Science.gov

Sample records for positioning systems gps

  1. Global Positioning System (GPS) Modernization

    DTIC Science & Technology

    2001-01-01

    GLOBAL POSITIONING SYSTEM ( GPS ) MODERNIZATION Lt. Col. C. McGinn, Capt. S...CA 90501, USA Abstract The Global Positioning System ( GPS ) signal is now the primary means of obtaining precise time to an internationally accepted...number. 1. REPORT DATE NOV 2000 2. REPORT TYPE 3. DATES COVERED 00-00-2000 to 00-00-2000 4. TITLE AND SUBTITLE Global Positioning System ( GPS

  2. GPS (Global Positioning System) Range Applications Study.

    DTIC Science & Technology

    1982-12-31

    Global Positioning System ( GPS ) as a source of Time i. Space Position ...THE ANALYTIC SCIENCES CORPORATION 2. GPS OVERVIEW This chapter provides a short, general introduction to the Global Positioning System ( GPS ) and...chapters. 2.1 SYSTEM OPERATION The NAVSTAR Global Positioning System ( GPS ) is a space- based radio navigation system designed to provide users with

  3. Global Positioning System III (GPS III)

    DTIC Science & Technology

    2013-12-01

    Global Positioning System III ( GPS III) As of FY 2015 President’s Budget...00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Global Positioning System III ( GPS III) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...Responsible Office References Program Name Global Positioning System III ( GPS III) DoD Component Air Force

  4. Global Positioning System (GPS) Geodetic Receivers,

    DTIC Science & Technology

    1982-02-08

    Subti.) S. TYPE OF REPORT A PERFo COVERED Global Positioning System ( GPS ) Geodetic N/A Receivers S. PERFORMING OrG. REPORT NUMBER I N/A AUTNORf*) S...i N meueaed idautfy b block nmAr) The NAVSTAR Global Positioning System ( GPS ) when fully developed will pro- vide world-wide, all weather, continuous... Global Positioning System ( GPS ) when fully developed will provide world-wide, all weather, continuous, highly accurate radio navigation support to

  5. Texas Instruments 4100 GPS (Global Positioning System) Positioning Software

    DTIC Science & Technology

    1986-09-01

    Global Positioning System ( GPS ). To meet...solutions as correct before accepting them. 9 II, BACKGROUND A. GLOBAL POSITIONING SYSTEM GPS is a universal satellite poitioning system that is...ABBREVIATIONS AND ACRONYMS GPS = Global Positioning System NPS = Naval Postgraduate School Montcrey CA DMA Defense Mapping Agency NOAA = National Oceanic

  6. Global Positioning Systems Directorate: GPS Update

    DTIC Science & Technology

    2015-04-29

    29 APR 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Global Positioning Systems Directorate: GPS Update...Partnership Council 2015 29 Apr 2015 Global Positioning System Directorate Brig Gen Bill Cooley Director, Global Positioning Systems Directorate...UNCLASSIFIED/APPROVED FOR PUBLIC RELEASE Global Positioning Systems Directorate Mission: Acquire, deliver and sustain reliable G PS capabilities

  7. A Consistent Geodetic Reference System for GPS (Global Positioning System).

    DTIC Science & Technology

    1987-02-27

    reliable and accurate Operational Control System (OCS) is a prerequisite for successful Global Positioning System ( GPS ) navigation performance. The OCS...DDOR Doubly differenced (between station pair and Navstar pair) phase data GPS Global Positioning System MIT Massachusetts Institute of Technology...FWft SOTR4as-2 A Consistent Geodetic Reference System for GPS A. S. LIU Systems and Computer Engineering Division Engineering Group The Aerospace

  8. Interferometric Determination of GPS (Global Positioning System) Satellite Orbits.

    DTIC Science & Technology

    1985-04-23

    Global Positioning System ,’ GPS interferometrv...INTRODUCTION If the NAVSTAR Global Positioning System ( GPS ) is to be useful for crustal motion monitoring, the orbits of the GPS satellites 7will need to be... Global Position . * ing System , April 15-19, 1985, Rockville, MD 19. KEY WORDS (Continue on rev’erse side if necessary and Identity by block

  9. Navstar Global Positioning System (GPS) clock program: Present and future

    NASA Technical Reports Server (NTRS)

    Tennant, D. M.

    1981-01-01

    Global Positioning System (GPS) program status are discussed and plans for ensuring the long term continuation of the program are presented. Performance of GPS clocks is presented in terms of on orbit data as portrayed by GPS master control station kalman filter processing. The GPS Clock reliability program is reviewed in depth and future plans fo the overall clock program are published.

  10. The Evolution of Global Positioning System (GPS) Technology.

    ERIC Educational Resources Information Center

    Kumar, Sameer; Moore, Kevin B.

    2002-01-01

    Describes technological advances in the Global Positioning System (GPS), which is also known as the NAVSTAR GPS satellite constellation program developed in 1937, and changes in the nature of our world by GPS in the areas of agriculture, health, military, transportation, environment, wildlife biology, surveying and mapping, space applications, and…

  11. The NAVSTAR GPS (Global Positioning System) System

    DTIC Science & Technology

    1988-09-01

    Block IIR satellites is the autonomous navigation of GPS satellites utilizing crosslink ranging. The Block II satellites have crosslink Lommunications...capability, but no ranging. The Block HIR satellites will be modified to enable crosslink ranging on the same crosslink frequency and, by processing the... crosslink range measurements, the CPS navigation message can be generated onboard the satellite without daily upload from the ground. Analysis has

  12. Airborne Supplemental Navigation Equipment Using The Global Positioning System (GPS) Precise Positioning Service (PPS)

    DTIC Science & Technology

    2002-08-30

    Global Positioning System ( GPS ) Precise Positioning ...The Global Positioning System ( GPS ) Precise Positioning Service (PPS) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...EQUIPMENT USING THE GLOBAL POSITIONING SYSTEM ( GPS ) / PRECISE POSITIONING SERVICE (PPS) DISTRIBUTION: SMC/CZ (3 cys); AFFSA; NAWCAD; ESC/GA; SPAWAR Code

  13. Airborne Supplemental Navigation Equipment Using the Global Positioning System (GPS)/Precise Positioning Service (PPS)

    DTIC Science & Technology

    2005-10-13

    GLOBAL POSITIONING SYSTEM ( GPS ) I PRECISE POSITIONING SERVICE (PPS) MSO RELEASE AUTHORIZED BY: ttl~ .. J ,M~·., Configurat!fJ...Equipment Using The Global Positioning System ( GPS )/ Precise Positioning Service (PPS) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...EQUIPMENT USING THE GLOBAL POSITIONING SYSTEM ( GPS ) / PRECISE POSITIONING SERVICE (PPS) DISTRIBUTION: SMC/ GP (5

  14. A New Indoor Positioning System Architecture Using GPS Signals.

    PubMed

    Xu, Rui; Chen, Wu; Xu, Ying; Ji, Shengyue

    2015-04-29

    The pseudolite system is a good alternative for indoor positioning systems due to its large coverage area and accurate positioning solution. However, for common Global Positioning System (GPS) receivers, the pseudolite system requires some modifications of the user terminals. To solve the problem, this paper proposes a new pseudolite-based indoor positioning system architecture. The main idea is to receive real-world GPS signals, repeat each satellite signal and transmit those using indoor transmitting antennas. The transmitted GPS-like signal can be processed (signal acquisition and tracking, navigation data decoding) by the general receiver and thus no hardware-level modification on the receiver is required. In addition, all Tx can be synchronized with each other since one single clock is used in Rx/Tx. The proposed system is simulated using a software GPS receiver. The simulation results show the indoor positioning system is able to provide high accurate horizontal positioning in both static and dynamic situations.

  15. A New Indoor Positioning System Architecture Using GPS Signals

    PubMed Central

    Xu, Rui; Chen, Wu; Xu, Ying; Ji, Shengyue

    2015-01-01

    The pseudolite system is a good alternative for indoor positioning systems due to its large coverage area and accurate positioning solution. However, for common Global Positioning System (GPS) receivers, the pseudolite system requires some modifications of the user terminals. To solve the problem, this paper proposes a new pseudolite-based indoor positioning system architecture. The main idea is to receive real-world GPS signals, repeat each satellite signal and transmit those using indoor transmitting antennas. The transmitted GPS-like signal can be processed (signal acquisition and tracking, navigation data decoding) by the general receiver and thus no hardware-level modification on the receiver is required. In addition, all Tx can be synchronized with each other since one single clock is used in Rx/Tx. The proposed system is simulated using a software GPS receiver. The simulation results show the indoor positioning system is able to provide high accurate horizontal positioning in both static and dynamic situations. PMID:25938199

  16. Integrated Global Positioning Systems (GPS) Laboratory

    NASA Technical Reports Server (NTRS)

    Brown, Dewayne Randolph

    2002-01-01

    The purpose of this research is to develop a user-friendly Integrated GPS lab manual. This manual will help range engineers at NASA to integrate the use of GPS Simulators, GPS receivers, computers, MATLAB software, FUGAWI software and SATELLITE TOOL KIT software. The lab manual will be used in an effort to help NASA engineers predict GPS Coverage of planned operations and analyze GPS coverage of operation post mission. The Integrated GPS Laboratory was used to do GPS Coverage for two extensive case studies. The first scenario was an airplane trajectory in which an aircraft flew from Cape Canaveral to Los Angeles, California. In the second scenario, a rocket trajectory was done whereas a rocket was launched from Cape Canaveral to one thousand kilometers due east in the Atlantic Ocean.

  17. Shuttle Global Positioning System (GPS) system design study

    NASA Technical Reports Server (NTRS)

    Nilsen, P. W.

    1979-01-01

    The various integration problems in the Shuttle GPS system were investigated. The analysis of the Shuttle GPS link was studied. A preamplifier was designed since the Shuttle GPS antennas must be located remotely from the receiver. Several GPS receiver architecture trade-offs were discussed. The Shuttle RF harmonics and intermode that fall within the GPS receiver bandwidth were analyzed. The GPS PN code acquisition was examined. Since the receiver clock strongly affects both GPS carrier and code acquisition performance, a clock model was developed.

  18. Global Positioning System III (GPS III)

    DTIC Science & Technology

    2015-12-01

    from the SV Bus, specifically the Scalable Power Regulation Unit and is being amplified by the solar arrays which act as highly efficient antennas. To...Military Operations in Urban Terrain; Defense-Wide Mission Support; Air Mobility; and Space Launch Orbital Support. For military users, the GPS III...Service: The GPS III program will provide O&S for on- orbit support through the Launch and On- Orbit Support contract. For Space Vehicle (SV)01 and

  19. Accurate aircraft wind measurements using the global positioning system (GPS)

    SciTech Connect

    Dobosy, R.J.; Crawford, T.L., McMillen, R.T., Dumas, E.J.

    1996-11-01

    High accuracy measurements of the spatial distribution of wind speed are required in the study of turbulent exchange between the atmosphere and the earth. The use of a differential global positioning system (GPS) to determine the sensor velocity vector component of wind speed is discussed in this paper. The results of noise and rocking testing are summarized, and fluxes obtained from the GPS-based methods are compared to those measured from systems on towers and airplanes. The GPS-based methods provided usable measurements that compared well with tower and aircraft data at a significantly lower cost. 21 refs., 1 fig., 2 tabs.

  20. Investigation of GPS/IMU Positioning System for Mining Equipment

    SciTech Connect

    Ken L. Stratton

    2006-09-13

    The objective of this project is to investigate the applicability of a combined Global Positioning System and Inertial Measurement Unit (GPS/IMU) for information based displays on earthmoving machines and for automated earthmoving machines in the future. This technology has the potential of allowing an information-based product like Caterpillar's Computer Aided Earthmoving System (CAES) to operate in areas with satellite shading. Satellite shading is an issue in open pit mining because machines are routinely required to operate close to high walls, which reduces significantly the amount of the visible sky to the GPS antenna mounted on the machine. An inertial measurement unit is a product, which provides data for the calculation of position based on sensing accelerations and rotation rates of the machine's rigid body. When this information is coupled with GPS it results in a positioning system that can maintain positioning capability during time periods of shading.

  1. High accuracy autonomous navigation using the global positioning system (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, Son H.; Hart, Roger C.; Shoan, Wendy C.; Wood, Terri; Long, Anne C.; Oza, Dipak H.; Lee, Taesul

    1997-01-01

    The application of global positioning system (GPS) technology to the improvement of the accuracy and economy of spacecraft navigation, is reported. High-accuracy autonomous navigation algorithms are currently being qualified in conjunction with the GPS attitude determination flyer (GADFLY) experiment for the small satellite technology initiative Lewis spacecraft. Preflight performance assessments indicated that these algorithms are able to provide a real time total position accuracy of better than 10 m and a velocity accuracy of better than 0.01 m/s, with selective availability at typical levels. It is expected that the position accuracy will be increased to 2 m if corrections are provided by the GPS wide area augmentation system.

  2. IMU/GPS System Provides Position and Attitude Data

    NASA Technical Reports Server (NTRS)

    Lin, Ching Fang

    2006-01-01

    A special navigation system is being developed to provide high-quality information on the position and attitude of a moving platform (an aircraft or spacecraft), for use in pointing and stabilization of a hyperspectral remote-sensing system carried aboard the platform. The system also serves to enable synchronization and interpretation of readouts of all onboard sensors. The heart of the system is a commercially available unit, small enough to be held in one hand, that contains an integral combination of an inertial measurement unit (IMU) of the microelectromechanical systems (MEMS) type, Global Positioning System (GPS) receivers, a differential GPS subsystem, and ancillary data-processing subsystems. The system utilizes GPS carrier-phase measurements to generate time data plus highly accurate and continuous data on the position, attitude, rotation, and acceleration of the platform. Relative to prior navigation systems based on IMU and GPS subsystems, this system is smaller, is less expensive, and performs better. Optionally, the system can easily be connected to a laptop computer for demonstration and evaluation. In addition to airborne and spaceborne remote-sensing applications, there are numerous potential terrestrial sensing, measurement, and navigation applications in diverse endeavors that include forestry, environmental monitoring, agriculture, mining, and robotics.

  3. International GPS (Global Positioning System) Service for Geodynamics

    NASA Technical Reports Server (NTRS)

    Zumberge, J. F. (Editor); Liu, R. (Editor); Neilan, R. E. (Editor)

    1995-01-01

    The International GPS (Global Positioning System) Service for Geodynamics (IGS) began formal operation on January 1, 1994. This first annual report is divided into sections, which mirror different aspects of the service. Section (1) contains general information, including the history of the IGS, its organization, and the global network of GPS tracking sites; (2) contains information on the Central Bureau Information System; (3) describes the International Earth Rotation Service (IERS); (4) details collecting and distributing IGS data in Data Center reports; (6) describes how the IGS Analysis Centers generate their products; (7) contains miscellaneous contributions from other organizations that share common interests with the IGS.

  4. Military/Civilian Mixed-Mode Global Positioning System (GPS) Receiver (MMGR)

    DTIC Science & Technology

    2004-03-01

    Global Positioning System ( GPS ) 5a...2003. 15. SUBJECT TERMS Space Vehicles, MMGR, AFRL, JPO, Mixed-Mode Global Positioning System Receiver, GPS 16. SECURITY CLASSIFICATION OF...239.18 1 Military/Civilian Mixed-Mode Global Positioning System ( GPS ) Receiver (MMGR) Andy Peczalski, Honeywell Aerospace Electronic Systems

  5. 76 FR 27744 - Eighty-Fifth Meeting: RTCA Special Committee 159: Global Positioning System (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-12

    ... 159 meeting: Global Positioning System (GPS). SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 159: Global Positioning System (GPS). DATES: The meeting...), notice is hereby given for a Special Committee 159: Global Positioning System (GPS) meeting. The...

  6. 77 FR 56254 - 89th Meeting: RTCA Special Committee 159, Global Positioning Systems (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    ... Federal Aviation Administration 89th Meeting: RTCA Special Committee 159, Global Positioning Systems (GPS... Notice of RTCA Special Committee 159, RTCA Special Committee 159, Global Positioning Systems (GPS... Special Committee 159, Global Positioning Systems (GPS). DATES: The meeting will be held October 5,...

  7. Multi buoy system observation for GPS/A seafloor positioning

    NASA Astrophysics Data System (ADS)

    Mukaiyama, H.; Ikuta, R.; Tadokoro, K.; Yasuda, K.; Watanabe, T.; Chiba, H.; Sayanagi, K.

    2014-12-01

    We are developing a method for observation of seafloor crustal deformation using kinematic GPS and acoustic ranging system. The system measures seafloor crustal deformation by determining position of benchmarks on the seafloor using a vessel which link-up GPS and acoustic signals. Acoustic ranging is used to measure distance between the vessel and the seafloor benchmarks. And kinematic GPS is used to locate the moving vessel every 0.2 seconds. Now we have deployed 4 seafloor benchmark units at Suruga Bay and 4 units at Kumano Basin both off-pacific coast Japan. At each survey site, three seafloor transponders are settled to define a benchmark unit. In this system, each measurement takes about ten hours and both sound speed structure and the benchmark unit positions were determined simultaneously for the each measurement using a tomographic technique. This tomographic technique was adopted based on assumption that the sound speed structure is horizontally layered and changes only in time, not in space. However, when sound speed structure has a heterogeneity, the assumption of a horizontal layering causes systematic error in the determination of seafloor benchmarks(Ikuta et al 2009AGU). So we are developing a new system using multi-buoy. Multi-buoy plays the role of vessel. Conducting observation using the buoys, we can estimate spatial variation of sound speed structures as a sloped structure every moment. With the single vessel system, we solve a kind of average sound speed over the different paths to the three seafloor transponders. Using the multi-buoy system, they can detect the lateral variation as difference of the average sound speeds obtained by different buoys, which improve the accuracy of the benchmark locations. In November 2013, Observation of seafloor crustal deformation using the buoys was held in Suruga Bay. In this study, we report the result of estimations of heterogeneous sound speed structures.

  8. Three-Dimensional Geodetic Control by Interferometry with GPS (Global Positioning System): Processing of GPS Phase Observables.

    DTIC Science & Technology

    1985-04-23

    8217 geodetic networks; three, dimensional geodesy, satellite geodesy, NAVSTAR Global Positioning System,’ GPS , interferometry 20. ABSTRACT (Continue on reverse...8217 - - .. . . . . . . . . . . . . . -t INTRODUCTION GPS interferometry is a method by which three-dimensional relative-position vectors between observing stations can be

  9. Positioning With GPS: 1985

    NASA Astrophysics Data System (ADS)

    Remondi, Benjamin W.; Hothem, Larry D.

    The First International Symposium on Precise Positioning With the Global Positioning System (GPS) was held in Rockville, Maryland from April 15 to April 19, 1985; 600 participants from 31 countries attended. Sponsors included the International Union of Geodesy and Geophysics, the International Association of Geodesy, the Defense Mapping Agency (DMA), and the National Oceanic and Atmospheric Administration (NOAA) in cooperation with the American Society of Civil Engineers. GPS uses the NAVSTAR (an acronym for Navigation and Satellite Timing and Ranging) satellite system developed by the Department of Defense (DOD).Although this symposium was limited to precise positioning with GPS, the scope of precise positioning was left open. Without a doubt, precise relative positioning with L band carrier phase measurements was the most important topic. Also included were certain high-accuracy applications of pseudorange measurements, such as orbit determination, time transfer, and navigation. Administration, policy, hardware, software, processing, and applications in these areas were also covered. Intentionally left out were areas in which high positional accuracy was not important (e.g., commercial aviation). Attendees presented 89 papers, which were organized into 15 sessions covering nine subject areas: overview, status, and policy; GPS time and orbits; user equipment; user equipment testing; modeling and processing; applications; survey positioning results; practical aspects of geodesy; and dynamic positioning.

  10. Framework For A Software-defined Global Positioning System (GPS) Receiver For Precision Munitions Applications

    DTIC Science & Technology

    2012-04-01

    the global positioning system ( GPS ) receivers for position, velocity, and “up-finding” in their guidance, navigation, and control (GN&C) systems...report is shown in figure 1. The objective of this project is to use the SDR frontend to capture GPS data for use in Precision Simulation Environment...architecture for capturing GPS signals for future algorithm development. Reliable signal acquisition of the GPS waveform is challenging due to the high

  11. Differential NAVSTAR GPS (Global Positioning System) Design Concept for Harbor/Harbor Entrance Marine Navigation.

    DTIC Science & Technology

    1984-05-01

    AD-A141 665 DIFFERENTIAL NAYSTAR GPS ( GLOBAL POSIT [ONING SYSTEM ) / DESIGN CONCEPT FOR H..(U) TRANSPORTATION SYSTEMS CENTER 7 ’ CAMBRIDGE MA J VILCANS...5-3 viii 1. INTRODUCTION 1.1 BACKGROUND The NAVSTAR Global Positioning System ( GPS ) is a satellite... system which will provide global continuous navigation and position location service when it becomes operational. The NAVSTAR GPS program has been in

  12. 77 FR 12106 - 88th Meeting: RTCA Special Committee 159, Global Positioning System (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ... Federal Aviation Administration 88th Meeting: RTCA Special Committee 159, Global Positioning System (GPS... RTCA Special Committee 159, Global Positioning System (GPS). SUMMARY: The FAA is issuing this notice to advise the public of the 88th meeting of RTCA Special Committee 159, Global Positioning System...

  13. GPS aiding of ocean current determination. [Global Positioning System

    NASA Technical Reports Server (NTRS)

    Mohan, S. N.

    1981-01-01

    The navigational accuracy of an oceangoing vessel using conventional GPS p-code data is examined. The GPS signal is transmitted over two carrier frequencies in the L-band at 1575.42 and 1227.6 MHz. Achievable navigational uncertainties of differenced positional estimates are presented as a function of the parameters of the problem, with particular attention given to the effect of sea-state, user equivalent range error, uncompensated antenna motion, varying delay intervals, and reduced data rate examined in the unaided mode. The unmodeled errors resulting from satellite ephemeris uncertainties are shown to be negligible for the GPS-NDS (Navigation Development) satellites. Requirements are met in relatively calm seas, but accuracy degradation by a factor of at least 2 must be anticipated in heavier sea states. The aided mode of operation is examined, and it is shown that requirements can be met by using an inertial measurement unit (IMU) to aid the GPS receiver operation. Since the use of an IMU would mean higher costs, direct Doppler from the GPS satellites is presented as a viable alternative.

  14. Integration of the B-52G Offensive Avionics System (OAS) with the Global Positioning System (GPS)

    NASA Astrophysics Data System (ADS)

    Foote, A. L.; Pluntze, S. C.

    Integration of the B-52G OAS with the GPS has been accomplished by modification of existing OAS software. GPS derived position and velocity data are used to enhance the quality of the OAS inertial and dead reckoning navigation systems. The engineering design and the software development process used to implement this design are presented.

  15. Field testing a global positioning system (GPS) collar on a Japanese monkey: reliability of automatic GPS positioning in a Japanese forest.

    PubMed

    Sprague, David S; Kabaya, Hajime; Hagihara, Ko

    2004-04-01

    A global positioning system (GPS) collar recorded the locations of an adult female Japanese macaque over a 9-day period in a habitat with mixed suburban and rural land-uses in Chiba Prefecture, Japan. The GPS device acquired positions even in forested areas. The GPS data located the female mostly in forested areas, although the female had ranged through a habitat with inter-mingled fields, orchards, quarries, and residential areas. However, the GPS position acquisition rate was low compared to studies carried out on North American mammals. The GPS fixed a position in 20% of positioning attempts. When the collared female was tracked by radio-telemetry, almost all failures of the GPS to fix a position occurred in forest.

  16. Position, Navigation, and Timing: GPS Scientific Applications

    NASA Technical Reports Server (NTRS)

    Neilan, Ruth E.

    2008-01-01

    This slide presentation reviews the development and deployment of the Global Positioning System (GPS). This presentation also includes measuring space and time, GPS as a tool for science, development of high precision JPL GPS receivers, and technology and applications developments.

  17. 76 FR 50808 - Airborne Supplemental Navigation Equipment Using the Global Positioning System (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... standard for GPS sensors not augmented by satellite-based or ground- based systems (i.e., TSO-C129a Class B and Class C). The FAA has also published two GPS TSOs augmented by the satellite-based augmentation system (TSO-C145c, Airborne Navigation Sensors Using the Global Positioning System Augmented by...

  18. Absolute Positioning by Collecting Global Positioning System (GPS) Data Along Short Baselines

    DTIC Science & Technology

    1993-09-01

    BASELINES BY BRUCE R . HERMANN AND ALAN G. EVANS STRATEGIC AND SPACE SYSTEMS DEPARTMENT SEPTEMBER 1993 DTI I . ELECT’ ]0CT 22 1993 Approved for public release...NSWCDD/TR-93/309 ABSOLUTE POSITIONING BY COLLECTING GLOBAL POSITIONING SYSTEM (GPS) DATA ALONG SHORT BASELINES BY BRUCE R . HERMANN AND ALAN G. EVANS...Branch; Mr. T. Sims, Head, Space Sciences Branch; and Mr. J. Sloop, Head, Space and Surface Systems Division. ,- o" Fo, .. ,, ,Approved by: B~y. ’ " - R

  19. The magnitude and direction movement in Thailand based on Global Positioning System (GPS)

    NASA Astrophysics Data System (ADS)

    Jamrus, Uthen; Deng, Hui

    2016-10-01

    In this research, we applied the Global Navigation Satellite System (GNSS) with Global Positioning System (GPS) to create new geodetic network, which is referred to ITRF2000. GPS observation data in 2010 and 2012 were used for network adjustment by Least Square Method (Minimally Constrained Adjustment and Fully Constrained Adjustment), then adjusted coordinates were used to determine updated magnitude and direction.

  20. BDS/GPS Dual Systems Positioning Based on the Modified SR-UKF Algorithm.

    PubMed

    Kong, JaeHyok; Mao, Xuchu; Li, Shaoyuan

    2016-05-03

    The Global Navigation Satellite System can provide all-day three-dimensional position and speed information. Currently, only using the single navigation system cannot satisfy the requirements of the system's reliability and integrity. In order to improve the reliability and stability of the satellite navigation system, the positioning method by BDS and GPS navigation system is presented, the measurement model and the state model are described. Furthermore, the modified square-root Unscented Kalman Filter (SR-UKF) algorithm is employed in BDS and GPS conditions, and analysis of single system/multi-system positioning has been carried out, respectively. The experimental results are compared with the traditional estimation results, which show that the proposed method can perform highly-precise positioning. Especially when the number of satellites is not adequate enough, the proposed method combine BDS and GPS systems to achieve a higher positioning precision.

  1. BDS/GPS Dual Systems Positioning Based on the Modified SR-UKF Algorithm

    PubMed Central

    Kong, JaeHyok; Mao, Xuchu; Li, Shaoyuan

    2016-01-01

    The Global Navigation Satellite System can provide all-day three-dimensional position and speed information. Currently, only using the single navigation system cannot satisfy the requirements of the system’s reliability and integrity. In order to improve the reliability and stability of the satellite navigation system, the positioning method by BDS and GPS navigation system is presented, the measurement model and the state model are described. Furthermore, the modified square-root Unscented Kalman Filter (SR-UKF) algorithm is employed in BDS and GPS conditions, and analysis of single system/multi-system positioning has been carried out, respectively. The experimental results are compared with the traditional estimation results, which show that the proposed method can perform highly-precise positioning. Especially when the number of satellites is not adequate enough, the proposed method combine BDS and GPS systems to achieve a higher positioning precision. PMID:27153068

  2. Modular Software for Spacecraft Navigation Using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, S. H.; Hartman, K. R.; Weidow, D. A.; Berry, D. L.; Oza, D. H.; Long, A. C.; Joyce, E.; Steger, W. L.

    1996-01-01

    The Goddard Space Flight Center Flight Dynamics and Mission Operations Divisions have jointly investigated the feasibility of engineering modular Global Positioning SYSTEM (GPS) navigation software to support both real time flight and ground postprocessing configurations. The goals of this effort are to define standard GPS data interfaces and to engineer standard, reusable navigation software components that can be used to build a broad range of GPS navigation support applications. The paper discusses the GPS modular software (GMOD) system and operations concepts, major requirements, candidate software architecture, feasibility assessment and recommended software interface standards. In additon, ongoing efforts to broaden the scope of the initial study and to develop modular software to support autonomous navigation using GPS are addressed,

  3. GPS Position Time Series @ JPL

    NASA Technical Reports Server (NTRS)

    Owen, Susan; Moore, Angelyn; Kedar, Sharon; Liu, Zhen; Webb, Frank; Heflin, Mike; Desai, Shailen

    2013-01-01

    Different flavors of GPS time series analysis at JPL - Use same GPS Precise Point Positioning Analysis raw time series - Variations in time series analysis/post-processing driven by different users. center dot JPL Global Time Series/Velocities - researchers studying reference frame, combining with VLBI/SLR/DORIS center dot JPL/SOPAC Combined Time Series/Velocities - crustal deformation for tectonic, volcanic, ground water studies center dot ARIA Time Series/Coseismic Data Products - Hazard monitoring and response focused center dot ARIA data system designed to integrate GPS and InSAR - GPS tropospheric delay used for correcting InSAR - Caltech's GIANT time series analysis uses GPS to correct orbital errors in InSAR - Zhen Liu's talking tomorrow on InSAR Time Series analysis

  4. Airborne Pseudolites in a Global Positioning System (GPS) Degraded Environment

    DTIC Science & Technology

    2011-03-01

    measurement and the resulting equation is presented 10 Figure 2.2: Double Difference GPS Measurement Scenario. as ∇∆ρAB1,2 = ∆ρA1,2 −∆ρB1,2 (2.9) = ρA1...among these three techniques is to use a pulsing scheme. This reduces the interference approxi- mately 10 dB [13] and allows the GPS receiver to track...the air density contributes roughly 90% of the delay, wet air density, which is much difficult to predict, accounts for only 10 % [3]. Typically, the

  5. Monitoring mobility in older adults using global positioning system (GPS) watches and accelerometers: a feasibility study.

    PubMed

    Webber, Sandra C; Porter, Michelle M

    2009-10-01

    This exploratory study examined the feasibility of using Garmin global positioning system (GPS) watches and ActiGraph accelerometers to monitor walking and other aspects of community mobility in older adults. After accuracy at slow walking speeds was initially determined, 20 older adults (74.4 +/- 4.2 yr) wore the devices for 1 day. Steps, distances, and speeds (on foot and in vehicle) were determined. GPS data acquisition varied from 43 min to over 12 hr, with 55% of participants having more than 8 hr between initial and final data-collection points. When GPS data were acquired without interruptions, detailed mobility information was obtained regarding the timing, distances covered, and speeds reached during trips away from home. Although GPS and accelerometry technology offer promise for monitoring community mobility patterns, new GPS solutions are required that allow for data collection over an extended period of time between indoor and outdoor environments.

  6. The International GPS Service (IGS) as a Continuous Reference System for Precise GPS Positioning

    NASA Technical Reports Server (NTRS)

    Neilan, Ruth; Heflin, Michael; Watkins, Michael; Zumberge, James

    1996-01-01

    The International GPS Service for Geodynamics (IGS) is an organization which operates under the auspices of the International Association of Geodesy (IAG) and has been operational since January 1994. The primary objective of the IGS is to provide precise GPS data and data products to support geodetic and geophysical research activities.

  7. GPS meteorology - Remote sensing of atmospheric water vapor using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Bevis, Michael; Businger, Steven; Herring, Thomas A.; Rocken, Christian; Anthes, Richard A.; Ware, Randolph H.

    1992-01-01

    We present a new approach to remote sensing of water vapor based on the Global Positioning System (GPS). Geodesists and geophysicists have devised methods for estimating the extent to which signals propagating from GPS satellites to ground-based GPS receivers are delayed by atmospheric water vapor. This delay is parameterized in terms of a time-varying zenith wet delay (ZWD) which is retrieved by stochastic filtering of the GPS data. Given surface temperature and pressure readings at the GPS receiver, the retrieved ZWD can be transformed with very little additional uncertainty into an estimate of the integrated water vapor (IWV) overlying that receiver. Networks of continuously operating GPS receivers are being constructed by geodesists, geophysicists, and government and military agencies, in order to implement a wide range of positioning capabilities. These emerging GPS networks offer the possibility of observing the horizontal distribution of IWV or, equivalently, precipitate water with unprecedented coverage and a temporal resolution of the order of 10 min. These measurements could be utilized in operational weather forecasting and in fundamental research into atmospheric storm systems, the hydrologic cycle, atmospheric chemistry, and global climate change.

  8. Global Positioning System Time Transfer Receiver (GPS/TTR) prototype design and initial test evaluation

    NASA Technical Reports Server (NTRS)

    Oaks, J.; Frank, A.; Falvey, S.; Lister, M.; Buisson, J.; Wardrip, C.; Warren, H.

    1982-01-01

    Time transfer equipment and techniques used with the Navigation Technology Satellites were modified and extended for use with the Global Positioning System (GPS) satellites. A prototype receiver was built and field tested. The receiver uses the GPS L1 link at 1575 MHz with C/A code only to resolve a measured range to the satellite. A theoretical range is computed from the satellite ephemeris transmitted in the data message and the user's coordinates. Results of user offset from GPS time are obtained by differencing the measured and theoretical ranges and applying calibration corrections. Results of the first field test evaluation of the receiver are presented.

  9. Evaluating the velocity accuracy of an integrated GPS/INS system: Flight test results. [Global positioning system/inertial navigation systems (GPS/INS)

    SciTech Connect

    Owen, T.E.; Wardlaw, R.

    1991-01-01

    Verifying the velocity accuracy of a GPS receiver or an integrated GPS/INS system in a dynamic environment is a difficult proposition when many of the commonly used reference systems have velocity uncertainities of the same order of magnitude or greater than the GPS system. The results of flight tests aboard an aircraft in which multiple reference systems simultaneously collected data to evaluate the accuracy of an integrated GPS/INS system are reported. Emphasis is placed on obtaining high accuracy estimates of the velocity error of the integrated system in order to verify that velocity accuracy is maintained during both linear and circular trajectories. Three different reference systems operating in parallel during flight tests are used to independently determine the position and velocity of an aircraft in flight. They are a transponder/interrogator ranging system, a laser tracker, and GPS carrier phase processing. Results obtained from these reference systems are compared against each other and against an integrated real time differential based GPS/INS system to arrive at a set of conclusions about the accuracy of the integrated system.

  10. Error Analysis System for Spacecraft Navigation Using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, S. H.; Hart, R. C.; Hartman, K. R.; Tomcsik, T. L.; Searl, J. E.; Bernstein, A.

    1997-01-01

    The Flight Dynamics Division (FDD) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is currently developing improved space-navigation filtering algorithms to use the Global Positioning System (GPS) for autonomous real-time onboard orbit determination. In connection with a GPS technology demonstration on the Small Satellite Technology Initiative (SSTI)/Lewis spacecraft, FDD analysts and programmers have teamed with the GSFC Guidance, Navigation, and Control Branch to develop the GPS Enhanced Orbit Determination Experiment (GEODE) system. The GEODE system consists of a Kalman filter operating as a navigation tool for estimating the position, velocity, and additional states required to accurately navigate the orbiting Lewis spacecraft by using astrodynamic modeling and GPS measurements from the receiver. A parallel effort at the FDD is the development of a GPS Error Analysis System (GEAS) that will be used to analyze and improve navigation filtering algorithms during development phases and during in-flight calibration. For GEAS, the Kalman filter theory is extended to estimate the errors in position, velocity, and other error states of interest. The estimation of errors in physical variables at regular intervals will allow the time, cause, and effect of navigation system weaknesses to be identified. In addition, by modeling a sufficient set of navigation system errors, a system failure that causes an observed error anomaly can be traced and accounted for. The GEAS software is formulated using Object Oriented Design (OOD) techniques implemented in the C++ programming language on a Sun SPARC workstation. The Phase 1 of this effort is the development of a basic system to be used to evaluate navigation algorithms implemented in the GEODE system. This paper presents the GEAS mathematical methodology, systems and operations concepts, and software design and implementation. Results from the use of the basic system to evaluate

  11. Precise orbit determination for NASA's earth observing system using GPS (Global Positioning System)

    NASA Technical Reports Server (NTRS)

    Williams, B. G.

    1988-01-01

    An application of a precision orbit determination technique for NASA's Earth Observing System (EOS) using the Global Positioning System (GPS) is described. This technique allows the geometric information from measurements of GPS carrier phase and P-code pseudo-range to be exploited while minimizing requirements for precision dynamical modeling. The method combines geometric and dynamic information to determine the spacecraft trajectory; the weight on the dynamic information is controlled by adjusting fictitious spacecraft accelerations in three dimensions which are treated as first order exponentially time correlated stochastic processes. By varying the time correlation and uncertainty of the stochastic accelerations, the technique can range from purely geometric to purely dynamic. Performance estimates for this technique as applied to the orbit geometry planned for the EOS platforms indicate that decimeter accuracies for EOS orbit position may be obtainable. The sensitivity of the predicted orbit uncertainties to model errors for station locations, nongravitational platform accelerations, and Earth gravity is also presented.

  12. Portable device to assess dynamic accuracy of global positioning systems (GPS) receivers used in agricultural aircraft

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A device was designed to test the dynamic accuracy of Global Positioning System (GPS) receivers used in aerial vehicles. The system works by directing a sun-reflected light beam from the ground to the aircraft using mirrors. A photodetector is placed pointing downward from the aircraft and circuitry...

  13. The Utility and Validity of Kinematic GPS Positioning for the Geosar Airborne Terrain Mapping Radar System

    NASA Technical Reports Server (NTRS)

    Freedman, Adam; Hensley, Scott; Chapin, Elaine; Kroger, Peter; Hussain, Mushtaq; Allred, Bruce

    1999-01-01

    GeoSAR is an airborne, interferometric Synthetic Aperture Radar (IFSAR) system for terrain mapping, currently under development by a consortium including NASA's Jet Propulsion Laboratory (JPL), Calgis, Inc., a California mapping sciences company, and the California Department of Conservation (CaIDOC), with funding provided by the U.S. Army Corps of Engineers Topographic Engineering Center (TEC) and the U.S. Defense Advanced Research Projects Agency (DARPA). IFSAR data processing requires high-accuracy platform position and attitude knowledge. On 9 GeoSAR, these are provided by one or two Honeywell Embedded GPS Inertial Navigation Units (EGI) and an Ashtech Z12 GPS receiver. The EGIs provide real-time high-accuracy attitude and moderate-accuracy position data, while the Ashtech data, post-processed differentially with data from a nearby ground station using Ashtech PNAV software, provide high-accuracy differential GPS positions. These data are optimally combined using a Kalman filter within the GeoSAR motion measurement software, and the resultant position and orientation information are used to process the dual frequency (X-band and P-band) radar data to generate high-accuracy, high -resolution terrain imagery and digital elevation models (DEMs). GeoSAR requirements specify sub-meter level planimetric and vertical accuracies for the resultant DEMS. To achieve this, platform positioning errors well below one meter are needed. The goal of GeoSAR is to obtain 25 cm or better 3-D positions from the GPS systems on board the aircraft. By imaging a set of known point target corner-cube reflectors, the GeoSAR system can be calibrated. This calibration process yields the true position of the aircraft with an uncertainty of 20- 50 cm. This process thus allows an independent assessment of the accuracy of our GPS-based positioning systems. We will present an overview of the GeoSAR motion measurement system, focusing on the use of GPS and the blending of position data from the

  14. Autonomous Navigation of the SSTI/Lewis Spacecraft Using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Hart, R. C.; Long, A. C.; Lee, T.

    1997-01-01

    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) is pursuing the application of Global Positioning System (GPS) technology to improve the accuracy and economy of spacecraft navigation. High-accuracy autonomous navigation algorithms are being flight qualified in conjunction with GSFC's GPS Attitude Determination Flyer (GADFLY) experiment on the Small Satellite Technology Initiative (SSTI) Lewis spacecraft, which is scheduled for launch in 1997. Preflight performance assessments indicate that these algorithms can provide a real-time total position accuracy of better than 10 meters (1 sigma) and velocity accuracy of better than 0.01 meter per second (1 sigma), with selective availability at typical levels. This accuracy is projected to improve to the 2-meter level if corrections to be provided by the GPS Wide Area Augmentation System (WAAS) are included.

  15. Use of global positioning system (GPS) technology to map cross country pipelines

    SciTech Connect

    Barrett, J.P.

    1998-12-31

    Using Global Positioning System (GPS) to map pipelines could improve public safety, emergency response, protection of the environment, and reduce operational, regulatory, and asset integrity costs. Sub-meter to meter-level GPS accuracy can be a low-cost mapping technique to capture far more data than traditional meets-and-bound surveys. This paper will address some of the steps in determining what equipment, process, data dictionary, and data collection techniques would best fit the user`s application. Discussion will include the step-increase in costs for accuracy, equipment options, overall survey costs, data collection processes, and benefits of implementing a cost-effective mapping program using Global Positioning System (GPS) technology.

  16. Global Positioning System (GPS) Precipitable Water in Forecasting Lightning at Spaceport Canaveral

    NASA Technical Reports Server (NTRS)

    Kehrer, Kristen C.; Graf, Brian; Roeder, William

    2006-01-01

    This paper evaluates the use of precipitable water (PW) from Global Positioning System (GPS) in lightning prediction. Additional independent verification of an earlier model is performed. This earlier model used binary logistic regression with the following four predictor variables optimally selected from a candidate list of 23 candidate predictors: the current precipitable water value for a given time of the day, the change in GPS-PW over the past 9 hours, the KIndex, and the electric field mill value. This earlier model was not optimized for any specific forecast interval, but showed promise for 6 hour and 1.5 hour forecasts. Two new models were developed and verified. These new models were optimized for two operationally significant forecast intervals. The first model was optimized for the 0.5 hour lightning advisories issued by the 45th Weather Squadron. An additional 1.5 hours was allowed for sensor dwell, communication, calculation, analysis, and advisory decision by the forecaster. Therefore the 0.5 hour advisory model became a 2 hour forecast model for lightning within the 45th Weather Squadron advisory areas. The second model was optimized for major ground processing operations supported by the 45th Weather Squadron, which can require lightning forecasts with a lead-time of up to 7.5 hours. Using the same 1.5 lag as in the other new model, this became a 9 hour forecast model for lightning within 37 km (20 NM)) of the 45th Weather Squadron advisory areas. The two new models were built using binary logistic regression from a list of 26 candidate predictor variables: the current GPS-PW value, the change of GPS-PW over 0.5 hour increments from 0.5 to 12 hours, and the K-index. The new 2 hour model found the following for predictors to be statistically significant, listed in decreasing order of contribution to the forecast: the 0.5 hour change in GPS-PW, the 7.5 hour change in GPS-PW, the current GPS-PW value, and the KIndex. The new 9 hour forecast model found

  17. Travel patterns during pregnancy: comparison between Global Positioning System (GPS) tracking and questionnaire data

    PubMed Central

    2013-01-01

    Background Maternal exposures to traffic-related air pollution have been associated with adverse pregnancy outcomes. Exposures to traffic-related air pollutants are strongly influenced by time spent near traffic. However, little is known about women’s travel activities during pregnancy and whether questionnaire-based data can provide reliable information on travel patterns during pregnancy. Objectives Examine women’s in-vehicle travel behavior during pregnancy and examine the difference in travel data collected by questionnaire and global positioning system (GPS) and their potential for exposure error. Methods We measured work-related travel patterns in 56 pregnant women using a questionnaire and one-week GPS tracking three times during pregnancy (<20 weeks, 20–30 weeks, and >30 weeks of gestation). We compared self-reported activities with GPS-derived trip distance and duration, and examined potentially influential factors that may contribute to differences. We also described in-vehicle travel behavior by pregnancy periods and influences of demographic and personal factors on daily travel times. Finally, we estimated personal exposure to particle-bound polycyclic aromatic hydrocarbon (PB-PAH) and examined the magnitude of exposure misclassification using self-reported vs. GPS travel data. Results Subjects overestimated both trip duration and trip distance compared to the GPS data. We observed moderately high correlations between self-reported and GPS-recorded travel distance (home to work trips: r = 0.88; work to home trips: r = 0.80). Better agreement was observed between the GPS and the self-reported travel time for home to work trips (r = 0.77) than work to home trips (r = 0.64). The subjects on average spent 69 and 93 minutes traveling in vehicles daily based on the GPS and self-reported data, respectively. Longer daily travel time was observed among participants in early pregnancy, and during certain pregnancy periods in women with

  18. Inter-system biases estimation in multi-GNSS relative positioning with GPS and Galileo

    NASA Astrophysics Data System (ADS)

    Deprez, Cecile; Warnant, Rene

    2016-04-01

    The recent increase in the number of Global Navigation Satellite Systems (GNSS) opens new perspectives in the field of high precision positioning. Particularly, the European Galileo program has experienced major progress in 2015 with the launch of 6 satellites belonging to the new Full Operational Capability (FOC) generation. Associated with the ongoing GPS modernization, many more frequencies and satellites are now available. Therefore, multi-GNSS relative positioning based on GPS and Galileo overlapping frequencies should entail better accuracy and reliability in position estimations. However, the differences between satellite systems induce inter-system biases (ISBs) inside the multi-GNSS equations of observation. Once these biases estimated and removed from the model, a solution involving a unique pivot satellite for the two considered constellations can be obtained. Such an approach implies that the addition of even one single Galileo satellite to the GPS-only model will strengthen it. The combined use of L1 and L5 from GPS with E1 and E5a from Galileo in zero baseline double differences (ZB DD) based on a unique pivot satellite is employed to resolve ISBs. This model removes all the satellite- and receiver-dependant error sources by differentiating and the zero baseline configuration allows atmospheric and multipath effects elimination. An analysis of the long-term stability of ISBs is conducted on various pairs of receivers over large time spans. The possible influence of temperature variations inside the receivers over ISB values is also investigated. Our study is based on the 5 multi-GNSS receivers (2 Septentrio PolaRx4, 1 Septentrio PolaRxS and 2 Trimble NetR9) installed on the roof of our building in Liege. The estimated ISBs are then used as corrections in the multi-GNSS observation model and the resulting accuracy of multi-GNSS positioning is compared to GPS and Galileo standalone solutions.

  19. Improvements in Dynamic GPS Positions Using Track Averaging

    DTIC Science & Technology

    1999-08-01

    Global Positioning System ( GPS ), Precise Positioning System (PPS) solution under dynamic...SUBJECT TERMS 15. NUMBER OF GPS , Global Positioning System , Dynamic Positioning PAGES 31 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY... Global Positioning System ( GPS ), Precise Positioning System (PPS) solution under dynamic conditions through averaging is investigated. Static

  20. GPS (Global Positioning System) User Equipment Evaluation Techniques Using a Rotor Mounted Antenna

    DTIC Science & Technology

    1988-08-01

    MEASUREMENT PROCEDURE 5 6. RECOMMENDATIONS 6 REFERENCES 8 LIST OF FIGURES 1. Rotor induced Kalman filtr arror in reported position 9 2. Grid representing...centre will depend on Kalman filter characteristics and will tend to increase with rotor speed. GPS system noise was observed to obey Rayleigh...delayed difference measurement of reported diameter of antenna path to an accuracy of better than 0.5 m over 30 min. This method of Kalman error

  1. A Self-Tuning Kalman Filter for Autonomous Navigation Using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, Son H.

    1999-01-01

    Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman filter and GPS (Global Positioning Systems) data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. These systems, however, still rely on manual tuning from analysts. A sophisticated neuro-fuzzy component fully integrated with the flight navigation system can perform the self-tuning capability for the Kalman filter and help the navigation system recover from estimation errors in real time.

  2. ProSEDS Telemetry System Utilization of GPS Position Data for Transmitter Cycling

    NASA Technical Reports Server (NTRS)

    Kennedy, Paul; Sims, Herb

    2000-01-01

    NASA Marshall Space Flight Center will launch the Propulsive Small Expendable Deployer System (ProSEDS) space experiment in late 2000. ProSEDS will demonstrate the use of an electrodynamic tether propulsion system and will utilize a conducting wire tether to generate limited spacecraft power. This paper will provide an overview of the ProSEDS mission and will discuss the design, development and test of the spacecraft telemetry system which utilizes a custom designed GPS subsystem to determine spacecraft position relative to ground station location and to control transmitter on/off cycling based on spacecraft state vector and ground station visibility.

  3. Automated time activity classification based on global positioning system (GPS) tracking data

    PubMed Central

    2011-01-01

    Background Air pollution epidemiological studies are increasingly using global positioning system (GPS) to collect time-location data because they offer continuous tracking, high temporal resolution, and minimum reporting burden for participants. However, substantial uncertainties in the processing and classifying of raw GPS data create challenges for reliably characterizing time activity patterns. We developed and evaluated models to classify people's major time activity patterns from continuous GPS tracking data. Methods We developed and evaluated two automated models to classify major time activity patterns (i.e., indoor, outdoor static, outdoor walking, and in-vehicle travel) based on GPS time activity data collected under free living conditions for 47 participants (N = 131 person-days) from the Harbor Communities Time Location Study (HCTLS) in 2008 and supplemental GPS data collected from three UC-Irvine research staff (N = 21 person-days) in 2010. Time activity patterns used for model development were manually classified by research staff using information from participant GPS recordings, activity logs, and follow-up interviews. We evaluated two models: (a) a rule-based model that developed user-defined rules based on time, speed, and spatial location, and (b) a random forest decision tree model. Results Indoor, outdoor static, outdoor walking and in-vehicle travel activities accounted for 82.7%, 6.1%, 3.2% and 7.2% of manually-classified time activities in the HCTLS dataset, respectively. The rule-based model classified indoor and in-vehicle travel periods reasonably well (Indoor: sensitivity > 91%, specificity > 80%, and precision > 96%; in-vehicle travel: sensitivity > 71%, specificity > 99%, and precision > 88%), but the performance was moderate for outdoor static and outdoor walking predictions. No striking differences in performance were observed between the rule-based and the random forest models. The random forest model was fast and easy to execute

  4. Development of a GPS-aided motion measurement, pointing, and stabilization system for a Synthetic Aperture Radar. [Global Positioning System (GPS)

    SciTech Connect

    Fellerhoff, J.R.; Kohler, S.M.

    1991-01-01

    An advanced Synthetic Aperture Radar Motion Compensation System has been developed by Sandia National Laboratories (SNL). The system includes a miniaturized high accuracy ring laser gyro inertial measurement unit, a three axis gimbal pointing and stabilization assembly, a differential Global Positioning System (GPS) navigation aiding system, and a pilot guidance system. The system provides several improvements over previous SNL motion compensation systems and is capable of antenna stabilization to less than 0.01 degrees RMS and absolute position measurement to less than 5.0 meters RMS. These accuracies have been demonstrated in recent flight testing aboard a DHC-6-300 Twin Otter'' aircraft.

  5. Airborne Navigation Sensors Using The Global Positioning System (GPS) / Precise Positioning Service (PPS) for Area Navigation (RNAV) in Required Navigation Performance (RNP) Airspace; RNP-20 RNAV Through RNP-0.3 RNAV

    DTIC Science & Technology

    2010-02-11

    GLOBAL POSITIONING SYSTEM ( GPS ) I PRECISE POSITIONING SERVICE (PPS) FOR AREA NAVIGATION (RNA...Navigation Sensors Using The Global Positioning System ( GPS ) / Precise Positioning Service (PPS) For Area Navigation (RNAV) In Required Navigation...Rev. 8-98) Prescribed by ANSI Std Z39-18 Subject: MSO-C145, AIRBORNE NAVIGATION SENSORS USING THE GLOBAL POSITIONING SYSTEM ( GPS

  6. Engineering and Design: Using Differential GPS Positioning for Elevation Determination

    DTIC Science & Technology

    1998-04-01

    Global Positioning System ( GPS ) surveying...Surveying Techniques Directorate of Civil Works NAVSTAR Global Positioning System Surveying. Survey (NGS) using several different GPS surveying 7701...NAVD88 Transformation NAVSTAR Global Positioning System Surveying, for Techniques assistance in setting up a network. a. The GPS relative positioning

  7. Efficient GPS Position Determination Algorithms

    DTIC Science & Technology

    2007-06-01

    Dilution of Precision ( GDOP ) conditions. The novel differential GPS algorithm for a network of users that has been developed in this research uses a...performance is achieved, even under high Geometric Dilution of Precision ( GDOP ) conditions. The second part of this research investigates a...respect to the receiver produces high Geometric Dilution of Precision ( GDOP ), which can adversely affect GPS position solutions [1]. Four

  8. Time determination for spacecraft users of the Navstar Global Positioning System /GPS/

    NASA Technical Reports Server (NTRS)

    Grenchik, T. J.; Fang, B. T.

    1977-01-01

    Global Positioning System (GPS) navigation is performed by time measurements. A description is presented of a two body model of spacecraft motion. Orbit determination is the process of inferring the position, velocity, and clock offset of the user from measurements made of the user motion in the Newtonian coordinate system. To illustrate the effect of clock errors and the accuracy with which the user spacecraft time and orbit may be determined, a low-earth-orbit spacecraft (Seasat) as tracked by six Phase I GPS space vehicles is considered. The obtained results indicate that in the absence of unmodeled dynamic parameter errors clock biases may be determined to the nanosecond level. There is, however, a high correlation between the clock bias and the uncertainty in the gravitational parameter GM, i.e., the product of the universal gravitational constant and the total mass of the earth. It is, therefore, not possible to determine clock bias to better than 25 nanosecond accuracy in the presence of a gravitational error of one part per million.

  9. Comparison of global positioning system (GPS) tracking and parent-report diaries to characterize children's time-location patterns.

    PubMed

    Elgethun, Kai; Yost, Michael G; Fitzpatrick, Cole T E; Nyerges, Timothy L; Fenske, Richard A

    2007-03-01

    Respondent error, low resolution, and study participant burden are known limitations of diary timelines used in exposure studies such as the National Human Exposure Assessment Survey (NHEXAS). Recent advances in global positioning system (GPS) technology have produced tracking devices sufficiently portable, functional and affordable to utilize in exposure assessment science. In this study, a differentially corrected GPS (dGPS) tracking device was compared to the NHEXAS diary timeline. The study also explored how GPS can be used to evaluate and improve such diary timelines by determining which location categories and which respondents are least likely to record "correct" time-location responses. A total of 31 children ages 3-5 years old wore a dGPS device for all waking hours on a weekend day while their parents completed the NHEXAS diary timeline to document the child's time-location pattern. Parents misclassified child time-location approximately 48% of the time using the NHEXAS timeline in comparison to dGPS. Overall concordance between methods was marginal (kappa=0.33-0.35). The dGPS device found that on average, children spent 76% of the 24-h study period in the home. The diary underestimated time the child spent in the home by 17%, while overestimating time spent inside other locations, outside at home, outside in other locations, and time spent in transit. Diary data for time spent outside at home and time in transit had the lowest response concordance with dGPS. The diaries of stay-at-home mothers and mothers working unskilled labor jobs had lower concordance with dGPS than did those of the other participants. The ability of dGPS tracking to collect continuous rather than categorical (ordinal) data was also demonstrated. It is concluded that automated GPS tracking measurements can improve the quality and collection efficiency of time-location data in exposure assessment studies, albeit for small cohorts.

  10. Using Evolutionary Computation on GPS Position Correction

    PubMed Central

    2014-01-01

    More and more devices are equipped with global positioning system (GPS). However, those handheld devices with consumer-grade GPS receivers usually have low accuracy in positioning. A position correction algorithm is therefore useful in this case. In this paper, we proposed an evolutionary computation based technique to generate a correction function by two GPS receivers and a known reference location. Locating one GPS receiver on the known location and combining its longitude and latitude information and exact poisoning information, the proposed technique is capable of evolving a correction function by such. The proposed technique can be implemented and executed on handheld devices without hardware reconfiguration. Experiments are conducted to demonstrate performance of the proposed technique. Positioning error could be significantly reduced from the order of 10 m to the order of 1 m. PMID:24578657

  11. Tracking the movement of Hawaiian volcanoes; Global Positioning System (GPS) measurement

    USGS Publications Warehouse

    Dvorak, J.J.

    1992-01-01

    At some well-studied volcanoes, surface movements of at least several centimeters take place out to distances of about 10 km from the summit of the volcano. Widespread deformation of this type is relatively easy to monitor, because the necessary survey stations can be placed at favorable sites some distance from the summit of the volcano. Examples of deformation of this type include Kilauea and Mauna Loa in Hawaii, Krafla in Iceland, Long Valley in California, Camp Flegrei in Italy, and Sakurajima in Japan. In contrast, surface movement at some other volcanoes, usually volcanoes with steep slopes, is restricted to places within about 1 km of their summits. Examples of this class of volcanoes include Mount St. Helens in Washington, Etna in Italy, and Tangkuban Parahu in Indonesia. Local movement on remote, rugged volcanoes of this type is difficult to observe using conventional methods of measuring ground movement, which generally require a clear line-of-sight between points of interest. However, a revolutionary new technique, called the Global Positional System (GPS), provides a very efficient, alternative method of making such measurements. GPS, which uses satellites and ground-based receivers to accurately record slight crustal movements, is rapidly becoming the method of choice to measure deformation at volcanoes. 

  12. A pilot study using global positioning systems (GPS) devices and surveys to ascertain older adults' travel patterns.

    PubMed

    Yen, Irene H; Leung, Cindy W; Lan, Mars; Sarrafzadeh, Majid; Kayekjian, Karen C; Duru, O Kenrik

    2015-04-01

    Some studies indicate that older adults lead active lives and travel to many destinations including those not in their immediate residential neighborhoods. We used global positioning system (GPS) devices to track the travel patterns of 40 older adults (mean age: 69) in San Francisco and Los Angeles. Study participants wore the GPS devices for 7 days in fall 2010 and winter 2011. We collected survey responses concurrently about travel patterns. GPS data showed a mean of four trips/day, and a mean trip distance of 7.6 km. Survey data indicated that older adults commonly made trips for four activities (e.g., volunteering, work, visiting friends) at least once each week. Older adults regularly travel outside their residential neighborhoods. GPS can document the mode of travel, the path of travel, and the destinations. Surveys can document the purpose of the travel and the impressions or experiences in the specific locations.

  13. A new analytical method for the classification of time-location data obtained from the global positioning system (GPS).

    PubMed

    Kim, Taehyun; Lee, Kiyoung; Yang, Wonho; Yu, Seung Do

    2012-08-01

    Although the global positioning system (GPS) has been suggested as an alternative way to determine time-location patterns, its use has been limited. The purpose of this study was to evaluate a new analytical method of classifying time-location data obtained by GPS. A field technician carried a GPS device while simulating various scripted activities and recorded all movements by the second in an activity diary. The GPS device recorded geological data once every 15 s. The daily monitoring was repeated 18 times. The time-location data obtained by the GPS were compared with the activity diary to determine selection criteria for the classification of the GPS data. The GPS data were classified into four microenvironments (residential indoors, other indoors, transit, and walking outdoors); the selection criteria used were used number of satellites (used-NSAT), speed, and distance from residence. The GPS data were classified as indoors when the used-NSAT was below 9. Data classified as indoors were further classified as residential indoors when the distance from the residence was less than 40 m; otherwise, they were classified as other indoors. Data classified as outdoors were further classified as being in transit when the speed exceeded 2.5 m s(-1); otherwise, they were classified as walking outdoors. The average simple percentage agreement between the time-location classifications and the activity diary was 84.3 ± 12.4%, and the kappa coefficient was 0.71. The average differences between the time diary and the GPS results were 1.6 ± 2.3 h for the time spent in residential indoors, 0.9 ± 1.7 h for the time spent in other indoors, 0.4 ± 0.4 h for the time spent in transit, and 0.8 ± 0.5 h for the time spent walking outdoors. This method can be used to determine time-activity patterns in exposure-science studies.

  14. 76 FR 67019 - Eighty-Seventh: RTCA Special Committee 159: Global Positioning System (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-28

    ...--Working Group 2C, GPS/Inertial November 15--Working Group 2, GPS/WAAS November 16--Working Group 2, GPS...-2A) GPS/Inertial (WG-2C) GPS/Precision Landing Guidance (WG-4) GPS/Airport Surface Surveillance...

  15. Global Positioning System (GPS) Determination of Motions, Neotectonics, and Seismic Risk in Trinidad and Tobago

    NASA Astrophysics Data System (ADS)

    Rodriguez, A. B.; Weber, J. C.; Schmalzle, G. M.

    2008-12-01

    The twin island nation of Trinidad and Tobago is located in the actively deforming Caribbean-South American (Ca-SA) plate boundary zone. Recent GPS (Global Positioning System) studies have accurately determined the relative plate motion between the Caribbean plate and South American plates: ~east-west, dextral motion at 20 mm/yr. Earthquakes do not clearly mark many of the active faults in Trinidad. A low-precision triangulation-to-GPS comparison at 23 sites and paleoseismology showed that significant strike-slip faulting is probably occurring on the Central Range Fault (CRF). The lack of recent seismic activity on the CRF may indicate that it is elastically locked and storing motion. We study Trinidad's neotectonics using new GPS data from 19 high-stability campaign sites that were built and measured in 2005, then measured again in 2007; for a few additional sites we have data that go back from 2007 to 1994. These new data will allow us to test and refine the previous lower-precision geodetic results to better quantify the rate of slip across the CRF and its mechanical behavior. We compiled, and then processed the data using GIPSY/OASIS II (Release 5.0) software at the University of Miami RSMAS Geodesy Lab. We find that, in a South American reference frame, sites north of the CRF move at about 20 (±1-5) mm/yr; sites south of the CRF are stationary (±1-8 mm/yr). Tobago site velocities are slightly oblique to overall Caribbean plate motion due to a major (Magnitude 6.7) earthquake that occurred off Tobago's south coast in 1997. Our new results support the hypotheses that the CRF is the principal active strike-slip fault in Trinidad (i.e., is the current Ca-SA plate boundary). We are fitting locked fault (elastic dislocation half-space) models to the data which will allow us to look more closely at the mechanical behavior of the CRF to further test whether it is locked or creeping to help evaluate its seismic risk.

  16. Evaluating home range techniques: use of Global Positioning System (GPS) collar data from chacma baboons.

    PubMed

    Pebsworth, Paula A; Morgan, Hanna R; Huffman, Michael A

    2012-10-01

    Global Positioning System (GPS) collars have revolutionized the field of spatial ecology, but to date, few primate studies have used them. We fitted a free-ranging, semi-habituated, juvenile male chacma baboon (Papio hamadryas ursinus) with an automatic self-releasing GPS collar and tracked his movements for 359 days. The collar captured 4254 fixes out of 5719 programmed opportunities, a 74.4 % acquisition rate, suggesting that the collar effectively tracked this baboon in a variety of habitat types. Of the data points captured, 73.7 % were three-dimensional fixes, and of these fixes, 66.9 % were highly accurate, having a dilution of precision of less than four. We calculated home range using three protocols with three estimation methods: minimum convex polygon, fixed kernel-density estimation (KDE), and fixed r local convex hull. Using all data points and the 95 % contour, these methods created home range estimations ranging from 10.8 to 23.1 km(2) for this baboon troop. Our results indicate that the KDE output using all data locations most accurately represented our data set, as it created a continuous home range boundary that excluded unused areas and outlying, potentially exploratory data points while including all seven sleeping sites and a movement corridor. However, home range estimations generated from KDE varied from 15.4 to 18.8 km(2) depending on the smoothing parameter used. Our results demonstrated that the ad hoc smoothing parameter selection technique was a better method for our data set than either the least squares cross-validation or biased cross-validation techniques. Our results demonstrate the need for primatologists to develop a standardized reporting method which documents the tool, screening protocol, and smoothing parameter used in the creation of home range estimations in order to make comparisons that are meaningful.

  17. A Tightly-Coupled GPS/INS/UWB Cooperative Positioning Sensors System Supported by V2I Communication.

    PubMed

    Wang, Jian; Gao, Yang; Li, Zengke; Meng, Xiaolin; Hancock, Craig M

    2016-06-27

    This paper investigates a tightly-coupled Global Position System (GPS)/Ultra-Wideband (UWB)/Inertial Navigation System (INS) cooperative positioning scheme using a Robust Kalman Filter (RKF) supported by V2I communication. The scheme proposes a method that uses range measurements of UWB units transmitted among the terminals as augmentation inputs of the observations. The UWB range inputs are used to reform the GPS observation equations that consist of pseudo-range and Doppler measurements and the updated observation equation is processed in a tightly-coupled GPS/UWB/INS integrated positioning equation using an adaptive Robust Kalman Filter. The result of the trial conducted on the roof of the Nottingham Geospatial Institute (NGI) at the University of Nottingham shows that the integrated solution provides better accuracy and improves the availability of the system in GPS denied environments. RKF can eliminate the effects of gross errors. Additionally, the internal and external reliabilities of the system are enhanced when the UWB observables received from the moving terminals are involved in the positioning algorithm.

  18. A Tightly-Coupled GPS/INS/UWB Cooperative Positioning Sensors System Supported by V2I Communication

    PubMed Central

    Wang, Jian; Gao, Yang; Li, Zengke; Meng, Xiaolin; Hancock, Craig M.

    2016-01-01

    This paper investigates a tightly-coupled Global Position System (GPS)/Ultra-Wideband (UWB)/Inertial Navigation System (INS) cooperative positioning scheme using a Robust Kalman Filter (RKF) supported by V2I communication. The scheme proposes a method that uses range measurements of UWB units transmitted among the terminals as augmentation inputs of the observations. The UWB range inputs are used to reform the GPS observation equations that consist of pseudo-range and Doppler measurements and the updated observation equation is processed in a tightly-coupled GPS/UWB/INS integrated positioning equation using an adaptive Robust Kalman Filter. The result of the trial conducted on the roof of the Nottingham Geospatial Institute (NGI) at the University of Nottingham shows that the integrated solution provides better accuracy and improves the availability of the system in GPS denied environments. RKF can eliminate the effects of gross errors. Additionally, the internal and external reliabilities of the system are enhanced when the UWB observables received from the moving terminals are involved in the positioning algorithm. PMID:27355947

  19. Global positioning system technology (GPS) for psychological research: a test of convergent and nomological validity

    PubMed Central

    Wolf, Pedro S. A.; Figueredo, Aurelio J.; Jacobs, W. Jake

    2013-01-01

    The purpose of this paper is to examine the convergent and nomological validity of a GPS-based measure of daily activity, operationalized as Number of Places Visited (NPV). Relations among the GPS-based measure and two self-report measures of NPV, as well as relations among NPV and two factors made up of self-reported individual differences were examined. The first factor was composed of variables related to an Active Lifestyle (AL) (e.g., positive affect, extraversion…) and the second factor was composed of variables related to a Sedentary Lifestyle (SL) (e.g., depression, neuroticism…). NPV was measured over 4 days. This timeframe was made up of two week and two weekend days. A bi-variate analysis established one level of convergent validity and a Split-Plot GLM examined convergent validity, nomological validity, and alternative hypotheses related to constraints on activity throughout the week simultaneously. The first analysis revealed significant correlations among NPV measures- weekday, weekend, and the entire 4-day time period, supporting the convergent validity of the Diary-, Google Maps-, and GPS-NPV measures. Results from the second analysis, indicating non-significant mean differences in NPV regardless of method, also support this conclusion. We also found that AL is a statistically significant predictor of NPV no matter how NPV was measured. We did not find a statically significant relation among NPV and SL. These results permit us to infer that the GPS-based NPV measure has convergent and nomological validity. PMID:23761772

  20. Global positioning system technology (GPS) for psychological research: a test of convergent and nomological validity.

    PubMed

    Wolf, Pedro S A; Figueredo, Aurelio J; Jacobs, W Jake

    2013-01-01

    The purpose of this paper is to examine the convergent and nomological validity of a GPS-based measure of daily activity, operationalized as Number of Places Visited (NPV). Relations among the GPS-based measure and two self-report measures of NPV, as well as relations among NPV and two factors made up of self-reported individual differences were examined. The first factor was composed of variables related to an Active Lifestyle (AL) (e.g., positive affect, extraversion…) and the second factor was composed of variables related to a Sedentary Lifestyle (SL) (e.g., depression, neuroticism…). NPV was measured over 4 days. This timeframe was made up of two week and two weekend days. A bi-variate analysis established one level of convergent validity and a Split-Plot GLM examined convergent validity, nomological validity, and alternative hypotheses related to constraints on activity throughout the week simultaneously. The first analysis revealed significant correlations among NPV measures- weekday, weekend, and the entire 4-day time period, supporting the convergent validity of the Diary-, Google Maps-, and GPS-NPV measures. Results from the second analysis, indicating non-significant mean differences in NPV regardless of method, also support this conclusion. We also found that AL is a statistically significant predictor of NPV no matter how NPV was measured. We did not find a statically significant relation among NPV and SL. These results permit us to infer that the GPS-based NPV measure has convergent and nomological validity.

  1. 75 FR 28318 - Eighty-Second Meeting: RTCA Special Committee 159: Global Positioning System (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-20

    ... include: Specific Working Group Sessions Tuesday, June 8th All Day, Working Group 2C, GPS/Inertial, Colson...). GPS/GLONASS (WG-2A). GPS/Inertial (WG-2C). GPS/Precision Landing Guidance (WG-4). GPS/Airport...

  2. A Self-Tuning Kalman Filter for Autonomous Navigation using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, S. H.

    1999-01-01

    Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman filter and GPS data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. These systems, however, still rely on manual tuning from analysts. A sophisticated neuro-fuzzy component fully integrated with the flight navigation system can perform the self-tuning capability for the Kalman filter and help the navigation system recover from estimation errors in real time.

  3. The Global Positioning System

    DTIC Science & Technology

    1989-05-01

    Global Positioning System ( GPS ) and current program status are provided. The importance of...the NAVSTAR Global Positioning System (NAVSTAR GPS or GPS ) will have on future weapons employment. The study will: examine why we need a high...Washington, D.C., 24 January, 1984. Malone, Daniel K. GPS /NAVSTAR. Military Review, March 1986. Nepean, Phillip The NAVSTAR Global Positioning System

  4. 75 FR 2581 - Eighty-First Meeting: RTCA Special Committee 159: Global Positioning System (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-15

    ... include: Specific Working Group Sessions Tuesday, February 2nd All Day, Working Group 2C, GPS/Inertial.../3rd Civil Frequency (WG-1). GPS/WAAS (WG-2). GPS/GLONASS (WG-2A). GPS/Inertial (WG-2C)....

  5. 78 FR 13396 - 90th Meeting: RTCA Special Committee 159, Global Positioning Systems (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ...., Working Group 2, GPS/SBAS, A4A Room. 1:00 p.m.-5:00 p.m., Working Group 4, Precision Landing Guidance, GPS/GBAS, MacIntosh-NBAA Room and Colson Board Room. March 14 Working Group 4, Precision Landing Guidance.../3nd Civil Frequency (WG-1). GPS/WAAS (WG-2). GPS/GLONASS (WG-2A). GPS/Inertial (WG-2C)....

  6. Research in Geodesy Based Upon Radio Interferometric Observations of GPS (Global Positioning System) Satellites.

    DTIC Science & Technology

    1986-12-31

    meters or less, could be determined by GPS interferometry with centimeter-level accuracy. Although one commercial GPS interferometry instrument had already...Association of Geodesy, Symposium d, August 15-27, 1983. ... --- I Pato I I approximately 845-km long baseline with our own GPS - interferometry determination...a 37-Station Network Measured by GPS Interferometry " (abstract), AGU Chapman Conference on Vertical Crustal Motion: Measurement and Modeling, 1984

  7. 78 FR 57672 - 91st Meeting: RTCA Special Committee 159, Global Positioning Systems (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-19

    ... meeting of Special Committee 159. The agenda will include the following: Working Group Sessions October 7 Working Group 2C, GPS/Inertial, ARINC & A4A Rooms October 8 Working Group 2, GPS/WAAS, McIntosh-NBAA Room and Colson Board Room October 9 Working Group 2, GPS/WAAS, ARINC & A4A Rooms, Afternoon, 1:00...

  8. 75 FR 61818 - Eighty-Third Meeting: RTCA Special Committee 159: Global Positioning System (GPS).

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... include: ] Specific Working Group Sessions Monday, October 25 All Day, Working Group 2C, GPS/Inertial, MacIntosh-NBAA Room and Hilton-ATA Room. Tuesday, October 26 All Day, Working Group 2, GPS/WAAS, Colton Board Room. Wednesday, October 27 All Day, Working Group 2, GPS/WAAS, Colson Board Room. All...

  9. Concurrent validity and test-retest reliability of a global positioning system (GPS) and timing gates to assess sprint performance variables.

    PubMed

    Waldron, Mark; Worsfold, Paul; Twist, Craig; Lamb, Kevin

    2011-12-01

    There has been no previous investigation of the concurrent validity and reliability of the current 5 Hz global positioning system (GPS) to assess sprinting speed or the reliability of integrated GPS-accelerometer technology. In the present study, we wished to determine: (1) the concurrent validity and reliability of a GPS and timing gates to measure sprinting speed or distance, and (2) the reliability of proper accelerations recorded via GPS-accelerometer integration. Nineteen elite youth rugby league players performed two over-ground sprints and were simultaneously assessed using GPS and timing gates. The GPS measurements systematically underestimated both distance and timing gate speed. The GPS measurements were reliable for all variables of distance and speed (coefficient of variation [CV] = 1.62% to 2.3%), particularly peak speed (95% limits of agreement [LOA] = 0.00 ± 0.8 km · h(-1); CV = 0.78%). Timing gates were more reliable (CV = 1% to 1.54%) than equivalent GPS measurements. Accelerometer measurements were least reliable (CV = 4.69% to 5.16%), particularly for the frequency of proper accelerations (95% LOA = 1.00 ± 5.43; CV = 14.12%). Timing gates and GPS were found to reliably assess speed and distance, although the validity of the GPS remains questionable. The error found in accelerometer measurements indicates the limits of this device for detecting changes in performance.

  10. 76 FR 33022 - Eighty-Sixth Meeting: RTCA Special Committee 159: Global Positioning System (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-07

    ... Group ] 7, Antenna (GPS Antenna), Colson Board Room. Plenary Session--See Agenda Below Friday, June 17.../Antennas (WG-7). Review of EUROCAE Activities. ADS-B GAP Analysis Ad Hoc--Report. Assignment/Review...

  11. A new tool to monitor training and performance of sport horses using global positioning system (GPS) with integrated GSM capabilities.

    PubMed

    Hebenbrock, M; Düe, M; Holzhausen, H; Sass, A; Stadler, P; Ellendorff, F

    2005-07-01

    Global Positioning Systems (GPS) are considered suitable to monitor the position and velocity of horses during cross-country competition or in training. Furthermore, simultaneous recording of life data such as heart rate could be useful to assess the horse's condition during exercise. To test the suitability and reliability of a commercially available GPS system with integrated heart rate recording system and with built in GSM for data transmission, the Fidelak Equipilot Type EP-2003-15/G-2.11 (EP-15/G) was evaluated first for reliability of pulse recording from a pulse generator within the physiological range of horses; furthermore distance, velocity and heart rate recordings were carried out on a standard 1000 m field track with five repetitions. Agreement (% deviation from actually measured distance and from stopwatch-distance based velocity calculations) and variability (Coefficient of Variation for distance, velocity, heart rate) were calculated. From the results it was safe to assume that the heart rate sensor recorded horse heart rates at a high degree of accuracy. Overall distances and velocities are in high agreement with actually measured values. However, overall variability expressed in terms of relative variability (C.V.) is smaller for distance recording (C.V. 0.68%) when compared to velocity (C.V. 1.01%). The system tested is suitable and reliable for simultaneously recording of distance, velocity and heart rates for horses during cross country exercise. GPS-based monitoring of movement along with simultaneous recording of physiological data and the possibility to call upon data will not only be of benefit for training horses or for surveillance during competition, it may also be suitable for distant patient monitoring and in behavioural studies as well as in veterinary medicine in general.

  12. Time and position accuracy using codeless GPS

    NASA Technical Reports Server (NTRS)

    Dunn, C. E.; Jefferson, D. C.; Lichten, S. M.; Thomas, J. B.; Vigue, Y.; Young, L. E.

    1994-01-01

    The Global Positioning System has allowed scientists and engineers to make measurements having accuracy far beyond the original 15 meter goal of the system. Using global networks of P-Code capable receivers and extensive post-processing, geodesists have achieved baseline precision of a few parts per billion, and clock offsets have been measured at the nanosecond level over intercontinental distances. A cloud hangs over this picture, however. The Department of Defense plans to encrypt the P-Code (called Anti-Spoofing, or AS) in the fall of 1993. After this event, geodetic and time measurements will have to be made using codeless GPS receivers. However, there appears to be a silver lining to the cloud. In response to the anticipated encryption of the P-Code, the geodetic and GPS receiver community has developed some remarkably effective means of coping with AS without classified information. We will discuss various codeless techniques currently available and the data noise resulting from each. We will review some geodetic results obtained using only codeless data, and discuss the implications for time measurements. Finally, we will present the status of GPS research at JPL in relation to codeless clock measurements.

  13. Absolute GPS Positioning Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Ramillien, G.

    A new inverse approach for restoring the absolute coordinates of a ground -based station from three or four observed GPS pseudo-ranges is proposed. This stochastic method is based on simulations of natural evolution named genetic algorithms (GA). These iterative procedures provide fairly good and robust estimates of the absolute positions in the Earth's geocentric reference system. For comparison/validation, GA results are compared to the ones obtained using the classical linearized least-square scheme for the determination of the XYZ location proposed by Bancroft (1985) which is strongly limited by the number of available observations (i.e. here, the number of input pseudo-ranges must be four). The r.m.s. accuracy of the non -linear cost function reached by this latter method is typically ~10-4 m2 corresponding to ~300-500-m accuracies for each geocentric coordinate. However, GA can provide more acceptable solutions (r.m.s. errors < 10-5 m2), even when only three instantaneous pseudo-ranges are used, such as a lost of lock during a GPS survey. Tuned GA parameters used in different simulations are N=1000 starting individuals, as well as Pc=60-70% and Pm=30-40% for the crossover probability and mutation rate, respectively. Statistical tests on the ability of GA to recover acceptable coordinates in presence of important levels of noise are made simulating nearly 3000 random samples of erroneous pseudo-ranges. Here, two main sources of measurement errors are considered in the inversion: (1) typical satellite-clock errors and/or 300-metre variance atmospheric delays, and (2) Geometrical Dilution of Precision (GDOP) due to the particular GPS satellite configuration at the time of acquisition. Extracting valuable information and even from low-quality starting range observations, GA offer an interesting alternative for high -precision GPS positioning.

  14. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou

    PubMed Central

    Li, Xingxing; Zhang, Xiaohong; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-01-01

    The world of satellite navigation is undergoing dramatic changes with the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs). At the moment more than 70 satellites are already in view, and about 120 satellites will be available once all four systems (BeiDou + Galileo + GLONASS + GPS) are fully deployed in the next few years. This will bring great opportunities and challenges for both scientific and engineering applications. In this paper we develop a four-system positioning model to make full use of all available observations from different GNSSs. The significant improvement of satellite visibility, spatial geometry, dilution of precision, convergence, accuracy, continuity and reliability that a combining utilization of multi-GNSS brings to precise positioning are carefully analyzed and evaluated, especially in constrained environments. PMID:25659949

  15. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou.

    PubMed

    Li, Xingxing; Zhang, Xiaohong; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-02-09

    The world of satellite navigation is undergoing dramatic changes with the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs). At the moment more than 70 satellites are already in view, and about 120 satellites will be available once all four systems (BeiDou + Galileo + GLONASS + GPS) are fully deployed in the next few years. This will bring great opportunities and challenges for both scientific and engineering applications. In this paper we develop a four-system positioning model to make full use of all available observations from different GNSSs. The significant improvement of satellite visibility, spatial geometry, dilution of precision, convergence, accuracy, continuity and reliability that a combining utilization of multi-GNSS brings to precise positioning are carefully analyzed and evaluated, especially in constrained environments.

  16. Absolute Positioning Using the Global Positioning System

    DTIC Science & Technology

    1994-04-01

    Global Positioning System ( GPS ) has becom a useful tool In providing relativ survey...Includes the development of a low cost navigator for wheeled vehicles. ABSTRACT The Global Positioning System ( GPS ) has become a useful tool In providing...technique of absolute or point positioning involves the use of a single Global Positioning System ( GPS ) receiver to determine the three-dimenslonal

  17. Undergraduate Research - Analyzing Data Sets: Global Positioning System (GPS) and Modeling the 1994 Northridge Earthquake

    NASA Astrophysics Data System (ADS)

    Simila, G.; Shubin, C.; Horn, W.

    2003-12-01

    Our undergraduate research program (2000-2003), funded by NASA, consisted of four short courses on the analysis of selected data sets from GPS, solar physics, orbital mechanics, and proteomics. During the program, approximately 80 students were recruited from science, math, engineering, and technology disciplines. This short course introduced students to GPS and earthquake data analysis with additional presentations by scientists from JPL. Additional lectures involved discussions of the wave equation, Fourier analysis, statistical techniques, and computer applications of Excel and Matlab. Each student modeled the observed GPS displacements produced by the 1994 Northridge earthquake and presented an oral report. An additional component of the program involved students as research assistants engaged in a variety of projects at CSUN and JPL. Each short course continued the following semester with weekly research lectures.

  18. The Global Positioning System (GPS) and attitude determination: Applications and activities in the Flight Dynamics Division

    NASA Technical Reports Server (NTRS)

    Ketchum, Eleanor; Garrick, Joe

    1995-01-01

    The application of GPS to spacecraft attitude determination is a new and growing field. Although the theoretical literature is extensive, space flight testing is currently sparse and inadequate. As an operations organization, the Flight Dynamics Division (FDD) has the responsibility to investigate this new technology, and determine how best to implement the innovation to provide adequate support for future missions. This paper presents some of the current efforts within FDD with regard to GPS attitude determination. This effort specifically addresses institutional capabilities to accommodate a new type of sensor, critically evaluating the literature for recent advancements, and in examining some available -albeit crude- flight data.

  19. A Simple Method to Improve Autonomous GPS Positioning for Tractors

    PubMed Central

    Gomez-Gil, Jaime; Alonso-Garcia, Sergio; Gómez-Gil, Francisco Javier; Stombaugh, Tim

    2011-01-01

    Error is always present in the GPS guidance of a tractor along a desired trajectory. One way to reduce GPS guidance error is by improving the tractor positioning. The most commonly used ways to do this are either by employing more precise GPS receivers and differential corrections or by employing GPS together with some other local positioning systems such as electronic compasses or Inertial Navigation Systems (INS). However, both are complex and expensive solutions. In contrast, this article presents a simple and low cost method to improve tractor positioning when only a GPS receiver is used as the positioning sensor. The method is based on placing the GPS receiver ahead of the tractor, and on applying kinematic laws of tractor movement, or a geometric approximation, to obtain the midpoint position and orientation of the tractor rear axle more precisely. This precision improvement is produced by the fusion of the GPS data with tractor kinematic control laws. Our results reveal that the proposed method effectively reduces the guidance GPS error along a straight trajectory. PMID:22163917

  20. A simple method to improve autonomous GPS positioning for tractors.

    PubMed

    Gomez-Gil, Jaime; Alonso-Garcia, Sergio; Gómez-Gil, Francisco Javier; Stombaugh, Tim

    2011-01-01

    Error is always present in the GPS guidance of a tractor along a desired trajectory. One way to reduce GPS guidance error is by improving the tractor positioning. The most commonly used ways to do this are either by employing more precise GPS receivers and differential corrections or by employing GPS together with some other local positioning systems such as electronic compasses or Inertial Navigation Systems (INS). However, both are complex and expensive solutions. In contrast, this article presents a simple and low cost method to improve tractor positioning when only a GPS receiver is used as the positioning sensor. The method is based on placing the GPS receiver ahead of the tractor, and on applying kinematic laws of tractor movement, or a geometric approximation, to obtain the midpoint position and orientation of the tractor rear axle more precisely. This precision improvement is produced by the fusion of the GPS data with tractor kinematic control laws. Our results reveal that the proposed method effectively reduces the guidance GPS error along a straight trajectory.

  1. Influence of Ephemeris Error on GPS Single Point Positioning Accuracy

    NASA Astrophysics Data System (ADS)

    Lihua, Ma; Wang, Meng

    2013-09-01

    The Global Positioning System (GPS) user makes use of the navigation message transmitted from GPS satellites to achieve its location. Because the receiver uses the satellite's location in position calculations, an ephemeris error, a difference between the expected and actual orbital position of a GPS satellite, reduces user accuracy. The influence extent is decided by the precision of broadcast ephemeris from the control station upload. Simulation analysis with the Yuma almanac show that maximum positioning error exists in the case where the ephemeris error is along the line-of-sight (LOS) direction. Meanwhile, the error is dependent on the relationship between the observer and spatial constellation at some time period.

  2. GPS Software Packages Deliver Positioning Solutions

    NASA Technical Reports Server (NTRS)

    2010-01-01

    "To determine a spacecraft s position, the Jet Propulsion Laboratory (JPL) developed an innovative software program called the GPS (global positioning system)-Inferred Positioning System and Orbit Analysis Simulation Software, abbreviated as GIPSY-OASIS, and also developed Real-Time GIPSY (RTG) for certain time-critical applications. First featured in Spinoff 1999, JPL has released hundreds of licenses for GIPSY and RTG, including to Longmont, Colorado-based DigitalGlobe. Using the technology, DigitalGlobe produces satellite imagery with highly precise latitude and longitude coordinates and then supplies it for uses within defense and intelligence, civil agencies, mapping and analysis, environmental monitoring, oil and gas exploration, infrastructure management, Internet portals, and navigation technology."

  3. Mathematical Description of the GPS (Global Positioning System) Multisatellite Filter/Smoother

    DTIC Science & Technology

    1987-10-01

    Croisant (GSG) 5 6500 Brookes Lane Aerospace Corporation Washington, DC 20315 Attn: W. Feess 1 B. Winn 1 GPS Joint Program Office W. Rhodus 1 AF Space... Renfro 1 Pasadena, CA 91109 P. O. Box 8029 Austing, TX 78713 National Geodetic Survey National Ocean Service, NOAA University of Texas at Austin Attn: C

  4. Real-Time Point Positioning Performance Evaluation of Single-Frequency Receivers Using NASA's Global Differential GPS System

    NASA Technical Reports Server (NTRS)

    Muellerschoen, Ronald J.; Iijima, Byron; Meyer, Robert; Bar-Sever, Yoaz; Accad, Elie

    2004-01-01

    This paper evaluates the performance of a single-frequency receiver using the 1-Hz differential corrections as provided by NASA's global differential GPS system. While the dual-frequency user has the ability to eliminate the ionosphere error by taking a linear combination of observables, the single-frequency user must remove or calibrate this error by other means. To remove the ionosphere error we take advantage of the fact that the magnitude of the group delay in range observable and the carrier phase advance have the same magnitude but are opposite in sign. A way to calibrate this error is to use a real-time database of grid points computed by JPL's RTI (Real-Time Ionosphere) software. In both cases we evaluate the positional accuracy of a kinematic carrier phase based point positioning method on a global extent.

  5. Signal Processing Techniques for Anti-Jamming Global Positioning System (GPS) Receivers

    DTIC Science & Technology

    2005-08-01

    specifically for high JSR. With no specific focus on any particular IF estimator, the phase errors in this section are modeled as a zero-mean Gaussian white...of GPS receiver using array subspace projection in the presence has been analyzed. The phase errors are modeled as zero-mean white Gaussian , and...Middleton impulsive noise model [3] is composed of both Gaussian and impulsive noise components. The probability density function (PDF) is defined by

  6. Global Positioning Systems in Combat

    DTIC Science & Technology

    2007-11-26

    Global Positioning Systems ( GPS ) in combat. Fratricide has been reduced because of the effective use of...gained by the use of Global Positioning Systems ( GPS ) in combat. Fratricide has been reduced because of the effective use of GPS in common equipment...The advantages of using Global Positioning Systems ( GPS ) in combat have proven to reduce fratricide, collateral damage, and the number of

  7. Investigation for improving Global Positioning System (GPS) orbits using a discrete sequential estimator and stochastic models of selected physical processes

    NASA Technical Reports Server (NTRS)

    Goad, Clyde C.; Chadwell, C. David

    1993-01-01

    GEODYNII is a conventional batch least-squares differential corrector computer program with deterministic models of the physical environment. Conventional algorithms were used to process differenced phase and pseudorange data to determine eight-day Global Positioning system (GPS) orbits with several meter accuracy. However, random physical processes drive the errors whose magnitudes prevent improving the GPS orbit accuracy. To improve the orbit accuracy, these random processes should be modeled stochastically. The conventional batch least-squares algorithm cannot accommodate stochastic models, only a stochastic estimation algorithm is suitable, such as a sequential filter/smoother. Also, GEODYNII cannot currently model the correlation among data values. Differenced pseudorange, and especially differenced phase, are precise data types that can be used to improve the GPS orbit precision. To overcome these limitations and improve the accuracy of GPS orbits computed using GEODYNII, we proposed to develop a sequential stochastic filter/smoother processor by using GEODYNII as a type of trajectory preprocessor. Our proposed processor is now completed. It contains a correlated double difference range processing capability, first order Gauss Markov models for the solar radiation pressure scale coefficient and y-bias acceleration, and a random walk model for the tropospheric refraction correction. The development approach was to interface the standard GEODYNII output files (measurement partials and variationals) with software modules containing the stochastic estimator, the stochastic models, and a double differenced phase range processing routine. Thus, no modifications to the original GEODYNII software were required. A schematic of the development is shown. The observational data are edited in the preprocessor and the data are passed to GEODYNII as one of its standard data types. A reference orbit is determined using GEODYNII as a batch least-squares processor and the

  8. Networked differential GPS system

    NASA Technical Reports Server (NTRS)

    Mueller, K. Tysen (Inventor); Loomis, Peter V. W. (Inventor); Kalafus, Rudolph M. (Inventor); Sheynblat, Leonid (Inventor)

    1994-01-01

    An embodiment of the present invention relates to a worldwide network of differential GPS reference stations (NDGPS) that continually track the entire GPS satellite constellation and provide interpolations of reference station corrections tailored for particular user locations between the reference stations Each reference station takes real-time ionospheric measurements with codeless cross-correlating dual-frequency carrier GPS receivers and computes real-time orbit ephemerides independently. An absolute pseudorange correction (PRC) is defined for each satellite as a function of a particular user's location. A map of the function is constructed, with iso-PRC contours. The network measures the PRCs at a few points, so-called reference stations and constructs an iso-PRC map for each satellite. Corrections are interpolated for each user's site on a subscription basis. The data bandwidths are kept to a minimum by transmitting information that cannot be obtained directly by the user and by updating information by classes and according to how quickly each class of data goes stale given the realities of the GPS system. Sub-decimeter-level kinematic accuracy over a given area is accomplished by establishing a mini-fiducial network.

  9. Mobile robot GPS/DR integrated navigation positioning technique research

    NASA Astrophysics Data System (ADS)

    Wang, Jingkun; Zhang, Yuanliang; Li, Bifu; Chong, Kil To

    2010-01-01

    GPS is widely used for global positioning system. But GPS signal is easily interrupted when it is used alone. DR (dead reckoning) can calculate the position of mobile robots by using direction and speed sensors. However, DR system error can accumulate over time due to the error of electronic compass and odometer sensors. So DR system can't be used separately for a long time. The integrated navigation system combined GPS with DR will effectively integrated advantages of these two systems, higher positioning precision and reliability. In this paper Kalman filter model for GPS/DR integrated navigation system is set up to filter the GPS and DR data. And then the outputs of Kalman filter are inputted to a BP neural network for training. BP neural network is employed to predict next sampling time GPS output and a new Kalman filter based data fusion method is proposed to do the navigation information fusion with encoders and compass system. Simulation is done to validate the proposed fusion method. The simulation result shows the potential of this fusion method for outside used mobile robot navigation. Finally experiments are done to validate the proposed fusion method.

  10. Mobile robot GPS/DR integrated navigation positioning technique research

    NASA Astrophysics Data System (ADS)

    Wang, Jingkun; Zhang, Yuanliang; Li, Bifu; Chong, Kil To

    2009-12-01

    GPS is widely used for global positioning system. But GPS signal is easily interrupted when it is used alone. DR (dead reckoning) can calculate the position of mobile robots by using direction and speed sensors. However, DR system error can accumulate over time due to the error of electronic compass and odometer sensors. So DR system can't be used separately for a long time. The integrated navigation system combined GPS with DR will effectively integrated advantages of these two systems, higher positioning precision and reliability. In this paper Kalman filter model for GPS/DR integrated navigation system is set up to filter the GPS and DR data. And then the outputs of Kalman filter are inputted to a BP neural network for training. BP neural network is employed to predict next sampling time GPS output and a new Kalman filter based data fusion method is proposed to do the navigation information fusion with encoders and compass system. Simulation is done to validate the proposed fusion method. The simulation result shows the potential of this fusion method for outside used mobile robot navigation. Finally experiments are done to validate the proposed fusion method.

  11. Characterizing the Impact of Precision Time and Range Measurements from Two-Way Time Transfer Systems on Network Differential GPS Position Solutions

    DTIC Science & Technology

    2006-03-01

    ON NETWORK DIFFERENTIAL GPS POSITION SOLUTIONS THESIS Kendra L . B. Cook, 2D LT, USAF AFIT/GA/ENG/06-02 DEPARTMENT OF THE AIR FORCE AIR...In Partial Fulfillment of the Requirements for the Degree of Master of Science in Astronautical Engineering Kendra L . B. Cook, B.S.A.E. 2D LT...MEASUREMENTS FROM TWO-WAY TIME TRANSFER SYSTEMS ON NETWORK DIFFERENTIAL GPS POSITION SOLUTIONS Kendra L . B. Cook, B.S.A.E. 2D LT, USAF

  12. chroGPS, a global chromatin positioning system for the functional analysis and visualization of the epigenome.

    PubMed

    Font-Burgada, Joan; Reina, Oscar; Rossell, David; Azorín, Fernando

    2014-02-01

    Development of tools to jointly visualize the genome and the epigenome remains a challenge. chroGPS is a computational approach that addresses this question. chroGPS uses multidimensional scaling techniques to represent similarity between epigenetic factors, or between genetic elements on the basis of their epigenetic state, in 2D/3D reference maps. We emphasize biological interpretability, statistical robustness, integration of genetic and epigenetic data from heterogeneous sources, and computational feasibility. Although chroGPS is a general methodology to create reference maps and study the epigenetic state of any class of genetic element or genomic region, we focus on two specific kinds of maps: chroGPS(factors), which visualizes functional similarities between epigenetic factors, and chroGPS(genes), which describes the epigenetic state of genes and integrates gene expression and other functional data. We use data from the modENCODE project on the genomic distribution of a large collection of epigenetic factors in Drosophila, a model system extensively used to study genome organization and function. Our results show that the maps allow straightforward visualization of relationships between factors and elements, capturing relevant information about their functional properties that helps to interpret epigenetic information in a functional context and derive testable hypotheses.

  13. NAVSTAR Global Positioning System.

    DTIC Science & Technology

    1988-04-01

    number) The NAVSTAR Global Positioning System ( GPS ) is an all-weather, Jam-resistant, continuous-operations space-based, passive radio navigation and...with an understanding of the capabilities and limitations of the NAVSTAR Global Positioning System ( GPS ). II. Problem: To fight the next battle...navigation equipment and was not able to navigate on instruments or across a distant 9000-foot mountain. Had a NAVSTAR Global Positioning System ( GPS

  14. Accurate absolute GPS positioning through satellite clock error estimation

    NASA Astrophysics Data System (ADS)

    Han, S.-C.; Kwon, J. H.; Jekeli, C.

    2001-05-01

    An algorithm for very accurate absolute positioning through Global Positioning System (GPS) satellite clock estimation has been developed. Using International GPS Service (IGS) precise orbits and measurements, GPS clock errors were estimated at 30-s intervals. Compared to values determined by the Jet Propulsion Laboratory, the agreement was at the level of about 0.1 ns (3 cm). The clock error estimates were then applied to an absolute positioning algorithm in both static and kinematic modes. For the static case, an IGS station was selected and the coordinates were estimated every 30 s. The estimated absolute position coordinates and the known values had a mean difference of up to 18 cm with standard deviation less than 2 cm. For the kinematic case, data obtained every second from a GPS buoy were tested and the result from the absolute positioning was compared to a differential GPS (DGPS) solution. The mean differences between the coordinates estimated by the two methods are less than 40 cm and the standard deviations are less than 25 cm. It was verified that this poorer standard deviation on 1-s position results is due to the clock error interpolation from 30-s estimates with Selective Availability (SA). After SA was turned off, higher-rate clock error estimates (such as 1 s) could be obtained by a simple interpolation with negligible corruption. Therefore, the proposed absolute positioning technique can be used to within a few centimeters' precision at any rate by estimating 30-s satellite clock errors and interpolating them.

  15. Determination of locational error associated with global positioning system (GPS) radio collars in relation to vegetation and topography in north-central New Mexico

    SciTech Connect

    Bennett, K.; Biggs, J.; Fresquez, P.R.

    1997-02-01

    In 1996, a study was initiated to assess seasonal habitat use and movement patterns of Rocky Mountain elk (Cervus elaphus nelsoni) using global positioning system (GPS) radio collars. As part of this study, the authors attempted to assess the accuracies of GPS (non-differentially corrected) positions under various vegetation canopies and terrain conditions with the use of a GPS ``test`` collar. The test collar was activated every twenty minutes to obtain a position location and continuously uplinked to Argos satellites to transfer position data files. They used a Telonics, Inc. uplink receiver to intercept the transmission and view the results of the collar in real time. They placed the collar on a stand equivalent to the neck height of an adult elk and then placed the stand within three different treatment categories: (1) topographical influence (canyon and mesa tops), (2) canopy influence (open and closed canopy), and (3) vegetation type influence (ponderosa pine and pinion pine-juniper). The collar was kept at each location for one hour (usually obtaining three fixes). In addition, the authors used a hand-held GPS to obtain a position of the test collar at the same time and location.

  16. Land Navigation and Positioning Systems

    DTIC Science & Technology

    2007-11-02

    Global Position System ( GPS ). This TOP incorporates procedures that require automated data collection instrumentation and a reference system that... Global Position System ( GPS ) 44 Survey Control Point (SCP) 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY...including those aided by the Global Positioning System ( GPS ). The MAPSH comprises the Dynamic Reference Unit Hybrid (DRUH), a Precision Lightweight

  17. Advanced Distributed Simulation Technology II Global Positioning System Interactive Simulation (GPS DIS) Experiment

    DTIC Science & Technology

    2007-11-02

    RWA Manned Simulators 11 3.2.6 Voice Radio Communications: SRE & ASTi 11 3.2.7 ModSAF Operations 11 3.2.8 Data Logger 12 3.2.9 Time Stamper 12...utilized were the Single Channel Ground and Airborne Radio System (SINCGARS) Radio Emulator (SRE), the ASTi Radio, and the Tactical Internet Model (TIM...SGIs at the MWTB and ASTi radios at Ft. Rucker. These two Approved for public release; distribution is unlimited 4 ADST-II-CDRL-GPSDIS-9800018A

  18. Global Positioning System (GPS) survey of Augustine Volcano, Alaska, August 3-8, 2000: data processing, geodetic coordinates and comparison with prior geodetic surveys

    USGS Publications Warehouse

    Pauk, Benjamin A.; Power, John A.; Lisowski, Mike; Dzurisin, Daniel; Iwatsubo, Eugene Y.; Melbourne, Tim

    2001-01-01

    Between August 3 and 8,2000,the Alaska Volcano Observatory completed a Global Positioning System (GPS) survey at Augustine Volcano, Alaska. Augustine is a frequently active calcalkaline volcano located in the lower portion of Cook Inlet (fig. 1), with reported eruptions in 1812, 1882, 1909?, 1935, 1964, 1976, and 1986 (Miller et al., 1998). Geodetic measurements using electronic and optical surveying techniques (EDM and theodolite) were begun at Augustine Volcano in 1986. In 1988 and 1989, an island-wide trilateration network comprising 19 benchmarks was completed and measured in its entirety (Power and Iwatsubo, 1998). Partial GPS surveys of the Augustine Island geodetic network were completed in 1992 and 1995; however, neither of these surveys included all marks on the island.Additional GPS measurements of benchmarks A5 and A15 (fig. 2) were made during the summers of 1992, 1993, 1994, and 1996. The goals of the 2000 GPS survey were to:1) re-measure all existing benchmarks on Augustine Island using a homogeneous set of GPS equipment operated in a consistent manner, 2) add measurements at benchmarks on the western shore of Cook Inlet at distances of 15 to 25 km, 3) add measurements at an existing benchmark (BURR) on Augustine Island that was not previously surveyed, and 4) add additional marks in areas of the island thought to be actively deforming. The entire survey resulted in collection of GPS data at a total of 24 sites (fig. 1 and 2). In this report we describe the methods of GPS data collection and processing used at Augustine during the 2000 survey. We use this data to calculate coordinates and elevations for all 24 sites surveyed. Data from the 2000 survey is then compared toelectronic and optical measurements made in 1988 and 1989. This report also contains a general description of all marks surveyed in 2000 and photographs of all new marks established during the 2000 survey (Appendix A).

  19. Global Positioning System Status

    DTIC Science & Technology

    2011-04-27

    GPS : FREE – DEPENDABLE – RELIABLE - ACCURATE 1 GLOBAL POSITIONING SYSTEM STATUS Benjamin Barbour Major, United States Air Force Schriever AFB... Global Positioning System Service Interface Committee (CGSIC) held in Groton, CT, April 2011 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY...Continuing work with international GNSS community  Maintains Backward Compatibility  Managing GPS systems and supporting stakeholders Committed to responsible stewardship of GPS

  20. NASA's GPS tracking system for Aristoteles

    NASA Astrophysics Data System (ADS)

    Davis, E. S.; Hajj, G.; Kursinski, E. R.; Kyriacou, C.; Meehan, T. K.; Melbourne, William G.; Neilan, R. E.; Young, L. E.; Yunck, Thomas P.

    1991-12-01

    NASA 's Global Positioning System (GPS) tracking system for Artistoteles receivers and a GPS flight receiver aboard Aristoteles is described. It will include a global network of GPS ground receivers and a GPS flight receiver aboard Aristoteles. The flight receiver will operate autonomously; it will provide real time navigation solutions for Aristoteles and tracking data needed by ESOC for operational control of the satellite. The GPS flight and ground receivers will currently and continuously track all visible GPS satellites. These observations will yield high accuracy differential positions and velocities of Aristoteles in a terrestrial frame defined by the locations of the globally distributed ground work. The precise orbits and tracking data will be made available to science investigators as part of the geophysical data record. The characteristics of the GPS receivers, both flight and ground based, that NASA will be using to support Aristoteles are described. The operational aspects of the overall tracking system, including the data functions and the resulting data products are summarized. The expected performance of the tracking system is compared to Aristoteles requirements and the need to control key error sources such as multipath is identified.

  1. chroGPS, a global chromatin positioning system for the functional analysis and visualization of the epigenome

    PubMed Central

    Font-Burgada, Joan; Reina, Oscar; Rossell, David; Azorín, Fernando

    2014-01-01

    Development of tools to jointly visualize the genome and the epigenome remains a challenge. chroGPS is a computational approach that addresses this question. chroGPS uses multidimensional scaling techniques to represent similarity between epigenetic factors, or between genetic elements on the basis of their epigenetic state, in 2D/3D reference maps. We emphasize biological interpretability, statistical robustness, integration of genetic and epigenetic data from heterogeneous sources, and computational feasibility. Although chroGPS is a general methodology to create reference maps and study the epigenetic state of any class of genetic element or genomic region, we focus on two specific kinds of maps: chroGPSfactors, which visualizes functional similarities between epigenetic factors, and chroGPSgenes, which describes the epigenetic state of genes and integrates gene expression and other functional data. We use data from the modENCODE project on the genomic distribution of a large collection of epigenetic factors in Drosophila, a model system extensively used to study genome organization and function. Our results show that the maps allow straightforward visualization of relationships between factors and elements, capturing relevant information about their functional properties that helps to interpret epigenetic information in a functional context and derive testable hypotheses. PMID:24271395

  2. Strengths and weaknesses of Global Positioning System (GPS) data-loggers and semi-structured interviews for capturing fine-scale human mobility: findings from Iquitos, Peru.

    PubMed

    Paz-Soldan, Valerie A; Reiner, Robert C; Morrison, Amy C; Stoddard, Steven T; Kitron, Uriel; Scott, Thomas W; Elder, John P; Halsey, Eric S; Kochel, Tadeusz J; Astete, Helvio; Vazquez-Prokopec, Gonzalo M

    2014-06-01

    Quantifying human mobility has significant consequences for studying physical activity, exposure to pathogens, and generating more realistic infectious disease models. Location-aware technologies such as Global Positioning System (GPS)-enabled devices are used increasingly as a gold standard for mobility research. The main goal of this observational study was to compare and contrast the information obtained through GPS and semi-structured interviews (SSI) to assess issues affecting data quality and, ultimately, our ability to measure fine-scale human mobility. A total of 160 individuals, ages 7 to 74, from Iquitos, Peru, were tracked using GPS data-loggers for 14 days and later interviewed using the SSI about places they visited while tracked. A total of 2,047 and 886 places were reported in the SSI and identified by GPS, respectively. Differences in the concordance between methods occurred by location type, distance threshold (within a given radius to be considered a match) selected, GPS data collection frequency (i.e., 30, 90 or 150 seconds) and number of GPS points near the SSI place considered to define a match. Both methods had perfect concordance identifying each participant's house, followed by 80-100% concordance for identifying schools and lodgings, and 50-80% concordance for residences and commercial and religious locations. As the distance threshold selected increased, the concordance between SSI and raw GPS data increased (beyond 20 meters most locations reached their maximum concordance). Processing raw GPS data using a signal-clustering algorithm decreased overall concordance to 14.3%. The most common causes of discordance as described by a sub-sample (n=101) with whom we followed-up were GPS units being accidentally off (30%), forgetting or purposely not taking the units when leaving home (24.8%), possible barriers to the signal (4.7%) and leaving units home to recharge (4.6%). We provide a quantitative assessment of the strengths and weaknesses of

  3. Strengths and Weaknesses of Global Positioning System (GPS) Data-Loggers and Semi-structured Interviews for Capturing Fine-scale Human Mobility: Findings from Iquitos, Peru

    PubMed Central

    Paz-Soldan, Valerie A.; Reiner, Robert C.; Morrison, Amy C.; Stoddard, Steven T.; Kitron, Uriel; Scott, Thomas W.; Elder, John P.; Halsey, Eric S.; Kochel, Tadeusz J.; Astete, Helvio; Vazquez-Prokopec, Gonzalo M.

    2014-01-01

    Quantifying human mobility has significant consequences for studying physical activity, exposure to pathogens, and generating more realistic infectious disease models. Location-aware technologies such as Global Positioning System (GPS)-enabled devices are used increasingly as a gold standard for mobility research. The main goal of this observational study was to compare and contrast the information obtained through GPS and semi-structured interviews (SSI) to assess issues affecting data quality and, ultimately, our ability to measure fine-scale human mobility. A total of 160 individuals, ages 7 to 74, from Iquitos, Peru, were tracked using GPS data-loggers for 14 days and later interviewed using the SSI about places they visited while tracked. A total of 2,047 and 886 places were reported in the SSI and identified by GPS, respectively. Differences in the concordance between methods occurred by location type, distance threshold (within a given radius to be considered a match) selected, GPS data collection frequency (i.e., 30, 90 or 150 seconds) and number of GPS points near the SSI place considered to define a match. Both methods had perfect concordance identifying each participant's house, followed by 80–100% concordance for identifying schools and lodgings, and 50–80% concordance for residences and commercial and religious locations. As the distance threshold selected increased, the concordance between SSI and raw GPS data increased (beyond 20 meters most locations reached their maximum concordance). Processing raw GPS data using a signal-clustering algorithm decreased overall concordance to 14.3%. The most common causes of discordance as described by a sub-sample (n = 101) with whom we followed-up were GPS units being accidentally off (30%), forgetting or purposely not taking the units when leaving home (24.8%), possible barriers to the signal (4.7%) and leaving units home to recharge (4.6%). We provide a quantitative assessment of the strengths and

  4. Feasibility and Acceptability of Global Positioning System (GPS) Methods to Study the Spatial Contexts of Substance Use and Sexual Risk Behaviors among Young Men Who Have Sex with Men in New York City: A P18 Cohort Sub-Study

    PubMed Central

    Duncan, Dustin T.; Kapadia, Farzana; Regan, Seann D.; Goedel, William C.; Levy, Michael D.; Barton, Staci C.; Friedman, Samuel R.; Halkitis, Perry N.

    2016-01-01

    Background No global positioning system (GPS) technology study has been conducted among a sample of young gay, bisexual, and other men who have sex with men (YMSM). As such, the purpose of this study was to evaluate the feasibility and acceptability of using GPS methods to understand the spatial context of substance use and sexual risk behaviors among a sample of YMSM in New York City, a high-risk population. Methods Data came from a subsample of the ongoing P18 Cohort Study (n = 75). GPS feasibility and acceptability among participants was measured with: 1) a pre- and post-survey and 2) adherence to the GPS protocol which included returning the GPS device, self-report of charging and carrying the GPS device as well as objective data analyzed from the GPS devices. Analyses of the feasibility surveys were treated as repeated measures as each participant had a pre- and post-feasibility survey. When comparing the similar GPS survey items asked at baseline and at follow-up, we present percentages and associated p-values based on chi-square statistics. Results Participants reported high ratings of pre-GPS acceptability, ease of use, and low levels of wear-related concerns in addition to few concerns related to safety, loss, or appearance, which were maintained after baseline GPS feasibility data collection. The GPS return rate was 100%. Most participants charged and carried the GPS device on most days. Of the total of 75 participants with GPS data, 75 (100%) have at least one hour of GPS data for one day and 63 (84%) had at least one hour on all 7 days. Conclusions Results from this pilot study demonstrate that utilizing GPS methods among YMSM is feasible and acceptable. GPS devices may be used in spatial epidemiology research in YMSM populations to understand place-based determinants of health such as substance use and sexual risk behaviors. PMID:26918766

  5. Using GPS To Teach More Than Accurate Positions.

    ERIC Educational Resources Information Center

    Johnson, Marie C.; Guth, Peter L.

    2002-01-01

    Undergraduate science majors need practice in critical thinking, quantitative analysis, and judging whether their calculated answers are physically reasonable. Develops exercises using handheld Global Positioning System (GPS) receivers. Reinforces students' abilities to think quantitatively, make realistic "back of the envelope"…

  6. GPS

    NASA Technical Reports Server (NTRS)

    Webb, Frank H.

    2006-01-01

    Geodetic networks support the TRF requirements of NASA ESE missions. Each of SLR, VLBI, GPS substantially and uniquely contributes to TRF determination. NASA's SLR, VLBI, and GPS groups collaborate toward wide-ranging improvements in the next 5 years. NASA leverages considerable resources through its significant activity in international services. NASA faces certain challenges in continuing and advancing these activities. The Terrestrial Reference Frame (TRF) is an accurate, stable set of positions and velocities. The TRF provides the stable coordinate system that allows us to link measurements over space and time. The geodetic networks provide data for determination of the TRF as well as direct science observations.

  7. Indoor/Outdoor Seamless Positioning Using Lighting Tags and GPS Cellular Phones for Personal Navigation

    NASA Astrophysics Data System (ADS)

    Namie, Hiromune; Morishita, Hisashi

    The authors focused on the development of an indoor positioning system which is easy to use, portable and available for everyone. This system is capable of providing the correct position anywhere indoors, including onboard ships, and was invented in order to evaluate the availability of GPS indoors. Although the performance of GPS is superior outdoors, there has been considerable research regarding indoor GPS involving sensitive GPS, pseudolites (GPS pseudo satellite), RFID (Radio Frequency IDentification) tags, and wireless LAN .However, the positioning rate and the precision are not high enough for general use, which is the reason why these technologies have not yet spread to personal navigation systems. In this regard, the authors attempted to implement an indoor positioning system using cellular phones with built-in GPS and infrared light data communication functionality, which are widely used in Japan. GPS is becoming increasingly popular, where GPGGS sentences of the NMEA outputted from the GPS receiver provide spatiotemporal information including latitude, longitude, altitude, and time or ECEF xyz coordinates. As GPS applications grow rapidly, spatiotemporal data becomes key to the ubiquitous outdoor and indoor seamless positioning services at least for the entire area of Japan, as well as to becoming familiar with satellite positioning systems (e.g. GPS). Furthermore, the authors are also working on the idea of using PDAs (Personal Digital Assistants), as cellular phones with built-in GPS and PDA functionality are also becoming increasingly popular.

  8. Precise Positioning of Ships for Maritime Disasters Prevention Using GPS

    NASA Astrophysics Data System (ADS)

    Ha, J.; Heo, M.; Chun, S.; Park, S.; Cho, D.

    2010-12-01

    Most ships use the marine DGPS (Differential Global Positioning System) service to know position information in the sea. In Korea, the Ministry of Land Transport and Maritime Affairs (MLTM) provides the nationwide DGPS (NDGPS) service to users trying to secure the safety of traffic of ships. The precision of ship position information obtained by the MLTM NDGPS system is about 1-2m. When ships pass through courses under bridges, ship collisions can occur with the bridges because of the few meter-level precision of position information. In this study, as a feasibility test, we estimated positions of ships at sea to predict the collisions between ships and bridges using DGPS, carrier phase DGPS (CDGPS), and precise point positioning (PPP) techniques were used. We conducted ship borne GPS observations in the south sea of Korea. To process the GPS data, GIPSY-OASIS (GPS Inferred Positioning System-Orbit Analysis and Simulation Software) developed by the Jet Propulsion Laboratory and CDGPS MATLAB program developed by Korea Space Research Institute were used. Antenna phase center variations, ocean tidal loading displacements, and azimuthal gradients of the atmosphere were corrected or estimated as standard procedures of high-precision GIPSY-OASIS data processing. As a result, the position precision decreased to decimeter-level with increasing the quantity of motion such as velocity, pitch and roll of the ship and buoys.

  9. Frequency measurement of a Sr lattice clock using an SI-second-referenced optical frequency comb linked by a global positioning system (GPS).

    PubMed

    Hong, Feng-Lei; Takamoto, Masao; Higashi, Ryoichi; Fukuyama, Yasuhiro; Jiang, Jie; Katori, Hidetoshi

    2005-07-11

    We have established a transportable frequency measurement system using an optical frequency comb linked to a commercial Cs atomic clock, which is in turn linked to international atomic time (TAI) through global positioning system (GPS) time. An iodine-stabilized Nd:YAG laser is used as a flywheel in the frequency measurement system. This system is used to measure the absolute frequency of the clock transition of (87)Sr in an optical lattice. We obtained a fractional uncertainty of 2x10(-14) in the frequency measurement with a total averaging time of ~ 10(5) s over 9 days.

  10. Integrating different tracking systems in football: multiple camera semi-automatic system, local position measurement and GPS technologies.

    PubMed

    Buchheit, Martin; Allen, Adam; Poon, Tsz Kit; Modonutti, Mattia; Gregson, Warren; Di Salvo, Valter

    2014-12-01

    Abstract During the past decade substantial development of computer-aided tracking technology has occurred. Therefore, we aimed to provide calibration equations to allow the interchangeability of different tracking technologies used in soccer. Eighty-two highly trained soccer players (U14-U17) were monitored during training and one match. Player activity was collected simultaneously with a semi-automatic multiple-camera (Prozone), local position measurement (LPM) technology (Inmotio) and two global positioning systems (GPSports and VX). Data were analysed with respect to three different field dimensions (small, <30 m(2) to full-pitch, match). Variables provided by the systems were compared, and calibration equations (linear regression models) between each system were calculated for each field dimension. Most metrics differed between the 4 systems with the magnitude of the differences dependant on both pitch size and the variable of interest. Trivial-to-small between-system differences in total distance were noted. However, high-intensity running distance (>14.4 km · h(-1)) was slightly-to-moderately greater when tracked with Prozone, and accelerations, small-to-very largely greater with LPM. For most of the equations, the typical error of the estimate was of a moderate magnitude. Interchangeability of the different tracking systems is possible with the provided equations, but care is required given their moderate typical error of the estimate.

  11. GPS synchronized power system phase angle measurements

    NASA Astrophysics Data System (ADS)

    Wilson, Robert E.; Sterlina, Patrick S.

    1994-09-01

    This paper discusses the use of Global Positioning System (GPS) synchronized equipment for the measurement and analysis of key power system quantities. Two GPS synchronized phasor measurement units (PMU) were installed before testing. It was indicated that PMUs recorded the dynamic response of the power system phase angles when the northern California power grid was excited by the artificial short circuits. Power system planning engineers perform detailed computer generated simulations of the dynamic response of the power system to naturally occurring short circuits. The computer simulations use models of transmission lines, transformers, circuit breakers, and other high voltage components. This work will compare computer simulations of the same event with field measurement.

  12. Architecture and performance of a new GPS time transfer and positioning receiver

    NASA Technical Reports Server (NTRS)

    Kido, T. I.; Ould, P. C.; Vanwechel, R. J.

    1983-01-01

    This paper describes the Interstate Electronics 4200 GPS Receiver System that has been developed for time transfer and low dynamic positioning applications. The receiver employs the NAVSTAR Global Positioning System (GPS) l sub 1 C/A code and has three optional solution modes fo the clock/navigation state estimation.

  13. GPS versus Galileo: Balancing for Position in Space

    DTIC Science & Technology

    2006-05-01

    others? –– Galileo Galilei In 1633 the Roman Catholic Church declared Galileo Galilei a heretic because his beliefs conflicted with the status quo.1 Almost...MAY 2006 2. REPORT TYPE 3. DATES COVERED 00-00-2006 to 00-00-2006 4. TITLE AND SUBTITLE GPS versus Galileo . Balancing for Position in Space 5a...lin e GPS versus Galileo Balancing for Position in Space Beidleman COLLEGE OF AEROSPACE DOCTRINE, RESEARCH AND EDUCATION AIR UNIVERSITY GPS versus

  14. Testing Rtk GPS System In Urban Areas

    NASA Astrophysics Data System (ADS)

    Pirti, A.; Ata, E.

    RTK GPS is provided with cm accuracy and real time surveying system. For providing this conditions, the reference is necessary for high accuracy position. Because this sta- tion is transmitted the corrections to the other receivers. At the some time this system is required common satellites on the receiver to compute integer ambiguity solution. In addition to the conditions, the data transmission device's range is very important. Although RTK GPS technique has a lot of advantages, many problems meet in prac- tice. One of the most important problem in RTK system, which is very useful and reliable in the rural areas, uses in the urban areas. We search this article, how influence RTK GPS applications on satellite numbers, multipath, data transmission device's range capability and etc. in the urban areas.

  15. Consistency of Crustal Loading Signals Derived from Models and GPS: Inferences for GPS Positioning Errors

    NASA Astrophysics Data System (ADS)

    Ray, J.; Collilieux, X.; Rebischung, P.; van Dam, T. M.; Altamimi, Z.

    2011-12-01

    After applying corrections for surface load displacements to a set of station position time series determined using the Global Positioning System (GPS), we are able to infer precise error floors for the determinations of weekly dN, dE, and dU components. The load corrections are a combination of NCEP atmosphere, ECCO non-tidal ocean, and LDAS surface water models, after detrending and averaging to the middle of each GPS week. These load corrections have been applied to the most current station time series from the International GNSS Service (IGS) for a global set of 706 stations, each having more than 100 weekly observations. The stacking of the weekly IGS frame solutions has taken utmost care to minimize aliasing of local load signals into the frame parameters to ensure the most reliable time series of individual station motions. For the first time, dN and dE horizontal components have been considered together with the height (dU) variations. By examining the distributions of annual amplitudes versus WRMS scatters for all 706 stations and all three local components, we find an empirical error floor of about 0.65, 0.7, and 2.2 mm for weekly dN, dE, and dU. Only the very best performing GPS stations approach these floors. Most stations have larger scatters due to other non-load errors. These global error floors have been verified by studying differences for a subset of 119 station pairs located within 25 km of each other. Of these, 19 pairs share a common antenna, which permits an estimate of the fundamental electronic noise in the GPS estimates: 0.4, 0.4, and 1.3 mm for dN, dE, and dU. The remaining 100 close pairs that do not share an antenna include this noise component as well as errors due to multipath, equipment differences, data modeling, etc, but not due to loading or direct orbit effects since those are removed by the differencing. The WRMS dN, dE, and dU differences for these close pairs imply station error floors of 0.8, 0.9, and 2.1 mm, respectively

  16. Combined GPS/GLONASS precise point positioning with fixed GPS ambiguities.

    PubMed

    Pan, Lin; Cai, Changsheng; Santerre, Rock; Zhu, Jianjun

    2014-09-18

    Precise point positioning (PPP) technology is mostly implemented with an ambiguity-float solution. Its performance may be further improved by performing ambiguity-fixed resolution. Currently, the PPP integer ambiguity resolutions (IARs) are mainly based on GPS-only measurements. The integration of GPS and GLONASS can speed up the convergence and increase the accuracy of float ambiguity estimates, which contributes to enhancing the success rate and reliability of fixing ambiguities. This paper presents an approach of combined GPS/GLONASS PPP with fixed GPS ambiguities (GGPPP-FGA) in which GPS ambiguities are fixed into integers, while all GLONASS ambiguities are kept as float values. An improved minimum constellation method (MCM) is proposed to enhance the efficiency of GPS ambiguity fixing. Datasets from 20 globally distributed stations on two consecutive days are employed to investigate the performance of the GGPPP-FGA, including the positioning accuracy, convergence time and the time to first fix (TTFF). All datasets are processed for a time span of three hours in three scenarios, i.e., the GPS ambiguity-float solution, the GPS ambiguity-fixed resolution and the GGPPP-FGA resolution. The results indicate that the performance of the GPS ambiguity-fixed resolutions is significantly better than that of the GPS ambiguity-float solutions. In addition, the GGPPP-FGA improves the positioning accuracy by 38%, 25% and 44% and reduces the convergence time by 36%, 36% and 29% in the east, north and up coordinate components over the GPS-only ambiguity-fixed resolutions, respectively. Moreover, the TTFF is reduced by 27% after adding GLONASS observations. Wilcoxon rank sum tests and chi-square two-sample tests are made to examine the significance of the improvement on the positioning accuracy, convergence time and TTFF.

  17. Combined GPS/GLONASS Precise Point Positioning with Fixed GPS Ambiguities

    PubMed Central

    Pan, Lin; Cai, Changsheng; Santerre, Rock; Zhu, Jianjun

    2014-01-01

    Precise point positioning (PPP) technology is mostly implemented with an ambiguity-float solution. Its performance may be further improved by performing ambiguity-fixed resolution. Currently, the PPP integer ambiguity resolutions (IARs) are mainly based on GPS-only measurements. The integration of GPS and GLONASS can speed up the convergence and increase the accuracy of float ambiguity estimates, which contributes to enhancing the success rate and reliability of fixing ambiguities. This paper presents an approach of combined GPS/GLONASS PPP with fixed GPS ambiguities (GGPPP-FGA) in which GPS ambiguities are fixed into integers, while all GLONASS ambiguities are kept as float values. An improved minimum constellation method (MCM) is proposed to enhance the efficiency of GPS ambiguity fixing. Datasets from 20 globally distributed stations on two consecutive days are employed to investigate the performance of the GGPPP-FGA, including the positioning accuracy, convergence time and the time to first fix (TTFF). All datasets are processed for a time span of three hours in three scenarios, i.e., the GPS ambiguity-float solution, the GPS ambiguity-fixed resolution and the GGPPP-FGA resolution. The results indicate that the performance of the GPS ambiguity-fixed resolutions is significantly better than that of the GPS ambiguity-float solutions. In addition, the GGPPP-FGA improves the positioning accuracy by 38%, 25% and 44% and reduces the convergence time by 36%, 36% and 29% in the east, north and up coordinate components over the GPS-only ambiguity-fixed resolutions, respectively. Moreover, the TTFF is reduced by 27% after adding GLONASS observations. Wilcoxon rank sum tests and chi-square two-sample tests are made to examine the significance of the improvement on the positioning accuracy, convergence time and TTFF. PMID:25237901

  18. GPS-based certification for the microwave landing system

    NASA Technical Reports Server (NTRS)

    Thornton, C. L.; Young, L. E.; Wu, S. C.; Thomas, J. B.

    1984-01-01

    An MLS (microwave landing system) certification system based on the Global Positioning System (GPS) is described. To determine the position history of the flight inspection aircraft during runway approach, signals from the GPS satellites, together with on-board radar altimetry, are used. It is shown that the aircraft position relative to a fixed point on the runway at threshold can be determined to about 30 cm vertically and 1 m horizontally. A requirement of the system is that the GPS receivers be placed on each flight inspection aircraft and at selected ground sites. The effects of different error sources on the determination of aircraft instantaneous position and its dynamics are analyzed.

  19. GPS inferred geocentric reference frame for satellite positioning and navigation

    NASA Technical Reports Server (NTRS)

    Malla, Rajendra P.; Wu, Sien-Chong

    1989-01-01

    Accurate geocentric three-dimensional positioning is of great importance for various geodetic and oceanographic applications. While relative positioning accuracy of a few centimeters has become a reality using Very Long Baseline Interferometry (VLBI), the uncertainty in the offset of the adopted coordinate system origin from the geocenter is still believed to be of the order of one meter. Satellite Laser Ranging (SLR) is capable of determining this offset to better than 10 cm, though, because of the limited number of satellites, this requires a long arc of data. The Global Positioning System (GPS) measurements provide a powerful alternative for an accurate determination of this origin offset in relatively short period of time. Two strategies are discussed, the first utilizes the precise relative positions predetermined by VLBI, whereas the second establishes a reference frame by holding only one of the tracking sites longitude fixed. Covariance analysis studies indicate that geocentric positioning to an accuracy of a few centimeters can be achieved with just one day of precise GPS pseudorange and carrier phase data.

  20. A lane-level LBS system for vehicle network with high-precision BDS/GPS positioning.

    PubMed

    Guo, Chi; Guo, Wenfei; Cao, Guangyi; Dong, Hongbo

    2015-01-01

    In recent years, research on vehicle network location service has begun to focus on its intelligence and precision. The accuracy of space-time information has become a core factor for vehicle network systems in a mobile environment. However, difficulties persist in vehicle satellite positioning since deficiencies in the provision of high-quality space-time references greatly limit the development and application of vehicle networks. In this paper, we propose a high-precision-based vehicle network location service to solve this problem. The major components of this study include the following: (1) application of wide-area precise positioning technology to the vehicle network system. An adaptive correction message broadcast protocol is designed to satisfy the requirements for large-scale target precise positioning in the mobile Internet environment; (2) development of a concurrence service system with a flexible virtual expansion architecture to guarantee reliable data interaction between vehicles and the background; (3) verification of the positioning precision and service quality in the urban environment. Based on this high-precision positioning service platform, a lane-level location service is designed to solve a typical traffic safety problem.

  1. A Lane-Level LBS System for Vehicle Network with High-Precision BDS/GPS Positioning

    PubMed Central

    Guo, Chi; Guo, Wenfei; Cao, Guangyi; Dong, Hongbo

    2015-01-01

    In recent years, research on vehicle network location service has begun to focus on its intelligence and precision. The accuracy of space-time information has become a core factor for vehicle network systems in a mobile environment. However, difficulties persist in vehicle satellite positioning since deficiencies in the provision of high-quality space-time references greatly limit the development and application of vehicle networks. In this paper, we propose a high-precision-based vehicle network location service to solve this problem. The major components of this study include the following: (1) application of wide-area precise positioning technology to the vehicle network system. An adaptive correction message broadcast protocol is designed to satisfy the requirements for large-scale target precise positioning in the mobile Internet environment; (2) development of a concurrence service system with a flexible virtual expansion architecture to guarantee reliable data interaction between vehicles and the background; (3) verification of the positioning precision and service quality in the urban environment. Based on this high-precision positioning service platform, a lane-level location service is designed to solve a typical traffic safety problem. PMID:25755665

  2. Autonomous navigation system based on GPS and magnetometer data

    NASA Technical Reports Server (NTRS)

    Julie, Thienel K. (Inventor); Richard, Harman R. (Inventor); Bar-Itzhack, Itzhack Y. (Inventor)

    2004-01-01

    This invention is drawn to an autonomous navigation system using Global Positioning System (GPS) and magnetometers for low Earth orbit satellites. As a magnetometer is reliable and always provides information on spacecraft attitude, rate, and orbit, the magnetometer-GPS configuration solves GPS initialization problem, decreasing the convergence time for navigation estimate and improving the overall accuracy. Eventually the magnetometer-GPS configuration enables the system to avoid costly and inherently less reliable gyro for rate estimation. Being autonomous, this invention would provide for black-box spacecraft navigation, producing attitude, orbit, and rate estimates without any ground input with high accuracy and reliability.

  3. GPS-based system for satellite tracking and geodesy

    NASA Technical Reports Server (NTRS)

    Bertiger, Willy I.; Thornton, Catherine L.

    1989-01-01

    High-performance receivers and data processing systems developed for GPS are reviewed. The GPS Inferred Positioning System (GIPSY) and the Orbiter Analysis and Simulation Software (OASIS) are described. The OASIS software is used to assess GPS system performance using GIPSY for data processing. Consideration is given to parameter estimation for multiday arcs, orbit repeatability, orbit prediction, daily baseline repeatability, agreement with VLBI, and ambiguity resolution. Also, the dual-frequency Rogue receiver, which can track up to eight GPS satellites simultaneously, is discussed.

  4. Mapping Tomorrow's Resources: A symposium on the uses of remote sensing, Geographic Information Systems (GIS), and Global Positioning Systems (GPS) for natural resources management

    SciTech Connect

    Falconer, A.

    1993-01-01

    The College of Natural Resources recognizes the important role it has in educating natural resources managers and leaders who can provide the guidance and knowledge needed to increase the production of the earth's renewable resources while sustaining and enhancing the global environment and the natural resource base. The College's teaching, research, extension, and service efforts focus on the many aspects of sustained multiple-natural-resources management and their relationship to man. Through its many programs, the College of Natural Resources focuses on solving local, state, national, and global problems to enhance a more efficient and contemporary use of the world's natural resources. Natural Resources and Environmental Issues (NREI) which began publication in 1993, is a technical series that addresses current topics relevant to natural resources and to the environment. The journal is published as a series of volumes, with at least one being issued each year as the proceedings of the Natural Resources Week Symposium. In the issue on Mapping Tommorrow's Resources, the following topics are discussed: Natural Resource Information from Monopoly to Competition; Global Resources and Mission to Planet Earth; Geographic Information Systems (GIS) Systems and Data Management for Global Data Sets in Natural Resources; the Global Resource Information Database; Overview of GIS Technology in Utah State Government; Politically Correct Global Mapping and Monitoring; Integrating Satellite Imagery and GIS into Natural Resources Management; Forest Service Applications of Remote Sensing and the National Training Program; the Position of the Global Positioning System (GPS) in Wildlife and Habitat Mapping; and the Bureau of Land Management's (BLM's) Remote Sensing Program in Utah.

  5. The MARCOR GPS mobile data system

    NASA Technical Reports Server (NTRS)

    Rothblatt, Martin

    1991-01-01

    Market research revealed several key demands for an Automatic Vehicle Location (AVL) Global Positioning System (GPS) radio. The demands were for minimization of urban building blockage, easy programmability to minimize mobile data transmission costs, high accuracy for street map level coordination, interface capability with non-digital Specialized Mobile Radios (SMR), and a selling price close to that of alternatives such as Signposts and Loran-C. A team of experts was assembled to surmount these challenges and deliver a GPS radio for $500 to $1000, which operates at high accuracy in an urban environment and is plug-compatible with nearly all vehicle radios. Among the engineering and production breakthroughs described here are a unique Simultrac (Trademark) approach to satellite tracking, enabling up to eight GPS satellites to be used for position determination with a 2-channel receiver, and a receiver-in-a-microphone design. A powerful Application Specific Integrated Circuit (ASIC) allowed GPS to be brought within easy reach of millions of AVL users such as bus, taxi, and delivery vehicle fleets.

  6. Evaluation of GPS/BDS indoor positioning performance and enhancement

    NASA Astrophysics Data System (ADS)

    He, Zhe; Petovello, Mark; Pei, Ling; Olesen, Daniel M.

    2017-02-01

    This paper assesses the potential of using BDS and GPS signals to position in challenged environments such as indoors. Traditional assisted GNSS approaches that use code phase as measurements (i.e., coarse-time solutions) are shown to be prone to multipath and noise. An enhanced approach that has superior sensitivity and positioning performance-the so-called direct positioning receiver architecture-has been implemented and evaluated using live indoor BDS and/or GPS signals. Real indoor experiments have been conducted in Shanghai and significant improvement has been observed with enhanced approaches: results with BDS constellation show better horizontal positioning performance (biases are less than 10 m) than using GPS alone, but are slightly worse in the vertical axis; when using the enhanced approach with BDS and GPS, both horizontal and vertical axes show promising results for the environments considered herein; the coarse-time state converges faster and is more reliable compared to other solutions.

  7. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation.

    PubMed

    Tsuda, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10-100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50-90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10-50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet.

  8. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation

    PubMed Central

    TSUDA, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10–100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50–90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10–50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet. PMID:24492645

  9. Signal quality monitoring for GPS augmentation systems

    NASA Astrophysics Data System (ADS)

    Mitelman, Alexander Michael

    Civilian applications of the Global Positioning System have grown rapidly over the past decade. One of the most significant examples is guidance for aviation. In conjunction with specially designed equipment on the ground, GPS can provide precision approach and landing capability for aircraft. As with other safety-critical aviation applications, GPS-based landing systems must meet stringent accuracy, safety, and availability requirements set by the Federal Aviation Administration. Currently, compliance with FAA requirements is ensured by a host of monitors including the Signal Quality Monitor, a module specifically tasked with continuously observing raw GPS signals for interference and distortion. This dissertation focuses on several theoretical and practical aspects of SQM design. The discussion begins with in-depth analysis of the seminal event in SQM, a significant anomaly on GPS space vehicle 19 initially observed in 1993. At the time, a tenfold increase in vertical position error was reported when this satellite was in view. Little consensus was initially reached about the exact origin, nature, or magnitude of the distortion; this section considers these effects in detail. The analysis is then extended to compute a rigorous upper bound for differential error. Starting with the architecture of a basic landing system, a theoretical worst-case is derived that maximizes user error while defying detection by the ground station. A simplified distortion model, adopted by the International Civil Aviation Organization in response to the worst-case analysis, is also described. The discussion then describes the design and construction of an arbitrary GPS generator. Essential features include architecture, shielding, independent signal and noise levels, and fast switching between two input channels. Two example applications are presented to illustrate the instrument's utility. A theoretical analysis of the ICAO model is validated by measuring the spectra of generated

  10. Ambiguity resolved precise point positioning with GPS and BeiDou

    NASA Astrophysics Data System (ADS)

    Pan, Li; Xiaohong, Zhang; Fei, Guo

    2017-01-01

    This paper focuses on the contribution of the global positioning system (GPS) and BeiDou navigation satellite system (BDS) observations to precise point positioning (PPP) ambiguity resolution (AR). A GPS + BDS fractional cycle bias (FCB) estimation method and a PPP AR model were developed using integrated GPS and BDS observations. For FCB estimation, the GPS + BDS combined PPP float solutions of the globally distributed IGS MGEX were first performed. When integrating GPS observations, the BDS ambiguities can be precisely estimated with less than four tracked BDS satellites. The FCBs of both GPS and BDS satellites can then be estimated from these precise ambiguities. For the GPS + BDS combined AR, one GPS and one BDS IGSO or MEO satellite were first chosen as the reference satellite for GPS and BDS, respectively, to form inner-system single-differenced ambiguities. The single-differenced GPS and BDS ambiguities were then fused by partial ambiguity resolution to increase the possibility of fixing a subset of decorrelated ambiguities with high confidence. To verify the correctness of the FCB estimation and the effectiveness of the GPS + BDS PPP AR, data recorded from about 75 IGS MGEX stations during the period of DOY 123-151 (May 3 to May 31) in 2015 were used for validation. Data were processed with three strategies: BDS-only AR, GPS-only AR and GPS + BDS AR. Numerous experimental results show that the time to first fix (TTFF) is longer than 6 h for the BDS AR in general and that the fixing rate is usually less than 35 % for both static and kinematic PPP. An average TTFF of 21.7 min and 33.6 min together with a fixing rate of 98.6 and 97.0 % in static and kinematic PPP, respectively, can be achieved for GPS-only ambiguity fixing. For the combined GPS + BDS AR, the average TTFF can be shortened to 16.9 min and 24.6 min and the fixing rate can be increased to 99.5 and 99.0 % in static and kinematic PPP, respectively. Results also show that GPS + BDS PPP AR outperforms

  11. The Performance Analysis of a Real-Time Integrated INS/GPS Vehicle Navigation System with Abnormal GPS Measurement Elimination

    PubMed Central

    Chiang, Kai-Wei; Duong, Thanh Trung; Liao, Jhen-Kai

    2013-01-01

    The integration of an Inertial Navigation System (INS) and the Global Positioning System (GPS) is common in mobile mapping and navigation applications to seamlessly determine the position, velocity, and orientation of the mobile platform. In most INS/GPS integrated architectures, the GPS is considered to be an accurate reference with which to correct for the systematic errors of the inertial sensors, which are composed of biases, scale factors and drift. However, the GPS receiver may produce abnormal pseudo-range errors mainly caused by ionospheric delay, tropospheric delay and the multipath effect. These errors degrade the overall position accuracy of an integrated system that uses conventional INS/GPS integration strategies such as loosely coupled (LC) and tightly coupled (TC) schemes. Conventional tightly coupled INS/GPS integration schemes apply the Klobuchar model and the Hopfield model to reduce pseudo-range delays caused by ionospheric delay and tropospheric delay, respectively, but do not address the multipath problem. However, the multipath effect (from reflected GPS signals) affects the position error far more significantly in a consumer-grade GPS receiver than in an expensive, geodetic-grade GPS receiver. To avoid this problem, a new integrated INS/GPS architecture is proposed. The proposed method is described and applied in a real-time integrated system with two integration strategies, namely, loosely coupled and tightly coupled schemes, respectively. To verify the effectiveness of the proposed method, field tests with various scenarios are conducted and the results are compared with a reliable reference system. PMID:23955434

  12. The performance analysis of a real-time integrated INS/GPS vehicle navigation system with abnormal GPS measurement elimination.

    PubMed

    Chiang, Kai-Wei; Duong, Thanh Trung; Liao, Jhen-Kai

    2013-08-15

    The integration of an Inertial Navigation System (INS) and the Global Positioning System (GPS) is common in mobile mapping and navigation applications to seamlessly determine the position, velocity, and orientation of the mobile platform. In most INS/GPS integrated architectures, the GPS is considered to be an accurate reference with which to correct for the systematic errors of the inertial sensors, which are composed of biases, scale factors and drift. However, the GPS receiver may produce abnormal pseudo-range errors mainly caused by ionospheric delay, tropospheric delay and the multipath effect. These errors degrade the overall position accuracy of an integrated system that uses conventional INS/GPS integration strategies such as loosely coupled (LC) and tightly coupled (TC) schemes. Conventional tightly coupled INS/GPS integration schemes apply the Klobuchar model and the Hopfield model to reduce pseudo-range delays caused by ionospheric delay and tropospheric delay, respectively, but do not address the multipath problem. However, the multipath effect (from reflected GPS signals) affects the position error far more significantly in a consumer-grade GPS receiver than in an expensive, geodetic-grade GPS receiver. To avoid this problem, a new integrated INS/GPS architecture is proposed. The proposed method is described and applied in a real-time integrated system with two integration strategies, namely, loosely coupled and tightly coupled schemes, respectively. To verify the effectiveness of the proposed method, field tests with various scenarios are conducted and the results are compared with a reliable reference system.

  13. A Geometry-Based Cycle Slip Detection and Repair Method with Time-Differenced Carrier Phase (TDCP) for a Single Frequency Global Position System (GPS) + BeiDou Navigation Satellite System (BDS) Receiver

    PubMed Central

    Qian, Chuang; Liu, Hui; Zhang, Ming; Shu, Bao; Xu, Longwei; Zhang, Rufei

    2016-01-01

    As the field of high-precision applications based on carriers continues to expand, the development of low-cost, small, modular receivers and their application in diverse scenarios and situations with complex data quality has increased the requirements of carrier-phase data preprocessing. A new geometry-based cycle slip detection and repair method based on Global Position System (GPS) + BeiDou Navigation Satellite System (BDS) is proposed. The method uses a Time-differenced Carrier Phase (TDCP) model, which eliminates the Inner-System Bias (ISB) between GPS and BDS, and it is conducive to the effective combination of GPS and BDS. It avoids the interference of the noise of the pseudo-range with cycle slip detection, while the cycle slips are preserved as integers. This method does not limit the receiver frequency number, and it is applicable to single-frequency data. The process is divided into two steps to detect and repair cycle slip. The first step is cycle slip detection, using the Improved Local Analysis Method (ILAM) to find satellites that have cycle slips; The second step is to repair the cycle slips, including estimating the float solution of changes in ambiguities at the satellites that have cycle slips with the least squares method and the integer solution of the cycle slips by rounding. In the process of rounding, in addition to the success probability, a decimal test is carried out to validate the result. Finally, experiments with filed test data are carried out to prove the effectiveness of this method. The results show that the detectable cycle slips number with GPS + BDS is much greater than that with GPS. The method can also detect the non-integer outliers while fixing the cycle slip. The maximum decimal bias in repair is less than that with GPS. It implies that this method takes full advantages of multi-system. PMID:27929390

  14. A Geometry-Based Cycle Slip Detection and Repair Method with Time-Differenced Carrier Phase (TDCP) for a Single Frequency Global Position System (GPS) + BeiDou Navigation Satellite System (BDS) Receiver.

    PubMed

    Qian, Chuang; Liu, Hui; Zhang, Ming; Shu, Bao; Xu, Longwei; Zhang, Rufei

    2016-12-05

    As the field of high-precision applications based on carriers continues to expand, the development of low-cost, small, modular receivers and their application in diverse scenarios and situations with complex data quality has increased the requirements of carrier-phase data preprocessing. A new geometry-based cycle slip detection and repair method based on Global Position System (GPS) + BeiDou Navigation Satellite System (BDS) is proposed. The method uses a Time-differenced Carrier Phase (TDCP) model, which eliminates the Inner-System Bias (ISB) between GPS and BDS, and it is conducive to the effective combination of GPS and BDS. It avoids the interference of the noise of the pseudo-range with cycle slip detection, while the cycle slips are preserved as integers. This method does not limit the receiver frequency number, and it is applicable to single-frequency data. The process is divided into two steps to detect and repair cycle slip. The first step is cycle slip detection, using the Improved Local Analysis Method (ILAM) to find satellites that have cycle slips; The second step is to repair the cycle slips, including estimating the float solution of changes in ambiguities at the satellites that have cycle slips with the least squares method and the integer solution of the cycle slips by rounding. In the process of rounding, in addition to the success probability, a decimal test is carried out to validate the result. Finally, experiments with filed test data are carried out to prove the effectiveness of this method. The results show that the detectable cycle slips number with GPS + BDS is much greater than that with GPS. The method can also detect the non-integer outliers while fixing the cycle slip. The maximum decimal bias in repair is less than that with GPS. It implies that this method takes full advantages of multi-system.

  15. Global positioning system missile test range applications

    SciTech Connect

    Partridge, M.E.

    1986-06-01

    Using the Global Positioning System (GPS), a missile under test could transmit its own position, reducing radar tracking requirements while still providing three-dimensional position and velocity data with the required accuracy. This study investigated minimum package size requirements for GPS implementation on the SRAM II missile as part of the joint test assembly telemetry system. Reported GPS missile test range applications are reviewed. The two missile tracking system implementations considered are a complete GPS package onboard the missile and onboard frequency translator that retransmits the GPS satellite signals. Accuracy and operation of the two methods are compared. A functional description of the GPS is provided.

  16. NAVSTAR Global Positioning System Overview

    DTIC Science & Technology

    1984-04-10

    Global Positioning System ( GPS ) is an all-weather, space-based navigation system under development by the Department of Defense (DoD...Happing Agency Los Angeles, California 90009 ABSTRACT The Navstar Global Positioning System ( GPS ) is an all-weather, space-based navigation system ...TITLE llnclud* Security Clauiti.ati-n) NAVSTAR Global Positioning System Overview N/A PROJECT NO. N/A TASK NO. N/A WORK UNIT NO.

  17. DARPA looks beyond GPS for positioning, navigating, and timing

    SciTech Connect

    Kramer, David

    2014-10-01

    Cold-atom interferometry, microelectromechanical systems, signals of opportunity, and atomic clocks are some of the technologies the defense agency is pursuing to provide precise navigation when GPS is unavailable.

  18. An investigation of airborne GPS/INS for high accuracy position and velocity determination

    SciTech Connect

    Sun, H.; Cannon, M.E.; Owen, T.E.; Meindl, M.A.

    1993-12-31

    An airborne test using a differential GPS-INS system in a Twin Otter was conducted by Sandia National Laboratories to assess the feasibility of using the integrated system for cm-level position and cm/s velocity. The INS is a miniaturized ring-laser gyro IMU jointly developed by Sandia and Honeywell while the GPS system consists of the NovAtel GPSCard{trademark}. INS position, velocity and attitude data were computed using Sandia`s SANDAC flight computer system and logged at 4 Hz and GPS data was acquired at a 1 Hz rate. The mission was approximately 2.5 hours in duration and the aircraft reached separations of up to 19 km from the base station. The data was post-processed using a centralized Kalman filter approach in which the double differenced carrier phase measurements are used to update the INS data. The INS position is in turn used to detect and correct GPS carrier phase cycle slips and also to bridge GPS outages. Results are presented for the GPS-only case and also for integrated GPS/INS.

  19. GPS and odometer data fusion for outdoor robots continuous positioning

    NASA Astrophysics Data System (ADS)

    Pozo-Ruz, Ana; Garcia-Perez, Lia; Garcia-Alegre, Maria C.; Guinea, Domingo; Ribeiro, Angela; Sandoval, Francisco

    2002-02-01

    Present work describes an approximation to obtain the best estimation of the position of the outdoor robot ROJO, a low cost lawnmower to perform unmanned precision agriculture task such are the spraying of pesticides in horticulture. For continuous location of ROJO, two redundant sensors have been installed onboard: a DGPS submetric precision model and an odometric system. DGPS system will allow an absolute positioning of the vehicle in the field, but GPS failures in the reception of the signals due to obstacles and electrical and meteorological disturbance, lead us to the integration of the odometric system. Thus, a robust odometer based upon magnetic strip sensors has been designed and integrated in the vehicle. These sensors continuosly deliver the position of the vehicle relative to its initial position, complementing the DGPS blindness periods. They give an approximated location of the vehicle in the field that can be in turn conveniently updated and corrected by the DGPS. Thus, to provided the best estimation, a fusion algorithm has been proposed and proved, wherein the best estimation is calculated as the maximum value of the join probability function obtained from both position estimation of the onboard sensors. Some results are presented to show the performance of the proposed sensor fusion technique.

  20. The Global Positioning System

    USGS Publications Warehouse

    ,

    1999-01-01

    The Global Positioning System (GPS) is a constellation of navigation satellites called Navigation Satellite Timing And Ranging (NAVSTAR), maintained by the U.S. Department of Defense. Many outdoor enthusiasts recognize that a handheld GPS receiver can be an accurate tool for determining their location on the terrain. The GPS receiver helps determine locations on the Earth's surface by collecting signals from three or more satellites through a process called triangulation. Identifying a location on the Earth is more useful if you also know about the surrounding topographic conditions. Using a topographic map with the GPS receiver provides important information about features of the surrounding terrain and can help you plot an effective route from one location to another.

  1. Fault tolerant GPS/Inertial System design

    NASA Astrophysics Data System (ADS)

    Brown, Alison K.; Sturza, Mark A.; Deangelis, Franco; Lukaszewski, David A.

    The use of a GPS/Inertial integrated system in future launch vehicles motivates the described design of the present fault-tolerant system. The robustness of the navigation system is enhanced by integrating the GPS with an inertial fault-tolerant system. Three layers of failure detection and isolation are incorporated to determine the nature of flaws in the inertial instruments, the GPS receivers, or the integrated navigation solution. The layers are based on: (1) a high-rate parity algorithm for instrument failures; (2) a similar parity algorithm for GPS satellite or receiver failures; and (3) a GPS navigation solution to monitor inertial navigation failures. Dual failures of any system component can occur in any system component without affecting the performance of launch-vehicle navigation or guidance.

  2. Experience at the CENAM With Time and Frequency Standards Signals Received by the Global Positioning System (GPS)

    DTIC Science & Technology

    1996-12-01

    ORGANIZATION NAME(S) AND ADDRESS(ES) Centro Nacional de Metrologia, Cenam,Time and Frequency Division,Apdo. Postal 1-100 Centro,C.P. 76900, Queretaro ...one day. But the nearest and frequently locked stations of LORAN-C system at CENAM, Queretaro , Qro. were Raymondville, Texas, and Gillette, Wyoming

  3. A novel fusion methodology to bridge GPS outages for land vehicle positioning

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Li, Xu; Song, Xiang; Li, Bin; Song, Xianghui; Xu, Qimin

    2015-07-01

    Many intelligent transportation system applications require accurate, reliable, and continuous vehicle position information whether in open-sky environments or in Global Positioning System (GPS) denied environments. However, there remains a challenging task for land vehicles to achieve such positioning performance using low-cost sensors, especially microelectromechanical system (MEMS) sensors. In this paper, a novel and cost-effective fusion methodology to bridge GPS outages is proposed and applied in the Inertial Navigation System (INS)/GPS/ compass integrated positioning system. In the implementation of the proposed methodology, a key data preprocessing algorithm is first developed to eliminate the noise in inertial sensors in order to provide more accurate information for subsequent modeling. Then, a novel hybrid strategy incorporating the designed autoregressive model (AR model)-based forward estimator (ARFE) with Kalman filter (KF) is presented to predict the INS position errors during GPS outages. To verify the feasibility and effectiveness of the proposed methodology, real road tests with various scenarios were performed. The proposed methodology illustrates significant improvement in positioning accuracy during GPS outages.

  4. Assessing the role of GPs in Nordic health care systems.

    PubMed

    Quaye, Randolph K

    2016-05-03

    Purpose This paper examines the changing role of general practitioners (GPs) in Nordic countries of Sweden, Norway and Denmark. It aims to explore the "gate keeping" role of GPs in the face of current changes in the health care delivery systems in these countries. Design/methodology/approach Data were collected from existing literature, interviews with GPs, hospital specialists and representatives of Danish regions and Norwegian Medical Association. Findings The paper contends that in all these changes, the position of the GPs in the medical division of labor has been strengthened, and patients now have increased and broadened access to choice. Research limitations/implications Health care cost and high cancer mortality rates have forced Nordic countries of Sweden, Norway and Denmark to rethink their health care systems. Several attempts have been made to reduce health care cost through market reform and by strenghtening the position of GPs. The evidence suggests that in Norway and Denmark, right incentives are in place to achieve this goal. Sweden is not far behind. The paper has limitations of a small sample size and an exclusive focus on GPs. Practical implications Anecdotal evidence suggests that physicians are becoming extremely unhappy. Understanding the changing status of primary care physicians will yield valuable information for assessing the effectiveness of Nordic health care delivery systems. Social implications This study has wider implications of how GPs see their role as potential gatekeepers in the Nordic health care systems. The role of GPs is changing as a result of recent health care reforms. Originality/value This paper contends that in Norway and Denmark, right incentives are in place to strengthen the position of GPs.

  5. Impact of Ionization DEPLETIONS/TEC Bite-Outs of Equatorial Plasma Structures on Transionospheric Satellite Signals Using Global Positioning System (GPS)

    NASA Astrophysics Data System (ADS)

    Das, Tanmay

    2016-07-01

    This paper represents the impact of ionization depletions/TEC bite-outs of equatorial plasma structures on transionospheric satellite signals received from Calcutta (latitude: 22.58oN, longitude: 88.38oE geographic; 32oN magnetic dip) is situated near the northern crest of the equatorial ionization anomaly (EIA) in the Indian longitude sector, using Global Positioning System (GPS) during the equinoctial months of February-April 2011, August-October, 2011 and February-April 2012. It is observed that when a bubble moves across a satellite link, scintillations and ionization are usually encountered. The apparent duration of the bite-outs may be different from the true east-west duration, as observed with geostationary links, because of the presence of a relative velocity between the irregularity cloud and the satellite. The trajectory of a GPS satellite plays a vital role in observing the bubble characteristics. The distributions of amplitude and the parameters characterizing the ionization depletions, namely, the duration, depth and the leading and trailing edge slopes of the bubbles have been obtained during the same equinoctial months of 2011 and 2012. It is evident that the range error, extent of the bubble and ionization gradients measured in these equinoctial months of the equatorial region provides the worst case figures for system designers. The high range error (~ 3-4 m) is observed during these equinoctial months. The statistical distribution of the TEC depletions showed some significant results. Out of 29 bite-outs in February-April, 2011 equinox, the maximum amplitude was found to be about 23.25 TECU with a median depletion of about 5.92 TECU. The maximum amplitude corresponds to a range error of about 3.7 m at GPS L1 frequency. The majority of the bubbles were found to have observed duration between 10-20 minutes with a maximum of 28.14 minutes. The median value of actual duration 2.37 minutes translates to nearly 150sec of possible satellite signal

  6. The precise position and attitude resolution in MMS based on the integration of GPS/INS

    NASA Astrophysics Data System (ADS)

    Sun, Hongxing; Li, Deren

    2005-11-01

    This paper proposes an approach to precise position and attitude solution for the land-based MMS using GPS and IMU data. Firstly, the synchronization of time and space in the system are discussed, which establishes the base of GPS/INS integration. Then, a new approach is proposed for performing GPS carrier-phase ambiguity resolution using single-epoch C/A code and dual frequency carrier phase data. Based on the inner correlation of dual frequency carrier phase, a new concept of error strip for double-differenced integer ambiguity in observation field is introduced. With the restriction of the strip, the ambiguities can be determined quickly using only single epoch data with the aid of IMU. The ambiguity solution is very efficient and robust even in rigorous situation, e.g. when the number of visible satellites is less than four. On the base of single epoch GPS ambiguity solution, a new coupling mode for double differential carrier phase GPS and INS is proposed. A multiplex Kalman filter is designed with one error state equation and two different observation equations of loose coupling and tight coupling. To verify the solution, great deals of experiments have been done using 1HZ GPS data and 100HZ IMU data of 1°/h precision level, whose results show that the GPS/INS integration can resolve the position and attitude of the vehicle with the error less than 0.2 meter and 0.1 degree separately.

  7. A Demonstration of GPS Landslide Monitoring Using Online Positioning User Service (OPUS)

    NASA Astrophysics Data System (ADS)

    Wang, G.

    2011-12-01

    Global Positioning System (GPS) technologies have been frequently applied to landslide study, both as a complement, and as an alternative to conventional surveying methods. However, most applications of GPS for landslide monitoring have been limited to the academic community for research purposes. High-accuracy GPS has not been widely equipped in geotechnical companies and used by technicians. The main issue that limits the applications of GPS in the practice of high-accuracy landslide monitoring is the complexity of GPS data processing. This study demonstrated an approach using the Online Positioning User Service (OPUS) (http://www.ngs.noaa.gov/OPUS) provided by the National Geodetic Survey (NGS) of National Oceanic and Atmospheric Administration (NOAA) to process GPS data and conduct long-term landslide monitoring in the Puerto Rico and Virgin Islands Region. Continuous GPS data collected at a creeping landslide site during two years were used to evaluate different scenarios for landslide surveying: continuous or campaign, long duration or short duration, morning or afternoon (different weather conditions). OPUS uses Continuously Operating Reference Station (CORS) managed by NGS (http://www.ngs.noaa.giv/CORS/) as references and user data as a rover to solve a position. There are 19 CORS permanent GPS stations in the Puerto Rico and Virgin Islands region. The dense GPS network provides a precise and reliable reference frame for subcentimeter-accuracy landslide monitoring in this region. Our criterion for the accuracy was the root-mean-square (RMS) of OPUS solutions over a 2-year period with respect to true landslide displacement time series overt the same period. The true landslide displacements were derived from a single-baseline (130 m) GPS processing by using 24-hour continuous data. If continuous GPS surveying is performed in the field, then OPUS static processing can provide 0.6 cm horizontal and 1.1 cm vertical precision with few outliers. If repeated

  8. Combined GPS + BDS for short to long baseline RTK positioning

    NASA Astrophysics Data System (ADS)

    Odolinski, R.; Teunissen, P. J. G.; Odijk, D.

    2015-04-01

    The BeiDou Navigation Satellite System (BDS) has become fully operational in the Asia-Pacific region and it is of importance to evaluate what BDS brings when combined with the Global Positioning System (GPS). In this contribution we will look at the short, medium and long single-baseline real-time kinematic (RTK) positioning performance. Short baseline refers to when the distance between the two receivers is at most a few kilometers so that the relative slant ionospheric and tropospheric delays can be assumed absent, whereas with medium baseline we refer to when the uncertainty of these ionospheric delays can reliably be modeled as a function of the baseline length. With long baseline we refer to the necessity to parameterize the ionospheric delays and (wet) Zenith Tropospheric Delay (ZTD) as completely unknown. The GNSS real data are collected in Perth, Australia. It will be shown that combining the two systems allows for the use of higher than customary elevation cut-off angles. This can be of particular benefit in environments with restricted satellite visibility such as in open pit mines or urban canyons.

  9. Integration Of GPS And GLONASS Systems In Geodetic Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Maciuk, Kamil

    2015-12-01

    The article shows the results of satellites measurements elaborations using GPS & GLONASS signals. The aim of this article is to define the influence of adding GLONASS signals on position determination accuracy. It especially concerns areas with big horizon coverages. Object of the study were analysis of DOP coefficients, code and RTK solutions, and usage of satellite techniques in levelling. The performed studies and analysis show that integrated GPS-GLONASS satellite measurements provide possibility to achieve better results than measurements using single navigation satellite system (GPS).

  10. Enhanced Position Location Reporting System (EPLRS) Positioning Capability

    DTIC Science & Technology

    2007-06-01

    source of position data depending on the environment and system requirements. This option could allow navigation of the UAV in a GPS - denied environment...the source of position data depending on the environment and system requirements. This option could allow the UAV to be navigated in a GPS denied environment

  11. Performance Enhancement of Land Vehicle Positioning Using Multiple GPS Receivers in an Urban Area

    PubMed Central

    Song, Jong-Hwa; Jee, Gyu-In

    2016-01-01

    The Global Positioning System (GPS) is the most widely used navigation system in land vehicle applications. In urban areas, the GPS suffers from insufficient signal strength, multipath propagation and non-line-of-sight (NLOS) errors, so it thus becomes difficult to obtain accurate and reliable position information. In this paper, an integration algorithm for multiple receivers is proposed to enhance the positioning performance of GPS for land vehicles in urban areas. The pseudoranges of multiple receivers are integrated based on a tightly coupled approach, and erroneous measurements are detected by testing the closeness of the pseudoranges. In order to fairly compare the pseudoranges, GPS errors and terms arising due to the differences between the positions of the receivers need to be compensated. The double-difference technique is used to eliminate GPS errors in the pseudoranges, and the geometrical distance is corrected by projecting the baseline vector between pairs of receivers. In order to test and analyze the proposed algorithm, an experiment involving live data was performed. The positioning performance of the algorithm was compared with that of the receiver autonomous integrity monitoring (RAIM)-based integration algorithm for multiple receivers. The test results showed that the proposed algorithm yields more accurate position information in urban areas. PMID:27754411

  12. Performance Enhancement of Land Vehicle Positioning Using Multiple GPS Receivers in an Urban Area.

    PubMed

    Song, Jong-Hwa; Jee, Gyu-In

    2016-10-14

    The Global Positioning System (GPS) is the most widely used navigation system in land vehicle applications. In urban areas, the GPS suffers from insufficient signal strength, multipath propagation and non-line-of-sight (NLOS) errors, so it thus becomes difficult to obtain accurate and reliable position information. In this paper, an integration algorithm for multiple receivers is proposed to enhance the positioning performance of GPS for land vehicles in urban areas. The pseudoranges of multiple receivers are integrated based on a tightly coupled approach, and erroneous measurements are detected by testing the closeness of the pseudoranges. In order to fairly compare the pseudoranges, GPS errors and terms arising due to the differences between the positions of the receivers need to be compensated. The double-difference technique is used to eliminate GPS errors in the pseudoranges, and the geometrical distance is corrected by projecting the baseline vector between pairs of receivers. In order to test and analyze the proposed algorithm, an experiment involving live data was performed. The positioning performance of the algorithm was compared with that of the receiver autonomous integrity monitoring (RAIM)-based integration algorithm for multiple receivers. The test results showed that the proposed algorithm yields more accurate position information in urban areas.

  13. Solar system positioning system

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I.; Chui, Talso

    2006-01-01

    Power-rich spacecraft envisioned in Prometheus initiative open up possibilities for long-range high-rate communication. A constellation of spacecraft on orbits several A.U. from the Sun, equipped with laser transponders and precise clocks can be configured to measure their mutual distances to within few cm. High on-board power can create substantial non-inertial contribution to the spacecraft trajectory. We propose to alleviate this contribution by employing secondary ranging to a passive daughter spacecraft. Such constellation can form the basis of it navigation system capable of providing position information anywhere in the soIar system with similar accuracy. Apart from obvious Solar System exploration implications, this system can provide robust reference for GPS and its successors.

  14. Civil Access to the Precise Positioning Service of the NAVSTAR Global Positioning System

    DTIC Science & Technology

    1986-12-01

    POSITIONING SERVICE OF THE NAVSTAR GLOBAL POSITIONING SYSTEM Michael J. E l l e t t Navstar GPS Joint Program Office...will only apply to Precise Positioning Service configured, code-tracking GPS receivers. Introduction The NAVSTAR Global Positioning System ( GPS ...is the second space-based navigation positioning system to be developed by the United States. The GPS will enter the operational phase within

  15. Medium to Long Range Kinematic GPS Positioning with Position-Velocity-Acceleration Model Using Multiple Reference Stations.

    PubMed

    Hong, Chang-Ki; Park, Chi Ho; Han, Joong-hee; Kwon, Jay Hyoun

    2015-07-13

    In order to obtain precise kinematic global positioning systems (GPS) in medium to large scale networks, the atmospheric effects from tropospheric and ionospheric delays need to be properly modeled and estimated. It is also preferable to use multiple reference stations to improve the reliability of the solutions. In this study, GPS kinematic positioning algorithms are developed for the medium to large-scale network based on the position-velocity-acceleration model. Hence, the algorithm can perform even in cases where the near-constant velocity assumption does not hold. In addition, the estimated kinematic accelerations can be used for the airborne gravimetry. The proposed algorithms are implemented using Kalman filter and are applied to the in situ airborne GPS data. The performance of the proposed algorithms is validated by analyzing and comparing the results with those from reference values. The results show that reliable and comparable solutions in both position and kinematic acceleration levels can be obtained using the proposed algorithms.

  16. Modeling and Assessment of GPS/BDS Combined Precise Point Positioning

    PubMed Central

    Chen, Junping; Wang, Jungang; Zhang, Yize; Yang, Sainan; Chen, Qian; Gong, Xiuqiang

    2016-01-01

    Precise Point Positioning (PPP) technique enables stand-alone receivers to obtain cm-level positioning accuracy. Observations from multi-GNSS systems can augment users with improved positioning accuracy, reliability and availability. In this paper, we present and evaluate the GPS/BDS combined PPP models, including the traditional model and a simplified model, where the inter-system bias (ISB) is treated in different way. To evaluate the performance of combined GPS/BDS PPP, kinematic and static PPP positions are compared to the IGS daily estimates, where 1 month GPS/BDS data of 11 IGS Multi-GNSS Experiment (MGEX) stations are used. The results indicate apparent improvement of GPS/BDS combined PPP solutions in both static and kinematic cases, where much smaller standard deviations are presented in the magnitude distribution of coordinates RMS statistics. Comparisons between the traditional and simplified combined PPP models show no difference in coordinate estimations, and the inter system biases between the GPS/BDS system are assimilated into receiver clock, ambiguities and pseudo-range residuals accordingly. PMID:27455278

  17. Modeling and Assessment of GPS/BDS Combined Precise Point Positioning.

    PubMed

    Chen, Junping; Wang, Jungang; Zhang, Yize; Yang, Sainan; Chen, Qian; Gong, Xiuqiang

    2016-07-22

    Precise Point Positioning (PPP) technique enables stand-alone receivers to obtain cm-level positioning accuracy. Observations from multi-GNSS systems can augment users with improved positioning accuracy, reliability and availability. In this paper, we present and evaluate the GPS/BDS combined PPP models, including the traditional model and a simplified model, where the inter-system bias (ISB) is treated in different way. To evaluate the performance of combined GPS/BDS PPP, kinematic and static PPP positions are compared to the IGS daily estimates, where 1 month GPS/BDS data of 11 IGS Multi-GNSS Experiment (MGEX) stations are used. The results indicate apparent improvement of GPS/BDS combined PPP solutions in both static and kinematic cases, where much smaller standard deviations are presented in the magnitude distribution of coordinates RMS statistics. Comparisons between the traditional and simplified combined PPP models show no difference in coordinate estimations, and the inter system biases between the GPS/BDS system are assimilated into receiver clock, ambiguities and pseudo-range residuals accordingly.

  18. Accuracy of WAAS-enabled GPS for the determination of position and speed over ground.

    PubMed

    Witte, T H; Wilson, A M

    2005-08-01

    The Global Positioning System (GPS) offers many advantages over conventional methods for the determination of subject speed during biomechanical studies. Recent advances in GPS technology, in particular the implementation of the Wide-Angle Augmentation System and European Geostationary Navigation Overlay Service (WAAS/EGNOS), mean that small, highly portable units are available offering the potential of superior accuracy in the determination of both position and speed. This study set out to examine the accuracy of a WAAS-enabled GPS unit for the determination of position and speed. Comparison with the new and published data showed significant enhancements in both position and speed accuracy over a non-WAAS system. Position data collected during straight line cycling showed significantly lower sample-to-sample variation (mean absolute deviation from straight line 0.11 vs. 0.78 m) and greater repeatability from trial to trial (mean absolute deviation from actual path 0.37 vs. 4.8 m) for the WAAS-enabled unit compared to the non-WAAS unit. The speed determined by the WAAS-enabled GPS receiver during cycling in a straight line was within 0.2 ms(-1) of the actual speed measured for 57% of the values with 82% lying within 0.4 ms(-1), however, the data tended towards underestimation of speed during circle cycling, with 65% of values within 0.2 ms(-1) and 87% within 0.4 ms(-1) of the actual value. Local dGPS and dual frequency techniques are more accurate still, however, traditional differential GPS (dGPS), employing FM radio transmission of correction data to a separate receiver, now offers no advantage over WAAS and appears redundant.

  19. GPS & GLONASS mass-market receivers: positioning performances and peculiarities.

    PubMed

    Dabove, Paolo; Manzino, Ambrogio M

    2014-11-25

    Over the last twenty years, positioning with low cost Global Navigation Satellite System (GNSS) sensors have rapidly developed around the world at both a commercial and academic research level. For many years these instruments have only acquired the GPS constellation but are now able to track the Global'naja Navigacionnaja Sputnikovaja Sistema (GLONASS) constellation. This characteristic is very interesting, especially if used in hard-urban environments or in hard conditions where satellite visibility is low. The goal of this research is to investigate the contribution of the GLONASS constellation for mass-market receivers in order to analyse the performance in real time (Network Real Time Kinematic-NRTK positioning) with post-processing approaches. Under these conditions, it is possible to confirm that mass-market sensors could be a valid alternative to a more expensive receiver for a large number of surveying applications, but with low cost hardware the contribution of the GLONASS constellation for fixing ambiguities is useless, if not dangerous.

  20. GPS & GLONASS Mass-Market Receivers: Positioning Performances and Peculiarities

    PubMed Central

    Dabove, Paolo; Manzino, Ambrogio M.

    2014-01-01

    Over the last twenty years, positioning with low cost Global Navigation Satellite System (GNSS) sensors have rapidly developed around the world at both a commercial and academic research level. For many years these instruments have only acquired the GPS constellation but are now able to track the Global’naja Navigacionnaja Sputnikovaja Sistema (GLONASS) constellation. This characteristic is very interesting, especially if used in hard-urban environments or in hard conditions where satellite visibility is low. The goal of this research is to investigate the contribution of the GLONASS constellation for mass-market receivers in order to analyse the performance in real time (Network Real Time Kinematic—NRTK positioning) with post-processing approaches. Under these conditions, it is possible to confirm that mass-market sensors could be a valid alternative to a more expensive receiver for a large number of surveying applications, but with low cost hardware the contribution of the GLONASS constellation for fixing ambiguities is useless, if not dangerous. PMID:25429405

  1. A Kalman filter implementation for precision improvement in low-cost GPS positioning of tractors.

    PubMed

    Gomez-Gil, Jaime; Ruiz-Gonzalez, Ruben; Alonso-Garcia, Sergio; Gomez-Gil, Francisco Javier

    2013-11-08

    Low-cost GPS receivers provide geodetic positioning information using the NMEA protocol, usually with eight digits for latitude and nine digits for longitude. When these geodetic coordinates are converted into Cartesian coordinates, the positions fit in a quantization grid of some decimeters in size, the dimensions of which vary depending on the point of the terrestrial surface. The aim of this study is to reduce the quantization errors of some low-cost GPS receivers by using a Kalman filter. Kinematic tractor model equations were employed to particularize the filter, which was tuned by applying Monte Carlo techniques to eighteen straight trajectories, to select the covariance matrices that produced the lowest Root Mean Square Error in these trajectories. Filter performance was tested by using straight tractor paths, which were either simulated or real trajectories acquired by a GPS receiver. The results show that the filter can reduce the quantization error in distance by around 43%. Moreover, it reduces the standard deviation of the heading by 75%. Data suggest that the proposed filter can satisfactorily preprocess the low-cost GPS receiver data when used in an assistance guidance GPS system for tractors. It could also be useful to smooth tractor GPS trajectories that are sharpened when the tractor moves over rough terrain.

  2. A Kalman Filter Implementation for Precision Improvement in Low-Cost GPS Positioning of Tractors

    PubMed Central

    Gomez-Gil, Jaime; Ruiz-Gonzalez, Ruben; Alonso-Garcia, Sergio; Gomez-Gil, Francisco Javier

    2013-01-01

    Low-cost GPS receivers provide geodetic positioning information using the NMEA protocol, usually with eight digits for latitude and nine digits for longitude. When these geodetic coordinates are converted into Cartesian coordinates, the positions fit in a quantization grid of some decimeters in size, the dimensions of which vary depending on the point of the terrestrial surface. The aim of this study is to reduce the quantization errors of some low-cost GPS receivers by using a Kalman filter. Kinematic tractor model equations were employed to particularize the filter, which was tuned by applying Monte Carlo techniques to eighteen straight trajectories, to select the covariance matrices that produced the lowest Root Mean Square Error in these trajectories. Filter performance was tested by using straight tractor paths, which were either simulated or real trajectories acquired by a GPS receiver. The results show that the filter can reduce the quantization error in distance by around 43%. Moreover, it reduces the standard deviation of the heading by 75%. Data suggest that the proposed filter can satisfactorily preprocess the low-cost GPS receiver data when used in an assistance guidance GPS system for tractors. It could also be useful to smooth tractor GPS trajectories that are sharpened when the tractor moves over rough terrain. PMID:24217355

  3. Airborne Global Positioning System Antenna System

    DTIC Science & Technology

    2004-10-14

    GLOBAL POSITIONING SYSTEM ANTENNA SYSTEM DISTRIBUTION: SMC/ GP (3 cys); AFFSA...standard that airborne Global Positioning System ( GPS ) antenna system must meet to be identified with the applicable MSO marking. The similarity of...UNCLASSIFIED DOCUMENT NO. DATE NO. MSO-C144 14 Oct 04 Initial Release REV: REV: SHEET 1 OF 16 TITLE: AIRBORNE GLOBAL POSITIONING SYSTEM

  4. Precise Point Positioning for the Efficient and Robust Analysis of GPS Data from Large Networks

    NASA Technical Reports Server (NTRS)

    Zumberge, J. F.; Heflin, M. B.; Jefferson, D. C.; Watkins, M. M.; Webb, F. H.

    1997-01-01

    Networks of dozens to hundreds of permanently operating precision Global Positioning System (GPS) receivers are emerging at spatial scales that range from 10(exp 0) to 10(exp 3) km. To keep the computational burden associated with the analysis of such data economically feasible, one approach is to first determine precise GPS satellite positions and clock corrections from a globally distributed network of GPS receivers. Their, data from the local network are analyzed by estimating receiver- specific parameters with receiver-specific data satellite parameters are held fixed at their values determined in the global solution. This "precise point positioning" allows analysis of data from hundreds to thousands of sites every (lay with 40-Mflop computers, with results comparable in quality to the simultaneous analysis of all data. The reference frames for the global and network solutions can be free of distortion imposed by erroneous fiducial constraints on any sites.

  5. Precise Point Positioning for the Efficient and Robust Analysis of GPS Data From Large Networks

    NASA Technical Reports Server (NTRS)

    Zumberge, J. F.; Heflin, M. B.; Jefferson, D. C.; Watkins, M. M.; Webb, F. H.

    1997-01-01

    Networks of dozens to hundreds of permanently operating precision Global Positioning System (GPS) receivers are emerging at spatial scales that range from 10(exp 0) to 10(exp 3) km. To keep the computational burden associated with the analysis of such data economically feasible, one approach is to first determine precise GPS satellite positions and clock corrections from a globally distributed network of GPS receivers. Then, data from the local network are analyzed by estimating receiver specific parameters with receiver-specific data; satellite parameters are held fixed at their values determined in the global solution. This "precise point positioning" allows analysis of data from hundreds to thousands of sites every day with 40 Mflop computers, with results comparable in quality to the simultaneous analysis of all data. The reference frames for the global and network solutions can be free of distortion imposed by erroneous fiducial constraints on any sites.

  6. Evaluation of GPS Standard Point Positioning with Various Ionospheric Error Mitigation Techniques

    NASA Astrophysics Data System (ADS)

    Panda, Sampad K.; Gedam, Shirish S.

    2016-12-01

    The present paper investigates accuracy of single and dual-frequency Global Positioning System (GPS) standard point positioning solutions employing different ionosphere error mitigation techniques. The total electron content (TEC) in the ionosphere is the prominent delay error source in GPS positioning, and its elimination is essential for obtaining a relatively precise positioning solution. The estimated delay error from different ionosphere models and maps, such as Klobuchar model, global ionosphere models, and vertical TEC maps are compared with the locally derived ionosphere error following the ion density and frequency dependence with delay error. Finally, the positional accuracy of the single and dual-frequency GPS point positioning solutions are probed through different ionospheric mitigation methods including exploitation of models, maps, and ionosphere-free linear combinations and removal of higher order ionospheric effects. The results suggest the superiority of global ionosphere maps for single-frequency solution, whereas for the dual-frequency measurement the ionosphere-free linear combination with prior removal of higher-order ionosphere effects from global ionosphere maps and geomagnetic reference fields resulted in improved positioning quality among the chosen mitigation techniques. Conspicuously, the susceptibility of height component to different ionospheric mitigation methods are demonstrated in this study which may assist the users in selecting appropriate technique for precise GPS positioning measurements.

  7. An optimal GPS data processing technique for precise positioning

    NASA Technical Reports Server (NTRS)

    Wu, Sien-Chong; Melbourne, William G.

    1993-01-01

    A mathematical formula to optimally combine dual-frequency GPS pseudorange and carrier phase (integrated Doppler) data streams into a single data stream is derived in closed form. The data combination reduces the data volume and computing time in the filtering process for parameter estimation by a factor of 4 while preserving the full data strength for precise positioning. The resulting single data stream is that of carrier phase measurements with both data noise and bias uncertainty strictly defined. With this mathematical formula the single stream of optimally combined GPS measurements can be efficiently formed by simple numerical calculations. Carrier phase ambiguity resolution, when feasible, is strengthened due to the preserved full data strength with the optimally combined data and the resulting longer wavelength for the ambiguity to be resolved.

  8. A modified cadastral survey system based on GPS/PDA

    NASA Astrophysics Data System (ADS)

    Wang, Huiqing; Wang, Qing; Wu, Xiangyang

    2009-12-01

    Due to disadvantages of complex working procedure, long field survey and low efficiency of the traditional cadastral survey methods exist, a modified system based on GPS(Global Position System) /PDA(Personal Digital Assist) combined with TS(Total Station) is proposed. The system emphasizes the design of TS free setting station for detail survey without GPS, to realize simultaneously processing control survey and detail survey. The system also applies digital drafting method based on PDA instead of cartographical sketching, to realize fully-digitalized cadastral survey. The application in Beijing shows that the modified cadastral survey system based on GPS/PDA performs high efficiency, and the accuracy of this system can meet the requirement of 1:500 large scale cadastral survey.

  9. Rip current monitoring using GPS buoy system

    NASA Astrophysics Data System (ADS)

    Song, DongSeob; Kim, InHo; Kang, DongSoo

    2014-05-01

    The occurrence of rip current in the Haeundae beach, which is one of the most famous beaches in South Korea, has been threatening beach-goers security in summer season annually. Many coastal scientists have been investigating rip currents by using field observations and measurements, laboratory measurements and wave tank experiments, and computer and numerical modeling. Rip current velocity is intermittent and may rapidly increase within minutes due to larger incoming wave groups or nearshore circulation instabilities. It is important to understand that changes in rip current velocity occur in response to changes in incoming wave height and period as well as changes in water level. GPS buoys have been used to acquire sea level change data, atmospheric parameters and other oceanic variables in sea for the purposes of vertical datum determination, tide correction, radar altimeter calibration, ocean environment and marine pollution monitoring. Therefore, we adopted GPS buoy system for an experiment which is to investigate rip current velocity; it is sporadic and may quickly upsurge within minutes due to larger arriving wave groups or nearshore flow uncertainties. In this study, for high accurate positioning of buy equipment, a Satellite Based Argumentation System DGPS data logger was deployed to investigate within floating object, and it can be acquired three-dimensional coordinate or geodetic position of buoy with continuous NMEA-0183 protocol during 24 hours. The wave height measured by in-situ hydrometer in a cross-shore array clearly increased before and after occurrence of rip current, and wave period also was lengthened around an event. These results show that wave height and period correlate reasonably well with long-shore current interaction in the Haeundae beach. Additionally, current meter data and GPS buoy data showed that rip current velocities, about 0.2 m/s, may become dangerously strong under specific conditions. Acknowledgement This research was

  10. GPS/GLONASS Combined Precise Point Positioning with Receiver Clock Modeling.

    PubMed

    Wang, Fuhong; Chen, Xinghan; Guo, Fei

    2015-06-30

    Research has demonstrated that receiver clock modeling can reduce the correlation coefficients among the parameters of receiver clock bias, station height and zenith tropospheric delay. This paper introduces the receiver clock modeling to GPS/GLONASS combined precise point positioning (PPP), aiming to better separate the receiver clock bias and station coordinates and therefore improve positioning accuracy. Firstly, the basic mathematic models including the GPS/GLONASS observation equations, stochastic model, and receiver clock model are briefly introduced. Then datasets from several IGS stations equipped with high-stability atomic clocks are used for kinematic PPP tests. To investigate the performance of PPP, including the positioning accuracy and convergence time, a week of (1-7 January 2014) GPS/GLONASS data retrieved from these IGS stations are processed with different schemes. The results indicate that the positioning accuracy as well as convergence time can benefit from the receiver clock modeling. This is particularly pronounced for the vertical component. Statistic RMSs show that the average improvement of three-dimensional positioning accuracy reaches up to 30%-40%. Sometimes, it even reaches over 60% for specific stations. Compared to the GPS-only PPP, solutions of the GPS/GLONASS combined PPP are much better no matter if the receiver clock offsets are modeled or not, indicating that the positioning accuracy and reliability are significantly improved with the additional GLONASS satellites in the case of insufficient number of GPS satellites or poor geometry conditions. In addition to the receiver clock modeling, the impacts of different inter-system timing bias (ISB) models are investigated. For the case of a sufficient number of satellites with fairly good geometry, the PPP performances are not seriously affected by the ISB model due to the low correlation between the ISB and the other parameters. However, the refinement of ISB model weakens the

  11. GPS/GLONASS Combined Precise Point Positioning with Receiver Clock Modeling

    PubMed Central

    Wang, Fuhong; Chen, Xinghan; Guo, Fei

    2015-01-01

    Research has demonstrated that receiver clock modeling can reduce the correlation coefficients among the parameters of receiver clock bias, station height and zenith tropospheric delay. This paper introduces the receiver clock modeling to GPS/GLONASS combined precise point positioning (PPP), aiming to better separate the receiver clock bias and station coordinates and therefore improve positioning accuracy. Firstly, the basic mathematic models including the GPS/GLONASS observation equations, stochastic model, and receiver clock model are briefly introduced. Then datasets from several IGS stations equipped with high-stability atomic clocks are used for kinematic PPP tests. To investigate the performance of PPP, including the positioning accuracy and convergence time, a week of (1–7 January 2014) GPS/GLONASS data retrieved from these IGS stations are processed with different schemes. The results indicate that the positioning accuracy as well as convergence time can benefit from the receiver clock modeling. This is particularly pronounced for the vertical component. Statistic RMSs show that the average improvement of three-dimensional positioning accuracy reaches up to 30%–40%. Sometimes, it even reaches over 60% for specific stations. Compared to the GPS-only PPP, solutions of the GPS/GLONASS combined PPP are much better no matter if the receiver clock offsets are modeled or not, indicating that the positioning accuracy and reliability are significantly improved with the additional GLONASS satellites in the case of insufficient number of GPS satellites or poor geometry conditions. In addition to the receiver clock modeling, the impacts of different inter-system timing bias (ISB) models are investigated. For the case of a sufficient number of satellites with fairly good geometry, the PPP performances are not seriously affected by the ISB model due to the low correlation between the ISB and the other parameters. However, the refinement of ISB model weakens the

  12. Integration of GPS precise point positioning and MEMS-based INS using unscented particle filter.

    PubMed

    Abd Rabbou, Mahmoud; El-Rabbany, Ahmed

    2015-03-25

    Integration of Global Positioning System (GPS) and Inertial Navigation System (INS) integrated system involves nonlinear motion state and measurement models. However, the extended Kalman filter (EKF) is commonly used as the estimation filter, which might lead to solution divergence. This is usually encountered during GPS outages, when low-cost micro-electro-mechanical sensors (MEMS) inertial sensors are used. To enhance the navigation system performance, alternatives to the standard EKF should be considered. Particle filtering (PF) is commonly considered as a nonlinear estimation technique to accommodate severe MEMS inertial sensor biases and noise behavior. However, the computation burden of PF limits its use. In this study, an improved version of PF, the unscented particle filter (UPF), is utilized, which combines the unscented Kalman filter (UKF) and PF for the integration of GPS precise point positioning and MEMS-based inertial systems. The proposed filter is examined and compared with traditional estimation filters, namely EKF, UKF and PF. Tightly coupled mechanization is adopted, which is developed in the raw GPS and INS measurement domain. Un-differenced ionosphere-free linear combinations of pseudorange and carrier-phase measurements are used for PPP. The performance of the UPF is analyzed using a real test scenario in downtown Kingston, Ontario. It is shown that the use of UPF reduces the number of samples needed to produce an accurate solution, in comparison with the traditional PF, which in turn reduces the processing time. In addition, UPF enhances the positioning accuracy by up to 15% during GPS outages, in comparison with EKF. However, all filters produce comparable results when the GPS measurement updates are available.

  13. Integration of GPS Precise Point Positioning and MEMS-Based INS Using Unscented Particle Filter

    PubMed Central

    Abd Rabbou, Mahmoud; El-Rabbany, Ahmed

    2015-01-01

    Integration of Global Positioning System (GPS) and Inertial Navigation System (INS) integrated system involves nonlinear motion state and measurement models. However, the extended Kalman filter (EKF) is commonly used as the estimation filter, which might lead to solution divergence. This is usually encountered during GPS outages, when low-cost micro-electro-mechanical sensors (MEMS) inertial sensors are used. To enhance the navigation system performance, alternatives to the standard EKF should be considered. Particle filtering (PF) is commonly considered as a nonlinear estimation technique to accommodate severe MEMS inertial sensor biases and noise behavior. However, the computation burden of PF limits its use. In this study, an improved version of PF, the unscented particle filter (UPF), is utilized, which combines the unscented Kalman filter (UKF) and PF for the integration of GPS precise point positioning and MEMS-based inertial systems. The proposed filter is examined and compared with traditional estimation filters, namely EKF, UKF and PF. Tightly coupled mechanization is adopted, which is developed in the raw GPS and INS measurement domain. Un-differenced ionosphere-free linear combinations of pseudorange and carrier-phase measurements are used for PPP. The performance of the UPF is analyzed using a real test scenario in downtown Kingston, Ontario. It is shown that the use of UPF reduces the number of samples needed to produce an accurate solution, in comparison with the traditional PF, which in turn reduces the processing time. In addition, UPF enhances the positioning accuracy by up to 15% during GPS outages, in comparison with EKF. However, all filters produce comparable results when the GPS measurement updates are available. PMID:25815446

  14. An integrated GPS attitude determination system for small satellites

    NASA Astrophysics Data System (ADS)

    Chesley, Bruce Carl

    1995-07-01

    This dissertation develops attitude determination methods based on the Global Positioning System (GPS) for small satellites. A GPS attitude receiver is used in combination with other sensors planned for a small, three-axis stabilized satellite called JAWS AT. The other attitude sensors include fiber optic gyros and digital sun sensors. The development of integrated attitude determination systems contributes to critical national technological objectives identified for small spacecraft. A recent study by the National Research Council addresses key technologies for small satellite programs. One of their principal recommendations was that, 'GPS in various combinations with other guidance components can determine position and attitude very accurately, probably at significantly reduced weight and cost.' The report also identifies specific potential benefits of integrating OPS with other sensors on small spacecraft. 'Combining GPS and an inertial measurement unit (with gyroscopes, accelerometers, or trackers) offers major advantages by bounding errors of the inertial set, providing exceptionally good long-term references and thereby ensuring precise, on-board navigation and, with appropriate complimentary techniques, providing a higher level of redundancy and/or accuracy for position, velocity, and attitude.' This dissertation develops algorithms that result in improved accuracy and redundancy through the development of complimentary techniques for combining GPS measurements with gyroscopes and sun sensors.

  15. The effect of selective availability on differential GPS positioning

    NASA Astrophysics Data System (ADS)

    Tolman, Brian W.; Coco, David S.; Leach, Mark P.; Clynch, James R.

    The effect of Selective Availability (SA) on differential positioning is considered, using an extensive two-frequency P code data set which was collected during two periods: a publicly announced test of the GPS constellation in October, 1989, and after it was announced that SA had been implemented, in April 1990. The data were collected with the cooperation of several organizations, using TI 4100 receivers and atomic clocks at 6 sites, spanning baselines from 8 to 1350 kilometers, over a total of more than 25 days. A subset of this data set shows strong characteristics which are probably due to SA. Differential positions which have been computed using this 'unhealthy' data are compared to truth positions, and to identically computed positions using apparently 'healthy' data from the same period. The results and their implications for the impact that SA could have on differential positioning are presented.

  16. Precise Point Positioning Model Using Triple GNSS Constellations: GPS, Galileo and BeiDou

    NASA Astrophysics Data System (ADS)

    Afifi, Akram; El-Rabbany, Ahmed

    2016-12-01

    This paper introduces a comparison between dual-frequency precise point positioning (PPP) post-processing model, which combines the observations of three different GNSS constellations, namely GPS, Galileo, and BeiDou and real-time PPP model. A drawback of a single GNSS system such as GPS, however, is the availability of sufficient number of visible satellites in urban areas. Combining GNSS observations offers more visible satellites to users, which in turn is expected to enhance the satellite geometry and the overall positioning solution. However, combining several GNSS observables introduces additional biases, which require rigorous modelling, including the GNSS time offsets and hardware delays. In this paper, a GNSS post-processing PPPP model is developed using ionosphere-free linear combination. The additional biases of the GPS, Galileo, and BeiDou combination are accounted for through the introduction of a new unknown parameter, which is identified as the inter-system bias, in the PPP mathematical model. Natural Resources Canada's GPSPace PPP software is modified to enable a combined GPS / Galileo / BeiDou PPP solution and to handle the newly inter-system bias. A total of four data sets at four IGS stations are processed to verify the developed PPP model. Precise satellite orbit and clock products from the IGS-MGEX network are used to correct of the GPS, Galileo and BeiDou measurements. For the real-time PPP model the corrections of the satellites orbit and clock are obtained through the international GNSS service (IGS) real-time service (RTS). GPS and Galileo Observations are used for the GNSS RTS-IGS PPP model as the RTS-IGS satellite products are not available for BeiDou satellites. This paper provides the GNSS RTS-IGS PPP model using different satellite clock corrections namely: IGS01, IGC01, IGS01, and IGS03. All PPP models results of convergence time and positioning precision are compared to the traditional GPS-only PPP model. It is shown that combining

  17. An Interdisciplinary Approach at Studying the Earth-Sun System with GPS/GNSS and GPS-like Signals

    NASA Technical Reports Server (NTRS)

    Zuffada, Cinzia; Hajj, George; Mannucci, Anthony J.; Chao, Yi; Ao, Chi; Zumberge, James

    2005-01-01

    The value of Global Positioning Satellites (GPS) measurements to atmospheric science, space physics, and ocean science, is now emerging or showing a potential to play a major role in the evolving programs of NASA, NSF and NOAA. The objective of this communication is to identify and articulate the key scientific questions that are optimally, or perhaps uniquely, addressed by GPS or GPS-like observations, and discuss their relevance to existing or planned national Earth-science research programs. The GPS-based ocean reflection experiments performed to date have demonstrated the precision and spatial resolution suitable to altimetric applications that require higher spatial resolution and more frequent repeat than the current radar altimeter satellites. GPS radio occultation is promising as a climate monitoring tool because of its benchmark properties: its raw observable is based on extremely accurate timing measurements. GPS-derived temperature profiles can provide meaningful climate trend information over decadal time scales without the need for overlapping missions or mission-to-mission calibrations. By acquiring data as GPS satellites occult behind the Earth's limb, GPS also provides high vertical resolution information on the vertical structure of electron density with global coverage. New experimental techniques will create more comprehensive TEC maps by using signals reflected from the oceans and received in orbit. This communication will discuss a potential future GNSS Earth Observing System project which would deploy a constellation of satellites using GPS and GPS-like measurements, to obtain a) topography measurements based on GPS reflections with an accuracy and horizontal resolution suitable for eddy monitoring, and h) climate-records quality atmospheric temperature profiles. The constellation would also provide for measurements of ionospheric elec tron density. This is a good example of an interdisciplinary mission concept, with broad science objectives

  18. Global Positioning System: Challenges in Sustaining and Upgrading Capabilities Persist

    DTIC Science & Technology

    2010-09-01

    leverage GPS satellite capabilities; (3) the GPS interagency requirements process; and (4) coordination of GPS efforts with the international PNT...Lacks Detailed Guidance 30 Coordination of GPS Activities with the International Community Continues, and Some Challenges Have Been Addressed 37...Global Positioning System Abbreviations CAM Control Account Manager CWBS Contractor Work Breakdown Structure DASS Distress

  19. An Effective Approach to Improving Low-Cost GPS Positioning Accuracy in Real-Time Navigation

    PubMed Central

    Islam, Md. Rashedul; Kim, Jong-Myon

    2014-01-01

    Positioning accuracy is a challenging issue for location-based applications using a low-cost global positioning system (GPS). This paper presents an effective approach to improving the positioning accuracy of a low-cost GPS receiver for real-time navigation. The proposed method precisely estimates position by combining vehicle movement direction, velocity averaging, and distance between waypoints using coordinate data (latitude, longitude, time, and velocity) of the GPS receiver. The previously estimated precious reference point, coordinate translation, and invalid data check also improve accuracy. In order to evaluate the performance of the proposed method, we conducted an experiment using a GARMIN GPS 19xHVS receiver attached to a car and used Google Maps to plot the processed data. The proposed method achieved improvement of 4–10 meters in several experiments. In addition, we compared the proposed approach with two other state-of-the-art methods: recursive averaging and ARMA interpolation. The experimental results show that the proposed approach outperforms other state-of-the-art methods in terms of positioning accuracy. PMID:25136679

  20. Development of an RTK-GPS positioning application with an improved position error model for smartphones.

    PubMed

    Hwang, Jinsang; Yun, Hongsik; Suh, Yongcheol; Cho, Jeongho; Lee, Dongha

    2012-09-25

    This study developed a smartphone application that provides wireless communication, NRTIP client, and RTK processing features, and which can simplify the Network RTK-GPS system while reducing the required cost. A determination method for an error model in Network RTK measurements was proposed, considering both random and autocorrelation errors, to accurately calculate the coordinates measured by the application using state estimation filters. The performance evaluation of the developed application showed that it could perform high-precision real-time positioning, within several centimeters of error range at a frequency of 20 Hz. A Kalman Filter was applied to the coordinates measured from the application, to evaluate the appropriateness of the determination method for an error model, as proposed in this study. The results were more accurate, compared with those of the existing error model, which only considered the random error.

  1. Development of an RTK-GPS Positioning Application with an Improved Position Error Model for Smartphones

    PubMed Central

    Hwang, Jinsang; Yun, Hongsik; Suh, Yongcheol; Cho, Jeongho; Lee, Dongha

    2012-01-01

    This study developed a smartphone application that provides wireless communication, NRTIP client, and RTK processing features, and which can simplify the Network RTK-GPS system while reducing the required cost. A determination method for an error model in Network RTK measurements was proposed, considering both random and autocorrelation errors, to accurately calculate the coordinates measured by the application using state estimation filters. The performance evaluation of the developed application showed that it could perform high-precision real-time positioning, within several centimeters of error range at a frequency of 20 Hz. A Kalman Filter was applied to the coordinates measured from the application, to evaluate the appropriateness of the determination method for an error model, as proposed in this study. The results were more accurate, compared with those of the existing error model, which only considered the random error. PMID:23201981

  2. Satellite emission radio interferometric earth surveying series - GPS geodetic system

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F.

    1979-01-01

    A concept called SERIES (satellite emissions radio interferometric earth surveying) which makes use of GPS (global positioning system) radio transmissions without any satellite modifications, is described. Through the use of very long baseline interferometry (VLBI) and its calibration methods, 0.5 to 3 cm three dimensional baseline accuracy can be achieved over distances of 2 to 200 km respectively, with only 2 hours of on-site data acquisition. Attention is given to such areas as: the radio flux equivalent of GPS transmissions, synthesized delay precision, transmission and frequency subsystem requirements, tropospheric and ionospheric errors. Applications covered include geodesy and seismic tectonics.

  3. A pseudolite-based positioning system for legacy GNSS receivers.

    PubMed

    Kim, Chongwon; So, Hyoungmin; Lee, Taikjin; Kee, Changdon

    2014-03-27

    The ephemeris data format of legacy GPS receivers is improper for positioning stationary pseudolites on the ground. Therefore, to utilize pseudolites for navigation, GPS receivers must be modified so that they can handle the modified data formats of the pseudolites. Because of this problem, the practical use of pseudolites has so far been limited. This paper proposes a pseudolite-based positioning system that can be used with unmodified legacy GPS receivers. In the proposed system, pseudolites transmit simulated GPS signals. The signals use standard GPS ephemeris data format and contain ephemeris data of simulated GPS satellites, not those of pseudolites. The use of the standard format enables the GPS receiver to process pseudolite signals without any modification. However, the position output of the GPS receiver is not the correct position in this system, because there are additional signal delays from each pseudolite to the receiver. A post-calculation process was added to obtain the correct receiver position using GPS receiver output. This re-estimation is possible because it is based on known information about the simulated signals, pseudolites, and positioning process of the GPS receiver. Simulations using generated data and live GPS data are conducted for various geometries to verify the proposed system. The test results show that the proposed system provides the desired user position using pseudolite signals without requiring any modifications to the legacy GPS receiver. In this initial study, a pseudolite-only indoor system was assumed. However, it can be expanded to a GPS-pseudolite system outdoors.

  4. A demonstration of sub-meter GPS orbit determination and high precision user positioning

    NASA Technical Reports Server (NTRS)

    Bertiger, Willy I.; Lichten, Stephen M.; Katsigris, Eugenia C.

    1988-01-01

    It was demonstrated that the submeter GPS (Global Positioning System) orbits can be determined using multiday arc solutions with the current GPS constellation subset visible for about 8 h each day from North America. Submeter orbit accuracy was shown through orbit repeatability and orbit prediction. North American baselines of 1000-2000 km length can be estimated simultaneously with the GPS orbits to an accuracy of better than 1.5 parts in 108 (3 cm over 2000 km distance) with a daily precision of two parts in 108 or better. The most reliable baseline solutions are obtained using the same type of receivers and antennas at each end of the baseline. Baselines greater than 1000 km distance from Florida to sites in the Caribbean region have also been determined with daily precision of 1-4 parts in 108. The Caribbean sites are located well outside the fiducial tracking network and the region of optimal GPS common visibility. Thus, these results further demonstrate the robustness of the multiday arc GPS orbit solutions.

  5. The Mathematics of the Global Positioning System.

    ERIC Educational Resources Information Center

    Nord, Gail D.; Jabon, David; Nord, John

    1997-01-01

    Presents an activity that illustrates the application of mathematics to modern navigation and utilizes the Global Positioning System (GPS). GPS is a constellation of 24 satellites that enables receivers to compute their position anywhere on the earth with great accuracy. (DDR)

  6. A research on SLAM aided INS/GPS navigation system

    NASA Astrophysics Data System (ADS)

    Cao, Menglong; Cui, Pingyuan

    2007-11-01

    Simultaneous Localization and Mapping (SLAM) aided INS/GPS navigation system is a landmark based terrain aided autonomous integrated system that has the capability for online map building and simultaneously utilizing the generated map to bind the errors in the Inertial Navigation System (INS) when GPS is not available. If GPS information is available, the SLAM integrated system builds a landmark-based map using an INS/GPS solution. If GPS is not available, the previously newly generated map is used to constrain the INS errors. The SLAM augmented INS/GPS system shows two capabilities of landmark tracking and mapping using GPS information and more importantly, aiding the INS under GPS denied situation. The validity of the proposed method is demonstrated by computer simulation.

  7. RTK-GPS positioning by TV audio-MPX-data broadcast in Japan

    NASA Astrophysics Data System (ADS)

    Namie, Hiromune; Yasuda, Akio; Sasano, Koji

    2000-10-01

    RTK-GPS is a satellite positioning system which provides instant and accurate positions. The ranging error to the satellite from a user GPS antenna determined by the phase measurement of the carrier waves from the GPS satellites is of the order of mms. Thus an accuracy of a few cm can be easily obtained. The system is easier to operate than a traditional survey system such as the `Total Station'. Hence it has been used for many applications in Japan. It is necessary, however, to provide a fast data communication link for the transmission of carrier phase data from a reference station located at a known position, to a user receiver. A radio communication device with low power, is commonly used because it requires no license. However the data transmission area is generally limited to just several hundred meters in radius from the reference station. The authors have investigated RTK-GPS positioning with several different lengths of baseline using data transmission via TV audio-MPX-data broadcast, and evaluated its validity. The carrier phase data is transmitted from the reference receiver at the Tokyo University of Mercantile Marine, to the experimental station of the Asahi National Broadcasting Company, by public phone line with data rate 9,600 bps. The data, which when multiplexed into TV audio, was then disseminated with the rate of about 8 kbps from the Tokyo Tower. The data transmission delay in this system appeared random between 0.740 and 1.317 s, of which the difference (0.577 s) corresponds to the transmission time of 32 blocks of multiplexed data. Positioning was tried at several fixed points with different lengths of baseline (0-21 km). Tests proved that the accuracy became worse as the length of baselines became longer. The 2drms height are less than the 2.5 cm, and `Fix' solution success rates are more than 98%, for shorter baselines less than 10 km in length.

  8. A GPS measurement system for precise satellite tracking and geodesy

    NASA Technical Reports Server (NTRS)

    Yunck, T. P.; Wu, S.-C.; Lichten, S. M.

    1985-01-01

    NASA is pursuing two key applications of differential positioning with the Global Positioning System (GPS): sub-decimeter tracking of earth satellites and few-centimeter determination of ground-fixed baselines. Key requirements of the two applications include the use of dual-frequency carrier phase data, multiple ground receivers to serve as reference points, simultaneous solution for use position and GPS orbits, and calibration of atmospheric delays using water vapor radiometers. Sub-decimeter tracking will be first demonstrated on the TOPEX oceanographic satellite to be launched in 1991. A GPS flight receiver together with at least six ground receivers will acquire delta range data from the GPS carriers for non-real-time analysis. Altitude accuracies of 5 to 10 cm are expected. For baseline measurements, efforts will be made to obtain precise differential pseudorange by resolving the cycle ambiguity in differential carrier phase. This could lead to accuracies of 2 or 3 cm over a few thousand kilometers. To achieve this, a high-performance receiver is being developed, along with improved calibration and data processing techniques. Demonstrations may begin in 1986.

  9. Global Positioning System Constellation Clock Performance

    DTIC Science & Technology

    2002-12-01

    of the Global Positioning System ( GPS ) constellation with respect to the lifetimes of space vehicles and space vehicle clocks, both active and...ABSTRACT An overview of the Global Positioning System ( GPS ) constellation with respect to the lifetimes of space vehicles and space vehicle clocks, both...34th Annual Precise Time and Time Interval (PTTI) Meeting 77 GLOBAL POSITIONING SYSTEM CONSTELLATION CLOCK PERFORMANCE Jay Oaks and Marie

  10. Accuracy in GPS/Acoustic positioning on a moored buoy moving around far from the optimal position

    NASA Astrophysics Data System (ADS)

    Imano, M.; Kido, M.; Ohta, Y.; Takahashi, N.; Fukuda, T.; Ochi, H.; Hino, R.

    2015-12-01

    For detecting the seafloor crustal deformation and Tsunami associated with large earthquakes in real-time, it is necessary to monitor them just above the possible source region. For this purpose, we have been dedicated in developing a real-time continuous observation system using a multi-purpose moored buoy. Sea-trials of the system have been carried out near the Nanakai trough in 2013 and 2014 (Takahashi et al., 2014). We especially focused on the GPS/Acoustic measurement (GPS/A) in the system for horizontal crustal movement. The GPS/A on a moored buoy has a critical drawback compared to the traditional ones, in which the data can be stacked over ranging points fixed at an optimal position. Accuracy in positioning with a single ranging from an arbitrary point is the subject to be improved in this study. Here, we report the positioning results in the buoy system using data in the 2014 sea-trial and demonstrate the improvement of the result. We also address the potential resolving power in the positioning using synthetic tests. The target GPS/A site consists of six seafloor transponders (PXPs) forming a small inner- and a large outer-triangles. The bottom of the moored cable is anchored nearly the center of the triangles. In the sea-trial, 11 times successive ranging was scheduled once a week, and we plotted positioning results from different buoy position. We confirmed that scatter in positioning using six PXPs simultaneously is ten times smaller than that using individual triangle separately. Next, we modified the definition of the PXP array geometry using data obtained in a campaign observation. Definition of an array geometry is insensitive as far as ranging is made in the same position, however, severely affects the positioning when ranging is made from various positions like the moored buoy. The modified PXP array is slightly smaller and 2m deeper than the original one. We found that the scatter of positioning results in the sea-trial is reduced from 4m to 1

  11. Delay/Doppler-Mapping GPS-Reflection Remote-Sensing System

    NASA Technical Reports Server (NTRS)

    Lowe, Stephen; Kroger, Peter; Franklin, Garth; LeBrecque, John; Lerma, Jesse; Lough, Michael; Marcin, Martin; Muellerschoen, Ronald; Spitzmesser, Donovan; Young, Lawrence

    2003-01-01

    A radio receiver system that features enhanced capabilities for remote sensing by use of reflected Global Positioning System (GPS) signals has been developed. This system was designed primarily for ocean altimetry, but can also be used for scatterometry and bistatic synthetic-aperture radar imaging. Moreover, it could readily be adapted to utilize navigation-satellite systems other than the GPS, including the Russian Global Navigation Satellite System GLONASS) and the proposed European Galileo system. This remote-sensing system offers both advantages and disadvantages over traditional radar altimeters: One advantage of GPS-reflection systems is that they cost less because there is no need to transmit signals. Another advantage is that there are more simultaneous measurement opportunities - one for each GPS satellite in view. The primary disadvantage is that in comparison with radar signals, GPS signals are weaker, necessitating larger antennas and/or longer observations. This GPS-reflection remote-sensing system was tested in aircraft and made to record and process both (1) signals coming directly from GPS satellites by means of an upward-looking antenna and (2) GPS signals reflected from the ground by means of a downward-looking antenna. In addition to performing conventional GPS processing, the system records raw signals for postprocessing as required.

  12. Medium to Long Range Kinematic GPS Positioning with Position-Velocity-Acceleration Model Using Multiple Reference Stations

    PubMed Central

    Hong, Chang-Ki; Park, Chi Ho; Han, Joong-hee; Kwon, Jay Hyoun

    2015-01-01

    In order to obtain precise kinematic global positioning systems (GPS) in medium to large scale networks, the atmospheric effects from tropospheric and ionospheric delays need to be properly modeled and estimated. It is also preferable to use multiple reference stations to improve the reliability of the solutions. In this study, GPS kinematic positioning algorithms are developed for the medium to large-scale network based on the position-velocity-acceleration model. Hence, the algorithm can perform even in cases where the near-constant velocity assumption does not hold. In addition, the estimated kinematic accelerations can be used for the airborne gravimetry. The proposed algorithms are implemented using Kalman filter and are applied to the in situ airborne GPS data. The performance of the proposed algorithms is validated by analyzing and comparing the results with those from reference values. The results show that reliable and comparable solutions in both position and kinematic acceleration levels can be obtained using the proposed algorithms. PMID:26184215

  13. Flight evaluation of differential GPS aided inertial navigation systems

    NASA Technical Reports Server (NTRS)

    Mcnally, B. David; Paielli, Russell A.; Bach, Ralph E., Jr.; Warner, David N., Jr.

    1992-01-01

    Algorithms are described for integration of Differential Global Positioning System (DGPS) data with Inertial Navigation System (INS) data to provide an integrated DGPS/INS navigation system. The objective is to establish the benefits that can be achieved through various levels of integration of DGPS with INS for precision navigation. An eight state Kalman filter integration was implemented in real-time on a twin turbo-prop transport aircraft to evaluate system performance during terminal approach and landing operations. A fully integrated DGPS/INS system is also presented which models accelerometer and rate-gyro measurement errors plus position, velocity, and attitude errors. The fully integrated system was implemented off-line using range-domain (seventeen-state) and position domain (fifteen-state) Kalman filters. Both filter integration approaches were evaluated using data collected during the flight test. Flight-test data consisted of measurements from a 5 channel Precision Code GPS receiver, a strap-down Inertial Navigation Unit (INU), and GPS satellite differential range corrections from a ground reference station. The aircraft was laser tracked to determine its true position. Results indicate that there is no significant improvement in positioning accuracy with the higher levels of DGPS/INS integration. All three systems provided high-frequency (e.g., 20 Hz) estimates of position and velocity. The fully integrated system provided estimates of inertial sensor errors which may be used to improve INS navigation accuracy should GPS become unavailable, and improved estimates of acceleration, attitude, and body rates which can be used for guidance and control. Precision Code DGPS/INS positioning accuracy (root-mean-square) was 1.0 m cross-track and 3.0 m vertical. (This AGARDograph was sponsored by the Guidance and Control Panel.)

  14. Effect of Radio Frequency Interference (RFI) on the Precision of GPS Relative Positioning

    NASA Astrophysics Data System (ADS)

    Idris, A. N.; Sathyamoorthy, D.; Suldi, A. M.; Hamid, J. R. A.

    2014-02-01

    The successful of GPS observations are dependent on several factors between satellite vehicles and GPS receivers, where low GPS power levels have led to the threat of radio frequency interference (RFI) on the GPS signals. This study was conducted to evaluate the effect of RFI on the precision of positions of single and dual frequency receivers through relative positioning technique by taking into consideration the radius of GPS receiver from interference source, length of baseline and response of rejection. Several tests were conducted in real environment by simulating the interference signal towards GPS receivers in the nominated GPS L1 and L2 bands. Calculations were made to indentify the distance and interference signal power between interference source and GPS receiver in order to investigate the level of effect. To be able to study this effect on the precision of GPS positions, the 3D residual positions and geometric dilution of precision (GDOP) have been used. The findings of this study have demonstrated that a sufficient time for the GPS receiver to respond in particular interference signal power level and the radius from the interference source were made as compared to previous work. It was also indicated that the residual positions and GDOPs were affected proportionally when nearly to interference source but not similar for both days due to GPS coverage and other probable errors. Therefore, a good investigation on RFI towards GPS signals should be conducted in secured environment which can control the various GPS error parameters in order to obtain a reliable result on this effect.

  15. The First Experiment with VLBI-GPS Hybrid System

    NASA Technical Reports Server (NTRS)

    Kwak, Younghee; Kondo, Tetsuro; Gotoh, Tadahiro; Amagai, Jun; Takiguchi, Hiroshi; Sekido, Mamoru; Ichikawa, Ryuichi; Sasao, Tetsuo; Cho, Jungho; Kim, Tuhwan

    2010-01-01

    In this paper, we introduce our GPS-VLBI hybrid system and show the results of the first experiment which is now under way. In this hybrid system, GPS signals are captured by a normal GPS antenna, down-converted to IF signals, and then sampled by the VLBI sampler VSSP32 developed by NICT. The sampled GPS data are recorded and correlated in the same way as VLBI observation data. The correlator outputs are the group delay and the delay rate. Since the whole system uses the same frequency standard, many sources of systematic errors are common between the VLBI system and the GPS system. In this hybrid system, the GPS antenna can be regarded as an additional VLBI antenna having multiple beams towards GPS satellites. Therefore, we expect that this approach will provide enough data to improve zenith delay estimates and geodetic results.

  16. Nutrigenomic targeting of carbohydrate craving behavior: can we manage obesity and aberrant craving behaviors with neurochemical pathway manipulation by Immunological Compatible Substances (nutrients) using a Genetic Positioning System (GPS) Map?

    PubMed

    Downs, B William; Chen, Amanda L C; Chen, Thomas J H; Waite, Roger L; Braverman, Eric R; Kerner, Mallory; Braverman, Dasha; Rhoades, Patrick; Prihoda, Thomas J; Palomo, Tomas; Oscar-Berman, Marlene; Reinking, Jeffrey; Blum, Seth H; DiNubile, Nicholas A; Liu, H H; Blum, Kenneth

    2009-09-01

    Genetic mediated physiological processes that rely on both pharmacological and nutritional principles hold great promise for the successful therapeutic targeting of reduced carbohydrate craving, body-friendly fat loss, healthy body recomposition, and overall wellness. By integrating an assembly of scientific knowledge on inheritable characteristics and environmental mediators of gene expression, we review the relationship of genes, hormones, neurotransmitters, and nutrients as they correct unwanted weight gain coupled with unhappiness. In contrast to a simple one-locus, one-mechanism focus on pharmaceuticals alone, we hypothesize that the use of nutrigenomic treatment targeting multi-physiological neurological, immunological, and metabolic pathways will enable clinicians to intercede in the process of lipogenesis by promoting lipolysis while attenuating aberrant glucose cravings. In turn, this approach will enhance wellness in a safe and predictable manner through the use of a Genetic Positioning System (GPS) Map. The GPS Map, while presently incomplete, ultimately will serve not only as a blueprint for personalized medicine in the treatment of obesity, but also for the development of strategies for reducing many harmful addictive behaviors and promoting optimal health by using substances compatible with the body's immune system.

  17. Nutrigenomic targeting of carbohydrate craving behavior: Can we manage obesity and aberrant craving behaviors with neurochemical pathway manipulation by Immunological Compatible Substances (nutrients) using a Genetic Positioning System (GPS) Map?

    PubMed Central

    Downs, B. William; Chen, Amanda L.C.; Chen, Thomas J.H.; Waite, Roger L.; Braverman, Eric R.; Kerner, Mallory; Braverman, Dasha; Rhoades, Patrick; Prihoda, Thomas J.; Palomo, Tomas; Oscar-Berman, Marlene; Reinking, Jeffrey; Blum, Seth H.; DiNubile, Nicholas A.; Liu, H.H.; Blum, Kenneth

    2013-01-01

    SUMMARY Genetic mediated physiological processes that rely on both pharmacological and nutritional principles hold great promise for the successful therapeutic targeting of reduced carbohydrate craving, body-friendly fat loss, healthy body recomposition, and overall wellness. By integrating an assembly of scientific knowledge on inheritable characteristics and environmental mediators of gene expression, we review the relationship of genes, hormones, neurotransmitters, and nutrients as they correct unwanted weight gain coupled with unhappiness. In contrast to a simple one-locus, one-mechanism focus on pharmaceuticals alone, we hypothesize that the use of nutrigenomic treatment targeting multi-physiological neurological, immunological, and metabolic pathways will enable clinicians to intercede in the process of lipogenesis by promoting lipolysis while attenuating aberrant glucose cravings. In turn, this approach will enhance wellness in a safe and predictable manner through the use of a Genetic Positioning System (GPS) Map. The GPS Map, while presently incomplete, ultimately will serve not only as a blueprint for personalized medicine in the treatment of obesity, but also for the development of strategies for reducing many harmful addictive behaviors and promoting optimal health by using substances compatible with the body’s immune system. PMID:19450935

  18. NRL GPS Bibliography - An Annotated Bibliography of the Origin and Development of the Global Position System at the Naval Research Laboratory

    DTIC Science & Technology

    2009-06-03

    and space maser for NAVSTAR GPS. Two ground masers are being built by the Smithsonian Astrophysical Observatory (SAO) and two contractors, RCA and...together to form the Atmosphere and Astrophysics Division. The Division pursued an active program in probing the earth’s atmosphere with scientific...maser clock program for NAVSTAR at the Smithsonian Astrophysical Observatory and the research labs of Hughes Aircraft and RCA. Potentially, the hydrogen

  19. Global Positioning System Instruction in Higher Education.

    ERIC Educational Resources Information Center

    Wikle, Thomas A.; And Others

    1996-01-01

    Provides an overview of satellite-based global positioning system (GPS) technology and includes some illustrations of how GPS is introduced in field-based exercises in the educational setting. Highlights forestry and geography classes, but also discusses archeology, geology, and wildlife science. Benefits include affordability, flexibility,…

  20. Software for a GPS-Reflection Remote-Sensing System

    NASA Technical Reports Server (NTRS)

    Lowe, Stephen

    2003-01-01

    A special-purpose software Global Positioning System (GPS) receiver designed for remote sensing with reflected GPS signals is described in Delay/Doppler-Mapping GPS-Reflection Remote-Sensing System (NPO-30385), which appears elsewhere in this issue of NASA Tech Briefs. The input accepted by this program comprises raw (open-loop) digitized GPS signals sampled at a rate of about 20 MHz. The program processes the data samples to perform the following functions: detection of signals; tracking of phases and delays; mapping of delay, Doppler, and delay/Doppler waveforms; dual-frequency processing; coherent integrations as short as 125 s; decoding of navigation messages; and precise time tagging of observable quantities. The software can perform these functions on all detectable satellite signals without dead time. Open-loop data collected over water, land, or ice and processed by this software can be further processed to extract geophysical information. Possible examples include mean sea height, wind speed and direction, and significant wave height (for observations over the ocean); bistatic-radar terrain images and measures of soil moisture and biomass (for observations over land); and estimates of ice age, thickness, and surface density (for observations over ice).

  1. Evaluation of Mobile Phone Interference With Aircraft GPS Navigation Systems

    NASA Technical Reports Server (NTRS)

    Pace, Scott; Oria, A. J.; Guckian, Paul; Nguyen, Truong X.

    2004-01-01

    This report compiles and analyzes tests that were conducted to measure cell phone spurious emissions in the Global Positioning System (GPS) radio frequency band that could affect the navigation system of an aircraft. The cell phone in question had, as reported to the FAA (Federal Aviation Administration), caused interference to several GPS receivers on-board a small single engine aircraft despite being compliant with data filed at the time with the FCC by the manufacturer. NASA (National Aeronautics and Space Administration) and industry tests show that while there is an emission in the 1575 MHz GPS band due to a specific combination of amplifier output impedance and load impedance that induces instability in the power amplifier, these spurious emissions (i.e., not the intentional transmit signal) are similar to those measured on non-intentionally transmitting devices such as, for example, laptop computers. Additional testing on a wide sample of different commercial cell phones did not result in any emission in the 1575 MHz GPS Band above the noise floor of the measurement receiver.

  2. Local positioning system

    SciTech Connect

    Kyker, R.

    1995-07-25

    Navigation systems have been vital to transportation ever since man took to the air and sea. Early navigation systems utilized the sextant to navigate by starlight as well as the magnetic needle compass. As electronics and communication technologies improved, inertial navigation systems were developed for use in ships and missile delivery. These systems consisted of electronic compasses, gyro-compasses, accelerometers, and various other sensors. Recently, systems such as LORAN and the Global Positioning System (GPS) have utilized the properties of radio wave propagation to triangulate position. The Local Positioning System (LPS), described in this paper, is an implementation of a limited inertial navigation system designed to be used on a bicycle. LPS displays a cyclist`s current position relative to a starting location. This information is displayed in Cartesian-like coordinates. To accomplish this, LPS relies upon two sensors, an electronic compass sensor and a distance sensor. The compass sensor provides directional information while the distance sensor provides the distance traveled. This information yields a distance vector for each point in time which when summed produces the cyclist`s current position. LPS is microprocessor controlled and is designed for a range of less than 90 miles.

  3. Spaceborne Global Positioning System for Spacecraft

    NASA Technical Reports Server (NTRS)

    Dougherty, Lamar F. (Inventor); Niles, Frederick A. (Inventor); Wennersten, Miriam D. (Inventor)

    2001-01-01

    The spaceborne Global Positioning System receiver provides navigational solutions and is designed for use in low Earth orbit. The spaceborne GPS receiver can determine the orbital position of a spacecraft using any of the satellites wi thin the GPS constellation. It is a multiple processor system incorporating redundancy by using a microcontroller to handle the closure of tracking loops for acquired GPS satellites, while a separate microprocessor computes the spacecraft navigational solution and handles other tasks within the receiver. 'Me spaceborne GPS receiver can use either microcontroller or the microprocessor to close the satellite tracking loops. The use of microcontroller provides better tracking performance of acquired GPS satellites. The spaceborne GPS receiver utilizes up to seven separate GPS boards, with each board including its own set of correlators, down-converters and front-end components. The spaceborne GPS receiver also includes telemetry and time-marking circuitry. The spaceborne GPS receiver communicates with other spacecraft systems through a variety of interfaces and can be software-configured to support several different mission profiles.

  4. Inertial and GPS data integration for positioning and tracking of GPR

    NASA Astrophysics Data System (ADS)

    Chicarella, Simone; D'Alvano, Alessandro; Ferrara, Vincenzo; Frezza, Fabrizio; Pajewski, Lara

    2015-04-01

    Nowadays many applications and studies use a Global Positioning System (GPS) to integrate Ground-Penetrating Radar (GPR) data [1-2]. The aim is the production of detailed detection maps that are geo-referenced and superimposable on geographic maps themes. GPS provides data to determine static positioning, and to track the mobile detection system path on the land. A low-cost standard GPS, like GPS-622R by RF Solutions Ltd, allows accuracy around 2.5 m CEP (Circular Error Probability), and a maximum update rate of 10 Hz. These accuracy and update rate are satisfying values when we evaluate positioning datum, but they are unsuitable for precision tracking of a speedy-mobile GPR system. In order to determine the relative displacements with respect to an initial position on the territory, an Inertial Measurement Unit (IMU) can be used. Some inertial-system applications for GPR tracking have been presented in recent studies [3-4]. The integration of both GPS and IMU systems is the aim of our work, in order to increase GPR applicability, e.g. the case of a GPR mounted on an unmanned aerial vehicle for the detection of people buried under avalanches [5]. In this work, we will present the design, realization and experimental characterization of our electronic board that includes GPS-622R and AltIMU-10 v3 by Pololu. The latter comprises an inertial-measurement unit and an altimeter. In particular, the IMU adopts L3GD20 gyro and LSM303D accelerometer and magnetometer; the digital barometer LPS331AP provides data for altitude evaluation. The prototype of our system for GPR positioning and tracking is based on an Arduino microcontroller board. Acknowledgement This work benefited from networking activities carried out within the EU funded COST Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar. ' References [1] M. Solla, X. Núñez-Nieto, M. Varela-González, J. Martínez-Sánchez, and P. Arias, 'GPR for Road Inspection: georeferencing and efficient

  5. An Artificial Neural Network Embedded Position and Orientation Determination Algorithm for Low Cost MEMS INS/GPS Integrated Sensors

    PubMed Central

    Chiang, Kai-Wei; Chang, Hsiu-Wen; Li, Chia-Yuan; Huang, Yun-Wen

    2009-01-01

    Digital mobile mapping, which integrates digital imaging with direct geo-referencing, has developed rapidly over the past fifteen years. Direct geo-referencing is the determination of the time-variable position and orientation parameters for a mobile digital imager. The most common technologies used for this purpose today are satellite positioning using Global Positioning System (GPS) and Inertial Navigation System (INS) using an Inertial Measurement Unit (IMU). They are usually integrated in such a way that the GPS receiver is the main position sensor, while the IMU is the main orientation sensor. The Kalman Filter (KF) is considered as the optimal estimation tool for real-time INS/GPS integrated kinematic position and orientation determination. An intelligent hybrid scheme consisting of an Artificial Neural Network (ANN) and KF has been proposed to overcome the limitations of KF and to improve the performance of the INS/GPS integrated system in previous studies. However, the accuracy requirements of general mobile mapping applications can’t be achieved easily, even by the use of the ANN-KF scheme. Therefore, this study proposes an intelligent position and orientation determination scheme that embeds ANN with conventional Rauch-Tung-Striebel (RTS) smoother to improve the overall accuracy of a MEMS INS/GPS integrated system in post-mission mode. By combining the Micro Electro Mechanical Systems (MEMS) INS/GPS integrated system and the intelligent ANN-RTS smoother scheme proposed in this study, a cheaper but still reasonably accurate position and orientation determination scheme can be anticipated. PMID:22574034

  6. Integrated GPS/DR Vehicle Navigation System Based on Sequential and Square Root Kalman Filters

    NASA Astrophysics Data System (ADS)

    Elzoghby, MOSTAFA; Arif, USMAN; Li, FU; Zhi Yu, Xi

    2017-03-01

    Global Positioning System (GPS) has become part of many applications in life. In mountainous terrains and around buildings, GPS reception is compromised. In dense urban canyons, signals bounce off the buildings creating multipath reception and provide erroneous measurements. To overcome GPS bandwidth and signal fading problems, Navigation solutions are built on GPS measurements fused with inertial sensors to provide dead reckoning (DR) based position solution. Solution for land vehicle Navigation System using GPS, inertial sensor and odometer is presented. The sensors fusion is performed based on conventional, sequential (SKF) and square root Kalman (SRKF) filters. SRKF based on Cheolesky factorization for covariance matrix P. Simulations are performed on real data, with precisely known covariance’s to simulate mathematical stability, performance and processing time required by each method on a high end microprocessor. The results demonstrate integrated system using SRKF has better performance in stability and estimation accuracy than conventional and sequential filter.

  7. Global Positioning System for the Geosciences: Summary and Proceedings of a Workshop on Improving the GPS Reference Station Infrastructure for Earth, Oceanic, and Atmospheric Science Applications

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This report, which represents the results of the workshop, is divided into two sections. Section I includes an executive summary, a chapter introducing the reader to GPS and its usefulness for Earth, oceanic, and atmospheric research, and four chapters summarizing the themes of the workshop presentations, poster papers, and working group discussions. Section II contains the proceedings of the workshop and is divided into five chapters corresponding to the five categories of invited papers written by workshop speakers and authors of poster papers. The appendices contain additional information about the workshop and the Steering Committee.

  8. Brief report: Using global positioning system (GPS) enabled cell phones to examine adolescent travel patterns and time in proximity to alcohol outlets.

    PubMed

    Byrnes, Hilary F; Miller, Brenda A; Morrison, Christopher N; Wiebe, Douglas J; Remer, Lillian G; Wiehe, Sarah E

    2016-07-01

    As adolescents gain freedom to explore new environments unsupervised, more time in proximity to alcohol outlets may increase risks for alcohol and marijuana use. This pilot study: 1) Describes variations in adolescents' proximity to outlets by time of day and day of the week, 2) Examines variations in outlet proximity by drinking and marijuana use status, and 3) Tests feasibility of obtaining real-time data to study adolescent proximity to outlets. U.S. adolescents (N = 18) aged 16-17 (50% female) carried GPS-enabled smartphones for one week with their locations tracked. The geographic areas where adolescents spend time, activity spaces, were created by connecting GPS points sequentially and adding spatial buffers around routes. Proximity to outlets was greater during after school and evening hours. Drinkers and marijuana users were in proximity to outlets 1½ to 2 times more than non-users. Findings provide information about where adolescents spend time and times of greatest risk, informing prevention efforts.

  9. Non-GPS full position and angular orientation onboard sensors for moving and stationary platforms

    NASA Astrophysics Data System (ADS)

    Dhadwal, Harbans S.; Rastegar, Jahangir; Feng, Dake; Kwok, Philip; Pereira, Carlos M.

    2016-05-01

    Angular orientation of both mobile and stationary objects continues to be an ongoing topic of interest for guidance and control as well as for non-GPS based solutions for geolocations of assets in any environment. Currently available sensors, which include inertia devices such as accelerometers and gyros; magnetometers; surface mounted antennas; radars; GPS; and optical line of sight devices, do not provide an acceptable solution for many applications, particularly for gun-fired munitions and for all-weather and all environment scenarios. A robust onboard full angular orientation sensor solution, based on a scanning polarized reference source and a polarized geometrical cavity orientation sensor, is presented. The full position of the object, in the reference source coordinate system, is determined by combining range data obtained using established time-of-flight techniques, with the angular orientation information.

  10. The application of GPS precise point positioning technology in aerial triangulation

    NASA Astrophysics Data System (ADS)

    Yuan, Xiuxiao; Fu, Jianhong; Sun, Hongxing; Toth, Charles

    In traditional GPS-supported aerotriangulation, differential GPS (DGPS) positioning technology is used to determine the 3-dimensional coordinates of the perspective centers at exposure time with an accuracy of centimeter to decimeter level. This method can significantly reduce the number of ground control points (GCPs). However, the establishment of GPS reference stations for DGPS positioning is not only labor-intensive and costly, but also increases the implementation difficulty of aerial photography. This paper proposes aerial triangulation supported with GPS precise point positioning (PPP) as a way to avoid the use of the GPS reference stations and simplify the work of aerial photography. Firstly, we present the algorithm for GPS PPP in aerial triangulation applications. Secondly, the error law of the coordinate of perspective centers determined using GPS PPP is analyzed. Thirdly, based on GPS PPP and aerial triangulation software self-developed by the authors, four sets of actual aerial images taken from surveying and mapping projects, different in both terrain and photographic scale, are given as experimental models. The four sets of actual data were taken over a flat region at a scale of 1:2500, a mountainous region at a scale of 1:3000, a high mountainous region at a scale of 1:32000 and an upland region at a scale of 1:60000 respectively. In these experiments, the GPS PPP results were compared with results obtained through DGPS positioning and traditional bundle block adjustment. In this way, the empirical positioning accuracy of GPS PPP in aerial triangulation can be estimated. Finally, the results of bundle block adjustment with airborne GPS controls from GPS PPP are analyzed in detail. The empirical results show that GPS PPP applied in aerial triangulation has a systematic error of half-meter level and a stochastic error within a few decimeters. However, if a suitable adjustment solution is adopted, the systematic error can be eliminated in GPS

  11. Autonomous reconfigurable GPS/INS navigation and pointing system for rendezvous and docking

    NASA Technical Reports Server (NTRS)

    Upadhyay, Triveni N.; Cotterill, Stephen; Deaton, A. Wayne

    1991-01-01

    This paper describes the results of an integrated navigation and pointing system software development effort sponsored by the NASA MSFC through a SBIR Phase 2 Program. The integrated Global Positioning System (GPS)/Inertial Navigation System (INS) implements an autonomous navigation filter that is reconfigurable in real-time to accommodate mission contingencies. An onboard expert system monitors the spacecraft status and reconfigures the navigation filter accordingly, to optimize the system performance. The navigation filter is a multi-mode Kalman filter to estimate the spacecraft position, velocity, and attitude. Three different GPS-based attitude determination techniques, namely, velocity vector matching, attitude vector matching, and interferometric processing, are implemented to encompass different mission contingencies. The integrated GPS/INS navigation filter will use any of these techniques depending on the mission phase and the state of the sensors. The first technique, velocity vector matching, uses the GPS velocity measurement to estimate the INS velocity errors and exploits the correlation between INS velocity and attitude errors to estimate the attitude. The second technique, attitude vector matching, uses INS gyro measurements and GPS carrier phase (integrated Doppler) measurements during a spacecraft rotation maneuver to determine the attitude. Both of these techniques require only one GPS antenna onboard to determine the spacecraft attitude. The third technique, interferometric processing, requires use of multiple GPS antennae. In order to determine 3-axis body attitude, three GPS antennae (2 no-coplanor baselines) are required.

  12. Global Positioning System Satellite Selection Method

    NASA Technical Reports Server (NTRS)

    Niles, Frederick A. (Inventor)

    2001-01-01

    The satellite selection method as utilized by the spaceborne Global Positioning System receiver provides navigational solutions and is designed for use in low Earth orbit. The satellite selection method is a robust algorithm that can be used a GPS receiver to select appropriate GPS satellites for use in calculating point solutions or attitude solutions. The method is takes into account the difficulty of finding a particular GPS satellite phase code, especially when the search range in greatly increased due to Doppler shifts introduced into the carrier frequency. The method starts with an update of the antenna pointing and spacecraft vectors to determine the antenna backplane direction. Next, the GPS satellites that will potentially be in view of the antenna are ranked on a list, whereby the list is generated based on the estimated attitude and position of each GPS satellite. Satellites blocked by the Earth are not entered on this list. A second list is created, whereby the GPS satellites are ranked according to their desirability for use in attitude determination. GPS satellites are ranked according to their orthogonality to the antenna backplane, and according to geometric dilution of precision considerations. After the lists are created, the channels of the spaceborne GPS receiver are assigned to various GPS satellites for acquisition and lock. Preliminary Doppler frequencies for searching are assigned to the various channels.

  13. Employing GPS L5 Carrier-Frequency in Precise Point Positioning

    NASA Astrophysics Data System (ADS)

    Spits, J.; Santos, M. C.

    2012-12-01

    Justine Spits and Marcelo C. Santos Dept. of Geodesy and Geomatics Engineering, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3 Tel: (1-506) 453-4698, Email: msantos@unb.ca, jspits@unb.ca Precise Point Positioning (PPP) is a GNSS technique which, in most cases nowadays, makes use of Global Positioning System (GPS) dual-frequency signals. The increasing availability of the new GPS L5 signal brings about the question on how much can PPP benefit if it uses L5 in conjunction with the legacy L1 and L2 signals. This poster discusses this issue. It involves the study of the use of L5 in conjunction with the other GPS signals (L1 and L2) with emphasis on the potentialities associated with the various combinations, such as L1-L5, L2-L5 and L1-L2-L5. These combinations will bring benefits in different ways, for example, for ionospheric delay mitigation, ambiguity resolution, convergence time and accuracy. Simulated L5 data will be used to test the PPP algorithms. Performance will be compared against the current dual-frequency PPP methodology. Justine Spits: Ph.D. (Liège, Belgium); Post-Doctoral Fellow, University of New Brunswick Marcelo. C. Santos: Ph.D. (New Brunswick); Professor, University of New Brunswick

  14. Performance Analysis of Several GPS/Galileo Precise Point Positioning Models

    PubMed Central

    Afifi, Akram; El-Rabbany, Ahmed

    2015-01-01

    This paper examines the performance of several precise point positioning (PPP) models, which combine dual-frequency GPS/Galileo observations in the un-differenced and between-satellite single-difference (BSSD) modes. These include the traditional un-differenced model, the decoupled clock model, the semi-decoupled clock model, and the between-satellite single-difference model. We take advantage of the IGS-MGEX network products to correct for the satellite differential code biases and the orbital and satellite clock errors. Natural Resources Canada’s GPSPace PPP software is modified to handle the various GPS/Galileo PPP models. A total of six data sets of GPS and Galileo observations at six IGS stations are processed to examine the performance of the various PPP models. It is shown that the traditional un-differenced GPS/Galileo PPP model, the GPS decoupled clock model, and the semi-decoupled clock GPS/Galileo PPP model improve the convergence time by about 25% in comparison with the un-differenced GPS-only model. In addition, the semi-decoupled GPS/Galileo PPP model improves the solution precision by about 25% compared to the traditional un-differenced GPS/Galileo PPP model. Moreover, the BSSD GPS/Galileo PPP model improves the solution convergence time by about 50%, in comparison with the un-differenced GPS PPP model, regardless of the type of BSSD combination used. As well, the BSSD model improves the precision of the estimated parameters by about 50% and 25% when the loose and the tight combinations are used, respectively, in comparison with the un-differenced GPS-only model. Comparable results are obtained through the tight combination when either a GPS or a Galileo satellite is selected as a reference. PMID:26102495

  15. Performance Analysis of Several GPS/Galileo Precise Point Positioning Models.

    PubMed

    Afifi, Akram; El-Rabbany, Ahmed

    2015-06-19

    This paper examines the performance of several precise point positioning (PPP) models, which combine dual-frequency GPS/Galileo observations in the un-differenced and between-satellite single-difference (BSSD) modes. These include the traditional un-differenced model, the decoupled clock model, the semi-decoupled clock model, and the between-satellite single-difference model. We take advantage of the IGS-MGEX network products to correct for the satellite differential code biases and the orbital and satellite clock errors. Natural Resources Canada's GPSPace PPP software is modified to handle the various GPS/Galileo PPP models. A total of six data sets of GPS and Galileo observations at six IGS stations are processed to examine the performance of the various PPP models. It is shown that the traditional un-differenced GPS/Galileo PPP model, the GPS decoupled clock model, and the semi-decoupled clock GPS/Galileo PPP model improve the convergence time by about 25% in comparison with the un-differenced GPS-only model. In addition, the semi-decoupled GPS/Galileo PPP model improves the solution precision by about 25% compared to the traditional un-differenced GPS/Galileo PPP model. Moreover, the BSSD GPS/Galileo PPP model improves the solution convergence time by about 50%, in comparison with the un-differenced GPS PPP model, regardless of the type of BSSD combination used. As well, the BSSD model improves the precision of the estimated parameters by about 50% and 25% when the loose and the tight combinations are used, respectively, in comparison with the un-differenced GPS-only model. Comparable results are obtained through the tight combination when either a GPS or a Galileo satellite is selected as a reference.

  16. Airborne Antenna System for Minimum-Cycle-Slip GPS Reception

    NASA Technical Reports Server (NTRS)

    Wright, C. Wayne

    2009-01-01

    A system that includes a Global Positioning System (GPS) antenna and associated apparatus for keeping the antenna aimed upward has been developed for use aboard a remote-sensing-survey airplane. The purpose served by the system is to enable minimum- cycle-slip reception of GPS signals used in precise computation of the trajectory of the airplane, without having to restrict the airplane to maneuvers that increase the flight time needed to perform a survey. Cycle slip signifies loss of continuous track of the phase of a signal. Minimum-cycle-slip reception is desirable because maintaining constant track of the phase of the carrier signal from each available GPS satellite is necessary for surveying to centimeter or subcentimeter precision. Even a loss of signal for as short a time as a nanosecond can cause cycle slip. Cycle slips degrade the quality and precision of survey data acquired during a flight. The two principal causes of cycle slip are weakness of signals and multipath propagation. Heretofore, it has been standard practice to mount a GPS antenna rigidly on top of an airplane, and the radiation pattern of the antenna is typically hemispherical, so that all GPS satellites above the horizon are viewed by the antenna during level flight. When the airplane must be banked for a turn or other maneuver, the reception hemisphere becomes correspondingly tilted; hence, the antenna no longer views satellites that may still be above the Earth horizon but are now below the equatorial plane of the tilted reception hemisphere. Moreover, part of the reception hemisphere (typically, on the inside of a turn) becomes pointed toward ground, with a consequent increase in received noise and, therefore, degradation of GPS measurements. To minimize the likelihood of loss of signal and cycle slip, bank angles of remote-sensing survey airplanes have generally been limited to 10 or less, resulting in skidding or slipping uncoordinated turns. An airplane must be banked in order to make

  17. Stability of VLBI, SLR, DORIS, and GPS positioning

    NASA Astrophysics Data System (ADS)

    Feissel-Vernier, M.; de Viron, O.; Le Bail, K.

    2007-12-01

    The residual signal in VLBI, SLR, DORIS and GPS station motion, after a linear trend and seasonal components have been removed, is analysed to investigate site-specific and technique-specific error spectra. The study concentrates on 60 sites with dense observation history by two or more space geodetic techniques. The solutions analysed are single-analysis center solutions currently available. The GPS data are taken from the IGS files. Statistical methods include the Allan variance analysis and the three-cornered hat algorithm. The site-specific noise level is found to be in the range 0.5-3.5 mm in either horizontal direction and 1-4.5 mm in height for most sites. The distribution of site-specific noise type includes both white noise and flicker noise. White noise is predominant in the East direction. Both types of noise are found in the North direction, with no particular geographical clustering.Technique-specific noise characteristics are estimated in several ways, leading to a white noise diagnostic for VLBI and SLR in all three local directions. DORIS has also white noise in the horizontal directions, whereas GPS has a flicker noise spectrum. The vertical noise spectrum is indecisive for both DORIS and GPS. The three-dimensional noise levels for the one-year sampling time are 1.7 mm for VLBI, 2.5 mm for SLR, 5.2 mm for DORIS, and 4.1 mm for GPS. For GPS, the long-term analysis homogeneity has a strong influence. In the case of a test solution reanalysed in a fully consistent way, the noise level drops to the VLBI level in horizontal and to the SLR level in vertical. The three-dimensional noise level for a one-year sampling time decreases to 1.8 mm. In addition, the percentage of stations with flicker noise drops to only about 20% of the network.

  18. The application of NAVSTAR Differential GPS to civil helicopter operations

    NASA Technical Reports Server (NTRS)

    Beser, J.; Parkinson, B. W.

    1981-01-01

    Principles concerning the operation of the NAVSTAR Global Positioning Systems (GPS) are discussed. Selective availability issues concerning NAVSTAR GPS and differential GPS concepts are analyzed. Civil support and market potential for differential GPS are outlined. It is concluded that differential GPS provides a variation on the baseline GPS system, and gives an assured, uninterrupted level of accuracy for the civilian community.

  19. GPS-Aided Tsunami Early Detection System

    NASA Astrophysics Data System (ADS)

    Song, Y. T.; Bar-Sever, Y. E.; Liu, Z.; Khachikyan, R.

    2015-12-01

    Most tsunami fatalities occur in near-field communities of earthquakes at offshore faults. Tsunami early warning is key for reducing the number of fatalities. Unfortunately, an earthquake's magnitude often does not gauge the resulting tsunami power. Here we show that real-time GPS stations along coastlines are able to detect seafloor motions due to big earthquakes, and that the detected seafloor displacements are able to determine tsunami energy and scales instantaneously for early warnings. Our method focuses on estimating tsunami energy directly from seafloor motions because a tsunami's potential or scale, no matter how it is defined, has to be proportional to the tsunami energy. Since seafloor motions are the only source of a tsunami, their estimation directly relates to the mechanism that generates tsunamis; therefore, it is a proper way of identifying earthquakes that are capable of triggering tsunamis, while being able to discriminate those particular earthquakes from false alarms. Examples of detecting the tsunami energy scales for the 2004 Sumatra M9.1 earthquake, the 2005 Nias M8.7 earthquake, the 2010 M8.8 Chilean earthquake, and the 2011 M9.0 Tohoku-Oki earthquake will be presented. The development of the Indo-Pacific GPS-Aided Tsunami Early Detection (GATED) system will be reported.

  20. Accuracy of velocities from repeated GPS surveys: relative positioning is concerned

    NASA Astrophysics Data System (ADS)

    Duman, Huseyin; Ugur Sanli, D.

    2016-04-01

    Over more than a decade, researchers have been interested in studying the accuracy of GPS positioning solutions. Recently, reporting the accuracy of GPS velocities has been added to this. Researchers studying landslide motion, tectonic motion, uplift, sea level rise, and subsidence still report results from GPS experiments in which repeated GPS measurements from short sessions are used. This motivated some other researchers to study the accuracy of GPS deformation rates/velocities from various repeated GPS surveys. In one of the efforts, the velocity accuracy was derived from repeated GPS static surveys using short observation sessions and Precise Point Positioning mode of GPS software. Velocities from short GPS sessions were compared with the velocities from 24 h sessions. The accuracy of velocities was obtained using statistical hypothesis testing and quantifying the accuracy of least squares estimation models. The results reveal that 45-60 % of the horizontal and none of the vertical solutions comply with the results from 24 h solutions. We argue that this case in which the data was evaluated using PPP should also apply to the case in which the data belonging to long GPS base lengths is processed using fundamental relative point positioning. To test this idea we chose the two IGS stations ANKR and NICO and derive their velocities from the reference stations held fixed in the stable EURASIAN plate. The University of Bern's GNSS software BERNESE was used to produce relative positioning solutions, and the results are compared with those of GIPSY/OASIS II PPP results. First impressions indicate that it is worth designing a global experiment and test these ideas in detail.

  1. Global Positioning System receiver evaluation results

    SciTech Connect

    Byrne, R.H.

    1993-09-01

    A Sandia project currently uses an outdated Magnavox 6400 Global Positioning System (GPS) receiver as the core of its navigation system. The goal of this study was to analyze the performance of the current GPS receiver compared to newer, less expensive models and to make recommendations on how to improve the performance of the overall navigation system. This paper discusses the test methodology used to experimentally analyze the performance of different GPS receivers, the test results, and recommendations on how an upgrade should proceed. Appendices contain detailed information regarding the raw data, test hardware, and test software.

  2. GENESIS: GPS Environmental and Earth Science Information System

    NASA Technical Reports Server (NTRS)

    Hajj, George

    1999-01-01

    This presentation reviews the GPS ENvironmental and Earth Science Information System (GENESIS). The objectives of GENESIS are outlined (1) Data Archiving, searching and distribution for science data products derived from Space borne TurboRogue Space Receivers for GPS science and other ground based GPS receivers, (2) Data browsing using integrated visualization tools, (3) Interactive web/java-based data search and retrieval, (4) Data subscription service, (5) Data migration from existing GPS archived data, (6) On-line help and documentation, and (7) participation in the WP-ESIP federation. The presentation reviews the products and services of Genesis, and the technology behind the system.

  3. Satellite positioning systems

    NASA Astrophysics Data System (ADS)

    Keydel, W.

    The basic physical principles, technology, and capabilities of satellite position-finding systems (SPFSs) are examined in a general overview. Topics discussed include the properties of EM waves as a basis for measurement; two-way (radar) SPFSs with active satellites (to locate passive targets); one-way SPFSs with active satellites (for self-location using a passive receiver); one-way SPFSs with passive satellites and active objects (for emergency search-and-rescue use); radar altimeters, radar scatterometers, and SARs; Doppler methods; and range-difference and pseudorange time-of-flight methods. Consideration is given to problems of precision in time measurements and orbit measurement and prediction, improved precision using differential methods, the predicted accuracy of Navstar GPS, propagation-related limitations, user demands, and political and economic factors influencing future SPFS development.

  4. Uav Onboard Photogrammetry and GPS Positionning for Earthworks

    NASA Astrophysics Data System (ADS)

    Daakir, M.; Pierrot-Deseilligny, M.; Bosser, P.; Pichard, F.; Thom, C.

    2015-08-01

    Over the last decade, Unmanned Airbone Vehicles (UAVs) have been largely used for civil applications. Airborne photogrammetry has found place in these applications not only for 3D modeling but also as a measurement tool. Vinci-Construction-Terrassement is a private company specialized in public works sector and uses airborn photogrammetry as a mapping solution and metrology investigation tool on its sites. This technology is very efficient for the calculation of stock volumes for instance, or for time tracking of specific areas with risk of landslides. The aim of the present work is to perform a direct georeferencing of images acquired by the camera leaning on an embedded GPS receiver. UAV, GPS receiver and camera used are low-cost models and therefore data processing is adapted to this particular constraint.

  5. A Pseudolite-Based Positioning System for Legacy GNSS Receivers

    PubMed Central

    Kim, Chongwon; So, Hyoungmin; Lee, Taikjin; Kee, Changdon

    2014-01-01

    The ephemeris data format of legacy GPS receivers is improper for positioning stationary pseudolites on the ground. Therefore, to utilize pseudolites for navigation, GPS receivers must be modified so that they can handle the modified data formats of the pseudolites. Because of this problem, the practical use of pseudolites has so far been limited. This paper proposes a pseudolite-based positioning system that can be used with unmodified legacy GPS receivers. In the proposed system, pseudolites transmit simulated GPS signals. The signals use standard GPS ephemeris data format and contain ephemeris data of simulated GPS satellites, not those of pseudolites. The use of the standard format enables the GPS receiver to process pseudolite signals without any modification. However, the position output of the GPS receiver is not the correct position in this system, because there are additional signal delays from each pseudolite to the receiver. A post-calculation process was added to obtain the correct receiver position using GPS receiver output. This re-estimation is possible because it is based on known information about the simulated signals, pseudolites, and positioning process of the GPS receiver. Simulations using generated data and live GPS data are conducted for various geometries to verify the proposed system. The test results show that the proposed system provides the desired user position using pseudolite signals without requiring any modifications to the legacy GPS receiver. In this initial study, a pseudolite-only indoor system was assumed. However, it can be expanded to a GPS-pseudolite system outdoors. PMID:24681674

  6. Stability of VLBI, SLR, DORIS, and GPS positioning

    NASA Astrophysics Data System (ADS)

    Feissel-Vernier, M.; de Viron, O.; Le Bail, K.

    2007-06-01

    The residual signal in VLBI, SLR, DORIS and GPS station motion, after a linear trend and seasonal components have been removed, is analysed to investigate site-specific and technique-specific error spectra. The study concentrates on 60 sites with dense observation history by two or more space geodetic techniques. Statistical methods include the Allan variance analysis and the three-cornered hat algorithm. The stability of time-series is defined by two parameters, namely the Allan deviation for a one-year sampling time (noise level) and the slope of the Allan variance graph with its spectral interpretation (noise type). The site-specific noise level is found to be in the range 0.5-3.5 mm in either horizontal direction and 1-4.5 mm in height for most sites. The distribution of site-specific noise type includes both white noise and flicker noise. White noise is predominant in the East direction. Both types of noise are found in the North direction, with no particular geographical clustering. In the Up direction, the Northern hemisphere sites seem to be split in two large geographical sectors characterised either by white noise or by flicker noise signatures. Technique-specific noise characteristics are estimated in several ways, leading to a white noise diagnostic for VLBI and SLR in all three local directions. DORIS has also white noise in the horizontal directions, whereas GPS has a flicker noise spectrum. The vertical noise spectrum is indecisive for both DORIS and GPS. The three-dimensional noise levels for the one-year sampling time are 1.7 mm for VLBI, 2.5 mm for SLR, 5.2 mm for DORIS, and 4.1 mm for GPS. For GPS, the long-term analysis homogeneity has a strong influence. In the case of a test solution reanalysed in a fully consistent way, the noise level drops to the VLBI level in horizontal and to the SLR level in vertical. The three-dimensional noise level for a one-year sampling time decreases to 1.8 mm. In addition, the percentage of stations with flicker

  7. The simulation and analysis of navigation performance for integrated GPS/inertial navigation system

    NASA Astrophysics Data System (ADS)

    Yu, Jixiang; Zhang, Gengsheng

    This paper discusses the navigation performance of an integrated GPS/inertial navigation system (INS) according to the principle of the Kalman filter, the concept of the GDOP, and the results of simulation tests. The accuracies of position and velocity (especially the former) of the integrated system are much better than those of the point solution of the GPS receiver. This comes from the function of Kalman filter which utilizes all the measurement data of the past up to the update time and combines the information from both GPS and INS.

  8. Relativity in the Global Positioning System.

    PubMed

    Ashby, Neil

    2003-01-01

    The Global Positioning System (GPS) uses accurate, stable atomic clocks in satellites and on the ground to provide world-wide position and time determination. These clocks have gravitational and motional frequency shifts which are so large that, without carefully accounting for numerous relativistic effects, the system would not work. This paper discusses the conceptual basis, founded on special and general relativity, for navigation using GPS. Relativistic principles and effects which must be considered include the constancy of the speed of light, the equivalence principle, the Sagnac effect, time dilation, gravitational frequency shifts, and relativity of synchronization. Experimental tests of relativity obtained with a GPS receiver aboard the TOPEX/POSEIDON satellite will be discussed. Recently frequency jumps arising from satellite orbit adjustments have been identified as relativistic effects. These will be explained and some interesting applications of GPS will be discussed.

  9. A Micromechanical INS/GPS System for Small Satellites

    NASA Technical Reports Server (NTRS)

    Barbour, N.; Brand, T.; Haley, R.; Socha, M.; Stoll, J.; Ward, P.; Weinberg, M.

    1995-01-01

    The cost and complexity of large satellite space missions continue to escalate. To reduce costs, more attention is being directed toward small lightweight satellites where future demand is expected to grow dramatically. Specifically, micromechanical inertial systems and microstrip global positioning system (GPS) antennas incorporating flip-chip bonding, application specific integrated circuits (ASIC) and MCM technologies will be required. Traditional microsatellite pointing systems do not employ active control. Many systems allow the satellite to point coarsely using gravity gradient, then attempt to maintain the image on the focal plane with fast-steering mirrors. Draper's approach is to actively control the line of sight pointing by utilizing on-board attitude determination with micromechanical inertial sensors and reaction wheel control actuators. Draper has developed commercial and tactical-grade micromechanical inertial sensors, The small size, low weight, and low cost of these gyroscopes and accelerometers enable systems previously impractical because of size and cost. Evolving micromechanical inertial sensors can be applied to closed-loop, active control of small satellites for micro-radian precision-pointing missions. An inertial reference feedback control loop can be used to determine attitude and line of sight jitter to provide error information to the controller for correction. At low frequencies, the error signal is provided by GPS. At higher frequencies, feedback is provided by the micromechanical gyros. This blending of sensors provides wide-band sensing from dc to operational frequencies. First order simulation has shown that the performance of existing micromechanical gyros, with integrated GPS, is feasible for a pointing mission of 10 micro-radians of jitter stability and approximately 1 milli-radian absolute error, for a satellite with 1 meter antenna separation. Improved performance micromechanical sensors currently under development will be

  10. Precise Applications Of The Global Positioning System

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.

    1992-01-01

    Report represents overview of Global Positioning System (GPS). Emphasizes those aspects of theory, history, and status of GPS pertaining to potential utility for highly precise scientific measurements. Current and anticipated applications include measurements of crustal motions in seismically active regions of Earth, measurements of rate of rotation of Earth and orientation of poles, tracking of non-GPS spacecraft in orbit around Earth, surveying, measurements of radio-signal-propagation delays, determinations of coordinates of ground stations, and transfer of precise time signals worldwide.

  11. Evaluation of Galileo navigation system positioning performance in Shanghai

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; Hong, Zhonghua; Han, Yanling; Xu, Lijun; Song, Yushi; Zhang, Kun

    2015-01-01

    European Galileo global navigation system's four in-orbit validation (IOV) satellites (E11, E12, E19, and E20) are able to calculate position accurately. The analysis of the IOV satellites' measurements can provide insight into the performance of the Galileo system. To evaluate the performance of IOV satellites using measurements in the Shanghai, China, area signal-to-noise ratio (SNR) and multipath are used. We also suggest a method to calculate the four frequencies' multipath error. When compared with global positioning system (GPS) satellites' SNR, IOV satellites' signal strength is stronger. In the aspect of multipath error, the IOV satellite is also less than GPS. The accuracy of single point positioning under open sky, under trees, and between tall buildings of a combined GPS/Galileo system is analyzed in the Shanghai area. The positioning result shows that the positioning accuracy of the combined GPS/Galileo system is better than the GPS system alone.

  12. Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo

    NASA Astrophysics Data System (ADS)

    Li, Xingxing; Ge, Maorong; Dai, Xiaolei; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-06-01

    In this contribution, we present a GPS+GLONASS+BeiDou+Galileo four-system model to fully exploit the observations of all these four navigation satellite systems for real-time precise orbit determination, clock estimation and positioning. A rigorous multi-GNSS analysis is performed to achieve the best possible consistency by processing the observations from different GNSS together in one common parameter estimation procedure. Meanwhile, an efficient multi-GNSS real-time precise positioning service system is designed and demonstrated by using the multi-GNSS Experiment, BeiDou Experimental Tracking Network, and International GNSS Service networks including stations all over the world. The statistical analysis of the 6-h predicted orbits show that the radial and cross root mean square (RMS) values are smaller than 10 cm for BeiDou and Galileo, and smaller than 5 cm for both GLONASS and GPS satellites, respectively. The RMS values of the clock differences between real-time and batch-processed solutions for GPS satellites are about 0.10 ns, while the RMS values for BeiDou, Galileo and GLONASS are 0.13, 0.13 and 0.14 ns, respectively. The addition of the BeiDou, Galileo and GLONASS systems to the standard GPS-only processing, reduces the convergence time almost by 70 %, while the positioning accuracy is improved by about 25 %. Some outliers in the GPS-only solutions vanish when multi-GNSS observations are processed simultaneous. The availability and reliability of GPS precise positioning decrease dramatically as the elevation cutoff increases. However, the accuracy of multi-GNSS precise point positioning (PPP) is hardly decreased and few centimeter are still achievable in the horizontal components even with 40 elevation cutoff. At 30 and 40 elevation cutoffs, the availability rates of GPS-only solution drop significantly to only around 70 and 40 %, respectively. However, multi-GNSS PPP can provide precise position estimates continuously (availability rate is more than 99

  13. Path duplication using GPS carrier based relative position for automated ground vehicle convoys

    NASA Astrophysics Data System (ADS)

    Travis, William E., III

    A GPS based automated convoy strategy to duplicate the path of a lead vehicle is presented in this dissertation. Laser scanners and cameras are not used; all information available comes from GPS or inertial systems. An algorithm is detailed that uses GPS carrier phase measurements to determine relative position between two moving ground vehicles. Error analysis shows the accuracy is centimeter level. It is shown that the time to the first solution fix is dependent upon initial relative position accuracy, and that near instantaneous fixes can be realized if that accuracy is less than 20 centimeters. The relative positioning algorithm is then augmented with inertial measurement units to dead reckon through brief outages. Performance analysis of automotive and tactical grade units shows the twenty centimeter threshold can be maintained for only a few seconds with the automotive grade unit and for 14 seconds with the tactical unit. Next, techniques to determine odometry information in vector form are discussed. Three methods are outlined: dead reckoning of inertial sensors, time differencing GPS carrier measurements to determine change in platform position, and aiding the time differenced carrier measurements with inertial measurements. Partial integration of a tactical grade inertial measurement unit provided the lowest error drift for the scenarios investigated, but the time differenced carrier phase approach provided the most cost feasible approach with similar accuracy. Finally, the relative position and odometry algorithms are used to generate a reference by which an automated following vehicle can replicate a lead vehicle's path of travel. The first method presented uses only the relative position information to determine a relative angle to the leader. Using the relative angle as a heading reference for a steering control causes the follower to drive at the lead vehicle, thereby creating a towing effect on the follower when both vehicles are in motion. Effective

  14. New approach for processing data provided by an INS/GPS system onboard a vehicle

    NASA Astrophysics Data System (ADS)

    Dumitrascu, Ana; Serbanescu, Ionut; Tamas, Razvan D.; Danisor, Alin; Caruntu, George; Ticu, Ionela

    2016-12-01

    Due to the technology development, navigation systems are widely used in ground vehicle applications such as position prediction, safety of life, etc. It is known that a hybrid navigation system consisting of a GPS and inertial navigation system (INS) can provide a more accurate position prediction. By applying a Method of Moments (MoM) approach on the acquired data with INS/GPS we can extract both the coordinate and important information concerning safety of life. This kind of system will be cost effective and can also be used as a black box on boats, cars, submersible ships and even on small aircrafts.

  15. GPS Measurement Of Attitude

    NASA Technical Reports Server (NTRS)

    Dinardo, S. J.; Hushbeck, E. L.; Meehan, T. K.; Munson, T. N.; Purcell, G. H.; Srinivasan, J. M.; Young, L. E.; Yunck, T. P.

    1992-01-01

    Signals transmitted by satellites of Global Positioning System (GPS) measure orientation of baseline on ship, aircraft, or other vehicle with accuracy. Two GPS antennas and receivers placed at well separated points on platform. Receivers measure positions of ends of baseline as functions of time. Output processor computes vector difference between two positions and determines orientation of baseline. Combined with conventional GPS data, orientation data allows more precise navigation and mapping and enhances calculations related to performance and control of vehicle.

  16. The Global Positioning System in mountainous areas: effect of the troposphere on the vertical GPS accuracyLe système de positionnement GPS en zone de montagne : effet de la troposphère sur la précision GPS verticale

    NASA Astrophysics Data System (ADS)

    Doerflinger, Erik; Bayer, Roger; Chéry, Jean; Bürki, Beat

    1998-03-01

    Precise estimation of the vertical deformation is a challenge for understanding geodynamical processes. In mountainous areas, the main limitation of precise GPS vertical measurement lies in the difficulty of estimating tropospheric delay due to high differential elevation and large weather variability. We carried out two GPS campaigns in July 1994 (8 days) and March 1996 (11 days), during extreme weather conditions, on a 1 390 m height difference baseline. The zenith delay was calibrated with a standard atmospheric model (STD), Water Vapor Radiometric measurements (WVR) and surface pressure measurements, or computed through a least squares estimation (LSE). Half daily repeatability of the vertical LSE solutions has a precision of 11-14 mm with a small difference of 1 mm between the two expeditions.

  17. Solar System Modeler: A Distributed, Virtual Environment for Space Visualization and GPS Navigation

    NASA Astrophysics Data System (ADS)

    Williams, Gary E.

    1996-12-01

    The Solar System Modeler (SM) extends the Space Modeler developed in 1994. It provides a virtual environment enabling an explorer to dynamically investigate near Earth satellites, deep space probes, planets, moons, and other celestial phenomena. The explorer navigates the virtual environment via mouse selected options from menu panels while wearing a tracked, head mounted display (HMD). Alternatively, a monitor may replace the HMD and keyboard controls replace head tracking. The SM's functionality is extended by the ability to broadcast simulated GPS satellite transmissions in compliance with Distributed Interactive Simulation (DIS) protocol standards. The transmissions include information found in true GPS broadcasts that is required for a receiver to determine its location. The Virtual GPS Receiver (VGPSR) receives the GPS transmissions from the SM and computes the receiver's position with a realistic error based on numerous variables simulating those encountered in the real GPS system. The VGPSR is designed as a plug-in module for simulations requiring virtual navigation. The receiver's client application provides the VGPSR with the simulation time and the true position of the receiver. In return, the application receives a GPS indicated position.

  18. The Ether Wind and the Global Positioning System.

    ERIC Educational Resources Information Center

    Muller, Rainer

    2000-01-01

    Explains how students can perform a refutation of the ether theory using information from the Global Positioning System (GPS). Discusses the functioning of the GPS, qualitatively describes how position determination would be affected by an ether wind, and illustrates the pertinent ideas with a simple quantitative model. (WRM)

  19. No Longer Guaranteed...Global Positioning System Alternative Necessary

    DTIC Science & Technology

    2003-01-01

    enemy position and movement. The military’s use of the global positioning system ( GPS ) has created a sig- nificant military advantage in accurate...2003 2. REPORT TYPE 3. DATES COVERED 00-00-2003 to 00-00-2003 4. TITLE AND SUBTITLE No Longer Guaranteed... Global positioning system alternative...access, there are now no sufficiently secure, jam-resistant, precision positioning devices or systems . Accordingly, there is a need for a non- GPS

  20. Case: The Global Positioning System (GPS)

    DTIC Science & Technology

    2014-05-01

    trian. The pitch of the siren changes as the ambulance approaches, and again as it passes the pedestrian. In principle, one could determine the...location and speed of the ambulance using only the changes in the pitch of the siren . 3 Five months after their work on Sputnik, Guier and Weiffenbach were

  1. A method of undifferenced ambiguity resolution for GPS+GLONASS precise point positioning.

    PubMed

    Yi, Wenting; Song, Weiwei; Lou, Yidong; Shi, Chuang; Yao, Yibin

    2016-05-25

    Integer ambiguity resolution is critical for achieving positions of high precision and for shortening the convergence time of precise point positioning (PPP). However, GLONASS adopts the signal processing technology of frequency division multiple access and results in inter-frequency code biases (IFCBs), which are currently difficult to correct. This bias makes the methods proposed for GPS ambiguity fixing unsuitable for GLONASS. To realize undifferenced GLONASS ambiguity fixing, we propose an undifferenced ambiguity resolution method for GPS+GLONASS PPP, which considers the IFCBs estimation. The experimental result demonstrates that the success rate of GLONASS ambiguity fixing can reach 75% through the proposed method. Compared with the ambiguity float solutions, the positioning accuracies of ambiguity-fixed solutions of GLONASS-only PPP are increased by 12.2%, 20.9%, and 10.3%, and that of the GPS+GLONASS PPP by 13.0%, 35.2%, and 14.1% in the North, East and Up directions, respectively.

  2. A method of undifferenced ambiguity resolution for GPS+GLONASS precise point positioning

    NASA Astrophysics Data System (ADS)

    Yi, Wenting; Song, Weiwei; Lou, Yidong; Shi, Chuang; Yao, Yibin

    2016-05-01

    Integer ambiguity resolution is critical for achieving positions of high precision and for shortening the convergence time of precise point positioning (PPP). However, GLONASS adopts the signal processing technology of frequency division multiple access and results in inter-frequency code biases (IFCBs), which are currently difficult to correct. This bias makes the methods proposed for GPS ambiguity fixing unsuitable for GLONASS. To realize undifferenced GLONASS ambiguity fixing, we propose an undifferenced ambiguity resolution method for GPS+GLONASS PPP, which considers the IFCBs estimation. The experimental result demonstrates that the success rate of GLONASS ambiguity fixing can reach 75% through the proposed method. Compared with the ambiguity float solutions, the positioning accuracies of ambiguity-fixed solutions of GLONASS-only PPP are increased by 12.2%, 20.9%, and 10.3%, and that of the GPS+GLONASS PPP by 13.0%, 35.2%, and 14.1% in the North, East and Up directions, respectively.

  3. The future of GPS-based electric power system measurements, operation and control

    SciTech Connect

    Rizy, D.T.; Wilson, R.E.; Martin, K.E.; Litzenberger, W.H.; Hauer, J.F.; Overholt, P.N.; Sobajic, D.J.

    1998-11-01

    Much of modern society is powered by inexpensive and reliable electricity delivered by a complex and elaborate electric power network. Electrical utilities are currently using the Global Positioning System-NAVSTAR (GPS) timekeeping to improve the network`s reliability. Currently, GPS synchronizes the clocks on dynamic recorders and aids in post-mortem analysis of network disturbances. Two major projects have demonstrated the use of GPS-synchronized power system measurements. In 1992, the Electric Power Research Institute`s (EPRI) sponsored Phase Measurements Project used a commercially available Phasor Measurements Unit (PMU) to collect GPS-synchronized measurements for analyzing power system problems. In 1995, Bonneville Power Administration (BPA) and Western Area Power Administration (WAPA) under DOE`s and EPRI`s sponsorship launched the Wide Area Measurements (WAMS) project. WAMS demonstrated GPS-synchronized measurements over a large area of their power networks and demonstrated the networking of GPS-based measurement systems in BPA and WAPA. The phasor measurement technology has also been used to conduct dynamic power system tests. During these tests, a large dynamic resistor was inserted to simulate a small power system disturbance.

  4. Global gravity field models from the GPS positions of CHAMP, GRACE and GOCE satellites

    NASA Astrophysics Data System (ADS)

    Bezděk, A.; Sebera, J.; Klokočník, J.; Kostelecký, J.

    2012-04-01

    The aim of our work is to generate Earth's gravity field models from the GPS positions of low Earth orbiters. We will present our inversion method and numerical results based on the real-world data of CHAMP, GRACE and GOCE satellites. The presented inversion method is based on Newton's second law of motion, which relates the observed acceleration of the satellite with the forces acting on it. The vector of the observed acceleration is obtained through a numerical second-derivative filter applied to the time series of the kinematic positions. Forces other than those due to the geopotential are either modelled (lunisolar perturbations, tides) or provided by the onboard measurements (nongravitational perturbations). Then the observation equations are formulated using the gradient of the spherical harmonic expansion of the geopotential. From this linear system the harmonic coefficients are directly obtained. We do not use any a priori gravity field model. Although the basic scheme of the acceleration approach is straightforward, the implementation details play a crucial role in obtaining reasonable results. The numerical derivative of noisy data (here the GPS positions) strongly amplifies the high frequency noise and creates autocorrelation in the observation errors. We successfully solve both of these problems by using the generalized least squares method, which defines a linear transformation of the observation equations. In the transformed variables the errors become uncorrelated, so the ordinary least squares estimation may be used to find the regression parameters with correct estimates of their uncertainties. The digital filter of the second derivative is an approximation to the analytical operation. We will show how different the results might be depending on the particular choice of the parameters defining the filter. Another problem is the correlation of the errors in the GPS positions. Here we use the tools from time series analysis. The systematic behaviour

  5. An Analysis of CONUS Based Deployment of Pseudolites for Positioning, Navigation and Timing (PNT) Systems

    DTIC Science & Technology

    2015-09-17

    AFIT-ENV-MS-15-S-37 Abstract The Global Positioning System (GPS) developed and operated by the United States Air Force (USAF) provides a way...8 Global ... Global Positioning System (GPS) is one of the more recent technologies for navigation and timing. GPS began development in 1973 as a solution to the

  6. The Global Positioning System and Its Integration into College Geography Curricula.

    ERIC Educational Resources Information Center

    Wikle, Thomas A.; Lambert, Dean P.

    1996-01-01

    Introduces global positioning system (GPS) technology to nonspecialist geographers and recommends a framework for implementing GPS instructional modules in college geography courses. GPS was developed as a worldwide satellite-based system by the U.S. Department of Defense to simplify and improve military and civilian navigation and positioning.…

  7. GPS Interferometry

    NASA Technical Reports Server (NTRS)

    Vangrass, Frank

    1992-01-01

    This semi-annual progress report provides an overview of the work performed during the first six months of Grant NAG 1 1423, titled 'GPS Interferometry'. The Global Positioning System (GPS) is a satellite-based positioning and timing system. Through the use of interferometric processing techniques, it is feasible to obtain sub-decimeter position accuracies for an aircraft in flight. The proposed duration of this Grant is three years. During the first year of the Grant, the efforts are focussed on two topics: (1) continued development of GPS Interferometry core technology; and (2) rapid technology demonstration of GPS interferometry through the design and implementation of a flight reference/autoland system. Multipath error has been the emphasis of the continued development of GPS Interferometry core technology. The results have been documented in a Doctoral Dissertation and a conference paper. The design and implementation of the flight reference/autoland system is nearing completion. The remainder of this progress report summarizes the architecture of this system.

  8. Environmental applications of GPS

    SciTech Connect

    Vigil, S.A.; Zueck, D.

    1999-07-01

    The use of the Global Positioning System (GPS) has revolutionized air travel, ocean navigation, land navigation, and the collection of environmental data. Although a basic civilian GPS receiver can be purchased for as little as $100, the receiver is only the tip of a 12 billion dollar iceberg. This paper will discuss the history and basic operation of the Global Positioning System, a satellite-based precision positioning and timing service developed and operated by the Department of Defense. It will also describe the accuracy limitations of the civil GPS service and how accuracy can be enhanced by the use of differential GPS (DGPS), using either the free National Differential GPS system, or commercial differential monitor stations. Finally, the paper will discuss the future accuracy upgrades of civil GPS as a result of recent federal policy decisions.

  9. Global Positions and Velocities from One Year of GPS Data

    NASA Technical Reports Server (NTRS)

    Heflin, M. B.; Blewitt, G.; Jefferson, D.; Vigue, Y.; Webb, F.; Zumberge, J.; Argus, D.; Gipson, J.; Ma, C.; Clark, T.

    1993-01-01

    A generalized no-fiducial approach has been developed to obtain global positions and velocities without fixing any individual position or velocity components. The method used can be applied to any global geodetic technique and proceeds in three general steps. First, daily solutions derived with weak constraints are combined to yield one global set of positions and velocities. Second, 14 minimal constraints are applied to remove uncertainties due to the loosely defined reference frame. Third, transformation from one reference frame to another is accomplished with a 14 parameter transformation. One year of daily FLINN solutions, each made with data from about 40 sites, have been combined to yield our best fit global model...

  10. Integrated Inertial/gps

    NASA Technical Reports Server (NTRS)

    Kline, Paul; Vangraas, Frank

    1990-01-01

    The presence of failures in navigation sensors can cause the determination of an erroneous aircraft state estimate, which includes position, attitude, and their derivatives. Aircraft flight control systems rely on sensor inputs to determine the aircraft state. In the case of integrated Inertial/NAVSTAR Global Positioning System (GPS), sensor failures could occur in the on-board inertial sensors or in the GPS measurements. The synergistic use of both GPS and the Inertial Navigation System (INS) allows for highly reliable fault detection and isolation of sensor failures. Integrated Inertial/GPS is a promising technology for the High Speed Civil Transport (HSCT) and the return and landing of a manned space vehicle.

  11. Autonomous satellite navigation with the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Fuchs, A. J.; Wooden, W. H., II; Long, A. C.

    1977-01-01

    This paper discusses the potential of using the Global Positioning System (GPS) to provide autonomous navigation capability to NASA satellites in the 1980 era. Some of the driving forces motivating autonomous navigation are presented. These include such factors as advances in attitude control systems, onboard science annotation, and onboard gridding of imaging data. Simulation results which demonstrate baseline orbit determination accuracies using GPS data on Seasat, Landsat-D, and the Solar Maximum Mission are presented. Emphasis is placed on identifying error sources such as GPS time, GPS ephemeris, user timing biases, and user orbit dynamics, and in a parametric sense on evaluating their contribution to the orbit determination accuracies.

  12. A GPS/GNSS dense network used to monitor ionospheric positioning error

    NASA Astrophysics Data System (ADS)

    Wautelet, G.; Lejeune, S.; Warnant, R.

    2010-12-01

    GPS/GNSS networks are, for the last few years, quickly expanding their density all over the surface of the globe. The present idea is to use this density in order to assess the effect of ionospheric disturbances on relative positioning but also to monitor their propagation patterns. Local variability in the ionospheric electron density can dramaticaly affect the reliability of GPS/GNSS real time applications. In particular, Traveling Ionospheric Disturbances (TID's) or plasma instability due to geomagnetic storms can induce strong disturbances in relative positioning. It is therefore useful to develop an integrity monitoring service based on a GPS/GNSS dense network. To assess the effects of ionospheric activity on relative positioning, the SoDIPE-RTK software (Software for Determining the Ionospheric Positionning Error on RTK) has been developed at the Royal Meteorological Institute of Belgium. The approach consists in computing the positioning error due to the ionosphere and has been applied, as a proof of concept, on the Belgian dense network. This network called Active Geodetic Network (AGN) is composed of 66 GPS (dual-frequency) stations. In order to ensure a successful ambiguity resolution for both L1 and L2 carriers, baselines larger than 40 km are not taken into account in the analysis. In a first step, we assess the nominal RTK precision for each baseline during quiet ionospheric conditions (i.e. a background of low Total Electron Content (TEC) variability). The observed positioning accuracy is ~1 cm and depends mainly on baseline length and satellite geometry at the two considered stations. In a second step, the impact of two ionospheric events on positioning error (a medium scale TID and a powerful geomagnetic storm) is evaluated. As expected, the study demonstrates that the largest effects are observed during the occurrence of the geomagnetic storm with an ionospheric positioning error reaching 0.9 m. The maximal positioning error observed during the

  13. Multi-Flight-Phase GPS Navigation Filter Applications to Terrestrial Vehicle Navigation and Positioning

    NASA Technical Reports Server (NTRS)

    Park, Young W.; Montez, Moises N.

    1994-01-01

    A candidate onboard space navigation filter demonstrated excellent performance (less than 8 meter level RMS semi-major axis accuracy) in performing orbit determination of a low-Earth orbit Explorer satellite using single-frequency real GPS data. This performance is significantly better than predicted by other simulation studies using dual-frequency GPS data. The study results revealed the significance of two new modeling approaches evaluated in the work. One approach introduces a single-frequency ionospheric correction through pseudo-range and phase range averaging implementation. The other approach demonstrates a precise axis-dependent characterization of dynamic sample space uncertainty to compute a more accurate Kalman filter gain. Additionally, this navigation filter demonstrates a flexibility to accommodate both perturbational dynamic and observational biases required for multi-flight phase and inhomogeneous application environments. This paper reviews the potential application of these methods and the filter structure to terrestrial vehicle and positioning applications. Both the single-frequency ionospheric correction method and the axis-dependent state noise modeling approach offer valuable contributions in cost and accuracy improvements for terrestrial GPS receivers. With a modular design approach to either 'plug-in' or 'unplug' various force models, this multi-flight phase navigation filter design structure also provides a versatile GPS navigation software engine for both atmospheric and exo-atmospheric navigation or positioning use, thereby streamlining the flight phase or application-dependent software requirements. Thus, a standardized GPS navigation software engine that can reduce the development and maintenance cost of commercial GPS receivers is now possible.

  14. Global Positioning System Simulator Field Operational Procedures

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Quinn, David A.; Day, John H. (Technical Monitor)

    2002-01-01

    Global Positioning System (GPS) simulation is an important activity in the development or qualification of GPS signal receivers for space flight. Because a GPS simulator is a critical resource it is highly desirable to develop a set of field operational procedures to supplement the basic procedures provided by most simulator vendors. Validated field procedures allow better utilization of the GPS simulator in the development of new test scenarios and simulation operations. These procedures expedite simulation scenario development while resulting in scenarios that are more representative of the true design, as well as enabling construction of more complex simulations than previously possible, for example, spacecraft maneuvers. One difficulty in the development of a simulation scenario is specifying various modes of test vehicle motion and associated maneuvers requiring that a user specify some (but not all) of a few closely related simulation parameters. Currently this can only be done by trial and error. A stand-alone procedure that implements the simulator maneuver motion equations and solves for the motion profile transient times, jerk and acceleration would be of considerable value. Another procedure would permit the specification of some configuration parameters that would determine the simulated GPS signal composition. The resulting signal navigation message, for example, would force the receiver under test to use only the intended C-code component of the simulated GPS signal. A representative class of GPS simulation-related field operational procedures is described in this paper. These procedures were developed and used in support of GPS integration and testing for many successful spacecraft missions such as SAC-A, EO-1, AMSAT, VCL, SeaStar, sounding rockets, and by using the industry standard Spirent Global Simulation Systems Incorporated (GSSI) STR series simulators.

  15. Finding a Target with an Accessible Global Positioning System

    ERIC Educational Resources Information Center

    Ponchillia, Paul E.; MacKenzie, Nancy; Long, Richard G.; Denton-Smith, Pamela; Hicks, Thomas L.; Miley, Priscilla

    2007-01-01

    This article presents two target-location experiments. In the first experiment, 19 participants located a 25-foot chalk circle 93% of the time with a Global Positioning System (GPS) compared to 12% of the time without it. In a single-subject follow-up experiment, the participant came within 1 foot of the target on all GPS trials. Target-location…

  16. FPGA-based real-time embedded system for RISS/GPS integrated navigation.

    PubMed

    Abdelfatah, Walid Farid; Georgy, Jacques; Iqbal, Umar; Noureldin, Aboelmagd

    2012-01-01

    Navigation algorithms integrating measurements from multi-sensor systems overcome the problems that arise from using GPS navigation systems in standalone mode. Algorithms which integrate the data from 2D low-cost reduced inertial sensor system (RISS), consisting of a gyroscope and an odometer or wheel encoders, along with a GPS receiver via a Kalman filter has proved to be worthy in providing a consistent and more reliable navigation solution compared to standalone GPS receivers. It has been also shown to be beneficial, especially in GPS-denied environments such as urban canyons and tunnels. The main objective of this paper is to narrow the idea-to-implementation gap that follows the algorithm development by realizing a low-cost real-time embedded navigation system capable of computing the data-fused positioning solution. The role of the developed system is to synchronize the measurements from the three sensors, relative to the pulse per second signal generated from the GPS, after which the navigation algorithm is applied to the synchronized measurements to compute the navigation solution in real-time. Employing a customizable soft-core processor on an FPGA in the kernel of the navigation system, provided the flexibility for communicating with the various sensors and the computation capability required by the Kalman filter integration algorithm.

  17. FPGA-Based Real-Time Embedded System for RISS/GPS Integrated Navigation

    PubMed Central

    Abdelfatah, Walid Farid; Georgy, Jacques; Iqbal, Umar; Noureldin, Aboelmagd

    2012-01-01

    Navigation algorithms integrating measurements from multi-sensor systems overcome the problems that arise from using GPS navigation systems in standalone mode. Algorithms which integrate the data from 2D low-cost reduced inertial sensor system (RISS), consisting of a gyroscope and an odometer or wheel encoders, along with a GPS receiver via a Kalman filter has proved to be worthy in providing a consistent and more reliable navigation solution compared to standalone GPS receivers. It has been also shown to be beneficial, especially in GPS-denied environments such as urban canyons and tunnels. The main objective of this paper is to narrow the idea-to-implementation gap that follows the algorithm development by realizing a low-cost real-time embedded navigation system capable of computing the data-fused positioning solution. The role of the developed system is to synchronize the measurements from the three sensors, relative to the pulse per second signal generated from the GPS, after which the navigation algorithm is applied to the synchronized measurements to compute the navigation solution in real-time. Employing a customizable soft-core processor on an FPGA in the kernel of the navigation system, provided the flexibility for communicating with the various sensors and the computation capability required by the Kalman filter integration algorithm. PMID:22368460

  18. GPS water level measurements for Indonesia's Tsunami Early Warning System

    NASA Astrophysics Data System (ADS)

    Schöne, T.; Pandoe, W.; Mudita, I.; Roemer, S.; Illigner, J.; Zech, C.; Galas, R.

    2011-03-01

    On Boxing Day 2004, a severe tsunami was generated by a strong earthquake in Northern Sumatra causing a large number of casualties. At this time, neither an offshore buoy network was in place to measure tsunami waves, nor a system to disseminate tsunami warnings to local governmental entities. Since then, buoys have been developed by Indonesia and Germany, complemented by NOAA's Deep-ocean Assessment and Reporting of Tsunamis (DART) buoys, and have been moored offshore Sumatra and Java. The suite of sensors for offshore tsunami detection in Indonesia has been advanced by adding GPS technology for water level measurements. The usage of GPS buoys in tsunami warning systems is a relatively new approach. The concept of the German Indonesian Tsunami Early Warning System (GITEWS) (Rudloff et al., 2009) combines GPS technology and ocean bottom pressure (OBP) measurements. Especially for near-field installations where the seismic noise may deteriorate the OBP data, GPS-derived sea level heights provide additional information. The GPS buoy technology is precise enough to detect medium to large tsunamis of amplitudes larger than 10 cm. The analysis presented here suggests that for about 68% of the time, tsunamis larger than 5 cm may be detectable.

  19. Integrated navigation of aerial robot for GPS and GPS-denied environment

    NASA Astrophysics Data System (ADS)

    Suzuki, Satoshi; Min, Hongkyu; Wada, Tetsuya; Nonami, Kenzo

    2016-09-01

    In this study, novel robust navigation system for aerial robot in GPS and GPS- denied environments is proposed. Generally, the aerial robot uses position and velocity information from Global Positioning System (GPS) for guidance and control. However, GPS could not be used in several environments, for example, GPS has huge error near buildings and trees, indoor, and so on. In such GPS-denied environment, Laser Detection and Ranging (LIDER) sensor based navigation system have generally been used. However, LIDER sensor also has an weakness, and it could not be used in the open outdoor environment where GPS could be used. Therefore, it is desired to develop the integrated navigation system which is seamlessly applied to GPS and GPS-denied environments. In this paper, the integrated navigation system for aerial robot using GPS and LIDER is developed. The navigation system is designed based on Extended Kalman Filter, and the effectiveness of the developed system is verified by numerical simulation and experiment.

  20. MicroBlaze implementation of GPS/INS integrated system on Virtex-6 FPGA.

    PubMed

    Bhogadi, Lokeswara Rao; Gottapu, Sasi Bhushana Rao; Konala, Vvs Reddy

    2015-01-01

    The emphasis of this paper is on MicroBlaze implementation of GPS/INS integrated system on Virtex-6 field programmable gate array (FPGA). Issues related to accuracy of position, resource usage of FPGA in terms of slices, DSP48, block random access memory, computation time, latency and power consumption are presented. An improved design of a loosely coupled GPS/INS integrated system is described in this paper. The inertial navigation solution and Kalman filter computations are provided by the MicroBlaze on Virtex-6 FPGA. The real time processed navigation solutions are updated with a rate of 100 Hz.

  1. Tractor-mounted, GPS-based spot fumigation system manages Prunus replant disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our research goal was to use recent advances in global positioning system (GPS) and computer technology to apply just the right amount of fumigant where it is most needed (i.e., in a small target treatment zone in and around each tree replanting site) to control Prunus replant disease (PRD). We deve...

  2. Estimating snow water equivalent from GPS vertical site-position observations in the western United States

    PubMed Central

    Ouellette, Karli J; de Linage, Caroline; Famiglietti, James S

    2013-01-01

    [1] Accurate estimation of the characteristics of the winter snowpack is crucial for prediction of available water supply, flooding, and climate feedbacks. Remote sensing of snow has been most successful for quantifying the spatial extent of the snowpack, although satellite estimation of snow water equivalent (SWE), fractional snow covered area, and snow depth is improving. Here we show that GPS observations of vertical land surface loading reveal seasonal responses of the land surface to the total weight of snow, providing information about the stored SWE. We demonstrate that the seasonal signal in Scripps Orbit and Permanent Array Center (SOPAC) GPS vertical land surface position time series at six locations in the western United States is driven by elastic loading of the crust by the snowpack. GPS observations of land surface deformation are then used to predict the water load as a function of time at each location of interest and compared for validation to nearby Snowpack Telemetry observations of SWE. Estimates of soil moisture are included in the analysis and result in considerable improvement in the prediction of SWE. Citation: Ouellette, K. J., C. de Linage, and J. S. Famiglietti (2013), Estimating snow water equivalent from GPS vertical site-position observations in the western United States, Water Resour. Res., 49, 2508–2518, doi:10.1002/wrcr.20173. PMID:24223442

  3. Estimating snow water equivalent from GPS vertical site-position observations in the western United States.

    PubMed

    Ouellette, Karli J; de Linage, Caroline; Famiglietti, James S

    2013-05-01

    [1] Accurate estimation of the characteristics of the winter snowpack is crucial for prediction of available water supply, flooding, and climate feedbacks. Remote sensing of snow has been most successful for quantifying the spatial extent of the snowpack, although satellite estimation of snow water equivalent (SWE), fractional snow covered area, and snow depth is improving. Here we show that GPS observations of vertical land surface loading reveal seasonal responses of the land surface to the total weight of snow, providing information about the stored SWE. We demonstrate that the seasonal signal in Scripps Orbit and Permanent Array Center (SOPAC) GPS vertical land surface position time series at six locations in the western United States is driven by elastic loading of the crust by the snowpack. GPS observations of land surface deformation are then used to predict the water load as a function of time at each location of interest and compared for validation to nearby Snowpack Telemetry observations of SWE. Estimates of soil moisture are included in the analysis and result in considerable improvement in the prediction of SWE. Citation: Ouellette, K. J., C. de Linage, and J. S. Famiglietti (2013), Estimating snow water equivalent from GPS vertical site-position observations in the western United States, Water Resour. Res., 49, 2508-2518, doi:10.1002/wrcr.20173.

  4. Crop Dusting Using GPS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global Positioning System (GPS) receivers and GPS-based swath guidance systems are used on agricultural aircraft for remote sensing, airplane guidance, and to support variable-rate aerial application of crop inputs such as insecticides, cotton growth regulators, and defoliants. Agricultural aircraf...

  5. USNO GPS program

    NASA Technical Reports Server (NTRS)

    Putkovich, K.

    1981-01-01

    Initial test results indicated that the Global Positioning System/Time Transfer Unit (GPS/TTU) performed well within the + or - 100 nanosecond range required by the original system specification. Subsequent testing involved the verification of GPS time at the master control site via portable clocks and the acquisition and tracking of as many passes of the space vehicles currently in operation as possible. A description and discussion of the testing, system modifications, test results obtained, and an evaluation of both GPS and the GPS/TTU are presented.

  6. SAR image registration in absolute coordinates using GPS carrier phase position and velocity information

    SciTech Connect

    Burgett, S.; Meindl, M.

    1994-09-01

    It is useful in a variety of military and commercial application to accurately register the position of synthetic aperture radar (SAR) imagery in absolute coordinates. The two basic SAR measurements, range and doppler, can be used to solve for the position of the SAR image. Imprecise knowledge of the SAR collection platform`s position and velocity vectors introduce errors in the range and doppler measurements and can cause the apparent location of the SAR image on the ground to be in error by tens of meters. Recent advances in carrier phase GPS techniques can provide an accurate description of the collection vehicle`s trajectory during the image formation process. In this paper, highly accurate carrier phase GPS trajectory information is used in conjunction with SAR imagery to demonstrate a technique for accurate registration of SAR images in WGS-84 coordinates. Flight test data will be presented that demonstrates SAR image registration errors of less than 4 meters.

  7. Hybrid BD / GPS Positioning for Deformation Monitoring Under Denied Environments

    NASA Astrophysics Data System (ADS)

    Peng, Zhenzhong; Li, Qianxia; Xia, Linyuan

    2016-09-01

    In the era of multiple satellite navigation and positioning, there are still many remained issues to be tackled in order to satisfy varied applications for various sectors. These include availability, accuracy, integrity, vulnerability and others. To explore feasibility of deformation monitoring under dam and steep slope environments, we investigated features of hybrid BD / GPS positioning and monitoring performance. Results indicate that hybrid satellites can further facilitate precise positioning for deformation monitoring on restricted regions. A static network in near real time mode is designed to exhibit essential sensitivity for deformation monitoring under different network connectivity. Analysis shows that under given network design matrix, contributions from hybrid BD / GPS have enhanced network sensitivity and ensured monitoring performance under challenged scenarios. Related tests combining with application to stringent dam monitoring have been conducted to exemplify sensitivity changes along vital engineering directions and optimal schemes for network configuration.

  8. Supporting EarthScope Cyber-Infrastructure with a Modern GPS Science Data System

    NASA Astrophysics Data System (ADS)

    Webb, F. H.; Bock, Y.; Kedar, S.; Jamason, P.; Fang, P.; Dong, D.; Owen, S. E.; Prawirodirjo, L.; Squibb, M.

    2008-12-01

    Building on NASA's investment in the measurement of crustal deformation from continuous GPS, we are developing and implementing a Science Data System (SDS) that will provide mature, long-term Earth Science Data Records (ESDR's). This effort supports NASA's Earth Surface and Interiors (ESI) focus area and provide NASA's component to the EarthScope PBO. This multi-year development is sponsored by NASA's Making Earth System data records for Use in Research Environments (MEaSUREs) program. The SDS integrates the generation of ESDRs with data analysis and exploration, product generation, and modeling tools based on daily GPS data that include GPS networks in western North America and a component of NASA's Global GPS Network (GGN) for terrestrial reference frame definition. The system is expandable to multiple regional and global networks. The SDS builds upon mature data production, exploration, and analysis algorithms developed under NASA's REASoN, ACCESS, and SENH programs. This SDS provides access to positions, time series, velocity fields, and strain measurements derived from continuous GPS data obtained at tracking stations in both the Plate Boundary Observatory and other regional Western North America GPS networks, dating back to 1995. The SDS leverages the IT and Web Services developments carried out under the SCIGN/REASoN and ACCESS projects, which have streamlined access to data products for researchers and modelers, and which have created a prototype an on-the-fly interactive research environment through a modern data portal, GPS Explorer. This IT system has been designed using modern IT tools and principles in order to be extensible to any geographic location, scale, natural hazard, and combination of geophysical sensor and related data. We have built upon open GIS standards, particularly those of the OGC, and have used the principles of Web Service-based Service Oriented Architectures to provide scalability and extensibility to new services and capabilities.

  9. A statistical characterization of the Galileo-to-GPS inter-system bias

    NASA Astrophysics Data System (ADS)

    Gioia, Ciro; Borio, Daniele

    2016-11-01

    Global navigation satellite system operates using independent time scales and thus inter-system time offsets have to be determined to enable multi-constellation navigation solutions. GPS/Galileo inter-system bias and drift are evaluated here using different types of receivers: two mass market and two professional receivers. Moreover, three different approaches are considered for the inter-system bias determination: in the first one, the broadcast Galileo to GPS time offset is used to align GPS and Galileo time scales. In the second, the inter-system bias is included in the multi-constellation navigation solution and is estimated using the measurements available. Finally, an enhanced algorithm using constraints on the inter-system bias time evolution is proposed. The inter-system bias estimates obtained with the different approaches are analysed and their stability is experimentally evaluated using the Allan deviation. The impact of the inter-system bias on the position velocity time solution is also considered and the performance of the approaches analysed is evaluated in terms of standard deviation and mean errors for both horizontal and vertical components. From the experiments, it emerges that the inter-system bias is very stable and that the use of constraints, modelling the GPS/Galileo inter-system bias behaviour, significantly improves the performance of multi-constellation navigation.

  10. Doppler Test Results of Experimental GPS Receiver.

    DTIC Science & Technology

    1982-01-01

    Global Positioning System ( GPS ) which is intended to supplant the Navy system for navigation. (An...Bossler, John D., Clyde C. Good and Peter L. Bender, "Using the Global Positioning System ( GPS ) for Geodetic Positioning ", Bulletin Geodesique, 54 (4), 553...necessary and identify by block number) Geodesy Satellite Positioning Global Positioning System Surveying 20. ABSTRACT (Continue on ,eovoera~ldo

  11. High precision applications of the global positioning system

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.

    1991-01-01

    The Global Positioning System (GPS) is a constellation of U.S. defense navigation satellites which can be used for military and civilian positioning applications. A wide variety of GPS scientific applications were identified and precise positioning capabilities with GPS were already demonstrated with data available from the present partial satellite constellation. Expected applications include: measurements of Earth crustal motion, particularly in seismically active regions; measurements of the Earth's rotation rate and pole orientation; high-precision Earth orbiter tracking; surveying; measurements of media propagation delays for calibration of deep space radiometric data in support of NASA planetary missions; determination of precise ground station coordinates; and precise time transfer worldwide.

  12. Locating The Geocenter From GPS Measurements

    NASA Technical Reports Server (NTRS)

    Vigue, Yvonne; Lichten, Stephen M.; Blewitt, Geoffrey; Heflin, Michael B.; Malla, Rajendra P.

    1994-01-01

    Report presents analysis of Global Positioning System (GPS) measurements taken during 3-week geodetic experiment in early 1991. Involved constellation of 15 GPS satellites operational at that time, plus 21 GPS receiving stations at widely distributed sites, all but 4 of which in Northern Hemisphere. Analysis consisted principally of estimation of location of center of mass of Earth relative to GPS receiving stations. As part of analysis, GPS estimates of geocenter compared with estimates obtained by satellite laser ranging (SLR).

  13. A method of undifferenced ambiguity resolution for GPS+GLONASS precise point positioning

    PubMed Central

    Yi, Wenting; Song, Weiwei; Lou, Yidong; Shi, Chuang; Yao, Yibin

    2016-01-01

    Integer ambiguity resolution is critical for achieving positions of high precision and for shortening the convergence time of precise point positioning (PPP). However, GLONASS adopts the signal processing technology of frequency division multiple access and results in inter-frequency code biases (IFCBs), which are currently difficult to correct. This bias makes the methods proposed for GPS ambiguity fixing unsuitable for GLONASS. To realize undifferenced GLONASS ambiguity fixing, we propose an undifferenced ambiguity resolution method for GPS+GLONASS PPP, which considers the IFCBs estimation. The experimental result demonstrates that the success rate of GLONASS ambiguity fixing can reach 75% through the proposed method. Compared with the ambiguity float solutions, the positioning accuracies of ambiguity-fixed solutions of GLONASS-only PPP are increased by 12.2%, 20.9%, and 10.3%, and that of the GPS+GLONASS PPP by 13.0%, 35.2%, and 14.1% in the North, East and Up directions, respectively. PMID:27222361

  14. Design and implementation of a GPS-aided inertial navigation system for a helicopter UAV

    NASA Astrophysics Data System (ADS)

    Kastelan, David R.

    Helicopter unmanned aerial vehicles (UAVs) benefit from vertical takeoff and landing, hover, low-speed, and cruising flight capabilities. This versatility has the expense of nonlinear, unstable, and underactuated system dynamics. These challenges and numerous potential applications make the helicopter UAV an interesting testbed for nonlinear control. A platform for such development has been established in the Applied Nonlinear Controls Lab (ANCL). A miniature helicopter was augmented with a manual/autonomous takeover system and the ANCL Avionics. This payload contains a global positioning system (GPS) receiver, inertial sensors, and communications and computing hardware. Allan variance analysis of inertial sensor data enabled the derivation of a GPS-aided inertial navigation system that was implemented on the ANCL Avionics. This extended Kalman filter (EKF)-based algorithm estimates vehicle position, velocity, and attitude necessary for system identification tasks and control system feedback. Performance validation of this algorithm was demonstrated in simulation and in experimental ground and flight tests.

  15. 76 FR 35858 - Global Positioning System Directorate (GPSD); Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ... Doc No: 2011-15185] DEPARTMENT OF DEFENSE Department of the Air Force Global Positioning System...) for Signals-in-Space (SiS) Documents (IS-GPS-200E, IS-GPS-705A, IS-GPS-800A). SUMMARY: The United States Air Force published a meeting notice on the Public Interface Control Group (ICWG) on June 2,...

  16. Global positioning system for general aviation: Joint FAA-NASA Seminar. [conferences

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Programs to examine and develop means to utilize the global positioning system (GPS) for civil aviation functions are described. User requirements in this regard are discussed, the development of technologies in the areas of antennas, receivers, and signal processors for the GPS are examined, and modifications to the GPS to fit operational and design criteria are evaluated.

  17. 77 FR 13350 - Certain Automotive GPS Navigation Systems, Components Thereof, and Products Containing Same...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-06

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Automotive GPS Navigation Systems, Components Thereof, and Products Containing Same... importation of certain automotive GPS navigation systems, components thereof, and products containing the...

  18. Study on GPS attitude determination system aided INS using adaptive Kalman filter

    NASA Astrophysics Data System (ADS)

    Bian, Hongwei; Jin, Zhihua; Tian, Weifeng

    2005-10-01

    A marine INS/GPS (inertial navigation system/global positioning system) adaptive navigation system is presented in this paper. The GPS with two antennae providing vessel attitude is selected as the auxiliary system to fuse with INS. The Kalman filter is the most frequently used algorithm in the integrated navigation system, which is capable of estimating INS errors online based on the measured errors between INS and GPS. The conventional Kalman filter (CKF) assumes that the statistics of the noise of each sensor are given. As long as the noise distributions do not change, the Kalman filter will give the optimal estimation. However, the GPS receiver will be disturbed easily and thus temporally changing measurement noise will join into the outputs of GPS, which will lead to performance degradation of the Kalman filter. Many researchers introduce a fuzzy logic control method into innovation-based adaptive estimation Kalman filtering (IAE-AKF) algorithm, and accordingly propose various adaptive Kalman filters. However, how to design the fuzzy logic controller is a very complicated problem, which is still without a convincing solution. A novel IAE-AKF is proposed herein, which is based on the maximum likelihood criterion for the proper computation of the filter innovation covariance and hence of the filter gain. The approach is direct and simple without having to establish fuzzy inference rules. After having deduced the proposed IAE-AKF algorithm theoretically in detail, the approach is tested in the developed INS/GPS integrated marine navigation system. Real field test results show that the adaptive Kalman filter outperforms the CKF with higher accuracy and robustness. It is demonstrated that this proposed approach is a valid solution for the unknown changing measurement noise existing in the Kalman filter.

  19. Network-based estimation of time-dependent noise in GPS position time series

    NASA Astrophysics Data System (ADS)

    Dmitrieva, Ksenia; Segall, Paul; DeMets, Charles

    2015-06-01

    Some estimates of GPS velocity uncertainties are very low, 0.1 mm/year with 10 years of data. Yet, residual velocities relative to rigid plate models in nominally stable plate interiors can be an order of magnitude larger. This discrepancy could be caused by underestimating low-frequency time-dependent noise in position time series, such as random walk. We show that traditional estimators, based on individual time series, are insensitive to low-amplitude random walk, yet such noise significantly increases GPS velocity uncertainties. Here, we develop a method for determining representative noise parameters in GPS position time series, by analyzing an entire network simultaneously, which we refer to as the network noise estimator (NNE). We analyze data from the aseismic central-eastern USA, assuming that residual motions relative to North America, corrected for glacial isostatic adjustment (GIA), represent noise. The position time series are decomposed into signal (plate rotation and GIA) and noise components. NNE simultaneously processes multiple stations with a Kalman filter and solves for average noise components for the network by maximum likelihood estimation. Synthetic tests show that NNE correctly estimates even low-level random walk, thus providing better estimates of velocity uncertainties than conventional, single station methods. To test NNE on actual data, we analyze a heterogeneous 15 station GPS network from the central-eastern USA, assuming the noise is a sum of random walk, flicker and white noise. For the horizontal time series, NNE finds higher average random walk than the standard individual station-based method, leading to velocity uncertainties a factor of 2 higher than traditional methods.

  20. NAVSTAR global positioning system applicability to the National Oceanic Satellite System

    NASA Technical Reports Server (NTRS)

    Matchett, G. A.

    1980-01-01

    This report presents the results of a preliminary investigation into the potential for applying NAVSTAR Global Positioning System (GPS) user equipment to the spacecraft of the National Oceanic Satellite System (NOSS). Two widely different navigation goals for NOSS spacecraft are examined: one being moderate accuracy, real-time navigation utilizing the simplest of GPS receivers, and the other being precision vertical displacement measurement over limited arcs utilizing specialized GPS equipment, possibly with ground data processing.

  1. Precision Position, Navigation, and Timing without the Global Positioning System

    DTIC Science & Technology

    2011-01-01

    timing] in GPS - denied environments” as one of the top 12 (in terms of priority) re- search areas that we should emphasize in the near future.6...Navigation Techniques for Position, Navigation, and Timing in GPS - Denied Environments Navigation Using Beacons Beacons (i.e., sources of man-made...wishes to succeed in maintaining precision navigation in GPS - denied environments.  Wright-Patterson AFB, Ohio Platform Dynamics Precise Navigation

  2. A GPS based fawn saving system using relative distance and angle determination

    NASA Astrophysics Data System (ADS)

    Ascher, A.; Eberhardt, M.; Lehner, M.; Biebl, E.

    2016-09-01

    Active UHF RFID systems are often used for identifying, tracking and locating objects. In the present publication a GPS- based localization system for saving fawns during pasture mowing was introduced and tested. Fawns were first found by a UAV before mowing began. They were then tagged with small active RFID transponders, and an appropriate reader was installed on a mowing machine. Conventional direction-of-arrival approaches require a large antenna array with multiple elements and a corresponding coherent receiver, which introduces a large degree of complexity on the reader-side. Instead, our transponders were equipped with a small GPS module, allowing a transponder to determine its own position on request from the reader. A UHF link was used to transmit the location to a machine- mounted reader, where a second GPS receiver was installed. Using information from this second position and a machine- mounted magnetometer for determining the relative north direction of a vehicle, relative distance, and angle between GPS receivers can be calculated. The accuracy and reliability of this novel method were tested under realistic operating conditions, considering critical factors such as the height of grass, the lying position of a fawn, humidity and geographical area.

  3. IRNSS/NavIC and GPS: a single- and dual-system L5 analysis

    NASA Astrophysics Data System (ADS)

    Zaminpardaz, S.; Teunissen, P. J. G.; Nadarajah, N.

    2017-02-01

    The Indian Regional Navigation Satellite System (IRNSS) has recently (May 2016) become fully operational. In this contribution, for the fully operational IRNSS as a stand-alone system and also in combination with GPS, we provide a first assessment of L5 integer ambiguity resolution and positioning performance. While our empirical analyses are based on the data collected by two JAVAD receivers at Curtin University, Perth, Australia, our formal analyses are carried out for various onshore locations within the IRNSS service area. We study the noise characteristics (carrier-to-noise density, measurement precision, time correlation), the integer ambiguity resolution performance (success rates and ambiguity dilution of precision), and the positioning performance (ambiguity float and ambiguity fixed). The results show that our empirical outcomes are consistent with their formal counterparts and that the GPS L5-data have a lower noise level than that of IRNSS L5-data, particularly in case of the code data. The underlying model in our assessments varies from stand-alone IRNSS (L5) to IRNSS + GPS (L5), from unconstrained to height-constrained and from kinematic to static. Significant improvements in ambiguity resolution and positioning performance are achievable upon integrating L5-data of IRNSS with GPS.

  4. A System to Produce Precise Global GPS Network Solutions for all Geodetic GPS Stations in the World

    NASA Astrophysics Data System (ADS)

    Blewitt, G.; Kreemer, C. W.

    2010-12-01

    We have developed an end-to-end system that automatically seeks and routinely retrieves geodetic GPS data from ~5000 stations (currently) around the globe, reduces the data into unique, daily global network solutions, and produces high precision time series for station coordinates ready for time-series analysis, geophysical modeling and interpretation. Moreover, “carrier range” data are produced for all stations, enabling epoch-by-epoch tracking of individual station motions by precise point positioning for investigation of sub-daily processes, such as post-seismic after-slip and ocean tidal loading. Solutions are computed in a global reference frame aligned to ITRF, and optionally in user-specified continental-scale reference frames that can filter out common-mode signals to enhance regional strain anomalies. We describe the elements of this system, the underlying signal processing theory, the products, operational statistics, and scientific applications of our system. The system is fundamentally based on precise point positioning using JPL's GIPSY OASIS II software, coupled with ambiguity resolution and a global network adjustment of ~300,000 parameters per day using our newly developed Ambizap3 software. The system is designed to easily and efficiently absorb stations that deliver data very late, by recycling prior computations in the network adjustment, such that the resulting network solution is identical to starting from scratch. Thus, it becomes possible to trawl continuously the Internet for late arriving data, or for newly discovered data, and seamlessly update all GPS station time series using the new information content. As new stations are added to the processing archive, automated e-mail requests are made to H.-G. Scherneck's server at Chalmers University to compute ocean loading coefficients used by the station motion model. Rinex file headers are parsed and compared with alias tables in order to infer the correct receiver type and antenna

  5. Measuring precise sea level from a buoy using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Rocken, Christian; Kelecy, Thomas M.; Born, George H.; Young, Larry E.; Purcell, George H., Jr.; Wolf, Susan Kornreich

    1990-01-01

    The feasibility of using the Global Positioning System (GPS) for accurate sea surface positioning was examined. An experiment was conducted on the Scripps pier at La Jolla, California from December 13-15, 1989. A GPS-equipped buoy was deployed about 100 m off the pier. Two fixed reference GPS receivers, located on the pier and about 80 km away on Monument Peak, were used to estimate the relative position of the floater. Kinematic GPS processing software, developed at the National Geodetic Survey, and the Jet Propulsion Laboratory's GPS Infrared Processing System software were used to determine the floater position relative to land-fixing receivers. Calculations were made of sea level and ocean wave spectra from GPS measurements. It is found that the GPS sea level for the short 100 m baseline agrees with the PPT sea level at the 1 cm level and has an rms variation of 5 mm over a period of 4 hours.

  6. Investigation and evaluation of shuttle/GPS navigation system

    NASA Technical Reports Server (NTRS)

    Nilsen, P. W.

    1977-01-01

    Iterative procedures were used to analyze the performance of two preliminary shuttle/GPS navigation system configurations: an early OFT experimental system and a more sophisticated system which consolidates several separate navigation functions thus permitting net cost savings from decreased shuttle avionics weight and power consumption, and from reduced ground data processing. The GPS system can provide on-orbit navigation accuracy an order of magnitude better than the baseline system, with very adequate link margins. The worst-case link margin is 4.3 dB. This link margin accounts for shuttle RF circuit losses which were minimized under the constraints of program schedule and environmental limitations. Implicit in the link analyses are the location trade-offs for preamplifiers and antennas.

  7. A Low Cost GPS System for Real-Time Tracking of Sounding Rockets

    NASA Technical Reports Server (NTRS)

    Markgraf, M.; Montenbruck, O.; Hassenpflug, F.; Turner, P.; Bull, B.; Bauer, Frank (Technical Monitor)

    2001-01-01

    This paper describes the development as well as the on-ground and the in-flight evaluation of a low cost Global Positioning System (GPS) system for real-time tracking of sounding rockets. The flight unit comprises a modified ORION GPS receiver and a newly designed switchable antenna system composed of a helical antenna in the rocket tip and a dual-blade antenna combination attached to the body of the service module. Aside from the flight hardware a PC based terminal program has been developed to monitor the GPS data and graphically displays the rocket's path during the flight. In addition an Instantaneous Impact Point (IIP) prediction is performed based on the received position and velocity information. In preparation for ESA's Maxus-4 mission, a sounding rocket test flight was carried out at Esrange, Kiruna, on 19 Feb. 2001 to validate existing ground facilities and range safety installations. Due to the absence of a dedicated scientific payload, the flight offered the opportunity to test multiple GPS receivers and assess their performance for the tracking of sounding rockets. In addition to the ORION receiver, an Ashtech G12 HDMA receiver and a BAE (Canadian Marconi) Allstar receiver, both connected to a wrap-around antenna, have been flown on the same rocket as part of an independent experiment provided by the Goddard Space Flight Center. This allows an in-depth verification and trade-off of different receiver and antenna concepts.

  8. Comparison of Low-Cost Computer Algorithms for Global Positioning System Users.

    DTIC Science & Technology

    The Global Positioning System ( GPS ) is a navigation system which relies on range and range-rate measurements between satellites and the GPS -user in...order to determine his position and velocity. Using extensive support equipment, GPS is anticipated to achieve extremely accurate results. However... position estimates (dead-reckoning) for the first two approaches. The Kalman filter was modelled with fixed covariance matrices. The approaches were

  9. Design and flight test of a differential GPS/inertial navigation system for approach/landing guidance

    NASA Technical Reports Server (NTRS)

    Vallot, Lawrence; Snyder, Scott; Schipper, Brian; Parker, Nigel; Spitzer, Cary

    1991-01-01

    NASA-Langley has conducted a flight test program evaluating a differential GPS/inertial navigation system's (DGPS/INS) utility as an approach/landing aid. The DGPS/INS airborne and ground components are based on off-the-shelf transport aircraft avionics, namely a global positioning/inertial reference unit (GPIRU) and two GPS sensor units (GPSSUs). Systematic GPS errors are measured by the ground GPSSU and transmitted to the aircraft GPIRU, allowing the errors to be eliminated or greatly reduced in the airborne equipment. Over 120 landings were flown; 36 of these were fully automatic DGPS/INS landings.

  10. On principles, methods and recent advances in studies towards a GPS-based control system for geodesy and geodynamics

    NASA Technical Reports Server (NTRS)

    Delikaraoglou, Demitris

    1989-01-01

    Although Very Long Baseline Interferometry (VLBI) and Satellite Laser Ranging (SLR) are becoming increasingly important tools for geodynamic studies, their future role may well be fulfilled by using alternative techniques such as those utilizing the signals from the Global Positioning System (GPS). GPS, without the full implementation of the system, already offers a favorable combination of cost and accuracy and has consistently demonstrated the capability to provide high precision densification control in the regional and local areas of the VLBI and SLR networks. This report reviews VLBI and SLR vis-a-vis GPS and outlines the capabilities and limitations of each technique and how their complementary application can be of benefit to geodetic and geodynamic operations. It demonstrates, albeit with a limited data set, that dual-frequency GPS observations and interferometric type analysis techniques make possible the modelling of the GPS orbits for several days with an accuracy of a few meters. The use of VLBI or SLR sites as fiducial stations together with refinements in the orbit determination procedures can greatly reduce the systematic errors in the GPS satellite orbits used to compute the positions of non-fiducial locations. In general, repeatability and comparison with VLBI of the GPS determined locations are of the order of between 2 parts in 10 to the 7th power and 5 parts in 10 to the 8th power for baseline lengths less than 2000 km. This report is mainly a synthesis of problems, assumptions, methods and recent advances in the studies towards the establishment of a GPS-based system for geodesy and geodynamics and is one phase in the continuing effort for the development of such a system. To some, including the author, it seems reasonable to expect within the next few years that more evidence will show GPS to be as a powerful and reliable a tool as mobile VLBI and SLR are today, but largely more economical.

  11. Real-time GPS positioning of the Pacific Northwest Geodetic Array

    NASA Astrophysics Data System (ADS)

    Rabak, I.; Santillan, V. M.; Scrivner, C. W.; Melbourne, T. I.

    2009-12-01

    The Pacific Northwest Geodetic Array (PANGA) is now comprised of nearly 130 continuously operating GPS receivers located throughout the Cascadia subduction zone. The stations straddle active crustal faults, volcanoes and landslides, they span the megathrust forearc and tsunamigenic regions along the Pacific coast, and they monitor ageing man-made structures such as dams, levees and elevated freeways. All data are streamed in real-time into CWU where they are processed in real-time into station position and tropospheric water content within a reference frame defined in central Washington. To disseminate these streams, we currently provide 16 station position streams via an interface to Google Maps to present geographically the three component real-time plots in 5 min, 1 hour, and 24 hour time periods. The user's web browser makes repeated requests at a refresh rate of 5 seconds and after the initial request it only requests new data points from the web server. The 5 min real-time plot is updated every second. The web server provides the data streams in a compact JSON (JavaScript Object Notation) form and data plotting is handled by the user's web browser. The data streams are parsed into JavaScript arrays and plotted using the new HTML5 "canvas" element. This approach produces faster response times for the data streams, and by reducing the load on the web server, allows distribution to large numbers of users. Data are also available via a dedicated Ntrip/TCP-IP socket interface. These real-time data are now being used to monitor geodetic displacements caused by earthquakes, volcanic eruptions and landslides; current efforts to develop real-time finite fault inversions and automated alarm systems will be discussed.

  12. Performance and Accuracy of Lightweight and Low-Cost GPS Data Loggers According to Antenna Positions, Fix Intervals, Habitats and Animal Movements.

    PubMed

    Forin-Wiart, Marie-Amélie; Hubert, Pauline; Sirguey, Pascal; Poulle, Marie-Lazarine

    2015-01-01

    Recently developed low-cost Global Positioning System (GPS) data loggers are promising tools for wildlife research because of their affordability for low-budget projects and ability to simultaneously track a greater number of individuals compared with expensive built-in wildlife GPS. However, the reliability of these devices must be carefully examined because they were not developed to track wildlife. This study aimed to assess the performance and accuracy of commercially available GPS data loggers for the first time using the same methods applied to test built-in wildlife GPS. The effects of antenna position, fix interval and habitat on the fix-success rate (FSR) and location error (LE) of CatLog data loggers were investigated in stationary tests, whereas the effects of animal movements on these errors were investigated in motion tests. The units operated well and presented consistent performance and accuracy over time in stationary tests, and the FSR was good for all antenna positions and fix intervals. However, the LE was affected by the GPS antenna and fix interval. Furthermore, completely or partially obstructed habitats reduced the FSR by up to 80% in households and increased the LE. Movement across habitats had no effect on the FSR, whereas forest habitat influenced the LE. Finally, the mean FSR (0.90 ± 0.26) and LE (15.4 ± 10.1 m) values from low-cost GPS data loggers were comparable to those of built-in wildlife GPS collars (71.6% of fixes with LE < 10 m for motion tests), thus confirming their suitability for use in wildlife studies.

  13. Performance and Accuracy of Lightweight and Low-Cost GPS Data Loggers According to Antenna Positions, Fix Intervals, Habitats and Animal Movements

    PubMed Central

    Forin-Wiart, Marie-Amélie; Hubert, Pauline; Sirguey, Pascal; Poulle, Marie-Lazarine

    2015-01-01

    Recently developed low-cost Global Positioning System (GPS) data loggers are promising tools for wildlife research because of their affordability for low-budget projects and ability to simultaneously track a greater number of individuals compared with expensive built-in wildlife GPS. However, the reliability of these devices must be carefully examined because they were not developed to track wildlife. This study aimed to assess the performance and accuracy of commercially available GPS data loggers for the first time using the same methods applied to test built-in wildlife GPS. The effects of antenna position, fix interval and habitat on the fix-success rate (FSR) and location error (LE) of CatLog data loggers were investigated in stationary tests, whereas the effects of animal movements on these errors were investigated in motion tests. The units operated well and presented consistent performance and accuracy over time in stationary tests, and the FSR was good for all antenna positions and fix intervals. However, the LE was affected by the GPS antenna and fix interval. Furthermore, completely or partially obstructed habitats reduced the FSR by up to 80% in households and increased the LE. Movement across habitats had no effect on the FSR, whereas forest habitat influenced the LE. Finally, the mean FSR (0.90 ± 0.26) and LE (15.4 ± 10.1 m) values from low-cost GPS data loggers were comparable to those of built-in wildlife GPS collars (71.6% of fixes with LE < 10 m for motion tests), thus confirming their suitability for use in wildlife studies. PMID:26086958

  14. Global positioning system: a new opportunity in physical activity measurement.

    PubMed

    Maddison, Ralph; Ni Mhurchu, Cliona

    2009-11-04

    Accurate measurement of physical activity is a pre-requisite to monitor population physical activity levels and design effective interventions. Global Positioning System (GPS) technology offers potential to improve the measurement of physical activity. This paper 1) reviews the extant literature on the application of GPS to monitor human movement, with a particular emphasis on free-living physical activity, 2) discusses issues associated with GPS use, and 3) provides recommendations for future research. Overall findings show that GPS is a useful tool to augment our understanding of physical activity by providing the context (location) of the activity and used together with Geographical Information Systems can provide some insight into how people interact with the environment. However, no studies have shown that GPS alone is a reliable and valid measure of physical activity.

  15. Global positioning system: a new opportunity in physical activity measurement

    PubMed Central

    Maddison, Ralph; Ni Mhurchu, Cliona

    2009-01-01

    Accurate measurement of physical activity is a pre-requisite to monitor population physical activity levels and design effective interventions. Global Positioning System (GPS) technology offers potential to improve the measurement of physical activity. This paper 1) reviews the extant literature on the application of GPS to monitor human movement, with a particular emphasis on free-living physical activity, 2) discusses issues associated with GPS use, and 3) provides recommendations for future research. Overall findings show that GPS is a useful tool to augment our understanding of physical activity by providing the context (location) of the activity and used together with Geographical Information Systems can provide some insight into how people interact with the environment. However, no studies have shown that GPS alone is a reliable and valid measure of physical activity. PMID:19887012

  16. Integration of Differential GPS and Inertial Navigation using a Complementary Kalman Filter

    DTIC Science & Technology

    1993-09-01

    Global Positioning System or GPS . However, GPS updates only come once per second. INS...autoland problem. The remaining sensor is the Global Positioning System ( GPS ). This is the newest and most accurate radio navigation aid available. GPS ...Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Kalman filtering, Differential Global Position System ,

  17. Navstar GPS Space Segment/Navigation User Interfaces (Public Release Version)

    DTIC Science & Technology

    1991-07-03

    Global Positioning System , GPS , ICD- GPS -200 . UNCLASSIFIED UNCLASSIFIED...Alterable Read-Only Memory GPS - Global Positioning System HOW - Handover Word ICD - Interface Control Document ID - Identification IODC - Issue of... Positioning System and the Navigation User Segment (US) of the GPS . The exception is that this ICD does not define characteristics of the Selective

  18. Global Positioning System Bibliography

    DTIC Science & Technology

    1992-03-01

    01-280-5500 Standard Porn 298 (Rev 2-891 P-i"ritrlld bv ANSi 5d 3𔃻q-18 296 102 PREFACE This bibliography was prepared under Work Unit 32479, Dynamic...34 Presented at: ASCE Specialty Conference, GPS-88 Engineering Applications of GPS Satellite Surveying Technology, 11-14 May, Nashville, Tenn ., 27 pp. 4 Beck...Conference, GPS-83 Engineering Applications of GPS Satellite Surveying Technology, 11-14 May, Nashville, Tenn ., 9 pp. To be published in Journal of

  19. Positional Accuracy of Airborne Integrated Global Positioning and Inertial Navigation Systems for Mapping in Glen Canyon, Arizona

    USGS Publications Warehouse

    Sanchez, Richard D.; Hothem, Larry D.

    2002-01-01

    High-resolution airborne and satellite image sensor systems integrated with onboard data collection based on the Global Positioning System (GPS) and inertial navigation systems (INS) may offer a quick and cost-effective way to gather accurate topographic map information without ground control or aerial triangulation. The Applanix Corporation?s Position and Orientation Solutions for Direct Georeferencing of aerial photography was used in this project to examine the positional accuracy of integrated GPS/INS for terrain mapping in Glen Canyon, Arizona. The research application in this study yielded important information on the usefulness and limits of airborne integrated GPS/INS data-capture systems for mapping.

  20. Design of cold chain logistics remote monitoring system based on ZigBee and GPS location

    NASA Astrophysics Data System (ADS)

    Zong, Xiaoping; Shao, Heling

    2017-03-01

    This paper designed a remote monitoring system based on Bee Zig wireless sensor network and GPS positioning, according to the characteristics of cold chain logistics. The system consisted of the ZigBee network, gateway and monitoring center. ZigBee network temperature acquisition modules and GPS positioning acquisition module were responsible for data collection, and then send the data to the host computer through the GPRS network and Internet to realize remote monitoring of vehicle with functions of login permissions, temperature display, latitude and longitude display, historical data, real-time alarm and so on. Experiments showed that the system is stable, reliable and effective to realize the real-time remote monitoring of the vehicle in the process of cold chain transport.

  1. Development of a GPS buoy system for monitoring tsunami, sea waves, ocean bottom crustal deformation and atmospheric water vapor

    NASA Astrophysics Data System (ADS)

    Kato, Teruyuki; Terada, Yukihiro; Nagai, Toshihiko; Koshimura, Shun'ichi

    2010-05-01

    We have developed a GPS buoy system for monitoring tsunami for over 12 years. The idea was that a buoy equipped with a GPS antenna and placed offshore may be an effective way of monitoring tsunami before its arrival to the coast and to give warning to the coastal residents. The key technology for the system is real-time kinematic (RTK) GPS technology. We have successfully developed the system; we have detected tsunamis of about 10cm in height for three large earthquakes, namely, the 23 June 2001 Peru earthquake (Mw8.4), the 26 September 2003 Tokachi earthquake (Mw8.3) and the 5 September 2004 earthquake (Mw7.4). The developed GPS buoy system is also capable of monitoring sea waves that are mainly caused by winds. Only the difference between tsunami and sea waves is their frequency range and can be segregated each other by a simple filtering technique. Given the success of GPS buoy experiments, the system has been adopted as a part of the Nationwide Ocean Wave information system for Port and HArborS (NOWPHAS) by the Ministry of Land, Infrastructure, Transport and Tourism of Japan. They have established more than eight GPS buoys along the Japanese coasts and the system has been operated by the Port and Airport Research Institute. As a future scope, we are now planning to implement some other additional facilities for the GPS buoy system. The first application is a so-called GPS/Acoustic system for monitoring ocean bottom crustal deformation. The system requires acoustic waves to detect ocean bottom reference position, which is the geometrical center of an array of transponders, by measuring distances between a position at the sea surface (vessel) and ocean bottom equipments to return the received sonic wave. The position of the vessel is measured using GPS. The system was first proposed by a research group at the Scripps Institution of Oceanography in early 1980's. The system was extensively developed by Japanese researchers and is now capable of detecting ocean

  2. Real-time ultrasound-guided PCNL using a novel SonixGPS needle tracking system.

    PubMed

    Li, Xiang; Long, Qingzhi; Chen, Xingfa; He, Dalin; Dalin, He; He, Hui

    2014-08-01

    SonixGPS is a successful ultrasound guidance position system. It helps to improve accuracy in performing complex puncture operations. This study firstly used SonixGPS to perform kidney calyx access in PCNL to investigate its effectiveness and safety. This was a prospectively randomized controlled study performed from September 2011 to October 2012. A total of 97 patients were prospectively randomized into two groups using random number generated from SAS software. 47 Patients were enrolled in conventional ultrasound-guided (US-guided) group and 50 patients were classified into SonixGPS-guided group. Nine patients were lost during follow-up. Hence, a total of 88 patients were qualified and analyzed. Preoperative examinations included urine analysis, urine culture, kidney function, coagulation profile and routine analysis of blood. Ultrasonography was used to evaluate the degree of hydronephrosis. The intraoperative findings, including blood loss, operating time, time to successful puncture, the number of attempts for successful puncture and hospital stay were recorded. The stone clearance rate and complications were analyzed. The present study showed no significant difference between the two groups in terms of demographic data, preoperative markers, stone clearance rate and the stone composition. However, the time to successful puncture, the number of trials for successful puncture, operating time and hospital length of stay were significantly decreased in the SonixGPS-guided group. Furthermore, the hemoglobin decrease was also obviously lower in the SonixGPS group than that in conventional US-guided group. SonixGPS needle tacking system guided PCNL is safe and effective in treating upper urinary tract stones. This novel technology makes puncturing more accuracy and can significantly decrease the incidence of relative hemorrhage and accelerate recovery.

  3. GPS navigation experiment using high precision GPS timing receivers

    NASA Technical Reports Server (NTRS)

    Buisson, J. A.; Oaks, O. J.; Lister, M. J.; Wardrip, S. C.; Leschiutta, S.; Galliano, P. G.; Cordara, D.; Pettiti, V.; Detoma, E.; Dachel, P.

    1985-01-01

    Global Positioning System (GPS) Time Transfer receivers were developed by the Naval Research Laboratory (NRL) to provide synchronization for the NASA Global Laser Tracking Network (GLTN). The capabilities of the receiver are being expanded mainly through software modification to: Demonstrate the position location capabilities of a single channel receiver unsign the GPS C/A code; and Demonstrate the time/navigation capability of the receiver onboard a moving platform, by sequential tracking of GPS satellites.

  4. Infrastructure to support university Global Positioning System studies

    NASA Astrophysics Data System (ADS)

    Bell, Robin E.

    Global Positioning System (GPS) geodesy is one of the most important measurement technologies in modern Earth science. It has had a revolutionary impact on crustal motion research. The number of papers and talks featuring GPS is growing exponentially; new applications appear each month; and system performance continues to improve at a remarkable pace. This rapidly changing environment creates great opportunities for the University Navstar Consortium (UNAVCO) community and a bright future for continued growth.

  5. High-rate precise point positioning (PPP) to measure seismic wave motions: An experimental comparison of GPS PPP with inertial measurement units

    NASA Astrophysics Data System (ADS)

    Xu, Peiliang; Shi, Chuang; Fang, Rongxin; Liu, Jingnan; Niu, Xiaoji; Zhang, Quan; Yanagidani, Takashi

    2013-04-01

    High-rate GPS has been widely used to construct displacement waveforms and to invert for source parameters of earthquakes. Almost all works on internal and external evaluation of high-rate GPS accuracy are based on GPS relative positioning. We build an experimental platform to externally evaluate the accuracy of 50 Hz PPP displacement waveforms. Since the shake table allows motion in any of six degrees of freedom, we install an inertial measurement unit (IMU) to measure the attitude of the platform and transform the IMU displacements into the GPS coordinate system. The experimental results have shown that high-rate PPP can produce absolute horizontal displacement waveforms at the accuracy of 2 to 4 millimeters and absolute vertical displacement waveforms at the sub-centimeter level of accuracy within a short period of time. The significance of the experiments indicates that high-rate PPP is capable of detecting absolute seismic displacement waveforms at the same high accuracy as GPS relative positioning techniques but requires no fixed datum station. We have also found a small scaling error of IMU and a small time offset of misalignment between high-rate PPP and IMU displacement waveforms by comparing the amplitudes of and cross-correlating both the displacement waveforms. For more details on this talk, one can now get access to the on-line-first version of our Journal of Geodesy paper: J Geod, DOI 10.1007/s00190-012-0606-z

  6. Inertial Pointing and Positioning System

    NASA Technical Reports Server (NTRS)

    Yee, Robert (Inventor); Robbins, Fred (Inventor)

    1998-01-01

    An inertial pointing and control system and method for pointing to a designated target with known coordinates from a platform to provide accurate position, steering, and command information. The system continuously receives GPS signals and corrects Inertial Navigation System (INS) dead reckoning or drift errors. An INS is mounted directly on a pointing instrument rather than in a remote location on the platform for-monitoring the terrestrial position and instrument attitude. and for pointing the instrument at designated celestial targets or ground based landmarks. As a result. the pointing instrument and die INS move independently in inertial space from the platform since the INS is decoupled from the platform. Another important characteristic of the present system is that selected INS measurements are combined with predefined coordinate transformation equations and control logic algorithms under computer control in order to generate inertial pointing commands to the pointing instrument. More specifically. the computer calculates the desired instrument angles (Phi, Theta. Psi). which are then compared to the Euler angles measured by the instrument- mounted INS. and forms the pointing command error angles as a result of the compared difference.

  7. Inertial/GPS Integrated Geolocation System for Detection and Recovery of Buried Munitions

    DTIC Science & Technology

    2011-07-01

    magnetic and electro- magnetic detection devices. The principal geolocation system was assumed to be based on inertial measurement units (IMUs) integrated...receiver; 6) Trimble Zephyr Geodetic II GPS vii antenna ; 7) laptop computer, including PCMCI card connecting the !MUs and the decoding software...where the precision goals are 1 cm and 10 cm for three-dimensional positioning of magnetic and electro- magnetic detection devices. The principal

  8. The Performance Analysis of AN Akf Based Tightly-Coupled Ins/gps Integrated Positioning and Orientation Scheme with Odometer and Non-Holonomic Constraints

    NASA Astrophysics Data System (ADS)

    Peng, K.-Y.; Lin, C.-A.; Chiang, K.-W.

    2012-08-01

    INS/GPS integration scheme can overcome the shortcoming of GPS or INS alone to provide superior performance, thus this study implements a tightly-coupled INS/GPS integration scheme using AKF as the core estimator by tuning the measurement noise matrix R adaptively. The AKF is based on the maximum likelihood criterion for choosing the most appropriate weight and thus the Kalman gain factors. The conventional EKF implementation suffers uncertain results while the update measurement noise matrix R and/or the process noise matrix Q does not meet the case. The primary advantage of AKF is that the filter has less relationship with the priori statistical information because R and/or Q vary with time. The innovation sequence is used to derive the measurement weights through the covariance matrices, innovation-based adaptive estimation (IAE) in this study. The covariance matrices R are adapted in the study when measurements update with time. A window based approach is implemented to update the quality of GPS pseudo-range measurements by adaptively replace the measurement weights through the latest estimated covariance matrices R. The use of odometer is particularly recommended when a low cost and precise vehicle localization system has to be implemented and there is the risk of GPS coverage failure, which is prone to happen when the vehicle enters a tunnel or cross deep valleys. Odometers are applied in land-vehicle navigation to provide augmented host velocity observations for standalone INS system in this study. There are two non-holonomic constraints (NHC) available for land vehicles. Land vehicles will not jump off the ground or slid on the ground under normal condition. Using these constraints, the velocity of the vehicle in the plane perpendicular to the forward direction is almost zero. EKF and AKF based tightly-coupled scheme with NHC is implemented in the study. To validate the performance of AKF based tightly-coupled INS/GPS integration scheme with odometer and

  9. An Investigation of Multipath Effects on the GPS System During Auto-Rendezvous and Capture

    NASA Technical Reports Server (NTRS)

    Richie, James E.; Forest, Francis W.

    1995-01-01

    The proposed use of a Cargo Transport Vehicle (CTV) to carry hardware to the Space Station Freedom (SSF) during the construction phase of the SSF project requires remote maneuvering of the CTV. The CTV is not a manned vehicle. Obtaining the relative positions of the CTV and SSF for remote auto-rendezvous and capture (AR&C) scenarios will rely heavily on the Global Positioning System (GPS). The GPS system is expected to guide the CTV up to a distance of 100 to 300 meters from the SSF. At some point within this range, an optical docking system will take over the remote guidance for capture. During any remote guidance by GPS it is possible that significant multipath signals may be caused by large objects in the vicinity of the module being remotely guided. This could alter the position obtained by the GPS system from the actual position. Due to the nature of the GPS signals, it has been estimated that if the difference in distance between the Line of Sight (LOS) path and the multipath is greater than 300 meters, the GPS system is capable of discriminating between the direct signal and the reflected (or multipath) signal. However, if the path difference is less than 300 meters, one must be concerned. This report details the work accomplished by the Electromagnetic Simulations Laboratory at Marquette University over the period December 1993 to May 1995. This work is an investigation of the strength and phase of a multipath signal arriving at the CTV relative to the direct or line of sight (LOS) signal. The signal originates at a GPS satellite in half geo-stationary orbit and takes two paths to the CTV: (1) the direct or LOS path from the GPS satellite to the CTV; and (2) a scattered path from the GPS satellite to the SSF module and then to the CTV. The scattering from a cylinder has been computed using the physical optics approximation for the current. No other approximations or assumptions have been made including no assumptions regarding the far field or Fresnel field

  10. Spacecraft applications of advanced global positioning system technology

    NASA Technical Reports Server (NTRS)

    Huth, Gaylord; Dodds, James; Udalov, Sergei; Austin, Richard; Loomis, Peter; Duboraw, I. Newton, III

    1988-01-01

    The purpose of this study was to evaluate potential uses of Global Positioning System (GPS) in spacecraft applications in the following areas: attitude control and tracking; structural control; traffic control; and time base definition (synchronization). Each of these functions are addressed. Also addressed are the hardware related issues concerning the application of GPS technology and comparisons are provided with alternative instrumentation methods for specific functions required for an advanced low earth orbit spacecraft.

  11. Accuracy of relative positioning by interferometry with GPS Double-blind test results

    NASA Technical Reports Server (NTRS)

    Counselman, C. C., III; Gourevitch, S. A.; Herring, T. A.; King, B. W.; Shapiro, I. I.; Cappallo, R. J.; Rogers, A. E. E.; Whitney, A. R.; Greenspan, R. L.; Snyder, R. E.

    1983-01-01

    MITES (Miniature Interferometer Terminals for Earth Surveying) observations conducted on December 17 and 29, 1980, are analyzed. It is noted that the time span of the observations used on each day was 78 minutes, during which five satellites were always above 20 deg elevation. The observations are analyzed to determine the intersite position vectors by means of the algorithm described by Couselman and Gourevitch (1981). The average of the MITES results from the two days is presented. The rms differences between the two determinations of the components of the three vectors, which were about 65, 92, and 124 m long, were 8 mm for the north, 3 mm for the east, and 6 mm for the vertical. It is concluded that, at least for short distances, relative positioning by interferometry with GPS can be done reliably with subcentimeter accuracy.

  12. Atmospheric pressure loading effects on Global Positioning System coordinate determinations

    SciTech Connect

    Vandam, T.M.; Blewitt, G.; Heflin, M.B. ||

    1994-12-01

    Earth deformation signals caused by atmospheric pressure loading are detected in vertical position estimates at Global Positioning System (GPS) stations. Surface displacements due to changes in atmospheric pressure account for up to 24% of the total variance in the GPS height estimates. The detected loading signals are larger at higher latitudes where pressure variations are greatest; the largest effect is observed at Fairbanks, Alaska (latitude 65 deg), with a signal root mean square (RMS) of 5 mm. Out of 19 continuously operating GPS sites (with a mean of 281 daily solutions per site), 18 show a positive correlation between the GPS vertical estimates and the modeled loading displacements. Accounting for loading reduces the variance of the vertical station positions on 12 of the 19 sites investigated. Removing the modeled pressure loading from GPS determinations of baseline length for baselines longer than 6000 km reduces the variance on 73 of the 117 baselines investigated. The slight increase in variance for some of the sites and baselines is consistent with expected statistical fluctuations. The results from most stations are consistent with approximately 65% of the modeled pressure load being found in the GPS vertical position measurements. Removing an annual signal from both the measured heights and the modeled load time series leaves this value unchanged.

  13. The QuakeSim System for GPS Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Granat, R. A.; Gao, X.; Pierce, M.; Wang, J.

    2010-12-01

    We present a system for analysis of GPS time series data available to geosciences users through a web services / web portal interface. The system provides two time series analysis methods, one based on hidden Markov model (HMM) segmentation, the other based on covariance descriptor analysis (CDA). In addition, it provides data pre-processing routines that perform spike noise removal, linear de-trending, sum-of-sines removal, and common mode removal using probabilistic principle components analysis (PPCA). These components can be composed by the user into the desired series of processing steps for analysis through an intuitive graphical interface. The system is accessed through a web portal that allows both micro-scale (individual station) and macro-scale (whole network) exploration of data sets and analysis results via Google Maps. Users can focus in on or scroll through particular spatial or temporal time windows, or observe dynamic behavior by created movies that display the system state. Analysis results can be exported to KML format for easy combination with other sources of data, such as fault databases and InSAR interferograms. GPS solutions for California member stations of the plate boundary observatory from both the SOPAC and JPL gipsy context groups are automatically imported into the system as that data becomes available. We show the results of the methods as applied to these data sets for an assortment of case studies, and show how the system can be used to analyze both seismic and aseismic signals.

  14. High accuracy integrated global positioning system/inertial navigation system LDRD: Final report

    SciTech Connect

    Owen, T.E.; Meindl, M.A.; Fellerhoff, J.R.

    1997-03-01

    This report contains the results of a Sandia National Laboratories Directed Research and Development (LDRD) program to investigate the integration of Global Positioning System (GPS) and inertial navigation system (INS) technologies toward the goal of optimizing the navigational accuracy of the combined GPSANS system. The approach undertaken is to integrate the data from an INS, which has long term drifts, but excellent short term accuracy, with GPS carrier phase signal information, which is accurate to the sub-centimeter level, but requires continuous tracking of the GPS signals. The goal is to maintain a sub-meter accurate navigation solution while the vehicle is in motion by using the GPS measurements to estimate the INS navigation errors and then using the refined INS data to aid the GPS carrier phase cycle slip detection and correction and bridge dropouts in the GPS data. The work was expanded to look at GPS-based attitude determination, using multiple GPS receivers and antennas on a single platform, as a possible navigation aid. Efforts included not only the development of data processing algorithms and software, but also the collection and analysis of GPS and INS flight data aboard a Twin Otter aircraft. Finally, the application of improved navigation system accuracy to synthetic aperture radar (SAR) target location is examined.

  15. Global Positioning System, Theory and Practice, 5th Edition

    NASA Astrophysics Data System (ADS)

    Nerem, R. S.; Larson, K. M.

    The Global Positioning System (GPS) is rapidly becoming as much a part of our daily lives as the Internet, and it is now being used to navigate and locate cars, commercial and private aircraft, military vehicles, ships, spacecraft, recreational vehicles, hikers, and wildlife. In addition, GPS is becoming our primary system for precision timing and an important tool for active microwave remote sensing. Finally, in the geophysics community, GPS is the primary geodetic tool for monitoring crustal deformation.Hundreds of receivers have already been installed in areas subject to seismic and volcanic risk in the United States alone, with many more worldwide. Therefore, interest in the technical details of how the system works has rapidly increased, as evidenced by the proliferation of GPS courses in academia and professional workshops.

  16. U.S. Coast Guard GPS Information Center (GPSIC) and Its Function Within the Civil GPS Service (CGS)

    DTIC Science & Technology

    1991-12-01

    GPSIC) was created to provide civil wers of the Global Positioning System with timely @ern status and other GPS satellite idormation. The GPSIC...ANSI Std Z39-18 timely GPS status information to civil users of the global positioning satellite navigation system . Specifically, the functions to...entity of the (:GS whicll provides GPS status information t o civilian users of the Global Positioning System based on input fro111 the: * GPS

  17. Airborne Digital Sensor System and GPS-aided inertial technology for direct geopositioning in rough terrain

    USGS Publications Warehouse

    Sanchez, Richard D.

    2004-01-01

    High-resolution airborne digital cameras with onboard data collection based on the Global Positioning System (GPS) and inertial navigation systems (INS) technology may offer a real-time means to gather accurate topographic map information by reducing ground control and eliminating aerial triangulation. Past evaluations of this integrated system over relatively flat terrain have proven successful. The author uses Emerge Digital Sensor System (DSS) combined with Applanix Corporation?s Position and Orientation Solutions for Direct Georeferencing to examine the positional mapping accuracy in rough terrain. The positional accuracy documented in this study did not meet large-scale mapping requirements owing to an apparent system mechanical failure. Nonetheless, the findings yield important information on a new approach for mapping in Antarctica and other remote or inaccessible areas of the world.

  18. A precise GPS-based time and frequency system

    NASA Technical Reports Server (NTRS)

    Mcnabb, Jack; Fossler, Earl

    1993-01-01

    An approach to implementing a compact, highly reliable and precise Master Time and Frequency subsystem usable in a variety of applications is described. These applications include, among others, Satellite Ground Terminals, Range Timing Stations, Communications Terminals, and Power Station Timing subsystems. All time and frequency output signals are locked to Universal Time via the GPS Satellite system. The system provides for continued output of precise signals in the event of GPS signal interruption from antenna or lead-in breakage or other causes. Cost/performance tradeoffs affecting system accuracy over the short, medium, and long term are discussed. A unique approach to redundant system design provides an architecture with the reliability advantage of triple-redundant majority voting and the cost advantages of dual-redundant elements. The system can be configured to output a variety of precise time and frequency signals and the design can be tailored to output as few, or as many, types and quantities of signals as are required by the application.

  19. An analysis on combined GPS/COMPASS data quality and its effect on single point positioning accuracy under different observing conditions

    NASA Astrophysics Data System (ADS)

    Cai, Changsheng; Gao, Yang; Pan, Lin; Dai, Wujiao

    2014-09-01

    With the rapid development of the COMPASS system, it is currently capable of providing regional navigation services. In order to test its data quality and performance for single point positioning (SPP), experiments have been conducted under different observing conditions including open sky, under trees, nearby a glass wall, nearby a large area of water, under high-voltage lines and under a signal transmitting tower. To assess the COMPASS data quality, the code multipath, cycle slip occurrence rate and data availability were analyzed and compared to GPS data. The datasets obtained from the experiments have also been utilized to perform combined GPS/COMPASS SPP on an epoch-by-epoch basis using unsmoothed single-frequency code observations. The investigation on the regional navigation performance aims at low-accuracy applications and all tests are made in Changsha, China, using the “SOUTH S82-C” GPS/COMPASS receivers. The results show that adding COMPASS observations can significantly improve the positioning accuracy of single-frequency GPS-only SPP in environments with limited satellite visibility. Since the COMPASS system is still in an initial operational stage, all results are obtained based on a fairly limited amount of data.

  20. LIDAR and Ins Fusion in Periods of GPS Outages for Mobile Laser Scanning Mapping Systems

    NASA Astrophysics Data System (ADS)

    Klein, I.; Filin, S.

    2011-09-01

    Mobile laser scanning systems are becoming an increasingly popular means to obtain 3D coverage on a large scale. To perform the mapping, the exact position of the vehicle must be known throughout the trajectory. Exact position is achieved via integration of Global Positioning Systems (GPS) and Inertial Navigation Systems (INS). Yet, in urban environments, cases of complete or even partial GPS outages may occur leaving the navigation solution to rely only on the INS. The INS navigation solution degrades with time as the Inertial Measurement Unit (IMU) measurements contains noise, which permeates into the navigation equations. Degradation of the position determination leads to loss of data in such segments. To circumvent such drift and its effects, we propose fusing INS with lidar data by using building edges. This detection of edges is then translated into position data, which is used as an aiding to the INS. It thereby enables the determination of the vehicle position with a satisfactory level accuracy, sufficient to perform the laser-scanning based mapping in those outage periods.

  1. GPS - A PostScript-Like Language for System Simulation

    DTIC Science & Technology

    1991-01-01

    Configuration Windows The mods stack class generally has a config function which when called will generate a configuration file and thca pop open a NeWS window...AD-A234 253 AL-TR-90-085 AD: Final Report GPS - A PostScript-like Language for the period for System Simulation-March 1990 to October 1990 January...1991 Author: Argonne National Laboratory H.K. Geyer 9700 South Cass Avenue Argonne IL 60437-4841 A PP, 0 ’iiAP. O 199A1 ,.. : Approved for Public

  2. Predictive Attitude Estimation Using Global Positioning System Signals

    NASA Technical Reports Server (NTRS)

    Crassidis, John L.; Markley, F. Landis; Lightsey, E. Glenn; Ketchum, Eleanor

    1997-01-01

    In this paper, a new algorithm is developed for attitude estimation using Global Positioning System (GPS) signals. The new algorithm is based on a predictive filtering scheme designed for spacecraft without rate measuring devices. The major advantage of this new algorithm over traditional Kalman filter approaches is that the model error is not assumed to represented by an unbiased Gaussian noise process with known covariance, but instead is determined during the estimation process. This is achieved by simultaneously solving system optimality conditions and an output error constraint. This approach is well suited for GPS attitude estimation since some error sources that contribute to attitude inaccuracy, such as signal multipath, are known to be non-Gaussian processes. Also, the predictive filter scheme can use either GPS signals or vector observations or a combination of both for attitude estimation, so that performance characteristics can be maintained during periods of GPS attitude sensor outage. The performance of the new algorithm is tested using flight data from the REX-2 spacecraft. Results are shown using the predictive filter to estimate the attitude from both GPS signals and magnetometer measurements, and comparing that solution to a magnetometer-only based solution. Results using the new estimation algorithm indicate that GPS-based solutions are verified to within 2 degrees using the magnetometer cross-check for the REX-2 spacecraft. GPS attitude accuracy of better than 1 degree is expected per axis, but cannot be reliably proven due to inaccuracies in the magnetic field model.

  3. GPS Modernization and Program Update

    DTIC Science & Technology

    2011-03-02

    2 March 2011 Colonel Bernie Gruber Director Global Positioning Systems Directorate 2011 03 03 Munich Summit v8 GPS Modernization and Program Update...Munich Summit v8 Global Positioning Systems Directorate Mission: Deliver sustained, reliable GPS capabilities to America’s warfighters, our allies...5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Space Command,Space & Missile Systems Center, Global Positioning

  4. Getting from Here to There and Knowing Where: Teaching Global Positioning Systems to Students with Visual Impairments

    ERIC Educational Resources Information Center

    Phillips, Craig L.

    2011-01-01

    Global Positioning Systems' (GPS) technology is available for individuals with visual impairments to use in wayfinding and address Lowenfeld's "three limitations of blindness." The considerations and methodologies for teaching GPS usage have developed over time as GPS information and devices have been integrated into orientation and mobility…

  5. A Canadian Pilot Project for a GPS-Augmented Tsunami Warning System

    NASA Astrophysics Data System (ADS)

    Dragert, H.; Schmidt, M.; Wang, K.; Bock, Y.

    2005-12-01

    Whether a tsunami has been generated from a large earthquake immediately offshore cannot be determined within a crucial time window from seismic or tide gauge data alone. Geological and geodetic data show that coseismic motions of the Earth's surface even hundreds of kilometers from the fault can be used to determine the nature of the rupture and whether the earthquake is tsunamigenic. High-rate (1 sps or greater), totally autonomous GPS stations located along the coast can provide on-line streamed data that can be analyzed in real time to provide an update of relative positions to an accuracy of 1-2 cm horizontally and 3-5 cm vertically with a latency of a few seconds. Regional ground displacements along the coast at the time of a major offshore earthquake could therefore point to the certainty of a tsunami within less than a minute. The Geological Survey of Canada is currently setting up a prototype network to facilitate real-time positioning along the coast of the Canadian segment of the Cascadia subduction zone. The aim is to evaluate the realizability and effectiveness of automatically determining major vertical and horizontal motion at coastal versus inland GPS stations that would unambiguously and rapidly indicate tsunami generation. A network of GPS receivers purchased by the Canadian Hydrographic Service is currently being deployed at geodetic quality installations with continuous on-line communications. As part of this system, we are implementing real-time GPS technology previously applied to seismic (Bock et al., 2004; Langbein and Bock, 2004; Yamagiwa et al., 2004) and volcanic (Mattia et al., 2004) monitoring applications. The target date to have a prototype system operating is December 2005. It is hoped that this relatively low cost technique can become a mainstream tool of tsunami warning systems worldwide.

  6. The GPS Space Service Volume

    NASA Technical Reports Server (NTRS)

    Bauer, F. H.; Moreau, M. C.; Dahle-Melsaether, M. E.; Petrofski, W. P.; Stanton, B. J.; Thomason, S.; Harris, G. A.; Sena, R. P.; Temple, L. Parker, III

    2006-01-01

    Prior to the advent of artificial satellites, the concept of navigating in space and the desire to understand and validate the laws of planetary and satellite motion dates back centuries. At the initiation of orbital flight in 1957, space navigation was dominated by inertial and groundbased tracking methods, underpinned by the laws of planetary motion. It was early in the 1980s that GPS was first explored as a system useful for refining the position, velocity, and timing (PVT) of other spacecraft equipped with GPS receivers. As a result, an entirely new GPS utility was developed beyond its original purpose of providing PVT services for land, maritime, and air applications. Spacecraft both above and below the GPS constellation now receive the GPS signals, including the signals that spill over the limb of the Earth. The use of radionavigation satellite services for space navigation in High Earth Orbits is in fact a capability unique to GPS. Support to GPS space applications is being studied and planned as an important improvement to GPS. This paper discusses the formalization of PVT services in space as part of an overall GPS improvement effort. It describes the GPS Space Service Volume (SSV) and compares it to the Terrestrial Service Volume (TSV). It also discusses SSV coverage with the current GPS constellation, coverage characteristics as a function of altitude, expected power levels, and coverage figures of merit.

  7. Global positioning automatic vehicle location system

    SciTech Connect

    Papatheofanis, B.J.; Hasenack, M.L.; Teller, R.T.; Ramsey, G.F.

    1997-03-01

    Los Alamos National Laboratory (LANL) is a unique facility covering over 43 square miles. The Emergency Management and Response Office (EM&R) is required to respond, provide Incident Command (IC), and coordination for all Laboratory emergencies. This requires IC`s and support staff to respond to the actual scene of the incident. Since the IC is under numerous constraints and stress, the office wanted the capability of locating the EM&R vehicles on an electronic map. An automated vehicle location (AVL) system was required for the additional safety of the emergency response personal. The requirements for the AVL system include total automatic tracking and low cost. After careful consideration, it was determined that the most efficient and cost effective system would be based on packet radio technology as the transmission media. The location is determined by the Department of Defense Global Positioning System (GPS). The system that was designed and constructed required four components to be interfaced and communicate with each other. The first component was a GPS receiver which actually provides the location information, equipped with a digital interface to communicate location information remotely. The second component is a modem that interfaces the GPS digital interface information to a radio. The third component is the radio itself which allows for the actual information transfer from the remote GPS receiver and modem. The fourth component is the software package that provides moving maps and displays the vehicle location on that map. The equipment was all commercial off-the-shelf that only required proper integration and packaging for the AVL application. This paper describes the steps taken in the integration of the equipment into the AVL package.

  8. An integrated GPS-FID system for airborne gas detection of pipeline right-of-ways

    SciTech Connect

    Gehue, H.L.; Sommer, P.

    1996-12-31

    Pipeline integrity, safety and environmental concerns are of prime importance in the Canadian natural gas industry. Terramatic Technology Inc. (TTI) has developed an integrated GPS/FID gas detection system known as TTI-AirTrac{trademark} for use in airborne gas detection (AGD) along pipeline right-of-ways. The Flame Ionization Detector (FID), which has traditionally been used to monitor air quality for gas plants and refineries, has been integrated with the Global Positioning System (GPS) via a 486 DX2-50 computer and specialized open architecture data acquisition software. The purpose of this technology marriage is to be able to continuously monitor air quality during airborne pipeline inspection. Event tagging from visual surveillance is used to determine an explanation of any delta line deviations (DLD). These deviations are an indication of hydrocarbon gases present in the plume that the aircraft has passed through. The role of the GPS system is to provide mapping information and coordinate data for ground inspections. The ground based inspection using a handheld multi gas detector will confirm whether or not a leak exists.

  9. Estimation of Subdaily Polar Motion with the Global Positioning System During the Spoch '92 Campaign

    NASA Technical Reports Server (NTRS)

    Ibanez-Meier, R.; Freedman, A. P.; Herring, T. A.; Gross, R. S.; Lichten, S. M.; Lindqwister, U. J.

    1994-01-01

    Data collected over six days from a worldwide Global Positioning System (GPS) tracking network during the Epoch '92 campaign are used to estimate variations of the Earth's pole position every 30 minutes.

  10. Application of new GPS aircraft control/display system to topographic mapping of the Greenland ice cap

    NASA Technical Reports Server (NTRS)

    Wright, C. W.

    1992-01-01

    A new PC-based GPS flight management display system (GFMS) was developed for Greenland ice cap mapping during the NASA Greenland Ice Sheet mapping experiment, when a total of nine flights were made over four different flight tracks, of which two coincided with ground tracks of the ERS altimeter satellite. In this system, the GFMS inputs the GPS position data to a PC, which generates aircraft automatic pilot steering commands and a cockpit display. The display includes (1) the course deviation indicators for cross-track error and altitude, (2) the flight plan and waypoint map overlay oriented to the aircraft, and (3) various other mission-pertinent numerical data.

  11. Spaceborne GPS Current Status and Future Visions

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H.; Hartman, Kate; Lightsey, E. Glenn

    1998-01-01

    The Global Positioning System (GPS), developed by the Department of Defense, is quickly revolutionizing the architecture of future spacecraft and spacecraft systems. Significant savings in spacecraft life cycle cost, in power, and in mass can be realized by exploiting Global Positioning System (GPS) technology in spaceborne vehicles. These savings are realized because GPS is a systems sensor-it combines the ability to sense space vehicle trajectory, attitude, time, and relative ranging between vehicles into one package. As a result, a reduced spacecraft sensor complement can be employed on spacecraft and significant reductions in space vehicle operations cost can be realized through enhanced on- board autonomy. This paper provides an overview of the current status of spaceborne GPS, a description of spaceborne GPS receivers available now and in the near future, a description of the 1997-1999 GPS flight experiments and the spaceborne GPS team's vision for the future.

  12. Multivariate analysis of GPS position time series of JPL second reprocessing campaign

    NASA Astrophysics Data System (ADS)

    Amiri-Simkooei, A. R.; Mohammadloo, T. H.; Argus, D. F.

    2017-01-01

    The second reprocessing of all GPS data gathered by the Analysis Centers of IGS was conducted in late 2013 using the latest models and methodologies. Improved models of antenna phase center variations and solar radiation pressure in JPL's reanalysis are expected to significantly reduce errors. In an earlier work, JPL estimates of position time series, termed first reprocessing campaign, were examined in terms of their spatial and temporal correlation, power spectra, and draconitic signal. Similar analyses are applied to GPS time series at 89 and 66 sites of the second reanalysis with the time span of 7 and 21 years, respectively, to study possible improvements. Our results indicate that the spatial correlations are reduced on average by a factor of 1.25. While the white and flicker noise amplitudes for all components are reduced by 29-56 %, the random walk amplitude is enlarged. The white, flicker, and random walk noise amount to rate errors of, respectively, 0.01, 0.12, and 0.09 mm/yr in the horizontal and 0.04, 0.41 and 0.3 mm/yr in the vertical. Signals reported previously, such as those with periods of 13.63, 14.76, 5.5, and 351.4 / n for n=1,2,ldots,8 days, are identified in multivariate spectra of both data sets. The oscillation of the draconitic signal is reduced by factors of 1.87, 1.87, and 1.68 in the east, north and up components, respectively. Two other signals with Chandlerian period and a period of 380 days can also be detected.

  13. Optimal Preprocessing Of GPS Data

    NASA Technical Reports Server (NTRS)

    Wu, Sien-Chong; Melbourne, William G.

    1994-01-01

    Improved technique for preprocessing data from Global Positioning System (GPS) receiver reduces processing time and number of data to be stored. Technique optimal in sense it maintains strength of data. Also sometimes increases ability to resolve ambiguities in numbers of cycles of received GPS carrier signals.

  14. 78 FR 68861 - Certain Navigation Products, Including GPS Devices, Navigation and Display Systems, Radar Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ..., Navigational Aids, Mapping Systems and Related Software; Institution of Investigation Pursuant to 19 U.S.C... and display systems, radar systems, navigational aids, mapping systems and related software by reason... products, including GPS devices, navigation and display systems, radar systems, navigational aids,...

  15. The position and orientation system (POS) for airborne survey applications

    SciTech Connect

    Reid, B.; Scherzinger, B.; Lithopoulos, E.

    1996-10-01

    The Position and Orientation System (POS) is an integrated inertial/GPS system that generates accurate position (latitude, longitude, altitude) and orientation (roll, pitch, heading) for airborne survey/mapping applications as well as various other land and marine applications. POS is a GPS-aided strapdown inertial navigator that uses a Kalman filter and a closed-loop error controller to provide an optimally blended position and orientation solution from inertial data from an IMU and aiding data from a GPS receiver. This paper gives a brief description of POS and compares it to other available technologies. It then describes the various application areas of POS for airborne vehicles (POS/AV). Some applications from other POS variants, POS/LV for Land Vehicles, POS/MV for Marine Vessels, are also described. 4 refs., 4 figs., 1 tab.

  16. Pre-Flight Testing of Spaceborne GPS Receivers using a GPS Constellation Simulator

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Davis, Edward; Alonso, R.

    1999-01-01

    The NASA Goddard Space Flight Center (GSFC) Global Positioning System (GPS) applications test facility has been established within the GSFC Guidance Navigation and Control Center. The GPS test facility is currently housing the Global Simulation Systems Inc. (GSSI) STR2760 GPS satellite 40-channel attitude simulator and a STR4760 12-channel navigation simulator. The facility also contains a few other resources such as an atomic time standard test bed, a rooftop antenna platform and a radome. It provides a new capability for high dynamics GPS simulations of space flight that is unique within the aerospace community. The GPS facility provides a critical element for the development and testing of GPS based technologies i.e. position, attitude and precise time determination used on-board a spacecraft, suborbital rocket balloon. The GPS simulation system is configured in a transportable rack and is available for GPS component development as well as for component, spacecraft subsystem and system level testing at spacecraft integration and tests sites. The GPS facility has been operational since early 1996 and has utilized by space flight projects carrying GPS experiments, such as the OrbView-2 and the Argentine SAC-A spacecrafts. The SAC-A pre-flight test data obtained by using the STR2760 simulator and the comparison with preliminary analysis of the GPS data from SAC-A telemetry are summarized. This paper describes pre-flight tests and simulations used to support a unique spaceborne GPS experiment. The GPS experiment mission objectives and the test program are described, as well as the GPS test facility configuration needed to verify experiment feasibility. Some operational and critical issues inherent in GPS receiver pre-flight tests and simulations using this GPS simulation, and test methodology are described. Simulation and flight data are presented. A complete program of pre-flight testing of spaceborne GPS receivers using a GPS constellation simulator is detailed.

  17. Pre-Flight Testing of Spaceborne GPS Receivers Using a GPS Constellation Simulator

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Davis, Edward; Alonso, Roberto

    1999-01-01

    The NASA Goddard Space Flight Center (GSFC) Global Positioning System (GPS) applications test facility has been established within the GSFC Guidance Navigation and Control Center. The GPS test facility is currently housing the Global Simulation Systems Inc. (GSSI) STR2760 GPS satellite 40-channel attitude simulator and a STR4760 12-channel navigation simulator. The facility also contains a few other resources such as an atomic time standard test bed, a rooftop antenna platform and a radome. It provides a new capability for high dynamics GPS simulations of space flight that is unique within the aerospace community. The GPS facility provides a critical element for the development and testing of GPS based technologies i.e. position, attitude and precise time determination used on-board a spacecraft, suborbital rocket or balloon. The GPS simulator system is configured in a transportable rack and is available for GPS component development as well as for component, spacecraft subsystem and system level testing at spacecraft integration and test sites. The GPS facility has been operational since early 1996 and has been utilized by space flight projects carrying GPS experiments, such as the OrbView-2 and the Argentine SAC-A spacecrafts. The SAC-A pre-flight test data obtained by using the STR2760 simulator and the comparison with preliminary analysis of the GPS data from SAC-A telemetry are summarized. This paper describes pre-flight tests and simulations used to support a unique spaceborne GPS experiment. The GPS experiment mission objectives and the test program are described, as well as the GPS test facility configuration needed to verify experiment feasibility. Some operational and critical issues inherent in GPS receiver pre-flight tests and simulations using this GPS simulator, and test methodology are described. Simulation and flight data are presented. A complete program of pre-flight testing of spaceborne GPS receivers using a GPS constellation simulator is

  18. Multisensor Signal Processing Techniques (Hybrid GPS/LORAN-C with RAIM)

    DTIC Science & Technology

    1991-09-01

    Global Positioning System ( GPS ) and the Long Range Navigation System LORAN-C. The...in these developments are new satellite technologies such as the NAVSTAR Global Positioning System ( GPS ) and improvements of existing systems such as...Omnidirectional Range (VOR) stations, the Global Positioning System ( GPS ) satellites, and stars (celestial fixes). A vehicle can obtain range (p) or bearing

  19. Positive lubrication system

    NASA Technical Reports Server (NTRS)

    Smith, Dennis W.; Hooper, Fred L.

    1990-01-01

    As part of the development of an autonomous lubrication system for spin bearings, a system was developed to deliver oil to grease-lubricated bearings upon demand. This positive oil delivery system (PLUS) consists of a pressurized reservoir with a built-in solenoid valve that delivers a predictable quantity of oil to the spin bearing through a system of stainless steel tubes. Considerable testing was performed on the PLUS to characterize its performance and verify its effectiveness, along with qualifying it for flight. Additional development is underway that will lead to the fully autonomous active lubrication system.

  20. Compensating For GPS Ephemeris Error

    NASA Technical Reports Server (NTRS)

    Wu, Jiun-Tsong

    1992-01-01

    Method of computing position of user station receiving signals from Global Positioning System (GPS) of navigational satellites compensates for most of GPS ephemeris error. Present method enables user station to reduce error in its computed position substantially. User station must have access to two or more reference stations at precisely known positions several hundred kilometers apart and must be in neighborhood of reference stations. Based on fact that when GPS data used to compute baseline between reference station and user station, vector error in computed baseline is proportional ephemeris error and length of baseline.

  1. Atmospheric pressure loading effects on Global Positioning System coordinate determinations

    NASA Technical Reports Server (NTRS)

    Vandam, Tonie M.; Blewitt, Geoffrey; Heflin, Michael B.

    1994-01-01

    Earth deformation signals caused by atmospheric pressure loading are detected in vertical position estimates at Global Positioning System (GPS) stations. Surface displacements due to changes in atmospheric pressure account for up to 24% of the total variance in the GPS height estimates. The detected loading signals are larger at higher latitudes where pressure variations are greatest; the largest effect is observed at Fairbanks, Alaska (latitude 65 deg), with a signal root mean square (RMS) of 5 mm. Out of 19 continuously operating GPS sites (with a mean of 281 daily solutions per site), 18 show a positive correlation between the GPS vertical estimates and the modeled loading displacements. Accounting for loading reduces the variance of the vertical station positions on 12 of the 19 sites investigated. Removing the modeled pressure loading from GPS determinations of baseline length for baselines longer than 6000 km reduces the variance on 73 of the 117 baselines investigated. The slight increase in variance for some of the sites and baselines is consistent with expected statistical fluctuations. The results from most stations are consistent with approximately 65% of the modeled pressure load being found in the GPS vertical position measurements. Removing an annual signal from both the measured heights and the modeled load time series leaves this value unchanged. The source of the remaining discrepancy between the modeled and observed loading signal may be the result of (1) anisotropic effects in the Earth's loading response, (2) errors in GPS estimates of tropospheric delay, (3) errors in the surface pressure data, or (4) annual signals in the time series of loading and station heights. In addition, we find that using site dependent coefficients, determined by fitting local pressure to the modeled radial displacements, reduces the variance of the measured station heights as well as or better than using the global convolution sum.

  2. Observability analysis of a MEMS INS/GPS integration system with gyroscope G-sensitivity errors.

    PubMed

    Fan, Chen; Hu, Xiaoping; He, Xiaofeng; Tang, Kanghua; Luo, Bing

    2014-08-28

    Gyroscopes based on micro-electromechanical system (MEMS) technology suffer in high-dynamic applications due to obvious g-sensitivity errors. These errors can induce large biases in the gyroscope, which can directly affect the accuracy of attitude estimation in the integration of the inertial navigation system (INS) and the Global Positioning System (GPS). The observability determines the existence of solutions for compensating them. In this paper, we investigate the observability of the INS/GPS system with consideration of the g-sensitivity errors. In terms of two types of g-sensitivity coefficients matrix, we add them as estimated states to the Kalman filter and analyze the observability of three or nine elements of the coefficient matrix respectively. A global observable condition of the system is presented and validated. Experimental results indicate that all the estimated states, which include position, velocity, attitude, gyro and accelerometer bias, and g-sensitivity coefficients, could be made observable by maneuvering based on the conditions. Compared with the integration system without compensation for the g-sensitivity errors, the attitude accuracy is raised obviously.

  3. Observability Analysis of a MEMS INS/GPS Integration System with Gyroscope G-Sensitivity Errors

    PubMed Central

    Fan, Chen; Hu, Xiaoping; He, Xiaofeng; Tang, Kanghua; Luo, Bing

    2014-01-01

    Gyroscopes based on micro-electromechanical system (MEMS) technology suffer in high-dynamic applications due to obvious g-sensitivity errors. These errors can induce large biases in the gyroscope, which can directly affect the accuracy of attitude estimation in the integration of the inertial navigation system (INS) and the Global Positioning System (GPS). The observability determines the existence of solutions for compensating them. In this paper, we investigate the observability of the INS/GPS system with consideration of the g-sensitivity errors. In terms of two types of g-sensitivity coefficients matrix, we add them as estimated states to the Kalman filter and analyze the observability of three or nine elements of the coefficient matrix respectively. A global observable condition of the system is presented and validated. Experimental results indicate that all the estimated states, which include position, velocity, attitude, gyro and accelerometer bias, and g-sensitivity coefficients, could be made observable by maneuvering based on the conditions. Compared with the integration system without compensation for the g-sensitivity errors, the attitude accuracy is raised obviously. PMID:25171122

  4. Nuclear core positioning system

    DOEpatents

    Garkisch, Hans D.; Yant, Howard W.; Patterson, John F.

    1979-01-01

    A structural support system for the core of a nuclear reactor which achieves relatively restricted clearances at operating conditions and yet allows sufficient clearance between fuel assemblies at refueling temperatures. Axially displaced spacer pads having variable between pad spacing and a temperature compensated radial restraint system are utilized to maintain clearances between the fuel elements. The core support plates are constructed of metals specially chosen such that differential thermal expansion produces positive restraint at operating temperatures.

  5. An ultra-wide bandwidth-based range/GPS tight integration approach for relative positioning in vehicular ad hoc networks

    NASA Astrophysics Data System (ADS)

    Shen, Feng; Wayn Cheong, Joon; Dempster, Andrew G.

    2015-04-01

    Relative position awareness is a vital premise for the implementation of emerging intelligent transportation systems, such as collision warning. However, commercial global navigation satellite systems (GNSS) receivers do not satisfy the requirements of these applications. Fortunately, cooperative positioning (CP) techniques, through sharing the GNSS measurements between vehicles, can improve the performance of relative positioning in a vehicular ad hoc network (VANET). In this paper, while assuming there are no obstacles between vehicles, a new enhanced tightly coupled CP technique is presented by adding ultra-wide bandwidth (UWB)-based inter-vehicular range measurements. In the proposed CP method, each vehicle fuses the GPS measurements and the inter-vehicular range measurements. Based on analytical and experimental results, in the full GPS coverage environment, the new tight integration CP method outperforms the INS-aided tight CP method, tight CP method, and DGPS by 11%, 15%, and 24%, respectively; in the GPS outage scenario, the performance improvement achieves 60%, 65%, and 73%, respectively.

  6. INS/GPS/LiDAR Integrated Navigation System for Urban and Indoor Environments Using Hybrid Scan Matching Algorithm.

    PubMed

    Gao, Yanbin; Liu, Shifei; Atia, Mohamed M; Noureldin, Aboelmagd

    2015-09-15

    This paper takes advantage of the complementary characteristics of Global Positioning System (GPS) and Light Detection and Ranging (LiDAR) to provide periodic corrections to Inertial Navigation System (INS) alternatively in different environmental conditions. In open sky, where GPS signals are available and LiDAR measurements are sparse, GPS is integrated with INS. Meanwhile, in confined outdoor environments and indoors, where GPS is unreliable or unavailable and LiDAR measurements are rich, LiDAR replaces GPS to integrate with INS. This paper also proposes an innovative hybrid scan matching algorithm that combines the feature-based scan matching method and Iterative Closest Point (ICP) based scan matching method. The algorithm can work and transit between two modes depending on the number of matched line features over two scans, thus achieving efficiency and robustness concurrently. Two integration schemes of INS and LiDAR with hybrid scan matching algorithm are implemented and compared. Real experiments are performed on an Unmanned Ground Vehicle (UGV) for both outdoor and indoor environments. Experimental results show that the multi-sensor integrated system can remain sub-meter navigation accuracy during the whole trajectory.

  7. INS/GPS/LiDAR Integrated Navigation System for Urban and Indoor Environments Using Hybrid Scan Matching Algorithm

    PubMed Central

    Gao, Yanbin; Liu, Shifei; Atia, Mohamed M.; Noureldin, Aboelmagd

    2015-01-01

    This paper takes advantage of the complementary characteristics of Global Positioning System (GPS) and Light Detection and Ranging (LiDAR) to provide periodic corrections to Inertial Navigation System (INS) alternatively in different environmental conditions. In open sky, where GPS signals are available and LiDAR measurements are sparse, GPS is integrated with INS. Meanwhile, in confined outdoor environments and indoors, where GPS is unreliable or unavailable and LiDAR measurements are rich, LiDAR replaces GPS to integrate with INS. This paper also proposes an innovative hybrid scan matching algorithm that combines the feature-based scan matching method and Iterative Closest Point (ICP) based scan matching method. The algorithm can work and transit between two modes depending on the number of matched line features over two scans, thus achieving efficiency and robustness concurrently. Two integration schemes of INS and LiDAR with hybrid scan matching algorithm are implemented and compared. Real experiments are performed on an Unmanned Ground Vehicle (UGV) for both outdoor and indoor environments. Experimental results show that the multi-sensor integrated system can remain sub-meter navigation accuracy during the whole trajectory. PMID:26389906

  8. TOPEX orbit determination using GPS signals plus a sidetone ranging system

    NASA Technical Reports Server (NTRS)

    Bender, P. L.; Larden, D. R.

    1982-01-01

    The GPS orbit determination was studied to see how well the radial coordinate for altimeter satellites such as TOPEX could be found by on board measurements of GPS signals, including the reconstructed carrier phase. The inclusion on altimeter satellites of an additional high accuracy tracking system is recommended. It is suggested that a sidetone ranging system is used in conjunction with TRANET 2 beacons.

  9. Position reporting system using small satellites

    NASA Technical Reports Server (NTRS)

    Pavesi, B.; Rondinelli, G.; Graziani, F.

    1990-01-01

    A system able to provide position reporting and monitoring services for mobile applications represents a natural complement to the Global Positioning System (GPS) navigation system. The system architecture is defined on the basis of the communications requirements derived by user needs, allowing maximum flexibility in the use of channel capacity, and a very simple and low cost terminal. The payload is sketched, outlining the block modularity and the use of qualified hardware. The global system capacity is also derived. The spacecraft characteristics are defined on the basis of the payload requirements. A small bus optimized for Ariane IV, Delta II vehicles and based on the modularity concept is presented. The design takes full advantage of each launcher with a common basic bus or bus elements for a mass production.

  10. Differential Global Positioning System for the Surface-Towed Ordnance Locating System: Testing, results, and user`s guide

    SciTech Connect

    Stewart, T.L.; Hubbard, C.W.

    1993-10-01

    Researchers at Pacific Northwest Laboratory integrated and tested a Global Positioning System (GPS) for use with the Naval Explosive Ordnance Disposal Technology Center`s (NEODTC) Surface-Towed Ordnance Locating System (STOLS). The GPS automatically and continuously provides latitude, longitude, and elevation information at the mobile GPS unit. The results of testing the GPS are shown in this report. The results reveal accuracies in the submeter range in real time and within a few centimeters using post-processing software. A description of hardware and software components is also included, along with system drawings and parts lists.

  11. Military Global Positioning System (GPS) Augmentation System (MGAS)

    DTIC Science & Technology

    2016-06-07

    Phase I is utilized to validate the technologies and science measurement concept to meet the NASA/NOAA requirements of the GIFTS experiment, for...leverages the concepts of: • Navy’s Direct Sensor-to-Weapon Network (DSTWN) Demonstration Program GI-Eye Precision Video Targeting Demonstration...research has extended civil techniques to P(Y) and new M codes o Prototype hardware already tested o Simulated direct sensor to weapons

  12. Wide area augmentation of the Global Positioning System

    SciTech Connect

    Enge, P.; Walter, T.; Pullen, S.; Kee, C.; Chao, Y.C.; Tsai, Y.J.

    1996-08-01

    The Wide Area Augmentation System (WAAS) is being deployed by the Federal Aviation Administration (FAA) to augment the Global Positioning System (GPS). The WAAS will aid GPS with the following three services. First, it will broadcast spread-spectrum ranging signals from communication satellites. The airborne WAAS receiver will add these new ranging signals to the GPS constellation of measurements. By so doing, the augmented position fix will be less sensitive to the failure of individual system components, thus improving time availability and continuity of service. Second, the WAAS will use a nationwide ground network to monitor the health of all satellites over the airspace and flag situations which threaten flight safety. This data will be modulated on to the WAAS ranging signals and broadcast to the users, thereby guaranteeing the integrity of the airborne position fix. Third, the WAAS will use the ground network to develop corrections for the errors which currently limit the accuracy of unaugmented GPS. This data will also be included on the WAAS broadcast and will improve position accuracy from approximately 100 m to 8 m. When complete, the augmented system will provide an accurate position fix from satellites to an unlimited number of aircraft across the nation. It will be the primary navigation system for aircraft in oceanic routes, enroute over domestic airspace, in crowded metropolitan airspaces, and on airport approach.

  13. Launch vehicle tracking enhancement through Global Positioning System Metric Tracking

    NASA Astrophysics Data System (ADS)

    Moore, T. C.; Li, Hanchu; Gray, T.; Doran, A.

    United Launch Alliance (ULA) initiated operational flights of both the Atlas V and Delta IV launch vehicle families in 2002. The Atlas V and Delta IV launch vehicles were developed jointly with the US Air Force (USAF) as part of the Evolved Expendable Launch Vehicle (EELV) program. Both Launch Vehicle (LV) families have provided 100% mission success since their respective inaugural launches and demonstrated launch capability from both Vandenberg Air Force Base (VAFB) on the Western Test Range and Cape Canaveral Air Force Station (CCAFS) on the Eastern Test Range. However, the current EELV fleet communications, tracking, & control architecture & technology, which date back to the origins of the space launch business, require support by a large and high cost ground footprint. The USAF has embarked on an initiative known as Future Flight Safety System (FFSS) that will significantly reduce Test Range Operations and Maintenance (O& M) cost by closing facilities and decommissioning ground assets. In support of the FFSS, a Global Positioning System Metric Tracking (GPS MT) System based on the Global Positioning System (GPS) satellite constellation has been developed for EELV which will allow both Ranges to divest some of their radar assets. The Air Force, ULA and Space Vector have flown the first 2 Atlas Certification vehicles demonstrating the successful operation of the GPS MT System. The first Atlas V certification flight was completed in February 2012 from CCAFS, the second Atlas V certification flight from VAFB was completed in September 2012 and the third certification flight on a Delta IV was completed October 2012 from CCAFS. The GPS MT System will provide precise LV position, velocity and timing information that can replace ground radar tracking resource functionality. The GPS MT system will provide an independent position/velocity S-Band telemetry downlink to support the current man-in-the-loop ground-based commanded destruct of an anomalous flight- The system

  14. Deep Space Positioning System

    NASA Technical Reports Server (NTRS)

    Vaughan, Andrew T. (Inventor); Riedel, Joseph E. (Inventor)

    2016-01-01

    A single, compact, lower power deep space positioning system (DPS) configured to determine a location of a spacecraft anywhere in the solar system, and provide state information relative to Earth, Sun, or any remote object. For example, the DPS includes a first camera and, possibly, a second camera configured to capture a plurality of navigation images to determine a state of a spacecraft in a solar system. The second camera is located behind, or adjacent to, a secondary reflector of a first camera in a body of a telescope.

  15. GPS Status and Modernization

    DTIC Science & Technology

    2010-03-10

    11 GPS IIA • 12 GPS IIR • 7 GPS IIR-M • 4 additional satellites in residual status • 1 additional IIR-M waiting to be set healthy • Global GPS ...AEP) Next Generation Control Segment (OCX) Legacy Control System 7 GPS Modernization – Ground • Architecture Evolution Plan (AEP) • Transitioned in 2007...Modern distributed system replaced 1970’s mainframes • Increased capacity for monitoring of GPS signals • Increased worldwide commanding

  16. Global positioning system measurements for crustal deformation: Precision and accuracy

    USGS Publications Warehouse

    Prescott, W.H.; Davis, J.L.; Svarc, J.L.

    1989-01-01

    Analysis of 27 repeated observations of Global Positioning System (GPS) position-difference vectors, up to 11 kilometers in length, indicates that the standard deviation of the measurements is 4 millimeters for the north component, 6 millimeters for the east component, and 10 to 20 millimeters for the vertical component. The uncertainty grows slowly with increasing vector length. At 225 kilometers, the standard deviation of the measurement is 6, 11, and 40 millimeters for the north, east, and up components, respectively. Measurements with GPS and Geodolite, an electromagnetic distance-measuring system, over distances of 10 to 40 kilometers agree within 0.2 part per million. Measurements with GPS and very long baseline interferometry of the 225-kilometer vector agree within 0.05 part per million.

  17. Investigation on the coloured noise in GPS-derived position with time-varying seasonal signals

    NASA Astrophysics Data System (ADS)

    Gruszczynska, Marta; Klos, Anna; Bos, Machiel Simon; Bogusz, Janusz

    2016-04-01

    The seasonal signals in the GPS-derived time series arise from real geophysical signals related to tidal (residual) or non-tidal (loadings from atmosphere, ocean and continental hydrosphere, thermo elastic strain, etc.) effects and numerical artefacts including aliasing from mismodelling in short periods or repeatability of the GPS satellite constellation with respect to the Sun (draconitics). Singular Spectrum Analysis (SSA) is a method for investigation of nonlinear dynamics, suitable to either stationary or non-stationary data series without prior knowledge about their character. The aim of SSA is to mathematically decompose the original time series into a sum of slowly varying trend, seasonal oscillations and noise. In this presentation we will explore the ability of SSA to subtract the time-varying seasonal signals in GPS-derived North-East-Up topocentric components and show properties of coloured noise from residua. For this purpose we used data from globally distributed IGS (International GNSS Service) permanent stations processed by the JPL (Jet Propulsion Laboratory) in a PPP (Precise Point Positioning) mode. After introducing a threshold of 13 years, 264 stations left with a maximum length reaching 23 years. The data was initially pre-processed for outliers, offsets and gaps. The SSA was applied to pre-processed series to estimate the time-varying seasonal signals. We adopted a 3-years window as the optimal dimension of its size determined with the Akaike's Information Criteria (AIC) values. A Fisher-Snedecor test corrected for the presence of temporal correlation was used to determine the statistical significance of reconstructed components. This procedure showed that first four components describing annual and semi-annual signals, are significant at a 99.7% confidence level, which corresponds to 3-sigma criterion. We compared the non-parametric SSA approach with a commonly chosen parametric Least-Squares Estimation that assumes constant amplitudes and

  18. Global Positioning Svstem (GPS) on International Space Station (ISS) and Crew Return Vehicle (CRV)

    NASA Technical Reports Server (NTRS)

    Gomez, Susan F.

    2002-01-01

    Both the International Space Station and Crew Return Vehicle desired to have GPS on their vehicles due to improve state determination over traditional ground tracking techniques used in the past for space vehicles. Both also opted to use GPS for attitude determination to save the expense of a star tracker. Both vehicles have stringent pointing requirements for roll, pitch, and heading, making a sun or earth sensor not a viable option since the heading is undetermined. This paper discusses the technical challenges associated with the implementation of GPS on both of these vehicles. ISS and CRY use the same GPS receiver, but have faced different challenges since the mission of each is di fferent. ISS will be discussed first, then CRY. The flight experiments flown on the Space Shuttle in support of these efforts is also discussed.

  19. Remote Clock Calibration Via GPS

    DTIC Science & Technology

    1986-12-01

    cesium clocks and a Global Positioning System ( GPS ) receiver. The f i rs t purpose was t o ca l ibra te t h e propagation delays and timing... positions in t h e vicinity of each t r ansmi t t e r could be obtained f rom survey markers in the a r e a or determined by t h e GPS receiver a...t any desired location. While t h e GPS receiver was used to obtain positions f o r t h e LORAN par t of t h e experiment, i t was also

  20. Workshop Builds Strategies to Address Global Positioning System Vulnerabilities

    NASA Astrophysics Data System (ADS)

    Fisher, Genene

    2011-01-01

    When we examine the impacts of space weather on society, do we really understand the risks? Can past experiences reliably predict what will happen in the future? As the complexity of technology increases, there is the potential for it to become more fragile, allowing for a single point of failure to bring down the entire system. Take the Global Positioning System (GPS) as an example. GPS positioning, navigation, and timing have become an integral part of daily life, supporting transportation and communications systems vital to the aviation, merchant marine, cargo, cellular phone, surveying, and oil exploration industries. Everyday activities such as banking, mobile phone operations, and even the control of power grids are facilitated by the accurate timing provided by GPS. Understanding the risks of space weather to GPS and the many economic sectors reliant upon it, as well as how to build resilience, was the focus of a policy workshop organized by the American Meteorological Society (AMS) and held on 13-14 October 2010 in Washington, D. C. The workshop brought together a select group of policy makers, space weather scientists, and GPS experts and users.

  1. The Global Positioning System and Education in the 21st Century.

    ERIC Educational Resources Information Center

    Wikle, Thomas A.

    2000-01-01

    Students should have an understanding of basic Global Positioning System (GPS) principles as well as an awareness of how the technology will impact society in the future. Provides a brief overview of the evolution, principles, and applications of GPS together with suggested activities. (Contains 25 references.) (Author/WRM)

  2. Using the Global Positioning System for Earth Orbiter and Deep Space Tracking

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.

    1994-01-01

    The Global Positioning System (GPS) can play a major role in supporting orbit and trajectory determination for spacecraft in a wide range of applications, including low-Earth, high-Earth, and even deep space (interplanetary) tracking. This paper summarizes recent results demonstrating these unique and far-ranging applications of GPS.

  3. Operational GPS Imaging System at Multiple Scales for Earth Science and Monitoring of Geohazards

    NASA Astrophysics Data System (ADS)

    Blewitt, Geoffrey; Hammond, William; Kreemer, Corné

    2016-04-01

    Toward scientific targets that range from slow deep Earth processes to geohazard rapid response, our operational GPS data analysis system produces smooth, yet detailed maps of 3-dimensional land motion with respect to our Earth's center of mass at multiple spatio-temporal scales with various latencies. "GPS Imaging" is implemented operationally as a back-end processor to our GPS data processing facility, which uses JPL's GIPSY OASIS II software to produce positions from 14,000 GPS stations in ITRF every 5 minutes, with coordinate precision that gradually improves as latency increases upward from 1 hour to 2 weeks. Our GPS Imaging system then applies sophisticated signal processing and image filtering techniques to generate images of land motion covering our Earth's continents with high levels of robustness, accuracy, spatial resolution, and temporal resolution. Techniques employed by our GPS Imaging system include: (1) similarity transformation of polyhedron coordinates to ITRF with optional common-mode filtering to enhance local transient signal to noise ratio, (2) a comprehensive database of ~100,000 potential step events based on earthquake catalogs and equipment logs, (3) an automatic, robust, and accurate non-parametric estimator of station velocity that is insensitive to prevalent step discontinuities, outliers, seasonality, and heteroscedasticity; (4) a realistic estimator of velocity error bars based on subsampling statistics; (5) image processing to create a map of land motion that is based on median spatial filtering on the Delauney triangulation, which is effective at despeckling the data while faithfully preserving edge features; (6) a velocity time series estimator to assist identification of transient behavior, such as unloading caused by drought, and (7) a method of integrating InSAR and GPS for fine-scale seamless imaging in ITRF. Our system is being used to address three main scientific focus areas, including (1) deep Earth processes, (2

  4. Global positioning system watches for estimating energy expenditure.

    PubMed

    Hongu, Nobuko; Orr, Barron J; Roe, Denise J; Reed, Rebecca G; Going, Scott B

    2013-11-01

    Global positioning system (GPS) watches have been introduced commercially, converting frequent measurements of time, location, speed (pace), and elevation into energy expenditure (EE) estimates. The purpose of this study was to compare EE estimates of 4 different GPS watches (Forerunner, Suunto, Polar, Adeo), at various walking speeds, with EE estimate from a triaxial accelerometer (RT3), which was used as a reference measure in this study. Sixteen healthy young adults completed the study. Participants wore 4 different GPS watches and an RT3 accelerometer and walked at 6-minute intervals on an outdoor track at 3 speeds (3, 5, and 7 km/hr). The statistical significance of differences in EE between the 3 watches was assessed using linear contrasts of the coefficients from the overall model. Reliability across trials for a given device was assessed using intraclass correlation coefficients as estimated in the mixed model. The GPS watches demonstrated lower reliability (intraclass correlation coefficient) across trials when compared with the RT3, particularly at the higher speed, 7 km/hr. Three GPS watches (Forerunner, Polar, and Suunto) significantly and consistently underestimated EE compared with the reference EE given by the RT3 accelerometer (average mean difference: Garmin, -50.5%; Polar, -41.7%; and Suunto, -41.7%; all p < 0.001). Results suggested that caution should be exercised when using commercial GPS watches to estimate EE in athletes during field-based testing and training.

  5. Altimetry Using GPS-Reflection/Occultation Interferometry

    NASA Technical Reports Server (NTRS)

    Cardellach, Estel; DeLaTorre, Manuel; Hajj, George A.; Ao, Chi

    2008-01-01

    A Global Positioning System (GPS)- reflection/occultation interferometry was examined as a means of altimetry of water and ice surfaces in polar regions. In GPS-reflection/occultation interferometry, a GPS receiver aboard a satellite in a low orbit around the Earth is used to determine the temporally varying carrier- phase delay between (1) one component of a signal from a GPS transmitter propagating directly through the atmosphere just as the GPS transmitter falls below the horizon and (2) another component of the same signal, propagating along a slightly different path, reflected at glancing incidence upon the water or ice surface.

  6. Position feedback control system

    DOEpatents

    Bieg, Lothar F.; Jokiel, Jr., Bernhard; Ensz, Mark T.; Watson, Robert D.

    2003-01-01

    Disclosed is a system and method for independently evaluating the spatial positional performance of a machine having a movable member, comprising an articulated coordinate measuring machine comprising: a first revolute joint; a probe arm, having a proximal end rigidly attached to the first joint, and having a distal end with a probe tip attached thereto, wherein the probe tip is pivotally mounted to the movable machine member; a second revolute joint; a first support arm serially connecting the first joint to the second joint; and coordinate processing means, operatively connected to the first and second revolute joints, for calculating the spatial coordinates of the probe tip; means for kinematically constraining the articulated coordinate measuring machine to a working surface; and comparator means, in operative association with the coordinate processing means and with the movable machine, for comparing the true position of the movable machine member, as measured by the true position of the probe tip, with the desired position of the movable machine member.

  7. First results from an airborne GPS radio occultation system for atmospheric profiling

    NASA Astrophysics Data System (ADS)

    Haase, J. S.; Murphy, B. J.; Muradyan, P.; Nievinski, F. G.; Larson, K. M.; Garrison, J. L.; Wang, K.-N.

    2014-03-01

    Global Positioning System (GPS) radio occultation (RO) from low Earth-orbiting satellites has increased the quantity of high-vertical resolution atmospheric profiles, especially over oceans, and has significantly improved global weather forecasting. A new system, the Global Navigation Satellite Systems Instrument System for Multistatic and Occultation Sensing (GISMOS), has been developed for RO sounding from aircraft. GISMOS also provides high-vertical resolution profiles that are insensitive to clouds and precipitation, and in addition, provides greater control on the sampling location, useful for targeted regional studies. The feasibility of the system is demonstrated with a flight carried out during development of an Atlantic tropical storm. The data have been evaluated through a comparison with dropsonde data. The new airborne RO system will effectively increase by more than 50% the number of profiles available for studying the evolution of tropical storms during this campaign and could potentially be deployed on commercial aircraft in the future.

  8. Multipath effects in a Global Positioning Satellite system receiver

    NASA Technical Reports Server (NTRS)

    Mcdonald, Malcolm W.

    1992-01-01

    This study, as a part of a large continuing investigation being conducted by the Communications Systems Branch of the Information and Electronic Systems Laboratory at the Marshall Space Flight Center, was undertaken to explore the multipath response characteristics of a particular Global Positioning Satellite (GPS) receiver which was available in the laboratory at the beginning and throughout the entirety of the study, and to develop a suitable regime of experimental procedure which can be applied to other state-of-the-art GPS receivers in the larger investigation.

  9. Precise GPS orbits for geodesy

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L.

    1994-01-01

    The Global Positioning System (GPS) has become, in recent years, the main space-based system for surveying and navigation in many military, commercial, cadastral, mapping, and scientific applications. Better receivers, interferometric techniques (DGPS), and advances in post-processing methods have made possible to position fixed or moving receivers with sub-decimeter accuracies in a global reference frame. Improved methods for obtaining the orbits of the GPS satellites have played a major role in these achievements; this paper gives a personal view of the main developments in GPS orbit determination.

  10. Definition study of land/sea civil user navigational location monitoring systems for NAVSTAR GPS: User requirements and systems concepts

    NASA Technical Reports Server (NTRS)

    Devito, D. M.

    1981-01-01

    A low-cost GPS civil-user mobile terminal whose purchase cost is substantially an order of magnitude less than estimates for the military counterpart is considered with focus on ground station requirements for position monitoring of civil users requiring this capability and the civil user navigation and location-monitoring requirements. Existing survey literature was examined to ascertain the potential users of a low-cost NAVSTAR receiver and to estimate their number, function, and accuracy requirements. System concepts are defined for low cost user equipments for in-situ navigation and the retransmission of low data rate positioning data via a geostationary satellite to a central computing facility.

  11. Spaceborne GPS: Current Status and Future Visions

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H.; Hartman, Kate; Lightsey, E. Glenn

    1998-01-01

    The Global Positioning System (GPS), developed by the Department of Defense is quickly revolutionizing the architecture of future spacecraft and spacecraft systems. Significant savings in spacecraft life cycle cost, in power, and in mass can be realized by exploiting GPS technology in spaceborne vehicles. These savings are realized because GPS is a systems sensor--it combines the ability to sense space vehicle trajectory, attitude, time, and relative ranging between vehicles into one package. As a result, a reduced spacecraft sensor complement can be employed and significant reductions in space vehicle operations cost can be realized through enhanced on-board autonomy. This paper provides an overview of the current status of spaceborne GPS, a description of spaceborne GPS receivers available now and in the near future, a description of the 1997-2000 GPS flight experiments, and the spaceborne GPS team's vision for the future.

  12. A Comparison between Different Error Modeling of MEMS Applied to GPS/INS Integrated Systems

    PubMed Central

    Quinchia, Alex G.; Falco, Gianluca; Falletti, Emanuela; Dovis, Fabio; Ferrer, Carles

    2013-01-01

    Advances in the development of micro-electromechanical systems (MEMS) have made possible the fabrication of cheap and small dimension accelerometers and gyroscopes, which are being used in many applications where the global positioning system (GPS) and the inertial navigation system (INS) integration is carried out, i.e., identifying track defects, terrestrial and pedestrian navigation, unmanned aerial vehicles (UAVs), stabilization of many platforms, etc. Although these MEMS sensors are low-cost, they present different errors, which degrade the accuracy of the navigation systems in a short period of time. Therefore, a suitable modeling of these errors is necessary in order to minimize them and, consequently, improve the system performance. In this work, the most used techniques currently to analyze the stochastic errors that affect these sensors are shown and compared: we examine in detail the autocorrelation, the Allan variance (AV) and the power spectral density (PSD) techniques. Subsequently, an analysis and modeling of the inertial sensors, which combines autoregressive (AR) filters and wavelet de-noising, is also achieved. Since a low-cost INS (MEMS grade) presents error sources with short-term (high-frequency) and long-term (low-frequency) components, we introduce a method that compensates for these error terms by doing a complete analysis of Allan variance, wavelet de-nosing and the selection of the level of decomposition for a suitable combination between these techniques. Eventually, in order to assess the stochastic models obtained with these techniques, the Extended Kalman Filter (EKF) of a loosely-coupled GPS/INS integration strategy is augmented with different states. Results show a comparison between the proposed method and the traditional sensor error models under GPS signal blockages using real data collected in urban roadways. PMID:23887084

  13. A comparison between different error modeling of MEMS applied to GPS/INS integrated systems.

    PubMed

    Quinchia, Alex G; Falco, Gianluca; Falletti, Emanuela; Dovis, Fabio; Ferrer, Carles

    2013-07-24

    Advances in the development of micro-electromechanical systems (MEMS) have made possible the fabrication of cheap and small dimension accelerometers and gyroscopes, which are being used in many applications where the global positioning system (GPS) and the inertial navigation system (INS) integration is carried out, i.e., identifying track defects, terrestrial and pedestrian navigation, unmanned aerial vehicles (UAVs), stabilization of many platforms, etc. Although these MEMS sensors are low-cost, they present different errors, which degrade the accuracy of the navigation systems in a short period of time. Therefore, a suitable modeling of these errors is necessary in order to minimize them and, consequently, improve the system performance. In this work, the most used techniques currently to analyze the stochastic errors that affect these sensors are shown and compared: we examine in detail the autocorrelation, the Allan variance (AV) and the power spectral density (PSD) techniques. Subsequently, an analysis and modeling of the inertial sensors, which combines autoregressive (AR) filters and wavelet de-noising, is also achieved. Since a low-cost INS (MEMS grade) presents error sources with short-term (high-frequency) and long-term (low-frequency) components, we introduce a method that compensates for these error terms by doing a complete analysis of Allan variance, wavelet de-nosing and the selection of the level of decomposition for a suitable combination between these techniques. Eventually, in order to assess the stochastic models obtained with these techniques, the Extended Kalman Filter (EKF) of a loosely-coupled GPS/INS integration strategy is augmented with different states. Results show a comparison between the proposed method and the traditional sensor error models under GPS signal blockages using real data collected in urban roadways.

  14. Connect Global Positioning System RF Module

    NASA Technical Reports Server (NTRS)

    Franklin, Garth W.; Young, Lawrence E.; Ciminera, Michael A.; Tien, Jeffrey Y.; Gorelik, Jacob; Okihiro, Brian Bachman; Koelewyn, Cynthia L.

    2012-01-01

    The CoNNeCT Global Positioning System RF Module (GPSM) slice is part of the JPL CoNNeCT Software Defined Radio (SDR). CoNNeCT is the Communications, Navigation, and Net working reconfigurable Testbed project that is part of NASA's Space Communication and Nav igation (SCaN) Program. The CoNNeCT project is an experimental dem onstration that will lead to the advancement of SDRs and provide a path for new space communication and navigation systems for future NASA exploration missions. The JPL CoNNeCT SDR will be flying on the International Space Station (ISS) in 2012 in support of the SCaN CoNNeCT program. The GPSM is a radio-frequency sampler module (see Figure 1) that directly sub-harmonically samples the filtered GPS L-band signals at L1 (1575.42 MHz), L2 (1227.6 MHz), and L5 (1176.45 MHz). The JPL SDR receives GPS signals through a Dorne & Margolin antenna mounted onto a choke ring. The GPS signal is filtered against interference, amplified, split, and fed into three channels: L1, L2, and L5. In each of the L-band channels, there is a chain of bandpass filters and amplifiers, and the signal is fed through each of these channels to where the GPSM performs a one-bit analog-to-digital conversion (see Figure 2). The GPSM uses a sub-harmonic, single-bit L1, L2, and L5 sampler that samples at a clock rate of 38.656 MHz. The new capability is the down-conversion and sampling of the L5 signal when previous hardware did not provide this capability. The first GPS IIF Satellite was launched in 2010, providing the new L5 signal. With the JPL SDR flying on the ISS, it will be possible to demonstrate navigation solutions with 10-meter 3-D accuracy at 10-second intervals using a field-program mable gate array (FPGA)-based feedback loop running at 50 Hz. The GPS data bits will be decoded and used in the SDR. The GPSM will also allow other waveforms that are installed in the SDR to demonstrate various GNSS tracking techniques.

  15. Precise determination of earth's center of mass using measurements from the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Vigue, Yvonne; Lichten, Stephen M.; Blewitt, Geoffrey; Heflin, Michael B.; Malla, Rajendra P.

    1992-01-01

    Global Positioning System (GPS) data from a worldwide geodetic experiment were collected during a 3-week period early in 1991. Geocentric station coordinates were estimated using the GPS data, thus defining a dynamically determined reference frame origin which should coincide with the earth center of mass, or geocenter. The 3-week GPS average geocenter estimates agree to 7-13 cm with geocenter estimates determined from satellite laser ranging, a well-established technique. The RMS of daily GPS geocenter estimates were 4 cm for x and y, and 30 cm for z.

  16. Assessment of long-range kinematic GPS positioning errors by comparison with airborne laser altimetry and satellite altimetry

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohong; Forsberg, Rene

    2007-03-01

    Long-range airborne laser altimetry and laser scanning (LIDAR) or airborne gravity surveys in, for example, polar or oceanic areas require airborne kinematic GPS baselines of many hundreds of kilometers in length. In such instances, with the complications of ionospheric biases, it can be a real challenge for traditional differential kinematic GPS software to obtain reasonable solutions. In this paper, we will describe attempts to validate an implementation of the precise point positioning (PPP) technique on an aircraft without the use of a local GPS reference station. We will compare PPP solutions with other conventional GPS solutions, as well as with independent data by comparison of airborne laser data with “ground truth” heights. The comparisons involve two flights: A July 5, 2003, airborne laser flight line across the North Atlantic from Iceland to Scotland, and a May 24, 2004, flight in an area of the Arctic Ocean north of Greenland, near-coincident in time and space with the ICESat satellite laser altimeter. Both of these flights were more than 800 km long. Comparisons between different GPS methods and four different software packages do not suggest a clear preference for any one, with the heights generally showing decimeter-level agreement. For the comparison with the independent ICESat- and LIDAR-derived “ground truth” of ocean or sea-ice heights, the statistics of comparison show a typical fit of around 10 cm RMS in the North Atlantic, and 30 cm in the sea-ice region north of Greenland. Part of the latter 30 cm error is likely due to errors in the airborne LIDAR measurement and calibration, as well as errors in the “ground truth” ocean surfaces due to drifting sea-ice. Nevertheless, the potential of the PPP method for generating 10 cm level kinematic height positioning over long baselines is illustrated.

  17. An improvement of the GPS buoy system for detecting tsunami at far offshore

    NASA Astrophysics Data System (ADS)

    Kato, T.; Terada, Y.; Nagai, T.; Kawaguchi, K.; Koshimura, S.; Matsushita, Y.

    2012-12-01

    We have developed a GPS buoy system for detecting a tsunami before its arrival at coasts and thereby mitigating tsunami disaster. The system was first deployed in 1997 for a short period in the Sagami bay, south of Tokyo, for basic experiments, and then deployed off Ofunato city, northeastern part of Japan, for the period 2001-2004. The system was then established at about 13km south of Cape Muroto, southwestern part of Japan, since 2004. Five tsunamis of about 10cm have been observed in these systems, including 2001 Peru earthquake (Mw8.3), 2003 Tokachi-oki earthquake (Mw8.3), 2004 Off Kii Peninsula earthquake (Mw7.4), 2010 Chile earthquake (Mw8.8), and 2011 Tohoku-Oki earthquake (Mw9.0). These experiments clearly showed that GPS buoy is capable of detecting tsunami with a few centimeter accuracy and can be monitored in near real time by applying an appropriate filter, real-time data transmission using radio and dissemination of obtained records of sea surface height changes through internet. Considering that the system is a powerful tool to monitor sea surface variations due to wind as well as tsunami, the Ministry of Land, Infrastructure, Transport and Tourism implemented the system in a part of the Nationwide Ocean Wave information network for Ports and HArbourS (NOWPHAS) system and deployed the system at 15 sites along the coasts around the Japanese Islands. The system detected the tsunami due to the 11th March 2011 Tohoku-Oki earthquake with higher than 6m of tsunami height at the site Off South Iwate (Kamaishi). The Japan Meteorological Agency that was monitoring the record updated the level of the tsunami warning to the greatest value due to the result. Currently, the GPS buoy system uses a RTK-GPS which requires a land base for obtaining precise location of the buoy by a baseline analysis. This algorithm limits the distance of the buoy to, at most, 20km from the coast as the accuracy of positioning gets much worse as the baseline distance becomes longer

  18. System and method for acquisition management of subject position information

    DOEpatents

    Carrender, Curt

    2005-12-13

    A system and method for acquisition management of subject position information that utilizes radio frequency identification (RF ID) to store position information in position tags. Tag programmers receive position information from external positioning systems, such as the Global Positioning System (GPS), from manual inputs, such as keypads, or other tag programmers. The tag programmers program each position tag with the received position information. Both the tag programmers and the position tags can be portable or fixed. Implementations include portable tag programmers and fixed position tags for subject position guidance, and portable tag programmers for collection sample labeling. Other implementations include fixed tag programmers and portable position tags for subject route recordation. Position tags can contain other associated information such as destination address of an affixed subject for subject routing.

  19. System and method for acquisition management of subject position information

    DOEpatents

    Carrender, Curt

    2007-01-23

    A system and method for acquisition management of subject position information that utilizes radio frequency identification (RF ID) to store position information in position tags. Tag programmers receive position information from external positioning systems, such as the Global Positioning System (GPS), from manual inputs, such as keypads, or other tag programmers. The tag programmers program each position tag with the received position information. Both the tag programmers and the position tags can be portable or fixed. Implementations include portable tag programmers and fixed position tags for subject position guidance, and portable tag programmers for collection sample labeling. Other implementations include fixed tag programmers and portable position tags for subject route recordation. Position tags can contain other associated information such as destination address of an affixed subject for subject routing.

  20. GPS instrumentation performance as an ICBM guidance system evaluator

    NASA Astrophysics Data System (ADS)

    Barkley, R. L., Jr.; Hietzke, W. H.

    GPS performance on two Minuteman III flight tests is analyzed. It is shown how data of this quality can provide superior evaluation of total guidance error and can be used to identify inflight guidance anomalies. The GPS data on these flights exhibit short-term accuracy equal to the predicted levels. Typically, random errors on the order of 2 ft and .01 ft/sec (for a one-second average) are obtained. This makes possible a direct observation of PIGA magnetic sensitivity effects during the PBV period by an external sensor. The absolute accuracy is less easily evaluated owing to a lack of suitable standard. The GPS is found to be clearly more accurate than the radars that also tracked the missile, and the post-fit residuals are found to be consistent with a high level of total accuracy. It is concluded that the total accuracy is consistent with the predicted GPS performance.

  1. Wireless GPS system for module fiber quality mapping: System improvement and field testing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A wireless GPS system for module-level fiber quality mapping has been developed at Texas A&M University. In its complete form, it includes subsystems for harvesters, boll buggies, and module builders. The system was field tested on a producer's farm near Plains, Texas, in 2006. The field test identi...

  2. Wireless GPS system for module-level fiber quality mapping: System improvement and field testing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A wireless GPS system for module-level fiber quality mapping has been developed at Texas A&M University. In its complete form, it includes subsystems for harvesters, boll buggies, and module builders. The system was field tested on a producer’s farm near Plains, Texas, in 2006. The field test identi...

  3. System and method for generating attitude determinations using GPS

    NASA Technical Reports Server (NTRS)

    Cohen, Clark E. (Inventor)

    1996-01-01

    A GPS attitude receiver for determining the attitude of a moving vehicle in conjunction with a first, a second, a third, and a fourth antenna mounted to the moving vehicle. Each of the antennas receives a plurality of GPS signals that each include a carrier component. For each of the carrier components of the received GPS signals there is an integer ambiguity associated with the first and fourth antennas, an integer ambiguity associated with second and fourth antennas, and an integer ambiguity associated with the third and fourth antennas. The GPS attitude receiver measures phase values for the carrier components of the GPS signals received from each of the antennas at a plurality of measurement epochs during an initialization period and at a measurement epoch after the initialization period. In response to the phase values measured at the measurement epochs during the initialization period, the GPS attitude receiver computes integer ambiguity resolution values representing resolution of the integer ambiguities. Then, in response to the computed integer ambiguity resolution values and the phase value measured at the measurement epoch after the initialization period, it computes values defining the attitude of the moving vehicle at the measurement epoch after the initialization period.

  4. Constraints on the mechanics of the Southern San Andreas fault system from GPS velocity and stress

    NASA Astrophysics Data System (ADS)

    Becker, T. W.; Hardebeck, J. L.; Anderson, G.

    2003-12-01

    We use Global Positioning System (GPS) derived velocities and stress-orientations to study the distribution of long-term slip on the system of faults comprising the southern California plate boundary region. Of particular interest is how slip is partitioned over multiple earthquake cycles between the San Andreas Fault (SAF), the San Jacinto Fault (SJF) and the Eastern California Shear Zone. Some prior paleoseismologic and geodetic work places the majority of slip on the SAF. Other studies, however, find that the SJF accommodates about half of the slip in the south, implying half as much slip on the San Bernardino segment of the SAF. Two new data sets are used to further constrain the mechanics of the SAF. The first is the Southern California Earthquake Center's geodetic velocity field version 3 (Shen et al., 2003), which includes much improved coverage over prior models. The second is a regional map of stress field orientations at seismogenic depths, as determined from an inversion of earthquake focal mechanisms. While GPS data has been used in similar studies, this is the first application of stress field observations to this problem. We construct a simplified version of the southern California fault system, and model the surface velocities using a block model with elastic strain accumulation, following Meade et al. (2002). Additionally, we model the stress orientations at seismogenic depths, assuming that the stress field results from the loading of active faults. An inversion for fault slip rates is performed to simultaneously fit the GPS and stress observations. The model fit to the data is good in general, indicating that a simple mechanical model can capture both observed interseismic strain and stress accumulation. We evaluate the sensitivity of the slip rate solutions to the different datasets and identify "anomalous" fault segments with stresses that deviate from our simple loading model.

  5. Development of a Fully Automated, GPS Based Monitoring System for Disaster Prevention and Emergency Preparedness: PPMS+RT

    PubMed Central

    Bond, Jason; Kim, Don; Chrzanowski, Adam; Szostak-Chrzanowski, Anna

    2007-01-01

    The increasing number of structural collapses, slope failures and other natural disasters has lead to a demand for new sensors, sensor integration techniques and data processing strategies for deformation monitoring systems. In order to meet extraordinary accuracy requirements for displacement detection in recent deformation monitoring projects, research has been devoted to integrating Global Positioning System (GPS) as a monitoring sensor. Although GPS has been used for monitoring purposes worldwide, certain environments pose challenges where conventional processing techniques cannot provide the required accuracy with sufficient update frequency. Described is the development of a fully automated, continuous, real-time monitoring system that employs GPS sensors and pseudolite technology to meet these requirements in such environments. Ethernet and/or serial port communication techniques are used to transfer data between GPS receivers at target points and a central processing computer. The data can be processed locally or remotely based upon client needs. A test was conducted that illustrated a 10 mm displacement was remotely detected at a target point using the designed system. This information could then be used to signal an alarm if conditions are deemed to be unsafe.

  6. Using The Global Positioning System For Earth Orbiter and Deep Space Network

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.; Haines, Bruce J.; Young, Lawrence E.; Dunn, Charles; Srinivasan, Jeff; Sweeney, Dennis; Nandi, Sumita; Spitzmesser, Don

    1994-01-01

    The Global Positioning System (GPS) can play a major role in supporting orbit and trajectory determination for spacecraft in a wide range of applications, including low-Earth, high-earth, and even deep space (interplanetary) tracking.

  7. Tightly Coupled Inertial Navigation System/Global Positioning System (TCMIG)

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Jackson, Kurt (Technical Monitor)

    2002-01-01

    Many NASA applications planned for execution later this decade are seeking high performance, miniaturized, low power Inertial Management Units (IMU). Much research has gone into Micro-Electro-Mechanical System (MEMS) over the past decade as a solution to these needs. While MEMS devices have proven to provide high accuracy acceleration measurements, they have not yet proven to have the accuracy required by many NASA missions in rotational measurements. Therefore, a new solution has been formulated integrating the best of all IMU technologies to address these mid-term needs in the form of a Tightly Coupled Micro Inertial Navigation System (INS)/Global Positioning System (GPS) (TCMIG). The TCMIG consists of an INS and a GPS tightly coupled by a Kalman filter executing on an embedded Field Programmable Gate Array (FPGA) processor. The INS consists of a highly integrated Interferometric Fiber Optic Gyroscope (IFOG) and a MEMS accelerometer. The IFOG utilizes a tightly wound fiber coil to reduce volume and the high level of integration and advanced optical components to reduce power. The MEMS accelerometer utilizes a newly developed deep etch process to increase the proof mass and yield a highly accurate accelerometer. The GPS receiver consists of a low power miniaturized version of the Blackjack receiver. Such an IMU configuration is ideal to meet the mid-term needs of the NASA Science Enterprises and the new launch vehicles being developed for the Space Launch Initiative (SLI).

  8. 77 FR 23668 - GPS Satellite Simulator Working Group Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ... Department of the Air Force GPS Satellite Simulator Working Group Notice of Meeting AGENCY: The United States... Global Positioning Systems (GPS) Directorate will be hosting an open GPS Satellite Simulator Working... form a functioning GPS Satellite Simulator Working Group with industry and government...

  9. Optimization of the effective GPS data rate

    NASA Technical Reports Server (NTRS)

    Mcintyre, David S.

    1990-01-01

    Ohio University's Avionics Engineering Center is performing research directed towards the integration of the NAVSTAR Global Positioning System (GPS) and the Inertial Navigation System (INS) for attitude and heading determination. The integration of GPS/INS offers synergistic benefits. INS gyro drift error can be compensated by the long-term stability of GPS by means of an in-flight data monitoring algorithm. Using GPS data as a reference is more advantageous than implementing an additional INS since GPS offers a dissimilar redundancy to the attitude and heading determination configuration. In converse, the short-term stability of the INS can be used to correct or substitute for faulty GPS data due to tracking loop phase lag or data gaps because of satellite shielding. The optimization of the effective GPS data rate is essential for the proper execution of an integrated GPS/INS in-flight algorithm. GPS attitude and heading information must be consistently available during INS outages. Present research efforts involve the development of an in-flight algorithm that maximizes the potential of integrated GPS/INS. This algorithm determines the acceptable limits of phase lag that the GPS tracking loop introduces to the flight control system (FCS) during the transmission of information. Once these calculated limits are exceeded, INS data are used to insure the continuous availability of attitude and heading information to the flight control system.

  10. Present-day crustal deformation along the Magallanes-Fagnano Fault System in Tierra del Fuego from repeated GPS observations

    NASA Astrophysics Data System (ADS)

    Mendoza, L.; Perdomo, R.; Hormaechea, J. L.; Del Cogliano, D.; Fritsche, M.; Richter, A.; Dietrich, R.

    2011-03-01

    The present-day deformation of the earth crust in the Argentine part of Tierra del Fuego main island (southernmost South America) is here investigated based on repeated geodetic GPS observations. The island is traversed by the active transform boundary between the South American and Scotia tectonic plates, represented by the Magallanes-Fagnano fault system. Since 1993 a regional network comprising to date 29 GPS sites has been observed almost every year. The complete set of accumulated observations was processed using the Bernese GPS software and state-of-the-art processing strategies and models. The utilization of homogeneous GPS products resulting from a reprocessing of the global IGS network warrants a stable realization of a global reference frame. For each GPS site 3-D positions and linear velocities with error estimates were obtained. A strain analysis of the horizontal velocity components revealed the zones of major deformation activity. A 30-km-wide deformation belt centred on the main trace of the fault system was identified. This belt is bordered to the north (South America) and south (Scotia) by geodynamically stable zones, which move horizontally with a relative average velocity of 4.4 ± 0.6 (east) and -0.3 ± 0.4 (north) mm a-1. Within the deformation belt a maximum strain rate in the order of 0.25 μstrain per year has been detected. A pronounced change in the deformation style from transtension (east) to transpression (west) is observed. The area of predominating shortening of the crust coincides with a local rotation minimum and relative uplift. Throughout the period covered by the GPS observations the displacements and deformations occurred to be linear with time.

  11. The Validity and Reliability of Global Positioning Systems in Team Sport: A Brief Review.

    PubMed

    Scott, Macfarlane T U; Scott, Tannath J; Kelly, Vincent G

    2016-05-01

    The use of global positioning systems (GPS) has increased dramatically over the last decade. Using signals from orbiting satellites, the GPS receiver calculates the exact position of the device and the speed at which the device is moving. Within team sports GPS devices are used to quantify the external load experienced by an athlete, allowing coaches to better manage trainings loads and potentially identify athletes who are overreaching or overtraining. This review aims to collate all studies that have tested either (or both) the validity or reliability of GPS devices in a team sport setting, with a particular focus on (a) measurements of distance, speed, velocities, and accelerations across all sampling rates and (b) accelerometers, player/body load and impacts in accelerometer-integrated GPS devices. A comprehensive search of the online libraries identified 22 articles that fit search criteria. The literature suggests that all GPS units, regardless of sampling rate, are capable of tracking athlete's distance during team sport movements with adequate intraunit reliability. One Hertz and 5Hz GPS units have limitations in their reporting of distance during high-intensity running, velocity measures, and short linear running (particularly those involving changes of direction), although these limitations seem to be overcome during measures recorded during team sport movements. Ten Hertz GPS devices seem the most valid and reliable to date across linear and team sport simulated running, overcoming many limitations of earlier models, whereas the increase to 15Hz GPS devices have had no additional benefit.

  12. Estimation of spatiotemporal variation of acoustic velocity in ocean and its modeling for GPS/Acoustic seafloor positioning

    NASA Astrophysics Data System (ADS)

    Sugimoto, S.; Tadokoro, K.; Ikuta, R.; Watanabe, T.; Okuda, T.; Sayanagi, K.; Miyata, K.; Nagao, T.

    2009-12-01

    We have been developing an observation system with the GPS/Acoustic combination technique for monitoring of seafloor crustal deformation. We installed two sets of triangular array of acoustic transponders as geodetic reference sites on the Suruga trough, central Japan, where the Philippine Sea plate is subducting beneath the Eurasian plate at a rate of 2 cm/yr. In our campaign observation, we measured ranges to acoustic transponders from an on-board acoustic transducer whose position was determined by kinematic GPS. Repeated our campaign observations can reveal directly seafloor crustal deformation in focal area of subduction zone. Present analysis method simultaneously estimates temporal variation of acoustic velocity and positions of acoustic transponders assuming the horizontally-layered structure of acoustic velocity. However, actual structure might have stable spatial variation due to oceanic current and internal wave. The stable spatial variation causes bias error on the positioning. For reduction of the bias error and shortening observation time, we should measure and/or estimate the spatial variation of acoustic velocity. In this presentation, for an investigation of horizontal scales of the spatial variation of acoustic velocity, we estimated spectrum of oceanic internal wave using by continuous measurements of temperature and pressure in ocean. In addition, we evaluate a new seafloor positioning method which simultaneously estimates spatiotemporal variation of acoustic velocity through numerical experiments. The continuous measurements in parallel with acoustic ranging were conducted by mooring temperature and pressure sensors attached rope with an interval of 50 m. The continuous measurements were made for five hours with a sampling interval of three seconds in each day in August and October 2008. For reduction of measurement noise, we carried out two-dimensional B-spline fitting of temperature and pressure with ABIC minimization. By the fitting, we

  13. Applications of GPS technologies to field sports.

    PubMed

    Aughey, Robert J

    2011-09-01

    Global positioning system (GPS) technology was made possible after the invention of the atomic clock. The first suggestion that GPS could be used to assess the physical activity of humans followed some 40 y later. There was a rapid uptake of GPS technology, with the literature concentrating on validation studies and the measurement of steady-state movement. The first attempts were made to validate GPS for field sport applications in 2006. While GPS has been validated for applications for team sports, some doubts continue to exist on the appropriateness of GPS for measuring short high-velocity movements. Thus, GPS has been applied extensively in Australian football, cricket, hockey, rugby union and league, and soccer. There is extensive information on the activity profile of athletes from field sports in the literature stemming from GPS, and this includes total distance covered by players and distance in velocity bands. Global positioning systems have also been applied to detect fatigue in matches, identify periods of most intense play, different activity profiles by position, competition level, and sport. More recent research has integrated GPS data with the physical capacity or fitness test score of athletes, game-specific tasks, or tactical or strategic information. The future of GPS analysis will involve further miniaturization of devices, longer battery life, and integration of other inertial sensor data to more effectively quantify the effort of athletes.

  14. Non-GPS navigation with the personal dead-reckoning system

    NASA Astrophysics Data System (ADS)

    Ojeda, Lauro; Borenstein, Johann

    2007-04-01

    This paper introduces a positioning system for walking persons, called "Personal Dead-reckoning" (PDR) system. The PDR system does not require GPS, beacons, or landmarks. The system is therefore useful in GPS-denied environments, such as inside buildings, tunnels, or dense forests. Potential users of the system are military and security personnel as well as emergency responders. The PDR system uses a small 6-DOF inertial measurement unit (IMU) attached to the user's boot. The IMU provides rate-of-rotation and acceleration measurements that are used in real-time to estimate the location of the user relative to a known starting point. In order to reduce the most significant errors of this IMU-based system-caused by the bias drift of the accelerometers-we implemented a technique known as "Zero Velocity Update" (ZUPT). With the ZUPT technique and related signal processing algorithms, typical errors of our system are about 2% of distance traveled. This typical PDR system error is largely independent of the gait or speed of the user. When walking continuously for several minutes, the error increases gradually beyond 2%. The PDR system works in both 2-dimensional (2-D) and 3-D environments, although errors in Z-direction are usually larger than 2% of distance traveled. Earlier versions of our system used an impractically large IMU. In the most recent version we implemented a much smaller IMU. This paper discussed specific problems of this small IMU, our measures for eliminating these problems, and our first experimental results with the small IMU under different conditions.

  15. Evaluation of Point Positioning Using the Global Positioning System and the Quasi-Zenith Satellite System as Measured from South Korea

    NASA Astrophysics Data System (ADS)

    Choi, Byung-Kyu; Cho, Chang-Hyun; Cho, Jung Ho

    2015-12-01

    The Quasi-Zenith Satellite System (QZSS), a dedicated regional Japanese satellite system currently under development, was designed to complement the performance of the Global Positioning System (GPS). The high elevation angle of the QZSS satellite is expected to enhance the effectiveness of GPS in urban environments. Thus, the work described in this paper, aimed to investigate the effect of QZSS on GPS performance, by processing the GPS and QZSS measurements recorded at the Bohyunsan reference station in South Korea. We used these data, to evaluate the satellite visibility, carrier-to-noise density (C/No), performance of single point positioning, and Dilution of Precision (DOP). The QZSS satellite is currently available over South Korea for 19 hours at an elevation angle of more than 10 degrees. The results showed that the impact of the QZSS on users' vertical positioning is greatest when the satellite is above 80 degrees of elevation. As for Precise Point Positioning (PPP) performance, the combined GPS/QZSS kinematic PPP was found to improve the positioning accuracy compared to the GPS only kinematic PPP.

  16. Determination of Earth orientation using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Freedman, A. P.

    1989-01-01

    Modern spacecraft tracking and navigation require highly accurate Earth-orientation parameters. For near-real-time applications, errors in these quantities and their extrapolated values are a significant error source. A globally distributed network of high-precision receivers observing the full Global Positioning System (GPS) configuration of 18 or more satellites may be an efficient and economical method for the rapid determination of short-term variations in Earth orientation. A covariance analysis using the JPL Orbit Analysis and Simulation Software (OASIS) was performed to evaluate the errors associated with GPS measurements of Earth orientation. These GPS measurements appear to be highly competitive with those from other techniques and can potentially yield frequent and reliable centimeter-level Earth-orientation information while simultaneously allowing the oversubscribed Deep Space Network (DSN) antennas to be used more for direct project support.

  17. Realizing a terrestrial reference frame using the Global Positioning System

    NASA Astrophysics Data System (ADS)

    Haines, Bruce J.; Bar-Sever, Yoaz E.; Bertiger, Willy I.; Desai, Shailen D.; Harvey, Nate; Sibois, Aurore E.; Weiss, Jan P.

    2015-08-01

    We describe a terrestrial reference frame (TRF) realization based on Global Positioning System (GPS) data alone. Our approach rests on a highly dynamic, long-arc (9 day) estimation strategy and on GPS satellite antenna calibrations derived from Gravity Recovery and Climate Experiment and TOPEX/Poseidon low Earth orbit receiver GPS data. Based on nearly 17 years of data (1997-2013), our solution for scale rate agrees with International Terrestrial Reference Frame (ITRF)2008 to 0.03 ppb yr-1, and our solution for 3-D origin rate agrees with ITRF2008 to 0.4 mm yr-1. Absolute scale differs by 1.1 ppb (7 mm at the Earth's surface) and 3-D origin by 8 mm. These differences lie within estimated error levels for the contemporary TRF.

  18. Alternative Timing Networks with GPS

    DTIC Science & Technology

    1989-11-01

    receiving stations has been investigated. The xnethods of llsirlg tht: Global P~s i t~ iun- ing System ( GPS ) for transferring time in previolis work has...planes established by the positions of the other stations used to range to six SV’s. Tn this coordinate system the number of observations (24) will...ALTERNATIVE TIMING NETWORKS WITH GPS G.P. Landis, S. Stebbins, and ILL. Heard Naval ltesearch Laboratory Washington, D.C. and H.F. Pliegel The

  19. Mapping stream habitats with a global positioning system: Accuracy, precision, and comparison with traditional methods

    USGS Publications Warehouse

    Dauwalter, D.C.; Fisher, W.L.; Belt, K.C.

    2006-01-01

    We tested the precision and accuracy of the Trimble GeoXT??? global positioning system (GPS) handheld receiver on point and area features and compared estimates of stream habitat dimensions (e.g., lengths and areas of riffles and pools) that were made in three different Oklahoma streams using the GPS receiver and a tape measure. The precision of differentially corrected GPS (DGPS) points was not affected by the number of GPS position fixes (i.e., geographic location estimates) averaged per DGPS point. Horizontal error of points ranged from 0.03 to 2.77 m and did not differ with the number of position fixes per point. The error of area measurements ranged from 0.1% to 110.1% but decreased as the area increased. Again, error was independent of the number of position fixes averaged per polygon corner. The estimates of habitat lengths, widths, and areas did not differ when measured using two methods of data collection (GPS and a tape measure), nor did the differences among methods change at three stream sites with contrasting morphologies. Measuring features with a GPS receiver was up to 3.3 times faster on average than using a tape measure, although signal interference from high streambanks or overhanging vegetation occasionally limited satellite signal availability and prolonged measurements with a GPS receiver. There were also no differences in precision of habitat dimensions when mapped using a continuous versus a position fix average GPS data collection method. Despite there being some disadvantages to using the GPS in stream habitat studies, measuring stream habitats with a GPS resulted in spatially referenced data that allowed the assessment of relative habitat position and changes in habitats over time, and was often faster than using a tape measure. For most spatial scales of interest, the precision and accuracy of DGPS data are adequate and have logistical advantages when compared to traditional methods of measurement. ?? 2006 Springer Science+Business Media

  20. Reduced variability and execution time to reach a target with a needle GPS system: Comparison between physicians, residents and nurse anaesthetists.

    PubMed

    Fevre, Marie-Cécile; Vincent, Caroline; Picard, Julien; Vighetti, Arnaud; Chapuis, Claire; Detavernier, Maxime; Allenet, Benoît; Payen, Jean-François; Bosson, Jean-Luc; Albaladejo, Pierre

    2016-09-19

    Ultrasound (US) guided needle positioning is safer than anatomical landmark techniques for central venous access. Hand-eye coordination and execution time depend on the professional's ability, previous training and personal skills. Needle guidance positioning systems (GPS) may theoretically reduce execution time and facilitate needle positioning in specific targets, thus improving patient comfort and safety. Three groups of healthcare professionals (41 anaesthesiologists and intensivists, 41 residents in anaesthesiology and intensive care, 39 nurse anaesthetists) were included and required to perform 3 tasks (positioning the tip of a needle in three different targets in a silicon phantom) by using successively a conventional US-guided needle positioning and a needle GPS. We measured execution times to perform the tasks, hand-eye coordination and the number of repositioning occurrences or errors in handling the needle or the probe. Without the GPS system, we observed a significant inter-individual difference for execution time (P<0.05), hand-eye coordination and the number of errors/needle repositioning between physicians, residents and nurse anaesthetists. US training and video gaming were found to be independent factors associated with a shorter execution time. Use of GPS attenuated the inter-individual and group variability. We observed a reduced execution time and improved hand-eye coordination in all groups as compared to US without GPS. Neither US training, video gaming nor demographic personal or professional factors were found to be significantly associated with reduced execution time when GPS was used. US associated with GPS systems may improve safety and decrease execution time by reducing inter-individual variability between professionals for needle-handling procedures.

  1. Further Developments in Range-Extended GPS Kinematic Positioning Using a Numerical Weather Prediction Model

    NASA Astrophysics Data System (ADS)

    Nievinski, F. G.; Santos, M.

    2006-05-01

    hour) observation sessions. Since NWP grids are made available at 3-hourly forecast intervals, short sessions allowed us to avoid interpolating the weather parameters in time and also to minimize the high computational cost of interpolating the weather parameters in space. Aiming at analyzing longer sessions in a timely manner, we have worked on implementing and speeding up these algorithms. To assess the impact of this improved version of our ray-tracer, we have used a short baseline solution as benchmark for a long baseline solution (both kinematic, dual frequency). The long one should have be less accurate and precise that the short one, mainly due to atmospheric effects. We show results and comparisons both in the range and position domains. Nievinski, F.G., K. Cove, M. Santos, D. Wells, R. Kingdon (2005). Range-Extended GPS Kinematic Positioning using Numerical Weather Prediction Model. Proceedings of the Institute of Navigation Annual Meeting 2005, June 27-29, 2005, Cambridge, MA.

  2. Tightly Coupled Integration of GPS Ambiguity Fixed Precise Point Positioning and MEMS-INS through a Troposphere-Constrained Adaptive Kalman Filter.

    PubMed

    Han, Houzeng; Xu, Tianhe; Wang, Jian

    2016-07-08

    Precise Point Positioning (PPP) makes use of the undifferenced pseudorange and carrier phase measurements with ionospheric-free (IF) combinations to achieve centimeter-level positioning accuracy. Conventionally, the IF ambiguities are estimated as float values. To improve the PPP positioning accuracy and shorten the convergence time, the integer phase clock model with between-satellites single-difference (BSSD) operation is used to recover the integer property. However, the continuity and availability of stand-alone PPP is largely restricted by the observation environment. The positioning performance will be significantly degraded when GPS operates under challenging environments, if less than five satellites are present. A commonly used approach is integrating a low cost inertial sensor to improve the positioning performance and robustness. In this study, a tightly coupled (TC) algorithm is implemented by integrating PPP with inertial navigation system (INS) using an Extended Kalman filter (EKF). The navigation states, inertial sensor errors and GPS error states are estimated together. The troposphere constrained approach, which utilizes external tropospheric delay as virtual observation, is applied to further improve the ambiguity-fixed height positioning accuracy, and an improved adaptive filtering strategy is implemented to improve the covariance modelling considering the realistic noise effect. A field vehicular test with a geodetic GPS receiver and a low cost inertial sensor was conducted to validate the improvement on positioning performance with the proposed approach. The results show that the positioning accuracy has been improved with inertial aiding. Centimeter-level positioning accuracy is achievable during the test, and the PPP/INS TC integration achieves a fast re-convergence after signal outages. For troposphere constrained solutions, a significant improvement for the height component has been obtained. The overall positioning accuracies of the height

  3. Tightly Coupled Integration of GPS Ambiguity Fixed Precise Point Positioning and MEMS-INS through a Troposphere-Constrained Adaptive Kalman Filter

    PubMed Central

    Han, Houzeng; Xu, Tianhe; Wang, Jian

    2016-01-01

    Precise Point Positioning (PPP) makes use of the undifferenced pseudorange and carrier phase measurements with ionospheric-free (IF) combinations to achieve centimeter-level positioning accuracy. Conventionally, the IF ambiguities are estimated as float values. To improve the PPP positioning accuracy and shorten the convergence time, the integer phase clock model with between-satellites single-difference (BSSD) operation is used to recover the integer property. However, the continuity and availability of stand-alone PPP is largely restricted by the observation environment. The positioning performance will be significantly degraded when GPS operates under challenging environments, if less than five satellites are present. A commonly used approach is integrating a low cost inertial sensor to improve the positioning performance and robustness. In this study, a tightly coupled (TC) algorithm is implemented by integrating PPP with inertial navigation system (INS) using an Extended Kalman filter (EKF). The navigation states, inertial sensor errors and GPS error states are estimated together. The troposphere constrained approach, which utilizes external tropospheric delay as virtual observation, is applied to further improve the ambiguity-fixed height positioning accuracy, and an improved adaptive filtering strategy is implemented to improve the covariance modelling considering the realistic noise effect. A field vehicular test with a geodetic GPS receiver and a low cost inertial sensor was conducted to validate the improvement on positioning performance with the proposed approach. The results show that the positioning accuracy has been improved with inertial aiding. Centimeter-level positioning accuracy is achievable during the test, and the PPP/INS TC integration achieves a fast re-convergence after signal outages. For troposphere constrained solutions, a significant improvement for the height component has been obtained. The overall positioning accuracies of the height

  4. An introduction to the global positioning system and some geological applications

    NASA Technical Reports Server (NTRS)

    Dixon, T. H.

    1991-01-01

    The fundamental principles of the global positioning system (GPS) are reviewed, with consideration given to geological and geophysical applications and related accuracy requirements. Recent improvements are emphasized which relate to areas such as equipment cost, limitations in the GPS satellite constellation, data analysis, uncertainties in satellite orbits and propagation delays, and problems in resolving carrier phase cycle ambiguities. Earthquake processes and near-fault crustal deformation monitoring have been facilitated by advances in GPS data acquisition and analysis. Horizontal positioning capability has been improved by new satellite constellation, better models, and global tracking networks. New classes of tectonic problems may now be studied through GPS, such as kinematic descriptions of crustal deformation and the measurement of relative plate motion at convergent boundaries. Continued improvements in the GPS are foreseen.

  5. Update on GPS Modernization Efforts

    DTIC Science & Technology

    2015-06-11

    GPS = Global Positioning System, GSSAP = Geosynchronous Space Situational Awareness Program, JSpOC = Joint Space Operations Center, ORS = Operationally...Surveillance Telescope, VAFB =Vandenberg Air Force Base. WGS = Wideband Global Satellite Communications Global Positioning Systems Directorate SPACE...International Committee On Global Navigation Satellite Systems (GNSS) Department of Transportation • Federal Aviation Administration Satellite Block

  6. Systems and Methods for Locating a Target in a GPS-Denied Environment

    NASA Technical Reports Server (NTRS)

    Murdock, Ronald G. (Inventor); Mackay, John D. (Inventor); Cummins, Douglas A. (Inventor)

    2017-01-01

    A system for locating an object in a GPS-denied environment includes first and second stationary nodes of a network and an object out of synchronization with a common time base of the network. The system includes one or more processors that are configured to estimate distances between the first stationary node and the object and a distance between the second stationary node and the object by comparing time-stamps of messages relayed between the object and the nodes. A position of the object can then be trilaterated using a location of each of the first and second stationary nodes and the measured distances between the object and each of the first and second stationary nodes.

  7. The Nuclear Detonation Detection System on the GPS satellites

    SciTech Connect

    Higbie, P.R.; Blocker, N.K.

    1993-07-27

    This article begins with a historical perspective of satellite usage in monitoring nuclear detonations. Current capabilities of the 24 GPS satellites in detecting the light, gamma rays, x-rays and neutrons from a nuclear explosion are described. In particular, an optical radiometer developed at Sandia National Laboratories is characterized. Operational information and calibration procedures are emphasized.

  8. Lessons Learned from Two Years of On-Orbit Global Positioning System Experience on International Space Station

    NASA Technical Reports Server (NTRS)

    Gomez, Susan F.; Lammers, Michael L.

    2004-01-01

    The Global Positioning System Subsystem (GPS) for International Space Station (ISS) was activated April 12,2002 following the installation of the SO truss segment that included the GPS antennas on Shuttle mission STS-110. The ISS GPS receiver became the primary source for position, velocity, and attitude information for ISS two days after activation. The GPS receiver also provides a time reference for manual control of ISS time, and will be used for automatic time updates after problems are resolved with the output from the receiver. After two years of on-orbit experience, the GPS continues to be used as the primary navigation source for ISS; however, enough problems have surfaced that the firmware in the GPS attitude code has had to be totally rewritten and new algorithms developed, the firmware that processed the time output from the GPS receiver had to be rewritten, while the GPS navigation code has had minor revisions. The factors contributing to the delivery of a GPS receiver for use on ISS that requires extensive operator intervention to function are discussed. Observations from two years worth of GPS solutions will also be discussed. The technical solutions to the anomalous GPS receiver behavior will be discussed.

  9. GPS Radio Occultation as Part of the Global Observing System for Atmosphere

    NASA Technical Reports Server (NTRS)

    Mannucci, Anthony J.; Ao, C. O.; Iijima, B. A.; Wilson, B. D.; Yunck, T. P.; Kursinski, E. R.

    2008-01-01

    Topics include: The Measurement (Physical retrievals based on time standards), GPS Retrieval Products, Retrievals and Radiances: CLARREO Mission, GPS RO and AIRS, GPS RO and Microwave, GPS RO and Radiosondes, GPS/GNSS Science, and Conclusions.

  10. GPS position time-series analysis based on asymptotic normality of M-estimation

    NASA Astrophysics Data System (ADS)

    Khodabandeh, A.; Amiri-Simkooei, A. R.; Sharifi, M. A.

    2012-01-01

    The efficacy of robust M-estimators is a well-known issue when dealing with observational blunders. When the number of observations is considerably large—long time series for instance—one can take advantage of the asymptotic normality of the M-estimation and compute reasonable estimates for the unknown parameters of interest. A few leading M-estimators have been employed to identify the most likely functional model for GPS coordinate time series. This includes the simultaneous detection of periodic patterns and offsets in the GPS time series. Estimates of white noise, flicker noise, and random walk noise components are also achieved using the robust M-estimators of (co)variance components, developed in the framework of the least-squares variance component estimation (LS-VCE) theory. The method allows one to compute confidence interval for the (co)variance components in asymptotic sense. Simulated time series using white noise plus flicker noise show that the estimates of random walk noise fluctuate more than those of flicker noise for different M-estimators. This is because random walk noise is not an appropriate noise structure for the series. The same phenomenon is observed using the results of real GPS time series, which implies that the combination of white plus flicker noise is well described for GPS time series. Some of the estimated noise components of LS-VCE differ significantly from those of other M- estimators. This reveals that there are a large number of outliers in the series. This conclusion is also affirmed by performing the statistical tests, which detect (large) parts of the outliers but can also leave parts to be undetected.

  11. An Integrated Navigation System using GPS Carrier Phase for Real-Time Airborne Synthetic Aperture Radar (SAR)

    SciTech Connect

    Fellerhoff, J. Rick; Kim, Theodore J.; Kohler, Stewart M.

    1999-06-24

    A Synthetic Aperture Radar (SAR) requires accu- rate measurement of the motion of the imaging plat- form to produce well-focused images with minimal absolute position error. The motion measurement (MoMeas) system consists of a inertial measurement unit (IMU) and a P-code GPS receiver that outputs corrected ephemeris, L1 & L2 pseudoranges, and L1 & L2 carrier phase measurements. The unknown initial carrier phase biases to the GPS satellites are modeled as states in an extended Kalman filter and the resulting integrated navigation solution has po- sition errors that change slowly with time. Position error drifts less than 1- cm/sec have been measured from the SAR imagery for various length apertures.

  12. Orbiter global positioning system design and Ku-band problems investigation, exhibit B, revision 1

    NASA Technical Reports Server (NTRS)

    Chie, C. M.; Braun, W. R.

    1981-01-01

    The LinCom effort in supporting the JSC study of the use of the Global Positioning System (GPS) on the space shuttle and in Ku-band problem investigation is documented. LinCom was tasked to evaluate system implementation, performance, and integration aspects of the shuttle GPS and to provide independent technical assessment of reports submitted to JSC regarding integration studies, system studies and navigation analyses.

  13. Automatic monitoring system for high-steep slope in open-pit mine based on GPS and data analysis

    NASA Astrophysics Data System (ADS)

    Zhou, Chunmei; Li, Xianfu; Qin, Sunwei; Qiu, Dandan; Wu, Yanlin; Xiao, Yun; Zhou, Jian

    2008-12-01

    Recently, GPS has been more and more applicative in open pit mine slope safety monitoring. Daye Iron Mine open pit high-steep slope automatic monitoring system mainly consists of three modules, namely, GPS data processing module, monitoring and warning module, emergency plans module. According to the rock mass structural feature and the side slope stability evaluation, it is arranged altogether to seven GPS distortion monitoring points on the sharp of Fault F9 at Daye iron Mine, adopted the combination of monofrequent static GPS receiver and data-transmission radio to carry on the observation, the data processing mainly uses three transect interpolation method to solve the questions of discontinuity and Effectiveness in the data succession. According to the displacement monitoring data from 1990 to 1996 of Daye Iron Mine East Open Pit Shizi mountain Landslide A2, researching the displacement criterion, rate criterion, acceleration criterion, creep curve tangent angle criterion etc of landslide failure, the result shows that the landslide A2 is the lapse type crag nature landslide whose movement in three phases, namely creep stage, accelerated phase, destruction stage. It is different of the failure criterion in different stages and different position that is at the rear, central, front margin of the landslide. It has important guiding significance to put forward the comprehensive failure criterion of seven new-settled monitoring points combining the slope deformation destruction and macroscopic evidence.

  14. Civil Application of Differential GPS Using a Single Channel Sequential Receiver

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Global Positioning System (GPS) and its potential for area navigation, landing, and takeoff under minimum ceilings and advanced air traffic control operation is discussed. The following topics are reported: status of the GPS system; GPS signal availability for the civil community; alternative differential GPS concepts; predicted performance enhancement achievable with differential GPS and the operational improvements which will result; and a development program to test and evaluate differential GPS concepts, performance and operational procedures applicable to helicopters. Potential benefits which will be derived from helicopter use of GPS in the differential mode are identified.

  15. Helicopter precision approach capability using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Kaufmann, David N.

    1992-01-01

    The period between 1 July and 31 December, 1992, was spent developing a research plan as well as a navigation system document and flight test plan to investigate helicopter precision approach capability using the Global Positioning System (GPS). In addition, all hardware and software required for the research was acquired, developed, installed, and verified on both the test aircraft and the ground-based reference station.

  16. Development and assessment of GPS virtual reference stations for RTK positioning

    NASA Astrophysics Data System (ADS)

    Hu, G. R.; Khoo, H. S.; Goh, P. C.; Law, C. L.

    2003-08-01

    The past few years have seen substantial growth in multiple-reference-station networks which are used to overcome the limitations of standard real-time kinematic (RTK) systems. The use of a multiple-reference-station network, as opposed to a single reference station, results in a larger service area coverage, increased robustness, and a higher positioning accuracy. However, real-time application is still a difficult task to implement in practice. The virtual reference station (VRS) concept is an efficient method of transmitting corrections through a data link to the network users for RTK positioning. A novel method of creating VRS for high-precision RTK positioning has been developed and tested at the Nanyang Technological University (NTU). The emphasis has been on real-time implementation. A number of tests were conducted using the Singapore Integrated Multiple Reference Station Network (SIMRSN). The tests were done at different locations in Singapore to assess the achievable accuracy and initialization times for VRS RTK positioning using the NTU method. The results confirmed that VRS RTK positioning can be achieved to within 3-cm accuracy in horizontal position. Height accuracy is in the range of 1 to 5 cm. The average initialization time is within 2 min.

  17. GPS/CAPS dual-mode software receiver

    NASA Astrophysics Data System (ADS)

    Ning, Chunlin; Shi, Huli; Hu, Chao

    2009-03-01

    The positioning of the GPS or Chinese Area Positioning System (CAPS) software receiver was developed on a software receiver platform. The structure of the GPS/CAPS dual-mode software receiver was put forward after analyzing the differences in the satellite identification, ranging code, spread spectrum, coordinate system, time system, carrier band, and navigation data between GPS and CAPS. Based on Matlab software on a personal computer, baseband signal processing and positioning procedures were completed using real GPS and CAPS radio frequency signals received by two antennas. Three kinds of experiments including GPS positioning, CAPS positioning, and GPS/CAPS positioning were carried out. Stability and precision of the results were analyzed and compared. The experimental results show that the precision of CAPS is similar to that of GPS, while the positioning precision of the GPS/CAPS dual-mode software receiver is 1-2 m higher than that of CAPS or GPS. The smallest average variance of the positioning can be obtained by using the GPS/CAPS dual-mode software receiver.

  18. Comprehensive Comparisons of Satellite Data, Signals, and Measurements between the BeiDou Navigation Satellite System and the Global Positioning System

    PubMed Central

    Jan, Shau-Shiun; Tao, An-Lin

    2016-01-01

    The Chinese BeiDou navigation satellite system (BDS) aims to provide global positioning service by 2020. The combined use of BDS and Global Positioning System (GPS) is proposed to provide navigation service with more stringent requirements. Actual satellite data, signals and measurements were collected for more than one month to analyze the positioning service qualities from both BDS and GPS. In addition to the conversions of coordinate and timing system, five data quality analysis (DQA) methods, three signal quality analysis (SQA) methods, and four measurement quality analysis (MQA) methods are proposed in this paper to improve the integrated positioning performance of BDS and GPS. As shown in the experiment results, issues related to BDS and GPS are resolved by the above proposed quality analysis methods. Thus, the anomalies in satellite data, signals and measurements can be detected by following the suggested resolutions to enhance the positioning performance of the combined use of BDS and GPS in the Asia Pacific region. PMID:27187403

  19. Comprehensive Comparisons of Satellite Data, Signals, and Measurements between the BeiDou Navigation Satellite System and the Global Positioning System.

    PubMed

    Jan, Shau-Shiun; Tao, An-Lin

    2016-05-13

    The Chinese BeiDou navigation satellite system (BDS) aims to provide global positioning service by 2020. The combined use of BDS and Global Positioning System (GPS) is proposed to provide navigation service with more stringent requirements. Actual satellite data, signals and measurements were collected for more than one month to analyze the positioning service qualities from both BDS and GPS. In addition to the conversions of coordinate and timing system, five data quality analysis (DQA) methods, three signal quality analysis (SQA) methods, and four measurement quality analysis (MQA) methods are proposed in this paper to improve the integrated positioning performance of BDS and GPS. As shown in the experiment results, issues related to BDS and GPS are resolved by the above proposed quality analysis methods. Thus, the anomalies in satellite data, signals and measurements can be detected by following the suggested resolutions to enhance the positioning performance of the combined use of BDS and GPS in the Asia Pacific region.

  20. Turbine nozzle positioning system

    DOEpatents

    Norton, Paul F.; Shaffer, James E.

    1996-01-30

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine.

  1. Turbine nozzle positioning system

    DOEpatents

    Norton, P.F.; Shaffer, J.E.

    1996-01-30

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine. 9 figs.

  2. Improve wildlife species tracking—Implementing an enhanced global positioning system data management system for California condors

    USGS Publications Warehouse

    Waltermire, Robert G.; Emmerich, Christopher U.; Mendenhall, Laura C.; Bohrer, Gil; Weinzierl, Rolf P.; McGann, Andrew J.; Lineback, Pat K.; Kern, Tim J.; Douglas, David C.

    2016-05-03

    U.S. Fish and Wildlife Service (USFWS) staff in the Pacific Southwest Region and at the Hopper Mountain National Wildlife Refuge Complex requested technical assistance to improve their global positioning system (GPS) data acquisition, management, and archive in support of the California Condor Recovery Program. The USFWS deployed and maintained GPS units on individual Gymnogyps californianus (California condor) in support of long-term research and daily operational monitoring and management of California condors. The U.S. Geological Survey (USGS) obtained funding through the Science Support Program to provide coordination among project participants, provide GPS Global System for Mobile Communication (GSM) transmitters for testing, and compare GSM/GPS with existing Argos satellite GPS technology. The USFWS staff worked with private companies to design, develop, and fit condors with GSM/GPS transmitters. The Movebank organization, an online database of animal tracking data, coordinated with each of these companies to automatically stream their GPS data into Movebank servers and coordinated with USFWS to improve Movebank software for managing transmitter data, including proofing/error checking of incoming GPS data. The USGS arranged to pull raw GPS data from Movebank into the USGS California Condor Management and Analysis Portal (CCMAP) (https://my.usgs.gov/ccmap) for production and dissemination of a daily map of condor movements including various automated alerts. Further, the USGS developed an automatic archiving system for pulling raw and proofed Movebank data into USGS ScienceBase to comply with the Federal Information Security Management Act of 2002. This improved data management system requires minimal manual intervention resulting in more efficient data flow from GPS data capture to archive status. As a result of the project’s success, Pinnacles National Park and the Ventana Wildlife Society California condor programs became partners and adopted the same

  3. Evaluation of GPS position and attitude determination for automated rendezvous and docking missions

    NASA Astrophysics Data System (ADS)

    Diprinzio, Marc D.; Tolson, Robert H.

    1994-07-01

    The use of the Global Positioning System for position and attitude determination is evaluated for an automated rendezvous and docking mission. The typical mission scenario involves the chaser docking with the target for resupply or repair purposes, and is divided into three sections. During the homing phase, the chaser utilizes coarse acquisition pseudorange data to approach the target; guidance laws for this stage are investigated. In the second phase, differential carrier phase positioning is utilized. The chaser must maintain a quasiconstant distance from the target, in order to resolve the initial integer ambiguities. Once the ambiguities are determined, the terminal phase is entered, and the rendezvous is completed with continuous carrier phase tracking. Attitude knowledge is maintained in all phases through the use of the carrier phase observable. A Kalman filter is utilized to estimate all states from the noisy measurement data. The effects of selective availability and cycle slips are also investigated.

  4. BDS/GPS relative positioning for long baseline with undifferenced observations

    NASA Astrophysics Data System (ADS)

    Wang, Min; Cai, Hongzhou; Pan, Zongpeng

    2015-01-01

    Before and after the official beginning of Beidou navigation satellite system (BDS) regional service on December 27, 2012, many applications based on BDS such as real-time kinematic (RTK) and precise point positioning (PPP) with real data have been considered in the literatures. However, lack of precise satellite antenna correction and relatively low quality of BDS orbit and clock product is an obstacle for PPP and relative positioning over long baseline using BDS observations. In this paper, the Double Station Observation Processing (DSOP) method that directly uses undifferenced data is applied to relative positioning. By estimating the satellite clock offsets on-the-fly, the satellite dependent unmodelled error can be compensated. Moreover, the direct use of undifferenced observation makes the method easy to implement and flexible to adapt observations of multiple systems. Experiment results demonstrate that relative positioning based on BDS observations can be achieved at centimeter accuracy level which is better than conventional PPP results with limited computation burden increase. These results also indicate the promising potential of BDS to develop real-time service.

  5. Towards evaluating the intensity of convective systems by using GPS radio occultation profiles

    NASA Astrophysics Data System (ADS)

    Biondi, Riccardo; Steiner, Andrea K.; Kirchengast, Gottfried

    2015-04-01

    Deep convective systems, also more casually often just called storms, are destructive weather phenomena causing every year many deaths, injuries and damages and accounting for major economic losses in several countries. The number and intensity of such phenomena increased over the last decades in some areas of the globe, including Europe. Damages are mostly caused by strong winds and heavy rain and these parameters are strongly connected to the structure of the storm. Convection over land is usually stronger and deeper than over the ocean and some convective systems, known as supercells, also develop tornadoes through processes which are still mostly unclear. The intensity forecast and monitoring of convective systems is one of the major challenges for meteorology because in-situ measurements during extreme events are too sparse or not reliable and most ongoing satellite missions do not provide suitable time/space coverage. With this study we propose a new method for detecting the convection intensity in terms of rain rate and surface wind speed by using meteorological surface measurements in combination with atmospheric profiles from Global Positioning System (GPS) radio occultation observations, which are available in essentially all weather conditions and with global coverage. The analysis of models indicated a relationship between the cloud top altitude and the intensity of a storm. We thus use GPS radio occultation bending angle profiles for detecting the storm's cloud top altitude and we correlate this value to the rain rate and wind speed measured by meteorological station networks in two different regions, the WegenerNet climate station network (South-Eastern Styria, Austria) and the Atmospheric Radiation Measurement site (ARM, Southern Great Plains, USA), respectively. The results show a good correlation between the cloud top altitude and the maximum rain rate in the monitored areas, while this is not found for maximum wind speed. We conclude from this

  6. Optimal on-airport monitoring of the integrity of GPS-based landing systems

    NASA Astrophysics Data System (ADS)

    Xie, Gang

    2004-11-01

    The Global Positioning System (GPS) is a satellite-based radio navigation system. The Local Area Augmentation System (LAAS) is a version of Differential GPS (DGPS) designed to reliably support aircraft precision approaches. The Integrity Monitor Testbed (IMT) is a prototype of the LAAS Ground Facility (LGF) that is used to evaluate whether the LGF can meet system integrity requirements. To insure high integrity, the IMT has a variety of monitors to detect all possible failures. It also contains a failure-handling logic, known as Executive Monitoring (EXM), to exclude faulty measurements and recover once the failure disappears. Spatial ionospheric gradients are major threats to the LAAS. One focus of this thesis is exploring methods to quickly detect ionospheric gradients given the required low probability of false alarms. The first part of the thesis introduces GPS, LAAS, and the IMT and explains the algorithms and functionalities of IMT integrity monitors in detail. It then analyzes the failure responses of the integrity monitors under the most general measurement failure model. This analysis not only qualitatively maps the integrity monitors into the entire failure space, but also provides a tool to quantitatively compare the performance of different integrity monitors. In addition, the analysis examines the limitations of the existing monitors in detecting small but hazardous ionospheric gradients. The divergence Cumulative Sum (CUSUM) method is then derived and assessed. It can reduce the time required to detect marginal ionospheric gradients by about 30%. With the divergence CUSUM method implemented in the IMT, system integrity and performance are greatly improved. Different monitors can respond to the same failures. The last part of this thesis shows that the combination of these different monitors can detect certain failures more quickly than any individual monitor. This idea leads to a new method, called failure-specific testing, which can significantly

  7. Global positioning system and associated technologies in animal behaviour and ecological research

    PubMed Central

    Tomkiewicz, Stanley M.; Fuller, Mark R.; Kie, John G.; Bates, Kirk K.

    2010-01-01

    Biologists can equip animals with global positioning system (GPS) technology to obtain accurate (less than or equal to 30 m) locations that can be combined with sensor data to study animal behaviour and ecology. We provide the background of GPS techniques that have been used to gather data for wildlife studies. We review how GPS has been integrated into functional systems with data storage, data transfer, power supplies, packaging and sensor technologies to collect temperature, activity, proximity and mortality data from terrestrial species and birds. GPS ‘rapid fixing’ technologies combined with sensors provide location, dive frequency and duration profiles, and underwater acoustic information for the study of marine species. We examine how these rapid fixing technologies may be applied to terrestrial and avian applications. We discuss positional data quality and the capability for high-frequency sampling associated with GPS locations. We present alternatives for storing and retrieving data by using dataloggers (biologging), radio-frequency download systems (e.g. very high frequency, spread spectrum), integration of GPS with other satellite systems (e.g. Argos, Globalstar) and potential new data recovery technologies (e.g. network nodes). GPS is one component among many rapidly evolving technologies. Therefore, we recommend that users and suppliers interact to ensure the availability of appropriate equipment to meet animal research objectives. PMID:20566494

  8. Global positioning system and associated technologies in animal behaviour and ecological research

    USGS Publications Warehouse

    Tomkiewicz, Stanley M.; Fuller, Mark R.; Kie, John G.; Bates, Kirk K.

    2010-01-01

    Biologists can equip animals with global positioning system (GPS) technology to obtain accurate (less than or equal to 30 m) locations that can be combined with sensor data to study animal behaviour and ecology. We provide the background of GPS techniques that have been used to gather data for wildlife studies. We review how GPS has been integrated into functional systems with data storage, data transfer, power supplies, packaging and sensor technologies to collect temperature, activity, proximity and mortality data from terrestrial species and birds. GPS 'rapid fixing' technologies combined with sensors provide location, dive frequency and duration profiles, and underwater acoustic information for the study of marine species. We examine how these rapid fixing technologies may be applied to terrestrial and avian applications. We discuss positional data quality and the capability for high-frequency sampling associated with GPS locations. We present alternatives for storing and retrieving data by using dataloggers (biologging), radio-frequency download systems (e.g. very high frequency, spread spectrum), integration of GPS with other satellite systems (e.g. Argos, Globalstar) and potential new data recovery technologies (e.g. network nodes). GPS is one component among many rapidly evolving technologies. Therefore, we recommend that users and suppliers interact to ensure the availability of appropriate equipment to meet animal research objectives.

  9. Global positioning system and associated technologies in animal behaviour and ecological research.

    PubMed

    Tomkiewicz, Stanley M; Fuller, Mark R; Kie, John G; Bates, Kirk K

    2010-07-27

    Biologists can equip animals with global positioning system (GPS) technology to obtain accurate (less than or equal to 30 m) locations that can be combined with sensor data to study animal behaviour and ecology. We provide the background of GPS techniques that have been used to gather data for wildlife studies. We review how GPS has been integrated into functional systems with data storage, data transfer, power supplies, packaging and sensor technologies to collect temperature, activity, proximity and mortality data from terrestrial species and birds. GPS 'rapid fixing' technologies combined with sensors provide location, dive frequency and duration profiles, and underwater acoustic information for the study of marine species. We examine how these rapid fixing technologies may be applied to terrestrial and avian applications. We discuss positional data quality and the capability for high-frequency sampling associated with GPS locations. We present alternatives for storing and retrieving data by using dataloggers (biologging), radio-frequency download systems (e.g. very high frequency, spread spectrum), integration of GPS with other satellite systems (e.g. Argos, Globalstar) and potential new data recovery technologies (e.g. network nodes). GPS is one component among many rapidly evolving technologies. Therefore, we recommend that users and suppliers interact to ensure the availability of appropriate equipment to meet animal research objectives.

  10. Investigation of the GPS Block IIR Time Keeping System (TKS) Anomalies Caused by the Voltage-Controlled Crystal Oscillator (VCXO)

    DTIC Science & Technology

    1999-12-01

    91st Annual Precise Time and Time Interval (PTTI) Meeting INVESTIGATION OF THE GPS BLOCK IIR TIME KEEPING SYSTEM (TKS) ANOMALIES CAUSED BY THE...1999 2. REPORT TYPE 3. DATES COVERED 00-00-1999 to 00-00-1999 4. TITLE AND SUBTITLE Investigation of the GPS Block IIR Time Keeping System (TKS...II-R Time Keeping System ;’ Proceeding of the 30* Annual PTI’I Meeting, Reston, Virginia, USA. 121 A. Baker, “ GPS Block IIR Time Standard Assembly

  11. A summary of the GPS system performance for STARS Mission 3

    SciTech Connect

    Creel, E.E.

    1997-08-01

    This paper describes the performance of the GPS system on the most recent flight of the STARS missile, STARS Mission 3 (M3). This mission was conducted under the Ballistic Missile Defense Organization`s (BMDO`s) Consolidated Targets Program. The United States Army Space and Strategic Defense Command (USASSDC) is the executing agent for this mission and the Department of Energy`s (DOE`s) Sandia National Laboratories (SNL) is the vehicle developer and integrator. The M3 flight, dually designated as the MSX Dedicated Targets II (MDT-II) mission occurred on August 31, 1996. This mission was conducted for the specific purpose of providing targets for viewing by the MSX satellite. STARS M3 was the first STARS flight to use GPS-derived data for missile guidance, and proved to be instrumental in the procurement of a wealth of experimental data which is still undergoing analysis by numerous scientific agencies within the BMDO complex. GPS accuracy was required for this mission because of the prescribed targeting requirements for the MDT-II payload deliveries with respect to the MSX satellite flight path. During the flight test real time GPS-derived state vector data was also used to generate pointing angles for various down range sensors involved in the experiment. Background information describing the STARS missile, GPS subsystem architecture, and the GPS Kalman filter design is presented first, followed by a discussion of the telemetry data records obtained from this flight with interpretations and conclusions.

  12. Use of GPS and InSAR Technology and its Further Development in Earthquake Modeling

    NASA Technical Reports Server (NTRS)

    Donnellan, A.; Lyzenga, G.; Argus, D.; Peltzer, G.; Parker, J.; Webb, F.; Heflin, M.; Zumberge, J.

    1999-01-01

    Global Positioning System (GPS) data are useful for understanding both interseismic and postseismic deformation. Models of GPS data suggest that the lower crust, lateral heterogeneity, and fault slip, all provide a role in the earthquake cycle.

  13. Developing a Fundamental Model for an Integrated GPS/INS State Estimation System with Kalman Filtering

    NASA Technical Reports Server (NTRS)

    Canfield, Stephen

    1999-01-01

    This work will demonstrate the integration of sensor and system dynamic data and their appropriate models using an optimal filter to create a robust, adaptable, easily reconfigurable state (motion) estimation system. This state estimation system will clearly show the application of fundamental modeling and filtering techniques. These techniques are presented at a general, first principles level, that can easily be adapted to specific applications. An example of such an application is demonstrated through the development of an integrated GPS/INS navigation system. This system acquires both global position data and inertial body data, to provide optimal estimates of current position and attitude states. The optimal states are estimated using a Kalman filter. The state estimation system will include appropriate error models for the measurement hardware. The results of this work will lead to the development of a "black-box" state estimation system that supplies current motion information (position and attitude states) that can be used to carry out guidance and control strategies. This black-box state estimation system is developed independent of the vehicle dynamics and therefore is directly applicable to a variety of vehicles. Issues in system modeling and application of Kalman filtering techniques are investigated and presented. These issues include linearized models of equations of state, models of the measurement sensors, and appropriate application and parameter setting (tuning) of the Kalman filter. The general model and subsequent algorithm is developed in Matlab for numerical testing. The results of this system are demonstrated through application to data from the X-33 Michael's 9A8 mission and are presented in plots and simple animations.

  14. Global Plate Velocities from the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Larson, Kristine M.; Freymueller, Jeffrey T.; Philipsen, Steven

    1997-01-01

    We have analyzed 204 days of Global Positioning System (GPS) data from the global GPS network spanning January 1991 through March 1996. On the basis of these GPS coordinate solutions, we have estimated velocities for 38 sites, mostly located on the interiors of the Africa, Antarctica, Australia, Eurasia, Nazca, North America, Pacific, and South America plates. The uncertainties of the horizontal velocity components range from 1.2 to 5.0 mm/yr. With the exception of sites on the Pacific and Nazca plates, the GPS velocities agree with absolute plate model predictions within 95% confidence. For most of the sites in North America, Antarctica, and Eurasia, the agreement is better than 2 mm/yr. We find no persuasive evidence for significant vertical motions (less than 3 standard deviations), except at four sites. Three of these four were sites constrained to geodetic reference frame velocities. The GPS velocities were then used to estimate angular velocities for eight tectonic plates. Absolute angular velocities derived from the GPS data agree with the no net rotation (NNR) NUVEL-1A model within 95% confidence except for the Pacific plate. Our pole of rotation for the Pacific plate lies 11.5 deg west of the NNR NUVEL-1A pole, with an angular speed 10% faster. Our relative angular velocities agree with NUVEL-1A except for some involving the Pacific plate. While our Pacific-North America angular velocity differs significantly from NUVEL-1A, our model and NUVEL-1A predict very small differences in relative motion along the Pacific-North America plate boundary itself. Our Pacific-Australia and Pacific- Eurasia angular velocities are significantly faster than NUVEL-1A, predicting more rapid convergence at these two plate boundaries. Along the East Pacific Pise, our Pacific-Nazca angular velocity agrees in both rate and azimuth with NUVFL-1A.

  15. Performance analysis of an integrated GPS/inertial attitude determination system. M.S. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Sullivan, Wendy I.

    1994-01-01

    The performance of an integrated GPS/inertial attitude determination system is investigated using a linear covariance analysis. The principles of GPS interferometry are reviewed, and the major error sources of both interferometers and gyroscopes are discussed and modeled. A new figure of merit, attitude dilution of precision (ADOP), is defined for two possible GPS attitude determination methods, namely single difference and double difference interferometry. Based on this figure of merit, a satellite selection scheme is proposed. The performance of the integrated GPS/inertial attitude determination system is determined using a linear covariance analysis. Based on this analysis, it is concluded that the baseline errors (i.e., knowledge of the GPS interferometer baseline relative to the vehicle coordinate system) are the limiting factor in system performance. By reducing baseline errors, it should be possible to use lower quality gyroscopes without significantly reducing performance. For the cases considered, single difference interferometry is only marginally better than double difference interferometry. Finally, the performance of the system is found to be relatively insensitive to the satellite selection technique.

  16. Map matching and heuristic elimination of gyro drift for personal navigation systems in GPS-denied conditions

    NASA Astrophysics Data System (ADS)

    Aggarwal, Priyanka; Thomas, David; Ojeda, Lauro; Borenstein, Johann

    2011-02-01

    This paper introduces a method for the substantial reduction of heading errors in inertial navigation systems used under GPS-denied conditions. Presumably, the method is applicable for both vehicle-based and personal navigation systems, but experiments were performed only with a personal navigation system called 'personal dead reckoning' (PDR). In order to work under GPS-denied conditions, the PDR system uses a foot-mounted inertial measurement unit (IMU). However, gyro drift in this IMU can cause large heading errors after just a few minutes of walking. To reduce these errors, the map-matched heuristic drift elimination (MAPHDE) method was developed, which estimates gyro drift errors by comparing IMU-derived heading to the direction of the nearest street segment in a database of street maps. A heuristic component in this method provides tolerance to short deviations from walking along the street, such as when crossing streets or intersections. MAPHDE keeps heading errors almost at zero, and, as a result, position errors are dramatically reduced. In this paper, MAPHDE was used in a variety of outdoor walks, without any use of GPS. This paper explains the MAPHDE method in detail and presents experimental results.

  17. A POSITIONAL DATA SYSTEM

    DOEpatents

    Forster, G.A.

    1963-09-24

    between master and slave synchros is described. A threephase a-c power source is connected to the stators of the synchros and an error detector is connected to the rotors of the synchros to measure the phasor difference therebetween. A phase shift network shifts the phase of one of the rotors 90 degrees and a demodulator responsive thereto causes the phasor difference signal of the rotors to shift phase 180 degrees whenever the 90 degree phase shifted signal goes negative. The phase shifted difference signal has a waveform which, with the addition of small values of resistance and capacitance, gives a substantially pure d-c output whose amplitude and polarity is proportional to the magnitude and direction of the difference in the angular positions of the synchro's rotors. (AEC)

  18. System architecture study of an orbital GPS user terminal

    NASA Technical Reports Server (NTRS)

    Martin, D. P.; Neily, C. M., Jr.

    1980-01-01

    The generic RF and applications processing requirements for a GPS orbital navigator are considered. A line of demarcation between dedicated analog hardware, and software/processor implementation, maximizing the latter is discussed. A modular approach to R/PA design which permits several varieties of receiver to be constructed from basic components is described. It is a basic conclusion that software signal processing of the output of the baseband correlator is the best choice of transition from analog to digital signal processing. High performance sets requiring multiple channels are developed from a generic design by replicating the RF processing segment, and modifying the applications software to provide enhanced state propagation and estimation.

  19. Evaluation of a Mobile Phone for Aircraft GPS Interference

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.

    2004-01-01

    Measurements of spurious emissions from a mobile phone are conducted in a reverberation chamber for the Global Positioning System (GPS) radio frequency band. This phone model was previously determined to have caused interference to several aircraft GPS receivers. Interference path loss (IPL) factors are applied to the emission data, and the outcome compared against GPS receiver susceptibility. The resulting negative safety margins indicate there are risks to aircraft GPS systems. The maximum emission level from the phone is also shown to be comparable with some laptop computer's emissions, implying that laptop computers can provide similar risks to aircraft GPS receivers.

  20. A Group-learning Approach to Academic and Transferable Skills through an Exercise in the Global Positioning System.

    ERIC Educational Resources Information Center

    Brown, Giles H.

    1999-01-01

    Describes a project based on the Global Positioning System (GPS) that offers students a chance to design and implement a mini-research program to prepare them for an undergraduate research project. Discusses the context of the GPS exercise, teaching and learning outcomes, and advantages and evaluation of the exercise. (CMK)

  1. Global Positioning System: a new tool for measurement of animal bites in a rural area near Bangalore, South India.

    PubMed

    Masthi, N R Ramesh; Undi, Malatesh

    2014-10-01

    This exploratory study was conducted in villages near Bangalore, South India with the primary objective of spatial mapping animal bite cases using Global Positioning System (GPS) technology. GPS technology was useful as a new tool in accurate measurement of animal bite cases.

  2. Using the GPS to Improve Trajectory Position and Velocity Determination During Real-Time Ejection Seat Test and Evaluation

    DTIC Science & Technology

    2003-02-01

    fall testing or riding a roller coaster with the dual DIVEPACS could provide 73 more information on the DIVEPACS reacquisition time after loss of...20 GPS Receiver Tracking Loops .............................................................................................. 20 Differential GPS...19 Figure 9. Tracking Loops

  3. GPS/INS Sensor Fusion Using GPS Wind up Model

    NASA Technical Reports Server (NTRS)

    Williamson, Walton R. (Inventor)

    2013-01-01

    A method of stabilizing an inertial navigation system (INS), includes the steps of: receiving data from an inertial navigation system; and receiving a finite number of carrier phase observables using at least one GPS receiver from a plurality of GPS satellites; calculating a phase wind up correction; correcting at least one of the finite number of carrier phase observables using the phase wind up correction; and calculating a corrected IMU attitude or velocity or position using the corrected at least one of the finite number of carrier phase observables; and performing a step selected from the steps consisting of recording, reporting, or providing the corrected IMU attitude or velocity or position to another process that uses the corrected IMU attitude or velocity or position. A GPS stabilized inertial navigation system apparatus is also described.

  4. Scintillation-Hardened GPS Receiver

    NASA Technical Reports Server (NTRS)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  5. Installation Options for the NAVSTAR Global Positioning System in Surface Ships.

    DTIC Science & Technology

    1984-06-01

    Global Positioning System ( GPS ) is a highly accurate satellite based positioning and navigation system ...RD-A14B 190 INSTALLATION OPTIONS FOR THE NAYSTAR GLOBAL POSITIONING i/i SYSTEM IN SURFACE SHIPS(U) NAYAL POSTGRADUATE SCHOOL MONTEREY CA K S AMOS JUN...POSTGRADUATE SCHOOL Monterey, California DTIC CULECTE THESIS INSTALLATION OPTIONS FOR THE NAVSTAR GLOBAL POSITIONING SYSTEM IN SURFACE SHIPS by LaJ Kevin

  6. GPS Metric Tracking Unit

    NASA Technical Reports Server (NTRS)

    2008-01-01

    As Global Positioning Satellite (GPS) applications become more prevalent for land- and air-based vehicles, GPS applications for space vehicles will also increase. The Applied Technology Directorate of Kennedy Space Center (KSC) has developed a lightweight, low-cost GPS Metric Tracking Unit (GMTU), the first of two steps in developing a lightweight, low-cost Space-Based Tracking and Command Subsystem (STACS) designed to meet Range Safety's link margin and latency requirements for vehicle command and telemetry data. The goals of STACS are to improve Range Safety operations and expand tracking capabilities for space vehicles. STACS will track the vehicle, receive commands, and send telemetry data through the space-based asset, which will dramatically reduce dependence on ground-based assets. The other step was the Low-Cost Tracking and Data Relay Satellite System (TDRSS) Transceiver (LCT2), developed by the Wallops Flight Facility (WFF), which allows the vehicle to communicate with a geosynchronous relay satellite. Although the GMTU and LCT2 were independently implemented and tested, the design collaboration of KSC and WFF engineers allowed GMTU and LCT2 to be integrated into one enclosure, leading to the final STACS. In operation, GMTU needs only a radio frequency (RF) input from a GPS antenna and outputs position and velocity data to the vehicle through a serial or pulse code modulation (PCM) interface. GMTU includes one commercial GPS receiver board and a custom board, the Command and Telemetry Processor (CTP) developed by KSC. The CTP design is based on a field-programmable gate array (FPGA) with embedded processors to support GPS functions.

  7. A new model for yaw attitude of Global Positioning System satellites

    NASA Technical Reports Server (NTRS)

    Bar-Sever, Y. E.

    1995-01-01

    Proper modeling of the Global Positioning System (GPS) satellite yaw attitude is important in high-precision applications. A new model for the GPS satellite yaw attitude is introduced that constitutes a significant improvement over the previously available model in terms of efficiency, flexibility, and portability. The model is described in detail, and implementation issues, including the proper estimation strategy, are addressed. The performance of the new model is analyzed, and an error budget is presented. This is the first self-contained description of the GPS yaw attitude model.

  8. Improved treatment of global positioning system force parameters in precise orbit determination applications

    NASA Technical Reports Server (NTRS)

    Vigue, Y.; Lichten, S. M.; Muellerschoen, R. J.; Blewitt, G.; Heflin, M. B.

    1993-01-01

    Data collected from a worldwide 1992 experiment were processed at JPL to determine precise orbits for the satellites of the Global Positioning System (GPS). A filtering technique was tested to improve modeling of solar-radiation pressure force parameters for GPS satellites. The new approach improves orbit quality for eclipsing satellites by a factor of two, with typical results in the 25- to 50-cm range. The resultant GPS-based estimates for geocentric coordinates of the tracking sites, which include the three DSN sites, are accurate to 2 to 8 cm, roughly equivalent to 3 to 10 nrad of angular measure.

  9. A new model for yaw attitude of Global Positioning System satellites

    NASA Astrophysics Data System (ADS)

    Bar-Sever, Y. E.

    1995-11-01

    Proper modeling of the Global Positioning System (GPS) satellite yaw attitude is important in high-precision applications. A new model for the GPS satellite yaw attitude is introduced that constitutes a significant improvement over the previously available model in terms of efficiency, flexibility, and portability. The model is described in detail, and implementation issues, including the proper estimation strategy, are addressed. The performance of the new model is analyzed, and an error budget is presented. This is the first self-contained description of the GPS yaw attitude model.

  10. Update on GPS Modernization Efforts

    DTIC Science & Technology

    2015-06-02

    optical Deep Space Surveillance System, GPS = Global Positioning System, GSSAP = Geosynchronous Space Situational Awareness Program, JSpOC = Joint...Space Situational Awareness. SST= Space Surveillance Telescope, VAFB =Vandenberg Air Force Base. WGS = Wideband Global Satellite Communications Global ...Bilateral Agreements • Adjacent Band Interference • International Committee On Global Navigation Satellite Systems (GNSS) Department of

  11. Precise mean sea level measurements using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Kelecy, Thomas M.; Born, George H.; Parke, Michael E.; Rocken, Christian

    1994-01-01

    This paper describes the results of a sea level measurement test conducted off La Jolla, California, in November of 1991. The purpose of this test was to determine accurate sea level measurements using a Global Positioning System (GPS) equipped buoy. These measurements were intended to be used as the sea level component for calibration of the ERS 1 satellite altimeter. Measurements were collected on November 25 and 28 when the ERS 1 satellite overflew the calibration area. Two different types of buoys were used. A waverider design was used on November 25 and a spar design on November 28. This provided the opportunity to examine how dynamic effects of the measurement platform might affect the sea level accuracy. The two buoys were deployed at locations approximately 1.2 km apart and about 15 km west of a reference GPS receiver located on the rooftop of the Institute of Geophysics and Planetary Physics at the Scripps Institute of Oceanography. GPS solutions were computed for 45 minutes on each day and used to produce two sea level time series. An estimate of the mean sea level at both locations was computed by subtracting tide gage data collected at the Scripps Pier from the GPS-determined sea level measurements and then filtering out the high-frequency components due to waves and buoy dynamics. In both cases the GPS estimate differed from Rapp's mean altimetric surface by 0.06 m. Thus, the gradient in the GPS measurements matched the gradient in Rapp's surface. These results suggest that accurate sea level can be determined using GPS on widely differing platforms as long as care is taken to determine the height of the GPS antenna phase center above water level. Application areas include measurement of absolute sea level, of temporal variations in sea level, and of sea level gradients (dominantly the geoid). Specific applications would include ocean altimeter calibration, monitoring of sea level in remote regions, and regional experiments requiring spatial and

  12. Proposed wireless system could interfere with key GPS receivers, U.S. officials testify

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-09-01

    A proposed $14 billion network that would increase broadband wireless access poses significant interference problems for existing GPS signals used for some critical U.S. federal science and public safety systems, said officials from NASA, the National Oceanic and Atmospheric Administration (NOAA), and the U.S. Geological Survey (USGS) and other experts at an 8 September hearing of the House of Representatives' Committee on Science, Space, and Technology. The officials cautioned that a terrestrial wireless network plan proposed by LightSquared LLC—which includes using frequencies adjacent to the GPS band—needs additional testing before it is given a green light by the Federal Communications Commission (FCC). In addition, the officials said that although they hope there is a win-win solution to increasing broadband wireless options without harming GPS signals, a recently revised plan that LightSquared indicates would reduce interference to a large majority of GPS receivers still would present problems for a number of high-precision GPS systems.

  13. Towards the Implementation of GPS-based Tsunami Early Warning System Using Ionospheric Measurements

    NASA Astrophysics Data System (ADS)

    Yang, Y. M.; Komjathy, A.; Meng, X.; Verkhoglyadova, O. P.; Mannucci, A. J.

    2014-12-01

    Natural hazards and solid Earth events, such as earthquakes, tsunamis and volcanic eruptions are actual sources that may trigger acoustic and gravity waves resulting in traveling ionospheric disturbances (TIDs) in the upper atmosphere. Trans-ionospheric radio wave measurements sense the total electron content (TEC) along the signal propagation path. In this research, we introduce a novel GPS-based detection and estimation technique for remote sensing of atmospheric wave-induced TIDs including space weather phenomena induced by major natural hazard events, using TEC time series collected from worldwide ground-based dual-frequency GNSS receiver networks. We will demonstrate the ability of using ground-based dual-frequency GPS measures to detect and monitor tsunami wave propagations from previous great earthquake and tsunami events including: 2011 Tohoku and 2010 Chile earthquakes and tsunamis. Two major TIDs with different propagation speeds and wavelengths were identified through analysis of the GPS remote sensing observations. Dominant physical characteristics of atmospheric wave-induced TIDs are found to be associated with specific tsunami propagations and oceanic Rayleigh waves. We compared GPS-based observations, corresponding model simulations and other geophysical measurements. Our results lead to a better understanding of the tsunami-induced ionosphere responses. In addition, we investigate ionospheric signatures caused by the 1964 Great Alaska Earthquake and tsunami using the GPS-based method. Based on current distribution of Plate Boundary Observatory (PBO) GPS stations, the simulated results indicate that tsunami-induced TIDs may be detected about 60 minutes prior to tsunamis arriving at the US west coast. It is expected that this GPS-based technology becomes an integral part of future early-warning systems.

  14. The Global Positioning System for Military Users: Current Modernization Plans and Alternatives

    DTIC Science & Technology

    2011-10-01

    IIR -M and IIF) as well as the newer GPS IIIA satellites. And third, DoD would develop and purchase M-code-capable receivers in the same numbers...specifically for use in munitions (such as cruise missiles or small guided bombs ) or in the confined space of very small unmanned aerial vehicles. But...data. Notes: L1, L2, and L5 are commonly used designations for the associated frequencies. GPS = Global Positioning System; MHz = megahertz. IIA IIR

  15. The need for GPS standardization

    NASA Technical Reports Server (NTRS)

    Lewandowski, Wlodzimierz W.; Petit, Gerard; Thomas, Claudine

    1992-01-01

    A desirable and necessary step for improvement of the accuracy of Global Positioning System (GPS) time comparisons is the establishment of common GPS standards. For this reason, the CCDS proposed the creation of a special group of experts with the objective of recommending procedures and models for operational time transfer by GPS common-view method. Since the announcement of the implementation of Selective Availability at the end of last spring, action has become much more urgent and this CCDS Group on GPS Time Transfer Standards has now been set up. It operates under the auspices of the permanent CCDS Working Group on TAI and works in close cooperation with the Sub-Committee on Time of the Civil GPS Service Interface Committee (CGSIC). Taking as an example the implementation of SA during the first week of July 1991, this paper illustrates the need to develop urgently at least two standardized procedures in GPS receiver software: monitoring GPS tracks with a common time scale and retaining broadcast ephemeris parameters throughout the duration of a track. Other matters requiring action are the adoption of common models for atmospheric delay, a common approach to hardware design and agreement about short-term data processing. Several examples of such deficiencies in standardization are presented.

  16. [Design and implementation of GpsOne remote heart disease first-aid system].

    PubMed

    Lin, Hua

    2008-09-01

    This paper introduces how to develop a novel remote heart disease first-aid system with N-tier architecture. The system applies GpsOne communication technology and professional ECG signal collection technology to the embedded SCM. It can provide an accurate location of the patient and his essential ECG details for remote heart disease first-aid.

  17. Determination of GPS orbits to submeter accuracy

    NASA Technical Reports Server (NTRS)

    Bertiger, W. I.; Lichten, S. M.; Katsigris, E. C.

    1988-01-01

    Orbits for satellites of the Global Positioning System (GPS) were determined with submeter accuracy. Tests used to assess orbital accuracy include orbit comparisons from independent data sets, orbit prediction, ground baseline determination, and formal errors. One satellite tracked 8 hours each day shows rms error below 1 m even when predicted more than 3 days outside of a 1-week data arc. Differential tracking of the GPS satellites in high Earth orbit provides a powerful relative positioning capability, even when a relatively small continental U.S. fiducial tracking network is used with less than one-third of the full GPS constellation. To demonstrate this capability, baselines of up to 2000 km in North America were also determined with the GPS orbits. The 2000 km baselines show rms daily repeatability of 0.3 to 2 parts in 10 to the 8th power and agree with very long base interferometry (VLBI) solutions at the level of 1.5 parts in 10 to the 8th power. This GPS demonstration provides an opportunity to test different techniques for high-accuracy orbit determination for high Earth orbiters. The best GPS orbit strategies included data arcs of at least 1 week, process noise models for tropospheric fluctuations, estimation of GPS solar pressure coefficients, and combine processing of GPS carrier phase and pseudorange data. For data arc of 2 weeks, constrained process noise models for GPS dynamic parameters significantly improved the situation.

  18. Quantifying positional and temporal movement patterns in professional rugby union using global positioning system.

    PubMed

    Jones, Marc R; West, Daniel J; Crewther, Blair T; Cook, Christian J; Kilduff, Liam P

    2015-01-01

    This study assessed the positional and temporal movement patterns of professional rugby union players during competition using global positioning system (GPS) units. GPS data were collected from 33 professional rugby players from 13 matches throughout the 2012-2013 season sampling at 10 Hz. Players wore GPS units from which information on distances, velocities, accelerations, exertion index, player load, contacts, sprinting and repeated high-intensity efforts (RHIE) were derived. Data files from players who played over 60 min (n = 112) were separated into five positional groups (tight and loose forwards; half, inside and outside backs) for match analysis. A further comparison of temporal changes in movement patterns was also performed using data files from those who played full games (n = 71). Significant positional differences were found for movement characteristics during performance (P < 0.05). Results demonstrate that inside and outside backs have greatest high-speed running demands; however, RHIE and contact demands are greatest in loose forwards during match play. Temporal analysis of all players displayed significant differences in player load, cruising and striding between halves, with measures of low- and high-intensity movement and acceleration/deceleration significantly declining throughout each half. Our data demonstrate significant positional differences for a number of key movement variables which provide a greater understanding of positional requirements of performance. This in turn may be used to develop progressive position-specific drills that elicit specific adaptations and provide objective measures of preparedness. Knowledge of performance changes may be used when developing drills and should be considered when monitoring and evaluating performance.

  19. A Ground-Based Near Infrared Camera Array System for UAV Auto-Landing in GPS-Denied Environment.

    PubMed

    Yang, Tao; Li, Guangpo; Li, Jing; Zhang, Yanning; Zhang, Xiaoqiang; Zhang, Zhuoyue; Li, Zhi

    2016-08-30

    This paper proposes a novel infrared camera array guidance system with capability to track and provide real time position and speed of a fixed-wing Unmanned air vehicle (UAV) during a landing process. The system mainly include three novel parts: (1) Infrared camera array and near infrared laser lamp based cooperative long range optical imaging module; (2) Large scale outdoor camera array calibration module; and (3) Laser marker detection and 3D tracking module. Extensive automatic landing experiments with fixed-wing flight demonstrate that our infrared camera array system has the unique ability to guide the UAV landing safely and accurately in real time. Moreover, the measurement and control distance of our system is more than 1000 m. The experimental results also demonstrate that our system can be used for UAV automatic accurate landing in Global Position System (GPS)-denied environments.

  20. A Ground-Based Near Infrared Camera Array System for UAV Auto-Landing in GPS-Denied Environment

    PubMed Central

    Yang, Tao; Li, Guangpo; Li, Jing; Zhang, Yanning; Zhang, Xiaoqiang; Zhang, Zhuoyue; Li, Zhi

    2016-01-01

    This paper proposes a novel infrared camera array guidance system with capability to track and provide real time position and speed of a fixed-wing Unmanned air vehicle (UAV) during a landing process. The system mainly include three novel parts: (1) Infrared camera array and near infrared laser lamp based cooperative long range optical imaging module; (2) Large scale outdoor camera array calibration module; and (3) Laser marker detection and 3D tracking module. Extensive automatic landing experiments with fixed-wing flight demonstrate that our infrared camera array system has the unique ability to guide the UAV landing safely and accurately in real time. Moreover, the measurement and control distance of our system is more than 1000 m. The experimental results also demonstrate that our system can be used for UAV automatic accurate landing in Global Position System (GPS)-denied environments. PMID:27589755

  1. Aircraft landing using a modernized global positioning system and the wide area augmentation system

    NASA Astrophysics Data System (ADS)

    Jan, Shau-Shiun

    This research investigates the performance of an airborne GPS receiver using differential corrections and associated error bounds from the WAAS when three civil GPS signals become available. There are three ways to take advantage of the multiple frequencies. First, one can measure ionospheric delay directly in the airplane. This would replace the grid of ionosphere delay corrections currently broadcast by the WAAS. This direct use of multiple frequencies would be more accurate, and offer higher availability. Second, one can use the additional GPS frequencies to mitigate unintentional radio frequency interference (RFI). Even if two frequencies are lost, the user could revert to the WAAS grid. Third, one can take advantage of stronger civil signal power of the modernized GPS to acquire a low elevation satellite before using it for the position solution. Earlier acquisition would allow for longer carrier-aided smoothing of multipath. This research evaluates the performance of a multiple-frequency GPS landing system that depends on the number of available GPS frequencies and includes the following scenarios: Case 1. All three GPS frequencies are available, Case 2. Two of three GPS frequencies are available, Case 3. One of three GPS frequencies is available. This research also presents a solution to sustain multiple frequency performance when an aircraft descends into an RFI field and loses all but one of the frequencies. There are three available techniques. First, one can use the code-carrier divergence to continue ionospheric delay estimation. Second, one can use the WAAS ionospheric threat model to bound the error. Third, one can use the maximum ionospheric delay gradient model to bound the ionospheric delay during the ionosphere storm period. These three techniques all provide the ability to continue operation for more than 10 minutes after the onset of RFI. This research provides the first three-frequency GPS/WAAS LPV coverage predictions for CONUS. The current L1

  2. Impact of habitat-specific GPS positional error on detection of movement scales by first-passage time analysis.

    PubMed

    Williams, David M; Dechen Quinn, Amy; Porter, William F

    2012-01-01

    Advances in animal tracking technologies have reduced but not eliminated positional error. While aware of such inherent error, scientists often proceed with analyses that assume exact locations. The results of such analyses then represent one realization in a distribution of possible outcomes. Evaluating results within the context of that distribution can strengthen or weaken our confidence in conclusions drawn from the analysis in question. We evaluated the habitat-specific positional error of stationary GPS collars placed under a range of vegetation conditions that produced a gradient of canopy cover. We explored how variation of positional error in different vegetation cover types affects a researcher's ability to discern scales of movement in analyses of first-passage time for white-tailed deer (Odocoileus virginianus). We placed 11 GPS collars in 4 different vegetative canopy cover types classified as the proportion of cover above the collar (0-25%, 26-50%, 51-75%, and 76-100%). We simulated the effect of positional error on individual movement paths using cover-specific error distributions at each location. The different cover classes did not introduce any directional bias in positional observations (1 m≤mean≤6.51 m, 0.24≤p≤0.47), but the standard deviation of positional error of fixes increased significantly with increasing canopy cover class for the 0-25%, 26-50%, 51-75% classes (SD = 2.18 m, 3.07 m, and 4.61 m, respectively) and then leveled off in the 76-100% cover class (SD = 4.43 m). We then added cover-specific positional errors to individual deer movement paths and conducted first-passage time analyses on the noisy and original paths. First-passage time analyses were robust to habitat-specific error in a forest-agriculture landscape. For deer in a fragmented forest-agriculture environment, and species that move across similar geographic extents, we suggest that first-passage time analysis is robust with regard to positional errors.

  3. Application of GPS tracking techniques to orbit determination for TDRS

    NASA Technical Reports Server (NTRS)

    Haines, B. J.; Lichten, S. M.; Malla, R. P.; Wu, S. C.

    1993-01-01

    In this paper, we evaluate two fundamentally different approaches to TDRS orbit determination utilizing Global Positioning System (GPS) technology and GPS-related techniques. In the first, a GPS flight receiver is deployed on the TDRSS spacecraft. The TDRS ephemerides are determined using direct ranging to the GPS spacecraft, and no ground network is required. In the second approach, the TDRSS spacecraft broadcast a suitable beacon signal, permitting the simultaneous tracking of GPS and TDRSS satellites from a small ground network. Both strategies can be designed to meet future operational requirements for TDRS-2 orbit determination.

  4. Global Positioning System Energetic Particle Data: The Next Space Weather Data Revolution

    NASA Technical Reports Server (NTRS)

    Knipp, Delores J.; Giles, Barbara L.

    2016-01-01

    The Global Positioning System (GPS) has revolutionized the process of getting from point A to point Band so much more. A large fraction of the worlds population relies on GPS (and its counterparts from other nations) for precision timing, location, and navigation. Most GPS users are unaware that the spacecraft providing the signals they rely on are operating in a very harsh space environment the radiation belts where energetic particles trapped in Earths magnetic field dash about at nearly the speed of light. These subatomic particles relentlessly pummel GPS satellites. So by design, every GPS satellite and its sensors are radiation hardened. Each spacecraft carries particle detectors that provide health and status data to system operators. Although these data reveal much about the state of the space radiation environment, heretofore they have been available only to system operators and supporting scientists. Research scientists have long sought a policy shift to allow more general access. With the release of the National Space Weather Strategy and Action Plan organized by the White House Office of Science Technology Policy (OSTP) a sample of these data have been made available to space weather researchers. Los Alamos National Laboratory (LANL) and the National Center for Environmental Information released a months worth of GPS energetic particle data from an interval of heightened space weather activity in early 2014 with the hope of stimulating integration of these data sets into the research arena. Even before the public data release GPS support scientists from LANL showed the extraordinary promise of these data.

  5. Global Positioning System Navigation Above 76,000 km for NASA's Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke B.; Bamford, William A.; Price, Samuel R.; Carpenter, J. Russell; Long, Anne C.; Farahmand, Mitra

    2016-01-01

    NASA's Magnetospheric Multiscale (MMS) mission, launched in March of 2015, consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12 and 25 Earth radii (RE) in the first and second phases of the mission. Navigation for MMSis achieved independently on-board each spacecraft by processing Global Positioning System (GPS) observables using NASA Goddard Space Flight Center (GSFC)'s Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents a high point of over a decade of high-altitude GPS navigation research and development at GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data from the first phase. We extrapolate these results to predict performance in the second phase orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.

  6. Global Positioning System Navigation Above 76,000 km for NASA's Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke B.; Bamford, William A.; Price, Samuel R.; Carpenter, J. Russell; Long, Anne C.; Farahmand, Mitra

    2016-01-01

    NASA's Magnetospheric Multiscale (MMS) mission, launched in March of 2015, consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12 and 25 Earth radii (RE) in the first and second phases of the mission. Navigation for MMS is achieved independently on-board each spacecraft by processing Global Positioning System (GPS) observables using NASA Goddard Space Flight Center (GSFC)'s Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents a high point of over a decade of high-altitude GPS navigation research and development at GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data from the first phase. We extrapolate these results to predict performance in the second phase orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.

  7. Application of GPS attitude determination to gravity gradient stabilized spacecraft

    NASA Technical Reports Server (NTRS)

    Lightsey, E. G.; Cohen, Clark E.; Parkinson, Bradford W.

    1993-01-01

    Recent advances in the Global Positioning System (GPS) technology have initiated a new era in aerospace navigation and control. GPS receivers have become increasingly compact and affordable, and new developments have made attitude determination using subcentimeter positioning among two or more antennas feasible for real-time applications. GPS-based attitude control systems will become highly portable packages which provide time, navigation, and attitude information of sufficient accuracy for many aerospace needs. A typical spacecraft application of GPS attitude determination is a gravity gradient stabilized satellite in low Earth orbit that employs a GPS receiver and four body mounted patch antennas. The coupled, linearized equations of motion enable complete position and attitude information to be extracted from only two antennas. A discussion of the various error sources for spaceborne GPS attitude measurement systems is included. Attitude determination of better than 0.3 degrees is possible for 1 meter antenna separation. Suggestions are provided to improve the accuracy of the attitude solution.

  8. Terrestrial navigation based on integrated GPS and INS

    NASA Astrophysics Data System (ADS)

    Ge, Sam S.; Goh, Terence K. L.; Jiang, T. Y.; Koopman, R.; Chan, S. W.; Fong, A. M.

    1998-07-01

    The Global Positioning System (GPS) and Inertial Navigation System (INS) have complimentary features that can be exploited in an integrated system, thus resulting in improved navigation performance. The INS is able to provide accurate aiding data on short-term vehicle dynamics, while the GPS provides accurate data on long-term vehicle dynamics. In this paper, a complete solution is presented for terrestrial navigation based on integrated GPS and INS using Kalman filtering technique.

  9. INTERIM GUIDANCE FOR DEVELOPING GLOBAL POSITIONING SYSTEM DATA COLLECTION STANDARD OPERATING PROCEDURES AND QUALITY ASSURANCE PROJECT PLANS

    EPA Science Inventory

    The United States Environmental Protection Agency Geospatial Quality Council developed this document to harmonize the process of collecting, editing, and exporting spatial data of known quality using the Global Positioning System (GPS). Each organizational entity may adopt this d...

  10. Miltipath measurements for land mobile satellite service using global positioning system signals

    NASA Technical Reports Server (NTRS)

    Lemmon, John J.

    1988-01-01

    A proposed multipath system for the land mobile satellite radio channel using the Global Positioning System (GPS) is presented. The measurement technique and equipment used to make multipath measurements on communications links are briefly described. The system configuration and performance specifications of the proposed measurement system are discussed.

  11. Global Positioning System Shipborne Reference System

    DTIC Science & Technology

    1997-09-30

    Office of Naval Research Space and Remote Sensing 1997 Annual Report 1 GLOBAL POSITIONING SYSTEM SHIPBORNE REFERENCE SYSTEM James R. Clynch...N00014-97-WR30044 LONG-TERM GOAL The long term goal is to improve the navigation capability of naval vessels using the Global Positioning System ...COVERED 00-00-1997 to 00-00-1997 4. TITLE AND SUBTITLE Global Positioning System Shipborne Reference System 5a. CONTRACT NUMBER 5b. GRANT

  12. Application of Individualized Speed Thresholds to Interpret Position Specific Running Demands in Elite Professional Rugby Union: A GPS Study

    PubMed Central

    Reardon, Cillian; Tobin, Daniel P.; Delahunt, Eamonn

    2015-01-01

    A number of studies have used GPS technology to categorise rugby union locomotive demands. However, the utility of the results of these studies is confounded by small sample sizes, sub-elite player status and the global application of absolute speed thresholds to all player positions. Furthermore, many of these studies have used GPS units with low sampling frequencies. The aim of the present study was to compare and contrast the high speed running (HSR) demands of professional rugby union when utilizing micro-technology units sampling at 10 Hz and applying relative or individualised speed zones. The results of this study indicate that application of individualised speed zones results in a significant shift in the interpretation of the HSR demands of both forwards and backs and positional sub-categories therein. When considering the use of an absolute in comparison to an individualised HSR threshold, there was a significant underestimation for forwards of HSR distance (HSRD) (absolute = 269 ± 172.02, individualised = 354.72 ± 99.22, p < 0.001), HSR% (absolute = 5.15 ± 3.18, individualised = 7.06 ± 2.48, p < 0.001) and HSR efforts (HSRE) (absolute = 18.81 ± 12.25; individualised = 24.78 ± 8.30, p < 0.001). In contrast, there was a significant overestimation of the same HSR metrics for backs with the use of an absolute threshold (HSRD absolute = 697.79 ± 198.11, individualised = 570.02 ± 171.14, p < 0.001; HSR% absolute = 10.85 ± 2.82, individualised = 8.95 ± 2.76, p < 0.001; HSRE absolute = 41.55 ± 11.25; individualised = 34.54 ± 9.24, p < 0.001). This under- or overestimation associated with an absolute speed zone applies to varying degrees across the ten positional sub-categories analyzed and also to individuals within the same positional sub-category. The results of the present study indicated that although use of an individulised HSR threshold improves the interpretation of the HSR demands on a positional basis, inter-individual variability in maximum

  13. GPS Control Segment Improvements

    DTIC Science & Technology

    2015-04-29

    Systems Center GPS Control Segment Improvements Mr. Tim McIntyre GPS Product Support Manager GPS Ops Support and Sustainment Division Peterson...hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...DATE 29 APR 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE GPS Control Segment Improvements 5a. CONTRACT

  14. Phase Correction for GPS Antenna with Nonunique Phase Center

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W.; Dobbins, Justin

    2005-01-01

    A method of determining the position and attitude of a body equipped with a Global Positioning System (GPS) receiver includes an accounting for the location of the nonunique phase center of a distributed or wraparound GPS antenna. The method applies, more specifically, to the case in which (1) the GPS receiver utilizes measurements of the phases of GPS carrier signals in its position and attitude computations and (2) the body is axisymmetric (e.g., spherical or round cylindrical) and wrapped at its equator with a single- or multiple-element antenna, the radiation pattern of which is also axisymmetric with the same axis of symmetry as that of the body.

  15. Real-Time GPS Monitoring of Atomic Frequency Standards in the Canadian Active Control System (CACS)

    DTIC Science & Technology

    1998-12-01

    orbit predictions and RTACP coordinates in a least-squares adjustment to determine satellite and station clock offsets with respect to a virtual ... reference clock (VRC). The VRC is maintained us a weighted mean of RTACP long-term clock models. The VRC is related to the mean GPS system time using a long

  16. The application of NAVSTAR differential GPS in the civilian community

    NASA Technical Reports Server (NTRS)

    Beser, J.; Parkinson, B. W.

    1981-01-01

    The NAVSTAR Global Positioning System (GPS), currently being developed by the DOD, is a space based navigation system that will provide the user with precise position, velocity, and time information on a 24 hour basis, in all weather conditions and at any point on the globe. The baseline GPS system will provide guaranteed high accuracy to only a limited number of users, mostly the military. The civilian community has to devise a variation of this system to allow for an assured, uninterrupted level of accuracy. Differential GPS provides such a capability. In connection with the conceived possibility of the use of GPS by an enemy, it is found to be necessary to implement a selective availability technical capability. Differential GPS provides an approach for the civilian community to have a guaranteed level of accuracy better than the 250 meters presently planned for GPS.

  17. A Short Tutorial on Inertial Navigation System and Global Positioning System Integration

    NASA Technical Reports Server (NTRS)

    Smalling, Kyle M.; Eure, Kenneth W.

    2015-01-01

    The purpose of this document is to describe a simple method of integrating Inertial Navigation System (INS) information with Global Positioning System (GPS) information for an improved estimate of vehicle attitude and position. A simple two dimensional (2D) case is considered. The attitude estimates are derived from sensor data and used in the estimation of vehicle position and velocity through dead reckoning within the INS. The INS estimates are updated with GPS estimates using a Kalman filter. This tutorial is intended for the novice user with a focus on bringing the reader from raw sensor measurements to an integrated position and attitude estimate. An application is given using a remotely controlled ground vehicle operating in assumed 2D environment. The theory is developed first followed by an illustrative example.

  18. Ionospheric total-electron-content estimation for single-frequency Global-positioning-system receivers

    SciTech Connect

    Smith, C.A.

    1987-01-01

    The ionosphere delays transmissions from the Global Positioning System (GPS), as well as those from other satellite systems. At the GPS frequencies (L-Band), this delay is directly proportional to the total ionospheric electron content (TEC) along the line-of-sight to the satellite. Classified receivers have access to 2 frequencies to allow them to measure this delay through the difference in the ionospheric effect at the 2 frequencies, but commercial, single-frequency receivers have had no direct method for estimating the ionospheric delay; they have had to rely on a TEC prediction. Two methods are described for single-frequency GPS receivers to estimate the ionospheric TEC directly. These methods take advantage of the dispersive nature of the ionosphere at L-Band frequencies, which causes a phase advance of the carrier that is opposite to the group delay of the GPS code and data.

  19. Precision GPS ephemerides and baselines

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The required knowledge of the Global Positioning System (GPS) satellite position accuracy can vary depending on a particular application. Application to relative positioning of receiver locations on the ground to infer Earth's tectonic plate motion requires the most accurate knowledge of the GPS satellite orbits. Research directed towards improving and evaluating the accuracy of GPS satellite orbits was conducted at the University of Texas Center for Space Research (CSR). Understanding and modeling the forces acting on the satellites was a major focus of the research. Other aspects of orbit determination, such as the reference frame, time system, measurement modeling, and parameterization, were also investigated. Gravitational forces were modeled by truncated versions of extant gravity fields such as, Goddard Earth Model (GEM-L2), GEM-T1, TEG-2, and third body perturbations due to the Sun and Moon. Nongravitational forces considered were the solar radiation pressure, and perturbations due to thermal venting and thermal imbalance. At the GPS satellite orbit accuracy level required for crustal dynamic applications, models for the nongravitational perturbation play a critical role, since the gravitational forces are well understood and are modeled adequately for GPS satellite orbits.

  20. Modeling the global positioning system signal propagation through the ionosphere

    NASA Technical Reports Server (NTRS)

    Bassiri, S.; Hajj, G. A.

    1992-01-01

    Based on realistic modeling of the electron density of the ionosphere and using a dipole moment approximation for the Earth's magnetic field, one is able to estimate the effect of the ionosphere on the Global Positioning System (GPS) signal for a ground user. The lowest order effect, which is on the order of 0.1-100 m of group delay, is subtracted out by forming a linear combination of the dual frequencies of the GPS signal. One is left with second- and third-order effects that are estimated typically to be approximately 0-2 cm and approximately 0-2 mm at zenith, respectively, depending on the geographical location, the time of day, the time of year, the solar cycle, and the relative geometry of the magnetic field and the line of sight. Given the total electron content along a line of sight, the authors derive an approximation to the second-order term which is accurate to approximately 90 percent within the magnetic dipole moment model; this approximation can be used to reduce the second-order term to the millimeter level, thus potentially improving precise positioning in space and on the ground. The induced group delay, or phase advance, due to second- and third-order effects is examined for two ground receivers located at equatorial and mid-latitude regions tracking several GPS satellites.