Aerodynamic study of different cyclist positions: CFD analysis and full-scale wind-tunnel tests.
Defraeye, Thijs; Blocken, Bert; Koninckx, Erwin; Hespel, Peter; Carmeliet, Jan
2010-05-07
Three different cyclist positions were evaluated with Computational Fluid Dynamics (CFD) and wind-tunnel experiments were used to provide reliable data to evaluate the accuracy of the CFD simulations. Specific features of this study are: (1) both steady Reynolds-averaged Navier-Stokes (RANS) and unsteady flow modelling, with more advanced turbulence modelling techniques (Large-Eddy Simulation - LES), were evaluated; (2) the boundary layer on the cyclist's surface was resolved entirely with low-Reynolds number modelling, instead of modelling it with wall functions; (3) apart from drag measurements, also surface pressure measurements on the cyclist's body were performed in the wind-tunnel experiment, which provided the basis for a more detailed evaluation of the predicted flow field by CFD. The results show that the simulated and measured drag areas differed about 11% (RANS) and 7% (LES), which is considered to be a close agreement in CFD studies. A fair agreement with wind-tunnel data was obtained for the predicted surface pressures, especially with LES. Despite the higher accuracy of LES, its much higher computational cost could make RANS more attractive for practical use in some situations. CFD is found to be a valuable tool to evaluate the drag of different cyclist positions and to investigate the influence of small adjustments in the cyclist's position. A strong advantage of CFD is that detailed flow field information is obtained, which cannot easily be obtained from wind-tunnel tests. This detailed information allows more insight in the causes of the drag force and provides better guidance for position improvements. Copyright 2010 Elsevier Ltd. All rights reserved.
Validation of a CFD methodology for positive displacement LVAD analysis using PIV data.
Medvitz, Richard B; Reddy, Varun; Deutsch, Steve; Manning, Keefe B; Paterson, Eric G
2009-11-01
Computational fluid dynamics (CFD) is used to asses the hydrodynamic performance of a positive displacement left ventricular assist device. The computational model uses implicit large eddy simulation direct resolution of the chamber compression and modeled valve closure to reproduce the in vitro results. The computations are validated through comparisons with experimental particle image velocimetry (PIV) data. Qualitative comparisons of flow patterns, velocity fields, and wall-shear rates demonstrate a high level of agreement between the computations and experiments. Quantitatively, the PIV and CFD show similar probed velocity histories, closely matching jet velocities and comparable wall-strain rates. Overall, it has been shown that CFD can provide detailed flow field and wall-strain rate data, which is important in evaluating blood pump performance.
Validation of a CFD Methodology for Positive Displacement LVAD Analysis Using PIV Data
Reddy, Varun; Deutsch, Steve; Manning, Keefe B.; Paterson, Eric G.
2013-01-01
Computational fluid dynamics (CFD) is used to asses the hydrodynamic performance of a positive displacement left ventricular assist device. The computational model uses implicit large eddy simulation direct resolution of the chamber compression and modeled valve closure to reproduce the in vitro results. The computations are validated through comparisons with experimental particle image velocimetry (PIV) data. Qualitative comparisons of flow patterns, velocity fields, and wall-shear rates demonstrate a high level of agreement between the computations and experiments. Quantitatively, the PIV and CFD show similar probed velocity histories, closely matching jet velocities and comparable wall-strain rates. Overall, it has been shown that CFD can provide detailed flow field and wall-strain rate data, which is important in evaluating blood pump performance. PMID:20353260
Lee, S.
2011-05-05
The Savannah River Remediation (SRR) Organization requested that Savannah River National Laboratory (SRNL) develop a Computational Fluid Dynamics (CFD) method to mix and blend the miscible contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank; such as, Tank 50H, to the Salt Waste Processing Facility (SWPF) feed tank. The work described here consists of two modeling areas. They are the mixing modeling analysis during miscible liquid blending operation, and the flow pattern analysis during transfer operation of the blended liquid. The transient CFD governing equations consisting of three momentum equations, one mass balance, two turbulence transport equations for kinetic energy and dissipation rate, and one species transport were solved by an iterative technique until the species concentrations of tank fluid were in equilibrium. The steady-state flow solutions for the entire tank fluid were used for flow pattern analysis, for velocity scaling analysis, and the initial conditions for transient blending calculations. A series of the modeling calculations were performed to estimate the blending times for various jet flow conditions, and to investigate the impact of the cooling coils on the blending time of the tank contents. The modeling results were benchmarked against the pilot scale test results. All of the flow and mixing models were performed with the nozzles installed at the mid-elevation, and parallel to the tank wall. From the CFD modeling calculations, the main results are summarized as follows: (1) The benchmark analyses for the CFD flow velocity and blending models demonstrate their consistency with Engineering Development Laboratory (EDL) and literature test results in terms of local velocity measurements and experimental observations. Thus, an application of the established criterion to SRS full scale tank will provide a better, physically-based estimate of the required mixing time, and
CFD analysis of turbopump volutes
NASA Technical Reports Server (NTRS)
Ascoli, Edward P.; Chan, Daniel C.; Darian, Armen; Hsu, Wayne W.; Tran, Ken
1993-01-01
An effort is underway to develop a procedure for the regular use of CFD analysis in the design of turbopump volutes. Airflow data to be taken at NASA Marshall will be used to validate the CFD code and overall procedure. Initial focus has been on preprocessing (geometry creation, translation, and grid generation). Volute geometries have been acquired electronically and imported into the CATIA CAD system and RAGGS (Rockwell Automated Grid Generation System) via the IGES standard. An initial grid topology has been identified and grids have been constructed for turbine inlet and discharge volutes. For CFD analysis of volutes to be used regularly, a procedure must be defined to meet engineering design needs in a timely manner. Thus, a compromise must be established between making geometric approximations, the selection of grid topologies, and possible CFD code enhancements. While the initial grid developed approximated the volute tongue with a zero thickness, final computations should more accurately account for the geometry in this region. Additionally, grid topologies will be explored to minimize skewness and high aspect ratio cells that can affect solution accuracy and slow code convergence. Finally, as appropriate, code modifications will be made to allow for new grid topologies in an effort to expedite the overall CFD analysis process.
CFD analysis of turbopump volutes
NASA Astrophysics Data System (ADS)
Ascoli, Edward P.; Chan, Daniel C.; Darian, Armen; Hsu, Wayne W.; Tran, Ken
1993-07-01
An effort is underway to develop a procedure for the regular use of CFD analysis in the design of turbopump volutes. Airflow data to be taken at NASA Marshall will be used to validate the CFD code and overall procedure. Initial focus has been on preprocessing (geometry creation, translation, and grid generation). Volute geometries have been acquired electronically and imported into the CATIA CAD system and RAGGS (Rockwell Automated Grid Generation System) via the IGES standard. An initial grid topology has been identified and grids have been constructed for turbine inlet and discharge volutes. For CFD analysis of volutes to be used regularly, a procedure must be defined to meet engineering design needs in a timely manner. Thus, a compromise must be established between making geometric approximations, the selection of grid topologies, and possible CFD code enhancements. While the initial grid developed approximated the volute tongue with a zero thickness, final computations should more accurately account for the geometry in this region. Additionally, grid topologies will be explored to minimize skewness and high aspect ratio cells that can affect solution accuracy and slow code convergence. Finally, as appropriate, code modifications will be made to allow for new grid topologies in an effort to expedite the overall CFD analysis process.
NASA Technical Reports Server (NTRS)
Ascoli, Edward P.; Heiba, Adel H.; Hsu, Yann-Fu; Lagnado, Ronald R.; Lynch, Edward D.
1993-01-01
Concerns raised over possible base heating effects on the National Launch System (NLS) 1.5 stage reference vehicle resulted in the use of CFD as a predictive analysis tool. The objective established was to obtain good engineering solutions to describe the base region flowfields at 10,000 ft and 50,000 ft altitudes. The Rockwell USA CFD code was employed with a zero-equation turbulence model and a four species, 1 step chemical kinetics package. Three solutions were generated for the specified altitudes on coarse and fine grids. CFD results show the base region flowfields to be highly three dimensional in character. At the 10,000 ft altitude, plumes contract soon after exiting the nozzles and do not interact with each other. No mechanism was identified for driving hot gas back into the base region and no significant amounts of hydrogen or water were found in the base region. Consequently, surface temperatures were all near the ambient level. At 50,000 ft, the nozzle exhaust plumes begin to interact, particularly those of the two inboard engines which are closer together. A small amount of hot gas is recirculated between the inboard nozzles near the nozzle exit plane. As a result, base region surface temperatures are slightly elevated, but still remain well within the design guideline of 1000 R.
NASA Astrophysics Data System (ADS)
Ascoli, Edward P.; Heiba, Adel H.; Hsu, Yann-Fu; Lagnado, Ronald R.; Lynch, Edward D.
1993-07-01
Concerns raised over possible base heating effects on the National Launch System (NLS) 1.5 stage reference vehicle resulted in the use of CFD as a predictive analysis tool. The objective established was to obtain good engineering solutions to describe the base region flowfields at 10,000 ft and 50,000 ft altitudes. The Rockwell USA CFD code was employed with a zero-equation turbulence model and a four species, 1 step chemical kinetics package. Three solutions were generated for the specified altitudes on coarse and fine grids. CFD results show the base region flowfields to be highly three dimensional in character. At the 10,000 ft altitude, plumes contract soon after exiting the nozzles and do not interact with each other. No mechanism was identified for driving hot gas back into the base region and no significant amounts of hydrogen or water were found in the base region. Consequently, surface temperatures were all near the ambient level. At 50,000 ft, the nozzle exhaust plumes begin to interact, particularly those of the two inboard engines which are closer together. A small amount of hot gas is recirculated between the inboard nozzles near the nozzle exit plane. As a result, base region surface temperatures are slightly elevated, but still remain well within the design guideline of 1000 R.
Lee, S.
2011-05-17
The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitative mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the single
A computational design system for rapid CFD analysis
NASA Technical Reports Server (NTRS)
Ascoli, E. P.; Barson, S. L.; Decroix, M. E.; Sindir, Munir M.
1992-01-01
A computation design system (CDS) is described in which these tools are integrated in a modular fashion. This CDS ties together four key areas of computational analysis: description of geometry; grid generation; computational codes; and postprocessing. Integration of improved computational fluid dynamics (CFD) analysis tools through integration with the CDS has made a significant positive impact in the use of CFD for engineering design problems. Complex geometries are now analyzed on a frequent basis and with greater ease.
CFD analysis of pump consortium impeller
NASA Astrophysics Data System (ADS)
Cheng, Gary C.; Chen, Y. S.; Williams, R. W.
1992-07-01
Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design impact in a productive manner. The main goal of this study is to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A Navier-Stokes flow solver, FDNS, embedded with the extended k-epsilon turbulence model and with appropriate moving interface boundary conditions, is developed to analyze turbulent flows in the turbomachinery devices. The FDNS code was benchmarked with its numerical predictions of the pump consortium inducer, and provides satisfactory results. In the present study, a CFD analysis of the pump consortium impeller will be conducted with the application of the FDNS code. The pump consortium impeller, with partial blades, is the new design concept of the advanced rocket engine.
CFD analysis of pump consortium impeller
NASA Technical Reports Server (NTRS)
Cheng, Gary C.; Chen, Y. S.; Williams, R. W.
1992-01-01
Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design impact in a productive manner. The main goal of this study is to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A Navier-Stokes flow solver, FDNS, embedded with the extended k-epsilon turbulence model and with appropriate moving interface boundary conditions, is developed to analyze turbulent flows in the turbomachinery devices. The FDNS code was benchmarked with its numerical predictions of the pump consortium inducer, and provides satisfactory results. In the present study, a CFD analysis of the pump consortium impeller will be conducted with the application of the FDNS code. The pump consortium impeller, with partial blades, is the new design concept of the advanced rocket engine.
Optimization of a centrifugal impeller design through CFD analysis
NASA Astrophysics Data System (ADS)
Chen, W. C.; Eastland, A. H.; Chan, D. C.; Garcia, Roberto
1993-07-01
This paper discusses the procedure, approach and Rocketdyne CFD results for the optimization of the NASA consortium impeller design. Two different approaches have been investigated. The first one is to use a tandem blade arrangement, the main impeller blade is split into two separate rows with the second blade row offset circumferentially with respect to the first row. The second approach is to control the high losses related to secondary flows within the impeller passage. Many key parameters have been identified and each consortium team member involved will optimize a specific parameter using 3-D CFD analysis. Rocketdyne has provided a series of CFD grids for the consortium team members. SECA will complete the tandem blade study, SRA will study the effect of the splitter blade solidity change, NASA LeRC will evaluate the effect of circumferential position of the splitter blade, VPI will work on the hub to shroud blade loading distribution, NASA Ames will examine the impeller discharge leakage flow impacts and Rocketdyne will continue to work on the meridional contour and the blade leading to trailing edge work distribution. This paper will also present Rocketdyne results from the tandem blade study and from the blade loading distribution study. It is the ultimate goal of this consortium team to integrate the available CFD analysis to design an advanced technology impeller that is suitable for use in the NASA Space Transportation Main Engine (STME) fuel turbopump.
CFD analysis of a rocket exhaust diffuser
NASA Astrophysics Data System (ADS)
Bose, Tarit K.; Thanawala, R. H.; Annamalai, K.
1992-11-01
The nature of the complex shock structure responsible for the pressure recovery phenomenon in supersonic diffusers is investigated by means of a theoretical CFD analysis using a newly developed computer program for Navier-Stokes solution of an ejector system, and the Prandtl mixing length to model the turbulent boundary layer. The pressure recovery characteristics of an ejector diffuser system was studied for various geometric and flow conditions. A comparison of the results with those of pressure measurements along the diffuser length in an experimental facility showed discrepancies, which are attributed to the boundary conditions imposed.
Propellant Sloshing Parameter Extraction from CFD Analysis
NASA Technical Reports Server (NTRS)
Yang, H. Q.; Peugeot, John
2010-01-01
Propellant slosh is a potential source of disturbance critical to the stability of space vehicle. The sloshing dynamics is typically represented by a mechanical model of spring mass damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control analysis. The typical parameters required by the mechanical model include natural frequency of the sloshing, sloshing mass, sloshing mass center coordinates, and critical damping coefficient. During the 1960 s US space program, these parameters were either computed from analytical solution for simple geometry or by experimental testing for the sub-scaled configurations. The purpose of this work is to demonstrate the soundness of a CFD approach in modeling the detailed fluid dynamics of tank sloshing and the excellent accuracy in extracting mechanical properties for different tank configurations and at different fill levels. The validation studies included straight cylinder against analytical solution, and sub-scaled Centaur LOX and LH2 tanks with and without baffles against experimental results. This effort shows that CFD technology can provide accurate mechanical parameters for any tank configuration, and is especially valuable to the future design of propellant tanks, as there is no previous experimental data available for the same size and configuration.
CFD simulation analysis and research based on engine air intake system of automotive
NASA Astrophysics Data System (ADS)
Liu, Xia; Yan, Hua Jin; Tian, Ning; Zhao, GuoQi
2017-01-01
Traditional method for the design of automotive engine intake system has many issues, such as period, high costs, energy consumption and so on. The paper utilized one kind of CFD numerical simulation analysis based on the basic theory of CFD. It use the three-dimensional geometry modal grid, computational modeling and model analysis to identify the turbulence due to unreasonable design of air filter inlet position, and then through the test to verify the correctness of the results of CFD calculations. It provide a theoretical basis for the intake system structural optimization.
CFD Analysis of Core Bypass Phenomena
Richard W. Johnson; Hiroyuki Sato; Richard R. Schultz
2010-03-01
The U.S. Department of Energy is exploring the potential for the VHTR which will be either of a prismatic or a pebble-bed type. One important design consideration for the reactor core of a prismatic VHTR is coolant bypass flow which occurs in the interstitial regions between fuel blocks. Such gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The existence of the gaps induces a flow bias in the fuel blocks and results in unexpected increase of maximum fuel temperature. Traditionally, simplified methods such as flow network calculations employing experimental correlations are used to estimate flow and temperature distributions in the core design. However, the distribution of temperature in the fuel pins and graphite blocks as well as coolant outlet temperatures are strongly coupled with the local heat generation rate within fuel blocks which is not uniformly distributed in the core. Hence, it is crucial to establish mechanistic based methods which can be applied to the reactor core thermal hydraulic design and safety analysis. Computational Fluid Dynamics (CFD) codes, which have a capability of local physics based simulation, are widely used in various industrial fields. This study investigates core bypass flow phenomena with the assistance of commercial CFD codes and establishes a baseline for evaluation methods. A one-twelfth sector of the hexagonal block surface is modeled and extruded down to whole core length of 10.704m. The computational domain is divided vertically with an upper reflector, a fuel section and a lower reflector. Each side of the sector grid can be set as a symmetry boundary
CFD Analysis of Core Bypass Phenomena
Richard W. Johnson; Hiroyuki Sato; Richard R. Schultz
2009-11-01
The U.S. Department of Energy is exploring the potential for the VHTR which will be either of a prismatic or a pebble-bed type. One important design consideration for the reactor core of a prismatic VHTR is coolant bypass flow which occurs in the interstitial regions between fuel blocks. Such gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The existence of the gaps induces a flow bias in the fuel blocks and results in unexpected increase of maximum fuel temperature. Traditionally, simplified methods such as flow network calculations employing experimental correlations are used to estimate flow and temperature distributions in the core design. However, the distribution of temperature in the fuel pins and graphite blocks as well as coolant outlet temperatures are strongly coupled with the local heat generation rate within fuel blocks which is not uniformly distributed in the core. Hence, it is crucial to establish mechanistic based methods which can be applied to the reactor core thermal hydraulic design and safety analysis. Computational Fluid Dynamics (CFD) codes, which have a capability of local physics based simulation, are widely used in various industrial fields. This study investigates core bypass flow phenomena with the assistance of commercial CFD codes and establishes a baseline for evaluation methods. A one-twelfth sector of the hexagonal block surface is modeled and extruded down to whole core length of 10.704m. The computational domain is divided vertically with an upper reflector, a fuel section and a lower reflector. Each side of the one-twelfth grid can be set as a symmetry boundary
CFD analysis of LLNL downdraft table
Finlayson, Elizabeth U.; Jayaraman, Buvana; Kristoffersen, Astrid R.; Gadgil, Ashok J.
2003-10-01
This study examines the airflow and contaminant transport in an existing room (89 inch x 77 inch x 98 inch) that houses a downdraft table at LLNL. The facility was designed and built in the 1960's and is currently being considered for redesign. One objective of the redesign is to reduce airflow while maintaining or improving user safety. Because this facility has been used for many years to handle radioactive material it is impractical to conduct extensive experimental tests in it. Therefore, we have performed a Computational Fluid Dynamic (CFD) analysis of the facility. The study examines the current operational condition and some other cases with reduced airflow. Reducing airflow will lead to savings in operating costs (lower fan power consumption), and possible improvements in containment from reduced turbulence. In addition, we examine three design (geometry) changes. These are: (1) increasing the area of the HVAC inlet on the ceiling, (2) adding a 15{sup o} angled ceiling inlet and (3) increasing the area of the slot in the doorway. Of these three geometry modifications, only the larger doorway slot leads to improved predicted containment.
NASA Technical Reports Server (NTRS)
Groves, Curtis E.; LLie, Marcel; Shallhorn, Paul A.
2012-01-01
There are inherent uncertainties and errors associated with using Computational Fluid Dynamics (CFD) to predict the flow field and there is no standard method for evaluating uncertainty in the CFD community. This paper describes an approach to -validate the . uncertainty in using CFD. The method will use the state of the art uncertainty analysis applying different turbulence niodels and draw conclusions on which models provide the least uncertainty and which models most accurately predict the flow of a backward facing step.
CFD methods development considerations for unsteady aerodynamic analysis
NASA Technical Reports Server (NTRS)
Batina, John T.
1992-01-01
The development of computational fluid dynamics (CFD) methods for unsteady aerodynamic analysis is described. Special emphasis is placed on considerations that are required for application of the methods to unsteady aerodynamic flow problems. Two broad categories of topics are presented to illustrate the major points. Although primary application of these CFD methods is to relatively low frequency oscillatory phenomena such as flutter, the ideas that are presented may be of value to developers of computational aeroacoustic methods for predicting high frequency acoustics.
A CFD study of Screw Compressor Motor Cooling Analysis
NASA Astrophysics Data System (ADS)
Branch, S.
2017-08-01
Screw compressors use electric motors to drive the male screw rotor. They are cooled by the suction refrigerant vapor that flows around the motor. The thermal conditions of the motor can dramatically influence the performance and reliability of the compressor. The more optimized this flow path is, the better the motor performance. For that reason it is important to understand the flow characteristics around the motor and the motor temperatures. Computational fluid dynamics (CFD) can be used to provide a detailed analysis of the refrigerant’s flow behavior and motor temperatures to identify the undesirable hot spots in the motor. CFD analysis can be used further to optimize the flow path and determine the reduction of hot spots and cooling effect. This study compares the CFD solutions of a motor cooling model to a motor installed with thermocouples measured in the lab. The compressor considered for this study is an R134a screw compressor. The CFD simulation of the motor consists of a detailed breakdown of the stator and rotor components. Orthotropic thermal conductivity material properties are used to represent the simplified motor geometry. In addition, the analysis includes the motor casings of the compressor to draw heat away from the motor by conduction. The study will look at different operating conditions and motor speeds. Finally, the CFD study will investigate the predicted motor temperature change by varying the vapor mass flow rates and motor speed. Recommendations for CFD modeling of such intricate heat transfer phenomenon have thus been proposed.
CFD analysis of thermodynamic cycles in a pulse tube refrigerator
NASA Astrophysics Data System (ADS)
Chen, Ling; Zhang, Yu; Luo, Ercang; Li, Teng; Wei, Xiaolin
2010-11-01
The objectives of this paper are to study the thermodynamic cycles in an inertance tube pulse tube refrigerator (ITPTR) by means of CFD method. The simulation results show that gas parcels working in different parts of ITPTR undergo different thermodynamic cycles. The net effects of those thermodynamic cycles are pumping heat from the low temperature part to the high temperature part of the system. The simulation results also show that under different frequencies of piston movement, the gas parcels working in the same part of the system will undergo the same type of thermodynamic cycles. The simulated thermal cycles are compared with those thermodynamic analysis results from a reference. Comparisons show that both CFD simulations and theoretical analysis predict the same type of thermal cycles at the same location. However, only CFD simulation can give the quantitative results, while the thermodynamic analysis is still remaining in quality.
Removing Grit During Wastewater Treatment: CFD Analysis of HDVS Performance.
Meroney, Robert N; Sheker, Robert E
2016-05-01
Computational Fluid Dynamics (CFD) was used to simulate the grit and sand separation effectiveness of a typical hydrodynamic vortex separator (HDVS) system. The analysis examined the influences on the separator efficiency of: flow rate, fluid viscosities, total suspended solids (TSS), and particle size and distribution. It was found that separator efficiency for a wide range of these independent variables could be consolidated into a few curves based on the particle fall velocity to separator inflow velocity ratio, Ws/Vin. Based on CFD analysis it was also determined that systems of different sizes with length scale ratios ranging from 1 to 10 performed similarly when Ws/Vin and TSS were held constant. The CFD results have also been compared to a limited range of experimental data.
CFD Analysis in Advance of the NASA Juncture Flow Experiment
NASA Technical Reports Server (NTRS)
Lee, H. C.; Pulliam, T. H.; Neuhart, D. H.; Kegerise, M. A.
2017-01-01
NASA through its Transformational Tools and Technologies Project (TTT) under the Advanced Air Vehicle Program, is supporting a substantial effort to investigate the formation and origin of separation bubbles found on wing-body juncture zones. The flow behavior in these regions is highly complex, difficult to measure experimentally, and challenging to model numerically. Multiple wing configurations were designed and evaluated using Computational Fluid Dynamics (CFD), and a series of wind tunnel risk reduction tests were performed to further down-select the candidates for the final experiment. This paper documents the CFD analysis done in conjunction with the 6 percent scale risk reduction experiment performed in NASA Langley's 14- by 22-Foot Subsonic Tunnel. The combined CFD and wind tunnel results ultimately helped the Juncture Flow committee select the wing configurations for the final experiment.
CFD analysis of laminar oscillating flows
Booten, C. W. Charles W.); Konecni, S.; Smith, B. L.; Martin, R. A.
2001-01-01
This paper describes a numerical simulations of oscillating flow in a constricted duct and compares the results with experimental and theoretical data. The numerical simulations were performed using the computational fluid dynamics (CFD) code CFX4.2. The numerical model simulates an experimental oscillating flow facility that was designed to test the properties and characteristics of oscillating flow in tapered ducts, also known as jet pumps. Jet pumps are useful devices in thermoacoustic machinery because they produce a secondary pressure that can counteract an unwanted effect called streaming, and significantly enhance engine efficiency. The simulations revealed that CFX could accurately model velocity, shear stress and pressure variations in laminar oscillating flow. The numerical results were compared to experimental data and theoretical predictions with varying success. The least accurate numerical results were obtained when laminar flow approached transition to turbulent flow.
Advanced CFD methods for wind turbine analysis
NASA Astrophysics Data System (ADS)
Lynch, C. Eric
2011-12-01
Horizontal-axis wind turbines operate in a complex, inherently unsteady aerodynamic environment. Even when the rotor is not stalled, the flow over the blades is dominated by three-dimensional (3-D) effects. Stall is accompanied by massive flow separation and vortex shedding over the suction surface of the blades. Under yawed conditions, dynamic stall may be present as well. In all operating conditions, there is bluff-body shedding from the turbine nacelle and support structure which interacts with the rotor wake. In addition, the high aspect ratios of wind turbine blades make them very flexible, leading to substantial aeroelastic deformation of the blades, altering the aerodynamics. Finally, when situated in a wind farm, turbines must operate in the unsteady wake of upstream neighbors. Though computational fluid dynamics (CFD) has made significant inroads as a research tool, simple, inexpensive methods, such as blade element momentum (BEM) theory, are still the workhorses in wind turbine design and aeroelasticity applications. These methods generally assume a quasi-steady flowfield and use two-dimensional aerodynamic approximations with very limited empirical 3-D corrections. As a result, they are unable to accurately predict rotor loads near the edges of the operating envelope. CFD methods make very few limiting assumptions about the flowfield, and thus have much greater potential for predicting these flows. In this work, a range of unstructured grid CFD techniques for predicting wind turbine loads and aeroelasticity has been developed and applied to a wind turbine configuration of interest. First, a nearest neighbor search algorithm based on a k-dimensional tree data structure was used to improve the computational efficiency of an approximate unsteady actuator blade method. This method was then shown to predict root and tip vortex locations and strengths similar to an overset method on the same background mesh, but without the computational expense of modeling
CFD analysis of a Darrieus wind turbine
NASA Astrophysics Data System (ADS)
Niculescu, M. L.; Cojocaru, M. G.; Pricop, M. V.; Pepelea, D.; Dumitrache, A.; Crunteanu, D. E.
2017-07-01
The Darrieus wind turbine has some advantages over the horizontal-axis wind turbine. Firstly, its tip speed ratio is lower than that of the horizontal-axis wind turbine and, therefore, its noise is smaller, privileging their placement near populated areas. Secondly, the Darrieus wind turbine does needs no orientation mechanism with respect to wind direction in contrast to the horizontal-axis wind turbine. However, the efficiency of the Darrieus wind turbine is lower than that of the horizontal-axis wind turbine since its aerodynamics is much more complex. With the advances in computational fluids and computers, it is possible to simulate the Darrieus wind turbine more accurately to understand better its aerodynamics. For these reasons, the present papers deals with the computational aerodynamics of a Darrieus wind turbine applying the state of the art of CFD methods (anisotropic turbulence models, transition from laminar to turbulent, scale adaptive simulation) to better understand its unsteady behavior.
CFD analysis of a diaphragm free-piston Stirling cryocooler
NASA Astrophysics Data System (ADS)
Caughley, Alan; Sellier, Mathieu; Gschwendtner, Michael; Tucker, Alan
2016-10-01
This paper presents a Computational Fluid Dynamics (CFD) analysis of a novel free-piston Stirling cryocooler that uses a pair of metal diaphragms to seal and suspend the displacer. The diaphragms allow the displacer to move without rubbing or moving seals. When coupled to a metal diaphragm pressure wave generator, the system produces a complete Stirling cryocooler with no rubbing parts in the working gas space. Initial modelling of this concept using the Sage modelling tool indicated the potential for a useful cryocooler. A proof-of-concept prototype was constructed and achieved cryogenic temperatures. A second prototype was designed and constructed using the experience gained from the first. The prototype produced 29 W of cooling at 77 K and reached a no-load temperature of 56 K. The diaphragm's large diameter and short stroke produces a significant radial component to the oscillating flow fields inside the cryocooler which were not modelled in the one-dimensional analysis tool Sage that was used to design the prototypes. Compared with standard pistons, the diaphragm geometry increases the gas-to-wall heat transfer due to the higher velocities and smaller hydraulic diameters. A Computational Fluid Dynamics (CFD) model of the cryocooler was constructed to understand the underlying fluid-dynamics and heat transfer mechanisms with the aim of further improving performance. The CFD modelling of the heat transfer in the radial flow fields created by the diaphragms shows the possibility of utilizing the flat geometry for heat transfer, reducing the need for, and the size of, expensive heat exchangers. This paper presents details of a CFD analysis used to model the flow and gas-to-wall heat transfer inside the second prototype cryocooler, including experimental validation of the CFD to produce a robust analysis.
CFD analysis of a ball check microvalve
NASA Astrophysics Data System (ADS)
Cǎlimǎnescu, Ioan; Dumitrache, Constantin L.; Grigorescu, Lucian
2015-02-01
The microvalves with balls as seen before are used in many applications and their behaviour in terms of fluid dynamics mainly at their opening time (when as demonstrated the ball is bouncing up and down altering the flow parameters) is of a paramount importance. The present study is focused on a micro check ball valve circulating a fluid air-like (with the same constant proprieties). The CFD model is taking into account a transitory zone of functioning from zero time when the pressure inside a "tank" is reaching the opening pressure of the valve, to the final step 0.05 seconds when the ball is stabilizing after bouncing up and down. The geometry of the valve with dimensions in μm is given below (the model is comprising a "slice" of 5 μm thickness extracted from the entire valve. In this paper by using advanced numeric techniques, the behavior of the valve in its transitory opening stage was studied with credible and useful results for further optimisation studies.
Statistical Analysis of CFD Solutions from the 6th AIAA CFD Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Derlaga, Joseph M.; Morrison, Joseph H.
2017-01-01
A graphical framework is used for statistical analysis of the results from an extensive N- version test of a collection of Reynolds-averaged Navier-Stokes computational uid dynam- ics codes. The solutions were obtained by code developers and users from North America, Europe, Asia, and South America using both common and custom grid sequencees as well as multiple turbulence models for the June 2016 6th AIAA CFD Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic con guration for this workshop was the Common Research Model subsonic transport wing- body previously used for both the 4th and 5th Drag Prediction Workshops. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with previous workshops.
New Flutter Analysis Technique for CFD-based Unsteady Aeroelasticity
NASA Technical Reports Server (NTRS)
Pak, Chan-gi; Jutte, Christine V.
2009-01-01
This paper presents a flutter analysis technique for the transonic flight regime. The technique uses an iterative approach to determine the critical dynamic pressure for a given mach number. Unlike other CFD-based flutter analysis methods, each iteration solves for the critical dynamic pressure and uses this value in subsequent iterations until the value converges. This process reduces the iterations required to determine the critical dynamic pressure. To improve the accuracy of the analysis, the technique employs a known structural model, leaving only the aerodynamic model as the unknown. The aerodynamic model is estimated using unsteady aeroelastic CFD analysis combined with a parameter estimation routine. The technique executes as follows. The known structural model is represented as a finite element model. Modal analysis determines the frequencies and mode shapes for the structural model. At a given mach number and dynamic pressure, the unsteady CFD analysis is performed. The output time history of the surface pressure is converted to a nodal aerodynamic force vector. The forces are then normalized by the given dynamic pressure. A multi-input multi-output parameter estimation software, ERA, estimates the aerodynamic model through the use of time histories of nodal aerodynamic forces and structural deformations. The critical dynamic pressure is then calculated using the known structural model and the estimated aerodynamic model. This output is used as the dynamic pressure in subsequent iterations until the critical dynamic pressure is determined. This technique is demonstrated on the Aerostructures Test Wing-2 model at NASA's Dryden Flight Research Center.
New Flutter Analysis Technique for CFD-based Unsteady Aeroelasticity
NASA Technical Reports Server (NTRS)
Pak, Chan-gi; Jutte, Christine V.
2009-01-01
This paper presents a flutter analysis technique for the transonic flight regime. The technique uses an iterative approach to determine the critical dynamic pressure for a given mach number. Unlike other CFD-based flutter analysis methods, each iteration solves for the critical dynamic pressure and uses this value in subsequent iterations until the value converges. This process reduces the iterations required to determine the critical dynamic pressure. To improve the accuracy of the analysis, the technique employs a known structural model, leaving only the aerodynamic model as the unknown. The aerodynamic model is estimated using unsteady aeroelastic CFD analysis combined with a parameter estimation routine. The technique executes as follows. The known structural model is represented as a finite element model. Modal analysis determines the frequencies and mode shapes for the structural model. At a given mach number and dynamic pressure, the unsteady CFD analysis is performed. The output time history of the surface pressure is converted to a nodal aerodynamic force vector. The forces are then normalized by the given dynamic pressure. A multi-input multi-output parameter estimation software, ERA, estimates the aerodynamic model through the use of time histories of nodal aerodynamic forces and structural deformations. The critical dynamic pressure is then calculated using the known structural model and the estimated aerodynamic model. This output is used as the dynamic pressure in subsequent iterations until the critical dynamic pressure is determined. This technique is demonstrated on the Aerostructures Test Wing-2 model at NASA's Dryden Flight Research Center.
CFD analysis of gas explosions vented through relief pipes.
Ferrara, G; Di Benedetto, A; Salzano, E; Russo, G
2006-09-21
Vent devices for gas and dust explosions are often ducted to safe locations by means of relief pipes. However, the presence of the duct increases the severity of explosion if compared to simply vented vessels (i.e. compared to cases where no duct is present). Besides, the identification of the key phenomena controlling the violence of explosion has not yet been gained. Multidimensional models coupling, mass, momentum and energy conservation equations can be valuable tools for the analysis of such complex explosion phenomena. In this work, gas explosions vented through ducts have been modelled by a two-dimensional (2D) axi-symmetric computational fluid dynamic (CFD) model based on the unsteady Reynolds Averaged Navier Stokes (RANS) approach in which the laminar, flamelet and distributed combustion models have been implemented. Numerical test have been carried out by varying ignition position, duct diameter and length. Results have evidenced that the severity of ducted explosions is mainly driven by the vigorous secondary explosion occurring in the duct (burn-up) rather than by the duct flow resistance or acoustic enhancement. Moreover, it has been found out that the burn-up affects explosion severity due to the reduction of venting rate rather than to the burning rate enhancement through turbulization.
CFD analysis of linear compressors considering load conditions
NASA Astrophysics Data System (ADS)
Bae, Sanghyun; Oh, Wonsik
2017-08-01
This paper is a study on computational fluid dynamics (CFD) analysis of linear compressor considering load conditions. In the conventional CFD analysis of the linear compressor, the load condition was not considered in the behaviour of the piston. In some papers, behaviour of piston is assumed as sinusoidal motion provided by user defined function (UDF). In the reciprocating type compressor, the stroke of the piston is restrained by the rod, while the stroke of the linear compressor is not restrained, and the stroke changes depending on the load condition. The greater the pressure difference between the discharge refrigerant and the suction refrigerant, the more the centre point of the stroke is pushed backward. And the behaviour of the piston is not a complete sine wave. For this reason, when the load condition changes in the CFD analysis of the linear compressor, it may happen that the ANSYS code is changed or unfortunately the modelling is changed. In addition, a separate analysis or calculation is required to find a stroke that meets the load condition, which may contain errors. In this study, the coupled mechanical equations and electrical equations are solved using the UDF, and the behaviour of the piston is solved considering the pressure difference across the piston. Using the above method, the stroke of the piston with respect to the motor specification of the analytical model can be calculated according to the input voltage, and the piston behaviour can be realized considering the thrust amount due to the pressure difference.
CFD Analysis of Bubbling Fluidized Bed Using Rice Husk
NASA Astrophysics Data System (ADS)
Singh, Ravi Inder; Mohapatra, S. K.; Gangacharyulu, D.
Rice is Cultivated in all the main regions of world. The worldwide annual rice production could be 666million tons (www.monstersandcritics.com,2008) for year 2008. The annual production of rice husk is 133.2 million tons considering rice husk being 20% of total paddy production. The average annual energy potential is 1.998 *1012 MJ of rice husk considering 15MJ/kg of rice husk. India has vast resource of rice husk; a renewable source of fuel, which if used effectively would reduce the rate of depletion of fossil energy resources. As a result a new thrust on research and development in boilers bases on rice husk is given to commercialize the concept. CFD is the analysis of systems involving fluid flow, heat transfer and associated phenomena such as chemical reactions by means of computer-based simulation. High quality Computational Fluid dynamics (CFD) is an effective engineering tool for Power Engineering Industry. It can determine detailed flow distributions, temperatures, and pollutant concentrations with excellent accuracy, and without excessive effort by the software user. In the other words it is the science of predicting fluid flow, heat and mass transfer, chemical reactions and related phenomena; and an innovate strategy to conform to regulations and yet stay ahead in today's competitive power market. This paper is divided into two parts; in first part review of CFD applied to the various types of boilers based on biomass fuels/alternative fuels is presented. In second part CFD analysis of fluidized bed boilers based on rice husk considering the rice husk based furnace has been discussed. The eulerian multiphase model has used for fluidized bed. Fluidized bed has been modeled using Fluent 6.2 commercial code. The effect of numerical influence of bed superheater tubes has also been discussed.
Analysis Tools for CFD Multigrid Solvers
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.; Thomas, James L.; Diskin, Boris
2004-01-01
Analysis tools are needed to guide the development and evaluate the performance of multigrid solvers for the fluid flow equations. Classical analysis tools, such as local mode analysis, often fail to accurately predict performance. Two-grid analysis tools, herein referred to as Idealized Coarse Grid and Idealized Relaxation iterations, have been developed and evaluated within a pilot multigrid solver. These new tools are applicable to general systems of equations and/or discretizations and point to problem areas within an existing multigrid solver. Idealized Relaxation and Idealized Coarse Grid are applied in developing textbook-efficient multigrid solvers for incompressible stagnation flow problems.
A novel CFD/structural analysis of a cross parachute
LaFarge, R.A.; Nelsen, J.M.; Gwinn, K.W.
1993-12-31
A novel CFD/structural analysis was performed to predict functionality of a cross parachute under loadings near the structural limits of the parachute. The determination of parachute functionality was based on the computed structural integrity of the canopy and suspension lines. In addition to the standard aerodynamic pressure loading on the canopy, the structural analysis considered the reduction in fabric strength due to the computed aerodynamic heating. The intent was to illustrate the feasibility of such an analysis with the commercially available software PATRAN.
Observations Regarding Use of Advanced CFD Analysis, Sensitivity Analysis, and Design Codes in MDO
NASA Technical Reports Server (NTRS)
Newman, Perry A.; Hou, Gene J. W.; Taylor, Arthur C., III
1996-01-01
Observations regarding the use of advanced computational fluid dynamics (CFD) analysis, sensitivity analysis (SA), and design codes in gradient-based multidisciplinary design optimization (MDO) reflect our perception of the interactions required of CFD and our experience in recent aerodynamic design optimization studies using CFD. Sample results from these latter studies are summarized for conventional optimization (analysis - SA codes) and simultaneous analysis and design optimization (design code) using both Euler and Navier-Stokes flow approximations. The amount of computational resources required for aerodynamic design using CFD via analysis - SA codes is greater than that required for design codes. Thus, an MDO formulation that utilizes the more efficient design codes where possible is desired. However, in the aerovehicle MDO problem, the various disciplines that are involved have different design points in the flight envelope; therefore, CFD analysis - SA codes are required at the aerodynamic 'off design' points. The suggested MDO formulation is a hybrid multilevel optimization procedure that consists of both multipoint CFD analysis - SA codes and multipoint CFD design codes that perform suboptimizations.
Biological Sabatier reaction with CFD analysis
NASA Astrophysics Data System (ADS)
Leonzio, Grazia
2016-12-01
The biological Sabatier reaction is a suitable option for the future energy storage. In this research a computational fluid dynamics analysis is carried out to study the mixing inside the anaerobic digester, to evaluate the gas to liquid mass transfer and the efficiency of the reaction. A detailed modeling about the hydrodynamics and mixing is developed: the standard k-ɛ mixture turbulence model and the Eulerian-Eulerian approach are used to simulate the flow inside the anaerobic digestion. The system mixing uses external sludge re-circulating pumps. Results of simulations show that with higher liquid velocity there are higher mass to transfer from gas to liquid and turbulent dissipation rate. The future construction of the anaerobic digester will provide the obtained results.
Boom Minimization Framework for Supersonic Aircraft Using CFD Analysis
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Rallabhandi, Sriram K.
2010-01-01
A new framework is presented for shape optimization using analytical shape functions and high-fidelity computational fluid dynamics (CFD) via Cart3D. The focus of the paper is the system-level integration of several key enabling analysis tools and automation methods to perform shape optimization and reduce sonic boom footprint. A boom mitigation case study subject to performance, stability and geometrical requirements is presented to demonstrate a subset of the capabilities of the framework. Lastly, a design space exploration is carried out to assess the key parameters and constraints driving the design.
Status report : guard containment CFD analysis.
Tzanos, C. P.; Nuclear Engineering Division
2006-03-03
decay heat levels at GFR target power densities. The lower back-up pressure, plus whatever natural convection is available at this pressure, will be utilized to significantly reduce the blower power of the active DHR system sized to remove 2-3% decay power. The objective is to be able to have such low power requirements so that power supplies such as batteries without the need for startup, can be utilized. This lower back-up pressure should be sufficient to support natural convection removal of 0.5% decay heat which occurs at {approx}24 hrs. So there should be no more need for active systems/power supply after the initial period of one day. Furthermore, since there will be a decay of the after-heat from 2-3% to 0.5% in this time period, credit should be taken in probability space for loss of active systems during the 24 hours. The safety approach will then be a probabilistic one. In the future discussions with the regulatory authorities the approach which will then be taken is that this class of decay heat removal accidents should be treated in combination with the PRA rather than solely through deterministic calculations. Work is now ongoing in the U.S.-France I-NERI GFR project to further evaluate this hybrid passive/active approach to heat removal for depressurized decay heat accidents. The objective of the analysis documented in this report is to provide information on local and global temperature, pressure and flow distributions in the guard containment , during steady state, and reactor vessel depressurization conditions due to a small break in the reactor vessel bottom control rod drive system. This is for the 2400 MWt plant option. The results should lead to improved guard containment designs and enhanced margin for safety criteria.
Automated Tetrahedral Mesh Generation for CFD Analysis of Aircraft in Conceptual Design
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Li, Wu; Campbell, Richard L.
2014-01-01
The paper introduces an automation process of generating a tetrahedral mesh for computational fluid dynamics (CFD) analysis of aircraft configurations in early conceptual design. The method was developed for CFD-based sonic boom analysis of supersonic configurations, but can be applied to aerodynamic analysis of aircraft configurations in any flight regime.
Non-Newtonian Liquid Flow through Small Diameter Piping Components: CFD Analysis
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Tarun Kanti; Das, Sudip Kumar
2016-10-01
Computational Fluid Dynamics (CFD) analysis have been carried out to evaluate the frictional pressure drop across the horizontal pipeline and different piping components, like elbows, orifices, gate and globe valves for non-Newtonian liquid through 0.0127 m pipe line. The mesh generation is done using GAMBIT 6.3 and FLUENT 6.3 is used for CFD analysis. The CFD results are verified with our earlier published experimental data. The CFD results show the very good agreement with the experimental values.
CFD Analysis of the 24-inch JIRAD Hybrid Rocket Motor
NASA Technical Reports Server (NTRS)
Liang, Pak-Yan; Ungewitter, Ronald; Claflin, Scott
1996-01-01
A series of multispecies, multiphase computational fluid dynamics (CFD) analyses of the 24-inch diameter joint government industry industrial research and development (JIRAD) hybrid rocket motor is described. The 24-inch JIRAD hybrid motor operates by injection of liquid oxygen (LOX) into a vaporization plenum chamber upstream of ports in the hydroxyl-terminated polybutadiene (HTPB) solid fuel. The injector spray pattern had a strong influence on combustion stability of the JIRAD motor so a CFD study was initiated to define the injector end flow field under different oxidizer spray patterns and operating conditions. By using CFD to gain a clear picture of the flow field and temperature distribution within the JIRAD motor, it is hoped that the fundamental mechanisms of hybrid combustion instability may be identified and then suppressed by simple alterations to the oxidizer injection parameters such as injection angle and velocity. The simulations in this study were carried out using the General Algorithm for Analysis of Combustion SYstems (GALACSY) multiphase combustion codes. GALACSY consists of a comprehensive set of droplet dynamic submodels (atomization, evaporation, etc.) and a computationally efficient hydrocarbon chemistry package built around a robust Navier-Stokes solver optimized for low Mach number flows. Lagrangian tracking of dispersed particles describes a closely coupled spray phase. The CFD cases described in this paper represent various levels of simplification of the problem. They include: (A) gaseous oxygen with combusting fuel vapor blowing off the walls at various oxidizer injection angles and velocities, (B) gaseous oxygen with combusting fuel vapor blowing off the walls, and (C) liquid oxygen with combusting fuel vapor blowing off the walls. The study used an axisymmetric model and the results indicate that the injector design significantly effects the flow field in the injector end of the motor. Markedly different recirculation patterns are
Development of a CFD Analysis Plan for the first VHTR Standard Problem
Richard W. Johnson
2008-09-01
Data from a scaled model of a portion of the lower plenum of the helium-cooled very high temperature reactor (VHTR) are under consideration for acceptance as a computational fluid dynamics (CFD) validation data set or standard problem. A CFD analysis will help determine if the scaled model is a suitable geometry for validation data. The present article describes the development of an analysis plan for the CFD model. The plan examines the boundary conditions that should be used, the extent of the computational domain that should be included and which turbulence models need not be examined against the data. Calculations are made for a closely related 2D geometry to address these issues. It was found that a CFD model that includes only the inside of the scaled model in its computational domain is adequate for CFD calculations. The realizable k~e model was found not to be suitable for this problem because it did not predict vortex-shedding.
NASA Astrophysics Data System (ADS)
Iannetti, Aldo; Stickland, Matthew T.; Dempster, William M.
2015-09-01
An advanced transient CFD model of a positive displacement reciprocating pump was created to study its behavior and performance in cavitating condition during the inlet stroke. The "full" cavitation model developed by Singhal et al. was utilized, and a sensitivity analysis test on two air mass fraction amounts (1.5 and 15 parts per million) was carried out to study the influence of the dissolved air content in water on the cavitation phenomenon. The model was equipped with user defined functions to introduce the liquid compressibility, which stabilizes the simulation, and to handle the two-way coupling between the pressure field and the inlet valve lift history. Estimation of the performance is also presented in both cases.
Statistical Analysis of the AIAA Drag Prediction Workshop CFD Solutions
NASA Technical Reports Server (NTRS)
Morrison, Joseph H.; Hemsch, Michael J.
2007-01-01
The first AIAA Drag Prediction Workshop (DPW), held in June 2001, evaluated the results from an extensive N-version test of a collection of Reynolds-Averaged Navier-Stokes CFD codes. The code-to-code scatter was more than an order of magnitude larger than desired for design and experimental validation of cruise conditions for a subsonic transport configuration. The second AIAA Drag Prediction Workshop, held in June 2003, emphasized the determination of installed pylon-nacelle drag increments and grid refinement studies. The code-to-code scatter was significantly reduced compared to the first DPW, but still larger than desired. However, grid refinement studies showed no significant improvement in code-to-code scatter with increasing grid refinement. The third AIAA Drag Prediction Workshop, held in June 2006, focused on the determination of installed side-of-body fairing drag increments and grid refinement studies for clean attached flow on wing alone configurations and for separated flow on the DLR-F6 subsonic transport model. This report compares the transonic cruise prediction results of the second and third workshops using statistical analysis.
Design of Shrouded Airborne Wind Turbine & CFD Analysis
NASA Astrophysics Data System (ADS)
Anbreen, Faiqa; Faiqa Anbreen Collaboration
2015-11-01
The focus is to design a shrouded airborne wind turbine, capable to generate 70 kW to propel a leisure boat. The idea of designing an airborne turbine is to take the advantage of different velocity layers in the atmosphere. The blades have been designed using NREL S826 airfoil, which has coefficient of lift CL of 1.4 at angle of attack, 6°. The value selected for CP is 0.8. The rotor diameter is 7.4 m. The balloon (shroud) has converging-diverging nozzle design, to increase the mass flow rate through the rotor. The ratio of inlet area to throat area, Ai/At is 1.31 and exit area to throat area, Ae/At is1.15. The Solidworks model has been analyzed numerically using CFD. The software used is StarCCM +. The Unsteady Reynolds Averaged Navier Stokes Simulation (URANS) K- ɛ model has been selected, to study the physical properties of the flow, with emphasis on the performance of the turbine. Stress analysis has been done using Nastran. From the simulations, the torque generated by the turbine is approximately 800N-m and angular velocity is 21 rad/s.
Highly Efficient Design-of-Experiments Methods for Combining CFD Analysis and Experimental Data
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Haller, Harold S.
2009-01-01
It is the purpose of this study to examine the impact of "highly efficient" Design-of-Experiments (DOE) methods for combining sets of CFD generated analysis data with smaller sets of Experimental test data in order to accurately predict performance results where experimental test data were not obtained. The study examines the impact of micro-ramp flow control on the shock wave boundary layer (SWBL) interaction where a complete paired set of data exist from both CFD analysis and Experimental measurements By combining the complete set of CFD analysis data composed of fifteen (15) cases with a smaller subset of experimental test data containing four/five (4/5) cases, compound data sets (CFD/EXP) were generated which allows the prediction of the complete set of Experimental results No statistical difference were found to exist between the combined (CFD/EXP) generated data sets and the complete Experimental data set composed of fifteen (15) cases. The same optimal micro-ramp configuration was obtained using the (CFD/EXP) generated data as obtained with the complete set of Experimental data, and the DOE response surfaces generated by the two data sets were also not statistically different.
Marinho, Daniel A; Barbosa, Tiago M; Rouboa, Abel I; Silva, António J
2011-09-01
Nowadays the underwater gliding after the starts and the turns plays a major role in the overall swimming performance. Hence, minimizing hydrodynamic drag during the underwater phases should be a main aim during swimming. Indeed, there are several postures that swimmers can assume during the underwater gliding, although experimental results were not conclusive concerning the best body position to accomplish this aim. Therefore, the purpose of this study was to analyse the effect in hydrodynamic drag forces of using different body positions during gliding through computational fluid dynamics (CFD) methodology. For this purpose, two-dimensional models of the human body in steady flow conditions were studied. Two-dimensional virtual models had been created: (i) a prone position with the arms extended at the front of the body; (ii) a prone position with the arms placed alongside the trunk; (iii) a lateral position with the arms extended at the front and; (iv) a dorsal position with the arms extended at the front. The drag forces were computed between speeds of 1.6 m/s and 2 m/s in a two-dimensional Fluent(®) analysis. The positions with the arms extended at the front presented lower drag values than the position with the arms aside the trunk. The lateral position was the one in which the drag was lower and seems to be the one that should be adopted during the gliding after starts and turns.
Marinho, Daniel A.; Barbosa, Tiago M.; Rouboa, Abel I.; Silva, António J.
2011-01-01
Nowadays the underwater gliding after the starts and the turns plays a major role in the overall swimming performance. Hence, minimizing hydrodynamic drag during the underwater phases should be a main aim during swimming. Indeed, there are several postures that swimmers can assume during the underwater gliding, although experimental results were not conclusive concerning the best body position to accomplish this aim. Therefore, the purpose of this study was to analyse the effect in hydrodynamic drag forces of using different body positions during gliding through computational fluid dynamics (CFD) methodology. For this purpose, two-dimensional models of the human body in steady flow conditions were studied. Two-dimensional virtual models had been created: (i) a prone position with the arms extended at the front of the body; (ii) a prone position with the arms placed alongside the trunk; (iii) a lateral position with the arms extended at the front and; (iv) a dorsal position with the arms extended at the front. The drag forces were computed between speeds of 1.6 m/s and 2 m/s in a two-dimensional Fluent® analysis. The positions with the arms extended at the front presented lower drag values than the position with the arms aside the trunk. The lateral position was the one in which the drag was lower and seems to be the one that should be adopted during the gliding after starts and turns. PMID:23486656
CFD MODELING ANALYSIS OF MECHANICAL DRAFT COOLING TOWER
Lee, S; Alfred Garrett, A; James02 Bollinger, J; Larry Koffman, L
2008-03-03
Industrial processes use mechanical draft cooling towers (MDCT's) to dissipate waste heat by transferring heat from water to air via evaporative cooling, which causes air humidification. The Savannah River Site (SRS) has a MDCT consisting of four independent compartments called cells. Each cell has its own fan to help maximize heat transfer between ambient air and circulated water. The primary objective of the work is to conduct a parametric study for cooling tower performance under different fan speeds and ambient air conditions. The Savannah River National Laboratory (SRNL) developed a computational fluid dynamics (CFD) model to achieve the objective. The model uses three-dimensional steady-state momentum, continuity equations, air-vapor species balance equation, and two-equation turbulence as the basic governing equations. It was assumed that vapor phase is always transported by the continuous air phase with no slip velocity. In this case, water droplet component was considered as discrete phase for the interfacial heat and mass transfer via Lagrangian approach. Thus, the air-vapor mixture model with discrete water droplet phase is used for the analysis. A series of the modeling calculations was performed to investigate the impact of ambient and operating conditions on the thermal performance of the cooling tower when fans were operating and when they were turned off. The model was benchmarked against the literature data and the SRS test results for key parameters such as air temperature and humidity at the tower exit and water temperature for given ambient conditions. Detailed results will be presented here.
An integrated CFD/experimental analysis of aerodynamic forces and moments
NASA Technical Reports Server (NTRS)
Melton, John E.; Robertson, David D.; Moyer, Seth A.
1989-01-01
Aerodynamic analysis using computational fluid dynamics (CFD) is most fruitful when it is combined with a thorough program of wind tunnel testing. The understanding of aerodynamic phenomena is enhanced by the synergistic use of both analysis methods. A technique is described for an integrated approach to determining the forces and moments acting on a wind tunnel model by using a combination of experimentally measured pressures and CFD predictions. The CFD code used was FLO57 (an Euler solver) and the wind tunnel model was a heavily instrumented delta wing with 62.5 deg of leading-edge sweep. A thorough comparison of the CFD results and the experimental data is presented for surface pressure distributions and longitudinal forces and moments. The experimental pressures were also integrated over the surface of the model and the resulting forces and moments are compared to the CFD and wind tunnel results. The accurate determination of various drag increments via the combined use of the CFD and experimental pressures is presented in detail.
NASA Technical Reports Server (NTRS)
Anderson, Kevin R.; Zayas, Daniel; Turner, Daniel
2012-01-01
Computational Fluid Dynamics (CFD) using the commercial CFD package CFDesign has been performed at NASA Jet Propulsion Laboratory (JPL) California Institute of Technology (Caltech) in support of the Phaeton Early Career Hire Program's Optical Payload for Lasercomm Science (OPALS) mission. The OPALS project is one which involves an International Space Station payload that will be using forced convection cooling in a hermetically sealed enclosure at 1 atm of air to cool "off-the-shelf" vendor electronics. The CFD analysis was used to characterize the thermal and fluid flow environment within a complicated labyrinth of electronics boards, fans, instrumentation, harnessing, ductwork and heat exchanger fins. The paradigm of iteratively using CAD/CAE tools and CFD was followed in order to determine the optimum flow geometry and heat sink configuration to yield operational convective film coefficients and temperature survivability limits for the electronics payload. Results from this current CFD analysis and correlation of the CFD model against thermal test data will be presented. Lessons learned and coupled thermal / flow modeling strategies will be shared in this paper.
NASA Technical Reports Server (NTRS)
Anderson, Kevin R.; Zayas, Daniel; Turner, Daniel
2012-01-01
Computational Fluid Dynamics (CFD) using the commercial CFD package CFDesign has been performed at NASA Jet Propulsion Laboratory (JPL) California Institute of Technology (Caltech) in support of the Phaeton Early Career Hire Program's Optical Payload for Lasercomm Science (OPALS) mission. The OPALS project is one which involves an International Space Station payload that will be using forced convection cooling in a hermetically sealed enclosure at 1 atm of air to cool "off-the-shelf" vendor electronics. The CFD analysis was used to characterize the thermal and fluid flow environment within a complicated labyrinth of electronics boards, fans, instrumentation, harnessing, ductwork and heat exchanger fins. The paradigm of iteratively using CAD/CAE tools and CFD was followed in order to determine the optimum flow geometry and heat sink configuration to yield operational convective film coefficients and temperature survivability limits for the electronics payload. Results from this current CFD analysis and correlation of the CFD model against thermal test data will be presented. Lessons learned and coupled thermal / flow modeling strategies will be shared in this paper.
Certification of CFD heat transfer software for turbine blade analysis
NASA Technical Reports Server (NTRS)
Jordan, William A.
2004-01-01
Accurate modeling of heat transfer effects is a critical component of the Turbine Branch of the Turbomachinery and Propulsion Systems Division. Being able to adequately predict and model heat flux, coolant flows, and peak temperatures are necessary for the analysis of high pressure turbine blades. To that end, the primary goal of my internship this summer will be to certify the reliability of the CFD program GlennHT for the purpose of turbine blade heat transfer analysis. GlennHT is currently in use by the engineers in the Turbine Branch who use the FORTRAN 77 version of the code for analysis. The program, however, has been updated to a FORTRAN 90 version which is more robust than the older code. In order for the new code to be distributed for use, its reliability must first be certified. Over the course of my internship I will create and run test cases using the FORTRAN 90 version of GlennHT and compare the results to older cases which are known to be accurate, If the results of the new code match those of the sample cases then the newer version will be one step closer to certification for distribution. In order to complete these it will first be necessary to become familiar with operating a number of other programs. Among them are GridPro, which is used to create a grid mesh around a blade geometry, and FieldView, whose purpose is to graphically display the results from the GlennHT program. Once enough familiarity is established with these programs to render them useful, then the work of creating and running test scenarios will begin. The work is additionally complicated by a transition in computer hardware. Most of the working computers in the Turbine Branch are Silicon Graphics machines, which will soon be replaced by LINUX PC's. My project is one of the first to make use the new PC's. The change in system architecture however, has created several software related issues which have greatly increased the time and effort investments required by the project
Certification of CFD heat transfer software for turbine blade analysis
NASA Technical Reports Server (NTRS)
Jordan, William A.
2004-01-01
Accurate modeling of heat transfer effects is a critical component of the Turbine Branch of the Turbomachinery and Propulsion Systems Division. Being able to adequately predict and model heat flux, coolant flows, and peak temperatures are necessary for the analysis of high pressure turbine blades. To that end, the primary goal of my internship this summer will be to certify the reliability of the CFD program GlennHT for the purpose of turbine blade heat transfer analysis. GlennHT is currently in use by the engineers in the Turbine Branch who use the FORTRAN 77 version of the code for analysis. The program, however, has been updated to a FORTRAN 90 version which is more robust than the older code. In order for the new code to be distributed for use, its reliability must first be certified. Over the course of my internship I will create and run test cases using the FORTRAN 90 version of GlennHT and compare the results to older cases which are known to be accurate, If the results of the new code match those of the sample cases then the newer version will be one step closer to certification for distribution. In order to complete these it will first be necessary to become familiar with operating a number of other programs. Among them are GridPro, which is used to create a grid mesh around a blade geometry, and FieldView, whose purpose is to graphically display the results from the GlennHT program. Once enough familiarity is established with these programs to render them useful, then the work of creating and running test scenarios will begin. The work is additionally complicated by a transition in computer hardware. Most of the working computers in the Turbine Branch are Silicon Graphics machines, which will soon be replaced by LINUX PC's. My project is one of the first to make use the new PC's. The change in system architecture however, has created several software related issues which have greatly increased the time and effort investments required by the project
Experimental and CFD Analysis of Advanced Convective Cooling Systems
Hassan, Yassin A; Ugaz, Victor M
2012-06-27
The objective of this project is to study the fundamental physical phenomena in the reactor cavity cooling system (RCCS) of very high-temperature reactors (VHTRs). One of the primary design objectives is to assure that RCCS acts as an ultimate heat sink capable of maintaining thermal integrity of the fuel, vessel, and equipment within the reactor cavity for the entire spectrum of postulated accident scenarios. Since construction of full-scale experimental test facilities to study these phenomena is impractical, it is logical to expect that computational fluid dynamics (CFD) simulations will play a key role in the RCCS design process. An important question then arises: To what extent are conventional CFD codes able to accurately capture the most important flow phenomena, and how can they be modified to improve their quantitative predictions? Researchers are working to tackle this problem in two ways. First, in the experimental phase, the research team plans to design and construct an innovative platform that will provide a standard test setting for validating CFD codes proposed for the RCCS design. This capability will significantly advance the state of knowledge in both liquid-cooled and gas-cooled (e.g., sodium fast reactor) reactor technology. This work will also extend flow measurements to micro-scale levels not obtainable in large-scale test facilities, thereby revealing previously undetectable phenomena that will complement the existing infrastructure. Second, in the computational phase of this work, numerical simulation of the flow and temperature profiles will be performed using advanced turbulence models to simulate the complex conditions of flows in critical zones of the cavity. These models will be validated and verified so that they can be implemented into commercially available CFD codes. Ultimately, the results of these validation studies can then be used to enable a more accurate design and safety evaluation of systems in actual nuclear power
Prospects for Eulerian CFD analysis of helicopter vortex flows
NASA Technical Reports Server (NTRS)
Drela, Mark; Murman, Earll M.
1987-01-01
The applicability of current finite-volume CFD algorithms based on the Euler equations to the vortex flow over a helicopter in forward flight is investigated analytically. The general characteristics of the flow are reviewed; existing Euler, Navier-Stokes, perturbation, high-order, and adaptive methods are briefly characterized; and a novel Eulerian/Lagrangian approach with entropy and vorticity corrections is presented in detail. Numerical results for simple convection of a finite-core Lamb vortex moving downstream with its axis perpendicular to the flow are presented in graphs, and the possibility of extending the method to three-dimensional, viscous, and shock flows is discussed.
CFD analysis of jet mixing in low NOx flametube combustors
NASA Technical Reports Server (NTRS)
Talpallikar, M. V.; Smith, C. E.; Lai, M. C.; Holdeman, J. D.
1991-01-01
The Rich-burn/Quick-mix/Lean-burn (RQL) combustor was identified as a potential gas turbine combustor concept to reduce NO(x) emissions in High Speed Civil Transport (HSCT) aircraft. To demonstrate reduced NO(x) levels, cylindrical flametube versions of RQL combustors are being tested at NASA Lewis Research Center. A critical technology needed for the RQL combustor is a method of quickly mixing by-pass combustion air with rich-burn gases. Jet mixing in a cylindrical quick-mix section was numerically analyzed. The quick-mix configuration was five inches in diameter and employed twelve radial-inflow slots. The numerical analyses were performed with an advanced, validated 3-D Computational Fluid Dynamics (CFD) code named REFLEQS. Parametric variation of jet-to-mainstream momentum flux ratio (J) and slot aspect ratio was investigated. Both non-reacting and reacting analyses were performed. Results showed mixing and NO(x) emissions to be highly sensitive to J and slot aspect ratio. Lowest NO(x) emissions occurred when the dilution jet penetrated to approximately mid-radius. The viability of using 3-D CFD analyses for optimizing jet mixing was demonstrated.
CFD analysis on a turbulence generator of medium consistency pump
NASA Astrophysics Data System (ADS)
Ma, X. D.; Wu, D. Z.; Huang, D. S.; Yu, H.; Wang, L. Q.
2013-12-01
Medium concentration paper suspension is a water-air-fibre three phase suspension. It has complicated physical features. When concentration exceeds 7%, it stops flowing and acts like a solid. A generator suspension is installed before the impeller to disturb the flocs and networks to make it start to flow. In this paper, CFD method is adopted to study the effects of the turbulence generator. As there is not a mature model to describe the characteristic of pulp suspension, Newtonian fluid is used to get the general property of the turbulence generator. In the CFD simulation, apparent viscosity of the pulp suspension is used to characterize the mixture. Firstly, numerical method is applied to get the turbulence generator properties in different rotational speed and different viscosity. From another point of view, air contained in the suspension is separate initially by means of centrifugal force. As it is difficult to describe a practical model of pulp suspension, it is simplified to be a water-air two-phase mixture. Several air contents are simulated to study the air distribution in the turbulence generator. The results show that there are three main effects of turbulence generator. Firstly, it has an entrainment effect of the suspension to make it into the pump. Secondly, it stirs the pulp suspension to bring it into flowing. Last, air is centralized in the shaft centre and pre-separated in the turbulence generator. So, the turbulence generator can pre-treat the pulp suspension to make the MC pump transport suspension successfully.
NASA Technical Reports Server (NTRS)
Kamhawi, Hilmi N.
2012-01-01
This report documents the work performed from March 2010 to March 2012. The Integrated Design and Engineering Analysis (IDEA) environment is a collaborative environment based on an object-oriented, multidisciplinary, distributed framework using the Adaptive Modeling Language (AML) as a framework and supporting the configuration design and parametric CFD grid generation. This report will focus on describing the work in the area of parametric CFD grid generation using novel concepts for defining the interaction between the mesh topology and the geometry in such a way as to separate the mesh topology from the geometric topology while maintaining the link between the mesh topology and the actual geometry.
The Analysis and Design of Low Boom Configurations Using CFD and Numerical Optimization Techniques
NASA Technical Reports Server (NTRS)
Siclari, Michael J.
1999-01-01
The use of computational fluid dynamics (CFD) for the analysis of sonic booms generated by aircraft has been shown to increase the accuracy and reliability of predictions. CFD takes into account important three-dimensional and nonlinear effects that are generally neglected by modified linear theory (MLT) methods. Up to the present time, CFD methods have been primarily used for analysis or prediction. Some investigators have used CFD to impact the design of low boom configurations using trial and error methods. One investigator developed a hybrid design method using a combination of Modified Linear Theory (e.g. F-functions) and CFD to provide equivalent area due to lift driven by a numerical optimizer to redesign or modify an existing configuration to achieve a shaped sonic boom signature. A three-dimensional design methodology has not yet been developed that completely uses nonlinear methods or CFD. Constrained numerical optimization techniques have existed for some time. Many of these methods use gradients to search for the minimum of a specified objective function subject to a variety of design variable bounds, linear and nonlinear constraints. Gradient based design optimization methods require the determination of the objective function gradients with respect to each of the design variables. These optimization methods are efficient and work well if the gradients can be obtained analytically. If analytical gradients are not available, the objective gradients or derivatives with respect to the design variables must be obtained numerically. To obtain numerical gradients, say, for 10 design variables, might require anywhere from 10 to 20 objective function evaluations. Typically, 5-10 global iterations of the optimizer are required to minimize the objective function. In terms of using CFD as a design optimization tool, the numerical evaluation of gradients can require anywhere from 100 to 200 CFD computations per design for only 10 design variables. If one CFD
The Analysis and Design of Low Boom Configurations Using CFD and Numerical Optimization Techniques
NASA Technical Reports Server (NTRS)
Siclari, Michael J.
1999-01-01
The use of computational fluid dynamics (CFD) for the analysis of sonic booms generated by aircraft has been shown to increase the accuracy and reliability of predictions. CFD takes into account important three-dimensional and nonlinear effects that are generally neglected by modified linear theory (MLT) methods. Up to the present time, CFD methods have been primarily used for analysis or prediction. Some investigators have used CFD to impact the design of low boom configurations using trial and error methods. One investigator developed a hybrid design method using a combination of Modified Linear Theory (e.g. F-functions) and CFD to provide equivalent area due to lift driven by a numerical optimizer to redesign or modify an existing configuration to achieve a shaped sonic boom signature. A three-dimensional design methodology has not yet been developed that completely uses nonlinear methods or CFD. Constrained numerical optimization techniques have existed for some time. Many of these methods use gradients to search for the minimum of a specified objective function subject to a variety of design variable bounds, linear and nonlinear constraints. Gradient based design optimization methods require the determination of the objective function gradients with respect to each of the design variables. These optimization methods are efficient and work well if the gradients can be obtained analytically. If analytical gradients are not available, the objective gradients or derivatives with respect to the design variables must be obtained numerically. To obtain numerical gradients, say, for 10 design variables, might require anywhere from 10 to 20 objective function evaluations. Typically, 5-10 global iterations of the optimizer are required to minimize the objective function. In terms of using CFD as a design optimization tool, the numerical evaluation of gradients can require anywhere from 100 to 200 CFD computations per design for only 10 design variables. If one CFD
Intelligent Patching of Conceptual Geometry for CFD Analysis
NASA Technical Reports Server (NTRS)
Li, Wu
2010-01-01
The iPatch computer code for intelligently patching surface grids was developed to convert conceptual geometry to computational fluid dynamics (CFD) geometry (see figure). It automatically uses bicubic B-splines to extrapolate (if necessary) each surface in a conceptual geometry so that all the independently defined geometric components (such as wing and fuselage) can be intersected to form a watertight CFD geometry. The software also computes the intersection curves of surface patches at any resolution (up to 10.4 accuracy) specified by the user, and it writes the B-spline surface patches, and the corresponding boundary points, for the watertight CFD geometry in the format that can be directly used by the grid generation tool VGRID. iPatch requires that input geometry be in PLOT3D format where each component surface is defined by a rectangular grid {(x(i,j), y(i,j), z(i,j)):1less than or equal to i less than or equal to m, 1 less than or equal to j less than or equal to n} that represents a smooth B-spline surface. All surfaces in the PLOT3D file conceptually represent a watertight geometry of components of an aircraft on the half-space y greater than or equal to 0. Overlapping surfaces are not allowed, but could be fixed by a utility code "fixp3d". The fixp3d utility code first finds the two grid lines on the two surface grids that are closest to each other in Hausdorff distance (a metric to measure the discrepancies of two sets); then uses one of the grid lines as the transition line, extending grid lines on one grid to the other grid to form a merged grid. Any two connecting surfaces shall have a "visually" common boundary curve, or can be described by an intersection relationship defined in a geometry specification file. The intersection of two surfaces can be at a conceptual level. However, the intersection is directional (along either i or j index direction), and each intersecting grid line (or its spine extrapolation) on the first surface should intersect
CFD analysis of onshore oil pipelines in permafrost
NASA Astrophysics Data System (ADS)
Nardecchia, Fabio; Gugliermetti, Luca; Gugliermetti, Franco
2017-07-01
Underground pipelines are built all over the world and the knowledge of their thermal interaction with the soil is crucial for their design. This paper studies the "thermal influenced zone" produced by a buried pipeline and the parameters that can influence its extension by 2D-steady state CFD simulations with the aim to improve the design of new pipelines in permafrost. In order to represent a real case, the study is referred to the Eastern Siberia-Pacific Ocean Oil Pipeline at the three stations of Mo'he, Jiagedaqi and Qiqi'har. Different burial depth sand diameters of the pipe are analyzed; the simulation results show that the effect of the oil pipeline diameter on the thermal field increases with the increase of the distance from the starting station.
Liquid Annular Seal CFD Analysis for Rotordynamic Force Prediction
NASA Technical Reports Server (NTRS)
Moore, Jeff; Palazzolo, Alan
2006-01-01
A commercially available code is utilized to analyze a plain and grooved liquid annular seal. These type seals are commonly used in modern turbopumps and have a pronounced effect on the rotordynamic behavior of these systems. Accurate prediction of both leakage and dynamic reaction forces is vital to ensure good performance and sound mechanical operation. The code SCISEAL developed by CFDRC is a generic 3-D, finite volume based CFD code solving the 3-D Reynolds averaged Navier Stokes equations. The code allows body-fitted, multi-blocked structured grids, turbulence modeling, rotating coordinate frames, as well as integration of dynamic pressure and shear forces on the rotating journal. The code may be used with the commercially available pre-and post-processing codes from CFDRC as well.
Statistical Analysis of CFD Solutions from the Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Hemsch, Michael J.
2002-01-01
A simple, graphical framework is presented for robust statistical evaluation of results obtained from N-Version testing of a series of RANS CFD codes. The solutions were obtained by a variety of code developers and users for the June 2001 Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic configuration used for the computational tests is the DLR-F4 wing-body combination previously tested in several European wind tunnels and for which a previous N-Version test had been conducted. The statistical framework is used to evaluate code results for (1) a single cruise design point, (2) drag polars and (3) drag rise. The paper concludes with a discussion of the meaning of the results, especially with respect to predictability, Validation, and reporting of solutions.
Methodology for CFD Design Analysis of National Launch System Nozzle Manifold
NASA Technical Reports Server (NTRS)
Haire, Scot L.
1993-01-01
The current design environment dictates that high technology CFD (Computational Fluid Dynamics) analysis produce quality results in a timely manner if it is to be integrated into the design process. The design methodology outlined describes the CFD analysis of an NLS (National Launch System) nozzle film cooling manifold. The objective of the analysis was to obtain a qualitative estimate for the flow distribution within the manifold. A complex, 3D, multiple zone, structured grid was generated from a 3D CAD file of the geometry. A Euler solution was computed with a fully implicit compressible flow solver. Post processing consisted of full 3D color graphics and mass averaged performance. The result was a qualitative CFD solution that provided the design team with relevant information concerning the flow distribution in and performance characteristics of the film cooling manifold within an effective time frame. Also, this design methodology was the foundation for a quick turnaround CFD analysis of the next iteration in the manifold design.
Overview of the LaNCETS Flight Experiment and the CFD Analysis
NASA Technical Reports Server (NTRS)
Cliatt, Larry J., II; Haering, Edward A., Jr.; Bui, Trong
2008-01-01
LaCETS baseline flight study include: 29 high-quality nearfield shock structure probings at three Mach numbers; Shocks in exhaust plume measured; ! CFD study of simplified nozzle shows similar plume structures as flight data; ! Phase II flights scheduled for October 2008; and ! US Industry and Academia invited to participate in analysis, review, and assessment of LaNCETS data.
CFD analysis of unsteady cavitation phenomena in multistage pump with inducer
NASA Astrophysics Data System (ADS)
Sedlář, M.; Zima, P.; Bajorek, M.; Krátký, T.
2012-11-01
This paper presents the numerical simulation of the cavitating flow phenomena in the suction part of a radial-flow multistage water pump with a high rotational speed. The pump is equipped with an inducer. Besides the usual focus on the cavitation inception or the drop of the pump total head this CFD analysis also studies the possibility of the cavitation surge and attempts to quantify the risk of cavitation erosion for different flow conditions. The ANSYS CFX commercial CFD package was used to solve the URANS equations coupled with the Rayleigh-Plesset Model. The SST-SAS turbulence model was employed to capture unsteady phenomena inside the pump. The model for the prediction of the cavitation erosion risk is based on coupling the CFD analysis of 3D turbulent flow with the analysis of the dynamics of bubbles travelling along selected trajectories using the full Rayleigh-Plesset equation. The model assumes that the water at the pump inlet contains a known number of nuclei with a known size distribution. The erosion potential (or aggressiveness) of the collapse is estimated from the energy dissipated during the collapse. The presented CFD analysis has provided a map of regions endangered by cavitation erosion. The cavitation instability in the backflow vortices has been detected at 60% of the optimal flow coefficient close to the NPSHr value.
CFD Design and Analysis of a Passively Suspended Tesla Pump Left Ventricular Assist Device
Medvitz, Richard B.; Boger, David A.; Izraelev, Valentin; Rosenberg, Gerson; Paterson, Eric G.
2012-01-01
This paper summarizes the use of computational fluid dynamics (CFD) to design a novelly suspended Tesla LVAD. Several design variants were analyzed to study the parameters affecting device performance. CFD was performed at pump speeds of 6500, 6750 and 7000 RPM and at flow rates varying from 3 to 7 liter-per-minute (LPM). The CFD showed that shortening the plates nearest the pump inlet reduced the separations formed beneath the upper plate leading edges and provided a more uniform flow distribution through the rotor gaps, both of which positively affected the device hydrodynamic performance. The final pump design was found to produce a head rise of 77 mmHg with a hydraulic efficiency of 16% at the design conditions of 6 LPM throughflow and a 6750 RPM rotation rate. To assess the device hemodynamics the strain rate fields were evaluated. The wall shear stresses demonstrated that the pump wall shear stresses were likely adequate to inhibit thrombus deposition. Finally, an integrated field hemolysis model was applied to the CFD results to assess the effects of design variation and operating conditions on the device hemolytic performance. PMID:21595722
NASA Astrophysics Data System (ADS)
Joung, Tae-Hwan; Choi, Hyeung-Sik; Jung, Sang-Ki; Sammut, Karl; He, Fangpo
2014-06-01
This paper examines the suitability of using the Computational Fluid Dynamics (CFD) tools, ANSYSCFX, as an initial analysis tool for predicting the drag and propulsion performance (thrust and torque) of a concept underwater vehicle design. In order to select an appropriate thruster that will achieve the required speed of the Underwater Disk Robot (UDR), the ANSYS-CFX tools were used to predict the drag force of the UDR. Vertical Planar Motion Mechanism (VPMM) test simulations (i.e. pure heaving and pure pitching motion) by CFD motion analysis were carried out with the CFD software. The CFD results reveal the distribution of hydrodynamic values (velocity, pressure, etc.) of the UDR for these motion studies. Finally, CFD bollard pull test simulations were performed and compared with the experimental bollard pull test results conducted in a model basin. The experimental results confirm the suitability of using the ANSYS-CFX tools for predicting the behavior of concept vehicles early on in their design process.
Aerodynamic analysis of Audi A4 Sedan using CFD
NASA Astrophysics Data System (ADS)
Birwa, S. K.; Rathi, N.; Gupta, R.
2013-04-01
This paper presents the aerodynamic influence of velocity and ground clearance for Audi A4 Sedan. The topology of the test vehicle was modeled using CATIA P3 V5 R17. ANSYS FLUENT 12 was the CFD solver employed in this study. The distribution of pressure and velocity was obtained. The velocities were 30, 40, 50 and 60 m/s and ground clearances were 76.2 mm,101.6 mm,127 mm and 152.4 mm. The simulation results were compared with the available resources. It was found that the drag coefficient decreases with the velocity increasing from 30 to 60 m/s and increases with the ground clearance from 101.6 mm to 152.4 mm. Further decrease in ground clearance showed no effect on the value of coefficient of drag. The lift coefficient was found to decrease firstly with ground clearance from 152.4 mm to 101.6 mm, and then increase from 101.6 mm to 76.2 mm. Both the lift coefficient and drag coefficient was found to be minimum for the ground clearance of 101.6 mm as designed by the company.
A novel approach to CFD analysis of the urban environment
NASA Astrophysics Data System (ADS)
Nardecchia, F.; Gugliermetti, F.; Bisegna, F.
2015-11-01
The construction of cities, with their buildings and human activities, not only changes the landscape, but also influences the local climate in a manner that depends on many different factors and parameters: weather conditions, urban thermo-physical and geometrical characteristics, anthropogenic moisture and heat sources. Land-cover and canopy structure play an important role in urban climatology and every environmental assessment and city design face with them. Inside the previous frame, the objective of this study is both to identify both the key design variables that alter the environment surrounding the buildings, and to quantified the extension area of these phenomena. The tool used for this study is a 2D computational fluid dynamics (CFD) numerical simulation considering different heights for buildings, temperature gaps between undisturbed air and building's walls, velocities of undisturbed air. Results obtained allowed to find a novel approach to study urban canopies, giving a qualitative assessment on the contribution and definition of the total energy of the area surrounding the buildings.
Liquid rocket combustion instability analysis by CFD methods
NASA Technical Reports Server (NTRS)
Grenda, J. M.; Venkateswaran, S.; Merkle, C. L.
1991-01-01
Combustion instability in liquid rocket engines is simulated computationally by using a simple two-parameter model for the combustion response function. The objectives of the study are to assess the capabilities of CFD algorithms for instability studies and to investigate the response to parametric effects such as bombs and distributed combustion. Results indicate that numerical solutions of high accuracy can be obtained if a sufficient number of grid points are used per wavelength of the disturbance. The short-term response to bombs or pulses triggers a large number of modes in the combustor whose faithful resolution requires highly dense grids, although there is evidence that correct long-term solutions can be obtained even if all the short-term frequencies are not resolved. Long-term responses to pulses are shown to decay to the most unstable mode in small amplitude cases, and to exhibit limit cycles in large amplitude cases. Comparison of distributed with concentrated heat release indicates the former is more stable for given values of the combustion response parameters, and that the distributed heat release gives rise to higher frequency disturbances. Wave steepening is observed in the solutions, but its effect is less pronounced in multidimensional waves than in one-dimensional waves.
NASA Technical Reports Server (NTRS)
Marsell, Brandon; Griffin, David; Schallhorn, Dr. Paul; Roth, Jacob
2012-01-01
Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and th e control system of a launch vehicle. Instead of relying on mechanical analogs which are not valid during aU stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid flow equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.
Integrated CFD and Controls Analysis Interface for High Accuracy Liquid Propellant Slosh Predictions
NASA Technical Reports Server (NTRS)
Marsell, Brandon; Griffin, David; Schallhorn, Paul; Roth, Jacob
2012-01-01
Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and the control system of a launch vehicle. Instead of relying on mechanical analogs which are n0t va lid during all stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid now equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.
An Application of Overset Grids to Payload/Fairing Three-Dimensional Internal Flow CFD Analysis
NASA Technical Reports Server (NTRS)
Kandula, Max; Nallasamy, R.; Schallhorn, P.; Duncil, L.
2007-01-01
The application of overset grids to the computational fluid dynamics analysis of three-dimensional internal flow in the payload/fairing of an expendable launch vehicle is described. In conjunction with the overset grid system, the flowfield in the payload/fairing configuration is obtained with the aid of OVERFLOW Navier-Stokes code. The solution exhibits a highly three dimensional complex flowfield with swirl, separation, and vortices. Some of the computed flow features are compared with the measured Laser-Doppler Velocimetry (LDV) data on a 1/5th scale model of the payload/fairing configuration. The counter-rotating vortex structures and the location of the saddle point predicted by the CFD analysis are in general agreement with the LDV data. Comparisons of the computed (CFD) velocity profiles on horizontal and vertical lines in the LDV measurement plane in the faring nose region show reasonable agreement with the LDV data.
CFD analysis of the aerosolization of carrier-based dry powder inhaler formulations
NASA Astrophysics Data System (ADS)
Zhou, Qi (Tony); Tong, Zhenbo; Tang, Patricia; Yang, Runyu; Chan, Hak-Kim
2013-06-01
This study applied computational fluid dynamics (CFD) analysis to investigate the role of device design on the aerosolization of a carrier-based dry powder inhaler (DPI). The inhaler device was modified by reducing the inlet size, decreasing the mouthpiece length and increasing the mesh grid voidage. The flow patterns in the inhaler device were examined. It was observed that there was no significant influence on the aerosol performance with the reduced mouthpiece. When the inlet size was reduced to one third of the original one, the fine particle fraction (FPF), defined as mount of inhalable fine particles below 5μm in the aerosol, was improved significantly from 17.7% to 24.3%. The CFD analysis indicated that the increase in FPF was due to increasing air velocity for the smaller inlet. No significant difference was shown in FPF when the grid voidage was increased, but more drugs deposited in the mouthpiece and throat.
Ex-Core CFD Analysis Results for the Prometheus Gas Reactor
Lorentz, Donald G.
2007-01-30
This paper presents the initial nozzle-to-nozzle (N2N) reactor vessel model scoping studies using computational fluid dynamics (CFD) analysis methods. The N2N model has been solved under a variety of different boundary conditions. This paper presents some of the basic hydraulic results from the N2N CFD analysis effort. It also demonstrates how designers were going to apply the analysis results to modify a number of the design features. The initial goals for developing a preliminary CFD N2N model were to establish baseline expectations for pressure drops and flow fields around the reactor core. Analysis results indicated that the averaged reactor vessel pressure drop for all analyzed cases was 46.9 kPa ({approx}6.8 psid). In addition, mass flow distributions to the three core fuel channel regions exhibited a nearly inverted profile to those specified for the in-core thermal/hydraulic design. During subsequent design iterations, the goal would have been to modify or add design features that would have minimized reactor vessel pressure drop and improved flow distribution to the inlet of the core.
The Structural Design for Hyper-Elastic Materials Using Cfd Analysis
NASA Astrophysics Data System (ADS)
Park, Young-Chul; Jung, Dae-Seok; Kim, Ji-Young
The usage of hyper-elastic material has been increasing gradually and its application has extended over a wide range of various industries. Implementing experimental and numerical methods, performance of hyper-elastic material can be predicted. Proposed in this study is the process by which the material coefficient can be obtained and applied to seat-ring of butterfly valve. Considering the mechanical properties and material conditions, optimum model was constructed and applied to obtain the coefficient by using CFD analysis.
Impact of blade geometry differences for the CFD performance analysis of existing turbines
NASA Astrophysics Data System (ADS)
Nicolle, J.; Labbé, P.; Gauthier, G.; Lussier, M.
2010-08-01
Hydro-Québec has been using CFD to analyze the performance of its existing turbines for many years. Most of those analyses are based on the measurement of a single runner blade. However, due to manufacturing techniques, in-situ modifications or repairs, there are often small differences between individual blades of the same runner. The impact of this non uniformity was not known thus far and was often assumed to be negligible given the size of the runner. This paper highlights the impact of such differences by presenting the CFD analysis of various blades measured on the same runner. Two different geometries are used for demonstration: the AxialT model propeller and a 50-MW Francis turbine. In both cases, about 50% of the blades could not be considered as representative of the whole turbine and using them could lead to wrong conclusions regarding the turbine performance.
Processes and Procedures for Application of CFD to Nuclear Reactor Safety Analysis
Richard W. Johnson; Richard R. Schultz; Patrick J. Roache; Ismail B. Celik; William D. Pointer; Yassin A. Hassan
2006-09-01
Traditionally, nuclear reactor safety analysis has been performed using systems analysis codes such as RELAP5, which was developed at the INL. However, goals established by the Generation IV program, especially the desire to increase efficiency, has lead to an increase in operating temperatures for the reactors. This increase pushes reactor materials to operate towards their upper temperature limits relative to structural integrity. Because there will be some finite variation of the power density in the reactor core, there will be a potential for local hot spots to occur in the reactor vessel. Hence, it has become apparent that detailed analysis will be required to ensure that local ‘hot spots’ do not exceed safety limits. It is generally accepted that computational fluid dynamics (CFD) codes are intrinsically capable of simulating fluid dynamics and heat transport locally because they are based on ‘first principles.’ Indeed, CFD analysis has reached a fairly mature level of development, including the commercial level. However, CFD experts are aware that even though commercial codes are capable of simulating local fluid and thermal physics, great care must be taken in their application to avoid errors caused by such things as inappropriate grid meshing, low-order discretization schemes, lack of iterative convergence and inaccurate time-stepping. Just as important is the choice of a turbulence model for turbulent flow simulation. Turbulence models model the effects of turbulent transport of mass, momentum and energy, but are not necessarily applicable for wide ranges of flow types. Therefore, there is a well-recognized need to establish practices and procedures for the proper application of CFD to simulate flow physics accurately and establish the level of uncertainty of such computations. The present document represents contributions of CFD experts on what the basic practices, procedures and guidelines should be to aid CFD analysts to obtain accurate
Li, Y; Nielsen, P V
2011-12-01
There has been a rapid growth of scientific literature on the application of computational fluid dynamics (CFD) in the research of ventilation and indoor air science. With a 1000-10,000 times increase in computer hardware capability in the past 20 years, CFD has become an integral part of scientific research and engineering development of complex air distribution and ventilation systems in buildings. This review discusses the major and specific challenges of CFD in terms of turbulence modelling, numerical approximation, and boundary conditions relevant to building ventilation. We emphasize the growing need for CFD verification and validation, suggest ongoing needs for analytical and experimental methods to support the numerical solutions, and discuss the growing capacity of CFD in opening up new research areas. We suggest that CFD has not become a replacement for experiment and theoretical analysis in ventilation research, rather it has become an increasingly important partner. We believe that an effective scientific approach for ventilation studies is still to combine experiments, theory, and CFD. We argue that CFD verification and validation are becoming more crucial than ever as more complex ventilation problems are solved. It is anticipated that ventilation problems at the city scale will be tackled by CFD in the next 10 years. © 2011 John Wiley & Sons A/S.
CFD Sensitivity Analysis of a Modern Civil Transport Near Buffet-Onset Conditions
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Allison, Dennis O.; Biedron, Robert T.; Buning, Pieter G.; Gainer, Thomas G.; Morrison, Joseph H.; Rivers, S. Melissa; Mysko, Stephen J.; Witkowski, David P.
2001-01-01
A computational fluid dynamics (CFD) sensitivity analysis is conducted for a modern civil transport at several conditions ranging from mostly attached flow to flow with substantial separation. Two different Navier-Stokes computer codes and four different turbulence models are utilized, and results are compared both to wind tunnel data at flight Reynolds number and flight data. In-depth CFD sensitivities to grid, code, spatial differencing method, aeroelastic shape, and turbulence model are described for conditions near buffet onset (a condition at which significant separation exists). In summary, given a grid of sufficient density for a given aeroelastic wing shape, the combined approximate error band in CFD at conditions near buffet onset due to code, spatial differencing method, and turbulence model is: 6% in lift, 7% in drag, and 16% in moment. The biggest two contributers to this uncertainty are turbulence model and code. Computed results agree well with wind tunnel surface pressure measurements both for an overspeed 'cruise' case as well as a case with small trailing edge separation. At and beyond buffet onset, computed results agree well over the inner half of the wing, but shock location is predicted too far aft at some of the outboard stations. Lift, drag, and moment curves are predicted in good agreement with experimental results from the wind tunnel.
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2011-01-01
Launch vehicles frequently experience a reduced stability margin through the transonic Mach number range. This reduced stability margin is caused by an undamping of the aerodynamics in one of the lower frequency flexible or rigid body modes. Analysis of the behavior of a flexible vehicle is routinely performed with quasi-steady aerodynamic lineloads derived from steady rigid computational fluid dynamics (CFD). However, a quasi-steady aeroelastic stability analysis can be unconservative at the critical Mach numbers where experiment or unsteady computational aeroelastic (CAE) analysis show a reduced or even negative aerodynamic damping. This paper will present a method of enhancing the quasi-steady aeroelastic stability analysis of a launch vehicle with unsteady aerodynamics. The enhanced formulation uses unsteady CFD to compute the response of selected lower frequency modes. The response is contained in a time history of the vehicle lineloads. A proper orthogonal decomposition of the unsteady aerodynamic lineload response is used to reduce the scale of data volume and system identification is used to derive the aerodynamic stiffness, damping and mass matrices. The results of the enhanced quasi-static aeroelastic stability analysis are compared with the damping and frequency computed from unsteady CAE analysis and from a quasi-steady analysis. The results show that incorporating unsteady aerodynamics in this way brings the enhanced quasi-steady aeroelastic stability analysis into close agreement with the unsteady CAE analysis.
CFD Analysis of Swing of Cricket Ball and Trajectory Prediction
NASA Astrophysics Data System (ADS)
G, Jithin; Tom, Josin; Ruishikesh, Kamat; Jose, Jyothish; Kumar, Sanjay
2013-11-01
This work aims to understand the aerodynamics associated with the flight and swing of a cricket ball and predict its flight trajectory over the course of the game: at start (smooth ball) and as the game progresses (rough ball). Asymmetric airflow over the ball due to seam orientation and surface roughness can cause flight deviation (swing). The values of Drag, Lift and Side forces which are crucial for determining the trajectory of the ball were found with the help of FLUENT using the standard K- ɛ model. Analysis was done to study how the ball velocity, spin imparted to be ball and the tilt of the seam affects the movement of the ball through air. The governing force balance equations in 3 dimensions in combination a MATLAB code which used Heun's method was used for obtaining the trajectory of the ball. The conditions for the conventional swing and reverse swing to occur were deduced from the analysis and found to be in alignment with the real life situation. Critical seam angle for maximum swing and transition speed for normal to reverse swing were found out. The obtained trajectories were compared to real life hawk eye trajectories for validation. The analysis results were in good agreement with the real life situation.
Three Dimensional CFD Analysis of the GTX Combustor
NASA Technical Reports Server (NTRS)
Steffen, C. J., Jr.; Bond, R. B.; Edwards, J. R.
2002-01-01
The annular combustor geometry of a combined-cycle engine has been analyzed with three-dimensional computational fluid dynamics. Both subsonic combustion and supersonic combustion flowfields have been simulated. The subsonic combustion analysis was executed in conjunction with a direct-connect test rig. Two cold-flow and one hot-flow results are presented. The simulations compare favorably with the test data for the two cold flow calculations; the hot-flow data was not yet available. The hot-flow simulation indicates that the conventional ejector-ramjet cycle would not provide adequate mixing at the conditions tested. The supersonic combustion ramjet flowfield was simulated with frozen chemistry model. A five-parameter test matrix was specified, according to statistical design-of-experiments theory. Twenty-seven separate simulations were used to assemble surrogate models for combustor mixing efficiency and total pressure recovery. ScramJet injector design parameters (injector angle, location, and fuel split) as well as mission variables (total fuel massflow and freestream Mach number) were included in the analysis. A promising injector design has been identified that provides good mixing characteristics with low total pressure losses. The surrogate models can be used to develop performance maps of different injector designs. Several complex three-way variable interactions appear within the dataset that are not adequately resolved with the current statistical analysis.
Three Dimensional CFD Analysis of the GTX Combustor
NASA Technical Reports Server (NTRS)
Steffen, C. J., Jr.; Bond, R. B.; Edwards, J. R.
2002-01-01
The annular combustor geometry of a combined-cycle engine has been analyzed with three-dimensional computational fluid dynamics. Both subsonic combustion and supersonic combustion flowfields have been simulated. The subsonic combustion analysis was executed in conjunction with a direct-connect test rig. Two cold-flow and one hot-flow results are presented. The simulations compare favorably with the test data for the two cold flow calculations; the hot-flow data was not yet available. The hot-flow simulation Indicates that the conventional ejector-ramjet cycle would not provide adequate mixing at the conditions tested. The supersonic combustion ramjet flowfield was simulated with frozen chemistry model. A five-parameter test matrix was specified, according to statistical design-of-experiments theory. Twenty-seven separate simulations were used to assemble surrogate models for combustor mixing efficiency and total pressure recovery. Scramjet injector design parameters (injector angle, location, and fuel split) as well as mission variables (total fuel mass flow and freestream Mach number) were included in the analysis. A promising injector design has been identified that provides good mixing characteristics with low total pressure losses. The surrogate models can be used to develop performance maps of different injector designs. Several complex three-way variable interactions appear within the dataset that are not adequately resolved with the current statistical analysis.
CFD Methods and Tools for Multi-Element Airfoil Analysis
NASA Technical Reports Server (NTRS)
Rogers, Stuart E.; George, Michael W. (Technical Monitor)
1995-01-01
This lecture will discuss the computational tools currently available for high-lift multi-element airfoil analysis. It will present an overview of a number of different numerical approaches, their current capabilities, short-comings, and computational costs. The lecture will be limited to viscous methods, including inviscid/boundary layer coupling methods, and incompressible and compressible Reynolds-averaged Navier-Stokes methods. Both structured and unstructured grid generation approaches will be presented. Two different structured grid procedures are outlined, one which uses multi-block patched grids, the other uses overset chimera grids. Turbulence and transition modeling will be discussed.
Computational Fluid Dynamics (CFD) Analysis for the Reduction of Impeller Discharge Flow Distortion
NASA Technical Reports Server (NTRS)
Garcia, R.; McConnaughey, P. K.; Eastland, A.
1993-01-01
The use of Computational Fluid Dynamics (CFD) in the design and analysis of high performance rocket engine pumps has increased in recent years. This increase has been aided by the activities of the Marshall Space Flight Center (MSFC) Pump Stage Technology Team (PSTT). The team's goals include assessing the accuracy and efficiency of several methodologies and then applying the appropriate methodology(s) to understand and improve the flow inside a pump. The PSTT's objectives, team membership, and past activities are discussed in Garcia1 and Garcia2. The PSTT is one of three teams that form the NASA/MSFC CFD Consortium for Applications in Propulsion Technology (McConnaughey3). The PSTT first applied CFD in the design of the baseline consortium impeller. This impeller was designed for the Space Transportation Main Engine's (STME) fuel turbopump. The STME fuel pump was designed with three impeller stages because a two-stage design was deemed to pose a high developmental risk. The PSTT used CFD to design an impeller whose performance allowed for a two-stage STME fuel pump design. The availability of this design would have lead to a reduction in parts, weight, and cost had the STME reached production. One sample of the baseline consortium impeller was manufactured and tested in a water rig. The test data showed that the impeller performance was as predicted and that a two-stage design for the STME fuel pump was possible with minimal risk. The test data also verified another CFD predicted characteristic of the design that was not desirable. The classical 'jet-wake' pattern at the impeller discharge was strengthened by two aspects of the design: by the high head coefficient necessary for the required pressure rise and by the relatively few impeller exit blades, 12, necessary to reduce manufacturing cost. This 'jet-wake pattern produces an unsteady loading on the diffuser vanes and has, in past rocket engine programs, lead to diffuser structural failure. In industrial
CFD Analysis and Design Optimization Using Parallel Computers
NASA Technical Reports Server (NTRS)
Martinelli, Luigi; Alonso, Juan Jose; Jameson, Antony; Reuther, James
1997-01-01
A versatile and efficient multi-block method is presented for the simulation of both steady and unsteady flow, as well as aerodynamic design optimization of complete aircraft configurations. The compressible Euler and Reynolds Averaged Navier-Stokes (RANS) equations are discretized using a high resolution scheme on body-fitted structured meshes. An efficient multigrid implicit scheme is implemented for time-accurate flow calculations. Optimum aerodynamic shape design is achieved at very low cost using an adjoint formulation. The method is implemented on parallel computing systems using the MPI message passing interface standard to ensure portability. The results demonstrate that, by combining highly efficient algorithms with parallel computing, it is possible to perform detailed steady and unsteady analysis as well as automatic design for complex configurations using the present generation of parallel computers.
CFD Based Computations of Flexible Helicopter Blades for Stability Analysis
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.
2011-01-01
As a collaborative effort among government aerospace research laboratories an advanced version of a widely used computational fluid dynamics code, OVERFLOW, was recently released. This latest version includes additions to model flexible rotating multiple blades. In this paper, the OVERFLOW code is applied to improve the accuracy of airload computations from the linear lifting line theory that uses displacements from beam model. Data transfers required at every revolution are managed through a Unix based script that runs jobs on large super-cluster computers. Results are demonstrated for the 4-bladed UH-60A helicopter. Deviations of computed data from flight data are evaluated. Fourier analysis post-processing that is suitable for aeroelastic stability computations are performed.
CFD and Aeroelastic Analysis of the MEXICO Wind Turbine
NASA Astrophysics Data System (ADS)
Carrión, M.; Woodgate, M.; Steijl, R.; Barakos, G.; Gómez-Iradi, S.; Munduate, X.
2014-12-01
This paper presents an aerodynamic and aeroelastic analysis of the MEXICO wind turbine, using the compressible HMB solver of Liverpool. The aeroelasticity of the blade, as well as the effect of a low-Mach scheme were studied for the zero-yaw 15m/s wind case and steady- state computations. The wake developed behind the rotor was also extracted and compared with the experimental data, using the compressible solver and a low-Mach scheme. It was found that the loads were not sensitive to the Mach number effects, although the low-Mach scheme improved the wake predictions. The sensitivity of the results to the blade structural properties was also highlighted.
CFD Analysis of Emissions for a Candidate N+3 Combustor
NASA Technical Reports Server (NTRS)
Ajmani, Kumud
2015-01-01
An effort was undertaken to analyze the performance of a model Lean-Direct Injection (LDI) combustor designed to meet emissions and performance goals for NASA's N+3 program. Computational predictions of Emissions Index (EINOx) and combustor exit temperature were obtained for operation at typical power conditions expected of a small-core, high pressure-ratio (greater than 50), high T3 inlet temperature (greater than 950K) N+3 combustor. Reacting-flow computations were performed with the National Combustion Code (NCC) for a model N+3 LDI combustor, which consisted of a nine-element LDI flame-tube derived from a previous generation (N+2) thirteen-element LDI design. A consistent approach to mesh-optimization, spraymodeling and kinetics-modeling was used, in order to leverage the lessons learned from previous N+2 flame-tube analysis with the NCC. The NCC predictions for the current, non-optimized N+3 combustor operating indicated a 74% increase in NOx emissions as compared to that of the emissions-optimized, parent N+2 LDI combustor.
CFD Analysis of Emissions for a Candidate N+3 Combustor
NASA Technical Reports Server (NTRS)
Ajmani, Kumud
2015-01-01
An effort was undertaken to analyze the performance of a model Lean-Direct Injection (LDI) combustor designed to meet emissions and performance goals for NASA's N+3 program. Computational predictions of Emissions Index (EINOx) and combustor exit temperature were obtained for operation at typical power conditions expected of a small-core, high pressure-ratio (greater than 50), high T3 inlet temperature (greater than 950K) N+3 combustor. Reacting-flow computations were performed with the National Combustion Code (NCC) for a model N+3 LDI combustor, which consisted of a nine-element LDI flame-tube derived from a previous generation (N+2) thirteen-element LDI design. A consistent approach to mesh-optimization, spray-modeling and kinetics-modeling was used, in order to leverage the lessons learned from previous N+2 flame-tube analysis with the NCC. The NCC predictions for the current, non-optimized N+3 combustor operating indicated a 74% increase in NOx emissions as compared to that of the emissions-optimized, parent N+2 LDI combustor.
NASA Astrophysics Data System (ADS)
Kim, C. G.; Kim, B. H.; Bang, B. H.; Lee, Y. H.
2015-01-01
Sump model testing is mainly used to check flow conditions around the intake structure. In present paper, numerical simulation with SST turbulence model for a scaled sump model was carried out with air entrainment and two phases for prediction of locations of vortex generation. The sump model used for the CFD and experimental analysis was scaled down by a ratio of 1:10. The experiment was performed in Korea Maritime and Ocean University (KMOU) and the flow conditions around pump's intake structure were investigated. In this study, uniformity of flow distribution in the pump intake channel was examined to find out the specific causes of vortex occurrence. Furthermore, the effectiveness of an Anti Vortex Device (AVD) to suppress the vortex occurrence in a single intake pump sump model was examined. CFD and experimental analysis carried out with and without AVDs produced very similar results. Without the AVDs, the maximum swirl angle obtained for experimental and CFD analysis were 10.9 and 11.3 degree respectively. Similarly, with AVDs, the maximum swirl angle obtained for experimental and CFD analysis was 2.7 and 0.2 degree respectively. So, with reference to the ANSI/HI 98 standard that permits a maximum swirl angle of 5 degree, the use of AVDs in experimental and CFD analysis produced very desirable results which is well within the limit.
CFD Analysis of Flexible Thermal Protection System Shear Configuration Testing in the LCAT Facility
NASA Technical Reports Server (NTRS)
Ferlemann, Paul G.
2014-01-01
This paper documents results of computational analysis performed after flexible thermal protection system shear configuration testing in the LCAT facility. The primary objectives were to predict the shear force on the sample and the sensitivity of all surface properties to the shape of the sample. Bumps of 0.05, 0.10,and 0.15 inches were created to approximate the shape of some fabric samples during testing. A large amount of information was extracted from the CFD solutions for comparison between runs and also current or future flight simulations.
Three-Dimensional CFD Analysis on Gas Flow in Corrugated Wall Channel
Nam-il Tak; Won-Jae Lee; Jonghwa Jang
2006-07-01
A printed circuit heat exchanger (PCHE) is known as one of the promising types for an intermediate heat exchanger (IHX) of a nuclear hydrogen production system. This paper presents fundamental numerical results on gas flow behaviors in a typical PCHE geometry. Laminar and turbulent flows were analyzed based on a computational fluid dynamics (CFD) analysis. Local friction coefficient and local Nusselt number were evaluated and compared with those by typical correlations for tubes. In the case of a turbulent flow, various turbulence models were applied. The results clearly show the significance of a careful selection of a turbulence model. (authors)
CFD analysis of sludge accumulation and hydraulic performance of a waste stabilization pond.
Alvarado, Andres; Sanchez, Esteban; Durazno, Galo; Vesvikar, Mehul; Nopens, Ingmar
2012-01-01
Sludge management in waste stabilization ponds (WSPs) is essential for safeguarding the system performance. Sludge accumulation patterns in WSPs are strongly influenced by the pond hydrodynamics. CFD modeling was applied to study the relation between velocity profiles and sludge deposition during 10 years of operation of the Ucubamba WSP in Cuenca (Ecuador). One tracer experiment was performed and three sludge accumulation scenarios based on bathymetric surveys were simulated. A residence time distribution (RTD) analysis illustrated the decrease of residence times due to sludge deposition. Sludge accumulation rates were calculated. The influence of flow pattern on the sludge deposition was studied, enabling better planning of future pond operation and desludging.
CFD-Exergy analysis of the flow in a supersonic steam ejector
NASA Astrophysics Data System (ADS)
Boulenouar, M.; Ouadha, A.
2015-01-01
The current study aims to carry out a CFD-exergy based analysis to assess the main areas of loss in a supersonic steam ejector encountered in ejector refrigeration systems. The governing equations for a compressible flow are solved using finite volume approach based on SST k-ω model to handle turbulence effects. Flow rates and the computed mean temperatures and pressures have been used to calculate the exergy losses within the different regions of the ejector as well as its overall exergy efficiency. The primary mass flow rate, the secondary mass flow rate and the entrainment ratio predicted by the model have been compared with the experimental data from the literature.
Three dimensional CFD analysis of Cable-in-Conduit Conductors (CICCs) using porous medium approach
NASA Astrophysics Data System (ADS)
Raja Sekhar, Dondapati; Rao, V. V.
2013-02-01
Thermohydraulic studies based on porous medium analogy, pertinent to dual channel Cable-in-Conduit Conductors (CICCs) used in International Thermonuclear Experimental Reactor (ITER), are explored in the present work. Dual channel CICC used in Toroidal Field (TF) Coil consists of a circular jacket in which superconducting cable bundles are placed in the annular channel separated from the central channel by a spiral. The cable bundle in the annular channel can be considered as saturated porous medium and the central channel can be viewed as clear region for thermohydraulic studies. In the present work, a 3D Computational Fluid Dynamics (CFD) analysis is performed on CICC by considering dual channel CICC as partially filled saturated porous medium. The 3D geometry was developed and meshed in GAMBIT-2.1.6, and exported to a commercial solver FLUENT -6.3.26 for further analysis. The effect of mass flow rate ( 6 - 10 g/s) of supercritical helium (SHe) on the velocity and pressure gradient distributions (axial and radial) in the transverse plane is presented. These studies resulted in estimating the mass flow repartition between the two channels and pumping power required to pump the SHe in CICC. In addition, the present CFD analysis brings a clear perspective of the phenomena of flow and heat transfer in complex geometries such as CICC.
CFD Analysis of an Installation Used to Measure the Skin-Friction Penalty of Acoustic Treatments
NASA Technical Reports Server (NTRS)
Spalart, Philippe R.; Garbaruk, Andrey; Howerton, Brian M.
2017-01-01
There is a drive to devise acoustic treatments with reduced skin-friction and therefore fuel-burn penalty for engine nacelles on commercial airplanes. The studies have been experimental, and the effects on skin-friction are deduced from measurements of the pressure drop along a duct. We conduct a detailed CFD analysis of the installation, for two purposes. The first is to predict the effects of the finite size of the rig, including its near-square cross-section and the moderate length of the treated patch; this introduces transient and blockage effects, which have not been included so far in the analysis. In addition, the flow is compressible, so that even with homogeneous surface conditions, it is not homogeneous in the streamwise direction. The second purpose is to extract an effective sand-grain roughness size for a particular liner, which in turn can be used in a CFD analysis of the aircraft, leading to actual predictions of the effect of acoustic treatments on fuel burn in service. The study is entirely based on classical turbulence models, with an appropriate modification for effective roughness effects, rather than directly modeling the liners.
Inviscid and Viscous CFD Analysis of Booster Separation for the Space Launch System Vehicle
NASA Technical Reports Server (NTRS)
Dalle, Derek J.; Rogers, Stuart E.; Chan, William M.; Lee, Henry C.
2016-01-01
This paper presents details of Computational Fluid Dynamic (CFD) simulations of the Space Launch System during solid-rocket booster separation using the Cart3D inviscid and Overflow viscous CFD codes. The discussion addresses the use of multiple data sources of computational aerodynamics, experimental aerodynamics, and trajectory simulations for this critical phase of flight. Comparisons are shown between Cart3D simulations and a wind tunnel test performed at NASA Langley Research Center's Unitary Plan Wind Tunnel, and further comparisons are shown between Cart3D and viscous Overflow solutions for the flight vehicle. The Space Launch System (SLS) is a new exploration-class launch vehicle currently in development that includes two Solid Rocket Boosters (SRBs) modified from Space Shuttle hardware. These SRBs must separate from the SLS core during a phase of flight where aerodynamic loads are nontrivial. The main challenges for creating a separation aerodynamic database are the large number of independent variables (including orientation of the core, relative position and orientation of the boosters, and rocket thrust levels) and the complex flow caused by exhaust plumes of the booster separation motors (BSMs), which are small rockets designed to push the boosters away from the core by firing partially in the direction opposite to the motion of the vehicle.
Development of a CFD Code for Analysis of Fluid Dynamic Forces in Seals
NASA Technical Reports Server (NTRS)
Athavale, Mahesh M.; Przekwas, Andrzej J.; Singhal, Ashok K.
1991-01-01
The aim is to develop a 3-D computational fluid dynamics (CFD) code for the analysis of fluid flow in cylindrical seals and evaluation of the dynamic forces on the seals. This code is expected to serve as a scientific tool for detailed flow analysis as well as a check for the accuracy of the 2D industrial codes. The features necessary in the CFD code are outlined. The initial focus was to develop or modify and implement new techniques and physical models. These include collocated grid formulation, rotating coordinate frames and moving grid formulation. Other advanced numerical techniques include higher order spatial and temporal differencing and an efficient linear equation solver. These techniques were implemented in a 2D flow solver for initial testing. Several benchmark test cases were computed using the 2D code, and the results of these were compared to analytical solutions or experimental data to check the accuracy. Tests presented here include planar wedge flow, flow due to an enclosed rotor, and flow in a 2D seal with a whirling rotor. Comparisons between numerical and experimental results for an annular seal and a 7-cavity labyrinth seal are also included.
Experimental investigation and CFD analysis on cross flow in the core of PMR200
Lee, Jeong -Hun; Yoon, Su -Jong; Cho, Hyoung -Kyu; ...
2015-04-16
The Prismatic Modular Reactor (PMR) is one of the major Very High Temperature Reactor (VHTR) concepts, which consists of hexagonal prismatic fuel blocks and reflector blocks made of nuclear gradegraphite. However, the shape of the graphite blocks could be easily changed by neutron damage duringthe reactor operation and the shape change can create gaps between the blocks inducing the bypass flow.In the VHTR core, two types of gaps, a vertical gap and a horizontal gap which are called bypass gap and cross gap, respectively, can be formed. The cross gap complicates the flow field in the reactor core by connectingmore » the coolant channel to the bypass gap and it could lead to a loss of effective coolant flow in the fuel blocks. Thus, a cross flow experimental facility was constructed to investigate the cross flow phenomena in the core of the VHTR and a series of experiments were carried out under varying flow rates and gap sizes. The results of the experiments were compared with CFD (Computational Fluid Dynamics) analysis results in order to verify its prediction capability for the cross flow phenomena. Fairly good agreement was seen between experimental results and CFD predictions and the local characteristics of the cross flow was discussed in detail. Based on the calculation results, pressure loss coefficient across the cross gap was evaluated, which is necessary for the thermo-fluid analysis of the VHTR core using a lumped parameter code.« less
Experimental investigation and CFD analysis on cross flow in the core of PMR200
Lee, Jeong -Hun; Yoon, Su -Jong; Cho, Hyoung -Kyu; Jae, Moosung; Park, Goon -Cherl
2015-04-16
The Prismatic Modular Reactor (PMR) is one of the major Very High Temperature Reactor (VHTR) concepts, which consists of hexagonal prismatic fuel blocks and reflector blocks made of nuclear gradegraphite. However, the shape of the graphite blocks could be easily changed by neutron damage duringthe reactor operation and the shape change can create gaps between the blocks inducing the bypass flow.In the VHTR core, two types of gaps, a vertical gap and a horizontal gap which are called bypass gap and cross gap, respectively, can be formed. The cross gap complicates the flow field in the reactor core by connecting the coolant channel to the bypass gap and it could lead to a loss of effective coolant flow in the fuel blocks. Thus, a cross flow experimental facility was constructed to investigate the cross flow phenomena in the core of the VHTR and a series of experiments were carried out under varying flow rates and gap sizes. The results of the experiments were compared with CFD (Computational Fluid Dynamics) analysis results in order to verify its prediction capability for the cross flow phenomena. Fairly good agreement was seen between experimental results and CFD predictions and the local characteristics of the cross flow was discussed in detail. Based on the calculation results, pressure loss coefficient across the cross gap was evaluated, which is necessary for the thermo-fluid analysis of the VHTR core using a lumped parameter code.
TADS: A CFD-based turbomachinery and analysis design system with GUI. Volume 2: User's manual
NASA Technical Reports Server (NTRS)
Myers, R. A.; Topp, D. A.; Delaney, R. A.
1995-01-01
The primary objective of this study was the development of a computational fluid dynamics (CFD) based turbomachinery airfoil analysis and design system, controlled by a graphical user interface (GUI). The computer codes resulting from this effort are referred to as the Turbomachinery Analysis and Design System (TADS). This document is intended to serve as a user's manual for the computer programs which comprise the TADS system. TADS couples a throughflow solver (ADPAC) with a quasi-3D blade-to-blade solver (RVCQ3D) in an interactive package. Throughflow analysis capability was developed in ADPAC through the addition of blade force and blockage terms to the governing equations. A GUI was developed to simplify user input and automate the many tasks required to perform turbomachinery analysis and design. The coupling of various programs was done in a way that alternative solvers or grid generators could be easily incorporated into the TADS framework.
Overview of the LaNCETS Flight Experiment and CFD Analysis. Supplemental Movies
NASA Technical Reports Server (NTRS)
Cliatt, Larry J., II; Haering, Edward A., Jr.; Bui, Trong
2008-01-01
This presentation focuses on nearfield airborne pressure signatures from the Lift and Nozzle Change Effect on Tail Shocks (LaNCETS) flight test experiment. The primary motivation for nearfield probing in the supersonic regime is to measure the shock structure of aircraft in an ongoing effort to overcome the overland sonic boom barrier for commercial supersonic transportation. LaNCETS provides the opportunity to investigate lift distribution and engine plume effects. During Phase 1 flight testing an F-15B was used to probe the F-15 LaNCETS aircraft in order to validate CFD and pre-flight prediction tools. A total of 29 probings were taken at 40,000 ft. altitude at Machs 1.2, 1.4 and 1.6. LaNCETS Phase 1 flight data are presented as a detailed pressure signature superimposed over a picture of the LaNCETS aircraft. The attenuation of the Inlet-Canard shocks with distance as well as its forward propagation and the coalescence of the noseboom shock are illustrated. A detailed CFD study on a simplified LaNCETS aircraft jet nozzle was performed providing the ability to more accurately capture the shocks from the propulsion system and emphasizing how under- and over-expanding the nozzle affects the existence of shock trains inside the jet plume. With Phase 1 being a success preparations are being made to move forward to Phase 2. Phase 2 will fly similar flight conditions, but this time changing the aircraft's lift distribution by biasing the canard positions, and changing the plume shape by under- and over-expanding the nozzle. Nearfield probing will again be completed in the same manner as in Phase 1. An additional presentation focuses on LaNCETS CFD solution methodology. Discussions highlight grid preprocessing, grid shearing and stretching, flow solving and contour plots. Efforts are underway to better capture the flow features via grid modification and flow solution methodology, which will help to achieve better agreement with flight data. An included CD-ROM provides
Overview of the LaNCETS Flight Experiment and CFD Analysis. Supplemental Movies
NASA Technical Reports Server (NTRS)
Cliatt, Larry J., II; Haering, Edward A., Jr.; Bui, Trong
2008-01-01
This presentation focuses on nearfield airborne pressure signatures from the Lift and Nozzle Change Effect on Tail Shocks (LaNCETS) flight test experiment. The primary motivation for nearfield probing in the supersonic regime is to measure the shock structure of aircraft in an ongoing effort to overcome the overland sonic boom barrier for commercial supersonic transportation. LaNCETS provides the opportunity to investigate lift distribution and engine plume effects. During Phase 1 flight testing an F-15B was used to probe the F-15 LaNCETS aircraft in order to validate CFD and pre-flight prediction tools. A total of 29 probings were taken at 40,000 ft. altitude at Machs 1.2, 1.4 and 1.6. LaNCETS Phase 1 flight data are presented as a detailed pressure signature superimposed over a picture of the LaNCETS aircraft. The attenuation of the Inlet-Canard shocks with distance as well as its forward propagation and the coalescence of the noseboom shock are illustrated. A detailed CFD study on a simplified LaNCETS aircraft jet nozzle was performed providing the ability to more accurately capture the shocks from the propulsion system and emphasizing how under- and over-expanding the nozzle affects the existence of shock trains inside the jet plume. With Phase 1 being a success preparations are being made to move forward to Phase 2. Phase 2 will fly similar flight conditions, but this time changing the aircraft's lift distribution by biasing the canard positions, and changing the plume shape by under- and over-expanding the nozzle. Nearfield probing will again be completed in the same manner as in Phase 1. An additional presentation focuses on LaNCETS CFD solution methodology. Discussions highlight grid preprocessing, grid shearing and stretching, flow solving and contour plots. Efforts are underway to better capture the flow features via grid modification and flow solution methodology, which will help to achieve better agreement with flight data. An included CD-ROM provides
CFD simulations of a wind turbine for analysis of tip vortex breakdown
NASA Astrophysics Data System (ADS)
Kimura, K.; Tanabe, Y.; Aoyama, T.; Matsuo, Y.; Arakawa, C.; Iida, M.
2016-09-01
This paper discusses about the wake structure of wind turbine via the use of URANS and Quasi-DNS, focussing on the tip vortex breakdown. The moving overlapped structured grids CFD Solver based on a fourth-order reconstruction and an all-speed scheme, rFlow3D is used for capturing the characteristics of tip vortices. The results from the Model Experiments in Controlled Conditions project (MEXICO) was accordingly selected for executing wake simulations through the variation of tip speed ratio (TSR); in an operational wind turbine, TSR often changes in value. Therefore, it is important to assess the potential effects of TSR on wake characteristics. The results obtained by changing TSR show the variations of the position of wake breakdown and wake expansion. The correspondence between vortices and radial/rotational flow is also confirmed.
Data resulting from the CFD analysis of ten window frames according to the UNI EN ISO 10077-2.
Baglivo, Cristina; Malvoni, Maria; Congedo, Paolo Maria
2016-09-01
Data are related to the numerical simulation performed in the study entitled "CFD modeling to evaluate the thermal performances of window frames in accordance with the ISO 10077" (Malvoni et al., 2016) [1]. The paper focuses on the results from a two-dimensional numerical analysis for ten frame sections suggested by the ISO 10077-2 and performed using GAMBIT 2.2 and ANSYS FLUENT 14.5 CFD code. The dataset specifically includes information about the CFD setup and boundary conditions considered as the input values of the simulations. The trend of the isotherms points out the different impacts on the thermal behaviour of all sections with air solid material or ideal gas into the cavities.
CFD Analysis of the Aerodynamics of a Business-Jet Airfoil with Leading-Edge Ice Accretion
NASA Technical Reports Server (NTRS)
Chi, X.; Zhu, B.; Shih, T. I.-P.; Addy, H. E.; Choo, Y. K.
2004-01-01
For rime ice - where the ice buildup has only rough and jagged surfaces but no protruding horns - this study shows two dimensional CFD analysis based on the one-equation Spalart-Almaras (S-A) turbulence model to predict accurately the lift, drag, and pressure coefficients up to near the stall angle. For glaze ice - where the ice buildup has two or more protruding horns near the airfoil's leading edge - CFD predictions were much less satisfactory because of the large separated region produced by the horns even at zero angle of attack. This CFD study, based on the WIND and the Fluent codes, assesses the following turbulence models by comparing predictions with available experimental data: S-A, standard k-epsilon, shear-stress transport, v(exp 2)-f, and differential Reynolds stress.
Fluid Structure Interaction in a Cold Flow Test and Transient CFD Analysis of Out-of-Round Nozzles
NASA Technical Reports Server (NTRS)
Ruf, Joseph; Brown, Andrew; McDaniels, David; Wang, Ten-See
2010-01-01
This viewgraph presentation describes two nozzle fluid flow interactions. They include: 1) Cold flow nozzle tests with fluid-structure interaction at nozzle separated flow; and 2) CFD analysis for nozzle flow and side loads of nozzle extensions with various out-of-round cases.
Performance analysis of a counter-rotating tubular type micro-turbine by experiment and CFD
NASA Astrophysics Data System (ADS)
Lee, N. J.; Choi, J. W.; Hwang, Y. H.; Kim, Y. T.; Lee, Y. H.
2012-11-01
Micro hydraulic turbines have a growing interest because of its small and simple structure, as well as a high possibility of using in micro and small hydropower applications. The differential pressure existing in city water pipelines can be used efficiently to generate electricity in a way similar to that of energy being generated through gravitational potential energy in dams. The pressure energy in the city pipelines is often wasted by using pressure reducing valves at the inlet of water cleaning centers. Instead of using the pressure reducing valves, a micro counter-rotating hydraulic turbine can be used to make use of the pressure energy. In the present paper, a counter-rotating tubular type micro-turbine is studied, with the front runner connected to the generator stator and the rear runner connected to the generator rotor. The performance of the turbine is investigated experimentally and numerically. A commercial ANSYS CFD code was used for numerical analysis.
Reduction of CPU time for CFD analysis of hydraulic machinery development process
NASA Astrophysics Data System (ADS)
Lipej, A.; Čelič, D.; Tartinville, B.; Mezine, M.; Hirsch, C.
2012-11-01
CFD becomes an everyday tool in the development process of water turbines and pumps. The development of new models for steady state and unsteady calculations is very fast, but unfortunately some procedures in the development process are still very time-consuming. Some special numerical analysis takes more than a month of the CPU time although a huge number of processors are used. Hereafter are presented some new ideas on how computational time for steady state and unsteady calculations for incompressible fluids can be reduced by orders of magnitude for some particular cases. In the development process of new hydraulic turbines when high energetic and cavitation characteristics are expected, usually a huge number of different geometries and a lot of operating regimes should be analysed. To obtain accurate results the mesh needs to follow some quality criteria and should be fine enough. Considering all above mentioned facts, the computational time can be a bottleneck for efficient accomplishment of industrial projects.
CFD analysis of flow through Venturi tube and its discharge coefficient
NASA Astrophysics Data System (ADS)
Tukimin, A.; Zuber, M.; Ahmad, K. A.
2016-10-01
Venturi tube plays a very important role in different fields of engineering. It has a number of industrial applications in which its design is an essential factor. Venturi tube used in gas measurement applications provides an accurate critical gas flow measurement. There is a need to design Venturi tube with an effective analytical tool or software. In this work, two parameters: pressure drop and velocity discharge nozzle were analyzed using Computational Fluid Dynamics (CFD). The results obtained were then analyzed for accurate determination of the Venturi tube's discharge coefficient, Cd. It was found that there is less than 1% difference between the average values of the discharge coefficient obtained from the numerical analysis and experimental results.
A CFD analysis and optimization of a cooling solution for LED in microprojector
NASA Astrophysics Data System (ADS)
Cai, Dingjin; Cheng, Xuemin; Ma, Jianshe; Hao, Qun
2012-10-01
In this paper, Computational fluid dynamics (CFD) analysis and design of experiment (DOE) are employed to optimize the thermal performance of LED in micro projector. First, an original micro-projector is simulated using Flotherm which shows that the junction temperature of LED exceeds the temperature limit. Secondly, a solution redesigning the air duct and reducing the effect of flow bypass and fan hub on the performance of heat sink lowers the junction temperature by 8°C. At last, DOE is applied to find the optimal setting of the design parameters for the heat sink, which reduced the LED junction temperature by 13°C. In addition, a test has been presented and the result demonstrates that the error is less than 10%.
Investigation into the aerodynamics of swashplateless rotors using CFD-CSD analysis
NASA Astrophysics Data System (ADS)
Jose, Arun Isaac
This study obtains a better understanding of the aerodynamics of integrated trailing edge flap (TEF) based swashplateless rotors. Both two dimensional (2D) and three dimensional (3D) analysis/simulations are performed to understand the behavior of TEF airfoils and integrated TEF based swashplateless rotors. The 2D aerodynamics of TEF airfoils is explored in detail. A semi-empirical approach is developed for modeling drag for TEF airfoils in steady flows based on baseline airfoil drag data alone. Extensive 2D CFD simulations are performed for a wide range of flow conditions in order to better understand various aspects of the aerodynamics of TEF airfoils. The trends in the airloads (lift, drag, pitching moment, hinge moment) for TEF airfoils are obtained. Nonlinear phenomena such as flow separation, shocks and unsteady vortex shedding are investigated, and the flow conditions and trends associated with them are studied. The effect of airfoil properties such as thickness and overhang are studied. Various approaches are used to model the effect of gaps at the leading edge of the flap. An approximate "gap averaging" technique is developed, which provides good predictions of steady airloads at almost the same computational cost as a simulation where the gap is not modeled. Direct modeling of the gap is done by using a patched mesh in the gap region. To solve problems (such as poor grid quality/control and poor convergence) that are associated with the patched mesh simulations, an alternate approach using overlapping meshes is used. It is seen that for TEF airfoils, the presence of gaps adversely affects the effectiveness of the flap. The change in airloads is not negligible, especially at the relatively higher flap deflections associated with swashplateless TEF rotors. Finally, uncoupled and coupled computational fluid/structural dynamics (CFD-CSD) simulations of conventional (baseline) and swashplateless TEF rotors is performed in hovering flight. The CFD-CSD code is
Application of FUN3D and CFL3D to the Third Workshop on CFD Uncertainty Analysis
NASA Technical Reports Server (NTRS)
Rumsey, C. L.; Thomas, J. L.
2008-01-01
Two Reynolds-averaged Navier-Stokes computer codes - one unstructured and one structured - are applied to two workshop cases (for the 3rd Workshop on CFD Uncertainty Analysis, held at Instituto Superior Tecnico, Lisbon, in October 2008) for the purpose of uncertainty analysis. The Spalart-Allmaras turbulence model is employed. The first case uses the method of manufactured solution and is intended as a verification case. In other words, the CFD solution is expected to approach the exact solution as the grid is refined. The second case is a validation case (comparison against experiment), for which modeling errors inherent in the turbulence model and errors/uncertainty in the experiment may prevent close agreement. The results from the two computer codes are also compared. This exercise verifies that the codes are consistent both with the exact manufactured solution and with each other. In terms of order property, both codes behave as expected for the manufactured solution. For the backward facing step, CFD uncertainty on the finest grid is computed and is generally very low for both codes (whose results are nearly identical). Agreement with experiment is good at some locations for particular variables, but there are also many areas where the CFD and experimental uncertainties do not overlap.
CFD Analysis of Mixing Characteristics of Several Fuel Injectors at Hypervelocity Flow Conditions
NASA Technical Reports Server (NTRS)
Drozda, Tomasz G.; Drummond, J. Philip; Baurle, Robert A.
2016-01-01
CFD analysis is presented of the mixing characteristics and performance of three fuel injectors at hypervelocity flow conditions. The calculations were carried out using the VULCAN-CFD solver and Reynolds-Averaged Simulations (RAS). The high Mach number flow conditions match those proposed for the planned experiments conducted as a part of the Enhanced Injection and Mixing Project (EIMP) at the NASA Langley Research Center. The EIMP aims to investigate scramjet fuel injection and mixing physics, improve the understanding of underlying physical processes, and develop enhancement strategies and functional relationships relevant to flight Mach numbers greater than eight. Because of the high Mach number flow considered, the injectors consist of a fuel placement device, a strut; and a fluidic vortical mixer, a ramp. These devices accomplish the necessary task of distributing and mixing fuel into the supersonic cross-flow albeit via different strategies. Both of these devices were previously studied at lower flight Mach numbers where they exhibited promising performance in terms of mixing efficiency and total pressure recovery. For comparison, a flush-wall injector is also included. This type of injector generally represents the simplest method of introducing fuel into a scramjet combustor, however, at high flight Mach number conditions, the dynamic pressure needed to induce sufficient fuel penetration may be difficult to achieve along with other requirements such as achieving desired levels of fuel-to-air mixing at the required equivalence ratio. The three injectors represent the baseline configurations planned for the experiments. The current work discusses the mixing flow field behavior and differences among the three fuel injectors, mixing performance as described by the mixing efficiency and the total pressure recovery, and performance considerations based on the thrust potential.
Hydrodynamics Analysis and CFD Simulation of Portal Venous System by TIPS and LS.
Wang, Meng; Zhou, Hongyu; Huang, Yaozhen; Gong, Piyun; Peng, Bing; Zhou, Shichun
2015-06-01
In cirrhotic patients, portal hypertension is often associated with a hyperdynamic changes. Transjugular Intrahepatic Portosystemic Shunt (TIPS) and Laparoscopic splenectomy are both treatments for liver cirrhosis due to portal hypertension. While, the two different interventions have different effects on hemodynamics after operation and the possibilities of triggering PVT are different. How hemodynamics of portal vein system evolving with two different operations remain unknown. Based on ultrasound and established numerical methods, CFD technique is applied to analyze hemodynamic changes after TIPS and Laparoscopic splenectomy. In this paper, we applied two 3-D flow models to the hemodynamic analysis for two patients who received a TIPS and a laparoscopic splenectomy, both therapies for treating portal hypertension induced diseases. The current computer simulations give a quantitative analysis of the interplay between hemodynamics and TIPS or splenectomy. In conclusion, the presented computational model can be used for the theoretical analysis of TIPS and laparoscopic splenectomy, clinical decisions could be made based on the simulation results with personal properly treatment.
CFD analysis of the Ahmed Glaucoma Valve and design of an alternative device.
Kara, E; Kutlar, A I
2010-12-01
Computational fluid dynamics (CFD) modelling based on a commercial package, FLUENT, has been used in the present study. The primary aim of this study is to develop a novel implant by employing CFD techniques. Firstly, CFD analyses on the best design commercially available, which is the Ahmed Glaucoma Valve (AGV®), are accomplished. In the light of the results, the new design focus is selected as the valve. The new design is analysed using GAMBIT and FLUENT software. CFD analyses of the new design and the AGV® are compared and the strengths of the new design are revealed. The results are also compared with the experimental studies AGV® in the literature. It is deduced that the proposed model shows a nonlinear pressure drop response, which is quite similar to that of AGV®. The optimum combination would be a flow rate of 2.5 μl/min and a pressure drop of 1054.58 Pa for the proposed model.
NASA Technical Reports Server (NTRS)
Scott, Robert C.; Pototzky, Anthony S.
1993-01-01
High speed linear aerodynamic theories like piston theory and Newtonian impact theory are relatively inexpensive to use for flutter analysis. These theories have limited areas of applicability depending on the configuration and the flow conditions. In addition, these theories lack the ability to capture viscous, shock, and real gas effects. CFD methods can model all of these effects accurately, but the unsteady calculations required for flutter are expensive and often impractical. This paper describes a method for using steady CFD calculations to approximate the generalized aerodynamic forces for a flutter analysis. Example two-and three-dimensional aerodynamic force calculations are provided. In addition, a flutter analysis of a NASP-type wing will be discussed.
NASA Technical Reports Server (NTRS)
Scott, Robert C.; Pototzky, Anthony S.
1993-01-01
High speed linear aerodynamic theories like piston theory and Newtonian impact theory are relatively inexpensive to use for flutter analysis. These theories have limited areas of applicability depending on the configuration and the flow conditions. In addition, these theories lack the ability to capture viscous, shock and real gas effects. CFD methods can model all of these effects accurately, but the unsteady calculations required for flutter are expensive and often impractical. This paper describes a method for using steady CFD calculations to approximate the generalized aerodynamic forces for a flutter analysis. Example two-and three-dimensional aerodynamic force calculations are provided. In addition, a flutter analysis of a NASP-type wing will be discussed.
CFD Applications and Validations in Aerodynamic Design and Analysis for Missiles
2007-06-01
the initial impact of the jet plume and safely discharge the rocket exhaust gas during launch of the missiles. The challenge needs innovative...isentropic relations and perfect gas law. Strong normal shock is formed over the plate when a supersonic jet plume exhausts against the plate. If the...3rd International Symposium on Integrating CFD and Experiments in Aerodynamics 20-21 June 2007 U.S. Air Force Academy, CO, USA 1 CFD Applications
NASA Technical Reports Server (NTRS)
Thompson, David E.; Brooks, Walt F. (Technical Monitor)
1994-01-01
A collaborative team of researchers from fields of Computational Fluid Dynamics (CFD), fluid physics, computer architectures, and computer science and knowledge engineering have begun work on a prototype system that addresses several of industry's concerns in using NASA-developed CFD codes as part of the design cycle. A major problem exists in the application of CFD technologies within the aeronautics design cycle due primarily to misunderstandings in the ranges of applicability of the various solver codes or turbulence models. Features that arise during the CFD solution process need to be discriminated and recognized as actual flow features with physical support in the geometry and flow conditions of the problem being solved, or as numerical or non-physical errors arising from mis-application of solver code and its parameters, gridding strategies, or discretization. interpolations. The fundamental concept is to develop an intelligent computational system that can accept the engineer's definition of the problem and construct an optimal CFD solution. To do this requires capturing both the knowledge of how to apply the various CFD tools and how to adapt the application of those tools to flow structures as they evolve during the flow simulation. Embedded within this adaptive system approach is the additional desire to automatically identify and quantify the quality of resolution of the pertinent flow structures, be they genuine or error-induced, and then to adjust the solution strategy accordingly. This paper discusses the status of that prototyping effort.
NASA Technical Reports Server (NTRS)
Thompson, David E.; Brooks, Walt F. (Technical Monitor)
1994-01-01
A collaborative team of researchers from fields of Computational Fluid Dynamics (CFD), fluid physics, computer architectures, and computer science and knowledge engineering have begun work on a prototype system that addresses several of industry's concerns in using NASA-developed CFD codes as part of the design cycle. A major problem exists in the application of CFD technologies within the aeronautics design cycle due primarily to misunderstandings in the ranges of applicability of the various solver codes or turbulence models. Features that arise during the CFD solution process need to be discriminated and recognized as actual flow features with physical support in the geometry and flow conditions of the problem being solved, or as numerical or non-physical errors arising from mis-application of solver code and its parameters, gridding strategies, or discretization. interpolations. The fundamental concept is to develop an intelligent computational system that can accept the engineer's definition of the problem and construct an optimal CFD solution. To do this requires capturing both the knowledge of how to apply the various CFD tools and how to adapt the application of those tools to flow structures as they evolve during the flow simulation. Embedded within this adaptive system approach is the additional desire to automatically identify and quantify the quality of resolution of the pertinent flow structures, be they genuine or error-induced, and then to adjust the solution strategy accordingly. This paper discusses the status of that prototyping effort.
NASA Technical Reports Server (NTRS)
Kwak, Dochan
2005-01-01
Over the past 30 years, numerical methods and simulation tools for fluid dynamic problems have advanced as a new discipline, namely, computational fluid dynamics (CFD). Although a wide spectrum of flow regimes are encountered in many areas of science and engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This is probably due to a large demand for predicting the aerodynamic performance characteristics of flight vehicles, such as commercial, military, and space vehicles. As flow analysis is required to be more accurate and computationally efficient for both commercial and mission-oriented applications (such as those encountered in meteorology, aerospace vehicle development, general fluid engineering and biofluid analysis) CFD tools for engineering become increasingly important for predicting safety, performance and cost. This paper presents the author's perspective on the maturity of CFD, especially from an aerospace engineering point of view.
"Tools For Analysis and Visualization of Large Time- Varying CFD Data Sets"
NASA Technical Reports Server (NTRS)
Wilhelms, Jane; vanGelder, Allen
1999-01-01
During the four years of this grant (including the one year extension), we have explored many aspects of the visualization of large CFD (Computational Fluid Dynamics) datasets. These have included new direct volume rendering approaches, hierarchical methods, volume decimation, error metrics, parallelization, hardware texture mapping, and methods for analyzing and comparing images. First, we implemented an extremely general direct volume rendering approach that can be used to render rectilinear, curvilinear, or tetrahedral grids, including overlapping multiple zone grids, and time-varying grids. Next, we developed techniques for associating the sample data with a k-d tree, a simple hierarchial data model to approximate samples in the regions covered by each node of the tree, and an error metric for the accuracy of the model. We also explored a new method for determining the accuracy of approximate models based on the light field method described at ACM SIGGRAPH (Association for Computing Machinery Special Interest Group on Computer Graphics) '96. In our initial implementation, we automatically image the volume from 32 approximately evenly distributed positions on the surface of an enclosing tessellated sphere. We then calculate differences between these images under different conditions of volume approximation or decimation.
NASA Technical Reports Server (NTRS)
2001-01-01
This document presents the full-scale analyses of the CFD RSRM. The RSRM model was developed with a 20 second burn time. The following are presented as part of the full-scale analyses: (1) RSRM embedded inclusion analysis; (2) RSRM igniter nozzle design analysis; (3) Nozzle Joint 4 erosion anomaly; (4) RSRM full motor port slag accumulation analysis; (5) RSRM motor analysis of two-phase flow in the aft segment/submerged nozzle region; (6) Completion of 3-D Analysis of the hot air nozzle manifold; (7) Bates Motor distributed combustion test case; and (8) Three Dimensional Polysulfide Bump Analysis.
Application of CFD analysis to design support and problem resolution for ASRM and RSRM
NASA Astrophysics Data System (ADS)
Dill, Richard A.; Whitesides, R. Harold
1993-07-01
The use of Navier-Stokes CFD codes to predict the internal flow field environment in a solid rocket motor is a very important analysis element during the design phase of a motor development program. These computational flow field solutions uncover a variety of potential problems associated with motor performance as well as suggesting solutions to these problems. CFD codes have also proven to be of great benefit in explaining problems associated with operational motors such as in the case of the pressure spike problem with the STS-54B flight motor. This paper presents results from analyses involving both motor design support and problem resolution. The issues discussed include the fluid dynamic/mechanical stress coupling at field joints relative to significant propellant deformations, the prediction of axial and radial pressure gradients in the motor associated with motor performance and propellant mechanical loading, the prediction of transition of the internal flow in the motor associated with erosive burning, the accumulation of slag at the field joints and in the submerged nozzle region, impingement of flow on the nozzle nose, and pressure gradients in the nozzle region of the motor. The analyses presented in this paper have been performed using a two-dimensional axisymmetric model. Fluent/BFC, a three dimensional Navier-Stokes flow field code, has been used to make the numerical calculations. This code utilizes a staggered grid formulation along with the SIMPLER numerical pressure-velocity coupling algorithm. Wall functions are used to represent the character of the viscous sub-layer flow, and an adjusted k-epsilon turbulence model especially configured for mass injection internal flows, is used to model the growth of turbulence in the motor port. Conclusions discussed in this paper consider flow field effects on the forward, center, and aft propellant grains except for the head end star grain region of the forward propellant segment. The field joints and the
Application of CFD Analysis to Design Support and Problem Resolution for ASRM and RSRM
NASA Technical Reports Server (NTRS)
Dill, Richard A.; Whitesides, R. Harold
1993-01-01
The use of Navier-Stokes CFD codes to predict the internal flow field environment in a solid rocket motor is a very important analysis element during the design phase of a motor development program. These computational flow field solutions uncover a variety of potential problems associated with motor performance as well as suggesting solutions to these problems. CFD codes have also proven to be of great benefit in explaining problems associated with operational motors such as in the case of the pressure spike problem with the STS-54B flight motor. This paper presents results from analyses involving both motor design support and problem resolution. The issues discussed include the fluid dynamic/mechanical stress coupling at field joints relative to significant propellant deformations, the prediction of axial and radial pressure gradients in the motor associated with motor performance and propellant mechanical loading, the prediction of transition of the internal flow in the motor associated with erosive burning, the accumulation of slag at the field joints and in the submerged nozzle region, impingement of flow on the nozzle nose, and pressure gradients in the nozzle region of the motor. The analyses presented in this paper have been performed using a two-dimensional axisymmetric model. Fluent/BFC, a three dimensional Navier-Stokes flow field code, has been used to make the numerical calculations. This code utilizes a staggered grid formulation along with the SIMPLER numerical pressure-velocity coupling algorithm. Wall functions are used to represent the character of the viscous sub-layer flow, and an adjusted k-epsilon turbulence model especially configured for mass injection internal flows, is used to model the growth of turbulence in the motor port. Conclusions discussed in this paper consider flow field effects on the forward, center, and aft propellant grains except for the head end star grain region of the forward propellant segment. The field joints and the
CFD Analysis of Thermal Control System Using NX Thermal and Flow
NASA Technical Reports Server (NTRS)
Fortier, C. R.; Harris, M. F. (Editor); McConnell, S. (Editor)
2014-01-01
The Thermal Control Subsystem (TCS) is a key part of the Advanced Plant Habitat (APH) for the International Space Station (ISS). The purpose of this subsystem is to provide thermal control, mainly cooling, to the other APH subsystems. One of these subsystems, the Environmental Control Subsystem (ECS), controls the temperature and humidity of the growth chamber (GC) air to optimize the growth of plants in the habitat. The TCS provides thermal control to the ECS with three cold plates, which use Thermoelectric Coolers (TECs) to heat or cool water as needed to control the air temperature in the ECS system. In order to optimize the TCS design, pressure drop and heat transfer analyses were needed. The analysis for this system was performed in Siemens NX Thermal/Flow software (Version 8.5). NX Thermal/Flow has the ability to perform 1D or 3D flow solutions. The 1D flow solver can be used to represent simple geometries, such as pipes and tubes. The 1D flow method also has the ability to simulate either fluid only or fluid and wall regions. The 3D flow solver is similar to other Computational Fluid Dynamic (CFD) software. TCS performance was analyzed using both the 1D and 3D solvers. Each method produced different results, which will be evaluated and discussed.
CFD analysis of turboprop engine oil cooler duct for best rate of climb condition
NASA Astrophysics Data System (ADS)
Kalia, Saurabh; CA, Vinay; Hegde, Suresh M.
2016-09-01
Turboprop engines are widely used in commuter category airplanes. Aircraft Design bureaus routinely conduct the flight tests to confirm the performance of the system. The lubrication system of the engine is designed to provide a constant supply of clean lubrication oil to the engine bearings, the reduction gears, the torque-meter, the propeller and the accessory gearbox. The oil lubricates, cools and also conducts foreign material to the oil filter where it is removed from further circulation. Thus a means of cooling the engine oil must be provided and a suitable oil cooler (OC) and ducting system was selected and designed for this purpose. In this context, it is relevant to study and analyse behaviour of the engine oil cooler system before commencing actual flight tests. In this paper, the performance of the oil cooler duct with twin flush NACA inlet housed inside the nacelle has been studied for aircraft best rate of climb (ROC) condition using RANS based SST K-omega model by commercial software ANSYS Fluent 13.0. From the CFD analysis results, it is found that the mass flow rate captured and pressure drop across the oil cooler for the best ROC condition is meeting the oil cooler manufacturer requirements thus, the engine oil temperature is maintained within prescribed limits.
NASA Astrophysics Data System (ADS)
Shin, K. W.; Andersen, P.
2015-12-01
The blade tip loading is often reduced as an effort to restrain sheet and tip vortex cavitation in the design of marine propellers. This CFD analysis demonstrates that an excessive reduction of the tip loading can cause cloud cavitation responsible for much of noise and surface erosion. Detached eddy simulations (DES) are made for cavitating flows on three tip- modified propellers, of which one is a reference propeller having an experimental result from a cavitation tunnel test with a hull model, and the other two are modified from the reference propeller by altering the blade tip loading. DES results have been validated against the experiment in terms of sheet and cloud cavitation. In DES, non-uniform hull wake is modelled by using the inlet flow and momentum sources instead of including a hull model. A 4-bladed Kappel propeller with a smooth tip bending towards the suction side is used as the reference propeller. For the reference propeller, sheet cavitation extends over a whole chord length in the hull wake peak. As the blade gets out of the wake peak, the rear part of sheet cavity is detached in a form of cloud cavitation. For the reference propeller, the tip pitch reduction from the maximum is about 35%. When decreasing the tip pitch reduction to 10%, tip vortex cavitation is formed and cloud cavitation is significantly weakened. When increasing the tip pitch reduction to 60%, sheet cavitation slightly moves to inner radii and cloud cavitation grows larger.
Complex fluid flow and heat transfer analysis inside a calandria based reactor using CFD technique
NASA Astrophysics Data System (ADS)
Kulkarni, P. S.
2017-04-01
Series of numerical experiments have been carried out on a calandria based reactor for optimizing the design to increase the overall heat transfer efficiency by using Computational Fluid Dynamic (CFD) technique. Fluid flow and heat transfer inside the calandria is governed by many geometric and flow parameters like orientation of inlet, inlet mass flow rate, fuel channel configuration (in-line, staggered, etc.,), location of inlet and outlet, etc.,. It was well established that heat transfer is more wherever forced convection dominates but for geometries like calandria it is very difficult to achieve forced convection flow everywhere, intern it strongly depends on the direction of inlet jet. In the present paper the initial design was optimized with respect to inlet jet angle, the optimized design has been numerically tested for different heat load mass flow conditions. To further increase the heat removal capacity of a calandria, further numerical studies has been carried out for different inlet geometry. In all the analysis same overall geometry size and same number of tubes has been considered. The work gives good insight into the fluid flow and heat transfer inside the calandria and offer a guideline for optimizing the design and/or capacity enhancement of a present design.
McCorkle, Douglas S.; Bryden, Kenneth M.
2011-01-01
Several recent reports and workshops have identified integrated computational engineering as an emerging technology with the potential to transform engineering design. The goal is to integrate geometric models, analyses, simulations, optimization and decision-making tools, and all other aspects of the engineering process into a shared, interactive computer-generated environment that facilitates multidisciplinary and collaborative engineering. While integrated computational engineering environments can be constructed from scratch with high-level programming languages, the complexity of these proposed environments makes this type of approach prohibitively slow and expensive. Rather, a high-level software framework is needed to provide the user with the capability to construct an application in an intuitive manner using existing models and engineering tools with minimal programming. In this paper, we present an exploratory open source software framework that can be used to integrate the geometric models, computational fluid dynamics (CFD), and optimization tools needed for shape optimization of complex systems. This framework is demonstrated using the multiphase flow analysis of a complete coal transport system for an 800 MW pulverized coal power station. The framework uses engineering objects and three-dimensional visualization to enable the user to interactively design and optimize the performance of the coal transport system.
NASA Astrophysics Data System (ADS)
Trikha, M.; Gopalakrishnan, S.; Mahapatra, D. Roy
2011-09-01
A computational framework is developed to investigate the dynamic stability of space launch vehicles subjected to aerodynamic forces. A detailed mechanics based mathematical model of a moving flexible vehicle is used. The aerodynamic forces on the vehicle are obtained from simulation using Computational Fluid Dynamics (CFD) package. The objective behind this investigation is to analyze the problem of aeroelastic instability in blunt/conical nose slender space launch vehicles. Coupling among the rigid-body modes, the longitudinal vibration modes, and the transverse vibrational modes are considered. The effect of propulsive thrust as a follower force is also considered. A one-dimensional finite element model is developed to investigate the occurrence of aeroelastic instabilities of various types. Eigenvalues of the vehicle are determined in order to analyze the stable regimes. As a special case, we show numerical simulations by considering a typical vehicle configuration, for a vehicle Mach number of 0.8. Phenomenon of flutter is observed at this Mach number. The proposed analysis is suitable for different launch events such as vehicle take-off, maximum dynamic pressure regime, thrust transients, stage separation etc. The approach developed in this paper can be utilized for preliminary design of launch vehicles and establishing the stability boundaries for different trajectory parameters.
Development of a simulator for ozone/UV reactor based on CFD analysis.
Kamimura, M; Furukawa, S; Hirotsuji, J
2002-01-01
A new CFD (Computational Fluid Dynamics) simulator for an O3/UV reactor where ozone dissolved water flows under the irradiation of UV, has been developed by combining a fluid dynamics model with a complex radical reaction model. The radical reaction model used in this simulator was found to be reasonable, because the results obtained from the simulation of a completely stirred tank reactor (CSTR) system were in good agreement with the experimental results, e.g., the concentrations of total organic carbon (TOC), hydrogen peroxide and dissolved ozone obtained from a lab-scale CSTR. Furthermore, by using this CFD simulator, the distributions of substances such as hydroxyl radical (OH*) and hydrogen peroxide in the O3/UV reactor have been investigated. These distributions showed that this CFD simulator was considered to be reasonable. In addition, the simulation results suggested that conventional reactors were not optimized.
CFD Analysis of Wind Power Potential Across Rooftop Gaps of Tall Buildings
NASA Astrophysics Data System (ADS)
Kailkhura, Gargi
This study uses Computational Fluid Dynamics (CFD) modeling to analyze the dependence of wind power potential and turbulence intensity on aerodynamic design of a special type of building with a nuzzle-like gap at its rooftop. Numerical simulations using ANSYS Fluent are carried out to quantify the above-mentioned dependency due to three major geometric parameters of the building: (i) the height of the building, (ii) the depth of the roof-top gap, and (iii) the width of the roof-top gap. The height of the building is varied from 8 m to 24 m. Likewise, the gap depth is varied from 3 m to 5 m and the gap width from 2 m to 4 m. The aim of this entire research is to relate these geometric parameters of the building to the maximum value and the spatial pattern of wind power potential across the roof-top gap. These outcomes help guide the design of the roof-top geometry for wind power applications and determine the ideal position for mounting a micro wind turbine. From these outcomes, it is suggested that the wind power potential is greatly affected by the increasing gap width or gap depth. It, however, remains insensitive to the increasing building height, unlike turbulence intensity which increases with increasing building height. After performing a set of simulations with varying building geometry to quantify the wind power potential before the installation of a turbine, another set of simulations is conducted by installing a static turbine within the roof-top gap. The results from the latter are used to further adjust the estimate of wind power potential. Recommendations are made for future applications based on the findings from the numerical simulations.
Position Analysis of Library Assistants.
ERIC Educational Resources Information Center
Defa, Dennis R.
1995-01-01
Issues of maintaining equity of classification and salary for library assistants across a university library system and in relation to other university departments are addressed. A 1989 job analysis of library assistant positions at the University of Utah resulted in the reclassification of positions and an increase in salary implemented over two…
CFD analysis of supercritical CO2 used as HTF in a solar tower receiver
NASA Astrophysics Data System (ADS)
Roldán, M. I.; Fernández-Reche, J.
2016-05-01
The relative cost of a solar receiver can be minimized by the selection of an appropriate heat transfer fluid capable of achieving high receiver efficiencies. In a conventional central receiver system, the concentrated solar energy is transferred from the receiver tube walls to the heat transfer fluid (HTF), which passes through a heat exchanger to generate steam for a Rankine cycle. Thus, higher working fluid temperature is associated with greater efficiency in receiver and power cycle. Emerging receiver designs that can enable higher efficiencies using advanced power cycles, such as supercritical CO2 (s-CO2) closed-loop Brayton cycles, include direct heating of s-CO2 in tubular receiver designs capable of withstanding high internal fluid pressures (around 20 MPa) and temperatures (900 K). Due to the high pressures required and the presence of moving components installed in pipelines (ball-joints and/or flexible connections), the use of s-CO2 presents many technical challenges due to the compatibility of seal materials and fluid leakages of the moving connections. These problems are solved in solar tower systems because the receiver is fixed. In this regard, a preliminary analysis of a tubular receiver with s-CO2 as HTF has been developed using the design of a molten-salt receiver which was previously tested at Plataforma Solar de Almería (PSA). Therefore, a simplified CFD model has been carried out in this study in order to analyze the feasibility of s-CO2 as HTF in solar towers. Simulation results showed that the heat gained by s-CO2 was around 75% greater than the one captured by molten salts (fluid inlet temperature of 715 K), but at a pressure range of 7.5-9.7 MPa. Thus, the use of s-CO2 as HTF in solar tower receivers appears to be a promising alternative, taking into account both the operating conditions required and their maintenance cost.
CFD simulation and analysis of emulsion droplet formation from straight-through microchannels.
Kobayashi, Isao; Mukataka, Sukekuni; Nakajima, Mitsutoshi
2004-10-26
We recently proposed a technique for preparing monodisperse emulsions with a coefficient of variation below 5% from a silicon array of micrometer-sized channels perpendicular to the plate surface, named a straight-through microchannel (MC). This study involved three-dimensional computational fluid dynamics (CFD) simulations to calculate the formation of an oil-in-water (O/W) emulsion droplet from straight-through MCs with circular and elliptic cross sections. The CFD results demonstrated that the oil phase that passed through the elliptic MCs exceeding a threshold aspect ratio between 3 and 3.5 was cut off spontaneously into a small droplet with a diameter of approximately 40 microm. Sufficient space for water at the channel exit had to be maintained for successful droplet formation. The formation and shrinkage of a neck inside the channel caused an increased pressure difference inside the channel and an increased velocity value near the neck. The pressure and velocity values at the neck drastically changed, and the neck was cut off instantaneously just before the completion of droplet formation. This process was triggered by a gradually increased pressure difference between the circular neck and inflating oil phase. The findings obtained in this paper provide useful numerical and visual information about the droplet formation phenomena from the straight-through MCs. The CFD results were verified by the experimental results, showing that the CFD approach can help design a suitable channel structure.
CFD and reaction computational analysis of the growth of GaN by HVPE method
NASA Astrophysics Data System (ADS)
Kempisty, P.; Łucznik, B.; Pastuszka, B.; Grzegory, I.; Boćkowski, M.; Krukowski, S.; Porowski, S.
2006-10-01
GaCl synthesis reaction during hydride vapor phase epitaxy (HVPE) growth of GaN in horizontal flow reactor has been analyzed using computerized fluid dynamics (CFD) and molecular estimates of the reaction rates. Finite element code FIDAP (commercially available from Fluent Inc.) [Fidap User Manual, Fluent Inc. [1
RotCFD Analysis of the AH-56 Cheyenne Hub Drag
NASA Technical Reports Server (NTRS)
Solis, Eduardo; Bass, Tal A.; Keith, Matthew D.; Oppenheim, Rebecca T.; Runyon, Bryan T.; Veras-Alba, Belen
2016-01-01
In 2016, the U.S. Army Aviation Development Directorate (ADD) conducted tests in the U.S. Army 7- by 10- Foot Wind Tunnel at NASA Ames Research Center of a nonrotating 2/5th-scale AH-56 rotor hub. The objective of the tests was to determine how removing the mechanical control gyro affected the drag. Data for the lift, drag, and pitching moment were recorded for the 4-bladed rotor hub in various hardware configurations, azimuth angles, and angles of attack. Numerical simulations of a selection of the configurations and orientations were then performed, and the results were compared with the test data. To generate the simulation results, the hardware configurations were modeled using Creo and Rhinoceros 5, three-dimensional surface modeling computer-aided design (CAD) programs. The CAD model was imported into Rotorcraft Computational Fluid Dynamics (RotCFD), a computational fluid dynamics (CFD) tool used for analyzing rotor flow fields. RotCFD simulation results were compared with the experimental results of three hardware configurations at two azimuth angles, two angles of attack, and with and without wind tunnel walls. The results help validate RotCFD as a tool for analyzing low-drag rotor hub designs for advanced high-speed rotorcraft concepts. Future work will involve simulating additional hub geometries to reduce drag or tailor to other desired performance levels.
NASA Astrophysics Data System (ADS)
Allphin, Devin
Computational fluid dynamics (CFD) solution approximations for complex fluid flow problems have become a common and powerful engineering analysis technique. These tools, though qualitatively useful, remain limited in practice by their underlying inverse relationship between simulation accuracy and overall computational expense. While a great volume of research has focused on remedying these issues inherent to CFD, one traditionally overlooked area of resource reduction for engineering analysis concerns the basic definition and determination of functional relationships for the studied fluid flow variables. This artificial relationship-building technique, called meta-modeling or surrogate/offline approximation, uses design of experiments (DOE) theory to efficiently approximate non-physical coupling between the variables of interest in a fluid flow analysis problem. By mathematically approximating these variables, DOE methods can effectively reduce the required quantity of CFD simulations, freeing computational resources for other analytical focuses. An idealized interpretation of a fluid flow problem can also be employed to create suitably accurate approximations of fluid flow variables for the purposes of engineering analysis. When used in parallel with a meta-modeling approximation, a closed-form approximation can provide useful feedback concerning proper construction, suitability, or even necessity of an offline approximation tool. It also provides a short-circuit pathway for further reducing the overall computational demands of a fluid flow analysis, again freeing resources for otherwise unsuitable resource expenditures. To validate these inferences, a design optimization problem was presented requiring the inexpensive estimation of aerodynamic forces applied to a valve operating on a simulated piston-cylinder heat engine. The determination of these forces was to be found using parallel surrogate and exact approximation methods, thus evidencing the comparative
NASA Technical Reports Server (NTRS)
Elrod, David; Christensen, Eric; Brown, Andrew
2011-01-01
The temporal frequency content of the dynamic pressure predicted by a 360 degree computational fluid dynamics (CFD) analysis of a turbine flow field provides indicators of forcing function excitation frequencies (e.g., multiples of blade pass frequency) for turbine components. For the Pratt and Whitney Rocketdyne J-2X engine turbopumps, Campbell diagrams generated using these forcing function frequencies and the results of NASTRAN modal analyses show a number of components with modes in the engine operating range. As a consequence, forced response and static analyses are required for the prediction of combined stress, high cycle fatigue safety factors (HCFSF). Cyclically symmetric structural models have been used to analyze turbine vane and blade rows, not only in modal analyses, but also in forced response and static analyses. Due to the tortuous flow pattern in the turbine, dynamic pressure loading is not cyclically symmetric. Furthermore, CFD analyses predict dynamic pressure waves caused by adjacent and non-adjacent blade/vane rows upstream and downstream of the row analyzed. A MATLAB script has been written to calculate displacements due to the complex cyclically asymmetric dynamic pressure components predicted by CFD analysis, for all grids in a blade/vane row, at a chosen turbopump running speed. The MATLAB displacements are then read into NASTRAN, and dynamic stresses are calculated, including an adjustment for possible mistuning. In a cyclically symmetric NASTRAN static analysis, static stresses due to centrifugal, thermal, and pressure loading at the mode running speed are calculated. MATLAB is used to generate the HCFSF at each grid in the blade/vane row. When compared to an approach assuming cyclic symmetry in the dynamic flow field, the current approach provides better assurance that the worst case safety factor has been identified. An extended example for a J-2X turbopump component is provided.
Analysis of Temperature and Humidity Field in a New Bulk Tobacco Curing Barn Based on CFD
Bai, Zhipeng; Guo, Duoduo; Li, Shoucang; Hu, Yaohua
2017-01-01
A new structure bulk tobacco curing barn was presented. To study the temperature and humidity field in the new structure tobacco curing barn, a 3D transient computational fluid dynamics (CFD) model was developed using porous medium, species transport, κ-ε turbulence and discrete phase models. The CFD results demonstrated that (1) the temperature and relative humidity predictions were validated by the experimental results, and comparison of simulation results with experimental data showed a fairly close agreement; (2) the temperature of the bottom and inlet area was higher than the top and outlet area, and water vapor concentrated on the top and outlet area in the barn; (3) tobacco loading density and thickness of tobacco leaves had an explicit effect on the temperature distributions in the barn. PMID:28146128
Application of CFD to the analysis and design of high-speed inlets
NASA Technical Reports Server (NTRS)
Rose, William C.
1995-01-01
Over the past seven years, efforts under the present Grant have been aimed at being able to apply modern Computational Fluid Dynamics to the design of high-speed engine inlets. In this report, a review of previous design capabilities (prior to the advent of functioning CFD) was presented and the example of the NASA 'Mach 5 inlet' design was given as the premier example of the historical approach to inlet design. The philosophy used in the Mach 5 inlet design was carried forward in the present study, in which CFD was used to design a new Mach 10 inlet. An example of an inlet redesign was also shown. These latter efforts were carried out using today's state-of-the-art, full computational fluid dynamics codes applied in an iterative man-in-the-loop technique. The potential usefulness of an automated machine design capability using an optimizer code was also discussed.
Analysis of Temperature and Humidity Field in a New Bulk Tobacco Curing Barn Based on CFD.
Bai, Zhipeng; Guo, Duoduo; Li, Shoucang; Hu, Yaohua
2017-01-31
A new structure bulk tobacco curing barn was presented. To study the temperature and humidity field in the new structure tobacco curing barn, a 3D transient computational fluid dynamics (CFD) model was developed using porous medium, species transport, κ-ε turbulence and discrete phase models. The CFD results demonstrated that (1) the temperature and relative humidity predictions were validated by the experimental results, and comparison of simulation results with experimental data showed a fairly close agreement; (2) the temperature of the bottom and inlet area was higher than the top and outlet area, and water vapor concentrated on the top and outlet area in the barn; (3) tobacco loading density and thickness of tobacco leaves had an explicit effect on the temperature distributions in the barn.
CFD aerodynamic analysis of non-conventional airfoil sections for very large rotor blades
NASA Astrophysics Data System (ADS)
Papadakis, G.; Voutsinas, S.; Sieros, G.; Chaviaropoulos, T.
2014-12-01
The aerodynamic performance of flat-back and elliptically shaped airfoils is analyzed on the basis of CFD simulations. Incompressible and low-Mach preconditioned compressible unsteady simulations have been carried out using the k-w SST and the Spalart Allmaras turbulence models. Time averaged lift and drag coefficients are compared to wind tunnel data for the FB 3500-1750 flat back airfoil while amplitudes and frequencies are also recorded. Prior to separation averaged lift is well predicted while drag is overestimated keeping however the trend in the tests. The CFD models considered, predict separation with a 5° delay which is reflected on the load results. Similar results are provided for a modified NACA0035 with a rounded (elliptically shaped) trailing edge. Finally as regards the dynamic characteristics in the load signals, there is fair agreement in terms of Str number but significant differences in terms of lift and drag amplitudes.
Multidisciplinary CFD/CSD Analysis of the Smart Active Flap Rotor
2010-05-01
similar unflapped MD900 MDART (McDonnell Douglas Advanced Rotor Technology) rotor was tested previously in the NFAC in 1992 with higher harmonic... acoustically -treated test section. METHODOLOGY The SMART rotor is a complex configuration from a geometric, structural, and aerodynamic modeling perspective...including flap Figure 2. SMART rotor in NFAC 40x80 -Ft. Wind Tunnel Figure 3. SMART overset surface CFD grid system (flap edge inset) a
CFD analysis on gas distribution for different scrubber redirection configurations in sump cut.
Zheng, Y; Organiscak, J A; Zhou, L; Beck, T W; Rider, J P
2015-01-01
The National Institute for Occupational Safety and Health's Office of Mine Safety and Health Research recently developed a series of models using computational fluid dynamics (CFD) to study the gas distribution around a continuous mining machine with various fan-powered flooded bed scrubber discharge configurations. CFD models using Species Transport Model without reactions in FLUENT were constructed to evaluate the redirection of scrubber discharge toward the mining face rather than behind the return curtain. The following scenarios are considered in this study: 100 percent of the discharge redirected back toward the face on the off-curtain side of the continuous miner; 100 percent of the discharge redirected back toward the face, but divided equally to both sides of the machine; and 15 percent of the discharge redirected toward the face on the off-curtain side of the machine, with 85 percent directed into the return. These models were compared against a model with a conventional scrubber discharge, where air is directed away from the face into the return. The CFD models were calibrated and validated based on experimental data and accurately predicted sulfur hexafluoride (SF6) gas levels at four gas monitoring locations. One additional prediction model was simulated to consider a different scrubber discharge angle for the 100 percent redirected, equally divided case. These models identified relatively high gassy areas around the continuous miner, which may not warrant their use in coal mines with medium to high methane liberation rates. This paper describes the methodology used to develop the CFD models, and the validation of the models based on experimental data.
CFD analysis on gas distribution for different scrubber redirection configurations in sump cut
Zheng, Y.; Organiscak, J.A.; Zhou, L.; Beck, T.W.; Rider, J.P.
2016-01-01
The National Institute for Occupational Safety and Health’s Office of Mine Safety and Health Research recently developed a series of models using computational fluid dynamics (CFD) to study the gas distribution around a continuous mining machine with various fan-powered flooded bed scrubber discharge configurations. CFD models using Species Transport Model without reactions in FLUENT were constructed to evaluate the redirection of scrubber discharge toward the mining face rather than behind the return curtain. The following scenarios are considered in this study: 100 percent of the discharge redirected back toward the face on the off-curtain side of the continuous miner; 100 percent of the discharge redirected back toward the face, but divided equally to both sides of the machine; and 15 percent of the discharge redirected toward the face on the off-curtain side of the machine, with 85 percent directed into the return. These models were compared against a model with a conventional scrubber discharge, where air is directed away from the face into the return. The CFD models were calibrated and validated based on experimental data and accurately predicted sulfur hexafluoride (SF6) gas levels at four gas monitoring locations. One additional prediction model was simulated to consider a different scrubber discharge angle for the 100 percent redirected, equally divided case. These models identified relatively high gassy areas around the continuous miner, which may not warrant their use in coal mines with medium to high methane liberation rates. This paper describes the methodology used to develop the CFD models, and the validation of the models based on experimental data. PMID:28018125
Validation of CFD Simulations of Cerebral Aneurysms With Implication of Geometric Variations
Hoi, Yiemeng; Woodward, Scott H.; Kim, Minsuok; Taulbee, Dale B.; Meng, Hui
2009-01-01
Background Computational fluid dynamics (CFD) simulations using medical-image-based anatomical vascular geometry are now gaining clinical relevance. This study aimed at validating the CFD methodology for studying cerebral aneurysms by using particle image velocimetry (PIV) measurements, with a focus on the effects of small geometric variations in aneurysm models on the flow dynamics obtained with CFD. Method of Approach. An experimental phantom was fabricated out of silicone elastomer to best mimic a spherical aneurysm model. PIV measurements were obtained from the phantom and compared with the CFD results from an ideal spherical aneurysm model (S1). These measurements were also compared with CFD results, based on the geometry reconstructed from three-dimensional images of the experimental phantom. We further performed CFD analysis on two geometric variations, S2 and S3, of the phantom to investigate the effects of small geometric variations on the aneurysmal flow field. Results. We found poor agreement between the CFD results from the ideal spherical aneurysm model and the PIV measurements from the phantom, including inconsistent secondary flow patterns. The CFD results based on the actual phantom geometry, however, matched well with the PIV measurements. CFD of models S2 and S3 produced qualitatively similar flow fields to that of the phantom but quantitatively significant changes in key hemodynamic parameters such as vorticity, positive circulation, and wall shear stress. Conclusion. CFD simulation results can closely match experimental measurements as long as both are performed on the same model geometry. Small geometric variations on the aneurysm model can significantly alter the flow-field and key hemodynamic parameters. Since medical images are subjected to geometric uncertainties, image-based patient-specific CFD results must be carefully scrutinized before providing clinical feedback. PMID:17154684
Validation of CFD simulations of cerebral aneurysms with implication of geometric variations.
Hoi, Yiemeng; Woodward, Scott H; Kim, Minsuok; Taulbee, Dale B; Meng, Hui
2006-12-01
Computational fluid dynamics (CFD) simulations using medical-image-based anatomical vascular geometry are now gaining clinical relevance. This study aimed at validating the CFD methodology for studying cerebral aneurysms by using particle image velocimetry (PIV) measurements, with a focus on the effects of small geometric variations in aneurysm models on the flow dynamics obtained with CFD. An experimental phantom was fabricated out of silicone elastomer to best mimic a spherical aneurysm model. PIV measurements were obtained from the phantom and compared with the CFD results from an ideal spherical aneurysm model (S1). These measurements were also compared with CFD results, based on the geometry reconstructed from three-dimensional images of the experimental phantom. We further performed CFD analysis on two geometric variations, S2 and S3, of the phantom to investigate the effects of small geometric variations on the aneurysmal flow field. Results. We found poor agreement between the CFD results from the ideal spherical aneurysm model and the PIV measurements from the phantom, including inconsistent secondary flow patterns. The CFD results based on the actual phantom geometry, however, matched well with the PIV measurements. CFD of models S2 and S3 produced qualitatively similar flow fields to that of the phantom but quantitatively significant changes in key hemodynamic parameters such as vorticity, positive circulation, and wall shear stress. CFD simulation results can closely match experimental measurements as long as both are performed on the same model geometry. Small geometric variations on the aneurysm model can significantly alter the flow-field and key hemodynamic parameters. Since medical images are subjected to geometric uncertainties, image-based patient-specific CFD results must be carefully scrutinized before providing clinical feedback.
CFD and PIV Analysis of Hemodynamics in a Growing Intracranial Aneurysm
Raschi, Marcelo; Mut, Fernando; Byrne, Greg; Putman, Christopher M.; Tateshima, Satoshi; Viñuela, Fernando; Tanoue, Tetsuya; Tanishita, Kazuo; Cebral, Juan R.
2011-01-01
Hemodynamics is thought to be a fundamental factor in the formation, progression and rupture of cerebral aneurysms. Understanding these mechanisms is important to improve their rupture risk assessment and treatment. In this study we analyze the blood flow field in a growing cerebral aneurysm using experimental particle image velocimetry (PIV) and computational fluid dynamics (CFD) techniques. Patient-specific models were constructed from longitudinal 3D computed tomography angiography (CTA) images acquired at one-year intervals. Physical silicone models were constructed from the CTA images using rapid prototyping techniques and pulsatile flow fields were measured with PIV. Corresponding CFD models were created and run under matching flow conditions. Both flow fields were aligned, interpolated, and compared qualitatively by inspection and quantitatively by defining similarity measures between the PIV and CFD vector fields. Results showed that both flow fields were in good agreement. Specifically, both techniques provided consistent representations of the main intra-aneurysmal flow structures, and their change during the geometric evolution of the aneurysm. Despite differences observed mainly in the near wall region and the inherent limitations of each technique, the information derived is consistent and can be used to study the role of hemodynamics in the natural history of intracranial aneurysms. PMID:22548127
CFD and PIV analysis of hemodynamics in a growing intracranial aneurysm.
Raschi, Marcelo; Mut, Fernando; Byrne, Greg; Putman, Christopher M; Tateshima, Satoshi; Viñuela, Fernando; Tanoue, Tetsuya; Tanishita, Kazuo; Cebral, Juan R
2012-02-01
Hemodynamics is thought to be a fundamental factor in the formation, progression, and rupture of cerebral aneurysms. Understanding these mechanisms is important to improve their rupture risk assessment and treatment. In this study, we analyze the blood flow field in a growing cerebral aneurysm using experimental particle image velocimetry (PIV) and computational fluid dynamics (CFD) techniques. Patient-specific models were constructed from longitudinal 3D computed tomography angiography images acquired at 1-y intervals. Physical silicone models were constructed from the computed tomography angiography images using rapid prototyping techniques, and pulsatile flow fields were measured with PIV. Corresponding CFD models were created and run under matching flow conditions. Both flow fields were aligned, interpolated, and compared qualitatively by inspection and quantitatively by defining similarity measures between the PIV and CFD vector fields. Results showed that both flow fields were in good agreement. Specifically, both techniques provided consistent representations of the main intra-aneurysmal flow structures and their change during the geometric evolution of the aneurysm. Despite differences observed mainly in the near wall region, and the inherent limitations of each technique, the information derived is consistent and can be used to study the role of hemodynamics in the natural history of intracranial aneurysms.
Three dimensional analysis of turbulent steam jets in enclosed structures : a CFD approach.
Ishii, M.; NguyenLe, Q.
1999-04-20
This paper compares the three-dimensional numerical simulation with the experimental data of a steam blowdown event in a light water reactor containment building. The temperature and pressure data of a steam blowdown event was measured at the Purdue University Multi-Dimensional Integrated Test Assembly (PUMA), a scaled model of the General Electric simplified Boiling Water Reactor. A three step approach was used to analyze the steam jet behavior. First, a 1-Dimensional, system level RELAP5/Mod3.2 model of the steam blowdown event was created and the results used to set the initial conditions for the PUMA blowdown experiments. Second, 2-Dimensional CFD models of the discharged steam jets were computed using PHOENICS, a commercially available CFD package. Finally, 3-Dimensional model of the PUMA drywell was created with the boundary conditions based on experimental measurements. The results of the 1-D and 2-D models were reported in the previous meeting. This paper discusses in detail the formulation and the results of the 3-Dimensional PHOENICS model of the PUMA drywell. It is found that the 3-D CFD solutions compared extremely well with the measured data.
Validation and Analysis of Forward Osmosis CFD Model in Complex 3D Geometries.
Gruber, Mathias F; Johnson, Carl J; Tang, Chuyang; Jensen, Mogens H; Yde, Lars; Hélix-Nielsen, Claus
2012-11-09
In forward osmosis (FO), an osmotic pressure gradient generated across a semi-permeable membrane is used to generate water transport from a dilute feed solution into a concentrated draw solution. This principle has shown great promise in the areas of water purification, wastewater treatment, seawater desalination and power generation. To ease optimization and increase understanding of membrane systems, it is desirable to have a comprehensive model that allows for easy investigation of all the major parameters in the separation process. Here we present experimental validation of a computational fluid dynamics (CFD) model developed to simulate FO experiments with asymmetric membranes. Simulations are compared with experimental results obtained from using two distinctly different complex three-dimensional membrane chambers. It is found that the CFD model accurately describes the solute separation process and water permeation through membranes under various flow conditions. It is furthermore demonstrated how the CFD model can be used to optimize membrane geometry in such as way as to promote the mass transfer.
Validation and Analysis of Forward Osmosis CFD Model in Complex 3D Geometries
Gruber, Mathias F.; Johnson, Carl J.; Tang, Chuyang; Jensen, Mogens H.; Yde, Lars; Hélix-Nielsen, Claus
2012-01-01
In forward osmosis (FO), an osmotic pressure gradient generated across a semi-permeable membrane is used to generate water transport from a dilute feed solution into a concentrated draw solution. This principle has shown great promise in the areas of water purification, wastewater treatment, seawater desalination and power generation. To ease optimization and increase understanding of membrane systems, it is desirable to have a comprehensive model that allows for easy investigation of all the major parameters in the separation process. Here we present experimental validation of a computational fluid dynamics (CFD) model developed to simulate FO experiments with asymmetric membranes. Simulations are compared with experimental results obtained from using two distinctly different complex three-dimensional membrane chambers. It is found that the CFD model accurately describes the solute separation process and water permeation through membranes under various flow conditions. It is furthermore demonstrated how the CFD model can be used to optimize membrane geometry in such as way as to promote the mass transfer. PMID:24958428
CFD Analysis of Spray Combustion and Radiation in OMV Thrust Chamber
NASA Technical Reports Server (NTRS)
Giridharan, M. G.; Krishnan, A.; Przekwas, A. J.; Gross, K.
1993-01-01
The Variable Thrust Engine (VTE), developed by TRW, for the Orbit Maneuvering Vehicle (OMV) uses a hypergolic propellant combination of Monomethyl Hydrazine (MMH) and Nitrogen Tetroxide (NTO) as fuel and oxidizer, respectively. The propellants are pressure fed into the combustion chamber through a single pintle injection element. The performance of this engine is dependent on the pintle geometry and a number of complex physical phenomena and their mutual interactions. The most important among these are (1) atomization of the liquid jets into fine droplets; (2) the motion of these droplets in the gas field; (3) vaporization of the droplets (4) turbulent mixing of the fuel and oxidizer; and (5) hypergolic reaction between MMH and NTO. Each of the above phenomena by itself poses a considerable challenge to the technical community. In a reactive flow field of the kind occurring inside the VTE, the mutual interactions between these physical processes tend to further complicate the analysis. The objective of this work is to develop a comprehensive mathematical modeling methodology to analyze the flow field within the VTE. Using this model, the effect of flow parameters on various physical processes such as atomization, spray dynamics, combustion, and radiation is studied. This information can then be used to optimize design parameters and thus improve the performance of the engine. The REFLEQS CFD Code is used for solving the fluid dynamic equations. The spray dynamics is modeled using the Eulerian-Lagrangian approach. The discrete ordinate method with 12 ordinate directions is used to predict the radiative heat transfer in the OMV combustion chamber, nozzle, and the heat shield. The hypergolic reaction between MMH and NTO is predicted using an equilibrium chemistry model with 13 species. The results indicate that mixing and combustion is very sensitive to the droplet size. Smaller droplets evaporate faster than bigger droplets, leading to a well mixed zone in the
Validation of CFD/Heat Transfer Software for Turbine Blade Analysis
NASA Technical Reports Server (NTRS)
Kiefer, Walter D.
2004-01-01
I am an intern in the Turbine Branch of the Turbomachinery and Propulsion Systems Division. The division is primarily concerned with experimental and computational methods of calculating heat transfer effects of turbine blades during operation in jet engines and land-based power systems. These include modeling flow in internal cooling passages and film cooling, as well as calculating heat flux and peak temperatures to ensure safe and efficient operation. The branch is research-oriented, emphasizing the development of tools that may be used by gas turbine designers in industry. The branch has been developing a computational fluid dynamics (CFD) and heat transfer code called GlennHT to achieve the computational end of this analysis. The code was originally written in FORTRAN 77 and run on Silicon Graphics machines. However the code has been rewritten and compiled in FORTRAN 90 to take advantage of more modem computer memory systems. In addition the branch has made a switch in system architectures from SGI's to Linux PC's. The newly modified code therefore needs to be tested and validated. This is the primary goal of my internship. To validate the GlennHT code, it must be run using benchmark fluid mechanics and heat transfer test cases, for which there are either analytical solutions or widely accepted experimental data. From the solutions generated by the code, comparisons can be made to the correct solutions to establish the accuracy of the code. To design and create these test cases, there are many steps and programs that must be used. Before a test case can be run, pre-processing steps must be accomplished. These include generating a grid to describe the geometry, using a software package called GridPro. Also various files required by the GlennHT code must be created including a boundary condition file, a file for multi-processor computing, and a file to describe problem and algorithm parameters. A good deal of this internship will be to become familiar with these
Validation of CFD/Heat Transfer Software for Turbine Blade Analysis
NASA Technical Reports Server (NTRS)
Kiefer, Walter D.
2004-01-01
I am an intern in the Turbine Branch of the Turbomachinery and Propulsion Systems Division. The division is primarily concerned with experimental and computational methods of calculating heat transfer effects of turbine blades during operation in jet engines and land-based power systems. These include modeling flow in internal cooling passages and film cooling, as well as calculating heat flux and peak temperatures to ensure safe and efficient operation. The branch is research-oriented, emphasizing the development of tools that may be used by gas turbine designers in industry. The branch has been developing a computational fluid dynamics (CFD) and heat transfer code called GlennHT to achieve the computational end of this analysis. The code was originally written in FORTRAN 77 and run on Silicon Graphics machines. However the code has been rewritten and compiled in FORTRAN 90 to take advantage of more modem computer memory systems. In addition the branch has made a switch in system architectures from SGI's to Linux PC's. The newly modified code therefore needs to be tested and validated. This is the primary goal of my internship. To validate the GlennHT code, it must be run using benchmark fluid mechanics and heat transfer test cases, for which there are either analytical solutions or widely accepted experimental data. From the solutions generated by the code, comparisons can be made to the correct solutions to establish the accuracy of the code. To design and create these test cases, there are many steps and programs that must be used. Before a test case can be run, pre-processing steps must be accomplished. These include generating a grid to describe the geometry, using a software package called GridPro. Also various files required by the GlennHT code must be created including a boundary condition file, a file for multi-processor computing, and a file to describe problem and algorithm parameters. A good deal of this internship will be to become familiar with these
APPLICATIONS OF CFD METHOD TO GAS MIXING ANALYSIS IN A LARGE-SCALED TANK
Lee, S; Richard Dimenna, R
2007-03-19
The computational fluid dynamics (CFD) modeling technique was applied to the estimation of maximum benzene concentration for the vapor space inside a large-scaled and high-level radioactive waste tank at Savannah River site (SRS). The objective of the work was to perform the calculations for the benzene mixing behavior in the vapor space of Tank 48 and its impact on the local concentration of benzene. The calculations were used to evaluate the degree to which purge air mixes with benzene evolving from the liquid surface and its ability to prevent an unacceptable concentration of benzene from forming. The analysis was focused on changing the tank operating conditions to establish internal recirculation and changing the benzene evolution rate from the liquid surface. The model used a three-dimensional momentum coupled with multi-species transport. The calculations included potential operating conditions for air inlet and exhaust flows, recirculation flow rate, and benzene evolution rate with prototypic tank geometry. The flow conditions are assumed to be fully turbulent since Reynolds numbers for typical operating conditions are in the range of 20,000 to 70,000 based on the inlet conditions of the air purge system. A standard two-equation turbulence model was used. The modeling results for the typical gas mixing problems available in the literature were compared and verified through comparisons with the test results. The benchmarking results showed that the predictions are in good agreement with the analytical solutions and literature data. Additional sensitivity calculations included a reduced benzene evolution rate, reduced air inlet and exhaust flow, and forced internal recirculation. The modeling results showed that the vapor space was fairly well mixed and that benzene concentrations were relatively low when forced recirculation and 72 cfm ventilation air through the tank boundary were imposed. For the same 72 cfm air inlet flow but without forced recirculation
Coupled CFD-Thermal Analysis of Erosion Patterns Resulting from Nozzle Wedgeouts on the SRTMV-N2
NASA Technical Reports Server (NTRS)
Ables, Catherine; Davis, Philip
2014-01-01
The objective of this analysis was to study the effects of the erosion patterns from the introduction of nozzle flaws machined into the nozzle of the SRTMV-N2 (Solid Rocket Test Motor V Nozzle 2). The SRTMV-N2 motor was a single segment static subscale solid rocket motor used to further develop the RSRMV (Redesigned Solid Rocket Motor V Segment). Two flaws or "wedgeouts" were placed in the nozzle inlet parallel to the ply angles of that section to study erosion effects. One wedgeout was placed in the nose cap region and the other placed in the inlet ring on the opposite side of the bondline, separated 180 degrees circumferentially. A coupled CFD (Computational Fluid Analysis)-thermal iterative analytical approach was utilized at the wedgeouts to analyze the erosion profile during the burn time. The iterative CFD thermal approach was applied at five second intervals throughout the motor burn. The coupled fluid thermal boundary conditions were derived from a steady state CFD solution at the beginning of the interval. The derived heat fluxes were then applied along the surface and a transient thermal solution was developed to characterize the material response over the specified interval. Eroded profiles of each of the nozzle's wedgeouts and the original contour were created at each of the specified intervals. The final iteration of the erosion profile showed that both wedgeouts were "washedout," indicating that the erosion profile of the wedgeout had rejoined the original eroded contour, leaving no trace of the wedgeouts post fire. This analytical assessment agreed with post-fire observations made of the SRTMV-N2 wedgeouts, which noted a smooth eroded contour.
CFD/Quasi-Steady Coupled Trim Analysis of Diptera-type Flapping Wing MAV in Steady Flight
NASA Astrophysics Data System (ADS)
Badrya, Camli
The nuances in flapping wing aerodynamics are not yet fully understood to the extent where concepts can be translated to practical designs. Trimmed flight is a fundamental concept for aircraft in general. It describes the flight condition when there are no accelerations on the vehicle. From an engineering perspective, trim estimation is essential for performance analysis and flapping wing vehicle design. Without an efficient trim algorithm, trial-and-error based identification of the trimmed wing kinematics is computationally expensive for any flight condition, because the large number of simulations required make the process impractical. In a global sense the nature of forces produced by flapping wings closely resemble those on a helicopter blade, such that an analogy can be drawn between the two. Therefore, techniques developed for helicopter performance calculations are adapted and applied to the flapping wing platform particularly for analyzing steady flight. Using a flight dynamic model of the insect, which comes embedded with simplified quasi- steady wing aerodynamics and is coupled to high-fidelity CFD analysis, trim solutions are obtained in realistic time frames. This procedure is analogous to rotorcraft periodic coupling for trim. This multi-fidelity approach, where many quasi-steady calculations are combined with a judicious number of CFD simulations, may be used in parametric sweeps and design studies to improve hover and cruise performance. It was shown that the coupled trim methodology based on the QS model is capable of driving the CFD towards a stable trim solution. In forward flight the trim procedure tilts the stroke plane resulting in lift generation during downstroke and propulsive force during upstroke. The airloads, thrust and power are affected by the trim parameters, and the CFD/QS methodology accurately accounted for these inter-dependencies. Also it is observed that power initially decreases as an insect goes from hover to forward flight
2005-09-01
growth in wind tunnel testing requirements – Increasingly sensitive/complex designs require more testing/analysis for success … – But, for fixed- wing ...been used to maintain an essentially constant number of wind tunnel test hours for the last 30 years. Also, while the number of different wing designs...not addressed directly • This study did not evaluate wind tunnel facilities or their capabilities – Comparisons between CFD and wind tunnel testing
Analysis of wall shear stress around a competitive swimmer using 3D Navier-Stokes equations in CFD.
Popa, C V; Zaidi, H; Arfaoui, A; Polidori, G; Taiar, R; Fohanno, S
2011-01-01
This paper deals with the flow dynamics around a competitive swimmer during underwater glide phases occurring at the start and at every turn. The influence of the head position, namely lifted up, aligned and lowered, on the wall shear stress and the static pressure distributions is analyzed. The problem is considered as 3D and in steady hydrodynamic state. Three velocities (1.4 m/s, 2.2 m/s and 3.1 m/s) that correspond to inter-regional, national and international swimming levels are studied. The flow around the swimmer is assumed turbulent. The Reynolds-averaged Navier-Stokes (RANS) equations are solved with the standard k-ω turbulent model by using the CFD (computational fluid dynamics) numerical method based on a volume control approach. Numerical simulations are carried out with the ANSYS FLUENT® CFD code. The results show that the wall shear stress increases with the velocity and consequently the drag force opposing the movement of the swimmer increases as well. Also, high wall shear stresses are observed in the areas where the body shape, globally rigid in form, presents complex surface geometries such as the head, shoulders, buttocks, heel and chest.
Verification Assessment of Flow Boundary Conditions for CFD Analysis of Supersonic Inlet Flows
NASA Technical Reports Server (NTRS)
Slater, John W.
2002-01-01
Boundary conditions for subsonic inflow, bleed, and subsonic outflow as implemented into the WIND CFD code are assessed with respect to verification for steady and unsteady flows associated with supersonic inlets. Verification procedures include grid convergence studies and comparisons to analytical data. The objective is to examine errors, limitations, capabilities, and behavior of the boundary conditions. Computational studies were performed on configurations derived from a "parameterized" supersonic inlet. These include steady supersonic flows with normal and oblique shocks, steady subsonic flow in a diffuser, and unsteady flow with the propagation and reflection of an acoustic disturbance.
A Coupled CFD/FEM Structural Analysis to Determine Deformed Shapes of the RSRM Inhibitors
NASA Technical Reports Server (NTRS)
Dill, Richard A.; Whitesides, R. Harold
1996-01-01
Recent trends towards an increase in the stiffness of the acrylonitrile butadiene rubber (NBR) insulation material used in the construction of the redesigned solid rocket motor (RSRM) propellant inhibitors prompted questions about possible effects on RSRM performance. The specific objectives of the computational fluid dynamics (CFD) task included: (1) the definition of pressure loads to calculate the deformed shape of stiffer inhibitors, (2) the calculation of higher port velocities over the inhibitors to determine shifts in the vortex shedding or edge tone frequencies, and (3) the quantification of higher slag impingement and collection rates on the inhibitors and in the submerged nose nozzle cavity.
CFD analysis of fluid flow in an axial multi-stage partial-admission ORC turbine
NASA Astrophysics Data System (ADS)
Surwilo, Jan; Lampart, Piotr; Szymaniak, Mariusz
2015-10-01
Basic operational advantages of the Organic Rankine Cycle (ORC) systems and specific issues of turbines working in these systems are discussed. The strategy for CFD simulation of the considered ORC turbine and the main issues of the numerical model are presented. The method of constructing the 3D CAD geometry as well as discretisation of the flow domain are also shown. Main features of partial admission flow in the multi-stage axial turbine are discussed. The influence of partial admission on the working conditions of the subsequent stage supplied at the full circumference is also described.
A 3-D CFD Analysis of the Space Shuttle RSRM With Propellant Fins @ 1 sec. Burn-Back
NASA Technical Reports Server (NTRS)
Morstadt, Robert A.
2003-01-01
In this study 3-D Computational Fluid Dynamic (CFD) runs have been made for the Space Shuttle RSRM using 2 different grids and 4 different turbulent models, which were the Standard KE, the RNG KE, the Realizable KE, and the Reynolds stress model. The RSRM forward segment consists of 11 fins. By taking advantage of the forward fin symmetry only half of one fin along the axis had to be used in making the grid. This meant that the 3-D model consisted of a pie slice that encompassed 1/22nd of the motor circumference and went along the axis of the entire motor. The 3-D flow patterns in the forward fin region are of particular interest. Close inspection of these flow patterns indicate that 2 counter-rotating axial vortices emerge from each submerged solid propellant fin. Thus, the 3-D CFD analysis allows insight into complicated internal motor flow patterns that are not available from the simpler 2-D axi-symmetric studies. In addition, a comparison is made between the 3-D bore pressure drop and the 2-D axi-symmetric pressure drop.
A CFD analysis of blade row interactions within a high-speed axial compressor
NASA Astrophysics Data System (ADS)
Richman, Michael Scott
Aircraft engine design provides many technical and financial hurdles. In an effort to streamline the design process, save money, and improve reliability and performance, many manufacturers are relying on computational fluid dynamic simulations. An overarching goal of the design process for military aircraft engines is to reduce size and weight while maintaining (or improving) reliability. Designers often turn to the compression system to accomplish this goal. As pressure ratios increase and the number of compression stages decrease, many problems arise, for example stability and high cycle fatigue (HCF) become significant as individual stage loading is increased. CFD simulations have recently been employed to assist in the understanding of the aeroelastic problems. For accurate multistage blade row HCF prediction, it is imperative that advanced three-dimensional blade row unsteady aerodynamic interaction codes be validated with appropriate benchmark data. This research addresses this required validation process for TURBO, an advanced three-dimensional multi-blade row turbomachinery CFD code. The solution/prediction accuracy is characterized, identifying key flow field parameters driving the inlet guide vane (IGV) and stator response to the rotor generated forcing functions. The result is a quantified evaluation of the ability of TURBO to predict not only the fundamental flow field characteristics but the three dimensional blade loading.
CFD Analysis of Upper Plenum Flow for a Sodium-Cooled Small Modular Reactor
Kraus, A.; Hu, R.
2015-01-01
Upper plenum flow behavior is important for many operational and safety issues in sodium fast reactors. The Prototype Gen-IV Sodium Fast Reactor (PGSFR), a pool-type, 150 MWe output power design, was used as a reference case for a detailed characterization of upper plenum flow for normal operating conditions. Computational Fluid Dynamics (CFD) simulation was utilized with detailed geometric modeling of major structures. Core outlet conditions based on prior system-level calculations were mapped to approximate the outlet temperatures and flow rates for each core assembly. Core outlet flow was found to largely bypass the Upper Internal Structures (UIS). Flow curves over the shield and circulates within the pool before exiting the plenum. Cross-flows and temperatures were evaluated near the core outlet, leading to a proposed height for the core outlet thermocouples to ensure accurate assembly-specific temperature readings. A passive scalar was used to evaluate fluid residence time from core outlet to IHX inlet, which can be used to assess the applicability of various methods for monitoring fuel failure. Additionally, the gas entrainment likelihood was assessed based on the CFD simulation results. Based on the evaluation of velocity gradients and turbulent kinetic energies and the available gas entrainment criteria in the literature, it was concluded that significant gas entrainment is unlikely for the current PGSFR design.
High fidelity CFD-CSD aeroelastic analysis of slender bladed horizontal-axis wind turbine
NASA Astrophysics Data System (ADS)
Sayed, M.; Lutz, Th.; Krämer, E.; Shayegan, Sh.; Ghantasala, A.; Wüchner, R.; Bletzinger, K.-U.
2016-09-01
The aeroelastic response of large multi-megawatt slender horizontal-axis wind turbine blades is investigated by means of a time-accurate CFD-CSD coupling approach. A loose coupling approach is implemented and used to perform the simulations. The block- structured CFD solver FLOWer is utilized to obtain the aerodynamic blade loads based on the time-accurate solution of the unsteady Reynolds-averaged Navier-Stokes equations. The CSD solver Carat++ is applied to acquire the blade elastic deformations based on non-linear beam elements. In this contribution, the presented coupling approach is utilized to study the aeroelastic response of the generic DTU 10MW wind turbine. Moreover, the effect of the coupled results on the wind turbine performance is discussed. The results are compared to the aeroelastic response predicted by FLOWer coupled to the MBS tool SIMPACK as well as the response predicted by SIMPACK coupled to a Blade Element Momentum code for aerodynamic predictions. A comparative study among the different modelling approaches for this coupled problem is discussed to quantify the coupling effects of the structural models on the aeroelastic response.
2D CFD Analysis of an Airfoil with Active Continuous Trailing Edge Flap
NASA Astrophysics Data System (ADS)
Jaksich, Dylan; Shen, Jinwei
2014-11-01
Efficient and quieter helicopter rotors can be achieved through on-blade control devices, such as active Continuous Trailing-Edge Flaps driven by embedded piezoelectric material. This project aims to develop a CFD simulation tool to predict the aerodynamic characteristics of an airfoil with CTEF using open source code: OpenFOAM. Airfoil meshes used by OpenFOAM are obtained with MATLAB scripts. Once created it is possible to rotate the airfoil to various angles of attack. When the airfoil is properly set up various OpenFOAM properties, such as kinematic viscosity and flow velocity, are altered to achieve the desired testing conditions. Upon completion of a simulation, the program gives the lift, drag, and moment coefficients as well as the pressure and velocity around the airfoil. The simulation is then repeated across multiple angles of attack to give full lift and drag curves. The results are then compared to previous test data and other CFD predictions. This research will lead to further work involving quasi-steady 2D simulations incorporating NASTRAN to model aeroelastic deformation and eventually to 3D aeroelastic simulations. NSF ECE Grant #1358991 supported the first author as an REU student.
Microtomography-based CFD Analysis of Transport in Open-Cell Aluminum Metal Foams
NASA Astrophysics Data System (ADS)
Ranut, Paola; Nobile, Enrico; Mancini, Lucia
2014-04-01
Nowadays, the need for developing more effective heat exchange technologies and innovative materials, capable of increasing performances while keeping power consumption, size and cost at reasonable levels, is well recognized. Under this perspective, metal foams have a great potential for enhancing the thermal efficiency of heat transfer devices, while allowing for the use of smaller and lighter equipments. However, for practical applications, it is necessary to compromise between the augmented heat transfer rate and the increased pressure drop induced by the tortuous flow passages. For design purposes, the estimation of the flow permeability and the thermal conductivity of the foam is fundamental, but far from simple. From this perspective, besides classical transport models and correlations, computational fluid dynamics (CFD) at the pore scale, although challenging, is becoming a promising approach, especially if coupled with a realistic description of the foam structure. For precisely recovering the microstructure of the foams, a 3D X-ray computed microtomography (μ-CT) can be adopted. In this work, the results of μ-CT-based CFD simulations performed on different open-cell aluminum foams samples, for laminar flow regime, will be discussed. The results demonstrate that open-cell aluminum foams are effective means for enhancing heat transfer.
CFD Analysis of Turbulent Flow Phenomena in the Lower Plenum of a Prismatic Gas-Cooled Reactor
T. Gallaway; S.P. Antal; M.Z. Podowski; D.P. Guillen
2007-09-01
This paper is concerned with the implementation of a computational model of turbulent flow in a section of the lower plenum of Very High Temperature Reactor (VHTR). The proposed model has been encoded in a state-of-the-art CFD code, NPHASE. The results of NPHASE predictions have been compared against the experimental data collected using a scaled model of a sub-region in the lower plenum of a modular prismatic gas-cooled reactor. It has been shown that the NPHASE-based model is capable of predicting a three-dimensional velocity field in a complex geometrical configuration of VHTR lower plenum. The current and future validations of computational predictions are necessary for design and analysis of new reactor concepts, as well as for safety analysis and licensing calculations.
NASA Astrophysics Data System (ADS)
Yun, Kukchol; Tajč, L.; Kolovratník, M.
2016-03-01
The aim of the paper is to present the CFD analysis of the steam flow in the two-stage turbine with a drum rotor and balancing slots. The balancing slot is a part of every rotor blade and it can be used in the same way as balancing holes on the classical rotor disc. The main attention is focused on the explanation of the experimental knowledge about the impact of the slot covering and uncovering on the efficiency of the individual stages and the entire turbine. The pressure and temperature fields and the mass steam flows through the shaft seals, slots and blade cascades are calculated. The impact of the balancing slots covering or uncovering on the reaction and velocity conditions in the stages is evaluated according to the pressure and temperature fields. We have also concentrated on the analysis of the seal steam flow through the balancing slots. The optimized design of the balancing slots has been suggested.
Solids mixing in bubbling fluidized beds: CFD-based analysis of Bubble Dynamics and Time Scales
NASA Astrophysics Data System (ADS)
Bakshi, Akhilesh; Altantzis, Christos; Ghoniem, Ahmed
2016-11-01
In bubbling fluidized bed reactors, solids mixing is critical because it directly affects fuel segregation and residence time. However, there continues to be a lack of understanding because (a) most diagnostic techniques are only feasible in lab-scale setups and (b) the dynamics are sensitive to the operating conditions. Thus, quantitative estimates of mixing (e.g., dispersion coefficient, mixing indices) often span orders of magnitude although it is well accepted that the micro-mixing and gross circulation of solid particles is driven by bubble motion. To quantify this dependence, solids mixing is investigated using fine-grid 3D CFD simulations of a large 50 cm diameter fluidized bed. Detailed diagnostics of the computed flow-field data are performed using MS3DATA, a tool that we developed to detect and track bubbles, and the solids motion is correlated with the spatial and size distribution of bubbles. This study will be useful for quantifying mixing at commercial scales.
CFD Analysis of a Finite Linear Array of Savonius Wind Turbines
NASA Astrophysics Data System (ADS)
Belkacem, Belabes; Paraschivoiu, Marius
2016-09-01
Vertical axis wind turbines such as Savonius rotors have been shown to be suitable for low wind speeds normally associated with wind resources in all corners of the world. However, the efficiency of the rotor is low. This paper presents results of Computational Fluid Dynamics (CFD) simulations for an array of Savonius rotors that show a significant increase in efficiency. It looks at identifying the effect on the energy yield of a number of turbines placed in a linear array. Results from this investigation suggest that an increase in the energy yield could be achieved which can reach almost two times than the conventional Savonius wind turbine in the case of an array of 11turbines with a distance of 1.4R in between them. The effect of different TSR values and different wind inlet speeds on the farm has been studied for both a synchronous and asynchronous wind farm.
A CFD Analysis of Easterly Wind Flow Impacting the Vehicle Assembly Building
NASA Technical Reports Server (NTRS)
Vu, B. T.; Zysko, J. A.
2005-01-01
In an attempt to explain the high loss of panels from the south face of the Vehicle Assembly Building (VAB) during Hurricane Frances, a three-dimensional computational fluid dynamics (3-D CFD) model was developed to simulate local velocity and pressure distributions resulting from such a storm. A preconditioned compressible Navier-Stokes flow solver 1 was used to compute the flow field around the VAB complex, including the Launch Control Center, the Low and High Bays of the VAB, and several outbuildings in the immediate LC-39 area. The mapping of the forces and velocities on and along the affected faces of the VAB correlated surprisingly well with the extensive damage areas realized on both on the south face and on the southeast section of the roof. The model results were also consistent with the minimal damage seen on the east, north, and west faces of the structure.
Using Process/CFD Co-Simulation for the Design and Analysis of Advanced Energy Systems
Zitney, S.E.
2007-04-01
In this presentation we describe the major features and capabilities of NETL’s Advanced Process Engineering Co-Simulator (APECS) and highlight its application to advanced energy systems, ranging from small fuel cell systems to commercial-scale power plants including the coal-fired, gasification-based electricity and hydrogen plant in the DOE’s $1 billion, 10-year FutureGen demonstration project. APECS is an integrated software suite which allows the process and energy industries to optimize overall plant performance with respect to complex thermal and fluid flow phenomena by combining process simulation (e.g., Aspen Plus®) with high-fidelity equipment simulations based on computational fluid dynamics (CFD) models (e.g., FLUENT®).
NASA Technical Reports Server (NTRS)
Bhandari, Pradeep; Anderson, Kevin
2013-01-01
The challenging range of landing sites for which the Mars Science Laboratory Rover was designed, requires a rover thermal management system that is capable of keeping temperatures controlled across a wide variety of environmental conditions. On the Martian surface where temperatures can be as cold as -123 C and as warm as 38 C, the rover relies upon a Mechanically Pumped Fluid Loop (MPFL) Rover Heat Rejection System (RHRS) and external radiators to maintain the temperature of sensitive electronics and science instruments within a -40 C to 50 C range. The RHRS harnesses some of the waste heat generated from the rover power source, known as the Multi Mission Radioisotope Thermoelectric Generator (MMRTG), for use as survival heat for the rover during cold conditions. The MMRTG produces 110 W of electrical power while generating waste heat equivalent to approximately 2000 W. Heat exchanger plates (hot plates) positioned close to the MMRTG pick up this survival heat from it by radiative heat transfer. Winds on Mars can be as fast as 15 m/s for extended periods. They can lead to significant heat loss from the MMRTG and the hot plates due to convective heat pick up from these surfaces. Estimation of this convective heat loss cannot be accurately and adequately achieved by simple textbook based calculations because of the very complicated flow fields around these surfaces, which are a function of wind direction and speed. Accurate calculations necessitated the employment of sophisticated Computational Fluid Dynamics (CFD) computer codes. This paper describes the methodology and results of these CFD calculations. Additionally, these results are compared to simple textbook based calculations that served as benchmarks and sanity checks for them. And finally, the overall RHRS system performance predictions will be shared to show how these results affected the overall rover thermal performance.
NASA Technical Reports Server (NTRS)
Bhandari, Pradeep; Anderson, Kevin
2013-01-01
The challenging range of landing sites for which the Mars Science Laboratory Rover was designed, requires a rover thermal management system that is capable of keeping temperatures controlled across a wide variety of environmental conditions. On the Martian surface where temperatures can be as cold as -123 C and as warm as 38 C, the rover relies upon a Mechanically Pumped Fluid Loop (MPFL) Rover Heat Rejection System (RHRS) and external radiators to maintain the temperature of sensitive electronics and science instruments within a -40 C to 50 C range. The RHRS harnesses some of the waste heat generated from the rover power source, known as the Multi Mission Radioisotope Thermoelectric Generator (MMRTG), for use as survival heat for the rover during cold conditions. The MMRTG produces 110 W of electrical power while generating waste heat equivalent to approximately 2000 W. Heat exchanger plates (hot plates) positioned close to the MMRTG pick up this survival heat from it by radiative heat transfer. Winds on Mars can be as fast as 15 m/s for extended periods. They can lead to significant heat loss from the MMRTG and the hot plates due to convective heat pick up from these surfaces. Estimation of this convective heat loss cannot be accurately and adequately achieved by simple textbook based calculations because of the very complicated flow fields around these surfaces, which are a function of wind direction and speed. Accurate calculations necessitated the employment of sophisticated Computational Fluid Dynamics (CFD) computer codes. This paper describes the methodology and results of these CFD calculations. Additionally, these results are compared to simple textbook based calculations that served as benchmarks and sanity checks for them. And finally, the overall RHRS system performance predictions will be shared to show how these results affected the overall rover thermal performance.
NASA Technical Reports Server (NTRS)
Taylor, Arthur C., III; Hou, Gene W.
1993-01-01
In this study involving advanced fluid flow codes, an incremental iterative formulation (also known as the delta or correction form) together with the well-known spatially-split approximate factorization algorithm, is presented for solving the very large sparse systems of linear equations which are associated with aerodynamic sensitivity analysis. For smaller 2D problems, a direct method can be applied to solve these linear equations in either the standard or the incremental form, in which case the two are equivalent. Iterative methods are needed for larger 2D and future 3D applications, however, because direct methods require much more computer memory than is currently available. Iterative methods for solving these equations in the standard form are generally unsatisfactory due to an ill-conditioning of the coefficient matrix; this problem can be overcome when these equations are cast in the incremental form. These and other benefits are discussed. The methodology is successfully implemented and tested in 2D using an upwind, cell-centered, finite volume formulation applied to the thin-layer Navier-Stokes equations. Results are presented for two sample airfoil problems: (1) subsonic low Reynolds number laminar flow; and (2) transonic high Reynolds number turbulent flow.
NASA Technical Reports Server (NTRS)
Taylor, Arthur C., III; Hou, Gene W.
1996-01-01
An incremental iterative formulation together with the well-known spatially split approximate-factorization algorithm, is presented for solving the large, sparse systems of linear equations that are associated with aerodynamic sensitivity analysis. This formulation is also known as the 'delta' or 'correction' form. For the smaller two dimensional problems, a direct method can be applied to solve these linear equations in either the standard or the incremental form, in which case the two are equivalent. However, iterative methods are needed for larger two-dimensional and three dimensional applications because direct methods require more computer memory than is currently available. Iterative methods for solving these equations in the standard form are generally unsatisfactory due to an ill-conditioned coefficient matrix; this problem is overcome when these equations are cast in the incremental form. The methodology is successfully implemented and tested using an upwind cell-centered finite-volume formulation applied in two dimensions to the thin-layer Navier-Stokes equations for external flow over an airfoil. In three dimensions this methodology is demonstrated with a marching-solution algorithm for the Euler equations to calculate supersonic flow over the High-Speed Civil Transport configuration (HSCT 24E). The sensitivity derivatives obtained with the incremental iterative method from a marching Euler code are used in a design-improvement study of the HSCT configuration that involves thickness. camber, and planform design variables.
Deitz, D.
1996-03-01
This article describes how computational-fluid-dynamics programs are finding their way onto the designers` desk tops. The topics of the article include new applications of CFD such as designing combustors for airplane gas turbine engines, designing turbomachinery, modeling air flow in rooms, simulation of chemical-vapor deposition; benefits of CFD; reducing time to design and manufacture products; what CFD can not do; and combining CFD with physical tests.
TADS--A CFD-Based Turbomachinery Analysis and Design System with GUI: User's Manual. 2.0
NASA Technical Reports Server (NTRS)
Koiro, M. J.; Myers, R. A.; Delaney, R. A.
1999-01-01
The primary objective of this study was the development of a Computational Fluid Dynamics (CFD) based turbomachinery airfoil analysis and design system, controlled by a Graphical User Interface (GUI). The computer codes resulting from this effort are referred to as TADS (Turbomachinery Analysis and Design System). This document is intended to serve as a User's Manual for the computer programs which comprise the TADS system, developed under Task 18 of NASA Contract NAS3-27350, ADPAC System Coupling to Blade Analysis & Design System GUI and Task 10 of NASA Contract NAS3-27394, ADPAC System Coupling to Blade Analysis & Design System GUI, Phase II-Loss, Design and, Multi-stage Analysis. TADS couples a throughflow solver (ADPAC) with a quasi-3D blade-to-blade solver (RVCQ3D) in an interactive package. Throughflow analysis and design capability was developed in ADPAC through the addition of blade force and blockage terms to the governing equations. A GUI was developed to simplify user input and automate the many tasks required to perform turbomachinery analysis and design. The coupling of the various programs was done in such a way that alternative solvers or grid generators could be easily incorporated into the TADS framework. Results of aerodynamic calculations using the TADS system are presented for a highly loaded fan, a compressor stator, a low speed turbine blade and a transonic turbine vane.
NASA Technical Reports Server (NTRS)
Schreiber, Robert; Simon, Horst D.
1992-01-01
We are surveying current projects in the area of parallel supercomputers. The machines considered here will become commercially available in the 1990 - 1992 time frame. All are suitable for exploring the critical issues in applying parallel processors to large scale scientific computations, in particular CFD calculations. This chapter presents an overview of the surveyed machines, and a detailed analysis of the various architectural and technology approaches taken. Particular emphasis is placed on the feasibility of a Teraflops capability following the paths proposed by various developers.
TADS: A CFD-Based Turbomachinery Analysis and Design System with GUI: Methods and Results. 2.0
NASA Technical Reports Server (NTRS)
Koiro, M. J.; Myers, R. A.; Delaney, R. A.
1999-01-01
The primary objective of this study was the development of a Computational Fluid Dynamics (CFD) based turbomachinery airfoil analysis and design system, controlled by a Graphical User Interface (GUI). The computer codes resulting from this effort are referred to as TADS (Turbomachinery Analysis and Design System). This document is the Final Report describing the theoretical basis and analytical results from the TADS system developed under Task 10 of NASA Contract NAS3-27394, ADPAC System Coupling to Blade Analysis & Design System GUI, Phase II-Loss, Design and. Multi-stage Analysis. TADS couples a throughflow solver (ADPAC) with a quasi-3D blade-to-blade solver (RVCQ3D) or a 3-D solver with slip condition on the end walls (B2BADPAC) in an interactive package. Throughflow analysis and design capability was developed in ADPAC through the addition of blade force and blockage terms to the governing equations. A GUI was developed to simplify user input and automate the many tasks required to perform turbomachinery analysis and design. The coupling of the various programs was done in such a way that alternative solvers or grid generators could be easily incorporated into the TADS framework. Results of aerodynamic calculations using the TADS system are presented for a multistage compressor, a multistage turbine, two highly loaded fans, and several single stage compressor and turbine example cases.
CFD analysis of a liquid mercury target for the National Spallation Neutron Source
Wendel, M.W.; Tov, M.S.
1997-02-01
Computational fluid dynamics (CFD) is being used to analyze the design of the National Spallation Neutron Source (NSNS) target. The target is subjected to the neutronic (internal) heat generation that results from the proton collisions with the mercury nuclei. The liquid mercury simultaneously serves as the neutronic target medium, transports away the heat generated within itself, and cools the metallic target structure. Recirculation and stagnation zones within the target are of particular concern because of the likelihood that they will result in local hot spots. These zones exist because the most feasible target designs include a complete U-turn flow redirection. Although the primary concern is that the target is adequately cooled, the pressure drop from inlet to outlet must also be considered because pressure drop directly affects structural loading and required pumping power. Various design options have been considered in an effort to satisfy these design criteria. Significant improvements to the design have been recommended based on the results. Detailed results are presented for the current target design including a comparison with published pressure-drop data. Comparisons are also made with forced convection heat transfer data for liquid mercury flow in circular tubes.
Analysis of a pico tubular-type hydro turbine performance by runner blade shape using CFD
NASA Astrophysics Data System (ADS)
Park, J. H.; Lee, N. J.; Wata, J. V.; Hwang, Y. C.; Kim, Y. T.; Lee, Y. H.
2012-11-01
There has been a considerable interest recently in the topic of renewable energy. This is primarily due to concerns about environmental impacts of fossil fuels. Moreover, fluctuating and rising oil prices, increase in demand, supply uncertainties and other factors have led to increased calls for alternative energy sources. Small hydropower, among other renewable energy sources, has been evaluated to have adequate development value because it is a clean, renewable and abundant energy resource. In addition, small hydropower has the advantage of low cost development by using rivers, agricultural reservoirs, sewage treatment plants, waterworks and water resources. The main concept of the tubular-type hydro turbine is based on the difference in water pressure levels in pipe lines, where the energy which was initially wasted by using a reducing valve at the pipeline of waterworks, is collected by turbine in the hydro power generator. In this study, in order to acquire the performance data of a pico tubular-type hydro turbine, the output power, head and efficiency characteristics by different runner blade shapes are examined. The pressure and velocity distributions with the variation of guide vane and runner vane angle on turbine performance are investigated by using a commercial CFD code.
CFD-DEM Analysis of Particle Attrition in a Jet in a Fluidised Bed
NASA Astrophysics Data System (ADS)
Fulchini, F.; Nan, W.; Ghadiri, M.; Yazdan Panah, M.; Bertholin, S.; Amblard, B.; Cloupet, A.; Gauthier, T.
2017-06-01
In fluidised bed processes, the solids are in vigorous motion and thus inevitably subjected to mechanical stresses due to inter-particle and particle-wall impacts. These stresses lead to a gradual degradation of the particles by surface wear, abrasion and body fragmentation commonly termed attrition. One significant contribution of attrition comes from the air jets of the fluidised bed distributor. Particles are entrained into the air jet, where they get accelerated and impacted onto the fluidised bed particles. The jet induced attrition only affects the part of the bed which is limited by the jet length, where the mode of attrition is largely collisional. The overall jet attrition rate is therefore the result of the combination of the single particle damage and the flux of particles entering into that region. The attrition behaviour of particles in the jet region is analysed by evaluating their propensity of breakage experimentally and by simulating an air-jet in a bed of particles by CFD-DEM. The frequency of collisions and impact velocities are estimated from which the attrition due to a single air-jet is predicted.
CFD analysis of municipal solid waste combustion using detailed chemical kinetic modelling.
Frank, Alex; Castaldi, Marco J
2014-08-01
Nitrogen oxides (NO x ) emissions from the combustion of municipal solid waste (MSW) in waste-to-energy (WtE) facilities are receiving renewed attention to reduce their output further. While NO x emissions are currently 60% below allowed limits, further reductions will decrease the air pollution control (APC) system burden and reduce consumption of NH3. This work combines the incorporation of the GRI 3.0 mechanism as a detailed chemical kinetic model (DCKM) into a custom three-dimensional (3D) computational fluid dynamics (CFD) model fully to understand the NO x chemistry in the above-bed burnout zones. Specifically, thermal, prompt and fuel NO formation mechanisms were evaluated for the system and a parametric study was utilized to determine the effect of varying fuel nitrogen conversion intermediates between HCN, NH3 and NO directly. Simulation results indicate that the fuel nitrogen mechanism accounts for 92% of the total NO produced in the system with thermal and prompt mechanisms accounting for the remaining 8%. Results also show a 5% variation in final NO concentration between HCN and NH3 inlet conditions, demonstrating that the fuel nitrogen intermediate assumed is not significant. Furthermore, the conversion ratio of fuel nitrogen to NO was 0.33, revealing that the majority of fuel nitrogen forms N2.
Investigation of mucus transport in an idealized lung airway model using multiphase CFD analysis
NASA Astrophysics Data System (ADS)
Rajendran, Rahul; Banerjee, Arindam
2015-11-01
Mucus, a Bingham fluid is transported in the pulmonary airways by consistent beating of the cilia and exhibits a wide range of physical properties in response to the core air flow and various pathological conditions. A better understanding of the interfacial instability is required as it plays a crucial role in gas transport, mixing, mucus clearance and drug delivery. In the current study, mucus is modelled as a Newtonian fluid and the two phase gas-liquid flow in the airways is investigated using an inhomogeneous Eulerian-Eulerian approach. The complex interface between the phases is tracked using the conventional VOF (Volume of Fluid) method. Results from our CFD simulations which are performed in idealized single and double bifurcation geometries will be presented and the influence of airflow rate, mucus layer thickness, mucus viscosity, airway geometry (branching & diameter) and surface tension on mucus flow behavior will be discussed. Mean mucus layer thickness, pressure drop due to momentum transfer & increased airway resistance, mucus transport speed and the flow morphology will be compared to existing experimental and theoretical data.
Statistical Analysis of CFD Solutions from the Third AIAA Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Morrison, Joseph H.; Hemsch, Michael J.
2007-01-01
The first AIAA Drag Prediction Workshop, held in June 2001, evaluated the results from an extensive N-version test of a collection of Reynolds-Averaged Navier-Stokes CFD codes. The code-to-code scatter was more than an order of magnitude larger than desired for design and experimental validation of cruise conditions for a subsonic transport configuration. The second AIAA Drag Prediction Workshop, held in June 2003, emphasized the determination of installed pylon-nacelle drag increments and grid refinement studies. The code-to-code scatter was significantly reduced compared to the first DPW, but still larger than desired. However, grid refinement studies showed no significant improvement in code-to-code scatter with increasing grid refinement. The third Drag Prediction Workshop focused on the determination of installed side-of-body fairing drag increments and grid refinement studies for clean attached flow on wing alone configurations and for separated flow on the DLR-F6 subsonic transport model. This work evaluated the effect of grid refinement on the code-to-code scatter for the clean attached flow test cases and the separated flow test cases.
The development of a CFD potential method for the analysis of tilt-rotors
NASA Technical Reports Server (NTRS)
Bridgeman, John O.; Prichard, Devon; Caradonna, Francis X.
1991-01-01
A new CFD potential code, FPX (eXtended Full-Potential), has been developed for application to both helicopters and tilt-rotors. The code solves the unsteady, three-dimensional full potential equation and is an extension of the rotor code, FPR. Both entropy and viscosity corrections are included to enhance the physical modeling capabilities. A number of efficiency related modifications have yielded a factor of two speed-up in the code. An axial flow capability has been added to treat tilt-rotor in forward flight (cruise mode). In order to employ streamwise periodicity and accurately solve for the propagation of acoustic signals in the tip region, an H-H topology has been added to the basic O-H grid system. Computations are performed for the XV-15 Standard and ATB blades at high-speed conditions. Comparisons are made for the blade aerodynamics and the induced fuselage cabin pressure for a range of Mach numbers. Grid generation, wake treatment, and far-field wall treatment are identified as problem areas with recommendations for future research.
Aeroelastic Analysis of Rotor Blades Using Cfd/csd Coupling in Hover Mode
NASA Astrophysics Data System (ADS)
Chen, Long; Wu, Yizhao; Xia, Jian
A computational fluid dynamics (CFD) is coupled with a computational structural dynamics (CSD) to simulate the unsteady rotor flow with aeroelasticity effects. An unstructured upwind Navier-Stokes solver was developed for this simulation, with 2nd order time-accurate dual-time stepping method for temporal discretization and low Mach number preconditioning method. For turbulent flows, both the Spalart-Allmaras and Menter's SST model are available. Mesh deformation is achieved through a fast dynamic grid method called Delaunay graph map method for unsteady flow simulation. The rotor blades are modeled as Hodges & Dowell's nonlinear beams coupled flap-lag-torsion. The rotorcraft computational structural dynamics code employs the 15-dof beam finite element formulation for modeling. The structure code was validated by comparing the natural frequencies of a rotor model with UMARC. The flow and structure codes are coupled tightly with information exchange several times at every time step. A rotor blade model's unsteady flow field in the hover mode is simulated using the coupling method. Effect of blade elasticity with aerodynamic loads was compared with rigid blade.
Numerical analysis of the internal flow field in screw centrifugal blood pump based on CFD
NASA Astrophysics Data System (ADS)
Han, W.; Han, B. X.; Y Wang, H.; Shen, Z. J.
2013-12-01
As to the impeller blood pump, the high speed of the impeller, the local high shear force of the flow field and the flow dead region are the main reasons for blood damage. The screw centrifugal pump can effectively alleviate the problems of the high speed and the high shear stress for the impeller. The softness and non-destructiveness during the transfer process can effectively reduce the extent of the damage. By using CFD software, the characteristics of internal flow are analyzed in the screw centrifugal pump by exploring the distribution rules of the velocity, pressure and shear deformation rate of the blood when it flows through the impeller and the destructive effects of spiral blades on blood. The results show that: the design of magnetic levitation solves the sealing problems; the design of regurgitation holes solves the problem of the flow dead zone; the magnetic levitated microcirculation screw centrifugal pump can effectively avoid the vortex, turbulence and high shear forces generated while the blood is flowing through the pump. Since the distribution rules in the velocity field, pressure field and shear deformation rate of the blood in the blood pump are comparatively uniform and the gradient change is comparatively small, the blood damage is effectively reduced.
Use of Computational Fluid Dynamics (CFD) tools for fuel assembly analysis.
Garner, P. L.; Sofu, T.; Nuclear Engineering Division
2004-01-01
The STAR-CD computer program for Computational Fuel Dynamics (CFD) has been applied to the Russian pin-type fuel assemblies proposed as low enriched uranium (LEU) replacements for the high enriched uranium (HEU) (36%) IRT-3M fuel assemblies currently used in the WWR-SM reactor in Uzbekistan. For fuel assemblies containing twisted, finned pin-type fuel, STAR-CD was first used to model the single pin having the highest power density along with its associated coolant as an isolated unit cell. Velocity, pressure, temperature, heat flux, etc. were calculated on a detailed spatial basis in the coolant, cladding, and fuel. The model was then expanded to include multiple fuel pins; the computed motion of coolant from one portion of the assembly to another can reduce the peak temperatures below what one would compute using a single-pin model and, thus, change conclusions regarding the margin to onset of nucleate boiling. STAR-CD has also been applied to the IRT-3M tube-type fuel assemblies in the current HEU core.
TADS: A CFD-based turbomachinery and analysis design system with GUI. Volume 1: Method and results
NASA Technical Reports Server (NTRS)
Topp, D. A.; Myers, R. A.; Delaney, R. A.
1995-01-01
The primary objective of this study was the development of a CFD (Computational Fluid Dynamics) based turbomachinery airfoil analysis and design system, controlled by a GUI (Graphical User Interface). The computer codes resulting from this effort are referred to as TADS (Turbomachinery Analysis and Design System). This document is the Final Report describing the theoretical basis and analytical results from the TADS system, developed under Task 18 of NASA Contract NAS3-25950, ADPAC System Coupling to Blade Analysis & Design System GUI. TADS couples a throughflow solver (ADPAC) with a quasi-3D blade-to-blade solver (RVCQ3D) in an interactive package. Throughflow analysis capability was developed in ADPAC through the addition of blade force and blockage terms to the governing equations. A GUI was developed to simplify user input and automate the many tasks required to perform turbomachinery analysis and design. The coupling of the various programs was done in such a way that alternative solvers or grid generators could be easily incorporated into the TADS framework. Results of aerodynamic calculations using the TADS system are presented for a highly loaded fan, a compressor stator, a low speed turbine blade and a transonic turbine vane.
NASA Technical Reports Server (NTRS)
Steger, Joseph L.; Hafez, Mohamed M.; Moin, Parviz
1992-01-01
The part that universities should play in the future development of CFD, which must be evaluated in light of CFD's pacing elements and challenges, is discussed. Attention is given to CFD pacing items that must be in place before routine aerodynamic simulation can be performed including grid generation and geometry surface definition, solution adaptive meshing, more efficient time-accurate simulation, modeling of real-gas effects, multiple relative body motion, and prediction of transition and turbulence modeling. As universities have contributed to research in CFD from its inception, this research should continue to enhance and motivate teaching, improve CFD as a discipline, and stimulate faculty and students.
The Effect of Depth on Drag During the Streamlined Glide: A Three-Dimensional CFD Analysis
Novais, Maria L.; Silva, António J.; Mantha, Vishveshwar R.; Ramos, Rui J.; Rouboa, Abel I.; Vilas-Boas, J. Paulo; Luís, Sérgio R.; Marinho, Daniel A.
2012-01-01
The aim of this study was to analyze the effects of depth on drag during the streamlined glide in swimming using Computational Fluid Dynamics. The Computation Fluid Dynamic analysis consisted of using a three-dimensional mesh of cells that simulates the flow around the considered domain. We used the K-epsilon turbulent model implemented in the commercial code Fluent® and applied it to the flow around a three-dimensional model of an Olympic swimmer. The swimmer was modeled as if he were gliding underwater in a streamlined prone position, with hands overlapping, head between the extended arms, feet together and plantar flexed. Steady-state computational fluid dynamics analyses were performed using the Fluent® code and the drag coefficient and the drag force was calculated for velocities ranging from 1.5 to 2.5 m/s, in increments of 0.50m/s, which represents the velocity range used by club to elite level swimmers during the push-off and glide following a turn. The swimmer model middle line was placed at different water depths between 0 and 1.0 m underwater, in 0.25m increments. Hydrodynamic drag decreased with depth, although after 0.75m values remained almost constant. Water depth seems to have a positive effect on reducing hydrodynamic drag during the gliding. Although increasing depth position could contribute to decrease hydrodynamic drag, this reduction seems to be lower with depth, especially after 0.75 m depth, thus suggesting that possibly performing the underwater gliding more than 0.75 m depth could not be to the benefit of the swimmer. PMID:23487502
The Effect of Depth on Drag During the Streamlined Glide: A Three-Dimensional CFD Analysis.
Novais, Maria L; Silva, António J; Mantha, Vishveshwar R; Ramos, Rui J; Rouboa, Abel I; Vilas-Boas, J Paulo; Luís, Sérgio R; Marinho, Daniel A
2012-06-01
The aim of this study was to analyze the effects of depth on drag during the streamlined glide in swimming using Computational Fluid Dynamics. The Computation Fluid Dynamic analysis consisted of using a three-dimensional mesh of cells that simulates the flow around the considered domain. We used the K-epsilon turbulent model implemented in the commercial code Fluent(®) and applied it to the flow around a three-dimensional model of an Olympic swimmer. The swimmer was modeled as if he were gliding underwater in a streamlined prone position, with hands overlapping, head between the extended arms, feet together and plantar flexed. Steady-state computational fluid dynamics analyses were performed using the Fluent(®) code and the drag coefficient and the drag force was calculated for velocities ranging from 1.5 to 2.5 m/s, in increments of 0.50m/s, which represents the velocity range used by club to elite level swimmers during the push-off and glide following a turn. The swimmer model middle line was placed at different water depths between 0 and 1.0 m underwater, in 0.25m increments. Hydrodynamic drag decreased with depth, although after 0.75m values remained almost constant. Water depth seems to have a positive effect on reducing hydrodynamic drag during the gliding. Although increasing depth position could contribute to decrease hydrodynamic drag, this reduction seems to be lower with depth, especially after 0.75 m depth, thus suggesting that possibly performing the underwater gliding more than 0.75 m depth could not be to the benefit of the swimmer.
TADS: A CFD-based turbomachinery and analysis design system with GUI. Volume 1: Method and results
NASA Technical Reports Server (NTRS)
Topp, D. A.; Myers, R. A.; Delaney, R. A.
1995-01-01
The primary objective of this study was the development of a computational fluid dynamics (CFD) based turbomachinery airfoil analysis and design system, controlled by a graphical user interface (GUI). The computer codes resulting from this effort are referred to as the Turbomachinery Analysis and Design System (TADS). This document describes the theoretical basis and analytical results from the TADS system. TADS couples a throughflow solver (ADPAC) with a quasi-3D blade-to-blade solver (RVCQ3D) in an interactive package. Throughflow analysis capability was developed in ADPAC through the addition of blade force and blockage terms to the governing equations. A GUI was developed to simplify user input and automate the many tasks required to perform turbomachinery analysis and design. The coupling of various programs was done in a way that alternative solvers or grid generators could be easily incorporated into the TADS framework. Results of aerodynamic calculations using the TADS system are presented for a highly loaded fan, a compressor stator, a low-speed turbine blade, and a transonic turbine vane.
NASA Technical Reports Server (NTRS)
Mcclinton, Charles R.
1990-01-01
This paper presents a summary of design studies from the 'open' literature which illustrate the level of effort and the use of computational fluid dynamics (CFD) to support the National Aerospace Plane (NASP) X-30 design. CFD plays a major role in the NASP program, particularly for the very high speed regions (Mach greater than 10) where wind tunnels cannot fully simulate the flow and/or flow-field measurements are difficult to obtain. Full simulation (nose-to-tail analysis) of the NASP flow field, both internal and external, is discussed.
NASA Astrophysics Data System (ADS)
McClinton, Charles R.; Bittner, Robert D.; Kamath, Pradeep S.
1990-10-01
This paper presents a summary of design studies from the 'open' literature which illustrate the level of effort and the use of computational fluid dynamics (CFD) to support the National Aerospace Plane (NASP) X-30 design. CFD plays a major role in the NASP program, particularly for the very high speed regions (Mach greater than 10) where wind tunnels cannot fully simulate the flow, and flow field measurements are difficult to obtain. Full simulation (nose-to-tail analysis) of the NASP flow field, both internal and external, is discussed.
NASA Astrophysics Data System (ADS)
McClinton, Charles R.
1990-09-01
This paper presents a summary of design studies from the 'open' literature which illustrate the level of effort and the use of computational fluid dynamics (CFD) to support the National Aerospace Plane (NASP) X-30 design. CFD plays a major role in the NASP program, particularly for the very high speed regions (Mach greater than 10) where wind tunnels cannot fully simulate the flow and/or flow-field measurements are difficult to obtain. Full simulation (nose-to-tail analysis) of the NASP flow field, both internal and external, is discussed.
NASA Technical Reports Server (NTRS)
Mcclinton, Charles R.; Bittner, Robert D.; Kamath, Pradeep S.
1990-01-01
This paper presents a summary of design studies from the 'open' literature which illustrate the level of effort and the use of computational fluid dynamics (CFD) to support the National Aerospace Plane (NASP) X-30 design. CFD plays a major role in the NASP program, particularly for the very high speed regions (Mach greater than 10) where wind tunnels cannot fully simulate the flow, and flow field measurements are difficult to obtain. Full simulation (nose-to-tail analysis) of the NASP flow field, both internal and external, is discussed.
CFD MODELING AND ANALYSIS FOR A-AREA AND H-AREA COOLING TOWERS
Lee, S.; Garrett, A.; Bollinger, J.
2009-09-02
Mechanical draft cooling towers are designed to cool process water via sensible and latent heat transfer to air. Heat and mass transfer take place simultaneously. Heat is transferred as sensible heat due to the temperature difference between liquid and gas phases, and as the latent heat of the water as it evaporates. Mass of water vapor is transferred due to the difference between the vapor pressure at the air-liquid interface and the partial pressure of water vapor in the bulk of the air. Equations to govern these phenomena are discussed here. The governing equations are solved by taking a computational fluid dynamics (CFD) approach. The purpose of the work is to develop a three-dimensional CFD model to evaluate the flow patterns inside the cooling tower cell driven by cooling fan and wind, considering the cooling fans to be on or off. Two types of the cooling towers are considered here. One is cross-flow type cooling tower located in A-Area, and the other is counterflow type cooling tower located in H-Area. The cooling tower located in A-Area is mechanical draft cooling tower (MDCT) consisting of four compartment cells as shown in Fig. 1. It is 13.7m wide, 36.8m long, and 9.4m high. Each cell has its own cooling fan and shroud without any flow communications between two adjacent cells. There are water distribution decks on both sides of the fan shroud. The deck floor has an array of about 25mm size holes through which water droplet falls into the cell region cooled by the ambient air driven by fan and wind, and it is eventually collected in basin area. As shown in Fig. 1, about 0.15-m thick drift eliminator allows ambient air to be humidified through the evaporative cooling process without entrainment of water droplets into the shroud exit. The H-Area cooling tower is about 7.3 m wide, 29.3 m long, and 9.0 m high. Each cell has its own cooling fan and shroud, but each of two corner cells has two panels to shield wind at the bottom of the cells. There is some
CFD simulation and experimental analysis of erosion in a slurry tank test rig
NASA Astrophysics Data System (ADS)
Azimian, Mehdi; Bart, Hans-Jörg
2013-04-01
Erosion occurring in equipment dealing with liquid-solid mixtures such as pipeline parts, slurry pumps, liquid-solid stirred reactors and slurry mixers in various industrial applications results in operational failure and economic costs. A slurry erosion tank test rig is designed and was built to investigate the erosion rates of materials and the influencing parameters such as flow velocity and turbulence, flow angle, solid particle concentration, particles size distribution, hardness and target material properties on the material loss and erosion profiles. In the present study, a computational fluid dynamics (CFD) tool is used to simulate the erosion rate of sample plates in the liquid-solid slurry mixture in a cylindrical tank. The predictions were made in a steady state and also transient manner, applying the flow at the room temperature and using water and sand as liquid and solid phases, respectively. The multiple reference frame method (MRF) is applied to simulate the flow behavior and liquid-solid interactions in the slurry tank test rig. The MRF method is used since it is less demanding than sliding mesh method (SM) and gives satisfactory results. The computational domain is divided into three regions: a rotational or MRF zone containing the mixer, a rotational zone (MRF) containing the erosion plates and a static zone (outer liquid zone). It is observed that changing the MRF zone diameter and height causes a very low impact on the results. The simulated results were obtained for two kinds of hard metals namely stainless steel and ST-50 under some various operating conditions and are found in good agreement with the experimental results.
NASA Astrophysics Data System (ADS)
Fan, De-Qiu; Sohn, H. Y.; Elzohiery, Mohamed
2017-10-01
The kinetic analysis of the reduction of hematite concentrate particles by individual reducing gas H2 or CO was performed using a computational fluid dynamics (CFD)-based approach in this paper. The particle residence time was calculated through the integration of the equation of particle motion. Non-uniform particle temperature profiles inside the reactor were obtained, and were taken into consideration for the kinetic analysis. The calculated reduction degrees based on this approach are in good agreement with the experimental values.
NASA Technical Reports Server (NTRS)
Elrod, David; Christensen, Eric; Brown, Andrew
2011-01-01
At NASA/MSFC, Structural Dynamics personnel continue to perform advanced analysis for the turbomachinery in the J2X Rocket Engine, which is under consideration for the new Space Launch System. One of the most challenging analyses in the program is predicting turbine blade structural capability. Resonance was predicted by modal analysis, so comprehensive forced response analyses using high fidelity cyclic symmetric finite element models were initiated as required. Analysis methodologies up to this point have assumed the flow field could be fully described by a sector, so the loading on every blade would be identical as it travelled through it. However, in the J2X the CFD flow field varied over the 360 deg of a revolution because of the flow speeds and tortuous axial path. MSFC therefore developed a complex procedure using Nastran Dmap's and Matlab scripts to apply this circumferentially varying loading onto the cyclically symmetric structural models to produce accurate dynamic stresses for every blade on the disk. This procedure is coupled with static, spin, and thermal loading to produce high cycle fatigue safety factors resulting in much more accurate analytical assessments of the blades.
CFD methodology of a model quadrotor
NASA Astrophysics Data System (ADS)
Sunan, Burak
2013-11-01
This paper presents an analysis of the aerodynamics characteristics of a quadrotor for both steady and unsteady flows. For steady flow cases, aerodynamics behaviour can be defined readily for any aerial vehicles in wind tunnels. However, unsteady flow conditions in wind tunnels make experimental aerodynamics characterizations difficult. This article describes determination of lift, drag and thrust forces on a model quadrotor by using CFD (Computational Fluid Dynamics) software ANSYS Fluent. A significant issue is to find a new CFD methodology for comparison with the experimental results. After getting sufficiently close agreement with some benchmarking experiments, the CFD methodology can be performed for more complicated geometries. In this paper, propeller performance database experiments from Ref. 1 will be used for validation of the CFD procedure. The results of the study reveals the dynamics characteristics of a quadrotor. This demonstrates feasibility of designing a quadrotor by CFD which saves time and cost compared to experiments.
Position Analysis in Education. Team Project.
ERIC Educational Resources Information Center
Boccuzzi, Anthony V.; And Others
The purpose of this study is to investigate the applicability of position analysis to administrative assignments in education, and to ascertain criteria to be used in adapting position analysis to public education. Position analysis techniques are used to determine the relative worth of jobs in an organization by placing their scope of…
A CFD Analysis of Hydrogen Leakage During On-Pad Purge in the ORION/ARES I Shared Volume
NASA Technical Reports Server (NTRS)
Ajmani, Kumud; Edwards, Daryl A.
2011-01-01
A common open volume is created by the stacking of the Orion vehicle onto the Ares I Upper Stage. Called the Shared Volume, both vehicles contribute to its gas, fluid, and thermal environment. One of these environments is related to hazardous hydrogen gas. While both vehicles use inert purge gas to mitigate any hazardous gas buildup, there are concerns that hydrogen gas may still accumulate and that the Ares I Hazardous Gas Detection System will not be sufficient for monitoring the integrated volume. This Computational Fluid Dynamics (CFD) analysis has been performed to examine these topics. Results of the analysis conclude that the Ares I Hazardous Gas Detection System will be able to sample the vent effluent containing the highest hydrogen concentrations. A second conclusion is that hydrogen does not accumulate under the Orion Service Module (SM) avionics ring as diffusion and purge flow mixing sufficiently dilute the hydrogen to safe concentrations. Finally the hydrogen concentrations within the Orion SM engine nozzle may slightly exceed the 1 percent volume fraction when the entire worse case maximum full leak is directed vertically into the engine nozzle.
NASA Astrophysics Data System (ADS)
Zhai, Liming; Luo, Yongyao; Wang, Zhengwei; Liu, Xin
2016-01-01
The thermal elastic hydro dynamic (TEHD) lubrication analysis for the thrust bearing is usually conducted by combining Reynolds equation with finite element analysis (FEA). But it is still a problem to conduct the computation by combining computational fluid dynamics (CFD) and FEA which can simulate the TEHD more accurately. In this paper, by using both direct and separate coupled solutions together, steady TEHD lubrication considering the viscosity-temperature effect for a bidirectional thrust bearing in a pump-turbine unit is simulated combining a 3D CFD model for the oil film with a 3D FEA model for the pad and mirror plate. Cyclic symmetry condition is used in the oil film flow as more reasonable boundary conditions which avoids the oil temperature assumption at the leading and trailing edge. Deformations of the pad and mirror plate are predicted and discussed as well as the distributions of oil film thickness, pressure, temperature. The predicted temperature shows good agreement with measurements, while the pressure shows a reasonable distribution comparing with previous studies. Further analysis of the three-coupled-field reveals the reason of the high pressure and high temperature generated in the film. Finally, the influence of rotational speed of the mirror plate on the lubrication characteristics is illustrated which shows the thrust load should be balanced against the oil film temperature and pressure in optimized designs. This research proposes a thrust bearing computation method by combining CFD and FEA which can do the TEHD analysis more accurately.
NASA Astrophysics Data System (ADS)
Taleb, Aly I.; Sapin, Paul; Barfuß, Christoph; Fabris, Drazen; Markides, Christos N.
2017-03-01
The efficiency of expanders is of prime importance in determining the overall performance of a variety of thermodynamic power systems, with reciprocating-piston expanders favoured at intermediate-scales of application (typically 10-100 kW). Once the mechanical losses in reciprocating machines are minimized (e.g. through careful valve design and operation), losses due to the unsteady thermal-energy exchange between the working fluid and the solid walls of the containing device can become the dominant loss mechanism. In this work, gas-spring devices are investigated numerically in order to focus explicitly on the thermodynamic losses that arise due to this unsteady heat transfer. The specific aim of the study is to investigate the behaviour of real gases in gas springs and to compare this to that of ideal gases in order to attain a better understanding of the impact of real-gas effects on the thermally induced losses in reciprocating expanders and compressors. A CFD-model of a gas spring is developed in OpenFOAM. Three different fluid models are compared: (1) an ideal-gas model with constant thermodynamic and transport properties; (2) an ideal-gas model with temperature-dependent properties; and (3) a real-gas model using the Peng-Robinson equation-of-state with temperature and pressure-dependent properties. Results indicate that, for simple, mono- and diatomic gases, like helium or nitrogen, there is a negligible difference in the pressure and temperature oscillations over a cycle between the ideal and real-gas models. However, when considering heavier (organic) molecules, such as propane, the ideal-gas model tends to overestimate the pressure compared to the real-gas model, especially if the temperature and pressure dependency of the thermodynamic properties is not taken into account. In fact, the ideal-gas model predicts higher pressures by as much as 25% (compared to the real-gas model). Additionally, both ideal-gas models underestimate the thermally induced loss
Coupled CFD/CSD Analysis of an Active-Twist Rotor in a Wind Tunnel with Experimental Validation
NASA Technical Reports Server (NTRS)
Massey, Steven J.; Kreshock, Andrew R.; Sekula, Martin K.
2015-01-01
An unsteady Reynolds averaged Navier-Stokes analysis loosely coupled with a comprehensive rotorcraft code is presented for a second-generation active-twist rotor. High fidelity Navier-Stokes results for three configurations: an isolated rotor, a rotor with fuselage, and a rotor with fuselage mounted in a wind tunnel, are compared to lifting-line theory based comprehensive rotorcraft code calculations and wind tunnel data. Results indicate that CFD/CSD predictions of flapwise bending moments are in good agreement with wind tunnel measurements for configurations with a fuselage, and that modeling the wind tunnel environment does not significantly enhance computed results. Actuated rotor results for the rotor with fuselage configuration are also validated for predictions of vibratory blade loads and fixed-system vibratory loads. Varying levels of agreement with wind tunnel measurements are observed for blade vibratory loads, depending on the load component (flap, lag, or torsion) and the harmonic being examined. Predicted trends in fixed-system vibratory loads are in good agreement with wind tunnel measurements.
Integration of CFD into an MCAE environment
Thomas, M.E. )
1992-01-01
Integration of Computational Fluid Dynamics (CFD) methodology into the design process is essential to successful development of next generation aerospace technology. For this to efficiently occur, the CFD analysis must be closely coupled to analysis tools currently utilized in both the preliminary and detailed design environments. One method of partially achieving this objective is to integrate CFD analysis methodology into existing Mechanical Computer Aided Engineering (MCAE) analysis packages. This paper describes capabilities available to a structured grid CFD analyst when appropriate MCAE translator methodology is in place. These capabilities include complex model conceptualization tools, interfacing to CAD/CAM technology, mature interaction with structural/thermal analysts, additional results evaluation functions and others. 56 refs.
NASA Technical Reports Server (NTRS)
Perrell, Eric R.
2005-01-01
The recent bold initiatives to expand the human presence in space require innovative approaches to the design of propulsion systems whose underlying technology is not yet mature. The space propulsion community has identified a number of candidate concepts. A short list includes solar sails, high-energy-density chemical propellants, electric and electromagnetic accelerators, solar-thermal and nuclear-thermal expanders. For each of these, the underlying physics are relatively well understood. One could easily cite authoritative texts, addressing both the governing equations, and practical solution methods for, e.g. electromagnetic fields, heat transfer, radiation, thermophysics, structural dynamics, particulate kinematics, nuclear energy, power conversion, and fluid dynamics. One could also easily cite scholarly works in which complete equation sets for any one of these physical processes have been accurately solved relative to complex engineered systems. The Advanced Concepts and Analysis Office (ACAO), Space Transportation Directorate, NASA Marshall Space Flight Center, has recently released the first alpha version of a set of computer utilities for performing the applicable physical analyses relative to candidate deep-space propulsion systems such as those listed above. PARSEC, Preliminary Analysis of Revolutionary in-Space Engineering Concepts, enables rapid iterative calculations using several physics tools developed in-house. A complete cycle of the entire tool set takes about twenty minutes. PARSEC is a level-zero/level-one design tool. For PARSEC s proof-of-concept, and preliminary design decision-making, assumptions that significantly simplify the governing equation sets are necessary. To proceed to level-two, one wishes to retain modeling of the underlying physics as close as practical to known applicable first principles. This report describes results of collaboration between ACAO, and Embry-Riddle Aeronautical University (ERAU), to begin building a set of
Integrated CFD modeling of gas turbine combustors
NASA Technical Reports Server (NTRS)
Fuller, E. J.; Smith, C. E.
1993-01-01
3D, curvilinear, multi-domain CFD analysis is becoming a valuable tool in gas turbine combustor design. Used as a supplement to experimental testing. CFD analysis can provide improved understanding of combustor aerodynamics and used to qualitatively assess new combustor designs. This paper discusses recent advancements in CFD combustor methodology, including the timely integration of the design (i.e. CAD) and analysis (i.e. CFD) processes. Allied Signal's F124 combustor was analyzed at maximum power conditions. The assumption of turbulence levels at the nozzle/swirler inlet was shown to be very important in the prediction of combustor exit temperatures. Predicted exit temperatures were compared to experimental rake data, and good overall agreement was seen. Exit radial temperature profiles were well predicted, while the predicted pattern factor was 25 percent higher than the harmonic-averaged experimental pattern factor.
CFD Analysis of Turbo Expander for Cryogenic Refrigeration and Liquefaction Cycles
NASA Astrophysics Data System (ADS)
Verma, Rahul; Sam, Ashish Alex; Ghosh, Parthasarathi
Computational Fluid Dynamics analysis has emerged as a necessary tool for designing of turbomachinery. It helps to understand the various sources of inefficiency through investigation of flow physics of the turbine. In this paper, 3D turbulent flow analysis of a cryogenic turboexpander for small scale air separation was performed using Ansys CFX®. The turboexpander has been designed following assumptions based on meanlineblade generation procedure provided in open literature and good engineering judgement. Through analysis of flow field, modifications and further analysis required to evolve a more robust design procedure, have been suggested.
Multi-physics CFD simulations in engineering
NASA Astrophysics Data System (ADS)
Yamamoto, Makoto
2013-08-01
Nowadays Computational Fluid Dynamics (CFD) software is adopted as a design and analysis tool in a great number of engineering fields. We can say that single-physics CFD has been sufficiently matured in the practical point of view. The main target of existing CFD software is single-phase flows such as water and air. However, many multi-physics problems exist in engineering. Most of them consist of flow and other physics, and the interactions between different physics are very important. Obviously, multi-physics phenomena are critical in developing machines and processes. A multi-physics phenomenon seems to be very complex, and it is so difficult to be predicted by adding other physics to flow phenomenon. Therefore, multi-physics CFD techniques are still under research and development. This would be caused from the facts that processing speed of current computers is not fast enough for conducting a multi-physics simulation, and furthermore physical models except for flow physics have not been suitably established. Therefore, in near future, we have to develop various physical models and efficient CFD techniques, in order to success multi-physics simulations in engineering. In the present paper, I will describe the present states of multi-physics CFD simulations, and then show some numerical results such as ice accretion and electro-chemical machining process of a three-dimensional compressor blade which were obtained in my laboratory. Multi-physics CFD simulations would be a key technology in near future.
NASA Technical Reports Server (NTRS)
Groves, Curtis E.; Ilie, marcel; Shallhorn, Paul A.
2014-01-01
Computational Fluid Dynamics (CFD) is the standard numerical tool used by Fluid Dynamists to estimate solutions to many problems in academia, government, and industry. CFD is known to have errors and uncertainties and there is no universally adopted method to estimate such quantities. This paper describes an approach to estimate CFD uncertainties strictly numerically using inputs and the Student-T distribution. The approach is compared to an exact analytical solution of fully developed, laminar flow between infinite, stationary plates. It is shown that treating all CFD input parameters as oscillatory uncertainty terms coupled with the Student-T distribution can encompass the exact solution.
Liquid rocket propulsion impeller CFD modeling
NASA Astrophysics Data System (ADS)
Ratcliff, Mark L.; Athavale, Mahesh M.; Thomas, Matthew E.; Williams, Robert W.
1993-06-01
Steady-state impeller geometric modeling and typical Navier-Stokes CFD algorithm analysis procedures are assessed using two benchmark quality impeller data sets. Two geometric modeling and grid generation software packages, ICEM-CFD and PATRAN, are considered. Results show that a significant advantage of PATRAN's open-ended architecture is the potential interaction between CFD and structural/thermal analysts inside the mechanical computer-aided engineering environment. However the time required to construct the inducer grid would be unacceptable in a design and engineering environment. The ICEM-CFD package is considered to be more appropriate for structural grid generation but lacks the mature link to structural/thermal analysis arena as compared to PATRAN.
Liquid rocket propulsion impeller CFD modeling
NASA Technical Reports Server (NTRS)
Ratcliff, Mark L.; Athavale, Mahesh M.; Thomas, Matthew E.; Williams, Robert W.
1993-01-01
Steady-state impeller geometric modeling and typical Navier-Stokes CFD algorithm analysis procedures are assessed using two benchmark quality impeller data sets. Two geometric modeling and grid generation software packages, ICEM-CFD and PATRAN, are considered. Results show that a significant advantage of PATRAN's open-ended architecture is the potential interaction between CFD and structural/thermal analysts inside the mechanical computer-aided engineering environment. However the time required to construct the inducer grid would be unacceptable in a design and engineering environment. The ICEM-CFD package is considered to be more appropriate for structural grid generation but lacks the mature link to structural/thermal analysis arena as compared to PATRAN.
Zaïdi, H; Taïar, R; Fohanno, S; Polidori, G
2008-01-01
The aim of this numerical work is to analyze the effect of the position of the swimmer's head on the hydrodynamic performances in swimming. In this initial study, the problem was modeled as 2D and in steady hydrodynamic state. The geometry is generated by the CAD software CATIA and the numerical simulation is carried out by the use of the CFD Fluent code. The standard k-epsilon turbulence model is used with a specific wall law. Three positions of the head were studied, for a range of Reynolds numbers about 10(6). The obtained numerical results revealed that the position of the head had a noticeable effect on the hydrodynamic performances, strongly modifying the wake around the swimmer. The analysis of these results made it possible to propose an optimal position of the head of a swimmer in underwater swimming.
Statistical Analysis of CFD Solutions from the Fourth AIAA Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Morrison, Joseph H.
2010-01-01
A graphical framework is used for statistical analysis of the results from an extensive N-version test of a collection of Reynolds-averaged Navier-Stokes computational fluid dynamics codes. The solutions were obtained by code developers and users from the U.S., Europe, Asia, and Russia using a variety of grid systems and turbulence models for the June 2009 4th Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic configuration for this workshop was a new subsonic transport model, the Common Research Model, designed using a modern approach for the wing and included a horizontal tail. The fourth workshop focused on the prediction of both absolute and incremental drag levels for wing-body and wing-body-horizontal tail configurations. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with earlier workshops using the statistical framework.
Statistical Analysis of CFD Solutions From the Fifth AIAA Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Morrison, Joseph H.
2013-01-01
A graphical framework is used for statistical analysis of the results from an extensive N-version test of a collection of Reynolds-averaged Navier-Stokes computational fluid dynamics codes. The solutions were obtained by code developers and users from North America, Europe, Asia, and South America using a common grid sequence and multiple turbulence models for the June 2012 fifth Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic configuration for this workshop was the Common Research Model subsonic transport wing-body previously used for the 4th Drag Prediction Workshop. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with previous workshops.
Using tightly-coupled CFD/CSD simulation for rotorcraft stability analysis
NASA Astrophysics Data System (ADS)
Zaki, Afifa Adel
Dynamic stall deeply affects the response of helicopter rotor blades, making its modeling accuracy very important. Two commonly used dynamic stall models were implemented in a comprehensive code, validated, and contrasted to provide improved analysis accuracy and versatility. Next, computational fluid dynamics and computational structural dynamics loose coupling methodologies are reviewed, and a general tight coupling approach was implemented and tested. The tightly coupled computational fluid dynamics and computational structural dynamics methodology is then used to assess the stability characteristics of complex rotorcraft problems. An aeroelastic analysis of rotors must include an assessment of potential instabilities and the determination of damping ratios for all modes of interest. If the governing equations of motion of a system can be formulated as linear, ordinary differential equations with constant coefficients, classical stability evaluation methodologies based on the characteristic exponents of the system can rapidly and accurately provide the system's stability characteristics. For systems described by linear, ordinary differential equations with periodic coefficients, Floquet's theory is the preferred approach. While these methods provide excellent results for simplified linear models with a moderate number of degrees of freedom, they become quickly unwieldy as the number of degrees of freedom increases. Therefore, to accurately analyze rotorcraft aeroelastic periodic systems, a fully nonlinear, coupled simulation tool is used to determine the response of the system to perturbations about an equilibrium configuration and determine the presence of instabilities and damping ratios. The stability analysis is undertaken using an algorithm based on a Partial Floquet approach that has been successfully applied with computational structural dynamics tools on rotors and wind turbines. The stability analysis approach is computationally inexpensive and consists
VAPOR: A desktop tool for visualization aided analysis of earth sciences CFD data
NASA Astrophysics Data System (ADS)
Clyne, J.; Norton, A.
2009-12-01
Continual advancements in microprocessor technology are permitting numerical modelers in the earth sciences to run simulations at unprecedented scale. For many computational scientists their most daunting challenge has become analyzing the ever-growing data outputs resulting from these simulations. Computing resources suitable for interactive analysis are rarely available at a scale comparable with the batch computing systems employed to run a model. Moreover, computing technologies essential to supporting interactive analysis work, such as storage, are advancing at more modest rates than the microprocessor. The result is often a deluge of data and a poor return on our scientific investments. We will present a visual data analysis tool that recognizes the current HPC environment and computing technology landscape by taking an intelligent approach to large data handling unlike those tools solely relying on the existence of large scale, highly-parallel interactive computing platforms. VAPOR employs of form of progressive data refinement akin to the techniques used by GoogleEarthTM to display 2D image data at progressively finer resolutions. A VAPOR user is able to make speed/quality trade offs when navigating through data sets that may be Terabytes in size. VAPOR has been used in practice on simulation outputs computed on grids up to 2048^3 using only a commodity Linux PC. Though VAPOR’s roots are in numerical turbulence, recent developments have focused on scientific groups with geo-referenced data sets such as the weather research community. Flapping magnetic field lines visualized with VAPOR by Aake Nordlund, Niels Bohr Institute
Approach to the CFD analysis applied to HMDs during high-speed wind blast
NASA Astrophysics Data System (ADS)
Tiu, William; Ingleton, Martin
2000-06-01
Helmet Mounted Displays (HMD) are now an essential element in fast jet aircraft cockpits and the demanding safety requirements must be maintained. Exposure to high-speed air- blast was a fundamental requirement of a developmental HMD produced by BAE SYSTEMS. Safety criteria based on stability, strength and aerodynamic loads meant that reliance on an empirical development was no longer appropriate. Success was achieved from a combination of experience, analysis, design and testing. Computational Fluid Dynamics modeling combined with validation testing in a wind tunnel provided a vital understanding of the aerodynamic loads developed during the windblast event and significantly reduced developmental risk.
Dong, Jingliang; Wong, Kelvin K L; Tu, Jiyuan
2013-04-01
The study of cardiovascular models was presented in this paper based on medical image reconstruction and computational fluid dynamics. Our aim is to provide a reality platform for the purpose of flow analysis and virtual intervention outcome predication for vascular diseases. By connecting two porous mediums with transient permeability at the downstream of the carotid bifurcation branches, a downstream peripheral impedance model was developed, and the effect of the downstream vascular bed impedance can be taken into consideration. After verifying its accuracy with a healthy carotid bifurcation, this model was implemented in a diseased carotid bifurcation analysis. On the basis of time-averaged wall shear stress, oscillatory shear index, and the relative residence time, fractions of abnormal luminal surface were highlighted, and the atherosclerosis was assessed from a hemodynamic point of view. The effect of the atherosclerosis on the transient flow division between the two branches because of the existence of plaque was also analysed. This work demonstrated that the proposed downstream peripheral vascular impedance model can be used for computational modelling when the outlets boundary conditions are not available, and successfully presented the potential of using medical imaging and numerical simulation to provide existing clinical prerequisites for diagnosis and therapeutic treatment. Copyright © 2012 John Wiley & Sons, Ltd.
Application of the CFD CONV code to the analysis of LIVE L6 test
Palagin, A.; Kretzschmar, F.; Miassoedov, A.; Chudanov, V.
2012-07-01
The thermo-physical behaviour of a corium pool in reactor pressure vessel of a pressurised water reactor is of principal importance for the prediction of core melt down accident development. This concerns, in general, the understanding of a severe accident with core melting, its course, major critical phases and timing, and the influence of these processes on the accident progression in terms of assessing the possibility to remove the released heat by external vessel cooling. The general objective of the LIVE program at KIT is to study phenomena resulting from core melting experimentally in large-scale 3D geometry with emphasis on the transient behaviour. The presented paper describes analysis and interpretation of the LIVE L6 experiment, in which the molten pool (non-eutectic melt KNO{sub 3}-NaNO{sub 3}) was separated by horizontal copper plate in order to develop the approach to the analysis of layering and focusing effects as the most challenging factors. (authors)
Tools for Analysis and Visualization of Large Time-Varying CFD Data Sets
NASA Technical Reports Server (NTRS)
Wilhelms, Jane; VanGelder, Allen
1997-01-01
In the second year, we continued to built upon and improve our scanline-based direct volume renderer that we developed in the first year of this grant. This extremely general rendering approach can handle regular or irregular grids, including overlapping multiple grids, and polygon mesh surfaces. It runs in parallel on multi-processors. It can also be used in conjunction with a k-d tree hierarchy, where approximate models and error terms are stored in the nodes of the tree, and approximate fast renderings can be created. We have extended our software to handle time-varying data where the data changes but the grid does not. We are now working on extending it to handle more general time-varying data. We have also developed a new extension of our direct volume renderer that uses automatic decimation of the 3D grid, as opposed to an explicit hierarchy. We explored this alternative approach as being more appropriate for very large data sets, where the extra expense of a tree may be unacceptable. We also describe a new approach to direct volume rendering using hardware 3D textures and incorporates lighting effects. Volume rendering using hardware 3D textures is extremely fast, and machines capable of using this technique are becoming more moderately priced. While this technique, at present, is limited to use with regular grids, we are pursuing possible algorithms extending the approach to more general grid types. We have also begun to explore a new method for determining the accuracy of approximate models based on the light field method described at ACM SIGGRAPH '96. In our initial implementation, we automatically image the volume from 32 equi-distant positions on the surface of an enclosing tessellated sphere. We then calculate differences between these images under different conditions of volume approximation or decimation. We are studying whether this will give a quantitative measure of the effects of approximation. We have created new tools for exploring the
CFD analysis on effect of front windshield angle on aerodynamic drag
NASA Astrophysics Data System (ADS)
Abdellah, Essaghouri; Wang, Bo
2017-09-01
The external aerodynamics plays an important role in the design process of any automotive. The whole performance of the vehicle can be improved with the help of external aerodynamics. The aerodynamic analysis nowadays is implemented in the recent research in the automotive industry to achieve better cars in terms of design and efficiency. The major objective of the present work is to find out the effect of changing the angle between the engine hood and the front windshield on reducing the car air resistance. A full scale three dimensional (BMW 3 series) sedan car model was carried out using the ALIAS AUTOSTUDIO 2016 a NURBS modeling tool with high quality surfaces, only the external shape of the car was modeled while the interior was not modeled. The ANSYS 17.0 WORKBENCH software package was used to analyse the airflow around the external shape of the car – the solutions of Reynolds Average Navier Stokes (RANS) equations has been carried out using realizable k-epsilon turbulence model (which is perfectly suitable for the automated calculation process) for the given car domain. In this work, the boundary layer, mesh quality, and turbulent value simulation has been compared and discussed in the result section. Finally the optimal model was selected and the redesigned car was analysed to verify the results.
NASA Technical Reports Server (NTRS)
Dash, S. M.; York, B. J.; Sinha, N.; Dvorak, F. A.
1987-01-01
An overview of parabolic and PNS (Parabolized Navier-Stokes) methodology developed to treat highly curved sub and supersonic wall jets is presented. The fundamental data base to which these models were applied is discussed in detail. The analysis of strong curvature effects was found to require a semi-elliptic extension of the parabolic modeling to account for turbulent contributions to the normal pressure variations, as well as an extension to the turbulence models utilized, to account for the highly enhanced mixing rates observed in situations with large convex curvature. A noniterative, pressure split procedure is shown to extend parabolic models to account for such normal pressure variations in an efficient manner, requiring minimal additional run time over a standard parabolic approach. A new PNS methodology is presented to solve this problem which extends parabolic methodology via the addition of a characteristic base wave solver. Applications of this approach to analyze the interaction of wave and turbulence processes in wall jets is presented.
Kraus, Adam; Merzari, Elia; Sofu, Tanju; Zhong, Zhaopeng; Gohar, Yousry
2016-08-01
High-fidelity analysis has been utilized in the design of beam target options for an accelerator driven subcritical system. Designs featuring stacks of plates with square cross section have been investigated for both tungsten and uranium target materials. The presented work includes the first thermal-hydraulic simulations of the full, detailed target geometry. The innovative target cooling manifold design features many regions with complex flow features, including 90 bends and merging jets, which necessitate three-dimensional fluid simulations. These were performed using the commercial computational fluid dynamics code STAR-CCM+. Conjugate heat transfer was modeled between the plates, cladding, manifold structure, and fluid. Steady-state simulations were performed but lacked good residual convergence. Unsteady simulations were then performed, which converged well and demonstrated that flow instability existed in the lower portion of the manifold. It was established that the flow instability had little effect on the peak plate temperatures, which were well below the melting point. The estimated plate surface temperatures and target region pressure were shown to provide sufficient margin to subcooled boiling for standard operating conditions. This demonstrated the safety of both potential target configurations during normal operation.
Progress Toward an Efficient and General CFD Tool for Propulsion Design/Analysis
NASA Technical Reports Server (NTRS)
Cox, C. F.; Cinnella, P.; Westmoreland, S.
1996-01-01
The simulation of propulsive flows inherently involves chemical activity. Recent years have seen substantial strides made in the development of numerical schemes for reacting flowfields, in particular those involving finite-rate chemistry. However, finite-rate calculations are computationally intensive and require knowledge of the actual kinetics, which are not always known with sufficient accuracy. Alternatively, flow simulations based on the assumption of local chemical equilibrium are capable of obtaining physically reasonable results at far less computational cost. The present study summarizes the development of efficient numerical techniques for the simulation of flows in local chemical equilibrium, whereby a 'Black Box' chemical equilibrium solver is coupled to the usual gasdynamic equations. The generalization of the methods enables the modelling of any arbitrary mixture of thermally perfect gases, including air, combustion mixtures and plasmas. As demonstration of the potential of the methodologies, several solutions, involving reacting and perfect gas flows, will be presented. Included is a preliminary simulation of the SSME startup transient. Future enhancements to the proposed techniques will be discussed, including more efficient finite-rate and hybrid (partial equilibrium) schemes. The algorithms that have been developed and are being optimized provide for an efficient and general tool for the design and analysis of propulsion systems.
Advanced Multi-phase Flow CFD Model Development for Solid Rocket Motor Flowfield Analysis
NASA Technical Reports Server (NTRS)
Liaw, Paul; Chen, Yen-Sen
1995-01-01
A Navier-Stokes code, finite difference Navier-Stokes (FDNS), is used to analyze the complicated internal flowfield of the SRM (solid rocket motor) to explore the impacts due to the effects of chemical reaction, particle dynamics, and slag accumulation on the solid rocket motor (SRM). The particulate multi-phase flowfield with chemical reaction, particle evaporation, combustion, breakup, and agglomeration models are included in present study to obtain a better understanding of the SRM design. Finite rate chemistry model is applied to simulate the chemical reaction effects. Hermsen correlation model is used for the combustion simulation. The evaporation model introduced by Spalding is utilized to include the heat transfer from the particulate phase to the gase phase due to the evaporation of the particles. A correlation of the minimum particle size for breakup expressed in terms of the Al/Al2O3 surface tension and shear force was employed to simulate the breakup of particles. It is assumed that the breakup occurs when the Weber number exceeds 6. A simple L agglomeration model is used to investigate the particle agglomeration. However, due to the large computer memory requirements for the agglomeration model, only 2D cases are tested with the agglomeration model. The VOF (Volume of Fluid) method is employed to simulate the slag buildup in the aft-end cavity of the redesigned solid rocket motor (RSRM). Monte Carlo method is employed to calculate the turbulent dispersion effect of the particles. The flowfield analysis obtained using the FDNS code in the present research with finite rate chemical reaction, particle evaporation, combustion, breakup, agglomeration, and VOG models will provide a design guide for the potential improvement of the SRM including the use of materials and the shape of nozzle geometry such that a better performance of the SRM can be achieved. The simulation of the slag buildup in the aft-end cavity can assist the designer to improve the design of
Advanced Multi-Phase Flow CFD Model Development for Solid Rocket Motor Flowfield Analysis
NASA Technical Reports Server (NTRS)
Liaw, Paul; Chen, Y. S.; Shang, H. M.; Doran, Denise
1993-01-01
prediction of the ASRM performance. The multi-phase flow analysis using the FDNS code in the present research can be used as a design tool for solid rocket motor applications.
Bernardin, J.D.; Hopkins, S.; Gregory, W.S.; Martin, R.A.
1997-06-01
The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory is being renovated for long-term storage of canisters designed to hold heat-generating nuclear materials, such as powders, ingots, and other components. The continual heat generation within the canisters necessitates a reliable cooling scheme of sufficient magnitude which maintains the stored material temperatures within acceptable limits. The primary goal of this study was to develop both an experimental facility and a computational fluid dynamics (CFD) model of a subsection of the NMSF which could be used to observe general performance trends of a proposed passive cooling scheme and serve as a design tool for canister holding fixtures. Comparisons of numerical temperature and velocity predictions with empirical data indicate that the CFD model provides an accurate representation of the NMSF experimental facility. Minor modifications in the model geometry and boundary conditions are needed to enhance its accuracy, however, the various fluid and thermal models correctly capture the basic physics.
NASA Technical Reports Server (NTRS)
Whitesides, R. Harold; Dill, Richard A.
1996-01-01
The redesigned solid rocket motor (RSRM) Pressure Perturbation Investigation Team concluded that the cause of recent pressure spikes during both static and flight motor burns was the expulsion of molten aluminum oxide slag from a pool which collects in the aft end of the motor around the submerged nozzle nose during the last half of motor operation. It is suspected that some motors produce more slag than others due to differences in aluminum oxide agglomerate particle sizes which may relate to subtle differences in propellant ingredient characteristics such as particle size distribution, contaminants, or processing variations. In order to determine the effect of suspect propellant ingredient characteristics on the propensity for slag production in a real motor environment, a subscale motor experiment was designed. An existing 5 inch ballistic test motor was selected as the basic test vehicle due to low cost and quick turn around times. The standard converging/diverging nozzle was replaced with a submerged nozzle nose design to provide a positive trap for the slag which would increase both the quantity and repeatability of measured slag weights. Computational fluid dynamics (CFD) was used to assess a variety of submerged nose configurations to identify the design which possessed the best capability to reliably collect slag. CFD also was used to assure that the final selected nozzle design would result in flow field characteristics such as dividing streamline location, nose attach point, and separated flow structure which would have similtude with the RSRM submerged nozzle nose flow field. It also was decided to spin the 5 inch motor about its longitudinal axis to further enhance slag collection quantities. Again, CFD was used to select an appropriate spin rate along with other considerations, including the avoidance of burn rate enhancement from radial acceleration effects.
Analysis of Naval Ammunition Stock Positioning
2015-12-01
a solution for the allocation of the stock 8 between bases, the goal of this model is not to find an optimal solution , but to simulate the...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT ANALYSIS OF NAVAL AMMUNITION STOCK POSITIONING...professional report 4. TITLE AND SUBTITLE ANALYSIS OF NAVAL AMMUNITION STOCK POSITIONING 5. FUNDING NUMBERS 6. AUTHOR(S) David Sharp and Eric
Propellant Chemistry for CFD Applications
NASA Technical Reports Server (NTRS)
Farmer, R. C.; Anderson, P. G.; Cheng, Gary C.
1996-01-01
Current concepts for reusable launch vehicle design have created renewed interest in the use of RP-1 fuels for high pressure and tri-propellant propulsion systems. Such designs require the use of an analytical technology that accurately accounts for the effects of real fluid properties, combustion of large hydrocarbon fuel modules, and the possibility of soot formation. These effects are inadequately treated in current computational fluid dynamic (CFD) codes used for propulsion system analyses. The objective of this investigation is to provide an accurate analytical description of hydrocarbon combustion thermodynamics and kinetics that is sufficiently computationally efficient to be a practical design tool when used with CFD codes such as the FDNS code. A rigorous description of real fluid properties for RP-1 and its combustion products will be derived from the literature and from experiments conducted in this investigation. Upon the establishment of such a description, the fluid description will be simplified by using the minimum of empiricism necessary to maintain accurate combustion analyses and including such empirical models into an appropriate CFD code. An additional benefit of this approach is that the real fluid properties analysis simplifies the introduction of the effects of droplet sprays into the combustion model. Typical species compositions of RP-1 have been identified, surrogate fuels have been established for analyses, and combustion and sooting reaction kinetics models have been developed. Methods for predicting the necessary real fluid properties have been developed and essential experiments have been designed. Verification studies are in progress, and preliminary results from these studies will be presented. The approach has been determined to be feasible, and upon its completion the required methodology for accurate performance and heat transfer CFD analyses for high pressure, tri-propellant propulsion systems will be available.
Application of CFD in aeronautics at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Maksymiuk, Catherine M.; Enomoto, Francis Y.; Vandalsem, William R.
1995-01-01
The role of Computational Fluid Dynamics (CFD) at Ames Research Center has expanded to address a broad range of aeronautical problems, including wind tunnel support, flight test support, design, and analysis. Balancing the requirements of each new problem against the available resources - software, hardware, time, and expertise - is critical to the effective use of CFD. Several case studies of recent applications highlight the depth of CFD capability at Ames, the tradeoffs involved in various approaches, and lessons learned in the use of CFD as an engineering tool.
CFD comparisons with wind tunnel and flight data for the X-15
NASA Technical Reports Server (NTRS)
Hawkins, Richard W.; Dilley, Arthur D.
1992-01-01
The wind tunnel and flight data from the X-15 program have been evaluated for utilization in CFD calibration research. From the analysis, experimental data suitable for CFD code calibration are identified.
Thomas, J. W.; Fanning, T. H.; Vilim, R.; Briggs, L. L.
2012-07-01
Recent analyses have demonstrated the need to model multidimensional phenomena, particularly thermal stratification in outlet plena, during safety analyses of loss-of-flow transients of certain liquid-metal cooled reactor designs. Therefore, Argonne's reactor systems safety code SAS4A/SASSYS-1 is being enhanced by integrating 3D computational fluid dynamics models of the plena. A validation exercise of the new tool is being performed by analyzing the protected loss-of-flow event demonstrated by the EBR-II Shutdown Heat Removal Test 17. In this analysis, the behavior of the coolant in the cold pool is modeled using the CFD code STAR-CCM+, while the remainder of the cooling system and the reactor core are modeled with SAS4A/SASSYS-1. This paper summarizes the code integration strategy and provides the predicted 3D temperature and velocity distributions inside the cold pool during SHRT-17. The results of the coupled analysis should be considered preliminary at this stage, as the exercise pointed to the need to improve the CFD model of the cold pool tank. (authors)
Visual Environments for CFD Research
NASA Technical Reports Server (NTRS)
Watson, Val; George, Michael W. (Technical Monitor)
1994-01-01
This viewgraph presentation gives an overview of the visual environments for computational fluid dynamics (CFD) research. It includes details on critical needs from the future computer environment, features needed to attain this environment, prospects for changes in and the impact of the visualization revolution on the human-computer interface, human processing capabilities, limits of personal environment and the extension of that environment with computers. Information is given on the need for more 'visual' thinking (including instances of visual thinking), an evaluation of the alternate approaches for and levels of interactive computer graphics, a visual analysis of computational fluid dynamics, and an analysis of visualization software.
NASA Astrophysics Data System (ADS)
Zavila, O.; Bojko, M.; Kozubková, M.; Danihelka, P.; Maléřová, L.
2013-10-01
Ammonia in all physical states is a toxic substance that can endanger people's health. It is used in various industrial technologies, including freezing of ice surfaces in ice stadiums. There exist advanced ammonia-free technologies but in many places liquid ammonia is still used in large volumes. It is no exception that objects using ammonia cooling and freezing technologies are placed in densely populated urban areas or in their immediate vicinities. An accidental ammonia release can pose a risk to health and lives of humans located in the release source immediate vicinity. The article presents the results of a numerical CFD model of gas ammonia plume motion and dispersion after an accidental release from a real ice stadium situated in an urban area. The CFD analysis was performed using the ANSYS Fluent 14.0 for two seasons and eight wind directions. Sixteen tasks emerged, the results of which can define the influence of meteorological conditions (wind direction, wind speed, temperature, etc.) and surrounding buildings on the motion and dispersion of pollutant plume. The simulation was performed with real local meteorological data. The numerical model had been verified by tasks performed in a low-speed wind tunnel. The results show that the influence of meteorological conditions, especially the influence of calendar seasons, on the pollutant plume propagation can be very pronounced. Principles and conclusions drawn from this and similar analyses may have great benefits for emergency planning in complex urban areas.
LSST camera heat requirements using CFD and thermal seeing modeling
NASA Astrophysics Data System (ADS)
Sebag, Jacques; Vogiatzis, Konstantinos
2010-07-01
The LSST camera is located above the LSST primary/tertiary mirror and in front of the secondary mirror in the shadow of its central obscuration. Due to this position within the optical path, heat released from the camera has a potential impact on the seeing degradation that is larger than traditionally estimated for Cassegrain or Nasmyth telescope configurations. This paper presents the results of thermal seeing modeling combined with Computational Fluid Dynamics (CFD) analyzes to define the thermal requirements on the LSST camera. Camera power output fluxes are applied to the CFD model as boundary conditions to calculate the steady-state temperature distribution on the camera and the air inside the enclosure. Using a previously presented post-processing analysis to calculate the optical seeing based on the mechanical turbulence and temperature variations along the optical path, the optical performance resulting from the seeing is determined. The CFD simulations are repeated for different wind speeds and orientations to identify the worst case scenario and generate an estimate of seeing contribution as a function of camera-air temperature difference. Finally, after comparing with the corresponding error budget term, a maximum allowable temperature for the camera is selected.
NASA Astrophysics Data System (ADS)
Kawano, Kenichi; Shire, Tom; O'Sullivan, Catherine
2017-06-01
Internal instability is a form of internal erosion that can occur in embankment dams or flood embankments where the finer fraction of the material is washed out under the action of seepage flow; if undetected this process can progress to cause embankment collapse. Gap-graded materials are particularly susceptible. Skempton and Brogan [1] proposed that a key contributor to instability is the reduced stress transmitted by the finer fraction and that the magnitude of this reduced stress could be inferred from the hydraulic gradients observed at the initiation of particle migration in experiments. Here Skempton and Brogan's hypothesis is assessed at the particle scale using a discrete element method (DEM) model coupled with computational fluid dynamics (CFD). This contribution discusses validation of the coupled DEM-CFD software prior to describing the simulation of a permeameter experiment. The simulation generated particlescale data at the initiation of instability by considering a gap-graded sample subject to at a hydraulic gradient of 1.0 (upward flow). The results provide insight into the instability mechanism, most notably showing that while the particles that move under seepage flow do indeed transmit relatively small effective stress, a finite proportion of the particles that move transfer relatively large stresses.
Tricomi, Leonardo; Melchiori, Tommaso; Chiaramonti, David; Boulet, Micaël; Lavoie, Jean Michel
2017-01-01
Based upon the two fluid model (TFM) theory, a CFD model was implemented to investigate a cold multiphase-fluidized bubbling bed reactor. The key variable used to characterize the fluid dynamic of the experimental system, and compare it to model predictions, was the time-pressure drop induced by the bubble motion across the bed. This time signal was then processed to obtain the power spectral density (PSD) distribution of pressure fluctuations. As an important aspect of this work, the effect of the sampling time scale on the empirical power spectral density (PSD) was investigated. A time scale of 40 s was found to be a good compromise ensuring both simulation performance and numerical validation consistency. The CFD model was first numerically verified by mesh refinement process, after what it was used to investigate the sensitivity with regards to minimum fluidization velocity (as a calibration point for drag law), restitution coefficient, and solid pressure term while assessing his accuracy in matching the empirical PSD. The 2D model provided a fair match with the empirical time-averaged pressure drop, the relating fluctuations amplitude, and the signal's energy computed as integral of the PSD. A 3D version of the TFM was also used and it improved the match with the empirical PSD in the very first part of the frequency spectrum.
Pawar, Sanjay B
2017-09-19
The biomass productivity of microalgae cells mainly depends on the hydrodynamics of airlift bioreactor (ABR). Thus, the hydrodynamics of concentric tube ABR was initially studied using two-phase three-dimensional CFD simulations with the Eulerian-Lagrangian approach. The performance of ABR (17 L) was examined for different configurations of the draft tube using various drag models such as Grace, Ishii-Zuber, and Schiller-Naumann. The gas holdups in the riser and the downcomer were well predicted using E-L approach. This work was further extended to study the dispersion of microalgae cells in the ABR using three-phase CFD simulations. In this model (combined E-E and E-L), the solid phase (microalgae cells) was dispersed into the continuous liquid phase (water), while the gas phase (air bubbles) was modeled as a particle transport fluid. The effect of non-drag forces such as virtual mass and lift forces was also considered. Flow regimes were explained on the basis of the relative gas holdup distribution in the riser and the downcomer. The microalgae cells were found in suspension for the superficial gas velocities of 0.02-0.04 m s(-1) experiencing an average shear of 23.52-44.56 s(-1) which is far below the critical limit of cell damage.
NASA Astrophysics Data System (ADS)
Rafiee, Seyed Ehsan; Sadeghiazad, M. M.
2016-12-01
Seven adjustments of convergent-type Vortex Tube (VT) with different throttle angles were applied. The adjustments were made to analyze the influences of such angles on cold and hot temperature drops as well as flow structures inside the VTs. An experimental setup was designed, and tests were performed on different convergent VT configurations at injection pressures ranging from 0.45 to 0.65 MPa. The angles of the throttle valve were arranged between 30° to 90°, and the numbers of injection nozzles ranged between 2 and 6. Laboratory results indicated that the maximum hot and cold temperature drops ranged from 23.24 to 35 K and from 22.87 to 32.88 K, respectively, at four injection nozzles. Results also showed that temperature drop is a function of hot throttle valve angle with the maximum hot and cold temperature drops depending on the angle applied. We used graphs to demonstrate the changes in the cold and hot temperature drops with respect to hot throttle angle values. These values were interpreted and evaluated to determine the optimum angle, which was 60°. The CFD outputs agreed very well with the laboratory results. The proposed CFD results can help future researchers gain good insights into the complicated separation process taking place inside the VTs.
Tricomi, Leonardo; Melchiori, Tommaso; Chiaramonti, David; Boulet, Micaël; Lavoie, Jean Michel
2017-01-01
Based upon the two fluid model (TFM) theory, a CFD model was implemented to investigate a cold multiphase-fluidized bubbling bed reactor. The key variable used to characterize the fluid dynamic of the experimental system, and compare it to model predictions, was the time-pressure drop induced by the bubble motion across the bed. This time signal was then processed to obtain the power spectral density (PSD) distribution of pressure fluctuations. As an important aspect of this work, the effect of the sampling time scale on the empirical power spectral density (PSD) was investigated. A time scale of 40 s was found to be a good compromise ensuring both simulation performance and numerical validation consistency. The CFD model was first numerically verified by mesh refinement process, after what it was used to investigate the sensitivity with regards to minimum fluidization velocity (as a calibration point for drag law), restitution coefficient, and solid pressure term while assessing his accuracy in matching the empirical PSD. The 2D model provided a fair match with the empirical time-averaged pressure drop, the relating fluctuations amplitude, and the signal’s energy computed as integral of the PSD. A 3D version of the TFM was also used and it improved the match with the empirical PSD in the very first part of the frequency spectrum. PMID:28695119
NASA Astrophysics Data System (ADS)
Gobinath, R.; Mathiselvan, G.; Kumarasubramanian, R.
2017-05-01
Flow patterns are essential to ensure that the engine can produce high performance with the presence of swirl and tumble effect inside the engine cylinder. This paper provides the simulation of air is simulated in the software to predict the flow pattern. The flow pattern is simulated by using the steady state pressure based solver. The domain used for the simulations predicated on the particular engine parameters. Mistreatment the CFD problem solver ANSYS FLUENT, the CFD simulation is earned for four totally different geometries of the valve. The geometries consist of Horizontal, Vertical, curve and arc springs. In this simulation, only the intake strokes are simulated. From this results show that the velocity of the air flow is high during the sweeps the intake stroke takes place. This situation is produced more swirls and tumble effect during the compression, hence enhancing the combustion rate in a whole region of the clearance volume of the engine cylinder. This will initiate to the production of tumble and swirl in the engine cylinder.
Schenkel, Torsten; Malve, Mauro; Reik, Michael; Markl, Michael; Jung, Bernd; Oertel, Herbert
2009-03-01
A three-dimensional computational fluid dynamics (CFD) method has been developed to simulate the flow in a pumping left ventricle. The proposed method uses magnetic resonance imaging (MRI) technology to provide a patient specific, time dependent geometry of the ventricle to be simulated. Standard clinical imaging procedures were used in this study. A two-dimensional time-dependent orifice representation of the heart valves was used. The location and size of the valves is estimated based on additional long axis images through the valves. A semi-automatic grid generator was created to generate the calculation grid. Since the time resolution of the MR scans does not fit the requirements of the CFD calculations a third order bezier approximation scheme was developed to realize a smooth wall boundary and grid movement. The calculation was performed by a Navier-Stokes solver using the arbitrary Lagrange-Euler (ALE) formulation. Results show that during diastole, blood flow through the mitral valve forms an asymmetric jet, leading to an asymmetric development of the initial vortex ring. These flow features are in reasonable agreement with in vivo measurements but also show an extremely high sensitivity to the boundary conditions imposed at the inflow. Changes in the atrial representation severely alter the resulting flow field. These shortcomings will have to be addressed in further studies, possibly by inclusion of the real atrial geometry, and imply additional requirements for the clinical imaging processes.
Positive Behavior Support and Applied Behavior Analysis
ERIC Educational Resources Information Center
Johnston, J. M.; Foxx, R. M.; Jacobson, J. W.; Green, G.; Mulick, J. A.
2006-01-01
This article reviews the origins and characteristics of the positive behavior support (PBS) movement and examines those features in the context of the field of applied behavior analysis (ABA). We raise a number of concerns about PBS as an approach to delivery of behavioral services and its impact on how ABA is viewed by those in human services. We…
Use of HART-II Measured Motion in CFD
NASA Technical Reports Server (NTRS)
Boyd, D. Douglas, Jr.
2008-01-01
This presentation examines the use of HART-II measured rotor blade motion in computational fluid dynamics (CFD). Historically, comprehensive analyses were used for input to acoustic calculations. These analyses focused on lifting line aerodynamics and beam models. However, there is a a need to evolve lifting line aerodynamics to first principles, notably the use of CFD instead of lifting line. The current analysis focuses on CFD and computational structural dynamics (CSD) coupling. Beam models are still very good (CSD is typically from comprehensive analysis), but generally CFD replaced aerodynamics in comprehensive analysis. This presentation examines both CFD and CSD individually and includes predictions using measured motion as well as predictions using measured motion versus coupled motion and calculations of "correct" airloads, noise and vibration.
CFD Analysis of Coolant Flow in VVER-440 Fuel Assemblies with the Code ANSYS CFX 10.0
Toth, Sandor; Legradi, Gabor; Aszodi, Attila
2006-07-01
From the aspect of planning the power upgrading of nuclear reactors - including the VVER-440 type reactor - it is essential to get to know the flow field in the fuel assembly. For this purpose we have developed models of the fuel assembly of the VVER-440 reactor using the ANSYS CFX 10.0 CFD code. At first a 240 mm long part of a 60 degrees segment of the fuel pin bundle was modelled. Implementing this model a sensitivity study on the appropriate meshing was performed. Based on the development of the above described model, further models were developed: a 960 mm long part of a 60-degree-segment and a full length part (2420 mm) of the fuel pin bundle segment. The calculations were run using constant coolant properties and several turbulence models. The impacts of choosing different turbulence models were investigated. The results of the above-mentioned investigations are presented in this paper. (authors)
NASA Astrophysics Data System (ADS)
Fan, Deqiu; Mohassab, Yousef; Elzohiery, Mohamed; Sohn, H. Y.
2016-06-01
A computational fluid dynamics (CFD) approach, coupled with experimental results, was developed to accurately evaluate the kinetic parameters of iron oxide particle reduction. Hydrogen reduction of magnetite concentrate particles was used as a sample case. A detailed evaluation of the particle residence time and temperature profile inside the reactor is presented. This approach eliminates the errors associated with assumptions like constant particle temperature and velocity while the particles travel down a drop tube reactor. The gas phase was treated as a continuum in the Eulerian frame of reference, and the particles are tracked using a Lagrangian approach in which the trajectory and velocity are determined by integrating the equation of particle motion. In addition, a heat balance on the particle that relates the particle temperature to convection and radiation was also applied. An iterative algorithm that numerically solves the governing coupled ordinary differential equations was developed to determine the pre-exponential factor and activation energy that best fit the experimental data.
NASA Astrophysics Data System (ADS)
Chandramohan, V. P.
2016-01-01
Convective drying of rectangular-shaped moist object has been analyzed both experimentally and numerically. Transient mass of the potato sample is measured experimentally. Moisture content, diffusivity, and density of the object are calculated at different drying air temperatures from 40°C to 70°C with an air velocity of 2 m/s. A three-dimensional (3D) finite volume method (FVM) based numerical model is developed to predict the temperature and moisture distribution. A computational fluid dynamics (CFD) code is used for predicting heat and mass transfer coefficients required in the boundary conditions of the heat and mass transfer model. The experimental and numerical data are compared and good agreement is observed.
NASA Astrophysics Data System (ADS)
Castro, Marcelo A.; Ahumada Olivares, María. C.; Putman, Christopher M.; Cebral, Juan R.
2014-03-01
The optimal management of unruptured aneurysms is controversial, and current decision making is mainly based on aneurysm size and location. Incidentally detected unruptured aneurysms less than 5mm in diameter should be treated conservatively. However, small unruptured aneurysms also bleed. Risk factors based on the hemodynamic forces exerted over the arterial wall have been investigated using image-based computational fluid dynamic (CFD) methodologies during the last decade. Accurate estimation of wall shear stress (WSS) is required to properly study associations between flow features and aneurysm processes. Previous works showed that Newtonian and non-Newtonian (Casson) models produce similar WSS distributions and characterization, with no significant differences. Other authors showed that the WSS distribution computed from time-averaged velocity fields is significantly higher for the Newtonian model where WSS is low. In this work we reconstructed ten patient-specific CFD models from angiography images to investigate the time evolution of WSS at selected locations such as aneurysm blebs (low WSS), and the parent artery close to the aneurysm neck (high WSS). When averaging all cases it is seen that the estimation of the time-averaged WSS, the peak WSS and the minimum WSS value before the systolic peak were all higher when the Casson rheology was considered. However, none of them showed statistically significant differences. At the afferent artery Casson rheology systematically predicted higher WSS values. On the other hand, at the selected blebs either Newtonian or Casson WSS estimations are higher in some phases of the cardiac cycle. Those observations differ among individual cases.
Requirements for effective use of CFD in aerospace design
NASA Astrophysics Data System (ADS)
Raj, Pradeep
1995-03-01
This paper presents a perspective on the requirements that Computational Fluid Dynamics (CFD) technology must meet for its effective use in aerospace design. General observations are made on current aerospace design practices and deficiencies are noted that must be rectified for the U.S. aerospace industry to maintain its leadership position in the global marketplace. In order to rectify deficiencies, industry is transitioning to an integrated product and process development (IPPD) environment and design processes are undergoing radical changes. The role of CFD in producing data that design teams need to support flight vehicle development is briefly discussed. An overview of the current state of the art in CFD is given to provide an assessment of strengths and weaknesses of the variety of methods currently available, or under development, to produce aerodynamic data. Effectiveness requirements are examined from a customer/supplier view point with design team as customer and CFD practitioner as supplier. Partnership between the design team and CFD team is identified as an essential requirement for effective use of CFD. Rapid turnaround, reliable accuracy, and affordability are offered as three key requirements that CFD community must address if CFD is to play its rightful role in supporting the IPPD design environment needed to produce high quality yet affordable designs.
Requirements for effective use of CFD in aerospace design
NASA Technical Reports Server (NTRS)
Raj, Pradeep
1995-01-01
This paper presents a perspective on the requirements that Computational Fluid Dynamics (CFD) technology must meet for its effective use in aerospace design. General observations are made on current aerospace design practices and deficiencies are noted that must be rectified for the U.S. aerospace industry to maintain its leadership position in the global marketplace. In order to rectify deficiencies, industry is transitioning to an integrated product and process development (IPPD) environment and design processes are undergoing radical changes. The role of CFD in producing data that design teams need to support flight vehicle development is briefly discussed. An overview of the current state of the art in CFD is given to provide an assessment of strengths and weaknesses of the variety of methods currently available, or under development, to produce aerodynamic data. Effectiveness requirements are examined from a customer/supplier view point with design team as customer and CFD practitioner as supplier. Partnership between the design team and CFD team is identified as an essential requirement for effective use of CFD. Rapid turnaround, reliable accuracy, and affordability are offered as three key requirements that CFD community must address if CFD is to play its rightful role in supporting the IPPD design environment needed to produce high quality yet affordable designs.
Coarse Grid CFD for underresolved simulation
NASA Astrophysics Data System (ADS)
Class, Andreas G.; Viellieber, Mathias O.; Himmel, Steffen R.
2010-11-01
CFD simulation of the complete reactor core of a nuclear power plant requires exceedingly huge computational resources so that this crude power approach has not been pursued yet. The traditional approach is 1D subchannel analysis employing calibrated transport models. Coarse grid CFD is an attractive alternative technique based on strongly under-resolved CFD and the inviscid Euler equations. Obviously, using inviscid equations and coarse grids does not resolve all the physics requiring additional volumetric source terms modelling viscosity and other sub-grid effects. The source terms are implemented via correlations derived from fully resolved representative simulations which can be tabulated or computed on the fly. The technique is demonstrated for a Carnot diffusor and a wire-wrap fuel assembly [1]. [4pt] [1] Himmel, S.R. phd thesis, Stuttgart University, Germany 2009, http://bibliothek.fzk.de/zb/berichte/FZKA7468.pdf
PISA: Position Intensity and Shape Analysis
NASA Astrophysics Data System (ADS)
Draper, Peter W.; Eaton, Nicholas; Irwin, Mike
2014-05-01
PISA (Position, Intensity and Shape Analysis) routines deal with the location and parameterization of objects on an image frame. The core of this package is the routine PISAFIND which performs image analysis on a 2-dimensional data frame. The program searches the data array for objects that have a minimum number of connected pixels above a given threshold and extracts the image parameters (position, intensity, shape) for each object. The image parameters can be determined using thresholding techniques or an analytical stellar profile can be used to fit the objects. In crowded regions deblending of overlapping sources can be performed. PISA is distributed as part of the Starlink software collection (ascl:1110.012).
PISA - Position Intensity and Shape Analysis
NASA Astrophysics Data System (ADS)
Draper, Peter W.; Eaton, Nicholas
The acronym PISA stands for Position, Intensity and Shape Analysis, and is the group name for a package of routines that deal with the location and parameterisation of objects on an image frame. The core of this package is the routine PISAFIND which performs image analysis on a 2-dimensional data frame. The program searches the data array for objects that have a minimum number of connected pixels above a given threshold and extracts the image parameters (position, intensity, shape) for each object. The image parameters can be determined using thresholding techniques or an analytical stellar profile can be used to fit the objects. In crowded regions deblending of overlapping sources can be performed.
CFD Process Automation Using Overset Grids
NASA Technical Reports Server (NTRS)
Buning, Pieter G.; George, Michael W. (Technical Monitor)
1995-01-01
This talk summarizes three applications of the overset grid method for CFD using some level of automated grid generation, flow solution and post-processing. These applications are 2D high-lift airfoil analysis (INS2D code), turbomachinery applications (ROTOR2/3 codes), and subsonic transport wing/body configurations (OVERFLOW code). These examples provide a forum for discussing the advantages and disadvantages of overset gridding for use in an automated CFD process. The goals and benefits of the automation incorporated in each application will be described, as well as the shortcomings of the approaches.
An introduction to chaos theory in CFD
NASA Technical Reports Server (NTRS)
Pulliam, Thomas H.
1990-01-01
The popular subject 'chaos theory' has captured the imagination of a wide variety of scientists and engineers. CFD has always been faced with nonlinear systems and it is natural to assume that nonlinear dynamics will play a role at sometime in such work. This paper will attempt to introduce some of the concepts and analysis procedures associated with nonlinear dynamics theory. In particular, results from computations of an airfoil at high angle of attack which exhibits a sequence of bifurcations for single frequency unsteady shedding through period doublings cascading into low dimensional chaos are used to present and demonstrate various aspects of nonlinear dynamics in CFD.
NASA Technical Reports Server (NTRS)
Taylor, Arthur C., III; Hou, Gene W.
1992-01-01
Fundamental equations of aerodynamic sensitivity analysis and approximate analysis for the two dimensional thin layer Navier-Stokes equations are reviewed, and special boundary condition considerations necessary to apply these equations to isolated lifting airfoils on 'C' and 'O' meshes are discussed in detail. An efficient strategy which is based on the finite element method and an elastic membrane representation of the computational domain is successfully tested, which circumvents the costly 'brute force' method of obtaining grid sensitivity derivatives, and is also useful in mesh regeneration. The issue of turbulence modeling is addressed in a preliminary study. Aerodynamic shape sensitivity derivatives are efficiently calculated, and their accuracy is validated on two viscous test problems, including: (1) internal flow through a double throat nozzle, and (2) external flow over a NACA 4-digit airfoil. An automated aerodynamic design optimization strategy is outlined which includes the use of a design optimization program, an aerodynamic flow analysis code, an aerodynamic sensitivity and approximate analysis code, and a mesh regeneration and grid sensitivity analysis code. Application of the optimization methodology to the two test problems in each case resulted in a new design having a significantly improved performance in the aerodynamic response of interest.
Tzanos, C. P.
2007-05-16
The Very High Temperature gas cooled reactor (VHTR) is one of the GEN IV reactor concepts that have been proposed for thermochemical hydrogen production and other process-heat applications like coal gasification. The United States Department of Energy has selected the VHTR for further research and development, aiming to demonstrate emissions-free electricity and hydrogen production at a future time. One of the major safety advantages of the VHTR is the potential for passive decay heat removal by natural circulation of air in a Reactor Cavity Cooling System (RCCS). The air-side of the RCCS is very similar to the Reactor Vessel Auxiliary Cooling System (RVACS) that has been proposed for the PRISM reactor design. The design and safety analysis of the RVACS have been based on extensive analytical and experimental work performed at ANL. The Natural Convection Shutdown Heat Removal Test Facility (NSTF) at ANL that simulates at full scale the air-side of the RVACS was built to provide experimental support for the design and analysis of the PRISM RVACS system. The objective of this work is to demonstrate that the NSTF facility can be used to generate RCCS experimental data: to validate CFD and systems codes for the analysis of the RCCS; and to support the design and safety analysis of the RCCS. At this time no reference design is available for the NGNP. The General Atomics (GA) gas turbine - modular helium reactor (GT-MHR) has been used in many analyses as a starting reference design. In the GT-MHR the reactor outlet temperature is 850 C, while the target outlet reactor temperature in VHTR is 1000 C. VHTR scoping studies with a reactor outlet temperature of 1000 C have been performed at GA and INEL. Although the reactor outlet temperature in the VHTR is significantly higher than in the GT-MHR, the peak temperature in the reactor vessel (which is the heat source for the RCCS) is not drastically different. In this work, analyses have been performed using reactor vessel
An Inducer CFD Solution and Effects Associated with Cavitation
NASA Technical Reports Server (NTRS)
Pervaiz, Mehtab M.; Garrett, J.; Kuryla, J.
1993-01-01
This presentation describes a CFD analysis for an Alternate Turbopump Development (ATD) configuration. The analysis consists of a coupled configuration of the inducer and impeller. The work presented here is a joint collaboration of J. Garrett, J. Kuryla and myself.
Arbitrary Shape Deformation in CFD Design
NASA Technical Reports Server (NTRS)
Landon, Mark; Perry, Ernest
2014-01-01
Sculptor(R) is a commercially available software tool, based on an Arbitrary Shape Design (ASD), which allows the user to perform shape optimization for computational fluid dynamics (CFD) design. The developed software tool provides important advances in the state-of-the-art of automatic CFD shape deformations and optimization software. CFD is an analysis tool that is used by engineering designers to help gain a greater understanding of the fluid flow phenomena involved in the components being designed. The next step in the engineering design process is to then modify, the design to improve the components' performance. This step has traditionally been performed manually via trial and error. Two major problems that have, in the past, hindered the development of an automated CFD shape optimization are (1) inadequate shape parameterization algorithms, and (2) inadequate algorithms for CFD grid modification. The ASD that has been developed as part of the Sculptor(R) software tool is a major advancement in solving these two issues. First, the ASD allows the CFD designer to freely create his own shape parameters, thereby eliminating the restriction of only being able to use the CAD model parameters. Then, the software performs a smooth volumetric deformation, which eliminates the extremely costly process of having to remesh the grid for every shape change (which is how this process had previously been achieved). Sculptor(R) can be used to optimize shapes for aerodynamic and structural design of spacecraft, aircraft, watercraft, ducts, and other objects that affect and are affected by flows of fluids and heat. Sculptor(R) makes it possible to perform, in real time, a design change that would manually take hours or days if remeshing were needed.
NASA Technical Reports Server (NTRS)
1995-01-01
An evaluation of the effect of model inlet air temperature drift during a test run was performed to aid in the decision on the need for and/or the schedule for including heaters in the SRMAFTE. The Sverdrup acceptance test data was used to determine the drift in air temperature during runs over the entire range of delivered flow rates and pressures. The effect of this temperature drift on the model Reynolds number was also calculated. It was concluded from this study that a 2% change in absolute temperature during a test run could be adequately accounted for by the data analysis program. A handout package of these results was prepared and presented to ED35 management.
A supportive architecture for CFD-based design optimisation
NASA Astrophysics Data System (ADS)
Li, Ni; Su, Zeya; Bi, Zhuming; Tian, Chao; Ren, Zhiming; Gong, Guanghong
2014-03-01
Multi-disciplinary design optimisation (MDO) is one of critical methodologies to the implementation of enterprise systems (ES). MDO requiring the analysis of fluid dynamics raises a special challenge due to its extremely intensive computation. The rapid development of computational fluid dynamic (CFD) technique has caused a rise of its applications in various fields. Especially for the exterior designs of vehicles, CFD has become one of the three main design tools comparable to analytical approaches and wind tunnel experiments. CFD-based design optimisation is an effective way to achieve the desired performance under the given constraints. However, due to the complexity of CFD, integrating with CFD analysis in an intelligent optimisation algorithm is not straightforward. It is a challenge to solve a CFD-based design problem, which is usually with high dimensions, and multiple objectives and constraints. It is desirable to have an integrated architecture for CFD-based design optimisation. However, our review on existing works has found that very few researchers have studied on the assistive tools to facilitate CFD-based design optimisation. In the paper, a multi-layer architecture and a general procedure are proposed to integrate different CFD toolsets with intelligent optimisation algorithms, parallel computing technique and other techniques for efficient computation. In the proposed architecture, the integration is performed either at the code level or data level to fully utilise the capabilities of different assistive tools. Two intelligent algorithms are developed and embedded with parallel computing. These algorithms, together with the supportive architecture, lay a solid foundation for various applications of CFD-based design optimisation. To illustrate the effectiveness of the proposed architecture and algorithms, the case studies on aerodynamic shape design of a hypersonic cruising vehicle are provided, and the result has shown that the proposed architecture
Positive Behavior Support and Applied Behavior Analysis
Johnston, J.M; Foxx, Richard M; Jacobson, John W; Green, Gina; Mulick, James A
2006-01-01
This article reviews the origins and characteristics of the positive behavior support (PBS) movement and examines those features in the context of the field of applied behavior analysis (ABA). We raise a number of concerns about PBS as an approach to delivery of behavioral services and its impact on how ABA is viewed by those in human services. We also consider the features of PBS that have facilitated its broad dissemination and how ABA might benefit from emulating certain practices of the PBS movement. PMID:22478452
CFD study on local fluid-to-wall heat transfer in packed beds and field synergy analysis
NASA Astrophysics Data System (ADS)
Peng, Wenping; Xu, Min; Huai, Xiulan; Liu, Zhigang
2016-04-01
To reach the target of smaller pressure drop and better heat transfer performance, packed beds with small tube-to-particle diameter ratio ( D/d p<10) have now been considered in many areas. Fluid-to-wall heat transfer coefficient is an important factor determining the performance of this type of beds. In this work, local fluid- to-wall heat transfer characteristic in packed beds was studied by Computational Fluid Dynamics (CFD) at different Reynolds number for D/d p=1.5, 3.0 and 5.6. The results show that the fluid-to-wall heat transfer coefficient is oscillating along the bed with small tube-to-particle diameter ratio. Moreover, this phenomenon was explained by field synergy principle in detail. Two arrangement structures of particles in packed beds were recommended based on the synergy characteristic between flow and temperature fields. This study provides a new local understanding of fluid-to-wall heat transfer in packed beds with small tube-to-particle diameter ratio.
NASA Technical Reports Server (NTRS)
Tucker, P. K.; Warsi, S. A.
1993-01-01
Film/dump cooling a rocket nozzle with fuel rich gas, as in the National Launch System (NLS) Space Transportation Main Engine (STME), adds potential complexities for integrating the engine with the vehicle. The chief concern is that once the film coolant is exhausted from the nozzle, conditions may exist during flight for the fuel-rich film gases to be recirculated to the vehicle base region. The result could be significantly higher base temperatures than would be expected from a regeneratively cooled nozzle. CFD analyses were conduced to augment classical scaling techniques for vehicle base environments. The FDNS code with finite rate chemistry was used to simulate a single, axisymmetric STME plume and the NLS base area. Parallel calculations were made of the Saturn V S-1 C/F1 plume base area flows. The objective was to characterize the plume/freestream shear layer for both vehicles as inputs for scaling the S-C/F1 flight data to NLS/STME conditions. The code was validated on high speed flows with relevant physics. This paper contains the calculations for the NLS/STME plume for the baseline nozzle and a modified nozzle. The modified nozzle was intended to reduce the fuel available for recirculation to the vehicle base region. Plumes for both nozzles were calculated at 10kFT and 50kFT.
NASA Technical Reports Server (NTRS)
Bain, D. B.; Smith, C. E.; Holdeman, J. D.
1992-01-01
A CFD study was performed to analyze the mixing potential of opposed rows of staggered jets injected into confined crossflow in a rectangular duct. Three jet configurations were numerically tested: (1) straight (0 deg) slots; (2) perpendicular slanted (45 deg) slots angled in opposite directions on top and bottom walls; and (3) parallel slanted (45 deg) slots angled in the same direction on top and bottom walls. All three configurations were tested at slot spacing-to-duct height ratios (S/H) of 0.5, 0.75, and 1.0; a jet-to-mainstream momentum flux ratio (J) of 100; and a jet-to-mainstream mass flow ratio of 0.383. Each configuration had its best mixing performance at S/H of 0.75. Asymmetric flow patterns were expected and predicted for all slanted slot configurations. The parallel slanted slot configuration was the best overall configuration at x/H of 1.0 for S/H of 0.75.
Liu, Huolong; Li, Mingzhong
2014-11-20
In this work a two-compartmental population balance model (TCPBM) was proposed to model a pulsed top-spray fluidized bed granulation. The proposed TCPBM considered the spatially heterogeneous granulation mechanisms of the granule growth by dividing the granulator into two perfectly mixed zones of the wetting compartment and drying compartment, in which the aggregation mechanism was assumed in the wetting compartment and the breakage mechanism was considered in the drying compartment. The sizes of the wetting and drying compartments were constant in the TCPBM, in which 30% of the bed was the wetting compartment and 70% of the bed was the drying compartment. The exchange rate of particles between the wetting and drying compartments was determined by the details of the flow properties and distribution of particles predicted by the computational fluid dynamics (CFD) simulation. The experimental validation has shown that the proposed TCPBM can predict evolution of the granule size and distribution within the granulator under different binder spray operating conditions accurately. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Salman, Sami D.; Kadhum, Abdul Amir H.; Takriff, Mohd S.; Bakar Mohamad, Abu
2013-12-01
Swirl/vortex flow generator is an important form of passive augmentation techniques. Twisted-tape is one of the most important members of this form which is used extensively in different type heat exchangers. This paper reports the effect of twisted tape inserts on heat transfer and friction factor characteristics in circular tube under constant heat flux and laminar flow conditions using CFD simulation. Plain twisted tape inserts with twist ratios (y = 2.93, 3.91) and baffled twisted tape inserts with twist ratio (y = 2.93) have been used for the simulation using Fluent version 6.3.26. The results obtained by simulation matched with the literature correlations for plain tube with the discrepancy of less than ± 8% for Nusselt number and ± 6.25% for friction factor. The results have also revealed that the heat transfer in term of the Nusselt number enhanced with increases of Reynolds number, decreases of twist ratio and baffle insert. Among the various twist ratios, the twisted tape with twist ratio of y=2.93 and baffle is offered a maximum heat transfer enhancement.
CFD applications: The Lockheed perspective
NASA Technical Reports Server (NTRS)
Miranda, Luis R.
1987-01-01
The Numerical Aerodynamic Simulator (NAS) epitomizes the coming of age of supercomputing and opens exciting horizons in the world of numerical simulation. An overview of supercomputing at Lockheed Corporation in the area of Computational Fluid Dynamics (CFD) is presented. This overview will focus on developments and applications of CFD as an aircraft design tool and will attempt to present an assessment, withing this context, of the state-of-the-art in CFD methodology.
Tzanos, C. P.; Nuclear Engineering Division
2007-05-16
The Very High Temperature gas cooled reactor (VHTR) is one of the GEN IV reactor concepts that have been proposed for thermochemical hydrogen production and other process-heat applications like coal gasification. The USDOE has selected the VHTR for further research and development, aiming to demonstrate emissions-free electricity and hydrogen production at a future time. One of the major safety advantages of the VHTR is the potential for passive decay heat removal by natural circulation of air in a Reactor Cavity Cooling System (RCCS). The air-side of the RCCS is very similar to the Reactor Vessel Auxiliary Cooling System (RVACS) that has been proposed for the PRISM reactor design. The design and safety analysis of the RVACS have been based on extensive analytical and experimental work performed at ANL. The Natural Convective Shutdown Heat Removal Test Facility (NSTF) at ANL that simulates at full scale the air-side of the RVACS was built to provide experimental support for the design and analysis of the PRISM RVACS system. The objective of this work is to demonstrate that the NSTF facility can be used to generate RCCS experimental data: to validate CFD and systems codes for the analysis of the RCCS; and to support the design and safety analysis of the RCCS.
Bavo, A M; Pouch, A M; Degroote, J; Vierendeels, J; Gorman, J H; Gorman, R C; Segers, P
2017-01-04
As the intracardiac flow field is affected by changes in shape and motility of the heart, intraventricular flow features can provide diagnostic indications. Ventricular flow patterns differ depending on the cardiac condition and the exploration of different clinical cases can provide insights into how flow fields alter in different pathologies. In this study, we applied a patient-specific computational fluid dynamics model of the left ventricle and mitral valve, with prescribed moving boundaries based on transesophageal ultrasound images for three cardiac pathologies, to verify the abnormal flow patterns in impaired hearts. One case (P1) had normal ejection fraction but low stroke volume and cardiac output, P2 showed low stroke volume and reduced ejection fraction, P3 had a dilated ventricle and reduced ejection fraction. The shape of the ventricle and mitral valve, together with the pathology influence the flow field in the left ventricle, leading to distinct flow features. Of particular interest is the pattern of the vortex formation and evolution, influenced by the valvular orifice and the ventricular shape. The base-to-apex pressure difference of maximum 2mmHg is consistent with reported data. We used a CFD model with prescribed boundary motion to describe the intraventricular flow field in three patients with impaired diastolic function. The calculated intraventricular flow dynamics are consistent with the diagnostic patient records and highlight the differences between the different cases. The integration of clinical images and computational techniques, therefore, allows for a deeper investigation intraventricular hemodynamics in patho-physiology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hybrid CFD/CAA Modeling for Liftoff Acoustic Predictions
NASA Technical Reports Server (NTRS)
Strutzenberg, Louise L.; Liever, Peter A.
2011-01-01
This paper presents development efforts at the NASA Marshall Space flight Center to establish a hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) simulation system for launch vehicle liftoff acoustics environment analysis. Acoustic prediction engineering tools based on empirical jet acoustic strength and directivity models or scaled historical measurements are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. CFD based modeling approaches are now able to capture the important details of vehicle specific plume flow environment, identifY the noise generation sources, and allow assessment of the influence of launch pad geometric details and sound mitigation measures such as water injection. However, CFD methodologies are numerically too dissipative to accurately capture the propagation of the acoustic waves in the large CFD models. The hybrid CFD/CAA approach combines the high-fidelity CFD analysis capable of identifYing the acoustic sources with a fast and efficient Boundary Element Method (BEM) that accurately propagates the acoustic field from the source locations. The BEM approach was chosen for its ability to properly account for reflections and scattering of acoustic waves from launch pad structures. The paper will present an overview of the technology components of the CFD/CAA framework and discuss plans for demonstration and validation against test data.
Rotorcraft simulations: a challenge for CFD
NASA Astrophysics Data System (ADS)
Costes, M.; Renaud, T.; Rodriguez, B.
2012-07-01
This paper gives an overview of CFD techniques developed and used at ONERA for rotorcraft applications. First, the complex multidisciplinary environment around helicopters, in which aerodynamics, flight dynamics, aeroelasticity and aeroacoustics strongly interact, is highlighted. Rotorcraft simulations are thus performed by comprehensive codes capable of dealing with the whole system efficiently, using integrated simplified models for each discipline, e.g. the aerodynamics. However, fast aerodynamic models cannot accurately represent the full complexity of rotorcraft aerodynamics, in particular as far as nonlinear phenomena are concerned, contrary to CFD. Nevertheless, helicopter problems are particularly demanding for numerical methods, requiring efficient simulation of unsteady flows with shock waves, massive flow separation, concentrated vortex structures and deforming bodies with large amplitude relative motion, while allowing fine description and analysis of local flow phenomena impacting the vehicle behaviour. Helicopter trim in the CFD solution is obtained by iterative coupling with comprehensive analysis, so that the global multidisciplinary simulation can be achieved with an advanced aerodynamic model. The approaches taken by ONERA for the comprehensive code and the CFD solvers are outlined in the paper. Examples of applications typical of rotorcraft problems are given to illustrate current possibilities and difficulties. They include an isolated rotor in hover, the dynamic stall of an oscillating wing, an isolated rotor in descent flight with Blade-Vortex Interactions, the dynamic-aerodynamic coupling of a rotor in high-speed forward flight and the simulation of a complete helicopter in forward flight. Finally, expected and needed developments are reviewed in order to make CFD a more efficient tool in the design office of helicopter manufacturers.
Positionalities, Personal Epistemologies, and Instruction: An Analysis
ERIC Educational Resources Information Center
Avci, Omer
2016-01-01
Individuals' sense of who they are and what their positions are in relation to others is known to be their positionality. Positionalities influence individuals' conception of the world, thus their epistemologies. A few of the positionalities that exist, and included in this paper, are gender, spirituality, race/ethnicity, and social class. All…
The CFD Simulation on Thermal Comfort in a library Building in the Tropics
NASA Astrophysics Data System (ADS)
Yau, Y. H.; Ghazali, N. N. N.; Badarudin, A.; Goh, F. C.
2010-05-01
This paper presents a three-dimensional analysis for thermal comfort in a library. The room model includes library layout, equipment and peripheral positions as well as the positions of inlet and outlet air for IAQ controls. Cold clean air is supplied to the room through ceiling-mounted air grilles and exhausted through air grilles situated on the same ceiling. A commercial CFD package was used in this study to achieve solutions of the distribution of airflow velocity and temperature. Using high quality meshes is vital to the overall accuracy of the results. Simulation results show a good agreement with experimental data from the literature. This study has thoroughly analysed the indoor thermal conditions and airflow characteristics of the building. In addition, verification of the CFD program with experimental data showed that the program can provide reasonable and reliable predictions on thermal comfort performance with the help of precise boundary conditions.
The CFD Simulation on Thermal Comfort in a library Building in the Tropics
Yau, Y. H.; Ghazali, N. N. N.; Badarudin, A.; Goh, F. C.
2010-05-21
This paper presents a three-dimensional analysis for thermal comfort in a library. The room model includes library layout, equipment and peripheral positions as well as the positions of inlet and outlet air for IAQ controls. Cold clean air is supplied to the room through ceiling-mounted air grilles and exhausted through air grilles situated on the same ceiling. A commercial CFD package was used in this study to achieve solutions of the distribution of airflow velocity and temperature. Using high quality meshes is vital to the overall accuracy of the results. Simulation results show a good agreement with experimental data from the literature. This study has thoroughly analysed the indoor thermal conditions and airflow characteristics of the building. In addition, verification of the CFD program with experimental data showed that the program can provide reasonable and reliable predictions on thermal comfort performance with the help of precise boundary conditions.
The Role of CFD in Undergraduate Fluid Mechanics Education
NASA Astrophysics Data System (ADS)
Cimbala, John
2006-11-01
Instruction of undergraduate fluid mechanics is greatly enhanced through integration of computational fluid dynamics (CFD) into fluid mechanics courses and labs. Specifically, students are able to visualize fluid flows with CFD and are better able to understand those flows by performing parametric studies. At Penn State, CFD has been carefully integrated into our introductory junior-level fluid mechanics course, yet displaces only about one class period. The key is to show demonstrations and assign homework that use CFD as a tool that helps students learn the basic concepts of fluid mechanics. The application of CFD (grid generation, boundary conditions, etc.), rather than numerical algorithms, is stressed. This is done through use of short, pre-defined templates for FlowLab, a student-friendly analysis and visualization package created by Fluent, Inc. The textbook by Cengel and Cimbala (McGraw-Hill 2006) contains 46 end-of-chapter homework problems that are used in conjunction with 42 FlowLab templates. Each exercise has been designed with two major learning objectives in mind: (1) enhance student understanding of a specific fluid mechanics concept, and (2) introduce the student to a specific capability and/or limitation of CFD through hands-on practice. More templates are being developed that emphasize the first objective. The flow of fluid between two concentric rotating cylinders is a good example of a problem that is solved approximately, analytically, and with CFD, and the results are compared to enhance learning.
Recent Updates to the CFD General Notation System (CGNS)
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Wedan, Bruce; Hauser, Thomas; Poinot, Marc
2012-01-01
The CFD General Notation System (CGNS) - a general, portable, and extensible standard for the storage and retrieval of computational fluid dynamics (CFD) analysis data has been in existence for more than a decade (Version 1.0 was released in May 1998). Both structured and unstructured CFD data are covered by the standard, and CGNS can be easily extended to cover any sort of data imaginable, while retaining backward compatibility with existing CGNS data files and software. Although originally designed for CFD, it is readily extendable to any field of computational analysis. In early 2011, CGNS Version 3.1 was released, which added significant capabilities. This paper describes these recent enhancements and highlights the continued usefulness of the CGNS methodology.
A CFD/CSD Interaction Methodology for Aircraft Wings
NASA Technical Reports Server (NTRS)
Bhardwaj, Manoj K.
1997-01-01
With advanced subsonic transports and military aircraft operating in the transonic regime, it is becoming important to determine the effects of the coupling between aerodynamic loads and elastic forces. Since aeroelastic effects can contribute significantly to the design of these aircraft, there is a strong need in the aerospace industry to predict these aero-structure interactions computationally. To perform static aeroelastic analysis in the transonic regime, high fidelity computational fluid dynamics (CFD) analysis tools must be used in conjunction with high fidelity computational structural fluid dynamics (CSD) analysis tools due to the nonlinear behavior of the aerodynamics in the transonic regime. There is also a need to be able to use a wide variety of CFD and CSD tools to predict these aeroelastic effects in the transonic regime. Because source codes are not always available, it is necessary to couple the CFD and CSD codes without alteration of the source codes. In this study, an aeroelastic coupling procedure is developed which will perform static aeroelastic analysis using any CFD and CSD code with little code integration. The aeroelastic coupling procedure is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas CFD code) and NASTRAN. In addition, the Aeroelastic Research Wing (ARW-2) is used for demonstration of the aeroelastic coupling procedure by using ENSAERO (NASA Ames Research Center CFD code) and a finite element wing-box code (developed as part of this research).
Vilas-Boas, João Paulo; Ramos, Rui J; Fernandes, Ricardo J; Silva, António J; Rouboa, Abel I; Machado, Leandro; Barbosa, Tiago M; Marinho, Daniel A
2015-02-01
The aim of this research was to numerically clarify the effect of finger spreading and thumb abduction on the hydrodynamic force generated by the hand and forearm during swimming. A computational fluid dynamics (CFD) analysis of a realistic hand and forearm model obtained using a computer tomography scanner was conducted. A mean flow speed of 2 m · s(-1) was used to analyze the possible combinations of three finger positions (grouped, partially spread, totally spread), three thumb positions (adducted, partially abducted, totally abducted), three angles of attack (a = 0°, 45°, 90°), and four sweepback angles (y = 0°, 90°, 180°, 270°) to yield a total of 108 simulated situations. The values of the drag coefficient were observed to increase with the angle of attack for all sweepback angles and finger and thumb positions. For y = 0° and 180°, the model with the thumb adducted and with the little finger spread presented higher drag coefficient values for a = 45° and 90°. Lift coefficient values were observed to be very low at a = 0° and 90° for all of the sweepback angles and finger and thumb positions studied, although very similar values are obtained at a = 45°. For y = 0° and 180°, the effect of finger and thumb positions appears to be much most distinct, indicating that having the thumb slightly abducted and the fingers grouped is a preferable position at y = 180°, whereas at y = 0°, having the thumb adducted and fingers slightly spread yielded higher lift values. Results show that finger and thumb positioning in swimming is a determinant of the propulsive force produced during swimming; indeed, this force is dependent on the direction of the flow over the hand and forearm, which changes across the arm's stroke.
Combustion Devices CFD Simulation Capability Roadmap
NASA Technical Reports Server (NTRS)
West, Jeff; Tucker, P. Kevin; Williams, Robert W.
2003-01-01
The objective of this roadmap is to enable the use of CFD for simulation of pre-burners, ducting, thrust chamber assembly and supporting infrastructure in terms of performance, life, and stability so as to affect the design process in a timely fashion. To enable flange to exit analysis of real(3D) propulsion hardware within the last 5 years (2008). To meet this objective all model problems must be sufficiently mastered.
Gawande, Vipin B; Dhoble, A S; Zodpe, D B
2014-01-01
CFD analysis of 2-dimensional artificially roughened solar air heater duct with additional circular vortex generator, inserted in inlet section is carried out. Circular transverse ribs on the absorber plate are placed as usual. The analysis is done to investigate the effect of inserting additional vortex generator on the heat transfer and flow friction characteristics inside the solar air heater duct. This investigation covers relative roughness pitch in the range of 10 ≤ P/e ≤ 25 and relevant Reynolds numbers in the range of 3800 ≤ Re ≤ 18000. Relative roughness height (e/D) is kept constant as 0.03 for analysis. The turbulence created due to additional circular vortex generator increases the heat transfer rate and at the same time there is also increase in friction factor values. For combined arrangement of ribs and vortex generator, maximum Nusselt number is found to be 2.05 times that of the smooth duct. The enhancement in Nusselt number with ribs and additional vortex generator is found to be 1.06 times that of duct using ribs alone. The maximum increase in friction factor with ribs and circular vortex generator is found to be 2.91 times that of the smooth duct. Friction factor in a combined arrangement is 1.114 times that in a duct with ribs alone on the absorber plate. The augmentation in Thermal Enhancement Factor (TEF) with vortex generator in inlet section is found to be 1.06 times more than with circular ribs alone on the absorber plate.
Gawande, Vipin B.; Dhoble, A. S.; Zodpe, D. B.
2014-01-01
CFD analysis of 2-dimensional artificially roughened solar air heater duct with additional circular vortex generator, inserted in inlet section is carried out. Circular transverse ribs on the absorber plate are placed as usual. The analysis is done to investigate the effect of inserting additional vortex generator on the heat transfer and flow friction characteristics inside the solar air heater duct. This investigation covers relative roughness pitch in the range of 10 ≤ P/e ≤ 25 and relevant Reynolds numbers in the range of 3800 ≤ Re ≤ 18000. Relative roughness height (e/D) is kept constant as 0.03 for analysis. The turbulence created due to additional circular vortex generator increases the heat transfer rate and at the same time there is also increase in friction factor values. For combined arrangement of ribs and vortex generator, maximum Nusselt number is found to be 2.05 times that of the smooth duct. The enhancement in Nusselt number with ribs and additional vortex generator is found to be 1.06 times that of duct using ribs alone. The maximum increase in friction factor with ribs and circular vortex generator is found to be 2.91 times that of the smooth duct. Friction factor in a combined arrangement is 1.114 times that in a duct with ribs alone on the absorber plate. The augmentation in Thermal Enhancement Factor (TEF) with vortex generator in inlet section is found to be 1.06 times more than with circular ribs alone on the absorber plate. PMID:25254251
Moving Forward: Positive Behavior Support and Applied Behavior Analysis
ERIC Educational Resources Information Center
Tincani, Matt
2007-01-01
A controversy has emerged about the relationship between positive behavior support and applied behavior analysis. Some behavior analysts suggest that positive behavior support and applied behavior analysis are the same (e.g., Carr & Sidener, 2002). Others argue that positive behavior support is harmful to applied behavior analysis (e.g., Johnston,…
3D CFD Simulation of Horizontal Spin Casting of High Speed Steel Roll
NASA Astrophysics Data System (ADS)
Redkin, Konstantin; Balakin, Boris; Hrizo, Christopher; Vipperman, Jeffrey; Garcia, Isaac; University Of Pittsburgh Team; Whemco Collaboration; University Of Bergen Collaboration
2013-11-01
The present paper reports some preliminary results on the multiphase modeling of the melt behavior in the horizontal spinning chamber. Three-dimensional (3D) computational fluid dynamics (CFD) model of the high speed steel (HSS) melt was developed in a novel way on the base of volume-of-fluid technique. Preliminary 3D CFD of the horizontal centrifugal casting process showed that local turbulences can take place depending on the geometrical features of the ``feeding'' arm (inlet), its position relative to the chamber, pouring rates and temperatures. The distribution of the melt inside the mold is directly related to the melt properties (viscosity and diffusivity), which depend on the temperature and alloy composition. The predicted liquid properties, used in the modeling, are based on actual chemical composition analysis performed on different heats. Acknowledgement of WHEMCO and United Rolls Inc. for supporting the program. Special appreciation for Kevin Marsden.
CFD studies on burner secondary airflow
Purimetla, A.; Cui, J.
2009-02-15
In many fossil power plants operating today, there is insufficient means to assure the proper balancing of the secondary airflows between the individual burners of wall-fired units. This mismatch leads to decreased boiler efficiency and increased emissions. In this study, a computational fluid dynamics (CFD) modeling of a fossil power plant wind box was performed. The model solved the three-dimensional Reynolds averaged Navier-Stokes equations with the k-epsilon turbulence model. The CFD results were validated by the experimental data taken from a 1/8th scale model of a wall-fired fossil unit. Simulations under various mass flow rates specified at inlet, various baffle positions and two opening conditions of the burners were obtained to identify the optimum design in terms of the equalization of the secondary airflow through the burners. This study demonstrated that the combination of experimental and CFD approach can be an effective tool in the research of burner secondary airflow balancing.
Analysis of tissue factor positive microparticles.
Key, Nigel S
2010-04-01
There has recently been intense interest in the clinical measurement of tissue factor (TF)-positive microparticles (MPs) in clinical disease states. This interest has been driven by the demonstration of an putative role for circulating TF-positive MPs in animal models of thrombus propagation. Both immunological and functional assays for MP-TF have been described. While each approach has its own advantages and drawbacks, neither has yet been truly established as the 'gold standard'. Heterogeneity of TF-bearing MPs, such as the variable co-expression of surface phosphatidylserine, may determine not only their procoagulant potential, but also additional properties including rate of clearance from the circulation.
Combustion Devices CFD Team Analyses Review
NASA Technical Reports Server (NTRS)
Rocker, Marvin
2008-01-01
A variety of CFD simulations performed by the Combustion Devices CFD Team at Marshall Space Flight Center will be presented. These analyses were performed to support Space Shuttle operations and Ares-1 Crew Launch Vehicle design. Results from the analyses will be shown along with pertinent information on the CFD codes and computational resources used to obtain the results. Six analyses will be presented - two related to the Space Shuttle and four related to the Ares I-1 launch vehicle now under development at NASA. First, a CFD analysis of the flow fields around the Space Shuttle during the first six seconds of flight and potential debris trajectories within those flow fields will be discussed. Second, the combusting flows within the Space Shuttle Main Engine's main combustion chamber will be shown. For the Ares I-1, an analysis of the performance of the roll control thrusters during flight will be described. Several studies are discussed related to the J2-X engine to be used on the upper stage of the Ares I-1 vehicle. A parametric study of the propellant flow sequences and mixture ratios within the GOX/GH2 spark igniters on the J2-X is discussed. Transient simulations will be described that predict the asymmetric pressure loads that occur on the rocket nozzle during the engine start as the nozzle fills with combusting gases. Simulations of issues that affect temperature uniformity within the gas generator used to drive the J-2X turbines will described as well, both upstream of the chamber in the injector manifolds and within the combustion chamber itself.
Yamada, Yuya; Tsukahara, Takahiro; Motosuke, Masahiro; Fujino, Yusuke
2016-08-01
We numerically studied blood flows in a simulated branching pipe of coronary artery bifurcation, which is affected by stent implantation. We found that stent struts provide effects as guide vanes and blockages on the flow into circumflex branch. The former effect increases the flow rate and shear stress on the arteriosclerosis-prone site. The blockage effect may overwhelm the guide effect depending on a strut position against the inflow.
CFD in Support of Wind Tunnel Testing for Aircraft/Weapons Integration
2004-06-01
freestream loads, or the store carriage (and near store separation analysis has decreased by an order of carriage) loads. The use of both CFD and wind tunnel...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP023837 TITLE: CFD in Support of Wind Tunnel Testing for Aircraft/Weapons...alone technical report. The following component part numbers comprise the compilation report: ADP023820 thru ADP023869 UNCLASSIFIED CFD in Support of
Lai, Hongpeng; Wang, Shuyong; Xie, Yongli
2016-01-01
In the New Qidaoliang Tunnel (China), a rear-end collision of two tanker trunks caused a fire. To understand the damage characteristics of the tunnel lining structure, in situ investigation was performed. The results show that the fire in the tunnel induced spallation of tunnel lining concrete covering 856 m3; the length of road surface damage reached 650 m; the sectional area had a maximum 4% increase, and the mechanical and electrical facilities were severely damaged. The maximum area loss happened at the fire spot with maximum observed concrete spallation up to a thickness of 35.4 cm. The strength of vault and side wall concrete near the fire source was significantly reduced. The loss of concrete strength of the side wall near the inner surface of tunnel was larger than that near the surrounding rock. In order to perform back analysis of the effect of thermal load on lining structure, simplified numerical simulation using computational fluid dynamics (CFD) was also performed, repeating the fire scenario. The simulated results showed that from the fire breaking out to the point of becoming steady, the tunnel experienced processes of small-scale warming, swirl around fire, backflow, and longitudinal turbulent flow. The influence range of the tunnel internal temperature on the longitudinal downstream was far greater than on the upstream, while the high temperature upstream and downstream of the transverse fire source mainly centered on the vault or the higher vault waist. The temperature of each part of the tunnel near the fire source had no obvious stratification phenomenon. The temperature of the vault lining upstream and downstream near the fire source was the highest. The numerical simulation is found to be in good agreement with the field observations. PMID:27754455
Lai, Hongpeng; Wang, Shuyong; Xie, Yongli
2016-10-15
In the New Qidaoliang Tunnel (China), a rear-end collision of two tanker trunks caused a fire. To understand the damage characteristics of the tunnel lining structure, in situ investigation was performed. The results show that the fire in the tunnel induced spallation of tunnel lining concrete covering 856 m³; the length of road surface damage reached 650 m; the sectional area had a maximum 4% increase, and the mechanical and electrical facilities were severely damaged. The maximum area loss happened at the fire spot with maximum observed concrete spallation up to a thickness of 35.4 cm. The strength of vault and side wall concrete near the fire source was significantly reduced. The loss of concrete strength of the side wall near the inner surface of tunnel was larger than that near the surrounding rock. In order to perform back analysis of the effect of thermal load on lining structure, simplified numerical simulation using computational fluid dynamics (CFD) was also performed, repeating the fire scenario. The simulated results showed that from the fire breaking out to the point of becoming steady, the tunnel experienced processes of small-scale warming, swirl around fire, backflow, and longitudinal turbulent flow. The influence range of the tunnel internal temperature on the longitudinal downstream was far greater than on the upstream, while the high temperature upstream and downstream of the transverse fire source mainly centered on the vault or the higher vault waist. The temperature of each part of the tunnel near the fire source had no obvious stratification phenomenon. The temperature of the vault lining upstream and downstream near the fire source was the highest. The numerical simulation is found to be in good agreement with the field observations.
A physical analysis of nucleosome positioning
NASA Astrophysics Data System (ADS)
Gerland, Ulrich
2015-03-01
The first level of genome packaging in eukaryotic cells involves the formation of dense nucleosome arrays, with DNA coverage near 90% in yeasts. A high nucleosome coverage is essential for cells, e.g. to prevent cryptic transcription, and the local positions of specific nucleosomes can play an important role in gene regulation. It is known that in vivo nucleosome positions are affected by a complex mix of passive and active mechanisms, including sequence-specific histone-DNA binding, nucleosome-nucleosome interactions, ATP-dependent remodeling enzymes, transcription, and DNA replication. Yet, the statistical distribution of nucleosome positions is extremely well described by simple physical models that treat the chromatin fiber as an interacting one-dimensional gas. I will discuss how can we interpret this surprising observation from a mechanistic perspective. I will also discuss the kinetics of the interacting gas model, which is pertinent to the question of how cells achieve the high nucleosome coverage within a short time, e.g. after DNA replication.
Analysis of nonstandard noise dosimeter microphone positions.
Byrne, David C; Reeves, Efrem R
2008-03-01
This study was conducted as part of a project involving the evaluation of a new type of noise exposure monitoring paradigm. Laboratory tests were conducted to assess how "nonstandard" dosimeter microphones and microphone positions measured noise levels under different acoustical conditions (i.e., diffuse field and direct field). The data presented in this article reflect measurement differences due to microphone position and mounting/supporting structure only and are not an evaluation of any particular complete dosimeter system. To varying degrees, the results obtained with the dosimeter microphones used in this study differed from the reference results obtained in the unperturbed (subject absent) sound field with a precision (suitable for use in an ANSI Type 1 sound level meter) (1)/(2)-inch (12.7 mm) measurement microphone. Effects of dosimeter microphone placement in a diffuse field were found to be minor for most of the test microphones/locations, while direct field microphone placement effects were found to be quite large depending on the microphone position and supporting structure, sound source location, and noise spectrum.
CFD Validation for Propulsion System Components (la Validation CFD des organes des propulseurs)
1998-05-01
et al (1995), Suder and Celestina (1996) and Hatliaway et al (1993). Laser data were acquired only at flow rates of m I mchokt = 0.98 and 0.925...Denton (1996) has given a good global analysis of the flow in this compressor. Chima (1996b) and Suder and Celestina (1996) analysed the tip...and Suder and Celestina (1996) have presented some detailed CFD results for the flow in this region. Detailed experimental results and analysis have
CFD simulation of coaxial injectors
NASA Technical Reports Server (NTRS)
Landrum, D. Brian
1993-01-01
The development of improved performance models for the Space Shuttle Main Engine (SSME) is an important, ongoing program at NASA MSFC. These models allow prediction of overall system performance, as well as analysis of run-time anomalies which might adversely affect engine performance or safety. Due to the complexity of the flow fields associated with the SSME, NASA has increasingly turned to Computational Fluid Dynamics (CFD) techniques as modeling tools. An important component of the SSME system is the fuel preburner, which consists of a cylindrical chamber with a plate containing 264 coaxial injector elements at one end. A fuel rich mixture of gaseous hydrogen and liquid oxygen is injected and combusted in the chamber. This process preheats the hydrogen fuel before it enters the main combustion chamber, powers the hydrogen turbo-pump, and provides a heat dump for nozzle cooling. Issues of interest include the temperature and pressure fields at the turbine inlet and the thermal compatibility between the preburner chamber and injector plate. Performance anomalies can occur due to incomplete combustion, blocked injector ports, etc. The performance model should include the capability to simulate the effects of these anomalies. The current approach to the numerical simulation of the SSME fuel preburner flow field is to use a global model based on the MSFC sponsored FNDS code. This code does not have the capabilities of modeling several aspects of the problem such as detailed modeling of the coaxial injectors. Therefore, an effort has been initiated to develop a detailed simulation of the preburner coaxial injectors and provide gas phase boundary conditions just downstream of the injector face as input to the FDNS code. This simulation should include three-dimensional geometric effects such as proximity of injectors to baffles and chamber walls and interaction between injectors. This report describes an investigation into the numerical simulation of GH2/LOX coaxial
NASA Astrophysics Data System (ADS)
Ghaffari, Ali; Hassan Hashemabadi, Seyed
2017-03-01
In the present study a computational fluid dynamics approach is implemented to investigate the dynamic behavior of two freely suspended ferrofluid droplets under the effect of uniform magnetic field. The colliding droplets are tracked from their initial state to a new equilibrium state which will be obtained for the new produced droplet after the coalescence. During collision time the shape of each droplet and also the variations of their energies are investigated and discussed. For the simulation, a finite volume based solver is modified based on the open source solver library (OpenFOAM®) which is capable of coupling the flow field and magnetostatic equations. A coupled scheme of volume of fluid and level-set methods is applied for interface capturing. The simulation results are validated based on the available numerical and experimental results reported in the literature. In order to evaluate the effect of parameters on the magnetic induced coalescence of ferrofluid droplets a dimensional analysis based on the Buckingham π theorem is implemented. Based on the simulation results and dimensional analysis a new correlation is proposed which is capable to predict the collision time for two ferrofluid droplets in a relatively wide range of properties and operating conditions.
NASA Astrophysics Data System (ADS)
Casartelli, E.; Mangani, L.; Ryan, O.; Schmid, A.
2016-11-01
CFD has entered the product development process in hydraulic machines since more than three decades. Beside the actual design process, in which the most appropriate geometry for a certain task is iteratively sought, several steady-state simulations and related analyses are performed with the help of CFD. Basic transient CFD-analysis is becoming more and more routine for rotor-stator interaction assessment, but in general unsteady CFD is still not standard due to the large computational effort. Especially for FSI simulations, where mesh motion is involved, a considerable amount of computational time is necessary for the mesh handling and deformation as well as the related unsteady flow field resolution. Therefore this kind of CFD computations are still unusual and mostly performed during trouble-shooting analysis rather than in the standard development process, i.e. in order to understand what went wrong instead of preventing failure or even better to increase the available knowledge. In this paper the application of an efficient and particularly robust algorithm for fast computations with moving mesh is presented for the analysis of transient effects encountered during highly dynamic procedures in the operation of a pump-turbine, like runaway at fixed GV position and load-rejection with GV motion imposed as one-way FSI. In both cases the computations extend through the S-shape of the machine in the turbine-brake and reverse pump domain, showing that such exotic computations can be perform on a more regular base, even if quite time consuming. Beside the presentation of the procedure and global results, some highlights in the encountered flow-physics are also given.
CFD and Thermo Mechanical Analysis on Effect of Curved vs Step Surface in IC Engine Cylinder Head
NASA Astrophysics Data System (ADS)
Balaji, S.; Ganesh, N.; Kumarasamy, A.
2017-05-01
Current research in IC engines mainly focus on various methods to achieve higher efficiency and high specific power. As a single design parameter, combustion chamber peak spring pressure has increased more than before. Apart from the structural aspects of withstanding these loads, designer faces challenges of resolving thermal aspects of cylinder head. Methods to enhance the heat transfer without compromising load withstanding capability are being constantly explored. Conventional cylinder heads have got sat inner surface. In this paper we have suggested a modification in inner surface to enhance the heat transfer capability. To increase the heat transfer rate, inner same deck surface is configured as a curved and stepped surface instead of sat. We have reported the effectiveness of extend of curvature in the inner same deck surface in a different technical paper. Here, we are making a direct comparison between stepped and curved surface only. From this analysis it has been observed that curved surface reduces the ame deck temperature considerably without compromising the structural strength factors compared to step and sat surface.
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Baumeister, Joseph F.
1994-01-01
An analytical procedure is presented, called the modal element method, that combines numerical grid based algorithms with eigenfunction expansions developed by separation of variables. A modal element method is presented for solving potential flow in a channel with two-dimensional cylindrical like obstacles. The infinite computational region is divided into three subdomains; the bounded finite element domain, which is characterized by the cylindrical obstacle and the surrounding unbounded uniform channel entrance and exit domains. The velocity potential is represented approximately in the grid based domain by a finite element solution and is represented analytically by an eigenfunction expansion in the uniform semi-infinite entrance and exit domains. The calculated flow fields are in excellent agreement with exact analytical solutions. By eliminating the grid surrounding the obstacle, the modal element method reduces the numerical grid size, employs a more precise far field boundary condition, as well as giving theoretical insight to the interaction of the obstacle with the mean flow. Although the analysis focuses on a specific geometry, the formulation is general and can be applied to a variety of problems as seen by a comparison to companion theories in aeroacoustics and electromagnetics.
Joshi, Saumitra V; Ghosh, Sat
2014-11-21
The detrimental impact of rising air pollution levels in urban landscapes has become conspicuous over the last decade, particularly in developing countries. This novel numerical study quantifies the cleansing efficiency of green façades draped with a copiously growing tropical creeper Vernonia elaeagnifolia. Turbulent transport of SO2 to the leaf boundary layer and subsequent diffusion across stomatal pores into the mesophyllic cells is modeled at the micro level, including its ionic dissociation in the leaf׳s interior. A SEM analysis indicates stomatal dimensions and density. Whilst previous studies have used either spatially averaged equations or resistance models, a spatially discretized computational approach is adopted in this study. The resulting concentration distribution is used to calculate the deposition velocity on stomatal pores, which is then extrapolated over the entire façade to yield bulk pollutant removal rates. A deposition velocity of 1.53mms(-1) and 0.72mms(-1) is obtained for open and closed pores respectively, with removal rates equal to 1.11×10(-6)s(-1) and 1.05×10(-6)s(-1) for dry and humid weather respectively. Sensitivity studies on the removal rate are carried out based on humidity, stomatal aperture and leaf temperature. The removal rate dependence on the Leaf Area Index (LAI) is also investigated. It is inferred from simulations that vegetated façades are efficient at mitigation of residual pollution.
NASA Astrophysics Data System (ADS)
Tan, Yan
Prediction and control of optical wave front distortions and aberrations in a high energy laser beam due to interaction with an unsteady highly non-uniform flow field is of great importance in the development of directed energy weapon systems for Unmanned Air Vehicles (UAV). The unsteady shear layer over the weapons bay cavity is the primary cause of this distortion of the optical wave front. The large scale vortical structure of the shear layer over the cavity can be significantly reduced by employing an active flow control technique combined with passive flow control. This dissertation explores various active and passive control methods to suppress the cavity oscillations and thereby improve the aero-optics of cavity flow. In active flow control technique, a steady or a pulsed jet is applied at the sharp leading edge of cavities of different aspect ratios L/D (=2, 4, 15), where L and D are the width and the depth of a cavity respectively. In the passive flow control approach, the sharp leading or trailing edge of the cavity is modified into a round edge of different radii. Both of these active and passive flow control approaches are studied independently and in combination. Numerical simulations are performed, with and without active flow control for subsonic free stream flow past two-dimensional sharp and round leading or trailing edge cavities using Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with a two-equation Shear Stress Transport (SST) turbulence model or a hybrid SST/Large Eddy Simulation (LES) model. Aero-optical analysis is developed and applied to all the simulation cases. Index of refraction and Optical Path Difference (OPD) are compared for flow fields without and with active flow control. Root-Mean-Square (RMS) value of OPD is calculated and compared with the experimental data, where available. The effect of steady and pulsed blowing on buffet loading on the downstream face of the cavity is also computed. Using the numerical
Gromke, Christof; Blocken, Bert
2015-01-01
Flow and dispersion of traffic pollutants in a generic urban neighborhood with avenue-trees were investigated with Computational Fluid Dynamics (CFD). In Part I of this two-part contribution, quality assessment and assurance for CFD simulations in urban and vegetation configurations were addressed,before in Part II flow and dispersion in a generic urban neighborhood with multiple layouts of avenue trees were studied. In a first step, a grid sensitivity study was performed that inferred that a cell count of 20 per building height and 12 per canyon width is sufficient for reasonable grid insensitive solutions. Next, the performance of the realizable k-ε turbulence model in simulating urban flows and of the applied vegetation model in simulating flow and turbulence in trees was validated. Finally, based on simulations of street canyons with and without avenue-trees, an appropriate turbulent Schmidt number or modeling dispersion in the urban neighborhood was determined as Sc(t) =0.5.
Integration of Engine, Plume, and CFD Analyses in Conceptual Design of Low-Boom Supersonic Aircraft
NASA Technical Reports Server (NTRS)
Li, Wu; Campbell, Richard; Geiselhart, Karl; Shields, Elwood; Nayani, Sudheer; Shenoy, Rajiv
2009-01-01
This paper documents an integration of engine, plume, and computational fluid dynamics (CFD) analyses in the conceptual design of low-boom supersonic aircraft, using a variable fidelity approach. In particular, the Numerical Propulsion Simulation System (NPSS) is used for propulsion system cycle analysis and nacelle outer mold line definition, and a low-fidelity plume model is developed for plume shape prediction based on NPSS engine data and nacelle geometry. This model provides a capability for the conceptual design of low-boom supersonic aircraft that accounts for plume effects. Then a newly developed process for automated CFD analysis is presented for CFD-based plume and boom analyses of the conceptual geometry. Five test cases are used to demonstrate the integrated engine, plume, and CFD analysis process based on a variable fidelity approach, as well as the feasibility of the automated CFD plume and boom analysis capability.
Position location technique and GDOP analysis in multistatic systems
NASA Astrophysics Data System (ADS)
He, Lixing; Sun, Zhongkang
Position location methods and GDOP analysis in multistatic systems are presented, and a unified equation of position location and that of location error for several kinds of location methods is introduced. A unified mathematical expression for GDOP is also derived. A method for arranging the geometrical position of stations is discussed as an illustration.
NASA Technical Reports Server (NTRS)
Applebaum, Michael P.; Hall, Leslie, H.; Eppard, William M.; Purinton, David C.; Campbell, John R.; Blevins, John A.
2015-01-01
This paper describes the development, testing, and utilization of an aerodynamic force and moment database for the Space Launch System (SLS) Service Module (SM) panel jettison event. The database is a combination of inviscid Computational Fluid Dynamic (CFD) data and MATLAB code written to query the data at input values of vehicle/SM panel parameters and return the aerodynamic force and moment coefficients of the panels as they are jettisoned from the vehicle. The database encompasses over 5000 CFD simulations with the panels either in the initial stages of separation where they are hinged to the vehicle, in close proximity to the vehicle, or far enough from the vehicle that body interference effects are neglected. A series of viscous CFD check cases were performed to assess the accuracy of the Euler solutions for this class of problem and good agreement was obtained. The ultimate goal of the panel jettison database was to create a tool that could be coupled with any 6-Degree-Of-Freedom (DOF) dynamics model to rapidly predict SM panel separation from the SLS vehicle in a quasi-unsteady manner. Results are presented for panel jettison simulations that utilize the database at various SLS flight conditions. These results compare favorably to an approach that directly couples a 6-DOF model with the Cart3D Euler flow solver and obtains solutions for the panels at exact locations. This paper demonstrates a method of using inviscid CFD simulations coupled with a 6-DOF model that provides adequate fidelity to capture the physics of this complex multiple moving-body panel separation event.
Schönwald, U G; Jorczyk, U; Kipfmüller, B
2011-01-01
Stents are commonly used for the treatment of occlusive artery diseases in carotid arteries. Today, there is a controversial discussion as to whether duplex sonography (DS) displays blood velocities (BV) that are too high in stented areas. The goal of this study was to evaluate the effect of stenting on DS with respect to BV in artificial carotid arteries. The results of computational fluid dynamics (CFD) were also used for the comparison. To analyze BV using DS, a phantom with a constant flow (70 cm/s) was created. Three different types of stents for carotid arteries were selected. The phantom fluid consisted of 67 % water and 33 % glycerol. All BV measurements were carried out on the last third of the stents. Furthermore, all test runs were simulated using CFD. All measurements were statistically analyzed. DS-derived BV values increased significantly after the placement of the Palmaz Genesis stent (77.6 ± 4.92 cm/sec, p = 0.03). A higher increase in BV values was registered when using the Precise RX stent (80.1 ± 2.01 cm/sec, p < 0.0001). The Strecker Tantalum stent (85.9 ± 1.95 cm/sec, p < 0.0001) generated the highest BV values. CFD simulations showed similar results. Stents have a significant impact on BV, but no effect on DS. The main factor of the blood flow acceleration is the material thickness of the stents. Therefore, different stents need different velocity criteria. Furthermore, the results of computational fluid dynamics prove that CFD can be used to simulate BV in stented silicone tubes. © Georg Thieme Verlag KG Stuttgart · New York.
CFD investigations of the aerodynamics of vehicle overtaking maneuvers
NASA Astrophysics Data System (ADS)
Uddin, Mesbah; Chellaram, Arune Dhiren; Robinson, Austin Clay
2017-06-01
When two vehicle bodies are involved in a passing maneuver, interesting and intricate aerodynamic interactions occur between them. Such passing maneuvers are very important in racing and have been an area of active interest in motorsports for quite some time. The existing literature shows only a few studies in this area, and, as such, very little is known about the complex aerodynamics of racing in proximity. This paper presents a Computational Fluid Dynamics (CFD) methodology capable of describing the transient effects that occur in this scenario. This is achieved by simulating two tandem simplified vehicle bodies, the Ahmed body, which were placed in a virtual wind tunnel. One Ahmed body was kept stationary, while the other was allowed to move in the longitudinal direction with a relatively low velocity. In order to achieve reliable CFD results when one of the solid objects is moving, a new meshing methodology, called the overset mesh model, was implemented in the CFD process. The simulations were run using Star CCM+, a commercial finite-volume CFD program, in which the unsteady Reynolds Averaged Navier-Stokes (URANS) solver was applied. The CFD results are compared against fully transient and quasi-steady-state experimental results where encouraging correlations between the CFD and experiments are observed. The veracity of the CFD work presented in this paper provides significant insight into the complex aerodynamics of a passing maneuver, and lays the foundation for further analysis in this area using more complex vehicle shapes and more complex tandem racing or passing maneuvers at a yaw angle.
NASA Technical Reports Server (NTRS)
Ziebarth, John P.; Meyer, Doug
1992-01-01
The coordination is examined of necessary resources, facilities, and special personnel to provide technical integration activities in the area of computational fluid dynamics applied to propulsion technology. Involved is the coordination of CFD activities between government, industry, and universities. Current geometry modeling, grid generation, and graphical methods are established to use in the analysis of CFD design methodologies.
Overview of hypersonic CFD code calibration studies
NASA Technical Reports Server (NTRS)
Miller, Charles G.
1987-01-01
The topics are presented in viewgraph form and include the following: definitions of computational fluid dynamics (CFD) code validation; climate in hypersonics and LaRC when first 'designed' CFD code calibration studied was initiated; methodology from the experimentalist's perspective; hypersonic facilities; measurement techniques; and CFD code calibration studies.
NASA Astrophysics Data System (ADS)
Gauvin, P.; Huard, P.
2016-11-01
High temperature level recorded on the thrust bearing of a 45 MW hydro generating unit was resulting in frequent production stoppage. In spite of improvements brought to the oil cooling system since the rehabilitation in 2008, the operator had to activate the bearing oil lift system to keep the temperature below acceptable limits. Primary root cause analysis first pointed to the design of the shoe that was centrally pivoted, not allowing the formation of a thick hydrodynamic film. The removal of a strip of the soft metal layer near the trailing edge of the shoe resulted in a significant surface temperature reduction (about 15 deg. C), as predicted by a CFD model of the oil film. The goal of this machining was to increase the pivoting angle by moving the centre of hydrodynamic pressure. Proximity sensors were installed at each corner of the redesigned shoe to measure the film thickness and the bearing attitude. Signal analysis revealed a step of a magnitude close to the oil film thickness between the two halves of the rotating thrust block. This was the cause of another failure few hours since restarting the unit. The lessons learnt through these measurements and analyses were carefully applied to the ultimate build. The unit now runs with a robust thrust bearing and even survived a significant cooling flow reduction event. This paper presents the CFD analysis results and the measurements acquired during these events.
ERIC Educational Resources Information Center
Conone, Ruth M.
The key to positioning is the creation of a clear benefit image in the consumer's mind. One positioning strategy is creating in the prospect's mind a position that takes into consideration the company's or agency's strengths and weaknesses as well as those of its competitors. Another strategy is to gain entry into a position ladder owned by…
A CFD/CSD interaction methodology for aircraft wings
Bhardwaj, M.K.; Kapania, R.K.; Reichenbach, E.; Guruswamy, G.P.
1998-01-01
With advanced subsonic transports and military aircraft operating in the transonic regime, it is becoming important to determine the effects of the coupling between aerodynamic loads and elastic forces. Since aeroelastic effects can significantly impact the design of these aircraft, there is a strong need in the aerospace industry to predict these interactions computationally. Such an analysis in the transonic regime requires high fidelity computational fluid dynamics (CFD) analysis tools, due to the nonlinear behavior of the aerodynamics in the transonic regime and also high fidelity computational structural dynamics (CSD) analysis tools. Also, there is a need to be able to use a wide variety of CFD and CSD methods to predict aeroelastic effects. Since source codes are not always available, it is necessary to couple the CFD and CSD codes without alteration of the source codes. In this study, an aeroelastic coupling procedure is developed to determine the static aeroelastic response of aircraft wings using any CFD and CSD code with little code integration. The aeroelastic coupling procedure is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas CFD code) and NASTRAN. In addition, the Aeroelastic Research Wing (ARW-2) is used for demonstration of the aeroelastic coupling procedure by using ENSAERO (NASA Ames Research Center CFD code) and a finite element wing-box code. The results obtained from the present study are compared with those available from an experimental study conducted at NASA Langley Research Center and a study conducted at NASA Ames Research Center using ENSAERO and modal superposition. The results compare well with experimental data.
FDNS CFD Code Benchmark for RBCC Ejector Mode Operation
NASA Technical Reports Server (NTRS)
Holt, James B.; Ruf, Joe
1999-01-01
Computational Fluid Dynamics (CFD) analysis results are compared with benchmark quality test data from the Propulsion Engineering Research Center's (PERC) Rocket Based Combined Cycle (RBCC) experiments to verify fluid dynamic code and application procedures. RBCC engine flowpath development will rely on CFD applications to capture the multi-dimensional fluid dynamic interactions and to quantify their effect on the RBCC system performance. Therefore, the accuracy of these CFD codes must be determined through detailed comparisons with test data. The PERC experiments build upon the well-known 1968 rocket-ejector experiments of Odegaard and Stroup by employing advanced optical and laser based diagnostics to evaluate mixing and secondary combustion. The Finite Difference Navier Stokes (FDNS) code was used to model the fluid dynamics of the PERC RBCC ejector mode configuration. Analyses were performed for both Diffusion and Afterburning (DAB) and Simultaneous Mixing and Combustion (SMC) test conditions. Results from both the 2D and the 3D models are presented.
Data analysis of photon beam position at PLS-II
Ko, J.; Shin, S. Huang, Jung-Yun; Kim, D.; Kim, C.; Kim, Ilyou; Lee, T.-Y.; Park, C.-D.; Kim, K. R.; Cho, Moohyun
2016-07-27
In the third generation light source, photon beam position stability is critical issue on user experiment. Generally photon beam position monitors have been developed for the detection of the real photon beam position and the position is controlled by feedback system in order to keep the reference photon beam position. In the PLS-II, photon beam position stability for front end of particular beam line, in which photon beam position monitor is installed, has been obtained less than rms 1μm for user service period. Nevertheless, detail analysis for photon beam position data in order to demonstrate the performance of photon beam position monitor is necessary, since it can be suffers from various unknown noises. (for instance, a back ground contamination due to upstream or downstream dipole radiation, undulator gap dependence, etc.) In this paper, we will describe the start to end study for photon beam position stability and the Singular Value Decomposition (SVD) analysis to demonstrate the reliability on photon beam position data.
NASA Astrophysics Data System (ADS)
Lee, Gong Hee; Bang, Young Seok; Woo, Sweng Woong; Kim, Do Hyeong; Kang, Min Ku
2014-06-01
As the computer hardware technology develops the license applicants for nuclear power plant use the commercial CFD software with the aim of reducing the excessive conservatism associated with using simplified and conservative analysis tools. Even if some of CFD software developer and its user think that a state of the art CFD software can be used to solve reasonably at least the single-phase nuclear reactor problems, there is still limitation and uncertainty in the calculation result. From a regulatory perspective, Korea Institute of Nuclear Safety (KINS) is presently conducting the performance assessment of the commercial CFD software for nuclear reactor problems. In this study, in order to examine the validity of the results of 1/5 scaled APR+ (Advanced Power Reactor Plus) flow distribution tests and the applicability of CFD in the analysis of reactor internal flow, the simulation was conducted with the two commercial CFD software (ANSYS CFX V.14 and FLUENT V.14) among the numerous commercial CFD software and was compared with the measurement. In addition, what needs to be improved in CFD for the accurate simulation of reactor core inlet flow was discussed.
NASA and CFD - Making investments for the future
NASA Technical Reports Server (NTRS)
Hessenius, Kristin A.; Richardson, P. F.
1992-01-01
From a NASA perspective, CFD is a new tool for fluid flow simulation and prediction with virtually none of the inherent limitations of other ground-based simulation techniques. A primary goal of NASA's CFD research program is to develop efficient and accurate computational techniques for utilization in the design and analysis of aerospace vehicles. The program in algorithm development has systematically progressed through the hierarchy of engineering simplifications of the Navier-Stokes equations, starting with the inviscid formulations such as transonic small disturbance, full potential, and Euler.
Performance Study and CFD Predictions of a Ducted Fan System
NASA Technical Reports Server (NTRS)
Abrego, Anita I.; Chang, I-Chung; Bulaga, Robert W.; Rutkowski, Michael (Technical Monitor)
2002-01-01
An experimental investigation was completed in the NASA Ames 7 by 10-Foot Wind Tunnel to study the performance characteristics of a ducted fan. The goal of this effort is to study the effect of ducted fan geometry and utilize Computational Fluid Dynamics (CFD) analysis to provide a baseline for correlation. A 38-inch diameter, 10-inch chord duct with a five-bladed fixed-pitch fan was tested. Duct performance data were obtained in hover, vertical climb, and forward flight test conditions. This paper will present a description of the test, duct performance results and correlation with CFD predictions.
NASA and CFD - Making investments for the future
NASA Technical Reports Server (NTRS)
Hessenius, Kristin A.; Richardson, P. F.
1992-01-01
From a NASA perspective, CFD is a new tool for fluid flow simulation and prediction with virtually none of the inherent limitations of other ground-based simulation techniques. A primary goal of NASA's CFD research program is to develop efficient and accurate computational techniques for utilization in the design and analysis of aerospace vehicles. The program in algorithm development has systematically progressed through the hierarchy of engineering simplifications of the Navier-Stokes equations, starting with the inviscid formulations such as transonic small disturbance, full potential, and Euler.
An Experimental and CFD Study of a Supersonic Coaxial Jet
NASA Technical Reports Server (NTRS)
Cutler, A. D.; White, J. A.
2001-01-01
A supersonic coaxial jet facility is designed and experimental data are acquired suitable for the validation of CFD codes employed in the analysis of high-speed air-breathing engines. The center jet is of a light gas, the coflow jet is of air, and the mixing layer between them is compressible. The jet flow field is characterized using schlieren imaging, surveys with pitot, total temperature and gas sampling probes, and RELIEF velocimetry. VULCAN, a structured grid CFD code, is used to solve for the nozzle and jet flow, and the results are compared to the experiment for several variations of the kappa - omega turbulence model
Reducing numerical costs for core wide nuclear reactor CFD simulations by the Coarse-Grid-CFD
NASA Astrophysics Data System (ADS)
Viellieber, Mathias; Class, Andreas G.
2013-11-01
Traditionally complete nuclear reactor core simulations are performed with subchannel analysis codes, that rely on experimental and empirical input. The Coarse-Grid-CFD (CGCFD) intends to replace the experimental or empirical input with CFD data. The reactor core consists of repetitive flow patterns, allowing the general approach of creating a parametrized model for one segment and composing many of those to obtain the entire reactor simulation. The method is based on a detailed and well-resolved CFD simulation of one representative segment. From this simulation we extract so-called parametrized volumetric forces which close, an otherwise strongly under resolved, coarsely-meshed model of a complete reactor setup. While the formulation so far accounts for forces created internally in the fluid others e.g. obstruction and flow deviation through spacers and wire wraps, still need to be accounted for if the geometric details are not represented in the coarse mesh. These are modelled with an Anisotropic Porosity Formulation (APF). This work focuses on the application of the CGCFD to a complete reactor core setup and the accomplishment of the parametrization of the volumetric forces.
METC CFD simulations of hot gas filtration
O`Brien, T.J.
1995-06-01
Computational Fluid Dynamic (CFD) simulations of the fluid/particle flow in several hot gas filtration vessels will be presented. These simulations have been useful in designing filtration vessels and in diagnosing problems with filter operation. The simulations were performed using the commercial code FLUENT and the METC-developed code MFIX. Simulations of the initial configuration of the Karhula facility indicated that the dirty gas flow over the filter assemblage was very non-uniform. The force of the dirty gas inlet flow was inducing a large circulation pattern that caused flow around the candles to be in opposite directions on opposite sides of the vessel. By introducing a system of baffles, a more uniform flow pattern was developed. This modification may have contributed to the success of the project. Several simulations of configurations proposed by Industrial Filter and Pump were performed, varying the position of the inlet. A detailed resolution of the geometry of the candles allowed determination of the flow between the individual candles. Recent simulations in support of the METC/CeraMem Cooperative Research and Development Agreement have analyzed the flow in the vessel during the cleaning back-pulse. Visualization of experiments at the CeraMem cold-flow facility provided confidence in the use of CFD. Extensive simulations were then performed to assist in the design of the hot test facility being built by Ahlstrom/Pyropower. These tests are intended to demonstrate the CeraMem technology.
A CFD/CSD interaction methodology for aircraft wings
NASA Astrophysics Data System (ADS)
Bhardwaj, Manoj Kumar
With advanced subsonic transports and military aircraft operating in the transonic regime, it is becoming important to determine the effects of the coupling between aerodynamic loads and elastic forces. Since aeroelastic effects can contribute significantly to the design of these aircraft, there is a strong need in the aerospace industry to predict these aero-structure interactions computationally. To perform static aeroelastic analysis in the transonic regime, high fidelity computational fluid dynamics (CFD) analysis tools must be used in conjunction with high fidelity computational structural dynamics (CSD) analysis tools due to the nonlinear behavior of the aerodynamics in the transonic regime. There is also a need to be able to use a wide variety of CFD and CSD tools to predict these aeroelastic effects in the transonic regime. Because source codes are not always available, it is necessary to couple the CFD and CSD codes without alteration of the source codes. In this study, an aeroelastic coupling procedure is developed which will perform static aeroelastic analysis using any CFD and CSD code with little code integration. The aeroelastic coupling procedure is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas CFD code) and NASTRAN. In addition, the Aeroelastic Research Wing (ARW-2) is used for demonstration of the aeroelastic coupling procedure by using ENSAERO (NASA Ames Research Center CFD code) and a finite element wing-box code (developed as a part of this research). The results obtained from the present study are compared with those available from an experimental study conducted at NASA Langley Research Center and a study conducted at NASA Ames Research Center using ENSAERO and modal superposition. The results compare well with experimental data. Parallel computing power is used to investigate parallel static aeroelastic analysis because obtaining an aeroelastic solution using CFD/CSD methods is computationally intensive. A
Force Balance Determination of a Film Riding Seal Using CFD
NASA Technical Reports Server (NTRS)
Justak, John
2007-01-01
CFD analysis provides a means of discerning H-seal functionality. H-Seal geometry can be modified to provide smaller or larger operational gap. H-Seal can be installed with large cold clearance and maintain a small operational effective clearance.
Assessment of Computational Fluid Dynamics (CFD) Models for Shock Boundary-Layer Interaction
NASA Technical Reports Server (NTRS)
DeBonis, James R.; Oberkampf, William L.; Wolf, Richard T.; Orkwis, Paul D.; Turner, Mark G.; Babinsky, Holger
2011-01-01
A workshop on the computational fluid dynamics (CFD) prediction of shock boundary-layer interactions (SBLIs) was held at the 48th AIAA Aerospace Sciences Meeting. As part of the workshop numerous CFD analysts submitted solutions to four experimentally measured SBLIs. This paper describes the assessment of the CFD predictions. The assessment includes an uncertainty analysis of the experimental data, the definition of an error metric and the application of that metric to the CFD solutions. The CFD solutions provided very similar levels of error and in general it was difficult to discern clear trends in the data. For the Reynolds Averaged Navier-Stokes methods the choice of turbulence model appeared to be the largest factor in solution accuracy. Large-eddy simulation methods produced error levels similar to RANS methods but provided superior predictions of normal stresses.
Surveying Professionals' Views of Positive Behavior Support and Behavior Analysis
ERIC Educational Resources Information Center
Filter, Kevin J.; Tincani, Matt; Fung, Daniel
2009-01-01
Positive behavior support (PBS) is an empirically driven approach to improve quality of life influenced by the science of behavior analysis. Recent discussions have evolved around PBS, behavior analysis, and their relationship within education and human services fields. To date, few data have been offered to guide behaviorally oriented…
Surveying Professionals' Views of Positive Behavior Support and Behavior Analysis
ERIC Educational Resources Information Center
Filter, Kevin J.; Tincani, Matt; Fung, Daniel
2009-01-01
Positive behavior support (PBS) is an empirically driven approach to improve quality of life influenced by the science of behavior analysis. Recent discussions have evolved around PBS, behavior analysis, and their relationship within education and human services fields. To date, few data have been offered to guide behaviorally oriented…
Unstructured mesh methods for CFD
NASA Technical Reports Server (NTRS)
Peraire, J.; Morgan, K.; Peiro, J.
1990-01-01
Mesh generation methods for Computational Fluid Dynamics (CFD) are outlined. Geometric modeling is discussed. An advancing front method is described. Flow past a two engine Falcon aeroplane is studied. An algorithm and associated data structure called the alternating digital tree, which efficiently solves the geometric searching problem is described. The computation of an initial approximation to the steady state solution of a given poblem is described. Mesh generation for transient flows is described.
Toward Supersonic Retropropulsion CFD Validation
NASA Technical Reports Server (NTRS)
Kleb, Bil; Schauerhamer, D. Guy; Trumble, Kerry; Sozer, Emre; Barnhardt, Michael; Carlson, Jan-Renee; Edquist, Karl
2011-01-01
This paper begins the process of verifying and validating computational fluid dynamics (CFD) codes for supersonic retropropulsive flows. Four CFD codes (DPLR, FUN3D, OVERFLOW, and US3D) are used to perform various numerical and physical modeling studies toward the goal of comparing predictions with a wind tunnel experiment specifically designed to support CFD validation. Numerical studies run the gamut in rigor from code-to-code comparisons to observed order-of-accuracy tests. Results indicate that this complex flowfield, involving time-dependent shocks and vortex shedding, design order of accuracy is not clearly evident. Also explored is the extent of physical modeling necessary to predict the salient flowfield features found in high-speed Schlieren images and surface pressure measurements taken during the validation experiment. Physical modeling studies include geometric items such as wind tunnel wall and sting mount interference, as well as turbulence modeling that ranges from a RANS (Reynolds-Averaged Navier-Stokes) 2-equation model to DES (Detached Eddy Simulation) models. These studies indicate that tunnel wall interference is minimal for the cases investigated; model mounting hardware effects are confined to the aft end of the model; and sparse grid resolution and turbulence modeling can damp or entirely dissipate the unsteadiness of this self-excited flow.
Yesterday, today and tomorrow: A perspective of CFD at NASA's Ames Research Center
NASA Astrophysics Data System (ADS)
Kutler, Paul; Gross, Anthony R.
1987-03-01
The opportunity to reflect on the computational fluid dynamics (CFD) progam at the NASA Ames Research Center (its beginning, its present state, and its direction for the future) is afforded. Essential elements of the research program during each period are reviewed, including people, facilities, and research problems. The burgeoning role that CFD is playing in the aerospace business is discussed, as is the necessity for validated CFD tools. The current aeronautical position of this country is assessed, as are revolutionary goals to help maintain its aeronautical supremacy in the world.
Yesterday, today and tomorrow: A perspective of CFD at NASA's Ames Research Center
NASA Technical Reports Server (NTRS)
Kutler, Paul; Gross, Anthony R.
1987-01-01
The opportunity to reflect on the computational fluid dynamics (CFD) progam at the NASA Ames Research Center (its beginning, its present state, and its direction for the future) is afforded. Essential elements of the research program during each period are reviewed, including people, facilities, and research problems. The burgeoning role that CFD is playing in the aerospace business is discussed, as is the necessity for validated CFD tools. The current aeronautical position of this country is assessed, as are revolutionary goals to help maintain its aeronautical supremacy in the world.
Shape Optimization of Vehicle Radiator Using Computational Fluid Dynamics (cfd)
NASA Astrophysics Data System (ADS)
Maddipatla, Sridhar; Guessous, Laila
2002-11-01
Automotive manufacturers need to improve the efficiency and lifetime of all engine components. In the case of radiators, performance depends significantly on coolant flow homogeneity across the tubes and overall pressure drop between the inlet and outlet. Design improvements are especially needed in tube-flow uniformity to prevent premature fouling and failure of heat exchangers. Rather than relying on ad-hoc geometry changes, the current study combines Computational Fluid Dynamics with shape optimization methods to improve radiator performance. The goal is to develop an automated suite of virtual tools to assist in radiator design. Two objective functions are considered: a flow non-uniformity coefficient,Cf, and the overall pressure drop, dP*. The methodology used to automate the CFD and shape optimization procedures is discussed. In the first phase, single and multi-variable optimization methods, coupled with CFD, are applied to simplified 2-D radiator models to investigate effects of inlet and outlet positions on the above functions. The second phase concentrates on CFD simulations of a simplified 3-D radiator model. The results, which show possible improvements in both pressure and flow uniformity, validate the optimization criteria that were developed, as well as the potential of shape optimization methods with CFD to improve heat exchanger design. * Improving Radiator Design Through Shape Optimization, L. Guessous and S. Maddipatla, Paper # IMECE2002-33888, Proceedings of the 2002 ASME International Mechanical Engineering Congress and Exposition, November 2002
NASA Astrophysics Data System (ADS)
Ostrowski, Z.; Melka, B.; Adamczyk, W.; Rojczyk, M.; Golda, A.; Nowak, A. J.
2016-09-01
In the research a numerical Computational Fluid Dynamics (CFD) model of the pulsatile blood flow was created and analyzed. A real geometry of aorta and its thoracic branches of 8-year old patient diagnosed with a congenital heart defect - coarctation of aorta was used. The inlet boundary condition were implemented as the User Define Function according to measured values of volumetric blood flow. The blood flow was treated as multiphase: plasma, set as the primary fluid phase, was dominant with volume fraction of 0.585 and morphological elements of blood were treated in Euler-Euler approach as dispersed phases (with 90% Red Blood Cells and White Blood Cells as remaining solid volume fraction).
Sagittal lip positions in different skeletal malocclusions: a cephalometric analysis.
Joshi, Merina; Wu, Li Peng; Maharjan, Surendra; Regmi, Mukunda Raj
2015-01-01
The objectives of this paper are to (1) study use of soft tissue analyses advocated by Steiner, Ricketts, Burstone, Sushner and Holdway to develop soft tissue cephalometric norms as baseline data for sagittal lip position in Northeast Chinese adult population, (2) compare the sagittal lip positions in different skeletal malocclusions and (3) compare the sagittal lip positions in Northeast Chinese adults with other reported populations. Lateral cephalometric radiographs of subjects were taken in natural head position. Radiographs were manually traced and five reference lines - Sushner, Steiner, Burstone, Holdway and Ricketts, were used. The linear distance between the tip of the lips and the five reference lines were measured. Statistical analysis was done using the Statistical Package for Social Sciences (SPSS) 21. Descriptive analysis was done for each variable for each subject. Coefficient of variation between lip positions as assessed by reference lines was determined. Post hoc Tukey's test was used for comparison of the mean cephalometric values of three skeletal malocclusions. The level of significance for the analysis was set at p < 0.05. The findings showed significant difference in the sagittal lip positions in different skeletal malocclusions. There was variation in consistent reference line in each skeletal malocclusion. The S2 line was the most consistent reference line in skeletal class I and class II group. The B line was the most consistent line in skeletal class III. In skeletal class II group, upper lips were the most protrusive and lower lips were retrusive than in skeletal class I and class III groups. In case of skeletal class III group, upper lips were retrusive and lower lips were more protrusive than in skeletal class I and class II groups. The sagittal lip positions were found to be associated with the skeletal malocclusion pattern. Northeast Chinese population has protrusive upper and lower lip in comparison to Caucasians. Each skeletal
Sverdlova, Nina S.; Lambertz, Markus; Witzel, Ulrich; Perry, Steven F.
2012-01-01
Various parts of the respiratory system play an important role in temperature control in birds. We create a simplified computational fluid dynamics (CFD) model of heat exchange in the trachea and air sacs of the domestic fowl (Gallus domesticus) in order to investigate the boundary conditions for the convective and evaporative cooling in these parts of the respiratory system. The model is based upon published values for respiratory times, pressures and volumes and upon anatomical data for this species, and the calculated heat exchange is compared with experimentally determined values for the domestic fowl and a closely related, wild species. In addition, we studied the trachea histologically to estimate the thickness of the heat transfer barrier and determine the structure and function of moisture-producing glands. In the transient CFD simulation, the airflow in the trachea of a 2-dimensional model is evoked by changing the volume of the simplified air sac. The heat exchange between the respiratory system and the environment is simulated for different ambient temperatures and humidities, and using two different models of evaporation: constant water vapour concentration model and the droplet injection model. According to the histological results, small mucous glands are numerous but discrete serous glands are lacking on the tracheal surface. The amount of water and heat loss in the simulation is comparable with measured respiratory values previously reported. Tracheal temperature control in the avian respiratory system may be used as a model for extinct or rare animals and could have high relevance for explaining how gigantic, long-necked dinosaurs such as sauropoda might have maintained a high metabolic rate. PMID:23028927
Sverdlova, Nina S; Lambertz, Markus; Witzel, Ulrich; Perry, Steven F
2012-01-01
Various parts of the respiratory system play an important role in temperature control in birds. We create a simplified computational fluid dynamics (CFD) model of heat exchange in the trachea and air sacs of the domestic fowl (Gallus domesticus) in order to investigate the boundary conditions for the convective and evaporative cooling in these parts of the respiratory system. The model is based upon published values for respiratory times, pressures and volumes and upon anatomical data for this species, and the calculated heat exchange is compared with experimentally determined values for the domestic fowl and a closely related, wild species. In addition, we studied the trachea histologically to estimate the thickness of the heat transfer barrier and determine the structure and function of moisture-producing glands. In the transient CFD simulation, the airflow in the trachea of a 2-dimensional model is evoked by changing the volume of the simplified air sac. The heat exchange between the respiratory system and the environment is simulated for different ambient temperatures and humidities, and using two different models of evaporation: constant water vapour concentration model and the droplet injection model. According to the histological results, small mucous glands are numerous but discrete serous glands are lacking on the tracheal surface. The amount of water and heat loss in the simulation is comparable with measured respiratory values previously reported. Tracheal temperature control in the avian respiratory system may be used as a model for extinct or rare animals and could have high relevance for explaining how gigantic, long-necked dinosaurs such as sauropoda might have maintained a high metabolic rate.
Bootstrap position analysis for forecasting low flow frequency
Tasker, Gary D.; Dunne, P.
1997-01-01
A method of random resampling of residuals from stochastic models is used to generate a large number of 12-month-long traces of natural monthly runoff to be used in a position analysis model for a water-supply storage and delivery system. Position analysis uses the traces to forecast the likelihood of specified outcomes such as reservoir levels falling below a specified level or streamflows falling below statutory passing flows conditioned on the current reservoir levels and streamflows. The advantages of this resampling scheme, called bootstrap position analysis, are that it does not rely on the unverifiable assumption of normality, fewer parameters need to be estimated directly from the data, and accounting for parameter uncertainty is easily done. For a given set of operating rules and water-use requirements for a system, water managers can use such a model as a decision-making tool to evaluate different operating rules. ?? ASCE,.
Verma, Sanjeev Kumar; Maheshwari, Sandhya; Gautam, Sanjay N; Prabhat, Kc; Kumar, Shailendra
2012-01-01
The Frankfort horizontal is a useful compromise for studying skulls but not for orienting the natural head position (NHP) in the living because it is normally distributed around a true extracranial horizontal. Nonetheless, orthodontists dealing with living subjects, rather than inert crania, have used this Frankfort horizontal faithfully in cephalometry. Because the cant or inclination of all intracranial reference lines is subjected to biologic variation, they are unsuitable for meaningful cephalometric analysis. Registration of head posture in its natural position has the advantage that an extracranial vertical or a horizontal perpendicular to that vertical can be used as reference line for cephalometric analysis. Purpose of this paper is to provide an updated review of various methods to reproduce and record the NHP.
Automated Astrophysical False Positive Analysis of Transiting Planet Signals
NASA Astrophysics Data System (ADS)
Morton, Timothy
2015-08-01
Beginning with Kepler, but continuing with K2 and TESS, transiting planet candidates are now found at a much faster rate than follow-up observations can be obtained. Thus, distinguishing true planet candidates from astrophysical false positives has become primarily a statistical exercise. I will describe a new publicly available open-source Python package for analyzing the astrophysical false positive probabilities of transiting exoplanet signals. In addition, I will present results of applying this analysis to both Kepler and K2 planet candidates, resulting in the probabilistic validation of thousands of exoplanets, as well as identifying many likely false positives.
Relational interaction in occupational therapy: Conversation analysis of positive feedback.
Weiste, Elina
2017-01-31
The therapeutic relationship is an important factor for good therapy outcomes. The primary mediator of a beneficial therapy relationship is clinician-client interaction. However, few studies identify the observable interactional attributes of good quality relational interactions, e.g. offering the client positive feedback. The present paper aims to expand current understanding of relational interaction by analyzing the real-time interactional practices therapists use for offering positive feedback, an important value in occupational therapy. The analysis is based on the conversation analysis of 15 video-recorded occupational therapy encounters in psychiatric outpatient clinics. Two types of positive feedback were identified. In aligning feedback, therapists encouraged and complimented clients' positive perspectives on their own achievements in adopting certain behaviour, encouraging and supporting their progress. In redirecting feedback, therapists shifted the perspective from clients' negative experiences to their positive experiences. This shift was interactionally successful if they laid the foundation for the shift in perspective and attuned their expressions to the clients' emotional states. Occupational therapists routinely provide their clients with positive feedback. Awareness of the interactional attributes related to positive feedback is critically important for successful relational interaction.
Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances †
Alarifi, Abdulrahman; Al-Salman, AbdulMalik; Alsaleh, Mansour; Alnafessah, Ahmad; Al-Hadhrami, Suheer; Al-Ammar, Mai A.; Al-Khalifa, Hend S.
2016-01-01
In recent years, indoor positioning has emerged as a critical function in many end-user applications; including military, civilian, disaster relief and peacekeeping missions. In comparison with outdoor environments, sensing location information in indoor environments requires a higher precision and is a more challenging task in part because various objects reflect and disperse signals. Ultra WideBand (UWB) is an emerging technology in the field of indoor positioning that has shown better performance compared to others. In order to set the stage for this work, we provide a survey of the state-of-the-art technologies in indoor positioning, followed by a detailed comparative analysis of UWB positioning technologies. We also provide an analysis of strengths, weaknesses, opportunities, and threats (SWOT) to analyze the present state of UWB positioning technologies. While SWOT is not a quantitative approach, it helps in assessing the real status and in revealing the potential of UWB positioning to effectively address the indoor positioning problem. Unlike previous studies, this paper presents new taxonomies, reviews some major recent advances, and argues for further exploration by the research community of this challenging problem space. PMID:27196906
Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances.
Alarifi, Abdulrahman; Al-Salman, AbdulMalik; Alsaleh, Mansour; Alnafessah, Ahmad; Al-Hadhrami, Suheer; Al-Ammar, Mai A; Al-Khalifa, Hend S
2016-05-16
In recent years, indoor positioning has emerged as a critical function in many end-user applications; including military, civilian, disaster relief and peacekeeping missions. In comparison with outdoor environments, sensing location information in indoor environments requires a higher precision and is a more challenging task in part because various objects reflect and disperse signals. Ultra WideBand (UWB) is an emerging technology in the field of indoor positioning that has shown better performance compared to others. In order to set the stage for this work, we provide a survey of the state-of-the-art technologies in indoor positioning, followed by a detailed comparative analysis of UWB positioning technologies. We also provide an analysis of strengths, weaknesses, opportunities, and threats (SWOT) to analyze the present state of UWB positioning technologies. While SWOT is not a quantitative approach, it helps in assessing the real status and in revealing the potential of UWB positioning to effectively address the indoor positioning problem. Unlike previous studies, this paper presents new taxonomies, reviews some major recent advances, and argues for further exploration by the research community of this challenging problem space.
CFD Script for Rapid TPS Damage Assessment
NASA Technical Reports Server (NTRS)
McCloud, Peter
2013-01-01
This grid generation script creates unstructured CFD grids for rapid thermal protection system (TPS) damage aeroheating assessments. The existing manual solution is cumbersome, open to errors, and slow. The invention takes a large-scale geometry grid and its large-scale CFD solution, and creates a unstructured patch grid that models the TPS damage. The flow field boundary condition for the patch grid is then interpolated from the large-scale CFD solution. It speeds up the generation of CFD grids and solutions in the modeling of TPS damages and their aeroheating assessment. This process was successfully utilized during STS-134.
CFD lends the government a hand
NASA Astrophysics Data System (ADS)
Lekoudis, Spiro; Singleton, Robert E.; Mehta, Unmeel B.
1992-02-01
The present survey of important and novel CFD applications being developed and implemented by U.S. Government contractors gives attention to naval vessel flow-modeling, Army ballistic and rotary wing aerodynamics, and NASA hypersonic vehicle related applications of CFD. CFD-generated knowledge of numerical algorithms, fluid motion, and supercomputer use is being incorporated into such additional areas as computational electromagnetics and acoustics. Attention is presently given to CFD methods' development status in such fields as submarine boundary layers, hypersonic kinetic energy projectile shock structures, helicopter main rotor tip flows, and National Aerospace Plane aerothermodynamics.
CFD lends the government a hand
NASA Technical Reports Server (NTRS)
Lekoudis, Spiro; Singleton, Robert E.; Mehta, Unmeel B.
1992-01-01
The present survey of important and novel CFD applications being developed and implemented by U.S. Government contractors gives attention to naval vessel flow-modeling, Army ballistic and rotary wing aerodynamics, and NASA hypersonic vehicle related applications of CFD. CFD-generated knowledge of numerical algorithms, fluid motion, and supercomputer use is being incorporated into such additional areas as computational electromagnetics and acoustics. Attention is presently given to CFD methods' development status in such fields as submarine boundary layers, hypersonic kinetic energy projectile shock structures, helicopter main rotor tip flows, and National Aerospace Plane aerothermodynamics.
CFD lends the government a hand
NASA Technical Reports Server (NTRS)
Lekoudis, Spiro; Singleton, Robert E.; Mehta, Unmeel B.
1992-01-01
The present survey of important and novel CFD applications being developed and implemented by U.S. Government contractors gives attention to naval vessel flow-modeling, Army ballistic and rotary wing aerodynamics, and NASA hypersonic vehicle related applications of CFD. CFD-generated knowledge of numerical algorithms, fluid motion, and supercomputer use is being incorporated into such additional areas as computational electromagnetics and acoustics. Attention is presently given to CFD methods' development status in such fields as submarine boundary layers, hypersonic kinetic energy projectile shock structures, helicopter main rotor tip flows, and National Aerospace Plane aerothermodynamics.
CFD Simulation of Liquid Rocket Engine Injectors
NASA Technical Reports Server (NTRS)
Farmer, Richard; Cheng, Gary; Chen, Yen-Sen; Garcia, Roberto (Technical Monitor)
2001-01-01
these investigators to be very valuable for code validation because combustion kinetics, turbulence models and atomization models based on low pressure experiments of hydrogen air combustion do not adequately verify analytical or CFD submodels which are necessary to simulate rocket engine combustion. We wish to emphasize that the simulations which we prepared for this meeting are meant to test the accuracy of the approximations used in our general purpose spray combustion models, rather than represent a definitive analysis of each of the experiments which were conducted. Our goal is to accurately predict local temperatures and mixture ratios in rocket engines; hence predicting individual experiments is used only for code validation. To replace the conventional JANNAF standard axisymmetric finite-rate (TDK) computer code 2 for performance prediction with CFD cases, such codes must posses two features. Firstly, they must be as easy to use and of comparable run times for conventional performance predictions. Secondly, they must provide more detailed predictions of the flowfields near the injector face. Specifically, they must accurately predict the convective mixing of injected liquid propellants in terms of the injector element configurations.
CFD simulation of airflow inside tree canopies discharged from air-assisted sprayers
USDA-ARS?s Scientific Manuscript database
Effective pesticide application is not only essential for specialty crop industries but also very important for addressing increasing concerns about environmental contamination caused by pesticide spray drift. Numerical analysis using computational fluid dynamics (CFD) can contribute to better under...
Computational Methods for HSCT-Inlet Controls/CFD Interdisciplinary Research
NASA Technical Reports Server (NTRS)
Cole, Gary L.; Melcher, Kevin J.; Chicatelli, Amy K.; Hartley, Tom T.; Chung, Joongkee
1994-01-01
A program aimed at facilitating the use of computational fluid dynamics (CFD) simulations by the controls discipline is presented. The objective is to reduce the development time and cost for propulsion system controls by using CFD simulations to obtain high-fidelity system models for control design and as numerical test beds for control system testing and validation. An interdisciplinary team has been formed to develop analytical and computational tools in three discipline areas: controls, CFD, and computational technology. The controls effort has focused on specifying requirements for an interface between the controls specialist and CFD simulations and a new method for extracting linear, reduced-order control models from CFD simulations. Existing CFD codes are being modified to permit time accurate execution and provide realistic boundary conditions for controls studies. Parallel processing and distributed computing techniques, along with existing system integration software, are being used to reduce CFD execution times and to support the development of an integrated analysis/design system. This paper describes: the initial application for the technology being developed, the high speed civil transport (HSCT) inlet control problem; activities being pursued in each discipline area; and a prototype analysis/design system in place for interactive operation and visualization of a time-accurate HSCT-inlet simulation.
Efficient Cfd/csd Coupling Methods for Aeroelastic Applications
NASA Astrophysics Data System (ADS)
Chen, Long; Xu, Tianhao; Xie, Jing
2016-06-01
A fast aeroelastic numerical simulation method using CFD/CSD coupling are developed. Generally, aeroelastic numerical simulation costs much time and significant hardware resources with CFD/CSD coupling. In this paper, dynamic grid method, full implicit scheme, parallel technology and improved coupling method are researched for efficiency simulation. An improved Delaunay graph mapping method is proposed for efficient dynamic grid deform. Hybrid grid finite volume method is used to solve unsteady flow fields. The dual time stepping method based on parallel implicit scheme is used in temporal discretization for efficiency simulation. An approximate system of linear equations is solved by the GMRES algorithm with a LU-SGS preconditioner. This method leads to a significant increase in performance over the explicit and LU-SGS implicit methods. A modification of LU-SGS is proposed to improve the parallel performance. Parallel computing overs a very effective way to improve our productivity in doing CFD/CFD coupling analysis. Improved loose coupling method is an efficiency way over the loose coupling method and tight coupling method. 3D wing's aeroelastic phenomenon is simulated by solving Reynolds-averaged Navier-Stokes equations using improved loose coupling method. The flutter boundary is calculated and agrees well with experimental data. The transonic hole is very clear in numerical simulation results.
Introducing CFD in Introductory Undergraduate Fluid Mechanics Courses
NASA Astrophysics Data System (ADS)
Cimbala, John M.
2005-11-01
Many instructors want to introduce CFD into their introductory junior-level fluid mechanics course, but cannot because it requires several hours of class time at the cost of displacement of other basic material. A simple but effective method is now available that has been used successfully at Penn State since Spring 2005. It requires minimal instructor preparation time and only about one class period. Namely, immediately after solving the Navier-Stokes equation analytically for simple flows such as Couette and Poiseuille flow, CFD is introduced as a modern tool for solving the same equations numerically. The application of CFD (grid generation, boundary conditions, etc.), rather than numerical algorithms, is stressed. Homework problems are then assigned using pre-defined templates for FlowLab, a student-friendly analysis and visualization package created by Fluent, Inc. The templates and exercises are designed to support and emphasize the theory and concepts taught in class and in the textbook. For example, the new textbook by Cengel and Cimbala (McGraw-Hill 2006) contains 46 end-of-chapter homework problems that are used in conjunction with 42 FlowLab templates. Each exercise has been designed with two major learning objectives in mind: (1) enhance student understanding of a specific fluid mechanics concept, and (2) introduce the student to a specific capability and/or limitation of CFD through hands-on practice.
CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences
NASA Technical Reports Server (NTRS)
Slotnick, Jeffrey; Khodadoust, Abdollah; Alonso, Juan; Darmofal, David; Gropp, William; Lurie, Elizabeth; Mavriplis, Dimitri
2014-01-01
This report documents the results of a study to address the long range, strategic planning required by NASA's Revolutionary Computational Aerosciences (RCA) program in the area of computational fluid dynamics (CFD), including future software and hardware requirements for High Performance Computing (HPC). Specifically, the "Vision 2030" CFD study is to provide a knowledge-based forecast of the future computational capabilities required for turbulent, transitional, and reacting flow simulations across a broad Mach number regime, and to lay the foundation for the development of a future framework and/or environment where physics-based, accurate predictions of complex turbulent flows, including flow separation, can be accomplished routinely and efficiently in cooperation with other physics-based simulations to enable multi-physics analysis and design. Specific technical requirements from the aerospace industrial and scientific communities were obtained to determine critical capability gaps, anticipated technical challenges, and impediments to achieving the target CFD capability in 2030. A preliminary development plan and roadmap were created to help focus investments in technology development to help achieve the CFD vision in 2030.
Dynamics of Numerics & Spurious Behaviors in CFD Computations. Revised
NASA Technical Reports Server (NTRS)
Yee, Helen C.; Sweby, Peter K.
1997-01-01
The global nonlinear behavior of finite discretizations for constant time steps and fixed or adaptive grid spacings is studied using tools from dynamical systems theory. Detailed analysis of commonly used temporal and spatial discretizations for simple model problems is presented. The role of dynamics in the understanding of long time behavior of numerical integration and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in computational fluid dynamics (CFD) is explored. The study is complemented with examples of spurious behavior observed in steady and unsteady CFD computations. The CFD examples were chosen to illustrate non-apparent spurious behavior that was difficult to detect without extensive grid and temporal refinement studies and some knowledge from dynamical systems theory. Studies revealed the various possible dangers of misinterpreting numerical simulation of realistic complex flows that are constrained by available computing power. In large scale computations where the physics of the problem under study is not well understood and numerical simulations are the only viable means of solution, extreme care must be taken in both computation and interpretation of the numerical data. The goal of this paper is to explore the important role that dynamical systems theory can play in the understanding of the global nonlinear behavior of numerical algorithms and to aid the identification of the sources of numerical uncertainties in CFD.
Analysis of the optimum fulcrum position of a trebuchet
NASA Astrophysics Data System (ADS)
Christo, Zenos
2017-01-01
Models of working trebuchets are reasonably simple to build but the analysis of their dynamics can be very complex. In this short paper, we look at how to optimise the position of the fulcrum in order to achieve maximum speed for the ballistic, when the launch angle is at 45°.
Positive Behavior Support and Applied Behavior Analysis: A Familial Alliance
ERIC Educational Resources Information Center
Dunlap, Glen; Carr, Edward G.; Horner, Robert H.; Zarcone, Jennifer R.; Schwartz, Ilene
2008-01-01
Positive behavior support (PBS) emerged in the mid-1980s as an approach for understanding and addressing problem behaviors. PBS was derived primarily from applied behavior analysis (ABA). Over time, however, PBS research and practice has incorporated evaluative methods, assessment and intervention procedures, and conceptual perspectives associated…
Positive Behavior Support and Applied Behavior Analysis: A Familial Alliance
ERIC Educational Resources Information Center
Dunlap, Glen; Carr, Edward G.; Horner, Robert H.; Zarcone, Jennifer R.; Schwartz, Ilene
2008-01-01
Positive behavior support (PBS) emerged in the mid-1980s as an approach for understanding and addressing problem behaviors. PBS was derived primarily from applied behavior analysis (ABA). Over time, however, PBS research and practice has incorporated evaluative methods, assessment and intervention procedures, and conceptual perspectives associated…
School Staff's Reflections on Truant Students: A Positioning Analysis
ERIC Educational Resources Information Center
Strand, Anne-Sofie M.; Cedersund, Elisabet
2013-01-01
The aim of this paper is to explore how school staff members involved in Student Health and Welfare conferences reflect on individual students with high levels of truancy based on their personal relationships. Using positioning analysis, the transcriptions of 15 interviews with staff were analysed. The school staff's reflections on the individual…
Pump CFD code validation tests
NASA Technical Reports Server (NTRS)
Brozowski, L. A.
1993-01-01
Pump CFD code validation tests were accomplished by obtaining nonintrusive flow characteristic data at key locations in generic current liquid rocket engine turbopump configurations. Data were obtained with a laser two-focus (L2F) velocimeter at scaled design flow. Three components were surveyed: a 1970's-designed impeller, a 1990's-designed impeller, and a four-bladed unshrouded inducer. Two-dimensional velocities were measured upstream and downstream of the two impellers. Three-dimensional velocities were measured upstream, downstream, and within the blade row of the unshrouded inducer.
Analysis and comparison of range — range positioning mode and hyperbolic positioning mode
NASA Astrophysics Data System (ADS)
Chen, Shi-Ru; Xu, Ding-Jie; Sun, Yao
2002-06-01
Three key factors are discussed, which affect positioning accuracy of range — range positioning mode and hyperbolic positioning mode. Based on the error elliptical theory, the expressions of positioning error and of positioning geometric factor of range — range positioning mode and hyperbolic positioning mode are derived, and the positioning error and the blind positioning area of two different positioning modes are analyzed. According to the requirement of navigation area, an optimum positional configuration among navigation stations of hyperbolic positioning mode is provided. Some considerable conclusions are obtained, and some graphs of distribution are presented, which are important to study and design a reasonable, precise radio navigation system.
NASA Astrophysics Data System (ADS)
Höller, S.; Benigni, H.; Jaberg, H.
2016-11-01
The complete pump characteristics including its 4-quadrant behaviour are of essential interest for off-design operations such as a pump trip. At this exceptional load case the pump enters the dissipation mode and moves further into the turbine mode while the direction of rotation and the flow direction will change. The time-consuming and expensive experimental investigation of the 4-quadrant behaviour requires a specific test rig, allowing the flow direction as well as the rotational direction of the investigated pump to be reverted. By measuring the pump performance (head and efficiency) at variable positive and negative discharge and rotation the complete pump characteristics are evaluated. Nowadays CFD- analysis allows for the reliable prediction of the hydraulic performance of a pump near the design point. However, abnormal operating conditions lead to complex and unsteady flow phenomena inside the pump. Besides steady-state calculations in the normal operating conditions quite comprehensive transient CFD-investigations are required to simulate the whole pump characteristics accurately. The present study focuses on the comparison of the results obtained on the test rig and by numerical methods and shows a remarkably good agreement between them. It can be shown that it is possible to reliably simulate the 4-quadrant behaviour of a mixed flow diffuser pump based on CFD-methods. Furthermore an exemplary waterhammer calculation shows the successful application of the numerically calculated 4- quadrant behaviour.
[Positive deviance: concept analysis using the evolutionary approach of Rodgers].
Létourneau, Josiane; Alderson, Marie; Caux, Chantal; Richard, Lucie
2013-06-01
Positive deviance is a relatively new concept in healthcare. Since 2006, it has been applied to infection control in order to increase the awareness to good hand hygiene practices. This article focus on presenting analytical results of this concept using the evolutionary approach of Rodgers based on the philosophical postulate that concepts are dynamical and changing with time. For doing so, a census of the writings in nursing, medicine and psychology was carried out. By going through the CINAHL, Medline and PsyclNFO databases using positive deviance as a keyword for the time period: 1975 to May 2012, and in accordance with the method of Rodgers, ninety articles were retained (30 per discipline). The analysis enables one to notice that positive deviance described as an individual characteristic at first, is now used as a behavioral changing approach in nursing and medicine as well. At the end of the analysis and apart from this article, positive deviance will be used in order to study the practice of nurses that adheres to hand hygiene despite limiting constraints within hospital. We will then be able to continue the development of this concept in order to bring it, as Rodgers recommends, beyond the analysis. It would then be an important contribution to good nursing practices in the field of infection control and prevention.
Fractal analysis of positive pulsed streamer pattern underwater
NASA Astrophysics Data System (ADS)
Yang, Zhibo; Zhang, Chaohai
2017-04-01
A positive pulsed streamer discharge underwater in the rod-to-ring electrode observed by high speed camera was studied in the previous work [Akiyama et al., IEEE Trans. Plasma Sci. 42, 3215 (2014)]. Our observation showed that the pattern of positive discharge was a bush like streamer in both tap water and pure water. The fractal analysis by box-counting method was used to estimate the streamer discharge characteristics. The conclusion showed that (1) the tap water (D = 1.7686) has obviously higher value than pure water (D = 1.6491). (2) In temporal evolution process, the discharge development can be quantified by means of fractal dimensions.
Elnaggar, Mariam S; Barbier, Charlotte; Van Berkel, Gary J
2011-07-01
A coaxial geometry liquid microjunction surface sampling probe (LMJ-SSP) enables direct extraction of analytes from surfaces for subsequent analysis by techniques like mass spectrometry. Solution dynamics at the probe-to-sample surface interface in the LMJ-SSP has been suspected to influence sampling efficiency and dispersion but has not been rigorously investigated. The effect on flow dynamics and analyte transport to the mass spectrometer caused by coaxial retraction of the inner and outer capillaries from each other and the surface during sampling with a LMJ-SSP was investigated using computational fluid dynamics and experimentation. A transparent LMJ-SSP was constructed to provide the means for visual observation of the dynamics of the surface sampling process. Visual observation, computational fluid dynamics (CFD) analysis, and experimental results revealed that inner capillary axial retraction from the flush position relative to the outer capillary transitioned the probe from a continuous sampling and injection mode through an intermediate regime to sample plug formation mode caused by eddy currents at the sampling end of the probe. The potential for analytical implementation of these newly discovered probe operational modes is discussed.
NASA Astrophysics Data System (ADS)
ElNaggar, Mariam S.; Barbier, Charlotte; Van Berkel, Gary J.
2011-07-01
A coaxial geometry liquid microjunction surface sampling probe (LMJ-SSP) enables direct extraction of analytes from surfaces for subsequent analysis by techniques like mass spectrometry. Solution dynamics at the probe-to-sample surface interface in the LMJ-SSP has been suspected to influence sampling efficiency and dispersion but has not been rigorously investigated. The effect on flow dynamics and analyte transport to the mass spectrometer caused by coaxial retraction of the inner and outer capillaries from each other and the surface during sampling with a LMJ-SSP was investigated using computational fluid dynamics and experimentation. A transparent LMJ-SSP was constructed to provide the means for visual observation of the dynamics of the surface sampling process. Visual observation, computational fluid dynamics (CFD) analysis, and experimental results revealed that inner capillary axial retraction from the flush position relative to the outer capillary transitioned the probe from a continuous sampling and injection mode through an intermediate regime to sample plug formation mode caused by eddy currents at the sampling end of the probe. The potential for analytical implementation of these newly discovered probe operational modes is discussed.
Yang, Jiecheng; Wu, Chuan-Yu; Adams, Michael
2014-02-01
Air flow and particle-particle/wall impacts are considered as two primary dispersion mechanisms for dry powder inhalers (DPIs). Hence, an understanding of these mechanisms is critical for the development of DPIs. In this study, a coupled DEM-CFD (discrete element method-computational fluid dynamics) is employed to investigate the influence of air flow on the dispersion performance of the carrier-based DPI formulations. A carrier-based agglomerate is initially formed and then dispersed in a uniformed air flow. It is found that air flow can drag API particles away from the carrier and those in the downstream air flow regions are prone to be dispersed. Furthermore, the influence of the air velocity and work of adhesion are also examined. It is shown that the dispersion number (i.e., the number of API particles detached from the carrier) increases with increasing air velocity, and decreases with increasing the work of adhesion, indicating that the DPI performance is controlled by the balance of the removal and adhesive forces. It is also shown that the cumulative Weibull distribution function can be used to describe the DPI performance, which is governed by the ratio of the fluid drag force to the pull-off force.
NASA Astrophysics Data System (ADS)
Bojko, Marian; Kocich, Radim
2016-06-01
Application of numerical simulations based on the CFD calculation when the mass and heat transfer between the fluid flows is essential component of thermal calculation. In this article the mathematical model of the heat exchanger is defined, which is subsequently applied to the plate heat exchanger, which is connected in series with the other heat exchanger (tubular heat exchanger). The present contribution deals with the possibility to use the waste heat of the flue gas produced by small micro turbine. Inlet boundary conditions to the mathematical model of the plate heat exchanger are obtained from the results of numerical simulation of the tubular heat exchanger. Required parameters such for example inlet temperature was evaluated from temperature field, which was subsequently imported to the inlet boundary condition to the simulation of plate heat exchanger. From the results of 3D numerical simulations are evaluated basic flow variables including the evaluation of dimensionless parameters such as Colburn j-factor and friction ft factor. Numerical simulation is realized by software ANSYS Fluent15.0.
2nd NASA CFD Validation Workshop
NASA Technical Reports Server (NTRS)
1990-01-01
The purpose of the workshop was to review NASA's progress in CFD validation since the first workshop (held at Ames in 1987) and to affirm the future direction of the NASA CFD validation program. The first session consisted of overviews of CFD validation research at each of the three OAET research centers and at Marshall Space Flight Center. The second session consisted of in-depth technical presentations of the best examples of CFD validation work at each center (including Marshall). On the second day the workshop divided into three working groups to discuss CFD validation progress and needs in the subsonic, high-speed, and hypersonic speed ranges. The emphasis of the working groups was on propulsion.
The application of CFD to rotary wing flow problems
NASA Technical Reports Server (NTRS)
Caradonna, F. X.
1990-01-01
Rotorcraft aerodynamics is especially rich in unsolved problems, and for this reason the need for independent computational and experimental studies is great. Three-dimensional unsteady, nonlinear potential methods are becoming fast enough to enable their use in parametric design studies. At present, combined CAMRAD/FPR analyses for a complete trimmed rotor soltution can be performed in about an hour on a CRAY Y-MP (or ten minutes, with multiple processors). These computational speeds indicate that in the near future many of the large CFD problems will no longer require a supercomputer. The ability to convect circulation is routine for integral methods, but only recently was it discovered how to do the same with differential methods. It is clear that the differential CFD rotor analyses are poised to enter the engineering workplace. Integral methods already constitute a mainstay. Ultimately, it is the users who will integrate CFD into the entire engineering process and provide a new measure of confidence in design and analysis. It should be recognized that the above classes of analyses do not include several major limiting phenomena which will continue to require empirical treatment because of computational time constraints and limited physical understanding. Such empirical treatment should be included, however, into the developing CFD, engineering level analyses. It is likely that properly constructed flow models containing corrections from physical testing will be able to fill in unavoidable gaps in the experimental data base, both for basic studies and for specific configuration testing. For these kinds of applications, computational cost is not an issue. Finally, it should be recognized that although rotorcraft are probably the most complex of aircraft, the rotorcraft engineering community is very small compared to the fixed-wing community. Likewise, rotorcraft CFD resources can never achieve fixed-wing proportions and must be used wisely. Therefore the fixed
NASA Astrophysics Data System (ADS)
Krzan, Grzegorz; Dawidowicz, Karol; Krzysztof, Świaţek
2013-09-01
Precise Point Positioning (PPP) is a technique used to determine highprecision position with a single GNSS receiver. Unlike DGPS or RTK, satellite observations conducted by the PPP technique are not differentiated, therefore they require that parameter models should be used in data processing, such as satellite clock and orbit corrections. Apart from explaining the theory of the PPP technique, this paper describes the available web-based online services used in the post-processing of observation results. The results obtained in the post-processing of satellite observations at three points, with different characteristics of environment conditions, using the CSRS-PPP service, will be presented as the results of the experiment. This study examines the effect of the duration of the measurement session on the results and compares the results obtained by working out observations made by the GPS system and the combined observations from GPS and GLONASS. It also presents the analysis of the position determination accuracy using one and two measurement frequencies
Benchmark of FDNS CFD Code For Direct Connect RBCC Test Data
NASA Technical Reports Server (NTRS)
Ruf, J. H.
2000-01-01
Computational Fluid Dynamics (CFD) analysis results are compared with experimental data from the Pennsylvania State University's (PSU) Propulsion Engineering Research Center (PERC) rocket based combined cycle (RBCC) rocket-ejector experiments. The PERC RBCC experimental hardware was in a direct-connect configuration in diffusion and afterburning (DAB) operation. The objective of the present work was to validate the Finite Difference Navier Stokes (FDNS) CFD code for the rocket-ejector mode internal fluid mechanics and combustion phenomena. A second objective was determine the best application procedures to use FDNS as a predictive/engineering tool. Three-dimensional CFD analysis was performed. Solution methodology and grid requirements are discussed. CFD results are compared to experimental data for static pressure, Raman Spectroscopy species distribution data and RBCC net thrust and specified impulse.
Analysis of codeine positivity in urine of pain management patients.
Colby, Jennifer M; Wu, Alan H B; Lynch, Kara L
2015-06-01
The opioids codeine and morphine have legitimate uses in managing chronic pain conditions, but they are frequently abused. Patients prescribed opioids submit urine samples for medication compliance monitoring, and the interpretation of the results is complex. The purpose of this study was to evaluate the percentage of codeine- and morphine-positive urine drug tests that result from morphine use only, with the positive codeine result arising from low levels of codeine present in pharmaceutical formulations of morphine. This study included 80 urine samples which tested positive for codeine and morphine after pre-analytical hydrolysis and analysis by gas chromatography-mass spectrometry. Quantitative results were correlated with patient prescription information and immunoassay results to classify patients into one of four categories: heroin users (50%), codeine users (34%), codeine and morphine users (5%), and morphine users (11%). The percentage of codeine-positive resulting from morphine use was higher than previous estimates. Urine from patients prescribed morphine only was found to contain codeine at <1% of the morphine concentration, a ratio that was also observed in patients who used heroin. Careful analysis of urine drug testing results, including assessing the ratio of codeine to morphine (C/M), can help providers determine if patients are compliant with their pain management regimens. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Analysis of Links Positions in Landing Gear Mechanism
NASA Astrophysics Data System (ADS)
Brewczyński, D.; Tora, G.
2014-08-01
This article contains a kinematic analysis of an aircraft chassis mechanism in a range of positions. The mechanism of the chassis is made up of several smaller subsystems with different functions. The first mechanism is used to eject the chassis before landing (touchdown) and fold it to hatchway after the lift off. The second mechanism is designed to perform rotation of the crossover with the wheel, in order to adjust the position of the wheel to fit it in the limited space in the hold. The third mechanism allows movement of the chassis resulting from the change in length of the damper. To determine the position of the following links of the mechanism calculus of vectors was applied in which unit vectors were used to represent the angular position of the links. The aim of the analysis is to determine the angle of convergence and the angle of heel wheels as a function of the variable length of hydraulic cylinder, length of the shock absorber, length of the regulations rods
Bonneville Project: CFD of the Spillway Tailrace
Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.; Romero Gomez, Pedro DJ
2012-11-19
US Army Corps of Engineers, Portland District (CENWP) operates the Bonneville Lock and Dam Project on the Columbia River. High spill flows that occurred during 2011 moved a large volume of rock from downstream of the spillway apron to the stilling basin and apron. Although 400 cubic yards of rocks were removed from the stilling basin, there are still large volumes of rock downstream of the apron that could, under certain flow conditions, move upstream into the stilling basin. CENWP is investigating operational changes that could be implemented to minimize future movement of rock into the stilling basin. A key analysis tool to develop these operational changes is a computational fluid dynamics (CFD) model of the spillway. A free-surface CFD model of the Bonneville spillway tailrace was developed and applied for four flow scenarios. These scenarios looked at the impact of flow volume and flow distribution on tailrace hydraulics. The simulation results showed that areas of upstream flow existed near the river bed downstream of the apron, on the apron, and within the stilling basin for all flows. For spill flows of 300 kcfs, the cross-stream and downstream extent of the recirculation zones along Cascade and Bradford Island was very dependent on the spill pattern. The center-loaded pattern had much larger recirculation zones than the flat or bi-modal pattern. The lower flow (200 kcfs) with a flat pattern had a very large recirculation zone that extended half way across the channel near the river bed. A single flow scenario (300 kcfs of flow in a relatively flat spill pattern) was further interrogated using Lagrangian particle tracking. The tracked particles (with size and mass) showed the upstream movement of sediments onto the concrete apron and against the vertical wall between the apron and the stilling basin from seed locations downstream of the apron and on the apron.
Use-Misuse Case Driven Analysis of Positive Train Control
NASA Astrophysics Data System (ADS)
Hartong, Mark; Goel, Rajni; Wijesekera, Duminda
Forensic analysis helps identify the causes of crimes and accidents. Determination of cause, however, requires detailed knowledge of a system's design and operational characteristics. This paper advocates that "use cases," which specify operational interactions and requirements, and "misuse cases," which specify potential misuse or abuse scenarios, can be used to analyze and link forensic evidence and create postincident reconstructions. Use-misuse case analysis techniques involving non-probabilistic and probabilistic methods are described and applied to Positive Train Control (PTC) Systems — a network-based automated system that controls the movements of passenger and freight trains.
Spectral analysis of GPS precise point positioning time series
NASA Astrophysics Data System (ADS)
Selle, C.; Desai, S.; Garcia Fernandez, M.; Sibois, A.
2014-12-01
This paper presents the results from performing spectral analysis on GPS positioning time series obtained from precise point positioning (PPP). The goal of this work was to evaluate the impact of different choices of processing strategies and models on GPS-based PPP. We studied the spectra of station positions, examined overall noise levels and identified the presence of spurious periodic signals. Testing various processing options allowed us to assess their effect on station position estimates. With the Jet Propulsion Laboratory's contribution to the second reprocessing campaign of the International GNSS Service (IGS) as our reference source for input orbits and clocks, we also considered the effects of using different orbit and clock products. This included products from the previous reprocessing campaign, which were fixed in the IGS05 reference frame, while recent products use the IGS08 frame. Of particular importance are our results from assessing the impact on the station position time series from the single-receiver ambiguity resolution capability offered by JPL's reprocessing campaigns. Furthermore, our tests raise the possibility of distinguishing between PPP processing settings, input orbits and clocks, and station data and location-dependent effects as causes of these features.
Lakghomi, B; Lawryshyn, Y; Hofmann, R
2015-01-01
Computational fluid dynamics (CFD) models of dissolved air flotation (DAF) have shown formation of stratified flow (back and forth horizontal flow layers at the top of the separation zone) and its impact on improved DAF efficiency. However, there has been a lack of experimental validation of CFD predictions, especially in the presence of solid particles. In this work, for the first time, both two-phase (air-water) and three-phase (air-water-solid particles) CFD models were evaluated at pilot scale using measurements of residence time distribution, bubble layer position and bubble-particle contact efficiency. The pilot-scale results confirmed the accuracy of the CFD model for both two-phase and three-phase flows, but showed that the accuracy of the three-phase CFD model would partly depend on the estimation of bubble-particle attachment efficiency.
NASA Astrophysics Data System (ADS)
Pradeep, Chaminda; Yan, Ru; Vestøl, Sondre; Melaaen, Morten C.; Mylvaganam, Saba
2014-07-01
The electrical capacitance tomographic (ECT) approach is increasingly seen as attractive for measurement and control applications in the process industries. Recently, there is increased interest in using the tomographic details from ECT for comparing with and validating and tuning CFD models of multiphase flow. Collaboration with researchers working in the field of computational fluid dynamics (CFD) modeling of multiphase flows gives valuable information for both groups of researchers in the field of ECT and CFD. By studying the ECT tomograms of multiphase flows under carefully monitored inflow conditions of the different media and by obtaining the capacitance values, C(i, j, t) with i = 1…N, j = 1, 2,…N and i ≠ j obtained from ECT modules with N electrodes, it is shown how the interface heights in a pipe with stratified flow of oil and air can be fruitfully compared to the values of those obtained from ECT and gamma radiation meter (GRM) for improving CFD modeling. Monitored inflow conditions in this study are flow rates of air, water and oil into a pipe which can be positioned at varying inclinations to the horizontal, thus emulating the pipelines laid in subsea installations. It is found that ECT-based tomograms show most of the features seen in the GRM-based visualizations with nearly one-to-one correspondence to interface heights obtained from these two methods, albeit some anomalies at the pipe wall. However, there are some interesting features the ECT manages to capture: features which the GRM or the CFD modeling apparently do not show, possibly due to parameters not defined in the inputs to the CFD model or much slower response of the GRM. Results presented in this paper indicate that a combination of ECT and GRM and preferably with other modalities with enhanced data fusion and analysis combined with CFD modeling can help to improve the modeling, measurement and control of multiphase flow in the oil and gas industries and in the process industries
High performance parallel implicit CFD.
Gropp, W. D.; Kaushik, D. K.; Keyes, D. E.; Smith, B. F.; Mathematics and Computer Science; Old Dominion Univ.
2001-03-01
Fluid dynamical simulations based on finite discretizations on (quasi-)static grids scale well in parallel, but execute at a disappointing percentage of per-processor peak floating point operation rates without special attention to layout and access ordering of data. We document both claims from our experience with an unstructured grid CFD code that is typical of the state of the practice at NASA. These basic performance characteristics of PDE-based codes can be understood with surprisingly simple models, for which we quote earlier work, presenting primarily experimental results. The performance models and experimental results motivate algorithmic and software practices that lead to improvements in both parallel scalability and per node performance. This snapshot of ongoing work updates our 1999 Bell Prize-winning simulation on ASCI computers.
A simple method for positional analysis of phosphatidylcholine.
Kiełbowicz, Grzegorz; Gładkowski, Witold; Chojnacka, Anna; Wawrzeńczyk, Czesław
2012-12-15
Simple and fast method of positional analysis of fatty acid composition of phosphatidylcholine (PC) from egg-yolk and soy has been elaborated. The key step of the procedure was complete ethanolysis of PC catalyzed by sn-1,3 specific lipase from Mucor miehei (Lipozyme). 2-Acyl-lysophosphatidylcholine (2-acyl LPC), fatty acids ethyl esters (FAEEs) and free fatty acids (FAs) were formed in this process. No acyl migration was observed during the reaction. The products were entirely separated from the products mixture by simple extraction in water:hexane (2:3 v/v) system. The hexane fraction containing free FAs and FAEEs was treated with BF(3)/Et(2)O in ethanol to obtain only FAEEs. The analysis of FAEEs by GC gave the composition of the FAs in the sn-1 position of the PC. 2-Acyl LPC from water fraction after precipitation in cold (-20°C) acetone was converted into FAEEs and analyzed by gas chromatography (GC) to determine FAs composition in the sn-2 position of the PC.
Parallel Implicit Algorithms for CFD
NASA Technical Reports Server (NTRS)
Keyes, David E.
1998-01-01
The main goal of this project was efficient distributed parallel and workstation cluster implementations of Newton-Krylov-Schwarz (NKS) solvers for implicit Computational Fluid Dynamics (CFD.) "Newton" refers to a quadratically convergent nonlinear iteration using gradient information based on the true residual, "Krylov" to an inner linear iteration that accesses the Jacobian matrix only through highly parallelizable sparse matrix-vector products, and "Schwarz" to a domain decomposition form of preconditioning the inner Krylov iterations with primarily neighbor-only exchange of data between the processors. Prior experience has established that Newton-Krylov methods are competitive solvers in the CFD context and that Krylov-Schwarz methods port well to distributed memory computers. The combination of the techniques into Newton-Krylov-Schwarz was implemented on 2D and 3D unstructured Euler codes on the parallel testbeds that used to be at LaRC and on several other parallel computers operated by other agencies or made available by the vendors. Early implementations were made directly in Massively Parallel Integration (MPI) with parallel solvers we adapted from legacy NASA codes and enhanced for full NKS functionality. Later implementations were made in the framework of the PETSC library from Argonne National Laboratory, which now includes pseudo-transient continuation Newton-Krylov-Schwarz solver capability (as a result of demands we made upon PETSC during our early porting experiences). A secondary project pursued with funding from this contract was parallel implicit solvers in acoustics, specifically in the Helmholtz formulation. A 2D acoustic inverse problem has been solved in parallel within the PETSC framework.
CFD in the context of IHPTET: The Integrated High Performance Turbine Technology Program
NASA Technical Reports Server (NTRS)
Simoneau, Robert J.; Hudson, Dale A.
1989-01-01
The Integrated High Performance Turbine Engine Technology (IHPTET) Program is an integrated DOD/NASA technology program designed to double the performance capability of today's most advanced military turbine engines as we enter the twenty-first century. Computational Fluid Dynamics (CFD) is expected to play an important role in the design/analysis of specific configurations within this complex machine. In order to do this, a plan is being developed to ensure the timely impact of CFD on IHPTET. The developing philosphy of CFD in the context of IHPTET is discussed. The key elements in the developing plan and specific examples of state-of-the-art CFD efforts which are IHPTET turbine engine relevant are discussed.
CFD in the context of IHPTET - The Integrated High Performance Turbine Engine Technology Program
NASA Technical Reports Server (NTRS)
Simoneau, Robert J.; Hudson, Dale A.
1989-01-01
The Integrated High Performance Turbine Engine Technology (IHPTET) Program is an integrated DOD/NASA technology program designed to double the performance capability of today's most advanced military turbine engines as we enter the twenty-first century. Computational Fluid Dynamics (CFD) is expected to play an important role in the design/analysis of specific configurations within this complex machine. In order to do this, a plan is being developed to ensure the timely impact of CFD on IHPTET. The developing philosophy of CFD in the context of IHPTET is discussed. The key elements in the developing plan and specific examples of state-of-the-art CFD efforts which are IHPTET turbine engine relevant are discussed.
CFD in the context of IHPTET: The Integrated High Performance Turbine Technology Program
NASA Astrophysics Data System (ADS)
Simoneau, Robert J.; Hudson, Dale A.
1989-06-01
The Integrated High Performance Turbine Engine Technology (IHPTET) Program is an integrated DOD/NASA technology program designed to double the performance capability of today's most advanced military turbine engines as we enter the twenty-first century. Computational Fluid Dynamics (CFD) is expected to play an important role in the design/analysis of specific configurations within this complex machine. In order to do this, a plan is being developed to ensure the timely impact of CFD on IHPTET. The developing philosphy of CFD in the context of IHPTET is discussed. The key elements in the developing plan and specific examples of state-of-the-art CFD efforts which are IHPTET turbine engine relevant are discussed.
CFD in the context of IHPTET - The Integrated High Performance Turbine Engine Technology Program
NASA Astrophysics Data System (ADS)
Simoneau, Robert J.; Hudson, Dale A.
1989-07-01
The Integrated High Performance Turbine Engine Technology (IHPTET) Program is an integrated DOD/NASA technology program designed to double the performance capability of today's most advanced military turbine engines as we enter the twenty-first century. Computational Fluid Dynamics (CFD) is expected to play an important role in the design/analysis of specific configurations within this complex machine. In order to do this, a plan is being developed to ensure the timely impact of CFD on IHPTET. The developing philosophy of CFD in the context of IHPTET is discussed. The key elements in the developing plan and specific examples of state-of-the-art CFD efforts which are IHPTET turbine engine relevant are discussed.
Nonlinear dynamics and numerical uncertainties in CFD
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sweby, P. K.
1996-01-01
The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching, approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with spurious behavior observed in CFD computations.
CFD Modeling For Urban Air Quality Studies
Lee, R L; Lucas, L J; Humphreys, T D; Chan, S T
2003-10-27
The computational fluid dynamics (CFD) approach has been increasingly applied to many atmospheric applications, including flow over buildings and complex terrain, and dispersion of hazardous releases. However there has been much less activity on the coupling of CFD with atmospheric chemistry. Most of the atmospheric chemistry applications have been focused on the modeling of chemistry on larger spatial scales, such as global or urban airshed scale. However, the increased attentions to terrorism threats have stimulated the need of much more detailed simulations involving chemical releases within urban areas. This motivated us to develop a new CFD/coupled-chemistry capability as part of our modeling effort.
Future directions in computing and CFD
NASA Technical Reports Server (NTRS)
Bailey, F. R.; Simon, Horst D.
1992-01-01
In recent years CFD on massively parallel machines has become a reality. This paper summarizes some recent trends both in high performance computing, and in CFD using parallel machines. The long term computational requirements for accomplishing some of the large scale problems in computational aerosciences, and current hardware and architecture trends are discussed. Performance results obtained from the implementation of some CFD applications on the Connection Machine CM-2 and the Intel iPSC/860 at NASA Ames Research Center are presented. It is argued that only massively parallel machines will be able to meet these grand challenge requirements.
Global Positioning System Analysis of a High School Football Scrimmage.
Gleason, Benjamin H; Sams, Matthew L; Salley, John T; Pustina, A Andrew; Stone, Michael H
2017-08-01
Gleason, BH, Sams, M, Salley, JT, Pustina, A, and Stone, MH. Global positioning system analysis of a high school football scrimmage. J Strength Cond Res 31(8): 2183-2188, 2017-The purpose of this study was to examine the physical demands of a high school American football scrimmage. Male high school football players (N = 25) participated in a spring scrimmage. Global positioning system data and game film were recorded throughout the entirety of the scrimmage to determine the total distance covered, the distance covered in different velocity bands, the number of accelerations and decelerations performed, and the work-to-rest ratio of the scrimmage. The athletes were divided into 2 groups: linemen (L) (N = 7) vs. nonlinemen (NL) (N = 8) for statistical analysis, and independent T-tests with Holm's sequential Bonferroni adjustment were used to determine differences in movement characteristics between the L and NL groups. Average play duration was 5.7 ± 2.1 seconds, whereas the rest interval was 33.4 ± 13.6 seconds between plays, for an overall exercise-to-rest ratio of 1:5.9. Total distance, standing and walking distance, running distance, striding distance, sprinting distance, and total high-speed running distance covered by NL was greater than L (statistically significant at p ≤ 0.05). Distances traveled in each velocity band by position and by play are also included to provide context of our findings. Data from the present study add to the pool of support for the use of position-specific training in preparing high school football players for competition.
DANPOS: Dynamic analysis of nucleosome position and occupancy by sequencing
Chen, Kaifu; Xi, Yuanxin; Pan, Xuewen; Li, Zhaoyu; Kaestner, Klaus; Tyler, Jessica; Dent, Sharon; He, Xiangwei; Li, Wei
2013-01-01
Recent developments in next-generation sequencing have enabled whole-genome profiling of nucleosome organizations. Although several algorithms for inferring nucleosome position from a single experimental condition have been available, it remains a challenge to accurately define dynamic nucleosomes associated with environmental changes. Here, we report a comprehensive bioinformatics pipeline, DANPOS, explicitly designed for dynamic nucleosome analysis at single-nucleotide resolution. Using both simulated and real nucleosome data, we demonstrated that bias correction in preliminary data processing and optimal statistical testing significantly enhances the functional interpretation of dynamic nucleosomes. The single-nucleotide resolution analysis of DANPOS allows us to detect all three categories of nucleosome dynamics, such as position shift, fuzziness change, and occupancy change, using a uniform statistical framework. Pathway analysis indicates that each category is involved in distinct biological functions. We also analyzed the influence of sequencing depth and suggest that even 200-fold coverage is probably not enough to identify all the dynamic nucleosomes. Finally, based on nucleosome data from the human hematopoietic stem cells (HSCs) and mouse embryonic stem cells (ESCs), we demonstrated that DANPOS is also robust in defining functional dynamic nucleosomes, not only in promoters, but also in distal regulatory regions in the mammalian genome. PMID:23193179
Simulation of Rotary-Wing Near-Wake Vortex Structures Using Navier-Stokes CFD Methods
NASA Technical Reports Server (NTRS)
Kenwright, David; Strawn, Roger; Ahmad, Jasim; Duque, Earl; Warmbrodt, William (Technical Monitor)
1997-01-01
This paper will use high-resolution Navier-Stokes computational fluid dynamics (CFD) simulations to model the near-wake vortex roll-up behind rotor blades. The locations and strengths of the trailing vortices will be determined from newly-developed visualization and analysis software tools applied to the CFD solutions. Computational results for rotor nearwake vortices will be used to study the near-wake vortex roll up for highly-twisted tiltrotor blades. These rotor blades typically have combinations of positive and negative spanwise loading and complex vortex wake interactions. Results of the computational studies will be compared to vortex-lattice wake models that are frequently used in rotorcraft comprehensive codes. Information from these comparisons will be used to improve the rotor wake models in the Tilt-Rotor Acoustic Code (TRAC) portion of NASA's Short Haul Civil Transport program (SHCT). Accurate modeling of the rotor wake is an important part of this program and crucial to the successful design of future civil tiltrotor aircraft. The rotor wake system plays an important role in blade-vortex interaction noise, a major problem for all rotorcraft including tiltrotors.
Simulation of Rotary-Wing Near-Wake Vortex Structures Using Navier-Stokes CFD Methods
NASA Technical Reports Server (NTRS)
Kenwright, David; Strawn, Roger; Ahmad, Jasim; Duque, Earl; Warmbrodt, William (Technical Monitor)
1997-01-01
This paper will use high-resolution Navier-Stokes computational fluid dynamics (CFD) simulations to model the near-wake vortex roll-up behind rotor blades. The locations and strengths of the trailing vortices will be determined from newly-developed visualization and analysis software tools applied to the CFD solutions. Computational results for rotor nearwake vortices will be used to study the near-wake vortex roll up for highly-twisted tiltrotor blades. These rotor blades typically have combinations of positive and negative spanwise loading and complex vortex wake interactions. Results of the computational studies will be compared to vortex-lattice wake models that are frequently used in rotorcraft comprehensive codes. Information from these comparisons will be used to improve the rotor wake models in the Tilt-Rotor Acoustic Code (TRAC) portion of NASA's Short Haul Civil Transport program (SHCT). Accurate modeling of the rotor wake is an important part of this program and crucial to the successful design of future civil tiltrotor aircraft. The rotor wake system plays an important role in blade-vortex interaction noise, a major problem for all rotorcraft including tiltrotors.
Topographic analysis of eyelid position using digital image processing software.
Chun, Yeoun Sook; Park, Hong Hyun; Park, In Ki; Moon, Nam Ju; Park, Sang Joon; Lee, Jeong Kyu
2017-04-09
To propose a novel analysis technique for objective quantification of topographic eyelid position with an algorithmatically calculated scheme and to determine its feasibility. One hundred normal eyelids from 100 patients were segmented using a graph cut algorithm, and 11 shape features of eyelids were semi-automatically quantified using in-house software. To evaluate the intra- and inter-examiner reliability of this software, intra-class correlation coefficients (ICCs) were used. To evaluate the diagnostic value of this scheme, the correlations between semi-automatic and manual measurements of margin reflex distance 1 (MRD1) and margin reflex distance 2 (MRD2) were analysed using a Bland-Altman analysis. To determine the degree of agreement according to manual MRD length, the relationship between the variance of semi-automatic measurements and the manual measurements was evaluated using linear regression. Intra- and inter-examiner reliability were excellent, with ICCs ranging from 0.913 to 0.980 in 11 shape features including MRD1, MRD2, palpebral fissure, lid perimeter, upper and lower lid lengths, roundness, total area, and medial, central, and lateral areas. The correlations between semi-automatic and manual MRDs were also excellent, with better correlation in MRD1 than in MRD2 (R = 0.893 and 0.823, respectively). In addition, significant positive relationships were observed between the variance and the length of MRD1 and 2; the longer the MRD length, the more the variance. The proposed novel optimized integrative scheme, which is shown to have high repeatability and reproducibility, is useful for topographic analysis of eyelid position. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Problems Related to Parallelization of CFD Algorithms on GPU, Multi-GPU and Hybrid Architectures
NASA Astrophysics Data System (ADS)
Biazewicz, Marek; Kurowski, Krzysztof; Ludwiczak, Bogdan; Napieraia, Krystyna
2010-09-01
Computational Fluid Dynamics (CFD) is one of the branches of fluid mechanics, which uses numerical methods and algorithms to solve and analyze fluid flows. CFD is used in various domains, such as oil and gas reservoir uncertainty analysis, aerodynamic body shapes optimization (e.g. planes, cars, ships, sport helmets, skis), natural phenomena analysis, numerical simulation for weather forecasting or realistic visualizations. CFD problem is very complex and needs a lot of computational power to obtain the results in a reasonable time. We have implemented a parallel application for two-dimensional CFD simulation with a free surface approximation (MAC method) using new hardware architectures, in particular multi-GPU and hybrid computing environments. For this purpose we decided to use NVIDIA graphic cards with CUDA environment due to its simplicity of programming and good computations performance. We used finite difference discretization of Navier-Stokes equations, where fluid is propagated over an Eulerian Grid. In this model, the behavior of the fluid inside the cell depends only on the properties of local, surrounding cells, therefore it is well suited for the GPU-based architecture. In this paper we demonstrate how to use efficiently the computing power of GPUs for CFD. Additionally, we present some best practices to help users analyze and improve the performance of CFD applications executed on GPU. Finally, we discuss various challenges around the multi-GPU implementation on the example of matrix multiplication.
Assessment of CFD-based Response Surface Model for Ares I Supersonic Ascent Aerodynamics
NASA Technical Reports Server (NTRS)
Hanke, Jeremy L.
2011-01-01
The Ascent Force and Moment Aerodynamic (AFMA) Databases (DBs) for the Ares I Crew Launch Vehicle (CLV) were typically based on wind tunnel (WT) data, with increments provided by computational fluid dynamics (CFD) simulations for aspects of the vehicle that could not be tested in the WT tests. During the Design Analysis Cycle 3 analysis for the outer mold line (OML) geometry designated A106, a major tunnel mishap delayed the WT test for supersonic Mach numbers (M) greater than 1.6 in the Unitary Plan Wind Tunnel at NASA Langley Research Center, and the test delay pushed the final delivery of the A106 AFMA DB back by several months. The aero team developed an interim database based entirely on the already completed CFD simulations to mitigate the impact of the delay. This CFD-based database used a response surface methodology based on radial basis functions to predict the aerodynamic coefficients for M > 1.6 based on only the CFD data from both WT and flight Reynolds number conditions. The aero team used extensive knowledge of the previous AFMA DB for the A103 OML to guide the development of the CFD-based A106 AFMA DB. This report details the development of the CFD-based A106 Supersonic AFMA DB, constructs a prediction of the database uncertainty using data available at the time of development, and assesses the overall quality of the CFD-based DB both qualitatively and quantitatively. This assessment confirms that a reasonable aerodynamic database can be constructed for launch vehicles at supersonic conditions using only CFD data if sufficient knowledge of the physics and expected behavior is available. This report also demonstrates the applicability of non-parametric response surface modeling using radial basis functions for development of aerodynamic databases that exhibit both linear and non-linear behavior throughout a large data space.
Gu, Yu; Wang, Yang-Fu; Li, Qiang; Liu, Zu-Wu
2016-10-20
Chinese liquors can be classified according to their flavor types. Accurate identification of Chinese liquor flavors is not always possible through professional sommeliers' subjective assessment. A novel polymer piezoelectric sensor electric nose (e-nose) can be applied to distinguish Chinese liquors because of its excellent ability in imitating human senses by using sensor arrays and pattern recognition systems. The sensor, based on the quartz crystal microbalance (QCM) principle is comprised of a quartz piezoelectric crystal plate sandwiched between two specific gas-sensitive polymer coatings. Chinese liquors are identified by obtaining the resonance frequency value changes of each sensor using the e-nose. However, the QCM principle failed to completely account for a particular phenomenon: we found that the resonance frequency values fluctuated in the stable state. For better understanding the phenomenon, a 3D Computational Fluid Dynamics (CFD) simulation using the finite volume method is employed to study the influence of the flow-induced forces to the resonance frequency fluctuation of each sensor in the sensor box. A dedicated procedure was developed for modeling the flow of volatile gas from Chinese liquors in a realistic scenario to give reasonably good results with fair accuracy. The flow-induced forces on the sensors are displayed from the perspective of their spatial-temporal and probability density distributions. To evaluate the influence of the fluctuation of the flow-induced forces on each sensor and ensure the serviceability of the e-nose, the standard deviation of resonance frequency value (SDF) and the standard deviation of resultant forces (SDFy) in y-direction (Fy) are compared. Results show that the fluctuations of Fy are bound up with the resonance frequency values fluctuations. To ensure that the sensor's resonance frequency values are steady and only fluctuate slightly, in order to improve the identification accuracy of Chinese liquors using
Gu, Yu; Wang, Yang-Fu; Li, Qiang; Liu, Zu-Wu
2016-01-01
Chinese liquors can be classified according to their flavor types. Accurate identification of Chinese liquor flavors is not always possible through professional sommeliers’ subjective assessment. A novel polymer piezoelectric sensor electric nose (e-nose) can be applied to distinguish Chinese liquors because of its excellent ability in imitating human senses by using sensor arrays and pattern recognition systems. The sensor, based on the quartz crystal microbalance (QCM) principle is comprised of a quartz piezoelectric crystal plate sandwiched between two specific gas-sensitive polymer coatings. Chinese liquors are identified by obtaining the resonance frequency value changes of each sensor using the e-nose. However, the QCM principle failed to completely account for a particular phenomenon: we found that the resonance frequency values fluctuated in the stable state. For better understanding the phenomenon, a 3D Computational Fluid Dynamics (CFD) simulation using the finite volume method is employed to study the influence of the flow-induced forces to the resonance frequency fluctuation of each sensor in the sensor box. A dedicated procedure was developed for modeling the flow of volatile gas from Chinese liquors in a realistic scenario to give reasonably good results with fair accuracy. The flow-induced forces on the sensors are displayed from the perspective of their spatial-temporal and probability density distributions. To evaluate the influence of the fluctuation of the flow-induced forces on each sensor and ensure the serviceability of the e-nose, the standard deviation of resonance frequency value (SDF) and the standard deviation of resultant forces (SDFy) in y-direction (Fy) are compared. Results show that the fluctuations of Fy are bound up with the resonance frequency values fluctuations. To ensure that the sensor's resonance frequency values are steady and only fluctuate slightly, in order to improve the identification accuracy of Chinese liquors using
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.
1997-01-01
The NASA Lewis Research Center is developing analytical methods and software tools to create a bridge between the controls and computational fluid dynamics (CFD) disciplines. Traditionally, control design engineers have used coarse nonlinear simulations to generate information for the design of new propulsion system controls. However, such traditional methods are not adequate for modeling the propulsion systems of complex, high-speed vehicles like the High Speed Civil Transport. To properly model the relevant flow physics of high-speed propulsion systems, one must use simulations based on CFD methods. Such CFD simulations have become useful tools for engineers that are designing propulsion system components. The analysis techniques and software being developed as part of this effort are an attempt to evolve CFD into a useful tool for control design as well. One major aspect of this research is the generation of linear models from steady-state CFD results. CFD simulations, often used during the design of high-speed inlets, yield high resolution operating point data. Under a NASA grant, the University of Akron has developed analytical techniques and software tools that use these data to generate linear models for control design. The resulting linear models have the same number of states as the original CFD simulation, so they are still very large and computationally cumbersome. Model reduction techniques have been successfully applied to reduce these large linear models by several orders of magnitude without significantly changing the dynamic response. The result is an accurate, easy to use, low-order linear model that takes less time to generate than those generated by traditional means. The development of methods for generating low-order linear models from steady-state CFD is most complete at the one-dimensional level, where software is available to generate models with different kinds of input and output variables. One-dimensional methods have been extended
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.
1997-01-01
The NASA Lewis Research Center is developing analytical methods and software tools to create a bridge between the controls and computational fluid dynamics (CFD) disciplines. Traditionally, control design engineers have used coarse nonlinear simulations to generate information for the design of new propulsion system controls. However, such traditional methods are not adequate for modeling the propulsion systems of complex, high-speed vehicles like the High Speed Civil Transport. To properly model the relevant flow physics of high-speed propulsion systems, one must use simulations based on CFD methods. Such CFD simulations have become useful tools for engineers that are designing propulsion system components. The analysis techniques and software being developed as part of this effort are an attempt to evolve CFD into a useful tool for control design as well. One major aspect of this research is the generation of linear models from steady-state CFD results. CFD simulations, often used during the design of high-speed inlets, yield high resolution operating point data. Under a NASA grant, the University of Akron has developed analytical techniques and software tools that use these data to generate linear models for control design. The resulting linear models have the same number of states as the original CFD simulation, so they are still very large and computationally cumbersome. Model reduction techniques have been successfully applied to reduce these large linear models by several orders of magnitude without significantly changing the dynamic response. The result is an accurate, easy to use, low-order linear model that takes less time to generate than those generated by traditional means. The development of methods for generating low-order linear models from steady-state CFD is most complete at the one-dimensional level, where software is available to generate models with different kinds of input and output variables. One-dimensional methods have been extended
Modelling Test of Autothermal Gasification Process Using CFD
NASA Astrophysics Data System (ADS)
Janoszek, Tomasz; Stańczyk, Krzysztof; Smoliński, Adam
2017-06-01
There are many complex physical and chemical processes, which take place among the most notable are the chemical reactions, mass and energy transport, and phase transitions. The process itself takes place in a block of coal, which properties are variable and not always easy to determine in the whole volume. The complexity of the phenomena results in the need for a construction of a complex model in order to study the process on the basis of simulation. In the present study attempts to develop a numerical model of the fixed bed coal gasification process in homogeneous solid block with a given geometry were mode. On the basis of analysis and description of the underground coal gasification simulated in the ex-situ experiment, a numerical model of the coal gasification process was developed. The model was implemented with the use of computational fluid dynamic CFD methods. Simulations were conducted using commercial numerical CFD code and the results were verified with the experimental data.
Gasification CFD Modeling for Advanced Power Plant Simulations
Zitney, S.E.; Guenther, C.P.
2005-09-01
In this paper we have described recent progress on developing CFD models for two commercial-scale gasifiers, including a two-stage, coal slurry-fed, oxygen-blown, pressurized, entrained-flow gasifier and a scaled-up design of the PSDF transport gasifier. Also highlighted was NETL’s Advanced Process Engineering Co-Simulator for coupling high-fidelity equipment models with process simulation for the design, analysis, and optimization of advanced power plants. Using APECS, we have coupled the entrained-flow gasifier CFD model into a coal-fired, gasification-based FutureGen power and hydrogen production plant. The results for the FutureGen co-simulation illustrate how the APECS technology can help engineers better understand and optimize gasifier fluid dynamics and related phenomena that impact overall power plant performance.
CFD Data Sets on the WWW for Education and Testing
NASA Technical Reports Server (NTRS)
Globus, Al; Lasinski, T. A. (Technical Monitor)
1995-01-01
The Numerical Aerodynamic Simulation (NAS) Systems Division at NASA Ames Research Center has begun the development of a Computational Fluid Dynamics (CFD) data set archive on the World Wide Web (WWW) at URL http://www.nas.nasa.gov/NAS/DataSets/. Data sets are integrated with related information such as research papers, metadata, visualizations, etc. In this paper, four classes of users are identified and discussed: students, visualization developers, CFD practitioners, and management. Bandwidth and security issues are briefly reviewed and the status of the archive as of May 1995 is examined. Routine network distribution of data sets is likely to have profound implications for the conduct of science. The exact nature of these changes is subject to speculation, but the ability for anyone to examine the data, in addition to the investigator's analysis, may well play an important role in the future.
Design of ETO Propulsion Turbine Using CFD Analyses
NASA Technical Reports Server (NTRS)
Dejong, F. J.; Chan, Y. T.; Gibeling, H. J.
1995-01-01
As one of the activities of the NASA/MSFC Turbine Technology Team, the present effort focused on using CFD in the design and analysis of high performance rocket engine pumps. A three-dimensional Navier-Stokes code was used for various turbine flow field calculations, with emphasis on the tip clearance flow and the associated losses. Both a baseline geometry and an advanced-concept geometry (with a mini-shroud at the blade tip) were studied at several tip clearances. The calculations performed under the present effort demonstrate that a state-of-the-art CFD code can be applied successfully to turbine design and the development of advanced hardware concepts.
Measurements of a single pulse impinging jet. A CFD reference
NASA Astrophysics Data System (ADS)
Bovo, Mirko; Rojo, Borja; Golubev, Maxim
2014-03-01
This paper reports three sets of measurements of a single pulse impinging jet. The purpose is to serve as a reference for CFD validation. A gas injector generates a single pulse jet at Re ~90000. The jet impinges on a temperature controlled flat target at different angles (0º, 30º, 45º and 60º). The jet velocity field is measured with PIV. The evolution of the jet velocity profile in time is reported at two different locations (suitable as CFD inlet conditions). At the same locations also turbulence quantities are reported. The impingement wall temperature is measured with fast responding thermocouples and infrared camera. These give high time and space resolution respectively. Results are reported in a format suitable for comparison with CFD simulations. The results show that the heat transfer effects are highest for the jet impinging normally on the target. Target inclination has remarkable effects on the jet penetration rate and repeatability. Even small target inclinations result creates a preferential direction for the jet flow and cause a shift in the position of the stagnation region.
HIV disclosure among HIV positive individuals: a concept analysis.
Eustace, Rosemary W; Ilagan, Perla R
2010-09-01
This paper is a report of an analysis of the concept of HIV disclosure. There is a growing interest among healthcare providers and researchers in HIV disclosure as an effective HIV prevention and early disease management initiative. However, the concept still remains unclear. Conceptual clarity is important for providing an expanded theoretical definition and understanding of attributes of HIV disclosure. This information is useful in constructing better HIV disclosure measures in HIV/AIDS nursing practice and research. A computer search of the following databases was conducted to capture the meaning and processes of HIV disclosure among HIV-positive individuals: PubMed, CINAHL and PSYCINFO. Only English language journals were used. Publication dates of the literature review ranged from 1999 to 2009. The following key words were used: HIV disclosure, self-disclosure, disclosure and serostatus disclosure. The Walker and Avant (2005) concept analysis model (Strategies for Theory Construction in Nursing, Pearson Prentice Hall, River, NJ, 2005) was used to guide the analysis process, which was completed in 2009. The concept analysis revealed that HIV disclosure is a complex process characterized by the following attributes: experiencing an event, communicating something, timing, and contextual environment, protecting someone, relationship status and improving something or being therapeutic. In addition, the process of HIV disclosure varies across time. The proposed HIV disclosure attributes provide nursing scholars and researchers with new directions on how to reframe research questions, develop measurement tools to reflect better the diversity and fluidity of the process of HIV disclosure among HIV-positive individuals. Policy implications include the need to develop approaches that protect individual and public rights.
Reducing False Positives in Runtime Analysis of Deadlocks
NASA Technical Reports Server (NTRS)
Bensalem, Saddek; Havelund, Klaus; Clancy, Daniel (Technical Monitor)
2002-01-01
This paper presents an improvement of a standard algorithm for detecting dead-lock potentials in multi-threaded programs, in that it reduces the number of false positives. The standard algorithm works as follows. The multi-threaded program under observation is executed, while lock and unlock events are observed. A graph of locks is built, with edges between locks symbolizing locking orders. Any cycle in the graph signifies a potential for a deadlock. The typical standard example is the group of dining philosophers sharing forks. The algorithm is interesting because it can catch deadlock potentials even though no deadlocks occur in the examined trace, and at the same time it scales very well in contrast t o more formal approaches to deadlock detection. The algorithm, however, can yield false positives (as well as false negatives). The extension of the algorithm described in this paper reduces the amount of false positives for three particular cases: when a gate lock protects a cycle, when a single thread introduces a cycle, and when the code segments in different threads that cause the cycle can actually not execute in parallel. The paper formalizes a theory for dynamic deadlock detection and compares it to model checking and static analysis techniques. It furthermore describes an implementation for analyzing Java programs and its application to two case studies: a planetary rover and a space craft altitude control system.
CFD Research, Parallel Computation and Aerodynamic Optimization
NASA Technical Reports Server (NTRS)
Ryan, James S.
1995-01-01
During the last five years, CFD has matured substantially. Pure CFD research remains to be done, but much of the focus has shifted to integration of CFD into the design process. The work under these cooperative agreements reflects this trend. The recent work, and work which is planned, is designed to enhance the competitiveness of the US aerospace industry. CFD and optimization approaches are being developed and tested, so that the industry can better choose which methods to adopt in their design processes. The range of computer architectures has been dramatically broadened, as the assumption that only huge vector supercomputers could be useful has faded. Today, researchers and industry can trade off time, cost, and availability, choosing vector supercomputers, scalable parallel architectures, networked workstations, or heterogenous combinations of these to complete required computations efficiently.
CFD studies on biomass thermochemical conversion.
Wang, Yiqun; Yan, Lifeng
2008-06-01
Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD) modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field.
Impact of CGNS on CFD Workflow
NASA Technical Reports Server (NTRS)
Poinot, M.; Rumsey, C. L.; Mani, M.
2004-01-01
CFD tools are an integral part of industrial and research processes, for which the amount of data is increasing at a high rate. These data are used in a multi-disciplinary fluid dynamics environment, including structural, thermal, chemical or even electrical topics. We show that the data specification is an important challenge that must be tackled to achieve an efficient workflow for use in this environment. We compare the process with other software techniques, such as network or database type, where past experiences showed how difficult it was to bridge the gap between completely general specifications and dedicated specific applications. We show two aspects of the use of CFD General Notation System (CGNS) that impact CFD workflow: as a data specification framework and as a data storage means. Then, we give examples of projects involving CFD workflows where the use of the CGNS standard leads to a useful method either for data specification, exchange, or storage.
CFD Studies on Biomass Thermochemical Conversion
Wang, Yiqun; Yan, Lifeng
2008-01-01
Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD) modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field. PMID:19325848
CFD calculations of S809 aerodynamic characteristics
Wolfe, W.P.; Ochs, S.S.
1997-01-01
Steady-state, two-dimensional CFD calculations were made for the S809 laminar-flow, wind-turbine airfoil using the commercial code CFD-ACE. Comparisons of the computed pressure and aerodynamic coefficients were made with wind tunnel data from the Delft University 1.8 m x 1.25 m low-turbulence wind tunnel. This work highlights two areas in CFD that require further investigation and development in order to enable accurate numerical simulations of flow about current generation wind-turbine airfoils: transition prediction and turbulence modeling. The results show that the laminar-to-turbulent transition point must be modeled correctly to get accurate simulations for attached flow. Calculations also show that the standard turbulence model used in most commercial CFD codes, the k-{epsilon} model, is not appropriate at angles of attack with flow separation.
Applied Aeroscience and CFD Branch Overview
NASA Technical Reports Server (NTRS)
LeBeau, Gerald J.; Kirk, Benjamin S.
2014-01-01
The principal mission of NASA Johnson Space Center is Human Spaceflight. In support of the mission the Applied Aeroscience and CFD Branch has several technical competencies that include aerodynamic characterization, aerothermodynamic heating, rarefied gas dynamics, and decelerator (parachute) systems.
CFD parametric study of consortium impeller
NASA Astrophysics Data System (ADS)
Cheng, Gary C.; Chen, Y. S.; Garcia, Roberto; Williams, Robert W.
1993-07-01
Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design impact in a productive manner. The main goal of this study is to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A Finite Difference Navier-Stokes flow solver, FDNS, which includes the extended k-epsilon turbulence model and appropriate moving interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. A second-order central difference scheme plus adaptive dissipation terms was employed in the FDNS code, along with a predictor plus multi-corrector pressure-based solution procedure. The multi-zone, multi-block capability allows the FDNS code to efficiently solve flow fields with complicated geometry. The FDNS code has been benchmarked by analyzing the pump consortium inducer, and it provided satisfactory results. In the present study, a CFD parametric study of the pump consortium impeller was conducted using the FDNS code. The pump consortium impeller, with partial blades, is a new design concept of the advanced rocket engines. The parametric study was to analyze the baseline design of the consortium impeller and its modification which utilizes TANDEM blades. In the present study, the TANDEM blade configuration of the consortium impeller considers cut full blades for about one quarter chord length from the leading edge and clocks the leading edge portion with an angle of 7.5 or 22.5 degrees. The purpose of the present study is to investigate the effect and trend of the TANDEM blade modification and provide the result as a design guideline. A 3-D flow analysis, with a 103 x 23 x 30 mesh grid system and with the inlet flow conditions measured by Rocketdyne, was performed for the baseline consortium impeller. The numerical result shows that the mass flow rate splits through various blade passages are relatively uniform
CFD Parametric Study of Consortium Impeller
NASA Technical Reports Server (NTRS)
Cheng, Gary C.; Chen, Y. S.; Garcia, Roberto; Williams, Robert W.
1993-01-01
Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design impact in a productive manner. The main goal of this study is to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A Finite Difference Navier-Stokes flow solver, FDNS, which includes the extended k-epsilon turbulence model and appropriate moving interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. A second-order central difference scheme plus adaptive dissipation terms was employed in the FDNS code, along with a predictor plus multi-corrector pressure-based solution procedure. The multi-zone, multi-block capability allows the FDNS code to efficiently solve flow fields with complicated geometry. The FDNS code has been benchmarked by analyzing the pump consortium inducer, and it provided satisfactory results. In the present study, a CFD parametric study of the pump consortium impeller was conducted using the FDNS code. The pump consortium impeller, with partial blades, is a new design concept of the advanced rocket engines. The parametric study was to analyze the baseline design of the consortium impeller and its modification which utilizes TANDEM blades. In the present study, the TANDEM blade configuration of the consortium impeller considers cut full blades for about one quarter chord length from the leading edge and clocks the leading edge portion with an angle of 7.5 or 22.5 degrees. The purpose of the present study is to investigate the effect and trend of the TANDEM blade modification and provide the result as a design guideline. A 3-D flow analysis, with a 103 x 23 x 30 mesh grid system and with the inlet flow conditions measured by Rocketdyne, was performed for the baseline consortium impeller. The numerical result shows that the mass flow rate splits through various blade passages are relatively uniform
A CFD validation roadmap for hypersonic flows
NASA Technical Reports Server (NTRS)
Marvin, Joseph G.
1992-01-01
A roadmap for computational fluid dynamics (CFD) code validation is developed. The elements of the roadmap are consistent with air-breathing vehicle design requirements and related to the important flow path components: forebody, inlet, combustor, and nozzle. Building block and benchmark validation experiments are identified along with their test conditions and measurements. Based on an evaluation criteria, recommendations for an initial CFD validation data base are given and gaps identified where future experiments would provide the needed validation data.
CFD Modeling of Launch Vehicle Aerodynamic Heating
NASA Technical Reports Server (NTRS)
Tashakkor, Scott B.; Canabal, Francisco; Mishtawy, Jason E.
2011-01-01
The Loci-CHEM 3.2 Computational Fluid Dynamics (CFD) code is being used to predict Ares-I launch vehicle aerodynamic heating. CFD has been used to predict both ascent and stage reentry environments and has been validated against wind tunnel tests and the Ares I-X developmental flight test. Most of the CFD predictions agreed with measurements. On regions where mismatches occurred, the CFD predictions tended to be higher than measured data. These higher predictions usually occurred in complex regions, where the CFD models (mainly turbulence) contain less accurate approximations. In some instances, the errors causing the over-predictions would cause locations downstream to be affected even though the physics were still being modeled properly by CHEM. This is easily seen when comparing to the 103-AH data. In the areas where predictions were low, higher grid resolution often brought the results closer to the data. Other disagreements are attributed to Ares I-X hardware not being present in the grid, as a result of computational resources limitations. The satisfactory predictions from CHEM provide confidence that future designs and predictions from the CFD code will provide an accurate approximation of the correct values for use in design and other applications
Emerging CFD technologies and aerospace vehicle design
NASA Technical Reports Server (NTRS)
Aftosmis, Michael J.
1995-01-01
With the recent focus on the needs of design and applications CFD, research groups have begun to address the traditional bottlenecks of grid generation and surface modeling. Now, a host of emerging technologies promise to shortcut or dramatically simplify the simulation process. This paper discusses the current status of these emerging technologies. It will argue that some tools are already available which can have positive impact on portions of the design cycle. However, in most cases, these tools need to be integrated into specific engineering systems and process cycles to be used effectively. The rapidly maturing status of unstructured and Cartesian approaches for inviscid simulations makes suggests the possibility of highly automated Euler-boundary layer simulations with application to loads estimation and even preliminary design. Similarly, technology is available to link block structured mesh generation algorithms with topology libraries to avoid tedious re-meshing of topologically similar configurations. Work in algorithmic based auto-blocking suggests that domain decomposition and point placement operations in multi-block mesh generation may be properly posed as problems in Computational Geometry, and following this approach may lead to robust algorithmic processes for automatic mesh generation.
Development of Tripropellant CFD Design Code
NASA Technical Reports Server (NTRS)
Farmer, Richard C.; Cheng, Gary C.; Anderson, Peter G.
1998-01-01
A tripropellant, such as GO2/H2/RP-1, CFD design code has been developed to predict the local mixing of multiple propellant streams as they are injected into a rocket motor. The code utilizes real fluid properties to account for the mixing and finite-rate combustion processes which occur near an injector faceplate, thus the analysis serves as a multi-phase homogeneous spray combustion model. Proper accounting of the combustion allows accurate gas-side temperature predictions which are essential for accurate wall heating analyses. The complex secondary flows which are predicted to occur near a faceplate cannot be quantitatively predicted by less accurate methodology. Test cases have been simulated to describe an axisymmetric tripropellant coaxial injector and a 3-dimensional RP-1/LO2 impinger injector system. The analysis has been shown to realistically describe such injector combustion flowfields. The code is also valuable to design meaningful future experiments by determining the critical location and type of measurements needed.
EXAMINATION OF A PROPOSED VALIDATION DATA SET USING CFD CALCULATIONS
Richard W. Johnson
2009-08-01
The United States Department of Energy is promoting the resurgence of nuclear power in the U. S. for both electrical power generation and production of process heat required for industrial processes such as the manufacture of hydrogen for use as a fuel in automobiles. The DOE project is called the next generation nuclear plant (NGNP) and is based on a Generation IV reactor concept called the very high temperature reactor (VHTR), which will use helium as the coolant at temperatures ranging from 450 ºC to perhaps 1000 ºC. While computational fluid dynamics (CFD) has not been used for past safety analysis for nuclear reactors in the U. S., it is being considered for such for future reactors. It is fully recognized that CFD simulation codes will have to be validated for flow physics reasonably close to actual fluid dynamic conditions expected in normal and accident operational situations. To this end, experimental data have been obtained in a scaled model of a narrow slice of the lower plenum of a prismatic VHTR. The present article presents new results of CFD examinations of these data to explore potential issues with the geometry, the initial conditions, the flow dynamics and the data needed to fully specify the inlet and boundary conditions; results for several turbulence models are examined. Issues are addressed and recommendations about the data are made.
Experimental Validation of a Pulse Tube Cfd Model
NASA Astrophysics Data System (ADS)
Taylor, R. P.; Nellis, G. F.; Klein, S. A.; Radebaugh, R.; Lewis, M.; Bradley, P.
2010-04-01
Computational fluid dynamic (CFD) analysis has been applied by various authors to study the processes occurring in the pulse tube cryocooler and carry out parametric design and optimization. However, a thorough and quantitative validation of the CFD model predications against experimental data has not been accomplished. This is in part due to the difficulty associated with measuring the specific quantities of interest (e.g., internal enthalpy flows and acoustic power) rather than generic system performance (e.g., cooling power). This paper presents the experimental validation of a previously published two-dimensional, axisymmetric CFD model of the pulse tube and its associated flow transitions. The test facility designed for this purpose is unique in that it allows the precise measurement of the cold end acoustic power, regenerator loss, and cooling power. Therefore, it allows the separate and precise measurement of both the pulse tube loss and the regenerator loss. The experimental results are presented for various pulse tube and flow transition configurations operating at a cold end temperature of 80 K over a range of pressure ratios. The comparison of the model prediction to the experimental data is presented with discussion.
Aerodynamic Synthesis of a Centrifugal Impeller Using CFD and Measurements
NASA Technical Reports Server (NTRS)
Larosiliere, L. M.; Skoch, G. J.; Prahst, P. S.
1997-01-01
The performance and flow structure in an unshrouded impeller of approximately 4:1 pressure ratio is synthesized on the basis of a detailed analysis of 3D viscous CFD results and aerodynamic measurements. A good data match was obtained between CFD and measurements using laser anemometry and pneumatic probes. This solidified the role of the CFD model as a reliable representation of the impeller internal flow structure and integrated performance. Results are presented showing the loss production and secondary flow structure in the impeller. The results indicate that while the overall impeller efficiency is high, the impeller shroud static pressure recovery potential is underdeveloped leading to a performance degradation in the downstream diffusing element. Thus, a case is made for a follow-on impeller parametric design study to improve the flow quality. A strategy for aerodynamic performance enhancement is outlined and an estimate of the gain in overall impeller efficiency that might be realized through improvements to the relative diffusion process is provided.
Integrating Multibody Simulation and CFD: toward Complex Multidisciplinary Design Optimization
NASA Astrophysics Data System (ADS)
Pieri, Stefano; Poloni, Carlo; Mühlmeier, Martin
This paper describes the use of integrated multidisciplinary analysis and optimization of a race car model on a predefined circuit. The objective is the definition of the most efficient geometric configuration that can guarantee the lowest lap time. In order to carry out this study it has been necessary to interface the design optimization software modeFRONTIER with the following softwares: CATIA v5, a three dimensional CAD software, used for the definition of the parametric geometry; A.D.A.M.S./Motorsport, a multi-body dynamic simulation software; IcemCFD, a mesh generator, for the automatic generation of the CFD grid; CFX, a Navier-Stokes code, for the fluid-dynamic forces prediction. The process integration gives the possibility to compute, for each geometrical configuration, a set of aerodynamic coefficients that are then used in the multiboby simulation for the computation of the lap time. Finally an automatic optimization procedure is started and the lap-time minimized. The whole process is executed on a Linux cluster running CFD simulations in parallel.
Comparative analysis of positive and negative attitudes toward statistics
NASA Astrophysics Data System (ADS)
Ghulami, Hassan Rahnaward; Ab Hamid, Mohd Rashid; Zakaria, Roslinazairimah
2015-02-01
Many statistics lecturers and statistics education researchers are interested to know the perception of their students' attitudes toward statistics during the statistics course. In statistics course, positive attitude toward statistics is a vital because it will be encourage students to get interested in the statistics course and in order to master the core content of the subject matters under study. Although, students who have negative attitudes toward statistics they will feel depressed especially in the given group assignment, at risk for failure, are often highly emotional, and could not move forward. Therefore, this study investigates the students' attitude towards learning statistics. Six latent constructs have been the measurement of students' attitudes toward learning statistic such as affect, cognitive competence, value, difficulty, interest, and effort. The questionnaire was adopted and adapted from the reliable and validate instrument of Survey of Attitudes towards Statistics (SATS). This study is conducted among engineering undergraduate engineering students in the university Malaysia Pahang (UMP). The respondents consist of students who were taking the applied statistics course from different faculties. From the analysis, it is found that the questionnaire is acceptable and the relationships among the constructs has been proposed and investigated. In this case, students show full effort to master the statistics course, feel statistics course enjoyable, have confidence that they have intellectual capacity, and they have more positive attitudes then negative attitudes towards statistics learning. In conclusion in terms of affect, cognitive competence, value, interest and effort construct the positive attitude towards statistics was mostly exhibited. While negative attitudes mostly exhibited by difficulty construct.
Automatic Conversion of Conceptual Geometry to CFD Geometry for Aircraft Design
NASA Technical Reports Server (NTRS)
Li, Wu
2007-01-01
Conceptual aircraft design is usually based on simple analysis codes. Its objective is to provide an overall system performance of the developed concept, while preliminary aircraft design uses high-fidelity analysis tools such as computational fluid dynamics (CFD) analysis codes or finite element structural analysis codes. In some applications, such as low-boom supersonic concept development, it is important to be able to explore a variety of drastically different configurations while using CFD analysis to check whether a given configuration can be tailored to have a low-boom ground signature. It poses an extremely challenging problem of integrating CFD analysis in conceptual design. This presentation will discuss a computer code, called iPatch, for automatic conversion of conceptual geometry to CFD geometry. In general, conceptual aircraft geometry is not as well-defined as a CAD geometry model. In particular, a conceptual aircraft geometry model usually does not define the intersection curves for the connecting surfaces. The computer code iPatch eliminates the gap between conceptual geometry and CFD geometry by accomplishing the following three tasks automatically: (1) use bicubic B-splines to extrapolate (if necessary) each surface in a conceptual geometry so that all the independently defined geometry components (such as wing and fuselage) can be intersected to form a watertight CFD geometry, (2) compute the intersection curves of surface patches at any resolution (up to 10-7 accuracy) specified by users, and (3) write the B-spline surface patches and the corresponding boundary points for the watertight CFD geometry in the format that can be directly exported to the meshing tool VGRID in the CFD software TetrUSS. As a result, conceptual designers can get quick feedback on the aerodynamic characteristics of their concepts, which will allow them to understand some subtlety in their concepts and to be able to assess their concepts with a higher degree of
NASA Technical Reports Server (NTRS)
Benson, Thomas J.
1988-01-01
Supersonic external compression inlets are introduced, and the computational fluid dynamics (CFD) codes and tests needed to study flow associated with these inlets are outlined. Normal shock wave turbulent boundary layer interaction is discussed. Boundary layer control is considered. Glancing sidewall shock interaction is treated. The CFD validation of hypersonic inlet configurations is explained. Scramjet inlet modules are shown.
CFD Simulations of Joint Urban Atmospheric Dispersion Field Study
Lee, R; Humphreys III, T; Chan, S
2004-06-17
releases in the form of puffs or continuous sources were disseminated over 6 daytime and 4 nighttime episodes. Many wind and concentration sensors were used to provide wind and SF6 data over both long and short time-averaging periods. In addition to the usual near surface measurements, data depicting vertical profiles of wind and concentrations adjacent to the outside walls of several buildings were also taken. Also of interest were observations of the trajectory of balloons that were deployed close to the tracer release area. Many of the balloons released exhibit extremely quick ascents up from ground level to the top of buildings, thus implying highly convective conditions. In this paper we will present some simulations that were performed during the planning of the field experiments. The calculations were based on two possible release sites at the intersections of Sheridan and Robinson, and Broadway and Sheridan. These results provided initial information on flow and dispersion patterns, which could be used to guide optimal placement of sensors at appropriate locations. We will also discuss results of more recent simulations for several releases in which reliable data is available. These simulations will be compared with the near field data taken from the wind sensors as well as the time-averaged data from the concentration sensors. Among the other topics discussed are initial and boundary conditions used in the simulations, adaptation of building GIS data for CFD modeling and analysis of field data.
Protein complex prediction via dense subgraphs and false positive analysis.
Hernandez, Cecilia; Mella, Carlos; Navarro, Gonzalo; Olivera-Nappa, Alvaro; Araya, Jaime
2017-01-01
Many proteins work together with others in groups called complexes in order to achieve a specific function. Discovering protein complexes is important for understanding biological processes and predict protein functions in living organisms. Large-scale and throughput techniques have made possible to compile protein-protein interaction networks (PPI networks), which have been used in several computational approaches for detecting protein complexes. Those predictions might guide future biologic experimental research. Some approaches are topology-based, where highly connected proteins are predicted to be complexes; some propose different clustering algorithms using partitioning, overlaps among clusters for networks modeled with unweighted or weighted graphs; and others use density of clusters and information based on protein functionality. However, some schemes still require much processing time or the quality of their results can be improved. Furthermore, most of the results obtained with computational tools are not accompanied by an analysis of false positives. We propose an effective and efficient mining algorithm for discovering highly connected subgraphs, which is our base for defining protein complexes. Our representation is based on transforming the PPI network into a directed acyclic graph that reduces the number of represented edges and the search space for discovering subgraphs. Our approach considers weighted and unweighted PPI networks. We compare our best alternative using PPI networks from Saccharomyces cerevisiae (yeast) and Homo sapiens (human) with state-of-the-art approaches in terms of clustering, biological metrics and execution times, as well as three gold standards for yeast and two for human. Furthermore, we analyze false positive predicted complexes searching the PDBe (Protein Data Bank in Europe) database in order to identify matching protein complexes that have been purified and structurally characterized. Our analysis shows that more than 50
Caroff, Jildaz; Mihalea, Cristian; Da Ros, Valerio; Yagi, Takanobu; Iacobucci, Marta; Ikka, Léon; Moret, Jacques; Spelle, Laurent
2017-07-01
Recent reports have revealed a worsening of aneurysm occlusion between WEB treatment baseline and angiographic follow-up due to "compression" of the device. We utilized computational fluid dynamics (CFD) in order to determine whether the underlying mechanism of this worsening is flow related. We included data from all consecutive patients treated in our institution with a WEB for unruptured aneurysms located either at the middle cerebral artery or basilar tip. The CFD study was performed using pre-operative 3D rotational angiography. From digital subtraction follow-up angiographies patients were dichotomized into two groups: one with WEB "compression" and one without. We performed statistical analyses to determine a potential correlation between WEB compression and CFD inflow ratio. Between July 2012 and June 2015, a total of 22 unruptured middle cerebral artery or basilar tip aneurysms were treated with a WEB device in our department. Three patients were excluded from the analysis and the mean follow-up period was 17months. Eleven WEBs presented "compression" during follow-up. Interestingly, device "compression" was statistically correlated to the CFD inflow ratio (P=0.018), although not to aneurysm volume, aspect ratio or neck size. The mechanisms underlying the worsening of aneurysm occlusion in WEB-treated patients due to device compression are most likely complex as well as multifactorial. However, it is apparent from our pilot study that a high arterial inflow is, at least, partially involved. Further theoretical and animal research studies are needed to increase our understanding of this phenomenon. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Transcriptome Sequencing and Positive Selected Genes Analysis of Bombyx mandarina
Wu, Yuqian; Long, Renwen; Liu, Chun; Xia, Qingyou
2015-01-01
The wild silkworm Bombyx mandarina is widely believed to be an ancestor of the domesticated silkworm, Bombyx mori. Silkworms are often used as a model for studying the mechanism of species domestication. Here, we performed transcriptome sequencing of the wild silkworm using an Illumina HiSeq2000 platform. We produced 100,004,078 high-quality reads and assembled them into 50,773 contigs with an N50 length of 1764 bp and a mean length of 941.62 bp. A total of 33,759 unigenes were identified, with 12,805 annotated in the Nr database, 8273 in the Pfam database, and 9093 in the Swiss-Prot database. Expression profile analysis found significant differential expression of 1308 unigenes between the middle silk gland (MSG) and posterior silk gland (PSG). Three sericin genes (sericin 1, sericin 2, and sericin 3) were expressed specifically in the MSG and three fibroin genes (fibroin-H, fibroin-L, and fibroin/P25) were expressed specifically in the PSG. In addition, 32,297 Single-nucleotide polymorphisms (SNPs) and 361 insertion-deletions (INDELs) were detected. Comparison with the domesticated silkworm p50/Dazao identified 5,295 orthologous genes, among which 400 might have experienced or to be experiencing positive selection by Ka/Ks analysis. These data and analyses presented here provide insights into silkworm domestication and an invaluable resource for wild silkworm genomics research. PMID:25806526
Guyonvarch, Estelle; Ramin, Elham; Kulahci, Murat; Plósz, Benedek Gy
2015-10-15
The present study aims at using statistically designed computational fluid dynamics (CFD) simulations as numerical experiments for the identification of one-dimensional (1-D) advection-dispersion models - computationally light tools, used e.g., as sub-models in systems analysis. The objective is to develop a new 1-D framework, referred to as interpreted CFD (iCFD) models, in which statistical meta-models are used to calculate the pseudo-dispersion coefficient (D) as a function of design and flow boundary conditions. The method - presented in a straightforward and transparent way - is illustrated using the example of a circular secondary settling tank (SST). First, the significant design and flow factors are screened out by applying the statistical method of two-level fractional factorial design of experiments. Second, based on the number of significant factors identified through the factor screening study and system understanding, 50 different sets of design and flow conditions are selected using Latin Hypercube Sampling (LHS). The boundary condition sets are imposed on a 2-D axi-symmetrical CFD simulation model of the SST. In the framework, to degenerate the 2-D model structure, CFD model outputs are approximated by the 1-D model through the calibration of three different model structures for D. Correlation equations for the D parameter then are identified as a function of the selected design and flow boundary conditions (meta-models), and their accuracy is evaluated against D values estimated in each numerical experiment. The evaluation and validation of the iCFD model structure is carried out using scenario simulation results obtained with parameters sampled from the corners of the LHS experimental region. For the studied SST, additional iCFD model development was carried out in terms of (i) assessing different density current sub-models; (ii) implementation of a combined flocculation, hindered, transient and compression settling velocity function; and (iii
CFD analyses for advanced pump design
NASA Technical Reports Server (NTRS)
Dejong, F. J.; Choi, S.-K.; Govindan, T. R.
1994-01-01
As one of the activities of the NASA/MSFC Pump Stage Technology Team, the present effort was focused on using CFD in the design and analysis of high performance rocket engine pumps. Under this effort, a three-dimensional Navier-Stokes code was used for various inducer and impeller flow field calculations. An existing algebraic grid generation procedure was-extended to allow for nonzero blade thickness, splitter blades, and hub/shroud cavities upstream or downstream of the (main) blades. This resulted in a fast, robust inducer/impeller geometry/grid generation package. Problems associated with running a compressible flow code to simulate an incompressible flow were resolved; related aspects of the numerical algorithm (viz., the matrix preconditioning, the artificial dissipation, and the treatment of low Mach number flows) were addressed. As shown by the calculations performed under the present effort, the resulting code, in conjunction with the grid generation package, is an effective tool for the rapid solution of three-dimensional viscous inducer and impeller flows.
Austin, Damien J; Kelly, Stephen J
2014-01-01
The purpose of this study was to quantify the movement demands of all 9 individual playing positions in professional rugby league. The movement demands of 135 professional rugby league players were recorded during 28 National Rugby League games in 2011, using a nondifferential 5 Hz global positioning system. The mean total distances covered in a game for fullback, wing, center, five-eight, halfback, hooker, lock, back row, and prop players were 7,760, 7,457, 7,301, 8,402, 8,500, 6,988, 5,481, 6,936, and 4,597 m, respectively. The average occurrence of high-intensity runs per match was 42, 35, 34, 86, 120, 74, 52, 26, and 18 for fullback, wing, center, five-eight, halfback, hooker, lock, back row, and prop players, respectively. The average distance traveled greater than 18 km·h-1 for fullback were 17 ± 2 m, wing 18 ± 2 m, center 18 ± 3 m, five-eight 16 ± 3 m, and halfback 17 ± 4 m. The average distance and range traveled greater than 18 km·h for hooker were 14 ± 3 m, lock 16 ± 2 m, back row 18 ± 3 m, and prop 16 ± 2 m. The use of global positioning systems has demonstrated plausibility to eliminate the use of grouping of positions in rugby league and for coaches to make specific training protocols for each position. Given the differences in movement demands of all 9 positions in rugby league, some positions would lack specificity to their positional requirements if using collective grouping for planning of training regimens.
Characterization of the Space Shuttle Ascent Debris using CFD Methods
NASA Technical Reports Server (NTRS)
Murman, Scott M.; Aftosmis, Michael J.; Rogers, Stuart E.
2005-01-01
After video analysis of space shuttle flight STS-107's ascent showed that an object shed from the bipod-ramp region impacted the left wing, a transport analysis was initiated to determine a credible flight path and impact velocity for the piece of debris. This debris transport analysis was performed both during orbit, and after the subsequent re-entry accident. The analysis provided an accurate prediction of the velocity a large piece of foam bipod ramp would have as it impacted the wing leading edge. This prediction was corroborated by video analysis and fully-coupled CFD/six degree of freedom (DOF) simulations. While the prediction of impact velocity was accurate enough to predict critical damage in this case, one of the recommendations of the Columbia Accident Investigation Board (CAIB) for return-to-flight (RTF) was to analyze the complete debris environment experienced by the shuttle stack on ascent. This includes categorizing all possible debris sources, their probable geometric and aerodynamic characteristics, and their potential for damage. This paper is chiefly concerned with predicting the aerodynamic characteristics of a variety of potential debris sources (insulating foam and cork, nose-cone ablator, ice, ...) for the shuttle ascent configuration using CFD methods. These aerodynamic characteristics are used in the debris transport analysis to predict flight path, impact velocity and angle, and provide statistical variation to perform risk analyses where appropriate. The debris aerodynamic characteristics are difficult to determine using traditional methods, such as static or dynamic test data, due to the scaling requirements of simulating a typical debris event. The use of CFD methods has been a critical element for building confidence in the accuracy of the debris transport code by bridging the gap between existing aerodynamic data and the dynamics of full-scale, in-flight events.
CFD Modeling of Particle Resuspension
NASA Astrophysics Data System (ADS)
Degraw, Jason; Cimbala, John; Freihaut, James
2006-11-01
The phenomenon of resuspension plays a role in everyday life and is an important factor in indoor air quality. There are several models available for particle detachment, but the mechanisms by which particles are induced to lift off of a surface are not well explained in the literature. The lifting forces on a particle are generally too small to resuspend it, especially in the air flows generated by human activity (e.g., walking). We model the interaction of the aerodynamic disturbances and a thin layer of particles deposited on the surface. A standard CFD solver is used to compute the flow, and the particle transport model is one-way-coupled with the flow solution. Several time-dependent flows are considered, including an idealized footstep. The foot is represented using an immersed boundary technique, and is modeled as a disk that moves up and down with a trajectory patterned after experimental gait data. A jet and a radially moving vortex are generated as the foot approaches the floor. The strength of the jet is determined by the details of the foot movement near the surface. If the foot is slowed as it nears the floor, we find maximum velocities around 3 m/s, while the maximum velocity is more than doubled by a sudden stop. We have also computed a ``vacuum cleaner'' case to model the airflow generated by cleaning activities. In either case, the wall shear along the floor and the near-wall flow structure are used to examine the resuspension of particles.
CFD SIMULATIONS OF JOINT URBAN ATMOSPHERE DISPERSION FIELD STUDY 2003
Lee, R L; Humphreys, T D; Chan, S T
2004-03-31
conditions. In this paper we will present some simulations that were performed during the planning of the field experiments. The calculations were based on two possible release sites at the intersections of Sheridan and Robinson, and Broadway and Sheridan. These results provided initial information on flow and dispersion patterns, which were used to guide optimal placement of sensor at appropriate locations. We will also discuss results of more recent simulations for several releases in which reliable data is available. These simulations will be compared with the near field data taken from the wind sensors as well as the time-averaged data from the concentration sensors. Among the other topics discussed are initial and boundary conditions used in the simulations, adaptation of building GIS data for CFD modeling and analysis of field data.
Essemiani, Karim; de Traversay, Christelle; Gallot, Jean Claude
2004-12-01
The CFD (computational fluid dynamics) technique is used to describe the mixing conditions in a pilot-scale FCC (forced-circulation crystallizer) and to study the impact of flow rate and aspect ratio on local flow conditions and RTD (residence-time distribution) in the crystallizer. The analysis adequately predicts the oscillating flow and two-phase (gas-liquid) interaction at the free surface. A comparison has been made between the CFD predictions and models of RTD. The results support the use of CFD methodology as an aid to optimization of commercial-scale FCC design.
Consanguinity and late fertility: spatial analysis reveals positive association patterns.
Lisa, Antonella; Astolfi, Paola; Zei, Gianna; Tentoni, Stefania
2015-01-01
The role of consanguinity on human complex traits is an important and controversial issue. In this work we focused on the Sardinian population and examined the effect of consanguineous unions on late female fertility. During the last century the island has been characterized by a high incidence of marriages between relatives, favoured by socio economic conditions and geographical isolation, and by high fertility despite a widespread tendency to delay reproduction. Through spatial analysis techniques, we explored the geographical heterogeneity of consanguinity and late fertility, and identified in Central-Eastern Sardinia a common area with an excess of both traits, where the traits are positively associated. We found that their association did not significantly affect women's fertility in the area, despite the expected negative role of both traits. Intriguingly, this critical zone corresponds well to areas reported by previous studies as being peculiar for a high frequency of centenarians and for lower risk in pregnancy outcome. The proposed approach can be generally exploited to identify target populations on which socioeconomic, biodemographic and genetic data can be collected at the individual level, and deeper analyses carried out to disentangle the determinants of complex biological traits and to investigate their association.
Perspectives on the Future of CFD
NASA Technical Reports Server (NTRS)
Kwak, Dochan
2000-01-01
This viewgraph presentation gives an overview of the future of computational fluid dynamics (CFD), which in the past has pioneered the field of flow simulation. Over time CFD has progressed as computing power. Numerical methods have been advanced as CPU and memory capacity increases. Complex configurations are routinely computed now and direct numerical simulations (DNS) and large eddy simulations (LES) are used to study turbulence. As the computing resources changed to parallel and distributed platforms, computer science aspects such as scalability (algorithmic and implementation) and portability and transparent codings have advanced. Examples of potential future (or current) challenges include risk assessment, limitations of the heuristic model, and the development of CFD and information technology (IT) tools.
Gasificaton Transport: A Multiphase CFD Approach & Measurements
Dimitri Gidaspow; Veeraya Jiradilok; Mayank Kashyap; Benjapon Chalermsinsuwan
2009-02-14
The objective of this project was to develop predictive theories for the dispersion and mass transfer coefficients and to measure them in the turbulent fluidization regime, using existing facilities. A second objective was to use our multiphase CFD tools to suggest optimized gasifier designs consistent with aims of Future Gen. We have shown that the kinetic theory based CFD codes correctly compute: (1) Dispersion coefficients; and (2) Mass transfer coefficients. Hence, the kinetic theory based CFD codes can be used for fluidized bed reactor design without any such inputs. We have also suggested a new energy efficient method of gasifying coal and producing electricity using a molten carbonate fuel cell. The principal product of this new scheme is carbon dioxide which can be converted into useful products such as marble, as is done very slowly in nature. We believe this scheme is a lot better than the canceled FutureGen, since the carbon dioxide is safely sequestered.
Molecular analysis of IgD-positive human germinal centres.
Müller, Claudia; Siemer, Dörte; Lehnerdt, Götz; Lang, Stephan; Küppers, Ralf
2010-04-01
It is controversially discussed whether human IgM(+)IgD(+)CD27(+) B cells, which carry somatically mutated Ig variable region (IgV) genes, are derived from germinal centres (GC) B cells or originate from another developmental pathway. GC composed of IgM(+)IgD(+) B cells, which co-express the CD70 surface marker, have been described in approximately 10% of tonsils. As IgM(+)IgD(+)CD27(+) B cells might be generated in such GC, we characterized IgD(+) tonsillar GC cells. GC dominated by IgD(+) B cells were present in 10 of 67 tonsils analyzed. Three GC were additionally positive for CD70. Detailed analysis of one such GC by microdissection and single-cell DNA PCR revealed IgD(+) GC B cells undergoing somatic hypermutation during clonal expansion. However, further analysis of this GC as well as five additional microdissected GC by reverse transcription (RT)-PCR for clonally related Igmu and Igdelta transcripts indicated that the B-cell clones in five of these six IgD(+) GC belong to the IgD-only B cell subset, which has deleted the Cmu gene, and that only one GC harboured a large IgM(+)IgD(+) B-cell clone. Hence, most IgD(+) GC consist of IgD-only B cells and fully developed IgM(+)IgD(+)(CD70(+)) GC are very rare. This indicates that the rare IgM(+)IgD(+) GC B-cell clones from IgD(+) GC contribute little to the large population of IgM(+)IgD(+)CD27(+) B cells. Finally, an RT-PCR analysis with clone-specific primers for two IgD(+) GC B-cell clones showed an absence of IgG or IgA class-switched clone members, indicating strict regulation of class switching and a selective production of IgD(+) B cells from such clones.
Lack of association of CFD polymorphisms with advanced age-related macular degeneration.
Zeng, Jiexi; Chen, Yuhong; Tong, Zongzhong; Zhou, Xinrong; Zhao, Chao; Wang, Kevin; Hughes, Guy; Kasuga, Daniel; Bedell, Matthew; Lee, Clara; Ferreyra, Henry; Kozak, Igor; Haw, Weldon; Guan, Jean; Shaw, Robert; Stevenson, William; Weishaar, Paul D; Nelson, Mark H; Tang, Luosheng; Zhang, Kang
2010-11-03
Age-related macular degeneration (AMD) is the most common cause of irreversible central vision loss worldwide. Research has linked AMD susceptibility with dysregulation of the complement cascade. Typically, complement factor H (CFH), complement factor B (CFB), complement component 2 (C2), and complement component 3 (C3) are associated with AMD. In this paper, we investigated the association between complement factor D (CFD), another factor of the complement system, and advanced AMD in a Caucasian population. Six single nucleotide polymorphisms (SNPs), rs1683564, rs35186399, rs1683563, rs3826945, rs34337649, and rs1651896, across the region covering CFD, were chosen for this study. One hundred and seventy-eight patients with advanced AMD and 161 age-matched normal controls were genotyped. Potential positive signals were further tested in another independent 445 advanced AMD patients and 190 controls. χ2 tests were performed to compare the allele frequencies between case and control groups. None of the six SNPs of CFD was found to be significantly associated with advanced AMD in our study. Our findings suggest that CFD may not play a major role in the genetic susceptibility to AMD because no association was found between the six SNPs analyzed in the CFD region and advanced AMD.
Karmonik, Christof; Klucznik, Richard; Benndorf, Goetz
2008-01-01
Computational Fluid Dynamic (CFD) is increasingly being used for modeling hemodynamics in intracranial aneurysms. While CFD techniques are well established, need for validation of the results remains. By quantifying features in velocity patterns measured with 2D phase contrast magnetic resonance (pcMRI) in vivo and simulated with CFD, the role of pcMRI for providing reference data for the CFD simulation is explored. Unsteady CFD simulations were performed with inflow boundary conditions obtained from 2D pcMRI measurements of an aneurysm of the anterior communication artery. Intra-aneurysmal velocity profiles were recorded with 2D pcMRI and calculated with CFD. Relative areas of positive and negative velocity were calculated in these profiles for maximum and minimum inflow. Areas of positive and of negative velocity similar in shape were found in the velocity profiles obtained with both methods. Relative difference in size of the relative areas for the whole cardiac cycle ranged from 1%-25% (average 12%). 2D pcMRI is able to record velocity profiles in an aneurysm of the anterior commuting artery in vivo. These velocity profiles can serve as reference data for validation of CFD simulations. Further studies are needed to explore the role of pcMRI in the context of CFD simulations.
Using CFD as Rocket Injector Design Tool: Recent Progress at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Tucker, Kevin; West, Jeff; Williams, Robert; Lin, Jeff; Rocker, Marvin; Canabal, Francisco; Robles, Bryan; Garcia, Robert; Chenoweth, James
2003-01-01
The choice of tools used for injector design is in a transitional phase between exclusive reliance on the empirically based correlations and extensive use of computational fluid dynamics (CFD). The Next Generation Launch Technology (NGLT) Program goals emphasizing lower costs and increased reliability have produced a need to enable CFD as an injector design tool in a shorter time frame. This is the primary objective of the Staged Combustor Injector Technology Task currently under way at Marshall Space Flight Center (MSFC). The documentation of this effort begins with a very brief status of current injector design tools. MSFC's vision for use of CFD as a tool for combustion devices design is stated and discussed with emphasis on the injector. The concept of the Simulation Readiness Level (SRL), comprised of solution fidelity, robustness and accuracy, is introduced and discussed. This quantitative measurement is used to establish the gap between the current state of demonstrated capability and that necessary for regular use in the design process. MSFC's view of the validation process is presented and issues associated with obtaining the necessary data are noted and discussed. Three current experimental efforts aimed at generating validation data are presented. The importance of uncertainty analysis to understand the data quality is also demonstrated. First, a brief status of current injector design tools is provided as context for the current effort. Next, the MSFC vision for using CFD as an injector design tool is stated. A generic CFD-based injector design methodology is also outlined and briefly discussed. Three areas where MSFC is using injector CFD analyses for program support will be discussed. These include the Integrated Powerhead Development (IPD) engine which uses hydrogen and oxygen propellants in a full flow staged combustion (FFSC) cycle and the TR-107 and the RS84 engine both of which use RP-1 and oxygen in an ORSC cycle. Finally, an attempt is made to
CFD simulation and experimental validation of a GM type double inlet pulse tube refrigerator
NASA Astrophysics Data System (ADS)
Banjare, Y. P.; Sahoo, R. K.; Sarangi, S. K.
2010-04-01
Pulse tube refrigerator has the advantages of long life and low vibration over the conventional cryocoolers, such as GM and stirling coolers because of the absence of moving parts in low temperature. This paper performs a three-dimensional computational fluid dynamic (CFD) simulation of a GM type double inlet pulse tube refrigerator (DIPTR) vertically aligned, operating under a variety of thermal boundary conditions. A commercial computational fluid dynamics (CFD) software package, Fluent 6.1 is used to model the oscillating flow inside a pulse tube refrigerator. The simulation represents fully coupled systems operating in steady-periodic mode. The externally imposed boundary conditions are sinusoidal pressure inlet by user defined function at one end of the tube and constant temperature or heat flux boundaries at the external walls of the cold-end heat exchangers. The experimental method to evaluate the optimum parameters of DIPTR is difficult. On the other hand, developing a computer code for CFD analysis is equally complex. The objectives of the present investigations are to ascertain the suitability of CFD based commercial package, Fluent for study of energy and fluid flow in DIPTR and to validate the CFD simulation results with available experimental data. The general results, such as the cool down behaviours of the system, phase relation between mass flow rate and pressure at cold end, the temperature profile along the wall of the cooler and refrigeration load are presented for different boundary conditions of the system. The results confirm that CFD based Fluent simulations are capable of elucidating complex periodic processes in DIPTR. The results also show that there is an excellent agreement between CFD simulation results and experimental results.
Assessment of CFD Hypersonic Turbulent Heating Rates for Space Shuttle Orbiter
NASA Technical Reports Server (NTRS)
Wood, William A.; Oliver, A. Brandon
2011-01-01
Turbulent CFD codes are assessed for the prediction of convective heat transfer rates at turbulent, hypersonic conditions. Algebraic turbulence models are used within the DPLR and LAURA CFD codes. The benchmark heat transfer rates are derived from thermocouple measurements of the Space Shuttle orbiter Discovery windward tiles during the STS-119 and STS-128 entries. The thermocouples were located underneath the reaction-cured glass coating on the thermal protection tiles. Boundary layer transition flight experiments conducted during both of those entries promoted turbulent flow at unusually high Mach numbers, with the present analysis considering Mach 10{15. Similar prior comparisons of CFD predictions directly to the flight temperature measurements were unsatisfactory, showing diverging trends between prediction and measurement for Mach numbers greater than 11. In the prior work, surface temperatures and convective heat transfer rates had been assumed to be in radiative equilibrium. The present work employs a one-dimensional time-accurate conduction analysis to relate measured temperatures to surface heat transfer rates, removing heat soak lag from the flight data, in order to better assess the predictive accuracy of the numerical models. The turbulent CFD shows good agreement for turbulent fuselage flow up to Mach 13. But on the wing in the wake of the boundary layer trip, the inclusion of tile conduction effects does not explain the prior observed discrepancy in trends between simulation and experiment; the flight heat transfer measurements are roughly constant over Mach 11-15, versus an increasing trend with Mach number from the CFD.
Analytic Corrections to CFD Heating Predictions Accounting for Changes in Surface Catalysis. Part II
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.; Inger, George R.
1996-01-01
A new approach for combining the insight afforded by integral boundary-layer analysis with comprehensive (but time intensive) computational fluid dynamic (CFD) flowfield solutions of the thin-layer Navier-Stokes equations is described. The approach extracts CFD derived quantities at the wall and at the boundary layer edge for inclusion in a post-processing boundary-layer analysis. It allows a designer at a work-station to address two questions, given a single CFD solution. (1) How much does the heating change for a thermal protection system (TPS) with different catalytic properties than was used in the original CFD solution? (2) How does the heating change at the interface of two different TPS materials with an abrupt change in catalytic efficiency? The answer to the second question is particularly important, because abrupt changes from low to high catalytic efficiency can lead to localized increase in heating which exceeds the usually conservative estimate provided by a fully catalytic wall assumption. Capabilities of this approach for application to Reusable Launch Vehicle (RLV) design are demonstrated. If the definition of surface catalysis is uncertain early in the design process, results show that fully catalytic wall boundary conditions provide the best baseline for CFD design points.
CFD study of isothermal water flow in rod bundle with split-type spacer grid
NASA Astrophysics Data System (ADS)
Batta, A.; Class, A. G.
2014-06-01
The design of rod bundles in nuclear application nowadays is assessed by CFD (computational fluid dynamics). The accuracy of CFD models need validation. Within the OECD/NEA benchmark MATiS-H (Measurement and Analysis of Turbulent Mixing in Sub-channels - Horizontal) a single-phase water flow in a 5x5 rod bundle is studied. In the benchmark, two types of spacer grids are tested, the swirl type and the split type, where the current study focuses on the split type spacer grid. Comparison of CFD results obtained at Karlsruhe Institut of Technology (KIT) with experimental results of KAERI (Korea Atomic Energy Research Institute) are presented. In the benchmark velocities components along selected lines downstream of the spacer grid are measured and compared to CFD results. The CFD code STAR CCM+ with the Realized k-ɛ model is used. Comparisons with experimental results show quantitative and qualitative agreement for the averaged values of velocity components. Comparisons of results to other benchmark partners using different modeling show that the selected mesh size and models for the analysis of the current case gives relatively accurate results. However, the used turbulent model (Realized k-ɛ does not capture the turbulent intensity correctly. Computation shows that the flow has very high mixing due to the spacer grid, which does not decay within the measurements domain (z/ DH =0-10 downstream of spacer grid). The same conclusion can be drawn from experimental data.
CFD Computations on Multi-GPU Configurations.
NASA Astrophysics Data System (ADS)
Menon, Sandeep; Perot, Blair
2007-11-01
Programmable graphics processors have shown favorable potential for use in practical CFD simulations -- often delivering a speed-up factor between 3 to 5 times over conventional CPUs. In recent times, most PCs are supplied with the option of installing multiple GPUs on a single motherboard, thereby providing the option of a parallel GPU configuration in a shared-memory paradigm. We demonstrate our implementation of an unstructured CFD solver using a set up which is configured to run two GPUs in parallel, and discuss its performance details.
Tuned grid generation with ICEM CFD
NASA Technical Reports Server (NTRS)
Wulf, Armin; Akdag, Vedat
1995-01-01
ICEM CFD is a CAD based grid generation package that supports multiblock structured, unstructured tetrahedral and unstructured hexahedral grids. Major development efforts have been spent to extend ICEM CFD's multiblock structured and hexahedral unstructured grid generation capabilities. The modules added are: a parametric grid generation module and a semi-automatic hexahedral grid generation module. A fully automatic version of the hexahedral grid generation module for around a set of predefined objects in rectilinear enclosures has been developed. These modules will be presented and the procedures used will be described, and examples will be discussed.
RSRM Chamber Pressure Oscillations: Transit Time Models and Unsteady CFD
NASA Technical Reports Server (NTRS)
Nesman, Tom; Stewart, Eric
1996-01-01
Space Shuttle solid rocket motor low frequency internal pressure oscillations have been observed since early testing. The same type of oscillations also are present in the redesigned solid rocket motor (RSRM). The oscillations, which occur during RSRM burn, are predominantly at the first three motor cavity longitudinal acoustic mode frequencies. Broadband flow and combustion noise provide the energy to excite these modes at low levels throughout motor burn, however, at certain times during burn the fluctuating pressure amplitude increases significantly. The increased fluctuations at these times suggests an additional excitation mechanism. The RSRM has inhibitors on the propellant forward facing surface of each motor segment. The inhibitors are in a slot at the segment field joints to prevent burning at that surface. The aft facing segment surface at a field joint slot burns and forms a cavity of time varying size. Initially the inhibitor is recessed in the field joint cavity. As propellant burns away the inhibitor begins to protrude into the bore flow. Two mechanisms (transit time models) that are considered potential pressure oscillation excitations are cavity-edge tones, and inhibitor hole-tones. Estimates of frequency variation with time of longitudinal acoustic modes, cavity edge-tones, and hole-tones compare favorably with frequencies measured during motor hot firing. It is believed that the highest oscillation amplitudes occur when vortex shedding frequencies coincide with motor longitudinal acoustic modes. A time accurate computational fluid dynamic (CFD) analysis was made to replicate the observations from motor firings and to observe the transit time mechanisms in detail. FDNS is the flow solver used to detail the time varying aspects of the flow. The fluid is approximated as a single-phase ideal gas. The CFD model was an axisymmetric representation of the RSRM at 80 seconds into burn.Deformation of the inhibitors by the internal flow was determined
Prediction of Hyper-X Stage Separation Aerodynamics Using CFD
NASA Technical Reports Server (NTRS)
Buning, Pieter G.; Wong, Tin-Chee; Dilley, Arthur D.; Pao, Jenn L.
2000-01-01
The NASA X-43 "Hyper-X" hypersonic research vehicle will be boosted to a Mach 7 flight test condition mounted on the nose of an Orbital Sciences Pegasus launch vehicle. The separation of the research vehicle from the Pegasus presents some unique aerodynamic problems, for which computational fluid dynamics has played a role in the analysis. This paper describes the use of several CFD methods for investigating the aerodynamics of the research and launch vehicles in close proximity. Specifically addressed are unsteady effects, aerodynamic database extrapolation, and differences between wind tunnel and flight environments.
NASA Technical Reports Server (NTRS)
Anusonti-Inthra, Phuriwat
2010-01-01
This paper presents validations of a novel rotorcraft analysis that coupled Computational Fluid Dynamics (CFD), Computational Structural Dynamics (CSD), and Particle Vortex Transport Method (PVTM) methodologies. The CSD with associated vehicle trim analysis is used to calculate blade deformations and trim parameters. The near body CFD analysis is employed to provide detailed near body flow field information which is used to obtain high-fidelity blade aerodynamic loadings. The far field wake dominated region is simulated using the PVTM analysis which provides accurate prediction of the evolution of the rotor wake released from the near body CFD domains. A loose coupling methodology between the CSD and CFD/PVTM modules are used with appropriate information exchange amongst the CSD/CFD/PVTM modules. The coupled CSD/CFD/PVTM methodology is used to simulate various rotorcraft flight conditions (i.e. hover, transition, and high speed flights), and the results are compared with several sets of experimental data. For the hover condition, the results are compared with hover data for the HART II rotor tested at DLR Institute of Flight Systems, Germany. For the forward flight conditions, the results are validated with the UH-60A flight test data.
NASA Technical Reports Server (NTRS)
Anusonti-Inthra, Phuriwat
2010-01-01
This paper presents validations of a novel rotorcraft analysis that coupled Computational Fluid Dynamics (CFD), Computational Structural Dynamics (CSD), and Particle Vortex Transport Method (PVTM) methodologies. The CSD with associated vehicle trim analysis is used to calculate blade deformations and trim parameters. The near body CFD analysis is employed to provide detailed near body flow field information which is used to obtain high-fidelity blade aerodynamic loadings. The far field wake dominated region is simulated using the PVTM analysis which provides accurate prediction of the evolution of the rotor wake released from the near body CFD domains. A loose coupling methodology between the CSD and CFD/PVTM modules are used with appropriate information exchange amongst the CSD/CFD/PVTM modules. The coupled CSD/CFD/PVTM methodology is used to simulate various rotorcraft flight conditions (i.e. hover, transition, and high speed flights), and the results are compared with several sets of experimental data. For the hover condition, the results are compared with hover data for the HART II rotor tested at DLR Institute of Flight Systems, Germany. For the forward flight conditions, the results are validated with the UH-60A flight test data.
Recent Enhancements to the Development of CFD-Based Aeroelastic Reduced-Order Models
NASA Technical Reports Server (NTRS)
Silva, Walter A.
2007-01-01
Recent enhancements to the development of CFD-based unsteady aerodynamic and aeroelastic reduced-order models (ROMs) are presented. These enhancements include the simultaneous application of structural modes as CFD input, static aeroelastic analysis using a ROM, and matched-point solutions using a ROM. The simultaneous application of structural modes as CFD input enables the computation of the unsteady aerodynamic state-space matrices with a single CFD execution, independent of the number of structural modes. The responses obtained from a simultaneous excitation of the CFD-based unsteady aerodynamic system are processed using system identification techniques in order to generate an unsteady aerodynamic state-space ROM. Once the unsteady aerodynamic state-space ROM is generated, a method for computing the static aeroelastic response using this unsteady aerodynamic ROM and a state-space model of the structure, is presented. Finally, a method is presented that enables the computation of matchedpoint solutions using a single ROM that is applicable over a range of dynamic pressures and velocities for a given Mach number. These enhancements represent a significant advancement of unsteady aerodynamic and aeroelastic ROM technology.
Precision analysis of passive BD aided pseudolites positioning system
NASA Astrophysics Data System (ADS)
Zhang, Xiaoming; Zhao, Yan
2007-11-01
In recent years BD (BeiDou positioning system), an active satellite navigation system, has been widely applied in geodetic survey, precise engineering survey and GNC (guide, navigation and control system) of weapons because of its reliability and availability. However, it has several problems on the accuracy, anti-interference and active-positioning. A passive BD aided pseudolites positioning system is introduced in details in this paper. The configuration and the operating principle of system are presented. In analyzing the precision of location, one of the crucial aspects to be studied is how to determine the arrangement of the pseudolites to get the good GDOP, which is discussed in the different arrangements of the pseudolites in this paper. The simulation results show that the VDOP (vertical dilution of precision) of BD is improved due to introducing the pseudolites. The experiments indicate the validity of the methods and the improvement of the positioning precision in the BD aided pseudolite system.
Current CFD Practices in Launch Vehicle Applications
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Kiris, Cetin
2012-01-01
The quest for sustained space exploration will require the development of advanced launch vehicles, and efficient and reliable operating systems. Development of launch vehicles via test-fail-fix approach is very expensive and time consuming. For decision making, modeling and simulation (M&S) has played increasingly important roles in many aspects of launch vehicle development. It is therefore essential to develop and maintain most advanced M&S capability. More specifically computational fluid dynamics (CFD) has been providing critical data for developing launch vehicles complementing expensive testing. During the past three decades CFD capability has increased remarkably along with advances in computer hardware and computing technology. However, most of the fundamental CFD capability in launch vehicle applications is derived from the past advances. Specific gaps in the solution procedures are being filled primarily through "piggy backed" efforts.on various projects while solving today's problems. Therefore, some of the advanced capabilities are not readily available for various new tasks, and mission-support problems are often analyzed using ad hoc approaches. The current report is intended to present our view on state-of-the-art (SOA) in CFD and its shortcomings in support of space transport vehicle development. Best practices in solving current issues will be discussed using examples from ascending launch vehicles. Some of the pacing will be discussed in conjunction with these examples.
Improved Stiff ODE Solvers for Combustion CFD
NASA Astrophysics Data System (ADS)
Imren, A.; Haworth, D. C.
2016-11-01
Increasingly large chemical mechanisms are needed to predict autoignition, heat release and pollutant emissions in computational fluid dynamics (CFD) simulations of in-cylinder processes in compression-ignition engines and other applications. Calculation of chemical source terms usually dominates the computational effort, and several strategies have been proposed to reduce the high computational cost associated with realistic chemistry in CFD. Central to most strategies is a stiff ordinary differential equation (ODE) solver to compute the change in composition due to chemical reactions over a computational time step. Most work to date on stiff ODE solvers for computational combustion has focused on backward differential formula (BDF) methods, and has not explicitly considered the implications of how the stiff ODE solver couples with the CFD algorithm. In this work, a fresh look at stiff ODE solvers is taken that includes how the solver is integrated into a turbulent combustion CFD code, and the advantages of extrapolation-based solvers in this regard are demonstrated. Benefits in CPU time and accuracy are demonstrated for homogeneous systems and compression-ignition engines, for chemical mechanisms that range in size from fewer than 50 to more than 7,000 species.
Task Assignment Heuristics for Distributed CFD Applications
NASA Technical Reports Server (NTRS)
Lopez-Benitez, N.; Djomehri, M. J.; Biswas, R.; Biegel, Bryan (Technical Monitor)
2001-01-01
CFD applications require high-performance computational platforms: 1. Complex physics and domain configuration demand strongly coupled solutions; 2. Applications are CPU and memory intensive; and 3. Huge resource requirements can only be satisfied by teraflop-scale machines or distributed computing.
Current CFD efforts in projectile aerodynamics
NASA Technical Reports Server (NTRS)
Nietubicz, Charles J.
1987-01-01
Information is given in viewgraph form on current computational fluid dynamics (CFD) efforts in projectile aerodynamics. Topics covered include spinning projectiles, fin stabilized projectiles, model geometry, the variation of base drag with base bleed, the variation of normal force with Mach number, and chordwise pressure distribution.
Consistent Hybrid Simulation of MD and CFD
NASA Astrophysics Data System (ADS)
Yasuda, Shugo; Yamamoto, Ryoichi
2008-03-01
The idea of multi-scale hybrid simulation is expected to be very useful for overcoming several difficult problems remain unsolved in frontiers of computational science in general. A striking example is the case of hydrodynamics of complex fluids or soft matters, for most of which no reliable constitutive relation is known explicitly. Our strategy to overcome this problem is very straightforward. We are developing a multi-scale hybrid method which combines computational fluid dynamics (CFD) as a fluid solver and molecular dynamics (MD) as a direct generator of constitutive relations in a consistent way. The numerical algorithm is rather simple. We perform usual lattice-mesh based simulations for CFD level, but each lattice is associated with a small MD cell which generates a ``local stress'' according to a ``local flow field'' given from CFD instead of using any constitutive functions at CFD level. Some algorithms to smooth out noses arising from MD simulations in a consistent way are being developed. Comparisons of the numerical results obtained by our hybrid-simulations and those by normal CFDs with a Newtonian constitutive relation are made in order to show the validity of our hybrid simulation method.
Stage Separation CFD Tool Development and Evaluation
NASA Technical Reports Server (NTRS)
Droege, Alan; Gomez, Reynaldo; Wang, Ten-See
2002-01-01
This viewgraph presentation evaluates CFD (Computational Fluid Dynamics) tools for solving stage separation problems. The demonstration and validation of the tools is for a second generation RLV (Reusable Launch Vehicle) stage separation. The flow solvers are: Cart3D; Overflow/Overflow-D; Unic.
Task Assignment Heuristics for Distributed CFD Applications
NASA Technical Reports Server (NTRS)
Lopez-Benitez, N.; Djomehri, M. J.; Biswas, R.; Biegel, Bryan (Technical Monitor)
2001-01-01
CFD applications require high-performance computational platforms: 1. Complex physics and domain configuration demand strongly coupled solutions; 2. Applications are CPU and memory intensive; and 3. Huge resource requirements can only be satisfied by teraflop-scale machines or distributed computing.
CFD modeling of pharmaceutical isolators with experimental verification of airflow.
Nayan, N; Akay, H U; Walsh, M R; Bell, W V; Troyer, G L; Dukes, R E; Mohan, P
2007-01-01
Computational fluid dynamics (CFD) models have been developed to predict the airflow in a transfer isolator using a commercial CFD code. In order to assess the ability of the CFD approach in predicting the flow inside an isolator, hot wire anemometry measurements and a novel experimental flow visualization technique consisting of helium-filled glycerin bubbles were used. The results obtained have been shown to agree well with the experiments and show that CFD can be used to model barrier systems and isolators with practical fidelity. This indicates that CFD can and should be used to support the design, testing, and operation of barrier systems and isolators.
Emerging CFD Capabilities and Outlook: A NASA Langley Perspective
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Pao, S. Paul; Thomas, James L.
2004-01-01
COMSAC goals include increasing the acceptance of CFD as a viable tool for S&C predictions, as well as to focus CFD development and improvement towards the needs of the S&C community. We view this as a symbiotic relationship, with increasing improvement of CFD promoting increasing acceptance by the S&C community, and increasing acceptance spurring further improvements. In this presentation we want to provide an overview for the non CFD expert of current CFD strengths and weaknesses, as well as to highlight a few emerging capabilities that we feel will lead toward increased usefulness in S&C applications.
New CFD tools to evaluate nasal airflow.
Burgos, M A; Sanmiguel-Rojas, E; Del Pino, C; Sevilla-García, M A; Esteban-Ortega, F
2017-08-01
Computational fluid dynamics (CFD) is a mathematical tool to analyse airflow. As currently CFD is not a usual tool for rhinologists, a group of engineers in collaboration with experts in Rhinology have developed a very intuitive CFD software. The program MECOMLAND(®) only required snapshots from the patient's cross-sectional (tomographic) images, being the output those results originated by CFD, such as airflow distributions, velocity profiles, pressure, temperature, or wall shear stress. This is useful complementary information to cover diagnosis, prognosis, or follow-up of nasal pathologies based on quantitative magnitudes linked to airflow. In addition, the user-friendly environment NOSELAND(®) helps the medical assessment significantly in the post-processing phase with dynamic reports using a 3D endoscopic view. Specialists in Rhinology have been asked for a more intuitive, simple, powerful CFD software to offer more quality and precision in their work to evaluate the nasal airflow. We present MECOMLAND(®) and NOSELAND(®) which have all the expected characteristics to fulfil this demand and offer a proper assessment with the maximum of quality plus safety for the patient. These programs represent a non-invasive, low-cost (as the CT scan is already performed in every patient) alternative for the functional study of the difficult rhinologic case. To validate the software, we studied two groups of patients from the Ear Nose Throat clinic, a first group with normal noses and a second group presenting septal deviations. Wall shear stresses are lower in the cases of normal noses in comparison with those for septal deviation. Besides, velocity field distributions, pressure drop between nasopharynx and the ambient, and flow rates in each nostril were different among the nasal cavities in the two groups. These software modules open up a promising future to simulate the nasal airflow behaviour in virtual surgery intervention scenarios under different pressure or
Hydrodynamic analysis of different thumb positions in swimming
Marinho, Daniel A.; Rouboa, Abel I.; Alves, Francisco B.; Vilas-Boas, João P.; Machado, Leandro; Reis, Victor M.; Silva, António J.
2009-01-01
The aim of the present study was to analyze the hydrodynamic characteristics of a true model of a swimmer hand with the thumb in different positions using numerical simulation techniques. A three-dimensional domain was created to simulate the fluid flow around three models of a swimmer hand, with the thumb in different positions: thumb fully abducted, partially abducted, and adducted. These three hand models were obtained through computerized tomography scans of an Olympic swimmer hand. Steady-state computational fluid dynamics analyses were performed using the Fluent® code. The forces estimated in each of the three hand models were decomposed into drag and lift coefficients. Angles of attack of hand models of 0°, 45° and 90°, with a sweep back angle of 0° were used for the calculations. The results showed that the position with the thumb adducted presented slightly higher values of drag coefficient compared with thumb abducted positions. Moreover, the position with the thumb fully abducted allowed increasing the lift coefficient of the hand at angles of attack of 0° and 45°. These results suggested that, for hand models in which the lift force can play an important role, the abduction of the thumb may be better, whereas at higher angles of attack, in which the drag force is dominant, the adduction of the thumb may be preferable. Key points Numerical simulation techniques can provide answers to problems which have been unobtainable using experimental methods. The computer tomography scans allowed the creation of a complete and true digital anatomic model of a swimmer hand. The position with the thumb adducted presented slightly higher values of drag coefficient than the positions with the thumb abducted. The position with the thumb fully abducted allowed increasing the lift coefficient of the hand at angles of attack of 0 and 45 degrees. For hand positions in which the lift force can play an important role the abduction of the thumb may be better whereas at
Hydrodynamic analysis of different thumb positions in swimming.
Marinho, Daniel A; Rouboa, Abel I; Alves, Francisco B; Vilas-Boas, João P; Machado, Leandro; Reis, Victor M; Silva, António J
2009-01-01
The aim of the present study was to analyze the hydrodynamic characteristics of a true model of a swimmer hand with the thumb in different positions using numerical simulation techniques. A three-dimensional domain was created to simulate the fluid flow around three models of a swimmer hand, with the thumb in different positions: thumb fully abducted, partially abducted, and adducted. These three hand models were obtained through computerized tomography scans of an Olympic swimmer hand. Steady-state computational fluid dynamics analyses were performed using the Fluent(®) code. The forces estimated in each of the three hand models were decomposed into drag and lift coefficients. Angles of attack of hand models of 0°, 45° and 90°, with a sweep back angle of 0° were used for the calculations. The results showed that the position with the thumb adducted presented slightly higher values of drag coefficient compared with thumb abducted positions. Moreover, the position with the thumb fully abducted allowed increasing the lift coefficient of the hand at angles of attack of 0° and 45°. These results suggested that, for hand models in which the lift force can play an important role, the abduction of the thumb may be better, whereas at higher angles of attack, in which the drag force is dominant, the adduction of the thumb may be preferable. Key pointsNumerical simulation techniques can provide answers to problems which have been unobtainable using experimental methods.The computer tomography scans allowed the creation of a complete and true digital anatomic model of a swimmer hand.The position with the thumb adducted presented slightly higher values of drag coefficient than the positions with the thumb abducted.The position with the thumb fully abducted allowed increasing the lift coefficient of the hand at angles of attack of 0 and 45 degrees.For hand positions in which the lift force can play an important role the abduction of the thumb may be better whereas at
[Multivariate analysis of blood culture positive rate of ICU patients].
Wu, A P; Liu, D; Chen, J; Li, X Y; Wang, H; An, Y Z
2016-07-19
To investigate the factors associated with positive results of blood culture and the impact of positive results on the prognosis of patients in ICU of Peking University People's Hospital. We retrospectively analyzed 1 008 blood culture results of 379 critical ill adult patients in ICU from July 1st, 2013 to June 30th, 2014. According to blood culture results, the patients were divided into positive and negative groups. The patients' maximal body temperature, sample collection times, number of bottles within 24 hours, routine hematological variables [(white blood cell count (WBC), percentage of neutrophils (NEU%), lymphocyte count (LYM), platelet count (PLT)], serum C-reactive protein (CRP), usage of antibiotics were compared between the two groups, as well as the patients' gender, age, duration of mechanical ventilation, length of ICU stay and hospital mortality rate. The total positiverate of blood culture of our study was 15.38%, and the positive rate of patients was 24.27%.When compared between positive group and negative group, the medians of sample collection times were 3 and 1(P<0.000 1); the medians of sample bottles were 4 and 4(P=0.001 2); the medians of WBC were 8.61×10(9)/L and 9.95×10(9)/L(P=0.001 7); and the medians of mechanical ventilation time were 179.5 hours and 47 hours(P<0.000 1); the medians of length of ICU stay were 17 days and 7 days(P<0.000 1), respectively. Hospital mortality rates in positive patients and negative patients were 35.87% and 20.21%(P=0.002 2), respectively. There was no significant difference(P>0.05) between the two groups in body temperature, NEU%, LYM, PLT, CRP or usage of antibiotics. Increasing the frequency of sampling and the bottles of blood culture will improve the positive rate of blood culture. The body temperature, WBC, NEU%, LYM, PLT, CRP, us age of antibiotics, gender and age have no effect on the positive rate of blood culture. The patients with positive blood culture results have longer duration of
NASA Astrophysics Data System (ADS)
Marconcini, Michele; Pacciani, Roberto; Arnone, Andrea
2015-11-01
The aerodynamic performance of a gas turbine nozzle vane cascade was investigated over a range of Mach and Reynolds numbers. The work is part of a vast research project aimed at the analysis of fluid dynamics and heat transfer phenomena in cooled blades. In this paper computed results on the "solid vane" (without cooling devices) are presented and discussed in comparison with experimental data. Detailed measurements were provided by the University of Bergamo where the experimental campaign was carried out by means of a subsonic wind tunnel. The impact of boundary layer transition is investigated by using a novel laminar kinetic energy transport model and the widely used Langtry-Menter γ- Re θ,t model. The comparison between calculations and measurements is presented in terms of blade loading distributions, total pressure loss coefficient contours downstream of the cascade, and velocity/turbulence-intensity profiles within the boundary layer at selected blade surface locations at mid-span. It will be shown how transitional calculations compare favorably with experiments.
Piyush Sabharwall; Theron Marshall; Kevan Weaver; Hans Gougar
2007-05-01
Gas coolant at low pressure exhibits poor heat transfer characteristics. This is an area of concern for the passive response targeted by the Generation IV GCFR design. For the first 24 hour period, the decay heat removal for the GCFR design is dependent on an actively powered blower, which also would reduce the temperature in the fuel during transients, before depending on the passive operation. Natural circulation cooling initiates when the blower is stopped for the final phase of the decay heat removal, as under forced convection the core decay heat is adequately cooled by the running blower. The ability of the coolant to flow in the reverse direction or having recirculation, when the blowers are off, necessitates more understanding of the flow behavior characteristics in the upper plenum. The work done here focuses primarily on the period after the blower has been turned off, as the core is adequately cooled when the blowers are running, thus there was no need to carry out the analysis for the first 24 hours. In order to understand the plume behavior for the GCFR upper plenum several cases were run, with air, helium and helium-air mixture. For each case, the FLUENT was used to characterize the steady state velocity vectors and corresponding temperature in the upper plenum under passive decay heat removal conditions. This study will provide better insight into the plume interaction in the upper plenum at low flow and low pressure conditions.
CFD Validation with LDV Test Data for Payload/Fairing Internal Flow
NASA Technical Reports Server (NTRS)
Kandula, max; Hammad, Khaled; Schallhorn, Paul
2005-01-01
Flowfield testing of a 1/5th scale model of a payload/fairing configuration, typical of an expendable launch vehicle, has been performed. Two-dimensional (planar) velocity measurements were carried out in four planes with the aid of Laser Doppler Velocimetry (LDV). Computational Fluid Dynamics (CFD) analysis results for the scale model flowfleld are compared with the test data. The CFD results are in general agreement with the test data. The ability of the CFD methodology in identifying the global flow features (including critical points such as vortex, saddle point, etc.) has been demonstrated. Practical problems and difficulties associated with the LDV method applied to the complex geometry under consideration have been summarized.
Application of CFD codes to the design and development of propulsion systems
NASA Technical Reports Server (NTRS)
Lord, W. K.; Pickett, G. F.; Sturgess, G. J.; Weingold, H. D.
1987-01-01
The internal flows of aerospace propulsion engines have certain common features that are amenable to analysis through Computational Fluid Dynamics (CFD) computer codes. Although the application of CFD to engineering problems in engines was delayed by the complexities associated with internal flows, many codes with different capabilities are now being used as routine design tools. This is illustrated by examples taken from the aircraft gas turbine engine of flows calculated with potential flow, Euler flow, parabolized Navier-Stokes, and Navier-Stokes codes. Likely future directions of CFD applied to engine flows are described, and current barriers to continued progress are highlighted. The potential importance of the Numerical Aerodynamic Simulator (NAS) to resolution of these difficulties is suggested.
FDNS CFD Code Benchmark for RBCC Ejector Mode Operation: Continuing Toward Dual Rocket Effects
NASA Technical Reports Server (NTRS)
West, Jeff; Ruf, Joseph H.; Turner, James E. (Technical Monitor)
2000-01-01
Computational Fluid Dynamics (CFD) analysis results are compared with benchmark quality test data from the Propulsion Engineering Research Center's (PERC) Rocket Based Combined Cycle (RBCC) experiments to verify fluid dynamic code and application procedures. RBCC engine flowpath development will rely on CFD applications to capture the multi -dimensional fluid dynamic interactions and to quantify their effect on the RBCC system performance. Therefore, the accuracy of these CFD codes must be determined through detailed comparisons with test data. The PERC experiments build upon the well-known 1968 rocket-ejector experiments of Odegaard and Stroup by employing advanced optical and laser based diagnostics to evaluate mixing and secondary combustion. The Finite Difference Navier Stokes (FDNS) code [2] was used to model the fluid dynamics of the PERC RBCC ejector mode configuration. Analyses were performed for the Diffusion and Afterburning (DAB) test conditions at the 200-psia thruster operation point, Results with and without downstream fuel injection are presented.
Theoretical Analysis of Positional Uncertainty in Direct Georeferencing
NASA Astrophysics Data System (ADS)
Coskun Kiraci, Ali; Toz, Gonul
2016-10-01
GNSS/INS system composed of Global Navigation Satellite System and Inertial Navigation System together can provide orientation parameters directly by the observations collected during the flight. Thus orientation parameters can be obtained by GNSS/INS integration process without any need for aero triangulation after the flight. In general, positional uncertainty can be estimated with known coordinates of Ground Control Points (GCP) which require field works such as marker construction and GNSS measurement leading additional cost to the project. Here the question arises what should be the theoretical uncertainty of point coordinates depending on the uncertainties of orientation parameters. In this study the contribution of each orientation parameter on positional uncertainty is examined and theoretical positional uncertainty is computed without GCP measurement for direct georeferencing using a graphical user interface developed in MATLAB.
Xi, Jinxiang; Kim, JongWon; Si, Xiuhua A.; Corley, Richard A.; Kabilan, Senthil; Wang, Shengyu
2015-01-01
Diagnosis and prognosis of tumorigenesis are generally performed with CT, PET, or biopsy. Such methods are accurate, but have the limitations of high cost and posing additional health risks to patients. In this study, we introduce an alternative computer aided diagnostic tool that can locate malignant sites caused by tumorigenesis in a non-invasive and low-cost way. Our hypothesis is that exhaled aerosol distribution is unique to lung structure and is sensitive to airway structure variations. With appropriate approaches, it is possible to locate the disease site, determine the disease severity, and subsequently formulate a targeted drug delivery plan to treat the disease. This study numerically evaluated the feasibility of the proposed breath test in an image-based lung model with varying pathological stages of a bronchial squamous tumor. Large eddy simulations and a Lagrangian tracking approach were used to model respiratory airflows and aerosol dynamics. Respirations of tracer aerosols of 1 µm at a flow rate of 20 L/min were simulated, with the distributions of exhaled aerosols recorded on a filter at the mouth exit. Aerosol patterns were quantified with multiple analytical techniques such as concentration disparity, spatial scanning and fractal analysis. We demonstrated that a growing bronchial tumor induced notable variations in both the airflow and exhaled aerosol distribution. These variations became more apparent with increasing tumor severity. The exhaled aerosols exhibited distinctive pattern parameters such as spatial probability, fractal dimension, and multifractal spectrum. Results of this study show that morphometric measures of the exhaled aerosol pattern can be used to detect and monitor the pathological states of respiratory diseases in the upper airway. The proposed breath test also has the potential to locate the site of the disease, which is critical in developing a personalized, site-specific drug de- livery protocol.
Xi, Jinxiang; Kim, JongWon; Si, Xiuhua A.; Corley, Richard A.; Kabilan, Senthil; Wang, Shengyu
2015-02-06
Diagnosis and prognosis of tumorigenesis are generally performed with CT, PET, or biopsy. Such methods are accurate, but have the limitations of high cost and posing additional health risks to patients. In this study, we introduce an alternative computer aided diagnostic tool that can locate malignant sites caused by tumorigenesis in a non-invasive and low-cost way. Our hypothesis is that exhaled aerosol distribution is unique to lung structure and is sensitive to airway structure vari-ations. With appropriate approaches, it is possible to locate the disease site, determine the disease severity, and subsequently formulate a targeted drug delivery plan to treat the disease. This study numerically evaluated the feasibility of the proposed breath test in an image-based lung model with varying pathological stages of a bronchial squamous tumor. Large eddy simulations and a Lagran-gian tracking approach were used to model respiratory airflows and aerosol dynamics. Respira-tions of tracer aerosols of 1 µm at a flow rate of 20 L/min were simulated, with the distributions of exhaled aerosols recorded on a filter at the mouth exit. Aerosol patterns were quantified with multiple analytical techniques such as concentration disparity, spatial scanning and fractal analysis. We demonstrated that a growing bronchial tumor induced notable variations in both the airflow and exhaled aerosol distribution. These variations became more apparent with increasing tumor severity. The exhaled aerosols exhibited distinctive pattern parameters such as spatial probability, fractal dimension, and multifractal spectrum. Results of this study show that morphometric measures of the exhaled aerosol pattern can be used to detect and monitor the pathological states of respiratory diseases in the upper airway. The proposed breath test also has the potential to locate the site of the disease, which is critical in developing a personalized, site-specific drug de-livery protocol.
Xi, Jinxiang; Kim, JongWon; Si, Xiuhua A.; ...
2015-01-01
Diagnosis and prognosis of tumorigenesis are generally performed with CT, PET, or biopsy. Such methods are accurate, but have the limitations of high cost and posing additional health risks to patients. In this study, we introduce an alternative computer aided diagnostic tool that can locate malignant sites caused by tumorigenesis in a non-invasive and low-cost way. Our hypothesis is that exhaled aerosol distribution is unique to lung structure and is sensitive to airway structure variations. With appropriate approaches, it is possible to locate the disease site, determine the disease severity, and subsequently formulate a targeted drug delivery plan to treatmore » the disease. This study numerically evaluated the feasibility of the proposed breath test in an image-based lung model with varying pathological stages of a bronchial squamous tumor. Large eddy simulations and a Lagrangian tracking approach were used to model respiratory airflows and aerosol dynamics. Respirations of tracer aerosols of 1 μm at a flow rate of 20 L/min were simulated, with the distributions of exhaled aerosols recorded on a filter at the mouth exit. Aerosol patterns were quantified with multiple analytical techniques such as concentration disparity, spatial scanning and fractal analysis. We demonstrated that a growing bronchial tumor induced notable variations in both the airflow and exhaled aerosol distribution. These variations became more apparent with increasing tumor severity. The exhaled aerosols exhibited distinctive pattern parameters such as spatial probability, fractal dimension, and multifractal spectrum. Results of this study show that morphometric measures of the exhaled aerosol pattern can be used to detect and monitor the pathological states of respiratory diseases in the upper airway. The proposed breath test also has the potential to locate the site of the disease, which is critical in developing a personalized, site-specific drug delivery protocol.« less
Xi, Jinxiang; Kim, JongWon; Si, Xiuhua A.; Corley, Richard A.; Kabilan, Senthil; Wang, Shengyu
2015-01-01
Diagnosis and prognosis of tumorigenesis are generally performed with CT, PET, or biopsy. Such methods are accurate, but have the limitations of high cost and posing additional health risks to patients. In this study, we introduce an alternative computer aided diagnostic tool that can locate malignant sites caused by tumorigenesis in a non-invasive and low-cost way. Our hypothesis is that exhaled aerosol distribution is unique to lung structure and is sensitive to airway structure variations. With appropriate approaches, it is possible to locate the disease site, determine the disease severity, and subsequently formulate a targeted drug delivery plan to treat the disease. This study numerically evaluated the feasibility of the proposed breath test in an image-based lung model with varying pathological stages of a bronchial squamous tumor. Large eddy simulations and a Lagrangian tracking approach were used to model respiratory airflows and aerosol dynamics. Respirations of tracer aerosols of 1 μm at a flow rate of 20 L/min were simulated, with the distributions of exhaled aerosols recorded on a filter at the mouth exit. Aerosol patterns were quantified with multiple analytical techniques such as concentration disparity, spatial scanning and fractal analysis. We demonstrated that a growing bronchial tumor induced notable variations in both the airflow and exhaled aerosol distribution. These variations became more apparent with increasing tumor severity. The exhaled aerosols exhibited distinctive pattern parameters such as spatial probability, fractal dimension, and multifractal spectrum. Results of this study show that morphometric measures of the exhaled aerosol pattern can be used to detect and monitor the pathological states of respiratory diseases in the upper airway. The proposed breath test also has the potential to locate the site of the disease, which is critical in developing a personalized, site-specific drug delivery protocol.
Xi, Jinxiang; Kim, JongWon; Si, Xiuhua A; Corley, Richard A; Kabilan, Senthil; Wang, Shengyu
2015-01-01
Diagnosis and prognosis of tumorigenesis are generally performed with CT, PET, or biopsy. Such methods are accurate, but have the limitations of high cost and posing additional health risks to patients. In this study, we introduce an alternative computer aided diagnostic tool that can locate malignant sites caused by tumorigenesis in a non-invasive and low-cost way. Our hypothesis is that exhaled aerosol distribution is unique to lung structure and is sensitive to airway structure variations. With appropriate approaches, it is possible to locate the disease site, determine the disease severity, and subsequently formulate a targeted drug delivery plan to treat the disease. This study numerically evaluated the feasibility of the proposed breath test in an image-based lung model with varying pathological stages of a bronchial squamous tumor. Large eddy simulations and a Lagrangian tracking approach were used to model respiratory airflows and aerosol dynamics. Respirations of tracer aerosols of 1 µm at a flow rate of 20 L/min were simulated, with the distributions of exhaled aerosols recorded on a filter at the mouth exit. Aerosol patterns were quantified with multiple analytical techniques such as concentration disparity, spatial scanning and fractal analysis. We demonstrated that a growing bronchial tumor induced notable variations in both the airflow and exhaled aerosol distribution. These variations became more apparent with increasing tumor severity. The exhaled aerosols exhibited distinctive pattern parameters such as spatial probability, fractal dimension, and multifractal spectrum. Results of this study show that morphometric measures of the exhaled aerosol pattern can be used to detect and monitor the pathological states of respiratory diseases in the upper airway. The proposed breath test also has the potential to locate the site of the disease, which is critical in developing a personalized, site-specific drug delivery protocol.
Xi, Jinxiang; Kim, JongWon; Si, Xiuhua A.; Corley, Richard A.; Kabilan, Senthil; Wang, Shengyu
2015-01-01
Diagnosis and prognosis of tumorigenesis are generally performed with CT, PET, or biopsy. Such methods are accurate, but have the limitations of high cost and posing additional health risks to patients. In this study, we introduce an alternative computer aided diagnostic tool that can locate malignant sites caused by tumorigenesis in a non-invasive and low-cost way. Our hypothesis is that exhaled aerosol distribution is unique to lung structure and is sensitive to airway structure variations. With appropriate approaches, it is possible to locate the disease site, determine the disease severity, and subsequently formulate a targeted drug delivery plan to treat the disease. This study numerically evaluated the feasibility of the proposed breath test in an image-based lung model with varying pathological stages of a bronchial squamous tumor. Large eddy simulations and a Lagrangian tracking approach were used to model respiratory airflows and aerosol dynamics. Respirations of tracer aerosols of 1 µm at a flow rate of 20 L/min were simulated, with the distributions of exhaled aerosols recorded on a filter at the mouth exit. Aerosol patterns were quantified with multiple analytical techniques such as concentration disparity, spatial scanning and fractal analysis. We demonstrated that a growing bronchial tumor induced notable variations in both the airflow and exhaled aerosol distribution. These variations became more apparent with increasing tumor severity. The exhaled aerosols exhibited distinctive pattern parameters such as spatial probability, fractal dimension, and multifractal spectrum. Results of this study show that morphometric measures of the exhaled aerosol pattern can be used to detect and monitor the pathological states of respiratory diseases in the upper airway. The proposed breath test also has the potential to locate the site of the disease, which is critical in developing a personalized, site-specific drug delivery protocol. PMID:25767612