKF) to use the advantages and overcome the drawbacks of each system to establish a stable long-term navigation process. Static and dynamic field tests were carried out with a self-developed Unmanned Ground Vehicle (UGV) platform-NAVIS. The results prove that the proposed approach can provide positioning accuracy at the centimetre level for long-term operations, even in a featureless indoor environment.

  5. Descriptive Summaries of the Research Development Test & Evaluation Army Appropriation FY 1983. Supporting Data FY 1983, Budget Estimate Submitted to Congress February 1982. Volume II.

    DTIC Science & Technology

    1982-02-01

    Defense (BHD) Advanced Technology Program is a broadly based rsearch and development effort designed to exploit new and emerging technologies...11-363 DK13 NON -COMMUNICATIONS ELECTRONIC COUNTERMEASURES SYSTEMS .............................. .11-368 DK14 EXPENDABLE JAMMERS...NAVSTAR GLOBAL POSITIONING SYSTEMS (GPS) USER EQUIPMENT .................................. 111-366 DEFENSEWIDE MISSION SUPPORT 6.37.38.A NON -SYSTEMS

  6. Research Technology

    NASA Image and Video Library

    2002-08-01

    An array of components in a laboratory at NASA's Marshall Space Flight Center (MSFC) is being tested by the Flight Mechanics Office to develop an integrated navigation system for the second generation reusable launch vehicle. The laboratory is testing Global Positioning System (GPS) components, a satellite-based location and navigation system, and Inertial Navigation System (INS) components, sensors on a vehicle that determine angular velocity and linear acceleration at various points. The GPS and INS components work together to provide a space vehicle with guidance and navigation, like the push of the OnStar button in your car assists you with directions to a specific address. The integration will enable the vehicle operating system to track where the vehicle is in space and define its trajectory. The use of INS components for navigation is not new to space technology. The Space Shuttle currently uses them. However, the Space Launch Initiative is expanding the technology to integrate GPS and INS components to allow the vehicle to better define its position and more accurately determine vehicle acceleration and velocity. This advanced technology will lower operational costs and enhance the safety of reusable launch vehicles by providing a more comprehensive navigation system with greater capabilities. In this photograph, Dr. Jason Chuang of MSFC inspects an INS component in the laboratory.

  7. Designing Effective Persuasive Systems Utilizing the Power of Entanglement: Communication Channel, Strategy and Affect

    NASA Astrophysics Data System (ADS)

    Li, Haiqing; Chatterjee, Samir

    With rapid advances in information and communication technology, computer-mediated communication (CMC) technologies are utilizing multiple IT platforms such as email, websites, cell-phones/PDAs, social networking sites, and gaming environments. However, no studies have compared the effectiveness of a persuasive system using such alternative channels and various persuasive techniques. Moreover, how affective computing impacts the effectiveness of persuasive systems is not clear. This study proposes (1) persuasive technology channels in combination with persuasive strategies will have different persuasive effectiveness; (2) Adding positive emotion to a message that leads to a better overall user experience could increase persuasive effectiveness. The affective computing or emotion information was added to the experiment using emoticons. The initial results of a pilot study show that computer-mediated communication channels along with various persuasive strategies can affect the persuasive effectiveness to varying degrees. These results also shows that adding a positive emoticon to a message leads to a better user experience which increases the overall persuasive effectiveness of a system.

  8. Integrating social capital theory, social cognitive theory, and the technology acceptance model to explore a behavioral model of telehealth systems.

    PubMed

    Tsai, Chung-Hung

    2014-05-07

    Telehealth has become an increasingly applied solution to delivering health care to rural and underserved areas by remote health care professionals. This study integrated social capital theory, social cognitive theory, and the technology acceptance model (TAM) to develop a comprehensive behavioral model for analyzing the relationships among social capital factors (social capital theory), technological factors (TAM), and system self-efficacy (social cognitive theory) in telehealth. The proposed framework was validated with 365 respondents from Nantou County, located in Central Taiwan. Structural equation modeling (SEM) was used to assess the causal relationships that were hypothesized in the proposed model. The finding indicates that elderly residents generally reported positive perceptions toward the telehealth system. Generally, the findings show that social capital factors (social trust, institutional trust, and social participation) significantly positively affect the technological factors (perceived ease of use and perceived usefulness respectively), which influenced usage intention. This study also confirmed that system self-efficacy was the salient antecedent of perceived ease of use. In addition, regarding the samples, the proposed model fitted considerably well. The proposed integrative psychosocial-technological model may serve as a theoretical basis for future research and can also offer empirical foresight to practitioners and researchers in the health departments of governments, hospitals, and rural communities.

  9. Integrating Social Capital Theory, Social Cognitive Theory, and the Technology Acceptance Model to Explore a Behavioral Model of Telehealth Systems

    PubMed Central

    Tsai, Chung-Hung

    2014-01-01

    Telehealth has become an increasingly applied solution to delivering health care to rural and underserved areas by remote health care professionals. This study integrated social capital theory, social cognitive theory, and the technology acceptance model (TAM) to develop a comprehensive behavioral model for analyzing the relationships among social capital factors (social capital theory), technological factors (TAM), and system self-efficacy (social cognitive theory) in telehealth. The proposed framework was validated with 365 respondents from Nantou County, located in Central Taiwan. Structural equation modeling (SEM) was used to assess the causal relationships that were hypothesized in the proposed model. The finding indicates that elderly residents generally reported positive perceptions toward the telehealth system. Generally, the findings show that social capital factors (social trust, institutional trust, and social participation) significantly positively affect the technological factors (perceived ease of use and perceived usefulness respectively), which influenced usage intention. This study also confirmed that system self-efficacy was the salient antecedent of perceived ease of use. In addition, regarding the samples, the proposed model fitted considerably well. The proposed integrative psychosocial-technological model may serve as a theoretical basis for future research and can also offer empirical foresight to practitioners and researchers in the health departments of governments, hospitals, and rural communities. PMID:24810577

  10. Laser projection positioning of spatial contour curves via a galvanometric scanner

    NASA Astrophysics Data System (ADS)

    Tu, Junchao; Zhang, Liyan

    2018-04-01

    The technology of laser projection positioning is widely applied in advanced manufacturing fields (e.g. composite plying, parts location and installation). In order to use it better, a laser projection positioning (LPP) system is designed and implemented. Firstly, the LPP system is built by a laser galvanometric scanning (LGS) system and a binocular vision system. Applying Single-hidden Layer Feed-forward Neural Network (SLFN), the system model is constructed next. Secondly, the LGS system and the binocular system, which are respectively independent, are integrated through a datadriven calibration method based on extreme learning machine (ELM) algorithm. Finally, a projection positioning method is proposed within the framework of the calibrated SLFN system model. A well-designed experiment is conducted to verify the viability and effectiveness of the proposed system. In addition, the accuracy of projection positioning are evaluated to show that the LPP system can achieves the good localization effect.

  11. Re-Imagining the Nature of (Student-Focused) Learning through Digital Technology

    ERIC Educational Resources Information Center

    Hood, Nina

    2018-01-01

    Digital technology is frequently positioned as being central to the establishment of a 'future focused' education system that provides high quality student-focused learning opportunities and re-envisioned educational outcomes. While recognising the potential of technology, this paper explores some of the questions about its role in education and…

  12. A Survey of Dual-Use Issues,

    DTIC Science & Technology

    1996-03-01

    positioning systems used for navigation, aircraft engines , and most medical and safety equipment used by DoD. Some modified commercial products are similar...supercomputers, commercial jet aircraft and aircraft engines , the global positioning system (GPS), and composite materials.13 In each of these...turbine engine technologies capable of delivering double the propulsion performance of current systems by the year 2000. The plan to reach this goal is

  13. Is it an Emergency?

    MedlinePlus

    ... operator the location of the emergency, because a cell tower provides only very general information about the location of a caller. Some cars now are equipped with "smart" technologies that use global positioning system satellites and cellular technology to link vehicles to direct ...

  14. Asset Management of Roadway Signs Through Advanced Technology

    DOT National Transportation Integrated Search

    2003-06-01

    This research project aims to ease the process of Roadway Sign asset management. The project utilized handheld computer and global positioning system (GPS) technology to capture sign location data along with a timestamp. This data collection effort w...

  15. Space nuclear power: Key to outer solar system exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, G.L.; Allen, D.M.

    1998-07-01

    In 1995, in response to threatened budget cuts, the American Institute of Aeronautics and Astronautics (AIAA) approved a position paper supporting the maintenance of the technology base for space nuclear power. The position paper contained four recomemndations: (1) DOE, NASA, and DoD should develop and support an integrated program that maintains the nuclear option and develops the needed high-payoff technologies; (2) Congress should provide strong, continuing financial and political support for the agencies' program; (3) Government and industry leaders should voice their advocacy for a strong space nuclear power program to support future system requirements; and (4) The US shouldmore » continue to maintain its cooperation and technical interchanges with other countries to advance nuclear power source technology and to promote nuclear safety.« less

  16. Architecture for Multi-Technology Real-Time Location Systems

    PubMed Central

    Rodas, Javier; Barral, Valentín; Escudero, Carlos J.

    2013-01-01

    The rising popularity of location-based services has prompted considerable research in the field of indoor location systems. Since there is no single technology to support these systems, it is necessary to consider the fusion of the information coming from heterogeneous sensors. This paper presents a software architecture designed for a hybrid location system where we can merge information from multiple sensor technologies. The architecture was designed to be used by different kinds of actors independently and with mutual transparency: hardware administrators, algorithm developers and user applications. The paper presents the architecture design, work-flow, case study examples and some results to show how different technologies can be exploited to obtain a good estimation of a target position. PMID:23435050

  17. Eclipse SteerTech liquid lenslet beam steering technology

    NASA Astrophysics Data System (ADS)

    Westfall, Raymond T.; Rogers, Stanley; Shannon, Kenneth C., III

    2007-09-01

    Eclipse SteerTech TM transmissive fluid state electrowetting technology has successfully demonstrated the ability to control the shape and position of a fluid lenslet. In its final form, the technology will incorporate a dual fluid lenslet approach capable of operating in extremely high acceleration environments. The beam steering system works on the principle of electro-wetting. A substrate is covered with a closely spaced array of, independently addressable, transparent, electrically conductive pixels utilizing Eclipse's proprietary EclipseTEC TM technology. By activating and deactivating selected EclipseTEC TM pixels in the proper sequence, the shape and position of fluid lenslets or arrays of lenslets can be dynamically changed at will. The position and shape of individual fluid lenslets may be accurately controlled on any flat, simply curved, or complex curved, transparent or reflective surface. The smaller the pixels the better control of the position and shape of the fluid lenslets. Information on the successful testing of the Eclipse SteerTech TM lenslet and discussion of its use in a de-centered lenslet array will be presented.

  18. Using Eye Tracking to Investigate First Year Students' Digital Proficiency and Their Use of a Learning Management System in an Open Distance Environment

    ERIC Educational Resources Information Center

    Mabila, Jabulisiwe; Gelderblom, Helene; Ssemugabi, Samuel

    2014-01-01

    The internet gives individuals access to learning through online technologies. The prolific use of Learning Management Systems (LMSs) in higher education institutions makes Information and Communication Technology (ICT) skills or e-skills very important. ICT skill levels have been positively related to students' effectiveness and efficiency in…

  19. Happy Zapping in the Classroom: Enhancing Teaching and Learning with Electronic Voting Systems

    ERIC Educational Resources Information Center

    Read, David

    2010-01-01

    The use of electronic voting systems (EVS) in teaching at all levels is increasing as the technology becomes cheaper and easier to use. Although many educators initially take a cynical view of the educational value of such technology, many of those who use EVS express a very positive view of their experiences. This article aims to share these…

  20. The perceptions of cognitively impaired patients and their caregivers of a home telecare system

    PubMed Central

    Mehrabian, Shima; Extra, Jocelyne; Wu, Ya-Huei; Pino, Maribel; Traykov, Latchezar; Rigaud, Anne-Sophie

    2015-01-01

    Assistive and telecare technologies have been developed to support older adults with cognitive impairments, as well as their caregivers, from their homes. The way potential users perceive telecare and smart home systems plays a key role in their acceptance of this new technology. We evaluate the acceptance of home telecare technologies among patients suffering from cognitive impairment and their caregivers. Prototypes of telecare devices were developed to demonstrate their features and capabilities and to train patients, families, and health care professionals in their use. We conducted semistructured interviews to elicit the perceptions of 30 patients with mild cognitive impairment, 32 patients with Alzheimer’s disease, and 30 caregivers, regarding the risks and advantages of home telecare and smart houses. Survey results reflected participants’ largely positive reactions to these technologies. Regarding home telecare, the cognitive stimulation program earned the highest proportion of positive responses, followed by the devices’ care of emergencies. The participants generally agreed that home telecare and smart houses could significantly improve their quality of life. However, some technical and ethical concerns, such as the way of provision, installation, and monitoring of the systems, were reported to be in need of addressing before implementation of this system. PMID:25552909

  1. The perceptions of cognitively impaired patients and their caregivers of a home telecare system.

    PubMed

    Mehrabian, Shima; Extra, Jocelyne; Wu, Ya-Huei; Pino, Maribel; Traykov, Latchezar; Rigaud, Anne-Sophie

    2015-01-01

    Assistive and telecare technologies have been developed to support older adults with cognitive impairments, as well as their caregivers, from their homes. The way potential users perceive telecare and smart home systems plays a key role in their acceptance of this new technology. We evaluate the acceptance of home telecare technologies among patients suffering from cognitive impairment and their caregivers. Prototypes of telecare devices were developed to demonstrate their features and capabilities and to train patients, families, and health care professionals in their use. We conducted semistructured interviews to elicit the perceptions of 30 patients with mild cognitive impairment, 32 patients with Alzheimer's disease, and 30 caregivers, regarding the risks and advantages of home telecare and smart houses. Survey results reflected participants' largely positive reactions to these technologies. Regarding home telecare, the cognitive stimulation program earned the highest proportion of positive responses, followed by the devices' care of emergencies. The participants generally agreed that home telecare and smart houses could significantly improve their quality of life. However, some technical and ethical concerns, such as the way of provision, installation, and monitoring of the systems, were reported to be in need of addressing before implementation of this system.

  2. Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program (ERDAP)

    DTIC Science & Technology

    2005-06-01

    l2O3:C OSL dosimeters . Overall design is based on similar systems described earlier by Justus et al. (1999) and Huston et al. (2001). Similar apparatus...Radioisotope Contamination 4. Pre-Positioned Physical Dosimeters C. Assessment of Emerging Dosimetry Technologies 1. Biological Measurements 2. Physico...architectures for radiation dose assessment tools. • Focus initial studies on defining the role of pre-positioned dosimeters , optimizing the size and

  3. Precision Farming and Precision Pest Management: The Power of New Crop Production Technologies

    PubMed Central

    Strickland, R. Mack; Ess, Daniel R.; Parsons, Samuel D.

    1998-01-01

    The use of new technologies including Geographic Information Systems (GIS), the Global Positioning System (GPS), Variable Rate Technology (VRT), and Remote Sensing (RS) is gaining acceptance in the present high-technology, precision agricultural industry. GIS provides the ability to link multiple data values for the same geo-referenced location, and provides the user with a graphical visualization of such data. When GIS is coupled with GPS and RS, management decisions can be applied in a more precise "micro-managed" manner by using VRT techniques. Such technology holds the potential to reduce agricultural crop production costs as well as crop and environmental damage. PMID:19274236

  4. Effect of forest canopy on GPS-based movement data

    Treesearch

    Nicholas J. DeCesare; John R. Squires; Jay A. Kolbe

    2005-01-01

    The advancing role of Global Positioning System (GPS) technology in ecology has made studies of animal movement possible for larger and more vagile species. A simple field test revealed that lengths of GPS-based movement data were strongly biased (P<0.001) by effects of forest canopy. Global Positioning System error added an average of 27.5% additional...

  5. Getting from Here to There and Knowing Where: Teaching Global Positioning Systems to Students with Visual Impairments

    ERIC Educational Resources Information Center

    Phillips, Craig L.

    2011-01-01

    Global Positioning Systems' (GPS) technology is available for individuals with visual impairments to use in wayfinding and address Lowenfeld's "three limitations of blindness." The considerations and methodologies for teaching GPS usage have developed over time as GPS information and devices have been integrated into orientation and mobility…

  6. Improving Coalitions through S&T Cooperation

    DTIC Science & Technology

    2008-12-01

    Canada Potentially disruptive technologies that could provide decisive advantage for the CF • Quantum capabilities • Autonomous intelligent systems...the gaps in the CF Strategic Capability Roadmap • Position Defence to exploit emerging or disruptive technologies • Reduce the costs of defence

  7. The Warrant for Constructivist Practice within Educational Technology.

    ERIC Educational Resources Information Center

    Bopry, Jeanette

    1999-01-01

    Discusses educational technology as a form of technical rationality and considers the conflict between practitioners' epistemological position as constructivists and technical rationality. Topics include cybernetics; autonomous systems theory; enactive constructivism; representation versus effective action; mind and memory; enaction in artificial…

  8. Zigbee networking technology and its application in Lamost optical fiber positioning and control system

    NASA Astrophysics Data System (ADS)

    Jin, Yi; Zhai, Chao; Gu, Yonggang; Zhou, Zengxiang; Gai, Xiaofeng

    2010-07-01

    4,000 fiber positioning units need to be positioned precisely in LAMOST(Large Sky Area Multi-object Optical Spectroscopic Telescope) optical fiber positioning & control system, and every fiber positioning unit needs two stepper motors for its driven, so 8,000 stepper motors need to be controlled in the entire system. Wireless communication mode is adopted to save the installing space on the back of the focal panel, and can save more than 95% external wires compared to the traditional cable control mode. This paper studies how to use the ZigBee technology to group these 8000 nodes, explores the pros and cons of star network and tree network in order to search the stars quickly and efficiently. ZigBee technology is a short distance, low-complexity, low power, low data rate, low-cost two-way wireless communication technology based on the IEEE 802.15.4 protocol. It based on standard Open Systems Interconnection (OSI): The 802.15.4 standard specifies the lower protocol layers-the physical layer (PHY), and the media access control (MAC). ZigBee Alliance defined on this basis, the rest layers such as the network layer and application layer, and is responsible for high-level applications, testing and marketing. The network layer used here, based on ad hoc network protocols, includes the following functions: construction and maintenance of the topological structure, nomenclature and associated businesses which involves addressing, routing and security and a self-organizing-self-maintenance functions which will minimize consumer spending and maintenance costs. In this paper, freescale's 802.15.4 protocol was used to configure the network layer. A star network and a tree network topology is realized, which can build network, maintenance network and create a routing function automatically. A concise tree network address allocate algorithm is present to assign the network ID automatically.

  9. Positioning infrastructure and technologies for low-carbon urbanization

    NASA Astrophysics Data System (ADS)

    Chester, Mikhail V.; Sperling, Josh; Stokes, Eleanor; Allenby, Braden; Kockelman, Kara; Kennedy, Christopher; Baker, Lawrence A.; Keirstead, James; Hendrickson, Chris T.

    2014-10-01

    The expected urbanization of the planet in the coming century coupled with aging infrastructure in developed regions, increasing complexity of man-made systems, and pressing climate change impacts have created opportunities for reassessing the role of infrastructure and technologies in cities and how they contribute to greenhouse gas (GHG) emissions. Modern urbanization is predicated on complex, increasingly coupled infrastructure systems, and energy use continues to be largely met from fossil fuels. Until energy infrastructures evolve away from carbon-based fuels, GHG emissions are critically tied to the urbanization process. Further complicating the challenge of decoupling urban growth from GHG emissions are lock-in effects and interdependencies. This paper synthesizes state-of-the-art thinking for transportation, fuels, buildings, water, electricity, and waste systems and finds that GHG emissions assessments tend to view these systems as static and isolated from social and institutional systems. Despite significant understanding of methods and technologies for reducing infrastructure-related GHG emissions, physical, institutional, and cultural constraints continue to work against us, pointing to knowledge gaps that must be addressed. This paper identifies three challenge themes to improve our understanding of the role of infrastructure and technologies in urbanization processes and position these increasingly complex systems for low-carbon growth. The challenges emphasize how we can reimagine the role of infrastructure in the future and how people, institutions, and ecological systems interface with infrastructure.

  10. Accurate 3D Positioning for a Mobile Platform in Non-Line-of-Sight Scenarios Based on IMU/Magnetometer Sensor Fusion.

    PubMed

    Hellmers, Hendrik; Kasmi, Zakaria; Norrdine, Abdelmoumen; Eichhorn, Andreas

    2018-01-04

    In recent years, a variety of real-time applications benefit from services provided by localization systems due to the advent of sensing and communication technologies. Since the Global Navigation Satellite System (GNSS) enables localization only outside buildings, applications for indoor positioning and navigation use alternative technologies. Ultra Wide Band Signals (UWB), Wireless Local Area Network (WLAN), ultrasonic or infrared are common examples. However, these technologies suffer from fading and multipath effects caused by objects and materials in the building. In contrast, magnetic fields are able to pass through obstacles without significant propagation errors, i.e. in Non-Line of Sight Scenarios (NLoS). The aim of this work is to propose a novel indoor positioning system based on artificially generated magnetic fields in combination with Inertial Measurement Units (IMUs). In order to reach a better coverage, multiple coils are used as reference points. A basic algorithm for three-dimensional applications is demonstrated as well as evaluated in this article. The established system is then realized by a sensor fusion principle as well as a kinematic motion model on the basis of a Kalman filter. Furthermore, a pressure sensor is used in combination with an adaptive filtering method to reliably estimate the platform's altitude.

  11. Concept of information technology of monitoring and decision-making support

    NASA Astrophysics Data System (ADS)

    Kovalenko, Aleksandr S.; Tymchyk, Sergey V.; Kostyshyn, Sergey V.; Zlepko, Sergey M.; Wójcik, Waldemar; Kalizhanova, Aliya; Burlibay, Aron; Kozbekova, Ainur

    2017-08-01

    Presented concept of information technology monitoring and decision support to determine the health of students. The preconditions of a concept formulated its goal and purpose. Subject area concepts proposed to consider a set of problems, grouped into 8 categories, which in turn necessitates the application when creating technology basic principles from the principles of "first head" and "systems approach" to the principles of "interoperability" and "system integration ". The content of the information providing IT, its position in the segment of single information space, stages of creation. To evaluate the efficiency of the IT system developed proposed criteria.

  12. Trends and Issues in Educational Technology Research in Saudi Higher Education: A Meta-Analysis Review

    ERIC Educational Resources Information Center

    Alkraiji, Abdullah; Eidaroos, Abdulhadi

    2016-01-01

    As Information Technology expands, all industries and fields in Saudi Arabia are experiencing reduced costs and improvements in the efficiency and effectiveness of operations in various systems. This has positioned the higher education sector in Saudi Arabia as the land of opportunity in terms of educational technology and its ability to support…

  13. State Plan for Technology for the State Board of Education of Ohio.

    ERIC Educational Resources Information Center

    Ohio State Dept. of Education, Columbus.

    The state plan for educational technology in Ohio has been developed to facilitate a basic understanding of the broad scope of technology and how it can affect learning positively. It is also intended to provide a framework for policy and resource allocation decision making. Massive systemic changes in curriculum, professional development, and…

  14. Collision count in rugby union: A comparison of micro-technology and video analysis methods.

    PubMed

    Reardon, Cillian; Tobin, Daniel P; Tierney, Peter; Delahunt, Eamonn

    2017-10-01

    The aim of our study was to determine if there is a role for manipulation of g force thresholds acquired via micro-technology for accurately detecting collisions in rugby union. In total, 36 players were recruited from an elite Guinness Pro12 rugby union team. Player movement profiles and collisions were acquired via individual global positioning system (GPS) micro-technology units. Players were assigned to a sub-category of positions in order to determine positional collision demands. The coding of collisions by micro-technology at g force thresholds between 2 and 5.5 g (0.5 g increments) was compared with collision coding by an expert video analyst using Bland-Altman assessments. The most appropriate g force threshold (smallest mean difference compared with video analyst coding) was lower for all forwards positions (2.5 g) than for all backs positions (3.5 g). The Bland-Altman 95% limits of agreement indicated that there may be a substantial over- or underestimation of collisions coded via GPS micro-technology when using expert video analyst coding as the reference comparator. The manipulation of the g force thresholds applied to data acquired by GPS micro-technology units based on incremental thresholds of 0.5 g does not provide a reliable tool for the accurate coding of collisions in rugby union. Future research should aim to investigate smaller g force threshold increments and determine the events that cause coding of false positives.

  15. A Review of Wearable Technologies for Elderly Care that Can Accurately Track Indoor Position, Recognize Physical Activities and Monitor Vital Signs in Real Time

    PubMed Central

    Wang, Zhihua; Yang, Zhaochu; Dong, Tao

    2017-01-01

    Rapid growth of the aged population has caused an immense increase in the demand for healthcare services. Generally, the elderly are more prone to health problems compared to other age groups. With effective monitoring and alarm systems, the adverse effects of unpredictable events such as sudden illnesses, falls, and so on can be ameliorated to some extent. Recently, advances in wearable and sensor technologies have improved the prospects of these service systems for assisting elderly people. In this article, we review state-of-the-art wearable technologies that can be used for elderly care. These technologies are categorized into three types: indoor positioning, activity recognition and real time vital sign monitoring. Positioning is the process of accurate localization and is particularly important for elderly people so that they can be found in a timely manner. Activity recognition not only helps ensure that sudden events (e.g., falls) will raise alarms but also functions as a feasible way to guide people’s activities so that they avoid dangerous behaviors. Since most elderly people suffer from age-related problems, some vital signs that can be monitored comfortably and continuously via existing techniques are also summarized. Finally, we discussed a series of considerations and future trends with regard to the construction of “smart clothing” system. PMID:28208620

  16. A Review of Wearable Technologies for Elderly Care that Can Accurately Track Indoor Position, Recognize Physical Activities and Monitor Vital Signs in Real Time.

    PubMed

    Wang, Zhihua; Yang, Zhaochu; Dong, Tao

    2017-02-10

    Rapid growth of the aged population has caused an immense increase in the demand for healthcare services. Generally, the elderly are more prone to health problems compared to other age groups. With effective monitoring and alarm systems, the adverse effects of unpredictable events such as sudden illnesses, falls, and so on can be ameliorated to some extent. Recently, advances in wearable and sensor technologies have improved the prospects of these service systems for assisting elderly people. In this article, we review state-of-the-art wearable technologies that can be used for elderly care. These technologies are categorized into three types: indoor positioning, activity recognition and real time vital sign monitoring. Positioning is the process of accurate localization and is particularly important for elderly people so that they can be found in a timely manner. Activity recognition not only helps ensure that sudden events (e.g., falls) will raise alarms but also functions as a feasible way to guide people's activities so that they avoid dangerous behaviors. Since most elderly people suffer from age-related problems, some vital signs that can be monitored comfortably and continuously via existing techniques are also summarized. Finally, we discussed a series of considerations and future trends with regard to the construction of "smart clothing" system.

  17. Weather Information System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    WxLink is an aviation weather system based on advanced airborne sensors, precise positioning available from the satellite-based Global Positioning System, cockpit graphics and a low-cost datalink. It is a two-way system that uplinks weather information to the aircraft and downlinks automatic pilot reports of weather conditions aloft. Manufactured by ARNAV Systems, Inc., the original technology came from Langley Research Center's cockpit weather information system, CWIN (Cockpit Weather INformation). The system creates radar maps of storms, lightning and reports of surface observations, offering improved safety, better weather monitoring and substantial fuel savings.

  18. An Examination of Safety Management Systems and Aviation Technologies in the Helicopter Emergency Medical Services Industry

    NASA Astrophysics Data System (ADS)

    Buckner, Steven A.

    The Helicopter Emergency Medical Service (HEMS) industry has a significant role in the transportation of injured patients, but has experienced more accidents than all other segments of the aviation industry combined. With the objective of addressing this discrepancy, this study assesses the effect of safety management systems implementation and aviation technologies utilization on the reduction of HEMS accident rates. Participating were 147 pilots from Federal Aviation Regulations Part 135 HEMS operators, who completed a survey questionnaire based on the Safety Culture and Safety Management System Survey (SCSMSS). The study assessed the predictor value of SMS implementation and aviation technologies to the frequency of HEMS accident rates with correlation and multiple linear regression. The correlation analysis identified three significant positive relationships. HEMS years of experience had a high significant positive relationship with accident rate (r=.90; p<.05); SMS had a moderate significant positive relationship to Night Vision Goggles (NVG) (r=.38; p<.05); and SMS had a slight significant positive relationship with Terrain Avoidance Warning System (TAWS) (r=.234; p<.05). Multiple regression analysis suggested that when combined with NVG, TAWS, and SMS, HEMS years of experience explained 81.4% of the variance in accident rate scores (p<.05), and HEMS years of experience was found to be a significant predictor of accident rates (p<.05). Additional quantitative regression analysis was recommended to replicate the results of this study and to consider the influence of these variables for continued reduction of HEMS accidents, and to induce execution of SMS and aviation technologies from a systems engineering application. Recommendations for practice included the adoption of existing regulatory guidance for a SMS program. A qualitative analysis was also recommended for future study SMS implementation and HEMS accident rate from the pilot's perspective. A quantitative longitudinal study would further explore inferential relationships between the study variables. Current strategies should include the increased utilization of available aviation technology resources as this proactive stance may be beneficial for the establishment of an effective safety culture within the HEMS industry.

  19. Mapping invasive weeds and their control with spatial information technologies

    USDA-ARS?s Scientific Manuscript database

    We discuss applications of airborne multispectral digital imaging systems, imaging processing techniques, global positioning systems (GPS), and geographic information systems (GIS) for mapping the invasive weeds giant salvinia (Salvinia molesta) and Brazilian pepper (Schinus terebinthifolius) and fo...

  20. Technology development of the Space Transportation System mission and terrestrial applications of satellite technology

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Space Transportation System (STS) is discussed, including the launch processing system, the thermal protection subsystem, meteorological research, sound supression water system, rotating service structure, improved hypergol or removal systems, fiber optics research, precision positioning, remote controlled solid rocket booster nozzle plugs, ground operations for Centaur orbital transfer vehicle, parachute drying, STS hazardous waste disposal and recycle, toxic waste technology and control concepts, fast analytical densitometry study, shuttle inventory management system, operational intercommunications system improvement, and protective garment ensemble. Terrestrial applications are also covered, including LANDSAT applications to water resources, satellite freeze forecast system, application of ground penetrating radar to soil survey, turtle tracking, evaluating computer drawn ground cover maps, sparkless load pulsar, and coupling a microcomputer and computing integrator with a gas chromatograph.

  1. Global positioning system for general aviation: Joint FAA-NASA Seminar. [conferences

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Programs to examine and develop means to utilize the global positioning system (GPS) for civil aviation functions are described. User requirements in this regard are discussed, the development of technologies in the areas of antennas, receivers, and signal processors for the GPS are examined, and modifications to the GPS to fit operational and design criteria are evaluated.

  2. Space Technology 7 : Micropropulsion and Mass Distribution

    NASA Technical Reports Server (NTRS)

    Carnaub, A.; Dunn, C.; Ziemer, J,; Hruby, V.; Spence, D.; Demmons, N.; Roy, T.; McCormick, R.; Gasaska, C.; Young, J.; hide

    2007-01-01

    The NASA New Millennium Program Space Technology 7 (ST7) project will validate technology for precision spacecraft control. The ST7 disturbance reduction system (DRS) will contain new micropropulsion technology to be flown as part of the European Space Agency's LISA (laser interferometer space antenna) Pathfinder project. After launch into a low Earth orbit in early 2010, the LISA Pathfinder spacecraft will be maneuvered to a halo orbit about the Earth-Sun LI Lagrange point for operations. The DRS will control the position of the spacecraft relative to a reference to an accuracy of one nanometer over time scales of several thousand seconds. To perform the control the spacecraft will use a new colloid thruster technology. The thrusters will operate over the range of 5 to 30 micro-Newtons with precision of 0.1 micro-Newton. The thrust will be generated by using a high electric field to extract charged droplets of a conducting colloid fluid and accelerating them with a precisely adjustable voltage. The control position reference will be provided by the European LISA Technology Package, which will include two nearly free-floating test masses. The test mass position and attitude will be sensed and adjusted using electrostatic capacitance bridges. The DRS will control the spacecraft position with respect to one test mass while minimizing disturbances on the second test mass. The dynamic control system will cover eighteen degrees of freedom, six for each of the test masses and six for the spacecraft. In the absence of other disturbances, the test masses will slowly gravitate toward local concentrations of spacecraft mass. The test mass acceleration must be minimized to maintain the acceleration of the enclosing drag-free spacecraft within the control authority of the micropropulsion system. Therefore, test mass acceleration must be predicted by accurate measurement of mass distribution, then offset by the placement of specially shaped balance masses near each test mass. The - acceleration is characterized by calculating the gravitational effect of over ten million modeled points of a nearly 500-kg spacecraft. This paper provides an overview of the mission technology and the process of precision mass modeling of the DRS equipment.

  3. Plan of Time Management of Satellite Positioning System using Quasi-zenith Satellite

    NASA Astrophysics Data System (ADS)

    Takahashi, Yasuhiro; Fujieda, Miho; Amagai, Jun; Yokota, Shoichiro; Kimura, Kazuhiro; Ito, Hiroyuki; Hama, Shin'ichi; Morikawa, Takao; Kawano, Isao; Kogure, Satoshi

    The Quasi-Zenith satellites System (QZSS) is developed as an integrated satellite service system of communication, broadcasting and positioning for mobile users in specified regions of Japan from high elevation angle. Purposes of the satellite positioning system using Quasi-Zenith satellite (QZS) are to complement and augment the GPS. The national institutes concerned have been developing the positioning system using QZS since 2003 and will carry out experiments and researches in three years after the launch. In this system, National Institute of Information and Communications Technology (NICT) is mainly in charge of timing system for the satellite positioning system using QZS, such as onboard hydrogen maser atomic clock and precise time management system of the QZSS. We started to develop the engineering model of the time management system for the QZSS. The time management system for the QZSS will be used to compare time differences between QZS and earth station as well as to compare between three onboard atomic clocks. This paper introduces time management of satellite positioning system using the QZSS.

  4. Survey of computer vision technology for UVA navigation

    NASA Astrophysics Data System (ADS)

    Xie, Bo; Fan, Xiang; Li, Sijian

    2017-11-01

    Navigation based on computer version technology, which has the characteristics of strong independence, high precision and is not susceptible to electrical interference, has attracted more and more attention in the filed of UAV navigation research. Early navigation project based on computer version technology mainly applied to autonomous ground robot. In recent years, the visual navigation system is widely applied to unmanned machine, deep space detector and underwater robot. That further stimulate the research of integrated navigation algorithm based on computer version technology. In China, with many types of UAV development and two lunar exploration, the three phase of the project started, there has been significant progress in the study of visual navigation. The paper expounds the development of navigation based on computer version technology in the filed of UAV navigation research and draw a conclusion that visual navigation is mainly applied to three aspects as follows.(1) Acquisition of UAV navigation parameters. The parameters, including UAV attitude, position and velocity information could be got according to the relationship between the images from sensors and carrier's attitude, the relationship between instant matching images and the reference images and the relationship between carrier's velocity and characteristics of sequential images.(2) Autonomous obstacle avoidance. There are many ways to achieve obstacle avoidance in UAV navigation. The methods based on computer version technology ,including feature matching, template matching, image frames and so on, are mainly introduced. (3) The target tracking, positioning. Using the obtained images, UAV position is calculated by using optical flow method, MeanShift algorithm, CamShift algorithm, Kalman filtering and particle filter algotithm. The paper expounds three kinds of mainstream visual system. (1) High speed visual system. It uses parallel structure, with which image detection and processing are carried out at high speed. The system is applied to rapid response system. (2) The visual system of distributed network. There are several discrete image data acquisition sensor in different locations, which transmit image data to the node processor to increase the sampling rate. (3) The visual system combined with observer. The system combines image sensors with the external observers to make up for lack of visual equipment. To some degree, these systems overcome lacks of the early visual system, including low frequency, low processing efficiency and strong noise. In the end, the difficulties of navigation based on computer version technology in practical application are briefly discussed. (1) Due to the huge workload of image operation , the real-time performance of the system is poor. (2) Due to the large environmental impact , the anti-interference ability of the system is poor.(3) Due to the ability to work in a particular environment, the system has poor adaptability.

  5. A Geospatial Scavenger Hunt

    ERIC Educational Resources Information Center

    Martinez, Adriana E.; Williams, Nikki A.; Metoyer, Sandra K.; Morris, Jennifer N.; Berhane, Stephen A.

    2009-01-01

    With the use of technology such as Global Positioning System (GPS) units and Google Earth for a simple-machine scavenger hunt, you will transform a standard identification activity into an exciting learning experience that motivates students, incorporates practical skills in technology, and enhances students' spatial-thinking skills. In the…

  6. JPRS Report, Science & Technology, Japan, 4th Intelligent Robots Symposium, Volume 2

    DTIC Science & Technology

    1989-03-16

    accidents caused by strikes by robots,5 a quantitative model for safety evaluation,6 and evaluations of actual systems7 in order to contribute to...Mobile Robot Position Referencing Using Map-Based Vision Systems.... 160 Safety Evaluation of Man-Robot System 171 Fuzzy Path Pattern of Automatic...camera are made after the robot stops to prevent damage from occurring through obstacle interference. The position of the camera is indicated on the

  7. Re-examining the role of attitude in information system acceptance: a model from the satisfaction-dissatisfaction perspective

    NASA Astrophysics Data System (ADS)

    Guo, Bin; Zhou, Shasha

    2016-05-01

    This study attempts to re-examine the role of attitude in voluntary information system (IS) acceptance and usage, which has often been discounted in the previous technology acceptance research. We extend the unidimensional view of attitude into a bidimensional one, because of the simultaneous existence of both positive and negative evaluation towards IS in technology acceptance behaviour. In doing so, attitude construct is divided into two components: satisfaction as the positive attitudinal component and dissatisfaction as the negative attitudinal component. We argue that satisfaction and dissatisfaction will interactively affect technology usage intention. Besides, we explore the predictors of satisfaction and dissatisfaction based on the disconfirmation theory. Empirical results from a longitudinal study on bulletin board system (BBS) usage confirm the interaction effect of satisfaction and dissatisfaction on usage intention. Moreover, perceived task-related value has a significant effect on satisfaction, while perceived personal value has a significant effect on dissatisfaction. We also discuss the theoretical and managerial implications of our findings.

  8. Flight Demonstration of Integrated Airport Surface Technologies for Increased Capacity and Safety

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Young, Steven D.; Wills, Robert W.; Smith, Kathryn A.; Shipman, Floyd S.; Bryant, Wayne H.; Eckhardt, Dave E., Jr.

    1998-01-01

    A flight demonstration was conducted to address airport surface movement area capacity and safety issues by providing pilots with enhanced situational awareness information. The demonstration presented an integration of several technologies to government and industry representatives. These technologies consisted of an electronic moving map display in the cockpit, a Differential Global Positioning system (DGPS) receiver, a high speed very high frequency (VHF) data link, an Airport Surface Detection Equipment (ASDE-3) radar, and the Airport Movement Area Safety System (AMASS). Aircraft identification was presented to an air traffic controller on an AMASS display. The onboard electronic map included the display of taxi routes, hold instructions, and clearances, which were sent to the aircraft via data link by the controller. The map also displayed the positions of other traffic and warning information, which were sent to the aircraft automatically from the ASDE-3/AMASS system. This paper describes the flight demonstration in detail, along with test results.

  9. A novel upper limb rehabilitation system with self-driven virtual arm illusion.

    PubMed

    Aung, Yee Mon; Al-Jumaily, Adel; Anam, Khairul

    2014-01-01

    This paper proposes a novel upper extremity rehabilitation system with virtual arm illusion. It aims for fast recovery from lost functions of the upper limb as a result of stroke to provide a novel rehabilitation system for paralyzed patients. The system is integrated with a number of technologies that include Augmented Reality (AR) technology to develop game like exercise, computer vision technology to create the illusion scene, 3D modeling and model simulation, and signal processing to detect user intention via EMG signal. The effectiveness of the developed system has evaluated via usability study and questionnaires which is represented by graphical and analytical methods. The evaluation provides with positive results and this indicates the developed system has potential as an effective rehabilitation system for upper limb impairment.

  10. Echidna Mark II: one giant leap for 'tilting spine' fibre positioning technology

    NASA Astrophysics Data System (ADS)

    Gilbert, James; Dalton, Gavin

    2016-07-01

    The Australian Astronomical Observatory's 'tilting spine' fibre positioning technology has been redeveloped to provide superior performance in a smaller package. The new design offers demonstrated closed-loop positioning errors of <2.8 μm RMS in only five moves ( 10 s excluding metrology overheads) and an improved capacity for open-loop tracking during observations. Tilt-induced throughput losses have been halved by lengthening spines while maintaining excellent accuracy. New low-voltage multilayer piezo actuator technology has reduced a spine's peak drive amplitude from 150V to <10V, simplifying the control electronics design, reducing the system's overall size, and improving modularity. Every spine is now a truly independent unit with a dedicated drive circuit and no restrictions on the timing or direction of fibre motion.

  11. An Examination of Information Technology and Its Perceived Quality Issues in Single System Hospitals in the United States

    ERIC Educational Resources Information Center

    Byrd, Linda W.

    2009-01-01

    The safety and quality of healthcare is of great concern in the United States. The positive effects of information technology reported in past research, especially case studies, has encouraged expectations that information technology may increase the quality of healthcare while reducing costs of healthcare. The goals of this study was to examine…

  12. The NavTrax fleet management system

    NASA Astrophysics Data System (ADS)

    McLellan, James F.; Krakiwsky, Edward J.; Schleppe, John B.; Knapp, Paul L.

    The NavTrax System, a dispatch-type automatic vehicle location and navigation system, is discussed. Attention is given to its positioning, communication, digital mapping, and dispatch center components. The positioning module is a robust GPS (Global Positioning System)-based system integrated with dead reckoning devices by a decentralized-federated filter, making the module fault tolerant. The error behavior and characteristics of GPS, rate gyro, compass, and odometer sensors are discussed. The communications module, as presently configured, utilizes UHF radio technology, and plans are being made to employ a digital cellular telephone system. Polling and automatic smart vehicle reporting are also discussed. The digital mapping component is an intelligent digital single line road network database stored in vector form with full connectivity and address ranges. A limited form of map matching is performed for the purposes of positioning, but its main purpose is to define location once position is determined.

  13. Positioning navigation and timing service applications in cyber physical systems

    NASA Astrophysics Data System (ADS)

    Qu, Yi; Wu, Xiaojing; Zeng, Lingchuan

    2017-10-01

    The positioning navigation and timing (PNT) architecture was discussed in detail, whose history, evolvement, current status and future plan were presented, main technologies were listed, advantages and limitations of most technologies were compared, novel approaches were introduced, and future capacities were sketched. The concept of cyber-physical system (CPS) was described and their primary features were interpreted. Then the three-layer architecture of CPS was illustrated. Next CPS requirements on PNT services were analyzed, including requirements on position reference and time reference, requirements on temporal-spatial error monitor, requirements on dynamic services, real-time services, autonomous services, security services and standard services. Finally challenges faced by PNT applications in CPS were concluded. The conclusion was expected to facilitate PNT applications in CPS, and furthermore to provide references to the design and implementation of both architectures.

  14. Intimate partner violence, technology, and stalking.

    PubMed

    Southworth, Cynthia; Finn, Jerry; Dawson, Shawndell; Fraser, Cynthia; Tucker, Sarah

    2007-08-01

    This research note describes the use of a broad range of technologies in intimate partner stalking, including cordless and cellular telephones, fax machines, e-mail, Internet-based harassment, global positioning systems, spy ware, video cameras, and online databases. The concept of "stalking with technology" is reviewed, and the need for an expanded definition of cyberstalking is presented. Legal issues and advocacy-centered responses, including training, legal remedies, public policy issues, and technology industry practices, are discussed.

  15. GIS -- Is it a money pit or a profit generator?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, R.H.

    1997-02-01

    Today, new technologies including smart pigs and GPS technology can be used to expedite data collection and improve the accuracy of the GIS applications. Eventually, such applications as pipe information for a taxing district, corrosion testing history, and many other applications can be accommodated in a GIS system. The accompanying figure shows the potential relationship of various technologies in today`s world along with other automated data input sources such as very smart pigs and the Global Positioning System (GPS). The paper discusses implementation barriers, assuring success, and recommendations.

  16. Coordinate references for the indoor/outdoor seamless positioning

    NASA Astrophysics Data System (ADS)

    Ruan, Ling; Zhang, Ling; Long, Yi; Cheng, Fei

    2018-05-01

    Indoor positioning technologies are being developed rapidly, and seamless positioning which connected indoor and outdoor space is a new trend. The indoor and outdoor positioning are not applying the same coordinate system and different indoor positioning scenes uses different indoor local coordinate reference systems. A specific and unified coordinate reference frame is needed as the space basis and premise in seamless positioning application. Trajectory analysis of indoor and outdoor integration also requires a uniform coordinate reference. However, the coordinate reference frame in seamless positioning which can applied to various complex scenarios is lacking of research for a long time. In this paper, we proposed a universal coordinate reference frame in indoor/outdoor seamless positioning. The research focus on analysis and classify the indoor positioning scenes and put forward the coordinate reference system establishment and coordinate transformation methods in each scene. And, through some experiments, the calibration method feasibility was verified.

  17. Quality assurance for kilo- and megavoltage in-room imaging and localization for off- and online setup error correction.

    PubMed

    Balter, James M; Antonuk, Larry E

    2008-01-01

    In-room radiography is not a new concept for image-guided radiation therapy. Rapid advances in technology, however, have made this positioning method convenient, and thus radiograph-based positioning has propagated widely. The paradigms for quality assurance of radiograph-based positioning include imager performance, systems integration, infrastructure, procedure documentation and testing, and support for positioning strategy implementation.

  18. Optimization of Smart Structure for Improving Servo Performance of Hard Disk Drive

    NASA Astrophysics Data System (ADS)

    Kajiwara, Itsuro; Takahashi, Masafumi; Arisaka, Toshihiro

    Head positioning accuracy of the hard disk drive should be improved to meet today's increasing performance demands. Vibration suppression of the arm in the hard disk drive is very important to enhance the servo bandwidth of the head positioning system. In this study, smart structure technology is introduced into the hard disk drive to suppress the vibration of the head actuator. It has been expected that the smart structure technology will contribute to the development of small and light-weight mechatronics devices with the required performance. First, modeling of the system is conducted with finite element method and modal analysis. Next, the actuator location and the control system are simultaneously optimized using genetic algorithm. Vibration control effect with the proposed vibration control mechanisms has been evaluated by some simulations.

  19. On-Orbit Autonomous Assembly from Nanosatellites

    NASA Technical Reports Server (NTRS)

    Murchison, Luke S.; Martinez, Andres; Petro, Andrew

    2015-01-01

    The On-Orbit Autonomous Assembly from Nanosatellites (OAAN) project will demonstrate autonomous control algorithms for rendezvous and docking maneuvers; low-power reconfigurable magnetic docking technology; and compact, lightweight and inexpensive precision relative navigation using carrier-phase differential (CD) GPS with a three-degree of freedom ground demonstration. CDGPS is a specific relative position determination method that measures the phase of the GPS carrier wave to yield relative position data accurate to.4 inch (1 centimeter). CDGPS is a technology commonly found in the surveying industry. The development and demonstration of these technologies will fill a current gap in the availability of proven autonomous rendezvous and docking systems for small satellites.

  20. EnEx-RANGE - Robust autonomous Acoustic Navigation in Glacial icE

    NASA Astrophysics Data System (ADS)

    Heinen, Dirk; Eliseev, Dmitry; Henke, Christoph; Jeschke, Sabina; Linder, Peter; Reuter, Sebastian; Schönitz, Sebastian; Scholz, Franziska; Weinstock, Lars Steffen; Wickmann, Stefan; Wiebusch, Christopher; Zierke, Simon

    2017-03-01

    Within the Enceladus Explorer Initiative of the DLR Space Administration navigation technologies for a future space mission are in development. Those technologies are the basis for the search for extraterrestrial life on the Saturn moon Enceladus. An autonomous melting probe, the EnEx probe, aims to extract a liquid sample from a water reservoir below the icy crust. A first EnEx probe was developed and demonstrated in a terrestrial scenario at the Bloodfalls, Taylor Glacier, Antarctica in November 2014. To enable navigation in glacier ice two acoustic systems were integrated into the probe in addition to conventional navigation technologies. The first acoustic system determines the position of the probe during the run based on propagation times of acoustic signals from emitters at reference positions at the glacier surface to receivers in the probe. The second system provides information about the forefield of the probe. It is based on sonographic principles with phased array technology integrated in the probe's melting head. Information about obstacles or sampling regions in the probe's forefield can be acquired. The development of both systems is now continued in the project EnEx-RANGE. The emitters of the localization system are replaced by a network of intelligent acoustic enabled melting probes. These localize each other by means of acoustic signals and create the reference system for the EnEx probe. This presentation includes the discussion of the intelligent acoustic network, the acoustic navigation systems of the EnEx probe and results of terrestrial tests.

  1. Tube and column agglutination technology for autocontrol testing.

    PubMed

    Courtney, J E; Vincent, J L; Indrikovs, A J

    2001-01-01

    The incidence of positive autocontrol test results with column agglutination technology is a concern. This study investigates the incidence and significance of positive autocontrols in the ID Micro Typing System (gel) and the Gamma ReACT (ReACT). The study encompassed a total of 1021 randomly selected samples from patients and 95 samples from donors collected during 1 month. The autocontrol testing was carried out according to the manufacturer's instructions for the column agglutination tests. The tube method was carried out using low-ionic-strength solution (LISS). The direct antiglobulin test (DAT) was performed using the tube method, and further investigated with elution studies if warranted. Seventy-nine patient's samples (7.74%) had a positive autocontrol: the gel test, 72 (91.13%); ReACT, 21 (26.58%); and the tube method, 27 (34.18%). Of the 79 positive autocontrols, 44 samples had a negative DAT. Of the samples with positive DAT results, only one possessed a clinically significant antibody, anti-D. Moreover, the same sample also tested positive in all three methods. Column agglutination techniques have increased sensitivity for a positive autocontrol beyond the conventional tube method. However, ReACT and gel tests differ significantly in their frequency of positives. Investigation of the significance of a positive autocontrol in column agglutination technology when the conventional tube method is also positive is suggested.

  2. Tactile Instrument for Aviation

    DTIC Science & Technology

    2000-07-30

    response times using 8 tactor locations was repeated with a dual memory /tracking task or an air combat simulation to evaluate the effectiveness of the...Global Positioning/Inertial Navigation System technologies into a single system for evaluation in an UH-60 Helicopter. A 10-event test operation was... evaluation of the following technology areas need to be pursued: • Integration of tactile instruments with helmet mounted displays and 3D audio displays

  3. Direction of rational use of water at livestock facilities

    NASA Astrophysics Data System (ADS)

    Potseluev, A. A.; Nazarov, I. V.

    2017-05-01

    The article notes the world water shortage problem. Against this background, Russia’s agricultural production is considered, in particular the livestock sector as the main consumer of water resources. The structure of the main technological processes at livestock facilities is given and possible technological damage is indicated in case of the lack of technological processes for servicing animals and poultry with water. The direction of rational use of water based on the introduction of new technical and technological solutions of water supply systems and means is substantiated. Constructive solutions of systems and facilities that help to reduce water consumption are presented, and as well a possible positive effect.

  4. 77 FR 51518 - Alternative Personnel Management System (APMS) at the National Institute of Standards and Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... for all positions within the Scientific and Engineering (ZP) career path at the Pay Band III and above, for Nuclear Reactor Operator positions in the Scientific and Engineering Technician (ZT) career path... and Engineering Technician (ZT) career path at the Pay Band III and above, and for all positions in...

  5. Visible light communication technology for fine-grained indoor localization

    NASA Astrophysics Data System (ADS)

    Vieira, M.; Vieira, M. A.; Louro, P.; Fantoni, A.; Vieira, P.

    2018-02-01

    This paper focuses on designing and analysing a visible light based communication and positioning system. The indoor positioning system uses trichromatic white Light Emitting Diodes (LEDs), both for illumination purposes and as transmitters, and an optical processor, based on a-SiC:H technology, as mobile receiver. On-Off Keying (OOK) modulation scheme is used, proving a good trade-off between system performance and implementation complexity. In the following, the relationship between the transmitted data and the received output levels is decoded. LED bulbs work as transmitters, sending information together with different identifiers, IDs, related to their physical locations. Square and diamond topologies for the unit cell are analyzed, and a 2D localization design, demonstrated by a prototype implementation, is presented. Fine-grained indoor localization is tested. The received signal is used in coded multiplexing techniques for supporting communications and navigation concomitantly on the same channel. The location and motion information is found by mapping the position and estimating the location areas.

  6. System and technology considerations for space-based air traffic surveillance

    NASA Technical Reports Server (NTRS)

    Vaisnys, A.

    1986-01-01

    This paper describes the system trade-offs examined in a recent study of space-based air traffic surveillance. Three system options, each satisfying a set of different constraints, were considered. The main difference in the technology needed to implement the three systems was determined to be the size of the spacecraft antenna aperture. It was found that essentially equivalent position location accuracy could be achieved with apertures from 50 meters down to less than a meter in diameter, depending on the choice of signal structure and on the desired user update rate.

  7. Development of low-altitude remote sensing systems for crop production management

    USDA-ARS?s Scientific Manuscript database

    Precision agriculture accounts for within-field variability for targeted treatment rather than uniform treatment of an entire field. Precision agriculture is built on agricultural mechanization and state-of-the-art technologies of geographical information systems (GIS), global positioning systems (G...

  8. Classical reconstruction of interference patterns of position-wave-vector-entangled photon pairs by the time-reversal method

    NASA Astrophysics Data System (ADS)

    Ogawa, Kazuhisa; Kobayashi, Hirokazu; Tomita, Akihisa

    2018-02-01

    The quantum interference of entangled photons forms a key phenomenon underlying various quantum-optical technologies. It is known that the quantum interference patterns of entangled photon pairs can be reconstructed classically by the time-reversal method; however, the time-reversal method has been applied only to time-frequency-entangled two-photon systems in previous experiments. Here, we apply the time-reversal method to the position-wave-vector-entangled two-photon systems: the two-photon Young interferometer and the two-photon beam focusing system. We experimentally demonstrate that the time-reversed systems classically reconstruct the same interference patterns as the position-wave-vector-entangled two-photon systems.

  9. Ultrasound Imaging in Radiation Therapy: From Interfractional to Intrafractional Guidance

    PubMed Central

    Western, Craig; Hristov, Dimitre

    2015-01-01

    External beam radiation therapy (EBRT) is included in the treatment regimen of the majority of cancer patients. With the proliferation of hypofractionated radiotherapy treatment regimens, such as stereotactic body radiation therapy (SBRT), interfractional and intrafractional imaging technologies are becoming increasingly critical to ensure safe and effective treatment delivery. Ultrasound (US)-based image guidance systems offer real-time, markerless, volumetric imaging with excellent soft tissue contrast, overcoming the limitations of traditional X-ray or computed tomography (CT)-based guidance for abdominal and pelvic cancer sites, such as the liver and prostate. Interfractional US guidance systems have been commercially adopted for patient positioning but suffer from systematic positioning errors induced by probe pressure. More recently, several research groups have introduced concepts for intrafractional US guidance systems leveraging robotic probe placement technology and real-time soft tissue tracking software. This paper reviews various commercial and research-level US guidance systems used in radiation therapy, with an emphasis on hardware and software technologies that enable the deployment of US imaging within the radiotherapy environment and workflow. Previously unpublished material on tissue tracking systems and robotic probe manipulators under development by our group is also included. PMID:26180704

  10. Simulation of proportional control of hydraulic actuator using digital hydraulic valves

    NASA Astrophysics Data System (ADS)

    Raghuraman, D. R. S.; Senthil Kumar, S.; Kalaiarasan, G.

    2017-11-01

    Fluid power systems using oil hydraulics in earth moving and construction equipment have been using proportional and servo control valves for a long time to achieve precise and accurate position control backed by system performance. Such valves are having feedback control in them and exhibit good response, sensitivity and fine control of the actuators. Servo valves and proportional valves are possessing less hysteresis when compared to on-off type valves, but when the servo valve spools get stuck in one position, a high frequency called as jitter is employed to bring the spool back, whereas in on-off type valves it requires lesser technology to retract the spool. Hence on-off type valves are used in a technology known as digital valve technology, which caters to precise control on slow moving loads with fast switching times and with good flow and pressure control mimicking the performance of an equivalent “proportional valve” or “servo valve”.

  11. Positioning a Paediatric Compounded Non-Sterile Product Electronic Repository (pCNPeRx) within the Health Information Technology Infrastructure

    PubMed Central

    Parrish, Richard H.

    2015-01-01

    Numerous gaps in the current medication use system impede complete transmission of electronically identifiable and standardized extemporaneous formulations as well as a uniform approach to medication therapy management (MTM) for paediatric patients. The Pharmacy Health Information Technology Collaborative (Pharmacy HIT) identified six components that may have direct importance for pharmacy related to medication use in children. This paper will discuss key positions within the information technology infrastructure (HIT) where an electronic repository for the medication management of paediatric patients’ compounded non-sterile products (pCNP) and care provision could be housed optimally to facilitate and maintain transmission of e-prescriptions (eRx) from initiation to fulfillment. Further, the paper will propose key placement requirements to provide for maximal interoperability of electronic medication management systems to minimize disruptions across the continuum of care. PMID:28970375

  12. Leadership for a Technology-Rich Educational Environment.

    ERIC Educational Resources Information Center

    Riedl, Richard; Smith, Tracy; Ware, Anita; Wark, Alan; Yount, Peter

    This paper emphasizes the importance of exploring the attitudes, skills, and knowledge that will enable individuals in educational leadership positions to function effectively and to provide support to create and maintain technology-rich educational systems. The discussion is guided by the following five elements, the understanding of which are…

  13. When Worlds Collide: An Augmented Reality Check

    ERIC Educational Resources Information Center

    Villano, Matt

    2008-01-01

    The technology is simple: Mobile technologies such as handheld computers and global positioning systems work in sync to create an alternate, hybrid world that mixes virtual characters with the actual physical environment. The result is a digital simulation that offers powerful game-playing opportunities and allows students to become more engaged…

  14. Getting to Know You: Discovering User Behaviors and Their Implications for Service Design

    ERIC Educational Resources Information Center

    Daigle, Ben

    2013-01-01

    Public services librarians are often in the position of training patrons how to use technology. They adopt new technologies such as discovery layers, link resolvers, subject guides, virtual reference services, OPACs, content management systems, and institutional repositories to provide access to materials and facilitate collaboration, but…

  15. Fostering 21st Century Learning with Geospatial Technologies

    ERIC Educational Resources Information Center

    Hagevik, Rita A.

    2011-01-01

    Global positioning systems (GPS) receivers and other geospatial tools can help teachers create engaging, hands-on activities in all content areas. This article provides a rationale for using geospatial technologies in the middle grades and describes classroom-tested activities in English language arts, science, mathematics, and social studies.…

  16. Managerial Problems in the Use of Educational Technology in Primary Education Schools

    ERIC Educational Resources Information Center

    Hosgorur, Vural

    2013-01-01

    Rapid progress in science and technology also changes understanding, wishes and expectations, processes, operations and organisational structures. Such developments positively affect the structure of educational systems as well as learning-teaching activities in instructional environments. The problem of this research is to define managerial…

  17. Backyard Botany: Using GPS Technology in the Science Classroom

    ERIC Educational Resources Information Center

    March, Kathryn A.

    2012-01-01

    Global Positioning System (GPS) technology can be used to connect students to the natural world and improve their skills in observation, identification, and classification. Using GPS devices in the classroom increases student interest in science, encourages team-building skills, and improves biology content knowledge. Additionally, it helps…

  18. Estimating Rhododendron maximum L. (Ericaceae) Canopy Cover Using GPS/GIS Technology

    Treesearch

    Tyler J. Tran; Katherine J. Elliott

    2012-01-01

    In the southern Appalachians, Rhododendron maximum L. (Ericaceae) is a key evergreen understory species, often forming a subcanopy in forest stands. Little is known about the significance of R. maximum cover in relation to other forest structural variables. Only recently have studies used Global Positioning System (GPS) technology...

  19. Distributed magnetic field positioning system using code division multiple access

    NASA Technical Reports Server (NTRS)

    Prigge, Eric A. (Inventor)

    2003-01-01

    An apparatus and methods for a magnetic field positioning system use a fundamentally different, and advantageous, signal structure and multiple access method, known as Code Division Multiple Access (CDMA). This signal architecture, when combined with processing methods, leads to advantages over the existing technologies, especially when applied to a system with a large number of magnetic field generators (beacons). Beacons at known positions generate coded magnetic fields, and a magnetic sensor measures a sum field and decomposes it into component fields to determine the sensor position and orientation. The apparatus and methods can have a large `building-sized` coverage area. The system allows for numerous beacons to be distributed throughout an area at a number of different locations. A method to estimate position and attitude, with no prior knowledge, uses dipole fields produced by these beacons in different locations.

  20. Laser Looking at Earth

    NASA Technical Reports Server (NTRS)

    1999-01-01

    TerraPoint (TM) LLC is a company that combines the technologies developed at NASA's Goddard Space Flight Center (GSFC) and the Houston Advanced Research Center (HARC) with the concept of topographic real estate imaging. TerraPoint provides its customers with digital, topographical data generated by laser technology rather than commonly used microwave (radar) and photographic technologies. This product's technology merges Goddard's and HARC's laser ranging, global positioning systems, and mapping software into a miniaturized package that can be mounted in a light aircraft.

  1. Development of vehicular and personal universal longitudinal travel diary systems using GPS and new technology.

    DOT National Transportation Integrated Search

    2006-12-01

    This report provides an overview of travel surveys, including literature review and background, as well as the motivation for the : research and development of the Global Positioning System Automated Travel Diary (GPS-ATD). The system requirements an...

  2. Design and implementation of a GPS guidance system for agricultural tractors using augmented reality technology.

    PubMed

    Santana-Fernández, Javier; Gómez-Gil, Jaime; del-Pozo-San-Cirilo, Laura

    2010-01-01

    Current commercial tractor guidance systems present to the driver information to perform agricultural tasks in the best way. This information generally includes a treated zones map referenced to the tractor's position. Unlike actual guidance systems where the tractor driver must mentally associate treated zone maps and the plot layout, this paper presents a guidance system that using Augmented Reality (AR) technology, allows the tractor driver to see the real plot though eye monitor glasses with the treated zones in a different color. The paper includes a description of the system hardware and software, a real test done with image captures seen by the tractor driver, and a discussion predicting that the historical evolution of guidance systems could involve the use of AR technology in the agricultural guidance and monitoring systems.

  3. Design and Implementation of a GPS Guidance System for Agricultural Tractors Using Augmented Reality Technology

    PubMed Central

    Santana-Fernández, Javier; Gómez-Gil, Jaime; del-Pozo-San-Cirilo, Laura

    2010-01-01

    Current commercial tractor guidance systems present to the driver information to perform agricultural tasks in the best way. This information generally includes a treated zones map referenced to the tractor’s position. Unlike actual guidance systems where the tractor driver must mentally associate treated zone maps and the plot layout, this paper presents a guidance system that using Augmented Reality (AR) technology, allows the tractor driver to see the real plot though eye monitor glasses with the treated zones in a different color. The paper includes a description of the system hardware and software, a real test done with image captures seen by the tractor driver, and a discussion predicting that the historical evolution of guidance systems could involve the use of AR technology in the agricultural guidance and monitoring systems. PMID:22163479

  4. Ambient Assistive Technologies (AAT): socio-technology as a powerful tool for facing the inevitable sociodemographic challenges?

    PubMed

    Schülke, Astrid M; Plischke, Herbert; Kohls, Niko B

    2010-06-07

    Due to the socio-demographic change in most developed western countries, elderly populations have been continuously increasing. Therefore, preventive and assistive systems that allow elderly people to independently live in their own homes as long as possible will become an economical if not ethical necessity. These respective technologies are being developed under the term "Ambient Assistive Technologies" (AAT). The EU-funded AAT-project Ambient Lighting Assistance for an Ageing Population (ALADIN) has established the long-term goal to create an adaptive system capable of improving the residential lighting conditions of single living elderly persons also aiming at supporting the preservation of their independence.Results of an earlier survey revealed that the elderly perceived their current lighting situation as satisfactory, whereas interviewers assessed in-house lighting as too dark and risk-laden. The overall results of ALADIN showed a significant increase in well-being from the baseline final testing with the new adaptive lighting system.Positive results for wellbeing and life quality suggest that the outcome effects may be attributed to the introduction of technology as well as to social contacts arising from participating in the study. The technological guidance of the study supervisors, in particular, may have produced a strong social reactivity effect that was first observed in the famous Hawthorne experiments in the 1930s. As older adults seem to benefit both from meaningful social contacts as well as assistive technologies, the question arises how assistive technology can be socially embedded to be able to maximize positive health effects. Therefore ethical guidelines for development and use of new assistive technologies for handicapped/older persons have to be developed and should be discussed with regard to their applicability in the context of AAT.

  5. Assessing the relationship between technology readiness and continuance intention in an E-appointment system: relationship quality as a mediator.

    PubMed

    Chen, Shih-Chih; Jong, Din; Lai, Min-Tsai

    2014-09-01

    Numerous types of self-service technologies have prevailed due to innovations in network and information technology. To hospitals, patient intentions to continue to use the e-appointment system are crucial. Previous investigations discussed only the relationships between the technology readiness of users and their continuance intentions, and ignored the most important mediator, relationship quality. This study explored the relationships among technology readiness, relationship quality, and continuance intention. The research results demonstrated that both optimism and innovativeness significantly and positively influenced continuance intention through the mediating effect of relationship quality. However, discomfort and insecurity hid not significantly influence relationship quality or continuance intention. Finally, theoretical contributions, managerial implications and future research directions were discussed.

  6. Effective Crew Operations: An Analysis of Technologies for Improving Crew Activities and Medical Procedures

    NASA Technical Reports Server (NTRS)

    Harvey, Craig

    2005-01-01

    NASA's vision for space exploration (February 2004) calls for development of a new crew exploration vehicle, sustained lunar operations, and human exploration of Mars. To meet the challenges of planned sustained operations as well as the limited communications between Earth and the crew (e.g., Mars exploration), many systems will require crews to operate in an autonomous environment. It has been estimated that once every 2.4 years a major medical issue will occur while in space. NASA's future travels, especially to Mars, will begin to push this timeframe. Therefore, now is the time for investigating technologies and systems that will support crews in these environments. Therefore, this summer two studies were conducted to evaluate the technology and systems that may be used by crews in future missions. The first study evaluated three commercial Indoor Positioning Systems (IPS) (Versus, Ekahau, and Radianse) that can track equipment and people within a facility. While similar to Global Positioning Systems (GPS), the specific technology used is different. Several conclusions can be drawn from the evaluation conducted, but in summary it is clear that none of the systems provides a complete solution in meeting the tracking and technology integration requirements of NASA. From a functional performance (e.g., system meets user needs) evaluation perspective, Versus performed fairly well on all performance measures as compared to Ekahau and Radianse. However, the system only provides tracking at the room level. Thus, Versus does not provide the level of fidelity required for tracking assets or people for NASA requirements. From an engineering implementation perspective, Ekahau is far simpler to implement that the other two systems because of its wi-fi design (e.g., no required runs of cable). By looking at these two perspectives, one finds there was no clear system that met NASA requirements. Thus it would be premature to suggest that any of these systems are ready for implementation and further study is required.

  7. Research on Automatic Positioning System of Ultrasonic Testing of Wind Turbine Blade Flaws

    NASA Astrophysics Data System (ADS)

    Liu, Q. X.; Wang, Z. H.; Long, S. G.; Cai, M.; Cai, M.; Wang, X.; Chen, X. Y.; Bu, J. L.

    2017-11-01

    Ultrasonic testing technology has been used essentially in non-destructive testing of wind turbine blades. However, it is fact that the ultrasonic flaw detection method has inefficiently employed in recent years. This is because the testing result will illustrate a small deviation due to the artificial, environmental and technical factors. Therefore, it is an urgent technical demand for engineers to test the various flaws efficiently and quickly. An automatic positioning system has been designed in this paper to record the moving coordinates and the target distance in real time. Simultaneously, it could launch and acquire the sonic wave automatically. The ADNS-3080 optoelectronic chip is manufactured by Agilent Technologies Inc, which is also utilized in the system. With the combination of the chip, the power conversion module and the USB transmission module, the collected data can be transmitted from the upper monitor to the hardware that could process and control the data through software programming. An experiment has been designed to prove the reliability of automotive positioning system. The result has been validated by comparing the result collected form LABVIEW and actual plots on Perspex plane, it concludes that the system possesses high accuracy and magnificent meanings in practical engineering.

  8. Field precision machining technology of target chamber in ICF lasers

    NASA Astrophysics Data System (ADS)

    Xu, Yuanli; Wu, Wenkai; Shi, Sucun; Duan, Lin; Chen, Gang; Wang, Baoxu; Song, Yugang; Liu, Huilin; Zhu, Mingzhi

    2016-10-01

    In ICF lasers, many independent laser beams are required to be positioned on target with a very high degree of accuracy during a shot. The target chamber provides a precision platform and datum reference for final optics assembly and target collimation and location system. The target chamber consists of shell with welded flanges, reinforced concrete pedestal, and lateral support structure. The field precision machining technology of target chamber in ICF lasers have been developed based on ShenGuangIII (SGIII). The same center of the target chamber is adopted in the process of design, fabrication, and alignment. The technologies of beam collimation and datum reference transformation are developed for the fabrication, positioning and adjustment of target chamber. A supporting and rotating mechanism and a special drilling machine are developed to bore the holes of ports. An adjustment mechanism is designed to accurately position the target chamber. In order to ensure the collimation requirements of the beam leading and focusing and the target positioning, custom-machined spacers are used to accurately correct the alignment error of the ports. Finally, this paper describes the chamber center, orientation, and centering alignment error measurements of SGIII. The measurements show the field precision machining of SGIII target chamber meet its design requirement. These information can be used on similar systems.

  9. Digital repeat analysis; setup and operation.

    PubMed

    Nol, J; Isouard, G; Mirecki, J

    2006-06-01

    Since the emergence of digital imaging, there have been questions about the necessity of continuing reject analysis programs in imaging departments to evaluate performance and quality. As a marketing strategy, most suppliers of digital technology focus on the supremacy of the technology and its ability to reduce the number of repeats, resulting in less radiation doses given to patients and increased productivity in the department. On the other hand, quality assurance radiographers and radiologists believe that repeats are mainly related to positioning skills, and repeat analysis is the main tool to plan training needs to up-skill radiographers. A comparative study between conventional and digital imaging was undertaken to compare outcomes and evaluate the need for reject analysis. However, digital technology still being at its early development stages, setting a credible reject analysis program became the major task of the study. It took the department, with the help of the suppliers of the computed radiography reader and the picture archiving and communication system, over 2 years of software enhancement to build a reliable digital repeat analysis system. The results were supportive of both philosophies; the number of repeats as a result of exposure factors was reduced dramatically; however, the percentage of repeats as a result of positioning skills was slightly on the increase for the simple reason that some rejects in the conventional system qualifying for both exposure and positioning errors were classified as exposure error. The ability of digitally adjusting dark or light images reclassified some of those images as positioning errors.

  10. Parent Perception of Two Eye-Gaze Control Technology Systems in Young Children with Cerebral Palsy: Pilot Study.

    PubMed

    Karlsson, Petra; Wallen, Margaret

    2017-01-01

    Eye-gaze control technology enables people with significant physical disability to access computers for communication, play, learning and environmental control. This pilot study used a multiple case study design with repeated baseline assessment and parents' evaluations to compare two eye-gaze control technology systems to identify any differences in factors such as ease of use and impact of the systems for their young children. Five children, aged 3 to 5 years, with dyskinetic cerebral palsy, and their families participated. Overall, families were satisfied with both the Tobii PCEye Go and myGaze® eye tracker, found them easy to position and use, and children learned to operate them quickly. This technology provides young children with important opportunities for learning, play, leisure, and developing communication.

  11. Users' acceptance and attitude in regarding electronic medical record at central polyclinic of oil industry in Isfahan, Iran.

    PubMed

    Tavakoli, Nahid; Shahin, Arash; Jahanbakhsh, Maryam; Mokhtari, Habibollah; Rafiei, Maryam

    2013-01-01

    Simultaneous with the rapid changes in the technology and information systems, hospitals interest in using them. One of the most common systems in hospitals is electronic medical record (EMR) whose one of uses is providing better health care quality via health information technology. Prior to its use, attempts should be put to identifying factors affecting the acceptance, attitude and utilizing of this technology. The current article aimed to study the effective factors of EMR acceptance by technology acceptance model (TAM) at central polyclinic of Oil Industry in Isfahan. This was a practical, descriptive and regression study. The population research were all EMR users at polyclinic of Oil Industry in 2012 and its sampling was simple random with 62 users. The tool of data collection was a research-made questionnaire based on TAM. The validity of questionnaire has been assigned through the strategy of content validity and health information technology experts' views and its reliability by test-retest. The system users have positive attitude toward using EMR (56.6%). Also, users are not very satisfied with effective external (38.14%) and behavioral factors (47.8%) upon using the system. Perceived ease-of-use (PEU) and perceived usefulness (PU) were at a good level. Lack of relative satisfaction with using of EMR derives from factors such as appearance, screen, data and information quality and terminology. In this study, it is suggested to improve the system and the efficiency of the users through software' external factors development. So that PEU and users' attitude to be changed and moved in positive manner.

  12. Localization Based on Magnetic Markers for an All-Wheel Steering Vehicle

    PubMed Central

    Byun, Yeun Sub; Kim, Young Chol

    2016-01-01

    Real-time continuous localization is a key technology in the development of intelligent transportation systems. In these systems, it is very important to have accurate information about the position and heading angle of the vehicle at all times. The most widely implemented methods for positioning are the global positioning system (GPS), vision-based system, and magnetic marker system. Among these methods, the magnetic marker system is less vulnerable to indoor and outdoor environment conditions; moreover, it requires minimal maintenance expenses. In this paper, we present a position estimation scheme based on magnetic markers and odometry sensors for an all-wheel-steering vehicle. The heading angle of the vehicle is determined by using the position coordinates of the last two detected magnetic markers and odometer data. The instant position and heading angle of the vehicle are integrated with an extended Kalman filter to estimate the continuous position. GPS data with the real-time kinematics mode was obtained to evaluate the performance of the proposed position estimation system. The test results show that the performance of the proposed localization algorithm is accurate (mean error: 3 cm; max error: 9 cm) and reliable under unexpected missing markers or incorrect markers. PMID:27916827

  13. 77 FR 48128 - Alternative Personnel Management System (APMS) at the National Institute of Standards and Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... positions in NIST's Scientific and Engineering Technician (ZT) career path at the Pay Band III and above, and for all positions in NIST's Scientific and Engineering (ZP) career path at the Pay Band III and... Engineering (ZP) career path at the Pay Band III and above, for Nuclear Reactor Operator positions in the...

  14. [Development of a Surgical Navigation System with Beam Split and Fusion of the Visible and Near-Infrared Fluorescence].

    PubMed

    Yang, Xiaofeng; Wu, Wei; Wang, Guoan

    2015-04-01

    This paper presents a surgical optical navigation system with non-invasive, real-time, and positioning characteristics for open surgical procedure. The design was based on the principle of near-infrared fluorescence molecular imaging. The in vivo fluorescence excitation technology, multi-channel spectral camera technology and image fusion software technology were used. Visible and near-infrared light ring LED excitation source, multi-channel band pass filters, spectral camera 2 CCD optical sensor technology and computer systems were integrated, and, as a result, a new surgical optical navigation system was successfully developed. When the near-infrared fluorescence was injected, the system could display anatomical images of the tissue surface and near-infrared fluorescent functional images of surgical field simultaneously. The system can identify the lymphatic vessels, lymph node, tumor edge which doctor cannot find out with naked eye intra-operatively. Our research will guide effectively the surgeon to remove the tumor tissue to improve significantly the success rate of surgery. The technologies have obtained a national patent, with patent No. ZI. 2011 1 0292374. 1.

  15. An Indoor Positioning System Based on Wearables for Ambient-Assisted Living.

    PubMed

    Belmonte-Fernández, Óscar; Puertas-Cabedo, Adrian; Torres-Sospedra, Joaquín; Montoliu-Colás, Raúl; Trilles-Oliver, Sergi

    2016-12-25

    The urban population is growing at such a rate that by 2050 it is estimated that 84% of the world's population will live in cities, with flats being the most common living place. Moreover, WiFi technology is present in most developed country urban areas, with a quick growth in developing countries. New Ambient-Assisted Living applications will be developed in the near future having user positioning as ground technology: elderly tele-care, energy consumption, security and the like are strongly based on indoor positioning information. We present an Indoor Positioning System for wearable devices based on WiFi fingerprinting. Smart-watch wearable devices are used to acquire the WiFi strength signals of the surrounding Wireless Access Points used to build an ensemble of Machine Learning classification algorithms. Once built, the ensemble algorithm is used to locate a user based on the WiFi strength signals provided by the wearable device. Experimental results for five different urban flats are reported, showing that the system is robust and reliable enough for locating a user at room level into his/her home. Another interesting characteristic of the presented system is that it does not require deployment of any infrastructure, and it is unobtrusive, the only device required for it to work is a smart-watch.

  16. An Indoor Positioning System Based on Wearables for Ambient-Assisted Living

    PubMed Central

    Belmonte-Fernández, Óscar; Puertas-Cabedo, Adrian; Torres-Sospedra, Joaquín; Montoliu-Colás, Raúl; Trilles-Oliver, Sergi

    2016-01-01

    The urban population is growing at such a rate that by 2050 it is estimated that 84% of the world’s population will live in cities, with flats being the most common living place. Moreover, WiFi technology is present in most developed country urban areas, with a quick growth in developing countries. New Ambient-Assisted Living applications will be developed in the near future having user positioning as ground technology: elderly tele-care, energy consumption, security and the like are strongly based on indoor positioning information. We present an indoor positioning system for wearable devices based on WiFi fingerprinting. Smart-watch wearable devices are used to acquire the WiFi strength signals of the surrounding Wireless Access Points used to build an ensemble of Machine Learning classification algorithms. Once built, the ensemble algorithm is used to locate a user based on the WiFi strength signals provided by the wearable device. Experimental results for five different urban flats are reported, showing that the system is robust and reliable enough for locating a user at room level into his/her home. Another interesting characteristic of the presented system is that it does not require deployment of any infrastructure, and it is unobtrusive, the only device required for it to work is a smart-watch. PMID:28029142

  17. Develop Direct Geo-referencing System Based on Open Source Software and Hardware Platform

    NASA Astrophysics Data System (ADS)

    Liu, H. S.; Liao, H. M.

    2015-08-01

    Direct geo-referencing system uses the technology of remote sensing to quickly grasp images, GPS tracks, and camera position. These data allows the construction of large volumes of images with geographic coordinates. So that users can be measured directly on the images. In order to properly calculate positioning, all the sensor signals must be synchronized. Traditional aerial photography use Position and Orientation System (POS) to integrate image, coordinates and camera position. However, it is very expensive. And users could not use the result immediately because the position information does not embed into image. To considerations of economy and efficiency, this study aims to develop a direct geo-referencing system based on open source software and hardware platform. After using Arduino microcontroller board to integrate the signals, we then can calculate positioning with open source software OpenCV. In the end, we use open source panorama browser, panini, and integrate all these to open source GIS software, Quantum GIS. A wholesome collection of data - a data processing system could be constructed.

  18. High-accuracy direct aerial platform orientation with tightly coupled GPS/INS system.

    DOT National Transportation Integrated Search

    2004-09-01

    Obtaining sensor orientation by direct measurements is a rapidly emerging mapping technology. Modern GPS and INS systems allow for the direct determination of platform position and orientation at an unprecedented accuracy. In airborne surveying, airc...

  19. Understanding ITS/CVO Technology Applications, Student Manual, Course 3

    DOT National Transportation Integrated Search

    1999-01-01

    WEIGHT-IN-MOTION OR WIM, COMMERCIAL VEHICLE INFORMATION SYSTEMS AND NETWORK OR CVISN, AUTOMATIC VEHICLE IDENTIFICATION OR AVI, AUTOMATIC LOCATION OR AVL, ELECTRONIC DATA INTERCHANGE OR EDI, GLOBAL POSITIONING SYSTEM OR GPS, INTERNET OR WORLD WIDE WEB...

  20. An Integrated Library System: Preliminary Considerations.

    ERIC Educational Resources Information Center

    Neroda, Edward

    Noting difficulties experienced by small to medium sized colleges in acquiring integrated library computer systems, this position paper outlines issues related to the subject with the intention of increasing familiarity and interest in integrated library systems. The report includes: a brief review of technological advances as they relate to…

  1. 49 CFR 236.1011 - PTC Implementation Plan content requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... technology embedded in PTC systems that does not employ all of the functionalities required by this subpart... INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Positive Train Control Systems § 236.1011 PTC Implementation Plan content requirements. (a) Contents. A...

  2. 49 CFR 236.1011 - PTC Implementation Plan content requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... technology embedded in PTC systems that does not employ all of the functionalities required by this subpart... INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Positive Train Control Systems § 236.1011 PTC Implementation Plan content requirements. (a) Contents. A...

  3. 49 CFR 236.1011 - PTC Implementation Plan content requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... technology embedded in PTC systems that does not employ all of the functionalities required by this subpart... INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Positive Train Control Systems § 236.1011 PTC Implementation Plan content requirements. (a) Contents. A...

  4. Robotic Surgery

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Automated Endoscopic System for Optimal Positioning, or AESOP, was developed by Computer Motion, Inc. under a SBIR contract from the Jet Propulsion Lab. AESOP is a robotic endoscopic positioning system used to control the motion of a camera during endoscopic surgery. The camera, which is mounted at the end of a robotic arm, previously had to be held in place by the surgical staff. With AESOP the robotic arm can make more precise and consistent movements. AESOP is also voice controlled by the surgeon. It is hoped that this technology can be used in space repair missions which require precision beyond human dexterity. A new generation of the same technology entitled the ZEUS Robotic Surgical System can make endoscopic procedures even more successful. ZEUS allows the surgeon control various instruments in its robotic arms, allowing for the precision the procedure requires.

  5. Extracting 3d Semantic Information from Video Surveillance System Using Deep Learning

    NASA Astrophysics Data System (ADS)

    Zhang, J. S.; Cao, J.; Mao, B.; Shen, D. Q.

    2018-04-01

    At present, intelligent video analysis technology has been widely used in various fields. Object tracking is one of the important part of intelligent video surveillance, but the traditional target tracking technology based on the pixel coordinate system in images still exists some unavoidable problems. Target tracking based on pixel can't reflect the real position information of targets, and it is difficult to track objects across scenes. Based on the analysis of Zhengyou Zhang's camera calibration method, this paper presents a method of target tracking based on the target's space coordinate system after converting the 2-D coordinate of the target into 3-D coordinate. It can be seen from the experimental results: Our method can restore the real position change information of targets well, and can also accurately get the trajectory of the target in space.

  6. Information integration in health care organizations: The case of a European health system.

    PubMed

    Calciolari, Stefano; Buccoliero, Luca

    2010-01-01

    Information system integration is an important dimension of a company's information system maturity and plays a relevant role in meeting information needs and accountability targets. However, no generalizable evidence exists about whether and how the main integrating technologies influence information system integration in health care organizations. This study examined how integrating technologies are adopted in public health care organizations and chief information officers' (CIOs) perceptions about their influence on information system integration. We used primary data on integrating technologies' adoption and CIOs' perception regarding information system integration in public health care organizations. Analysis of variance (ANOVA) and multinomial logistic regression were used to examine the relationship between CIOs' perception about information system integration and the adopted technologies. Data from 90 health care organizations were available for analyses. Integrating technologies are relatively diffused in public health care organizations, and CIOs seem to shape information system toward integrated architectures. There is a significant positive (although modest, .3) correlation between the number of integrating technologies adopted and the CIO's satisfaction with them. However, regression analysis suggests that organizations covering a broader spectrum of these technologies are less likely to have their CIO reporting main problems concerning integration in the administrative area of the information system compared with the clinical area and where the two areas overlap. Integrating technologies are associated with less perceived problems in the information system administrative area rather than in other areas. Because CIOs play the role of information resource allocators, by influencing information system toward integrated architecture, health care organization leaders should foster cooperation between CIOs and medical staff to enhance information system integration.

  7. The Effect of Clickers in University Science Courses

    NASA Astrophysics Data System (ADS)

    Sutherlin, Autumn L.; Sutherlin, Gordon R.; Akpanudo, Usenime M.

    2013-10-01

    In four studies on the use of student response systems, clickers, we sought to understand whether the use of clickers would impact students' attitudes toward the use of technology for instruction and achievement on examinations. While the results varied some by study, overall, the results revealed no significant changes in the already positive student attitude toward the use of instructional technology. In all four studies, the majority of the students reported that they learned more when clickers were used in class. The use of clickers did not serve as useful predictor of student achievement in science classes. The findings of this study are similar to others which suggest that some classroom technologies (like clickers) may not necessarily have a direct connection with student achievement, despite positive student feedback regarding their experience using these technologies. Further studies are needed to better understand the true nature of the relationship between these technologies and classroom outcomes.

  8. A wire scanner system for characterizing the BNL energy recovery LINAC beam position monitor system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michnoff R.; Biscardi, C.; Cerniglia, P.

    2012-04-15

    A stepper motor controlled wire scanner system has recently been modified to support testing of the Brookhaven National Laboratory (BNL) Collider-Accelerator department's Energy Recovery Linac (ERL) beam position monitor (BPM) system. The ERL BPM consists of four 9.33 mm diameter buttons mounted at 90 degree spacing in a cube with 1.875 inch inside diameter. The buttons were designed by BNL and fabricated by Times Microwave Systems. Libera brilliance single pass BPM electronic modules with 700 MHz bandpass filter, manufactured by Instrumentation Technologies, will be used to measure the transverse beam positions at 14 locations around the ERL. The wire scannermore » assembly provides the ability to measure the BPM button response to a pulsed wire, and evaluate and calibrate the Libera position measurement electronics. A description of the wire scanner system and test result data will be presented.« less

  9. Two Dimensional Positioning and Heading Solution for Flying Vehicles using a Line-Scanning Laser Radar (LADAR)

    DTIC Science & Technology

    2011-03-24

    6 2.4.1 Reference Frames . . . . . . . . . . . . . . . . . 6 2.4.2 Line and Feature Extraction . . . . . . . . . . . 7 2.4.3 SLAM ...Positioning System . . . . . . . . . . . . . . . . . . 1 LADAR Laser Radar . . . . . . . . . . . . . . . . . . . . . . . . . . 1 LiDAR Light Detection and...Ranging . . . . . . . . . . . . . . . . 2 SLAM Simultaneous Localization and Mapping . . . . . . . . . . 2 ANT Advanced Navigation Technology

  10. Evaluation of PMS-PCR technology for detection of Mycobacterium avium subsp. paratuberculosis directly from bovine fecal specimens.

    PubMed

    Salgado, M; Steuer, P; Troncoso, E; Collins, M T

    2013-12-27

    Mycobacterium avium subsp. paratuberculosis (MAP) causes paratuberculosis, or Johne's disease, in animals. Diagnosis of MAP infection is challenging because of the pathogen's fastidious in vitro growth requirements and low-level intermittent shedding in feces during the preclinical phase of the infection. Detection of these "low-shedders" is important for effective control of paratuberculosis as these animals serve as sources of infection for susceptible calves. Magnetic separation technology, used in combination with culture or molecular methods for the isolation and detection of pathogenic bacteria, enhances the analytical sensitivity and specificity of detection methods. The aim of the present study was to evaluate peptide-mediated magnetic separation (PMS) capture technology coupled with IS900 PCR using the Roche real-time PCR system (PMS-PCR), in comparison with fecal culture using BACTEC-MGIT 960 system, for detection of MAP in bovine fecal samples. Among the 351 fecal samples 74.9% (263/351) were PMS-PCR positive while only 12.3% (43/351) were MGIT culture-positive (p=0.0001). All 43 MGIT culture-positive samples were also positive by PMS-PCR. Mean PMS-PCR crossing-point (Cp) values for the 13 fecal samples with the highest number of MAP, based on time to detection, (26.3) were significantly lower than for the 17 fecal samples with <100 MAP per 2g feces (30.06) (p<0.05). PMS-PCR technology provided results in a shorter time and yielded a higher number of positive results than MGIT culture. Earlier and faster detection of animals shedding MAP by PMS-PCR should significantly strengthen control efforts for MAP-infected cattle herds by helping to limit infection transmission at earlier stages of the infection. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Use of Terrestrial Laser Scanning Technology for Long Term High Precision Deformation Monitoring

    PubMed Central

    Vezočnik, Rok; Ambrožič, Tomaž; Sterle, Oskar; Bilban, Gregor; Pfeifer, Norbert; Stopar, Bojan

    2009-01-01

    The paper presents a new methodology for high precision monitoring of deformations with a long term perspective using terrestrial laser scanning technology. In order to solve the problem of a stable reference system and to assure the high quality of possible position changes of point clouds, scanning is integrated with two complementary surveying techniques, i.e., high quality static GNSS positioning and precise tacheometry. The case study object where the proposed methodology was tested is a high pressure underground pipeline situated in an area which is geologically unstable. PMID:22303152

  12. Projection Exposure with Variable Axis Immersion Lenses: A High-Throughput Electron Beam Approach to “Suboptical” Lithography

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Hans

    1995-12-01

    IBM's high-throughput e-beam stepper approach PRojection Exposure with Variable Axis Immersion Lenses (PREVAIL) is reviewed. The PREVAIL concept combines technology building blocks of our probe-forming EL-3 and EL-4 systems with the exposure efficiency of pattern projection. The technology represents an extension of the shaped-beam approach toward massively parallel pixel projection. As demonstrated, the use of variable-axis lenses can provide large field coverage through reduction of off-axis aberrations which limit the performance of conventional projection systems. Subfield pattern sections containing 107 or more pixels can be electronically selected (mask plane), projected and positioned (wafer plane) at high speed. To generate the entire chip pattern subfields must be stitched together sequentially in a combination of electronic and mechanical positioning of mask and wafer. The PREVAIL technology promises throughput levels competitive with those of optical steppers at superior resolution. The PREVAIL project is being pursued to demonstrate the viability of the technology and to develop an e-beam alternative to “suboptical” lithography.

  13. Analysis of key technologies in geomagnetic navigation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoming; Zhao, Yan

    2008-10-01

    Because of the costly price and the error accumulation of high precise Inertial Navigation Systems (INS) and the vulnerability of Global Navigation Satellite Systems (GNSS), the geomagnetic navigation technology, a passive autonomous navigation method, is paid attention again. Geomagnetic field is a natural spatial physical field, and is a function of position and time in near earth space. The navigation technology based on geomagnetic field is researched in a wide range of commercial and military applications. This paper presents the main features and the state-of-the-art of Geomagnetic Navigation System (GMNS). Geomagnetic field models and reference maps are described. Obtaining, modeling and updating accurate Anomaly Magnetic Field information is an important step for high precision geomagnetic navigation. In addition, the errors of geomagnetic measurement using strapdown magnetometers are analyzed. The precise geomagnetic data is obtained by means of magnetometer calibration and vehicle magnetic field compensation. According to the measurement data and reference map or model of geomagnetic field, the vehicle's position and attitude can be obtained using matching algorithm or state-estimating method. The tendency of geomagnetic navigation in near future is introduced at the end of this paper.

  14. Research & Technology Report Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald A. (Editor); Truszkowski, Walter (Editor); Ottenstein, Howard (Editor); Frost, Kenneth (Editor); Maran, Stephen (Editor); Walter, Lou (Editor); Brown, Mitch (Editor)

    1995-01-01

    The main theme of this edition of the annual Research and Technology Report is Mission Operations and Data Systems. Shifting from centralized to distributed mission operations, and from human interactive operations to highly automated operations is reported. The following aspects are addressed: Mission planning and operations; TDRSS, Positioning Systems, and orbit determination; hardware and software associated with Ground System and Networks; data processing and analysis; and World Wide Web. Flight projects are described along with the achievements in space sciences and earth sciences. Spacecraft subsystems, cryogenic developments, and new tools and capabilities are also discussed.

  15. A Bluetooth Low Energy Indoor Positioning System with Channel Diversity, Weighted Trilateration and Kalman Filtering

    PubMed Central

    Cantón Paterna, Vicente; Paradells Aspas, Josep; Pérez Bullones, María Alejandra

    2017-01-01

    Indoor Positioning Systems (IPS) using Bluetooth Low Energy (BLE) technology are currently becoming real and available, which has made them grow in popularity and use. However, there are still plenty of challenges related to this technology, especially in terms of Received Signal Strength Indicator (RSSI) fluctuations due to the behaviour of the channels and the multipath effect, that lead to poor precision. In order to mitigate these effects, in this paper we propose and implement a real Indoor Positioning System based on Bluetooth Low Energy, that improves accuracy while reducing power consumption and costs. The three main proposals are: frequency diversity, Kalman filtering and a trilateration method what we have denominated “weighted trilateration”. The analysis of the results proves that all the proposals improve the precision of the system, which goes up to 1.82 m 90% of the time for a device moving in a middle-size room and 0.7 m for static devices. Furthermore, we have proved that the system is scalable and efficient in terms of cost and power consumption. The implemented approach allows using a very simple device (like a SensorTag) on the items to locate. The system enables a very low density of anchor points or references and with a precision better than existing solutions. PMID:29258195

  16. A Bluetooth Low Energy Indoor Positioning System with Channel Diversity, Weighted Trilateration and Kalman Filtering.

    PubMed

    Cantón Paterna, Vicente; Calveras Augé, Anna; Paradells Aspas, Josep; Pérez Bullones, María Alejandra

    2017-12-16

    Indoor Positioning Systems (IPS) using Bluetooth Low Energy (BLE) technology are currently becoming real and available, which has made them grow in popularity and use. However, there are still plenty of challenges related to this technology, especially in terms of Received Signal Strength Indicator (RSSI) fluctuations due to the behaviour of the channels and the multipath effect, that lead to poor precision. In order to mitigate these effects, in this paper we propose and implement a real Indoor Positioning System based on Bluetooth Low Energy, that improves accuracy while reducing power consumption and costs. The three main proposals are: frequency diversity, Kalman filtering and a trilateration method what we have denominated "weighted trilateration". The analysis of the results proves that all the proposals improve the precision of the system, which goes up to 1.82 m 90% of the time for a device moving in a middle-size room and 0.7 m for static devices. Furthermore, we have proved that the system is scalable and efficient in terms of cost and power consumption. The implemented approach allows using a very simple device (like a SensorTag) on the items to locate. The system enables a very low density of anchor points or references and with a precision better than existing solutions.

  17. High-accuracy direct aerial platform orientation with tightly coupled GPS/INS system : executive summary.

    DOT National Transportation Integrated Search

    2004-09-01

    Obtaining sensor orientation by direct measurements is : a rapidly emerging mapping technology. Modern GPS : and INS systems allow for the direct determination of : platform position and orientation at an unprecedented : accuracy. In airborne surveyi...

  18. Mapping Indigenous Depth of Place

    ERIC Educational Resources Information Center

    Pearce, Margaret Wickens; Louis, Renee Pualani

    2008-01-01

    Indigenous communities have successfully used Western geospatial technologies (GT) (for example, digital maps, satellite images, geographic information systems (GIS), and global positioning systems (GPS)) since the 1970s to protect tribal resources, document territorial sovereignty, create tribal utility databases, and manage watersheds. The use…

  19. Using cognitive task analysis to inform issues in human systems integration in railroad operations

    DOT National Transportation Integrated Search

    2013-05-23

    U.S. Railroad operations are undergoing rapid changes involving the introduction of new technologies such as positive train control (PTC), energy management systems (EMS), and electronically controlled pneumatic (ECP) brakes in the locomotive cab. To...

  20. Cedar Avenue driver assist system evaluation report.

    DOT National Transportation Integrated Search

    2011-12-01

    This paper summarizes an evaluation of the Driver Assist System (DAS) used by the Minnesota Valley Transit Authority (MTVA) for bus shoulder operations. The DAS is a GPS-based technology suite that provides lane-position feedback to the driver via a ...

  1. Lunar Relay Satellite Network for Space Exploration: Architecture, Technologies and Challenges

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Hackenberg, Anthony W.; Slywczak, Richard A.; Bose, Prasanta; Bergamo, Marcos; Hayden, Jeffrey L.

    2006-01-01

    NASA is planning a series of short and long duration human and robotic missions to explore the Moon and then Mars. A key objective of these missions is to grow, through a series of launches, a system of systems infrastructure with the capability for safe and sustainable autonomous operations at minimum cost while maximizing the exploration capabilities and science return. An incremental implementation process will enable a buildup of the communication, navigation, networking, computing, and informatics architectures to support human exploration missions in the vicinities and on the surfaces of the Moon and Mars. These architectures will support all space and surface nodes, including other orbiters, lander vehicles, humans in spacesuits, robots, rovers, human habitats, and pressurized vehicles. This paper describes the integration of an innovative MAC and networking technology with an equally innovative position-dependent, data routing, network technology. The MAC technology provides the relay spacecraft with the capability to autonomously discover neighbor spacecraft and surface nodes, establish variable-rate links and communicate simultaneously with multiple in-space and surface clients at varying and rapidly changing distances while making optimum use of the available power. The networking technology uses attitude sensors, a time synchronization protocol and occasional orbit-corrections to maintain awareness of its instantaneous position and attitude in space as well as the orbital or surface location of its communication clients. A position-dependent data routing capability is used in the communication relay satellites to handle the movement of data among any of multiple clients (including Earth) that may be simultaneously in view; and if not in view, the relay will temporarily store the data from a client source and download it when the destination client comes into view. The integration of the MAC and data routing networking technologies would enable a relay satellite system to provide end-to-end communication services for robotic and human missions in the vicinity, or on the surface of the Moon with a minimum of Earth-based operational support.

  2. EmerLoc: location-based services for emergency medical incidents.

    PubMed

    Maglogiannis, I; Hadjiefthymiades, S

    2007-10-01

    Recent developments in positioning systems and telecommunications have provided the technology needed for the development of location aware medical applications. We developed a system, named EmerLoc, which is based upon this technology and uses a set of sensors that are attached to the patient's body, a micro-computing unit which is responsible for processing the sensor readings and a central monitoring unit, which coordinates the data flow. To demonstrate that the proposed system is technically feasible and acceptable for the potential users. Transmission speed is assessed mostly by means of transmission of DICOM compliant images in various operational scenarios. The positioning functionality was established both outdoor using GPS and indoor using the UCLA Nibble system. User acceptability was assessed in a hospital setting by 15 physicians who filled in a questionnaire after having used the system in an experimental setting. Transmission speeds ranged from 88kB/s for a IEEE 802.11 infrastructure to 2.5kB/s for a GSM/GPRS scenario. Positioning accuracy based on GPS was 5-10m. The physicians rated the technical aspects on average above 3 on a 5-point scale. Only the data presentation was assessed to be not satisfactory (2.81 on a 5-point scale). The reported results prove the feasibility of the proposed architecture and its alignment with widely established practices and standards, while the reaction of potential users who evaluated the system is quite positive.

  3. Anti-Jam GPS Antennas for Wearable Dismounted Soldier Navigation Systems

    DTIC Science & Technology

    2016-06-01

    in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. Citation...Approaches for the design and fabrication of a wearable anti-jam global positioning system (GPS) antenna are explored to support accurate and uninterrupted...including GPS antenna element and array designs , and algorithms for jammer mitigation, and the candidate technologies best fit for wearable anti-jam GPS

  4. A Business Case Analysis of Pre-Positioned Expeditionary Assistance Kit Joint Capability Technology Demonstration

    DTIC Science & Technology

    2013-12-01

    of power from sunlight or a wind turbine (same solar panel tarps used in NEST Raptor Solar Light Trailer) • Global Positioning System (GPS) devices...satellite-enabled rapid wireless communications to the most critical areas and functions, working with Joint Task Forces. The first priority after the...a rapid response wireless communications system from military, civilian government, and non-government organizations. The tasks performed by HFN

  5. Beam Position Monitoring in the CSU Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Einstein, Joshua; Vankeuren, Max; Watras, Stephen

    2014-03-01

    A Beam Position Monitoring (BPM) system is an integral part of an accelerator beamline, and modern accelerators can take advantage of newer technologies and designs when creating a BPM system. The Colorado State University (CSU) Accelerator Facility will include four stripline detectors mounted around the beamline, a low-noise analog front-end, and digitization and interface circuitry. The design will support a sampling rate greater than 10 Hz and sub-100 μm accuracy.

  6. Applications of Space-Age Technology in Anthropology

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The papers in this volume were presented at a conference entitled, 'Applications of Space-Age Technology in Anthropology,' held November 28, 1990, at NASA's Science and Technology Laboratory. One reason for this conference was to facilitate information exchange among a diverse group of anthropologists. Much of the research in anthropology that has made use of satellite image processing, geographical information systems, and global positioning systems has been known to only a small group of practitioners. A second reason for this conference was to promote scientific dialogue between anthropologists and professionals outside of anthropology. It is certain that both the development and proper application of new technologies will only result from greater cooperation between technicians and 'end-users.' Anthropologists can provide many useful applications to justify the costs of new technological development.

  7. Integrated technologies for solid waste bin monitoring system.

    PubMed

    Arebey, Maher; Hannan, M A; Basri, Hassan; Begum, R A; Abdullah, Huda

    2011-06-01

    The integration of communication technologies such as radio frequency identification (RFID), global positioning system (GPS), general packet radio system (GPRS), and geographic information system (GIS) with a camera are constructed for solid waste monitoring system. The aim is to improve the way of responding to customer's inquiry and emergency cases and estimate the solid waste amount without any involvement of the truck driver. The proposed system consists of RFID tag mounted on the bin, RFID reader as in truck, GPRS/GSM as web server, and GIS as map server, database server, and control server. The tracking devices mounted in the trucks collect location information in real time via the GPS. This information is transferred continuously through GPRS to a central database. The users are able to view the current location of each truck in the collection stage via a web-based application and thereby manage the fleet. The trucks positions and trash bin information are displayed on a digital map, which is made available by a map server. Thus, the solid waste of the bin and the truck are being monitored using the developed system.

  8. An in-Depth Survey of Visible Light Communication Based Positioning Systems

    PubMed Central

    Do, Trong-Hop; Yoo, Myungsik

    2016-01-01

    While visible light communication (VLC) has become the candidate for the wireless technology of the 21st century due to its inherent advantages, VLC based positioning also has a great chance of becoming the standard approach to positioning. Within the last few years, many studies on VLC based positioning have been published, but there are not many survey works in this field. In this paper, an in-depth survey of VLC based positioning systems is provided. More than 100 papers ranging from pioneering papers to the state-of-the-art in the field were collected and classified based on the positioning algorithms, the types of receivers, and the multiplexing techniques. In addition, current issues and research trends in VLC based positioning are discussed. PMID:27187395

  9. Bringing Superconductor Digital Technology to the Market Place

    NASA Astrophysics Data System (ADS)

    Nisenoff, Martin

    The unique properties of superconductivity can be exploited to provide the ultimate in electronic technology for systems such as ultra-precise analogue-to-digital and digital-to-analogue converters, precise DC and AC voltage standards, ultra high speed logic circuits and systems (both digital and hybrid analogue-digital systems), and very high throughput network routers and supercomputers which would have superior electrical performance at lower overall electrical power consumption compared to systems with comparable performance which are fabricated using conventional room temperature technologies. This potential for high performance electronics with reduced power consumption would have a positive impact on slowing the increase in the demand for electrical utility power by the information technology community on the overall electrical power grid. However, before this technology can be successfully brought to the commercial market place, there must be an aggressive investment of resources and funding to develop the required infrastructure needed to yield these high performance superconductor systems, which will be reliable and available at low cost. The author proposes that it will require a concerted effort by the superconductor and cryogenic communities to bring this technology to the commercial market place or make it available for widespread use in scientific instrumentation.

  10. The Performance Analysis of AN Indoor Mobile Mapping System with Rgb-D Sensor

    NASA Astrophysics Data System (ADS)

    Tsai, G. J.; Chiang, K. W.; Chu, C. H.; Chen, Y. L.; El-Sheimy, N.; Habib, A.

    2015-08-01

    Over the years, Mobile Mapping Systems (MMSs) have been widely applied to urban mapping, path management and monitoring and cyber city, etc. The key concept of mobile mapping is based on positioning technology and photogrammetry. In order to achieve the integration, multi-sensor integrated mapping technology has clearly established. In recent years, the robotic technology has been rapidly developed. The other mapping technology that is on the basis of low-cost sensor has generally used in robotic system, it is known as the Simultaneous Localization and Mapping (SLAM). The objective of this study is developed a prototype of indoor MMS for mobile mapping applications, especially to reduce the costs and enhance the efficiency of data collection and validation of direct georeferenced (DG) performance. The proposed indoor MMS is composed of a tactical grade Inertial Measurement Unit (IMU), the Kinect RGB-D sensor and light detection, ranging (LIDAR) and robot. In summary, this paper designs the payload for indoor MMS to generate the floor plan. In first session, it concentrates on comparing the different positioning algorithms in the indoor environment. Next, the indoor plans are generated by two sensors, Kinect RGB-D sensor LIDAR on robot. Moreover, the generated floor plan will compare with the known plan for both validation and verification.

  11. Shoe-Insole Technology for Injury Prevention in Walking

    PubMed Central

    Nagano, Hanatsu

    2018-01-01

    Impaired walking increases injury risk during locomotion, including falls-related acute injuries and overuse damage to lower limb joints. Gait impairments seriously restrict voluntary, habitual engagement in injury prevention activities, such as recreational walking and exercise. There is, therefore, an urgent need for technology-based interventions for gait disorders that are cost effective, willingly taken-up, and provide immediate positive effects on walking. Gait control using shoe-insoles has potential as an effective population-based intervention, and new sensor technologies will enhance the effectiveness of these devices. Shoe-insole modifications include: (i) ankle joint support for falls prevention; (ii) shock absorption by utilising lower-resilience materials at the heel; (iii) improving reaction speed by stimulating cutaneous receptors; and (iv) preserving dynamic balance via foot centre of pressure control. Using sensor technology, such as in-shoe pressure measurement and motion capture systems, gait can be precisely monitored, allowing us to visualise how shoe-insoles change walking patterns. In addition, in-shoe systems, such as pressure monitoring and inertial sensors, can be incorporated into the insole to monitor gait in real-time. Inertial sensors coupled with in-shoe foot pressure sensors and global positioning systems (GPS) could be used to monitor spatiotemporal parameters in real-time. Real-time, online data management will enable ‘big-data’ applications to everyday gait control characteristics. PMID:29738486

  12. Directions of improving information system of insurance company

    NASA Astrophysics Data System (ADS)

    Kaigorodova, G. N.; Mustafina, A. A.; Alyakina, D. P.

    2018-05-01

    The article presents a study of the information technologies impact on the insurance industry development. At present, any business, especially business in the field of financial intermediation, can count on maintaining its positions only as a technology company. For the insurance business it is now especially important. Other segments of the financial market - the stock and credit market - are actively developing and applying IT-technologies. The insurance business at present is getting opportunities for a technological breakthrough. There is a growing demand for traditional insurance products - property insurance, motor insurance, health insurance. There is a rapidly growing demand for life insurance and insurance against cyber risks. To implement insurance protection in new conditions, the insurance company should actively use information systems. The article presents a possible variant of systematization of the insurer's business processes within the information system of the insurance company.

  13. Acoustic intrusion detection and positioning system

    NASA Astrophysics Data System (ADS)

    Berman, Ohad; Zalevsky, Zeev

    2002-08-01

    Acoustic sensors are becoming more and more applicable as a military battlefield technology. Those sensors allow a detection and direciton estimation with low false alarm rate and high probability of detection. The recent technological progress related to these fields of reserach, together with an evolution of sophisticated algorithms, allow the successful integration of those sensoe in battlefield technologies. In this paper the performances of an acoustic sensor for a detection of avionic vessels is investigated and analyzed.

  14. Comparison of radar and infrared distance sensors for intelligent cruise control systems

    NASA Astrophysics Data System (ADS)

    Hoess, Alfred; Hosp, Werner; Rauner, Hans

    1995-09-01

    In this paper, infrared distance sensors are compared regarding technology, environmental, and practical aspects. Different methods for obtaining lateral resolution and covering the required detection range are presented for both sensor technologies. Possible positions for sensor installation at the test vehicle have been tested. Experimental results regarding cleaning devices and other environmental problems are presented. Finally, future aspects, e.g. speed over ground measurements or technological steps are discussed.

  15. Healthtrak(tm): Technology Enhanced Human Interface to the Computerized Patient Record

    DTIC Science & Technology

    2002-07-01

    and/or findings contained in this report are those of the author( s ) and should not be construed as an official Department of the Army position...34: Technology Enhanced Human Interface to the DAMDI17-02-C-0032 Computerized Patient Record 6. AUTHOR( S ) Azad M. Madni, Ph.D. Doctor Weiwen Lin Carla...C. Madni 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Intelligent Systems Technology, Incorporated

  16. A hybrid mobile-based patient location tracking system for personal healthcare applications.

    PubMed

    Chew, S H; Chong, P A; Gunawan, E; Goh, K W; Kim, Y; Soh, C B

    2006-01-01

    In the next generation of Infocommunications, mobile Internet-enabled devices and third generation mobile communication networks have become reality, location based services (LBS) are expected to be a major area of growth. Providing information, content and services through positioning technologies forms the platform for new services for users and developers, as well as creating new revenue channels for service providers. These crucial advances in location based services have opened up new opportunities in real time patient tracking for personal healthcare applications. In this paper, a hybrid mobile-based location technique using the global positioning system (GPS) and cellular mobile network infrastructure is employed to provide the location tracking capability. This function will be integrated into the patient location tracking system (PLTS) to assist caregivers or family members in locating patients such as elderly or dependents when required, especially in emergencies. The capability of this PLTS is demonstrated through a series of location detection tests conducted over different operating conditions. Although the model is at its initial stage of development, it has shown relatively good accuracy for position tracking and potential of using integrated wireless technology to enhance the existing personal healthcare communication system through location based services.

  17. NEMO-SMO acoustic array: A deep-sea test of a novel acoustic positioning system for a km3-scale underwater neutrino telescope

    NASA Astrophysics Data System (ADS)

    Viola, S.; Ardid, M.; Bertin, V.; Enzenhöfer, A.; Keller, P.; Lahmann, R.; Larosa, G.; Llorens, C. D.; NEMO Collaboration; SMO Collaboration

    2013-10-01

    Within the activities of the NEMO project, the installation of a 8-floors tower (NEMO-Phase II) at a depth of 3500 m is foreseen in 2012. The tower will be installed about 80 km off-shore Capo Passero, in Sicily. On board the NEMO tower, an array of 18 acoustic sensors will be installed, permitting acoustic detection of biological sources, studies for acoustic neutrino detection and primarily acoustic positioning of the underwater structures. For the latter purpose, the sensors register acoustic signals emitted by five acoustic beacons anchored on the sea-floor. The data acquisition system of the acoustic sensors is fully integrated with the detector data transport system and is based on an “all data to shore” philosophy. Signals coming from hydrophones are continuously sampled underwater at 192 kHz/24 bit and transmitted to shore through an electro-optical cable for real-time analysis. A novel technology for underwater GPS time-stamping of data has been implemented and tested. The operation of the acoustic array will permit long-term test of sensors and electronics technologies that are proposed for the acoustic positioning system of KM3NeT.

  18. The good, the bad and the early adopters: providers' attitudes about a common, commercial EHR.

    PubMed

    Makam, Anil N; Lanham, Holly J; Batchelor, Kim; Moran, Brett; Howell-Stampley, Temple; Kirk, Lynne; Cherukuri, Manjula; Samal, Lipika; Santini, Noel; Leykum, Luci K; Halm, Ethan A

    2014-02-01

    To describe primary care providers' (PCP) attitudes about the impact of a mature, commercial electronic health records (EHR) on clinical practice in settings with experience using the system and to evaluate whether a provider's propensity to adopt new technologies is associated with more favourable perceptions. We surveyed PCPs in 11 practices affiliated with three health systems in Texas. Most practices had greater than 5 years of experience with the Epic EHR. The effect of early adopter of technology status was evaluated using logistic regression. One hundred forty-six PCPs responded (70%). Most thought the EHR had a positive impact on routine tasks, such as prescription refills (94%), whereas fewer agreed for complex tasks, such as delivery of guideline-concordant care for chronic illnesses (51%). Two-thirds (62%) thought it interfered with eye contact with patients, and 40% reported that it interfered with in-visit communication. Early adopters of technology reported greater positive effects of the EHR, even after adjusting for age, ranging from 2% to 15% higher on satisfaction ratings. PCPs practicing in settings with considerable experience using a common commercial EHR identified many positive effects, as well as two key areas for improvement - patient centredness and intelligent decision support. Providers with a propensity to adopt new technologies have more favourable perceptions of the EHR. © 2013 John Wiley & Sons, Ltd.

  19. What is found positive in healthcare information and communication technology implementation?-the results of a nationwide survey in Finland.

    PubMed

    Winblad, Ilkka; Hämäläinen, Päivi; Reponen, Jarmo

    2011-03-01

    Considerable expectations have been placed on information and communication technology (ICT) in improving the processes and quality of healthcare. Our purpose was to find out which element is found positive in healthcare ICT implementation. An online questionnaire on e-Health implementation submitted to all Finnish public health service providers and a sample from the private sector included an open question about which the electronic working methods, systems, or applications have most positively influenced the fluency or quality of service processes. The electronic health record was mentioned as an item that has positive influence by 52% of the respondents from the hospital districts, 27% of those from the primary healthcare centers, and 38% of those from the private providers. Digital radiology systems (including teleradiology) were mentioned by 52% of the hospital districts and 27% of the primary healthcare centers. The figures for digital laboratory systems (including telelaboratory) were 5% and 11%, respectively. The figures for teleradiology itself were 5% for the hospital districts and 15% for the primary healthcare centers; the figures for telelaboratory systems were 5% and 9%, respectively. The specialized healthcare seem to experience intraorganizational electronic services integrated to the electronic health record, such as digital radiology and laboratory services as exerting a positive influence, whereas the primary healthcare find such influence from different functions such as interorganizational data exchange and telemedicine services. These might indicate where the efforts should be focused when implementing ICT in healthcare.

  20. An integrated system for land resources supervision based on the IoT and cloud computing

    NASA Astrophysics Data System (ADS)

    Fang, Shifeng; Zhu, Yunqiang; Xu, Lida; Zhang, Jinqu; Zhou, Peiji; Luo, Kan; Yang, Jie

    2017-01-01

    Integrated information systems are important safeguards for the utilisation and development of land resources. Information technologies, including the Internet of Things (IoT) and cloud computing, are inevitable requirements for the quality and efficiency of land resources supervision tasks. In this study, an economical and highly efficient supervision system for land resources has been established based on IoT and cloud computing technologies; a novel online and offline integrated system with synchronised internal and field data that includes the entire process of 'discovering breaches, analysing problems, verifying fieldwork and investigating cases' was constructed. The system integrates key technologies, such as the automatic extraction of high-precision information based on remote sensing, semantic ontology-based technology to excavate and discriminate public sentiment on the Internet that is related to illegal incidents, high-performance parallel computing based on MapReduce, uniform storing and compressing (bitwise) technology, global positioning system data communication and data synchronisation mode, intelligent recognition and four-level ('device, transfer, system and data') safety control technology. The integrated system based on a 'One Map' platform has been officially implemented by the Department of Land and Resources of Guizhou Province, China, and was found to significantly increase the efficiency and level of land resources supervision. The system promoted the overall development of informatisation in fields related to land resource management.

  1. Optimal Detection Range of RFID Tag for RFID-based Positioning System Using the k-NN Algorithm.

    PubMed

    Han, Soohee; Kim, Junghwan; Park, Choung-Hwan; Yoon, Hee-Cheon; Heo, Joon

    2009-01-01

    Positioning technology to track a moving object is an important and essential component of ubiquitous computing environments and applications. An RFID-based positioning system using the k-nearest neighbor (k-NN) algorithm can determine the position of a moving reader from observed reference data. In this study, the optimal detection range of an RFID-based positioning system was determined on the principle that tag spacing can be derived from the detection range. It was assumed that reference tags without signal strength information are regularly distributed in 1-, 2- and 3-dimensional spaces. The optimal detection range was determined, through analytical and numerical approaches, to be 125% of the tag-spacing distance in 1-dimensional space. Through numerical approaches, the range was 134% in 2-dimensional space, 143% in 3-dimensional space.

  2. Topologically Optimized Nano-Positioning Stage Integrating with a Capacitive Comb Sensor.

    PubMed

    Chen, Tao; Wang, Yaqiong; Liu, Huicong; Yang, Zhan; Wang, Pengbo; Sun, Lining

    2017-01-28

    Nano-positioning technology has been widely used in many fields, such as microelectronics, optical engineering, and micro manufacturing. This paper presents a one-dimensional (1D) nano-positioning system, adopting a piezoelectric ceramic (PZT) actuator and a multi-objective topological optimal structure. The combination of a nano-positioning stage and a feedback capacitive comb sensor has been achieved. In order to obtain better performance, a wedge-shaped structure is used to apply the precise pre-tension for the piezoelectric ceramics. Through finite element analysis and experimental verification, better static performance and smaller kinetic coupling are achieved. The output displacement of the system achieves a long-stroke of up to 14.7 μm and high-resolution of less than 3 nm. It provides a flexible and efficient way in the design and optimization of the nano-positioning system.

  3. Topologically Optimized Nano-Positioning Stage Integrating with a Capacitive Comb Sensor

    PubMed Central

    Chen, Tao; Wang, Yaqiong; Liu, Huicong; Yang, Zhan; Wang, Pengbo; Sun, Lining

    2017-01-01

    Nano-positioning technology has been widely used in many fields, such as microelectronics, optical engineering, and micro manufacturing. This paper presents a one-dimensional (1D) nano-positioning system, adopting a piezoelectric ceramic (PZT) actuator and a multi-objective topological optimal structure. The combination of a nano-positioning stage and a feedback capacitive comb sensor has been achieved. In order to obtain better performance, a wedge-shaped structure is used to apply the precise pre-tension for the piezoelectric ceramics. Through finite element analysis and experimental verification, better static performance and smaller kinetic coupling are achieved. The output displacement of the system achieves a long-stroke of up to 14.7 μm and high-resolution of less than 3 nm. It provides a flexible and efficient way in the design and optimization of the nano-positioning system. PMID:28134854

  4. Flight demonstration of integrated airport surface automation concepts

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Young, Steven D.

    1995-01-01

    A flight demonstration was conducted to address airport surface movement area capacity issues by providing pilots with enhanced situational awareness information. The demonstration showed an integration of several technologies to government and industry representatives. These technologies consisted of an electronic moving map display in the cockpit, a Differential Global Positioning System (DGPS) receiver, a high speed VHF data link, an ASDE-3 radar, and the Airport Movement Area Safety System (AMASS). Aircraft identification was presented to an air traffic controller on AMASS. The onboard electronic map included the display of taxi routes, hold instructions, and clearances, which were sent to the aircraft via data link by the controller. The map also displayed the positions of other traffic and warning information, which were sent to the aircraft automatically from the ASDE-3/AMASS system. This paper describes the flight demonstration in detail, along with preliminary results.

  5. A Camera-Based Target Detection and Positioning UAV System for Search and Rescue (SAR) Purposes

    PubMed Central

    Sun, Jingxuan; Li, Boyang; Jiang, Yifan; Wen, Chih-yung

    2016-01-01

    Wilderness search and rescue entails performing a wide-range of work in complex environments and large regions. Given the concerns inherent in large regions due to limited rescue distribution, unmanned aerial vehicle (UAV)-based frameworks are a promising platform for providing aerial imaging. In recent years, technological advances in areas such as micro-technology, sensors and navigation have influenced the various applications of UAVs. In this study, an all-in-one camera-based target detection and positioning system is developed and integrated into a fully autonomous fixed-wing UAV. The system presented in this paper is capable of on-board, real-time target identification, post-target identification and location and aerial image collection for further mapping applications. Its performance is examined using several simulated search and rescue missions, and the test results demonstrate its reliability and efficiency. PMID:27792156

  6. Thermal imaging for assessment of electron-beam freeform fabrication (EBF3) additive manufacturing deposits

    NASA Astrophysics Data System (ADS)

    Zalameda, Joseph N.; Burke, Eric R.; Hafley, Robert A.; Taminger, Karen M.; Domack, Christopher S.; Brewer, Amy; Martin, Richard E.

    2013-05-01

    Additive manufacturing is a rapidly growing field where 3-dimensional parts can be produced layer by layer. NASA's electron beam freeform fabrication (EBF3) technology is being evaluated to manufacture metallic parts in a space environment. The benefits of EBF3 technology are weight savings to support space missions, rapid prototyping in a zero gravity environment, and improved vehicle readiness. The EBF3 system is composed of 3 main components: electron beam gun, multi-axis position system, and metallic wire feeder. The electron beam is used to melt the wire and the multi-axis positioning system is used to build the part layer by layer. To insure a quality deposit, a near infrared (NIR) camera is used to image the melt pool and solidification areas. This paper describes the calibration and application of a NIR camera for temperature measurement. In addition, image processing techniques are presented for deposit assessment metrics.

  7. Quantification of false positive reduction in nucleic acid purification on hemorrhagic fever DNA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Conrad D.; Pohl, Kenneth Roy; Derzon, Mark Steven

    2006-11-01

    Columbia University has developed a sensitive highly multiplexed system for genetic identification of nucleic acid targets. The primary obstacle to implementing this technology is the high rate of false positives due to high levels of unbound reporters that remain within the system after hybridization. The ability to distinguish between free reporters and reporters bound to targets limits the use of this technology. We previously demonstrated a new electrokinetic method for binary separation of kb pair long DNA molecules and oligonucleotides. The purpose of this project 99864 is to take these previous demonstrations and further develop the technique and hardware formore » field use. Specifically, our objective was to implement separation in a heterogeneous sample (containing target DNA and background oligo), to perform the separation in a flow-based device, and to develop all of the components necessary for field testing a breadboard prototype system.« less

  8. A Camera-Based Target Detection and Positioning UAV System for Search and Rescue (SAR) Purposes.

    PubMed

    Sun, Jingxuan; Li, Boyang; Jiang, Yifan; Wen, Chih-Yung

    2016-10-25

    Wilderness search and rescue entails performing a wide-range of work in complex environments and large regions. Given the concerns inherent in large regions due to limited rescue distribution, unmanned aerial vehicle (UAV)-based frameworks are a promising platform for providing aerial imaging. In recent years, technological advances in areas such as micro-technology, sensors and navigation have influenced the various applications of UAVs. In this study, an all-in-one camera-based target detection and positioning system is developed and integrated into a fully autonomous fixed-wing UAV. The system presented in this paper is capable of on-board, real-time target identification, post-target identification and location and aerial image collection for further mapping applications. Its performance is examined using several simulated search and rescue missions, and the test results demonstrate its reliability and efficiency.

  9. Users’ acceptance and attitude in regarding electronic medical record at central polyclinic of oil industry in Isfahan, Iran

    PubMed Central

    Tavakoli, Nahid; Shahin, Arash; Jahanbakhsh, Maryam; Mokhtari, Habibollah; Rafiei, Maryam

    2013-01-01

    Introduction: Simultaneous with the rapid changes in the technology and information systems, hospitals interest in using them. One of the most common systems in hospitals is electronic medical record (EMR) whose one of uses is providing better health care quality via health information technology. Prior to its use, attempts should be put to identifying factors affecting the acceptance, attitude and utilizing of this technology. The current article aimed to study the effective factors of EMR acceptance by technology acceptance model (TAM) at central polyclinic of Oil Industry in Isfahan. Materials and Methods: This was a practical, descriptive and regression study. The population research were all EMR users at polyclinic of Oil Industry in 2012 and its sampling was simple random with 62 users. The tool of data collection was a research-made questionnaire based on TAM. The validity of questionnaire has been assigned through the strategy of content validity and health information technology experts’ views and its reliability by test-retest. Findings: The system users have positive attitude toward using EMR (56.6%). Also, users are not very satisfied with effective external (38.14%) and behavioral factors (47.8%) upon using the system. Perceived ease-of-use (PEU) and perceived usefulness (PU) were at a good level. Conclusion: Lack of relative satisfaction with using of EMR derives from factors such as appearance, screen, data and information quality and terminology. In this study, it is suggested to improve the system and the efficiency of the users through software’ external factors development. So that PEU and users’ attitude to be changed and moved in positive manner. PMID:24524089

  10. Characterization of a multi-user indoor positioning system based on low cost depth vision (Kinect) for monitoring human activity in a smart home.

    PubMed

    Sevrin, Loïc; Noury, Norbert; Abouchi, Nacer; Jumel, Fabrice; Massot, Bertrand; Saraydaryan, Jacques

    2015-01-01

    An increasing number of systems use indoor positioning for many scenarios such as asset tracking, health care, games, manufacturing, logistics, shopping, and security. Many technologies are available and the use of depth cameras is becoming more and more attractive as this kind of device becomes affordable and easy to handle. This paper contributes to the effort of creating an indoor positioning system based on low cost depth cameras (Kinect). A method is proposed to optimize the calibration of the depth cameras, to describe the multi-camera data fusion and to specify a global positioning projection to maintain the compatibility with outdoor positioning systems. The monitoring of the people trajectories at home is intended for the early detection of a shift in daily activities which highlights disabilities and loss of autonomy. This system is meant to improve homecare health management at home for a better end of life at a sustainable cost for the community.

  11. Beam rider for an Articulated Robot Manipulator (ARM) accurate positioning of long flexible manipulators

    NASA Technical Reports Server (NTRS)

    Malachowski, M. J.

    1990-01-01

    Laser beam positioning and beam rider modules were incorporated into the long hollow flexible segment of an articulated robot manipulator (ARM). Using a single laser beam, the system determined the position of the distal ARM endtip, with millimetric precision, in six degrees of freedom, at distances of up to 10 meters. Preliminary designs, using space rated technology for the critical systems, of a two segmented physical ARM, with a single and a dual degree of freedom articulation, were developed, prototyped, and tested. To control the positioning of the physical ARM, an indirect adaptive controller, which used the mismatch between the position of the laser beam under static and dynamic conditions, was devised. To predict the behavior of the system and test the concept, a computer simulation model was constructed. A hierarchical artificially intelligent real time ADA operating system program structure was created. The software was designed for implementation on a dedicated VME bus based Intel 80386 administered parallel processing multi-tasking computer system.

  12. Factors Influencing the Acceptance of E-Learning Adoption in Libya's Higher Education Institutions

    ERIC Educational Resources Information Center

    Benghet, Mahfoud; Helfert, Markus

    2014-01-01

    The growing influence of technologies on all aspects of life, including the education sector, requires developing countries to follow the example of the developed countries and adopt technology in their education systems. Libya has been able to boost its economic and educational position over the years, and this brings it to the concern of…

  13. Technologies That Assess the Location of Physical Activity and Sedentary Behavior: A Systematic Review.

    PubMed

    Loveday, Adam; Sherar, Lauren B; Sanders, James P; Sanderson, Paul W; Esliger, Dale W

    2015-08-05

    The location in which physical activity and sedentary behavior are performed can provide valuable behavioral information, both in isolation and synergistically with other areas of physical activity and sedentary behavior research. Global positioning systems (GPS) have been used in physical activity research to identify outdoor location; however, while GPS can receive signals in certain indoor environments, it is not able to provide room- or subroom-level location. On average, adults spend a high proportion of their time indoors. A measure of indoor location would, therefore, provide valuable behavioral information. This systematic review sought to identify and critique technology which has been or could be used to assess the location of physical activity and sedentary behavior. To identify published research papers, four electronic databases were searched using key terms built around behavior, technology, and location. To be eligible for inclusion, papers were required to be published in English and describe a wearable or portable technology or device capable of measuring location. Searches were performed up to February 4, 2015. This was supplemented by backward and forward reference searching. In an attempt to include novel devices which may not yet have made their way into the published research, searches were also performed using three Internet search engines. Specialized software was used to download search results and thus mitigate the potential pitfalls of changing search algorithms. A total of 188 research papers met the inclusion criteria. Global positioning systems were the most widely used location technology in the published research, followed by wearable cameras, and radio-frequency identification. Internet search engines identified 81 global positioning systems, 35 real-time locating systems, and 21 wearable cameras. Real-time locating systems determine the indoor location of a wearable tag via the known location of reference nodes. Although the type of reference node and location determination method varies between manufacturers, Wi-Fi appears to be the most popular method. The addition of location information to existing measures of physical activity and sedentary behavior will provide important behavioral information.

  14. Technologies That Assess the Location of Physical Activity and Sedentary Behavior: A Systematic Review

    PubMed Central

    Sherar, Lauren B; Sanders, James P; Sanderson, Paul W; Esliger, Dale W

    2015-01-01

    Background The location in which physical activity and sedentary behavior are performed can provide valuable behavioral information, both in isolation and synergistically with other areas of physical activity and sedentary behavior research. Global positioning systems (GPS) have been used in physical activity research to identify outdoor location; however, while GPS can receive signals in certain indoor environments, it is not able to provide room- or subroom-level location. On average, adults spend a high proportion of their time indoors. A measure of indoor location would, therefore, provide valuable behavioral information. Objective This systematic review sought to identify and critique technology which has been or could be used to assess the location of physical activity and sedentary behavior. Methods To identify published research papers, four electronic databases were searched using key terms built around behavior, technology, and location. To be eligible for inclusion, papers were required to be published in English and describe a wearable or portable technology or device capable of measuring location. Searches were performed up to February 4, 2015. This was supplemented by backward and forward reference searching. In an attempt to include novel devices which may not yet have made their way into the published research, searches were also performed using three Internet search engines. Specialized software was used to download search results and thus mitigate the potential pitfalls of changing search algorithms. Results A total of 188 research papers met the inclusion criteria. Global positioning systems were the most widely used location technology in the published research, followed by wearable cameras, and radio-frequency identification. Internet search engines identified 81 global positioning systems, 35 real-time locating systems, and 21 wearable cameras. Real-time locating systems determine the indoor location of a wearable tag via the known location of reference nodes. Although the type of reference node and location determination method varies between manufacturers, Wi-Fi appears to be the most popular method. Conclusions The addition of location information to existing measures of physical activity and sedentary behavior will provide important behavioral information. PMID:26245157

  15. A microcomputer-based position updating system for general aviation utilizing Loran-C

    NASA Technical Reports Server (NTRS)

    Fischer, J. P.

    1982-01-01

    Modern digital electronic technology is used to produce a device to convert LORAN C to useful pilot information using a simple software algebra and low cost microprocessor devices. Results indicate that the processor based LORAN C navigator has an accuracy of 1.0 nm or less over an area typically covered by a triad of Loran C stations and can execute a position update in less than 0.2 seconds. The system was tested in 30 hours of flight and proved that it can give reliable and accurate navigation information. Methods of converting time differences to position, design considerations for the microcomputer system, and the system for coordinate conversion are discussed. Testing with predetermined points and possible fixes for errors are also considered.

  16. [Design of medical devices management system supporting full life-cycle process management].

    PubMed

    Su, Peng; Zhong, Jianping

    2014-03-01

    Based on the analysis of the present status of medical devices management, this paper optimized management process, developed a medical devices management system with Web technologies. With information technology to dynamic master the use of state of the entire life-cycle of medical devices. Through the closed-loop management with pre-event budget, mid-event control and after-event analysis, improved the delicacy management level of medical devices, optimized asset allocation, promoted positive operation of devices.

  17. Advanced Propfan Engine Technology (APET) and Single-rotation Gearbox/Pitch Change Mechanism

    NASA Technical Reports Server (NTRS)

    Sargisson, D. F.

    1985-01-01

    The projected performance, in the 1990's time period, of the equivalent technology level high bypass ratio turbofan powered aircraft (at the 150 passenger size) is compared with advanced turboprop propulsion systems. Fuel burn analysis, economic analysis, and pollution (noise, emissions) estimates were made. Three different cruise Mach numbers were investigated for both the turbofan and the turboprop systems. Aerodynamic design and performance estimates were made for nacelles, inlets, and exhaust systems. Air to oil heat exchangers were investigated for oil cooling advanced gearboxes at the 12,500 SHP level. The results and conclusions are positive in that high speed turboprop aircraft will exhibit superior fuel burn characteristics and lower operating costs when compared with equivalent technology turbofan aircraft.

  18. KSC-06pd0188

    NASA Image and Video Library

    2006-01-18

    VANDENBERG AIR FORCE BASE, Calif. — Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, the wrapped Space Technology 5 (ST5) spacecraft is ready for mating to the Pegasus XL launch vehicle. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.

  19. KSC-06pd0187

    NASA Image and Video Library

    2006-01-18

    VANDENBERG AIR FORCE BASE, Calif. — Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, the wrapped Space Technology 5 (ST5) spacecraft is being prepared for mating to the Pegasus XL launch vehicle. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.

  20. Advances in shutter drive technology to enhance man-portable infrared cameras

    NASA Astrophysics Data System (ADS)

    Durfee, David

    2012-06-01

    With an emphasis on highest reliability, infrared (IR) imagers have traditionally used simplest-possible shutters and field-proven technology. Most commonly, single-step rotary or linear magnetic actuators have been used with good success. However, several newer shutter drive technologies offer benefits in size and power reduction, enabling man-portable imagers that are more compact, lighter, and more durable. This paper will discuss improvements in shutter and shutter drive technology, which enable smaller and more power-efficient imagers. Topics will transition from single-step magnetic actuators to multi-stepping magnetic drives, latching vs. balanced systems for blade position shock-resistance, motor and geared motor drives, and associated stepper driver electronics. It will highlight performance tradeoffs pertinent to man-portable military systems.

  1. Design and Analysis of Precise Pointing Systems

    NASA Technical Reports Server (NTRS)

    Kim, Young K.

    2000-01-01

    The mathematical models of Glovebox Integrated Microgravity Isolation Technology (g- LIMIT) dynamics/control system, which include six degrees of freedom (DOF) equations of motion, mathematical models of position sensors, accelerometers and actuators, and acceleration and position controller, were developed using MATLAB and TREETOPS simulations. Optimal control parameters of G-LIMIT control system were determined through sensitivity studies and its performance were evaluated with the TREETOPS model of G-LIMIT dynamics and control system. The functional operation and performance of the Tektronix DTM920 digital thermometer were studied and the inputs to the crew procedures and training of the DTM920 were documented.

  2. Using Mobile Learning to Improve the Reflection: A Case Study of Traffic Violation

    ERIC Educational Resources Information Center

    Lan, Yu-Feng; Huang, Shin-Ming

    2012-01-01

    The purpose of this study was to integrate mobile communication technologies and a global positioning system (GPS) to construct an instant, convenient report of the mobile network service system named the Mobile Traffic Violation Reporting System (MTVRS), to improve learners' traffic violation reflection level. Data were collected using a…

  3. Joint University Program for Air Transportation Research, 1985

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1987-01-01

    Air transportation research being carried on at the Massachusetts Institute of Technology, Princeton University, and Ohio University is discussed. Global Positioning System experiments, Loran-C monitoring, inertial navigation, the optimization of aircraft trajectories through severe microbursts, fault tolerant flight control systems, and expert systems for air traffic control are among the topics covered.

  4. Real-time data system: Incorporating new technology in mission critical environments

    NASA Technical Reports Server (NTRS)

    Muratore, John F.; Heindel, Troy A.

    1990-01-01

    If the Space Station Freedom is to remain viable over its 30-year life span, it must be able to incorporate new information systems technologies. These technologies are necessary to enhance mission effectiveness and to enable new NASA missions, such as supporting the Lunar-Mars Initiative. Hi-definition television (HDTV), neural nets, model-based reasoning, advanced languages, CPU designs, and computer networking standards are areas which have been forecasted to make major strides in the next 30 years. A major challenge to NASA is to bring these technologies online without compromising mission safety. In past programs, NASA managers have been understandably reluctant to rely on new technologies for mission critical activities until they are proven in noncritical areas. NASA must develop strategies to allow inflight confidence building and migration of technologies into the trusted tool base. NASA has successfully met this challenge and developed a winning strategy in the Space Shuttle Mission Control Center. This facility, which is clearly among NASA's most critical, is based on 1970's mainframe architecture. Changes to the mainframe are very expensive due to the extensive testing required to prove that changes do not have unanticipated impact on critical processes. Systematic improvement efforts in this facility have been delayed due to this 'risk to change.' In the real-time data system (RTDS) we have introduced a network of engineering computer workstations which run in parallel to the mainframe system. These workstations are located next to flight controller operating positions in mission control and, in some cases, the display units are mounted in the traditional mainframe consoles. This system incorporates several major improvements over the mainframe consoles including automated fault detection by real-time expert systems and color graphic animated schematics of subsystems driven by real-time telemetry. The workstations have the capability of recording telemetry data and providing 'instant replay' for flight controllers. RTDS also provides unique graphics animated by real-time telemetry such as workstation emulation of the shuttle's flight instruments and displays of the remote manipulator system (RMS) position. These systems have been used successfully as prime operational tools since STS-26 and have supported seven shuttle missions.

  5. Enabling Spacecraft Formation Flying through Position Determination, Control and Enhanced Automation Technologies

    NASA Technical Reports Server (NTRS)

    Bristow, John; Bauer, Frank; Hartman, Kate; How, Jonathan

    2000-01-01

    Formation Flying is revolutionizing the way the space community conducts science missions around the Earth and in deep space. This technological revolution will provide new, innovative ways for the community to gather scientific information, share that information between space vehicles and the ground, and expedite the human exploration of space. Once fully matured, formation flying will result in numerous sciencecraft acting as virtual platforms and sensor webs, gathering significantly more and better science data than call be collected today. To achieve this goal, key technologies must be developed including those that address the following basic questions posed by the spacecraft: Where am I? Where is the rest of the fleet? Where do I need to be? What do I have to do (and what am I able to do) to get there? The answers to these questions and the means to implement those answers will depend oil the specific mission needs and formation configuration. However, certain critical technologies are common to most formations. These technologies include high-precision position and relative-position knowledge including Global Positioning System (GPS) mid celestial navigation; high degrees of spacecraft autonomy inter-spacecraft communication capabilities; targeting and control including distributed control algorithms, and high precision control thrusters and actuators. This paper provides an overview of a selection of the current activities NASA/DoD/Industry/Academia are working to develop Formation Flying technologies as quickly as possible, the hurdles that need to be overcome to achieve our formation flying vision, and the team's approach to transfer this technology to space. It will also describe several of the formation flying testbeds, such as Orion and University Nanosatellites, that are being developed to demonstrate and validate many of these innovative sensing and formation control technologies.

  6. Saying goodbye to optical storage technology.

    PubMed

    McLendon, Kelly; Babbitt, Cliff

    2002-08-01

    The days of using optical disk based mass storage devices for high volume applications like health care document imaging are coming to an end. The price/performance curve for redundant magnetic disks, known as RAID, is now more positive than for optical disks. All types of application systems, across many sectors of the marketplace are using these newer magnetic technologies, including insurance, banking, aerospace, as well as health care. The main components of these new storage technologies are RAID and SAN. SAN refers to storage area network, which is a complex mechanism of switches and connections that allow multiple systems to store huge amounts of data securely and safely.

  7. Optical techniques for determination of normal shock position in supersonic flows for aerospace applications

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Eustace, John G.

    1990-01-01

    Techniques for the quantitative determination of shock position in supersonic flows using direct and indirect methods is presented. A description of an experimental setup is also presented, different configurations of shock position sensing systems are explained, and some experimental results are given. All of the methods discussed are analyzed to determine the ease of technology transfer from the laboratory to in-flight operation.

  8. Current concepts and future perspectives in computer-assisted navigated total knee replacement.

    PubMed

    Matsumoto, Tomoyuki; Nakano, Naoki; Lawrence, John E; Khanduja, Vikas

    2018-05-12

    Total knee replacements (TKR) aim to restore stability of the tibiofemoral and patella-femoral joints and provide relief of pain and improved quality of life for the patient. In recent years, computer-assisted navigation systems have been developed with the aim of reducing human error in joint alignment and improving patient outcomes. We examined the current body of evidence surrounding the use of navigation systems and discussed their current and future role in TKR. The current body of evidence shows that the use of computer navigation systems for TKR significantly reduces outliers in the mechanical axis and coronal prosthetic position. Also, navigation systems offer an objective assessment of soft tissue balancing that had previously not been available. Although these benefits represent a technical superiority to conventional TKR techniques, there is limited evidence to show long-term clinical benefit with the use of navigation systems, with only a small number of studies showing improvement in outcome scores at short-term follow-up. Because of the increased costs and operative time associated with their use as well as the emergence of more affordable and patient-specific technologies, it is unlikely for navigation systems to become more widely used in the near future. Whilst this technology helps surgeons to achieve improved component positioning, it is important to consider the clinical and functional implications, as well as the added costs and potential learning curve associated with adopting new technology.

  9. Geospatial Technology and Geosciences - Defining the skills and competencies in the geosciences needed to effectively use the technology (Invited)

    NASA Astrophysics Data System (ADS)

    Johnson, A.

    2010-12-01

    Maps, spatial and temporal data and their use in analysis and visualization are integral components for studies in the geosciences. With the emergence of geospatial technology (Geographic Information Systems (GIS), remote sensing and imagery, Global Positioning Systems (GPS) and mobile technologies) scientists and the geosciences user community are now able to more easily accessed and share data, analyze their data and present their results. Educators are also incorporating geospatial technology into their geosciences programs by including an awareness of the technology in introductory courses to advanced courses exploring the capabilities to help answer complex questions in the geosciences. This paper will look how the new Geospatial Technology Competency Model from the Department of Labor can help ensure that geosciences programs address the skills and competencies identified by the workforce for geospatial technology as well as look at new tools created by the GeoTech Center to help do self and program assessments.

  10. Oregon regional intelligent transportation systems (ITS) integration program. Final phase III report, transit tracker information displays

    DOT National Transportation Integrated Search

    2003-11-14

    Transit Tracker uses global positioning system (GPS) technology to track how far a bus is along its scheduled route. This document presents the evaluation strategies and objectives, the data collection methodologies, and the results of the evaluation...

  11. Spacecraft applications of advanced global positioning system technology

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This is the final report on the Texas Instruments Incorporated (TI) simulations study of Spacecraft Application of Advanced Global Positioning System (GPS) Technology. This work was conducted for the NASA Johnson Space Center (JSC) under contract NAS9-17781. GPS, in addition to its baselined capability as a highly accurate spacecraft navigation system, can provide traffic control, attitude control, structural control, and uniform time base. In Phase 1 of this program, another contractor investigated the potential of GPS in these four areas and compared GPS to other techniques. This contract was for the Phase 2 effort, to study the performance of GPS for these spacecraft applications through computer simulations. TI had previously developed simulation programs for GPS differential navigation and attitude measurement. These programs were adapted for these specific spacecraft applications. In addition, TI has extensive expertise in the design and production of advanced GPS receivers, including space-qualified GPS receivers. We have drawn on this background to augment the simulation results in the system level overview, which is Section 2 of this report.

  12. Challenges and Approach for Making the Top End Optical Assembly for the 4-meter Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Canzian, Blaise; Barentine, J.; Hull, T.

    2012-01-01

    L-3 Integrated Optical Systems (IOS) Division has been selected by the National Solar Observatory (NSO) to make the Top End Optical Assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope (ATST) to operate at Haleakala, Maui. ATST will perform to a very high optical performance level in a difficult thermal environment. The TEOA, containing the 0.65-meter silicon carbide secondary mirror and support, mirror thermal management system, mirror positioning and fast tip-tilt system, field stop with thermally managed heat dump, thermally managed Lyot stop, safety interlock and control system, and support frame, operates in the "hot spot” at the prime focus of the ATST and so presents special challenges. In this paper, we will describe the L-3 IOS technical approach to meet these challenges, including subsystems for opto-mechanical positioning, rejected and stray light control, wavefront tip-tilt compensation, and thermal management. Key words: ATST, TEOA, L-3 IOS, thermal management, silicon carbide (SiC) mirrors, hexapods, solar astronomy

  13. Application of Sensor Technology for the Efficient Positioningand Assembling of Ship Blocks

    NASA Astrophysics Data System (ADS)

    Lee, Sangdon; SeongbaeEun; Jung, Jai Jin; Song, Hacheol

    2010-09-01

    This paper proposes the application of sensor technology to assemble ship blocks efficiently. A sensor-based monitoring system is designed and implemented to improve shipbuilding productivity by reducing the labor cost for the adjustment of adequate positioning between ship blocks during pre-erection or erection stage. For the real-time remote monitoring of relative distances between two ship blocks, sensor nodes are applied to measure the distances between corresponding target points on the blocks. Highly precise positioning data can be transferred to a monitoring server via wireless network, and analyzed to support the decision making which needs to determine the next construction process; further adjustment or seam welding between the ship blocks. The developed system is expected to put to practical use, and increase the productivity during ship blocks assembly.

  14. IPS - a vision aided navigation system

    NASA Astrophysics Data System (ADS)

    Börner, Anko; Baumbach, Dirk; Buder, Maximilian; Choinowski, Andre; Ernst, Ines; Funk, Eugen; Grießbach, Denis; Schischmanow, Adrian; Wohlfeil, Jürgen; Zuev, Sergey

    2017-04-01

    Ego localization is an important prerequisite for several scientific, commercial, and statutory tasks. Only by knowing one's own position, can guidance be provided, inspections be executed, and autonomous vehicles be operated. Localization becomes challenging if satellite-based navigation systems are not available, or data quality is not sufficient. To overcome this problem, a team of the German Aerospace Center (DLR) developed a multi-sensor system based on the human head and its navigation sensors - the eyes and the vestibular system. This system is called integrated positioning system (IPS) and contains a stereo camera and an inertial measurement unit for determining an ego pose in six degrees of freedom in a local coordinate system. IPS is able to operate in real time and can be applied for indoor and outdoor scenarios without any external reference or prior knowledge. In this paper, the system and its key hardware and software components are introduced. The main issues during the development of such complex multi-sensor measurement systems are identified and discussed, and the performance of this technology is demonstrated. The developer team started from scratch and transfers this technology into a commercial product right now. The paper finishes with an outlook.

  15. Windshear detection and avoidance - Airborne systems perspective

    NASA Technical Reports Server (NTRS)

    Bowles, Roland L.; Targ, Russell

    1988-01-01

    The generalized windshear hazard index presently defined is derived from aircraft-position wind data and remotely sensed data obtained along the extended flight path by such candidate sensor technologies as microwave Doppler radar, Doppler lidar, and IR radiometry. Attention is given here to the results of a comparative evaluation of CO2 and Ho:YAG lidar sensor-employing windshear-detection systems, over a range 1-3 km ahead of the aircraft (corresponding to 15-45 sec of warning time). While the technology for a 10.6-micron CO2 lidar system is available, an optimum 2-micron REE laser crystal-based system remains to be developed.

  16. New approach for processing data provided by an INS/GPS system onboard a vehicle

    NASA Astrophysics Data System (ADS)

    Dumitrascu, Ana; Serbanescu, Ionut; Tamas, Razvan D.; Danisor, Alin; Caruntu, George; Ticu, Ionela

    2016-12-01

    Due to the technology development, navigation systems are widely used in ground vehicle applications such as position prediction, safety of life, etc. It is known that a hybrid navigation system consisting of a GPS and inertial navigation system (INS) can provide a more accurate position prediction. By applying a Method of Moments (MoM) approach on the acquired data with INS/GPS we can extract both the coordinate and important information concerning safety of life. This kind of system will be cost effective and can also be used as a black box on boats, cars, submersible ships and even on small aircrafts.

  17. Taking a Position

    NASA Technical Reports Server (NTRS)

    1999-01-01

    "TerrAvoid" and "Position Integrity" combine Global Positioning Satellite (GPS) data with high-resolution maps of the Earth's topography. Dubbs & Severino, Inc., based in Irvine, California, has developed software that allows the system to be run on a battery-powered laptop in the cockpit. The packages, designed primarily for military sponsors and now positioned to hit the consumer market in coming months, came about as the result of the Jet Propulsion Laboratory's Technology Affiliates Program. Intended to give American industry assistance from NASA experts and to facilitate business use of intellectual property developed for the space program, the Technology Affiliates Program introduced the start-up company of Dubbs & Severino to JPL's Dr. Nevin Bryant four years ago. GeoTIFF is now in the public domain, and its use for commercial product development has evolved into an industry standard over the last year.

  18. Technical note: Validation of a commercial system for the continuous and automated monitoring of dairy cow activity.

    PubMed

    Tullo, E; Fontana, I; Gottardo, D; Sloth, K H; Guarino, M

    2016-09-01

    Current farm sizes do not allow the precise identification and tracking of individual cows and their health and behavioral records. Currently, the application of information technology within intensive dairy farming takes a key role in proper routine management to improve animal welfare and to enhance the comfort of dairy cows. An existing application based on information technology is represented by the GEA CowView system (GEA Farm Technologies, Bönen, Germany). This system is able to detect and monitor animal behavioral activities based on positioning, through the creation of a virtual map of the barn that outlines all the areas where cows have access. The aim of this study was to validate the accuracy, sensitivity, and specificity of data provided by the CowView system. The validation was performed by comparing data automatically obtained from the CowView system with those obtained by a manual labeling procedure performed on video recordings. Data used for the comparisons were represented by the zone-related activities performed by the selected dairy cows and were classified into 2 categories: activity and localization. The duration in seconds of each of the activities/localizations detected both with the manual labeling and with the automated system were used to evaluate the correlation coefficients among data; and subsequently the accuracy, sensitivity, specificity, and positive and negative predictive values of the automated monitoring system were calculated. The results of this validation study showed that the CowView automated monitoring system is able to identify the cow localization/position (alley, trough, cubicles) with high reliability in relation to the zone-related activities performed by dairy cows (accuracy higher than 95%). The results obtained support the CowView system as an innovative potential solution for the easier management of dairy cows. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Experimental Evaluation of UWB Indoor Positioning for Sport Postures

    PubMed Central

    Defraye, Jense; Steendam, Heidi; Gerlo, Joeri; De Clercq, Dirk; De Poorter, Eli

    2018-01-01

    Radio frequency (RF)-based indoor positioning systems (IPSs) use wireless technologies (including Wi-Fi, Zigbee, Bluetooth, and ultra-wide band (UWB)) to estimate the location of persons in areas where no Global Positioning System (GPS) reception is available, for example in indoor stadiums or sports halls. Of the above-mentioned forms of radio frequency (RF) technology, UWB is considered one of the most accurate approaches because it can provide positioning estimates with centimeter-level accuracy. However, it is not yet known whether UWB can also offer such accurate position estimates during strenuous dynamic activities in which moves are characterized by fast changes in direction and velocity. To answer this question, this paper investigates the capabilities of UWB indoor localization systems for tracking athletes during their complex (and most of the time unpredictable) movements. To this end, we analyze the impact of on-body tag placement locations and human movement patterns on localization accuracy and communication reliability. Moreover, two localization algorithms (particle filter and Kalman filter) with different optimizations (bias removal, non-line-of-sight (NLoS) detection, and path determination) are implemented. It is shown that although the optimal choice of optimization depends on the type of movement patterns, some of the improvements can reduce the localization error by up to 31%. Overall, depending on the selected optimization and on-body tag placement, our algorithms show good results in terms of positioning accuracy, with average errors in position estimates of 20 cm. This makes UWB a suitable approach for tracking dynamic athletic activities. PMID:29315267

  20. Future superconductivity applications in space - A review

    NASA Astrophysics Data System (ADS)

    Krishen, Kumar; Ignatiev, Alex

    High temperature superconductor (HISC) materials and devices can provide immediate applications for many space missions. The in-space thermal environment provides an opportunity to develop, test, and apply this technology to enhance performance and reliability for many applications of crucial importance to NASA. Specifically, the technology development areas include: (1) high current power transmission, (2) microwave components, devices, and antennas, (3) microwave, optical, and infrared sensors, (4) signal processors, (5) submillimeter wave components and systems, (6) ultra stable space clocks, (7) electromagnetic launch systems, and (8) accelerometers and position sensors for flight operations. HTSC is expected to impact NASA's Lunar Bases, Mars exploration, Mission to Earth, and Planetary exploration programs providing enabling and cost-effect technology. A review of the space applications of the HTSC technology is presented. Problem areas in technology development needing special attention are identified.

  1. Positive Technologies for Understanding and Promoting Positive Emotions.

    PubMed

    Baños, Rosa María; Carrillo, Alba; Etchemendy, Ernestina; Botella, Cristina

    2017-10-26

    Information and Communication Technologies (ICTs) have become increasingly present in our lives, and their use has spread considerably. This paper presents a review of the way ICTs can help practitioners and researchers to study, promote, and train positive emotions. It is framed within the field of Positive Technologies: the applied scientific approach to the study of the use of technology to improve the quality of personal experience, with the goal of increasing wellbeing. First, the article presents an introduction to the topic of technologies and positive emotions. Then, it describes how ICTs can aid in monitoring, assessing, promoting, modifying, and training positive emotions. Finally, implications and future directions of the role of Positive Technologies in positive emotions are discussed. The authors conclude that, in the near future, Positive Technologies and the field of positive emotions will interact synergistically, producing an exponential growth in the understanding and promotion of positive emotions.

  2. Design on wireless auto-measurement system for lead rail straightness measurement based on PSD

    NASA Astrophysics Data System (ADS)

    Yan, Xiugang; Zhang, Shuqin; Dong, Dengfeng; Cheng, Zhi; Wu, Guanghua; Wang, Jie; Zhou, Weihu

    2016-10-01

    Straightness detection is not only one of the key technologies for the product quality and installation accuracy of all types of lead rail, but also an important dimensional measurement technology. The straightness measuring devices now available have disadvantages of low automation level, limiting by measuring environment, and low measurement efficiency. In this paper, a wireless measurement system for straightness detection based on position sensitive detector (PSD) is proposed. The system has some advantage of high automation-level, convenient, high measurement efficiency, easy to transplanting and expanding, and can detect straightness of lead rail in real-time.

  3. Position measurement of the direct drive motor of Large Aperture Telescope

    NASA Astrophysics Data System (ADS)

    Li, Ying; Wang, Daxing

    2010-07-01

    Along with the development of space and astronomy science, production of large aperture telescope and super large aperture telescope will definitely become the trend. It's one of methods to solve precise drive of large aperture telescope using direct drive technology unified designed of electricity and magnetism structure. A direct drive precise rotary table with diameter of 2.5 meters researched and produced by us is a typical mechanical & electrical integration design. This paper mainly introduces position measurement control system of direct drive motor. In design of this motor, position measurement control system requires having high resolution, and precisely aligning the position of rotor shaft and making measurement, meanwhile transferring position information to position reversing information corresponding to needed motor pole number. This system has chosen high precision metal band coder and absolute type coder, processing information of coders, and has sent 32-bit RISC CPU making software processing, and gained high resolution composite coder. The paper gives relevant laboratory test results at the end, indicating the position measurement can apply to large aperture telescope control system. This project is subsidized by Chinese National Natural Science Funds (10833004).

  4. Freestanding Triboelectric Nanogenerator Enables Noncontact Motion-Tracking and Positioning.

    PubMed

    Guo, Huijuan; Jia, Xueting; Liu, Lue; Cao, Xia; Wang, Ning; Wang, Zhong Lin

    2018-04-24

    Recent development of interactive motion-tracking and positioning technologies is attracting increasing interests in many areas, such as wearable electronics, intelligent electronics, and the internet of things. For example, the so-called somatosensory technology can afford users strong empathy of immersion and realism due to their consistent interaction with the game. Here, we report a noncontact self-powered positioning and motion-tracking system based on a freestanding triboelectric nanogenerator (TENG). The TENG was fabricated by a nanoengineered surface in the contact-separation mode with the use of a free moving human body (hands or feet) as the trigger. The poly(tetrafluoroethylene) (PTFE) arrays based interactive interface can give an output of 222 V from casual human motions. Different from previous works, this device also responses to a small action at certain heights of 0.01-0.11 m from the device with a sensitivity of about 315 V·m -1 , so that the mechanical sensing is possible. Such a distinctive noncontact sensing feature promotes a wide range of potential applications in smart interaction systems.

  5. Valuation of active blind spot detection systems by younger and older adults.

    PubMed

    Souders, Dustin J; Best, Ryan; Charness, Neil

    2017-09-01

    Due to their disproportional representation in fatal crashes, younger and older drivers both stand to benefit from in-vehicle safety technologies, yet little is known about how they value such technologies, or their willingness to adopt them. The current study investigated older (aged 65 and greater; N=49) and younger (ages 18-23; N=40) adults' valuation of a blind spot monitor and asked if self-reported visual difficulties while driving predicted the amount participants were willing to pay for a particular system (BMW's Active Blind Spot Detection System) that was demonstrated using a short video. Large and small anchor values ($250 and $500, respectively) were used as between subjects manipulations to examine the effects of initial valuation, and participants proceeded through a short staircase procedure that offered them either the free installation of the system on their current vehicle or a monetary prize ($25-$950) that changed in value according to which option they had selected in the previous step of the staircase procedure. Willingness to use other advanced driver assistance systems (lane-departure warning, automatic lane centering, emergency braking, adaptive cruise control, and self-parking systems) was also analyzed, additionally controlling for prior familiarity of those systems. Results showed that increased age was associated with a higher valuation for the Active Blind Spot Detection System in both the large and small anchor value conditions controlling for income, gender, and technology self-efficacy. Older adults valued blind spot detection about twice as much ($762) as younger adults ($383) in the large anchor condition, though both groups' values were in the range for the current cost of an aftermarket system. Similarly, age was the most robust positive predictor of willingness to adopt other driving technologies, along with system familiarity. Difficulties with driving-related visual factors also positively predicting acceptance levels for adaptive cruise control and emergency braking systems. Results are discussed in comparison to older adults' willingness to pay for other home-based assistive technologies aimed at improving well-being and independence. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Examining the functionality of the DeLone and McLean information system success model as a framework for synthesis in nursing information and communication technology research.

    PubMed

    Booth, Richard G

    2012-06-01

    In this review, studies examining information and communication technology used by nurses in clinical practice were examined. Overall, a total of 39 studies were assessed spanning a time period from 1995 to 2008. The impacts of the various health information and communication technology evaluated by individual studies were synthesized using the DeLone and McLean's six-dimensional framework for evaluating information systems success (ie, System Quality, Information Quality, Service Quality, Use, User Satisfaction, and Net Benefits). Overall, the majority of researchers reported results related to the overall Net Benefits (positive, negative, and indifferent) of the health information and communication technology used by nurses. Attitudes and user satisfaction with technology were also commonly measured attributes. The current iteration of DeLone and McLean model is effective at synthesizing basic elements of health information and communication technology use by nurses. Regardless, the current model lacks the sociotechnical sensitivity to capture deeper nurse-technology relationalities. Limitations and recommendations are provided for researchers considering using the DeLone and McLean model for evaluating health information and communication technology used by nurses.

  7. An international survey and recommendations for modern hydrokinetic systems

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Basnet, Bipin; Dunsmore, Ian

    2017-04-01

    This study presents the results of a survey on some of the advantages of the novel and uniquehydrokinetic energy generation systems over other technologies available today. Recently, a comprehensive assessment study for the application of internationally leading hydrokinetic technologies in water engineering has been conducted. The study was carried with the collaboration of the School of Engineering, University of Glasgow and Scottish Water Horizons Ltd. The assessment involved the information collection, critical analysis of various features and financial viability analysis of various hydrokinetic systems available at this time. The outcomes of the study are summarized below: - The preliminary assessment of the hydrokinetic system and their application were carried out. The technologies were divided into different categories as per their core theory, scope of application as well as positive and negatives effects of their application. - A variety of criteria were used to assess the technical, economical and ecological potential from the application of hydrokinetic systems. - A number of companies representing a wide range of technologies available worldwide were ranked considering the performance of these against the above criteria. - Only a couple of the companies could satisfy the selection condition to be adopted into select sites of low flow and low pressure head. - A more detailed assessment for specific sites and further testing of these technologies is recommended to further assess the advantages and optimal performance of the selected technologies. A preliminary evaluation of the best performing systems demonstrates its effectiveness, particularly over other existing hydrokinetic technologies, when ecology of the open water surface system is considered. Specifically it will be of interest to use the selected technology in combination with a fish passage, as compared with other technologies this system has a minimal amount of fast moving components.

  8. The IXV experience, from the mission conception to the flight results

    NASA Astrophysics Data System (ADS)

    Tumino, G.; Mancuso, S.; Gallego, J.-M.; Dussy, S.; Preaud, J.-P.; Di Vita, G.; Brunner, P.

    2016-07-01

    The atmospheric re-entry domain is a cornerstone of a wide range of space applications, ranging from reusable launcher stages developments, robotic planetary exploration, human space flight, to innovative applications such as reusable research platforms for in orbit validation of multiple space applications technologies. The Intermediate experimental Vehicle (IXV) is an advanced demonstrator which has performed in-flight experimentation of atmospheric re-entry enabling systems and technologies aspects, with significant advancements on Europe's previous flight experiences, consolidating Europe's autonomous position in the strategic field of atmospheric re-entry. The IXV mission objectives were the design, development, manufacturing, assembling and on-ground to in-flight verification of an autonomous European lifting and aerodynamically controlled reentry system, integrating critical re-entry technologies at system level. Among such critical technologies of interest, special attention was paid to aerodynamic and aerothermodynamics experimentation, including advanced instrumentation for aerothermodynamics phenomena investigations, thermal protections and hot-structures, guidance, navigation and flight control through combined jets and aerodynamic surfaces (i.e. flaps), in particular focusing on the technologies integration at system level for flight, successfully performed on February 11th, 2015.

  9. Effects of solar photovoltaic technology on the environment in China.

    PubMed

    Qi, Liqiang; Zhang, Yajuan

    2017-10-01

    Among the various types of renewable energy, solar photovoltaic has elicited the most attention because of its low pollution, abundant reserve, and endless supply. Solar photovoltaic technology generates both positive and negative effects on the environment. The environmental loss of 0.00666 yuan/kWh from solar photovoltaic technology is lower than that from coal-fired power generation (0.05216 yuan/kWh). The negative effects of solar photovoltaic system production include wastewater and waste gas pollutions, the representatives of which contain fluorine, chromium with wastewater and hydrogen fluoride, and silicon tetrachloride gas. Solar panels are also a source of light pollution. Improper disposal of solar cells that have reached the end of their service life harms the environment through the stench they produce and the damage they cause to the soil. So, the positive and negative effects of green energy photovoltaic power generation technology on the environment should be considered.

  10. Research and Technology Report. Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald (Editor); Truszkowski, Walter (Editor); Ottenstein, Howard (Editor); Frost, Kenneth (Editor); Maran, Stephen (Editor); Walter, Lou (Editor); Brown, Mitch (Editor)

    1996-01-01

    This issue of Goddard Space Flight Center's annual report highlights the importance of mission operations and data systems covering mission planning and operations; TDRSS, positioning systems, and orbit determination; ground system and networks, hardware and software; data processing and analysis; and World Wide Web use. The report also includes flight projects, space sciences, Earth system science, and engineering and materials.

  11. Tracking Accuracy of a Real-Time Fiducial Tracking System for Patient Positioning and Monitoring in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shchory, Tal; Schifter, Dan; Lichtman, Rinat

    Purpose: In radiation therapy there is a need to accurately know the location of the target in real time. A novel radioactive tracking technology has been developed to answer this need. The technology consists of a radioactive implanted fiducial marker designed to minimize migration and a linac mounted tracking device. This study measured the static and dynamic accuracy of the new tracking technology in a clinical radiation therapy environment. Methods and Materials: The tracking device was installed on the linac gantry. The radioactive marker was located in a tissue equivalent phantom. Marker location was measured simultaneously by the radioactive trackingmore » system and by a Microscribe G2 coordinate measuring machine (certified spatial accuracy of 0.38 mm). Localization consistency throughout a volume and absolute accuracy in the Fixed coordinate system were measured at multiple gantry angles over volumes of at least 10 cm in diameter centered at isocenter. Dynamic accuracy was measured with the marker located inside a breathing phantom. Results: The mean consistency for the static source was 0.58 mm throughout the tested region at all measured gantry angles. The mean absolute position error in the Fixed coordinate system for all gantry angles was 0.97 mm. The mean real-time tracking error for the dynamic source within the breathing phantom was less than 1 mm. Conclusions: This novel radioactive tracking technology has the potential to be useful in accurate target localization and real-time monitoring for radiation therapy.« less

  12. Tracking accuracy of a real-time fiducial tracking system for patient positioning and monitoring in radiation therapy.

    PubMed

    Shchory, Tal; Schifter, Dan; Lichtman, Rinat; Neustadter, David; Corn, Benjamin W

    2010-11-15

    In radiation therapy there is a need to accurately know the location of the target in real time. A novel radioactive tracking technology has been developed to answer this need. The technology consists of a radioactive implanted fiducial marker designed to minimize migration and a linac mounted tracking device. This study measured the static and dynamic accuracy of the new tracking technology in a clinical radiation therapy environment. The tracking device was installed on the linac gantry. The radioactive marker was located in a tissue equivalent phantom. Marker location was measured simultaneously by the radioactive tracking system and by a Microscribe G2 coordinate measuring machine (certified spatial accuracy of 0.38 mm). Localization consistency throughout a volume and absolute accuracy in the Fixed coordinate system were measured at multiple gantry angles over volumes of at least 10 cm in diameter centered at isocenter. Dynamic accuracy was measured with the marker located inside a breathing phantom. The mean consistency for the static source was 0.58 mm throughout the tested region at all measured gantry angles. The mean absolute position error in the Fixed coordinate system for all gantry angles was 0.97 mm. The mean real-time tracking error for the dynamic source within the breathing phantom was less than 1 mm. This novel radioactive tracking technology has the potential to be useful in accurate target localization and real-time monitoring for radiation therapy. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Optical technologies for space sensor

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Liu, Jie; Xue, Yaoke; Liu, Yang; Liu, Meiying; Wang, Lingguang; Yang, Shaodong; Lin, Shangmin; Chen, Su; Luo, Jianjun

    2015-10-01

    Space sensors are used in navigation sensor fields. The sun, the earth, the moon and other planets are used as frame of reference to obtain stellar position coordinates, and then to control the attitude of an aircraft. Being the "eyes" of the space sensors, Optical sensor system makes images of the infinite far stars and other celestial bodies. It directly affects measurement accuracy of the space sensor, indirectly affecting the data updating rate. Star sensor technology is the pilot for Space sensors. At present more and more attention is paid on all-day star sensor technology. By day and night measurements of the stars, the aircraft's attitude in the inertial coordinate system can be provided. Facing the requirements of ultra-high-precision, large field of view, wide spectral range, long life and high reliability, multi-functional optical system, we integration, integration optical sensors will be future space technology trends. In the meantime, optical technologies for space-sensitive research leads to the development of ultra-precision optical processing, optical and precision test machine alignment technology. It also promotes the development of long-life optical materials and applications. We have achieved such absolute distortion better than ±1um, Space life of at least 15years of space-sensitive optical system.

  14. Monitoring human health behaviour in one's living environment: a technological review.

    PubMed

    Lowe, Shane A; Ólaighin, Gearóid

    2014-02-01

    The electronic monitoring of human health behaviour using computer techniques has been an active research area for the past few decades. A wide array of different approaches have been investigated using various technologies including inertial sensors, Global Positioning System, smart homes, Radio Frequency IDentification and others. It is only in recent years that research has turned towards a sensor fusion approach using several different technologies in single systems or devices. These systems allow for an increased volume of data to be collected and for activity data to be better used as measures of behaviour. This change may be due to decreasing hardware costs, smaller sensors, increased power efficiency or increases in portability. This paper is intended to act as a reference for the design of multi-sensor behaviour monitoring systems. The range of technologies that have been used in isolation for behaviour monitoring both in research and commercial devices are reviewed and discussed. Filtering, range, sensitivity, usability and other considerations of different technologies are discussed. A brief overview of commercially available activity monitors and their technology is also included. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. DARPA looks beyond GPS for positioning, navigating, and timing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, David

    Cold-atom interferometry, microelectromechanical systems, signals of opportunity, and atomic clocks are some of the technologies the defense agency is pursuing to provide precise navigation when GPS is unavailable.

  16. Combining Feminist Pedagogy and Transactional Distance to Create Gender-Sensitive Technology-Enhanced Learning

    ERIC Educational Resources Information Center

    Herman, Clem; Kirkup, Gill

    2017-01-01

    In this paper, we argue for a new synthesis of two pedagogic theories: feminist pedagogy and transactional distance, which explain why and how distance education has been such a positive system for women in a national distance learning university. We illustrate this with examples of positive action initiatives for women. The concept of…

  17. Environmental Data Collection Using Autonomous Wave Gliders

    DTIC Science & Technology

    2014-12-01

    Observing System IMU Inertial Measurement Unit LRI Liquid Robotics, Inc. MASFlux Marine-Air-Sea-Flux METOC meteorological and oceanographic...position, velocity, heading, pitch, roll , and six-axis acceleration rates (Figure 11). A separate temperature probe also provides sea surface...Position, Velocity, and Magnetic declination True North Revolution Technologies GS Gyro Stabilized Electronic Compass Heading, Pitch, and Roll

  18. Aircraft

    DTIC Science & Technology

    2002-01-01

    electronics, systems integration and information technology company.39 Northrop Grumman no longer seeks a position as a prime contractor/integrator of fixed...of the spares procurement and distribution processes. Finally, they recognize that excellence in Information Technology (IT) is a strategic advantage...business in export dollars, the industry has been forced to look for new markets as worldwide aircraft sales have dropped. Because the U.S. national

  19. Unmanned and Unattended Response Capability for Homeland Defense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BENNETT, PHIL C.

    2002-11-01

    An analysis was conducted of the potential for unmanned and unattended robotic technologies for forward-based, immediate response capabilities that enables access and controlled task performance. The authors analyze high-impact response scenarios in conjunction with homeland security organizations, such as the NNSA Office of Emergency Response, the FBI, the National Guard, and the Army Technical Escort Unit, to cover a range of radiological, chemical and biological threats. They conducted an analysis of the potential of forward-based, unmanned and unattended robotic technologies to accelerate and enhance emergency and crisis response by Homeland Defense organizations. Response systems concepts were developed utilizing new technologiesmore » supported by existing emerging threats base technologies to meet the defined response scenarios. These systems will pre-position robotic and remote sensing capabilities stationed close to multiple sites for immediate action. Analysis of assembled systems included experimental activities to determine potential efficacy in the response scenarios, and iteration on systems concepts and remote sensing and robotic technologies, creating new immediate response capabilities for Homeland Defense.« less

  20. OB CITY-Definition of a Family-Based Intervention for Childhood Obesity Supported by Information and Communication Technologies.

    PubMed

    Hu, Ruofei; Cancela, Jorge; Arredondo Waldmeyer, Maria Teresa; Cea, Gloria; Vlachopapadopoulou, Elpis-Athina; Fotiadis, Dimitrios I; Fico, Giuseppe

    2016-01-01

    Childhood obesity is becoming one of the 21st century's most important public health problems. Nowadays, the main treatment of childhood obesity is behavior intervention that aims at improve children's lifestyle to arrest the disease. Information and communication technologies (ICTs) have not been widely employed in this intervention, and most of existing ICTs systems are not having a long-term effect. The purpose of this paper is to define a system to support family-based intervention through a state-of-the-art analysis of family-based interventions and related technological solutions first, and then using the analytic hierarchy process to derive a childhood obesity family-based behavior intervention model, and finally to provide a prototype of a system called OB CITY. The system makes use of applied behavior analysis, affective computing technologies, as well as serious game and gamification techniques, to offer long term services in all care dimensions of the family-based behavioral intervention aiming to provide positive effects to the treatment of childhood obesity.

  1. Global GNSS processing based on the raw observation approach

    NASA Astrophysics Data System (ADS)

    Strasser, Sebastian; Zehentner, Norbert; Mayer-Gürr, Torsten

    2017-04-01

    Many global navigation satellite system (GNSS) applications, e.g. Precise Point Positioning (PPP), require high-quality GNSS products, such as precise GNSS satellite orbits and clocks. These products are routinely determined by analysis centers of the International GNSS Service (IGS). The current processing methods of the analysis centers make use of the ionosphere-free linear combination to reduce the ionospheric influence. Some of the analysis centers also form observation differences, in general double-differences, to eliminate several additional error sources. The raw observation approach is a new GNSS processing approach that was developed at Graz University of Technology for kinematic orbit determination of low Earth orbit (LEO) satellites and subsequently adapted to global GNSS processing in general. This new approach offers some benefits compared to well-established approaches, such as a straightforward incorporation of new observables due to the avoidance of observation differences and linear combinations. This becomes especially important in view of the changing GNSS landscape with two new systems, the European system Galileo and the Chinese system BeiDou, currently in deployment. GNSS products generated at Graz University of Technology using the raw observation approach currently comprise precise GNSS satellite orbits and clocks, station positions and clocks, code and phase biases, and Earth rotation parameters. To evaluate the new approach, products generated using the Global Positioning System (GPS) constellation and observations from the global IGS station network are compared to those of the IGS analysis centers. The comparisons show that the products generated at Graz University of Technology are on a similar level of quality to the products determined by the IGS analysis centers. This confirms that the raw observation approach is applicable to global GNSS processing. Some areas requiring further work have been identified, enabling future improvements of the method.

  2. Experimental demonstration of a retro-reflective laser communication link on a mobile platform

    NASA Astrophysics Data System (ADS)

    Nikulin, Vladimir V.; Malowicki, John E.; Khandekar, Rahul M.; Skormin, Victor A.; Legare, David J.

    2010-02-01

    Successful pointing, acquisition, and tracking (PAT) are crucial for the implementation of laser communication links between ground and aerial vehicles. This technology has advantages over the traditional radio frequency communication, thus justifying the research efforts presented in this paper. The authors have been successful in the development of a high precision, agile, digitally controlled two-degree-of-freedom electromechanical system for positioning of optical instruments, cameras, telescopes, and communication lasers. The centerpiece of this system is a robotic manipulator capable of singularity-free operation throughout the full hemisphere range of yaw/pitch motion. The availability of efficient two-degree-of-freedom positioning facilitated the development of an optical platform stabilization system capable of rejecting resident vibrations with the angular and frequency range consistent with those caused by a ground vehicle moving on a rough terrain. This technology is being utilized for the development of a duplex mobile PAT system demonstrator that would provide valuable feedback for the development of practical laser communication systems intended for fleets of moving ground, and possibly aerial, vehicles. In this paper, a tracking system providing optical connectivity between stationary and mobile ground platforms is described. It utilizes mechanical manipulator to perform optical platform stabilization and initial beam positioning, and optical tracking for maintaining the line-of-sight communication. Particular system components and the challenges of their integration are described. The results of field testing of the resultant system under practical conditions are presented.

  3. Effects of organic and conventional production systems and cultivars on the technological properties of winter wheat.

    PubMed

    Ceseviciene, Jurgita; Slepetiene, Alvyra; Leistrumaite, Alge; Ruzgas, Vytautas; Slepetys, Jonas

    2012-11-01

    The current study aimed to estimate the effects of organic and conventional production systems and four winter wheat (Triticum aestivum L.) bread cultivars on the technological properties of grain, flour, dough and bread, to increase current knowledge regarding the interactions of the technological properties of winter wheat and assess the cultivars for their suitability for organic production systems. All the technological properties winter wheat which were investigated were significantly affected by the agricultural production system and cultivars, and some of them, mostly grain quality parameters, by the harvest year. Grain from organic winter wheat had significantly lower protein and gluten contents, lower sedimentation and flour water absorption values, shorter dough stability time and lower loaf volume, but higher values of starch content and stronger gluten, compared with grain from the conventional wheat. For both production systems significant positive correlations of protein content with gluten content, sedimentation value, dough stability time, loaf volume, farinograph water absorption, and negative with starch content, gluten index were determined. Statistically significant differences between agricultural production systems were found. The cultivars Ada and Alma had better technological properties that make them more suitable for the organic production system, compared to Širvinta 1 and Zentos. Copyright © 2012 Society of Chemical Industry.

  4. Satellite services system overview

    NASA Technical Reports Server (NTRS)

    Rysavy, G.

    1982-01-01

    The benefits of a satellite services system and the basic needs of the Space Transportation System to have improved satellite service capability are identified. Specific required servicing equipment are discussed in terms of their technology development status and their operative functions. Concepts include maneuverable television systems, extravehicular maneuvering unit, orbiter exterior lighting, satellite holding and positioning aid, fluid transfer equipment, end effectors for the remote manipulator system, teleoperator maneuvering system, and hand and power tools.

  5. The Role of the Systems Librarian/Administrator: A Report of the Survey.

    ERIC Educational Resources Information Center

    Hatcher, Karen A.

    1995-01-01

    A 1991 survey asked how the position of systems librarian has changed. Data from three categories of academic and research libraries was analyzed by size of library, and changes involving increasing implementation of electronic media were identified. It was found that the role of systems librarian is difficult to define while technology changes…

  6. Rail-CR : railroad cognitive radio.

    DOT National Transportation Integrated Search

    2012-12-01

    Robust, reliable, and interoperable wireless communication devices or technologies are vital to the success of positive train control (PTC) systems. Accordingly, the railway industry has started adopting software-defined radios (SDRs) for packet-data...

  7. An Improved Indoor Positioning System Using RGB-D Cameras and Wireless Networks for Use in Complex Environments.

    PubMed

    Duque Domingo, Jaime; Cerrada, Carlos; Valero, Enrique; Cerrada, Jose A

    2017-10-20

    This work presents an Indoor Positioning System to estimate the location of people navigating in complex indoor environments. The developed technique combines WiFi Positioning Systems and depth maps , delivering promising results in complex inhabited environments, consisting of various connected rooms, where people are freely moving. This is a non-intrusive system in which personal information about subjects is not needed and, although RGB-D cameras are installed in the sensing area, users are only required to carry their smart-phones. In this article, the methods developed to combine the above-mentioned technologies and the experiments performed to test the system are detailed. The obtained results show a significant improvement in terms of accuracy and performance with respect to previous WiFi-based solutions as well as an extension in the range of operation.

  8. Refinement of the Hybrid Neuroendovascular Operating Suite: Current and Future Applications.

    PubMed

    Ashour, Ramsey; See, Alfred P; Dasenbrock, Hormuzdiyar H; Khandelwal, Priyank; Patel, Nirav J; Belcher, Bianca; Aziz-Sultan, Mohammad Ali

    2016-07-01

    In early-generation hybrid biplane endovascular operating rooms, switching from surgical to angiographic position is cumbersome. In this report, we highlight the unique design of a new hybrid neuroendovascular operating suite that allows surgical access to the head while keeping the biplane system over the lower body of the patient. Current and future hybrid neuroendovascular operating suite applications are discussed. We collaborated with engineers to implement the following modifications to the design of the angiographic system: translation of the bed toward the feet to allow biplane cerebral imaging in the head-side position and the biplane left-side position; translation of the base of the A-plane C-arm away from the feet to allow increased operator space at the head of the bed and to allow cerebral imaging in both the head-side and left-side positions; use of a specialized boom mount for the display panel to increase mobility; and use of a radiolucent tabletop with attachments for the headrest or radiolucent head clamp system. The modified hybrid neuroendovascular operating suite allows for seamless transition between surgical and angiographic positions within seconds, improving workflow efficiency and decreasing procedure time as compared with early-generation hybrid rooms. Combined endovascular and surgical applications are facilitated by co-locating their respective technologies and refining the ergonomics of the system to ease transition between both sets of technologies. In so doing, hybrid neuroendovascular operating suites can be anticipated to improve patient outcomes, generate novel treatment paradigms, and improve time and cost efficiency. Copyright © 2016. Published by Elsevier Inc.

  9. Organizational Problems of Nutrition in the Context of Modernization of Education

    ERIC Educational Resources Information Center

    Platonovaa, Raisa I.; Lebedeva, Uljana M.; Cherkashina, Anna G.; Ammosova, Liliya I.; Dokhunaeva, Alyona V.

    2016-01-01

    The realization of the project of regional educational systems' modernization was started in 2011. The main goal of the project is to achieve systemic positive changes in the school education, improving of learning conditions, increasing of openness, availability, efficiency of General education, introduction of modern educational technologies. In…

  10. An Integrated Field-Based Approach to Building Teachers' Geoscience Skills

    ERIC Educational Resources Information Center

    Almquist, Heather; Stanley, George; Blank, Lisa; Hendrix, Marc; Rosenblatt, Megan; Hanfling, Seymour; Crews, Jeffrey

    2011-01-01

    The Paleo Exploration Project was a professional development program for K-12 teachers from rural eastern Montana. The curriculum was designed to incorporate geospatial technologies, including Global Positioning Systems (GPS), Geographic Information Systems (GIS), and total station laser surveying, with authentic field experiences in geology and…

  11. The Implications of Real Options on ERP-Enabled Adoption

    ERIC Educational Resources Information Center

    Nwankpa, Joseph K.

    2012-01-01

    Current research on Enterprise Resource Planning (ERP) systems and real options focuses on valuation and justification issues that manager's face prior to project approval with existing literature attempting to demonstrate that ERP systems as technology positioning investments have option-like characteristics thus making such ERP systems…

  12. SAFEGUARD: An Assured Safety Net Technology for UAS

    NASA Technical Reports Server (NTRS)

    Dill, Evan T.; Young, Steven D.; Hayhurst, Kelly J.

    2016-01-01

    As demands increase to use unmanned aircraft systems (UAS) for a broad spectrum of commercial applications, regulatory authorities are examining how to safely integrate them without loss of safety or major disruption to existing airspace operations. This work addresses the development of the Safeguard system as an assured safety net technology for UAS. The Safeguard system monitors and enforces conformance to a set of rules defined prior to flight (e.g., geospatial stay-out or stay-in regions, speed limits, altitude limits). Safeguard operates independently of the UAS autopilot and is strategically designed in a way that can be realized by a small set of verifiable functions to simplify compliance with regulatory standards for commercial aircraft. A framework is described that decouples the system from any other devices on the UAS as well as introduces complementary positioning source(s) for applications that require integrity and availability beyond what the Global Positioning System (GPS) can provide. Additionally, the high level logic embedded within the software is presented, as well as the steps being taken toward verification and validation (V&V) of proper functionality. Next, an initial prototype implementation of the described system is disclosed. Lastly, future work including development, testing, and system V&V is summarized.

  13. Intelligent systems technology infrastructure for integrated systems

    NASA Technical Reports Server (NTRS)

    Lum, Henry

    1991-01-01

    A system infrastructure must be properly designed and integrated from the conceptual development phase to accommodate evolutionary intelligent technologies. Several technology development activities were identified that may have application to rendezvous and capture systems. Optical correlators in conjunction with fuzzy logic control might be used for the identification, tracking, and capture of either cooperative or non-cooperative targets without the intensive computational requirements associated with vision processing. A hybrid digital/analog system was developed and tested with a robotic arm. An aircraft refueling application demonstration is planned within two years. Initially this demonstration will be ground based with a follow-on air based demonstration. System dependability measurement and modeling techniques are being developed for fault management applications. This involves usage of incremental solution/evaluation techniques and modularized systems to facilitate reuse and to take advantage of natural partitions in system models. Though not yet commercially available and currently subject to accuracy limitations, technology is being developed to perform optical matrix operations to enhance computational speed. Optical terrain recognition using camera image sequencing processed with optical correlators is being developed to determine position and velocity in support of lander guidance. The system is planned for testing in conjunction with Dryden Flight Research Facility. Advanced architecture technology is defining open architecture design constraints, test bed concepts (processors, multiple hardware/software and multi-dimensional user support, knowledge/tool sharing infrastructure), and software engineering interface issues.

  14. The role of top management in supporting the use of information technology in Australian hospitals.

    PubMed

    Reeve, R; Rose, G

    1999-01-01

    The progressive use of information systems and information technology has the potential to transform the way complex organisations are managed and the way they operate. This article reports the findings of a study undertaken to examine the importance of various factors related to the progressive use of information technology in Australian hospitals. Our analysis of data from 84 hospitals shows that hospital size has a significant positive relationship with the progressive use of information technology, as does the chief executive officer's attitude to information technology; however chief executive officer participation in information technology activities does not. The implications of these findings for the role of top management are discussed.

  15. Multistage position-stabilized vibration isolation system for neutron interferometry

    NASA Astrophysics Data System (ADS)

    Arif, Muhammad; Brown, Dennis E.; Greene, Geoffrey L.; Clothier, R.; Littrell, K.

    1994-10-01

    A two stage, position stabilized vibration isolation system has been constructed and is now in operation at the Cold Neutron Research Facility of the National Institute of Standards and Technology, Gaithersburg, MD. The system employs pneumatic isolators with a multiple input/multiple output pneumatic servo system based upon pulse width modulation control loops. The first stage consists of a 40,000 kg reinforced concrete table supported by pneumatic isolators. A large environmentally isolated laboratory enclosure rests on the concrete table. The second stage consists of a 3000 kg granite optical table located within the enclosure and supported by another set of pneumatic isolators. The position of the two stages is monitored by proximity sensors and inclinometers with 12 degrees of freedom. The system controls 12 independent pneumatic airsprings. The signals from these sensors are fed into a personal computer based control system. The control system has maintained the position of the two stages to better than 1 micrometers in translation and 5 (mu) rad in orientation for a period of a few months. A description of the system and its characteristics is given.

  16. High-precision GPS vehicle tracking to improve safety.

    DOT National Transportation Integrated Search

    2016-09-01

    Commercial Global Positioning System (GPS) devices are being used in transportation for applications : including vehicle navigation, traffic monitoring, and tracking commercial and public transit vehicles. The : current state-of-practice technology i...

  17. Telematic Problems of Unmanned Vehicles Positioning at Container Terminals and Warehouses

    NASA Astrophysics Data System (ADS)

    Kwasniowski, Stanisław; Zajac, Mateusz; Zajac, Paweł

    This paper describes the issues of transshipment container terminals operations, in the light of the development of this kind of transport. An increase in handling requires an expansion of stacking yard and automation of handling and transport processes. The development in this area first and foremost depends on modern handling technologies and automatic identification systems. AGV trucks play a key role in in those systems. The role of universities is to promote innovative technologies. Paper [2] contains the status of intermodal terminals development in Poland, which was awarded the prize of the Minister of Infrastructure of Poland in the field of "organization and management." The paper contains a detailed description of the principles of positioning, control and propulsion of AGV vehicles. The content was developed to make it understandable to logisticians responsible for the implementation question in Poland.

  18. Research on the relationship of the probe system for the swing arm profilometer based on the point source microscope

    NASA Astrophysics Data System (ADS)

    Gao, Mingxing; Jing, Hongwei; Cao, Xuedong; Chen, Lin; Yang, Jie

    2015-08-01

    When using the swing arm profilometer (SAP) to measure the aspheric mirror and the off-axis aspheric mirror, the error of the effective arm length of the SAP has an obvious influence on the measurement result. In order to reduce the influence of the effective arm length and increase the measurement accuracy of the SAP, the laser tracker is adopted to measure the effective arm length. Because the space position relationship of the probe system for the SAP is needed to measured before using the laser tracker, the point source microscope (PSM) is used to measure the space positional relationship. The measurement principle of the PSM and other applications are introduced; the accuracy and repeatability of this technology are analysed; the advantages and disadvantages of this technology are summarized.

  19. Real-time locating systems (RTLS) in healthcare: a condensed primer

    PubMed Central

    2012-01-01

    Real-time locating systems (RTLS, also known as real-time location systems) have become an important component of many existing ubiquitous location aware systems. While GPS (global positioning system) has been quite successful as an outdoor real-time locating solution, it fails to repeat this success indoors. A number of RTLS technologies have been used to solve indoor tracking problems. The ability to accurately track the location of assets and individuals indoors has many applications in healthcare. This paper provides a condensed primer of RTLS in healthcare, briefly covering the many options and technologies that are involved, as well as the various possible applications of RTLS in healthcare facilities and their potential benefits, including capital expenditure reduction and workflow and patient throughput improvements. The key to a successful RTLS deployment lies in picking the right RTLS option(s) and solution(s) for the application(s) or problem(s) at hand. Where this application-technology match has not been carefully thought of, any technology will be doomed to failure or to achieving less than optimal results. PMID:22741760

  20. Real-time locating systems (RTLS) in healthcare: a condensed primer.

    PubMed

    Kamel Boulos, Maged N; Berry, Geoff

    2012-06-28

    Real-time locating systems (RTLS, also known as real-time location systems) have become an important component of many existing ubiquitous location aware systems. While GPS (global positioning system) has been quite successful as an outdoor real-time locating solution, it fails to repeat this success indoors. A number of RTLS technologies have been used to solve indoor tracking problems. The ability to accurately track the location of assets and individuals indoors has many applications in healthcare. This paper provides a condensed primer of RTLS in healthcare, briefly covering the many options and technologies that are involved, as well as the various possible applications of RTLS in healthcare facilities and their potential benefits, including capital expenditure reduction and workflow and patient throughput improvements. The key to a successful RTLS deployment lies in picking the right RTLS option(s) and solution(s) for the application(s) or problem(s) at hand. Where this application-technology match has not been carefully thought of, any technology will be doomed to failure or to achieving less than optimal results.

  1. Use of minimal invasive extracorporeal circulation in cardiac surgery: principles, definitions and potential benefits. A position paper from the Minimal invasive Extra-Corporeal Technologies international Society (MiECTiS)

    PubMed Central

    Anastasiadis, Kyriakos; Murkin, John; Antonitsis, Polychronis; Bauer, Adrian; Ranucci, Marco; Gygax, Erich; Schaarschmidt, Jan; Fromes, Yves; Philipp, Alois; Eberle, Balthasar; Punjabi, Prakash; Argiriadou, Helena; Kadner, Alexander; Jenni, Hansjoerg; Albrecht, Guenter; van Boven, Wim; Liebold, Andreas; de Somer, Fillip; Hausmann, Harald; Deliopoulos, Apostolos; El-Essawi, Aschraf; Mazzei, Valerio; Biancari, Fausto; Fernandez, Adam; Weerwind, Patrick; Puehler, Thomas; Serrick, Cyril; Waanders, Frans; Gunaydin, Serdar; Ohri, Sunil; Gummert, Jan; Angelini, Gianni; Falk, Volkmar; Carrel, Thierry

    2016-01-01

    Minimal invasive extracorporeal circulation (MiECC) systems have initiated important efforts within science and technology to further improve the biocompatibility of cardiopulmonary bypass components to minimize the adverse effects and improve end-organ protection. The Minimal invasive Extra-Corporeal Technologies international Society was founded to create an international forum for the exchange of ideas on clinical application and research of minimal invasive extracorporeal circulation technology. The present work is a consensus document developed to standardize the terminology and the definition of minimal invasive extracorporeal circulation technology as well as to provide recommendations for the clinical practice. The goal of this manuscript is to promote the use of MiECC systems into clinical practice as a multidisciplinary strategy involving cardiac surgeons, anaesthesiologists and perfusionists. PMID:26819269

  2. The Future of Low-Carbon Electricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenblatt, Jeffery B.; Brown, Nicholas R.; Slaybaugh, Rachel

    Here, we review future global demand for electricity and major technologies positioned to supply itwith minimal greenhouse gas (GHG) emissions: renewables (wind, solar, water, geothermal and biomass), nuclear fission, and fossil power with CO 2 capture and sequestration. Two breakthrough technologies (space solar power and nuclear fusion) are discussed as exciting but uncertain additional options for low net GHG emissions (“low-carbon”) electricity generation. Grid integration technologies (monitoring and forecasting of transmission and distribution systems, demand-side load management, energy storage, and load balancing with low-carbon fuel substitutes) are also discussed. For each topic, recent historical trends and future prospects are reviewed,more » along with technical challenges, costs and other issues as appropriate. While no technology represents an ideal solution, their strengths can be enhanced by deployment in combination, along with grid integration that forms a critical set of enabling technologies to assure a reliable and robust future low-carbon electricity system.« less

  3. The Future of Low-Carbon Electricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenblatt, Jeffery B.; Brown, Nicholas R.; Slaybaugh, Rachel

    We review future global demand for electricity and major technologies positioned to supply it with minimal greenhouse gas (GHG) emissions: renewables (wind, solar, water, geothermal, and biomass), nuclear fission, and fossil power with CO2 capture and sequestration. We discuss two breakthrough technologies (space solar power and nuclear fusion) as exciting but uncertain additional options for low-net GHG emissions (i.e., low-carbon) electricity generation. In addition, we discuss grid integration technologies (monitoring and forecasting of transmission and distribution systems, demand-side load management, energy storage, and load balancing with low-carbon fuel substitutes). For each topic, recent historical trends and future prospects are reviewed,more » along with technical challenges, costs, and other issues as appropriate. Although no technology represents an ideal solution, their strengths can be enhanced by deployment in combination, along with grid integration that forms a critical set of enabling technologies to assure a reliable and robust future low-carbon electricity system.« less

  4. The Future of Low-Carbon Electricity

    DOE PAGES

    Greenblatt, Jeffery B.; Brown, Nicholas R.; Slaybaugh, Rachel; ...

    2017-07-10

    Here, we review future global demand for electricity and major technologies positioned to supply itwith minimal greenhouse gas (GHG) emissions: renewables (wind, solar, water, geothermal and biomass), nuclear fission, and fossil power with CO 2 capture and sequestration. Two breakthrough technologies (space solar power and nuclear fusion) are discussed as exciting but uncertain additional options for low net GHG emissions (“low-carbon”) electricity generation. Grid integration technologies (monitoring and forecasting of transmission and distribution systems, demand-side load management, energy storage, and load balancing with low-carbon fuel substitutes) are also discussed. For each topic, recent historical trends and future prospects are reviewed,more » along with technical challenges, costs and other issues as appropriate. While no technology represents an ideal solution, their strengths can be enhanced by deployment in combination, along with grid integration that forms a critical set of enabling technologies to assure a reliable and robust future low-carbon electricity system.« less

  5. Aircraft technology opportunities for the 21st Century

    NASA Technical Reports Server (NTRS)

    Albers, James A.; Zuk, John

    1988-01-01

    New aircraft technologies are presented that have the potential to expand the air transportation system and reduce congestion through new operating capabilities, and at the same time provide greater levels of safety and environmental compatibility. Both current and planned civil aeronautics technology at the NASA Ames, Lewis, and Langley Research Centers are addressed. The complete spectrum of current aircraft and new vehicle concepts is considered including rotorcraft (helicopters and tiltrotors), vertical and short takeoff and landing (V/STOL) and short takeoff and landing (STOL) aircraft, subsonic transports, high speed transports, and hypersonic/transatmospheric vehicles. New technologies for current aircraft will improve efficiency, affordability, safety, and environmental compatibility. Research and technology promises to enable development of new vehicles that will revolutionize or greatly change the transportation system. These vehicles will provide new capabilities which will lead to enormous market opportunities and economic growth, as well as improve the competitive position of the U.S. aerospace industry.

  6. Space Shuttle - Bringing cryohydrogen technology down to earth. [details of LH2 and LO2 technology and External Tank design

    NASA Technical Reports Server (NTRS)

    Odom, J. B.

    1978-01-01

    The External Tank must provide a safe storage container for both LH2 and LO2, a means of maintaining propellant quality in order to meet the engine pump net positive suction pressure requirements, and a structural strong-back for the Space Shuttle system, all at the minimum recurring cost and weight, while maintaining quality and reliability. The present paper summarizes External Tank design features and discusses the advantages of using LH2 and LO2 for the Space Shuttle system.

  7. A signal strength priority based position estimation for mobile platforms

    NASA Astrophysics Data System (ADS)

    Kalgikar, Bhargav; Akopian, David; Chen, Philip

    2010-01-01

    Global Positioning System (GPS) products help to navigate while driving, hiking, boating, and flying. GPS uses a combination of orbiting satellites to determine position coordinates. This works great in most outdoor areas, but the satellite signals are not strong enough to penetrate inside most indoor environments. As a result, a new strain of indoor positioning technologies that make use of 802.11 wireless LANs (WLAN) is beginning to appear on the market. In WLAN positioning the system either monitors propagation delays between wireless access points and wireless device users to apply trilateration techniques or it maintains the database of location-specific signal fingerprints which is used to identify the most likely match of incoming signal data with those preliminary surveyed and saved in the database. In this paper we investigate the issue of deploying WLAN positioning software on mobile platforms with typically limited computational resources. We suggest a novel received signal strength rank order based location estimation system to reduce computational loads with a robust performance. The proposed system performance is compared to conventional approaches.

  8. Mobile viewer system for virtual 3D space using infrared LED point markers and camera

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kunio; Taneji, Shoto

    2006-09-01

    The authors have developed a 3D workspace system using collaborative imaging devices. A stereoscopic display enables this system to project 3D information. In this paper, we describe the position detecting system for a see-through 3D viewer. A 3D display system is useful technology for virtual reality, mixed reality and augmented reality. We have researched spatial imaging and interaction system. We have ever proposed 3D displays using the slit as a parallax barrier, the lenticular screen and the holographic optical elements(HOEs) for displaying active image 1)2)3)4). The purpose of this paper is to propose the interactive system using these 3D imaging technologies. The observer can view virtual images in the real world when the user watches the screen of a see-through 3D viewer. The goal of our research is to build the display system as follows; when users see the real world through the mobile viewer, the display system gives users virtual 3D images, which is floating in the air, and the observers can touch these floating images and interact them such that kids can make play clay. The key technologies of this system are the position recognition system and the spatial imaging display. The 3D images are presented by the improved parallax barrier 3D display. Here the authors discuss the measuring method of the mobile viewer using infrared LED point markers and a camera in the 3D workspace (augmented reality world). The authors show the geometric analysis of the proposed measuring method, which is the simplest method using a single camera not the stereo camera, and the results of our viewer system.

  9. Bioterrorism Preparedness for Infectious Disease

    DTIC Science & Technology

    2005-01-01

    outbreak. The PDC was asked to use its Geographical Information System (GIS) and Global Positioning System (GPS) technology and capabilities to perform data...improvements in the health system . For example, on May 10, 2002, the Hawaii State Department of Health unveiled plans for its long-term dengue fever...management strategy. The plan included a long-term dengue surveillance system statewide, a statewide mosquito population survey, and ongoing vector control

  10. Analysis of the Effects of Connected–Automated Vehicle Technologies on Travel Demand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auld, Joshua; Sokolov, Vadim; Stephens, Thomas S.

    Connected–automated vehicle (CAV) technologies are likely to have significant effects not only on how vehicles operate in the transportation system, but also on how individuals behave and use their vehicles. While many CAV technologies—such as connected adaptive cruise control and ecosignals—have the potential to increase network throughput and efficiency, many of these same technologies have a secondary effect of reducing driver burden, which can drive changes in travel behavior. Such changes in travel behavior—in effect, lowering the cost of driving—have the potential to increase greatly the utilization of the transportation system with concurrent negative externalities, such as congestion, energy use,more » and emissions, working against the positive effects on the transportation system resulting from increased capacity. To date, few studies have analyzed the potential effects on CAV technologies from a systems perspective; studies often focus on gains and losses to an individual vehicle, at a single intersection, or along a corridor. However, travel demand and traffic flow constitute a complex, adaptive, nonlinear system. Therefore, in this study, an advanced transportation systems simulation model—POLARIS—was used. POLARIS includes cosimulation of travel behavior and traffic flow to study the potential effects of several CAV technologies at the regional level. Various technology penetration levels and changes in travel time sensitivity have been analyzed to determine a potential range of effects on vehicle miles traveled from various CAV technologies.« less

  11. Scientific American Inventions From Outer Space: Everyday Uses For NASA Technology

    NASA Technical Reports Server (NTRS)

    Baker, David

    2000-01-01

    The purpose of this book is to present some of the inventions highlighted in the yearly publication of the National Aeronautics and Space Administration (NASA) Spinoff. These inventions cover a wide range, some of which include improvements in health, medicine, public safety, energy, environment, resource management, computer technology, automation, construction, transportation, and manufacturing technology. NASA technology has brought forth thousands of commercial products which include athletic shoes, portable x-ray machines, and scratch-resistant sunglasses, guidance systems, lasers, solar power, robotics and prosthetic devices. These products are examples of NASA research innovations which have positively impacted the community.

  12. The 25th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    NASA Technical Reports Server (NTRS)

    Sydnor, Richard L. (Editor)

    1994-01-01

    Papers in the following categories are presented: recent developments in rubidium, cesium, and hydrogen-based frequency standards, and in cryogenic and trapped-ion technology; international and transnational applications of precise time and time interval (PTTI) technology with emphasis on satellite laser tracking networks, GLONASS timing, intercomparison of national time scales and international telecommunication; applications of PTTI technology to the telecommunications, power distribution, platform positioning, and geophysical survey industries; application of PTTI technology to evolving military communications and navigation systems; and dissemination of precise time and frequency by means of GPS, GLONASS, MILSTAR, LORAN, and synchronous communications satellites.

  13. GPS Lessons Learned from the International Space Station, Space Shuttle and X-38

    NASA Technical Reports Server (NTRS)

    Goodman, John L.

    2005-01-01

    This document is a collection of writings concerning the application of Global Positioning System (GPS) technology to the International Space Station (ISS), Space Shuttle, and X-38 vehicles. An overview of how GPS technology was applied is given for each vehicle, including rationale behind the integration architecture, and rationale governing the use (or non-use) of GPS data during flight.

  14. Thermal spray for commercial shipbuilding

    NASA Astrophysics Data System (ADS)

    Rogers, F. S.

    1997-09-01

    Thermal spraying of steel with aluminum to protect it from corrosion is a technology that has been proven to work in the marine environment. The thermal spray coating system includes a paint sealer that is applied over the thermally sprayed aluminum. This extends the service life of the coating and provides color to the end product. The thermal spray system protects steel both through the principle of isolation (as in painting) and galvanizing. With this dual protection mechanism, steel is protected from corrosion even when the coating is damaged. The thermal- sprayed aluminum coating system has proved the most cost- effective corrosion protection system for the marine environment. Until recently, however, the initial cost of application has limited its use for general application. Arc spray technology has reduced the application cost of thermal spraying of aluminum to below that of painting. Commercial shipbuilders could use this technology to enhance their market position in the marine industry.

  15. Simulation and evaluation on the eco-industrial system of Changchun economic and technological development zone, China.

    PubMed

    Zhao, Yan; Shang, Jin-cheng; Chen, Chong; Wu, He-nan

    2008-04-01

    Reasonable structure, adaptive patterns and effective regulation of society, economy and environment subsystems should be taken into account in order to obtain harmonious development of urban eco-industrial system. We simulated and evaluated a redesigned eco-industrial system in Changchun Economic and Technological Development Zone (CCETDZ) in the present work using system dynamics and grey cluster methods. Four typical development strategies were simulated during 2005-2020 via standard system dynamic models. Furthermore, analytic hierarchy process and grey cluster allowed for the eco-industrial system evaluation and scenarios optimizing. Our dynamic simulation and statistical analysis revealed that: (1) CCETDZ would have different development scenarios under different strategies. The total population in scenario 2 grew most rapidly and reached 3.28 x 10(5) in 2020, exceeding its long-term planning expected population. And the GDP differences among these four scenarios would amount to 6.41 x 10(10) RMB. On the other hand, environmental pollution would become serious along with economy increasing. As a restriction factor, positive or negative increment of water resource will occur according to the selected strategy. (2) The fourth strategy would have the best efficiency, which means that the most efficiently development of CCETDZ required to take science, technology, environment progress and economy increase into account at the same time. (3) Positive environment protection measures, such as cleaner production, green manufacture, production life cycle management and environment friendly industries, should be attached great importance the same as economy development during 2005-2020 in CCETDZ.

  16. 76 FR 78889 - Alternative Personnel Management System (APMS) at the National Institute of Standards and Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-20

    ... NIST in the Scientific and Engineering (ZP) career path at the Pay Band III and above, for Nuclear Reactor Operator positions in the Scientific and Engineering (ZT) career path at Pay Band III and above..., for a period of one year for all positions within the Scientific and Engineering (ZP) career path at...

  17. Application of GPS Technology to Monitor Traffic Intensity and Soil Impacts in a Forest Harvest Operation

    Treesearch

    Emily A. Carter; Timothy P. McDonald; John L. Torbert

    1999-01-01

    A study was initiated in the Winter of 1998 to examine the utility of employing Global Positioning Systems (GPS) to monitor harvest traffic throughout a loblolly pine plantation and utilize traffic intensity information to assess impacts of select soil physical properties. Traffic maps prepared from GPS positional data indicated the highest concentration of traffic...

  18. Self-calibration method for rotating laser positioning system using interscanning technology and ultrasonic ranging.

    PubMed

    Wu, Jun; Yu, Zhijing; Zhuge, Jingchang

    2016-04-01

    A rotating laser positioning system (RLPS) is an efficient measurement method for large-scale metrology. Due to multiple transmitter stations, which consist of a measurement network, the position relationship of these stations must be first calibrated. However, with such auxiliary devices such as a laser tracker, scale bar, and complex calibration process, the traditional calibration methods greatly reduce the measurement efficiency. This paper proposes a self-calibration method for RLPS, which can automatically obtain the position relationship. The method is implemented through interscanning technology by using a calibration bar mounted on the transmitter station. Each bar is composed of three RLPS receivers and one ultrasonic sensor whose coordinates are known in advance. The calibration algorithm is mainly based on multiplane and distance constraints and is introduced in detail through a two-station mathematical model. The repeated experiments demonstrate that the coordinate measurement uncertainty of spatial points by using this method is about 0.1 mm, and the accuracy experiments show that the average coordinate measurement deviation is about 0.3 mm compared with a laser tracker. The accuracy can meet the requirements of most applications, while the calibration efficiency is significantly improved.

  19. High-Resolution Mapping of Mines and Ripples at the Martha’s Vineyard Coastal Observatory

    DTIC Science & Technology

    2007-01-01

    time positioning and vessel motion were tracked using a POS-MV v.3 ( Applanix Corp., Richmond Hill, ON, Canada) inertial mo- tion sensor with two...outfitted with a hull-mounted Reson 8125, an Applanix POS-MV attitude sensor and positioning system, and a Brooke Ocean Technology, Dartmouth, NS...reported are referenced to mean low lower water (MLLW). For the October 2003 survey, positioning data were postpro- cessed by Applanix for kinematic

  20. Positioning and tracking control system analysis for mobile free space optical network

    NASA Astrophysics Data System (ADS)

    Li, Yushan; Refai, Hazem; Sluss, , James J., Jr.; Verma, Pramode; LoPresti, Peter

    2005-08-01

    Free Space Optical (FSO) communication has evolved to be applied to the mobile network, because it can provide up to 2.5Gbps or higher data rate wireless communication. One of the key challenges with FSO systems is to maintain the Line of Sight (LOS) between transmitter and receiver. In this paper, the feasibility and performance of applying the FSO technology to the mobile network is explored, and the design plan of the attitude positioning and tracking control system of the FSO transceiver is investigated. First, the system architecture is introduced, the requirements for the control system are analyzed, the involved reference frames and frame transformation are presented. Second, the control system bandwidth is used to evaluate the system performance in controlling a positioning system consisting of a gimbal and a steering mirror, some definitions to describe the positioning accuracy and tracking capacity are given. The attitude control of a FSO transceiver is split into 2 similar channels: pitch and yaw. Using an equivalent linear control system model, the simulations are carried out, with and without the presence of uncertainties that includes GPS data errors and sensor measurement errors. Finally, based on the simulation results in the pitch channel, the quantitative evaluation on the performance of the control system is given, including positioning accuracy, tracking capability and uncertainty tolerance.

  1. Real-time positioning technology in horizontal directional drilling based on magnetic gradient tensor measurement

    NASA Astrophysics Data System (ADS)

    Deng, Guoqing; Yao, Aiguo

    2017-04-01

    Horizontal directional drilling (HDD) technology has been widely used in Civil Engineering. The dynamic position of the drill bit during construction is one of significant facts determining the accuracy of the trajectory of HDD. A new method now has been proposed to detecting the position of drill bit by measuring the magnetic gradient tensor of the ground solenoid magnetic beacon. Compared with traditional HDD positioning technologies, this new model is much easier to apply with lower request for construction sites and higher positioning efficiency. A direct current (DC) solenoid as a magnetic dipole is placed on ground near the drill bit, and related sensors array which contains four Micro-electromechanical Systems (MEMS ) tri-axial magnetometers, one MEMS tri-axial accelerometer and one MEMS tri-axial gyroscope is set up for measuring the magnetic gradient tensor of the magnetic dipole. The related HDD positioning model has been established and simulation experiments have been carried out to verify the feasibility and reliability of the proposed method. The experiments show that this method has good positioning accuracy in horizontal and vertical direction, and totally avoid the impact of the environmental magnetic field. It can be found that the posture of the magnetic beacon will impact the remote positioning precision within valid positioning range, and the positioning accuracy is higher with longer baseline for limited space in drilling tools. The results prove that the relative error can be limited in 2% by adjusting position of the magnetic beacon, the layers of the enameled coil, the sensitive of magnetometers and the baseline distance. Conclusion can be made that this new method can be applied in HDD positioning with better effect and wider application range than traditional method.

  2. Colloid Microthruster Flight Performance Results from Space Technology 7 Disturbance Reduction System

    NASA Technical Reports Server (NTRS)

    Ziemer, John; Marrese-Reading, Colleen; Dunn, Charley; Romero-Wolf, Andrew; Cutler, Curt; Javidnia, Shahram; Li, Thanh; Li, Irena; Franklin, Garth; Barela, Phil; hide

    2017-01-01

    Space Technology 7 Disturbance Reduction System (ST7-DRS) is a NASA technology demonstration payload as part of the ESA LISA Pathfinder (LPF) mission, which launched on December 3, 2015. The ST7-DRS payload includes colloid microthrusters as part of a drag-free dynamic control system (DCS) hosted on an integrated avionics unit (IAU) with spacecraft attitude and test mass position provided by the LPF spacecraft computer and the highly sensitive gravitational reference sensor (GRS) as part of the LISA Technology Package (LTP). The objective of the DRS was to validate two technologies: colloid micro-Newton thrusters (CMNT) to provide low-noise control capability of the spacecraft, and drag-free flight control. The CMNT were developed by Busek Co., Inc., in a partnership with NASA Jet Propulsion Laboratory (JPL), and the DCS algorithms and flight software were developed at NASA Goddard Space Flight Center (GSFC). ST7-DRS demonstrated drag-free operation with 10nmHz level precision spacecraft position control along the primary axis of the LTP using eight CMNTs that provided 5-30 N each with 0.1 N precision. The DCS and CMNTs performed as required and as expected from ground test results, meeting all Level 1 requirements based on on-orbit data and analysis. DRS microthrusters operated for 2400 hours in flight during commissioning activities, a 90-day experiment and the extended mission. This mission represents the first validated demonstration of electrospray thrusters in space, providing precision spacecraft control and drag-free operation in a flight environment with applications to future gravitational wave observatories like LISA.

  3. The use of geospatial technologies to increase students' spatial abilities and knowledge of certain atmospheric science content

    NASA Astrophysics Data System (ADS)

    Hedley, Mikell Lynne

    2008-10-01

    The purpose of the study was to use geospatial technologies to improve the spatial abilities and specific atmospheric science content knowledge of students in high schools and junior highs in primarily high-needs schools. These technologies include remote sensing, geographic information systems, and global positioning systems. The program involved training the teachers in the use of the technologies at a five-day institute. Scientists who use the technologies in their research taught the basics of their use and scientific background. Standards-based activities were used to integrate the technologies in the classroom setting. Students were tested before any instruction in the technologies and then tested two other times. They used the technologies in field data collection and used that data in an inquiry-based project. Their projects were presented at a mini-science conference with scientists, teachers, parents, and other students in attendance. Significant differences were noted from pre-test to second post-test in the test in both the spatial abilities and science section. There was a gain in both spatial abilities and in specific atmospheric science content knowledge.

  4. 2015 Marine Corps Security Environment Forecast: Futures 2030-2045

    DTIC Science & Technology

    2015-01-01

    The technologies that make the iPhone “smart” were publically funded—the Internet, wireless networks, the global positioning system, microelectronics...Energy Revolution (63 percent);  Internet of Things (ubiquitous sensors embedded in interconnected computing devices) (50 percent);  “Sci-Fi...Neuroscience & artificial intelligence - Sensors /control systems -Power & energy -Human-robot interaction Robots/autonomous systems will become part of the

  5. A figure control sensor for the Large Deployable Reflector (LDR)

    NASA Technical Reports Server (NTRS)

    Bartman, R.; Dubovitsky, S.

    1988-01-01

    A sensing and control system is required to maintain high optical figure quality in a segmented reflector. Upon detecting a deviation of the segmented surface from its ideal form, the system drives segment mounted actuators to realign the individual segments and thereby return the surface to its intended figure. When the reflector is in use, a set of figure sensors will determine positions of a number of points on the back surface of each of the reflector's segments, each sensor being assigned to a single point. By measuring the positional deviations of these points from previously established nominal values, the figure sensors provide the control system with the information required to maintain the reflector's optical figure. The optical lever, multiple wavelength interferometer, and electronic capacitive sensor, the most promising technologies for the development of the figure sensor, are illustrated. It is concluded that to select a particular implementation of the figure sensors, performance requirement will be refined and relevant technologies investigated further.

  6. Thermal Imaging for Assessment of Electron-Beam Free Form Fabrication (EBF(sup 3)) Additive Manufacturing Welds

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Burke, Eric R.; Hafley, Robert A.; Taminger, Karen M.; Domack, Christopher S.; Brewer, Amy R.; Martin, Richard E.

    2013-01-01

    Additive manufacturing is a rapidly growing field where 3-dimensional parts can be produced layer by layer. NASA s electron beam free-form fabrication (EBF(sup 3)) technology is being evaluated to manufacture metallic parts in a space environment. The benefits of EBF(sup 3) technology are weight savings to support space missions, rapid prototyping in a zero gravity environment, and improved vehicle readiness. The EBF(sup 3) system is composed of 3 main components: electron beam gun, multi-axis position system, and metallic wire feeder. The electron beam is used to melt the wire and the multi-axis positioning system is used to build the part layer by layer. To insure a quality weld, a near infrared (NIR) camera is used to image the melt pool and solidification areas. This paper describes the calibration and application of a NIR camera for temperature measurement. In addition, image processing techniques are presented for weld assessment metrics.

  7. Faxing Structures to the Moon: Freeform Additive Construction System (FACS)

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Wilcox, Brian; McQuin, Christopher; Townsend, Julie; Rieber, Richard; Barmatz, Martin; Leichty, John

    2013-01-01

    Using the highly articulated All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) robotic mobility system as a precision positioning tool, a variety of print head technologies can be used to 3D print large-scale in-situ structures on planetary surfaces such as the moon or Mars. In effect, in the same way CAD models can be printed in a 3D printer, large-scale structures such as walls, vaults, domes, berms, paving, trench walls, and other insitu derived elements can be FAXed to the planetary surface and built in advance of the arrival of crews, supplementing equipment and materials brought from earth. This paper discusses the ATHLETE system as a mobility / positioning platform, and presents several options for large-scale additive print head technologies, including tunable microwave "sinterator" approaches and in-situ concrete deposition. The paper also discusses potential applications, such as sintered-in-place habitat shells, radiation shielding, road paving, modular bricks, and prefabricated construction components.

  8. Public bikesharing In North America : early operator and user understanding.

    DOT National Transportation Integrated Search

    2012-06-01

    Public bikesharingthe shared use of a bicycle fleetis an innovative transportation strategy that has recently emerged in major North American cities. Information technology (IT)-based bikesharing systems typically position bicycles throughout a...

  9. Continuous GPS : pilot applications - Phase II

    DOT National Transportation Integrated Search

    2003-08-01

    The primary objective of this research was to evaluate the feasibility of applying Global Positioning System (GPS) technology in the study of geotechnical phenomenon by developing, integrating, and test deploying a GPS-based instrumentation package u...

  10. KSC-06pd0181

    NASA Image and Video Library

    2006-01-17

    VANDENBERG AIR FORCE BASE, Calif. — At Vandenberg Air Force Base in California, workers are moving the Space Technology 5 (ST5) spacecraft into Orbital Sciences’ Building 1555. There it will be mated with the Pegasus XL launch vehicle. ST5 will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.

  11. KSC-06pd0445

    NASA Image and Video Library

    2006-02-14

    VANDENBERG AIR FORCE BASE, CALIF. - Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, workers clean and prepare the fairing to be installed around the Space Technology 5 (ST5) spacecraft. The ST5 contains three microsatellites with miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled from the belly of an L-1011 carrier aircraft no earlier than March 14 from Vandenberg Air Force Base.

  12. KSC-06pd0438

    NASA Image and Video Library

    2006-02-14

    VANDENBERG AIR FORCE BASE, CALIF. - Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, workers check the Orbital Sciences' Pegasus XL launch vehicle before encapsulation of the Space Technology 5 (ST5) spacecraft. The ST5 contains three microsatellites with miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled from the belly of an L-1011 carrier aircraft no earlier than March 14 from Vandenberg Air Force Base.

  13. KSC-06pd0186

    NASA Image and Video Library

    2006-01-18

    VANDENBERG AIR FORCE BASE, Calif. — Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, the wrapped Space Technology 5 (ST5) spacecraft is revealed after removal of the shipping container. ST5 will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.

  14. KSC-06pd0437

    NASA Image and Video Library

    2006-02-14

    VANDENBERG AIR FORCE BASE, CALIF. -Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, a worker checks connections on the Space Technology 5 (ST5) spacecraft before encapsulation with the fairing. The ST5, mated to Orbital Sciences' Pegasus XL launch vehicle, contains three microsatellites with miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled from the belly of an L-1011 carrier aircraft no earlier than March 14 from Vandenberg Air Force Base.

  15. KSC-06pd0172

    NASA Image and Video Library

    2006-01-13

    VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, the three micro-satellites comprising the Space Technology 5 spacecraft are mated and ready for weighing. ST5 will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.

  16. KSC-06pd0434

    NASA Image and Video Library

    2006-02-14

    VANDENBERG AIR FORCE BASE, CALIF. - Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, this closeup shows the Space Technology 5 (ST5) spacecraft's microsatellites mounted on the payload structure. The spacecraft will be enclosed for launch. The ST5 contains three microsatellites with miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled from the belly of an L-1011 carrier aircraft no earlier than March 14 from Vandenberg Air Force Base.

  17. KSC-06pd0169

    NASA Image and Video Library

    2006-01-13

    VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, technicians complete mating of the three micro-satellites on the payload support structure. The three satellites make up the Space Technology 5 spacecraft, called ST5, and will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.

  18. KSC-06pd0180

    NASA Image and Video Library

    2006-01-17

    VANDENBERG AIR FORCE BASE, Calif. — At Vandenberg Air Force Base in California, workers are moving the Space Technology 5 (ST5) spacecraft out of the truck into Orbital Sciences’ Building 1555. There it will be mated with the Pegasus XL launch vehicle. ST5 will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.

  19. KSC-06pd0179

    NASA Image and Video Library

    2006-01-17

    VANDENBERG AIR FORCE BASE, Calif. — At Vandenberg Air Force Base in California, workers are moving the Space Technology 5 (ST5) spacecraft out of the Orbital Sciences Building 836 onto a truck for transfer to Building 1555. There it will be mated with the Pegasus XL launch vehicle. ST5 will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.

  20. KSC-06pd0177

    NASA Image and Video Library

    2006-01-16

    VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, a scale attached to a crane is ready to lift the payload support structure with the three micro-satellites comprising the Space Technology 5 (ST5) spacecraft. ST5 will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.

  1. KSC-06pd0161

    NASA Image and Video Library

    2006-01-12

    VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, workers move lift one of three micro-satellites to prepare it for mating to the payload support structure. The three satellites that make up the Space Technology 5 spacecraft, called ST5, will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.

  2. KSC-06pd0173

    NASA Image and Video Library

    2006-01-16

    VANDENBERG AIR FORCE BASE, Calif. — In In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, the payload support structure with the three micro-satellites comprising the Space Technology 5 (ST5) spacecraft has been raised to vertical to be weighed. ST5 will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.

  3. KSC-06pd0442

    NASA Image and Video Library

    2006-02-14

    VANDENBERG AIR FORCE BASE, CALIF. - Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, workers prepare the fairing to be installed around the Space Technology 5 (ST5) spacecraft. The ST5 contains three microsatellites with miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled from the belly of an L-1011 carrier aircraft no earlier than March 14 from Vandenberg Air Force Base.

  4. KSC-06pd0339

    NASA Image and Video Library

    2006-02-03

    KENNEDY SPACE CENTER, FLA. - Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, workers begin the mating process of the Space Technology 5 (ST5), at right, with the Pegasus XL launch vehicle, at left. The ST5 contains three microsatellites, with miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled no earlier than March 6 from Vandenberg Air Force Base.

  5. KSC-06pd0170

    NASA Image and Video Library

    2006-01-13

    VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, technicians complete mating of the three micro-satellites on the payload support structure. The three satellites make up the Space Technology 5 spacecraft, called ST5, and will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.

  6. KSC-06pd0175

    NASA Image and Video Library

    2006-01-16

    VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, workers prepare the scale that will be used to weigh the three micro-satellites comprising the Space Technology 5 (ST5) spacecraft. ST5 will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.

  7. KSC-06pd0162

    NASA Image and Video Library

    2006-01-12

    VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, workers guide one of three micro-satellites onto a payload support structure. The three satellites that make up the Space Technology 5 spacecraft, called ST5, will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.

  8. KSC-06pd0182

    NASA Image and Video Library

    2006-01-17

    VANDENBERG AIR FORCE BASE, Calif. — At Vandenberg Air Force Base in California, workers are moving the Space Technology 5 (ST5) spacecraft into Orbital Sciences’ Building 1555. There it will be mated with the Pegasus XL launch vehicle. ST5 will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.

  9. KSC-06pd0336

    NASA Image and Video Library

    2006-02-03

    KENNEDY SPACE CENTER, FLA. - Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, the Space Technology 5 (ST5) spacecraft is ready for mating to the Pegasus XL launch vehicle. Seen in the photo are the three satellites that make up the ST5, containing miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled no earlier than March 6 from Vandenberg Air Force Base.

  10. KSC-06pd0167

    NASA Image and Video Library

    2006-01-12

    VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, workers are mating a third satellite onto the payload support structure. The three satellites make up the Space Technology 5 spacecraft, called ST5, and will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.

  11. KSC-06pd0185

    NASA Image and Video Library

    2006-01-18

    VANDENBERG AIR FORCE BASE, Calif. — Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, the wrapped Space Technology 5 (ST5) spacecraft is revealed after removal of the shipping container. ST5 will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.

  12. KSC-06pd0176

    NASA Image and Video Library

    2006-01-16

    VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, a scale is attached to a crane that lifts the payload support structure with the three micro-satellites comprising the Space Technology 5 (ST5) spacecraft. ST5 will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.

  13. KSC-06pd0168

    NASA Image and Video Library

    2006-01-12

    VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, three micro-satellites are mounted on the payload support structure. The three satellites make up the Space Technology 5 spacecraft, called ST5, and will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.

  14. KSC-06pd0163

    NASA Image and Video Library

    2006-01-12

    VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, workers secure one of three micro-satellites onto a payload support structure. The three satellites that make up the Space Technology 5 spacecraft, called ST5, will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.

  15. KSC-06pd0183

    NASA Image and Video Library

    2006-01-18

    VANDENBERG AIR FORCE BASE, Calif. — Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, workers attach the wires to lift the shipping container surrounding the Space Technology 5 (ST5) spacecraft. ST5 will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.

  16. KSC-06pd0441

    NASA Image and Video Library

    2006-02-14

    VANDENBERG AIR FORCE BASE, CALIF. - Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, workers clean and prepare the fairing to be installed around the Space Technology 5 (ST5) spacecraft. The ST5 contains three microsatellites with miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled from the belly of an L-1011 carrier aircraft no earlier than March 14 from Vandenberg Air Force Base.

  17. KSC-06pd0174

    NASA Image and Video Library

    2006-01-16

    VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, workers prepare the scale that will be used to weigh the three micro-satellites comprising the Space Technology 5 (ST5) spacecraft. ST5 will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.

  18. KSC-06pd0439

    NASA Image and Video Library

    2006-02-14

    VANDENBERG AIR FORCE BASE, CALIF. - Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, one half of the fairing is being installed around the Space Technology 5 (ST5) spacecraft. The ST5 contains three microsatellites with miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled from the belly of an L-1011 carrier aircraft no earlier than March 14 from Vandenberg Air Force Base.

  19. KSC-06pd0171

    NASA Image and Video Library

    2006-01-13

    VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, technicians complete mating of the three micro-satellites on the payload support structure. The three satellites make up the Space Technology 5 spacecraft, called ST5, and will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.

  20. KSC-06pd0431

    NASA Image and Video Library

    2006-02-14

    VANDENBERG AIR FORCE BASE, CALIF. - Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, the Space Technology 5 (ST5) spacecraft waits for encapsulation after mating with the Orbital Sciences' Pegasus XL launch vehicle. The ST5 contains three microsatellites with miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled from the belly of an L-1011 carrier aircraft no earlier than March 14 from Vandenberg Air Force Base.

  1. KSC-06pd0184

    NASA Image and Video Library

    2006-01-18

    VANDENBERG AIR FORCE BASE, Calif. — Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, workers assure the shipping container surrounding the Space Technology 5 (ST5) spacecraft is lifted safely. ST5 will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.

  2. KSC-06pd0440

    NASA Image and Video Library

    2006-02-14

    VANDENBERG AIR FORCE BASE, CALIF. - Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, workers adjust the first half of the fairing being installed around the Space Technology 5 (ST5) spacecraft. The ST5 contains three microsatellites with miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled from the belly of an L-1011 carrier aircraft no earlier than March 14 from Vandenberg Air Force Base.

  3. KSC-06pd0178

    NASA Image and Video Library

    2006-01-16

    VANDENBERG AIR FORCE BASE, Calif. — In the Orbital Sciences Building 836 at Vandenberg Air Force Base in California, workers keep close watch as the payload support structure with the three micro-satellites comprising the Space Technology 5 (ST5) spacecraft is lifted and weighed. ST5 will be launched by a Pegasus XL rocket. The satellites contain miniaturized redundant components and technologies. Each will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. With such missions, NASA hopes to improve scientists’ ability to accurately forecast space weather and minimize its harmful effects on space- and ground-based systems. Launch of ST5 is scheduled for Feb. 28 from Vandenberg Air Force Base.

  4. Starbugs: all-singing, all-dancing fibre positioning robots

    NASA Astrophysics Data System (ADS)

    Gilbert, James; Goodwin, Michael; Heijmans, Jeroen; Muller, Rolf; Miziarski, Stan; Brzeski, Jurek; Waller, Lew; Saunders, Will; Bennet, Alex; Tims, Julia

    2012-09-01

    Starbugs are miniature piezoelectric 'walking' robots with the ability to simultaneously position many optical fibres across a telescope's focal plane. Their simple design incorporates two piezoceramic tubes to form a pair of concentric 'legs' capable of taking individual steps of a few microns, yet with the capacity to move a payload several millimetres per second. The Australian Astronomical Observatory has developed this technology to enable fast and accurate field reconfigurations without the inherent limitations of more traditional positioning techniques, such as the 'pick and place' robotic arm. We report on our recent successes in demonstrating Starbug technology, driven principally by R&D efforts for the planned MANIFEST (many instrument fibre-system) facility for the Giant Magellan Telescope. Significant performance gains have resulted from improvements to the Starbug system, including i) the use of a vacuum to attach Starbugs to the underside of a transparent field plate, ii) optimisation of the control electronics, iii) a simplified mechanical design with high sensitivity piezo actuators, and iv) the construction of a dedicated laboratory 'test rig'. A method of reliably rotating Starbugs in steps of several arcminutes has also been devised, which integrates with the pre-existing x-y movement directions and offers greater flexibility while positioning. We present measured performance data from a prototype system of 10 Starbugs under full (closed-loop) control, at field plate angles of 0-90 degrees.

  5. Unicompartmental knee arthroplasty: is robotic technology more accurate than conventional technique?

    PubMed

    Citak, Mustafa; Suero, Eduardo M; Citak, Musa; Dunbar, Nicholas J; Branch, Sharon H; Conditt, Michael A; Banks, Scott A; Pearle, Andrew D

    2013-08-01

    Robotic-assisted unicompartmental knee arthroplasty (UKA) with rigid bone fixation "can significantly improve implant placement and leg alignment. The aim of this cadaveric study was to determine whether the use of robotic systems with dynamic bone tracking would provide more accurate UKA implant positioning compared to the conventional manual technique. Three-dimensional CT-based preoperative plans were created to determine the desired position and orientation for the tibial and femoral components. For each pair of cadaver knees, UKA was performed using traditional instrumentation on the left side and using a haptic robotic system on the right side. Postoperative CT scans were obtained and 3D-to-3D iterative closest point registration was performed. Implant position and orientation were compared to the preoperative plan. Surgical RMS errors for femoral component placement were within 1.9 mm and 3.7° in all directions of the planned implant position for the robotic group, while RMS errors for the manual group were within 5.4mm and 10.2°. Average RMS errors for tibial component placement were within 1.4mm and 5.0° in all directions for the robotic group; while, for the manual group, RMS errors were within 5.7 mm and 19.2°. UKA was more precise using a semiactive robotic system with dynamic bone tracking technology compared to the manual technique. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Coordinate-Based Clustering Method for Indoor Fingerprinting Localization in Dense Cluttered Environments.

    PubMed

    Liu, Wen; Fu, Xiao; Deng, Zhongliang

    2016-12-02

    Indoor positioning technologies has boomed recently because of the growing commercial interest in indoor location-based service (ILBS). Due to the absence of satellite signal in Global Navigation Satellite System (GNSS), various technologies have been proposed for indoor applications. Among them, Wi-Fi fingerprinting has been attracting much interest from researchers because of its pervasive deployment, flexibility and robustness to dense cluttered indoor environments. One challenge, however, is the deployment of Access Points (AP), which would bring a significant influence on the system positioning accuracy. This paper concentrates on WLAN based fingerprinting indoor location by analyzing the AP deployment influence, and studying the advantages of coordinate-based clustering compared to traditional RSS-based clustering. A coordinate-based clustering method for indoor fingerprinting location, named Smallest-Enclosing-Circle-based (SEC), is then proposed aiming at reducing the positioning error lying in the AP deployment and improving robustness to dense cluttered environments. All measurements are conducted in indoor public areas, such as the National Center For the Performing Arts (as Test-bed 1) and the XiDan Joy City (Floors 1 and 2, as Test-bed 2), and results show that SEC clustering algorithm can improve system positioning accuracy by about 32.7% for Test-bed 1, 71.7% for Test-bed 2 Floor 1 and 73.7% for Test-bed 2 Floor 2 compared with traditional RSS-based clustering algorithms such as K-means.

  7. Coordinate-Based Clustering Method for Indoor Fingerprinting Localization in Dense Cluttered Environments

    PubMed Central

    Liu, Wen; Fu, Xiao; Deng, Zhongliang

    2016-01-01

    Indoor positioning technologies has boomed recently because of the growing commercial interest in indoor location-based service (ILBS). Due to the absence of satellite signal in Global Navigation Satellite System (GNSS), various technologies have been proposed for indoor applications. Among them, Wi-Fi fingerprinting has been attracting much interest from researchers because of its pervasive deployment, flexibility and robustness to dense cluttered indoor environments. One challenge, however, is the deployment of Access Points (AP), which would bring a significant influence on the system positioning accuracy. This paper concentrates on WLAN based fingerprinting indoor location by analyzing the AP deployment influence, and studying the advantages of coordinate-based clustering compared to traditional RSS-based clustering. A coordinate-based clustering method for indoor fingerprinting location, named Smallest-Enclosing-Circle-based (SEC), is then proposed aiming at reducing the positioning error lying in the AP deployment and improving robustness to dense cluttered environments. All measurements are conducted in indoor public areas, such as the National Center For the Performing Arts (as Test-bed 1) and the XiDan Joy City (Floors 1 and 2, as Test-bed 2), and results show that SEC clustering algorithm can improve system positioning accuracy by about 32.7% for Test-bed 1, 71.7% for Test-bed 2 Floor 1 and 73.7% for Test-bed 2 Floor 2 compared with traditional RSS-based clustering algorithms such as K-means. PMID:27918454

  8. Robotics and systems technology for advanced endoscopic procedures: experiences in general surgery.

    PubMed

    Schurr, M O; Arezzo, A; Buess, G F

    1999-11-01

    The advent of endoscopic techniques changed surgery in many regards. This paper intends to describe an overview about technologies to facilitate endoscopic surgery. The systems described have been developed for the use in general surgery, but an easy application also in the field of cardiac surgery seems realistic. The introduction of system technology and robotic technology enables today to design a highly ergonomic solo-surgery platform. To relief the surgeon from fatigue we developed a new chair dedicated to the functional needs of endoscopic surgery. The foot pedals for high frequency, suction and irrigation are integrated into the basis of the chair. The chair is driven by electric motors controlled with an additional foot pedal joystick to achieve the desired position in the OR. A major enhancement for endoscopic technology is the introduction of robotic technology to design assisting devices for solo-surgery and manipulators for microsurgical instrumentation. A further step in the employment of robotic technology is the design of 'master-slave manipulators' to provide the surgeon with additional degrees of freedom of instrumentation. In 1996 a first prototype of an endoscopic manipulator system. named ARTEMIS, could be used in experimental applications. The system consists of a user station (master) and an instrument station (slave). The surgeon sits at a console which integrates endoscopic monitors, communication facilities and two master devices to control the two slave arms which are mounted to the operating table. Clinical use of the system, however, will require further development in the area of slave mechanics and the control system. Finally the implementation of telecommunication technology in combination with robotic instruments will open new frontiers, such as teleconsulting, teleassistance and telemanipulation.

  9. Tractor-mounted, GPS-based spot fumigation system manages Prunus replant disease

    USDA-ARS?s Scientific Manuscript database

    Our research goal was to use recent advances in global positioning system (GPS) and computer technology to apply just the right amount of fumigant where it is most needed (i.e., in a small target treatment zone in and around each tree replanting site) to control Prunus replant disease (PRD). We deve...

  10. The 18th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Topics concerning aerospace mechanisms, their functional performance, and design specifications are presented. Discussed subjects include the design and development of release mechanisms, actuators, linear driver/rate controllers, antenna and appendage deployment systems, position control systems, and tracking mechanisms for antennas and solar arrays. Engine design, spaceborne experiments, and large space structure technology are also examined.

  11. Promoting Inquiry in the Gifted Classroom through GPS and GIS Technologies

    ERIC Educational Resources Information Center

    Shaunessy, Elizabeth; Page, Carrie

    2006-01-01

    Geography is rapidly becoming more interactive, especially with the advent of the Global Positioning System (GPS) and Geographic Information Systems (GIS) and their adoption in the public and private sectors. The days of two-dimensional maps are quickly being replaced by geographic images that are stored electronically in computers and handheld…

  12. IVHS And The Environment, New Models For Federal, State And Local Cooperation In The Application Of Advanced Transportation Systems For Environmental Improvements In Urban Areas, Executive Summary

    DOT National Transportation Integrated Search

    1994-09-01

    INTELLIGENT VEHICLE HIGHWAY SYSTEMS (IVHS) HAVE THE POTENTIAL TO SUBSTANTIALLY CHANGE TRANSPORTATION'S IMPACT ON URBAN AIR QUALITY AND OTHER ENVIRONMENTAL ASPECTS. WHETHER THIS IMPACT IS POSITIVE DEPENDS ON HOW THESE TECHNOLOGIES ARE DEPLOYED. THIS S...

  13. Building a Critical Components for Successful Multimedia-Based Collaborative eLearning Design Framework

    ERIC Educational Resources Information Center

    Asanok, M.; Kitrakan, P.; Brahmawong, C.

    2008-01-01

    With newly developing multimedia and web-based technologies have provided opportunities of developing a multimedia-based collaborative eLearning systems. The development of eLearning systems has started a revolution for instructional content delivering, learning activities and social communication. Based on various positions on this issue have…

  14. Acceptance of Internet Banking Systems among Young Managers

    NASA Astrophysics Data System (ADS)

    Ariff, Mohd Shoki Md; M, Yeow S.; Zakuan, Norhayati; Zaidi Bahari, Ahamad

    2013-06-01

    The aim of this paper is to determine acceptance of internet banking system among potential young users, specifically future young managers. The relationships and the effects of computer self-efficacy (CSE) and extended technology acceptance model (TAM) on the behavioural intention (BI) to use internet banking system were examined. Measurement of CSE, TAM and BI were adapted from previous studies. However construct for TAM has been extended by adding a new variable which is perceived credibility (PC). A survey through questionnaire was conducted to determine the acceptance level of CSE, TAM and BI. Data were obtained from 275 Technology Management students, who are pursuing their undergraduate studies in a Malaysia's public university. The confirmatory factor analysis performed has identified four variables as determinant factors of internet banking acceptance. The first variable is computer self-efficacy (CSE), and another three variables from TAM constructs which are perceived usefulness (PU), perceived ease of use (PE) and perceived credibility (PC). The finding of this study indicated that CSE has a positive effect on PU and PE of the Internet banking systems. Respondents' CSE was positively affecting their PC of the systems, indicating that the higher the ability of one in computer skills, the higher the security and privacy issues of PC will be concerned. The multiple regression analysis indicated that only two construct of TAM; PU and PC were significantly associated with BI. It was found that the future managers' CSE indirectly affects their BI to use the internet banking systems through PU and PC of TAM. TAM was found to have direct effects on respondents' BI to use the systems. Both CSE and the PU and PC of TAM were good predictors in understanding individual responses to information technology. The role of PE of the original TAM to predict the attitude of users towards the use of information technology systems was surprisingly insignificant.

  15. Cobalt: Development and Maturation of GN&C Technologies for Precision Landing

    NASA Technical Reports Server (NTRS)

    Carson, John M.; Restrepo, Carolina; Seubert, Carl; Amzajerdian, Farzin

    2016-01-01

    The CoOperative Blending of Autonomous Landing Technologies (COBALT) instrument is a terrestrial test platform for development and maturation of guidance, navigation and control (GN&C) technologies for precision landing. The project is developing a third-generation Langley Research Center (LaRC) navigation doppler lidar (NDL) for ultra-precise velocity and range measurements, which will be integrated and tested with the Jet Propulsion Laboratory (JPL) lander vision system (LVS) for terrain relative navigation (TRN) position estimates. These technologies together provide precise navigation knowledge that is critical for a controlled and precise touchdown. The COBALT hardware will be integrated in 2017 into the GN&C subsystem of the Xodiac rocket-propulsive vertical test bed (VTB) developed by Masten Space Systems, and two terrestrial flight campaigns will be conducted: one open-loop (i.e., passive) and one closed-loop (i.e., active).

  16. [Economic evaluation of social technologies applied to health promotion: water supply by the SODIS System in riverside communities of the Brazilian Amazon].

    PubMed

    Lobo, Marco Aurélio Arbage; Lima, Dula Maria Bento de; Souza, Cezarina Maria Nobre; Nascimento, Waddle Almeida; Araújo, Leiliane Cristina Cardoso; Santos, Neucy Barreto dos

    2013-07-01

    The so-called social technologies have been widely used in many places around the world as a viable alternative for low-income populations to gain access to opportunities for employment and income and other aspects related to quality of life, including basic sanitation. This paper conducts a cost-benefit analysis of using a low cost technology for drinking water used in several countries, namely the SODIS system. The study was conducted in riverside communities living in the island area of Belem municipality, located in the Brazilian Amazon. Data were collected through questionnaires answered by families living on three islands: Jutuba, Nova and Urubuoca. The results were positive, considering the cost-benefit analysis of the project, which demonstrates the economic viability of using the SODIS system in the situation investigated.

  17. Design and implementation of a magnetically suspended microrobotic pick-and-place system

    NASA Astrophysics Data System (ADS)

    Shameli, Ehsan; Craig, David G.; Khamesee, Mir Behrad

    2006-04-01

    Micromanipulation is an emerging technology in such diverse areas as precision engineering, microfabrication, and microsurgery. Each of these areas impose certain technological constraints and requirements in fabrication, actuation, and control. This paper performs a review on the latest technologies of microrobotic actuation techniques and suggests a suitable technique for the actuation of a magnetically levitated microrobot. The microrobot, suspended in an externally produced magnetic field, consists of a gripper attached to a series of permanent magnets and is capable of simple pick and place tasks. A number of electromagnets produce the external magnetic field and three laser sensors feedback the position of the levitated microrobot. Through finite element analysis, performance of the levitation system was investigated, and simulations and experiments were carried out to demonstrate the practical capabilities of the proposed system.

  18. A superconducting large-angle magnetic suspension

    NASA Technical Reports Server (NTRS)

    Downer, James R.; Anastas, George V., Jr.; Bushko, Dariusz A.; Flynn, Frederick J.; Goldie, James H.; Gondhalekar, Vijay; Hawkey, Timothy J.; Hockney, Richard L.; Torti, Richard P.

    1992-01-01

    SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible.

  19. A superconducting large-angle magnetic suspension

    NASA Astrophysics Data System (ADS)

    Downer, James R.; Anastas, George V., Jr.; Bushko, Dariusz A.; Flynn, Frederick J.; Goldie, James H.; Gondhalekar, Vijay; Hawkey, Timothy J.; Hockney, Richard L.; Torti, Richard P.

    1992-12-01

    SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible.

  20. Exploration Mission Particulate Matter Filtration Technology Performance Testing in a Simulated Spacecraft Cabin Ventilation System

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.; Frederick, Kenneth R.; Mccormick, Robert M.

    2017-01-01

    Human deep space exploration missions will require advances in long-life, low maintenance airborne particulate matter filtration technology. As one of the National Aeronautics and Space Administrations (NASA) developments in this area, a prototype of a new regenerable, multi-stage particulate matter filtration technology was tested in an International Space Station (ISS) module simulation facility. As previously reported, the key features of the filter system include inertial and media filtration with regeneration and in-place media replacement techniques. The testing facility can simulate aspects of the cabin environment aboard the ISS and contains flight-like cabin ventilation system components. The filtration technology test article was installed at the inlet of the central ventilation system duct and instrumented to provide performance data under nominal flow conditions. In-place regeneration operations were also evaluated. The real-time data included pressure drop across the filter stages, process air flow rate, ambient pressure, humidity and temperature. In addition, two video cameras positioned at the filtration technology test articles inlet and outlet were used to capture the mechanical performance of the filter media indexing operation under varying air flow rates. Recent test results are presented and future design recommendations are discussed.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ken L. Stratton

    The objective of this project is to investigate the applicability of a combined Global Positioning System and Inertial Measurement Unit (GPS/IMU) for information based displays on earthmoving machines and for automated earthmoving machines in the future. This technology has the potential of allowing an information-based product like Caterpillar's Computer Aided Earthmoving System (CAES) to operate in areas with satellite shading. Satellite shading is an issue in open pit mining because machines are routinely required to operate close to high walls, which reduces significantly the amount of the visible sky to the GPS antenna mounted on the machine. An inertial measurementmore » unit is a product, which provides data for the calculation of position based on sensing accelerations and rotation rates of the machine's rigid body. When this information is coupled with GPS it results in a positioning system that can maintain positioning capability during time periods of shading.« less

  2. Positive displacement compounding of a heavy duty diesel engine

    NASA Technical Reports Server (NTRS)

    Sekar, R.; Kamo, R.

    1983-01-01

    A helical screw type positive displacement (PD) compressor and expander was considered as an alternative to the turbocharger and the power turbine in the Cummins advanced turbocompound engine. The Institute of Gas Technology (IGT) completed the design, layout, and performance prediction of the PD machines. The results indicate that a screw compressor-expander system is feasible up to at least 750 HP, dry operation of the rotors is feasible, cost and producibility are uncertain, and the system will yield about 4% improvement in brake specific fuel consumption (BSFC) over the advanced turbocompound engine.

  3. Modeling operation of mechanism of holistic management of technological processes at enterprise

    NASA Astrophysics Data System (ADS)

    Igorevich Shanin, Igor; Aleksandrovna Boris, Olga

    2018-03-01

    Enterprises applying modeling and technological process management approaches represent a sector of a new innovative economic system. First of all, they are innovators using innovative proposals and various resources to solve practical problems. Their work leads to balanced positive technological changes. In other words, they constitute industrial entrepreneurship with innovative goals and vice versa - innovative entrepreneurship with industrial objectives. It should be noted that the mechanism of holistic management of technological processes at the enterprise combines a traditional industrial organization of production, an innovative and technological enterprise. The enterprise borrows industrial targets from the latter one, an innovative component - from innovative activity and entrepreneurial approaches to holistic management - from a commercial firm.

  4. Practitioner approaches to the integration of clinical decision support system technology in critical care.

    PubMed

    Weber, Scott; Crago, Elizabeth A; Sherwood, Paula R; Smith, Tara

    2009-11-01

    The aim of this study was to explore the experiences of nurses and physicians who use a clinical decision support system (CDSS) in the critical care area, focusing on clinicians' motives and values related to decisions to either use or not use this optional technology. Information technology (IT) has been demonstrated to positively impact quality of patient care. Decision-support technology serves as an adjunct to, not as a replacement for, actual clinical decision making. Nurse administrators play an imperative role in the planning and implementation of IT projects and can benefit from understanding clinicians' affective considerations and approaches to the technology. This qualitative study used grounded theory methods. A total of 33 clinicians participated in in-depth structured interviews probing their professional concerns with how the technology is used. Data were analyzed using the constant comparative method. Medical staff were frustrated by perceived lack of planning input before system implementation. Both nurse and physician cohort groups were dissatisfied with preimplementation education. Barriers to system use were identified in significant detail by the participants. Both nurses and physicians should be involved in preimplementation planning and ongoing evaluation of CDSSs. There is a need for a systematic review or Cochrane meta-analysis describing the affective aspects of successful implementations of decisional technology in critical care, specifically from the perspective of nursing administrators.

  5. Future earth orbit transportation systems/technology implications

    NASA Technical Reports Server (NTRS)

    Henry, B. Z.; Decker, J. P.

    1976-01-01

    Assuming Space Shuttle technology to be state-of-the-art, projected technological advances to improve the capabilities of single-stage-to-orbit (SSTO) derivatives are examined. An increase of about 30% in payload performance can be expected from upgrading the present Shuttle system through weight and drag reductions and improvements in the propellants and engines. The ODINEX (Optimal Design Integration Executive Computer Program) program has been used to explore design options. An advanced technology SSTO baseline system derived from ODINEX analysis has a conventional wing-body configuration using LOX/LH engines, three with two-position nozzles with expansion ratios of 40 and 200 and four with fixed nozzles with an expansion ratio of 40. Two assisted-takeoff approaches are under consideration in addition to a concept in which the orbital vehicle takes off empty using airbreathing propulsion and carries out a rendezvous with two large cryogenic tankers carrying propellant at an altitude of 6100 m. Further approaches under examination for propulsion, aerothermodynamic design, and design integration are described.

  6. Effect of Traffic Position Accuracy for Conducting Safe Airport Surface Operations

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Prinzel, Lawrence J., III; Bailey, Randall E.; Arthur, Jarvis J., III; Barnes, James R.

    2014-01-01

    The Next Generation Air Transportation System (NextGen) concept proposes many revolutionary operational concepts and technologies, such as display of traffic information and movements, airport moving maps (AMM), and proactive alerts of runway incursions and surface traffic conflicts, to deliver an overall increase in system capacity and safety. A piloted simulation study was conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center to evaluate the ability to conduct safe and efficient airport surface operations while utilizing an AMM displaying traffic of various position accuracies as well as the effect of traffic position accuracy on airport conflict detection and resolution (CD&R) capability. Nominal scenarios and off-nominal conflict scenarios were conducted using 12 airline crews operating in a simulated Memphis International Airport terminal environment. The data suggest that all traffic should be shown on the airport moving map, whether qualified or unqualified, and conflict detection and resolution technologies provide significant safety benefits. Despite the presence of traffic information on the map, collisions or near collisions still occurred; when indications or alerts were generated in these same scenarios, the incidences were averted.

  7. 2002 Industry Studies: Aircraft

    DTIC Science & Technology

    2002-01-01

    aircraft to a defense electronics, systems integration and information technology company.39 Northrop Grumman no longer seeks a position as a prime...between the military and civil market . Though also upgrading the H-1 helicopter series for the USMC, Bell has mortgaged its future on tiltrotor technology ...business in export dollars, the industry has been forced to look for new markets as worldwide aircraft sales have dropped. Because the U.S. national

  8. Matching point-of care devices to clinicians for positive outcomes.

    PubMed

    Utterback, Karen; Waldo, Billie H

    2005-07-01

    Home care clinicians' use of point-of-care (POC) technology has increased 63% in the past 5 years. Although there are more POC system choices, matching the right device to each clinician's role is a challenge. This article clarifies the uses of laptop or notebook computer, personal digital assistants (PDAs), telephony, or automated telehealth, suggesting ways these technologies can result in clinical efficiencies, care coordination, and regulatory compliance.

  9. Six health care trends that will reshape the patient-provider dynamic.

    PubMed

    Liao, Joshua M; Emanuel, Ezekiel J; Navathe, Amol S

    2016-09-01

    Six trends - movement towards value-based payment, rapid adoption of digital health technology, care delivery in non-traditional settings, development of individualized clinical guidelines, increased transparency, and growing cultural awareness about the harms of medical overuse - are driving the US health care system towards a future defined by quality- and patient-centric care. Health care organizations are responding to these changes by implementing provider and workforce changes, pursuing stronger payer-provider integration, and accelerating the use of digital technology and data. While these efforts can also improve the clinical relationship and create positive system redesign among health care organizations, they require alignment between organizational and physician incentives that can inadvertently harm the dynamic between patients and providers. Organizations can utilize several strategies to preserve the patient-physician relationship and advance the positive benefits of new organizational strategies while guarding against unintended consequences. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Study on GIS-based sport-games information system

    NASA Astrophysics Data System (ADS)

    Peng, Hongzhi; Yang, Lingbin; Deng, Meirong; Han, Yongshun

    2008-10-01

    With the development of internet and such info-technologies as, Information Superhighway, Computer Technology, Remote Sensing(RS), Global Positioning System(GPS), Digital Communication and National Information Network(NIN),etc. Geographic Information System (GIS) becomes more and more popular in fields of science and industries. It is not only feasible but also necessary to apply GIS to large-scale sport games. This paper firstly discussed GIS technology and its application, then elaborated on the frame and content of Sport-Games Geography Information System(SG-GIS) with the function of gathering, storing, processing, sharing, exchanging and utilizing all kind of spatial-temporal information about sport games, and lastly designed and developed a public service GIS for the 6th Asian Winter Games in Changchun, China(CAWGIS). The application of CAWGIS showed that the established SG-GIS was feasible and GIS-based sport games information system was able to effectively process a large amount of sport-games information and provide the real-time sport games service for governors, athletes and the public.

  11. Unique Systems Analysis Task 7, Advanced Subsonic Technologies Evaluation Analysis

    NASA Technical Reports Server (NTRS)

    Eisenberg, Joseph D. (Technical Monitor); Bettner, J. L.; Stratton, S.

    2004-01-01

    To retain a preeminent U.S. position in the aircraft industry, aircraft passenger mile costs must be reduced while at the same time, meeting anticipated more stringent environmental regulations. A significant portion of these improvements will come from the propulsion system. A technology evaluation and system analysis was accomplished under this task, including areas such as aerodynamics and materials and improved methods for obtaining low noise and emissions. Previous subsonic evaluation analyses have identified key technologies in selected components for propulsion systems for year 2015 and beyond. Based on the current economic and competitive environment, it is clear that studies with nearer turn focus that have a direct impact on the propulsion industry s next generation product are required. This study will emphasize the year 2005 entry into service time period. The objective of this study was to determine which technologies and materials offer the greatest opportunities for improving propulsion systems. The goals are twofold. The first goal is to determine an acceptable compromise between the thermodynamic operating conditions for A) best performance, and B) acceptable noise and chemical emissions. The second goal is the evaluation of performance, weight and cost of advanced materials and concepts on the direct operating cost of an advanced regional transport of comparable technology level.

  12. Recent Developments and Applications of Radiation/Detection Technology in Tsinghua University

    NASA Astrophysics Data System (ADS)

    Kang, Ke-Jun

    2010-03-01

    Nuclear technology applications have been very important research fields in Tsinghua University (THU) for more than 50 years. This paper describes two major directions and related projects running in THU concerning nuclear technology applications for radiation imaging and nuclear technology applications for astrophysics. Radiation imaging is a significant application of nuclear technology for all kinds of real world needs including security inspections, anti-smuggling operations, and medicine. The current improved imaging systems give much higher quality radiation images. THU has produced accelerating tubes for both industrial and medical accelerators with energy levels ranging from 2.5˜20Mev. Detectors have been produced for medical and industrial imaging as well as for high energy physics experiments such as the MRPC with fast time and position resolutions. DR and CT systems for radiation imaging systems have been continuously improved with new system designs and improved algorithms for image reconstruction and processing. Two important new key initiatives are the dual-energy radiography and dual-energy CT systems. Dual-energy CT imaging improves material discrimination by providing both the electron density and the atomic number distribution of scanned objects. Finally, this paper also introduces recent developments related to the hard X-ray modulation telescope (HXMT) provided by THU.

  13. Pervasive access to images and data--the use of computing grids and mobile/wireless devices across healthcare enterprises.

    PubMed

    Pohjonen, Hanna; Ross, Peeter; Blickman, Johan G; Kamman, Richard

    2007-01-01

    Emerging technologies are transforming the workflows in healthcare enterprises. Computing grids and handheld mobile/wireless devices are providing clinicians with enterprise-wide access to all patient data and analysis tools on a pervasive basis. In this paper, emerging technologies are presented that provide computing grids and streaming-based access to image and data management functions, and system architectures that enable pervasive computing on a cost-effective basis. Finally, the implications of such technologies are investigated regarding the positive impacts on clinical workflows.

  14. Technology assessment of future intercity passenger transportation systems. Volume 7: Study recommendations

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Research and analysis tasks to alleviate negative impacts, to augment positive impacts, or to better understand the impacts produced by the potential introduction of the alternate transportation technologies are identified. The project team's recommendations on research and analysis efforts which have resulted from the technology assessment are provided. Many of the recommendations apply to the future supply of intercity passenger transportation services, categorized by mode. Other recommendations pertain to broad issues in intercity transportation--e.g., finance, regulation, traveler values--that will affect all modes.

  15. Locomotor, Heart-Rate, and Metabolic Power Characteristics of Youth Women's Field Hockey: Female Athletes in Motion (FAiM) Study

    ERIC Educational Resources Information Center

    Vescovi, Jason D.

    2016-01-01

    Purpose: The purpose of this study was to quantify the locomotor, heart-rate, and metabolic power characteristics of high-level youth female field hockey matches. Method: Players from the U21 and U17 Canadian women's national teams were monitored during a 4-match test series using Global Positioning System technology. Position (forward,…

  16. Marine benefits from NASA's global differential system: sub-meter positioning, anywhere, anytime

    NASA Technical Reports Server (NTRS)

    Bar-Sever, Y.

    2000-01-01

    Precise real-time, onboard knowledge of a platform s state (position and velocity) is a critical compponent in many marine applications. This article describes a recent technology development that provides a breakthrough in this capability for platforms carrying a dual-frequency GPS receiver - seamless global coverage and roughly an order of magnitude improvement in accuracy compared to state-of-the-art.

  17. High-technology augmentative communication for adults with post-stroke aphasia: a systematic review.

    PubMed

    Russo, Maria Julieta; Prodan, Valeria; Meda, Natalia Nerina; Carcavallo, Lucila; Muracioli, Anibal; Sabe, Liliana; Bonamico, Lucas; Allegri, Ricardo Francisco; Olmos, Lisandro

    2017-05-01

    Augmentative and alternative communication (AAC) systems were introduced into clinical practice by therapists to help compensate for persistent language deficits in people with aphasia. Although, there is currently a push towards an increased focus on compensatory approaches in an attempt to maximize communication function for social interaction, available studies including AAC systems, especially technologically advanced communication tools and systems, known as 'high-technology AAC', show key issues and obstacles for these tools to become utilized in mainstream clinical practice. Areas covered: The current review synthesizes communication intervention studies that involved the use of high-technology communication devices to enhance linguistic communication skills for adults with post-stroke aphasia. The review focuses on compensatory approaches that emphasized functional communication. It also summarizes recommendations for the report of studies evaluating high-technology devices that may be potentially relevant for other researchers working with adults with post-stroke aphasia. Expert commentary: Taken together with positive results in heterogeneous studies, high-technology devices represent a compensatory strategy to enhance communicative skills in individuals with post-stroke aphasia. Improvements in the design of studies and reporting of results may lead to better interpretation of the already existing scientific results from aphasia management.

  18. COBALT CoOperative Blending of Autonomous Landing Technology

    NASA Technical Reports Server (NTRS)

    Carson, John M. III; Restrepo, Carolina I.; Robertson, Edward A.; Seubert, Carl R.; Amzajerdian, Farzin

    2016-01-01

    COBALT is a terrestrial test platform for development and maturation of GN&C (Guidance, Navigation and Control) technologies for PL&HA (Precision Landing and Hazard Avoidance). The project is developing a third generation, Langley Navigation Doppler Lidar (NDL) for ultra-precise velocity and range measurements, which will be integrated and tested with the JPL Lander Vision System (LVS) for Terrain Relative Navigation (TRN) position estimates. These technologies together provide navigation that enables controlled precision landing. The COBALT hardware will be integrated in 2017 into the GN&C subsystem of the Xodiac rocket-propulsive Vertical Test Bed (VTB) developed by Masten Space Systems (MSS), and two terrestrial flight campaigns will be conducted: one open-loop (i.e., passive) and one closed-loop (i.e., active).

  19. ESA's satellite communications programme

    NASA Astrophysics Data System (ADS)

    Bartholome, P.

    1985-02-01

    The developmental history, current status, and future plans of the ESA satellite-communications programs are discussed in a general survey and illustrated with network diagrams and maps. Consideration is given to the parallel development of national and European direct-broadcast systems and telecommunications networks, the position of the European space and electronics industries in the growing world market, the impact of technological improvements (both in satellite systems and in ground-based networks), and the technological and commercial advantages of integrated space-terrestrial networks. The needs for a European definition of the precise national and international roles of satellite communications, for maximum speed in implementing such decisions (before the technology becomes obsolete), and for increased cooperation and standardization to assure European equipment manufacturers a reasonable share of the market are stressed.

  20. OB CITY–Definition of a Family-Based Intervention for Childhood Obesity Supported by Information and Communication Technologies

    PubMed Central

    Hu, Ruofei; Cancela, Jorge; Cea, Gloria; Vlachopapadopoulou, Elpis-Athina; Fotiadis, Dimitrios I.; Fico, Giuseppe

    2016-01-01

    Childhood obesity is becoming one of the 21st century’s most important public health problems. Nowadays, the main treatment of childhood obesity is behavior intervention that aims at improve children’s lifestyle to arrest the disease. Information and communication technologies (ICTs) have not been widely employed in this intervention, and most of existing ICTs systems are not having a long-term effect. The purpose of this paper is to define a system to support family-based intervention through a state-of-the-art analysis of family-based interventions and related technological solutions first, and then using the analytic hierarchy process to derive a childhood obesity family-based behavior intervention model, and finally to provide a prototype of a system called OB CITY. The system makes use of applied behavior analysis, affective computing technologies, as well as serious game and gamification techniques, to offer long term services in all care dimensions of the family-based behavioral intervention aiming to provide positive effects to the treatment of childhood obesity. PMID:27602306

  1. Concepts for on-board satellite image registration, volume 1

    NASA Technical Reports Server (NTRS)

    Ruedger, W. H.; Daluge, D. R.; Aanstoos, J. V.

    1980-01-01

    The NASA-NEEDS program goals present a requirement for on-board signal processing to achieve user-compatible, information-adaptive data acquisition. One very specific area of interest is the preprocessing required to register imaging sensor data which have been distorted by anomalies in subsatellite-point position and/or attitude control. The concepts and considerations involved in using state-of-the-art positioning systems such as the Global Positioning System (GPS) in concert with state-of-the-art attitude stabilization and/or determination systems to provide the required registration accuracy are discussed with emphasis on assessing the accuracy to which a given image picture element can be located and identified, determining those algorithms required to augment the registration procedure and evaluating the technology impact on performing these procedures on-board the satellite.

  2. Development of the method of aggregation to determine the current storage area using computer vision and radiofrequency identification

    NASA Astrophysics Data System (ADS)

    Astafiev, A.; Orlov, A.; Privezencev, D.

    2018-01-01

    The article is devoted to the development of technology and software for the construction of positioning and control systems in industrial plants based on aggregation to determine the current storage area using computer vision and radiofrequency identification. It describes the developed of the project of hardware for industrial products positioning system in the territory of a plant on the basis of radio-frequency grid. It describes the development of the project of hardware for industrial products positioning system in the plant on the basis of computer vision methods. It describes the development of the method of aggregation to determine the current storage area using computer vision and radiofrequency identification. Experimental studies in laboratory and production conditions have been conducted and described in the article.

  3. An Information Technology Framework for Strengthening Telehealthcare Service Delivery

    PubMed Central

    Chen, Chi-Wen; Weng, Yung-Ching; Shang, Rung-Ji; Yu, Hui-Chu; Chung, Yufang; Lai, Feipei

    2012-01-01

    Abstract Objective: Telehealthcare has been used to provide healthcare service, and information technology infrastructure appears to be essential while providing telehealthcare service. Insufficiencies have been identified, such as lack of integration, need of accommodation of diverse biometric sensors, and accessing diverse networks as different houses have varying facilities, which challenge the promotion of telehealthcare. This study designs an information technology framework to strengthen telehealthcare delivery. Materials and Methods: The proposed framework consists of a system architecture design and a network transmission design. The aim of the framework is to integrate data from existing information systems, to adopt medical informatics standards, to integrate diverse biometric sensors, and to provide different data transmission networks to support a patient's house network despite the facilities. The proposed framework has been evaluated with a case study of two telehealthcare programs, with and without the adoption of the framework. Results: The proposed framework facilitates the functionality of the program and enables steady patient enrollments. The overall patient participations are increased, and the patient outcomes appear positive. The attitudes toward the service and self-improvement also are positive. Conclusions: The findings of this study add up to the construction of a telehealthcare system. Implementing the proposed framework further assists the functionality of the service and enhances the availability of the service and patient acceptances. PMID:23061641

  4. An information technology framework for strengthening telehealthcare service delivery.

    PubMed

    Chen, Li-Chin; Chen, Chi-Wen; Weng, Yung-Ching; Shang, Rung-Ji; Yu, Hui-Chu; Chung, Yufang; Lai, Feipei

    2012-10-01

    Telehealthcare has been used to provide healthcare service, and information technology infrastructure appears to be essential while providing telehealthcare service. Insufficiencies have been identified, such as lack of integration, need of accommodation of diverse biometric sensors, and accessing diverse networks as different houses have varying facilities, which challenge the promotion of telehealthcare. This study designs an information technology framework to strengthen telehealthcare delivery. The proposed framework consists of a system architecture design and a network transmission design. The aim of the framework is to integrate data from existing information systems, to adopt medical informatics standards, to integrate diverse biometric sensors, and to provide different data transmission networks to support a patient's house network despite the facilities. The proposed framework has been evaluated with a case study of two telehealthcare programs, with and without the adoption of the framework. The proposed framework facilitates the functionality of the program and enables steady patient enrollments. The overall patient participations are increased, and the patient outcomes appear positive. The attitudes toward the service and self-improvement also are positive. The findings of this study add up to the construction of a telehealthcare system. Implementing the proposed framework further assists the functionality of the service and enhances the availability of the service and patient acceptances.

  5. Prioritizing health system and disease burden factors: an evaluation of the net benefit of transferring health technology interventions to different districts in Zimbabwe.

    PubMed

    Shamu, Shepherd; Rusakaniko, Simbarashe; Hongoro, Charles

    2016-01-01

    Health-care technologies (HCTs) play an important role in any country's health-care system. Zimbabwe's health-care system uses a lot of HCTs developed in other countries. However, a number of local factors have affected the absorption and use of these technologies. We therefore set out to test the hypothesis that the net benefit regression framework (NBRF) could be a helpful benefit testing model that enables assessment of intra-national variables in HCT transfer. We used an NBRF model to assess the benefits of transferring cost-effective technologies to different jurisdictions. We used the country's 57 administrative districts to proxy different jurisdictions. For the dependent variable, we combined the cost and effectiveness ratios with the districts' per capita health expenditure. The cost and effectiveness ratios were obtained from HIV/AIDS and malaria randomized controlled trials, which did either a prospective or retrospective cost-effectiveness analysis. The independent variables were district demographic and socioeconomic determinants of health. The study showed that intra-national variation resulted in different net benefits of the same health technology intervention if implemented in different districts in Zimbabwe. The study showed that population data, health data, infrastructure, demographic and health-seeking behavior had significant effects on the net margin benefit for the different districts. The net benefits also differed in terms of magnitude as a result of the local factors. Net benefit testing using local data is a very useful tool for assessing the transferability and further adoption of HCTs developed elsewhere. However, adopting interventions with a positive net benefit should also not be an end in itself. Information on positive or negative net benefit could also be used to ascertain either the level of future savings that a technology can realize or the level of investment needed for the particular technology to become beneficial.

  6. An RFID Indoor Positioning Algorithm Based on Bayesian Probability and K-Nearest Neighbor.

    PubMed

    Xu, He; Ding, Ye; Li, Peng; Wang, Ruchuan; Li, Yizhu

    2017-08-05

    The Global Positioning System (GPS) is widely used in outdoor environmental positioning. However, GPS cannot support indoor positioning because there is no signal for positioning in an indoor environment. Nowadays, there are many situations which require indoor positioning, such as searching for a book in a library, looking for luggage in an airport, emergence navigation for fire alarms, robot location, etc. Many technologies, such as ultrasonic, sensors, Bluetooth, WiFi, magnetic field, Radio Frequency Identification (RFID), etc., are used to perform indoor positioning. Compared with other technologies, RFID used in indoor positioning is more cost and energy efficient. The Traditional RFID indoor positioning algorithm LANDMARC utilizes a Received Signal Strength (RSS) indicator to track objects. However, the RSS value is easily affected by environmental noise and other interference. In this paper, our purpose is to reduce the location fluctuation and error caused by multipath and environmental interference in LANDMARC. We propose a novel indoor positioning algorithm based on Bayesian probability and K -Nearest Neighbor (BKNN). The experimental results show that the Gaussian filter can filter some abnormal RSS values. The proposed BKNN algorithm has the smallest location error compared with the Gaussian-based algorithm, LANDMARC and an improved KNN algorithm. The average error in location estimation is about 15 cm using our method.

  7. Factors associated with the diffusion rate of innovations: a pilot study from the perspective of the Brazilian Unified National Health System.

    PubMed

    Schneiders, Roberto Eduardo; Ronsoni, Ricardo de March; Sarti, Flávia Mori; Nita, Marcelo Eidi; Bastos, Ediane de Assis; Zimmermann, Ivan Ricardo; Ferreira, Fernando Fagundes

    2016-10-10

    Budget Impact Analyses require a set of essential information on health technology innovation, including expected rates of adoption. There is an absence of studies investigating trends, magnitude of budgetary effects and determinants of diffusion rates for health technology innovations worldwide during the last decades. The present study proposes a pilot assessment on main determinants influencing diffusion rates of pharmaceutical innovations within the Brazilian Unified National Health System (SUS). Data from the Brazilian Health Informatics Department (DATASUS) was gathered to establish the main determinants of diffusion rates of health technology innovations in Brazil, specifically referring to pharmaceutical innovations incorporated in the Brazilian Program for Specialized Pharmaceutical Services (CEAF) at SUS. Information was retrieved on DATASUS relating to patients who had used one of the medicines incorporated into CEAF at least three years prior to the beginning of the study (2015) for treatment of each health condition available. Thus, data from patients adopting 10 different medicines were analyzed in the study. Results from the zero-one inflated beta model showed a higher influence on diffusion rates of pharmaceutical innovations due to: number of pharmaceutical competitors for treatment of the same disease available at CEAF (negative); medicine used in combination with other medication (positive); and innovative medicine within the SUS (positive). Further research on diffusion rates of health technology innovations is required, including wider scope of diseases and medications, potential confusion factors and other variables that may influence rates of adoption in different health systems.

  8. Propulsion Technology Needs for Exploration

    NASA Technical Reports Server (NTRS)

    Brown, Thomas

    2007-01-01

    The objectives of currently planned exploration efforts, as well as those further in the future, require significant advancements in propulsion technologies. The current Lunar exploration architecture has set goals and mission objectives that necessitate the use of new systems and the extension of existing technologies beyond present applications. In the near term, the majority of these technologies are the result of a need to apply high performing cryogenic propulsion systems to long duration in-space applications. Advancement of cryogenic propulsion to these applications is crucial to provide higher performing propulsion systems that reduce the vehicle masses; enhance the safety of vehicle systems and ground operations; and provide a path for In-situ Resource Utilization (ISRU).Use of a LOX/LH2 main propulsion system for Lunar Lander Descent is a top priority because more conventional storable propellants are far from meeting the performance needs of the current architecture. While LOX/LH2 pump feed engines have been used in flight applications for many years, these engines have limited throttle capabilities. Engines that are capable of much greater throttling while still meeting high performance goals are a necessity to achieving exploration goals. Applications of LOX/CH4 propulsion to Lander ascent propulsion systems and reaction control systems are also if interest because of desirable performance and operations improvements over conventional storable systems while being more suitable for use of in-situ produced propellants. Within the current lunar architecture, use of cryogenic propulsion for the Earth Departure Stage and Lunar Lander elements also necessitate the need for advanced Cryogenic Fluid Management technologies. These technologies include long duration propellant storage/distribution, low-gravity propellant management, cryogenic couplings and disconnects, light weight composite tanks and support structure, and subsystem integration. In addition to the propulsive and fluid management system technologies described, many component level technologies are also required to enable to the success if the integrated systems. The components include, but are not limited to, variable/throttling valves, variable position actuators, leak detectors, light weight cryogenic fluid pumps, sensor technology and others. NASA, partnering with the Aerospace Industry must endeavor to develop these, and other promising propulsion technologies, to enable the implements of the country's goals in exploration of the Moon, Mars and beyond.

  9. School Finance in the Digital-Learning Era. Creating Sound Policy for Digital Learning. A Working Paper Series from the Thomas B. Fordham Institute

    ERIC Educational Resources Information Center

    Hill, Paul T.

    2011-01-01

    America's system for financing K-12 education is not neutral about innovation and the use of new technologies. Indeed, that system is stacked against them. To remedy this, our education-funding system needs to shift dramatically. Instead of today's model--which rigidly funds programs, staff positions, and administrative structures, instead of…

  10. [Exploration of Recent Mobile Technologies Applied in Nursing Education].

    PubMed

    Wu, Ting-Ting; Lu, Yi-Chen; Chang, Lei

    2017-12-01

    The development of science and technology has fundamentally changed people's lives and the way that medical systems function. Increasingly, mobile technologies are being introduced and integrated into classroom teaching and clinical applications, resulting in healthcare providers introducing innovative applications into health education. These applications enhance the clinical, education, and research expertise of medical staffs and nurses, while improving quality of care and providing new experiences for patients. In order to understand the current situation and trends in nursing education, the present study adopted literature analysis to explore the influence and effect of mobile technologies that have been introduced into nursing education from the school and clinical environments. The results found that students hold positive attitudes toward introducing these technologies into their curricula. Although these technologies may increase the work efficiency of nurses in the workplace, questions remain user perceptions and professional expression. Therefore, securing patient agreement and healthcare system approval were major turning points in the introduction of mobile technologies into nursing education. In the future, adapting mobile technologies for use in teaching materials and courses may be further developed. Moreover, empirical studies may be used in future research in order to facilitate the increasingly successful integration of relevant technologies into nursing education.

  11. Design and demonstration of an advanced data collection/position location system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The final report on a breadboard evaluation and demonstration program is reported concerning the applicability of MSK modulation and chirp-z transformer technology in Advanced Data Collection/Position Location (ADC/PL) systems. The program effort consisted of three phases - design, testing, and evaluation. Section 2 describes the breadboard hardware built during the design phase of the program, Section 3 describes the tests conducted on the breadboard and the results of the tests, and Section 4 presents a brief analysis and summary of the findings of the breadboard tests and develops a sample ADC/PL system which incorporates both MSK modulation and a chirp-z transformer.

  12. Combining multiple ChIP-seq peak detection systems using combinatorial fusion.

    PubMed

    Schweikert, Christina; Brown, Stuart; Tang, Zuojian; Smith, Phillip R; Hsu, D Frank

    2012-01-01

    Due to the recent rapid development in ChIP-seq technologies, which uses high-throughput next-generation DNA sequencing to identify the targets of Chromatin Immunoprecipitation, there is an increasing amount of sequencing data being generated that provides us with greater opportunity to analyze genome-wide protein-DNA interactions. In particular, we are interested in evaluating and enhancing computational and statistical techniques for locating protein binding sites. Many peak detection systems have been developed; in this study, we utilize the following six: CisGenome, MACS, PeakSeq, QuEST, SISSRs, and TRLocator. We define two methods to merge and rescore the regions of two peak detection systems and analyze the performance based on average precision and coverage of transcription start sites. The results indicate that ChIP-seq peak detection can be improved by fusion using score or rank combination. Our method of combination and fusion analysis would provide a means for generic assessment of available technologies and systems and assist researchers in choosing an appropriate system (or fusion method) for analyzing ChIP-seq data. This analysis offers an alternate approach for increasing true positive rates, while decreasing false positive rates and hence improving the ChIP-seq peak identification process.

  13. Day, night and all-weather security surveillance automation synergy from combining two powerful technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morellas, Vassilios; Johnson, Andrew; Johnston, Chris

    2006-07-01

    Thermal imaging is rightfully a real-world technology proven to bring confidence to daytime, night-time and all weather security surveillance. Automatic image processing intrusion detection algorithms are also a real world technology proven to bring confidence to system surveillance security solutions. Together, day, night and all weather video imagery sensors and automated intrusion detection software systems create the real power to protect early against crime, providing real-time global homeland protection, rather than simply being able to monitor and record activities for post event analysis. These solutions, whether providing automatic security system surveillance at airports (to automatically detect unauthorized aircraft takeoff andmore » landing activities) or at high risk private, public or government facilities (to automatically detect unauthorized people or vehicle intrusion activities) are on the move to provide end users the power to protect people, capital equipment and intellectual property against acts of vandalism and terrorism. As with any technology, infrared sensors and automatic image intrusion detection systems for global homeland security protection have clear technological strengths and limitations compared to other more common day and night vision technologies or more traditional manual man-in-the-loop intrusion detection security systems. This paper addresses these strength and limitation capabilities. False Alarm (FAR) and False Positive Rate (FPR) is an example of some of the key customer system acceptability metrics and Noise Equivalent Temperature Difference (NETD) and Minimum Resolvable Temperature are examples of some of the sensor level performance acceptability metrics. (authors)« less

  14. Applications of GPS technologies to field sports.

    PubMed

    Aughey, Robert J

    2011-09-01

    Global positioning system (GPS) technology was made possible after the invention of the atomic clock. The first suggestion that GPS could be used to assess the physical activity of humans followed some 40 y later. There was a rapid uptake of GPS technology, with the literature concentrating on validation studies and the measurement of steady-state movement. The first attempts were made to validate GPS for field sport applications in 2006. While GPS has been validated for applications for team sports, some doubts continue to exist on the appropriateness of GPS for measuring short high-velocity movements. Thus, GPS has been applied extensively in Australian football, cricket, hockey, rugby union and league, and soccer. There is extensive information on the activity profile of athletes from field sports in the literature stemming from GPS, and this includes total distance covered by players and distance in velocity bands. Global positioning systems have also been applied to detect fatigue in matches, identify periods of most intense play, different activity profiles by position, competition level, and sport. More recent research has integrated GPS data with the physical capacity or fitness test score of athletes, game-specific tasks, or tactical or strategic information. The future of GPS analysis will involve further miniaturization of devices, longer battery life, and integration of other inertial sensor data to more effectively quantify the effort of athletes.

  15. Implications of health reform for the medical technology industry.

    PubMed

    Nexon, David; Ubl, Stephen J

    2010-07-01

    Health care reform will greatly affect the medical technology industry in both positive and negative ways. Expanded coverage is a modest benefit that will increase demand for products. But the medical device excise tax authorized by the Patient Protection and Affordable Care Act could have negative effects on research, profits, and investments. Moreover, limits on Medicare payments could reduce revenues. The largest long-term impact on medical technology will come from measures to improve quality and efficiency. These could improve the health care system and increase opportunities for medical technology, but inappropriate implementation could slow medical progress and limit patients' access to needed care.

  16. ALHAT COBALT: CoOperative Blending of Autonomous Landing Technology

    NASA Technical Reports Server (NTRS)

    Carson, John M.

    2015-01-01

    The COBALT project is a flight demonstration of two NASA ALHAT (Autonomous precision Landing and Hazard Avoidance Technology) capabilities that are key for future robotic or human landing GN&C (Guidance, Navigation and Control) systems. The COBALT payload integrates the Navigation Doppler Lidar (NDL) for ultraprecise velocity and range measurements with the Lander Vision System (LVS) for Terrain Relative Navigation (TRN) position estimates. Terrestrial flight tests of the COBALT payload in an open-loop and closed-loop GN&C configuration will be conducted onboard a commercial, rocket-propulsive Vertical Test Bed (VTB) at a test range in Mojave, CA.

  17. A Magnetically Suspended Wheel for a Miniature Gyro Made Using Planar Fabrication Technologies

    NASA Technical Reports Server (NTRS)

    Dauwalter, Charles R.

    1996-01-01

    The technical feasibility of a magnetically suspended rotating wheel for miniature gyro applications was investigated under a NASA SBIR contract. A concept for a configuration for a system of compact, lightweight magnetic actuators capable of generating the necessary suspension forces and fabrication using millimachining planar fabrication technologies was developed. Both capacitive and electromagnetic position sensing concepts were developed for implementing a closed loop control system for supporting the wheel. A finite difference technique, implemented in a spreadsheet environment, for analyzing the force characteristics of the actuator was used and the results verified with Finite Element Analysis.

  18. Line of sight pointing technology for laser communication system between aircrafts

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Liu, Yunqing; Song, Yansong

    2017-12-01

    In space optical communications, it is important to obtain the most efficient performance of line of sight (LOS) pointing system. The errors of position (latitude, longitude, and altitude), attitude angles (pitch, yaw, and roll), and installation angle among a different coordinates system are usually ineluctable when assembling and running an aircraft optical communication terminal. These errors would lead to pointing errors and make it difficult for the LOS system to point to its terminal to establish a communication link. The LOS pointing technology of an aircraft optical communication system has been researched using a transformation matrix between the coordinate systems of two aircraft terminals. A method of LOS calibration has been proposed to reduce the pointing error. In a flight test, a successful 144-km link was established between two aircrafts. The position and attitude angles of the aircraft have been obtained to calculate the pointing angle in azimuth and elevation provided by using a double-antenna GPS/INS system. The size of the field of uncertainty (FOU) and the pointing accuracy are analyzed based on error theory, and it has been also measured using an observation camera installed next to the optical LOS. Our results show that the FOU of aircraft optical communications is 10 mrad without a filter, which is the foundation to acquisition strategy and scanning time.

  19. Assessment of the effects of student response systems on student learning and attitudes over a broad range of biology courses.

    PubMed

    Preszler, Ralph W; Dawe, Angus; Shuster, Charles B; Shuster, Michèle

    2007-01-01

    With the advent of wireless technology, new tools are available that are intended to enhance students' learning and attitudes. To assess the effectiveness of wireless student response systems in the biology curriculum at New Mexico State University, a combined study of student attitudes and performance was undertaken. A survey of students in six biology courses showed that strong majorities of students had favorable overall impressions of the use of student response systems and also thought that the technology improved their interest in the course, attendance, and understanding of course content. Students in lower-division courses had more strongly positive overall impressions than did students in upper-division courses. To assess the effects of the response systems on student learning, the number of in-class questions was varied within each course throughout the semester. Students' performance was compared on exam questions derived from lectures with low, medium, or high numbers of in-class questions. Increased use of the response systems in lecture had a positive influence on students' performance on exam questions across all six biology courses. Students not only have favorable opinions about the use of student response systems, increased use of these systems increases student learning.

  20. Prototype of smart office system using based security system

    NASA Astrophysics Data System (ADS)

    Prasetyo, T. F.; Zaliluddin, D.; Iqbal, M.

    2018-05-01

    Creating a new technology in the modern era gives a positive impact on business and industry. Internet of Things (IoT) as a new communication technology is very useful in realizing smart systems such as: smart home, smart office, smart parking and smart city. This study presents a prototype of the smart office system which was designed as a security system based on IoT. Smart office system development method used waterfall model. IoT-based smart office system used platform (project builder) cayenne so that. The data can be accessed and controlled through internet network from long distance. Smart office system used arduino mega 2560 microcontroller as a controller component. In this study, Smart office system is able to detect threats of dangerous objects made from metals, earthquakes, fires, intruders or theft and perform security monitoring outside the building by using raspberry pi cameras on autonomous robots in real time to the security guard.

  1. The digital pen and paper technology: implementation and use in an existing clinical information system.

    PubMed

    Despont-Gros, Christelle; Bœuf, Christophe; Geissbuhler, Antoine; Lovis, Christian

    2005-01-01

    Evaluation of the technical feasibility of tight integration of the digital pen and paper technology in an existing computerized patient record.Technology: The digital pen is a normal pen able to record all actions of the user and to analyze a micro pattern printed on the paper. The digital paper is a normal paper printed with an almost invisible micro pattern of small dots encoding information such as position and identifiers. We report our experience in the implementation and the use of this technology in an existing large clinical information system for acquiring clinical information. It is possible to print uniquely identified forms using the digital paper technology. These forms can be pre-filled with clinical readable information about the patient. When care providers complete these forms using the digital pen, it is possible to acquire the data in a structured computerized patient record. The technology is easy to integrate in a component-based architecture based on Web Services. The digital pen and paper is a cost-effective technology that can be integrated in an existing clinical information system and allows fast and easy bedside clinical information acquisition without the need for an expensive infrastructure based on traditional portable devices or wireless devices.

  2. Solving Autonomy Technology Gaps through Wireless Technology and Orion Avionics Architectural Principles

    NASA Astrophysics Data System (ADS)

    Black, Randy; Bai, Haowei; Michalicek, Andrew; Shelton, Blaine; Villela, Mark

    2008-01-01

    Currently, autonomy in space applications is limited by a variety of technology gaps. Innovative application of wireless technology and avionics architectural principles drawn from the Orion crew exploration vehicle provide solutions for several of these gaps. The Vision for Space Exploration envisions extensive use of autonomous systems. Economic realities preclude continuing the level of operator support currently required of autonomous systems in space. In order to decrease the number of operators, more autonomy must be afforded to automated systems. However, certification authorities have been notoriously reluctant to certify autonomous software in the presence of humans or when costly missions may be jeopardized. The Orion avionics architecture, drawn from advanced commercial aircraft avionics, is based upon several architectural principles including partitioning in software. Robust software partitioning provides "brick wall" separation between software applications executing on a single processor, along with controlled data movement between applications. Taking advantage of these attributes, non-deterministic applications can be placed in one partition and a "Safety" application created in a separate partition. This "Safety" partition can track the position of astronauts or critical equipment and prevent any unsafe command from executing. Only the Safety partition need be certified to a human rated level. As a proof-of-concept demonstration, Honeywell has teamed with the Ultra WideBand (UWB) Working Group at NASA Johnson Space Center to provide tracking of humans, autonomous systems, and critical equipment. Using UWB the NASA team can determine positioning to within less than one inch resolution, allowing a Safety partition to halt operation of autonomous systems in the event that an unplanned collision is imminent. Another challenge facing autonomous systems is the coordination of multiple autonomous agents. Current approaches address the issue as one of networking and coordination of multiple independent units, each with its own mission. As a proof-of-concept Honeywell is developing and testing various algorithms that lead to a deterministic, fault tolerant, reliable wireless backplane. Just as advanced avionics systems control several subsystems, actuators, sensors, displays, etc.; a single "master" autonomous agent (or base station computer) could control multiple autonomous systems. The problem is simplified to controlling a flexible body consisting of several sensors and actuators, rather than one of coordinating multiple independent units. By filling technology gaps associated with space based autonomous system, wireless technology and Orion architectural principles provide the means for decreasing operational costs and simplifying problems associated with collaboration of multiple autonomous systems.

  3. Evaluation of Automatic Vehicle Location accuracy

    DOT National Transportation Integrated Search

    1999-01-01

    This study assesses the accuracy of the Automatic Vehicle Location (AVL) data provided for the buses of the Ann Arbor Transportation Authority with Global Positioning System (GPS) technology. In a sample of eighty-nine bus trips two kinds of accuracy...

  4. Global Public Leadership in a Technological Era

    ERIC Educational Resources Information Center

    Masciulli, Joseph

    2011-01-01

    Good (ethical and effective) global public leadership--by national politicians, intergovernmental and nongovernmental international organizational leaders, multinational corporate leaders, and technoscientists--will make a significant positive difference in our global system's capacity to solve contemporary and futuristic global problems. High…

  5. Integrating real-time GIS and social media for qualitative transportation data collection.

    DOT National Transportation Integrated Search

    2016-12-26

    New technologies such as global positioning system, smartphone, and social media are changing the way we move around. Traditional : transportation research has overwhelmingly emphasized the collection of quantitative data for modeling, without much c...

  6. The real-world safety potential of connected vehicle technology.

    PubMed

    Doecke, Sam; Grant, Alex; Anderson, Robert W G

    2015-01-01

    This article estimates the safety potential of a current commercially available connected vehicle technology in real-world crashes. Data from the Centre for Automotive Safety Research's at-scene in-depth crash investigations in South Australia were used to simulate the circumstances of real-world crashes. A total of 89 crashes were selected for inclusion in the study. The crashes were selected as representative of the most prevalent crash types for injury or fatal crashes and had potential to be mitigated by connected vehicle technology. The trajectory, speeds, braking, and impact configuration of the selected in-depth cases were replicated in a software package and converted to a file format allowing "replay" of the scenario in real time as input to 2 Cohda Wireless MK2 onboard units. The Cohda Wireless onboard units are a mature connected vehicle technology that has been used in both the German simTD field trial and the U.S. Department of Transport's Safety Pilot project and have been tuned for low false alarm rates when used in the real world. The crash replay was achieved by replacing each of the onboard unit Global Positioning System (GPS) inputs with the simulated data of each of the involved vehicles. The time at which the Cohda Wireless threat detection software issued an elevated warning was used to calculate a new impact speed using 3 different reaction scenarios and 2 levels of braking. It was found that between 37 and 86% of the simulated crashes could be avoided, with highest percentage due a fully autonomous system braking at 0.7 g. The same system also reduced the impact speed relative to the actual crash in all cases. Even when a human reaction time of 1.2 s and moderate braking of 0.4 g was assumed, the impact speed was reduced in 78% of the crashes. Crash types that proved difficult for the threat detection engine were head-on crashes where the approach angle was low and right turn-opposite crashes. These results indicate that connected vehicle technology can be greatly beneficial in real-world crash scenarios and that this benefit would be maximized by having the vehicle intervene autonomously with heavy braking. The crash types that proved difficult for the connected vehicle technology could be better addressed if controller area network (CAN) information is available, such as steering wheel angle, so that driver intent can be inferred sooner. More accurate positioning in the real world (e.g., combining satellite positioning and accelerometer data) would allow the technology to be more effective for near-collinear head-on and rear-end crashes, because the low approach angles that are common in such crashes are currently ignored in order to minimize false alarms due to positioning uncertainty.

  7. Laser Spot Center Detection and Comparison Test

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Xu, Zhengjie; Fu, Deli; Hu, Cong

    2018-04-01

    High efficiency and precision of the pot center detection are the foundations of avionics instrument navigation and optics measurement basis for many applications. It has noticeable impact on overall system performance. Among them, laser spot detection is very important in the optical measurement technology. In order to improve the low accuracy of the spot center position, the algorithm is improved on the basis of the circle fitting. The pretreatment is used by circle fitting, and the improved adaptive denoising filter for TV repair technology can effectively improves the accuracy of the spot center position. At the same time, the pretreatment and de-noising can effectively reduce the influence of Gaussian white noise, which enhances the anti-jamming capability.

  8. Geo-Caching: Place-Based Discovery of Virginia State Parks and Museums

    ERIC Educational Resources Information Center

    Gray, Howard Richard

    2007-01-01

    The use of Global Positioning Systems (GPS) units has exploded in recent years along with the computer technology to access this data-based information. Geo-caching is an exciting game using GPS that provides place-based information regarding the public lands, facilities and cultural heritage programs within the Virginia Parks and Museum system.…

  9. Increasing the Effectiveness of Community College Educational Programs Through the Use of Coordinated Instruction Systems.

    ERIC Educational Resources Information Center

    California Junior Coll. Association, Sacramento.

    One of the more promising approaches to instructional improvement in the face of increasing enrollments is the Coordinated Instruction System (CIS), which includes the use of television, slide-tape combinations, and programed instruction materials. This position paper sees the CIS technology as a way to extend and reinforce basic teacher-student…

  10. Dilemmas in Introducing Applied Technology: The Plough and the Cattlelords in Timor.

    ERIC Educational Resources Information Center

    Johnston, Mary

    1990-01-01

    An effort to introduce the plow to Timor farmers faced following barriers: nature of the land and climate, strongly demarcated traditional system, tensions among ethnic groups, cattlelords system, necessary time to place/retain trainers in villages. Positive factors were concrete results, use of small groups and native trainers, age of adopters,…

  11. Fabrication of micromechanical and microoptical systems by two-photon polymerization

    NASA Astrophysics Data System (ADS)

    Reinhardt, Carsten; Ovsianikov, A.; Passinger, Sven; Chichkov, Boris N.

    2007-01-01

    The recently developed two-photon polymerisation technique is used for the fabrication of two- and three-dimensional structures in photosensitive inorganic-organic hybrid material (ORMOCER), in SU8 , and in positive tone resist with resolutions down to 100nm. In this contribution we present applications of this powerful technology for the realization of micromechanical systems and microoptical components. We will demonstrate results on the fabrication of complex movable three-dimensional micromechanical systems and microfluidic components which cannot be realized by other technologies. This approach of structuring photosensitive materials also provides unique possibilities for the fabrication of different microoptical components such as arbitrary shaped microlenses, microprisms, and 3D-photonic crystals with high optical quality.

  12. A Lane-Level LBS System for Vehicle Network with High-Precision BDS/GPS Positioning

    PubMed Central

    Guo, Chi; Guo, Wenfei; Cao, Guangyi; Dong, Hongbo

    2015-01-01

    In recent years, research on vehicle network location service has begun to focus on its intelligence and precision. The accuracy of space-time information has become a core factor for vehicle network systems in a mobile environment. However, difficulties persist in vehicle satellite positioning since deficiencies in the provision of high-quality space-time references greatly limit the development and application of vehicle networks. In this paper, we propose a high-precision-based vehicle network location service to solve this problem. The major components of this study include the following: (1) application of wide-area precise positioning technology to the vehicle network system. An adaptive correction message broadcast protocol is designed to satisfy the requirements for large-scale target precise positioning in the mobile Internet environment; (2) development of a concurrence service system with a flexible virtual expansion architecture to guarantee reliable data interaction between vehicles and the background; (3) verification of the positioning precision and service quality in the urban environment. Based on this high-precision positioning service platform, a lane-level location service is designed to solve a typical traffic safety problem. PMID:25755665

  13. Waiting for Disasters: A Risk Reduction Assessment of Technological Disasters

    NASA Astrophysics Data System (ADS)

    Rovins, Jane; Winningham, Sam

    2010-05-01

    This session provides a risk reduction/mitigation assessment of natural hazards causation of technological disasters and possible solution. People use technology in an attempt to not only control their environment but nature itself in order to make them feel safe and productive. Most strategies for managing hazards followed a traditional planning model i.e. study the problem, identify and implement a solution, and move on to the next problem. This approach is often viewed as static model and risk reduction is more of an upward, positive, linear trend. However, technological disasters do not allow risk reduction action to neatly fit this upward, positive, linear trend with actual or potential threats to the environment and society. There are different types of technological disasters, including industrial accidents; pipeline ruptures; accidents at power, water and heat supply systems and other lines of communication; sudden collapse of buildings and mines; air crashes; shipwrecks; automobile and railway accidents to name a few. Natural factors can play an essential role in triggering or magnifying technological disasters. They can result from the direct destruction of given technical objects by a hazardous natural process such as the destruction of an atomic power plant or chemical plant due to an earthquake. Other examples would include the destruction of communications or infrastructure systems by heavy snowfalls, strong winds, avalanches. Events in the past ten years clearly demonstrate that natural disasters and the technological disasters that accompany them are not problems that can be solved in isolation and risk reduction can play an important part. Risk reduction was designed to head off the continuing rising financial and structural tolls from disasters. All Hazard Risk Reduction planning was supposed to include not only natural, but technological, and human-made disasters as well. The subsequent disaster risk reduction (DRR) indicators were to provide the corner stone to sustained risk reduction. We are able to look at the ongoing work by UNISDR and other partners to develop DRR indicators to track progress toward the goals outlined in the Hyogo Framework for Action adopted by 168 countries in Kobe, Japan in January 2005. In addition, we can look at various global examples. Therefore the true question we shall address is whether or not the DRR indicators form a virtuous circle was created with risk reduction with a series of positive events triggering a self-perpetuating pattern of other positive occurrences or a vicious circle.

  14. Positive technology: using interactive technologies to promote positive functioning.

    PubMed

    Riva, Giuseppe; Baños, Rosa M; Botella, Cristina; Wiederhold, Brenda K; Gaggioli, Andrea

    2012-02-01

    It is generally assumed that technology assists individuals in improving the quality of their lives. However, the impact of new technologies and media on well-being and positive functioning is still somewhat controversial. In this paper, we contend that the quality of experience should become the guiding principle in the design and development of new technologies, as well as a primary metric for the evaluation of their applications. The emerging discipline of Positive Psychology provides a useful framework to address this challenge. Positive Psychology is the scientific study of optimal human functioning and flourishing. Instead of drawing on a "disease model" of human behavior, it focuses on factors that enable individuals and communities to thrive and build the best in life. In this paper, we propose the "Positive Technology" approach--the scientific and applied approach to the use of technology for improving the quality of our personal experience through its structuring, augmentation, and/or replacement--as a way of framing a suitable object of study in the field of cyberpsychology and human-computer interaction. Specifically, we suggest that it is possible to use technology to influence three specific features of our experience--affective quality, engagement/actualization, and connectedness--that serve to promote adaptive behaviors and positive functioning. In this framework, positive technologies are classified according to their effects on a specific feature of personal experience. Moreover, for each level, we have identified critical variables that can be manipulated to guide the design and development of positive technologies.

  15. KSC-06pd0554

    NASA Image and Video Library

    2006-03-10

    VANDENBERG AIR FORCE BASE, CALIF. - Workers prepare to transport the Space Technology 5 (ST5) spacecraft from Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California to the L-1011 carrier aircraft in position on the ramp adjacent to the Vandenberg runway. The ST5, which contains three microsatellites with miniaturized redundant components and technologies, is mated to its launch vehicle, Orbital Sciences' Pegasus XL. Each of the ST5 microsatellites will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. Launch of ST5 and the Pegasus XL will be from underneath the belly of an L-1011 carrier aircraft from Vandenberg Air Force Base.

  16. KSC-06pd0448

    NASA Image and Video Library

    2006-02-16

    VANDENBERG AIR FORCE BASE, CALIF. - Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, workers position the second half of the fairing into place around the Space Technology 5 (ST5) spacecraft. The ST5, which contains three microsatellites with miniaturized redundant components and technologies, is mated to its launch vehicle, Orbital Sciences' Pegasus XL. Each of the ST5 microsatellites will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. Launch of ST5 and the Pegasus XL will be from underneath the belly of an L-1011 carrier aircraft on March 14 from Vandenberg Air Force Base.

  17. KSC-06pd0555

    NASA Image and Video Library

    2006-03-10

    VANDENBERG AIR FORCE BASE, CALIF. - On the ramp adjacent to the runway at Vandenberg Air Force Base in California, the Space Technology 5's Pegasus rocket is placed in position to be mated to the underside of an Orbital Sciences L-1011 carrier aircraft. The ST5, which contains three microsatellites with miniaturized redundant components and technologies, is mated to its launch vehicle, Orbital Sciences' Pegasus XL. Each of the ST5 microsatellites will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. Launch of ST5 and the Pegasus XL will be from underneath the belly of an L-1011 carrier aircraft from Vandenberg Air Force Base.

  18. KSC-06pd0447

    NASA Image and Video Library

    2006-02-16

    VANDENBERG AIR FORCE BASE, CALIF. - Inside Orbital Sciences’ Building 1555 at Vandenberg Air Force Base in California, workers move the second half of the fairing into position around the Space Technology 5 (ST5) spacecraft. The ST5, which contains three microsatellites with miniaturized redundant components and technologies, is mated to its launch vehicle, Orbital Sciences' Pegasus XL. Each of the ST5 microsatellites will validate New Millennium Program selected technologies, such as the Cold Gas Micro-Thruster and X-Band Transponder Communication System. After deployment from the Pegasus, the micro-satellites will be positioned in a “string of pearls” constellation that demonstrates the ability to position them to perform simultaneous multi-point measurements of the magnetic field using highly sensitive magnetometers. The data will help scientists understand and map the intensity and direction of the Earth’s magnetic field, its relation to space weather events, and affects on our planet. Launch of ST5 and the Pegasus XL will be from underneath the belly of an L-1011 carrier aircraft on March 14 from Vandenberg Air Force Base.

  19. [Spectral navigation technology and its application in positioning the fruits of fruit trees].

    PubMed

    Yu, Xiao-Lei; Zhao, Zhi-Min

    2010-03-01

    An innovative technology of spectral navigation is presented in the present paper. This new method adopts reflectance spectra of fruits, leaves and branches as one of the key navigation parameters and positions the fruits of fruit trees relying on the diversity of spectral characteristics. The research results show that the distinct smoothness as effect is available in the spectrum of leaves of fruit trees. On the other hand, gradual increasing as the trend is an important feature in the spectrum of branches of fruit trees while the spectrum of fruit fluctuates. In addition, the peak diversity of reflectance rate between fruits and leaves of fruit trees is reached at 850 nm of wavelength. So the limit value can be designed at this wavelength in order to distinguish fruits and leaves. The method introduced here can not only quickly distinguish fruits, leaves and branches, but also avoid the effects of surroundings. Compared with the traditional navigation systems based on machine vision, there are still some special and unique features in the field of positioning the fruits of fruit trees using spectral navigation technology.

  20. Light Detection and Ranging-Based Terrain Navigation: A Concept Exploration

    NASA Technical Reports Server (NTRS)

    Campbell, Jacob; UijtdeHaag, Maarten; vanGraas, Frank; Young, Steve

    2003-01-01

    This paper discusses the use of Airborne Light Detection And Ranging (LiDAR) equipment for terrain navigation. Airborne LiDAR is a relatively new technology used primarily by the geo-spatial mapping community to produce highly accurate and dense terrain elevation maps. In this paper, the term LiDAR refers to a scanning laser ranger rigidly mounted to an aircraft, as opposed to an integrated sensor system that consists of a scanning laser ranger integrated with Global Positioning System (GPS) and Inertial Measurement Unit (IMU) data. Data from the laser range scanner and IMU will be integrated with a terrain database to estimate the aircraft position and data from the laser range scanner will be integrated with GPS to estimate the aircraft attitude. LiDAR data was collected using NASA Dryden's DC-8 flying laboratory in Reno, NV and was used to test the proposed terrain navigation system. The results of LiDAR-based terrain navigation shown in this paper indicate that airborne LiDAR is a viable technology enabler for fully autonomous aircraft navigation. The navigation performance is highly dependent on the quality of the terrain databases used for positioning and therefore high-resolution (2 m post-spacing) data was used as the terrain reference.

Top