Science.gov

Sample records for positive corotation torque

  1. Low mass planet migration in magnetically torqued dead zones - I. Static migration torque

    NASA Astrophysics Data System (ADS)

    McNally, Colin P.; Nelson, Richard P.; Paardekooper, Sijme-Jan; Gressel, Oliver; Lyra, Wladimir

    2017-12-01

    Motivated by models suggesting that the inner planet forming regions of protoplanetary discs are predominantly lacking in viscosity-inducing turbulence, and are possibly threaded by Hall-effect generated large-scale horizontal magnetic fields, we examine the dynamics of the corotation region of a low-mass planet in such an environment. The corotation torque in an inviscid, isothermal, dead zone ought to saturate, with the libration region becoming both symmetrical and of a uniform vortensity, leading to fast inward migration driven by the Lindblad torques alone. However, in such a low viscosity situation, the material on librating streamlines essentially preserves its vortensity. If there is relative radial motion between the disc gas and the planet, the librating streamlines will no longer be symmetrical. Hence, if the gas is torqued by a large-scale magnetic field so that it undergoes a net inflow or outflow past the planet, driving evolution of the vortensity and inducing asymmetry of the corotation region, the corotation torque can grow, leading to a positive torque. In this paper, we treat this effect by applying a symmetry argument to the previously studied case of a migrating planet in an inviscid disc. Our results show that the corotation torque due to a laminar Hall-induced magnetic field in a dead zone behaves quite differently from that studied previously for a viscous disc. Furthermore, the magnetic field induced corotation torque and the dynamical corotation torque in a low viscosity disc can be regarded as one unified effect.

  2. Electrode position markedly affects knee torque in tetanic, stimulated contractions.

    PubMed

    Vieira, Taian M; Potenza, Paolo; Gastaldi, Laura; Botter, Alberto

    2016-02-01

    The purpose of this study was to investigate how much the distance between stimulation electrodes affects the knee extension torque in tetanic, electrically elicited contractions. Current pulses of progressively larger amplitude, from 0 mA to maximally tolerated intensities, were delivered at 20 pps to the vastus medialis, rectus femoris and vastus lateralis muscles of ten, healthy male subjects. Four inter-electrode distances were tested: 32.5% (L1), 45.0% (L2), 57.5% (L3) and 70% (L4) of the distance between the patella apex and the anterior superior iliac spine. The maximal knee extension torque and the current leading to the maximal torque were measured and compared between electrode configurations. The maximal current tolerated by each participant ranged from 60 to 100 mA and did not depend on the inter-electrode distance. The maximal knee extension torque elicited did not differ between L3 and L4 (P = 0.15) but, for both conditions, knee torque was significantly greater than for L1 and L2 (P < 0.024). On average, the extension torque elicited for L3 and L4 was two to three times greater than that obtained for L1 and L2. The current leading to maximal torque was not as sensitive to inter-electrode distance. Except for L1 current intensity did not change with electrode configuration (P > 0.16). Key results presented here revealed that for a given stimulation intensity, knee extension torque increased dramatically with the distance between electrodes. The distance between electrodes seems therefore to critically affect knee torque, with potential implication for optimising exercise protocols based on electrical stimulation.

  3. Experimental Robot Position Sensor Fault Tolerance Using Accelerometers and Joint Torque Sensors

    NASA Technical Reports Server (NTRS)

    Aldridge, Hal A.; Juang, Jer-Nan

    1997-01-01

    Robot systems in critical applications, such as those in space and nuclear environments, must be able to operate during component failure to complete important tasks. One failure mode that has received little attention is the failure of joint position sensors. Current fault tolerant designs require the addition of directly redundant position sensors which can affect joint design. The proposed method uses joint torque sensors found in most existing advanced robot designs along with easily locatable, lightweight accelerometers to provide a joint position sensor fault recovery mode. This mode uses the torque sensors along with a virtual passive control law for stability and accelerometers for joint position information. Two methods for conversion from Cartesian acceleration to joint position based on robot kinematics, not integration, are presented. The fault tolerant control method was tested on several joints of a laboratory robot. The controllers performed well with noisy, biased data and a model with uncertain parameters.

  4. The COROT telescope

    NASA Astrophysics Data System (ADS)

    Viard, Thierry

    2017-11-01

    The COROT telescope, of which the customer is the French "INSU" / "CNES" (Institut National des Sciences de l'Univers / Centre National des Etudes Spatiales) is in fact a very precise and stable imaging instrument, which will be pointed towards fixed areas in the sky (each containing more than 3000 target stars) for periods of at least 5 months, in order to carry out its two missions.

  5. A Drive Method of Permanent Magnet Synchronous Motor Using Torque Angle Estimation without Position Sensor

    NASA Astrophysics Data System (ADS)

    Tanaka, Takuro; Takahashi, Hisashi

    In some motor applications, it is very difficult to attach a position sensor to the motor in housing. One of the examples of such applications is the dental handpiece-motor. In those designs, it is necessary to drive highly efficiency at low speed and variable load condition without a position sensor. We developed a method to control a motor high-efficient and smoothly at low speed without a position sensor. In this paper, the method in which permanent magnet synchronous motor is controlled smoothly and high-efficient by using torque angle control in synchronized operation is shown. The usefulness is confirmed by experimental results. In conclusion, the proposed sensor-less control method has been achieved to be very efficiently and smoothly.

  6. Europe looks forward to COROT launch

    NASA Astrophysics Data System (ADS)

    2006-12-01

    potential European partners was issued in 1999. CNES gave the green light to build the spacecraft in 2000 and is now leading the mission. Its international partners are ESA, Austria, Belgium, Germany, Spain and Brazil. CNES is responsible for the overall system and for the launch contract with Franco-Russian company Starsem, which is providing the Soyuz launch service. The contributions of the other international partners range from the provision of hardware items to ground stations, complementary ground-based observation of targets to be studied by COROT and analysis of the scientific data to come. ESA is playing a crucial role in the mission. It has contributed the optics for the telescope positioned at the heart of the spacecraft and has carried out payload testing. The telescope’s baffle was developed by a team at ESA’s technical centre ESTEC. ESA has also provided the onboard data processing units. And under this truly collaborative effort, a number of scientists from various European countries - Denmark, Switzerland, the United Kingdom and Portugal - have been selected as Co-Investigators following open competition. As a result of ESA’s participation, scientists from its Member States will also be given access to COROT data.

  7. The Influence of Torque Tightening on the Position Stability of the Abutment in Conical Implant-Abutment Connections.

    PubMed

    Hogg, Wiebke Semper; Zulauf, Kris; Mehrhof, Jürgen; Nelson, Katja

    2015-01-01

    The influence of repeated system-specific torque tightening on the position stability of the abutment after de- and reassembly of the implant components was evaluated in six dental implant systems with a conical implant-abutment connection. An established experimental setup was used in this study. Rotation, vertical displacement, and canting moments of the abutment were observed; they depended on the implant system (P = .001, P < .001, P = .006, respectively). Repeated torque tightening of the abutment screw does not eliminate changes in position of the abutment.

  8. Corot telescope (COROTEL)

    NASA Astrophysics Data System (ADS)

    Viard, Thierry; Mathieu, Jean-Claude; Fer, Yann; Bouzou, Nathalie; Spalinger, Etienne; Chataigner, Bruno; Bodin, Pierre; Magnan, Alain; Baglin, Annie

    2017-11-01

    COROTEL is the telescope of the COROT Satellite which aims at measuring stellar flux variations very accurately. To perform this mission, COROTEL has to be very well protected against straylight (from Sun and Earth) and must be very stable with time. Thanks to its high experience in this field, Alcatel Alenia Space has proposed, manufactured and tested an original telescope concept associated with a high baffling performance. Since its delivery to LAM (Laboratoire d'Astrophysique de Marseille, CNRS) the telescope has passed successfully the qualification tests at instrument level performed by CNES. Now, the instrument is mounted on a Proteus platform and should be launched end of 2006. The satellite should bring to scientific community for the first time precious data coming from stars and their possible companions.

  9. The COROT Archive at LAEFF

    NASA Astrophysics Data System (ADS)

    Velasco, Almudena; Gutiérrez, Raúl; Solano, Enrique; García-Torres, Miguel; López, Mauro; Sarro, Luis Manuel

    We describe here the main capabilities of the COROT archive. The archive (http://sdc.laeff.inta.es/corotfa/jsp/searchform.jsp), managed at LAEFF in the framework of the Spanish Virtual Observatory (http://svo.laeff.inta.es), has been developed following the standards and requirements defined by IVOA (http://www.ivoa.net). The COROT archive at LAEFF will be publicly available by the end of 2008.

  10. A corotation electric field model of the Earth derived from Swarm satellite magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Maus, Stefan

    2017-08-01

    Rotation of the Earth in its own geomagnetic field sets up a primary corotation electric field, compensated by a secondary electric field of induced electrical charges. For the geomagnetic field measured by the Swarm constellation of satellites, a derivation of the global corotation electric field inside and outside of the corotation region is provided here, in both inertial and corotating reference frames. The Earth is assumed an electrical conductor, the lower atmosphere an insulator, followed by the corotating ionospheric E region again as a conductor. Outside of the Earth's core, the induced charge is immediately accessible from the spherical harmonic Gauss coefficients of the geomagnetic field. The charge density is positive at high northern and southern latitudes, negative at midlatitudes, and increases strongly toward the Earth's center. Small vertical electric fields of about 0.3 mV/m in the insulating atmospheric gap are caused by the corotation charges located in the ionosphere above and the Earth below. The corotation charges also flow outward into the region of closed magnetic field lines, forcing the plasmasphere to corotate. The electric field of the corotation charges further extends outside of the corotating regions, contributing radial outward electric fields of about 10 mV/m in the northern and southern polar caps. Depending on how the magnetosphere responds to these fields, the Earth may carry a net electric charge.

  11. Elemental abundances in corotating events

    NASA Technical Reports Server (NTRS)

    Vonrosenvinge, T. T.; Mcguire, R. E.

    1986-01-01

    Large, persistent solar-wind streams in 1973 and 1974 produced corotating interaction regions which accelerated particles to energies of a few MeV/nucleon. The proton to helium ratio (H/He) reported was remarkably constant at a value (22 + or - 5) equal to that in the solar wind (32 + or - 3), suggesting that particles were being accelerated directly out of the solar wind. Preliminary results from a similar study approximately 11 years (i.e., one solar cycle) later are reported. Corotating events were identified by surveying the solar wind data, energetic particle time-histories and anisotropies. This data was all obtained from the ISEE-3/ICE spacecraft. These events also show H/He ratios similar to that in the solar wind. In addition, other corotating events were examined at times when solar flare events could have injected particles into the corresponding corotating interaction regions. It was found that in these cases there is evidence for H/He ratios which are significantly different from that of the solar wind but which are consistent with the range of values found in solar flare events.

  12. Torque Compensator for Mirror Mountings

    NASA Technical Reports Server (NTRS)

    Howe, S. D.

    1983-01-01

    Device nulls flexural distributions of pivotal torques. Magnetic compensator for flexing pivot torque consists of opposing fixed and movable magnet bars. Magnetic torque varies nonlinearly as function of angle of tilt of movable bar. Positions of fixed magnets changed to improve magnetic torque linearity.

  13. COROT mission: accurate stellar photometry

    NASA Astrophysics Data System (ADS)

    Costes, Vincent; Bodin, Pierre; Levacher, Patrick; Auvergne, Michel

    2004-06-01

    The COROT mission is dedicated to stellar seismology and search for telluric extra-solar planets. The development is led by CNES in association with French laboratories (LESIA, LAM and IAS) and several European partners (Germany, Belgium, Austria, Spain, ESA and Brasilia). The COROT seismology program will measure periodic variations with amplitude of 2.10 -6 of the photon flux emitted by bright stars. The COROT exoplanet program will detect the presence of exoplanets using the radiometric occultation method. The need is to detect photons flux variations about 7×10-4 for one hour integration time. Such performance will permit to detect occultations on a very large number of stars: magnitude between 12 and 15.5. The satellite Preliminary Design Review has been held on January 2004 while the instrument is already in development phase with a Critical Design Review in April 2004 and a delivery of the flight model in March 2005. The launch is scheduled in June 2006. This paper recalls the mission, describes the payload and its main noise performances.

  14. Corot's 'gout' and a 'gipsy' girl.

    PubMed

    Panush, R B; Caldwell, J R; Panush, R S

    1990-09-05

    Representations of rheumatic disease in art provide insight into artistic expression, help us understand the evolution and perhaps the etiology of rheumatic diseases, and remind us of great contributions by artists in adverse circumstances. We noted hand deformities characteristic of inflammatory arthritis in Jean-Baptiste-Camille Corot's Gipsy Girl With Mandolin (1870 to 1875), National Gallery of Art, Washington, DC. Corot suffered with what probably was gout beginning in 1866. We are unaware that arthritis has been observed in Corot's subjects or that Corot's depiction of arthritis has been appreciated from the perspective of his own rheumatic disease. Examination of other Corot portraits identifies some with blurred hand details consistent with the artist's style and the remainder with normal hands. These observations suggest that the artist portrayed specific anatomic abnormalities in the "Gipsy Girl's" hand, indicating familiarity with inflammatory arthritis. It is speculative whether this was Corot's own or the model's arthritis; we favor the interpretation that Corot's gout was reflected in this particular work. We thus add a new perspective to Corot's Gipsy Girl With Mandolin-a subject with arthritis, a painter knowledgeable about arthritis, and a painting that therefore might be understood at least in part from an appreciation of the artist's specific illness.

  15. Peak torque and muscle balance in the knees of young U-15 and U-17 soccer athletes playing various tactical positions.

    PubMed

    Chiamonti Bona, Cleiton; Tourinho Filho, Hugo; Izquierdo, Mikel; Pires Ferraz, Ricardo M; Marques, Mário C

    2017-01-01

    Soccer is a sport that is practiced worldwide and has been investigated in its various aspects, particularly muscle strength, which is an essential motor skill for sports performance. The objective of this study was to investigate the peak torque and muscle balance on the knee extensor and flexor of young soccer players in the tactical positions of goalkeeper, defender, full back, midfielder, defensive midfielder and striker, as well as to determine which field position has the highest peak torque. Forty-nine male players were recruited and divided into two categories during the preparatory period of the season: the Under-15 (U-15) group (N.=23, mean age 14.7±0.5 years, body mass 58.2±10.5 kg, body height 168.5±7.6 cm), and the Under-17 (U-17) group (N.=26, mean age 16.8±0.4 years, body mass 69.2±7.9 kg, body height 176.2±6.6 cm). The U-17 athletes presented a higher peak torque in all the movements of flexion and extension in the two angular velocities (i.e. 60°/s and 300°/s), but only the dominant knee extensor at 300°/s was significantly different between the two categories as well as the percentage change in peak torque compared between U-15 and U-17 was always above 20%. The peak torque variation in the U-17 category (i.e. mostly above 20%) highlights a higher peak torque compared to U-15 athletes. The muscular deficit of the two categories presented a low average of 10-15%, indicating a good muscle balance between knee extensors and flexors. Finally, goalkeepers and defenders achieved the highest peak torque amongst the field positions.

  16. Elemental abundances in corotating events

    NASA Technical Reports Server (NTRS)

    Vonrosenvinge, T. T.; Mcguire, R. E.

    1985-01-01

    Large, persistent solar-wind streams in 1973 and 1974 produced corotating interaction regions which accelerated particles to energies of a few MeV/nucleon. The proton to helium ratio (H/He) was remarkably constant at a value (22 + or 5) equal to that in the solar wind (21 + or - 3), suggesting that particles were being accelerated directly out of the solar wind. Preliminary results were presented from a similar study approximately 11 years (i.e., one solar cycle) later. Corotating events have been identified by surveying the solar wind data, energetic particle time-histories and anisotropies. This data was all obtained from the ISEE-3/ICE spacecraft. These events also show H/He ratios similar to that in the solar wind. It is flund that in these cases there is evidence for H/He ratios which are significantly different from that of the solar wind but which are consistent with the range of values found in solar flare events.

  17. The insertional torque of a pedicle screw has a positive correlation with bone mineral density in posterior lumbar pedicle screw fixation.

    PubMed

    Lee, J H; Lee, J-H; Park, J W; Shin, Y H

    2012-01-01

    In patients with osteoporosis there is always a strong possibility that pedicle screws will loosen. This makes it difficult to select the appropriate osteoporotic patient for a spinal fusion. The purpose of this study was to determine the correlation between bone mineral density (BMD) and the magnitude of torque required to insert a pedicle screw. To accomplish this, 181 patients with degenerative disease of the lumbar spine were studied prospectively. Each underwent dual-energy x-ray absorptiometry (DEXA) and intra-operative measurement of the torque required to insert each pedicle screw. The levels of torque generated in patients with osteoporosis and osteopenia were significantly lower than those achieved in normal patients. Positive correlations were observed between BMD and T-value at the instrumented lumbar vertebrae, mean BMD and mean T-value of the lumbar vertebrae, and mean BMD and mean T-value of the proximal femur. The predictive torque (Nm) generated during pedicle screw insertion was [-0.127 + 1.62 × (BMD at the corresponding lumbar vertebrae)], as measured by linear regression analysis. The positive correlation between BMD and the maximum torque required to insert a pedicle screw suggests that pre-operative assessment of BMD may be useful in determining the ultimate strength of fixation of a device, as well as the number of levels that need to be fixed with pedicle screws in patients who are suspected of having osteoporosis.

  18. Mechanically Evoked Torque and Electromyographic Responses During Passive Elbow Extension in Upper Limb Tension Test Position

    DTIC Science & Technology

    2001-10-25

    axis during passive elbow extension. A padded shoulder block was placed superior to the subject’s acromioclavicular joint to stabilize the shoulder...girdle position. A pressure sensor was used between the padded shoulder block and the acromioclavicular joint to monitor and standardize the pressure

  19. Servo Driven Corotation: Development of AN Inertial Clock.

    NASA Astrophysics Data System (ADS)

    Cheung, Wah-Kwan Stephen

    An inertial clock to test non-metricity of gravity is proposed here. A first, room-temperature, servo corotation -protected, double magnetically suspended precision rotor system is developed for this purpose. The specific goal was to exhibit the properties of such a clock in its entirety at whatever level of precision was achievable. A monolithic system has been completed for these preliminary studies. It includes particular development of individual experimental sub-systems (a hybrid double magnetic suspension; a diffusion pumping system; a microcomputer -controlled eddy-current drive system; and the angular period measuring schemes for the doubly suspended rotors). Double magnetic suspension had been investigated by Beams for other purposes. The upper transducer is optical but parametrized and the lower transducer employs the frequency modulation characteristic of a LC tank circuit. The doubly suspended rotors corotate so that the upper rotor is servoed to rotate at the same angular velocity as that of the lower rotor. This creates a "drag free" environment for the lower rotor and effectively eliminates the gas drag on the lower rotor. Consequently, the decay time constant of the lower rotor increases. With other means of protection, the lower rotor will then, with perfect system operation, suffer no drag and therefore become the inertial time keeper. A commercial microcomputer is introduced to execute the servo-corotation. The tests thus far are, with one exception, run at atmospheric pressure. An idealized analysis for open and closed loop corotation is shown. Such analysis includes only the viscous drag acting on the corotating rotors. The analysis suggests that angular position control be added to the present feedback drive which is of derivative nature only. Open and closed corotation runs show that a strong torsional coupling besides that of the gas drag exists between the rotors. When misalignment of the support pole pieces is deliberately made significant

  20. The effect of vertical bracket positioning on torque and the resultant stress in the periodontal ligament--a finite element study.

    PubMed

    Sardarian, Ahmadreza; Danaei, Shahla Momeni; Shahidi, Shoaleh; Boushehri, Sahar Ghodsi; Geramy, Allahyar

    2014-01-01

    The ideal built-in tip and torque values of the straight wire appliance reduce the need for wire bending and hence reduce chair time. The vertical position of the bracket on the tooth surface can alter the torque exerted on the tooth. This is a result of the altered surface curvature observed at each vertical position. To further clarify the role of vertical bracket positioning on the applied torque and the resultant stresses in the periodontal ligament (PDL), we designed a mandibular first premolar using finite element modeling. Cone beam computed tomography of 52 patients (83 lower first premolars) was selected to be included in the study. Curvature was measured for points along the labial surface with increasing distances (0.5 mm increments) from the cusp tip by calculating the angle between tangents drawn from these points and the axis joining the cusp tip and the root apex. The mean values for each distance were calculated, and a finite element model was designed incorporating these mean values. The resultant stress and hydrostatic pressure in the PDL were calculated using finite element analysis. The labial surface of the mandibular first premolar demonstrated a 26.39° change from 2.5 to 6 mm from the cusp tip. The maximum Von-Mises stress and hydrostatic pressure in the PDL were observed at the root apex for all of the bracket positions, and these values demonstrated, respectively, a change of up to 0.059 and 0.186 MPa between two successive points. It can be concluded that the variation in the vertical position of the bracket can have an important effect on the torque and subsequently on the stresses and pressures in the PDL.

  1. Low mass planet migration in magnetically torqued dead zones - II. Flow-locked and runaway migration, and a torque prescription

    NASA Astrophysics Data System (ADS)

    McNally, Colin P.; Nelson, Richard P.; Paardekooper, Sijme-Jan

    2018-04-01

    We examine the migration of low mass planets in laminar protoplanetary discs, threaded by large scale magnetic fields in the dead zone that drive radial gas flows. As shown in Paper I, a dynamical corotation torque arises due to the flow-induced asymmetric distortion of the corotation region and the evolving vortensity contrast between the librating horseshoe material and background disc flow. Using simulations of laminar torqued discs containing migrating planets, we demonstrate the existence of the four distinct migration regimes predicted in Paper I. In two regimes, the migration is approximately locked to the inward or outward radial gas flow, and in the other regimes the planet undergoes outward runaway migration that eventually settles to fast steady migration. In addition, we demonstrate torque and migration reversals induced by midplane magnetic stresses, with a bifurcation dependent on the disc surface density. We develop a model for fast migration, and show why the outward runaway saturates to a steady speed, and examine phenomenologically its termination due to changing local disc conditions. We also develop an analytical model for the corotation torque at late times that includes viscosity, for application to discs that sustain modest turbulence. Finally, we use the simulation results to develop torque prescriptions for inclusion in population synthesis models of planet formation.

  2. Torque sensor

    NASA Astrophysics Data System (ADS)

    Fgeppert, E.

    1984-09-01

    Mechanical means for sensing turning torque generated by the load forces in a rotary drive system is described. The sensing means is designed to operate with minimal effect on normal operation of the drive system. The invention can be employed in various drive systems, e.g., automotive engine-transmission power plants, electric motor-operated tools, and metal cutting machines. In such drive systems, the torque-sensing feature may be useful for actuation of various control devices, such as electric switches, mechanical clutches, brake actuators, fluid control valves, or audible alarms. The torque-sensing function can be used for safety overload relief, motor de-energization, engine fuel control transmission clutch actuation, remote alarm signal, tool breakage signal, etc.

  3. Ironless armature torque motor

    NASA Technical Reports Server (NTRS)

    Fisher, R. L.

    1972-01-01

    Four iron-less armature torque motors, four Hall device position sensor assemblies, and two test fixtures were fabricated. The design approach utilized samarium cobalt permanent magnets, a large airgap, and a three-phase winding in a stationary ironless armature. Hall devices were employed to sense rotor position. An ironless armature torque motor having an outer diameter of 4.25 inches was developed to produce a torque constant of 65 ounce-inches per ampere with a resistance of 20.5 ohms. The total weight, including structural elements, was 1.58 pounds. Test results indicated that all specifications were met except for generated voltage waveform. It is recommended that investigations be made concerning the generated voltage waveform to determine if it may be improved.

  4. Power tong torque control

    SciTech Connect

    Buck, D.A.; James, R.N.

    1987-10-20

    Torque controlled powered pipe tongs, are described the apparatus comprises: (a) a power tong powered by a fluid motor; (b) a fluid power source connected to the motor; (c) a force conducting element attached to the power tong, situated to oppose reaction torque from the tongs when torque is applied to pipe; (d) force sensing means operatively associated with the force conducting element situated to sense at least part of the force experienced by the force conducting element, arranged to produce a pressure signal proportional to force sensed; and (e) a fluid by-pass valve, adjustably biased toward a closed position,more » responsive to the signal to tend to move toward an open position, the by-pass valve connected between the fluid power source and the motor.« less

  5. Corotation of an intermittent solar wind source

    NASA Technical Reports Server (NTRS)

    Croft, T. A.

    1972-01-01

    The measured electron content of the solar wind in mid-1970 exhibited a region of relatively high electron density that reappeared at intervals of about 27.8 days. It is shown that the repeating event cannot be reconciled with the concept of a long-enduring steady flow, even though the recurrence period is close to the rotation period of the sun. This evidence of transients is inferred from the short duration of each appearance of the interval of higher density; each should last for roughly one corotation interval if it is caused by a steady stream. The radio path was approximately 0.8 AU long, and the corotation interval exceeded 3 days. Other aspects of the content data patterns support the view that such transient events are common in the solar wind. The mid-1970 repeating event is an unusually good example of the intermittent character of flow regions in the solar wind that fluctuate on a time scale of days but endure as identifiable regions for many months. A sputtering corotating source of thin solar plasma streams could explain this series of events; it could also be explained in terms of a stream that is steady in density and speed but undulating north-south so that it passes into and out of the 0.8 AU radio path in a matter of a day or less.

  6. Low-mass planet migration in magnetically torqued dead zones - II. Flow-locked and runaway migration, and a torque prescription

    NASA Astrophysics Data System (ADS)

    McNally, Colin P.; Nelson, Richard P.; Paardekooper, Sijme-Jan

    2018-07-01

    We examine the migration of low-mass planets in laminar protoplanetary discs, threaded by large-scale magnetic fields in the dead zone that drive radial gas flows. As shown in Paper I, a dynamical corotation torque arises due to the flow-induced asymmetric distortion of the corotation region and the evolving vortensity contrast between the librating horseshoe material and background disc flow. Using simulations of laminar torqued discs containing migrating planets, we demonstrate the existence of the four distinct migration regimes predicted in Paper I. In two regimes, the migration is approximately locked to the inward or outward radial gas flow, and in the other regimes the planet undergoes outward runaway migration that eventually settles to fast steady migration. In addition, we demonstrate torque and migration reversals induced by mid-plane magnetic stresses, with a bifurcation dependent on the disc surface density. We develop a model for fast migration, and show why the outward runaway saturates to a steady speed, and examine phenomenologically its termination due to changing local disc conditions. We also develop an analytical model for the corotation torque at late times that includes viscosity, for application to discs that sustain modest turbulence. Finally, we use the simulation results to develop torque prescriptions for inclusion in population synthesis models of planet formation.

  7. Anisotropy and corotation of galactic cosmic rays.

    PubMed

    Amenomori, M; Ayabe, S; Bi, X J; Chen, D; Cui, S W; Danzengluobu; Ding, L K; Ding, X H; Feng, C F; Feng, Zhaoyang; Feng, Z Y; Gao, X Y; Geng, Q X; Guo, H W; He, H H; He, M; Hibino, K; Hotta, N; Hu, Haibing; Hu, H B; Huang, J; Huang, Q; Jia, H Y; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren; Le, G M; Li, A F; Li, J Y; Lou, Y-Q; Lu, H; Lu, S L; Meng, X R; Mizutani, K; Mu, J; Munakata, K; Nagai, A; Nanjo, H; Nishizawa, M; Ohnishi, M; Ohta, I; Onuma, H; Ouchi, T; Ozawa, S; Ren, J R; Saito, T; Saito, T Y; Sakata, M; Sako, T K; Sasaki, T; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, B; Wang, H; Wang, X; Wang, Y G; Wu, H R; Xue, L; Yamamoto, Y; Yan, C T; Yang, X C; Yasue, S; Ye, Z H; Yu, G C; Yuan, A F; Yuda, T; Zhang, H M; Zhang, J L; Zhang, N J; Zhang, X Y; Zhang, Y; Zhang, Yi; Zhaxisangzhu; Zhou, X X

    2006-10-20

    The intensity of Galactic cosmic rays is nearly isotropic because of the influence of magnetic fields in the Milky Way. Here, we present two-dimensional high-precision anisotropy measurement for energies from a few to several hundred teraelectronvolts (TeV), using the large data sample of the Tibet Air Shower Arrays. Besides revealing finer details of the known anisotropies, a new component of Galactic cosmic ray anisotropy in sidereal time is uncovered around the Cygnus region direction. For cosmic-ray energies up to a few hundred TeV, all components of anisotropies fade away, showing a corotation of Galactic cosmic rays with the local Galactic magnetic environment. These results have broad implications for a comprehensive understanding of cosmic rays, supernovae, magnetic fields, and heliospheric and Galactic dynamic environments.

  8. Transiting exoplanets from the CoRoT space mission. VIII. CoRoT-7b: the first super-Earth with measured radius

    NASA Astrophysics Data System (ADS)

    Léger, A.; Rouan, D.; Schneider, J.; Barge, P.; Fridlund, M.; Samuel, B.; Ollivier, M.; Guenther, E.; Deleuil, M.; Deeg, H. J.; Auvergne, M.; Alonso, R.; Aigrain, S.; Alapini, A.; Almenara, J. M.; Baglin, A.; Barbieri, M.; Bruntt, H.; Bordé, P.; Bouchy, F.; Cabrera, J.; Catala, C.; Carone, L.; Carpano, S.; Csizmadia, Sz.; Dvorak, R.; Erikson, A.; Ferraz-Mello, S.; Foing, B.; Fressin, F.; Gandolfi, D.; Gillon, M.; Gondoin, Ph.; Grasset, O.; Guillot, T.; Hatzes, A.; Hébrard, G.; Jorda, L.; Lammer, H.; Llebaria, A.; Loeillet, B.; Mayor, M.; Mazeh, T.; Moutou, C.; Pätzold, M.; Pont, F.; Queloz, D.; Rauer, H.; Renner, S.; Samadi, R.; Shporer, A.; Sotin, Ch.; Tingley, B.; Wuchterl, G.; Adda, M.; Agogu, P.; Appourchaux, T.; Ballans, H.; Baron, P.; Beaufort, T.; Bellenger, R.; Berlin, R.; Bernardi, P.; Blouin, D.; Baudin, F.; Bodin, P.; Boisnard, L.; Boit, L.; Bonneau, F.; Borzeix, S.; Briet, R.; Buey, J.-T.; Butler, B.; Cailleau, D.; Cautain, R.; Chabaud, P.-Y.; Chaintreuil, S.; Chiavassa, F.; Costes, V.; Cuna Parrho, V.; de Oliveira Fialho, F.; Decaudin, M.; Defise, J.-M.; Djalal, S.; Epstein, G.; Exil, G.-E.; Fauré, C.; Fenouillet, T.; Gaboriaud, A.; Gallic, A.; Gamet, P.; Gavalda, P.; Grolleau, E.; Gruneisen, R.; Gueguen, L.; Guis, V.; Guivarc'h, V.; Guterman, P.; Hallouard, D.; Hasiba, J.; Heuripeau, F.; Huntzinger, G.; Hustaix, H.; Imad, C.; Imbert, C.; Johlander, B.; Jouret, M.; Journoud, P.; Karioty, F.; Kerjean, L.; Lafaille, V.; Lafond, L.; Lam-Trong, T.; Landiech, P.; Lapeyrere, V.; Larqué, T.; Laudet, P.; Lautier, N.; Lecann, H.; Lefevre, L.; Leruyet, B.; Levacher, P.; Magnan, A.; Mazy, E.; Mertens, F.; Mesnager, J.-M.; Meunier, J.-C.; Michel, J.-P.; Monjoin, W.; Naudet, D.; Nguyen-Kim, K.; Orcesi, J.-L.; Ottacher, H.; Perez, R.; Peter, G.; Plasson, P.; Plesseria, J.-Y.; Pontet, B.; Pradines, A.; Quentin, C.; Reynaud, J.-L.; Rolland, G.; Rollenhagen, F.; Romagnan, R.; Russ, N.; Schmidt, R.; Schwartz, N.; Sebbag, I.; Sedes, G.; Smit, H.; Steller, M. B.; Sunter, W.; Surace, C.; Tello, M.; Tiphène, D.; Toulouse, P.; Ulmer, B.; Vandermarcq, O.; Vergnault, E.; Vuillemin, A.; Zanatta, P.

    2009-10-01

    Aims: We report the discovery of very shallow (Δ F/F ≈ 3.4× 10-4), periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which we interpret as caused by a transiting companion. We describe the 3-colour CoRoT data and complementary ground-based observations that support the planetary nature of the companion. Methods: We used CoRoT colours information, good angular resolution ground-based photometric observations in- and out- of transit, adaptive optics imaging, near-infrared spectroscopy, and preliminary results from radial velocity measurements, to test the diluted eclipsing binary scenarios. The parameters of the host star were derived from optical spectra, which were then combined with the CoRoT light curve to derive parameters of the companion. Results: We examined all conceivable cases of false positives carefully, and all the tests support the planetary hypothesis. Blends with separation >0.40´´or triple systems are almost excluded with a 8 × 10-4 risk left. We conclude that, inasmuch we have been exhaustive, we have discovered a planetary companion, named CoRoT-7b, for which we derive a period of 0.853 59 ± 3 × 10-5 day and a radius of Rp = 1.68 ± 0.09 R_Earth. Analysis of preliminary radial velocity data yields an upper limit of 21 M_Earth for the companion mass, supporting the finding. Conclusions: CoRoT-7b is very likely the first Super-Earth with a measured radius. This object illustrates what will probably become a common situation with missions such as Kepler, namely the need to establish the planetary origin of transits in the absence of a firm radial velocity detection and mass measurement. The composition of CoRoT-7b remains loosely constrained without a precise mass. A very high surface temperature on its irradiated face, ≈1800-2600 K at the substellar point, and a very low one, ≈50 K, on its dark face assuming no atmosphere, have been derived. The CoRoT space mission, launched on 27

  9. Planetary transit candidates in Corot-IRa01 field

    NASA Astrophysics Data System (ADS)

    Carpano, S.; Cabrera, J.; Alonso, R.; Barge, P.; Aigrain, S.; Almenara, J.-M.; Bordé, P.; Bouchy, F.; Carone, L.; Deeg, H. J.; de La Reza, R.; Deleuil, M.; Dvorak, R.; Erikson, A.; Fressin, F.; Fridlund, M.; Gondoin, P.; Guillot, T.; Hatzes, A.; Jorda, L.; Lammer, H.; Léger, A.; Llebaria, A.; Magain, P.; Moutou, C.; Ofir, A.; Ollivier, M.; Janot-Pacheco, E.; Pätzold, M.; Pont, F.; Queloz, D.; Rauer, H.; Régulo, C.; Renner, S.; Rouan, D.; Samuel, B.; Schneider, J.; Wuchterl, G.

    2009-10-01

    Context: CoRoT is a pioneering space mission devoted to the analysis of stellar variability and the photometric detection of extrasolar planets. Aims: We present the list of planetary transit candidates detected in the first field observed by CoRoT, IRa01, the initial run toward the Galactic anticenter, which lasted for 60 days. Methods: We analysed 3898 sources in the coloured bands and 5974 in the monochromatic band. Instrumental noise and stellar variability were taken into account using detrending tools before applying various transit search algorithms. Results: Fifty sources were classified as planetary transit candidates and the most reliable 40 detections were declared targets for follow-up ground-based observations. Two of these targets have so far been confirmed as planets, CoRoT-1b and CoRoT-4b, for which a complete characterization and specific studies were performed. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with contributions from Austria, Belgium, Brazil, ESA, Germany, and Spain. Four French laboratories associated with the CNRS (LESIA, LAM, IAS ,OMP) collaborate with CNES on the satellite development. First CoRoT data are available to the public from the CoRoT archive: http://idoc-corot.ias.u-psud.fr.

  10. Force, Torque and Stiffness: Interactions in Perceptual Discrimination

    PubMed Central

    Wu, Bing; Klatzky, Roberta L.; Hollis, Ralph L.

    2011-01-01

    Three experiments investigated whether force and torque cues interact in haptic discrimination of force, torque and stiffness, and if so, how. The statistical relation between force and torque was manipulated across four experimental conditions: Either one type of cue varied while the other was constant, or both varied so as to be positively correlated, negatively correlated, or uncorrelated. Experiment 1 showed that the subjects’ ability to discriminate force was improved by positively correlated torque but impaired with uncorrelated torque, as compared to the constant torque condition. Corresponding effects were found in Experiment 2 for the influence of force on torque discrimination. These findings indicate that force and torque are integrated in perception, rather than being processed as separate dimensions. A further experiment demonstrated facilitation of stiffness discrimination by correlated force and torque, whether the correlation was positive or negative. The findings suggest new means of augmenting haptic feedback to facilitate perception of the properties of soft objects. PMID:21359137

  11. Corotating Magnetic Reconnection Site in Saturn’s Magnetosphere

    NASA Astrophysics Data System (ADS)

    Yao, Z. H.; Coates, A. J.; Ray, L. C.; Rae, I. J.; Grodent, D.; Jones, G. H.; Dougherty, M. K.; Owen, C. J.; Guo, R. L.; Dunn, W. R.; Radioti, A.; Pu, Z. Y.; Lewis, G. R.; Waite, J. H.; Gérard, J.-C.

    2017-09-01

    Using measurements from the Cassini spacecraft in Saturn’s magnetosphere, we propose a 3D physical picture of a corotating reconnection site, which can only be driven by an internally generated source. Our results demonstrate that the corotating magnetic reconnection can drive an expansion of the current sheet in Saturn’s magnetosphere and, consequently, can produce Fermi acceleration of electrons. This reconnection site lasted for longer than one of Saturn’s rotation period. The long-lasting and corotating natures of the magnetic reconnection site at Saturn suggest fundamentally different roles of magnetic reconnection in driving magnetospheric dynamics (e.g., the auroral precipitation) from the Earth. Our corotating reconnection picture could also potentially shed light on the fast rotating magnetized plasma environments in the solar system and beyond.

  12. Stellar Rotation: New Insight from CoRoT

    NASA Astrophysics Data System (ADS)

    Catala, C.; Goupil, M. J.; Michel, E.; Baglin, A.; de Medeiros, J. Renan; Gondoin, Ph.

    2009-02-01

    We present an overview of the new insight provided by the CoRoT satellite on stellar rotation. Thanks to its ultra-high precision, high duty cycle, long photometric monitoring of thousands of stars, CoRoT gives us a powerful tool to study stellar rotational modulation, and therefore to measure stellar rotational periods and to study active structures at the surface of stars. This paper presents preliminary results concerning this type of study. CoRoT will also provide us with an insight of internal stellar rotation via the measurement and exploitation of rotational splittings of oscillation modes. This approach to stellar rotation with CoRoT will require a careful analysis of the oscillation power spectra, which is in progress, but prospects for such measurements are presented.

  13. TIME-DEPENDENT COROTATION RESONANCE IN BARRED GALAXIES

    SciTech Connect

    Wu, Yu-Ting; Taam, Ronald E.; Pfenniger, Daniel, E-mail: ytwu@asiaa.sinica.edu.tw, E-mail: daniel.pfenniger@unige.ch, E-mail: taam@asiaa.sinica.edu.tw

    2016-10-20

    The effective potential neighboring the corotation resonance region in barred galaxies is shown to be strongly time-dependent in any rotating frame, due to the competition of nearby perturbations of similar strengths with differing rotation speeds. Contrary to the generally adopted assumption that in the bar rotating frame the corotation region should possess four stationary equilibrium points (Lagrange points), with high quality N -body simulations, we localize the instantaneous equilibrium points (EPs) and find that they circulate or oscillate broadly in azimuth with respect to the pattern speeds of the inner or outer perturbations. This implies that at the particle levelmore » the Jacobi integral is not well conserved around the corotation radius. That is, angular momentum exchanges decouple from energy exchanges, enhancing the chaotic diffusion of stars through the corotation region.« less

  14. Classification of Stellar Orbits Near Corotation

    NASA Astrophysics Data System (ADS)

    Breet, Jessica; Daniel, Kathryne J.; Bryn Mawr College Galaxy Lab

    2018-01-01

    The process of radial migration is frequently invoked as an important process to spiral galaxy evolution, but the physical properties that determine the efficiency of radial migration are poorly defined. In order for a star to migrate radially it must first be trapped in a resonant orbit at the corotation radius of a spiral pattern. Stars in such trapped orbits have changing average orbital radii — and thus orbital angular momenta — without any change in orbital eccentricity. It follows that transient spiral patterns can permanently rearrange the distribution of orbital angular momentum in the disk without kinematically heating it. It is also known that orbits can also have a significant dynamical response at Lindblad Resonances (LRs), where the Ultraharmonic Lindblad Resonances (ULRs) have a lesser impact on the disk. The goal of our project is to examine and constrain the efficiency of radial migration via an investigation into whether or not stars in trapped orbits have a dynamical response at the ULRs. We produced a dataset of nearly 105 orbits with initial conditions across a range of radii and 2-D velocities. We then classified these orbits into four categories based on analytic criteria for whether or not they are in trapped orbits and/or cross the ULR over 1 gigayear. Preliminary investigations show that trapped orbits that also meet the ULR have a chaotic response, putting a potential limit on the efficiency of radial migration.

  15. Displaying Force and Torque of A Manipulator

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Dotson, R. S.; Primus, H. C.

    1984-01-01

    Display combines bar charts, vector diagrams, and numerical values to inform operator of forces and torques exerted by end effector of manipulator. On voice or keyboard command, eight-channel strip-chart recorder traces force and torque components and claw position of raw measurements from eight strain gage sensors in end effector. Especially helpful when operator's view of end effector is obscured.

  16. Electromagnetic torque tweezers: a versatile approach for measurement of single-molecule twist and torque.

    PubMed

    Janssen, Xander J A; Lipfert, Jan; Jager, Tessa; Daudey, Renier; Beekman, Jaap; Dekker, Nynke H

    2012-07-11

    The well-established single-molecule force-spectroscopy techniques have recently been complemented by methods that can measure torque and twist directly, notably magnetic torque tweezers and the optical torque wrench. A limitation of the current torque measurement schemes is the intrinsic coupling between the force and torque degrees of freedom. Here we present electromagnetic torque tweezers (eMTT) that combine permanent and electromagnets to enable independent control of the force and torsional trap stiffness for sensitive measurements of single molecule torque and twist. Using the eMTT, we demonstrate sensitive torque measurements on tethered DNA molecules from simple tracking of the beads' (x,y)-position, obviating the need for any angular tracking algorithms or markers. Employing the eMTT for high-resolution torque measurements, we experimentally confirm the theoretically predicted torque overshoot at the DNA buckling transition in high salt conditions. We envision that the flexibility and control afforded by the eMTT will enable a range of new torque and twist measurement schemes from single-molecules to living cells.

  17. Calibration strategy for the COROT photometry

    NASA Astrophysics Data System (ADS)

    Buey, J.-T.; Auvergne, M.; Lapeyrere, V.; Boumier, P.

    2004-01-01

    Like Eddington, the COROT photometer will measure very small fluctutions on a large signal: the amplitudes of planetary transits and solar-like oscillations are expressed in ppm (parts per million). For such an instrument, specific calibration has to be done during the different phases of the development of the instrument and of all the subsystems. Two main things have to be taken into account: - the calibration during the study phase; - the calibration of the sub-systems and building of numerical models. The first item allows us to clearly understand all the perturbations (internal and external) and to identify their relative impacts on the expected signal (by numerical models including expected values of perturbations and sensitivity of the instrument). Methods and a schedule for the calibration process can also be introduced, in good agreement with the development plan of the instrument. The second item is more related to the measurement of the sensitivity of the instrument and all its sub-systems. As the instrument is designed to be as stable as possible, we have to mix measurements (with larger fluctuations of parameters than expected) and numerical models. Some typical reasons for that are: - there are many parameters to introduce in the measurements and results from some models (bread-board for example) may be extrapolated to the flight model; - larger fluctuations than expected are used (to measure precisely the sensitivity) and numerical models give the real value of noise with the expected fluctuations. - Characteristics of sub-systems may be measured and models used to give the sensitivity of the whole system built with them, as end-to-end measurements may be impossible (time, budget, physical limitations). Also, house-keeping measurements have to be set up on the critical parts of the sub-systems: measurements on thermal probes, power supply, pointing, etc. All these house-keeping data are used during ground calibration and during the flight, so that

  18. Asteroseismology of OB stars with CoRoT

    NASA Astrophysics Data System (ADS)

    Degroote, P.; Aerts, C.; Samadi, R.; Miglio, A.; Briquet, M.; Auvergne, M.; Baglin, A.; Baudin, F.; Catala, C.; Michel, E.

    2010-12-01

    The CoRoT satellite is revolutionizing the photometric study of massive O-type and B-type stars. During its long runs, CoRoT observed the entire main sequence B star domain, from typical hot β Cep stars, via cooler hybrid p- and g-mode pulsators to the SPB stars near the edge of the instability strip. CoRoT lowers the sensitivity barrier from the typical mmag-precision reached from the ground, to the μmag-level reached from space. Within the wealth of detected and identified pulsation modes, relations have been found in the form of multiplets, combination of frequencies, and frequency- and period spacings. This wealth of observational evidence is finally providing strong constraints to test current models of the internal structure and pulsations of hot stars. Aside from the expected opacity driven modes with infinite lifetime, other unexpected types of variability are detected in massive stars, such as modes of stochastic nature. The simultaneous observation of all these light curve characteristics implies a challenge for both observational asteroseismology and stellar modelling. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.

  19. The COROT ground-based archive and access system

    NASA Astrophysics Data System (ADS)

    Solano, E.; González-Riestra, R.; Catala, C.; Baglin, A.

    2002-01-01

    A prototype of the COROT ground-based archive and access system is presented here. The system has been developed at LAEFF and it is based on the experience gained at Laboratorio de Astrofisica Espacial y Fisica Fundamental (LAEFF) with the INES (IUE Newly Extracted System) Archive.

  20. A Study of Small Satellites Captured in Corotation Resonance

    NASA Astrophysics Data System (ADS)

    Santos Araújo, Nilton Carlos; Vieira Neto, E.

    2013-05-01

    Abstract (2,250 Maximum Characters): Currently we find in the solar system several types of celestial objects such as planets, satellites, rings, etc.. The dynamics of these objects have always been interesting for studies, mainly the satellites and rings of Saturn. We have the knowledge that these satellites and rings undergo various types of orbital resonances. These resonances are responsible for the formation of numerous structures in the rings such as, for example, almost the entire structure of A ring. Thus we see how important it is to examine the nature of these resonant interactions in order to understand the characteristics observed in the satellites and rings of Saturn. In this work we highlight the corotation resonance, which occurs when the velocity pattern of the potential disturbing frequency is equal to the orbital frequency of a satellite. In the Saturnian system there are three satellites, Aegaeon, Anthe and Methone that are in corotation resonance with Mimas. In this paper we study, through numerical simulations, corotation resonance of the G ring arc of Saturn with Tethys and Mimas, while Mimas is migrating. Ours initial results show that no particles escape from the corotational resonance while Mimas migrate, that is, it is very robust. We also show the effects and consequences of Tethys migration on Mimas and de G arc.

  1. Measurement of clinicians' ability to hand torque dental implant components.

    PubMed

    Kanawati, Ali; Richards, Mark W; Becker, Jeffery J; Monaco, Natalie E

    2009-01-01

    There is a varying degree of hand torque abilities using finger drivers among clinicians. Calibrating one's own abilities requires complicated instruments not readily available. This study evaluated a simple-to-use method that allows dental practitioners to have a quantifiable clinical assessment of relative torque ability using finger drivers to torque down dental implant components. A typodont that includes dental implants was mounted in a mannequin placed in a patient-reclined position. The subjects were asked to torque as tightly as they could a new healing abutment to an implant secured firmly in resin within the typodont. All participants wore moistened gloves when using a finger driver. The healing abutment was countertorqued using a certified precalibrated precision torque measurement device. The reading on the torque driver was recorded when the healing abutment disengaged. An average of torque values of dentists and dental students was calculated. Fifty subjects had an average maximum torque ability of 24 Ncm (male dentists: 28 Ncm; students: 22 Ncm; male students: 24 Ncm; female students: 19 Ncm). Maximum torque values for all participants ranged from 11 Ncm to 38 Ncm. There was no significant difference between groups. This study showed a varying degree of hand torquing abilities using a finger driver. Clinicians should regularly calibrate their ability to torque implant components to more predictably perform implant dentistry. Dental implant manufacturers should more precisely instruct clinicians as to maximum torque, as opposed to "finger tighten only".

  2. Angular Acceleration without Torque?

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  3. van der Waals torque

    NASA Astrophysics Data System (ADS)

    Esquivel-Sirvent, Raul; Schatz, George

    2014-03-01

    The theory of generalized van der Waals forces by Lifshtz when applied to optically anisotropic media predicts the existence of a torque. In this work we present a theoretical calculation of the van der Waals torque for two systems. First we consider two isotropic parallel plates where the anisotropy is induced using an external magnetic field. The anisotropy will in turn induce a torque. As a case study we consider III-IV semiconductors such as InSb that can support magneto plasmons. The calculations of the torque are done in the Voigt configuration, that occurs when the magnetic field is parallel to the surface of the slabs. The change in the dielectric function as the magnetic field increases has the effect of decreasing the van der Waals force and increasing the torque. Thus, the external magnetic field is used to tune both the force and torque. The second example we present is the use of the torque in the non retarded regime to align arrays of nano particle slabs. The torque is calculated within Barash and Ginzburg formalism in the nonretarded limit, and is quantified by the introduction of a Hamaker torque constant. Calculations are conducted between anisotropic slabs of materials including BaTiO3 and arrays of Ag nano particles. Depending on the shape and arrangement of the Ag nano particles the effective dielectric function of the array can be tuned as to make it more or less anisotropic. We show how this torque can be used in self assembly of arrays of nano particles. ref. R. Esquivel-Sirvent, G. C. Schatz, Phys. Chem C, 117, 5492 (2013). partial support from DGAPA-UNAM.

  4. Mechanistic modeling of modular co-rotating twin-screw extruders.

    PubMed

    Eitzlmayr, Andreas; Koscher, Gerold; Reynolds, Gavin; Huang, Zhenyu; Booth, Jonathan; Shering, Philip; Khinast, Johannes

    2014-10-20

    In this study, we present a one-dimensional (1D) model of the metering zone of a modular, co-rotating twin-screw extruder for pharmaceutical hot melt extrusion (HME). The model accounts for filling ratio, pressure, melt temperature in screw channels and gaps, driving power, torque and the residence time distribution (RTD). It requires two empirical parameters for each screw element to be determined experimentally or numerically using computational fluid dynamics (CFD). The required Nusselt correlation for the heat transfer to the barrel was determined from experimental data. We present results for a fluid with a constant viscosity in comparison to literature data obtained from CFD simulations. Moreover, we show how to incorporate the rheology of a typical, non-Newtonian polymer melt, and present results in comparison to measurements. For both cases, we achieved excellent agreement. Furthermore, we present results for the RTD, based on experimental data from the literature, and found good agreement with simulations, in which the entire HME process was approximated with the metering model, assuming a constant viscosity for the polymer melt. Copyright © 2014. Published by Elsevier B.V.

  5. Intrinsic domain wall flexing from current-induced spin torque

    NASA Astrophysics Data System (ADS)

    Golovatski, Elizabeth; Flatté, Michael

    2012-02-01

    Spin torque generated by coherent carrier transport in domain walls [1] is a major component in the development of spintronic devices [2]. We model spin torque in N'eel walls [3] using a piecewise linear transfer-matrix method [4] to calculate spin torque on interior wall segments. For a π wall with a total positive torque (current left-to-right), we find the largest positive and negative spin torques left of the central region, 4-5 orders of magnitude larger than the center. The wall's rightward push comes from the back of the wall; all other significant regions pull to the left. Adding a second wall (both walls with positive total torque) changes the first wall little, but produces spin torques in the second wall with large canceling torques on the left, and the push rightward from a smaller torque on the right. The gradient of torque across the wall generates an intrinsic domain wall flexing (distinct from extrinsic wall flexing from pinning centers [5]). Work supported by an ARO MURI.[4pt] [1] M. Yamanouchi et al., Nature 428, 539 (2004).[0pt] [2] S. Parkin et al., Science 320, 190 (2008)[0pt] [3] G. Vignale and M. Flatt'e, Phys. Rev. Lett. 89, 098302 (2002)[0pt] [4] E. Golovatski and M. Flatt'e, Phys. Rev. B, 84, 115210 (2011)[0pt] [5] A. Balk et al., Phys. Rev. Lett. 107, 077205 (2011).

  6. Corotating pressure waves without streams in the solar wind

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.

    1983-01-01

    Voyager 1 and 2 magnetic field and plasma data are presented which demonstrate the existence of large scale, corotating, non-linear pressure waves between 2 AU and 4 AU that are not accompanied by fast streams. The pressure waves are presumed to be generated by corotating streams near the Sun. For two of the three pressure waves that are discussed, the absence of a stream is probably a real, physical effect, viz., a consequence of deceleration of the stream by the associated compression wave. For the third pressure wave, the apparent absence of a stream may be a geometrical effect; it is likely that the stream was at latitudes just above those of the spacecraft, while the associated shocks and compression wave extended over a broader range of latitudes so that they could be observed by the spacecraft. It is suggested that the development of large-scale non-linear pressure waves at the expense of the kinetic energy of streams produces a qualitative change in the solar wind in the outer heliosphere. Within a few AU the quasi-stationary solar wind structure is determined by corotating streams whose structure is determined by the boundary conditions near the Sun.

  7. Dynamics of multiple bodies in a corotation resonance

    NASA Astrophysics Data System (ADS)

    A'Hearn, Joseph; Hedman, Matthew

    2018-04-01

    The orbital evolution of multiple massive bodies trapped in the same corotation resonance site has not yet been studied in depth, but could be relevant to the origins and history of small moons like Saturn's moon Aegaeon. We conduct numerical simulations of multiple bodies trapped within a corotation resonance and examine what happens to these bodies when they have close encounters. Compared to simulations with equal mass bodies, simulations with one body more massive than the others may be more likely to feature an asymmetry in the phase space of semi-major axis and mean longitude. That is, bodies on one side of phase space have a slightly greater tendency to lose angular momentum, while bodies on the other side gain angular momentum. With this asymmetry, the transfer of angular momentum during gravitational encounters makes it more likely for the most massive body rather than other bodies to approach the center of the corotation site. More work is needed to determine if this sort of process can significantly affect the orbital evolution of small moons like Aegaeon.

  8. SATURATED TORQUE FORMULA FOR PLANETARY MIGRATION IN VISCOUS DISKS WITH THERMAL DIFFUSION: RECIPE FOR PROTOPLANET POPULATION SYNTHESIS

    SciTech Connect

    Masset, F. S.; Casoli, J., E-mail: masset@fis.unam.m, E-mail: jules.casoli@cea.f, E-mail: masset@fis.unam.m

    2010-11-10

    We provide torque formulae for low-mass planets undergoing type I migration in gaseous disks. These torque formulae put special emphasis on the horseshoe drag, which is prone to saturation: the asymptotic value reached by the horseshoe drag depends on a balance between coorbital dynamics (which tends to cancel out or saturate the torque) and diffusive processes (which tend to restore the unperturbed disk profiles, thereby desaturating the torque). We entertain the question of this asymptotic value and derive torque formulae that give the total torque as a function of the disk's viscosity and thermal diffusivity. The horseshoe drag features twomore » components: one that scales with the vortensity gradient and another that scales with the entropy gradient and constitutes the most promising candidate for halting inward type I migration. Our analysis, which is complemented by numerical simulations, recovers characteristics already noted by numericists, namely, that the viscous timescale across the horseshoe region must be shorter than the libration time in order to avoid saturation and that, provided this condition is satisfied, the entropy-related part of the horseshoe drag remains large if the thermal timescale is shorter than the libration time. Side results include a study of the Lindblad torque as a function of thermal diffusivity and a contribution to the corotation torque arising from vortensity viscously created at the contact discontinuities that appear at the horseshoe separatrices. For the convenience of the reader mostly interested in the torque formulae, Section 8 is self-contained.« less

  9. Deformable micro torque swimmer

    NASA Astrophysics Data System (ADS)

    Ishikawa, Takuji; Tanaka, Tomoyuki; Omori, Toshihiro; Imai, Yohsuke

    2015-11-01

    We investigated the deformation of a ciliate swimming freely in a fluid otherwise at rest. The cell body was modeled as a capsule with a hyper elastic membrane enclosing Newtonian fluid. Thrust forces due to the ciliary beat were modeled as torques distributed above the cell body. Effects of the membrane elasticity, the aspect ratio of cell's reference shape and the density difference between the cell and the surrounding fluid were investigated. The results showed that the cell deformed like heart shape when Capillary number (Ca) was sufficiently large, and the swimming velocity decreased as Ca was increased. The gravity effect on the membrane tension suggested that the upwards and downwards swimming velocities of Paramecium might be reglated by the calcium ion channels distributed locally around the anterior end. Moreover, the gravity induced deformation made a cell directed vertically downwards, which resulted in a positive geotaxis like behavior with physical origin. These results are important to understand physiology of ciliate's biological responses to mechanical stimuli.

  10. Quick torque coupling

    DOEpatents

    Luft, Peter A [El Cerrito, CA

    2009-05-12

    A coupling for mechanically connecting modular tubular struts of a positioning apparatus or space frame, comprising a pair of toothed rings (10, 12) attached to separate strut members (16), the teeth (18, 20) of the primary rings (10, 12) mechanically interlocking in both an axial and circumferential manner, and a third part comprising a sliding, toothed collar (14) the teeth (22) of which interlock the teeth (18, 20) of the primary rings (10, 12), preventing them from disengaging, and completely locking the assembly together. A secondary mechanism provides a nesting force for the collar, and/or retains it. The coupling is self-contained and requires no external tools for installation, and can be assembled with gloved hands in demanding environments. No gauging or measured torque is required for assembly. The assembly can easily be visually inspected to determine a "go" or "no-go" status. The coupling is compact and relatively light-weight. Because of it's triply interlocking teeth, the connection is rigid. The connection does not primarily rely on clamps, springs or friction based fasteners, and is therefore reliable in fail-safe applications.

  11. Turbine Windage Torque Tests.

    DTIC Science & Technology

    1981-01-01

    chamber, with a 0-60,000 RPM, 300 HP dynamometer, was selected as the test facility. A rotary transformer ( brushless ) torque sensor, using air /oil... brushless ) of 100 and 500 in-lb torque ranges were selected from Lebow Associates, Inc. of Troy, Michigan. Special air / oil mist lubrication for the...period August 1979 - October 1980 I Approved for public release; distribution unlimited. _ DTIC AERO PROPULSION LABORATORY AIR FORCE WRIGHT AERONAUTICAL

  12. Fabricated torque shaft

    DOEpatents

    Mashey, Thomas Charles

    2002-01-01

    A fabricated torque shaft is provided that features a bolt-together design to allow vane schedule revisions with minimal hardware cost. The bolt-together design further facilitates on-site vane schedule revisions with parts that are comparatively small. The fabricated torque shaft also accommodates stage schedules that are different one from another in non-linear inter-relationships as well as non-linear schedules for a particular stage of vanes.

  13. Measurement of strain and tensile force of the supraspinatus tendon under conditions that simulates low angle isometric elevation of the gleno-humeral joint: Influence of adduction torque and joint positioning.

    PubMed

    Miyamoto, Hiroki; Aoki, Mitsuhiro; Hidaka, Egi; Fujimiya, Mineko; Uchiyama, Eiichi

    2017-12-01

    Recently, supraspinatus muscle exercise has been reported to treat rotator cuff disease and to recover shoulder function. However, there have been no report on the direct measurement of strain on the supraspinatus tendon during simulated isometric gleno-humeral joint elevation. Ten fresh-frozen shoulder specimens with the rotator cuff complex left intact were used as experimental models. Isometric gleno-humeral joint elevation in a sitting position was reproduced with low angle of step-by-step elevation in the scapular plane and strain was measured on the surface layer of the supraspinatus tendon. In isometric conditions, applied tensile force of the supraspinatus tendon increased significantly with increases in adduction torque on the gleno-humeral joint. Significant increases in the strain on the layer were observed by increase in adduction torque, which were recorded in isometric elevation at -10° and 0°, but little increase in the strain was observed at 10° or greater gleno-humeral elevation. Increased strain on the surface layer of the supraspinatus tendon was observed during isometric gleno-humeral elevation from -10 to 0°. These findings demonstrate a potential risk of inducing overstretching of the supraspinatus tendon during supraspinatus muscle exercise. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Displaceable Gear Torque Controlled Driver

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1997-01-01

    Methods and apparatus are provided for a torque driver including a displaceable gear to limit torque transfer to a fastener at a precisely controlled torque limit. A biasing assembly biases a first gear into engagement with a second gear for torque transfer between the first and second gear. The biasing assembly includes a pressurized cylinder controlled at a constant pressure that corresponds to a torque limit. A calibrated gage and valve is used to set the desired torque limit. One or more coiled output linkages connect the first gear with the fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. The torque limit is adjustable and may be different for fasteners within the same fastener configuration.

  15. Pulsations in the late-type Be star HD 50 209 detected by CoRoT

    NASA Astrophysics Data System (ADS)

    Diago, P. D.; Gutiérrez-Soto, J.; Auvergne, M.; Fabregat, J.; Hubert, A.-M.; Floquet, M.; Frémat, Y.; Garrido, R.; Andrade, L.; de Batz, B.; Emilio, M.; Espinosa Lara, F.; Huat, A.-L.; Janot-Pacheco, E.; Leroy, B.; Martayan, C.; Neiner, C.; Semaan, T.; Suso, J.; Catala, C.; Poretti, E.; Rainer, M.; Uytterhoeven, K.; Michel, E.; Samadi, R.

    2009-10-01

    Context: The presence of pulsations in late-type Be stars is still a matter of controversy. It constitutes an important issue to establish the relationship between non-radial pulsations and the mass-loss mechanism in Be stars. Aims: To contribute to this discussion, we analyse the photometric time series of the B8IVe star HD 50 209 observed by the CoRoT mission in the seismology field. Methods: We use standard Fourier techniques and linear and non-linear least squares fitting methods to analyse the CoRoT light curve. In addition, we applied detailed modelling of high-resolution spectra to obtain the fundamental physical parameters of the star. Results: We have found four frequencies which correspond to gravity modes with azimuthal order m=0,-1,-2,-3 with the same pulsational frequency in the co-rotating frame. We also found a rotational period with a frequency of 0.679 cd-1 (7.754 μHz). Conclusions: HD 50 209 is a pulsating Be star as expected from its position in the HR diagram, close to the SPB instability strip. Based on observations made with the CoRoT satellite, with FEROS at the 2.2 m telescope of the La Silla Observatory under the ESO Large Programme LP178.D-0361 and with Narval at the Télescope Bernard Lyot of the Pic du Midi Observatory. Current address: Valencian International University (VIU), José Pradas Gallen s/n, 12006 Castellón, Spain. Current address: Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot; CEA, IRFU, SAp, centre de Saclay, 91191 Gif-sur-Yvette, France.

  16. [Biomechanical testing of the new torque-segmented arch (TSA)].

    PubMed

    Wichelhaus, A; Sander, F G

    1995-07-01

    New torque-segmented arch wires are presented which consist of a superelastic anterior component with 30 degrees or 45 degrees torque and which are connected to 2 steel lateral components by means of a crimped connector. When using such torque-segmented arch wires, the crimped connector rests mesially to the canine bracket and the lateral components exhibit a torque of 0 degree. The use of the torque-segmented arch wires requires the practitioner to adjust the anterior tooth segment, to bend in first order bends in the steel lateral portion as well as to bend in a sweep to avoid an anterior tooth extrusion, and, if desired, to bend in third order bends to influence premolars and molars. In some cases the simultaneous application of palatal arches can become necessary, because each torque transfer results in a transversal enlargement in the molar area. Compared to conventional steel wires with dimensions of 0.016 x 0.022 in which an anterior tooth torque is bent, the torque segmented arch wires exhibit considerably fewer side effects, but there is a larger distally rotating moment for the molars. 1. When applying torque-segmented arch wires, the extrusive force transferred to the anterior teeth is considerably smaller. 2. The protrusive force acting on the anterior teeth is also considerably smaller, which results in a reduced demand being placed on the anchorage of the molars. 3. The torque transfer to the incisors rests in a quite moderate range, even in the case of a 50 degrees torque. For this reason, the practitioner can expect diminished or no resorptions at all compared to the aforementioned steel wires. 4. The Martensite plateau of the torque-segmented arch wires exhibit constant moments in large areas so that such arch wires can be used in almost every anterior tooth position. 5. The segmented wires presented here can be applied not only in the case of the standard edgewise technique but also in each case of the straight-wire technique. 6. These new arch

  17. Heat engine and electric motor torque distribution strategy for a hybrid electric vehicle

    DOEpatents

    Boberg, Evan S.; Gebby, Brian P.

    1999-09-28

    A method is provided for controlling a power train system for a hybrid electric vehicle. The method includes a torque distribution strategy for controlling the engine and the electric motor. The engine and motor commands are determined based upon the accelerator position, the battery state of charge and the amount of engine and motor torque available. The amount of torque requested for the engine is restricted by a limited rate of rise in order to reduce the emissions from the engine. The limited engine torque is supplemented by motor torque in order to meet a torque request determined based upon the accelerator position.

  18. The formation of fragments at corotation in isothermal protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Durisen, Richard H.; Hartquist, Thomas W.; Pickett, Megan K.

    2008-09-01

    Numerical hydrodynamics simulations have established that disks which are evolved under the condition of local isothermality will fragment into small dense clumps due to gravitational instabilities when the Toomre stability parameter Q is sufficiently low. Because fragmentation through disk instability has been suggested as a gas giant planet formation mechanism, it is important to understand the physics underlying this process as thoroughly as possible. In this paper, we offer analytic arguments for why, at low Q, fragments are most likely to form first at the corotation radii of growing spiral modes, and we support these arguments with results from 3D hydrodynamics simulations.

  19. Bevel Gear Driver and Method Having Torque Limit Selection

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1997-01-01

    Methods and apparatus are provided for a torque driver including an axially displaceable gear with a biasing assembly to bias the displaceable gear into an engagement position. A rotatable cap is provided with a micrometer dial to select a desired output torque. An intermediate bevel gear assembly is disposed between an input gear and an output gear. A gear tooth profile provides a separation force that overcomes the bias to limit torque at a desired torque limit. The torque limit is adjustable and may be adjusted manually or automatically depending on the type of biasing assembly provided. A clutch assembly automatically limits axial force applied to a fastener by the operator to avoid alteration of the desired torque limit.

  20. Adaptive torque estimation of robot joint with harmonic drive transmission

    NASA Astrophysics Data System (ADS)

    Shi, Zhiguo; Li, Yuankai; Liu, Guangjun

    2017-11-01

    Robot joint torque estimation using input and output position measurements is a promising technique, but the result may be affected by the load variation of the joint. In this paper, a torque estimation method with adaptive robustness and optimality adjustment according to load variation is proposed for robot joint with harmonic drive transmission. Based on a harmonic drive model and a redundant adaptive robust Kalman filter (RARKF), the proposed approach can adapt torque estimation filtering optimality and robustness to the load variation by self-tuning the filtering gain and self-switching the filtering mode between optimal and robust. The redundant factor of RARKF is designed as a function of the motor current for tolerating the modeling error and load-dependent filtering mode switching. The proposed joint torque estimation method has been experimentally studied in comparison with a commercial torque sensor and two representative filtering methods. The results have demonstrated the effectiveness of the proposed torque estimation technique.

  1. Torque equilibrium attitudes for the Space Station

    NASA Technical Reports Server (NTRS)

    Thompson, Roger C.

    1993-01-01

    All spacecraft orbiting in a low earth orbit (LEO) experience external torques due to environmental effects. Examples of these torques include those induced by aerodynamic, gravity-gradient, and solar forces. It is the gravity-gradient and aerodynamic torques that produce the greatest disturbances to the attitude of a spacecraft in LEO, and large asymmetric spacecraft, such as the space station, are affected to a greater degree because the magnitude of the torques will, in general, be larger in proportion to the moments of inertia. If left unchecked, these torques would cause the attitude of the space station to oscillate in a complex manner and the resulting motion would destroy the micro-gravity environment as well as prohibit the orbiter from docking. The application of control torques will maintain the proper attitude, but the controllers have limited momentum capacity. When any controller reaches its limit, propellant must then be used while the device is reset to a zero or negatively-biased momentum state. Consequently, the rate at which momentum is accumulated is a significant factor in the amount of propellant used and the frequency of resupply necessary to operate the station. A torque profile in which the area curve for a positive torque is not equal to the area under the curve for a negative torque is 'biased,' and the consequent momentum build-up about that axis is defined as secular momentum because it continues to grow with time. Conversely, when the areas are equal, the momentum is cyclic and bounded. A Torque Equilibrium Attitude (TEA) is thus defined as an attitude at which the external torques 'balance' each other as much as possible, and which will result in lower momentum growth in the controllers. Ideally, the positive and negative external moments experienced by a spacecraft at the TEA would exactly cancel each other out and small cyclic control torques would be required only for precise attitude control. Over time, the only momentum build

  2. Torque shudder protection device and method

    DOEpatents

    King, Robert D.; De Doncker, Rik W. A. A.; Szczesny, Paul M.

    1997-01-01

    A torque shudder protection device for an induction machine includes a flux command generator for supplying a steady state flux command and a torque shudder detector for supplying a status including a negative status to indicate a lack of torque shudder and a positive status to indicate a presence of torque shudder. A flux adapter uses the steady state flux command and the status to supply a present flux command identical to the steady state flux command for a negative status and different from the steady state flux command for a positive status. A limiter can receive the present flux command, prevent the present flux command from exceeding a predetermined maximum flux command magnitude, and supply the present flux command to a field oriented controller. After determining a critical electrical excitation frequency at which a torque shudder occurs for the induction machine, a flux adjuster can monitor the electrical excitation frequency of the induction machine and adjust a flux command to prevent the monitored electrical excitation frequency from reaching the critical electrical excitation frequency.

  3. Torque shudder protection device and method

    DOEpatents

    King, R.D.; Doncker, R.W.A.A. De.; Szczesny, P.M.

    1997-03-11

    A torque shudder protection device for an induction machine includes a flux command generator for supplying a steady state flux command and a torque shudder detector for supplying a status including a negative status to indicate a lack of torque shudder and a positive status to indicate a presence of torque shudder. A flux adapter uses the steady state flux command and the status to supply a present flux command identical to the steady state flux command for a negative status and different from the steady state flux command for a positive status. A limiter can receive the present flux command, prevent the present flux command from exceeding a predetermined maximum flux command magnitude, and supply the present flux command to a field oriented controller. After determining a critical electrical excitation frequency at which a torque shudder occurs for the induction machine, a flux adjuster can monitor the electrical excitation frequency of the induction machine and adjust a flux command to prevent the monitored electrical excitation frequency from reaching the critical electrical excitation frequency. 5 figs.

  4. Flow visualization in radial flow through stationary and corotating parallel disks

    NASA Astrophysics Data System (ADS)

    Mochizuki, S.; Tanaka, M.; Yang, Wen-Jei

    Paraffin mist is used here as a tracer to observe the patterns in the radial flow through both stationary and corotating parallel disks. The periodic and alternative generation of separation bubbles on both disks and the resulting flow fluctuation and turbulent flow in the radial channel are studied. Stall cells are visualized around the outer rim of the corotating disks.

  5. Departure from corotation of the Io plasma torus - Local plasma production

    NASA Technical Reports Server (NTRS)

    Pontius, D. H., Jr.; Hill, T. W.

    1982-01-01

    The departure of the Jovian magnetosphere from rigid corotation is adequately explained by outward plasma transport at distances where L is greater than approximately 10. The departure of 5% observed in the Io plasma torus, however, is too large to be accounted for simply by plasma transport. Local plasma production is proposed as the main factor determining the corotation lag in the torus. The outward pick-up current provided by ionization of neutral atoms is calculated and related to the current produced in the ionosphere by the corotation lag. This leads to an expression giving the corotation lag of the torus as a function of radial distance. Charge transfer is found to be an important process, allowing the majority of the torus mass to be ejected from the magnetosphere in a neutral state. Thus, the mass loading rate is found to be several times that inferred from examination of the corotation lag associated with outward plasma transport.

  6. Torque, Cognitive Ability, and Schooling.

    ERIC Educational Resources Information Center

    Csapo, Marg

    1985-01-01

    West African Hausan Children (N=110) aged 5-6 were administered a torque test and relationshps between the torque task and visual spatial tasks were analyzed. Findings supported the assumption that educational experience related to circling accounts for decrease in torque, or that the educational experiences have potential influence on cortical…

  7. Noncontact Measurements Of Torques In Shafts

    NASA Technical Reports Server (NTRS)

    Schwartzbart, Aaron

    1991-01-01

    Additional information extracted from eddy-current proximeter. Positioned over rotating shaft, measures both displacement of and torsion in shaft. Torque applied to shaft calculable from output of proximeter. Possible to extract torsion information from existing tape-recorded proximeter data.

  8. Comparison of different passive knee extension torque-angle assessments.

    PubMed

    Freitas, Sandro R; Vaz, João R; Bruno, Paula M; Valamatos, Maria J; Mil-Homens, Pedro

    2013-11-01

    Previous studies have used isokinetic dynamometry to assess joint torques and angles during passive extension of the knee, often without reporting upon methodological errors and reliability outcomes. In addition, the reliability of the techniques used to measure passive knee extension torque-angle and the extent to which reliability may be affected by the position of the subjects is also unclear. Therefore, we conducted an analysis of the intra- and inter-session reliability of two methods of assessing passive knee extension: (A) a 2D kinematic analysis coupled to a custom-made device that enabled the direct measurement of resistance to stretch and (B) an isokinetic dynamometer used in two testing positions (with the non-tested thigh either flexed at 45° or in the neutral position). The intra-class correlation coefficients (ICCs) of torque, the slope of the torque-angle curve, and the parameters of the mathematical model that were fit to the torque-angle data for the above conditions were measured in sixteen healthy male subjects (age: 21.4 ± 2.1 yr; BMI: 22.6 ± 3.3 kg m(-2); tibial length: 37.4 ± 3.4 cm). The results found were: (1) methods A and B led to distinctly different torque-angle responses; (2) passive torque-angle relationship and stretch tolerance were influenced by the position of the non-tested thigh; and (3) ICCs obtained for torque were higher than for the slope and for the mathematical parameters that were fit to the torque-angle curve. In conclusion, the measurement method that is used and the positioning of subjects can influence the passive knee extension torque-angle outcome.

  9. The Mysterious Southern Torque

    NASA Astrophysics Data System (ADS)

    McDowell, M. S.

    2004-05-01

    Something weird happened to twist the southern hemisphere out of alignment with the northern, as evidenced by the positions of the mountain ranges of North and South America, the Atlantic MAR, and the closure of West Africa to North America - all smooth were the torque reversed. What happened, and when, and why? We identify a number of global "cracks" of almost exactly the same length and direction, with some, even more peculiarly, turning the same angle, and proceeding an equal distance in the new direction. The Emperor-Hawaiian chain, the Louisville chain and the west coast of North America, as examples, are essentially parallel. Their northerly legs follow the angle of the axis of orbital ellipse. But then they all make equal 45 degree easterly bends, to 17.5 NW, and continue on, still parallel, for very similar distances. It is the same at the north coast of South America, and the mid-section of the MAR from 46W to 12W. It is the distance from the Cameroons to Kenya, from the south end of the Red Sea to the SE Indian Ridge at the Nema Fracture zone, from west to east of the Nazca plate.What is all this? Coincidence? Seeing things? Researchers have attributed plate motion or hot spot motion or both or absolutely none, to all of the above. Geophysicists have dated the surfaces from Archean to Pleistocene by all possible scientific means, certainly no possible correlation can be made. Yet we postulate the physical reality can be demonstrated. It is so global a phenomenon that it is well beyond what a hot spot or a plate could do. Even a really tremendous impact would have trouble making such precise geometric arrangements. So what is it - perhaps the angle of rotation, or the inertia of northern hemisphere mass above the geoid? And if so, then, what changed it? It would seem that some huge imbalance occurred. Suppose the whole bottom blew out of the southern hemisphere, and the center of mass drastically altered. Suppose some unknown universal force changed our

  10. F Ring Core Stability: Corotation Resonance Plus Antiresonance

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; Marouf, Essam; French, Richard; Jacobson, Robert

    2014-01-01

    The decades-or-longer stability of the narrow F Ring core in a sea of orbital chaos appears to be due to an unusual combination of traditional corotation resonance and a novel kind of "antiresonance". At a series of specific locations in the F Ring region, apse precession between synodic encounters with Prometheus allows semimajor axis perturbations to promptly cancel before significant orbital period changes can occur. This cancellation fails for particles that encounter Prometheus when it is near its apoapse, especially during periods of antialignment of its apse with that of the F Ring. At these times, the strength of the semimajor axis perturbation is large (tens of km) and highly nonsinusoidal in encounter longitude, making it impossible to cancel promptly on a subsequent encounter and leading to chaotic orbital diffusion. Only particles that consistently encounter Prometheus away from its apoapse can use antiresonance to maintain stable orbits, implying that the true mean motion nF of the stable core must be defined by a corotational resonance of the form nF = nP(-kappa)P/m, where (nP, kappaP) are Prometheus' mean motion and epicycle frequency. To test this hypothesis we used the fact that Cassini RSS occultations only sporadically detect a "massive" F Ring core, composed of several-cm-and-larger particles. We regressed the inertial longitudes of 24 Cassini RSS (and VGR) detections and 43 nondetections to a common epoch, using a comb of candidate nP, and then folded them modulo the anticipated m-number of the corotational resonance (Prometheus m = 110 outer CER), to see if clustering appears. We find the "true F Ring core" is actually arranged in a series of short longitudinal arcs separated by nearly empty longitudes, orbiting at a well determined semimajor axis of 140222.4 km (from 2005-2012 at least). Small particles seen by imaging and stellar occultations spread quickly in azimuth and obscure this clumpy structure. Small chaotic variations in the mean

  11. F Ring Core Stability: Corotation Resonance Plus Antiresonance

    NASA Astrophysics Data System (ADS)

    Cuzzi, Jeffrey N.; Marouf, Essam; French, Richard; Jacobson, Robert

    2014-11-01

    The decades-or-longer stability of the narrow F Ring core in a sea of orbital chaos appears to be due to an unusual combination of traditional corotation resonance and a novel kind of “antiresonance”. At a series of specific locations in the F Ring region, apse precession between synodic encounters with Prometheus allows semimajor axis perturbations to promptly cancel before significant orbital period changes can occur (Cuzzi et al. 2014, Icarus 232, 157-175). This cancellation fails for particles that encounter Prometheus when it is near its apoapse, especially during periods of antialignment of its apse with that of the F Ring. At these times, the strength of the semimajor axis perturbation is large (tens of km) and highly nonsinusoidal in encounter longitude, making it impossible to cancel promptly on a subsequent encounter and leading to chaotic orbital diffusion. Only particles that consistently encounter Prometheus away from its apoapse can use antiresonance to maintain stable orbits, implying that the true mean motion nF of the stable core must be defined by a corotational resonance of the form nF = nP-κP/m, where (nP, κP) are Prometheus’ mean motion and epicycle frequency. To test this hypothesis we used the fact that Cassini RSS occultations only sporadically detect a “massive” F Ring core, composed of several-cm-and-larger particles. We regressed the inertial longitudes of 24 Cassini RSS (and VGR) detections and 43 nondetections to a common epoch, using a comb of candidate nP, and then folded them modulo the anticipated m-number of the corotational resonance (Prometheus m=110 outer CER), to see if clustering appears. We find the “true F Ring core” is actually arranged in a series of short longitudinal arcs separated by nearly empty longitudes, orbiting at a well determined semimajor axis of 140222.4km (from 2005-2012 at least). Small particles seen by imaging and stellar occultations spread quickly in azimuth and obscure this clumpy

  12. Hex ball torque test

    NASA Technical Reports Server (NTRS)

    Robinson, B. A.; Foster, C. L.

    1986-01-01

    A series of torque tests were performed on four flight-type hex ball universal joints in order to characterize and determine the actual load-carrying capability of this device. The universal joint is a part of manual actuation rods for scientific instruments within the Hubble Space Telescope. It was found that the hex ball will bind slightly during the initial load application. This binding did not affect the function of the universal joint, and the units would wear-in after a few additional loading cycles. The torsional yield load was approximately 50 ft-lb, and was consistent among the four test specimens. Also, the torque required to cause complete failure exceeded 80 ft-lb. It is concluded that the hex ball universal joint is suitable for its intended applications.

  13. GAUDI: A Preparatory Archive for the COROT Mission

    NASA Astrophysics Data System (ADS)

    Solano, E.; Catala, C.; Garrido, R.; Poretti, E.; Janot-Pacheco, E.; Gutiérrez, R.; González, R.; Mantegazza, L.; Neiner, C.; Fremat, Y.; Charpinet, S.; Weiss, W.; Amado, P. J.; Rainer, M.; Tsymbal, V.; Lyashko, D.; Ballereau, D.; Bouret, J. C.; Hua, T.; Katz, D.; Lignières, F.; Lüftinger, T.; Mittermayer, P.; Nesvacil, N.; Soubiran, C.; van't Veer-Menneret, C.; Goupil, M. J.; Costa, V.; Rolland, A.; Antonello, E.; Bossi, M.; Buzzoni, A.; Rodrigo, C.; Aerts, C.; Butler, C. J.; Guenther, E.; Hatzes, A.

    2005-01-01

    The GAUDI database (Ground-based Asteroseismology Uniform Database Interface) is a preparatory archive for the COROT (Convection, Rotation, and Planetary Transits) mission developed at the Laboratorio de Astrofísica Espacial y Física Fundamental (Laboratory for Space Astrophysics and Theoretical Physics, Spain). Its intention is to make the ground-based observations obtained in preparation of the asteroseismology program available in a simple and efficient way. It contains spectroscopic and photometric data together with inferred physical parameters for more than 1500 objects gathered since 1998 January 1998 in 6 years of observational campaigns. In this paper, the main functions and characteristics of the system are described. Based on observations collected at La Silla (ESO proposals 67.D-0169, 69.D-0166, and 70.D-0110), Telescopio Nazionale Galileo (proposal 6-20-068), Observatoire de Haute-Provence, the South African Astronomical Observatory, Tautenburg Observatory, and Sierra Nevada Observatory.

  14. Accuracy of dental torque wrenches.

    PubMed

    Wood, James S; Marlow, Nicole M; Cayouette, Monica J

    2015-01-01

    The aim of this in vitro study was to compare the actual torque of 2 manual wrench systems to their stated (target) torque. New spring- (Nobel Biocare USA, LLC) and friction-style (Zimmer Dental, Inc.) manual dental torque wrenches, as well as spring torque wrenches that had undergone sterilization and clinical use, were tested. A calibrated torque gauge was used to compare actual torque to target torque values of 15 and 35 N/cm. Data were statistically analyzed via mixed-effects regression model with Bonferroni correction. At a target torque of 15 N/cm, the mean torque of new spring wrenches (13.97 N/cm; SE, 0.07 N/cm) was significantly different from that of used spring wrenches (14.94 N/cm; SE, 0.06 N/cm; P < 0.0001). However, the mean torques of new spring and new friction wrenches (14.10 N/cm; SE, 0.07 N/cm; P = 0.21) were not significantly different. For torque measurements calibrated at 35 N/cm, the mean torque of new spring wrenches (35.29 N/cm; SE, 0.10 N/cm) was significantly different (P < 0.0001) from the means of new friction wrenches (36.20 N/cm; SE, 0.08 N/cm) and used spring wrenches (36.45 N/cm; SE, 0.08 N/cm). Discrepancies in torque could impact the clinical success of screw-retained dental implants. It is recommended that torque wrenches be checked regularly to ensure that they are performing to target values.

  15. Astrossismologia e o satélite COROT

    NASA Astrophysics Data System (ADS)

    Andrade, L. B. P.; Janot Pacheco, E.

    2003-08-01

    Este trabalho centra-se em atividades na fase de pré-lançamento do satélite COROT, da agência espacial francesa (CNES), a ser lançado em 2005. O satélite será dedicado à sismologia estelar e à procura de exoplanetas. Nosso programa de trabalho centra-se em dois pontos principais: (1) efetuar uma procura detalhada nos campos COROT de alvos astrofísicos de especial interesse; (2) participar das análises espectroscópicas prévias de alvos selecionados para determinação de parâmetros físicos das estrelas com a maior precisão possível. Na presente etapa, priorizou-se o primeiro ponto do projeto. Foi feito um levantamento geral dos objetos astrofísicos encontrados nos dois campos de observação, centrados em 06H50M e 18H50M, com raios de 10 minutos. Concluiu-se que as estrelas B-Be deverão ser observadas no campo sismológico, enquanto que as anãs brancas deverão sê-lo no campo exoplanetário. Objetos a serem observados foram escolhidos de forma a estarem próximos de alvos principais dos programas centrais do satélite. Paralelamente, estudos e pesquisas bibliográficas foram feitos para compreender os assuntos de interesse principal, ou seja, as pulsações não-radiais de estrelas Ob-Be

  16. Special-Purpose High-Torque Permanent-Magnet Motors

    NASA Technical Reports Server (NTRS)

    Doane, George B., III

    1995-01-01

    Permanent-magnet brushless motors that must provide high commanded torques and satisfy unusual heat-removal requirement are developed. Intended for use as thrust-vector-control actuators in large rocket engines. Techniques and concepts used to design improved motors for special terrestrial applications. Conceptual motor design calls for use of rotor containing latest high-energy-product rare-earth permanent magnets so that motor produces required torque while drawing smallest possible currents from power supply. Torque generated by electromagnetic interaction between stator and permanent magnets in rotor when associated electronic circuits applied appropriately temporally and spatially phased currents to stator windings. Phase relationships needed to produce commanded torque computed in response to torque command and to electronically sensed angular position of rotor relative to stator.

  17. Cerebellar ataxia: abnormal control of interaction torques across multiple joints.

    PubMed

    Bastian, A J; Martin, T A; Keating, J G; Thach, W T

    1996-07-01

    1. We studied seven subjects with cerebellar lesions and seven control subjects as they made reaching movements in the sagittal plane to a target directly in front of them. Reaches were made under three different conditions: 1) "slow-accurate," 2) "fast-accurate," and 3) "fast as possible." All subjects were videotaped moving in a sagittal plane with markers on the index finger, wrist, elbow, and shoulder. Marker positions were digitized and then used to calculate joint angles. For each of the shoulder, elbow and wrist joints, inverse dynamics equations based on a three-segment limb model were used to estimate the net torque (sum of components) and each of the component torques. The component torques consisted of the torque due to gravity, the dynamic interaction torques induced passively by the movement of the adjacent joint, and the torque produced by the muscles and passive tissue elements (sometimes called "residual" torque). 2. A kinematic analysis of the movement trajectory and the change in joint angles showed that the reaches of subjects with cerebellar lesions were abnormal compared with reaches of control subjects. In both the slow-accurate and fast-accurate conditions the cerebellar subjects made abnormally curved wrist paths; the curvature was greater in the slow-accurate condition. During the slow-accurate condition, cerebellar subjects showed target undershoot and tended to move one joint at a time (decomposition). During the fast-accurate reaches, the cerebellar subjects showed target overshoot. Additionally, in the fast-accurate condition, cerebellar subjects moved the joints at abnormal rates relative to one another, but the movements were less decomposed. Only three subjects were tested in the fast as possible condition; this condition was analyzed only to determine maximal reaching speeds of subjects with cerebellar lesions. Cerebellar subjects moved more slowly than controls in all three conditions. 3. A kinetic analysis of torques generated at

  18. Displacement of Implant Abutments Following Initial and Repeated Torqueing.

    PubMed

    Yilmaz, Burak; Gilbert, Andy B; Seidt, Jeremy D; McGlumphy, Edwin A; Clelland, Nancy L

    2015-01-01

    To measure and compare the three-dimensional (3D) position of nine different abutments manufactured by different manufacturers after repeated torqueing on an internal-hexagon implant. Nine tapered implants were placed into an acrylic resin block. Five specimens each of nine different abutments (n = 45) were placed into one of nine implants. The abutments were handtightened and then torqued to the manufacturer-recommended torque of 30 Ncm. After 10 minutes, 30 Ncm of torque was reapplied. Another 10 minutes elapsed before testing was completed. Images were recorded in 12-second intervals. The spatial relationship of the abutments to the resin block was determined using 3D digital image correlation. Commercial image correlation software was used to analyze the displacements. Mean displacements for the abutments were calculated in three dimensions and overall for both torque applications. Statistical comparisons were done with a t test and a step-down Bonferroni correction. The overall 3D displacement of the Atlantis Titanium abutment after the second applied torque was significantly greater than that of two of the eight other abutments. Displacement in all three dimensions for the Atlantis Titanium abutment changed direction between the first and second torque applications. All abutments moved further in the same direction except for the Atlantis Titanium abutment, which moved back toward its original hand-tightened position horizontally after the second torque application. Re-torqueing of abutments after a 10-minute interval leads to minor displacement of varying degrees between the abutment and a tapered implant. A potential effect of embedment relaxation and/or manufacturing errors should be taken into consideration when selecting an abutment for a cement-retained crown on a tapered implant. Accordingly, clinicians may benefit from adjusting cement-retained implant crowns after re-torqueing the abutments to prevent potential occlusal and interproximal contact

  19. Excitation of Non-Axisymmetric g-MOde Oscillations by Corotation Resonance in Thin Relativistic Disks

    NASA Astrophysics Data System (ADS)

    Kato, Shoji

    2002-02-01

    Various modes of oscillations are trapped in the inner region of geometrically thin relativistic disks. Among these oscillations, non-axisymmetric g-mode oscillations have been less studied compared with other modes of oscillations. The modes are, however, interesting since a corotation resonance appears in the trapped region. We mathematically examine whether the modes can be excited by the effects of the corotation resonance. This examination is made under an assumption that the inner and outer Lindblad radii are sufficiently separated in the opposite directions from the corotation radius. The results of analyses suggest that the waves are excited by the corotation resonance. The presence of the excitation suggests that the non-axisymmetric trapped g-mode oscillations are one of possible candidates for the quasi-periodic oscillations of a few hundred to kHz observed in some X-ray sources.

  20. Twin-enhanced magnetic torque

    NASA Astrophysics Data System (ADS)

    Hobza, Anthony; García-Cervera, Carlos J.; Müllner, Peter

    2018-07-01

    Magnetic shape memory alloys experience magnetic-field-induced torque due to magnetocrystalline anisotropy and shape anisotropy. In a homogeneous magnetic field, torque results in bending of long samples. This study investigates the torque on a single crystal of Ni-Mn-Ga magnetic shape memory alloy constrained with respect to bending in an external magnetic field. The dependence of the torque on external magnetic field magnitude, strain, and twin boundary structure was studied experimentally and with computer simulations. With increasing magnetic field, the torque increased until it reached a maximum near 700 mT. Above 200 mT, the torque was not symmetric about the equilibrium orientation for a sample with one twin boundary. The torque on two specimen with equal strain but different twin boundary structures varied systematically with the spatial arrangement of crystallographic twins. Numerical simulations show that twin boundaries suppress the formation of 180° domains if the direction of easy magnetization between two twin boundaries is parallel to a free surface and the magnetic field is perpendicular to that surface. For a particular twin microstructure, the torque decreases with increasing strain by a factor of six due to the mutual compensation of magnetocrystalline and shape anisotropy. When free rotation is suppressed such as in transducers of magneto-mechanical actuators, magnetic-field-induced torque creates strong bending forces, which may cause friction and failure under cyclic loading.

  1. Manual Torque Data Study

    SciTech Connect

    Mundt, Mark Osroe; Martinez, Matthew Ronald; Varela, Jeanette Judith

    At the Pantex Plant in Amarillo, TX, Production Technicians (PTs) build and disassemble nuclear weapon systems. The weapons are held in an integrated work stand for stability and to increase the safety environment for the workers and for the materials being processed. There are many occasions in which a knob must be turned to tighten an assembly part. This can help to secure or manipulate pieces of the system. As there are so many knobs to turn, the instructions given to the PTs are to twist the knob to a hand-tight setting, without the aid of a torque wrench. Theremore » are inherent risks in this procedure as the knobs can be tightened too loosely such that the apparatus falls apart or too tightly such that the force can crush or pinch components in the system that contain energetic materials. We want to study these operations at Pantex. Our goal is to collect torque data to assess the safety and reliability of humantooling interfaces.« less

  2. CoRoT-7b: SUPER-EARTH OR SUPER-Io?

    SciTech Connect

    Barnes, Rory; Kaib, Nathan A.; Raymond, Sean N.

    2010-02-01

    CoRoT-7b, a planet about 70% larger than the Earth orbiting a Sun-like star, is the first-discovered rocky exoplanet, and hence has been dubbed a 'super-Earth'. Some initial studies suggested that since the planet is so close to its host star, it receives enough insolation to partially melt its surface. However, these past studies failed to take into consideration the role that tides may play in this system. Even if the planet's eccentricity has always been zero, we show that tidal decay of the semimajor axis could have been large enough that the planet formed on a wider orbit which receivedmore » less insolation. Moreover, CoRoT-7b could be tidally heated at a rate that dominates its geophysics and drives extreme volcanism. In this case, CoRoT-7b is a 'super-Io' that, like Jupiter's volcanic moon, is dominated by volcanism and rapid resurfacing. Such heating could occur with an eccentricity of just 10{sup -5}. This small value could be driven by CoRoT-7c if its own eccentricity is larger than {approx}10{sup -4}. CoRoT-7b may be the first of a class of planetary super-Ios likely to be revealed by the CoRoT and Kepler spacecraft.« less

  3. Corotation lag limit on mass-loss rate from Io

    NASA Astrophysics Data System (ADS)

    Huang, T. S.; Siscoe, G. L.

    1987-08-01

    Considering rapid escape of H2O from Io during an early hot evolutionary epoch, an H2O plasma torus is constructed by balancing dissociation and ionization products against centrifugally driven diffusion, including for the first time the effects of corotation lag resulting from mass loading. Two fundamental limits are found as the mass injection rate increases: (1) an 'ignition' limit of 1.1 x 10 to the 6th kg/s, beyond which the torus cannot ionize itself and photoionization dominates; and (2) the ultimate mass loading limit of 1.3 x 10 to the 7th kg/s, which occurs when neutrals newly created by charge exchange and recombination cannot leave the torus, thereby bringing magnetospherically driven transport to a halt. Connecting this limit with the variations of Io's temperature in its early evolution epoch gives an estimate of the upper limit on the total mass loss from Io, about 3.0 x 10 to the 20th kg (for high-opacity nebula) and about 8.9 x 10 to the 20th kg (for low-opacity nebula). These limits correspond to eroding 8 km and 22 km of H2O from the surface. It is concluded that compared to the other Galilean satellites, Io was created basically dry.

  4. Migration of accreting planets in radiative discs from dynamical torques

    NASA Astrophysics Data System (ADS)

    Pierens, A.; Raymond, S. N.

    2016-11-01

    We present the results of hydrodynamical simulations of the orbital evolution of planets undergoing runaway gas accretion in radiative discs. We consider accreting disc models with constant mass flux through the disc, and where radiative cooling balances the effect of viscous heating and stellar irradiation. We assume that 20-30 M⊕ giant planet cores are formed in the region where viscous heating dominates and migrate outward under the action of a strong entropy-related corotation torque. In the case where gas accretion is neglected and for an α viscous stress parameter α = 2 × 10-3, we find evidence for strong dynamical torques in accreting discs with accretion rates {dot{M}}≳ 7× 10^{-8} M_{⊙} yr{}^{-1}. Their main effect is to increase outward migration rates by a factor of ˜2 typically. In the presence of gas accretion, however, runaway outward migration is observed with the planet passing through the zero-torque radius and the transition between the viscous heating and stellar heating dominated regimes. The ability for an accreting planet to enter a fast migration regime is found to depend strongly on the planet growth rate, but can occur for values of the mass flux through the disc of {dot{M}}≳ 5× 10^{-8} M_{⊙} yr{}^{-1}. We find that an episode of runaway outward migration can cause an accreting planet formed in the 5-10 au region to temporarily orbit at star-planet separations as large as ˜60-70 au. However, increase in the amplitude of the Lindblad torque associated with planet growth plus change in the streamline topology near the planet systematically cause the direction of migration to be reversed. Subsequent evolution corresponds to the planet migrating inward rapidly until it becomes massive enough to open a gap in the disc and migrate in the type II regime. Our results indicate that a planet can reach large orbital distances under the combined effect of dynamical torques and gas accretion, but an alternative mechanism is required to

  5. Quantifying the Precision of Single-Molecule Torque and Twist Measurements Using Allan Variance.

    PubMed

    van Oene, Maarten M; Ha, Seungkyu; Jager, Tessa; Lee, Mina; Pedaci, Francesco; Lipfert, Jan; Dekker, Nynke H

    2018-04-24

    Single-molecule manipulation techniques have provided unprecedented insights into the structure, function, interactions, and mechanical properties of biological macromolecules. Recently, the single-molecule toolbox has been expanded by techniques that enable measurements of rotation and torque, such as the optical torque wrench (OTW) and several different implementations of magnetic (torque) tweezers. Although systematic analyses of the position and force precision of single-molecule techniques have attracted considerable attention, their angle and torque precision have been treated in much less detail. Here, we propose Allan deviation as a tool to systematically quantitate angle and torque precision in single-molecule measurements. We apply the Allan variance method to experimental data from our implementations of (electro)magnetic torque tweezers and an OTW and find that both approaches can achieve a torque precision better than 1 pN · nm. The OTW, capable of measuring torque on (sub)millisecond timescales, provides the best torque precision for measurement times ≲10 s, after which drift becomes a limiting factor. For longer measurement times, magnetic torque tweezers with their superior stability provide the best torque precision. Use of the Allan deviation enables critical assessments of the torque precision as a function of measurement time across different measurement modalities and provides a tool to optimize measurement protocols for a given instrument and application. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Torque control for electric motors

    NASA Technical Reports Server (NTRS)

    Bernard, C. A.

    1980-01-01

    Method for adjusting electric-motor torque output to accomodate various loads utilizes phase-lock loop to control relay connected to starting circuit. As load is imposed, motor slows down, and phase lock is lost. Phase-lock signal triggers relay to power starting coil and generate additional torque. Once phase lock is recoverd, relay restores starting circuit to its normal operating mode.

  7. YSOVAR II: Mapping YSO Inner Disk Structure in NGC 2264 with Simultaneous Spitzer and CoRoT Time Series Photometry

    NASA Astrophysics Data System (ADS)

    Stauffer, John; Morales-Calderon, Maria; Rebull, Luisa; Affer, Laura; Alencar, Sylvia; Allen, Lori; Barrado, David; Bouvier, Jerome; Calvet, Nuria; Carey, Sean; Carpenter, John; Ciardi, David; Covey, Kevin; D'Alessio, Paola; Espaillat, Catherine; Favata, Fabio; Flaccomio, Ettore; Forbrich, Jan; Furesz, Gabor; Hartman, Lee; Herbst, William; Hillenbrand, Lynne; Holtzman, Jon; Hora, Joe; Marchis, Franck; McCaughrean, Mark; Micela, Giusi; Mundt, Reinhard; Plavchan, Peter; Turner, Neal; Skrutzkie, Mike; Smith, Howard; Song, Inseok; Szentgyorgi, Andy; Terebey, Susan; Vrba, Fred; Wasserman, Lawrence; Watson, Alan; Whitney, Barbara; Winston, Elaine; Wood, Kenny

    2011-05-01

    We propose a simultaneous, continuous 30 day observation of the star forming region NGC2264 with Spitzer and CoRoT. NGC2264 is the only nearby, rich star-forming region which can be observed with CoRoT; it is by definition then the only nearby, rich star-forming region where a simultaneous Spitzer/CoRoT campaign is possible. Fortunately, the visibility windows for the two spacecraft overlap, allowing this program to be done in the Nov. 25, 2011 to Jan. 4, 2012 time period. For 10 days, we propose to map the majority of the cluster (a 35'x35' region) to a depth of 48 seconds per point, with each epoch taking 1.7 hours, allowing of order 12 epochs per day. For the other 20 days, we propose to obtaining staring-mode data for two positions in the cluster having a high density of cluster members. We also plan to propose for a variety of other ground and space-based data, most of which would also be simultaneous with the Spitzer and CoRoT observing. These data will allow us to address many astrophysical questions related to the structure and evolution of the disks of young stars and the interaction of those disks with the forming star. The data may also help inform models of planet formation since planets form and migrate through the pre-main sequence disks during the 0.5-5 Myr age range of stars in NGC2264. The data we collect will also provide an archive of the variability properties of young stars that is unmatched in its accuracy, sensitivity, cadence and duration and which therefore could inspire investigation of phenomena which we cannot now imagine. The CoRoT observations have been approved, contingent on approval of a simultaneous Spitzer observing program (this proposal).

  8. On the Dramatic Spin-up/Spin-Down Torque Reversals in Accreting Pulsars

    NASA Technical Reports Server (NTRS)

    Nelson, Robert W.; Bildsten, Lars; Chakrabarty, Deepto; Finger, Mark H.; Koh, Danny T.; Prince, Thomas A.; Rubin, Bradley C.; Scott, D. Mathew; Vaughan, Brian A.; Wilson, Robert B.

    1997-01-01

    Dramatic torque reversals between spin-up and spin-down have been observed in half of the persistent X-ray pulsars monitored by the Burst and Transient Space Experiment (BATSE) all-sky monitor on the Compton Gamma Ray Observatory. Theoretical models developed to explain early pulsar timing data can explain spin-down torques via a disk-magnetosphere interaction if the star nearly corotates with the inner accretion disk. To produce the observed BATSE torque reversals, however, these equilibrium models require the disk to alternate between two mass accretion rates, with M+/- producing accretion torques of similar magnitude but always of opposite sign. Moreover, in at least one pulsar (GX 1+4) undergoing secular spin-down, the neutron star spins down faster during brief (approximately 20 day) hard X-ray flares-this is opposite the correlation expected from standard theory, assuming that BATSE pulsed flux increases with mass accretion rate. The 10 day to 10 yr intervals between torque reversals in these systems are much longer than any characteristic magnetic or viscous timescale near the inner disk boundary and are more suggestive of a global disk phenomenon. We discuss possible explanations of the observed torque behavior. Despite the preferred sense of rotation defined by the binary orbit, the BATSE observations are surprisingly consistent with an earlier suggestion for GX 1+4: the disks in these systems somehow alternate between episodes of prograde and retrograde rotation. We are unaware of any mechanism that could produce a stable retrograde disk in a binary undergoing Roche lobe overflow, but such flip-flop behavior does occur in numerical simulations of wind-fed systems. One possibility is that the disks in some of these binaries are fed by an X-ray-excited wind.

  9. Detecting planets in Kepler lightcurves using methods developed for CoRoT.

    NASA Astrophysics Data System (ADS)

    Grziwa, S.; Korth, J.; Pätzold, M.

    2011-10-01

    Launched in March 2009, Kepler is the second space telescope dedicated to the search for extrasolar planets. NASA released 150.000 lightcurves to the public in 2010 and announced that Kepler has found 1.235 candidates. The Rhenish Institute for Environmental Research (RIU-PF) is one of the detection groups from the CoRoT space mission. RIU-PF developed the software package EXOTRANS for the detection of transits in stellar lightcurves. EXOTRANS is designed for the fast automated processing of huge amounts of data and was easily adapted to the analysis of Kepler lightcurves. The use of different techniques and philosophies helps to find more candidates and to rule out others. We present the analysis of the Kepler lightcurves with EXOTRANS. Results of our filter (trend, harmonic) and detection (dcBLS) techniques are compared with the techniques used by Kepler (PDC, TPS). The different approaches to rule out false positives are discussed and additional candidates found by EXOTRANS are presented.

  10. Six component robotic force-torque sensor

    NASA Technical Reports Server (NTRS)

    Grahn, Allen R.; Hutchings, Brad L.; Johnston, David R.; Parsons, David C.; Wyatt, Roland F.

    1987-01-01

    The results of a two-phase contract studying the feasibility of a miniaturized six component force-torque sensor and development of a working laboratory system were described. The principle of operation is based upon using ultrasonic pulse-echo ranging to determine the position of ultrasonic reflectors attached to a metal or ceramic cover plate. Because of the small size of the sensor, this technology may have application in robotics, to sense forces and torques at the finger tip of a robotic end effector. Descriptions are included of laboratory experiments evaluating materials and techniques for sensor fabrication and of the development of support electronics for data acquisition, computer interface, and operator display.

  11. Zero torque gear head wrench

    NASA Technical Reports Server (NTRS)

    Mcdougal, A. R.; Norman, R. M. (Inventor)

    1976-01-01

    A gear head wrench particularly suited for use in applying torque to bolts without transferring torsional stress to bolt-receiving structures is introduced. The wrench is characterized by a coupling including a socket, for connecting a bolt head with a torque multiplying gear train, provided within a housing having an annulus concentrically related to the socket and adapted to be coupled with a spacer interposed between the bolt head and the juxtaposed surface of the bolt-receiving structure for applying a balancing counter-torque to the spacer as torque is applied to the bolt head whereby the bolt-receiving structure is substantially isolated from torsional stress. As a result of the foregoing, the operator of the wrench is substantially isolated from any forces which may be imposed.

  12. Thermomagnetic torques in polyatomic gases

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.; Wood, C. T.

    1972-01-01

    The application of the Scott effect to the dynamics of galactic and stellar rotation is investigated. Efforts were also made to improve the sensitivity and stability of torque measurements and understand the microscopic mechanism that causes the Scott effect.

  13. 14 CFR 27.361 - Engine torque.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine torque. 27.361 Section 27.361... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.361 Engine torque. (a) For turbine engines, the limit torque may not be less than the highest of— (1) The mean torque for maximum...

  14. 14 CFR 27.361 - Engine torque.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine torque. 27.361 Section 27.361... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.361 Engine torque. (a) For turbine engines, the limit torque may not be less than the highest of— (1) The mean torque for maximum...

  15. 14 CFR 27.361 - Engine torque.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine torque. 27.361 Section 27.361... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.361 Engine torque. (a) For turbine engines, the limit torque may not be less than the highest of— (1) The mean torque for maximum...

  16. 14 CFR 27.361 - Engine torque.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine torque. 27.361 Section 27.361... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.361 Engine torque. (a) For turbine engines, the limit torque may not be less than the highest of— (1) The mean torque for maximum...

  17. 14 CFR 27.361 - Engine torque.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 27.361 Section 27.361... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.361 Engine torque. (a) For turbine engines, the limit torque may not be less than the highest of— (1) The mean torque for maximum...

  18. Torque-Summing Brushless Motor

    NASA Technical Reports Server (NTRS)

    Vaidya, J. G.

    1986-01-01

    Torque channels function cooperatively but electrically independent for reliability. Brushless, electronically-commutated dc motor sums electromagnetic torques on four channels and applies them to single shaft. Motor operates with any combination of channels and continues if one or more of channels fail electrically. Motor employs single stator and rotor and mechanically simple; however, each of channels electrically isolated from other so that failure of one does not adversely affect others.

  19. Existence of a component corotating with the earth in high-latitude disturbance magnetic fields

    NASA Technical Reports Server (NTRS)

    Suzuki, A.; Kim, J. S.; Sugiura, M.

    1982-01-01

    A study of the data from the high-latitude North American IMS network of magnetic stations suggests that there is a component in substorm perturbations that corotates with the earth. It is as yet not certain whether the existence of this component stems from the corotation of a part of the magnetospheric plasma involved in the substorm mechanism or if it is a 'phase change' resulting from the control of the substorm manifestations by the earth's main magnetic field which is not axially symmetric. There are other geophysical phenomena showing a persistence of longitudinal variations corotating with the earth. These phenomena are of significance for a better understanding of ionosphere-magnetosphere coupling.

  20. Pressurized fluid torque driver control and method

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1994-01-01

    Methods and apparatus are provided for a torque driver including a displaceable gear to limit torque transfer to a fastener at a precisely controlled torque limit. A biasing assembly biases a first gear into engagement with a second gear for torque transfer between the first and second gear. The biasing assembly includes a pressurized cylinder controlled at a constant pressure that corresponds to a torque limit. A calibrated gage and valve is used to set the desired torque limit. One or more coiled output linkages connect the first gear with the fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. The torque limit is adjustable and may be different for fasteners within the same fastener configuration.

  1. Phase Variations, Transits and Eclipses of the Misfit CoRoT-2b

    NASA Astrophysics Data System (ADS)

    Cowan, Nicolas; Deming, Drake; Gillon, Michael; Knutson, Heather; Madhusudhan, Nikku; Rauscher, Emily

    2011-05-01

    We propose to observe the nearby transiting hot Jupiter CoRoT-2b for a little over one planetary orbit on two occasions, yielding two secondary eclipses, a transit, and a full phase curve in each of the 3.6 and 4.5 micron channels. These data will help resolve the unique nature of this bloated planet: CoRoT-2b is the only hot Jupiter that is poorly fit by either inverted or non-inverted spectral models (Deming et al. 2011). Two hypotheses have been proposed to explain the peculiar mid-IR colors of CoRoT-2b, and thermal phase measurements with Spitzer's continuous, high-precision photometry will be able to distinguish between them: the planet has a non-inverted atmosphere but is losing mass to its host star, or the planet has a peculiar kind of temperature inversion due to mysterious atmospheric scatterers. CoRoT-2b is also among the most inflated hot Jupiters and, because of its relatively large mass, cannot be reconciled with interior evolution models, despite a small but non-zero eccentricity. A recent planetary collision may be necessary to explain the planet's youthful radius (Guillot & Havel 2011). Finally, the planet's extremely young host star, CoRoT-2, is the most chromospherically active of all transit hosts. This appears to be a common thread connecting all of its planet's peculiarities: the high UV flux of the star will drive mass loss, as well as photochemistry. Most importantly, the radius measurement of the planet at optical wavelengths may be contaminated by star spots. Mid-IR transit measurements from Spitzer will help resolve the mystery of CoRoT-2b's inflated radius.

  2. Non-radial pulsations in Be stars. Preparation of the COROT space mission.

    NASA Astrophysics Data System (ADS)

    Gutierrez-Soto, J.

    2006-12-01

    The space mission COROT scheduled to be launched in December 2006, will provide ultra high precision, relative stellar photometry for very long continuous observing runs. Up to ten stars will be observed in the seismology fields with a photometric accuracy of 1 ppm, and several thousands in the exoplanet fields with an accuracy of a few 10-4 and colour information. The observations of Be stars with COROT will provide photometric time series with unprecedented quality. Their analysis will allow us to qualitatively improve our knowledge and understanding of the pulsational characteristics of Be stars. In consequence, we have started a research project aimed at observing Be stars both in the seismology and exoplanet fields of COROT. In this thesis we present the first step of this project, which is the preparation and study of the sample of Be stars that will be observed by COROT. We have performed photometric analysis of all Be stars located in the seismology fields. Special emphasis has been given to two Be stars (NW Ser and V1446 Aql) in which we have detected multiperiodic variability and which we have modelled in terms of stellar pulsations. We have also performed an in-depth spectroscopic study of NW Ser and modelled the non-radial pulsations taking into account the rotational effects. A technique to search for faint Be stars based on CCD photometry has also been developed. We present here a list of faint Be stars located in the exoplanet fields of COROT detected with this technique and which we propose as targets for COROT. In addition, we have proven that our period-analysis techniques are suitable to detect multiperiodicity in large temporal baseline data. In particular, we have detected non-radial pulsations in some Be stars in the low-metallicity galaxy SMC.

  3. Transiting exoplanets from the CoRoT space mission. XXVII. CoRoT-28b, a planet orbiting an evolved star, and CoRoT-29b, a planet showing an asymmetric transit

    NASA Astrophysics Data System (ADS)

    Cabrera, J.; Csizmadia, Sz.; Montagnier, G.; Fridlund, M.; Ammler-von Eiff, M.; Chaintreuil, S.; Damiani, C.; Deleuil, M.; Ferraz-Mello, S.; Ferrigno, A.; Gandolfi, D.; Guillot, T.; Guenther, E. W.; Hatzes, A.; Hébrard, G.; Klagyivik, P.; Parviainen, H.; Pasternacki, Th.; Pätzold, M.; Sebastian, D.; Tadeu dos Santos, M.; Wuchterl, G.; Aigrain, S.; Alonso, R.; Almenara, J.-M.; Armstrong, J. D.; Auvergne, M.; Baglin, A.; Barge, P.; Barros, S. C. C.; Bonomo, A. S.; Bordé, P.; Bouchy, F.; Carpano, S.; Chaffey, C.; Deeg, H. J.; Díaz, R. F.; Dvorak, R.; Erikson, A.; Grziwa, S.; Korth, J.; Lammer, H.; Lindsay, C.; Mazeh, T.; Moutou, C.; Ofir, A.; Ollivier, M.; Pallé, E.; Rauer, H.; Rouan, D.; Samuel, B.; Santerne, A.; Schneider, J.

    2015-07-01

    Context. We present the discovery of two transiting extrasolar planets by the satellite CoRoT. Aims: We aim at a characterization of the planetary bulk parameters, which allow us to further investigate the formation and evolution of the planetary systems and the main properties of the host stars. Methods: We used the transit light curve to characterize the planetary parameters relative to the stellar parameters. The analysis of HARPS spectra established the planetary nature of the detections, providing their masses. Further photometric and spectroscopic ground-based observations provided stellar parameters (log g, Teff, v sin i) to characterize the host stars. Our model takes the geometry of the transit to constrain the stellar density into account, which when linked to stellar evolutionary models, determines the bulk parameters of the star. Because of the asymmetric shape of the light curve of one of the planets, we had to include the possibility in our model that the stellar surface was not strictly spherical. Results: We present the planetary parameters of CoRoT-28b, a Jupiter-sized planet (mass 0.484 ± 0.087 MJup; radius 0.955 ± 0.066 RJup) orbiting an evolved star with an orbital period of 5.208 51 ± 0.000 38 days, and CoRoT-29b, another Jupiter-sized planet (mass 0.85 ± 0.20 MJup; radius 0.90 ± 0.16 RJup) orbiting an oblate star with an orbital period of 2.850 570 ± 0.000 006 days. The reason behind the asymmetry of the transit shape is not understood at this point. Conclusions: These two new planetary systems have very interesting properties and deserve further study, particularly in the case of the star CoRoT-29. The CoRoT space mission, launched on December 27th 2006, was developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany, and Spain. Based on observations obtained with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland

  4. Consistent linearization of the element-independent corotational formulation for the structural analysis of general shells

    NASA Technical Reports Server (NTRS)

    Rankin, C. C.

    1988-01-01

    A consistent linearization is provided for the element-dependent corotational formulation, providing the proper first and second variation of the strain energy. As a result, the warping problem that has plagued flat elements has been overcome, with beneficial effects carried over to linear solutions. True Newton quadratic convergence has been restored to the Structural Analysis of General Shells (STAGS) code for conservative loading using the full corotational implementation. Some implications for general finite element analysis are discussed, including what effect the automatic frame invariance provided by this work might have on the development of new, improved elements.

  5. VizieR Online Data Catalog: Corot photometry of TYC 455-791-1 (Strassmeier+, 2017)

    NASA Astrophysics Data System (ADS)

    Strassmeier, K. G.; Granzer, T.; Mallonn, M.; Weber, M.; Weingrill, J.

    2016-11-01

    From the original CoRoT white-light flux obtained on two consecutive runs, we filter out obvious outliers from the SAA (south Atlantic Anomaly). The third column are the remaining CoRoT data points. The two data set were merged using individual zero-points of 716386.54e- for the first data set and 721882.56e- for the second data set, respectively. The magnitudes thus calculates are in column four. The last column is the combined model of the transit plus a 12th order Fourier-series fit to the out-of-transit data. (1 data file).

  6. Aerodynamic and torque characteristics of enclosed Co/counter rotating disks

    NASA Astrophysics Data System (ADS)

    Daniels, W. A.; Johnson, B. V.; Graber, D. J.

    1989-06-01

    Experiments were conducted to determine the aerodynamic and torque characteristics of adjacent rotating disks enclosed in a shroud, in order to obtain an extended data base for advanced turbine designs such as the counterrotating turbine. Torque measurements were obtained on both disks in the rotating frame of reference for corotating, counterrotating and one-rotating/one-static disk conditions. The disk models used in the experiments included disks with typical smooth turbine geometry, disks with bolts, disks with bolts and partial bolt covers, and flat disks. A windage diaphragm was installed at mid-cavity for some experiments. The experiments were conducted with various amounts of coolant throughflow injected into the disk cavity from the disk hub or from the disk OD with swirl. The experiments were conducted at disk tangential Reynolds number up to 1.6 x 10 to the 7th with air as the working fluid. The results of this investigation indicated that the static shroud contributes a significant amount to the total friction within the disk system; the torque on counterrotating disks is essentially independent of coolant flow total rate, flow direction, and tangential Reynolds number over the range of conditions tested; and a static windage diaphragm reduces disk friction in counterrotating disk systems.

  7. Gyrokinetic Simulations with External Resonant Magnetic Perturbations: Island Torque and Nonambipolar Transport with Rotation

    NASA Astrophysics Data System (ADS)

    Waltz, R. E.; Waelbroeck, F. L.

    2012-03-01

    Static external resonant magnetic perturbations (RMPs) have been added to the δf gyrokinetic code GYRO. This allows nonlinear gyrokinetic simulations of the nonambipolar radial current flow jr and the corresponding plasma torque (density) R[jrBθ/c], induced by islands that break the toroidal symmetry of a tokamak. This extends previous GYRO simulations for the transport of toroidal angular momentum (TAM) [1,2]. The focus is on full torus radial slice electrostatic simulations of induced q=m/n=6/3 islands with widths 5% of the minor radius. The island torque scales with the radial electric field Er the island width w, and the intensity I of the high-n micro-turbulence, as wErI^1/2. The net island torque is null at zero Er rather than at zero toroidal rotation. This means that there is a small co-directed magnetic acceleration to the small diamagnetic co-rotation corresponding to the zero Er which can be called the residual stress [2] from an externally induced island. Finite-beta GYRO simulations of a core radial slice demonstrate island unlocking and the RMP screening. 6pt[1] R.E. Waltz, et al., Phys. Plasmas 14, 122507 (2007). [2] R.E. Waltz, et al., Phys. Plasmas 18, 042504 (2011).

  8. Spin Transfer torques in Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Saidaoui, Hamed; Waintal, Xavier; Manchon, Aurelien; Spsms, Cea, Grenoble France Collaboration

    2013-03-01

    Spin Transfer Torque (STT) has attracted tremendously growing interest in the past two decades. Consisting on the transfer of spin angular momentum of a spin polarized current to local magnetic moments, the STT gives rise to a complex dynamics of the magnetization. Depending on the the structure, the STT shows a dominated In plane component for spin valves, whereas both components coexist for magnetic tunneling junctions (MTJ). For latter case the symmetry of the structure is considered to be decisive in identifying the nature and behavior of the torque. In the present study we are interested in magnetic structures where we substitute either one or both of the magnetic layers by antiferromagnets (AF). We use Non-equilibrium Green's function formalism applied on a tight-binding model to investigate the nature of the spin torque. We notice the presence of two types of torque exerted on (AF), a torque which tends to rotate the order parameter and another one that competes with the exchange interaction. We conclude by comparison with previous works.

  9. Split torque transmission load sharing

    NASA Technical Reports Server (NTRS)

    Krantz, T. L.; Rashidi, M.; Kish, J. G.

    1992-01-01

    Split torque transmissions are attractive alternatives to conventional planetary designs for helicopter transmissions. The split torque designs can offer lighter weight and fewer parts but have not been used extensively for lack of experience, especially with obtaining proper load sharing. Two split torque designs that use different load sharing methods have been studied. Precise indexing and alignment of the geartrain to produce acceptable load sharing has been demonstrated. An elastomeric torque splitter that has large torsional compliance and damping produces even better load sharing while reducing dynamic transmission error and noise. However, the elastomeric torque splitter as now configured is not capable over the full range of operating conditions of a fielded system. A thrust balancing load sharing device was evaluated. Friction forces that oppose the motion of the balance mechanism are significant. A static analysis suggests increasing the helix angle of the input pinion of the thrust balancing design. Also, dynamic analysis of this design predicts good load sharing and significant torsional response to accumulative pitch errors of the gears.

  10. Mode extraction from time series: from the challenges of COROT to those of Eddington

    NASA Astrophysics Data System (ADS)

    Appourchaux, T.; Moreira, O.; Berthomieu, G.; Toutain, T.

    2004-01-01

    With more than 30 years of experience in extraction of eigenmodes from power spectra of solar signals, we are now almost ready to apply this knowledge onto the forecoming missions: COROT and Eddington. However the fitting task differs by 3 orders of magnitude; COROT will be able to get time series of stellar light for some 30 stars, while Eddington will be able to gather such data for about 50000 stars. While for COROT, our current tools can be applied by hand, the case of Eddington is significantly more complex. We are looking forward having automatic fitting procedures that will allow to recover mode parameters for about 90% of the solar-like stars. Unfortunately, about 10% of these stars will require some more delicate attention that will cost time to take care of. We will use the example of the infamous HD 57006, known to be quite evolved with a difficult eigenmode spectrum, to explain how a star can evolve from an easy-to-fit target (90% of the solar-like stars) to a difficult-to-fit (10% of the remaining stars). In the latter case, new techniques for detecting narrow peaks (g-mode like) out of broad peaks (p-mode like) has been devised in the context of the hare-and-hound exercise of COROT. This and other techniques will be used to implement the automatic fitting procedure for the remaining 10% of Eddington solar-like stars.

  11. Solar Wind 0.1-1 keV Electrons in the Corotating Interaction Regions

    NASA Astrophysics Data System (ADS)

    Wang, L.; Tao, J.; Li, G.; Wimmer-Schweingruber, R. F.; Jian, L. K.; He, J.; Tu, C.; Tian, H.; Bale, S. D.

    2017-12-01

    Here we present a statistical study of the 0.1-1 keV suprathermal electrons in the undisturbed and compressed slow/fast solar wind, for the 71 corotating interaction regions (CIRs) with good measurements from the WIND 3DP and MFI instruments from 1995 to 1997. For each of these CIRs, we separate the strahl and halo electrons based on their different behaviors in pitch angle distributions in the undisturbed and compressed solar wind. We fit both the strahl and halo energy spectra to a kappa function with an index κ index and effective temperature Teff, and calculate the pitch-angle width at half-maximum (PAHM) of the strahl population. We also integrate the electron measurements between 0.1 and 1.0 keV to obtain the number density n and average energy Eavg for the strahl and halo populations. We find that for both the strahl and halo populations within and around these CIRs, the fitted κ index strongly correlates with Teff, similar to the quiet-time solar wind (Tao et al., ApJ, 2016). The number density of both the strahl and halo shows a strong positive correlation with the electron core temperature. The strahl number density ns is correlated with the magnitude of interplanetary magnetic field, and the strahl PAHM width is anti-correlated with the solar wind speed. These results suggest that the origin of strahl electrons from the solar corona is likely related to the electron core temperature and magnetic field strength, while the production of halo electrons in the interplanetary medium could depend on the solar wind velocity.

  12. Noise properties of the CoRoT data. A planet-finding perspective

    NASA Astrophysics Data System (ADS)

    Aigrain, S.; Pont, F.; Fressin, F.; Alapini, A.; Alonso, R.; Auvergne, M.; Barbieri, M.; Barge, P.; Bordé, P.; Bouchy, F.; Deeg, H.; de La Reza, R.; Deleuil, M.; Dvorak, R.; Erikson, A.; Fridlund, M.; Gondoin, P.; Guterman, P.; Jorda, L.; Lammer, H.; Léger, A.; Llebaria, A.; Magain, P.; Mazeh, T.; Moutou, C.; Ollivier, M.; Pätzold, M.; Queloz, D.; Rauer, H.; Rouan, D.; Schneider, J.; Wuchter, G.; Zucker, S.

    2009-10-01

    In this short paper, we study the photometric precision of stellar light curves obtained by the CoRoT satellite in its planet-finding channel, with a particular emphasis on the time scales characteristic of planetary transits. Together with other articles in the same issue of this journal, it forms an attempt to provide the building blocks for a statistical interpretation of the CoRoT planet and eclipsing binary catch to date. After pre-processing the light curves so as to minimise long-term variations and outliers, we measure the scatter of the light curves in the first three CoRoT runs lasting more than 1 month, using an iterative non-linear filter to isolate signal on the time scales of interest. The behaviour of the noise on 2 h time scales is described well by a power-law with index 0.25 in R-magnitude, ranging from 0.1 mmag at R=11.5 to 1 mmag at R=16, which is close to the pre-launch specification, though still a factor 2-3 above the photon noise due to residual jitter noise and hot pixel events. There is evidence of slight degradation in the performance over time. We find clear evidence of enhanced variability on hour time scales (at the level of 0.5 mmag) in stars identified as likely giants from their R magnitude and B-V colour, which represent approximately 60 and 20% of the observed population in the directions of Aquila and Monoceros, respectively. On the other hand, median correlated noise levels over 2 h for dwarf stars are extremely low, reaching 0.05 mmag at the bright end. The CoRoT space mission, launched on December 27, 2006, has been developed and is operated by the CNES, with the contribution of Austria, Belgium, Brazil, ESA, Germany, and Spain. CoRoT data become publicly available one year after release to the Co-Is of the mission from the CoRoT archive: http://idoc-corot.ias.u-psud.fr/.

  13. Torques on a nearly rigid body in a relativistic gravitational field

    NASA Technical Reports Server (NTRS)

    Caporali, A.

    1980-01-01

    The effect of post-Newtonian potentials on the rotation of a nearly rigid body is shown to consist of a precession and a torque. The frequency of the precession can be exactly represented by means of suitable differential operators. The relativistic torques in the quadrupole approximation depend on the instantaneous orientation of the principal axes of one body with respect to the position like the classical torque and velocity of the other. For a relatively low mass body, such as a gyroscope, these velocity-dependent torques have no observable consequences.

  14. On the monoaxial stabilization of a rigid body under vanishing restoring torque

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A. Yu.; Aleksandrova, E. B.; Tikhonov, A. A.

    2018-05-01

    The problem of monoaxial stabilization of a rigid body is studied. It is assumed that a linear time-invariant dissipative torque and a time-varying restoring torque vanishing as time increases act on the body. Both the case of linear restoring torque and that of essentially nonlinear one are considered. With the aid of the decomposition method, conditions are obtained under which we can guarantee the asymptotic stability of an equilibrium position of the body despite the vanishing of the restoring torque. A numerical simulation is provided to demonstrate the effectiveness of our theoretical results.

  15. Speed, not magnitude, of knee extensor torque production is associated with self-reported knee function early after anterior cruciate ligament reconstruction.

    PubMed

    Hsieh, Chao-Jung; Indelicato, Peter A; Moser, Michael W; Vandenborne, Krista; Chmielewski, Terese L

    2015-11-01

    To examine the magnitude and speed of knee extensor torque production at the initiation of advanced anterior cruciate ligament (ACL) reconstruction rehabilitation and the associations with self-reported knee function. Twenty-eight subjects who were 12 weeks post-ACL reconstruction and 28 age- and sex-matched physically active controls participated in this study. Knee extensor torque was assessed bilaterally with an isokinetic dynamometer at 60°/s. The variables of interest were peak torque, average rate of torque development, time to peak torque and quadriceps symmetry index. Knee function was assessed with the International Knee Documentation Committee Subjective Knee Form (IKDC-SKF). Peak torque and average rate of torque development were lower on the surgical side compared to the non-surgical side and controls. Quadriceps symmetry index was lower in subjects with ACL reconstruction compared to controls. On the surgical side, average rate of torque development was positively correlated with IKDC-SKF score (r = 0.379) while time to peak torque was negatively correlated with IKDC-SKF score (r = -0.407). At the initiation of advanced ACL reconstruction rehabilitation, the surgical side displayed deficits in peak torque and average rate of torque development. A higher rate of torque development and shorter time to peak torque were associated with better self-reported knee function. The results suggest that the rate of torque development should be addressed during advanced ACL reconstruction rehabilitation and faster knee extensor torque generation may lead to better knee function. III.

  16. Diffusion of torqued active particles

    NASA Astrophysics Data System (ADS)

    Sandoval, Mario; Lauga, Eric

    2012-11-01

    Motivated by swimming microorganisms whose trajectories are affected by the presence of an external torque, we calculate the diffusivity of an active particle subject to an external torque and in a fluctuating environment. The analytical results are compared with Brownian dynamics simulations showing excellent agreement between theory and numerical experiments. This work was funded in part by the Consejo Nacional de Ciencia y Tecnologia of Mexico (Conacyt postdoctoral fellowship to M. S.) and the US National Science Foundation (Grant CBET-0746285 to E.L.).

  17. Expanding torque possibilities: A skeletally anchored torqued cantilever for uprighting "kissing molars".

    PubMed

    Barros, Sérgio Estelita; Janson, Guilherme; Chiqueto, Kelly; Ferreira, Eduardo; Rösing, Cassiano

    2018-04-01

    Several uprighting mechanics and devices have been used for repositioning tipped molars. "Kissing molars" (KMs) are an uncommon tooth impaction involving 2 severely tipped mandibular molars with their occlusal surfaces positioned crown to crown, with the roots pointing in opposite directions. Orthodontic uprighting of KMs has not been a usual treatment protocol, and it can be a challenging task due to the severe tipping and double impaction, requiring efficient and well-controlled uprighting mechanics. An innovative skeletally anchored cantilever, which uses the torque principle for uprighting tipped molars, is suggested. This torqued cantilever is easy to manufacture, install, and activate; it is a well-known torque that is effective for producing root movement. A successful treatment of symptomatic KMs, involving the first and second molars, was achieved with this cantilever. Thus, clinicians should consider the suggested uprighting mechanics and orthodontic device as a more conservative alternative to extraction of KMs, depending on the patient's age, involved teeth in KMs, tipping severity, and impaction positions. Copyright © 2018 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  18. Installation Torque Tables for Noncritical Applications

    NASA Technical Reports Server (NTRS)

    Rivera-Rosario, Hazel T.; Powell, Joseph S.

    2017-01-01

    The objective of this project is to define torque values for bolts and screws when loading is not a concern. Fasteners require a certain torque to fulfill its function and prevent failure. NASA Glenn Research Center did not have a set of fastener torque tables for non-critical applications without loads, usually referring to hand-tight or wrench-tight torqueing. The project is based on two formulas, torque and pullout load. Torque values are calculated giving way to preliminary data tables. Testing is done to various bolts and metal plates, torqueing them until the point of failure. Around 640 torque tables were developed for UNC, UNF, and M fasteners. Different lengths of thread engagement were analyzed for the 5 most common materials used at GRC. The tables were put together in an Excel spreadsheet and then formatted into a Word document. The plan is to later convert this to an official technical publication or memorandum.

  19. EDITORIAL: Spin-transfer-torque-induced phenomena Spin-transfer-torque-induced phenomena

    NASA Astrophysics Data System (ADS)

    Hirohata, Atsufumi

    2011-09-01

    This cluster, consisting of five invited articles on spin-transfer torque, offers the very first review covering both magnetization reversal and domain-wall displacement induced by a spin-polarized current. Since the first theoretical proposal on spin-transfer torque—reported by Berger and Slonczewski independently—spin-transfer torque has been experimentally demonstrated in both vertical magnetoresistive nano-pillars and lateral ferromagnetic nano-wires. In the former structures, an electrical current flowing vertically in the nano-pillar exerts spin torque onto the thinner ferromagnetic layer and reverses its magnetization, i.e., current-induced magnetization switching. In the latter structures, an electrical current flowing laterally in the nano-wire exerts torque onto a domain wall and moves its position by rotating local magnetic moments within the wall, i.e., domain wall displacement. Even though both phenomena are induced by spin-transfer torque, each phenomenon has been investigated separately. In order to understand the physical meaning of spin torque in a broader context, this cluster overviews both cases from theoretical modellings to experimental demonstrations. The earlier articles in this cluster focus on current-induced magnetization switching. The magnetization dynamics during the reversal has been calculated by Kim et al using the conventional Landau--Lifshitz-Gilbert (LLG) equation, adding a spin-torque term. This model can explain the dynamics in both spin-valves and magnetic tunnel junctions in a nano-pillar form. This phenomenon has been experimentally measured in these junctions consisting of conventional ferromagnets. In the following experimental part, the nano-pillar junctions with perpendicularly magnetized FePt and half-metallic Heusler alloys are discussed from the viewpoint of efficient magnetization reversal due to a high degree of spin polarization of the current induced by the intrinsic nature of these alloys. Such switching can

  20. Preload Torque Limiting Shaft Coupling

    NASA Technical Reports Server (NTRS)

    Harmening, W. A. (Inventor)

    1975-01-01

    A torque limiting spring for a rotating shaft system which acts bidirectionally and is preloaded is examined. The spring is a split circular ring compressed into cavities on facing surfaces of matching shafts. The spring is preloaded by varying the width of a tang in the shaft cavity relative to the split in the spring.

  1. Hereditary determinants of manual torque.

    PubMed

    Matheny, A P

    1979-12-01

    Data from a longitudinal study of twin children and siblings, 155 girls and 134 boys (aged 4 to 9 yr.), on a torque test confirmed that during this age period manually produced circling patterns change from clockwise to counterclockwise orientation. A genetic influence is suggested.

  2. Somatotype variables related to muscle torque and power in judoists.

    PubMed

    Lewandowska, Joanna; Buśko, Krzysztof; Pastuszak, Anna; Boguszewska, Katarzyna

    2011-12-01

    The purpose of this study was to examine the relationship between somatotype, muscle torque and power output in judoists. Thirteen judoists (age 18.4±3.1 years, body height 178.6±8.2 cm, body mass 82.3±15.9 kg) volunteered to participate in this study. Somatotype was determined using the Heath-Carter method. Maximal muscle torques of elbow, shoulder, knee, hip and trunk flexors as well as extensors were measured under static conditions. Power outputs were measured in 5 maximal cycle ergometer exercise bouts, 10 s each, at increasing external loads equal to 2.5, 5.0, 7.5, 10.0 and 12.5% of body weight. The Pearson's correlation coefficients were calculated between all parameters. The mean somatotype of judoists was: 3.5-5.9-1.8 (values for endomorphy, mesomorphy and ectomorphy, respectively). The values (mean±SD) of sum of muscle torque of ten muscle groups (TOTAL) was 3702.2±862.9 N x m. The power output ranged from 393.2±79.4 to 1077.2±275.4 W. The values of sum of muscle torque of right and left upper extremities (SUE), sum of muscle torque of right and left lower extremities (SLE), sum of muscle torque of the trunk (ST) and TOTAL were significantly correlated with the mesomorphic component (0.68, 0.80, 0.71 and 0.78, respectively). The ectomorphic component correlated significantly with values of SUE, SLE, ST and TOTAL (-0.69, -0.81, -0.71 and -0.79, respectively). Power output was also strongly correlated with both mesomorphy (positively) and ectomorphy (negatively). The results indicated that the values of mesomorphic and ectomorphic somatotype components influence muscle torque and power output, thus body build could be an important factor affecting results in judo.

  3. Computerized Torque Control for Large dc Motors

    NASA Technical Reports Server (NTRS)

    Willett, Richard M.; Carroll, Michael J.; Geiger, Ronald V.

    1987-01-01

    Speed and torque ranges in generator mode extended. System of shunt resistors, electronic switches, and pulse-width modulation controls torque exerted by large, three-phase, electronically commutated dc motor. Particularly useful for motor operating in generator mode because it extends operating range to low torque and high speed.

  4. 14 CFR 29.361 - Engine torque.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine torque. 29.361 Section 29.361... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.361 Engine torque. The limit engine torque may not be less than the following: (a) For turbine engines, the highest of— (1) The...

  5. 14 CFR 29.361 - Engine torque.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine torque. 29.361 Section 29.361... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.361 Engine torque. The limit engine torque may not be less than the following: (a) For turbine engines, the highest of— (1) The...

  6. 14 CFR 29.361 - Engine torque.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine torque. 29.361 Section 29.361... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.361 Engine torque. The limit engine torque may not be less than the following: (a) For turbine engines, the highest of— (1) The...

  7. 14 CFR 29.361 - Engine torque.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine torque. 29.361 Section 29.361... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.361 Engine torque. The limit engine torque may not be less than the following: (a) For turbine engines, the highest of— (1) The...

  8. 14 CFR 29.361 - Engine torque.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 29.361 Section 29.361... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 29.361 Engine torque. The limit engine torque may not be less than the following: (a) For turbine engines, the highest of— (1) The...

  9. Improved Force-And-Torque Sensor Assembly

    NASA Technical Reports Server (NTRS)

    Bamford, Robert M.

    1991-01-01

    Improved sensor assembly measures forces and torques of interaction between supporting and supported object. Measures all three components of force and all three components of torque. Force measurements uncoupled from torque measurements. Price for improved measurement capability, complexity and flexibility, excessive in some applications.

  10. Transiting exoplanets from the CoRoT space mission. XVII. The hot Jupiter CoRoT-17b: a very old planet

    NASA Astrophysics Data System (ADS)

    Csizmadia, Sz.; Moutou, C.; Deleuil, M.; Cabrera, J.; Fridlund, M.; Gandolfi, D.; Aigrain, S.; Alonso, R.; Almenara, J.-M.; Auvergne, M.; Baglin, A.; Barge, P.; Bonomo, A. S.; Bordé, P.; Bouchy, F.; Bruntt, H.; Carone, L.; Carpano, S.; Cavarroc, C.; Cochran, W.; Deeg, H. J.; Díaz, R. F.; Dvorak, R.; Endl, M.; Erikson, A.; Ferraz-Mello, S.; Fruth, Th.; Gazzano, J.-C.; Gillon, M.; Guenther, E. W.; Guillot, T.; Hatzes, A.; Havel, M.; Hébrard, G.; Jehin, E.; Jorda, L.; Léger, A.; Llebaria, A.; Lammer, H.; Lovis, C.; MacQueen, P. J.; Mazeh, T.; Ollivier, M.; Pätzold, M.; Queloz, D.; Rauer, H.; Rouan, D.; Santerne, A.; Schneider, J.; Tingley, B.; Titz-Weider, R.; Wuchterl, G.

    2011-07-01

    We report on the discovery of a hot Jupiter-type exoplanet, CoRoT-17b, detected by the CoRoT satellite. It has a mass of 2.43 ± 0.30 MJup and a radius of 1.02 ± 0.07 RJup, while its mean density is 2.82 ± 0.38 g/cm3. CoRoT-17b is in a circular orbit with a period of 3.7681 ± 0.0003 days. The host star is an old (10.7 ± 1.0 Gyr) main-sequence star, which makes it an intriguing object for planetary evolution studies. The planet's internal composition is not well constrained and can range from pure H/He to one that can contain ~380 earth masses of heavier elements. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany and Spain. Part of the observations were obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. Based on observations made with HARPS spectrograph on the 3.6-m European Organisation for Astronomical Research in the Southern Hemisphere telescope at La Silla Observatory, Chile (ESO program 184.C-0639). Based on observations made with the IAC80 telescope operated on the island of Tenerife by the Instituto de Astrofísica de Canarias in the Spanish Observatorio del Teide. Part of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  11. PWM Switching Strategy for Torque Ripple Minimization in BLDC Motor

    NASA Astrophysics Data System (ADS)

    Salah, Wael A.; Ishak, Dahaman; Hammadi, Khaleel J.

    2011-05-01

    This paper describes a new PWM switching strategy to minimize the torque ripples in BLDC motor which is based on sensored rotor position control. The scheme has been implemented using a PIC microcontroller to generate a modified Pulse Width Modulation (PWM) signals for driving power inverter bridge. The modified PWM signals are successfully applied to the next up-coming phase current such that its current rise is slightly delayed during the commutation instant. Experimental results show that the current waveforms of the modified PWM are smoother than that in conventional PWM technique. Hence, the output torque exhibits lower ripple contents.

  12. Design and control of the phase current of a brushless dc motor to eliminate cogging torque

    NASA Astrophysics Data System (ADS)

    Jang, G. H.; Lee, C. J.

    2006-04-01

    This paper presents a design and control method of the phase current to reduce the torque ripple of a brushless dc (BLDC) motor by eliminating cogging torque. The cogging torque is the main source of torque ripple and consequently of speed error, and it is also the excitation source to generate the vibration and noise of a motor. This research proposes a modified current wave form, which is composed of main and auxiliary currents. The former is the conventional current to generate the commutating torque. The latter generates the torque with the same magnitude and opposite sign of the corresponding cogging torque at the given position in order to eliminate the cogging torque. Time-stepping finite element method simulation considering pulse-width-modulation switching method has been performed to verify the effectiveness of the proposed method, and it shows that this proposed method reduces torque ripple by 36%. A digital-signal-processor-based controller is also developed to implement the proposed method, and it shows that this proposed method reduces the speed ripple significantly.

  13. Torques Induced by Scattered Pebble-flow in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Benítez-Llambay, Pablo; Pessah, Martin E.

    2018-03-01

    Fast inward migration of planetary cores is a common problem in the current planet formation paradigm. Even though dust is ubiquitous in protoplanetary disks, its dynamical role in the migration history of planetary embryos has not been assessed. In this Letter, we show that the scattered pebble-flow induced by a low-mass planetary embryo leads to an asymmetric dust-density distribution that is able to exert a net torque. By analyzing a large suite of multifluid hydrodynamical simulations addressing the interaction between the disk and a low-mass planet on a fixed circular orbit, and neglecting dust feedback onto the gas, we identify two different regimes, gas- and gravity-dominated, where the scattered pebble-flow results in almost all cases in positive torques. We collect our measurements in a first torque map for dusty disks, which will enable the incorporation of the effect of dust dynamics on migration into population synthesis models. Depending on the dust drift speed, the dust-to-gas mass ratio/distribution, and the embryo mass, the dust-induced torque has the potential to halt inward migration or even induce fast outward migration of planetary cores. We thus anticipate that dust-driven migration could play a dominant role during the formation history of planets. Because dust torques scale with disk metallicity, we propose that dust-driven outward migration may enhance the occurrence of distant giant planets in higher-metallicity systems.

  14. Mechanics of torque generation in the bacterial flagellar motor.

    PubMed

    Mandadapu, Kranthi K; Nirody, Jasmine A; Berry, Richard M; Oster, George

    2015-08-11

    The bacterial flagellar motor (BFM) is responsible for driving bacterial locomotion and chemotaxis, fundamental processes in pathogenesis and biofilm formation. In the BFM, torque is generated at the interface between transmembrane proteins (stators) and a rotor. It is well established that the passage of ions down a transmembrane gradient through the stator complex provides the energy for torque generation. However, the physics involved in this energy conversion remain poorly understood. Here we propose a mechanically specific model for torque generation in the BFM. In particular, we identify roles for two fundamental forces involved in torque generation: electrostatic and steric. We propose that electrostatic forces serve to position the stator, whereas steric forces comprise the actual "power stroke." Specifically, we propose that ion-induced conformational changes about a proline "hinge" residue in a stator α-helix are directly responsible for generating the power stroke. Our model predictions fit well with recent experiments on a single-stator motor. The proposed model provides a mechanical explanation for several fundamental properties of the flagellar motor, including torque-speed and speed-ion motive force relationships, backstepping, variation in step sizes, and the effects of key mutations in the stator.

  15. VizieR Online Data Catalog: Algorithm for correcting CoRoT raw light curves (Mislis+, 2010)

    NASA Astrophysics Data System (ADS)

    Mislis, D.; Schmitt, J. H. M. M.; Carone, L.; Guenther, E. W.; Patzold, M.

    2010-10-01

    Requirements : gfortran (or g77, ifort) compiler Input Files : The input files sould be raw CoRoT txt files (http://idoc-corot.ias.u-psud.fr/index.jsp) with names CoRoT*.txt Run the cda by typing C>: ./cda.csh (code and data sould be in the same directory) Output files : CDA creates one ascii output file with name - CoRoT*.R.cor for R filter (2 data files).

  16. The Roles of Tidal Evolution and Evaporative Mass Loss in the Origin of CoRoT-7 b

    NASA Technical Reports Server (NTRS)

    Jackson, Brian; Miller, Neil; Barnes, Rory; Raymond, Sean N.; Fortney, Jonathan J.; Greenberg, Richard

    2010-01-01

    CoRoT-7 b is the first confirmed rocky exoplanet, but, with an orbital semimajor axis of 0.0172 au, its origins may be unlike any rocky planet in our Solar System. In this study, we consider the roles of tidal evolution and evaporative mass loss in CoRoT-7 b's history, which together have modified the planet's mass and orbit. If CoRoT-7 b has always been a rocky body, evaporation may have driven off almost half its original mass, but the mass loss may depend sensitively on the extent of tidal decay of its orbit. As tides caused CoRoT-7 b's orbit to decay, they brought the planet closer to its host star, thereby enhancing the mass loss rate. Such a large mass loss also suggests the possibility that CoRoT-7 b began as a gas giant planet and had its original atmosphere completely evaporated. In this case, we find that CoRoT-7 b's original mass probably did not exceed 200 Earth masses (about two-third of a Jupiter mass). Tides raised on the host star by the planet may have significantly reduced the orbital semimajor axis, perhaps causing the planet to migrate through mean-motion resonances with the other planet in the system, CoRoT-7 c. The coupling between tidal evolution and mass loss may be important not only for CoRoT-7 b but also for other close-in exoplanets, and future studies of mass loss and orbital evolution may provide insight into the origin and fate of close-in planets, both rocky and gaseous.

  17. The SARS algorithm: detrending CoRoT light curves with Sysrem using simultaneous external parameters

    NASA Astrophysics Data System (ADS)

    Ofir, Aviv; Alonso, Roi; Bonomo, Aldo Stefano; Carone, Ludmila; Carpano, Stefania; Samuel, Benjamin; Weingrill, Jörg; Aigrain, Suzanne; Auvergne, Michel; Baglin, Annie; Barge, Pierre; Borde, Pascal; Bouchy, Francois; Deeg, Hans J.; Deleuil, Magali; Dvorak, Rudolf; Erikson, Anders; Mello, Sylvio Ferraz; Fridlund, Malcolm; Gillon, Michel; Guillot, Tristan; Hatzes, Artie; Jorda, Laurent; Lammer, Helmut; Leger, Alain; Llebaria, Antoine; Moutou, Claire; Ollivier, Marc; Päetzold, Martin; Queloz, Didier; Rauer, Heike; Rouan, Daniel; Schneider, Jean; Wuchterl, Guenther

    2010-05-01

    Surveys for exoplanetary transits are usually limited not by photon noise but rather by the amount of red noise in their data. In particular, although the CoRoT space-based survey data are being carefully scrutinized, significant new sources of systematic noises are still being discovered. Recently, a magnitude-dependant systematic effect was discovered in the CoRoT data by Mazeh et al. and a phenomenological correction was proposed. Here we tie the observed effect to a particular type of effect, and in the process generalize the popular Sysrem algorithm to include external parameters in a simultaneous solution with the unknown effects. We show that a post-processing scheme based on this algorithm performs well and indeed allows for the detection of new transit-like signals that were not previously detected.

  18. Dynamics of a split torque helicopter transmission

    NASA Astrophysics Data System (ADS)

    Krantz, Timothy L.

    1994-06-01

    Split torque designs, proposed as alternatives to traditional planetary designs for helicopter main rotor transmissions, can save weight and be more reliable than traditional designs. This report presents the results of an analytical study of the system dynamics and performance of a split torque gearbox that uses a balance beam mechanism for load sharing. The Lagrange method was applied to develop a system of equations of motion. The mathematical model includes time-varying gear mesh stiffness, friction, and manufacturing errors. Cornell's method for calculating the stiffness of spur gear teeth was extended and applied to helical gears. The phenomenon of sidebands spaced at shaft frequencies about gear mesh fundamental frequencies was simulated by modeling total composite gear errors as sinusoid functions. Although the gearbox has symmetric geometry, the loads and motions of the two power paths differ. Friction must be considered to properly evaluate the balance beam mechanism. For the design studied, the balance beam is not an effective device for load sharing unless the coefficient of friction is less than 0.003. The complete system stiffness as represented by the stiffness matrix used in this analysis must be considered to precisely determine the optimal tooth indexing position.

  19. Enhanced precision of ankle torque measure with an open-unit dynamometer mounted with a 3D force-torque sensor.

    PubMed

    Toumi, A; Leteneur, S; Gillet, C; Debril, J-F; Decoufour, N; Barbier, F; Jakobi, J M; Simoneau-Buessinger, Emilie

    2015-11-01

    Many studies have focused on maximum torque exerted by ankle joint muscles during plantar flexion. While strength parameters are typically measured with isokinetic or isolated ankle dynamometers, these devices often present substantial limitations for the measurement of torque because they account for force in only 1 dimension (1D), and the device often constrains the body in a position that augments torque through counter movements. The purposes of this study were to determine the contribution of body position to ankle plantar-flexion torque and to assess the use of 1D and 3D torque sensors. A custom designed 'Booted, Open-Unit, Three dimension, Transportable, Ergometer' (B.O.T.T.E.) was used to quantify plantar flexion in two conditions: (1) when the participant was restrained within the unit (locked-unit) and (2) when the participant's position was independent of the ankle dynamometer (open-unit). Ten young males performed maximal voluntary isometric plantar-flexion contractions using the B.O.T.T.E. in open and locked-unit mechanical configurations. The B.O.T.T.E. was reliable with ICC higher than 0.90, and CV lower than 7 %. The plantar-flexion maximal resultant torque was significantly higher in the locked-unit compared with open-unit configuration (P < 0.001; +61 to +157 %) due to the addition of forces from the body being constrained within the testing device. A 1D compared with 3D torque sensor significantly underestimated the proper capacity of plantar-flexion torque production (P < 0.001; -37 to -60 %). Assessment of plantar-flexion torque should be performed with an open-unit dynamometer mounted with a 3D sensor that is exclusive of accessory muscles but inclusive of all ankle joint movements.

  20. A torque, tension and stress corrosion evaluation of high strength A286 bolts

    NASA Technical Reports Server (NTRS)

    Montano, J. W.

    1986-01-01

    The problems associated with overtorque applied to the Booster Separation Motor (BSM) Igniter Adapter high strength 200 KSI (1379 Mpa) A286 CRES bolts and the threaded holes of the 7075-T73 aluminum alloy BSM cases are addressed. The evaluation included torque, tensile, and stress corrosion tests incorporating the A286 CRES bolts and the 7075-T73 aluminum alloy BSM cases. The tensile test data includes ultimate tensile load (UTL), Johnson's 2/3 yield load (J2/3YL), proportional limit load (PLL), and total bolt stretch. Torque tension data includes torque, torque induced load, and positive and negative break-away torque. Stress corrosion test data reflect the overtorque and the resulting torque induced loads sustained by the A286 CRES bolts torqued into a 7075-T73 aluminum alloy forged dome with threaded holes. After 60 days of salt fog exposure, the positive and the negative break-away torques, the subsequent mechanical property tensile test results, and the BSM dome threaded hole axial tensile pullout loads are reported.

  1. Low-Torque Seal Development

    NASA Technical Reports Server (NTRS)

    Lattime, Scott B.; Borowski, Richard

    2009-01-01

    The EcoTurn Class K production prototypes have passed all AAR qualification tests and received conditional approval. The accelerated life test on the second set of seals is in progress. Due to the performance of the first set, no problems are expected.The seal has demonstrated superior performance over the HDL seal in the test lab with virtually zero torque and excellent contamination exclusion and grease retention.

  2. Spin Transfer Torque in Graphene

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Ching; Chen, Zhihong

    2014-03-01

    Graphene is an idea channel material for spin transport due to its long spin diffusion length. To develop graphene based spin logic, it is important to demonstrate spin transfer torque in graphene. Here, we report the experimental measurement of spin transfer torque in graphene nonlocal spin valve devices. Assisted by a small external in-plane magnetic field, the magnetization reversal of the receiving magnet is induced by pure spin diffusion currents from the injector magnet. The magnetization switching is reversible between parallel and antiparallel configurations by controlling the polarity of the applied charged currents. Current induced heating and Oersted field from the nonlocal charge flow have also been excluded in this study. Next, we further enhance the spin angular momentum absorption at the interface of the receiving magnet and graphene channel by removing the tunneling barrier in the receiving magnet. The device with a tunneling barrier only at the injector magnet shows a comparable nonlocal spin valve signal but lower electrical noise. Moreover, in the same preset condition, the critical charge current density for spin torque in the single tunneling barrier device shows a substantial reduction if compared to the double tunneling barrier device.

  3. Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Valish, Dana J.

    2011-01-01

    In 2009 and early 2010, a test was performed to quantify the torque required to manipulate joints in several existing operational and prototype space suits in an effort to develop joint torque requirements appropriate for a new Constellation Program space suit system. The same test method was levied on the Constellation space suit contractors to verify that their suit design meets the requirements. However, because the original test was set up and conducted by a single test operator there was some question as to whether this method was repeatable enough to be considered a standard verification method for Constellation or other future space suits. In order to validate the method itself, a representative subset of the previous test was repeated, using the same information that would be available to space suit contractors, but set up and conducted by someone not familiar with the previous test. The resultant data was compared using graphical and statistical analysis and a variance in torque values for some of the tested joints was apparent. Potential variables that could have affected the data were identified and re-testing was conducted in an attempt to eliminate these variables. The results of the retest will be used to determine if further testing and modification is necessary before the method can be validated.

  4. A photometric study of Be stars located in the seismology fields of COROT

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Soto, J.; Fabregat, J.; Suso, J.; Lanzara, M.; Garrido, R.; Hubert, A.-M.; Floquet, M.

    2007-12-01

    Context: In preparation for the COROT mission, an exhaustive photometric study of Be stars located in the seismology fields of the mission has been performed. The very precise and long-time-spanned photometric observations gathered by the COROT satellite will give important clues on the origin of the Be phenomenon. Aims: The aim of this work is to find short-period variable Be stars located in the seismology fields of COROT, and to study and characterise their pulsational properties. Methods: Light curves obtained at the Observatorio de Sierra Nevada, together with data from Hipparcos and ASAS-3 for a total of 84 Be stars, were analysed in order to search for short-term variations. We applied standard Fourier techniques and non-linear least-square fitting to the time series. Results: We found 7 multiperiodic, 21 mono-periodic and 26 non-variable Be stars. Short-term variability was detected in 74% of early-type Be stars and in 31% of mid- to late-type Be stars. We show that non-radial pulsations are more frequent among Be stars than in slow-rotating B stars of the same spectral range. Appendix A is only available in electronic form at http://www.aanda.org

  5. A modified CoRoT detrend algorithm and the discovery of a new planetary companion

    NASA Astrophysics Data System (ADS)

    Boufleur, Rodrigo C.; Emilio, Marcelo; Janot-Pacheco, Eduardo; Andrade, Laerte; Ferraz-Mello, Sylvio; do Nascimento, José-Dias, Jr.; de La Reza, Ramiro

    2018-01-01

    We present MCDA, a modification of the COnvection ROtation and planetary Transits (CoRoT) detrend algorithm (CDA) suitable to detrend chromatic light curves. By means of robust statistics and better handling of short-term variability, the implementation decreases the systematic light-curve variations and improves the detection of exoplanets when compared with the original algorithm. All CoRoT chromatic light curves (a total of 65 655) were analysed with our algorithm. Dozens of new transit candidates and all previously known CoRoT exoplanets were rediscovered in those light curves using a box-fitting algorithm. For three of the new cases, spectroscopic measurements of the candidates' host stars were retrieved from the ESO Science Archive Facility and used to calculate stellar parameters and, in the best cases, radial velocities. In addition to our improved detrend technique, we announce the discovery of a planet that orbits a 0.79_{-0.09}^{+0.08} R⊙ star with a period of 6.718 37 ± 0.000 01 d and has 0.57_{-0.05}^{+0.06} RJ and 0.15 ± 0.10 MJ. We also present the analysis of two cases in which parameters found suggest the existence of possible planetary companions.

  6. A Model for Plasma Transport in a Corotation-Dominated Magnetosphere.

    NASA Astrophysics Data System (ADS)

    Pontius, Duane Henry, Jr.

    1988-06-01

    The gross structures of the magnetospheres of the outer planets are decided by processes quite different from those predominant in that of the earth. The terrestrial plasmapause, the boundary beyond which plasma motion is principally determined by magnetospheric interaction with the solar wind, is typically inside geosynchronous orbit. Within the plasmasphere, rotational effects are present, but gravity exceeds the centrifugal force of corotation. In contrast, the Jovian plasmasphere extends to a distance at least twenty times farther than synchronous orbit, affording a large region where rotational effects are expected to he clearly manifest (Brice and Ioannidis, 1970). The goal of this thesis is to develop an appropriate theoretical model for treating the problem of plasma transport in a corotation dominated plasmasphere. The model presented here is intended to describe the radial transport of relatively cold plasma having an azimuthally uniform distribution in a dipolar magnetic field. The approach is conceptually similar to that of the radial diffusion model in that small scale motions are examined to infer global consequences, but the physical understanding of those small scale motions is quite different. In particular, discrete flux tubes of small cross section are assumed to move over distances large compared to their widths. The present model also differs from the corotating convection model by introducing a mechanism whereby the conservation of flux tube content along flowlines is violated. However, it is quite possible that a global convection pattern co -exists with the motions described here, leading to longitudinal asymmetries in the plasma distribution.

  7. Preliminary results on noncollocated torque control of space robot actuators

    NASA Technical Reports Server (NTRS)

    Tilley, Scott W.; Francis, Colin M.; Emerick, Ken; Hollars, Michael G.

    1989-01-01

    In the Space Station era, more operations will be performed robotically in space in the areas of servicing, assembly, and experiment tending among others. These robots may have various sets of requirements for accuracy, speed, and force generation, but there will be design constraints such as size, mass, and power dissipation limits. For actuation, a leading motor candidate is a dc brushless type, and there are numerous potential drive trains each with its own advantages and disadvantages. This experiment uses a harmonic drive and addresses some inherent limitations, namely its backdriveability and low frequency structural resonances. These effects are controlled and diminished by instrumenting the actuator system with a torque transducer on the output shaft. This noncollocated loop is closed to ensure that the commanded torque is accurately delivered to the manipulator link. The actuator system is modelled and its essential parameters identified. The nonlinear model for simulations will include inertias, gearing, stiction, flexibility, and the effects of output load variations. A linear model is extracted and used for designing the noncollocated torque and position feedback loops. These loops are simulated with the structural frequency encountered in the testbed system. Simulation results are given for various commands in position. The use of torque feedback is demonstrated to yield superior performance in settling time and positioning accuracy. An experimental setup being finished consists of a bench mounted motor and harmonic drive actuator system. A torque transducer and two position encoders, each with sufficient resolution and bandwidth, will provide sensory information. Parameters of the physical system are being identified and matched to analytical predictions. Initial feedback control laws will be incorporated in the bench test equipment and various experiments run to validate the designs. The status of these experiments is given.

  8. Tool for Coupling a Torque Wrench to a Round Cable Connector

    NASA Technical Reports Server (NTRS)

    Hacker, Scott C.; Dean, Richard J.; Burge, Scott W.

    2006-01-01

    A tool makes it possible to couple a torque wrench to an externally knurled, internally threaded, round cable connector. The purpose served by the tool is to facilitate the tightening of multiple such connectors (or the repeated tightening of the same connector) to repeatable torques. The design of a prior cable-connector/ torque-wrench coupling tool provided for application of the torque-wrench jaws to a location laterally offset from the axis of rotation of the cable connector, making it necessary to correct the torque reading for the offset. Unlike the design of the prior tool, the design of the present tool provides for application of the torque-wrench jaws to a location on the axis of rotation, obviating correction of the torque reading for offset. The present tool (see figure) consists of a split collet containing a slot that provides clearance for inserting and bending the cable, a collet-locking sleeve, a collet-locking nut, and a torque-wrench adaptor that is press-fit onto the collet. Once the collet is positioned on the cable connector, the collet-locking nut is turned to force the collet-locking sleeve over the collet, compressing the collet through engagement of tapered surfaces on the outside of the collet and the inside of the locking sleeve. Because the collet is split and therefore somewhat flexible, this compression forces the collet inward to grip the connector securely. The torque wrench is then applied to the torque-wrench adaptor in the usual manner for torquing a nut or a bolt.

  9. Quantifying anti-gravity torques in the design of a powered exoskeleton.

    PubMed

    Ragonesi, Daniel; Agrawal, Sunil; Sample, Whitney; Rahman, Tariq

    2011-01-01

    Designing an upper extremity exoskeleton for people with arm weakness requires knowledge of the passive and active residual force capabilities of users. This paper experimentally measures the passive gravitational torques of 3 groups of subjects: able-bodied adults, able bodied children, and children with neurological disabilities. The experiment involves moving the arm to various positions in the sagittal plane and measuring the gravitational force at the wrist. This force is then converted to static gravitational torques at the elbow and shoulder. Data are compared between look-up table data based on anthropometry and empirical data. Results show that the look-up torques deviate from experimentally measured torques as the arm reaches up and down. This experiment informs designers of Upper Limb orthoses on the contribution of passive human joint torques.

  10. HD 50844: a new look at δ Scuti stars from CoRoT space photometry

    NASA Astrophysics Data System (ADS)

    Poretti, E.; Michel, E.; Garrido, R.; Lefèvre, L.; Mantegazza, L.; Rainer, M.; Rodríguez, E.; Uytterhoeven, K.; Amado, P. J.; Martín-Ruiz, S.; Moya, A.; Niemczura, E.; Suárez, J. C.; Zima, W.; Baglin, A.; Auvergne, M.; Baudin, F.; Catala, C.; Samadi, R.; Alvarez, M.; Mathias, P.; Paparò, M.; Pápics, P.; Plachy, E.

    2009-10-01

    Context: Aims: This work presents the results obtained by CoRoT on HD 50844, the only δ Sct star observed in the CoRoT initial run (57.6 d). The aim of these CoRoT observations was to investigate and characterize for the first time the pulsational behaviour of a δ Sct star, when observed at a level of precision and with a much better duty cycle than from the ground. Methods: The 140 016 datapoints were analysed using independent approaches (SigSpec software and different iterative sine-wave fittings) and several checks performed (splitting of the timeseries in different subsets, investigation of the residual light curves and spectra). A level of 10-5 mag was reached in the amplitude spectra of the CoRoT timeseries. The space monitoring was complemented by ground-based high-resolution spectroscopy, which allowed the mode identification of 30 terms. Results: The frequency analysis of the CoRoT timeseries revealed hundreds of terms in the frequency range 0-30 d-1. All the cross-checks confirmed this new result. The initial guess that δ Sct stars have a very rich frequency content is confirmed. The spectroscopic mode identification gives theoretical support since very high-degree modes (up to ℓ=14) are identified. We also prove that cancellation effects are not sufficient in removing the flux variations associated to these modes at the noise level of the CoRoT measurements. The ground-based observations indicate that HD 50844 is an evolved star that is slightly underabundant in heavy elements, located on the Terminal Age Main Sequence. Probably due to this unfavourable evolutionary status, no clear regular distribution is observed in the frequency set. The predominant term (f_1=6.92 d-1) has been identified as the fundamental radial mode combining ground-based photometric and spectroscopic data. Conclusions: The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria

  11. Asteroseismology and mass loss in Be stars. Study with CoRoT

    NASA Astrophysics Data System (ADS)

    Diago, P. D.

    The general aim of this work is the study of Be stars with the CoRoT space mission. The mechanisms responsible of the production and dynamics of the circumstellar gas in Be stars are still not constrained. Observations of non-radial pulsation beating phenomena connected to outbursts point toward a relevance of pulsation, but this mechanism cannot be generalized. In this regard, the observation of classical Be stars with the high-precision CoRoT satellite is providing important keys to understand the physics of these objects and the nature of the Be phenomenon. In order to study the light variations of the selected stars we use photometric and spectroscopic observations. These observations allow us to extract frequencies, amplitudes and phases of these variations. As we will show, these light variations can be connected with pulsations on the stellar surface. For carrying out the frequency analysis we have developed a new code based on standard Fourier analysis. The point is that this code, called PASPER, allows the frequency analysis of large sets of light curves in an automatic mode. This Ph.D. thesis is arranged as follows: In the first three Chapters we describe the scientific framework of this project, giving a brief description on Asteroseismology, presenting the current status of Be stars, and describing the basics of the Fourier analysis and the rudiments of the time series analysis. At the early begin of this Ph.D. thesis, the CoRoT satellite was still on ground getting ready for the launch. In this context, we perform a search for short-period B and Be star variables in the low metallicity environment of the Magellanic Clouds. This study constitutes the Part I of this Ph.D. thesis. This Part has a double goal: i) to test the frequency analysis codes; and ii) to detect observationally beta Cephei and SPB-like B-type pulsators in low metallicity environments, actually not predicted by the pulsational theory and models. This constitutes the PartI. Part II is

  12. High Detent Torque Rotary Actuator Development

    NASA Astrophysics Data System (ADS)

    Santos, I.; Sainz, I.; Allegranza, C.

    2015-09-01

    In the frame of an ESA ARTES 5 Contract, SENER has performed the design, manufacturing and testing at component and mechanism levels of a High Detent Torque Rotary Actuator (DTA in short), i.e. with high capability to hold a payload when unpowered.Two configurations were developed to allow the use on specific application flight opportunity; both are identical in terms of architecture, lubrication, structural and thermal design. The exception is the angular position sensor type: the DTA 100 with contactless sensors and the DTA 120 with potentiometers.The DTA is a fully european technology. This paper provides a synthesis of the obtained parameters in front of the requirements, the evolution from the initial concept to the final configuration and the results of the extensive test campaign (DTA 120). Lessons learned and the readiness for use at upper level are also highlighted.

  13. Quantifying anti-gravity torques for the design of a powered exoskeleton.

    PubMed

    Ragonesi, Daniel; Agrawal, Sunil K; Sample, Whitney; Rahman, Tariq

    2013-03-01

    Designing an upper extremity exoskeleton for people with arm weakness requires knowledge of the joint torques due to gravity and joint stiffness, as well as, active residual force capabilities of users. The objective of this research paper is to describe the characteristics of the upper limb of children with upper limb impairment. This paper describes the experimental measurements of the torque on the upper limb due to gravity and joint stiffness of three groups of subjects: able-bodied adults, able-bodied children, and children with neuromuscular disabilities. The experiment involves moving the arm to various positions in the sagittal plane and measuring the resultant force at the forearm. This force is then converted to torques at the elbow and shoulder. These data are compared to a two-link lumped mass model based on anthropomorphic data. Results show that the torques based on anthropometry deviate from experimentally measured torques as the arm goes through the range. Subjects with disabilities also maximally pushed and pulled against the force sensor to measure maximum strength as a function of arm orientation. For all subjects, the maximum voluntary applied torque at the shoulder and elbow in the sagittal plane was found to be lower than gravity torques throughout the disabled subjects' range of motion. This experiment informs designers of upper limb orthoses on the contribution of passive human joint torques due to gravity and joint stiffness and the strength capability of targeted users.

  14. Investigation of Motorcycle Steering Torque Components

    NASA Astrophysics Data System (ADS)

    Cossalter, V.; Lot, R.; Massaro, M.; Peretto, M.

    2011-10-01

    When driving along a circular path, the rider controls a motorcycle mainly by the steering torque. This work addresses an in-depth analysis of the steady state cornering and in particular the decomposition of the motorcycle steering torque in its main components, such as road-tyre forces, gyroscopic torques, centrifugal and gravity effects. A detailed and experimentally validated multibody model of the motorcycle is used herein to analyze the steering torque components at different speeds and lateral accelerations. First the road tests are compared with the numerical results for three different vehicles and then a numerical investigation is carried out to decompose the steering torque. Finally, the effect of longitudinal acceleration and deceleration on steering torque components is presented.

  15. Development of a Portable Torque Wrench Tester

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Zhang, Q.; Gou, C.; Su, D.

    2018-03-01

    A portable torque wrench tester (PTWT) with calibration range from 0.5 Nm to 60 Nm has been developed and evaluated for periodic or on-site calibration of setting type torque wrenches, indicating type torque wrenches and hand torque screwdrivers. The PTWT is easy to carry with weight about 10 kg, simple and efficient operation and energy saving with an automatic loading and calibrating system. The relative expanded uncertainty of torque realized by the PTWT was estimated to be 0.8%, with the coverage factor k=2. A comparison experiment has been done between the PTWT and a reference torque standard at our laboratory. The consistency between these two devices under the claimed uncertainties was verified.

  16. Heat-driven spin torques in antiferromagnets

    NASA Astrophysics Data System (ADS)

    Białek, Marcin; Bréchet, Sylvain; Ansermet, Jean-Philippe

    2018-04-01

    Heat-driven magnetization damping, which is a linear function of a temperature gradient, is predicted in antiferromagnets by considering the sublattice dynamics subjected to a heat-driven spin torque. This points to the possibility of achieving spin torque oscillator behavior. The model is based on the magnetic Seebeck effect acting on sublattices which are exchange coupled. The heat-driven spin torque is estimated and the feasibility of detecting this effect is discussed.

  17. Passive and active floating torque during swimming.

    PubMed

    Kjendlie, Per-Ludvik; Stallman, Robert Keig; Stray-Gundersen, James

    2004-10-01

    The purpose of this study was to examine the effect of passive underwater torque on active body angle with the horizontal during front crawl swimming and to assess the effect of body size on passive torque and active body angle. Additionally, the effects of passive torque, body angle and hydrostatic lift on maximal sprinting performance were addressed. Ten boys [aged 11.7 (0.8) years] and 12 male adult [aged 21.4 (3.7) years] swimmers volunteered to participate. Their body angle with the horizontal was measured at maximal velocity, and at two submaximal velocities using an underwater video camera system. Passive torque and hydrostatic lift were measured during an underwater weighing procedure, and the center of mass and center of volume were determined. The results showed that passive torque correlated significantly with the body angle at a velocity 63% of v(max) ( alpha(63) r=-0.57), and that size-normalized passive torque correlated significantly with the alpha(63) and alpha(77) (77% of v(max)) with r=-0.59 and r=-0.54 respectively. Hydrostatic lift correlated with alpha(63) with r=-0.45. The negative correlation coefficients are suggested to be due to the adults having learned to overcome passive torque when swimming at submaximal velocities by correcting their body angle. It is concluded that at higher velocities the passive torque and hydrostatic lift do not influence body angle during swimming. At a velocity of 63% of v(max), hydrostatic lift and passive torque influences body angle. Passive torque and size-normalized passive torque increases with body size. When corrected for body size, hydrostatic lift and passive torque did not influence the maximal sprinting velocity.

  18. Viscous Torques on a Levitating Body

    NASA Technical Reports Server (NTRS)

    Busse, F.; Wang, T.

    1982-01-01

    New analytical expressions for viscous torque generated by orthogonal sound waves agree well with experiment. It is possible to calculate torque on an object levitated in a fluid. Levitation has applications in containerless materials processing, coating, and fabrication of small precision parts. Sound waves cause fluid particles to move in elliptical paths and induce azimuthal circulation in boundary layer, giving rise to time-averaged torque.

  19. Zero-torque spanner wrench

    NASA Technical Reports Server (NTRS)

    Friedell, M. V.

    1980-01-01

    Wrench converts gripping action of hand to rotary motion without imparting reactive moments or forces on part being turned or on operator. Wrench should be useful in undersea operations and other delicate work where reactive forces and torques have to be controlled. In design for valve tightening, tool resembles cross between conventional spanner wrench and pilers. One handle engages valve body; second handle has ratchet pawl that engages toothed coupling ring on perimeter of valve handle. When operator squeezes wrench handles, valve handle rotates with respect to valve body.

  20. VizieR Online Data Catalog: CoRoT observation log (N2-4.4) (CoRoT, 2009-2016)

    NASA Astrophysics Data System (ADS)

    COROT Team

    2014-03-01

    CoRoT is a space astronomy mission devoted to the study of the variability with time of stars brightness, with an extremely high accuracy (100 times better than from the ground), on very long durations (up to 150 days) and a very high duty cycle (more than 90%). The mission was led by CNES in association with four french laboratories, and 7 participating countries and agencies (Austria, Belgium, Brazil, Germany, Spain, and the ESA Science Programme). The satellite is composed of a PROTEUS platform (the 3rd in the serie), and a unique instrument: a stellar photometer. It has been launched on December 27th 2006 by a Soyuz Rocket, from Baikonour. The mission has lasted almost 6 years (the nominal 3 years duration and a 3 years extension) and has observed more than 160 000 stars. It stopped to send data suddenly on November 2nd 2012. CoRoT is performing Ultra High Precision Photomery of Stars to detect and characterise the variability of their luminosity with two main directions: - variability of the object itself: oscillations, rotation, magnetic activity - variability due to external causes as bodies in orbit around the star: planets and stars The original scientific objectives were focussed on the study of stellar pulsations (asteroseismology) to probe the internal structure of stars, and the detection of small exoplanets through their "transit in front of their host star, and the measurement of their size. This lead to introduce two modes of observations, working simultaneously: - The bright star mode dedicated to very precise seismology of a small sample of bright and closeby stars (data presented in file momentarily named "astero.dat", but should change in the near future to to "bright star.dat") - The faint star mode, observing a very large number of stars at the same time, to detect transits, which are rare events, as they imply the alignment of the star, the planet and the observer (data presented in momentarily named "exo.dat" but should change in the near

  1. Torque limited drive for manual valves

    DOEpatents

    Elliott, Philip G.; Underwood, Daniel E.

    1989-06-06

    The present invention is directed to a torque-limiting handwheel device for preventing manual valves from being damaged due to the application of excessive torque during the opening or closing operation of the valves. Torque can only be applied when ridges in the handwheel assembly engage in channels machined in the face of the baseplate. The amount of torque required for disengagement of the ridges from the channels is determined by the force exerted by various Bellville springs and the inclination of the side faces of the channels.

  2. Torque limited drive for manual valves

    DOEpatents

    Elliott, Philip G.; Underwood, Daniel E.

    1989-01-01

    The present invention is directed to a torque-limiting handwheel device for preventing manual valves from being damaged due to the application of excessive torque during the opening or closing operation of the valves. Torque can only be applied when ridges in the handwheel assembly engage in channels machined in the face of the baseplate. The amount of torque required for disengagement of the ridges from the channels is determined by the force exerted by various Bellville springs and the inclination of the side faces of the channels.

  3. The effect of the use of a counter-torque device on the abutment-implant complex.

    PubMed

    Lang, L A; May, K B; Wang, R F

    1999-04-01

    Little is known about the condition of the abutment-screw joint before loading, after the development of the preload. This study examined the tightening force transmitted to the implant with and without the use of a counter-torque device during the tightening of the abutment screw. Forty Brânemark implants and 10 CeraOne, Estheticone, Procera, and AurAdapt abutments formed the experimental populations. Samples in each group were further divided into 2 groups, 1 group was tightened with a torque controller without the use of a counter-torque device, whereas the other used the counter-torque device. Samples were positioned in a special holder within the grips of a Tohnichi BTG-6 torque gauge for measuring transmitted forces. There were significant differences (P =. 0001) in the tightening forces transmitted to the implant with and without the use of a counter-torque device when tightening the abutment screws. An average of 91% of the recommended preload tightening torque was transmitted to the implant-bone interface in the absence of a counter-torque device. In all abutment systems, less than 10% of the recommended preload tightening torque was transmitted to the implant when the counter-torque device was used.

  4. Mechanics of torque generation in the bacterial flagellar motor

    PubMed Central

    Mandadapu, Kranthi K.; Nirody, Jasmine A.; Berry, Richard M.; Oster, George

    2015-01-01

    The bacterial flagellar motor (BFM) is responsible for driving bacterial locomotion and chemotaxis, fundamental processes in pathogenesis and biofilm formation. In the BFM, torque is generated at the interface between transmembrane proteins (stators) and a rotor. It is well established that the passage of ions down a transmembrane gradient through the stator complex provides the energy for torque generation. However, the physics involved in this energy conversion remain poorly understood. Here we propose a mechanically specific model for torque generation in the BFM. In particular, we identify roles for two fundamental forces involved in torque generation: electrostatic and steric. We propose that electrostatic forces serve to position the stator, whereas steric forces comprise the actual “power stroke.” Specifically, we propose that ion-induced conformational changes about a proline “hinge” residue in a stator α-helix are directly responsible for generating the power stroke. Our model predictions fit well with recent experiments on a single-stator motor. The proposed model provides a mechanical explanation for several fundamental properties of the flagellar motor, including torque–speed and speed–ion motive force relationships, backstepping, variation in step sizes, and the effects of key mutations in the stator. PMID:26216959

  5. Emergence of Chiral Phases in Active Torque Dipole Systems

    NASA Astrophysics Data System (ADS)

    Fialho, Ana; Tjhung, Elsen; Cates, Michael; Marenduzzo, Davide

    The common description of active particles as active force dipoles fails to take into account that active processes in biological systems often exhibit chiral asymmetries, generating active chiral processes and torque dipoles. Examples of such systems include cytoskeleton filaments which interact with motor proteins and beating cilia and flagella. In particular, the generation of active torques by the actomyosin cytoskeleton has been linked to the break of chiral symmetry at a cellular level. This phenomenon could constitute the primary determinant for the break of left-right symmetry in many living organisms, e.g. the position of the human heart within the human body. In order to account for the effects of chirality, we consider active torque dipoles which generate a chiral active stress. We characterize quasi-1D and 2D systems of torque dipoles, using a combination of linear stability analysis and numerical simulations (Lattice Boltzmann). Our results show that activity drives a spontaneous breaking of chiral symmetry, leading to the self-assembly of a chiral phase, in the absence of any thermodynamic interactions favoring cholesteric ordering. At high values of activity, we also observe labyrinthine patterns where the activity-induced chiral ordering is highly frustrated.

  6. Reduction of phase noise in nanowire spin orbit torque oscillators

    PubMed Central

    Yang, Liu; Verba, Roman; Tiberkevich, Vasil; Schneider, Tobias; Smith, Andrew; Duan, Zheng; Youngblood, Brian; Lenz, Kilian; Lindner, Jürgen; Slavin, Andrei N.; Krivorotov, Ilya N.

    2015-01-01

    Spin torque oscillators (STOs) are compact, tunable sources of microwave radiation that serve as a test bed for studies of nonlinear magnetization dynamics at the nanometer length scale. The spin torque in an STO can be created by spin-orbit interaction, but low spectral purity of the microwave signals generated by spin orbit torque oscillators hinders practical applications of these magnetic nanodevices. Here we demonstrate a method for decreasing the phase noise of spin orbit torque oscillators based on Pt/Ni80Fe20 nanowires. We experimentally demonstrate that tapering of the nanowire, which serves as the STO active region, significantly decreases the spectral linewidth of the generated signal. We explain the observed linewidth narrowing in the framework of the Ginzburg-Landau auto-oscillator model. The model reveals that spatial non-uniformity of the spin current density in the tapered nanowire geometry hinders the excitation of higher order spin-wave modes, thus stabilizing the single-mode generation regime. This non-uniformity also generates a restoring force acting on the excited self-oscillatory mode, which reduces thermal fluctuations of the mode spatial position along the wire. Both these effects improve the STO spectral purity. PMID:26592432

  7. Ultrasonic resonant piezoelectric actuator with intrinsic torque measurement.

    PubMed

    Pott, Peter P; Matich, Sebastian; Schlaak, Helmut F

    2012-11-01

    Piezoelectric ultrasonic actuators are widely used in small-scale actuation systems, in which a closed-loop position control is usually utilized. To save an additional torque sensor, the intrinsic measurement capabilities of the piezoelectric material can be employed. To prove feasibility, a motor setup with clearly separated actuation for the friction and driving forces is chosen. The motor concept is based on resonant ultrasonic vibrations. To assess the effects of the direct piezoelectric effect, a capacitance bridge-type circuit has been selected. Signal processing is done by a measurement card with an integrated field-programmable gate array. The motor is used to drive a winch, and different torques are applied by means of weights to be lifted. Assessing the bridge voltage, a good proportionality to the applied torque of 1.47 mV/mN·m is shown. A hysteresis of 1% has been determined. The chosen motor concept is useful for intrinsic torque measurement. However, it provides drawbacks in terms of limited mechanical performance, wear, and thermal losses because of the soft piezoelectric material. Future work will comprise the application of the method to commercially available piezoelectric actuators as well as the implementation of the measurement circuit in an embedded system.

  8. In vivo analysis of insertional torque during pedicle screwing using cortical bone trajectory technique.

    PubMed

    Matsukawa, Keitaro; Yato, Yoshiyuki; Kato, Takashi; Imabayashi, Hideaki; Asazuma, Takashi; Nemoto, Koichi

    2014-02-15

    The insertional torque of pedicle screws using the cortical bone trajectory (CBT) was measured in vivo. To investigate the effectiveness of the CBT technique by measurement of the insertional torque. The CBT follows a mediolateral and caudocephalad directed path, engaging with cortical bone maximally from the pedicle to the vertebral body. Some biomechanical studies have demonstrated favorable characteristics of the CBT technique in cadaveric lumbar spine. However, no in vivo study has been reported on the mechanical behavior of this new trajectory. The insertional torque of pedicle screws using CBT and traditional techniques were measured intraoperatively in 48 consecutive patients. A total of 162 screws using the CBT technique and 36 screws using the traditional technique were compared. In 8 of 48 patients, the side-by-side comparison of 2 different insertional techniques for each vertebra were performed, which formed the H group. In addition, the insertional torque was correlated with bone mineral density. The mean maximum insertional torque of CBT screws and traditional screws were 2.49 ± 0.99 Nm and 1.24 ± 0.54 Nm, respectively. The CBT screws showed 2.01 times higher torque and the difference was significant between the 2 techniques (P < 0.01). In the H group, the insertional torque were 2.71 ± 1.36 Nm in the CBT screws and 1.58 ± 0.44 Nm in the traditional screws. The CBT screws demonstrated 1.71 times higher torque and statistical significance was achieved (P < 0.01). Positive linear correlations between maximum insertional torque and bone mineral density were found in both technique, the correlation coefficient of traditional screws (r = 0.63, P < 0.01) was higher than that of the CBT screws (r = 0.59, P < 0.01). The insertional torque using the CBT technique is about 1.7 times higher than the traditional technique. 2.

  9. MOST detects corotating bright spots on the mid-O-type giant ξ Persei

    NASA Astrophysics Data System (ADS)

    Ramiaramanantsoa, Tahina; Moffat, Anthony F. J.; Chené, André-Nicolas; Richardson, Noel D.; Henrichs, Huib F.; Desforges, Sébastien; Antoci, Victoria; Rowe, Jason F.; Matthews, Jaymie M.; Kuschnig, Rainer; Weiss, Werner W.; Sasselov, Dimitar; Rucinski, Slavek M.; Guenther, David B.

    2014-06-01

    We have used the MOST (Microvariability and Oscillations of STars) microsatellite to obtain four weeks of contiguous high-precision broad-band visual photometry of the O7.5III(n)((f)) star ξ Persei in 2011 November. This star is well known from previous work to show prominent DACs (discrete absorption components) on time-scales of about 2 d from UV spectroscopy and non-radial pulsation with one (l = 3) p-mode oscillation with a period of 3.5 h from optical spectroscopy. Our MOST-orbit (101.4 min) binned photometry fails to reveal any periodic light variations above the 0.1 mmag 3σ noise level for periods of a few hours, while several prominent Fourier peaks emerge at the 1 mmag level in the two-day period range. These longer period variations are unlikely due to pulsations, including gravity modes. From our simulations based upon a simple spot model, we deduce that we are seeing the photometric modulation of several corotating bright spots on the stellar surface. In our model, the starting times (random) and lifetimes (up to several rotations) vary from one spot to another yet all spots rotate at the same period of 4.18 d, the best-estimated rotation period of the star. This is the first convincing reported case of corotating bright spots on an O star, with important implications for drivers of the DACs (resulting from corotating interaction regions) with possible bright-spot generation via a breakout at the surface of a global magnetic field generated by a subsurface convection zone.

  10. Presenting new exoplanet candidates for the CoRoT chromatic light curves

    NASA Astrophysics Data System (ADS)

    Boufleur, Rodrigo; Emilio, Marcelo; Andrade, Laerte; Janot-Pacheco, Eduardo; De La Reza, Ramiro

    2015-08-01

    One of the most promising topics of modern Astronomy is the discovery and characterization of extrasolar planets due to its importance for the comprehension of planetary formation and evolution. Missions like MOST (Microvariability and Oscillations of Stars Telescope) (Walker et al., 2003) and especially the satellites dedicated to the search for exoplanets CoRoT (Convection, Rotation and planetary Transits) (Baglin et al., 1998) and Kepler (Borucki et al., 2003) produced a great amount of data and together account for hundreds of new discoveries. An important source of error in the search for planets with light curves obtained from space observatories are the displacements occuring in the data due to external causes. This artificial charge generation phenomenon associated with the data is mainly caused by the impact of high energy particles onto the CCD (Pinheiro da Silva et al. 2008), although other sources of error, not as well known also need to be taken into account. So, an effective analysis of the light curves depends a lot on the mechanisms employed to deal with these phenomena. To perform our research, we developed and applied a different method to fix the light curves, the CDAM (Corot Detrend Algorithm Modified), inspired by the work of Mislis et al. (2012). The paradigms were obtained using the BLS method (Kovács et al., 2002). After a semiautomatic pre-analysis associated with a visual inspection of the planetary transits signatures, we obtained dozens of exoplanet candidates in very good agreement with the literature and also new unpublished cases. We present the study results and characterization of the new cases for the chromatic channel public light curves of the CoRoT satellite.

  11. Insertion torque, resonance frequency, and removal torque analysis of microimplants.

    PubMed

    Tseng, Yu-Chuan; Ting, Chun-Chan; Du, Je-Kang; Chen, Chun-Ming; Wu, Ju-Hui; Chen, Hong-Sen

    2016-09-01

    This study aimed to compare the insertion torque (IT), resonance frequency (RF), and removal torque (RT) among three microimplant brands. Thirty microimplants of the three brands were used as follows: Type A (titanium alloy, 1.5-mm × 8-mm), Type B (stainless steel, 1.5-mm × 8-mm), and Type C (titanium alloy, 1.5-mm × 9-mm). A synthetic bone with a 2-mm cortical bone and bone marrow was used. Each microimplant was inserted into the synthetic bone, without predrilling, to a 7 mm depth. The IT, RF, and RT were measured in both vertical and horizontal directions. One-way analysis of variance and Spearman's rank correlation coefficient tests were used for intergroup and intragroup comparisons, respectively. In the vertical test, the ITs of Type C (7.8 Ncm) and Type B (7.5 Ncm) were significantly higher than that of Type A (4.4 Ncm). The RFs of Type C (11.5 kHz) and Type A (10.2 kHz) were significantly higher than that of Type B (7.5 kHz). Type C (7.4 Ncm) and Type B (7.3 Ncm) had significantly higher RTs than did Type A (4.1 Ncm). In the horizontal test, both the ITs and RTs were significantly higher for Type C, compared with Type A. No significant differences were found among the groups, and the study hypothesis was accepted. Type A had the lowest inner/outer diameter ratio and widest apical facing angle, engendering the lowest IT and highest RF values. However, no significant correlations in the IT, RF, and RT were observed among the three groups. Copyright © 2016. Published by Elsevier Taiwan.

  12. Affirmation of triggered Jovian radio emissions and their attribution to corotating radio lasers

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1985-01-01

    It is argued that the original statistical evidence for the existence of triggered radio emissions and corotating radio lasers on Jupiter remains valid notwithstanding the critique of Desch and Kaiser (1985). The Voyager radio spectrograms used to identify the triggered emissions are analyzed and the results are discussed. It is shown that the critique by Desch and Kaiser is unjustified because it is not based on the original event criteria, i.e., the correlation between the occurrence of Jovian auroral kilometric radiation and fast-drift type III solar bursts in the same frequency.

  13. Intramuscular Pressure of Tibialis Anterior Reflects Ankle Torque but Does Not Follow Joint Angle-Torque Relationship.

    PubMed

    Ateş, Filiz; Davies, Brenda L; Chopra, Swati; Coleman-Wood, Krista; Litchy, William J; Kaufman, Kenton R

    2018-01-01

    Intramuscular pressure (IMP) is the hydrostatic fluid pressure that is directly related to muscle force production. Electromechanical delay (EMD) provides a link between mechanical and electrophysiological quantities and IMP has potential to detect local electromechanical changes. The goal of this study was to assess the relationship of IMP with the mechanical and electrical characteristics of the tibialis anterior muscle (TA) activity at different ankle positions. We hypothesized that (1) the TA IMP and the surface EMG (sEMG) and fine-wire EMG (fwEMG) correlate to ankle joint torque, (2) the isometric force of TA increases at increased muscle lengths, which were imposed by a change in ankle angle and IMP follows the length-tension relationship characteristics, and (3) the electromechanical delay (EMD) is greater than the EMD of IMP during isometric contractions. Fourteen healthy adults [7 female; mean ( SD ) age = 26.9 (4.2) years old with 25.9 (5.5) kg/m 2 body mass index] performed (i) three isometric dorsiflexion (DF) maximum voluntary contraction (MVC) and (ii) three isometric DF ramp contractions from 0 to 80% MVC at rate of 15% MVC/second at DF, Neutral, and plantarflexion (PF) positions. Ankle torque, IMP, TA fwEMG, and TA sEMG were measured simultaneously. The IMP, fwEMG, and sEMG were significantly correlated to the ankle torque during ramp contractions at each ankle position tested. This suggests that IMP captures in vivo mechanical properties of active muscles. The ankle torque changed significantly at different ankle positions however, the IMP did not reflect the change. This is explained with the opposing effects of higher compartmental pressure at DF in contrast to the increased force at PF position. Additionally, the onset of IMP activity is found to be significantly earlier than the onset of force which indicates that IMP can be designed to detect muscular changes in the course of neuromuscular diseases impairing electromechanical transmission.

  14. 14 CFR 23.361 - Engine torque.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1... rational analysis, a factor of 1.6 must be used. (b) For turbine engine installations, the engine mounts... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine torque. 23.361 Section 23.361...

  15. 14 CFR 25.361 - Engine torque.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque.... (b) For turbine engine installations, the engine mounts and supporting structure must be designed to... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 25.361 Section 25.361...

  16. 14 CFR 23.361 - Engine torque.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1... rational analysis, a factor of 1.6 must be used. (b) For turbine engine installations, the engine mounts... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine torque. 23.361 Section 23.361...

  17. 14 CFR 23.361 - Engine torque.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1... rational analysis, a factor of 1.6 must be used. (b) For turbine engine installations, the engine mounts... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine torque. 23.361 Section 23.361...

  18. 14 CFR 25.361 - Engine torque.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque.... (b) For turbine engine installations, the engine mounts and supporting structure must be designed to... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine torque. 25.361 Section 25.361...

  19. 14 CFR 25.361 - Engine torque.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque.... (b) For turbine engine installations, the engine mounts and supporting structure must be designed to... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine torque. 25.361 Section 25.361...

  20. 14 CFR 23.361 - Engine torque.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1... rational analysis, a factor of 1.6 must be used. (b) For turbine engine installations, the engine mounts... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine torque. 23.361 Section 23.361...

  1. 14 CFR 23.361 - Engine torque.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1... rational analysis, a factor of 1.6 must be used. (b) For turbine engine installations, the engine mounts... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 23.361 Section 23.361...

  2. 14 CFR 25.361 - Engine torque.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque.... (b) For turbine engine installations, the engine mounts and supporting structure must be designed to... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine torque. 25.361 Section 25.361...

  3. 14 CFR 25.361 - Engine torque.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque.... (b) For turbine engine installations, the engine mounts and supporting structure must be designed to... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine torque. 25.361 Section 25.361...

  4. Radiation Forces and Torques without Stress (Tensors)

    ERIC Educational Resources Information Center

    Bohren, Craig F.

    2011-01-01

    To understand radiation forces and torques or to calculate them does not require invoking photon or electromagnetic field momentum transfer or stress tensors. According to continuum electromagnetic theory, forces and torques exerted by radiation are a consequence of electric and magnetic fields acting on charges and currents that the fields induce…

  5. Transiting exoplanets from the CoRoT space mission. XI. CoRoT-8b: a hot and dense sub-Saturn around a K1 dwarf

    NASA Astrophysics Data System (ADS)

    Bordé, P.; Bouchy, F.; Deleuil, M.; Cabrera, J.; Jorda, L.; Lovis, C.; Csizmadia, S.; Aigrain, S.; Almenara, J. M.; Alonso, R.; Auvergne, M.; Baglin, A.; Barge, P.; Benz, W.; Bonomo, A. S.; Bruntt, H.; Carone, L.; Carpano, S.; Deeg, H.; Dvorak, R.; Erikson, A.; Ferraz-Mello, S.; Fridlund, M.; Gandolfi, D.; Gazzano, J.-C.; Gillon, M.; Guenther, E.; Guillot, T.; Guterman, P.; Hatzes, A.; Havel, M.; Hébrard, G.; Lammer, H.; Léger, A.; Mayor, M.; Mazeh, T.; Moutou, C.; Pätzold, M.; Pepe, F.; Ollivier, M.; Queloz, D.; Rauer, H.; Rouan, D.; Samuel, B.; Santerne, A.; Schneider, J.; Tingley, B.; Udry, S.; Weingrill, J.; Wuchterl, G.

    2010-09-01

    Aims: We report the discovery of CoRoT-8b, a dense small Saturn-class exoplanet that orbits a K1 dwarf in 6.2 days, and we derive its orbital parameters, mass, and radius. Methods: We analyzed two complementary data sets: the photometric transit curve of CoRoT-8b as measured by CoRoT and the radial velocity curve of CoRoT-8 as measured by the HARPS spectrometer. Results: We find that CoRoT-8b is on a circular orbit with a semi-major axis of 0.063 ± 0.001 AU. It has a radius of 0.57 ± 0.02 RJ, a mass of 0.22 ± 0.03 MJ, and therefore a mean density of 1.6 ± 0.1 g cm-3. Conclusions: With 67% of the size of Saturn and 72% of its mass, CoRoT-8b has a density comparable to that of Neptune (1.76 g cm-3). We estimate its content in heavy elements to be 47-63 {M}_⊕, and the mass of its hydrogen-helium envelope to be 7-23 {M}_⊕. At 0.063 AU, the thermal loss of hydrogen of CoRoT-8b should be no more than 0.1% over an assumed integrated lifetime of 3 Ga. Observations made with SOPHIE spectrograph at Observatoire de Haute Provence, France (PNP.07B.MOUT), and the HARPS spectrograph at ESO La Silla Observatory (081.C-0388 and 083.C-0186). The CoRoT space mission, launched on December 27, 2006, has been developed and is operated by the CNES with the contribution of Austria, Belgium, Brasil, ESA, Germany, and Spain.Both data sets are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/520/A66

  6. Experimental investigation of the fracture torque of orthodontic anchorage screws.

    PubMed

    Reimann, Susanne; Ayubi, Mustafa; McDonald, Fraser; Bourauel, Christoph

    2016-07-01

    In contrast to dental implants that remain in the bone, orthodontic anchorage screws serve as temporary anchorage for orthodontic tooth movement and are removed after completion of treatment. The aim of the present study was to evaluate the stability of various commercially available orthodontic anchorage screws against torsion. The torsional deflection of ten different orthodontic anchorage screws from different manufacturers [Ortho Easy Pin (Forestadent), Benefit, quattro (both PSM Medical Solutions), Vector TAS (Ormco), AbsoAnchor(®) (DENTOS Inc.), OrthoLox, Dual-Top JA (both Promedia Medizintechnik), TAD (3M Unitek), INFINITAS (ODS) and tomas(®) (Dentaurum)] was tested in vitro in relation to the rotation angle using a self-developed set-up. The screws were positioned in a resin model with bone-like material properties. Shear tests were performed using the manufacturers' own screwdrivers. Ten screws each were turned manually until a sudden drop in the measured torque occurred. At this point, the screw head was twisted off. Fracture torque and the torque at which the screws deformed plastically were evaluated. Mean values and standard deviations were calculated. According to the German industrial standard, the torque of orthodontic anchorage screws should reach at least 20 Ncm. The majority of the screws reached this nominal torque; however, a few screws fractured before reaching this value. Five screw types displayed plastic deformation below the threshold, at approximately 16 Ncm. The results suggest that orthodontic anchorage screws generally meet the requirements of the standard and ensure safe clinical use. However, according to the present data, it may be assumed that a portion of the screws will be plastically deformed upon removal.

  7. Somatotype Variables Related to Muscle Torque and Power in Judoists

    PubMed Central

    Lewandowska, Joanna; Buśko, Krzysztof; Pastuszak, Anna; Boguszewska, Katarzyna

    2011-01-01

    The purpose of this study was to examine the relationship between somatotype, muscle torque and power output in judoists. Thirteen judoists (age 18.4±3.1 years, body height 178.6±8.2 cm, body mass 82.3±15.9 kg) volunteered to participate in this study. Somatotype was determined using the Heath-Carter method. Maximal muscle torques of elbow, shoulder, knee, hip and trunk flexors as well as extensors were measured under static conditions. Power outputs were measured in 5 maximal cycle ergometer exercise bouts, 10 s each, at increasing external loads equal to 2.5, 5.0, 7.5, 10.0 and 12.5% of body weight. The Pearson’s correlation coefficients were calculated between all parameters. The mean somatotype of judoists was: 3.5-5.9-1.8 (values for endomorphy, mesomorphy and ectomorphy, respectively). The values (mean±SD) of sum of muscle torque of ten muscle groups (TOTAL) was 3702.2±862.9 N x m. The power output ranged from 393.2±79.4 to 1077.2±275.4 W. The values of sum of muscle torque of right and left upper extremities (SUE), sum of muscle torque of right and left lower extremities (SLE), sum of muscle torque of the trunk (ST) and TOTAL were significantly correlated with the mesomorphic component (0.68, 0.80, 0.71 and 0.78, respectively). The ectomorphic component correlated significantly with values of SUE, SLE, ST and TOTAL (−0.69, −0.81, −0.71 and −0.79, respectively). Power output was also strongly correlated with both mesomorphy (positively) and ectomorphy (negatively). The results indicated that the values of mesomorphic and ectomorphic somatotype components influence muscle torque and power output, thus body build could be an important factor affecting results in judo. PMID:23487284

  8. Accretion and Propeller Torque in the Spin-Down Phase of Neutron Stars: The case of transitional millisecond pulsar PSR J1023+0038

    NASA Astrophysics Data System (ADS)

    Ertan, Ünal

    2018-05-01

    The spin-down rate of PSR J1023+0038, one of the three confirmed transitional millisecond pulsars, was measured in both radio pulsar (RMSP) and X-ray pulsar (LMXB) states. The spin-down rate in the LMXB state is only about 27% greater than in the RMSP state (Jaodand et al. 2016). The inner disk radius, rin, obtained recently by Ertan (2017) for the propeller phase, which is close to the co-rotation radius, rco, and insensitive to the mass-flow rate, can explain the observed torques together with the X-ray luminosities, Lx . The X-ray pulsar and radio pulsar states correspond to accretion with spin-down (weak propeller) and strong propeller situations respectively. Several times increase in the disk mass-flow rate takes the source from the strong propeller with a low Lx to the weak propeller with a higher Lx powered by accretion on to the star. The resultant decrease in rin increases the magnetic torque slightly, explaining the observed small increase in the spin-down rate. We have found that the spin-up torque exerted by accreting material is much smaller than the magnetic spin-down torque exerted by the disk in the LMXB state.

  9. Active motion assisted by correlated stochastic torques.

    PubMed

    Weber, Christian; Radtke, Paul K; Schimansky-Geier, Lutz; Hänggi, Peter

    2011-07-01

    The stochastic dynamics of an active particle undergoing a constant speed and additionally driven by an overall fluctuating torque is investigated. The random torque forces are expressed by a stochastic differential equation for the angular dynamics of the particle determining the orientation of motion. In addition to a constant torque, the particle is supplemented by random torques, which are modeled as an Ornstein-Uhlenbeck process with given correlation time τ(c). These nonvanishing correlations cause a persistence of the particles' trajectories and a change of the effective spatial diffusion coefficient. We discuss the mean square displacement as a function of the correlation time and the noise intensity and detect a nonmonotonic dependence of the effective diffusion coefficient with respect to both correlation time and noise strength. A maximal diffusion behavior is obtained if the correlated angular noise straightens the curved trajectories, interrupted by small pirouettes, whereby the correlated noise amplifies a straightening of the curved trajectories caused by the constant torque.

  10. Torque Measurement at the Single Molecule Level

    PubMed Central

    Forth, Scott; Sheinin, Maxim Y.; Inman, James; Wang, Michelle D.

    2017-01-01

    Methods for exerting and measuring forces on single molecules have revolutionized the study of the physics of biology. However, it is often the case that biological processes involve rotation or torque generation, and these parameters have been more difficult to access experimentally. Recent advances in the single molecule field have led to the development of techniques which add the capability of torque measurement. By combining force, displacement, torque, and rotational data, a more comprehensive description of the mechanics of a biomolecule can be achieved. In this review, we highlight a number of biological processes for which torque plays a key mechanical role. We describe the various techniques that have been developed to directly probe the torque experienced by a single molecule, and detail a variety of measurements made to date using these new technologies. We conclude by discussing a number of open questions and propose systems of study which would be well suited for analysis with torsional measurement techniques. PMID:23541162

  11. Calibration of the optical torque wrench.

    PubMed

    Pedaci, Francesco; Huang, Zhuangxiong; van Oene, Maarten; Dekker, Nynke H

    2012-02-13

    The optical torque wrench is a laser trapping technique that expands the capability of standard optical tweezers to torque manipulation and measurement, using the laser linear polarization to orient tailored microscopic birefringent particles. The ability to measure torque of the order of kBT (∼4 pN nm) is especially important in the study of biophysical systems at the molecular and cellular level. Quantitative torque measurements rely on an accurate calibration of the instrument. Here we describe and implement a set of calibration approaches for the optical torque wrench, including methods that have direct analogs in linear optical tweezers as well as introducing others that are specifically developed for the angular variables. We compare the different methods, analyze their differences, and make recommendations regarding their implementations.

  12. Estimating Torque Imparted on Spacecraft Using Telemetry

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.; Wang, Eric K.; Macala, Glenn A.

    2013-01-01

    There have been a number of missions with spacecraft flying by planetary moons with atmospheres; there will be future missions with similar flybys. When a spacecraft such as Cassini flies by a moon with an atmosphere, the spacecraft will experience an atmospheric torque. This torque could be used to determine the density of the atmosphere. This is because the relation between the atmospheric torque vector and the atmosphere density could be established analytically using the mass properties of the spacecraft, known drag coefficient of objects in free-molecular flow, and the spacecraft velocity relative to the moon. The density estimated in this way could be used to check results measured by science instruments. Since the proposed methodology could estimate disturbance torque as small as 0.02 N-m, it could also be used to estimate disturbance torque imparted on the spacecraft during high-altitude flybys.

  13. In-line rotating capacitive torque sensor

    DOEpatents

    Kronberg, J.W.

    1991-09-10

    Disclosed are a method and apparatus for measuring torques developed along a rotating mechanical assembly comprising a rotating inner portion and a stationary outer portion. The rotating portion has an electrically-conductive flexing section fitted between two coaxial shafts in a configuration which varies radially in accordance with applied torque. The stationary portion comprises a plurality of conductive plates forming a surface concentric with and having a diameter slightly larger than the diameter of the rotating portion. The capacitance between the outer, nonrotating and inner, rotating portion varies with changes in the radial configuration of the rotating portion. Signal output varies approximately linearly with torque for small torques, nonlinearly for larger torques. The sensor is preferably surrounded by a conductive shell to minimize electrical interference from external sources. 18 figures.

  14. In-line rotating capacitive torque sensor

    DOEpatents

    Kronberg, James W.

    1991-01-01

    A method and apparatus for measuring torques developed along a rotating mechanical assembly comprising a rotating inner portion and a stationary outer portion. The rotating portion has an electrically-conductive flexing section fitted between two coaxial shafts in a configuration which varies radially in accordance with applied torque. The stationary portion comprises a plurality of conductive plates forming a surface concentric with and having a diameter slightly larger than the diameter of the rotating portion. The capacitance between the outer, nonrotating and inner, rotating portion varies with changes in the radial configuration of the rotating portion. Signal output varies approximately linearly with torque for small torques, nonlinearly for larger torques. The sensor is preferably surrounded by a conductive shell to minimize electrical interference from external sources.

  15. Torque modulates nucleosome stability and facilitates H2A/H2B dimer loss

    PubMed Central

    Sheinin, Maxim Y.; Li, Ming; Soltani, Mohammad; Luger, Karolin; Wang, Michelle D.

    2013-01-01

    The nucleosome, the fundamental packing unit of chromatin, has a distinct chirality: 147 bp of DNA are wrapped around the core histones in a left-handed, negative superhelix. It has been suggested that this chirality has functional significance, particularly in the context of the cellular processes that generate DNA supercoiling, such as transcription and replication. However, the impact of torsion on nucleosome structure and stability is largely unknown. Here we perform a detailed investigation of single nucleosome behavior on the high affinity 601 positioning sequence under tension and torque using the angular optical trapping technique. We find that torque has only a moderate effect on nucleosome unwrapping. In contrast, we observe a dramatic loss of H2A/H2B dimers upon nucleosome disruption under positive torque, while (H3/H4)2 tetramers are efficiently retained irrespective of torsion. These data indicate that torque could regulate histone exchange during transcription and replication. PMID:24113677

  16. Torque-Limiting Infinitely-Variable CAM Release Mechanism for a Rotatable Joint

    NASA Technical Reports Server (NTRS)

    Moetteli, John B. (Inventor)

    1997-01-01

    The invention relates to a mechanism for permitting convenient manual or servo-powered control of a boom assembly, which is rotatably positionable about yaw and pitch axes by means of releasably locking, yaw and pitch torque-limiting mechanisms, each of which may be locked, unlocked, and positioned by respective yaw and pitch levers. The boom may be longitudinally projected and withdrawn by rotating a boom extension/retraction crank. Torque limiting is provided by spring loaded clutch mechanisms, whereby positioning forces applied to the handles are effective to move the boom unless overcome by greater opposing forces, sufficient to overcome the torque applied by the torque limiting clutch mechanisms. In operation, a structure positionable by the invention (e.g., and end-effector or robot arm) may be rotatably moved about yaw and pitch axes by moving a selected one of the three levers.

  17. Concentric ring flywheel with hooked ring carbon fiber separator/torque coupler

    DOEpatents

    Kuklo, Thomas C.

    1999-01-01

    A concentric ring flywheel with expandable separators, which function as torque couplers, between the rings to take up the gap formed between adjacent rings due to differential expansion between different radius rings during rotation of the flywheel. The expandable separators or torque couplers include a hook-like section at an upper end which is positioned over an inner ring and a shelf-like or flange section at a lower end onto which the next adjacent outer ring is positioned. As the concentric rings are rotated the gap formed by the differential expansion there between is partially taken up by the expandable separators or torque couplers to maintain torque and centering attachment of the concentric rings.

  18. Concentric ring flywheel with hooked ring carbon fiber separator/torque coupler

    DOEpatents

    Kuklo, T.C.

    1999-07-20

    A concentric ring flywheel with expandable separators, which function as torque couplers, between the rings to take up the gap formed between adjacent rings due to differential expansion between different radius rings during rotation of the flywheel. The expandable separators or torque couplers include a hook-like section at an upper end which is positioned over an inner ring and a shelf-like or flange section at a lower end onto which the next adjacent outer ring is positioned. As the concentric rings are rotated the gap formed by the differential expansion there between is partially taken up by the expandable separators or torque couplers to maintain torque and centering attachment of the concentric rings. 2 figs.

  19. Electric motor designs for attenuating torque disturbance in sensitive space mechanisms

    NASA Astrophysics Data System (ADS)

    Marks, David B.; Fink, Richard A.

    2003-09-01

    When a motion control system introduces unwanted torque jitter and motion anomalies into sensitive space flight optical or positioning mechanisms, the pointing accuracy, positioning capability, or scanning resolution of the mission suffers. Special motion control technology must be employed to provide attenuation of the harmful torque disturbances. Brushless DC (BLDC) Motors with low torque disturbance characteristics have been successfully used on such notable missions as the Hubble Space Telescope when conventional approaches to motor design would not work. Motor designs for low disturbance mechanisms can include two and three phase sinusoidal BLDC motors, BLDC motors without iron teeth, and sometimes skewed or non-integral slot designs for motors commutated with Hall effect devices. The principal components of motor torque disturbance, successful BLDC motor designs for attenuating disturbances, and design trade-offs for optimum performance are examined.

  20. A magneto-rheological fluid-based torque sensor for smart torque wrench application

    NASA Astrophysics Data System (ADS)

    Ahmadkhanlou, Farzad; Washington, Gregory N.

    2013-04-01

    In this paper, the authors have developed a new application where MR fluid is being used as a sensor. An MR-fluid based torque wrench has been developed with a rotary MR fluid-based damper. The desired set torque ranges from 1 to 6 N.m. Having continuously controllable yield strength, the MR fluid-based torque wrench presents a great advantage over the regular available torque wrenches in the market. This design is capable of providing continuous set toque from the lower limit to the upper limit while regular torque wrenches provide discrete set torques only at some limited points. This feature will be especially important in high fidelity systems where tightening torque is very critical and the tolerances are low.

  1. Models of red giants in the CoRoT asteroseismology fields combining asteroseismic and spectroscopic constraints

    NASA Astrophysics Data System (ADS)

    Nadège, Lagarde

    The availability of asteroseismic constraints for a large sample of red-giant stars from the CoRoT and Kepler missions paves the way for various statistical studies of the seismic properties of stellar populations. We use a detailed spectroscopic study of 19 CoRoT red-giant stars (Morel et al. 2014) to compare theoretical stellar evolution models to observations of the open cluster NGC 6633 and field stars. This study is already published in Lagarde et al. (2015)

  2. Analysis of the torque capacity of a completely customized lingual appliance of the next generation

    PubMed Central

    2014-01-01

    Introduction In lingual orthodontic therapy, effective torque control of the incisors is crucial due to the biomechanical particularities associated with the point of force application and the tight link between third order deviations and vertical tooth position. Aim The aim of the present in vitro investigation was to analyze the torque capacity of a completely customized lingual appliance of the next generation (WIN) in combination with different finishing archwire dimensions. Methods Using a typodont of the upper arch carrying the WIN appliance, slot filling and undersized individualized β-titanium archwires were engaged. Horizontal forces ranging from 0 to 100 cN were applied at the central incisor by means of spring gauges. The resulting angular deviations were recorded and the corresponding torque moments were calculated. Results For fullsize archwires (0.018”×0.018” β-titanium and 0.018”×0.025” β-titanium), an initial torque play of 0-2° had to be overcome prior to the development of an effective torque moment. Thereafter, a linear correlation between torque angle and torque moment developed for both archwire dimensions with steeper slopes calculated for the specimens with the larger dimension. A torque moment of 2 Nmm required for effective torque correction was noted after a minimum of 2-3° of twist for the 0.018”×0.018” β-titanium wires as compared to 2-4° for the 0.018”×0.025” β-titanium study sample. When undersized archwires were analyzed (0.0175”×0.0175” β-titanium), the measured torque play ranged from 5-7°. After 8-12° of torque angle, the threshold of 2 Nmm was reached. A linear relationship between twist angle and torque moment in which the steepness of the slopes was generally flatter than the ones calculated for the slot filling archwires was noted. Conclusions Given the high precision of the bracket slot-archwire-combination provided with the WIN appliance, an effective torque control can be clinically

  3. Implications of the Corotation Theorem on the MRI in Axial Symmetry

    NASA Astrophysics Data System (ADS)

    Montani, G.; Cianfrani, F.; Pugliese, D.

    2016-08-01

    We analyze the linear stability of an axially symmetric ideal plasma disk, embedded in a magnetic field and endowed with a differential rotation. This study is performed by adopting the magnetic flux function as the fundamental dynamical variable, in order to outline the role played by the corotation theorem on the linear mode structure. Using some specific assumptions (e.g., plasma incompressibility and propagation of the perturbations along the background magnetic field), we select the Alfvénic nature of the magnetorotational instability, and, in the geometric optics limit, we determine the dispersion relation describing the linear spectrum. We show how the implementation of the corotation theorem (valid for the background configuration) on the linear dynamics produces the cancellation of the vertical derivative of the disk angular velocity (we check such a feature also in the standard vector formalism to facilitate comparison with previous literature, in both the axisymmetric and three-dimensional cases). As a result, we clarify that the unstable modes have, for a stratified disk, the same morphology, proper of a thin-disk profile, and the z-dependence has a simple parametric role.

  4. Semi-empirical seismic relations of A-F stars from COROT and Kepler legacy data

    NASA Astrophysics Data System (ADS)

    Moya, A.; Suárez, J. C.; García Hernández, A.; Mendoza, M. A.

    2017-10-01

    Asteroseismology is witnessing a revolution, thanks to high-precise asteroseismic space data (MOST, COROT, Kepler, BRITE) and their large ground-based follow-up programs. Those instruments have provided an unprecedented large amount of information, which allows us to scrutinize its statistical properties in the quest for hidden relations among pulsational and/or physical observables. This approach might be particularly useful for stars whose pulsation content is difficult to interpret. This is the case of intermediate-mass classical pulsating stars (I.e. γ Dor, δ Scuti, hybrids) for which current theories do not properly predict the observed oscillation spectra. Here, we establish a first step in finding such hidden relations from data mining techniques for these stars. We searched for those hidden relations in a sample of δ Scuti and hybrid stars observed by COROT and Kepler (74 and 153, respectively). No significant correlations between pairs of observables were found. However, two statistically significant correlations emerged from multivariable correlations in the observed seismic data, which describe the total number of observed frequencies and the largest one, respectively. Moreover, three different sets of stars were found to cluster according to their frequency density distribution. Such sets are in apparent agreement with the asteroseismic properties commonly accepted for A-F pulsating stars.

  5. Virtual Passive Controller for Robot Systems Using Joint Torque Sensors

    NASA Technical Reports Server (NTRS)

    Aldridge, Hal A.; Juang, Jer-Nan

    1997-01-01

    This paper presents a control method based on virtual passive dynamic control that will stabilize a robot manipulator using joint torque sensors and a simple joint model. The method does not require joint position or velocity feedback for stabilization. The proposed control method is stable in the sense of Lyaponov. The control method was implemented on several joints of a laboratory robot. The controller showed good stability robustness to system parameter error and to the exclusion of nonlinear dynamic effects on the joints. The controller enhanced position tracking performance and, in the absence of position control, dissipated joint energy.

  6. The CoRoT B-type binary HD 50230: a prototypical hybrid pulsator with g-mode period and p-mode frequency spacings⋆

    NASA Astrophysics Data System (ADS)

    Degroote, P.; Aerts, C.; Michel, E.; Briquet, M.; Pápics, P. I.; Amado, P.; Mathias, P.; Poretti, E.; Rainer, M.; Lombaert, R.; Hillen, M.; Morel, T.; Auvergne, M.; Baglin, A.; Baudin, F.; Catala, C.; Samadi, R.

    2012-06-01

    Context. B-type stars are promising targets for asteroseismic modelling, since their frequency spectrum is relatively simple. Aims: We deduce and summarise observational constraints for the hybrid pulsator, HD 50230, earlier reported to have deviations from a uniform period spacing of its gravity modes. The combination of spectra and a high-quality light curve measured by the CoRoT satellite allow a combined approach to fix the position of HD 50230 in the HR diagram. Methods: To describe the observed pulsations, classical Fourier analysis was combined with short-time Fourier transformations and frequency spacing analysis techniques. Visual spectra were used to constrain the projected rotation rate of the star and the fundamental parameters of the target. In a first approximation, the combined information was used to interpret multiplets and spacings to infer the true surface rotation rate and a rough estimate of the inclination angle. Results: We identify HD 50230 as a spectroscopic binary and characterise the two components. We detect the simultaneous presence of high-order g modes and low-order p and g-modes in the CoRoT light curve, but were unable to link them to line profile variations in the spectroscopic time series. We extract the relevant information from the frequency spectrum, which can be used for seismic modelling, and explore possible interpretations of the pressure mode spectrum. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. Based on observations made with the ESO telescopes at La Silla Observatory under the ESO Large Programme LP182.D-0356, and on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, and on observations obtained with the HERMES

  7. CHARACTERIZATION OF CoRoT TARGET FIELDS WITH BERLIN EXOPLANET SEARCH TELESCOPE. II. IDENTIFICATION OF PERIODIC VARIABLE STARS IN THE LRc2 FIELD

    SciTech Connect

    Kabath, P.; Fruth, T.; Rauer, H.

    2009-04-15

    We report on photometric observations of the CoRoT LRc2 field with the new robotic Berlin Exoplanet Search Telescope II (BEST II). The telescope system was installed and commissioned at the Observatorio Cerro Armazones, Chile, in 2007. BEST II is a small aperture telescope with a wide field of view dedicated to the characterization of the stellar variability primarily in CoRoT target fields with high stellar densities. The CoRoT stellar field LRc2 was observed with BEST II up to 20 nights in 2007 July and August. From the acquired data containing about 100,000 stars, 426 new periodic variable stars were identifiedmore » and 90% of them are located within the CoRoT exoplanetary CCD segments and may be of further interest for CoRoT additional science programs.« less

  8. Forearm Torque and Lifting Strength: Normative Data.

    PubMed

    Axelsson, Peter; Fredrikson, Per; Nilsson, Anders; Andersson, Jonny K; Kärrholm, Johan

    2018-02-10

    To establish reference values for new methods designed to quantitatively measure forearm torque and lifting strength and to compare these values with grip strength. A total of 499 volunteers, 262 males and 237 females, aged 15 to 85 (mean, 44) years, were tested for lifting strength and forearm torque with the Kern and Baseline dynamometers. These individuals were also tested for grip strength with a Jamar dynamometer. Standardized procedures were used and information about sex, height, weight, hand dominance, and whether their work involved high or low manual strain was collected. Men had approximately 70% higher forearm torque and lifting strength compared with females. Male subjects aged 26 to 35 years and female subjects aged 36 to 45 years showed highest strength values. In patients with dominant right side, 61% to 78% had a higher or equal strength on this side in the different tests performed. In patients with dominant left side, the corresponding proportions varied between 41% and 65%. There was a high correlation between grip strength and forearm torque and lifting strength. Sex, body height, body weight, and age showed a significant correlation to the strength measurements. In a multiple regression model sex, age (entered as linear and squared) could explain 51% to 63% of the total variances of forearm torque strength and 30% to 36% of lifting strength. Reference values for lifting strength and forearm torque to be used in clinical practice were acquired. Grip strength has a high correlation to forearm torque and lifting strength. Sex, age, and height can be used to predict forearm torque and lifting strength. Prediction equations using these variables were generated. Normative data of forearm torque and lifting strength might improve the quality of assessment of wrist and forearm disorders as well as their treatments. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  9. Quantification of pronator quadratus contribution to isometric pronation torque of the forearm.

    PubMed

    McConkey, Mark O; Schwab, Timothy D; Travlos, Andrew; Oxland, Thomas R; Goetz, Thomas

    2009-11-01

    The contribution of the pronator quadratus (PQ) muscle in generation of pronation torque has not been determined. The purpose of this study was to investigate pronation torque in healthy volunteers before and after temporary paralysis of the PQ with lidocaine, under electromyographic guidance. A custom apparatus was designed to allow isometric testing of pronation torque at 5 positions of rotation: 90 degrees of supination, 45 degrees of supination, neutral, 45 degrees of pronation, and 80 degrees of pronation. After validation of the apparatus, 17 (9 male, 8 female) right-hand-dominant volunteers were recruited. They were tested at all 5 positions in random order and then had their PQ muscles paralyzed with lidocaine. Repeat testing was performed in the same random order 30 minutes after injection. Three unblinded subjects underwent testing after injection of saline instead of lidocaine to determine effect of fluid volume alone on PQ function. The validation trial demonstrated reproducibility of the testing apparatus. After paralysis of PQ with lidocaine, pronation torque decreased by an average 21% (range, 16.7% to 23.2%) at all positions compared with preinjection testing. All were statistically significant except at 80 degrees of pronation. The subjects who underwent injection of saline showed no evidence of decrease in pronation torque. This study demonstrated a significant decrease in pronation torque with controlled elimination of PQ function. Open reduction and internal fixation of distal radius fractures damages the PQ and may result in a pronation torque deficit. Pronation torque measurement may help in postoperative outcome analysis of surgical procedures using the volar approach to the distal radius.

  10. Skinfold thickness affects the isometric knee extension torque evoked by Neuromuscular Electrical Stimulation.

    PubMed

    Medeiros, Flávia V A; Vieira, Amilton; Carregaro, Rodrigo L; Bottaro, Martim; Maffiuletti, Nicola A; Durigan, João L Q

    2015-01-01

    Subcutaneous adipose tissue may influence the transmission of electrical stimuli through to the skin, thus affecting both evoked torque and comfort perception associated with neuromuscular electrical stimulation (NMES). This could seriously affect the effectiveness of NMES for either rehabilitation or sports purposes. To investigate the effects of skinfold thickness (SFT) on maximal NMES current intensity, NMES-evoked torque, and NMES-induced discomfort. First, we compared NMES current intensity, NMES-induced discomfort, and NMES-evoked torque between two subgroups of subjects with thicker (n=10; 20.7 mm) vs. thinner (n=10; 29.4 mm) SFT. Second, we correlated SFT to NMES current intensity, NMES-induced discomfort, and NMES-evoked knee extension torque in 20 healthy women. The NMES-evoked torque was normalized to the maximal voluntary contraction (MVC) torque. The discomfort induced by NMES was assessed with a visual analog scale (VAS). NMES-evoked torque was 27.5% lower in subjects with thicker SFT (p=0.01) while maximal current intensity was 24.2% lower in subjects with thinner SFT (p=0.01). A positive correlation was found between current intensity and SFT (r=0.540, p=0.017). A negative correlation was found between NMES-evoked torque and SFT (r=-0.563, p=0.012). No significant correlation was observed between discomfort scores and SFT (rs=0.15, p=0.53). These results suggest that the amount of subcutaneous adipose tissue (as reflected by skinfold thickness) affected NMES current intensity and NMES-evoked torque, but had no effect on discomfort perception. Our findings may help physical therapists to better understand the impact of SFT on NMES and to design more rational stimulation strategies.

  11. Torque Control of Underactuated Tendon-driven Robotic Fingers

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Wampler, Charles W. (Inventor); Abdallah, Muhammad E. (Inventor); Reiland, Matthew J. (Inventor); Diftler, Myron A. (Inventor); Bridgwater, Lyndon (Inventor); Platt, Robert (Inventor)

    2013-01-01

    A robotic system includes a robot having a total number of degrees of freedom (DOF) equal to at least n, an underactuated tendon-driven finger driven by n tendons and n DOF, the finger having at least two joints, being characterized by an asymmetrical joint radius in one embodiment. A controller is in communication with the robot, and controls actuation of the tendon-driven finger using force control. Operating the finger with force control on the tendons, rather than position control, eliminates the unconstrained slack-space that would have otherwise existed. The controller may utilize the asymmetrical joint radii to independently command joint torques. A method of controlling the finger includes commanding either independent or parameterized joint torques to the controller to actuate the fingers via force control on the tendons.

  12. Magnetic torque on a rotating superconducting sphere

    NASA Technical Reports Server (NTRS)

    Holdeman, L. B.

    1975-01-01

    The London theory of superconductivity is used to calculate the torque on a superconducting sphere rotating in a uniform applied magnetic field. The London theory is combined with classical electrodynamics for a calculation of the direct effect of excess charge on a rotating superconducting sphere. Classical electrodynamics, with the assumption of a perfect Meissner effect, is used to calculate the torque on a superconducting sphere rotating in an arbitrary magnetic induction; this macroscopic approach yields results which are correct to first order. Using the same approach, the torque due to a current loop encircling the rotating sphere is calculated.

  13. How Fo-ATPase generates rotary torque.

    PubMed

    Oster, G; Wang, H; Grabe, M

    2000-04-29

    The F-ATPases synthesize ATP using a transmembrane ionmotive force (IMF) established by the electron transport chain. This transduction involves first converting the IMF to a rotary torque in the transmembrane Fo portion. This torque is communicated from Fo to the F1 portion where the energy is used to release the newly synthesized ATP from the catalytic sites according to Boyer's binding change mechanism. Here we explain the principle by which an IMF generates this rotary torque in the Fo ion engine.

  14. Torquing preload in a lubricated bolt

    NASA Technical Reports Server (NTRS)

    Seegmiller, H. L.

    1978-01-01

    The tension preload obtained by torquing a 7/8 in. diam UNC high strength bolt was determined for lubricated and dry conditions. Consistent preload with a variation of + or - 3% was obtained when the bolt head area was lubricated prior to each torque application. Preload tensions nearly 70% greater than the value predicted with the commonly used formula occurred with the lubricated bolt. A reduction to 39% of the initial preload was observed during 50 torque applications without relubrication. Little evidence of wear was noted after 203 cycles of tightening.

  15. Electromagnetic Torque in Tokamaks with Toroidal Asymmetries

    NASA Astrophysics Data System (ADS)

    Logan, Nikolas Christopher

    Toroidal rotation and rotation shear strongly influences stability and confinement in tokamaks. Breaking of the toroidal symmetry by fields orders of magnitude smaller than the axisymmetric field can, however, produce electromagnetic torques that significantly affect the plasma rotation, stability and confinement. These electromagnetic torques are the study of this thesis. There are two typical types of electromagnetic torques in tokamaks: 1) "resonant torques" for which a plasma current defined by a single toroidal and single poloidal harmonic interact with external currents and 2) "nonresonant torques" for which the global plasma response to nonaxisymmetric fields is phase shifted by kinetic effects that drive the rotation towards a neoclassical offset. This work describes the diagnostics and analysis necessary to evaluate the torque by measuring the rate of momentum transfer per unit area in the vacuum region between the plasma and external currents using localized magnetic sensors to measure the Maxwell stress. These measurements provide model independent quantification of both the resonant and nonresonant electromagnetic torques, enabling direct verification of theoretical models. Measured values of the nonresonant torque are shown to agree well with the perturbed equilibrium nonambipolar transport (PENT) code calculation of torque from cross field transport in nonaxisymmetric equilibria. A combined neoclassical toroidal viscosity (NTV) theory, valid across a wide range of kinetic regimes, is fully implemented for the first time in general aspect ratio and shaped plasmas. The code captures pitch angle resonances, reproducing previously inaccessible collisionality limits in the model. The complete treatment of the model enables benchmarking to the hybrid kinetic MHD stability codes MARS-K and MISK, confirming the energy-torque equivalency principle in perturbed equilibria. Experimental validations of PENT results confirm the torque applied by nonaxisymmetric

  16. Measurement of torque during mandibular distraction.

    PubMed

    Burstein, Fernando D; Lukas, Saylan; Forsthoffer, Dina

    2008-05-01

    In a prospective study, 26 patients aged 9 days to 12 years old underwent mandibular distraction. There were 18 bilateral and 8 unilateral distractions performed. Five patients had previous distraction. Torque measurements were performed during the distraction process. A modest linear increase in torque was noted during the distraction process. Older patients required more torque to achieve the same distraction length as younger patients. The results of this study suggest that distraction forces are relatively modest, which may allow for greater freedom of distractor design.

  17. A mechanical jig for measuring ankle supination and pronation torque in vitro and in vivo.

    PubMed

    Fong, Daniel Tik-Pui; Chung, Mandy Man-Ling; Chan, Yue-Yan; Chan, Kai-Ming

    2012-07-01

    This study presents the design of a mechanical jig for evaluating the ankle joint torque on both cadaver and human ankles. Previous study showed that ankle sprain motion was a combination of plantarflexion and inversion. The device allows measurement of ankle supination and pronation torque with one simple axis in a single step motion. More importantly, the ankle orientation allows rotation starting from an anatomical position. Six cadaveric specimens and six human subjects were tested with simulated and voluntary rotation respectively. The presented mechanical jig makes possible the determination of supination torque for studying ankle sprain injury and the estimation of pronation torque for examining peroneal muscle response. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  18. Radiation effects on space-based stellar photometry: theoretical models and empirical results for CoRoT Space Telescope

    NASA Astrophysics Data System (ADS)

    Pinheiro da Silva, L.; Rolland, G.; Lapeyrere, V.; Auvergne, M.

    2008-03-01

    Convection, Rotation and planetary Transits (CoRoT) is a space mission dedicated to stellar seismology and the search for extrasolar planets. Both scientific programs are based on very high precision photometry and require long, uninterrupted observations. The instrument is based on an afocal telescope and a wide-field camera, consisting of four E2V-4280 CCD devices. This set is mounted on a recurrent platform for insertion in low Earth orbit. The CoRoT satellite has been recently launched for a nominal mission duration of three years. In this work, we discuss the impact of space radiation on CoRoT CCDs, in sight of the in-flight characterization results obtained during the satellite's commissioning phase, as well as the very first observational data. We start by describing the population of trapped particles at the satellite altitude, and by presenting a theoretical prediction for the incoming radiation fluxes seen by the CCDs behind shielding. Empirical results regarding particle impact rates and their geographical distribution are then presented and discussed. The effect of particle impacts is also statistically characterized, with respect to the ionizing energy imparted to the CCDs and the size of impact trails. Based on these results, we discuss the effects of space radiation on precise and time-resolved stellar photometry from space. Finally, we present preliminary results concerning permanent radiation damage on CoRoT CCDs, as extrapolated from the data available at the beginning of the satellite's lifetime.

  19. Torque equilibrium attitude control for Skylab reentry

    NASA Technical Reports Server (NTRS)

    Glaese, J. R.; Kennel, H. F.

    1979-01-01

    All the available torque equilibrium attitudes (most were useless from the standpoint of lack of electrical power) and the equilibrium seeking method are presented, as well as the actual successful application during the 3 weeks prior to Skylab reentry.

  20. Noncontact torque measurement using stroboscopic techniques

    NASA Technical Reports Server (NTRS)

    Leonard, W. H.

    1972-01-01

    Noncontact torquemeter measures torsional deflection of rotating shaft and results are viewed on vernier scale. Magnitude of torque must be calculated from measured deflection. Device has no electric connections with the rotating member and is easy to use.

  1. Design of a telerobotic controller with joint torque sensors

    NASA Technical Reports Server (NTRS)

    Jansen, J. F.; Herndon, J. N.

    1990-01-01

    The purpose was to analytically show how to design a joint controller for a telerobotic system when joint torque sensors are available. Other sensors such as actuator position, actuator velocity, joint position, and joint velocity are assumed to be accessible; however, the results will also be useful when only partial measurements are available. The controller presented can be applied to either mode of operation of a manipulator (i.e., teleoperation or robotic). Mechanical manipulators with high levels of friction are assumed. The results are applied to a telerobotic system built for NASA. Very high levels of friction have been reduced using high-gain feedback while avoiding limit cycles.

  2. Gyrokinetic simulations with external resonant magnetic perturbations: Island torque and nonambipolar transport with plasma rotation

    NASA Astrophysics Data System (ADS)

    Waltz, R. E.; Waelbroeck, F. L.

    2012-03-01

    Static external resonant magnetic field perturbations (RMPs) have been added to the gyrokinetic code GYRO [J. Candy and R. E. Waltz, J. Comp. Phys. 186, 545 (2003)]. This allows nonlinear gyrokinetic simulations of the nonambipolar radial current flow jr, and the corresponding j→×B→ plasma torque (density) R[jrBp/c], induced by magnetic islands that break the toroidal symmetry of a tokamak. This extends the previous GYRO formulation for the transport of toroidal angular momentum (TAM) [R. E. Waltz, G. M. Staebler, J. Candy, and F. L. Hinton, Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009)]. The focus is on electrostatic full torus radial slice simulations of externally induced q =m/n=6/3 islands with widths 5% of the minor radius or about 20 ion gyroradii. Up to moderately strong E ×B rotation, the island torque scales with the radial electric field at the resonant surface Er, the island width w, and the intensity I of the high-n micro-turbulence, as Erw√I . The radial current inside the island is carried (entirely in the n =3 component) and almost entirely by the ion E ×B flux, since the electron E ×B and magnetic flutter particle fluxes are cancelled. The net island torque is null at zero Er rather than at zero toroidal rotation. This means that while the expected magnetic braking of the toroidal plasma rotation occurs at strong co- and counter-current rotation, at null toroidal rotation, there is a small co-directed magnetic acceleration up to the small diamagnetic (ion pressure gradient driven) co-rotation corresponding to the zero Er and null torque. This could be called the residual stress from an externally induced island. At zero Er, the only effect is the expected partial flattening of the electron temperature gradient within the island. Finite-beta GYRO simulations demonstrate almost complete RMP field screening and n =3 mode unlocking at strong Er.

  3. Fourth-order acoustic torque in intense sound fields

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Kanber, H.; Olli, E. E.

    1978-01-01

    The observation of a fourth-order acoustic torque in intense sound fields is reported. The torque was determined by measuring the acoustically induced angular deflection of a polished cylinder suspended by a torsion fiber. This torque was measured in a sound field of amplitude greater than that in which first-order acoustic torque has been observed.

  4. Torque and Learning and Behavior Problems in Children.

    ERIC Educational Resources Information Center

    Zendel, Ivan H.; Pihl, R. O.

    1980-01-01

    Findings indicate minimal differences, on diagnostic tests, between children who exhibited torque and those who did not. Torque is defined as the circling of any X in a clockwise direction. Torque is not associated with learning problems in school. Diagnostic utility of torque should be carefully considered. (Author)

  5. Deformation of a micro-torque swimmer

    PubMed Central

    Ishikawa, Takuji; Tanaka, Tomoyuki; Imai, Yohsuke; Omori, Toshihiro; Matsunaga, Daiki

    2016-01-01

    The membrane tension of some kinds of ciliates has been suggested to regulate upward and downward swimming velocities under gravity. Despite its biological importance, deformation and membrane tension of a ciliate have not been clarified fully. In this study, we numerically investigated the deformation of a ciliate swimming freely in a fluid otherwise at rest. The cell body was modelled as a capsule with a hyperelastic membrane enclosing a Newtonian fluid. Thrust forces due to the ciliary beat were modelled as torques distributed above the cell body. The effects of membrane elasticity, the aspect ratio of the cell's reference shape, and the density difference between the cell and the surrounding fluid were investigated. The results showed that the cell deformed like a heart shape, when the capillary number was sufficiently large. Under the influence of gravity, the membrane tension at the anterior end decreased in the upward swimming while it increased in the downward swimming. Moreover, gravity-induced deformation caused the cells to move gravitationally downwards or upwards, which resulted in a positive or negative geotaxis-like behaviour with a physical origin. These results are important in understanding the physiology of a ciliate's biological responses to mechanical stimuli. PMID:26997893

  6. Optimal Spacecraft Attitude Control Using Aerodynamic Torques

    DTIC Science & Technology

    2007-03-01

    His design resembles a badminton shuttlecock and “uses passive aerodynamic drag torques to stabilize pitch and yaw” and active magnetic torque...Ravindran’s and Hughes’ ‘arrow-like’ design. Psiaki notes that “this arrow concept has been modified to become a badminton shuttlecock-type design...panels were placed to the rear of the center-of-mass, similar to a badminton shuttlecock, to provide passive stability about the pitch and yaw axes

  7. Knudsen torque on heated micro beams

    SciTech Connect

    Li, Qi; Liang, Tengfei; Ye, Wenjing

    Thermally induced mechanical loading has been shown to have significant effects on micro/nano objects immersed in a gas with a non-uniform temperature field. While the majority of existing studies and related applications focus on forces, we investigate the torque, and thus the rotational motion, produced by such a mechanism. Using the asymptotic analysis in the near continuum regime, the Knudsen torque acting on an asymmetrically located uniformly heated microbeam in a cold enclosure is investigated. The existence of a non-zero net torque is demonstrated. In addition, it has been found that by manipulating the system configuration, the rotational direction ofmore » the torque can be changed. Two types of rotational motion of the microbeam have been identified: the pendulum motion of a rectangular beam, and the unidirectional rotation of a cylindrical beam. A rotational frequency of 4 rpm can be achieved for the cylindrical beam with a diameter of 3μm at Kn = 0.005. Illustrated by the simulations using the direct simulation of Monte Carlo, the Knudsen torque can be much increased in the transition regime, demonstrating the potential of Knudsen torque serving as a rotation engine for micro/nano objects.« less

  8. A reactive torque control law for gyroscopically controlled space vehicles

    NASA Technical Reports Server (NTRS)

    Farmer, J. E.

    1973-01-01

    A method of control is developed based on the reactive torques as seen by the individual CMG gimbals. The application of a torque to the gimbal of a CMG rotates the momentum vector and applies a torque to the spacecraft according to well-known laws. The response (rotation) of the vehicle produces a reverse or reaction torque opposing the torque producing the gimbal movement. The reactive torque and the pseudoinverse control schemes are contrasted in order to point out the simplicity of the first method. Simulation was performed only to the extent necessary to prove that reactive torque stabilization and control is feasible.

  9. Muon and neutron observations in connection with the corotating interaction regions

    NASA Astrophysics Data System (ADS)

    da Silva, M. R.; Dal Lago, A.; Echer, E.; de Lucas, A.; Gonzalez, W. D.; Schuch, N. J.; Munakata, K.; Vieira, L. E. A.; Guarnieri, F. L.

    Ground cosmic ray observations are used for studying several kinds of interplanetary structures. The cosmic ray data has different responses to each kind of interplanetary structure. This article has as objective to study cosmic ray muon and neutron signatures due to the passage of corotating interaction region (CIR) in the interplanetary medium, and identify the signatures in the cosmic ray data due to these events. The cosmic ray muon data used in this work are recorded by the multidirectional muon detector installed at INPE’s Observatório Espacial do Sul OES/CRSPE/INPE-MCT, in São Martinho da Serra, RS (Brazil) and the neutron data was recorded by the neutron monitor installed in Newark (USA). The CIR events were selected in the period from 2001 to 2004. CIRs clearly affect cosmic ray density in the interplanetary medium in the Earth’s vicinity, where the magnetic field plays an important role.

  10. Association of corotating magnetic sector structure with Jupiters decameter-wave radio emissions

    NASA Technical Reports Server (NTRS)

    Barrow, C. H.

    1979-01-01

    Chree (superposed epoch) analyses of Jupiter's decameter-wave radio emission taken from the new Thieman (1979) catalog show highly significant correlation with solar activity indicated by the geomagnetic Ap index. The correlation effects can be explained in terms of corotating interplanetary magnetic sector features. At times when the solar wind velocity is relatively low, about 300 to 350 km/s, a sector boundary can encounter the Earth and Jupiter almost simultaneously during the period immediately before opposition. After opposition this will not normally occur as the solar wind velocities necessary are too low. The correlation effects are much enhanced for the three apparitions of 1962-1964 during which a relatively stable and long-lived sector pattern was present. Chree analyses for this period indicate periodicities, approximately equal to half the solar rotation period, in the Jupiter data.

  11. Mirroring of fast solar flare electrons on a downstream corotating interaction region

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.; Sommers, J.; Lin, R. P.; Pick, M.; Chaizy, P.; Murphy, N.; Smith, E. J.; Phillips, J. L.

    1995-01-01

    We discuss an example of confinement of fast solar electrons by a discrete solar wind-interplanetary magnetic field structure on February 22, 1991. The structure is about 190,000 km in width and is clearly defined by changes in the direction of the magnetic field at the Ulysses spacecraft. This structure carries electrons moving toward the Sun as well as away from the Sun. A loss cone in the angular distribution of the fast electrons shows that mirroring, presumably magnetic, takes place downstream from the spacecraft. Following passage of this narrow structure, the return flux vanishes for 21 min after which time the mirroring resumes and persists for several hours. We identify the enhanced magnetic field region lying downstream from the Ulysses spacecraft that is responsible for the mirroring to be a corotating stream interaction region. Backstreaming suprathermal electron measurements by the Los Alamos National Laboratory plasma experiment on the Ulysses spacecraft support this interpretation.

  12. Spectral Properties of Suprathermal Heavy Ions in Corotating Interaction Regions at 1 AU

    NASA Astrophysics Data System (ADS)

    Filwett, R. J.; Desai, M. I.; Ebert, R. W.; Dayeh, M. A.

    2017-12-01

    Suprathermal particles are an important constituent of the seed population that is accelerated in interplanetary events. Despite their importance, the origin of these particles and the acceleration mechanism they undergo is poorly understood. Using data from Wind/EPACT/STEP and ACE/ULEIS we examined the 0.03-3.0MeV nucleon-1 H-Fe spectra in 41 corotating interaction regions (CIRs). We fit power-law functions to the data to obtain the spectral index γ and break energy Eo. We examined the energy and species-to-species variation of both γ and Eo. Our results show Eo decreases systematically with decreasing Q/M scaling as (Q/M)α. Additionally, we compared the expected compression ratio, H, as determined by γ, to the observed magnetic and density compression ratios. We discuss these results and their implications to local vs. non-local suprathermal particle acceleration and transport in CIRs.

  13. Angular velocity of gravitational radiation from precessing binaries and the corotating frame

    NASA Astrophysics Data System (ADS)

    Boyle, Michael

    2013-05-01

    This paper defines an angular velocity for time-dependent functions on the sphere and applies it to gravitational waveforms from compact binaries. Because it is geometrically meaningful and has a clear physical motivation, the angular velocity is uniquely useful in helping to solve an important—and largely ignored—problem in models of compact binaries: the inverse problem of deducing the physical parameters of a system from the gravitational waves alone. It is also used to define the corotating frame of the waveform. When decomposed in this frame, the waveform has no rotational dynamics and is therefore as slowly evolving as possible. The resulting simplifications lead to straightforward methods for accurately comparing waveforms and constructing hybrids. As formulated in this paper, the methods can be applied robustly to both precessing and nonprecessing waveforms, providing a clear, comprehensive, and consistent framework for waveform analysis. Explicit implementations of all these methods are provided in accompanying computer code.

  14. A three-dimensional model of corotating streams in the solar wind. 1: Theoretical foundations

    NASA Technical Reports Server (NTRS)

    Pizzo, V. J.

    1978-01-01

    The theoretical and mathematical background pertinent to the study of steady, corotating solar wind structure in all three spatial dimensions (3-D) is discussed. The dynamical evolution of the plasma in interplanetary space (defined as the region beyond roughly 35 solar radii where the flow is supersonic) is approximately described by the nonlinear, single fluid, polytropic (magneto-) hydrodynamic equations. Efficient numerical techniques for solving this complex system of coupled, hyperbolic partial differential equations are outlined. The formulation is inviscid and nonmagnetic, but methods allow for the potential inclusion of both features with only modest modifications. One simple, highly idealized, hydrodynamic model stream is examined to illustrate the fundamental processes involved in the 3-D dynamics of stream evolution. Spatial variations in the rotational stream interaction mechanism were found to produce small nonradial flows on a global scale that lead to the transport of mass, energy, and momentum away from regions of relative compression and into regions of relative rarefaction.

  15. Solar-like stars as seen by CoRoT

    NASA Astrophysics Data System (ADS)

    Garcia, R. A.; Appourchaux, T.; Baglin, A.; Auvergne, M.; Barban, C.; Baudin, F.; Michel, E.; Mosser, B.; Samadi, R.; Data Analysis Team D. A. T

    2008-12-01

    For more than a year, photometric high-quality data have been achieved from the CoRoT (COnvection ROtation and Planetary Transits; Baglin et al. 2006, Michel et al. 2008) min- isatellite developed by the French space agency (CNES) in collaboration with the Science Program of ESA, Austria, Belgium, Brazil Germany and Spain. The power spectrum of 4 dif- ferent solar-like stars (stars having sub-surface convective zones showing an acoustic (p) mode spectrum) has been obtained with unprecedented quality allowing the precise study of their seismic properties. These solar-like stars are F stars with masses in the range 1.0 to 1.4 M⊙ and are significantly hotter than the Sun.

  16. Provocative mechanical tests of the peripheral nervous system affect the joint torque-angle during passive knee motion.

    PubMed

    Andrade, R J; Freitas, S R; Vaz, J R; Bruno, P M; Pezarat-Correia, P

    2015-06-01

    This study aimed to determine the influence of the head, upper trunk, and foot position on the passive knee extension (PKE) torque-angle response. PKE tests were performed in 10 healthy subjects using an isokinetic dynamometer at 2°/s. Subjects lay in the supine position with their hips flexed to 90°. The knee angle, passive torque, surface electromyography (EMG) of the semitendinosus and quadriceps vastus medialis, and stretch discomfort were recorded in six body positions during PKE. The different maximal active positions of the cervical spine (neutral; flexion; extension), thoracic spine (neutral; flexion), and ankle (neutral; dorsiflexion) were passively combined for the tests. Visual analog scale scores and EMG were unaffected by body segment positioning. An effect of the ankle joint was verified on the peak torque and knee maximum angle when the ankle was in the dorsiflexion position (P < 0.05). Upper trunk positioning had an effect on the knee submaximal torque (P < 0.05), observed as an increase in the knee passive submaximal torque when the cervical and thoracic spines were flexed (P < 0.05). In conclusion, other apparently mechanical unrelated body segments influence torque-angle response since different positions of head, upper trunk, and foot induce dissimilar knee mechanical responses during passive extension. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Extraneous torque and compensation control on the electric load simulator

    NASA Astrophysics Data System (ADS)

    Jiao, Zongxia; Li, Chenggong; Ren, Zhiting

    2003-09-01

    In this paper a novel motor-drive load simulator based on compensation control strategy is proposed and designed. Through analyzing the torque control system consisting of DC torque motor, PWM module and torque sensor, it is shown that performance of the motor-drive load simulator is possible to be as good as that of the electro-hydraulic load simulator in the range of small torque. In the course of loading, the rotation of the actuator would cause a strong disturbance torque through the motor back-EMF, which produces extraneous torque similar as in electro-hydraulic load simulator. This paper analyzes the cause of extraneous torque inside the torque motor in detail and presents an appropriate compensation control with which the extraneous torque can be compensated and the good performance of the torque control system can be obtained. The results of simulation indicate that the compensation is very effective and the track performance is according with the request.

  18. Large Amplitude IMF Fluctuations in Corotating Interaction Regions: Ulysses at Midlatitudes

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Ho, Christian M.; Arballo, John K.; Goldstein, Bruce E.; Balogh, Andre

    1995-01-01

    Corotating Interaction Regions (CIRs), formed by high-speed corotating streams interacting with slow speed streams, have been examined from -20 deg to -36 deg heliolatitudes. The high-speed streams emanate from a polar coronal hole that Ulysses eventually becomes fully embedded in as it travels towards the south pole. We find that the trailing portion of the CIR, from the interface surface (IF) to the reverse shock (RS), contains both large amplitude transverse fluctuations and magnitude fluctuations. Similar fluctuations have been previously noted to exist within CIRs detected in the ecliptic plane, but their existence has not been explained. The normalized magnetic field component variances within this portion of the CIR and in the trailing high-speed stream are approximately the same, indicating that the fluctuations in the CIR are compressed Alfven waves. Mirror mode structures with lower intensities are also observed in the trailing portion of the CIR, presumably generated from a local instability driven by free energy associated with compression of the high-speed solar wind plasma. The mixture of these two modes (compressed Alfven waves and mirror modes) plus other modes generated by three wave processes (wave-shock interactions) lead to a lower Alfvenicity within the trailing portion of the CfR than in the high-speed stream proper. The results presented in this paper suggest a mechanism for generation of large amplitude B(sub z) fluctuations within CIRS. Such phenomena have been noted to be responsible for the generation of moderate geomagnetic storms during the declining phase of the solar cycle.

  19. Investigation of Co-rotation Lag in Saturn's Dayside Magnetosphere and Comparison with the Nightside

    NASA Astrophysics Data System (ADS)

    Smith, E. J.; Dougherty, M. K.

    2016-12-01

    Two previous studies of co-rotation lag concentrated on 13 identical high-inclination Cassini orbits. In the first, measurements of the magnetospheric field azimuthal component, Bϕ, were restricted to the southern hemisphere, near midnight, from the equator and perikron to maximum latitude 70°. Comparison with the prevailing model of the magnetosphere-ionosphere interaction yielded conclusions that the ionospheric conductivity, Σp, was independent of ionospheric co-latitude, θi, and the ratio of magnetospheric to planetary field angular velocities, ω/Ωs, equaled, 1- exp(-Bθi), an unexpected exponential dependence on a single parameter. Both model parameters exhibited significant temporal variations from orbit to orbit leading to variations in the ionospheric profiles of Pedersen current, Ip. The second 13 orbit study of Bϕ extended to the north hemisphere where lagging fields alternated with leading and co-rotating fields. It was concluded that the difference was actually a local- time dependence with lagging -fields- only occurring after midnight and the mixed rotations before midnight. Again, Σp was independent of θi and ω/Ωs = 1- exp(-Bθi). Both studies raised the questions: How general is the exponential dependence of 1-ω/Ωs? Is it restricted to midnight or hold as well in the dayside magnetosphere? What is the cause of this dependence that differs from the model? The analysis of Bϕ has been extended to four nearly-identical north-south orbits near noon. The results and conclusions of this third study will be reported.

  20. CoRoT-2b: a Tidally Inflated, Young Exoplanet?

    NASA Astrophysics Data System (ADS)

    Guillot, Tristan; Havel, M.

    2009-09-01

    CoRoT-2b is among the most anomalously large transiting exoplanet known. Due to its large mass (3.3 Mjup), its large radius ( 1.5 Rjup) cannot be explained by standard evolution models. Recipes that work for other anomalously large exoplanets (e.g. HD209458b), such as invoking kinetic energy transport in the planetary interior or increased opacities, clearly fail for CoRoT-2b. Interestingly, the planet's parent star is an active star with a large fraction (7 to 20%) of spots and a rapid rotation (4.5 days). We first model the star's evolution to accurately constrain the planetary parameters. We find that the stellar activity has little influence on the star's evolution and inferred parameters. However, stellar evolution models point towards two kind of solutions for the star-planet system: (i) a very young system (20-40 Ma) with a star still undergoing pre-main sequence contraction, and a planet which could have a radius as low as 1.4 Rjup, or (ii) a young main-sequence star (40 to 500 Ma) with a planet that is slightly more inflated ( 1.5 Rjup). In either case, planetary evolution models require a significant added internal energy to explain the inferred planet size: from a minimum of 3x1028 erg/s in case (i), to up to 1.5x1029 erg/s in case (ii). We find that evolution models consistently including planet/star tides are able to reproduce the inferred radius but only for a short period of time ( 10 Ma). This points towards a young age for the star/planet system and dissipation by tides due to either circularization or synchronization of the planet. Additional observations of the star (infrared excess due to disk?) and of the planet (precise Rossiter effect, IR secondary eclispe) would be highly valuable to understand the early evolution of star-exoplanet systems.

  1. Preparation of the COROT mission: fundamental stellar parameters from photometric and spectroscopic analyses of target candidates

    NASA Astrophysics Data System (ADS)

    Lastennet, E.; Lignières, F.; Buser, R.; Lejeune, T.; Lüftinger, T.; Cuisinier, F.; van't Veer-Menneret, C.

    2001-09-01

    We present a sample of 9 nearby F-type stars with detailed spectroscopic analyses to investigate the Basel Stellar Library (BaSeL) in two photometric systems simultaneously, Johnson UBV and Stromgren uvby. The sample corresponds to potential targets of the central seismology programme of the COROT (COnvection & ROtation) space experiment, which have been recently observed at Observatoire de Haute-Provence (OHP, France). The atmospheric parameters Teff, [Fe/H], and log g obtained from the BaSeL models are compared with spectroscopic determinations as well as with results of other photometric calibrations (the TEMPLOGG method and the catalogue of Marsakov & Shevelev, 1995). Moreover, new rotational velocity determinations are also derived from the spectroscopic analysis and compared with previous results compiled in the SIMBAD database. For a careful interpretation of the BaSeL solutions, we computed confidence regions around the best chi^2-estimates and projected them on Teff-[Fe/H], Teff-log g, and log g-[Fe/H] diagrams. In order to simultaneously and accurately determine the stellar parameters Teff, [Fe/H] and log g, we suggest to use the combination of the synthetic BaSeL indices B-V, U-B and b-y (rather than the full photometric information available for these stars: B-V, U-B, b-y, m1 and c1) and we present complete results in 3 different diagrams, along with the results of other methods (photometric and spectroscopic). All the methods presented give consistent solutions, and the agreement between TEMPLOGG and BaSeL for the hottest stars of the sample could be especially useful in view of the well-known difficulty of spectroscopic determinations for fast rotating stars. Finally, we present current and future developments of the BaSeL models for a systematic application to all the COROT targets.

  2. Preparation of the COROT mission: fundamental stellar parameters from photometric and spectroscopic analyses of target candidates

    NASA Astrophysics Data System (ADS)

    Lastennet, E.; Lignières, F.; Buser, R.; Lejeune, T.; Lüftinger, T.; Cuisinier, F.; van't Veer-Menneret, C.

    2001-12-01

    We present a sample of 9 nearby F-type stars with detailed spectroscopic analyses to investigate the Basel Stellar Library (BaSeL) in two photometric systems simultaneously, Johnson UBV and Strömgren uvby. The sample corresponds to potential targets of the central seismology programme of the COROT (COnvection & ROtation) space experiment, which have been recently observed at Observatoire de Haute-Provence (OHP, France). The atmospheric parameters Teff, [Fe/H], and log g obtained from the BaSeL models are compared with spectroscopic determinations as well as with results of other photometric calibrations (the TEMPLOGG method and the catalogue of Marsakov & Shevelev, 1995). Moreover, new rotational velocity determinations are also derived from the spectroscopic analysis and compared with previous results compiled in the SIMBAD database. For a careful interpretation of the BaSeL solutions, we computed confidence regions around the best χ2-estimates and projected them on Teff-[Fe/H], Teff-log g, and log g-[Fe/H] diagrams. In order to simultaneously and accurately determine the stellar parameters Teff, [Fe/H] and log g, we suggest to use the combination of the synthetic BaSeL indices B-V, U-B and b-y (rather than the full photometric information available for these stars: B-V, U-B, b-y, m1 and c1) and we present complete results in 3 different diagrams, along with the results of other methods (photometric and spectroscopic). All the methods presented give consistent solutions, and the agreement between TEMPLOGG and BaSeL for the hottest stars of the sample could be especially useful in view of the well-known difficulty of spectroscopic determinations for fast rotating stars. Finally, we present current and future developments of the BaSeL models for a systematic application to all the COROT targets.

  3. Effect of strength and speed of torque development on balance recovery with the ankle strategy.

    PubMed

    Robinovitch, Stephen N; Heller, Britta; Lui, Andrew; Cortez, Jeffrey

    2002-08-01

    In the event of an unexpected disturbance to balance, the ability to recover a stable upright stance should depend not only on the magnitude of torque that can be generated by contraction of muscles spanning the lower extremity joints but also on how quickly these torques can be developed. In the present study, we used a combination of experimental and mathematical models of balance recovery by sway (feet in place responses) to test this hypothesis. Twenty-three young subjects participated in experiments in which they were supported in an inclined standing position by a horizontal tether and instructed to recover balance by contracting only their ankle muscles. The maximum lean angle where they could recover balance without release of the tether (static recovery limit) averaged 14.9 +/- 1.4 degrees (mean +/- SD). The maximum initial lean angle where they could recover balance after the tether was unexpectedly released and the ankles were initially relaxed (dynamic recovery limit) averaged 5.9 +/- 1.1 degrees, or 60 +/- 11% smaller than the static recovery limit. Peak ankle torque did not differ significantly between the two conditions (and averaged 116 +/- 32 Nm), indicating the strong effect on recovery ability of latencies in the onset and subsequent rates of torque generation (which averaged 99 +/- 13 ms and 372 +/- 267 N. m/s, respectively). Additional experiments indicated that dynamic recovery limits increased 11 +/- 14% with increases in the baseline ankle torques prior to release (from an average value of 31 +/- 18 to 54 +/- 24 N. m). These trends are in agreement with predictions from a computer simulation based on an inverted pendulum model, which illustrate the specific combinations of baseline ankle torque, rate of torque generation, and peak ankle torque that are required to attain target recovery limits.

  4. Eccentric Torque-Producing Capacity is Influenced by Muscle Length in Older Healthy Adults.

    PubMed

    Melo, Ruth C; Takahashi, Anielle C M; Quitério, Robison J; Salvini, Tânia F; Catai, Aparecida M

    2016-01-01

    Considering the importance of muscle strength to functional capacity in the elderly, the study investigated the effects of age on isokinetic performance and torque production as a function of muscle length. Eleven younger (24.2 ± 2.9 years) and 16 older men (62.7 ± 2.5 years) were subjected to concentric and eccentric isokinetic knee extension/flexion at 60 and 120° · s(-1) through a functional range of motion. The older group presented lower peak torque (in newton-meters) than the young group for both isokinetic contraction types (age effect, p < 0.001). Peak torque deficits in the older group were near 30 and 29% for concentric and eccentric contraction, respectively. Concentric peak torque was lower at 120° · s(-1) than at 60° · s(-1) for both groups (angular velocity effect, p < 0.001). Eccentric knee extension torque was the only exercise tested that showed an interaction effect between age and muscle length (p < 0.001), which suggested different torque responses to the muscle length between groups. Compared with the young group, the eccentric knee extension torque was 22-56% lower in the older group, with the deficits being lower in the shortened muscle length (22-27%) and higher (33-56%) in the stretched muscle length. In older men, the production of eccentric knee strength seems to be dependent on the muscle length. At more stretched positions, older subjects lose the capacity to generate eccentric knee extension torque. More studies are needed to assess the mechanisms involved in eccentric strength preservation with aging and its relationship with muscle length.

  5. Barbell deadlift training increases the rate of torque development and vertical jump performance in novices.

    PubMed

    Thompson, Brennan J; Stock, Matt S; Shields, JoCarol E; Luera, Micheal J; Munayer, Ibrahim K; Mota, Jacob A; Carrillo, Elias C; Olinghouse, Kendra D

    2015-01-01

    The primary purpose of this study was to examine the effects of 10 weeks of barbell deadlift training on rapid torque characteristics of the knee extensors and flexors. A secondary aim was to analyze the relationships between training-induced changes in rapid torque and vertical jump performance. Fifty-four subjects (age, mean ± SD = 23 ± 3 years) were randomly assigned to a control (n = 20) or training group (n = 34). Subjects in the training group performed supervised deadlift training twice per week for 10 weeks. All subjects performed isometric strength testing of the knee extensors and flexors and vertical jumps before and after the intervention. Torque-time curves were used to calculate rate of torque development (RTD) values at peak and at 50 and 200 milliseconds from torque onset. Barbell deadlift training induced significant pre- to post-increases of 18.8-49.0% for all rapid torque variables (p < 0.01). Vertical jump height increased from 46.0 ± 11.3 to 49.4 ± 11.3 cm (7.4%; p < 0.01), and these changes were positively correlated with improvements in RTD for the knee flexors (r = 0.30-0.37, p < 0.01-0.03). These findings showed that a 10-week barbell deadlift training program was effective at enhancing rapid torque capacities in both the knee extensors and flexors. Changes in rapid torque were associated with improvements in vertical jump height, suggesting a transfer of adaptations from deadlift training to an explosive, performance-based task. Professionals may use these findings when attempting to design effective, time-efficient resistance training programs to improve explosive strength capacities in novices.

  6. A method to accurately estimate the muscular torques of human wearing exoskeletons by torque sensors.

    PubMed

    Hwang, Beomsoo; Jeon, Doyoung

    2015-04-09

    In exoskeletal robots, the quantification of the user's muscular effort is important to recognize the user's motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users' muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user's limb accurately from the measured torque. The user's limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user's muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions.

  7. A Method to Accurately Estimate the Muscular Torques of Human Wearing Exoskeletons by Torque Sensors

    PubMed Central

    Hwang, Beomsoo; Jeon, Doyoung

    2015-01-01

    In exoskeletal robots, the quantification of the user’s muscular effort is important to recognize the user’s motion intentions and evaluate motor abilities. In this paper, we attempt to estimate users’ muscular efforts accurately using joint torque sensor which contains the measurements of dynamic effect of human body such as the inertial, Coriolis, and gravitational torques as well as torque by active muscular effort. It is important to extract the dynamic effects of the user’s limb accurately from the measured torque. The user’s limb dynamics are formulated and a convenient method of identifying user-specific parameters is suggested for estimating the user’s muscular torque in robotic exoskeletons. Experiments were carried out on a wheelchair-integrated lower limb exoskeleton, EXOwheel, which was equipped with torque sensors in the hip and knee joints. The proposed methods were evaluated by 10 healthy participants during body weight-supported gait training. The experimental results show that the torque sensors are to estimate the muscular torque accurately in cases of relaxed and activated muscle conditions. PMID:25860074

  8. CSI 2264: Simultaneous Optical and Infrared Light Curves of Young Disk-bearing Stars in NGC 2264 with CoRoT and Spitzer—Evidence for Multiple Origins of Variability

    NASA Astrophysics Data System (ADS)

    Cody, Ann Marie; Stauffer, John; Baglin, Annie; Micela, Giuseppina; Rebull, Luisa M.; Flaccomio, Ettore; Morales-Calderón, María; Aigrain, Suzanne; Bouvier, Jèrôme; Hillenbrand, Lynne A.; Gutermuth, Robert; Song, Inseok; Turner, Neal; Alencar, Silvia H. P.; Zwintz, Konstanze; Plavchan, Peter; Carpenter, John; Findeisen, Krzysztof; Carey, Sean; Terebey, Susan; Hartmann, Lee; Calvet, Nuria; Teixeira, Paula; Vrba, Frederick J.; Wolk, Scott; Covey, Kevin; Poppenhaeger, Katja; Günther, Hans Moritz; Forbrich, Jan; Whitney, Barbara; Affer, Laura; Herbst, William; Hora, Joseph; Barrado, David; Holtzman, Jon; Marchis, Franck; Wood, Kenneth; Medeiros Guimarães, Marcelo; Lillo Box, Jorge; Gillen, Ed; McQuillan, Amy; Espaillat, Catherine; Allen, Lori; D'Alessio, Paola; Favata, Fabio

    2014-04-01

    We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30 day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variability census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes and assess the fractional representation within each class. The largest category (>20%) are optical "dippers" with discrete fading events lasting ~1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk. Based on data from the Spitzer and CoRoT missions. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.

  9. Propeller torque load and propeller shaft torque response correlation during ice-propeller interaction

    NASA Astrophysics Data System (ADS)

    Polić, Dražen; Ehlers, Sören; Æsøy, Vilmar

    2017-03-01

    Ships use propulsion machinery systems to create directional thrust. Sailing in ice-covered waters involves the breaking of ice pieces and their submergence as the ship hull advances. Sometimes, submerged ice pieces interact with the propeller and cause irregular fluctuations of the torque load. As a result, the propeller and engine dynamics become imbalanced, and energy propagates through the propulsion machinery system until equilibrium is reached. In such imbalanced situations, the measured propeller shaft torque response is not equal to the propeller torque. Therefore, in this work, the overall system response is simulated under the ice-related torque load using the Bond graph model. The energy difference between the propeller and propeller shaft is estimated and related to their corresponding mechanical energy. Additionally, the mechanical energy is distributed among modes. Based on the distribution, kinetic and potential energy are important for the correlation between propeller torque and propeller shaft response.

  10. Self-oscillation in spin torque oscillator stabilized by field-like torque

    SciTech Connect

    Taniguchi, Tomohiro; Tsunegi, Sumito; Kubota, Hitoshi

    2014-04-14

    The effect of the field-like torque on the self-oscillation of the magnetization in spin torque oscillator with a perpendicularly magnetized free layer was studied theoretically. A stable self-oscillation at zero field is excited for negative β while the magnetization dynamics stops for β = 0 or β > 0, where β is the ratio between the spin torque and the field-like torque. The reason why only the negative β induces the self-oscillation was explained from the view point of the energy balance between the spin torque and the damping. The oscillation power and frequency for various β were also studied by numerical simulation.

  11. Efficient micromagnetic modelling of spin-transfer torque and spin-orbit torque

    NASA Astrophysics Data System (ADS)

    Abert, Claas; Bruckner, Florian; Vogler, Christoph; Suess, Dieter

    2018-05-01

    While the spin-diffusion model is considered one of the most complete and accurate tools for the description of spin transport and spin torque, its solution in the context of dynamical micromagnetic simulations is numerically expensive. We propose a procedure to retrieve the free parameters of a simple macro-spin like spin-torque model through the spin-diffusion model. In case of spin-transfer torque the simplified model complies with the model of Slonczewski. A similar model can be established for the description of spin-orbit torque. In both cases the spin-diffusion model enables the retrieval of free model parameters from the geometry and the material parameters of the system. Since these parameters usually have to be determined phenomenologically through experiments, the proposed method combines the strength of the diffusion model to resolve material parameters and geometry with the high performance of simple torque models.

  12. Feasibility study for convertible engine torque converter

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The feasibility study has shown that a dump/fill type torque converter has excellent potential for the convertible fan/shaft engine. The torque converter space requirement permits internal housing within the normal flow path of a turbofan engine at acceptable engine weight. The unit permits operating the engine in the turboshaft mode by decoupling the fan. To convert to turbofan mode, the torque converter overdrive capability bring the fan speed up to the power turbine speed to permit engagement of a mechanical lockup device when the shaft speed are synchronized. The conversion to turbofan mode can be made without drop of power turbine speed in less than 10 sec. Total thrust delivered to the aircraft by the proprotor, fan, and engine during tansient can be controlled to prevent loss of air speed or altitude. Heat rejection to the oil is low, and additional oil cooling capacity is not required. The turbofan engine aerodynamic design is basically uncompromised by convertibility and allows proper fan design for quiet and efficient cruise operation. Although the results of the feasibility study are exceedingly encouraging, it must be noted that they are based on extrapolation of limited existing data on torque converters. A component test program with three trial torque converter designs and concurrent computer modeling for fluid flow, stress, and dynamics, updated with test results from each unit, is recommended.

  13. Charge-induced spin torque in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Kurebayashi, Daichi; Nomura, Kentaro

    In this work, we present phenomenological and microscopic derivations of spin torques in magnetically doped Weyl semimetals. As a result, we obtain the analytical expression of the spin torque generated, without a flowing current, when the chemical potential is modulated. We also find that this spin torque is a direct consequence of the chiral anomaly. Therefore, observing this spin torque in magnetic Weyl semimetals might be an experimental evidence of the chiral anomaly. This spin torque has also a great advantage in application. In contrast to conventional current-induced spin torques such as the spin-transfer torques, this spin torque does not accompany a constant current flow. Thus, devices using this operating principle is free from the Joule heating and possibly have higher efficiency than devices using conventional current-induced spin torques. This work was supported by JSPS KAKENHI Grant Number JP15H05854 and JP26400308.

  14. Positioning and locking apparatus

    DOEpatents

    Hayward, Milton L.; Harper, William H.

    1987-01-01

    A positioning and locking apparatus including a fixture having a rotatable torque ring provided with a plurality of cam segments for automatically guiding a container into a desired location within the fixture. Rotation of the ring turns the container into a final position in pressure sealing relation against a hatch member.

  15. Positioning and locking apparatus

    DOEpatents

    Hayward, M.L.; Harper, W.H.

    1985-06-19

    A positioning and locking apparatus including a fixture having a rotatable torque ring provided with a plurality of cam segments for automatically guiding a container into a desired location within the fixture. Rotation of the ring turns the container into a final position in pressure sealing relation against a hatch member.

  16. Positioning and locking apparatus

    DOEpatents

    Hayward, M.L.; Harper, W.H.

    1987-06-30

    A positioning and locking apparatus are disclosed including a fixture having a rotatable torque ring provided with a plurality of cam segments for automatically guiding a container into a desired location within the fixture. Rotation of the ring turns the container into a final position in pressure sealing relation against a hatch member. 6 figs.

  17. New Technique of High-Performance Torque Control Developed for Induction Machines

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.

    2003-01-01

    Two forms of high-performance torque control for motor drives have been described in the literature: field orientation control and direct torque control. Field orientation control has been the method of choice for previous NASA electromechanical actuator research efforts with induction motors. Direct torque control has the potential to offer some advantages over field orientation, including ease of implementation and faster response. However, the most common form of direct torque control is not suitable for the highspeed, low-stator-flux linkage induction machines designed for electromechanical actuators with the presently available sample rates of digital control systems (higher sample rates are required). In addition, this form of direct torque control is not suitable for the addition of a high-frequency carrier signal necessary for the "self-sensing" (sensorless) position estimation technique. This technique enables low- and zero-speed position sensorless operation of the machine. Sensorless operation is desirable to reduce the number of necessary feedback signals and transducers, thus improving the reliability and reducing the mass and volume of the system. This research was directed at developing an alternative form of direct torque control known as a "deadbeat," or inverse model, solution. This form uses pulse-width modulation of the voltage applied to the machine, thus reducing the necessary sample and switching frequency for the high-speed NASA motor. In addition, the structure of the deadbeat form allows the addition of the high-frequency carrier signal so that low- and zero-speed sensorless operation is possible. The new deadbeat solution is based on using the stator and rotor flux as state variables. This choice of state variables leads to a simple graphical representation of the solution as the intersection of a constant torque line with a constant stator flux circle. Previous solutions have been expressed only in complex mathematical terms without a

  18. AX-5 space suit bearing torque investigation

    NASA Technical Reports Server (NTRS)

    Loewenthal, Stuart; Vykukal, Vic; Mackendrick, Robert; Culbertson, Philip, Jr.

    1990-01-01

    The symptoms and eventual resolution of a torque increase problem occurring with ball bearings in the joints of the AX-5 space suit are described. Starting torques that rose 5 to 10 times initial levels were observed in crew evaluation tests of the suit in a zero-g water tank. This bearing problem was identified as a blocking torque anomaly, observed previously in oscillatory gimbal bearings. A large matrix of lubricants, ball separator designs and materials were evaluated. None of these combinations showed sufficient tolerance to lubricant washout when repeatedly cycled in water. The problem was resolved by retrofitting a pressure compensated, water exclusion seal to the outboard side of the bearing cavity. The symptoms and possible remedies to blocking are discussed.

  19. RFID Torque Sensing Tag System for Fasteners

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Lin, Gregory Y. (Inventor); Ngo, Phong H. (Inventor); Kennedy, Timothy F. (Inventor)

    2016-01-01

    The present invention provides an RFID-based torque sensor that can be used to quickly monitor off the shelf fasteners including fasteners that are used in expensive satellites or other uses where fastener failure can be very costly. In one embodiment, an antenna, RFID ring and spring comprise a sensor tag that can be interrogated with an interrogation signal produced by an interrogator device. When sufficient torque is applied to the fastener, an RFID circuit is connected, and produces a radio frequency (RF) signal that can be read by the interrogator. In one embodiment, the RFID circuit does not transmit when the spring member is not compressed, thereby indicating insufficient tensioning of the fastener. The present invention offers the ability to remotely, quickly, and inexpensively verify that any number of fasteners are torqued properly upon initial installation. Where applicable, the present invention allows low cost monitoring over the life of the fastener.

  20. Variable Torque Prescription: State of Art.

    PubMed Central

    Lacarbonara, Mariano; Accivile, Ettore; Abed, Maria R.; Dinoi, Maria Teresa; Monaco, Annalisa; Marzo, Giuseppe; Capogreco, Mario

    2015-01-01

    The variable prescription is widely described under the clinical aspect: the clinics is the result of the evolution of the state-of-the-art, aspect that is less considered in the daily literature. The state-of-the-art is the key to understand not only how we reach where we are but also to learn how to manage propely the torque, focusing on the technical and biomechanical purpos-es that led to the change of the torque values over time. The aim of this study is to update the clinicians on the aspects that affect the torque under the biomechanical sight, helping them to understand how to managing it, following the “timeline changes” in the different techniques so that the Variable Prescription Orthodontic (VPO) would be a suitable tool in every clinical case. PMID:25674173

  1. Cogging Torque Minimization in Transverse Flux Machines

    SciTech Connect

    Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz

    2017-02-16

    This paper presents the design considerations in cogging torque minimization in two types of transverse flux machines. The machines have a double stator-single rotor configuration with flux concentrating ferrite magnets. One of the machines has pole windings across each leg of an E-Core stator. Another machine has quasi-U-shaped stator cores and a ring winding. The flux in the stator back iron is transverse in both machines. Different methods of cogging torque minimization are investigated. Key methods of cogging torque minimization are identified and used as design variables for optimization using a design of experiments (DOE) based on the Taguchi method.more » A three-level DOE is performed to reach an optimum solution with minimum simulations. Finite element analysis is used to study the different effects. Two prototypes are being fabricated for experimental verification.« less

  2. The expected interior and surface environment of CoRoT-7b

    NASA Astrophysics Data System (ADS)

    Ziethe, R.; Wurz, P.; Lammer, H.

    2010-12-01

    The discovery of extrasolar planets - planets that orbit stars other than our sun - has always been fascinating. Meanwhile more than 400 so--called exoplanets have been detected. However, most of the detected exoplanets so far are relatively large (beyond 10 Earth masses) and can be regarded as gaseous planets, but scientists have always seeked after smaller and rocky planets, which could be compared to Earth or other earth--like bodies. Recently, the COROT mission discovered an object, Corot-7b, with a radius of only 1.68 REarth corresponding to a mass of 4.8 +/- 0.8 MEarth. This first low-mass exoplanet -- a so-called Super-Earth -- can be considered to be solid. Corot-7b orbits its primary at a very close distance and is therefore tidally locked in an 1:1 spin-orbit resonance. This implies a very inhomogeneous energy input from the star into the planet. Since the dayside is constantly exposed to the star, there is a strong temperature gradient towards the nightside. The surface temperature on the illuminated side is estimated with 2700K, while the shadowed side is thought to be at 110K. The high temperatures on the dayside will cause the evaporation of volatiles, which gives rise to the formation of an atmosphere. We introduce a three dimensional thermal convection model by solving the pertaining dimensionless hydrodynamical equations, computing the temperature field and especially investigate the formation of partially molten regions due to the inhomogeneous energy input onto the surface. The temperature of the surface and subsurface regions is enormously important for the composition of the atmosphere fed from volatiles, which escaped from the planet. The atmosphere is the only part of this exoplanet, which can be observed with remote sensing methods. Henceforth, understanding the conditions for the formation of an atmosphere (i.e., surface temperature map) is an important step forward in understanding extrasolar planets. We found that the highest temperatures

  3. Evaluating the contribution of a neural component of ankle joint resistive torque in patients with stroke using a manual device.

    PubMed

    Kobayashi, Toshiki; Leung, Aaron K L; Akazawa, Yasushi; Hutchins, Stephen W

    2011-01-01

    To investigate the methodology using a manual ankle joint resistive torque measurement device to evaluate the contribution of the neural component of ankle joint resistive torque in patients with stroke. Within-subject comparison to compare the ankle joint resistive torque between fast and slow stretching conditions. Ten patients with stroke participated in this study. The incremental ratio of ankle joint resistive torque at the ankle angular position of 5degrees dorsiflexion under the fast stretching condition in comparison to the slow one was calculated in each patient. A significant increase (p<0.01) in the ankle joint resistive torque was demonstrated under the fast stretching condition in comparison to the slow one in all patients and the mean ankle joint resistive torque was 4.6 (SD=1.7) Nm under the slow stretching condition, while it was 8.4 (SD=4.1) Nm under the fast stretching condition at the ankle angular position of 5 degrees dorsiflexion. The incremental ratio ranged from 9.4-139.3% among the patients. The results of this study demonstrated the potential advantage of the device to evaluate the contribution of the neural component of ankle joint resistive torque.

  4. Atmospheric Gravitational Torque Variations Based on Various Gravity Fields

    NASA Technical Reports Server (NTRS)

    Sanchez, Braulio V.; Rowlands, David; Smith, David E. (Technical Monitor)

    2001-01-01

    Advancements in the study of the Earth's variable rate of rotation and the motion of its rotation axis have given impetus to the analysis of the torques between the atmosphere, oceans and solid Earth. The output from global general circulation models of the atmosphere (pressure, surface stress) is being used as input to the torque computations. Gravitational torque between the atmosphere, oceans and solid Earth is an important component of the torque budget. Computation of the gravitational torque involves the adoption of a gravitational model from a wide variety available. The purpose of this investigation is to ascertain to what extent this choice might influence the results of gravitational torque computations.

  5. Torque limit of PM motors for field-weakening region operation

    DOEpatents

    Royak, Semyon [Beachwood, OH; Harbaugh, Mark M [Richfield, OH

    2012-02-14

    The invention includes a motor controller and technique for controlling a permanent magnet motor. In accordance with one aspect of the present technique, a permanent magnet motor is controlled by receiving a torque command, determining a physical torque limit based on a stator frequency, determining a theoretical torque limit based on a maximum available voltage and motor inductance ratio, and limiting the torque command to the smaller of the physical torque limit and the theoretical torque limit. Receiving the torque command may include normalizing the torque command to obtain a normalized torque command, determining the physical torque limit may include determining a normalized physical torque limit, determining a theoretical torque limit may include determining a normalized theoretical torque limit, and limiting the torque command may include limiting the normalized torque command to the smaller of the normalized physical torque limit and the normalized theoretical torque limit.

  6. Dynamic Young Stars and their Disks: A Temporal View of NGC 2264 with Spitzer and CoRoT

    NASA Astrophysics Data System (ADS)

    Cody, Ann Marie; Stauffer, John; Bouvier, Jèrôme

    2014-01-01

    Variability is a signature feature of young stars. Among the well known light curve phenomena are periodic variations attributed to surface spots and irregular changes associated with accretion or circumstellar disk material. While decades of photometric monitoring have provided a framework for classifying young star variability, we still know surprisingly little about its underlying mechanisms and connections to the surrounding disks. In the past few years, dedicated photometric monitoring campaigns from the ground and space have revolutionized our view of young stars in the time domain. We present a selection of optical and infrared time series from several recent campaigns, highlighting the Coordinated Synoptic Investigation of NGC 2264 ("CSI 2264")- a joint30-day effort with the Spitzer, CoRoT, and MOST telescopes. The extraordinary photometric precision, high cadence, and long time baseline of these observations is now enabling correlation of variability properties at very different wavelengths, corresponding to locations from the stellar surface to the inner 0.1 AU of the disk. We present some results of the CSI 2264 program, including new classes of optical/infrared behavior. Further efforts to tie observed variability features to physical models will provide insights into the inner disk environment at a time when planet formation may be underway. Based on data from the Spitzer and CoRoT missions. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA-s RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.

  7. Large-deflection statics analysis of active cardiac catheters through co-rotational modelling.

    PubMed

    Peng Qi; Chen Qiu; Mehndiratta, Aadarsh; I-Ming Chen; Haoyong Yu

    2016-08-01

    This paper presents a co-rotational concept for large-deflection formulation of cardiac catheters. Using this approach, the catheter is first discretized with a number of equal length beam elements and nodes, and the rigid body motions of an individual beam element are separated from its deformations. Therefore, it is adequate for modelling arbitrarily large deflections of a catheter with linear elastic analysis at the local element level. A novel design of active cardiac catheter of 9 Fr in diameter at the beginning of the paper is proposed, which is based on the contra-rotating double helix patterns and is improved from the previous prototypes. The modelling section is followed by MATLAB simulations of various deflections when the catheter is exerted different types of loads. This proves the feasibility of the presented modelling approach. To the best knowledge of the authors, it is the first to utilize this methodology for large-deflection static analysis of the catheter, which will enable more accurate control of robot-assisted cardiac catheterization procedures. Future work would include further experimental validations.

  8. Multibody dynamic analysis using a rotation-free shell element with corotational frame

    NASA Astrophysics Data System (ADS)

    Shi, Jiabei; Liu, Zhuyong; Hong, Jiazhen

    2018-03-01

    Rotation-free shell formulation is a simple and effective method to model a shell with large deformation. Moreover, it can be compatible with the existing theories of finite element method. However, a rotation-free shell is seldom employed in multibody systems. Using a derivative of rigid body motion, an efficient nonlinear shell model is proposed based on the rotation-free shell element and corotational frame. The bending and membrane strains of the shell have been simplified by isolating deformational displacements from the detailed description of rigid body motion. The consistent stiffness matrix can be obtained easily in this form of shell model. To model the multibody system consisting of the presented shells, joint kinematic constraints including translational and rotational constraints are deduced in the context of geometric nonlinear rotation-free element. A simple node-to-surface contact discretization and penalty method are adopted for contacts between shells. A series of analyses for multibody system dynamics are presented to validate the proposed formulation. Furthermore, the deployment of a large scaled solar array is presented to verify the comprehensive performance of the nonlinear shell model.

  9. Abundance and Source Population of Suprathermal Heavy Ions in Corotating Interaction Regions

    NASA Astrophysics Data System (ADS)

    Jensema, R. J.; Desai, M. I.; Broiles, T. W.; Dayeh, M. A.

    2015-12-01

    In this study we analyze the abundances of suprathermal heavy ions in 75 Corotating Interaction Region (CIR) events between January 1st 1995 and December 31st 2008. We correlate the heavy ion abundances in these CIRs with those measured in the solar wind and suprathermal populations upstream of these events. Our analysis reveals that the CIR suprathermal heavy ion abundances vary by nearly two orders of magnitude over the solar activity cycle, with higher abundances (e.g., Fe/O) occurring during solar maximum and depleted values occurring during solar minimum. The abundances are also energy dependent, with larger abundances at higher energies, particularly during solar maximum. Following the method used by Mason et al. 2008, we correlate the CIR abundances with the corresponding solar wind and suprathermal values measured during 6-hour intervals for upstream periods spanning 10 days prior to the start of each CIR event. This correlation reveals that suprathermal heavy ions are better correlated with upstream suprathermal abundances measured at the same energy compared with the solar wind heavy ion abundances. Using the 6-hour averaging method, we also identified timeframes of maximum correlation between the CIR and the upstream suprathermal abundances, and find that the time of maximum correlation depends on the energy of the suprathermal ions. We discuss the implications of these results in terms of previous studies of CIR and suprathermal particles, and CIR seed populations and acceleration mechanisms.

  10. The changing phases of extrasolar planet CoRoT-1b.

    PubMed

    Snellen, Ignas A G; de Mooij, Ernst J W; Albrecht, Simon

    2009-05-28

    Hot Jupiters are a class of extrasolar planet that orbit their parent stars at very short distances. They are expected to be tidally locked, which can lead to a large temperature difference between their daysides and nightsides. Infrared observations of eclipsing systems have yielded dayside temperatures for a number of transiting planets. The day-night contrast of the transiting extrasolar planet HD 189733b was 'mapped' using infrared observations. It is expected that the contrast between the daysides and nightsides of hot Jupiters is much higher at visual wavelengths, shorter than that of the peak emission, and could be further enhanced by reflected stellar light. Here we report the analysis of optical photometric data obtained over 36 planetary orbits of the transiting hot Jupiter CoRoT-1b. The data are consistent with the nightside hemisphere of the planet being entirely black, with the dayside flux dominating the optical phase curve. This means that at optical wavelengths the planet's phase variation is just as we see it for the interior planets in the Solar System. The data allow for only a small fraction of reflected light, corresponding to a geometric albedo of <0.20.

  11. Cosmic-Ray Transport in Heliospheric Magnetic Structures. II. Modeling Particle Transport through Corotating Interaction Regions

    SciTech Connect

    Kopp, Andreas; Wiengarten, Tobias; Fichtner, Horst

    The transport of cosmic rays (CRs) in the heliosphere is determined by the properties of the solar wind plasma. The heliospheric plasma environment has been probed by spacecraft for decades and provides a unique opportunity for testing transport theories. Of particular interest for the three-dimensional (3D) heliospheric CR transport are structures such as corotating interaction regions (CIRs), which, due to the enhancement of the magnetic field strength and magnetic fluctuations within and due to the associated shocks as well as stream interfaces, do influence the CR diffusion and drift. In a three-fold series of papers, we investigate these effects bymore » modeling inner-heliospheric solar wind conditions with the numerical magnetohydrodynamic (MHD) framework Cronos (Wiengarten et al., referred as Paper I), and the results serve as input to a transport code employing a stochastic differential equation approach (this paper). While, in Paper I, we presented results from 3D simulations with Cronos, the MHD output is now taken as an input to the CR transport modeling. We discuss the diffusion and drift behavior of Galactic cosmic rays using the example of different theories, and study the effects of CIRs on these transport processes. In particular, we point out the wide range of possible particle fluxes at a given point in space resulting from these different theories. The restriction of this variety by fitting the numerical results to spacecraft data will be the subject of the third paper of this series.« less

  12. Observations of energetic particles between a pair of corotating interaction regions

    SciTech Connect

    Wu, Z.; Chen, Y.; Tang, C. L.

    We report observations of the acceleration and trapping of energetic ions and electrons between a pair of corotating interaction regions (CIRs). The event occurred in Carrington Rotation 2060. Observed by the STEREO-B spacecraft, the two CIRs were separated by less than 5 days. In contrast to other CIR events, the fluxes of the energetic ions and electrons in this event reached their maxima between the trailing edge of the first CIR and the leading edge of the second CIR. The radial magnetic field (B{sub r} ) reversed its sense and the anisotropy of the flux also changed from Sunward tomore » anti-Sunward between the two CIRs. Furthermore, there was an extended period of counterstreaming suprathermal electrons between the two CIRs. Similar observations for this event were also obtained with the Advanced Composition Explorer and STEREO-A. We conjecture that these observations were due to a U-shaped, large-scale magnetic field topology connecting the reverse shock of the first CIR and the forward shock of the second CIR. Such a disconnected U-shaped magnetic field topology may have formed due to magnetic reconnection in the upper corona.« less

  13. Pickup ion acceleration in the successive appearance of corotating interaction regions

    NASA Astrophysics Data System (ADS)

    Tsubouchi, K.

    2017-04-01

    Acceleration of pickup ions (PUIs) in an environment surrounded by a pair of corotating interaction regions (CIRs) was investigated by numerical simulations using a hybrid code. Energetic particles associated with CIRs have been considered to be a result of the acceleration at their shock boundaries, but recent observations identified the ion flux peaks in the sub-MeV to MeV energy range in the rarefaction region, where two separate CIRs were likely connected by the magnetic field. Our simulation results confirmed these observational features. As the accelerated PUIs repeatedly bounce back and forth along the field lines between the reverse shock of the first CIR and the forward shock of the second one, the energetic population is accumulated in the rarefaction region. It was also verified that PUI acceleration in the dual CIR system had two different stages. First, because PUIs have large gyroradii, multiple shock crossing is possible for several tens of gyroperiods, and there is an energy gain in the component parallel to the magnetic field via shock drift acceleration. Second, as the field rarefaction evolves and the radial magnetic field becomes dominant, Fermi-type reflection takes place at the shock. The converging nature of two shocks results in a net energy gain. The PUI energy acquired through these processes is close to 0.5 MeV, which may be large enough for further acceleration, possibly resulting in the source of anomalous cosmic rays.

  14. Asymmetric Kelvin-Helmholtz Instability at Jupiter's Magnetopause Boundary: Implications for Corotation-Dominated Systems

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Delamere, P. A.; Ma, X.; Burkholder, B.; Wiltberger, M.; Lyon, J. G.; Merkin, V. G.; Sorathia, K. A.

    2018-01-01

    The multifluid Lyon-Fedder-Mobarry (MFLFM) global magnetosphere model is used to study the interactions between solar wind and rapidly rotating, internally driven Jupiter magnetosphere. The MFLFM model is the first global simulation of Jupiter magnetosphere that captures the Kelvin-Helmholtz instability (KHI) in the critically important subsolar region. Observations indicate that Kelvin-Helmholtz vortices are found predominantly in the dusk sector. Our simulations explain that this distribution is driven by the growth of KHI modes in the prenoon and subsolar region (e.g., >10 local time) that are advected by magnetospheric flows to the dusk sector. The period of density fluctuations at the dusk terminator flank (18 magnetic local time, MLT) is roughly 1.4 h compared with 7.2 h at the dawn flank (6 MLT). Although the simulations are only performed using parameters of the Jupiter's magnetosphere, the results may also have implications for solar wind-magnetosphere interactions at other corotation-dominated systems such as Saturn. For instance, the simulated average azimuthal speed of magnetosheath flows exhibit significant dawn-dusk asymmetry, consistent with recent observations at Saturn. The results are particularly relevant for the ongoing Juno mission and the analysis of dawnside magnetopause boundary crossings for other planetary missions.

  15. Derivation of capture probabilities for the corotation eccentric mean motion resonances

    NASA Astrophysics Data System (ADS)

    El Moutamid, Maryame; Sicardy, Bruno; Renner, Stéfan

    2017-08-01

    We study in this paper the capture of a massless particle into an isolated, first-order corotation eccentric resonance (CER), in the framework of the planar, eccentric and restricted three-body problem near a m + 1: m mean motion commensurability (m integer). While capture into Lindblad eccentric resonances (where the perturber's orbit is circular) has been investigated years ago, capture into CER (where the perturber's orbit is elliptic) has not yet been investigated in detail. Here, we derive the generic equations of motion near a CER in the general case where both the perturber and the test particle migrate. We derive the probability of capture in that context, and we examine more closely two particular cases: (I) if only the perturber is migrating, capture is possible only if the migration is outward from the primary. Notably, the probability of capture is independent of the way the perturber migrates outward; (II) if only the test particle is migrating, then capture is possible only if the algebraic value of its migration rate is a decreasing function of orbital radius. In this case, the probability of capture is proportional to the radial gradient of migration. These results differ from the capture into Lindblad eccentric resonance (LER), where it is necessary that the orbits of the perturber and the test particle converge for capture to be possible.

  16. Existence of Corotating and Counter-Rotating Vortex Pairs for Active Scalar Equations

    NASA Astrophysics Data System (ADS)

    Hmidi, Taoufik; Mateu, Joan

    2017-03-01

    In this paper, we study the existence of corotating and counter-rotating pairs of simply connected patches for Euler equations and the {(SQG)_{α}} equations with {α in (0,1)}. From the numerical experiments implemented for Euler equations in Deem and Zabusky (Phys Rev Lett 40(13):859-862, 1978), Pierrehumbert (J Fluid Mech 99:129-144, 1980), Saffman and Szeto (Phys Fluids 23(12):2339-2342, 1980) it is conjectured the existence of a curve of steady vortex pairs passing through the point vortex pairs. There are some analytical proofs based on variational principle (Keady in J Aust Math Soc Ser B 26:487-502, 1985; Turkington in Nonlinear Anal Theory Methods Appl 9(4):351-369, 1985); however, they do not give enough information about the pairs, such as the uniqueness or the topological structure of each single vortex. We intend in this paper to give direct proofs confirming the numerical experiments and extend these results for the {(SQG)_{α}} equation when {α in (0,1)}. The proofs rely on the contour dynamics equations combined with a desingularization of the point vortex pairs and the application of the implicit function theorem.

  17. 40 CFR 1065.310 - Torque calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... force is measured. The lever arm must be perpendicular to gravity (i.e., horizontal), and it must be... known distance along a lever arm. Make sure the weights' lever arm is perpendicular to gravity (i.e... Earth's gravity, as described in § 1065.630. Calculate the reference torque as the weights' reference...

  18. A New Twist on Torque Labs

    ERIC Educational Resources Information Center

    Lane, W. Brian

    2014-01-01

    The traditional introductory-level meterstick-balancing lab assumes that students already know what torque is and that they readily identify it as a physical quantity of interest. We propose a modified version of this activity in which students qualitatively and quantitatively measure the amount of force required to keep the meterstick level. The…

  19. Anatomy of a bearing torque problem

    NASA Technical Reports Server (NTRS)

    Phinney, Damon D.

    1987-01-01

    In the early 1970s, an antenna despin drive was developed for MBB solar science satellite HELIOS. A problem with high bearing drag torque that was encountered on the two flight models of this drive, after successful tests were completed on twelve bearings, an engineering model, and the qualification unit is discussed.

  20. Torque-balanced vibrationless rotary coupling

    DOEpatents

    Miller, Donald M.

    1980-01-01

    This disclosure describes a torque-balanced vibrationless rotary coupling for transmitting rotary motion without unwanted vibration into the spindle of a machine tool. A drive member drives a driven member using flexible connecting loops which are connected tangentially and at diametrically opposite connecting points through a free floating ring.

  1. Computing the motor torque of Escherichia coli.

    PubMed

    Das, Debasish; Lauga, Eric

    2018-06-13

    The rotary motor of bacteria is a natural nano-technological marvel that enables cell locomotion by powering the rotation of semi-rigid helical flagellar filaments in fluid environments. It is well known that the motor operates essentially at constant torque in counter-clockwise direction but past work have reported a large range of values of this torque. Focusing on Escherichia coli cells that are swimming and cells that are stuck on a glass surface for which all geometrical and environmental parameters are known (N. C. Darnton et al., J. Bacteriol., 2007, 189, 1756-1764), we use two validated numerical methods to compute the value of the motor torque consistent with experiments. Specifically, we use (and compare) a numerical method based on the boundary integral representation of Stokes flow and also develop a hybrid method combining boundary element and slender body theory to model the cell body and flagellar filament, respectively. Using measured rotation speed of the motor, our computations predict a value of the motor torque in the range 440 pN nm to 829 pN nm, depending critically on the distance between the flagellar filaments and the nearby surface.

  2. 40 CFR 1065.310 - Torque calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... maintenance. Use good engineering judgment to repeat the calibration. Follow the torque transducer... the U.S. National Oceanographic and Atmospheric Administration's surface gravity prediction Web site at http://www.ngs.noaa.gov/cgi-bin/grav_pdx.prl. If this Web site is unavailable, you may use the...

  3. 40 CFR 1065.310 - Torque calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... maintenance. Use good engineering judgment to repeat the calibration. Follow the torque transducer... the U.S. National Oceanographic and Atmospheric Administration's surface gravity prediction Web site at http://www.ngs.noaa.gov/cgi-bin/grav_pdx.prl. If this Web site is unavailable, you may use the...

  4. Torque wrench allows readings from inaccessible locations

    NASA Technical Reports Server (NTRS)

    De Barnardo, M.

    1966-01-01

    Torque wrench with an adjustable drive shaft permits indicator to remain in view when used on sections of equipment with limited access. The shaft is capable of protruding from either side of the wrench head by means of spring loaded balls.

  5. Alignment of Irregular Grains by Mechanical Torques

    NASA Astrophysics Data System (ADS)

    Hoang, Thiem; Cho, Jungyeon; Lazarian, A.

    2018-01-01

    We study the alignment of irregular dust grains by mechanical torques due to the drift of grains through the ambient gas. We first calculate mechanical alignment torques (MATs) resulting from specular reflection of gas atoms for seven irregular shapes: one shape of mirror symmetry, three highly irregular shapes (HIS), and three weakly irregular shapes (WIS). We find that the grain with mirror symmetry experiences negligible MATs due to its mirror-symmetry geometry. Three HIS can produce strong MATs, which exhibit some generic properties as radiative torques (RATs), while three WIS produce less efficient MATs. We then study grain alignment by MATs for the different angles between the drift velocity and the ambient magnetic field, for paramagnetic and superparamagnetic grains assuming efficient internal relaxation. We find that for HIS grains, MATs can align subsonically drifting grains in the same way as RATs, with low-J and high-J attractors. For supersonic drift, MATs can align grains with low-J and high-J attractors, analogous to RAT alignment by anisotropic radiation. We also show that the joint action of MATs and magnetic torques in grains with iron inclusions can lead to perfect MAT alignment. Our results point out the potential importance of MAT alignment for HIS grains predicted by the analytical model of Lazarian & Hoang, although more theoretical and observational studies are required due to uncertainty in the shape of interstellar grains. We outline astrophysical environments where MAT alignment is potentially important.

  6. Nonambipolar Transport and Torque in Perturbed Equilibria

    NASA Astrophysics Data System (ADS)

    Logan, N. C.; Park, J.-K.; Wang, Z. R.; Berkery, J. W.; Kim, K.; Menard, J. E.

    2013-10-01

    A new Perturbed Equilibrium Nonambipolar Transport (PENT) code has been developed to calculate the neoclassical toroidal torque from radial current composed of both passing and trapped particles in perturbed equilibria. This presentation outlines the physics approach used in the development of the PENT code, with emphasis on the effects of retaining general aspect-ratio geometric effects. First, nonambipolar transport coefficients and corresponding neoclassical toroidal viscous (NTV) torque in perturbed equilibria are re-derived from the first order gyro-drift-kinetic equation in the ``combined-NTV'' PENT formalism. The equivalence of NTV torque and change in potential energy due to kinetic effects [J-K. Park, Phys. Plas., 2011] is then used to showcase computational challenges shared between PENT and stability codes MISK and MARS-K. Extensive comparisons to a reduced model, which makes numerous large aspect ratio approximations, are used throughout to emphasize geometry dependent physics such as pitch angle resonances. These applications make extensive use of the PENT code's native interfacing with the Ideal Perturbed Equilibrium Code (IPEC), and the combination of these codes is a key step towards an iterative solver for self-consistent perturbed equilibrium torque. Supported by US DOE contract #DE-AC02-09CH11466 and the DOE Office of Science Graduate Fellowship administered by the Oak Ridge Institute for Science & Education under contract #DE-AC05-06OR23100.

  7. Planetary Torque in 3D Isentropic Disks

    NASA Astrophysics Data System (ADS)

    Fung, Jeffrey; Masset, Frédéric; Lega, Elena; Velasco, David

    2017-03-01

    Planetary migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep resolution requirements. Using two different hydrodynamics codes, FARGO3D and PEnGUIn, we simulate disk-planet interaction for a one to five Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet’s potential (r s), and that it has a weak dependence on the adiabatic index of the gaseous disk (γ). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern around the planets that show active flow is present within the planet’s Hill sphere, and meridional vortices are shed downstream. The vertical flow speed near the planet is faster for a smaller r s or γ, up to supersonic speeds for the smallest r s and γ in our study.

  8. Torque Limits for Fasteners in Composites

    NASA Technical Reports Server (NTRS)

    Zhao, Yi

    2002-01-01

    The two major classes of laminate joints are bonded and bolted. Often the two classes are combined as bonded-bolted joints. Several characteristics of fiber reinforced composite materials render them more susceptible to joint problems than conventional metals. These characteristics include weakness in in-plane shear, transverse tension/compression, interlaminar shear, and bearing strength relative to the strength and stiffness in the fiber direction. Studies on bolted joints of composite materials have been focused on joining assembly subject to in-plane loads. Modes of failure under these loading conditions are net-tension failure, cleavage tension failure, shear-out failure, bearing failure, etc. Although the studies of torque load can be found in literature, they mainly discussed the effect of the torque load on in-plane strength. Existing methods for calculating torque limit for a mechanical fastener do not consider connecting members. The concern that a composite member could be crushed by a preload inspired the initiation of this study. The purpose is to develop a fundamental knowledge base on how to determine a torque limit when a composite member is taken into account. Two simplified analytical models were used: a stress failure analysis model based on maximum stress criterion, and a strain failure analysis model based on maximum strain criterion.

  9. 40 CFR 90.306 - Dynamometer torque cell calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Dynamometer torque cell calibration... Emission Test Equipment Provisions § 90.306 Dynamometer torque cell calibration. (a)(1) Any lever arm used...-cell or transfer standard may be used to verify the torque measurement system. (1) The master load-cell...

  10. 40 CFR 90.306 - Dynamometer torque cell calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Dynamometer torque cell calibration... Emission Test Equipment Provisions § 90.306 Dynamometer torque cell calibration. (a)(1) Any lever arm used...-cell or transfer standard may be used to verify the torque measurement system. (1) The master load-cell...

  11. 40 CFR 90.306 - Dynamometer torque cell calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Dynamometer torque cell calibration... Emission Test Equipment Provisions § 90.306 Dynamometer torque cell calibration. (a)(1) Any lever arm used...-cell or transfer standard may be used to verify the torque measurement system. (1) The master load-cell...

  12. 40 CFR 1066.240 - Torque transducer verification and calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer Specifications § 1066.240 Torque transducer verification and calibration. Calibrate torque-measurement systems as described in 40 CFR 1065.310. ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Torque transducer verification and...

  13. 40 CFR 1066.240 - Torque transducer verification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer Specifications § 1066.240 Torque transducer verification. Verify torque-measurement systems by performing the verifications described in §§ 1066.270 and... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Torque transducer verification. 1066...

  14. 40 CFR 1066.240 - Torque transducer verification and calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer Specifications § 1066.240 Torque transducer verification and calibration. Calibrate torque-measurement systems as described in 40 CFR 1065.310. ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Torque transducer verification and...

  15. 40 CFR 90.306 - Dynamometer torque cell calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Dynamometer torque cell calibration... Emission Test Equipment Provisions § 90.306 Dynamometer torque cell calibration. (a)(1) Any lever arm used...-cell or transfer standard may be used to verify the torque measurement system. (1) The master load-cell...

  16. From CoRoT 102899501 to the Sun. A time evolution model of chromospheric activity on the main sequence

    NASA Astrophysics Data System (ADS)

    Gondoin, P.; Gandolfi, D.; Fridlund, M.; Frasca, A.; Guenther, E. W.; Hatzes, A.; Deeg, H. J.; Parviainen, H.; Eigmüller, P.; Deleuil, M.

    2012-12-01

    Aims: The present study reports measurements of the rotation period of a young solar analogue, estimates of its surface coverage by photospheric starspots and of its chromospheric activity level, and derivations of its evolutionary status. Detailed observations of many young solar-type stars, such as the one reported in the present paper, provide insight into rotation and magnetic properties that may have prevailed on the Sun in its early evolution. Methods: Using a model based on the rotational modulation of the visibility of active regions, we analysed the high-accuracy CoRoT lightcurve of the active star CoRoT 102899501. Spectroscopic follow-up observations were used to derive its fundamental parameters. We compared the chromospheric activity level of Corot 102899501 with the R'HK index distribution vs age established on a large sample of solar-type dwarfs in open clusters. We also compared the chromospheric activity level of this young star with a model of chromospheric activity evolution established by combining relationships between the R'HK index and the Rossby number with a recent model of stellar rotation evolution on the main sequence. Results: We measure the spot coverage of the stellar surface as a function of time and find evidence for a tentative increase from 5 - 14% at the beginning of the observing run to 13-29% 35 days later. A high level of magnetic activity on Corot 102899501 is corroborated by a strong emission in the Balmer and Ca ii H and K lines (R'HK ~ -4). The starspots used as tracers of the star rotation constrain the rotation period to 1.625 ± 0.002 days and do not show evidence for differential rotation. The effective temperature (Teff = 5180 ± 80 K), surface gravity (log g = 4.35 ± 0.1), and metallicity ([M/H] = 0.05 ± 0.07 dex) indicate that the object is located near the evolutionary track of a 1.09 ± 0.12 M⊙ pre-main sequence star at an age of 23 ± 10 Myr. This value is consistent with the "gyro-age" of about 8-25 Myr

  17. Force/torque and tactile sensors for sensor-based manipulator control

    NASA Technical Reports Server (NTRS)

    Vanbrussel, H.; Belieen, H.; Bao, Chao-Ying

    1989-01-01

    The autonomy of manipulators, in space and in industrial environments, can be dramatically enhanced by the use of force/torque and tactile sensors. The development and future use of a six-component force/torque sensor for the Hermes Robot Arm (HERA) Basic End-Effector (BEE) is discussed. Then a multifunctional gripper system based on tactile sensors is described. The basic transducing element of the sensor is a sheet of pressure-sensitive polymer. Tactile image processing algorithms for slip detection, object position estimation, and object recognition are described.

  18. Equilibria of a charged artificial satellite subject to gravitational and Lorentz torques

    NASA Astrophysics Data System (ADS)

    Abdel-Aziz, Yehia A.; Shoaib, Muhammad

    2014-07-01

    The attitude dynamics of a rigid artificial satellite subject to a gravity gradient and Lorentz torques in a circular orbit are considered. Lorentz torque is developed on the basis of the electrodynamic effects of the Lorentz force acting on the charged satellite's surface. We assume that the satellite is moving in a Low Earth Orbit in the geomagnetic field, which is considered to be a dipole. Our model of torque due to the Lorentz force is developed for an artificial satellite with a general shape, and the nonlinear differential equations of Euler are used to describe its attitude orientation. All equilibrium positions are determined and conditions for their existence are obtained. The numerical results show that the charge q and radius ρ0 of the center of charge for the satellite provide a certain type of semi-passive control for the attitude of the satellite. The technique for this kind of control would be to increase or decrease the electrostatic screening on the satellite. The results obtained confirm that the change in charge can affect the magnitude of the Lorentz torque, which can also affect control of the satellite. Moreover, the relationship between magnitude of the Lorentz torque and inclination of the orbit is investigated.

  19. Design and analysis of an MR rotary brake for self-regulating braking torques.

    PubMed

    Yun, Dongwon; Koo, Jeong-Hoi

    2017-05-01

    This paper presents a novel Magneto-rheological (MR) brake system that can self-regulate the output braking torques. The proposed MR brake can generate a braking torque at a critical rotation speed without an external power source, sensors, or controllers, making it a simple and cost-effective device. The brake system consists of a rotary disk, permanent magnets, springs, and MR fluid. The permanent magnets are attached to the rotary disk via the springs, and they move outward through grooves with two different gap distances along the radial direction of the stator due to the centrifugal force. Thus, the position of the magnets is dependent on the spin speed, and it can determine the magnetic fields applied to MR fluids. Proper design of the stator geometry gives the system unique torque characteristics. To show the performance of an MR brake system, the electromagnetic characteristics of the system are analyzed, and the torques generated by the brake are calculated using the result of the electromagnetic analysis. Using a baseline model, a parametric study is conducted to investigate how the design parameters (geometric shapes and material selection) affect the performance of the brake system. After the simulation study, a prototype brake system is constructed and its performance is experimentally evaluated. The experimental results show that the prototype produced the maximum torque of 1.2 N m at the rotational speed of 100 rpm. The results demonstrate the feasibility of the proposed MR brake as a speed regulator in rotating systems.

  20. Evaluation of a high-torque backlash-free roller actuator

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Rohn, Douglas A.; Anderson, William

    1986-01-01

    The results are presented of a test program that evaluated the stiffness, accuracy, torque ripple, frictional losses, and torque holding capability of a 16:1 ratio, 430 N-m (320 ft-lb) planetary roller drive for a potential space vehicle actuator application. The drive's planet roller supporting structure and bearings were found to be the largest contributors to overall drive compliance, accounting for more than half of the total. In comparison, the traction roller contacts themselves contributed only 9 percent of the drive's compliance based on an experimentally verified stiffness model. The drive exhibited no backlash although 8 arc sec of hysteresis deflection were recorded due to microcreep within the contact under torque load. Because of these load-dependent displacements, some form of feedback control would be required for arc second positioning applications. Torque ripple tests showed the drive to be extremely smooth, actually providing some damping of input torsional oscillations. The drive also demonstrated the ability to hold static torque with drifts of 7 arc sec or less over a 24 hr period at 35 percent of full load.

  1. Relation between Peak Power Output in Sprint Cycling and Maximum Voluntary Isometric Torque Production.

    PubMed

    Kordi, Mehdi; Goodall, Stuart; Barratt, Paul; Rowley, Nicola; Leeder, Jonathan; Howatson, Glyn

    2017-08-01

    From a cycling paradigm, little has been done to understand the relationships between maximal isometric strength of different single joint lower body muscle groups and their relation with, and ability to predict PPO and how they compare to an isometric cycling specific task. The aim of this study was to establish relationships between maximal voluntary torque production from isometric single-joint and cycling specific tasks and assess their ability to predict PPO. Twenty male trained cyclists participated in this study. Peak torque was measured by performing maximum voluntary contractions (MVC) of knee extensors, knee flexors, dorsi flexors and hip extensors whilst instrumented cranks measured isometric peak torque from MVC when participants were in their cycling specific position (ISOCYC). A stepwise regression showed that peak torque of the knee extensors was the only significant predictor of PPO when using SJD and accounted for 47% of the variance. However, when compared to ISOCYC, the only significant predictor of PPO was ISOCYC, which accounted for 77% of the variance. This suggests that peak torque of the knee extensors was the best single-joint predictor of PPO in sprint cycling. Furthermore, a stronger prediction can be made from a task specific isometric task. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Integrated High-Speed Torque Control System for a Robotic Joint

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Valvo, Michael C. (Inventor); Askew, R. Scott (Inventor)

    2013-01-01

    A control system for achieving high-speed torque for a joint of a robot includes a printed circuit board assembly (PCBA) having a collocated joint processor and high-speed communication bus. The PCBA may also include a power inverter module (PIM) and local sensor conditioning electronics (SCE) for processing sensor data from one or more motor position sensors. Torque control of a motor of the joint is provided via the PCBA as a high-speed torque loop. Each joint processor may be embedded within or collocated with the robotic joint being controlled. Collocation of the joint processor, PIM, and high-speed bus may increase noise immunity of the control system, and the localized processing of sensor data from the joint motor at the joint level may minimize bus cabling to and from each control node. The joint processor may include a field programmable gate array (FPGA).

  3. Solar wind interaction with comet 67P: Impacts of corotating interaction regions

    NASA Astrophysics Data System (ADS)

    Edberg, N. J. T.; Eriksson, A. I.; Odelstad, E.; Vigren, E.; Andrews, D. J.; Johansson, F.; Burch, J. L.; Carr, C. M.; Cupido, E.; Glassmeier, K.-H.; Goldstein, R.; Halekas, J. S.; Henri, P.; Koenders, C.; Mandt, K.; Mokashi, P.; Nemeth, Z.; Nilsson, H.; Ramstad, R.; Richter, I.; Wieser, G. Stenberg

    2016-02-01

    We present observations from the Rosetta Plasma Consortium of the effects of stormy solar wind on comet 67P/Churyumov-Gerasimenko. Four corotating interaction regions (CIRs), where the first event has possibly merged with a coronal mass ejection, are traced from Earth via Mars (using Mars Express and Mars Atmosphere and Volatile EvolutioN mission) to comet 67P from October to December 2014. When the comet is 3.1-2.7 AU from the Sun and the neutral outgassing rate ˜1025-1026 s-1, the CIRs significantly influence the cometary plasma environment at altitudes down to 10-30 km. The ionospheric low-energy (˜5 eV) plasma density increases significantly in all events, by a factor of >2 in events 1 and 2 but less in events 3 and 4. The spacecraft potential drops below -20 V upon impact when the flux of electrons increases. The increased density is likely caused by compression of the plasma environment, increased particle impact ionization, and possibly charge exchange processes and acceleration of mass-loaded plasma back to the comet ionosphere. During all events, the fluxes of suprathermal (˜10-100 eV) electrons increase significantly, suggesting that the heating mechanism of these electrons is coupled to the solar wind energy input. At impact the magnetic field strength in the coma increases by a factor of 2-5 as more interplanetary magnetic field piles up around the comet. During two CIR impact events, we observe possible plasma boundaries forming, or moving past Rosetta, as the strong solar wind compresses the cometary plasma environment. We also discuss the possibility of seeing some signatures of the ionospheric response to tail disconnection events.

  4. Source Population and Acceleration Location of Suprathermal Heavy Ions in Corotating Interaction Regions

    SciTech Connect

    Filwett, R. J.; Desai, M. I.; Dayeh, M. A.

    2017-03-20

    We have analyzed the ∼20–320 keV nucleon{sup −1} suprathermal (ST) heavy ion abundances in 41 corotating interaction regions (CIRs) observed by the Wind spacecraft from 1995 January to 2008 December. Our results are: (1) the CIR Fe/CNO and NeS/CNO ratios vary with the sunspot number, with values being closer to average solar energetic particle event values during solar maxima and lower than nominal solar wind values during solar minima. The physical mechanism responsible for the depleted abundances during solar minimum remains an open question. (2) The Fe/CNO increases with energy in the 6 events that occurred during solar maximum, whilemore » no such trends are observed for the 35 events during solar minimum. (3) The Fe/CNO shows no correlation with the average solar wind speed. (4) The Fe/CNO is well correlated with the corresponding upstream ∼20–320 keV nucleon{sup −1} Fe/CNO and not with the solar wind Fe/O measured by ACE in 31 events. Using the correlations between the upstream ∼20–40 keV nucleon{sup −1} Fe/CNO and the ∼20–320 keV nucleon{sup −1} Fe/CNO in CIRs, we estimate that, on average, the ST particles traveled ∼2 au along the nominal Parker spiral field line, which corresponds to upper limits for the radial distance of the source or acceleration location of ∼1 au beyond Earth orbit. Our results are consistent with those obtained from recent surveys, and confirm that CIR ST heavy ions are accelerated more locally, and are at odds with the traditional viewpoint that CIR ions seen at 1 au are bulk solar wind ions accelerated between 3 and 5 au.« less

  5. Energetic electron precipitation in weak to moderate corotating interaction region-driven storms

    NASA Astrophysics Data System (ADS)

    Ødegaard, Linn-Kristine Glesnes; Tyssøy, Hilde Nesse; Søraas, Finn; Stadsnes, Johan; Sandanger, Marit Irene

    2017-03-01

    High-energy electron precipitation from the radiation belts can penetrate deep into the mesosphere and increase the production rate of NOx and HOx, which in turn will reduce ozone in catalytic processes. The mechanisms for acceleration and loss of electrons in the radiation belts are not fully understood, and most of the measurements of the precipitating flux into the atmosphere have been insufficient for estimating the loss cone flux. In the present study the electron flux measured by the NOAA POES Medium Energy Proton and Electron Detectors 0° and 90° detectors is combined together with theory of pitch angle diffusion by wave-particle interaction to quantify the electron flux lost below 120 km altitude. Using this method, 41 weak and moderate geomagnetic storms caused by corotating interaction regions during 2006-2010 are studied. The dependence of the energetic electron precipitation fluxes upon solar wind parameters and geomagnetic indices is investigated. Nine storms give increased precipitation of >˜750 keV electrons. Nineteen storms increase the precipitation of >˜300 keV electrons, but not the >˜750 keV population. Thirteen storms either do not change or deplete the fluxes at those energies. Storms that have an increase in the flux of electrons with energy >˜300 keV are characterized by an elevated solar wind velocity for a longer period compared to the storms that do not. Storms with increased precipitation of >˜750 keV flux are distinguished by higher-energy input from the solar wind quantified by the ɛ parameter and corresponding higher geomagnetic activity.

  6. Coupling between corotation and Lindblad resonances in the presence of secular precession rates

    NASA Astrophysics Data System (ADS)

    El Moutamid, Maryame; Sicardy, Bruno; Renner, Stéfan

    2014-03-01

    We investigate the dynamics of two satellites with masses and orbiting a massive central planet in a common plane, near a first order mean motion resonance ( m integer). We consider only the resonant terms of first order in eccentricity in the disturbing potential of the satellites, plus the secular terms causing the orbital apsidal precessions. We obtain a two-degrees-of-freedom system, associated with the two critical resonant angles and , where and are the mean longitude and longitude of periapsis of , respectively, and where the primed quantities apply to . We consider the special case where (restricted problem). The symmetry between the two angles and is then broken, leading to two different kinds of resonances, classically referred to as corotation eccentric resonance (CER) and Lindblad eccentric Resonance (LER), respectively. We write the four reduced equations of motion near the CER and LER, that form what we call the CoraLin model. This model depends upon only two dimensionless parameters that control the dynamics of the system: the distance between the CER and LER, and a forcing parameter that includes both the mass and the orbital eccentricity of the disturbing satellite. Three regimes are found: for the system is integrable, for of order unity, it exhibits prominent chaotic regions, while for large compared to 2, the behavior of the system is regular and can be qualitatively described using simple adiabatic invariant arguments. We apply this model to three recently discovered small Saturnian satellites dynamically linked to Mimas through first order mean motion resonances: Aegaeon, Methone and Anthe. Poincaré surfaces of section reveal the dynamical structure of each orbit, and their proximity to chaotic regions. This work may be useful to explore various scenarii of resonant capture for those satellites.

  7. Eccentric knee flexor torque following anterior cruciate ligament surgery.

    PubMed

    Osternig, L R; James, C R; Bercades, D T

    1996-10-01

    The purposes of this study were to compare eccentric knee flexor torque and muscle activation in the limbs of normal (NOR) subjects and in subjects who had undergone unilateral ACI, autograft surgical reconstruction (INJ) and to assess the effect of movement speed on EMG/ torque ratios and eccentric-concentric actions. Fourteen subjects (7 NOR and 7 INJ) were tested for knee eccentric flexor torque and EMG activity at four isokinetic speeds (15 degrees, 30 degrees, 45 degrees and 60 degrees.s-1). Results revealed that post-surgical limbs (ACL) produced significantly less (P < 0.05) eccentric torque and flexor EMG activity at 60 degrees.s-1 than uninjured (UNI) contralateral limbs. Eccentric torque rose significantly as speed increased from 45 degrees to 60 degrees.s-1 for surgical group uninjured limbs and NOR group left and right limbs. Eccentric flexor torque increased with speed for both groups and approximated equality with concentric extensor torque at 60 degrees.s-1 for INJ group ACL and UNI limbs. Concentric flexor muscle EMG/torque ratios were 30-191% greater than eccentric muscle actions across groups and speeds. The results suggest that ACL dysfunction may result in reduced eccentric flexor torque at rapid movement speeds, that eccentric flexor torque increases with movement speed and may have the capacity to counter forceful extensor concentric torque, and that eccentric muscle actions produce less muscle activation per unit force than concentric actions which may reflect reduced energy cost.

  8. A New Adaptive Self-Tuning Fourier Coefficients Algorithm for Periodic Torque Ripple Minimization in Permanent Magnet Synchronous Motors (PMSM)

    PubMed Central

    Gómez-Espinosa, Alfonso; Hernández-Guzmán, Víctor M.; Bandala-Sánchez, Manuel; Jiménez-Hernández, Hugo; Rivas-Araiza, Edgar A.; Rodríguez-Reséndiz, Juvenal; Herrera-Ruíz, Gilberto

    2013-01-01

    Torque ripple occurs in Permanent Magnet Synchronous Motors (PMSMs) due to the non-sinusoidal flux density distribution around the air-gap and variable magnetic reluctance of the air-gap due to the stator slots distribution. These torque ripples change periodically with rotor position and are apparent as speed variations, which degrade the PMSM drive performance, particularly at low speeds, because of low inertial filtering. In this paper, a new self-tuning algorithm is developed for determining the Fourier Series Controller coefficients with the aim of reducing the torque ripple in a PMSM, thus allowing for a smoother operation. This algorithm adjusts the controller parameters based on the component's harmonic distortion in time domain of the compensation signal. Experimental evaluation is performed on a DSP-controlled PMSM evaluation platform. Test results obtained validate the effectiveness of the proposed self-tuning algorithm, with the Fourier series expansion scheme, in reducing the torque ripple. PMID:23519345

  9. Displaceable Spur Gear Torque Controlled Driver and Method

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1996-01-01

    Methods and apparatus are provided for a torque driver including a laterally displaceable gear support member to carry an output spur gear. A biasing assembly biases the output spur gear into engagement with a pinion to which is applied an input torque greater than a desired output torque limit for a threaded fastener such as a nut or screw. A coiled output linkage connects the output spur gear with a fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. A gauged selector mechanism is provided to laterally displace multiple driven members for fasteners arranged in differing configurations. The torque limit is selectably adjustable and may be different for fasteners within the same fastener configuration.

  10. Displaceable spur gear torque controlled driver and method

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1994-01-01

    Methods and apparatus are provided for a torque driver including a laterally displaceable gear support member to carry an output spur gear. A biasing assembly biases the output spur gear into engagement with a pinion to which is applied an input torque greater than a desired output torque limit for a threaded fastener such as a nut or screw. A coiled output linkage connects the output spur gear with a fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. A gauged selector mechanism is provided to laterally displace multiple driver members for fasteners arranged in differing configurations. The torque limit is selectably adjustable and may be different for fasteners within the same fastener configuration.

  11. A self-calibrating multicomponent force/torque measuring system

    NASA Astrophysics Data System (ADS)

    Marangoni, Rafael R.; Schleichert, Jan; Rahneberg, Ilko; Hilbrunner, Falko; Fröhlich, Thomas

    2018-07-01

    A multicomponent self-calibrating force and torque sensor is presented. In this system, the principle of a Kibble balance is adapted for the traceable force and torque measurement in three orthogonal directions. The system has two operating modes: the velocity mode and the force/torque sensing mode. In the velocity mode, the calibration of the sensor is performed, while in the force/torque sensing mode, forces and torques are measured by using the principle of the electromagnetic force compensation. Details about the system are provided, with the main components of the sensor and a description of the operational procedure. A prototype of the system is currently being implemented for measuring forces and torques in a range of  ±2 N and  ±0.1 N · m respectively. A maximal relative expanded measurement uncertainty (k  =  2) of 1 · 10‑4 is expected for the force and torque measurements.

  12. Autonomous spacecraft attitude control using magnetic torquing only

    NASA Technical Reports Server (NTRS)

    Musser, Keith L.; Ebert, Ward L.

    1989-01-01

    Magnetic torquing of spacecraft has been an important mechanism for attitude control since the earliest satellites were launched. Typically a magnetic control system has been used for precession/nutation damping for gravity-gradient stabilized satellites, momentum dumping for systems equipped with reaction wheels, or momentum-axis pointing for spinning and momentum-biased spacecraft. Although within the small satellite community there has always been interest in expensive, light-weight, and low-power attitude control systems, completely magnetic control systems have not been used for autonomous three-axis stabilized spacecraft due to the large computational requirements involved. As increasingly more powerful microprocessors have become available, this has become less of an impediment. These facts have motivated consideration of the all-magnetic attitude control system presented here. The problem of controlling spacecraft attitude using only magnetic torquing is cast into the form of the Linear Quadratic Regulator (LQR), resulting in a linear feedback control law. Since the geomagnetic field along a satellite trajectory is not constant, the system equations are time varying. As a result, the optimal feedback gains are time-varying. Orbit geometry is exploited to treat feedback gains as a function of position rather than time, making feasible the onboard solution of the optimal control problem. In simulations performed to date, the control laws have shown themselves to be fairly robust and a good candidate for an onboard attitude control system.

  13. Mode coupling in spin torque oscillators

    DOE PAGES

    Zhang, Steven S. -L.; Zhou, Yan; Li, Dong; ...

    2016-09-15

    A number of recent experimental works have shown that the dynamics of a single spin torque oscillator can exhibit complex behavior that stems from interactions between two or more modes of the oscillator, such as observed mode-hopping or mode coexistence. There has been some initial work indicating how the theory for a single-mode (macro-spin) spin torque oscillator should be generalized to include several modes and the interactions between them. In the present work, we rigorously derive such a theory starting with the Landau–Lifshitz–Gilbert equation for magnetization dynamics by expanding up to third-order terms in deviation from equilibrium. Here, our resultsmore » show how a linear mode coupling, which is necessary for observed mode-hopping to occur, arises through coupling to a magnon bath. In conclusion, the acquired temperature dependence of this coupling implies that the manifold of orbits and fixed points may shift with temperature.« less

  14. A dynamic method for magnetic torque measurement

    NASA Technical Reports Server (NTRS)

    Lin, C. E.; Jou, H. L.

    1994-01-01

    In a magnetic suspension system, accurate force measurement will result in better control performance in the test section, especially when a wider range of operation is required. Although many useful methods were developed to obtain the desired model, however, significant error is inevitable since the magnetic field distribution of the large-gap magnetic suspension system is extremely nonlinear. This paper proposed an easy approach to measure the magnetic torque of a magnetic suspension system using an angular photo encoder. Through the measurement of the velocity change data, the magnetic torque is converted. The proposed idea is described and implemented to obtain the desired data. It is useful to the calculation of a magnetic force in the magnetic suspension system.

  15. Spin diffusion and torques in disordered antiferromagnets

    NASA Astrophysics Data System (ADS)

    Manchon, Aurelien

    2017-03-01

    We have developed a drift-diffusion equation of spin transport in collinear bipartite metallic antiferromagnets. Starting from a model tight-binding Hamiltonian, we obtain the quantum kinetic equation within Keldysh formalism and expand it to the lowest order in spatial gradient using Wigner expansion method. In the diffusive limit, these equations track the spatio-temporal evolution of the spin accumulations and spin currents on each sublattice of the antiferromagnet. We use these equations to address the nature of the spin transfer torque in (i) a spin-valve composed of a ferromagnet and an antiferromagnet, (ii) a metallic bilayer consisting of an antiferromagnet adjacent to a heavy metal possessing spin Hall effect, and in (iii) a single antiferromagnet possessing spin Hall effect. We show that the latter can experience a self-torque thanks to the non-vanishing spin Hall effect in the antiferromagnet.

  16. Manipulation of spin transfer torque using light

    NASA Astrophysics Data System (ADS)

    Rontani, Massimo; Vendelbjerg, Karsten; Sham, Lu

    We show that the spin transfer torque induced by a spin-polarized current on a nanomagnet as the current flows through a semiconductor-nanomagnet-semiconductor junction is externally controlled by shining the junction off-resonantly with a strong laser beam. The excitonic coherence driven by the laser dresses the virtual electron-hole pairs coupling conduction and valence bands and inducing an evanescent state in the proximity of the nanomagnet. The Fano-like quantum interference between this localized state and the continuum spectrum is different in the two spin channels and hence it dramatically alters the spin transport, leading to the coherent control of the spin transfer torque. This work is supported by EU-FP7 Marie Curie Initial Training Network INDEX.

  17. Torque Transmission Device at Zero Leakage

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Mullen, R. L.

    2005-01-01

    In a few critical applications, mechanical transmission of power by rotation at low speed is required without leakage at an interface. Herein we examine a device that enables torque to be transmitted across a sealed environmental barrier. The barrier represents the restraint membrane through which the torque is transmitted. The power is transferred through elastic deformation of a circular tube into an elliptical cross-section. Rotation of the principle axis of the ellipse at one end results in a commensurate rotation of an elliptical cross section at the other end of the tube. This transfer requires no rigid body rotation of the tube allowing a membrane to seal one end from the other. Both computational and experimental models of the device are presented.

  18. Adjustable-Torque Truss-Joint Mechanism

    NASA Technical Reports Server (NTRS)

    Bush, Harold G.; Wallsom, Richard E.

    1993-01-01

    Threaded pin tightened or loosened; tedious trial-and-error procedure shortened. Mechanism joining strut and node in truss structure preloaded to desired stress to ensure tight, compressive fit preventing motion of strut during loading or vibration. Preload stress on stack of Belleville spring washers adjusted by tightening or loosening threaded Belleville-washer-alignment pin. Pin turned, by use of allen wrench, to adjust compression preload on Belleville washers and adjusts joint-operating torque.

  19. An ironless armature brushless torque motor

    NASA Technical Reports Server (NTRS)

    Studer, P. A.

    1973-01-01

    A high torque motor with improved servo mechanism is reported. Armature windings are cast into an epoxy cylinder and armature conductors are integrally cast with an aluminum mounting ring which provides thermal conductance directly into the structure. This configuration eliminates magnetic hysteresis because there is no relative motion between the rotating magnetic field and any stationary iron. The absence of destabilization forces provides a fast electrical response compared with a typical torquer of conventional construction.

  20. Ground-based photometric support for the CoRoT mission by the CoRoT-Hungarian Asteroseismology Group

    NASA Astrophysics Data System (ADS)

    Bognár, Zs.; Paparó, M.

    2012-12-01

    The CoRoT-Hungarian Asteroseismology Group was established in 2005 and joined the preparatory work of the CoRoT Mission via an ESA PECS project. After the successful launch of the telescope, we have continued our work of ground-based multi-colour photometric observations and contributed to the analyses of CoRoT data. Our observations were focused on δ Scuti, γ Doradus, and RR Lyrae stars. The follow-up of some selected targets' pulsations in different wavelengths has provided valuable information for mode identification. We provided additional support by the confirmation of relatively faint variables' spectral types. We proved that our ground-based observations can help in the interpretation of a target with a contaminated CoRoT light curve. In this paper, we summarize our most important results of the photometric support for the CoRoT Mission. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.

  1. Resonance Trapping due to Nebula Disk Torques

    NASA Astrophysics Data System (ADS)

    Hahn, J. M.; Ward, W. R.

    1996-03-01

    A protoplanet embedded in the solar nebula launches spiral density waves from its Lindblad resonances in the gas disk, and its gravitational attraction for these disturbances results in a mutual torque exerted between the protoplanet and the disk. Consequently the orbit of a sufficiently massive protoplanet may decay on a timescale shorter than the nebula lifetime, and this mechanism is most significant during the formation of the cores of the giant planets. Due to their increased mobility, migrating protoplanets may have been able to accrete large swaths of the disk and/or encounter other protoplanets. Thus disk torques may have played an important role in determining the formation history and orbit spacings of the giant planets. An interesting phenomenon also associated with orbit decay is resonance trapping, whereby a large body is able to halt further orbit decay of smaller bodies at commensurability resonances. Examples of this effect include the trapping of planetesimals experiencing aerodynamic gas drag and dust suffering Poynting-Robertson drag. Below we address the cosmogonic implications of resonance trapping of planetary embryos experiencing orbit decay due to nebula disk torques. The following employs an approach similar to Malhotra's (1993) discussion of the gas drag trapping problem.

  2. Insulating nanomagnets driven by spin torque

    DOE PAGES

    Jungfleisch, Matthias B.; Ding, Junjia; Zhang, Wei; ...

    2016-11-29

    Magnetic insulators, such as yttrium iron garnet (Y 3Fe 5O 12), are ideal materials for ultra-low power spintronics applications due to their low energy dissipation and efficient spin current generation and transmission. Recently, it has been realized that spin dynamics can be driven very effectively in micrometer-sized Y 3Fe 5O 12/Pt heterostructures by spin-Hall effects. We demonstrate here the excitation and detection of spin dynamics in Y 3Fe 5O 12/Pt nanowires by spin-torque ferromagnetic resonance. The nanowires defined via electron-beam lithography are fabricated by conventional room temperature sputtering deposition on Gd 3Ga 5O 12 substrates and lift-off. We observe field-likemore » and anti-damping-like torques acting on the magnetization precession, which are due to simultaneous excitation by Oersted fields and spin-Hall torques. The Y 3Fe 5O 12/Pt nanowires are thoroughly examined over a wide frequency and power range. We observe a large change in the resonance field at high microwave powers, which is attributed to a decreasing effective magnetization due to microwave absorption. By comparing different nanowire widths, the importance of geometrical confinements for magnetization dynamics becomes evident. In conclusion, our results are the first stepping stones toward the realization of integrated magnonic logic devices based on insulators, where nanomagnets play an essential role.« less

  3. Space Suit Joint Torque Measurement Method Validation

    NASA Technical Reports Server (NTRS)

    Valish, Dana; Eversley, Karina

    2012-01-01

    In 2009 and early 2010, a test method was developed and performed to quantify the torque required to manipulate joints in several existing operational and prototype space suits. This was done in an effort to develop joint torque requirements appropriate for a new Constellation Program space suit system. The same test method was levied on the Constellation space suit contractors to verify that their suit design met the requirements. However, because the original test was set up and conducted by a single test operator there was some question as to whether this method was repeatable enough to be considered a standard verification method for Constellation or other future development programs. In order to validate the method itself, a representative subset of the previous test was repeated, using the same information that would be available to space suit contractors, but set up and conducted by someone not familiar with the previous test. The resultant data was compared using graphical and statistical analysis; the results indicated a significant variance in values reported for a subset of the re-tested joints. Potential variables that could have affected the data were identified and a third round of testing was conducted in an attempt to eliminate and/or quantify the effects of these variables. The results of the third test effort will be used to determine whether or not the proposed joint torque methodology can be applied to future space suit development contracts.

  4. Measurements of Inertial Torques on Sedimenting Fibers

    NASA Astrophysics Data System (ADS)

    Hamati, Rami; Roy, Anubhab; Koch, Don; Voth, Greg

    2017-11-01

    Stokes flow solutions predict that ellipsoids sedimenting in quiescent fluid keep their initial orientation. However, preferential alignment in low Reynolds number sedimentation is easily observed. For example, sun dogs form from alignment of sedimenting ice crystals. The cause of this preferential alignment is a torque due to non-zero fluid inertia that aligns particles with a long axis in the horizontal direction. These torques are predicted analytically for slender fibers with low Reynolds number based on the fiber diameter (ReD) by Khayat and Cox (JFM 209:435, 1989). Despite increasingly widespread use of these expressions, we did not find experimental measurements of these inertial torques at parameters where the theory was valid, so we performed a set of sedimentation experiments using fore-aft symmetric cylinders and asymmetric cylinders with their center of mass offset from their center of drag. Measured rotation rates as a function of orientation using carefully prepared glass capillaries in silicon oil show good agreement with the theory. We quantify the effect of finite tank size and compare with other experiments in water where the low ReD condition is not met. Supported by Army Research Office Grant W911NF1510205.

  5. Dynamics of a split torque helicopter transmission

    NASA Technical Reports Server (NTRS)

    Rashidi, Majid; Krantz, Timothy

    1992-01-01

    A high reduction ratio split torque gear train has been proposed as an alternative to a planetary configuration for the final stage of a helicopter transmission. A split torque design allows a high ratio of power-to-weight for the transmission. The design studied in this work includes a pivoting beam that acts to balance thrust loads produced by the helical gear meshes in each of two parallel power paths. When the thrust loads are balanced, the torque is split evenly. A mathematical model was developed to study the dynamics of the system. The effects of time varying gear mesh stiffness, static transmission errors, and flexible bearing supports are included in the model. The model was demonstrated with a test case. Results show that although the gearbox has a symmetric configuration, the simulated dynamic behavior of the first and second compound gears are not the same. Also, results show that shaft location and mesh stiffness tuning are significant design parameters that influence the motions of the system.

  6. The Spin Torque Lego - from spin torque nano-devices to advanced computing architectures

    NASA Astrophysics Data System (ADS)

    Grollier, Julie

    2013-03-01

    Spin transfer torque (STT), predicted in 1996, and first observed around 2000, brought spintronic devices to the realm of active elements. A whole class of new devices, based on the combined effects of STT for writing and Giant Magneto-Resistance or Tunnel Magneto-Resistance for reading has emerged. The second generation of MRAMs, based on spin torque writing : the STT-RAM, is under industrial development and should be out on the market in three years. But spin torque devices are not limited to binary memories. We will rapidly present how the spin torque effect also allows to implement non-linear nano-oscillators, spin-wave emitters, controlled stochastic devices and microwave nano-detectors. What is extremely interesting is that all these functionalities can be obtained using the same materials, the exact same stack, simply by changing the device geometry and its bias conditions. So these different devices can be seen as Lego bricks, each brick with its own functionality. During this talk, I will show how spin torque can be engineered to build new bricks, such as the Spintronic Memristor, an artificial magnetic nano-synapse. I will then give hints on how to assemble these bricks in order to build novel types of computing architectures, with a special focus on neuromorphic circuits. Financial support by the European Research Council Starting Grant NanoBrain (ERC 2010 Stg 259068) is acknowledged.

  7. Development of an ankle torque measurement device for measuring ankle torque during walking.

    PubMed

    Tanino, Genichi; Tomita, Yutaka; Mizuno, Shiho; Maeda, Hirofumi; Miyasaka, Hiroyuki; Orand, Abbas; Takeda, Kotaro; Sonoda, Shigeru

    2015-05-01

    [Purpose] To develop a device for measuring the torque of an ankle joint during walking in order to quantify the characteristics of spasticity of the ankle and to verify the functionality of the device by testing it on the gait of an able-bodied individual and an equinovarus patient. [Subjects and Methods] An adjustable posterior strut (APS) ankle-foot orthosis (AFO) was used in which two torque sensors were mounted on the aluminum strut for measuring the anterior-posterior (AP) and medial-lateral (ML) directions. Two switches were also mounted at the heel and toe in order to detect the gait phase. An able-bodied individual and a left hemiplegic patient with equinovarus participated. They wore the device and walked on a treadmill to investigate the device's functionality. [Results] Linear relationships between the torques and the corresponding output of the torque sensors were observed. Upon the analyses of gait of an able-body subject and a hemiplegic patient, we observed toque matrices in both AP and ML directions during the gait of the both subjects. [Conclusion] We developed a device capable of measuring the torque in the AP and ML directions of ankle joints during gait.

  8. Observações no âmbito dos "additional programs" do satélite COROT

    NASA Astrophysics Data System (ADS)

    Janot Pacheco, E.

    2003-08-01

    O satélite Fraco-europeu COROT fará fotometria de altissima precisão (pretende-se atingir uma parte em um milhão), grande campo (3x3 graus) e por longos períodos, de duas regiões pré-determinadas do céu, com 10 graus de raio. Suas finalidades básicas serão estudos em sismologia estelar e a procura de exoplanetas. A comunidade astronômica brasileira participará dessa missão espacial, com direitos iguais aos dos parceiros europeus. Isso se deve a que o satélite utilizará a estação de recepção de dados de Natal (INPE), 5 a 6 brasileiros participarão das equipes de software e cientistas do país atuarão na fase de pré-lançamento. Apresentamos nesta comunicação sugestões para a preparação de propostas de observações com COROT, no âmbito dos Programas Adicionais, que contemplam outros projetos que não de sismologia ou exoplanetas. As últimas definições técnicas e decisões tomadas na 4th Corot Week de junho último serão igualmente apresentadas, em particular quanto às regiões de observação escolhidas e quanto aos procedimentos a seguir para se propor observações.

  9. Could CoRoT-7b and Kepler-10b be remnants of evaporated gas or ice giants?

    PubMed Central

    Leitzinger, M.; Odert, P.; Kulikov, Yu.N.; Lammer, H.; Wuchterl, G.; Penz, T.; Guarcello, M.G.; Micela, G.; Khodachenko, M.L.; Weingrill, J.; Hanslmeier, A.; Biernat, H.K.; Schneider, J.

    2011-01-01

    We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (∼1.68REarth) and Kepler-10b (∼1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jupiter, Saturn, Neptune, and Uranus to the orbital location of CoRoT-7b at 0.017 AU and Kepler-10b at 0.01684 AU and assuming that these planets orbit a K- or G-type host star. Our findings indicate that hydrogen-rich gas giants within the mass domain of Saturn or Jupiter cannot thermally lose such an amount of mass that CoRoT-7b and Kepler-10b would result in a rocky residue. Moreover, our calculations show that the present time mass of both rocky exoplanets can be neither a result of evaporation of a hydrogen envelope of a “Hot Neptune” nor a “Hot Uranus”-class object. Depending on the initial density and mass, these planets most likely were always rocky planets which could lose a thin hydrogen envelope, but not cores of thermally evaporated initially much more massive and larger objects. PMID:21969736

  10. Detection of a westward hotspot offset in the atmosphere of hot gas giant CoRoT-2b

    NASA Astrophysics Data System (ADS)

    Dang, Lisa; Cowan, Nicolas B.; Schwartz, Joel C.; Rauscher, Emily; Zhang, Michael; Knutson, Heather A.; Line, Michael; Dobbs-Dixon, Ian; Deming, Drake; Sundararajan, Sudarsan; Fortney, Jonathan J.; Zhao, Ming

    2018-03-01

    Short-period planets exhibit day-night temperature contrasts of hundreds to thousands of kelvin. They also exhibit eastward hotspot offsets whereby the hottest region on the planet is east of the substellar point1; this has been widely interpreted as advection of heat due to eastward winds2. We present thermal phase observations of the hot Jupiter CoRoT-2b obtained with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. These measurements show the most robust detection to date of a westward hotspot offset of 23 ± 4°, in contrast with the nine other planets with equivalent measurements3-10. The peculiar infrared flux map of CoRoT-2b may result from westward winds due to non-synchronous rotation11 or magnetic effects12,13, or partial cloud coverage, that obscure the emergent flux from the planet's eastern hemisphere14-17. Non-synchronous rotation and magnetic effects may also explain the planet's anomalously large radius12,18. On the other hand, partial cloud coverage could explain the featureless dayside emission spectrum of the planet19,20. If CoRoT-2b is not tidally locked, then it means that our understanding of star-planet tidal interaction is incomplete. If the westward offset is due to magnetic effects, our result represents an opportunity to study an exoplanet's magnetic field. If it has eastern clouds, then it means that a greater understanding of large-scale circulation on tidally locked planets is required.

  11. Could CoRoT-7b and Kepler-10b be remnants of evaporated gas or ice giants?

    PubMed

    Leitzinger, M; Odert, P; Kulikov, Yu N; Lammer, H; Wuchterl, G; Penz, T; Guarcello, M G; Micela, G; Khodachenko, M L; Weingrill, J; Hanslmeier, A; Biernat, H K; Schneider, J

    2011-10-01

    We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (∼1.68REarth) and Kepler-10b (∼1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jupiter, Saturn, Neptune, and Uranus to the orbital location of CoRoT-7b at 0.017 AU and Kepler-10b at 0.01684 AU and assuming that these planets orbit a K- or G-type host star. Our findings indicate that hydrogen-rich gas giants within the mass domain of Saturn or Jupiter cannot thermally lose such an amount of mass that CoRoT-7b and Kepler-10b would result in a rocky residue. Moreover, our calculations show that the present time mass of both rocky exoplanets can be neither a result of evaporation of a hydrogen envelope of a "Hot Neptune" nor a "Hot Uranus"-class object. Depending on the initial density and mass, these planets most likely were always rocky planets which could lose a thin hydrogen envelope, but not cores of thermally evaporated initially much more massive and larger objects.

  12. The precision and torque production of common hip adductor squeeze tests used in elite football.

    PubMed

    Light, N; Thorborg, K

    2016-11-01

    Decreased hip adductor strength is a known risk factor for groin injury in footballers, with clinicians testing adductor strength in various positions and using different protocols. Understanding how reliable and how much torque different adductor squeeze tests produce will facilitate choosing the most appropriate method for future testing. In this study, the reliability and torque production of three common adductor squeeze tests were investigated. Test-retest reliability and cross-sectional comparison. Twenty elite level footballers (16-33 years) without previous or current groin pain were recruited. Relative and absolute test-retest reliability, and torque production of three adductor squeeze tests (long-lever in abduction, short-lever in adduction and short-lever in abduction/external rotation) were investigated. Each participant performed a series of isometric strength tests measured by hand-held dynamometry in each position, on two test days separated by two weeks. No systematic variation was seen for any of the tests when using the mean of three measures (ICC=0.84-0.97, MDC%=6.6-19.5). The smallest variation was observed when taking the mean of three repetitions in the long-lever position (ICC=0.97, MDC%=6.6). The long-lever test also yielded the highest mean torque values, which were 69% and 11% higher than the short-lever in adduction test and short-lever in abduction/external rotation test respectively (p<0.001). All three tests described in this study are reliable methods of measuring adductor squeeze strength. However, the test performed in the long-lever position seems the most promising as it displays high test-retest precision and the highest adductor torque production. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  13. Characteristics of solar-like oscillations in red giants observed in the CoRoT exoplanet field

    NASA Astrophysics Data System (ADS)

    Hekker, S.; Kallinger, T.; Baudin, F.; De Ridder, J.; Barban, C.; Carrier, F.; Hatzes, A. P.; Weiss, W. W.; Baglin, A.

    2009-10-01

    Context: Observations during the first long run (~150 days) in the exo-planet field of CoRoT increase the number of G-K giant stars for which solar-like oscillations are observed by a factor of 100. This opens the possibility to study the characteristics of their oscillations in a statistical sense. Aims: We aim to understand the statistical distribution of the frequencies of maximum oscillation power (ν_max) in red giants and to search for a possible correlation between ν_max and the large separation (Δ ν). Methods: Red giants with detectable solar-like oscillations are identified using both semi-automatic and manual procedures. For these stars, we determine ν_max as the centre of a Gaussian fit to the oscillation power excess. For the determination of Δ ν, we use the autocorrelation of the Fourier spectra, the comb response function and the power spectrum of the power spectrum. Results: The resulting ν_max distribution shows a pronounced peak between 20-40 μHz. For about half of the stars we obtain Δ ν with at least two methods. The correlation between ν_max and Δ ν follows the same scaling relation as inferred for solar-like stars. Conclusions: The shape of the ν_max distribution can partly be explained by granulation at low frequencies and by white noise at high frequencies, but the population density of the observed stars turns out to be also an important factor. From the fact that the correlation between Δ ν and ν_max for red giants follows the same scaling relation as obtained for sun-like stars, we conclude that the sound travel time over the pressure scale height of the atmosphere scales with the sound travel time through the whole star irrespective of evolution. The fraction of stars for which we determine Δ ν does not correlate with ν_max in the investigated frequency range, which confirms theoretical predictions. The CoRoT space mission which was developed and is operated by the French space agency CNES, with participation of ESA

  14. Dispersion and characterization of Thermoplastic Polyurethane/Multiwalled Carbon Nanotubes in co-rotative twin screw extruder

    NASA Astrophysics Data System (ADS)

    Benedito, Adolfo; Buezas, Ignacio; Giménez, Enrique; Galindo, Begoña

    2010-06-01

    The dispersion of multi-walled carbon nanotubes in thermoplastic polyurethanes has been done in co-rotative twin screw extruder through a melt blending process. A specific experimental design was prepared taking into account different compounding parameters such as feeding, temperature profile, screw speed, screw design, and carbon nanotube loading. The obtained samples were characterized by thermogravimetric analysis (TGA), light transmission microscopy, dynamic rheometry, and dynamic mechanical analysis. The objective of this work has been to study the dispersion quality of the carbon nanotubes and the effect of different compounding parameters to optimize them for industrial scale-up to final applications.

  15. Bevel gear driver and method having torque limit selection

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1994-01-01

    This invention comprises a torque drive mechanism utilizing axially translatable, mutually engageable transmission members having mating crown gears, driven and driving members with a three-element drive train being biased together by resilient means or by a fluid actuator system, the apparatus being operable to transmit a precisely controlled degree of torque to a driven member. The apparatus is applicable for use in hand tools and as a replacement for impact torque drivers, torque wrenches, motorized screw drivers, or the like, wherein the applied torque must be precisely controlled or limited. The bevel torque drive includes a drive gear which is axially displaceable and rotatable within cylindrical driver housing, a rotatable intermediate gear, and an output gear. Key rotationally secures displaceable gear with respect to input shaft but permits axial movement therebetween. A thrust bearing is preferably connected to the lower end of shaft for support to reduce play and friction between shaft and a transmission joint disc during rotation of the gear train. Coaxially mounted coiled spring is footed against displaceable gear for biasing the displaceable gear toward and into engagement with the intermediate gear for driving intermediate gear and output gear. Torque control is achieved by the use of straight or spiral beveled gears which are of configurations adapted to withdraw from mutual engagement upon the torque exceeding a predetermined limit. The novel, advantageous features of the invention include the configuration of the mating, crown gear sets and the axially translatable, slidable drive gear. The mechanism is capable of transmitting a high degree of torque within a narrow, compact transmission housing. The compact size and narrow, elongated configuration of the housing is particularly applicable for use in hand tools and in multiple torque driver mechanisms in which it is necessary to drive multiple fasteners which are located in close proximity. Prior

  16. Disturbance torque rejection properties of the NASA/JPL 70-meter antenna axis servos

    NASA Technical Reports Server (NTRS)

    Hill, R. E.

    1989-01-01

    Analytic methods for evaluating pointing errors caused by external disturbance torques are developed and applied to determine the effects of representative values of wind and friction torque. The expressions relating pointing errors to disturbance torques are shown to be strongly dependent upon the state estimator parameters, as well as upon the state feedback gain and the flow versus pressure characteristics of the hydraulic system. Under certain conditions, when control is derived from an uncorrected estimate of integral position error, the desired type 2 servo properties are not realized and finite steady-state position errors result. Methods for reducing these errors to negligible proportions through the proper selection of control gain and estimator correction parameters are demonstrated. The steady-state error produced by a disturbance torque is found to be directly proportional to the hydraulic internal leakage. This property can be exploited to provide a convenient method of determining system leakage from field measurements of estimator error, axis rate, and hydraulic differential pressure.

  17. Modelling grain alignment by radiative torques and hydrogen formation torques in reflection nebula

    NASA Astrophysics Data System (ADS)

    Hoang, Thiem; Lazarian, A.; Andersson, B.-G.

    2015-04-01

    Reflection nebulae - dense cores - illuminated by surrounding stars offer a unique opportunity to directly test our quantitative model of grain alignment based on radiative torques (RATs) and to explore new effects arising from additional torques. In this paper, we first perform detailed modelling of grain alignment by RATs for the IC 63 reflection nebula illuminated both by a nearby γ Cas star and the diffuse interstellar radiation field. We calculate linear polarization pλ of background stars by radiatively aligned grains and explore the variation of fractional polarization (pλ/AV) with visual extinction AV across the cloud. Our results show that the variation of pV/AV versus AV from the dayside of IC 63 to its centre can be represented by a power law (p_V/A_V∝ A_V^{η }) with different slopes depending on AV. We find a shallow slope η ˜ -0.1 for AV < 3 and a very steep slope η ˜ -2 for AV > 4. We then consider the effects of additional torques due to H2 formation and model grain alignment by joint action of RATs and H2 torques. We find that pV/AV tends to increase with an increasing magnitude of H2 torques. In particular, the theoretical predictions obtained for pV/AV and peak wavelength λmax in this case show an improved agreement with the observational data. Our results reinforce the predictive power of the RAT alignment mechanism in a broad range of environmental conditions and show the effect of pinwheel torques in environments with efficient H2 formation. Physical parameters involved in H2 formation may be constrained using detailed modelling of grain alignment combined with observational data. In addition, we discuss implications of our modelling for interpreting latest observational data by Planck and other ground-based instruments.

  18. CoRoT 101186644: A transiting low-mass dense M-dwarf on an eccentric 20.7-day period orbit around a late F-star. Discovered in the CoRoT lightcurves

    NASA Astrophysics Data System (ADS)

    Tal-Or, L.; Mazeh, T.; Alonso, R.; Bouchy, F.; Cabrera, J.; Deeg, H. J.; Deleuil, M.; Faigler, S.; Fridlund, M.; Hébrard, G.; Moutou, C.; Santerne, A.; Tingley, B.

    2013-05-01

    We present the study of the CoRoT transiting planet candidate 101186644, also named LRc01_E1_4780. Analysis of the CoRoT lightcurve and the HARPS spectroscopic follow-up observations of this faint (mV = 16) candidate revealed an eclipsing binary composed of a late F-type primary (Teff = 6090 ± 200 K) and a low-mass, dense late M-dwarf secondary on an eccentric (e = 0.4) orbit with a period of ~20.7 days. The M-dwarf has a mass of 0.096 ± 0.011 M⊙, and a radius of 0.104-0.006+0.026 R⊙, which possibly makes it the smallest and densest late M-dwarf reported so far. Unlike the claim that theoretical models predict radii that are 5-15% smaller than measured for low-mass stars, this one seems to have a radius that is consistent and might even be below the radius predicted by theoretical models. Based on observations made with the 1-m telescope at the Wise Observatory, Israel, the Swiss 1.2-m Leonhard Euler telescope at La Silla Observatory, Chile, the IAC-80 telescope at the Observatory del Teide, Canarias, Spain, and the 3.6-m telescope at La Silla Observatory (ESO), Chile (program 184.C-0639).

  19. Measurements of H(+), He(2+), and He(+), in Corotating Interaction Regions at 1 AU

    NASA Astrophysics Data System (ADS)

    Chotoo, Kancham

    Using the Supra-Thermal Ion Composition Spectrometer (STICS) from the SMS experiment on the WIND spacecraft, measurements of H+, He2+, and He+ were made during two corotating interacting regions (CIRs) at 1 AU. The unique energy range of STICS (6-198 keV/e) allowed simultaneous observation of the pre- and post-accelerated ions. These observations gave important clues about the source population, injection, acceleration mechanism, and ion transport in CIRs. The abundance of He2+ relative to H+ in the velocity range 2.5-6.0 times the solar wind velocity, VSW, (5-90 keV/amu) was between 0.11-0.18, which is more than double the solar wind values. However, the same ratio was observed in the suprathermal tail above 1.4 VSW in the spacecraft frame or above ~0.4 VSW in the solar wind frame. This suggests that the H+ and He2+ ions are injected equally into the CIR acceleration process from the suprathermal tail of the solar wind. At 1 AU the H+ and He2+ ions are primarily from the solar wind, but the He+ ions are interstellar pickup ions. The He+/He2+ ratio at 1 AU was ~0.15 for the same velocity range as above. However, this ratio was greater than 1.0 at 4.5 AU as measured previously (Gloeckler et al., 1994). This shows that the relative contribution of the pickup He+ ions to the seed population increases with radial distance away from the Sun. By combining data from three separate sensors on WIND (SMS-MASS, SMS-STICS, and EPACT-STEP), the extended helium distribution was presented for solar wind ions (~1 keV/amu) through energetic particles up to ~1 MeV/amu. The distribution covered 14 orders of magnitude in phase space density. This is the first time such an extended helium distribution is being reported at any radial distance. Using the Fisk and Lee (1980) model to fit the data between ~10-1000 keV/amu, the energetic particles were found to originate from 1.0-1.2 AU and not from beyond 2 AU, as is conventional believed. Anisotropy measurements were made using STICS for

  20. The Solar Wind and Geomagnetic Activity as a Function of Time Relative to Corotating Interaction Regions

    NASA Technical Reports Server (NTRS)

    McPherron, Robert L.; Weygand, James

    2006-01-01

    Corotating interaction regions during the declining phase of the solar cycle are the cause of recurrent geomagnetic storms and are responsible for the generation of high fluxes of relativistic electrons. These regions are produced by the collision of a high-speed stream of solar wind with a slow-speed stream. The interface between the two streams is easily identified with plasma and field data from a solar wind monitor upstream of the Earth. The properties of the solar wind and interplanetary magnetic field are systematic functions of time relative to the stream interface. Consequently the coupling of the solar wind to the Earth's magnetosphere produces a predictable sequence of events. Because the streams persist for many solar rotations it should be possible to use terrestrial observations of past magnetic activity to predict future activity. Also the high-speed streams are produced by large unipolar magnetic regions on the Sun so that empirical models can be used to predict the velocity profile of a stream expected at the Earth. In either case knowledge of the statistical properties of the solar wind and geomagnetic activity as a function of time relative to a stream interface provides the basis for medium term forecasting of geomagnetic activity. In this report we use lists of stream interfaces identified in solar wind data during the years 1995 and 2004 to develop probability distribution functions for a variety of different variables as a function of time relative to the interface. The results are presented as temporal profiles of the quartiles of the cumulative probability distributions of these variables. We demonstrate that the storms produced by these interaction regions are generally very weak. Despite this the fluxes of relativistic electrons produced during those storms are the highest seen in the solar cycle. We attribute this to the specific sequence of events produced by the organization of the solar wind relative to the stream interfaces. We also

  1. Accuracy of mechanical torque-limiting devices for dental implants.

    PubMed

    L'Homme-Langlois, Emilie; Yilmaz, Burak; Chien, Hua-Hong; McGlumphy, Edwin

    2015-10-01

    A common complication in implant dentistry is unintentional implant screw loosening. The critical factor in the prevention of screw loosening is the delivery of the appropriate target torque value. Mechanical torque-limiting devices (MTLDs) are the most frequently recommended devices by the implant manufacturers to deliver the target torque value to the screw. Two types of MTLDs are available: friction-style and spring-style. Limited information is available regarding the influence of device type on the accuracy of MTLDs. The purpose of this study was to determine and compare the accuracy of spring-style and friction-style MTLDs. Five MTLDs from 6 different dental implant manufacturers (Astra Tech/Dentsply, Zimmer Dental, Biohorizons, Biomet 3i, Straumann [ITI], and Nobel Biocare) (n=5 per manufacturer) were selected to determine their accuracy in delivering target torque values preset by their manufacturers. All torque-limiting devices were new and there were 3 manufacturers for the friction-style and 3 manufacturers for the spring-style. The procedure of target torque measurement was performed 10 times for each device and a digital torque gauge (Chatillon Model DFS2-R-ND; Ametek) was used to record the measurements. Statistical analysis used nonparametric tests to determine the accuracy of the MTLDs in delivering target torque values and Bonferroni post hoc tests were used to assess pairwise comparisons. Median absolute difference between delivered torque values and target torque values of friction-style and spring-style MTLDs were not significantly different (P>.05). Accuracy of Astra Tech and Zimmer Dental friction-style torque-limiting devices were significantly different than Biohorizons torque-limiting devices (P<.05). There is no difference between the accuracy of new friction-style MTLDs and new spring-style MTLDs. All MTLDs fell within ±10% of the target torque value. Astra Tech and Zimmer Dental friction-style torque-limiting devices were significantly

  2. Torque teno virus: an improved indicator for viral pathogens in drinking waters.

    PubMed

    Griffin, Jennifer S; Plummer, Jeanine D; Long, Sharon C

    2008-10-03

    Currently applied indicator organism systems, such as coliforms, are not fully protective of public health from enteric viruses in water sources. Waterborne disease outbreaks have occurred in systems that tested negative for coliforms, and positive coliform results do not necessarily correlate with viral risk. It is widely recognized that bacterial indicators do not co-occur exclusively with infectious viruses, nor do they respond in the same manner to environmental or engineered stressors. Thus, a more appropriate indicator of health risks from infectious enteric viruses is needed. Torque teno virus is a small, non-enveloped DNA virus that likely exhibits similar transport characteristics to pathogenic enteric viruses. Torque teno virus is unique among enteric viral pathogens in that it appears to be ubiquitous in humans, elicits seemingly innocuous infections, and does not exhibit seasonal fluctuations or epidemic spikes. Torque teno virus is transmitted primarily via the fecal-oral route and can be assayed using rapid molecular techniques. We hypothesize that Torque teno virus is a more appropriate indicator of viral pathogens in drinking waters than currently used indicator systems based solely on bacteria. To test the hypothesis, a multi-phased research approach is needed. First, a reliable Torque teno virus assay must be developed. A rapid, sensitive, and specific PCR method using established nested primer sets would be most appropriate for routine monitoring of waters. Because PCR detects both infectious and inactivated virus, an in vitro method to assess infectivity also is needed. The density and occurrence of Torque teno virus in feces, wastewater, and source waters must be established to define spatial and temporal stability of this potential indicator. Finally, Torque teno virus behavior through drinking water treatment plants must be determined with co-assessment of traditional indicators and enteric viral pathogens to assess whether correlations exist

  3. Torque teno virus: an improved indicator for viral pathogens in drinking waters

    PubMed Central

    Griffin, Jennifer S; Plummer, Jeanine D; Long, Sharon C

    2008-01-01

    Background Currently applied indicator organism systems, such as coliforms, are not fully protective of public health from enteric viruses in water sources. Waterborne disease outbreaks have occurred in systems that tested negative for coliforms, and positive coliform results do not necessarily correlate with viral risk. It is widely recognized that bacterial indicators do not co-occur exclusively with infectious viruses, nor do they respond in the same manner to environmental or engineered stressors. Thus, a more appropriate indicator of health risks from infectious enteric viruses is needed. Presentation of the hypothesis Torque teno virus is a small, non-enveloped DNA virus that likely exhibits similar transport characteristics to pathogenic enteric viruses. Torque teno virus is unique among enteric viral pathogens in that it appears to be ubiquitous in humans, elicits seemingly innocuous infections, and does not exhibit seasonal fluctuations or epidemic spikes. Torque teno virus is transmitted primarily via the fecal-oral route and can be assayed using rapid molecular techniques. We hypothesize that Torque teno virus is a more appropriate indicator of viral pathogens in drinking waters than currently used indicator systems based solely on bacteria. Testing the hypothesis To test the hypothesis, a multi-phased research approach is needed. First, a reliable Torque teno virus assay must be developed. A rapid, sensitive, and specific PCR method using established nested primer sets would be most appropriate for routine monitoring of waters. Because PCR detects both infectious and inactivated virus, an in vitro method to assess infectivity also is needed. The density and occurrence of Torque teno virus in feces, wastewater, and source waters must be established to define spatial and temporal stability of this potential indicator. Finally, Torque teno virus behavior through drinking water treatment plants must be determined with co-assessment of traditional indicators

  4. Effect of insertion torque on bone screw pullout strength.

    PubMed

    Lawson, K J; Brems, J

    2001-05-01

    The effect of insertion torque on the holding strength of 4.5-mm ASIF/AO cortical bone screws was studied in vitro. Screw holding strength was determined using an Instron materials testing machine (Bristol, United Kingdom) on 55 lamb femora and 30 human tibiocortical bone sections. Holding strength was defined as tensile stress at pullout with rapid loading to construct failure. Different insertion torques were tested, normalizing to the thickness of cortical bone specimen engaged. These represented low, intermediate, high, and thread-damaging insertion torque. All screws inserted with thread-damaging torque and single cortex engaging screws inserted to high torque tightening moments showed diminished holding strength. This loss of strength amounted to 40%-50% less than screws inserted with less torque.

  5. Neutron star dynamics under time-dependent external torques

    NASA Astrophysics Data System (ADS)

    Gügercinoǧlu, Erbil; Alpar, M. Ali

    2017-11-01

    The two-component model describes neutron star dynamics incorporating the response of the superfluid interior. Conventional solutions and applications involve constant external torques, as appropriate for radio pulsars on dynamical time-scales. We present the general solution of two-component dynamics under arbitrary time-dependent external torques, with internal torques that are linear in the rotation rates, or with the extremely non-linear internal torques due to vortex creep. The two-component model incorporating the response of linear or non-linear internal torques can now be applied not only to radio pulsars but also to magnetars and to neutron stars in binary systems, with strong observed variability and noise in the spin-down or spin-up rates. Our results allow the extraction of the time-dependent external torques from the observed spin-down (or spin-up) time series, \\dot{Ω }(t). Applications are discussed.

  6. Neutron star dynamics under time dependent external torques

    NASA Astrophysics Data System (ADS)

    Alpar, M. A.; Gügercinoğlu, E.

    2017-12-01

    The two component model of neutron star dynamics describing the behaviour of the observed crust coupled to the superfluid interior has so far been applied to radio pulsars for which the external torques are constant on dynamical timescales. We recently solved this problem under arbitrary time dependent external torques. Our solutions pertain to internal torques that are linear in the rotation rates, as well as to the extremely non-linear internal torques of the vortex creep model. Two-component models with linear or nonlinear internal torques can now be applied to magnetars and to neutron stars in binary systems, with strong variability and timing noise. Time dependent external torques can be obtained from the observed spin-down (or spin-up) time series, \\dot Ω ≤ft( t \\right).

  7. A search for tight hierarchical triple systems amongst the eclipsing binaries in the CoRoT fields

    NASA Astrophysics Data System (ADS)

    Hajdu, T.; Borkovits, T.; Forgács-Dajka, E.; Sztakovics, J.; Marschalkó, G.; Benkő, J. M.; Klagyivik, P.; Sallai, M. J.

    2017-10-01

    We report a comprehensive search for hierarchical triple stellar system candidates amongst eclipsing binaries (EBs) observed by the CoRoT spacecraft. We calculate and check eclipse timing variation (ETV) diagrams for almost 1500 EBs in an automated manner. We identify five relatively short period Algol systems for which our combined light-curve and complex ETV analyses (including both the light-travel time effect and short-term dynamical third-body perturbations) resulted in consistent third-body solutions. The computed periods of the outer bodies are between 82 and 272 d (with an alternative solution of 831 d for one of the targets). We find that the inner and outer orbits are near coplanar in all but one case. The dynamical masses of the outer subsystems determined from the ETV analyses are consistent with both the results of our light-curve analyses and the spectroscopic information available in the literature. One of our candidate systems exhibits outer eclipsing events as well, the locations of which are in good agreement with the ETV solution. We also report another certain triply eclipsing triple system that, however, is lacking a reliable ETV solution due to the very short time range of the data, and four new blended systems (composite light curves of two EBs each), where we cannot decide whether the components are gravitationally bounded or not. Amongst these blended systems, we identify the longest period and highest eccentricity EB in the entire CoRoT sample.

  8. The analysis of influence of field of co-rotation on motion of submicronic particles in the Earth's plasmasphere

    NASA Astrophysics Data System (ADS)

    Yakovlev, A. B.

    2018-05-01

    The analysis of the motion of micro-particles with radii of several dozens of nanometers in the Earth's plasmasphere has confirmed that the earlier proved statement about conservation of the form for an orbit of a particle with constant electric charge which moves in superposition of the central gravitational field and the field of a magnetic dipole is true also for the case of a quasi-equilibrium electric charge. For a wide range of altitudes and the sizes of micro-particles other forces that act on the charged grain make considerably smaller impact on its motion. On the basis of numerical simulation it has been shown that for motion in an equatorial plane the field of co-rotation leads to very small monotonous growth of the semimajor axis and an orbit eccentricity, and for not-equatorial orbits there are fluctuations of the semimajor axis, an eccentricity and an inclination of an orbit with the period that considerably exceeds the period of orbital motion. In this paper, on the basis of the analysis of the canonical equations of the motion of a micro-particle in superposition of the central gravitational field and the field of co-rotation the explanation of the time dependences obtained numerically for the basic characteristics of an orbit of a micro-particle is proposed.

  9. Preparation Torque Limit for Composites Joined with Mechanical Fasteners

    NASA Technical Reports Server (NTRS)

    Thomas, Frank P.; Yi, Zhao

    2005-01-01

    Current design guidelines for determining torque ranges for composites are based on tests and analysis from isotropic materials. Properties of composites are not taken into account. No design criteria based upon a systematic analytical and test analyses is available. This paper is to study the maximum torque load a composite component could carry prior to any failure. Specifically, the torque-tension tests are conducted. NDT techniques including acoustic emission, thermography and photomicroscopy are also utilized to characterize the damage modes.

  10. Electronic measurement of variable torques in precision work technology

    NASA Technical Reports Server (NTRS)

    Maehr, M.

    1978-01-01

    Approaches for the determination of torques on the basis of length measurements are discussed. Attention is given to torque determinations in which the deformation of a shaft is measured, an electric measurement of the torsion angle, and an approach proposed by Buschmann (1970). Methods for a torque determination conducted with the aid of force measurements make use of piezoelectric approaches. The components used by these methods include a quartz crystal and a charge amplifier.

  11. High-torque open-end wrench

    NASA Technical Reports Server (NTRS)

    Giandomenico, A.; Dame, J. M.; Behimer, H. (Inventor)

    1978-01-01

    A wrench is described that is usable where limited access normally requires an open-end wrench, but which has substantially the high-torque capacity and small radial clearance characteristics of a closed-end wrench. The wrench includes a sleeve forming a nut-engageable socket with a gap in its side, and an adaptor forming a socket with a gap in its side, the adaptor closely surrounding the sleeve and extending across the gap in the sleeve. The sleeve and adaptor have surfaces that become fully engaged when a wrench handle is applied to the adaptor to turn it so as to tighten a nut engaged by the sleeve.

  12. Small-Bolt Torque-Tension Tester

    NASA Technical Reports Server (NTRS)

    Posey, Alan J.

    2009-01-01

    The device described here measures the torque-tension relationship for fasteners as small as #0. The small-bolt tester consists of a plate of high-strength steel into which three miniature load cells are recessed. The depth of the recess is sized so that the three load cells can be shimmed, the optimum height depending upon the test hardware. The three miniature load cells are arranged in an equilateral triangular configuration with the test bolt aligned with the centroid of the three. This is a kinematic arrangement.

  13. Improvement of the limit torque for the torque limiter with magnetic rheological fluid

    NASA Astrophysics Data System (ADS)

    Umehara, Noritsugu; Kita, Shizuo

    Robots are coming to support and help our life. The robots that work together with human need to avoid sever hitting and holding that force is more than the adequate and comfortable range. In order to keep the force to the safe level in the robot arms, t he limit torque should be controlled on the basis of the case the robot used. Magnetic rheological fluids were tried to be used for the clutch that transmission torque can be controlled continuously because MR fluids can be controlled its viscosity by magnetic field. However those clutch devices were too heavy and large to use for the robot arms. Therefore we tried to increase the sensitivity of magnetic field to viscosity of MR fluids. By applying rough surface for the mating surface, sensitivity of the magnetic field to the shearing torque increase drastically in the case of co-axial torque meter. On the other hand, the changing of the size of the orifice is effective to increase the sensitivity of the magnetic field on the flow resistance in the case of the orifice type equipment.

  14. Methodology for Determining Limit Torques for Threaded Fasteners

    NASA Technical Reports Server (NTRS)

    Hissam, Andy

    2011-01-01

    In aerospace design, where minimizing weight is always a priority, achieving the full capacity from fasteners is essential. To do so, the initial bolt preload must be maximized. The benefits of high preload are well documented and include improved fatigue resistance, a stiffer joint, and resistance to loosening. But many factors like elastic interactions and embedment tend to lower the initial preload placed on the bolt. These factors provide additional motivation to maximize the initial preload. But, to maximize bolt preload, you must determine what torque to apply. Determining this torque is greatly complicated by the large preload scatter generally seen with torque control. This paper presents a detailed methodology for generating limit torques for threaded fasteners. This methodology accounts for the large scatter in preload found with torque control, and therefore, addresses the statistical nature of the problem. It also addresses prevailing torque, a feature common in aerospace fasteners. Although prevailing torque provides a desired locking feature, it can also increase preload scatter. In addition, it can limit the amount of preload that can be generated due to the torsion it creates in the bolt. This paper discusses the complications of prevailing torque and how best to handle it. A wide range of torque-tension bolt testing was conducted in support of this research. The results from this research will benefit the design engineer as well as analyst involved in the design of bolted joints, leading to better, more optimized structural designs.

  15. History dependence of the EMG-torque relationship.

    PubMed

    Paquin, James; Power, Geoffrey A

    2018-05-28

    The influence of active lengthening (residual force enhancement: RFE) and shortening (force depression: FD) on the electromyography (EMG)-torque relationship was investigated by matching torque and activation at 20%, 40%, 60%, 80% and 100% maximal voluntary contraction (MVC). Sixteen males performed lengthening and shortening contractions of the dorsiflexors over 25° into an isometric steady-state. There was 5% greater torque, with no change in agonist EMG during the RFE condition as compared to the isometric condition. Sub-maximally, in the force enhanced state, there was less agonist EMG during the torque clamp at all intensities relative to isometric, and greater torque during the activation clamps relative to isometric was observed across all intensities except 20% MVC. During the FD state compared to isometric, there was less torque produced during MVC (∼15%) with no change in agonist EMG. Sub-maximally, in the FD state, there was greater agonist EMG during the torque clamp and less torque during the activation clamp relative to the isometric condition across all intensities. The EMG-torque relationship was bilinear for all contraction types but was shifted to the left and right for FD and RFE, respectively as compared with isometric, indicating altered neuromuscular activation strategies in the history-dependent states of RFE and FD. Copyright © 2018. Published by Elsevier Ltd.

  16. Maximum Torque and Momentum Envelopes for Reaction Wheel Arrays

    NASA Technical Reports Server (NTRS)

    Reynolds, R. G.; Markley, F. Landis

    2001-01-01

    Spacecraft reaction wheel maneuvers are limited by the maximum torque and/or angular momentum which the wheels can provide. For an n-wheel configuration, the torque or momentum envelope can be obtained by projecting the n-dimensional hypercube, representing the domain boundary of individual wheel torques or momenta, into three dimensional space via the 3xn matrix of wheel axes. In this paper, the properties of the projected hypercube are discussed, and algorithms are proposed for determining this maximal torque or momentum envelope for general wheel configurations. Practical implementation strategies for specific wheel configurations are also considered.

  17. Mechanical torque measurement predicts load to implant cut-out: a biomechanical study investigating DHS anchorage in femoral heads.

    PubMed

    Suhm, Norbert; Hengg, Clemens; Schwyn, Ronald; Windolf, Markus; Quarz, Volker; Hänni, Markus

    2007-08-01

    Bone strength plays an important role in implant anchorage. Bone mineral density (BMD) is used as surrogate parameter to quantify bone strength and to predict implant anchorage. BMD can be measured by means of quantitative computer tomography (QCT) or dual energy X-ray absorptiometry (DXA). These noninvasive methods for BMD measurement are not available pre- or intra-operatively. Instead, the surgeon could determine bone strength by direct mechanical measurement. We have evaluated mechanical torque measurement for (A) its capability to quantify local bone strength and (B) its predictive value towards load at implant cut-out. Our experimental study was performed using sixteen paired human cadaver proximal femurs. BMD was determined for all specimens by QCT. The torque to breakaway of the cancellous bone structure (peak torque) was measured by means of a mechanical probe at the exact position of subsequent DHS placement. The fixation strength of the DHS achieved was assessed by cyclic loading in a stepwise protocol beginning with 1,500 N increasing 500 N every 5,000 cycles until 4,000 N. A highly significant correlation of peak torque with BMD (QCT) was found (r = 0.902, r (2) = 0.814, P < 0.001). Peak torque correlated highly significant with the load at implant cut-out (r = 0.795, P < 0.001). All specimens with a measured peak torque below 6.79 Nm failed at the first load level of 1,500 N. The specimens with a peak torque above 8.63 Nm survived until the last load level of 4,000 N. Mechanical peak torque measurement is able to quantify bone strength. In an experimental setup, peak torque identifies those specimens that are likely to fail at low load. In clinical routine, implant migration and cut-out depend on several parameters, which are difficult to control, such as fracture type, fracture reduction achieved, and implant position. The predictive value of peak torque towards cut-out in a clinical set-up therefore has to be carefully validated.

  18. Intramuscular pressure and torque during isometric, concentric and eccentric muscular activity

    NASA Technical Reports Server (NTRS)

    Styf, J.; Ballard, R.; Aratow, M.; Crenshaw, A.; Watenpaugh, D.; Hargens, A. R.

    1995-01-01

    Intramuscular pressures, electromyography (EMG) and torque generation during isometric, concentric and eccentric maximal isokinetic muscle activity were recorded in 10 healthy volunteers. Pressure and EMG activity were continuously and simultaneously measured side by side in the tibialis anterior and soleus muscles. Ankle joint torque and position were monitored continuously by an isokinetic dynamometer during plantar flexion and dorsiflexion of the foot. The increased force generation during eccentric muscular activity, compared with other muscular activity, was not accompanied by higher intramuscular pressure. Thus, this study demonstrated that eccentric muscular activity generated higher torque values for each increment of intramuscular pressure. Intramuscular pressures during antagonistic co-activation were significantly higher in the tibilis anterior muscle (42-46% of maximal agonistic activity) compared with the soleus muscle (12-29% of maximal agonistic activity) and was largely due to active recruitment of muscle fibers. In summary, eccentric muscular activity creates higher torque values with no additional increase of the intramuscular pressure compared with concentric and isometric muscular activity.

  19. Effects of hand grip exercise on shoulder joint internal rotation and external rotation peak torque.

    PubMed

    Lee, Dong-Rour; Jong-Soon Kim, Laurentius

    2016-08-10

    The goal of this study is to analyze the effects of hand grip training on shoulder joint internal rotation (IR)/external rotation (ER) peak torque for healthy people. The research was conducted on 23 healthy adults in their 20 s-30 s who volunteered to participate in the experiment. Hand grip power test was performed on both hands of the research subjects before/after the test to study changes in hand grip power. Isokinetic machine was used to measure the concentric IRPT (internal rotation peak torque) and concentric ERPT (external rotation peak torque) at the velocity of 60°/sec, 90°/sec, and 180°/sec before/after the test. Hand grip training was performed daily on the subject's right hand only for four weeks according to exercise program. Finally, hand grip power of both hands and the maximum torque values of shoulder joint IR/ER were measured before/after the test and analyzed. There was a statistically significant difference in the hand grip power of the right hand, which was subject to hand grip training, after the experiment. Also, statistically significant difference for shoulder ERPT was found at 60°/sec. Hand grip training has a positive effect on shoulder joint IRPT/ERPT and therefore can help strengthen muscles around the shoulder without using weight on the shoulder. Consequently, hand grip training would help maintain strengthen the muscles around the shoulder in the early phase of rehabilitation process after shoulder surgery.

  20. Transiting exoplanets from the CoRoT space mission . XIII. CoRoT-13b: a dense hot Jupiter in transit around a star with solar metallicity and super-solar lithium content

    NASA Astrophysics Data System (ADS)

    Cabrera, J.; Bruntt, H.; Ollivier, M.; Díaz, R. F.; Csizmadia, Sz.; Aigrain, S.; Alonso, R.; Almenara, J.-M.; Auvergne, M.; Baglin, A.; Barge, P.; Bonomo, A. S.; Bordé, P.; Bouchy, F.; Carone, L.; Carpano, S.; Deleuil, M.; Deeg, H. J.; Dvorak, R.; Erikson, A.; Ferraz-Mello, S.; Fridlund, M.; Gandolfi, D.; Gazzano, J.-C.; Gillon, M.; Guenther, E. W.; Guillot, T.; Hatzes, A.; Havel, M.; Hébrard, G.; Jorda, L.; Léger, A.; Llebaria, A.; Lammer, H.; Lovis, C.; Mazeh, T.; Moutou, C.; Ofir, A.; von Paris, P.; Pätzold, M.; Queloz, D.; Rauer, H.; Rouan, D.; Santerne, A.; Schneider, J.; Tingley, B.; Titz-Weider, R.; Wuchterl, G.

    2010-11-01

    We announce the discovery of the transiting planet CoRoT-13b. Ground-based follow-up in CFHT and IAC80 confirmed CoRoT's observations. The mass of the planet was measured with the HARPS spectrograph and the properties of the host star were obtained analyzing HIRES spectra from the Keck telescope. It is a hot Jupiter-like planet with an orbital period of 4.04 days, 1.3 Jupiter masses, 0.9 Jupiter radii, and a density of 2.34 g cm-3. It orbits a G0V star with T_eff = 5 945 K, M* = 1.09 M⊙, R_* = 1.01 R⊙, solar metallicity, a lithium content of + 1.45 dex, and an estimated age of between 0.12 and 3.15 Gyr. The lithium abundance of the star is consistent with its effective temperature, activity level, and age range derived from the stellar analysis. The density of the planet is extreme for its mass, implies that heavy elements are present with a mass of between about 140 and 300 {M}⊕. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany and Spain. Part of the observations were obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. Based on observations made with HARPS spectrograph on the 3.6-m European Organisation for Astronomical Research in the Southern Hemisphere telescope at La Silla Observatory, Chile (ESO program 184.C-0639). Based on observations made with the IAC80 telescope operated on the island of Tenerife by the Instituto de Astrofísica de Canarias in the Spanish Observatorio del Teide. Part of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics

  1. Torque generation mechanism of ATP synthase

    NASA Astrophysics Data System (ADS)

    Miller, John; Maric, Sladjana; Scoppa, M.; Cheung, M.

    2010-03-01

    ATP synthase is a rotary motor that produces adenosine triphosphate (ATP), the chemical currency of life. Our proposed electric field driven torque (EFT) model of FoF1-ATP synthase describes how torque, which scales with the number of c-ring proton binding sites, is generated by the proton motive force (pmf) across the mitochondrial inner membrane. When Fo is coupled to F1, the model predicts a critical pmf to drive ATP production. In order to fully understand how the electric field resulting from the pmf drives the c-ring to rotate, it is important to examine the charge distributions in the protonated c-ring and a-subunit containing the proton channels. Our calculations use a self-consistent field approach based on a refinement of reported structural data. The results reveal changes in pKa for key residues on the a-subunit and c-ring, as well as titration curves and protonation state energy diagrams. Health implications will be briefly discussed.

  2. Spin-orbit torques in magnetic bilayers

    NASA Astrophysics Data System (ADS)

    Haney, Paul

    2015-03-01

    Spintronics aims to utilize the coupling between charge transport and magnetic dynamics to develop improved and novel memory and logic devices. Future progress in spintronics may be enabled by exploiting the spin-orbit coupling present at the interface between thin film ferromagnets and heavy metals. In these systems, applying an in-plane electrical current can induce magnetic dynamics in single domain ferromagnets, or can induce rapid motion of domain wall magnetic textures. There are multiple effects responsible for these dynamics. They include spin-orbit torques and a chiral exchange interaction (the Dzyaloshinskii-Moriya interaction) in the ferromagnet. Both effects arise from the combination of ferromagnetism and spin-orbit coupling present at the interface. There is additionally a torque from the spin current flux impinging on the ferromagnet, arising from the spin hall effect in the heavy metal. Using a combination of approaches, from drift-diffusion to Boltzmann transport to first principles methods, we explore the relative contributions to the dynamics from these different effects. We additionally propose that the transverse spin current is locally enhanced over its bulk value in the vicinity of an interface which is oriented normal to the charge current direction.

  3. Effects of Structural Deformations of the Crank-Slider Mechanism on the Estimation of the Instantaneous Engine Friction Torque

    NASA Astrophysics Data System (ADS)

    CHALHOUB, N. G.; NEHME, H.; HENEIN, N. A.; BRYZIK, W.

    1999-07-01

    The focus on the current study is to assess the effects of structural deformations of the crankshaft/connecting-rod/piston mechanism on the computation of the instantaneous engine friction torque. This study is performed in a fully controlled environment in order to isolate the effects of structural deformations from those of measurement errors or noise interference. Therefore, a detailed model, accounting for the rigid and flexible motions of the crank-slider mechanism and including engine component friction formulations, is considered in this study. The model is used as a test bed to generate the engine friction torque,Tfa, and to predict the rigid and flexible motions of the system in response to the cylinder gas pressure. The torsional vibrations and the rigid body angular velocity of the crankshaft, as predicted by the detailed model of the crank-slider mechanism, are used along with the engine load torque and the cylinder gas pressure in the (P-ω) method to estimate the engine friction torque,Tfe. This method is well suited for the purpose of this study because its formulation is based on the rigid body model of the crank-slider mechanism. The digital simulation results demonstrate that the exclusion of the structural deformations of the crank-slider mechanism from the formulation of the (P-ω) method leads to an overestimation of the engine friction torque near the top-dead-center (TDC) position of the piston under firing conditions. Moreover, for the remainder of the engine cycle, the estimated friction torque exhibits large oscillations and takes on positive numerical values as if it is inducing energy into the system. Thus, the adverse effects of structural deformations of the crank-slider mechanism on the estimation of the engine friction torque greatly differ in their nature from one phase of the engine cycle to another.

  4. Atypical energetic particle events observed prior energetic particle enhancements associated with corotating interaction regions

    NASA Astrophysics Data System (ADS)

    Khabarova, Olga; Malandraki, Olga; Zank, Gary; Jackson, Bernard; Bisi, Mario; Desai, Mihir; Li, Gang; le Roux, Jakobus; Yu, Hsiu-Shan

    2017-04-01

    Recent studies of mechanisms of particle acceleration in the heliosphere have revealed the importance of the comprehensive analysis of stream-stream interactions as well as the heliospheric current sheet (HCS) - stream interactions that often occur in the solar wind, producing huge magnetic cavities bounded by strong current sheets. Such cavities are usually filled with small-scale magnetic islands that trap and re-accelerate energetic particles (Zank et al. ApJ, 2014, 2015; le Roux et al. ApJ, 2015, 2016; Khabarova et al. ApJ, 2015, 2016). Crossings of these regions are associated with unusual variations in the energetic particle flux up to several MeV/nuc near the Earth's orbit. These energetic particle flux enhancements called "atypical energetic particle events" (AEPEs) are not associated with standard mechanisms of particle acceleration. The analysis of multi-spacecraft measurements of energetic particle flux, plasma and the interplanetary magnetic field shows that AEPEs have a local origin as they are observed by different spacecraft with a time delay corresponding to the solar wind propagation from one spacecraft to another, which is a signature of local particle acceleration in the region embedded in expanding and rotating background solar wind. AEPEs are often observed before the arrival of corotating interaction regions (CIRs) or stream interaction regions (SIRs) to the Earth's orbit. When fast solar wind streams catch up with slow solar wind, SIRs of compressed heated plasma or more regular CIRs are created at the leading edge of the high-speed stream. Since coronal holes are often long-lived structures, the same CIR re-appears often for several consecutive solar rotations. At low heliographic latitudes, such CIRs are typically bounded by forward and reverse waves on their leading and trailing edges, respectively, that steepen into shocks at heliocentric distances beyond 1 AU. Energetic ion increases have been frequently observed in association with CIR

  5. Accuracy and precision of as-received implant torque wrenches.

    PubMed

    Britton-Vidal, Eduardo; Baker, Philip; Mettenburg, Donald; Pannu, Darshanjit S; Looney, Stephen W; Londono, Jimmy; Rueggeberg, Frederick A

    2014-10-01

    Previous implant torque evaluation did not determine if the target value fell within a confidence interval for the population mean of the test groups, disallowing determination of whether a specific type of wrench met a standardized goal value. The purpose of this study was to measure both the accuracy and precision of 2 different configurations (spring style and peak break) of as-received implant torque wrenches and compare the measured values to manufacturer-stated values. Ten wrenches from 4 manufacturers, representing a variety of torque-limiting mechanisms and specificity of use (with either a specific brand or universally with any brand of implant product). Drivers were placed into the wrench, and tightening torque was applied to reach predetermined values using a NIST-calibrated digital torque wrench. Five replications of measurement were made for each wrench and averaged to provide a single value from that instrument. The target torque value for each wrench brand was compared to the 95% confidence interval for the true population mean of measured values to see if it fell within the measured range. Only 1 wrench brand (Nobel Biocare) demonstrated the target torque value falling within the 95% confidence interval for the true population mean. For others, the targeted torque value fell above the 95% confidence interval (Straumann and Imtec) or below (Salvin Torq). Neither type of torque-limiting mechanism nor designation of a wrench to be used as a dedicated brand-only product or to be used as a universal product on many brands affected the ability of a wrench to deliver torque values where the true population mean included the target torque level. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  6. Searching for transiting circumbinary planets in CoRoT and ground-based data using CB-BLS

    NASA Astrophysics Data System (ADS)

    Ofir, A.; Deeg, H. J.; Lacy, C. H. S.

    2009-10-01

    Aims: Already from the initial discoveries of extrasolar planets it was apparent that their population and environments are far more diverse than initially postulated. Discovering circumbinary (CB) planets will have many implications, and in this context it will again substantially diversify the environments that produce and sustain planets. We search for transiting CB planets around eclipsing binaries (EBs). Methods: CB-BLS is a recently-introduced algorithm for the detection of transiting CB planets around EBs. We describe progress in search sensitivity, generality and capability of CB-BLS, and detection tests of CB-BLS on simulated data. We also describe an analytical approach for the determination of CB-BLS detection limits, and a method for the correct detrending of intrinsically-variable stars. Results: We present some blind-tests with simulated planets injected to real CoRoT data. The presented upgrades to CB-BLS allowed it to detect all the blind tests successfully, and these detections were in line with the detection limits analysis. We also correctly detrend bright eclipsing binaries from observations by the TrES planet search, and present some of the first results of applying CB-BLS to multiple real light curves from a wide-field survey. Conclusions: CB-BLS is now mature enough for its application to real data, and the presented processing scheme will serve as the template for our future applications of CB-BLS to data from wide-field surveys such as CoRoT. Being able to put constraints even on non-detection will help to determine the correct frequency of CB planets, contributing to the understanding of planet formation in general. Still, searching for transiting CB planets is still a learning experience, similarly to the state of transiting planets around single stars only a few years ago. The recent rapid progress in this front, coupled with the exquisite quality of space-based photometry, allows to realistically expect that if transiting CB planets

  7. Transiting exoplanets from the CoRoT space mission . VI. CoRoT-Exo-3b: the first secure inhabitant of the brown-dwarf desert

    NASA Astrophysics Data System (ADS)

    Deleuil, M.; Deeg, H. J.; Alonso, R.; Bouchy, F.; Rouan, D.; Auvergne, M.; Baglin, A.; Aigrain, S.; Almenara, J. M.; Barbieri, M.; Barge, P.; Bruntt, H.; Bordé, P.; Collier Cameron, A.; Csizmadia, Sz.; de La Reza, R.; Dvorak, R.; Erikson, A.; Fridlund, M.; Gandolfi, D.; Gillon, M.; Guenther, E.; Guillot, T.; Hatzes, A.; Hébrard, G.; Jorda, L.; Lammer, H.; Léger, A.; Llebaria, A.; Loeillet, B.; Mayor, M.; Mazeh, T.; Moutou, C.; Ollivier, M.; Pätzold, M.; Pont, F.; Queloz, D.; Rauer, H.; Schneider, J.; Shporer, A.; Wuchterl, G.; Zucker, S.

    2008-12-01

    Context: The CoRoT space mission routinely provides high-precision photometric measurements of thousands of stars that have been continuously observed for months. Aims: The discovery and characterization of the first very massive transiting planetary companion with a short orbital period is reported. Methods: A series of 34 transits was detected in the CoRoT light curve of an F3V star, observed from May to October 2007 for 152 days. The radius was accurately determined and the mass derived for this new transiting, thanks to the combined analysis of the light curve and complementary ground-based observations: high-precision radial-velocity measurements, on-off photometry, and high signal-to-noise spectroscopic observations. Results: CoRoT-Exo-3b has a radius of 1.01 ± 0.07 R_Jup and transits around its F3-type primary every 4.26 days in a synchronous orbit. Its mass of 21.66 ± 1.0 M_Jup, density of 26.4 ± 5.6 g cm-3, and surface gravity of logg = 4.72 clearly distinguish it from the regular close-in planet population, making it the most intriguing transiting substellar object discovered so far. Conclusions: With the current data, the nature of CoRoT-Exo-3b is ambiguous, as it could either be a low-mass brown-dwarf or a member of a new class of “superplanets”. Its discovery may help constrain the evolution of close-in planets and brown-dwarfs better. Finally, CoRoT-Exo-3b confirms the trend that massive transiting giant planets (M ≥ 4 M_Jup) are found preferentially around more massive stars than the Sun. The CoRoT space mission, launched on December 27th 2006, has been developed and is operating by CNES, with the contribution of Austria, Belgium, Brasil, ESA, Germany and Spain. The first CoRoT data will be available to the public in February 2009 from the CoRoT archive: http://idoc-corot.ias.u-psud.fr/ Table of the COROT photometry is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb

  8. 14 CFR 29.397 - Limit pilot forces and torques.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limit pilot forces and torques. 29.397 Section 29.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... System Loads § 29.397 Limit pilot forces and torques. (a) Except as provided in paragraph (b) of this...

  9. 14 CFR 27.397 - Limit pilot forces and torques.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Limit pilot forces and torques. 27.397 Section 27.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... System Loads § 27.397 Limit pilot forces and torques. (a) Except as provided in paragraph (b) of this...

  10. 14 CFR 23.397 - Limit control forces and -torques.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Limit control forces and -torques. 23.397 Section 23.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Control Surface and System Loads § 23.397 Limit control forces and -torques. (a) In the control surface...

  11. 14 CFR 27.397 - Limit pilot forces and torques.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limit pilot forces and torques. 27.397 Section 27.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... System Loads § 27.397 Limit pilot forces and torques. (a) Except as provided in paragraph (b) of this...

  12. 14 CFR 29.397 - Limit pilot forces and torques.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Limit pilot forces and torques. 29.397 Section 29.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... System Loads § 29.397 Limit pilot forces and torques. (a) Except as provided in paragraph (b) of this...

  13. 14 CFR 29.397 - Limit pilot forces and torques.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Limit pilot forces and torques. 29.397 Section 29.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... System Loads § 29.397 Limit pilot forces and torques. (a) Except as provided in paragraph (b) of this...

  14. 14 CFR 23.397 - Limit control forces and -torques.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Limit control forces and -torques. 23.397 Section 23.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Control Surface and System Loads § 23.397 Limit control forces and -torques. (a) In the control surface...

  15. 14 CFR 27.397 - Limit pilot forces and torques.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Limit pilot forces and torques. 27.397 Section 27.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... System Loads § 27.397 Limit pilot forces and torques. (a) Except as provided in paragraph (b) of this...

  16. 14 CFR 23.397 - Limit control forces and -torques.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limit control forces and -torques. 23.397 Section 23.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Control Surface and System Loads § 23.397 Limit control forces and -torques. (a) In the control surface...

  17. 14 CFR 23.397 - Limit control forces and -torques.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Limit control forces and -torques. 23.397 Section 23.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Control Surface and System Loads § 23.397 Limit control forces and -torques. (a) In the control surface...

  18. 14 CFR 29.397 - Limit pilot forces and torques.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Limit pilot forces and torques. 29.397 Section 29.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... System Loads § 29.397 Limit pilot forces and torques. (a) Except as provided in paragraph (b) of this...

  19. 14 CFR 23.397 - Limit control forces and -torques.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Limit control forces and -torques. 23.397 Section 23.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Control Surface and System Loads § 23.397 Limit control forces and -torques. (a) In the control surface...

  20. 14 CFR 27.397 - Limit pilot forces and torques.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Limit pilot forces and torques. 27.397 Section 27.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... System Loads § 27.397 Limit pilot forces and torques. (a) Except as provided in paragraph (b) of this...

  1. 14 CFR 29.397 - Limit pilot forces and torques.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Limit pilot forces and torques. 29.397 Section 29.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... System Loads § 29.397 Limit pilot forces and torques. (a) Except as provided in paragraph (b) of this...

  2. 14 CFR 27.397 - Limit pilot forces and torques.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Limit pilot forces and torques. 27.397 Section 27.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... System Loads § 27.397 Limit pilot forces and torques. (a) Except as provided in paragraph (b) of this...

  3. 40 CFR 91.306 - Dynamometer torque cell calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Dynamometer torque cell calibration... Provisions § 91.306 Dynamometer torque cell calibration. (a)(1) Any lever arm used to convert a weight or a... with the adjusted or repaired system. (b) Option. A master load-cell or transfer standard may be used...

  4. 40 CFR 91.306 - Dynamometer torque cell calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Dynamometer torque cell calibration... Provisions § 91.306 Dynamometer torque cell calibration. (a)(1) Any lever arm used to convert a weight or a... with the adjusted or repaired system. (b) Option. A master load-cell or transfer standard may be used...

  5. 40 CFR 91.306 - Dynamometer torque cell calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Dynamometer torque cell calibration... Provisions § 91.306 Dynamometer torque cell calibration. (a)(1) Any lever arm used to convert a weight or a... with the adjusted or repaired system. (b) Option. A master load-cell or transfer standard may be used...

  6. 40 CFR 90.306 - Dynamometer torque cell calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Dynamometer torque cell calibration. 90... Equipment Provisions § 90.306 Dynamometer torque cell calibration. (a)(1) Any lever arm used to convert a... (a)(6) of this section with the adjusted or repaired system. (b) Option. A master load-cell or...

  7. 40 CFR 91.306 - Dynamometer torque cell calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Dynamometer torque cell calibration. 91....306 Dynamometer torque cell calibration. (a)(1) Any lever arm used to convert a weight or a force... with the adjusted or repaired system. (b) Option. A master load-cell or transfer standard may be used...

  8. 40 CFR 91.306 - Dynamometer torque cell calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Dynamometer torque cell calibration... Provisions § 91.306 Dynamometer torque cell calibration. (a)(1) Any lever arm used to convert a weight or a... with the adjusted or repaired system. (b) Option. A master load-cell or transfer standard may be used...

  9. Vastus lateralis single motor unit EMG at the same absolute torque production at different knee angles.

    PubMed

    Altenburg, T M; de Haan, A; Verdijk, P W L; van Mechelen, W; de Ruiter, C J

    2009-07-01

    Single motor unit electromyographic (EMG) activity of the knee extensors was investigated at different knee angles with subjects (n = 10) exerting the same absolute submaximal isometric torque at each angle. Measurements were made over a 20 degrees range around the optimum angle for torque production (AngleTmax) and, where feasible, over a wider range (50 degrees ). Forty-six vastus lateralis (VL) motor units were recorded at 20.7 +/- 17.9 %maximum voluntary contraction (%MVC) together with the rectified surface EMG (rsEMG) of the superficial VL muscle. Due to the lower maximal torque capacity at positions more flexed and extended than AngleTmax, single motor unit recruitment thresholds were expected to decrease and discharge rates were expected to increase at angles above and below AngleTmax. Unexpectedly, the recruitment threshold was higher (P < 0.05) at knee angles 10 degrees more extended (43.7 +/- 22.2 N.m) and not different (P > 0.05) at knee angles 10 degrees more flexed (35.2 +/- 17.9 N.m) compared with recruitment threshold at AngleTmax (41.8 +/- 21.4 N.m). Also, unexpectedly the discharge rates were similar (P > 0.05) at the three angles: 11.6 +/- 2.2, 11.6 +/- 2.1, and 12.3 +/- 2.1 Hz. Similar angle independent discharge rates were also found for 12 units (n = 5; 7.4 +/- 5.4 %MVC) studied over the wider (50 degrees ) range, while recruitment threshold only decreased at more flexed angles. In conclusion, the similar recruitment threshold and discharge behavior of VL motor units during submaximal isometric torque production suggests that net motor unit activation did not change very much along the ascending limb of the knee-angle torque relationship. Several factors such as length-dependent twitch potentiation, which may contribute to this unexpected aspect of motor control, are discussed.

  10. Perspective: Interface generation of spin-orbit torques

    DOE PAGES

    Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.; ...

    2016-11-14

    We present that most of the modern spintronics developments rely on the manipulation of magnetization states via electric currents, which started with the discovery of spin transfer torque effects 20 years ago. By now, it has been realized that spin-orbit coupling provides a particularly efficient pathway for generating spin torques from charge currents. At the same time, spin-orbit effects can be enhanced at interfaces, which opens up novel device concepts. Here, we discuss two examples of such interfacial spin-orbit torques, namely, systems with inherently two-dimensional materials and metallic bilayers with strong Rashba spin-orbit coupling at their interfaces. We show howmore » ferromagnetic resonance excited by spin-orbit torques can provide information about the underlying mechanisms. In addition, this article provides a brief overview of recent developments with respect to interfacial spin-orbit torques and an outlook of still open questions.« less

  11. Perspective: Interface generation of spin-orbit torques

    SciTech Connect

    Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.

    We present that most of the modern spintronics developments rely on the manipulation of magnetization states via electric currents, which started with the discovery of spin transfer torque effects 20 years ago. By now, it has been realized that spin-orbit coupling provides a particularly efficient pathway for generating spin torques from charge currents. At the same time, spin-orbit effects can be enhanced at interfaces, which opens up novel device concepts. Here, we discuss two examples of such interfacial spin-orbit torques, namely, systems with inherently two-dimensional materials and metallic bilayers with strong Rashba spin-orbit coupling at their interfaces. We show howmore » ferromagnetic resonance excited by spin-orbit torques can provide information about the underlying mechanisms. In addition, this article provides a brief overview of recent developments with respect to interfacial spin-orbit torques and an outlook of still open questions.« less

  12. Torque Sensor Based on Tunnel-Diode Oscillator

    NASA Technical Reports Server (NTRS)

    Chui, Talso; Young, Joseph

    2008-01-01

    A proposed torque sensor would be capable of operating over the temperature range from 1 to 400 K, whereas a typical commercially available torque sensor is limited to the narrower temperature range of 244 to 338 K. The design of this sensor would exploit the wide temperature range and other desirable attributes of differential transducers based on tunnel-diode oscillators as described in "Multiplexing Transducers Based on Tunnel-Diode Oscillators". The proposed torque sensor would include three flexural springs that would couple torque between a hollow outer drive shaft and a solid inner drive shaft. The torque would be deduced from the torsional relative deflection of the two shafts, which would be sensed via changes in capacitances of two capacitors defined by two electrodes attached to the inner shaft and a common middle electrode attached to the outer shaft.

  13. Design of digital load torque observer in hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Sun, Yukun; Zhang, Haoming; Wang, Yinghai

    2008-12-01

    In hybrid electric vehicle, engine begain to work only when motor was in high speed in order to decrease tail gas emission. However, permanent magnet motor was sensitive to its load, adding engine to the system always made its speed drop sharply, which caused engine to work in low efficiency again and produced much more environment pollution. Dynamic load torque model of permanent magnet synchronous motor is established on the basic of motor mechanical equation and permanent magnet synchronous motor vector control theory, Full- digital load torque observer and compensation control system is made based on TMS320F2407A. Experiment results prove load torque observer and compensation control system can detect and compensate torque disturbing effectively, which can solve load torque disturbing and decrease gas pollution of hybrid electric vehicle.

  14. Maximum Torque and Momentum Envelopes for Reaction Wheel Arrays

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Reynolds, Reid G.; Liu, Frank X.; Lebsock, Kenneth L.

    2009-01-01

    Spacecraft reaction wheel maneuvers are limited by the maximum torque and/or angular momentum that the wheels can provide. For an n-wheel configuration, the torque or momentum envelope can be obtained by projecting the n-dimensional hypercube, representing the domain boundary of individual wheel torques or momenta, into three dimensional space via the 3xn matrix of wheel axes. In this paper, the properties of the projected hypercube are discussed, and algorithms are proposed for determining this maximal torque or momentum envelope for general wheel configurations. Practical strategies for distributing a prescribed torque or momentum among the n wheels are presented, with special emphasis on configurations of four, five, and six wheels.

  15. Towards measuring quantum electrodynamic torque with a levitated nanorod

    NASA Astrophysics Data System (ADS)

    Xu, Zhujing; Bang, Jaehoon; Ahn, Jonghoon; Hoang, Thai M.; Li, Tongcang

    2017-04-01

    According to quantum electrodynamics, quantum fluctuations of electromagnetic fields give rise to a zero-point energy that never vanishes, even in the absence of electromagnetic sources. The interaction energy will not only lead to the well-known Casimir force but will also contribute to the Casimir torque for anisotropic materials. We propose to use an optically levitated nanorod in vacuum and a birefringent substrate to experimentally investigate the QED torque. We have previously observed the libration of an optically levitated non-spherical nanoparticle in vacuum and found it to be an ultrasensitive torque sensor. A nanorod with a long axis of 300nm and a diameter of 60nm levitated in vacuum at 10 (- 8) torr will have a remarkable torque detection sensitivity on the order of 10 (- 28) Nm/ √Hz, which will be sufficient to detect the Casimir torque. This work is partially supported by the National Science Foundation under Grant No.1555035-PHY.

  16. Torque measurement at the single-molecule level.

    PubMed

    Forth, Scott; Sheinin, Maxim Y; Inman, James; Wang, Michelle D

    2013-01-01

    Methods for exerting and measuring forces on single molecules have revolutionized the study of the physics of biology. However, it is often the case that biological processes involve rotation or torque generation, and these parameters have been more difficult to access experimentally. Recent advances in the single-molecule field have led to the development of techniques that add the capability of torque measurement. By combining force, displacement, torque, and rotational data, a more comprehensive description of the mechanics of a biomolecule can be achieved. In this review, we highlight a number of biological processes for which torque plays a key mechanical role. We describe the various techniques that have been developed to directly probe the torque experienced by a single molecule, and detail a variety of measurements made to date using these new technologies. We conclude by discussing a number of open questions and propose systems of study that would be well suited for analysis with torsional measurement techniques.

  17. A 0.8-2.4 μm Transmission spectrum of the hot Jupiter CoRoT-1b

    SciTech Connect

    Schlawin, E.; Herter, T.; Zhao, M.

    Hot Jupiters with brightness temperatures ≳2000 K can have TiO and VO molecules as gaseous species in their atmospheres. The TiO and VO molecules can potentially induce temperature inversions in hot Jupiter atmospheres and also have an observable signature of large optical to infrared transit depth ratios. Previous transmission spectra of very hot Jupiters have shown a lack of TiO and VO, but only in planets that also appear to lack temperature inversions. We measure the transmission spectrum of CoRoT-1b, a hot Jupiter that was predicted to have a temperature inversion potentially due to significant TiO and VO in itsmore » atmosphere. We employ the multi-object spectroscopy method using the SpeX and MORIS instruments on the Infrared Telescope Facility (IRTF) and the Gaussian process method to model red noise. By using a simultaneous reference star on the slit for calibration and a wide slit to minimize slit losses, we achieve transit depth precision of 0.03%-0.09%, comparable to the atmospheric scale height but detect no statistically significant molecular features. We combine our IRTF data with optical CoRoT transmission measurements to search for differences in the optical and near-infrared absorption that would arise from TiO/VO. Our IRTF spectrum and the CoRoT photometry disfavor a TiO/VO-rich spectrum for CoRoT-1b, suggesting that the atmosphere has another absorber that could create a temperature inversion or that the blackbody-like emission from the planet is due to a spectroscopically flat cloud, dust, or haze layer that smoothes out molecular features in both CoRoT-1b's emission and transmission spectra. This system represents the faintest planet hosting star (K = 12.2) with a measured planetary transmission spectrum.« less

  18. VizieR Online Data Catalog: Basic properties of Kepler and CoRoT targets (Yildiz+, 2016)

    NASA Astrophysics Data System (ADS)

    Yildiz, M.; Celik Orhan, Z.; Kayhan, C.

    2018-01-01

    The basic data of certain Kepler (79 stars) and CoRoT (seven stars) target stars, compiled from the literature, are listed in Table A1. Oscillation frequencies of three stars (Procyon A, HD 2151 and HD 146233) were obtained from ground-based observations (Bedding et al., 2010ApJ...713..935B; Bedding et al., 2007ApJ...663.1315B and Bazot et al. 2012, Cat. J/A+A/544/A106, respectively). These stars are also listed in this table, with data for the Sun for comparison. For most stars, we provide B-V and V-K colours (SIMBAD data base) from photometric observations, and surface gravity [log(g)], effective temperature (TeS) and metallicity ([Fe/H]) from spectroscopic observations. (2 data files).

  19. On the differences in element abundances of energetic ions from corotating events and from large solar events

    NASA Technical Reports Server (NTRS)

    Reames, D. V.; Richardson, I. G.; Barbier, L. M.

    1991-01-01

    The abundances of energetic ions accelerated from high-speed solar wind streams by shock waves formed at corotating interaction regions (CIRs) where high-speed streams overtake the lower-speed solar wind are examined. The observed element abundances appear to represent those of the high-speed solar wind, unmodified by the shock acceleration. These abundances, relative to those in the solar photosphere, are organized by the first ionization potential (FIP) of the ions in a way that is different from the FIP effect commonly used to describe differences between abundances in the solar photosphere and those in the solar corona, solar energetic particles (SEPs), and the low-speed solar wind. In contrast, the FIP effect of the ion abundances in the CIR events is characterized by a smaller amplitude of the differences between high-FIP and low-FIP ions and by elevated abundances of He, C, and S.

  20. A three-dimensional model of co-rotating streams in the solar wind. 2: Hydrodynamic streams

    NASA Technical Reports Server (NTRS)

    Pizzo, V. J.

    1979-01-01

    Theoretical aspects of corotating solar wind dynamics on a global scale are explored by means of numerical simulations executed with a nonlinear, inviscid, adiabatic, single-fluid, three-dimensional (3-D) hydrodynamic formulation. A simple, hypothetical 3-D stream structure is defined on a source surface located at 35 solar radius and carefully documents its evolution to 1 AU under the influence of solar rotation. By manipulating the structure of this prototype configuration at the source surface, it is possible to elucidate the factors most strongly affecting stream evolution: (1) the intrinsic correlations among density, temperature, and velocity existing near the source; (2) the amplitude of the stream; (3) the longitudinal breadth of the stream; (4) the latitudinal breadth of the stream; and (5) the heliographic latitude of the centroid of the stream.

  1. EMG-Torque Dynamics Change With Contraction Bandwidth.

    PubMed

    Golkar, Mahsa A; Jalaleddini, Kian; Kearney, Robert E

    2018-04-01

    An accurate model for ElectroMyoGram (EMG)-torque dynamics has many uses. One of its applications which has gained high attention among researchers is its use, in estimating the muscle contraction level for the efficient control of prosthesis. In this paper, the dynamic relationship between the surface EMG and torque during isometric contractions at the human ankle was studied using system identification techniques. Subjects voluntarily modulated their ankle torque in dorsiflexion direction, by activating their tibialis anterior muscle, while tracking a pseudo-random binary sequence in a torque matching task. The effects of contraction bandwidth, described by torque spectrum, on EMG-torque dynamics were evaluated by varying the visual command switching time. Nonparametric impulse response functions (IRF) were estimated between the processed surface EMG and torque. It was demonstrated that: 1) at low contraction bandwidths, the identified IRFs had unphysiological anticipatory (i.e., non-causal) components, whose amplitude decreased as the contraction bandwidth increased. We hypothesized that this non-causal behavior arose, because the EMG input contained a component due to feedback from the output torque, i.e., it was recorded from within a closed-loop. Vision was not the feedback source since the non-causal behavior persisted when visual feedback was removed. Repeating the identification using a nonparametric closed-loop identification algorithm yielded causal IRFs at all bandwidths, supporting this hypothesis. 2) EMG-torque dynamics became faster and the bandwidth of system increased as contraction modulation rate increased. Thus, accurate prediction of torque from EMG signals must take into account the contraction bandwidth sensitivity of this system.

  2. Torque Splitting by a Concentric Face Gear Transmission

    NASA Technical Reports Server (NTRS)

    Filler, Robert R.; Heath, Gregory F.; Slaughter, Stephen C.; Lewicki, David G.

    2002-01-01

    Tests of a 167 Kilowatt (224 Horsepower) split torque face gearbox were performed by the Boeing Company in Mesa, Arizona, while working under a Defense Advanced Research Projects Agency (DARPA) Technology Reinvestment Program (TRP). This paper provides a summary of these cooperative tests, which were jointly funded by Boeing and DARPA. Design, manufacture and testing of the scaled-power TRP proof-of-concept (POC) split torque gearbox followed preliminary evaluations of the concept performed early in the program. The split torque tests were run using 200 N-m (1767 in-lbs) torque input to each side of the transmission. During tests, two input pinions were slow rolled while in mesh with the two face gears. Two idler gears were also used in the configuration to recombine torque near the output. Resistance was applied at the output face gear to create the required loading conditions in the gear teeth. A system of weights, pulleys and cables were used in the test rig to provide both the input and output loading. Strain gages applied in the tooth root fillets provided strain indication used to determine torque splitting conditions at the input pinions. The final two pinion-two idler tests indicated 52% to 48% average torque split capabilities for the two pinions. During the same tests, a 57% to 43% average distribution of the torque being recombined to the upper face gear from the lower face gear was measured between the two idlers. The POC split torque tests demonstrated that face gears can be applied effectively in split torque rotorcraft transmissions, yielding good potential for significant weight, cost and reliability improvements over existing equipment using spiral bevel gearing.

  3. Surface stress mediated image force and torque on an edge dislocation

    NASA Astrophysics Data System (ADS)

    Raghavendra, R. M.; Divya, Iyer, Ganesh; Kumar, Arun; Subramaniam, Anandh

    2018-07-01

    The proximity of interfaces gives prominence to image forces experienced by dislocations. The presence of surface stress alters the traction-free boundary conditions existing on free-surfaces and hence is expected to alter the magnitude of the image force. In the current work, using a combined simulation of surface stress and an edge dislocation in a semi-infinite body, we evaluate the configurational effects on the system. We demonstrate that if the extra half-plane of the edge dislocation is parallel to the surface, the image force (glide) is not altered due to surface stress; however, the dislocation experiences a torque. The surface stress breaks the 'climb image force' symmetry, thus leading to non-equivalence between positive and negative climb. We discover an equilibrium position for the edge dislocation in the positive 'climb geometry', arising due to a competition between the interaction of the dislocation stress fields with the surface stress and the image dislocation. Torque in the climb configuration is not affected by surface stress (remains zero). Surface stress is computed using a recently developed two-scale model based on Shuttleworth's idea and image forces using a finite element model developed earlier. The effect of surface stress on the image force and torque experienced by the dislocation monopole is analysed using illustrative 3D models.

  4. Effect of gravity-like torque on goal-directed arm movements in microgravity.

    PubMed

    Bringoux, L; Blouin, J; Coyle, T; Ruget, H; Mouchnino, L

    2012-05-01

    Gravitational force level is well-known to influence arm motor control. Specifically, hyper- or microgravity environments drastically change pointing accuracy and kinematics, particularly during initial exposure. These modifications are thought to partly reflect impairment in arm position sense. Here we investigated whether applying normogravitational constraints at joint level during microgravity episodes of parabolic flights could restore movement accuracy equivalent to that observed on Earth. Subjects with eyes closed performed arm reaching movements toward predefined sagittal angular positions in four environment conditions: normogravity, hypergravity, microgravity, and microgravity with elastic bands attached to the arm to mimic gravity-like torque at the shoulder joint. We found that subjects overshot and undershot the target orientations in hypergravity and microgravity, respectively, relative to a normogravity baseline. Strikingly, adding gravity-like torque prior to and during movements performed in microgravity allowed subjects to be as accurate as in normogravity. In the former condition, arm movement kinematics, as notably illustrated by the relative time to peak velocity, were also unchanged relative to normogravity, whereas significant modifications were found in hyper- and microgravity. Overall, these results suggest that arm motor planning and control are tuned with respect to gravitational information issued from joint torque, which presumably enhances arm position sense and activates internal models optimally adapted to the gravitoinertial environment.

  5. Experimental observation of self excited co-rotating multiple vortices in a dusty plasma with inhomogeneous plasma background

    NASA Astrophysics Data System (ADS)

    Choudhary, Mangilal; Mukherjee, S.; Bandyopadhyay, P.

    2017-03-01

    We report an experimental observation of multiple co-rotating vortices in an extended dust column in the background of an inhomogeneous diffused plasma. An inductively coupled rf discharge is initiated in the background of argon gas in the source region. This plasma was later found to diffuse into the main experimental chamber. A secondary DC glow discharge plasma is produced to introduce dust particles into the plasma volume. These micron-sized poly-disperse dust particles get charged in the background of the DC plasma and are transported by the ambipolar electric field of the diffused plasma. These transported particles are found to be confined in an electrostatic potential well, where the resultant electric field due to the diffused plasma (ambipolar E-field) and glass wall charging (sheath E-field) holds the micron-sized particles against the gravity. Multiple co-rotating (anti-clockwise) dust vortices are observed in the dust cloud for a particular discharge condition. The transition from multiple vortices to a single dust vortex is observed when input rf power is lowered. The occurrence of these vortices is explained on the basis of the charge gradient of dust particles, which is orthogonal to the ion drag force. The charge gradient is a consequence of the plasma inhomogeneity along the dust cloud length. The detailed nature and the reason for multiple vortices are still under investigation through further experiments; however, preliminary qualitative understanding is discussed based on the characteristic scale length of the dust vortex. There is a characteristic size of the vortex in the dusty plasma; therefore, multiple vortices could possibly be formed in an extended dusty plasma with inhomogeneous plasma background. The experimental results on the vortex motion of particles are compared with a theoretical model and are found to be in close agreement.

  6. The GTC exoplanet transit spectroscopy survey. III. No asymmetries in the transit of CoRoT-29b

    NASA Astrophysics Data System (ADS)

    Pallé, E.; Chen, G.; Alonso, R.; Nowak, G.; Deeg, H.; Cabrera, J.; Murgas, F.; Parviainen, H.; Nortmann, L.; Hoyer, S.; Prieto-Arranz, J.; Nespral, D.; Cabrera Lavers, A.; Iro, N.

    2016-05-01

    Context. The launch of the exoplanet space missions obtaining exquisite photometry from space has resulted in the discovery of thousands of planetary systems with very different physical properties and architectures. Among them, the exoplanet CoRoT-29b was identified in the light curves the mission obtained in summer 2011, and presented an asymmetric transit light curve, which was tentatively explained via the effects of gravity darkening. Aims: Transits of CoRoT-29b are measured with precision photometry, to characterize the reported asymmetry in their transit shape. Methods: Using the OSIRIS spectrograph at the 10-m GTC telescope, we perform spectro-photometric differential observations, which allow us to both calculate a high-accuracy photometric light curve, and a study of the color-dependence of the transit. Results: After careful data analysis, we find that the previously reported asymmetry is not present in either of two transits, observed in July 2014 and July 2015 with high photometric precisions of 300 ppm over 5 min. Due to the relative faintness of the star, we do not reach the precision necessary to perform transmission spectroscopy of its atmosphere, but we see no signs of color-dependency of the transit depth or duration. Conclusions: We conclude that the previously reported asymmetry may have been a time-dependent phenomenon, which did not occur in more recent epochs. Alternatively, instrumental effects in the discovery data may need to be reconsidered. Light curves are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A62

  7. Position And Force Control For Multiple-Arm Robots

    NASA Technical Reports Server (NTRS)

    Hayati, Samad A.

    1988-01-01

    Number of arms increased without introducing undue complexity. Strategy and computer architecture developed for simultaneous control of positions of number of robot arms manipulating same object and of forces and torques that arms exert on object. Scheme enables coordinated manipulation of object, causing it to move along assigned trajectory and be subjected to assigned internal forces and torques.

  8. America’s Cup Sailing: Effect of Standing Arm-Cranking (“Grinding”) Direction on Muscle Activity, Kinematics, and Torque Application

    PubMed Central

    Pearson, Simon N.; Hume, Patria A.; Cronin, John; Slyfield, David

    2016-01-01

    Grinding is a key physical element in America’s Cup sailing. This study aimed to describe kinematics and muscle activation patterns in relation to torque applied in forward and backward grinding. Ten male America’s Cup sailors (33.6 ± 5.7 years, 97.9 ± 13.4 kg, 186.6 ± 7.4 cm) completed forward and backward grinding on a customised grinding ergometer. In forward grinding peak torque (77 Nm) occurred at 95° (0° = crank vertically up) on the downward section of the rotation at the end of shoulder flexion and elbow extension. Backward grinding torque peaked at 35° (69 Nm) following the pull action (shoulder extension, elbow flexion) across the top of the rotation. During forward grinding, relatively high levels of torque (>50 Nm) were maintained through the majority (72%) of the cycle, compared to 47% for backward grinding, with sections of low torque corresponding with low numbers of active muscles. Variation in torque was negatively associated with forward grinding performance (r = −0.60; 90% CI −0.88 to −0.02), but positively associated with backward performance (r = 0.48; CI = −0.15 to 0.83). Magnitude and distribution of torque generation differed according to grinding direction and presents an argument for divergent training methods to improve forward and backward grinding performance.

  9. Accuracy of torque-limiting devices: A comparative evaluation.

    PubMed

    Albayrak, Haydar; Gumus, Hasan Onder; Tursun, Funda; Kocaagaoglu, Hasan Huseyin; Kilinc, Halil Ibrahim

    2017-01-01

    To prevent the loosening of implant screws, clinicians should be aware of the output torque values needed to achieve the desired preload. Accurate torque-control devices are crucial in this regard; however, little information is currently available comparing the accuracy of mechanical with that of electronic torque-control devices. The purpose of this in vitro study was to identify and compare the accuracy of different types of torque-control devices. Devices from 5 different dental implant manufacturers were evaluated, including 2 spring-type (Straumann, Implance) mechanical devices (MTLD), 2 friction-type (Biohorizons, Dyna) MTLDs, and 1 (Megagen) electronic torque-control device (ETLD). For each manufacturer, 5 devices were tested 5 times with a digital torque tester, and the average for each device was calculated and recorded. The percentage of absolute deviations from the target torque values (PERDEV) were calculated and compared by using 1-way ANOVA. A 1-sample t test was used to evaluate the ability of each device to achieve its target torque value within a 95% confidence interval for the true population mean of measured values (α=.05 for all statistical analyses). One-way ANOVAs revealed statistically significant differences among torque-control devices (P<.001). ETLD showed higher PERDEVs (28.33 ±9.53) than MTLDs (P<.05), whereas PERDEVS of friction-type (7.56 ±3.64) and spring-type (10.85 ±4.11) MTLDs did not differ significantly. In addition, devices produced by Megagen had a significantly higher (P<.05) PERDEV (28.33 ±9.53) other devices, whereas no differences were found in devices manufactured by Biohorizons (7.31 ±5.34), Dyna (7.82 ±1.08), Implance (8.43 ±4.77), and Straumann (13.26 ±0.79). However, 1-sample t tests showed none of the torque-control devices evaluated in this study were capable of achieving their target torque values (P<.05). Within the limitations of this in vitro study, MTLDs were shown to be significantly more accurate

  10. A new adaptive self-tuning Fourier coefficients algorithm for periodic torque ripple minimization in permanent magnet synchronous motors (PMSM).

    PubMed

    Gómez-Espinosa, Alfonso; Hernández-Guzmán, Víctor M; Bandala-Sánchez, Manuel; Jiménez-Hernández, Hugo; Rivas-Araiza, Edgar A; Rodríguez-Reséndiz, Juvenal; Herrera-Ruíz, Gilberto

    2013-03-19

    A New Adaptive Self-Tuning Fourier Coefficients Algorithm for Periodic Torque Ripple Minimization in Permanent Magnet Synchronous Motors (PMSM) Torque ripple occurs in Permanent Magnet Synchronous Motors (PMSMs) due to the non-sinusoidal flux density distribution around the air-gap and variable magnetic reluctance of the air-gap due to the stator slots distribution. These torque ripples change periodically with rotor position and are apparent as speed variations, which degrade the PMSM drive performance, particularly at low speeds, because of low inertial filtering. In this paper, a new self-tuning algorithm is developed for determining the Fourier Series Controller coefficients with the aim of reducing the torque ripple in a PMSM, thus allowing for a smoother operation. This algorithm adjusts the controller parameters based on the component's harmonic distortion in time domain of the compensation signal. Experimental evaluation is performed on a DSP-controlled PMSM evaluation platform. Test results obtained validate the effectiveness of the proposed self-tuning algorithm, with the Fourier series expansion scheme, in reducing the torque ripple.

  11. Resonance at the wrist demonstrated by the use of a torque motor: an instrumental analysis of muscle tone in man.

    PubMed Central

    Lakie, M; Walsh, E G; Wright, G W

    1984-01-01

    The resonance of the relaxed wrist for flexion-extension movements in the horizontal plane has been investigated by using rhythmic torques generated by a printed motor. In the normal subject the resonant frequency of the wrist is ca. 2 Hz unless the torque is reduced below a certain critical value when the system is no longer linear and the resonant frequency rises. This critical torque level, and the damping are both less in women than men. The resonant frequency is uninfluenced by surgical anaesthesia. With added bias the increase of resonant frequency at low torques still occurs although the hand is now oscillating about a displaced mean position. It follows that the stiffening implied by this elevation of resonant frequency for small movements is neither the result of pre-stressing of the muscles nor of reflex activity. With velocity feed-back of appropriate polarity the system will oscillate spontaneously at its resonant frequency. If the peak driving torque is progressively reduced the resonant frequency increases abruptly, indicating that the system has stiffened. Perturbations delivered to the wrist may reduce its stiffness. The postural system is thixotropic with a 'memory time' of 1-2 s. The resonant frequency is elevated in voluntary stiffening. PMID:6481624

  12. Torque during canal instrumentation using rotary nickel-titanium files.

    PubMed

    Sattapan, B; Palamara, J E; Messer, H H

    2000-03-01

    Nickel-titanium engine-driven rotary instruments are used increasingly in endodontic practice. One frequently mentioned problem is fracture of an instrument in the root canal. Very few studies have been conducted on torsional characteristics of these instruments, and none has been done under dynamic conditions. The purposes of this study were to measure the torque generated and the apical force applied during instrumentation with a commercial engine-driven nickel-titanium file system, and to relate torque generated during simulated clinical use to torsional failure of the instruments. Ten extracted human teeth (five with small-sized and five with medium-sized straight root canals) were instrumented with Quantec Series 2000 files, and the torque and apical force generated were measured. The applied apical force was generally low, not exceeding 150 g in either small or medium canals. The torque depended on the tip size and taper of each instrument, and on canal size. Instruments with 0.05 and 0.06 taper generated the highest torque, which was greater in small than in medium canals. The torque at failure was significantly (p < 0.001) higher than torque during instrumentation, but with considerable variation in the extent of the difference.

  13. Lunar and Solar Torques on the Oceanic Tides

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Bills, Bruce G.; Chao, Benjamin F.

    1998-01-01

    Brosche and Seiler recently suggested that direct lunar and solar tidal torques on the oceanic tides play a significant role in the earth's short-period angular momentum balance ("short-period" here meaning daily and sub-daily). We reexamine that suggestion here, concentrating on axial torques and hence on variations in rotation rate. Only those spherical harmonic components of the ocean tide having the same degree and order as the tidal potential induce nonzero torques. Prograde components (those moving in the same direction as the tide-generating body) produce the familiar secular braking of the earth's rotation. Retrograde components, however, produce rapid variations in UTI at twice the tidal frequency. There also exist interaction torques between tidal constituents, e.g. solar torques on lunar tides. They generate UTI variations at frequencies equal to the sums and differences of the original tidal frequencies. We give estimates of the torques and angular momentum variations for each of the important regimes, secular to quarter-diurnal. For the M(sub 2) potential acting on the M(sub 2) ocean tide, we find an associated angular momentum variation of amplitude 3 x 10(exp 19) N m. This is 5 to 6 orders of magnitude smaller than the angular momentum variations associated with tidal currents. We conclude that these torques do not play a significant role in the short-period angular momentum balance.

  14. Prevailing Torque Locking Feature in Threaded Fasteners Using Anaerobic Adhesive

    NASA Technical Reports Server (NTRS)

    Hernandez, Alan; Hess, Daniel P.

    2016-01-01

    This paper presents results from tests to assess the use of anaerobic adhesive for providing a prevailing torque locking feature in threaded fasteners. Test procedures are developed and tests are performed on three fastener materials, four anaerobic adhesives, and both unseated assembly conditions. Five to ten samples are tested for each combination. Tests for initial use, reuse without additional adhesive, and reuse with additional adhesive are performed for all samples. A 48-hour cure time was used for all initial use and reuse tests. Test data are presented as removal torque versus removal angle with the specification required prevailing torque range added for performance assessment. Percent specification pass rates for the all combinations of fastener material, adhesive, and assembly condition are tabulated and reveal use of anaerobic adhesive as a prevailing torque locking feature is viable. Although not every possible fastener material and anaerobic adhesive combination provides prevailing torque values within specification, any combination can be assessed using the test procedures presented. Reuse without additional anaerobic adhesive generally provides some prevailing torque, and in some cases within specification. Reuse with additional adhesive often provides comparable removal torque data as in initial use.

  15. Towards Scalable Strain Gauge-Based Joint Torque Sensors

    PubMed Central

    D’Imperio, Mariapaola; Cannella, Ferdinando; Caldwell, Darwin G.; Cuschieri, Alfred

    2017-01-01

    During recent decades, strain gauge-based joint torque sensors have been commonly used to provide high-fidelity torque measurements in robotics. Although measurement of joint torque/force is often required in engineering research and development, the gluing and wiring of strain gauges used as torque sensors pose difficulties during integration within the restricted space available in small joints. The problem is compounded by the need for a scalable geometric design to measure joint torque. In this communication, we describe a novel design of a strain gauge-based mono-axial torque sensor referred to as square-cut torque sensor (SCTS), the significant features of which are high degree of linearity, symmetry, and high scalability in terms of both size and measuring range. Most importantly, SCTS provides easy access for gluing and wiring of the strain gauges on sensor surface despite the limited available space. We demonstrated that the SCTS was better in terms of symmetry (clockwise and counterclockwise rotation) and more linear. These capabilities have been shown through finite element modeling (ANSYS) confirmed by observed data obtained by load testing experiments. The high performance of SCTS was confirmed by studies involving changes in size, material and/or wings width and thickness. Finally, we demonstrated that the SCTS can be successfully implementation inside the hip joints of miniaturized hydraulically actuated quadruped robot-MiniHyQ. This communication is based on work presented at the 18th International Conference on Climbing and Walking Robots (CLAWAR). PMID:28820446

  16. Detecting Casimir torque with an optically levitated nanorod

    NASA Astrophysics Data System (ADS)

    Xu, Zhujing; Li, Tongcang

    2017-09-01

    The linear momentum and angular momentum of virtual photons of quantum vacuum fluctuations can induce the Casimir force and the Casimir torque, respectively. While the Casimir force has been measured extensively, the Casimir torque has not been observed experimentally though it was predicted over 40 years ago. Here we propose to detect the Casimir torque with an optically levitated nanorod near a birefringent plate in vacuum. The axis of the nanorod tends to align with the polarization direction of the linearly polarized optical tweezer. When its axis is not parallel or perpendicular to the optical axis of the birefringent crystal, it will experience a Casimir torque that shifts its orientation slightly. We calculate the Casimir torque and Casimir force acting on a levitated nanorod near a birefringent crystal. We also investigate the effects of thermal noise and photon recoils on the torque and force detection. We prove that a levitated nanorod in vacuum will be capable of detecting the Casimir torque under realistic conditions, and will be an important tool in precision measurements.

  17. Design of a lightweight, tethered, torque-controlled knee exoskeleton.

    PubMed

    Witte, Kirby Ann; Fatschel, Andreas M; Collins, Steven H

    2017-07-01

    Lower-limb exoskeletons show promise for improving gait rehabilitation for those with chronic gait abnormalities due to injury, stroke or other illness. We designed and built a tethered knee exoskeleton with a strong lightweight frame and comfortable, four-point contact with the leg. The device is structurally compliant in select directions, instrumented to measure joint angle and applied torque, and is lightweight (0.76 kg). The exoskeleton is actuated by two off-board motors. Closed loop torque control is achieved using classical proportional feedback control with damping injection in conjunction with iterative learning. We tested torque measurement accuracy and found root mean squared (RMS) error of 0.8 Nm with a max load of 62.2 Nm. Bandwidth was measured to be phase limited at 45 Hz when tested on a rigid test stand and 23 Hz when tested on a person's leg. During bandwidth tests peak extension torques were measured up to 50 Nm. Torque tracking was tested during walking on a treadmill at 1.25 m/s with peak flexion torques of 30 Nm. RMS torque tracking error averaged over a hundred steps was 0.91 Nm. We intend to use this knee exoskeleton to investigate robotic assistance strategies to improve gait rehabilitation and enhance human athletic ability.

  18. Towards Scalable Strain Gauge-Based Joint Torque Sensors.

    PubMed

    Khan, Hamza; D'Imperio, Mariapaola; Cannella, Ferdinando; Caldwell, Darwin G; Cuschieri, Alfred; Semini, Claudio

    2017-08-18

    During recent decades, strain gauge-based joint torque sensors have been commonly used to provide high-fidelity torque measurements in robotics. Although measurement of joint torque/force is often required in engineering research and development, the gluing and wiring of strain gauges used as torque sensors pose difficulties during integration within the restricted space available in small joints. The problem is compounded by the need for a scalable geometric design to measure joint torque. In this communication, we describe a novel design of a strain gauge-based mono-axial torque sensor referred to as square-cut torque sensor (SCTS) , the significant features of which are high degree of linearity, symmetry, and high scalability in terms of both size and measuring range. Most importantly, SCTS provides easy access for gluing and wiring of the strain gauges on sensor surface despite the limited available space. We demonstrated that the SCTS was better in terms of symmetry (clockwise and counterclockwise rotation) and more linear. These capabilities have been shown through finite element modeling (ANSYS) confirmed by observed data obtained by load testing experiments. The high performance of SCTS was confirmed by studies involving changes in size, material and/or wings width and thickness. Finally, we demonstrated that the SCTS can be successfully implementation inside the hip joints of miniaturized hydraulically actuated quadruped robot- MiniHyQ . This communication is based on work presented at the 18th International Conference on Climbing and Walking Robots (CLAWAR).

  19. Modeling of toroidal torques exerted by internal kink instability in a tokamak plasma

    NASA Astrophysics Data System (ADS)

    Zhang, N.; Liu, Y. Q.; Yu, D. L.; Wang, S.; Xia, G. L.; Dong, G. Q.; Bai, X.

    2017-08-01

    Toroidal modeling efforts are initiated to systematically compute and compare various toroidal torques, exerted by an unstable internal kink in a tokamak plasma, using the MARS-F/K/Q suite of codes. The torques considered here include the resonant electromagnetic torque due to the Maxwell stress (the EM or JXB torque), the neoclassical toroidal viscous (NTV) torque, and the torque associated with the Reynolds stress. Numerical results show that the relative magnitude of the net resonant electromagnetic and the Reynolds stress torques increases with the equilibrium flow speed of the plasma, whilst the net NTV torque follows the opposite trend. The global flow shear sensitively affects the Reynolds stress torque, but not the electromagnetic and the NTV torques. Detailed examinations reveal dominant contributions to the Maxwell and Reynolds stress torques, in terms of the poloidal harmonic numbers of various perturbation fields, as well as their relative toroidal phasing.

  20. A Robot-Driven Computational Model for Estimating Passive Ankle Torque With Subject-Specific Adaptation.

    PubMed

    Zhang, Mingming; Meng, Wei; Davies, T Claire; Zhang, Yanxin; Xie, Sheng Q

    2016-04-01

    Robot-assisted ankle assessment could potentially be conducted using sensor-based and model-based methods. Existing ankle rehabilitation robots usually use torquemeters and multiaxis load cells for measuring joint dynamics. These measurements are accurate, but the contribution as a result of muscles and ligaments is not taken into account. Some computational ankle models have been developed to evaluate ligament strain and joint torque. These models do not include muscles and, thus, are not suitable for an overall ankle assessment in robot-assisted therapy. This study proposed a computational ankle model for use in robot-assisted therapy with three rotational degrees of freedom, 12 muscles, and seven ligaments. This model is driven by robotics, uses three independent position variables as inputs, and outputs an overall ankle assessment. Subject-specific adaptations by geometric and strength scaling were also made to allow for a universal model. This model was evaluated using published results and experimental data from 11 participants. Results show a high accuracy in the evaluation of ligament neutral length and passive joint torque. The subject-specific adaptation performance is high, with each normalized root-mean-square deviation value less than 10%. This model could be used for ankle assessment, especially in evaluating passive ankle torque, for a specific individual. The characteristic that is unique to this model is the use of three independent position variables that can be measured in real time as inputs, which makes it advantageous over other models when combined with robot-assisted therapy.

  1. The increase in the starting torque of PMSM motor by applying of FOC method

    NASA Astrophysics Data System (ADS)

    Plachta, Kamil

    2017-05-01

    The article presents field oriented control method of synchronous permanent magnet motor equipped in optical sensors. This method allows for a wide range regulation of torque and rotational speed of the electric motor. The paper presents mathematical model of electric motor and vector control method. Optical sensors have shorter time response as compared to the inductive sensors, which allow for faster response of the electronic control system to changes of motor loads. The motor driver is based on the digital signal processor which performs advanced mathematical operations in real time. The appliance of Clark and Park transformation in the software defines the angle of rotor position. The presented solution provides smooth adjustment of the rotational speed in the first operating zone and reduces the dead zone of the torque in the second and third operating zones.

  2. High torque DC motor fabrication and test program

    NASA Technical Reports Server (NTRS)

    Makus, P.

    1976-01-01

    The testing of a standard iron and standard alnico permanent magnet two-phase, brushless dc spin motor for potential application to the space telescope has been concluded. The purpose of this study was to determine spin motor power losses, magnetic drag, efficiency and torque speed characteristics of a high torque dc motor. The motor was designed and built to fit an existing reaction wheel as a test vehicle and to use existing brass-board commutation and torque command electronics. The results of the tests are included in this report.

  3. Spin torque and Nernst effects in Dzyaloshinskii-Moriya ferromagnets

    DOE PAGES

    Kovalev, Alexey A.; Zyuzin, Vladimir

    2016-04-11

    Here, we predict that a temperature gradient can induce a magnon-mediated intrinsic torque in systems with a nontrivial magnon Berry curvature. With the help of a microscopic linear response theory of nonequilibrium magnon-mediated torques and spin currents we identify the interband and intraband components that manifest in ferromagnets with Dzyaloshinskii-Moriya interactions and magnetic textures. To illustrate and assess the importance of such effects, we apply the linear response theory to the magnon-mediated spin Nernst and torque responses in a kagome lattice ferromagnet.

  4. A flight simulator control system using electric torque motors

    NASA Technical Reports Server (NTRS)

    Musick, R. O.; Wagner, C. A.

    1975-01-01

    Control systems are required in flight simulators to provide representative stick and rudder pedal characteristics. A system has been developed that uses electric dc torque motors instead of the more common hydraulic actuators. The torque motor system overcomes certain disadvantages of hydraulic systems, such as high cost, high power consumption, noise, oil leaks, and safety problems. A description of the torque motor system is presented, including both electrical and mechanical design as well as performance characteristics. The system develops forces sufficiently high for most simulations, and is physically small and light enough to be used in most motion-base cockpits.

  5. Atypical Brain Torque in Boys With Developmental Stuttering

    PubMed Central

    Mock, Jeffrey Ryan; Zadina, Janet N.; Corey, David M.; Cohen, Jeremy D.; Lemen, Lisa C.; Foundas, Anne L.

    2017-01-01

    The counterclockwise brain torque, defined as a larger right prefrontal and left parietal-occipital lobe, is a consistent brain asymmetry. Reduced or reversed lobar asymmetries are markers of atypical cerebral laterality and have been found in adults who stutter. It was hypothesized that atypical brain torque would be more common in children who stutter. MRI-based morphology measures were completed in boys who stutter (n=14) and controls (n=14), ages 8–13. The controls had the expected brain torque configurations whereas the boys who stutter were atypical. These results support the hypothesis that developmental stuttering is associated with atypical prefrontal and parietal-occipital lobe asymmetries. PMID:22799762

  6. Advantages and disadvantages of new torque-controlled endodontic motors and low-torque NiTi rotary instrumentation.

    PubMed

    Gambarini, G

    2001-12-01

    The main problem with the NiTi rotary instrumentation technique is instrument failure. During shaping procedures, rotary instruments might lock and/or screw into canals and, consequently, be subjected to high levels of stress. This may frequently lead to instrument separation or deformation. If a high-torque motor is used, the applied forces are usually very high and the instrument-fracture limit is often exceeded, thus increasing the risk of intracanal failure. A possible solution of this problem is to use a low-torque endodontic motor, which operates below the maximum permissible torque limit of each and every rotary instrument. During clinical instrumentation of root canals, if a torque-controlled motor is loaded right up to the instrument-specific torque, the motor stops momentarily and/or starts rotating counter-clockwise (auto-reverse function) to disengage the locked instrument. These safety mechanisms were developed to reduce the risk of instrument fracture. The author fully discusses the rationale for selecting lower torque values in everyday endodontic practice, and provides clinicians with useful information on the advantages and disadvantages of new endodontic motors with torque control.

  7. Influence of Joint Angle on EMG-Torque Model During Constant-Posture, Torque-Varying Contractions.

    PubMed

    Liu, Pu; Liu, Lukai; Clancy, Edward A

    2015-11-01

    Relating the electromyogram (EMG) to joint torque is useful in various application areas, including prosthesis control, ergonomics and clinical biomechanics. Limited study has related EMG to torque across varied joint angles, particularly when subjects performed force-varying contractions or when optimized modeling methods were utilized. We related the biceps-triceps surface EMG of 22 subjects to elbow torque at six joint angles (spanning 60° to 135°) during constant-posture, torque-varying contractions. Three nonlinear EMG σ -torque models, advanced EMG amplitude (EMG σ ) estimation processors (i.e., whitened, multiple-channel) and the duration of data used to train models were investigated. When EMG-torque models were formed separately for each of the six distinct joint angles, a minimum "gold standard" error of 4.01±1.2% MVC(F90) resulted (i.e., error relative to maximum voluntary contraction at 90° flexion). This model structure, however, did not directly facilitate interpolation across angles. The best model which did so achieved a statistically equivalent error of 4.06±1.2% MVC(F90). Results demonstrated that advanced EMG σ processors lead to improved joint torque estimation as do longer model training durations.

  8. Field-free deterministic ultrafast creation of magnetic skyrmions by spin-orbit torques

    NASA Astrophysics Data System (ADS)

    Büttner, Felix; Lemesh, Ivan; Schneider, Michael; Pfau, Bastian; Günther, Christian M.; Hessing, Piet; Geilhufe, Jan; Caretta, Lucas; Engel, Dieter; Krüger, Benjamin; Viefhaus, Jens; Eisebitt, Stefan; Beach, Geoffrey S. D.

    2017-11-01

    Magnetic skyrmions are stabilized by a combination of external magnetic fields, stray field energies, higher-order exchange interactions and the Dzyaloshinskii-Moriya interaction (DMI). The last favours homochiral skyrmions, whose motion is driven by spin-orbit torques and is deterministic, which makes systems with a large DMI relevant for applications. Asymmetric multilayers of non-magnetic heavy metals with strong spin-orbit interactions and transition-metal ferromagnetic layers provide a large and tunable DMI. Also, the non-magnetic heavy metal layer can inject a vertical spin current with transverse spin polarization into the ferromagnetic layer via the spin Hall effect. This leads to torques that can be used to switch the magnetization completely in out-of-plane magnetized ferromagnetic elements, but the switching is deterministic only in the presence of a symmetry-breaking in-plane field. Although spin-orbit torques led to domain nucleation in continuous films and to stochastic nucleation of skyrmions in magnetic tracks, no practical means to create individual skyrmions controllably in an integrated device design at a selected position has been reported yet. Here we demonstrate that sub-nanosecond spin-orbit torque pulses can generate single skyrmions at custom-defined positions in a magnetic racetrack deterministically using the same current path as used for the shifting operation. The effect of the DMI implies that no external in-plane magnetic fields are needed for this aim. This implementation exploits a defect, such as a constriction in the magnetic track, that can serve as a skyrmion generator. The concept is applicable to any track geometry, including three-dimensional designs.

  9. Do changes in neuromuscular activation contribute to the knee extensor angle-torque relationship?

    PubMed

    Lanza, Marcel B; Balshaw, Thomas G; Folland, Jonathan P

    2017-08-01

    What is the central question of the study? Do changes in neuromuscular activation contribute to the knee extensor angle-torque relationship? What is the main finding and its importance? Both agonist (quadriceps) and antagonist coactivation (hamstrings) differed with knee joint angle during maximal isometric knee extensions and thus both are likely to contribute to the angle-torque relationship. Specifically, two independent measurement techniques showed quadriceps activation to be lower at more extended positions. These effects might influence the capacity for neural changes in response to training and rehabilitation at different knee joint angles. The influence of joint angle on knee extensor neuromuscular activation is unclear, owing in part to the diversity of surface electromyography (sEMG) and/or interpolated twitch technique (ITT) methods used. The aim of the study was to compare neuromuscular activation, using rigorous contemporary sEMG and ITT procedures, during isometric maximal voluntary contractions (iMVCs) of the quadriceps femoris at different knee joint angles and examine whether activation contributes to the angle-torque relationship. Sixteen healthy active men completed two familiarization sessions and two experimental sessions of isometric knee extension and knee flexion contractions. The experimental sessions included the following at each of four joint angles (25, 50, 80 and 106 deg): iMVCs (with and without superimposed evoked doublets); submaximal contractions with superimposed doublets; and evoked twitch and doublet contractions whilst voluntarily passive, and knee flexion iMVC at the same knee joint positions. The absolute quadriceps femoris EMG was normalized to the peak-to-peak amplitude of an evoked maximal M-wave, and the doublet-voluntary torque relationship was used to calculate activation with the ITT. Agonist activation, assessed with both normalized EMG and the ITT, was reduced at the more extended compared with the more flexed

  10. PREFACE: The Science of Making Torque from Wind 2014 (TORQUE 2014)

    NASA Astrophysics Data System (ADS)

    Mann, Jakob; Bak, Christian; Bechmann, Andreas; Bingöl, Ferhat; Dellwik, Ebba; Dimitrov, Nikolay; Giebel, Gregor; Hansen, Martin O. L.; Jensen, Dorte Juul; Larsen, Gunner; Aagaard Madsen, Helge; Natarajan, Anand; Rathmann, Ole; Sathe, Ameya; Nørkær Sørensen, Jens; Nørkær Sørensen, Niels

    2014-06-01

    The 186 papers in this volume constitute the proceedings of the fifth Science of Making Torque from Wind conference, which is organized by the European Academy of Wind Energy (EAWE, www.eawe.eu). The conference, also called Torque 2014, is held at the Technical University of Denmark (DTU) 17-20 June 2014. The EAWE conference series started in 2004 in Delft, the Netherlands. In 2007 it was held in Copenhagen, in 2010 in Heraklion, Greece, and then in 2012 in Oldenburg, Germany. The global yearly production of electrical energy by wind turbines has grown approximately by 25% annually over the last couple of decades and covers now 2-3% of the global electrical power consumption. In order to make a significant impact on one of the large challenges of our time, namely global warming, the growth has to continue for a decade or two yet. This in turn requires research and education in wind turbine aerodynamics and wind resources, the two topics which are the main subjects of this conference. Similar to the growth in electrical power production by wind is the growth in scientific papers about wind energy. Over the last decade the number of papers has also grown by about 25% annually, and many research based companies all over the world are founded. Hence, the wind energy research community is rapidly expanding and the Torque conference series offers a good opportunity to meet and exchange ideas. We hope that the Torque 2014 will heighten the quality of the wind energy research, while the participants will enjoy each others company in Copenhagen. Many people have been involved in producing the Torque 2014 proceedings. The work by more than two hundred reviewers ensuring the quality of the papers is greatly appreciated. The timely evaluation and coordination of the reviews would not have been possible without the work of sixteen ''section editors'' all from DTU Wind Energy: Christian Bak, Andreas Bechmann, Ferhat Bingöl, Ebba Dellwik, Nikolay Dimitrov, Gregor Giebel, Martin

  11. Load positioning system with gravity compensation

    NASA Technical Reports Server (NTRS)

    Hollow, R. H.

    1984-01-01

    A load positioning system with gravity compensation has a servomotor, position sensing feedback potentiometer and velocity sensing tachometer in a conventional closed loop servo arrangement to cause a lead screw and a ball nut to vertically position a load. Gravity compensating components comprise the DC motor, gears, which couple torque from the motor to the lead screw, and constant current power supply. The constant weight of the load applied to the lead screw via the ball nut tend to cause the lead screw to rotate, the constant torque of which is opposed by the constant torque produced by the motor when fed from the constant current source. The constant current is preset as required by the potentiometer to effect equilibration of the load which thereby enables the positioning servomotor to see the load as weightless under both static and dynamic conditions. Positioning acceleration and velocity performance are therefore symmetrical.

  12. Torque-actuated valves for microfluidics.

    PubMed

    Weibel, Douglas B; Kruithof, Maarten; Potenta, Scott; Sia, Samuel K; Lee, Andrew; Whitesides, George M

    2005-08-01

    This paper describes torque-actuated valves for controlling the flow of fluids in microfluidic channels. The valves consist of small machine screws (> or =500 microm) embedded in a layer of polyurethane cast above microfluidic channels fabricated in poly(dimethylsiloxane) (PDMS). The polyurethane is cured photochemically with the screws in place; on curing, it bonds to the surrounding layer of PDMS and forms a stiff layer that retains an impression of the threads of the screws. The valves were separated from the ceiling of microfluidic channels by a layer of PDMS and were integrated into channels using a simple procedure compatible with soft lithography and rapid prototyping. Turning the screws actuated the valves by collapsing the PDMS layer between the valve and channel, controlling the flow of fluids in the underlying channels. These valves have the useful characteristic that they do not require power to retain their setting (on/off). They also allow settings between "on" and "off" and can be integrated into portable, disposable microfluidic devices for carrying out sandwich immunoassays.

  13. Spin orbit torque based electronic neuron

    SciTech Connect

    Sengupta, Abhronil, E-mail: asengup@purdue.edu; Choday, Sri Harsha; Kim, Yusung

    2015-04-06

    A device based on current-induced spin-orbit torque (SOT) that functions as an electronic neuron is proposed in this work. The SOT device implements an artificial neuron's thresholding (transfer) function. In the first step of a two-step switching scheme, a charge current places the magnetization of a nano-magnet along the hard-axis, i.e., an unstable point for the magnet. In the second step, the SOT device (neuron) receives a current (from the synapses) which moves the magnetization from the unstable point to one of the two stable states. The polarity of the synaptic current encodes the excitatory and inhibitory nature of themore » neuron input and determines the final orientation of the magnetization. A resistive crossbar array, functioning as synapses, generates a bipolar current that is a weighted sum of the inputs. The simulation of a two layer feed-forward artificial neural network based on the SOT electronic neuron shows that it consumes ∼3× lower power than a 45 nm digital CMOS implementation, while reaching ∼80% accuracy in the classification of 100 images of handwritten digits from the MNIST dataset.« less

  14. Torque Production in a Halbach Machine

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.; Vrnak, Daniel R.

    2006-01-01

    The NASA John H. Glenn Research Center initiated the investigation of torque production in a Halbach machine for the Levitated Ducted Fan (LDF) Project to obtain empirical data in determining the feasibility of using a Halbach motor for the project. LDF is a breakthrough technology for "Electric Flight" with the development of a clean, quiet, electric propulsor system. Benefits include zero emissions, decreased dependence on fossil fuels, increased efficiency, increased reliability, reduced maintenance, and decreased operating noise levels. A commercial permanent magnet brushless motor rotor was tested with a custom stator. An innovative rotor utilizing a Halbach array was designed and developed to fit directly into the same stator. The magnets are oriented at 90deg to the adjacent magnet, which cancels the magnetic field on the inside of the rotor and strengthens the field on the outside of the rotor. A direct comparison of the commercial rotor and the Halbach rotor was made. In addition, various test models were designed and developed to validate the basic principles described, and the theoretical work that was performed. The report concludes that a Halbach array based motor can provide significant improvements in electric motor performance and reliability.

  15. A comparative assessment of torque generated by lingual and conventional brackets.

    PubMed

    Sifakakis, Iosif; Pandis, Nikolaos; Makou, Margarita; Eliades, Theodore; Katsaros, Christos; Bourauel, Christoph

    2013-06-01

    The aim of this study was to assess the effect of bracket type on the labiopalatal moments generated by lingual and conventional brackets. Incognito™ lingual brackets (3M Unitek), STb™ lingual brackets (Light Lingual System; ORMCO), In-Ovation L lingual brackets (DENTSPLY GAC), and conventional 0.018 inch slot brackets (Gemini; 3M Unitek) were bonded on identical maxillary acrylic resin models with levelled and aligned teeth. Each model was mounted on the orthodontic measurement and simulation system and 10 0.0175 × 0.0175 TMA wires were used for each bracket type. The wire was ligated with elastomerics into the Incognito, STb, and conventional brackets and each measurement was repeated once after religation. A 15 degrees buccal root torque (+15 degrees) and then a 15 degrees palatal root torque (-15 degrees) were gradually applied to the right central incisor bracket. After each activation, the bracket returned to its initial position and the moments in the sagittal plane were recorded during these rotations of the bracket. One-way analysis of variance with post hoc multiple comparisons (Tukey test at 0.05 error rate) was conducted to assess the effect on bracket type on the generated moments. The magnitude of maximum moment at +15 degrees ranged 8.8, 8.2, 7.1, and 5.8 Nmm for the Incognito, STb, conventional Gemini, and the In-Ovation L brackets, respectively; similar values were recorded at -15 degrees: 8.6, 8.1, 7.0, and 5.7 Nmm, respectively. The recorded differences of maximum moments were statistically significant, except between the Incognito and STb brackets. Additionally, the torque angles were evaluated at which the crown torque fell well below the minimum levels of 5.0 Nmm, as well as the moment/torque ratio at the last part of the activation/deactivation curve, between 10 and 15 degrees. The lowest torque expression was observed at the self-ligating lingual brackets, followed by the conventional brackets. The Incognito and STb lingual brackets

  16. Estimation of Coriolis Force and Torque Acting on Ares-1

    NASA Technical Reports Server (NTRS)

    Mackey, Ryan M.; Kulikov, Igor K.; Smelyanskiy, Vadim; Luchinsky, Dmitry; Orr, Jeb

    2011-01-01

    A document describes work on the origin of Coriolis force and estimating Coriolis force and torque applied to the Ares-1 vehicle during its ascent, based on an internal ballistics model for a multi-segmented solid rocket booster (SRB).

  17. Operant learning of Drosophila at the torque meter.

    PubMed

    Brembs, Bjoern

    2008-06-16

    For experiments at the torque meter, flies are kept on standard fly medium at 25 degrees C and 60% humidity with a 12hr light/12hr dark regime. A standardized breeding regime assures proper larval density and age-matched cohorts. Cold-anesthetized flies are glued with head and thorax to a triangle-shaped hook the day before the experiment. Attached to the torque meter via a clamp, the fly's intended flight maneuvers are measured as the angular momentum around its vertical body axis. The fly is placed in the center of a cylindrical panorama to accomplish stationary flight. An analog to digital converter card feeds the yaw torque signal into a computer which stores the trace for later analysis. The computer also controls a variety of stimuli which can be brought under the fly's control by closing the feedback loop between these stimuli and the yaw torque trace. Punishment is achieved by applying heat from an adjustable infrared laser.

  18. New Cogging Torque Reduction Methods for Permanent Magnet Machine

    NASA Astrophysics Data System (ADS)

    Bahrim, F. S.; Sulaiman, E.; Kumar, R.; Jusoh, L. I.

    2017-08-01

    Permanent magnet type motors (PMs) especially permanent magnet synchronous motor (PMSM) are expanding its limbs in industrial application system and widely used in various applications. The key features of this machine include high power and torque density, extending speed range, high efficiency, better dynamic performance and good flux-weakening capability. Nevertheless, high in cogging torque, which may cause noise and vibration, is one of the threat of the machine performance. Therefore, with the aid of 3-D finite element analysis (FEA) and simulation using JMAG Designer, this paper proposed new method for cogging torque reduction. Based on the simulation, methods of combining the skewing with radial pole pairing method and skewing with axial pole pairing method reduces the cogging torque effect up to 71.86% and 65.69% simultaneously.

  19. Torque fluctuations caused by upstream mean flow and turbulence

    NASA Astrophysics Data System (ADS)

    Farr, T. D.; Hancock, P. E.

    2014-12-01

    A series of studies are in progress investigating the effects of turbine-array-wake interactions for a range of atmospheric boundary layer states by means of the EnFlo meteorological wind tunnel. The small, three-blade model wind turbines drive 4-quadrant motor-generators. Only a single turbine in neutral flow is considered here. The motor-generator current can be measured with adequate sensitivity by means of a current sensor allowing the mean and fluctuating torque to be inferred. Spectra of torque fluctuations and streamwise velocity fluctuations ahead of the rotor, between 0.1 and 2 diameters, show that only the large-scale turbulent motions contribute significantly to the torque fluctuations. Time-lagged cross-correlation between upstream velocity and torque fluctuations are largest over the inner part of the blade. They also show the turbulence to be frozen in behaviour over the 2 diameters upstream of the turbine.

  20. Helicopter transmission arrangements with split-torque gear trains

    NASA Technical Reports Server (NTRS)

    White, G.

    1983-01-01

    As an alternative to component development, the case for improved drive-train configuration is argued. In particular, the use of torque-splitting gear trains is proposed as a practicable means of improving the effectiveness of helicopter main gearboxes.

  1. Knudsen torque: A rotational mechanism driven by thermal force

    NASA Astrophysics Data System (ADS)

    Li, Qi; Liang, Tengfei; Ye, Wenjing

    2014-09-01

    Thermally induced mechanical loading has been shown to have significant effects on micro- and nano-objects immersed in a gas with a nonuniform temperature field. While the majority of existing studies and related applications focus on forces, we investigate the torque, and thus the rotational motion, produced by such a mechanism. Our study has found that a torque can be induced if the configuration of the system is asymmetric. In addition, both the magnitude and the direction of the torque depend highly on the system configuration, indicating the possibility of manipulating the rotational motion via geometrical design. Based on this feature, two types of rotational micromotor that are of practical importance, namely pendulum motor and unidirectional motor, are designed. The magnitude of the torque at Kn =0.5 can reach to around 2nN×μm for a rectangular microbeam with a length of 100μm.

  2. Production Experiences with the Cray-Enabled TORQUE Resource Manager

    SciTech Connect

    Ezell, Matthew A; Maxwell, Don E; Beer, David

    High performance computing resources utilize batch systems to manage the user workload. Cray systems are uniquely different from typical clusters due to Cray s Application Level Placement Scheduler (ALPS). ALPS manages binary transfer, job launch and monitoring, and error handling. Batch systems require special support to integrate with ALPS using an XML protocol called BASIL. Previous versions of Adaptive Computing s TORQUE and Moab batch suite integrated with ALPS from within Moab, using PERL scripts to interface with BASIL. This would occasionally lead to problems when all the components would become unsynchronized. Version 4.1 of the TORQUE Resource Manager introducedmore » new features that allow it to directly integrate with ALPS using BASIL. This paper describes production experiences at Oak Ridge National Laboratory using the new TORQUE software versions, as well as ongoing and future work to improve TORQUE.« less

  3. Fill-in binary loop pulse-torque quantizer

    NASA Technical Reports Server (NTRS)

    Lory, C. B.

    1975-01-01

    Fill-in binary (FIB) loop provides constant heating of torque generator, an advantage of binary current switching. At the same time, it avoids mode-related dead zone and data delay of binary, an advantage of ternary quantization.

  4. Torque and Schizophrenic Vulnerability: As the World Turns

    ERIC Educational Resources Information Center

    Blau, Theodore H.

    1977-01-01

    Based upon reports of parents and guardians, with subjects at an average age of 21 years, it was found that 11 of the youngsters who had exhibited torque had in the interim been diagnosed as schizophrenic. (Author)

  5. The 3600 hp split-torque helicopter transmission

    NASA Technical Reports Server (NTRS)

    White, G.

    1985-01-01

    Final design details of a helicopter transmission that is powered by GE twin T 700 engines each rated at 1800 hp are presented. It is demonstrated that in comparison with conventional helicopter transmission arrangements the split torque design offers: weight reduction of 15%; reduction in drive train losses of 9%; and improved reliability resulting from redundant drive paths between the two engines and the main shaft. The transmission fits within the NASA LeRC 3000 hp Test Stand and accepts the existing positions for engine inputs, main shaft, connecting drive shafts, and the cradle attachment points. One necessary change to the test stand involved gear trains of different ratio in the tail drive gearbox. Progressive uprating of engine input power from 3600 to 4500 hp twin engine rating is allowed for in the design. In this way the test transmission will provide a base for several years of analytical, research, and component development effort targeted at improving the performance and reliability of helicopter transmission.

  6. Heat Control via Torque Control in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Venable, Richard; Colligan, Kevin; Knapp, Alan

    2004-01-01

    In a proposed advance in friction stir welding, the torque exerted on the workpiece by the friction stir pin would be measured and controlled in an effort to measure and control the total heat input to the workpiece. The total heat input to the workpiece is an important parameter of any welding process (fusion or friction stir welding). In fusion welding, measurement and control of heat input is a difficult problem. However, in friction stir welding, the basic principle of operation affords the potential of a straightforward solution: Neglecting thermal losses through the pin and the spindle that supports it, the rate of heat input to the workpiece is the product of the torque and the speed of rotation of the friction stir weld pin and, hence, of the spindle. Therefore, if one acquires and suitably processes data on torque and rotation and controls the torque, the rotation, or both, one should be able to control the heat input into the workpiece. In conventional practice in friction stir welding, one uses feedback control of the spindle motor to maintain a constant speed of rotation. According to the proposal, one would not maintain a constant speed of rotation: Instead, one would use feedback control to maintain a constant torque and would measure the speed of rotation while allowing it to vary. The torque exerted on the workpiece would be estimated as the product of (1) the torque-multiplication ratio of the spindle belt and/or gear drive, (2) the force measured by a load cell mechanically coupled to the spindle motor, and (3) the moment arm of the load cell. Hence, the output of the load cell would be used as a feedback signal for controlling the torque (see figure).

  7. Tool for Torquing Circular Electrical-Connector Collars

    NASA Technical Reports Server (NTRS)

    Gaulke, Kathryn; Werneth, Russell; Grunsfeld, John; O'Neill, Patrick; Snyder, Russ

    2006-01-01

    An improved tool has been devised for applying torque to lock and unlock knurled collars on circular electrical connectors. The tool was originally designed for, and used by, astronauts working in outer space on the Hubble Space Telescope (HST). The tool is readily adaptable to terrestrial use in installing and removing the same or similar circular electrical connectors as well as a wide variety of other cylindrical objects, the tightening and loosening of which entail considerable amounts of torque.

  8. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer

    2010-01-01

    This joint mobility KC lecture included information from two papers, "A Method for and Issues Associated with the Determination of Space Suit Joint Requirements" and "Results and Analysis from Space Suit Joint Torque Testing," as presented for the International Conference on Environmental Systems in 2009 and 2010, respectively. The first paper discusses historical joint torque testing methodologies and approaches that were tested in 2008 and 2009. The second paper discusses the testing that was completed in 2009 and 2010.

  9. Orion - Super Koropon(Registered Trademark) Torque/Tension Report

    NASA Technical Reports Server (NTRS)

    Hemminger, Edgar G.; McLeod, Christopher; Peil, John

    2012-01-01

    The primary objective of this testing was to obtain torque tension data for the use of Super Koropon Primer Base which was proposed for use on the Orion project. This compound is a corrosion inhibitor/sealer used on threaded fasteners and inserts as specified per NASA/JSC PRC-4004, Sealing of Joints and Faying Surfaces. Some secondary objectives of this testing, were to identify the effect on torque coefficient of several variables. This document contains the outcome of the testing.

  10. Comparison of design and torque measurements of various manual wrenches.

    PubMed

    Neugebauer, Jörg; Petermöller, Simone; Scheer, Martin; Happe, Arndt; Faber, Franz-Josef; Zoeller, Joachim E

    2015-01-01

    Accurate torque application and determination of the applied torque during surgical and prosthetic treatment is important to reduce complications. A study was performed to determine and compare the accuracy of manual wrenches, which are available in different designs with a large range of preset torques. Thirteen different wrench systems with a variety of preset torques ranging from 10 to 75 Ncm were evaluated. Three different designs were available, with a spring-in-coil or toggle design as an active mechanism or a beam as a passive mechanism, to select the preset torque. To provide a clinically relevant analysis, a total of 1,170 torque measurements in the range of 10 to 45 Ncm were made in vitro using an electronic torque measurement device. The absolute deviations in Ncm and percent deviations across all wrenches were small, with a mean of -0.24 ± 2.15 Ncm and -0.84% ± 11.72% as a shortfall relative to the preset value. The greatest overage was 8.2 Ncm (82.5%), and the greatest shortfall was 8.47 Ncm (46%). However, extreme values were rare, with 95th-percentile values of -1.5% (lower value) and -0.16% (upper value). A comparison with respect to wrench design revealed significantly higher deviations for coil and toggle-style wrenches than for beam wrenches. Beam wrenches were associated with a lower risk of rare extreme values thanks to their passive mechanism of achieving the selected preset torque, which minimizes the risk of harming screw connections.

  11. Torque-onset determination: Unintended consequences of the threshold method.

    PubMed

    Dotan, Raffy; Jenkins, Glenn; O'Brien, Thomas D; Hansen, Steve; Falk, Bareket

    2016-12-01

    Compared with visual torque-onset-detection (TOD), threshold-based TOD produces onset bias, which increases with lower torques or rates of torque development (RTD). To compare the effects of differential TOD-bias on common contractile parameters in two torque-disparate groups. Fifteen boys and 12 men performed maximal, explosive, isometric knee-extensions. Torque and EMG were recorded for each contraction. Best contractions were selected by peak torque (MVC) and peak RTD. Visual-TOD-based torque-time traces, electromechanical delays (EMD), and times to peak RTD (tRTD) were compared with corresponding data derived from fixed 4-Nm- and relative 5%MVC-thresholds. The 5%MVC TOD-biases were similar for boys and men, but the corresponding 4-Nm-based biases were markedly different (40.3±14.1 vs. 18.4±7.1ms, respectively; p<0.001). Boys-men EMD differences were most affected, increasing from 5.0ms (visual) to 26.9ms (4Nm; p<0.01). Men's visually-based torque kinetics tended to be faster than the boys' (NS), but the 4-Nm-based kinetics erroneously depicted the boys as being much faster to any given %MVC (p<0.001). When comparing contractile properties of dissimilar groups, e.g., children vs. adults, threshold-based TOD methods can misrepresent reality and lead to erroneous conclusions. Relative-thresholds (e.g., 5% MVC) still introduce error, but group-comparisons are not confounded. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Variations of the Electron Fluxes in the Terrestrial Radiation Belts Due To the Impact of Corotating Interaction Regions and Interplanetary Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Benacquista, R.; Boscher, D.; Rochel, S.; Maget, V.

    2018-02-01

    In this paper, we study the variations of the radiation belts electron fluxes induced by the interaction of two types of solar wind structures with the Earth magnetosphere: the corotating interaction regions and the interplanetary coronal mass ejections. We use a statistical method based on the comparison of the preevent and postevent fluxes. Applied to the National Oceanic and Atmospheric Administration-Polar Operational Environmental Satellites data, this gives us the opportunity to extend previous studies focused on relativistic electrons at geosynchronous orbit. We enlighten how corotating interaction regions and Interplanetary Coronal Mass Ejections can impact differently the electron belts depending on the energy and the L shell. In addition, we provide a new insight concerning these variations by considering their amplitude. Finally, we show strong relations between the intensity of the magnetic storms related to the events and the variation of the flux. These relations concern both the capacity of the events to increase the flux and the deepness of these increases.

  13. Constraining tidal dissipation in F-type main-sequence stars: the case of CoRoT-11

    NASA Astrophysics Data System (ADS)

    Lanza, A. F.; Damiani, C.; Gandolfi, D.

    2011-05-01

    Context. Tidal dissipation in late-type stars is presently poorly understood and the study of planetary systems hosting hot Jupiters can provide new observational constraints to test proposed theories. Aims: We focus on systems with F-type main-sequence stars and find that the recently discovered system CoRoT-11 is presently the best suited for this kind of investigation. Methods: A classic constant tidal lag model is applied to reproduce the evolution of the system from a plausible nearly synchronous state on the zero-age main sequence (ZAMS) to the present state, thus putting constraints on the average modified tidal quality factor < Q_s' > of its F6V star.Initial conditions with the stellar rotation period longer than the orbital period of the planet can be excluded on the basis of the presently observed state in which the star spins faster than the planet orbit. Results: It is found that 4 × 106 ≲ < Q_s' > ≲ 2 × 107, if the system started its evolution on the ZAMS close to synchronization, with an uncertainty related to the constant tidal lag hypothesis and the estimated stellar magnetic braking within a factor of ≈5-6.For a non-synchronous initial state of the system, < Qs' > ≲ 4 × 106 implies an age younger than ~1 Gyr, while < Q_s' > ≳ 2 × 107 may be tested by comparing the theoretically derived initial orbital and stellar rotation periods with those of a sample of observed systems. Moreover, we discuss how the present value of Qs' can be measured by a timing of the mid-epoch and duration of the transits as well as of the planetary eclipses to be observed in the infrared with an accuracy of ~0.5-1 s over a time baseline of ~25 yr. Conclusions: CoRoT-11 is a highly interesting system that potentially allows us a direct measure of the tidal dissipation in an F-type star as well as the detection of the precession of the orbital plane of the planet that provides us with an accurate upper limit for the obliquity of the stellar equator. If the

  14. Instantaneous flywheel torque of IC engine grey-box identification

    NASA Astrophysics Data System (ADS)

    Milašinović, A.; Knežević, D.; Milovanović, Z.; Škundrić, J.

    2018-01-01

    In this paper a mathematical model developed for the identification of excitation torque acting on the IC engine flywheel is presented. The excitation torque gained through internal combustion of the fuel in the IC engine is transmitted from the flywheel to the transmission. The torque is not constant but variable and is a function of the crank angle. The verification of the mathematical model was done on a 4-cylinder 4-stroke diesel engine for which the in-cylinder pressure was measured in one cylinder and the instantaneous angular speed of the crankshaft at its free end. The research was conducted on a hydraulic engine brake. Inertial forces of all rotational parts, from flywheel to the turbine wheel of the engine brake, are acting on the flywheel due to the nonuniform motion of the flywheel. It is known from the theory of turbomachinery that the torque on the hydraulic brake is a quadratic function of angular speed. Due to that and the variable angular speed of the turbine wheel of the engine brake, the torque during one engine cycle is also variable. The motivation for this research was the idea (intention) to determine the instantaneous torque acting on the flywheel as a function of the crank angle with a mathematical model without any measuring and based on this to determine the quality of work of specific cylinders of the multi-cylinder engine. The crankshaft was considered elastic and also its torsional vibrations were taken into account.

  15. Angular dependence of spin-orbit spin-transfer torques

    NASA Astrophysics Data System (ADS)

    Lee, Ki-Seung; Go, Dongwook; Manchon, Aurélien; Haney, Paul M.; Stiles, M. D.; Lee, Hyun-Woo; Lee, Kyung-Jin

    2015-04-01

    In ferromagnet/heavy-metal bilayers, an in-plane current gives rise to spin-orbit spin-transfer torque, which is usually decomposed into fieldlike and dampinglike torques. For two-dimensional free-electron and tight-binding models with Rashba spin-orbit coupling, the fieldlike torque acquires nontrivial dependence on the magnetization direction when the Rashba spin-orbit coupling becomes comparable to the exchange interaction. This nontrivial angular dependence of the fieldlike torque is related to the Fermi surface distortion, determined by the ratio of the Rashba spin-orbit coupling to the exchange interaction. On the other hand, the dampinglike torque acquires nontrivial angular dependence when the Rashba spin-orbit coupling is comparable to or stronger than the exchange interaction. It is related to the combined effects of the Fermi surface distortion and the Fermi sea contribution. The angular dependence is consistent with experimental observations and can be important to understand magnetization dynamics induced by spin-orbit spin-transfer torques.

  16. Manipulation of Spin-Torque Generation Using Ultrathin Au

    NASA Astrophysics Data System (ADS)

    An, Hongyu; Haku, Satoshi; Kanno, Yusuke; Nakayama, Hiroyasu; Maki, Hideyuki; Shi, Ji; Ando, Kazuya

    2018-06-01

    The generation and the manipulation of current-induced spin-orbit torques are of essential interest in spintronics. However, in spite of the vital progress in spin orbitronics, electric control of the spin-torque generation still remains elusive and challenging. We report on electric control of the spin-torque generation using ionic-liquid gating of ultrathin Au. We show that by simply depositing a SiO2 capping layer on an ultrathin-Au /Ni81Fe19 bilayer, the spin-torque generation efficiency is drastically enhanced by a maximum of 7 times. This enhancement is verified to be originated from the rough ultrathin-Au /Ni81Fe19 interface induced by the SiO2 deposition, which results in the enhancement of the interface spin-orbit scattering. We further show that the spin-torque generation efficiency from the ultrathin Au film can be reversibly manipulated by a factor of 2 using the ionic gating with an external electric field within a small range of 1 V. These results pave a way towards the efficient control of the spin-torque generation in spintronic applications.

  17. Spin currents and spin-orbit torques in ferromagnetic trilayers.

    PubMed

    Baek, Seung-Heon C; Amin, Vivek P; Oh, Young-Wan; Go, Gyungchoon; Lee, Seung-Jae; Lee, Geun-Hee; Kim, Kab-Jin; Stiles, M D; Park, Byong-Guk; Lee, Kyung-Jin

    2018-06-01

    Magnetic torques generated through spin-orbit coupling 1-8 promise energy-efficient spintronic devices. For applications, it is important that these torques switch films with perpendicular magnetizations without an external magnetic field 9-14 . One suggested approach 15 to enable such switching uses magnetic trilayers in which the torque on the top magnetic layer can be manipulated by changing the magnetization of the bottom layer. Spin currents generated in the bottom magnetic layer or its interfaces transit the spacer layer and exert a torque on the top magnetization. Here we demonstrate field-free switching in such structures and show that its dependence on the bottom-layer magnetization is not consistent with the anticipated bulk effects 15 . We describe a mechanism for spin-current generation 16,17 at the interface between the bottom layer and the spacer layer, which gives torques that are consistent with the measured magnetization dependence. This other-layer-generated spin-orbit torque is relevant to energy-efficient control of spintronic devices.

  18. Magnetic Torque in Single Crystal Ni-Mn-Ga

    NASA Astrophysics Data System (ADS)

    Hobza, Anthony; Müllner, Peter

    2017-06-01

    Magnetic shape memory alloys deform in an external magnetic field in two distinct ways: by axial straining—known as magnetic-field-induced strain—and by bending when exposed to torque. Here, we examine the magnetic torque that a magnetic field exerts on a long Ni-Mn-Ga rod. A single crystal specimen of Ni-Mn-Ga was constrained with respect to bending and subjected to an external magnetic field. The torque required to rotate the specimen in the field was measured as a function of the orientation of the sample with the external magnetic field, strain, and the magnitude of the external magnetic field. The torque was analyzed based on the changes in the free energy with the angle between the field and the sample. The contributions of magnetocrystalline anisotropy and shape anisotropy to the Zeeman energy determine the net torque. The torque is large when magneotcrystalline and shape anisotropies act synergistically and small when these anisotropies act antagonistically.

  19. Minimization of torque ripple in ferrite-assisted synchronous reluctance motors by using asymmetric stator

    NASA Astrophysics Data System (ADS)

    Xu, Meimei; Liu, Guohai; Zhao, Wenxiang; Aamir, Nazir

    2018-05-01

    Torque ripple is one of the important issues for ferrite assisted synchronous reluctance motors (FASRMs). In this paper, an asymmetrical stator is proposed for the FASRM to reduce its torque ripple. In the proposed FASRM, an asymmetrical stator is designed by appropriately choosing the angle of the slot-opening shift. Meanwhile, its analytical torque expressions are derived. The results show that the proposed FASRM has an effective reduction in the cogging torque, reluctance torque ripple and total torque ripple. Moreover, it is easy to implement while the average torque is not sacrificed.

  20. Effect of tightening torque on the marginal adaptation of cement-retained implant-supported fixed dental prostheses

    PubMed Central

    Ghanbarzadeh, Jalil; Dashti, Hossin; Karamad, Reza; Alikhasi, Marzieh; Nakhaei, Mohammadreza

    2015-01-01

    Background: The final position of the abutment changes with the amount of tightening torque. This could eventually lead to loss of passivity and marginal misfit of prostheses. The aim of this study was to evaluate the effect of three different tightening torques on the marginal adaptation of 3-unit cement-retained implant-supported fixed dental prostheses (FDPs). Materials and Methods: Two implants (Straumann) were inserted in an acrylic block so that one of the implants was placed vertically and the other at a 15° vertical angle. A straight abutment and a 15° angulated abutment were connected to the vertically and obliquely installed implants, respectively, so that the two abutments were parallel. Then, 10 cement-retained FDPs were waxed and cast. Abutments were tightened with 10, 20, and 35 Ncm torques, respectively. Following each tightening torque, FDPs were luted on respective abutments with temporary cement. The marginal adaptation of the retainers was evaluated using stereomicroscope. FDPs were then removed from the abutments and were sectioned at the connector sites. The retainers were luted again on their respective abutments. Luting procedures and marginal adaptation measurement were repeated. Data were analyzed by ANOVA and least significant difference tests (α = 0.05). After cutting the FDP connectors, the independent samples t-test was used to compare misfit values (α = 0.05). Results: Following 10, 20, and 35 Ncm tightening torques, the marginal discrepancy of the retainers of FDPs significantly increased (P < 0.05). There was no significant difference between the marginal discrepancies of these two retainers (P > 0.05). The marginal gap values of angulated abutment retainers (ANRs) were significantly higher than those of the straight abutment after cutting the connectors (P = 0.026). Conclusion: Within the limitations of this study, the marginal misfit of cement-retained FDPs increased continuously when the tightening torque increased. After

  1. Effect of tightening torque on the marginal adaptation of cement-retained implant-supported fixed dental prostheses.

    PubMed

    Ghanbarzadeh, Jalil; Dashti, Hossin; Karamad, Reza; Alikhasi, Marzieh; Nakhaei, Mohammadreza

    2015-01-01

    The final position of the abutment changes with the amount of tightening torque. This could eventually lead to loss of passivity and marginal misfit of prostheses. The aim of this study was to evaluate the effect of three different tightening torques on the marginal adaptation of 3-unit cement-retained implant-supported fixed dental prostheses (FDPs). Two implants (Straumann) were inserted in an acrylic block so that one of the implants was placed vertically and the other at a 15° vertical angle. A straight abutment and a 15° angulated abutment were connected to the vertically and obliquely installed implants, respectively, so that the two abutments were parallel. Then, 10 cement-retained FDPs were waxed and cast. Abutments were tightened with 10, 20, and 35 Ncm torques, respectively. Following each tightening torque, FDPs were luted on respective abutments with temporary cement. The marginal adaptation of the retainers was evaluated using stereomicroscope. FDPs were then removed from the abutments and were sectioned at the connector sites. The retainers were luted again on their respective abutments. Luting procedures and marginal adaptation measurement were repeated. Data were analyzed by ANOVA and least significant difference tests (α = 0.05). After cutting the FDP connectors, the independent samples t-test was used to compare misfit values (α = 0.05). Following 10, 20, and 35 Ncm tightening torques, the marginal discrepancy of the retainers of FDPs significantly increased (P < 0.05). There was no significant difference between the marginal discrepancies of these two retainers (P > 0.05). The marginal gap values of angulated abutment retainers (ANRs) were significantly higher than those of the straight abutment after cutting the connectors (P = 0.026). Within the limitations of this study, the marginal misfit of cement-retained FDPs increased continuously when the tightening torque increased. After cutting the connectors, the marginal misfit of the ANRs was

  2. EMG-Torque Relation in Chronic Stroke: A Novel EMG Complexity Representation With a Linear Electrode Array.

    PubMed

    Zhang, Xu; Wang, Dongqing; Yu, Zaiyang; Chen, Xiang; Li, Sheng; Zhou, Ping

    2017-11-01

    This study examines the electromyogram (EMG)-torque relation for chronic stroke survivors using a novel EMG complexity representation. Ten stroke subjects performed a series of submaximal isometric elbow flexion tasks using their affected and contralateral arms, respectively, while a 20-channel linear electrode array was used to record surface EMG from the biceps brachii muscles. The sample entropy (SampEn) of surface EMG signals was calculated with both global and local tolerance schemes. A regression analysis was performed between SampEn of each channel's surface EMG and elbow flexion torque. It was found that a linear regression can be used to well describe the relation between surface EMG SampEn and the torque. Each channel's root mean square (RMS) amplitude of surface EMG signal in the different torque level was computed to determine the channel with the highest EMG amplitude. The slope of the regression (observed from the channel with the highest EMG amplitude) was smaller on the impaired side than on the nonimpaired side in 8 of the 10 subjects, regardless of the tolerance scheme (global or local) and the range of torques (full or matched range) used for comparison. The surface EMG signals from the channels above the estimated muscle innervation zones demonstrated significantly lower levels of complexity compared with other channels between innervation zones and muscle tendons. The study provides a novel point of view of the EMG-torque relation in the complexity domain, and reveals its alterations post stroke, which are associated with complex neural and muscular changes post stroke. The slope difference between channels with regard to innervation zones also confirms the relevance of electrode position in surface EMG analysis.

  3. Remotely detected vehicle mass from engine torque-induced frame twisting

    SciTech Connect

    McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.

    Determining the mass of a vehicle from ground-based passive sensor data is important for many traffic safety requirements. This paper presents a method for calculating the mass of a vehicle using ground-based video and acoustic measurements. By assuming that no energy is lost in the conversion, the mass of a vehicle can be calculated from the rotational energy generated by the vehicle’s engine and the linear acceleration of the vehicle over a period of time. The amount of rotational energy being output by the vehicle’s engine can be calculated from its torque and angular velocity. This model relates remotely observed,more » engine torque-induced frame twist to engine torque output using the vehicle’s suspension parameters and engine geometry. The angular velocity of the engine is extracted from the acoustic emission of the engine, and the linear acceleration of the vehicle is calculated by remotely observing the position of the vehicle over time. This method combines these three dynamic signals; engine induced-frame twist, engine angular velocity, and the vehicle’s linear acceleration, and three vehicle specific scalar parameters, into an expression that describes the mass of the vehicle. Finally, this method was tested on a semitrailer truck, and the results demonstrate a correlation of 97.7% between calculated and true vehicle mass.« less

  4. PRELOAD AND TORQUE REMOVAL EVALUATION OF THREE DIFFERENT ABUTMENT SCREWS FOR SINGLE STANDING IMPLANT RESTORATIONS

    PubMed Central

    Stüker, Rafael Augusto; Teixeira, Eduardo Rolim; Beck, João Carlos Pinheiro; da Costa, Nilza Pereira

    2008-01-01

    Several authors still consider the mechanical problems of fracture and component loosening as the main causes of failure of implant-supported restorations. The purpose of this in vitro study was to compare the preload of three types of screw for transmucosal abutment attachment used in single implant-supported prosthesis through strain gauge and removal torque measurements. Three external hex fixtures were used, and each received a transmucosal abutment (Cera One®), which was fixed to the implant with its respective screw: Group A- gold screw, Group B- titanium screw and Group C- surface-treated titanium screw (Ti-Tite®). Ten screws of each type were attached applying a 30.07±0.28 Ncm torque force and maintained in position for 5 minutes. After this, the preload values were measured using strain gauges and a measurement cell. Gold screws presented higher preload values (131.72±8.98 N), followed by surface-treated titanium screws (97.78±4.68 N) and titanium screws (37.03±5.69 N). ANOVA (p<0.05) and Tukey's test (p<0.05) were applied. Statistically significant differences were found among the groups for both preload and removal torque values. In conclusion, gold screws may be indicated to achieve superior longevity of the abutment-implant connection and, consequently, prosthetic restoration due to greater preload values yielded. PMID:19089290

  5. Impact of Mass and Weight Distribution on Manual Wheelchair Propulsion Torque.

    PubMed

    Sprigle, Stephen; Huang, Morris

    2015-01-01

    Propulsion effort of manual wheelchairs, a major determinant of user mobility, is a function of human biomechanics and mechanical design. Human studies that investigate both variables simultaneously have resulted in largely inconsistent outcomes, motivating the implementation of a robotic propulsion system that characterizes the inherent mechanical performance of wheelchairs. This study investigates the impacts of mass and mass distribution on manual wheelchair propulsion by configuring an ultra-lightweight chair to two weights (12-kg and 17.6-kg) and two load distributions (70% and 55% on drive wheels). The propulsion torques of these four configurations were measured for a straight maneuver and a fixed-wheel turn, on both tile and carpet. Results indicated that increasing mass to 17.6-kg had the largest effect on straight acceleration, requiring 7.4% and 5.8% more torque on tile and carpet, respectively. Reducing the drive wheel load to 55% had the largest effect on steady-state straight motion and on both turning acceleration and steady-state turning; for tile and carpet, propulsion torque increased by 13.5% and 11.8%, 16.5% and 4.1%, 73% and 5.1%, respectively. These results demonstrate the robot's high sensitivity, and support the clinical importance of evaluating effects of wheelchair mass and axle position on propulsion effort across maneuvers and surfaces.

  6. Remotely detected vehicle mass from engine torque-induced frame twisting

    NASA Astrophysics Data System (ADS)

    McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.; Sweeney, Glenn D.

    2017-06-01

    Determining the mass of a vehicle from ground-based passive sensor data is important for many traffic safety requirements. This work presents a method for calculating the mass of a vehicle using ground-based video and acoustic measurements. By assuming that no energy is lost in the conversion, the mass of a vehicle can be calculated from the rotational energy generated by the vehicle's engine and the linear acceleration of the vehicle over a period of time. The amount of rotational energy being output by the vehicle's engine can be calculated from its torque and angular velocity. This model relates remotely observed, engine torque-induced frame twist to engine torque output using the vehicle's suspension parameters and engine geometry. The angular velocity of the engine is extracted from the acoustic emission of the engine, and the linear acceleration of the vehicle is calculated by remotely observing the position of the vehicle over time. This method combines these three dynamic signals; engine induced-frame twist, engine angular velocity, and the vehicle's linear acceleration, and three vehicle specific scalar parameters, into an expression that describes the mass of the vehicle. This method was tested on a semitrailer truck, and the results demonstrate a correlation of 97.7% between calculated and true vehicle mass.

  7. Joint torques and joint reaction forces during squatting with a forward or backward inclined Smith machine.

    PubMed

    Biscarini, Andrea; Botti, Fabio M; Pettorossi, Vito E

    2013-02-01

    We developed a biomechanical model to determine the joint torques and loadings during squatting with a backward/forward-inclined Smith machine. The Smith squat allows a large variety of body positioning (trunk tilt, foot placement, combinations of joint angles) and easy control of weight distribution between forefoot and heel. These distinctive aspects of the exercise can be managed concurrently with the equipment inclination selected to unload specific joint structures while activating specific muscle groups. A backward (forward) equipment inclination decreases (increases) knee torque, and compressive tibiofemoral and patellofemoral forces, while enhances (depresses) hip and lumbosacral torques. For small knee flexion angles, the strain-force on the posterior cruciate ligament increases (decreases) with a backward (forward) equipment inclination, whereas for large knee flexion angles, this behavior is reversed. In the 0 to 60 degree range of knee flexion angles, loads on both cruciate ligaments may be simultaneously suppressed by a 30 degree backward equipment inclination and selecting, for each value of the knee angle, specific pairs of ankle and hip angles. The anterior cruciate ligament is safely maintained unloaded by squatting with backward equipment inclination and uniform/forward foot weight distribution. The conditions for the development of anterior cruciate ligament strain forces are clearly explained.

  8. Remotely detected vehicle mass from engine torque-induced frame twisting

    DOE PAGES

    McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.; ...

    2017-06-08

    Determining the mass of a vehicle from ground-based passive sensor data is important for many traffic safety requirements. This paper presents a method for calculating the mass of a vehicle using ground-based video and acoustic measurements. By assuming that no energy is lost in the conversion, the mass of a vehicle can be calculated from the rotational energy generated by the vehicle’s engine and the linear acceleration of the vehicle over a period of time. The amount of rotational energy being output by the vehicle’s engine can be calculated from its torque and angular velocity. This model relates remotely observed,more » engine torque-induced frame twist to engine torque output using the vehicle’s suspension parameters and engine geometry. The angular velocity of the engine is extracted from the acoustic emission of the engine, and the linear acceleration of the vehicle is calculated by remotely observing the position of the vehicle over time. This method combines these three dynamic signals; engine induced-frame twist, engine angular velocity, and the vehicle’s linear acceleration, and three vehicle specific scalar parameters, into an expression that describes the mass of the vehicle. Finally, this method was tested on a semitrailer truck, and the results demonstrate a correlation of 97.7% between calculated and true vehicle mass.« less

  9. Magnetic moment of inertia within the torque-torque correlation model.

    PubMed

    Thonig, Danny; Eriksson, Olle; Pereiro, Manuel

    2017-04-19

    An essential property of magnetic devices is the relaxation rate in magnetic switching which strongly depends on the energy dissipation. This is described by the Landau-Lifshitz-Gilbert equation and the well known damping parameter, which has been shown to be reproduced from quantum mechanical calculations. Recently the importance of inertia phenomena have been discussed for magnetisation dynamics. This magnetic counterpart to the well-known inertia of Newtonian mechanics, represents a research field that so far has received only limited attention. We present and elaborate here on a theoretical model for calculating the magnetic moment of inertia based on the torque-torque correlation model. Particularly, the method has been applied to bulk itinerant magnets and we show that numerical values are comparable with recent experimental measurements. The theoretical analysis shows that even though the moment of inertia and damping are produced by the spin-orbit coupling, and the expression for them have common features, they are caused by very different electronic structure mechanisms. We propose ways to utilise this in order to tune the inertia experimentally, and to find materials with significant inertia dynamics.

  10. Nonlocal Gilbert damping tensor within the torque-torque correlation model

    NASA Astrophysics Data System (ADS)

    Thonig, Danny; Kvashnin, Yaroslav; Eriksson, Olle; Pereiro, Manuel

    2018-01-01

    An essential property of magnetic devices is the relaxation rate in magnetic switching, which depends strongly on the damping in the magnetization dynamics. It was recently measured that damping depends on the magnetic texture and, consequently, is a nonlocal quantity. The damping enters the Landau-Lifshitz-Gilbert equation as the phenomenological Gilbert damping parameter α , which does not, in a straightforward formulation, account for nonlocality. Efforts were spent recently to obtain Gilbert damping from first principles for magnons of wave vector q . However, to the best of our knowledge, there is no report about real-space nonlocal Gilbert damping αi j. Here, a torque-torque correlation model based on a tight-binding approach is applied to the bulk elemental itinerant magnets and it predicts significant off-site Gilbert damping contributions, which could be also negative. Supported by atomistic magnetization dynamics simulations, we reveal the importance of the nonlocal Gilbert damping in atomistic magnetization dynamics. This study gives a deeper understanding of the dynamics of the magnetic moments and dissipation processes in real magnetic materials. Ways of manipulating nonlocal damping are explored, either by temperature, materials doping, or strain.

  11. Inertia-gravity wave radiation from the merging of two co-rotating vortices in the f-plane shallow water system

    SciTech Connect

    Sugimoto, Norihiko, E-mail: nori@phys-h.keio.ac.jp

    Inertia-gravity wave radiation from the merging of two co-rotating vortices is investigated numerically in a rotating shallow water system in order to focus on cyclone–anticyclone asymmetry at different values of the Rossby number (Ro). A numerical study is conducted on a model using a spectral method in an unbounded domain to estimate the gravity wave flux with high accuracy. Continuous gravity wave radiation is observed in three stages of vortical flows: co-rotating of the vortices, merging of the vortices, and unsteady motion of the merged vortex. A cyclone–anticyclone asymmetry appears at all stages at smaller Ro (≤20). Gravity waves frommore » anticyclones are always larger than those from cyclones and have a local maximum at smaller Ro (∼2) compared with that for an idealized case of a co-rotating vortex pair with a constant rotation rate. The source originating in the Coriolis acceleration has a key role in cyclone–anticyclone asymmetry in gravity waves. An additional important factor is that at later stages, the merged axisymmetric anticyclone rotates faster than the elliptical cyclone due to the effect of the Rossby deformation radius, since a rotation rate higher than the inertial cutoff frequency is required to radiate gravity waves.« less

  12. The tip of the iceberg: the frequency content of the δ Sct star HD 50844 from CoRoT space photometry

    NASA Astrophysics Data System (ADS)

    Poretti, E.; Mantegazza, L.; Rainer, M.; Uytterhoeven, K.; Michel, E.; Baglin, A.; Auvergne, M.; Catala, C.; Samadi, R.; Rodríguez, E.; Garrido, R.; Amado, P.; Martín-Ruiz, S.; Moya, A.; Suárez, J. C.; Baudin, F.; Zima, W.; Alvarez, M.; Mathias, P.; Paparó, M.; Pápics, P.; Plachy, E.

    2009-09-01

    It has been suggested that the detection of a wealth of very low amplitude modes in δ Sct stars was only a matter of signal-to-noise ratio. Access to this treasure, impossible from the ground, is one of the scientific aims of the space mission CoRoT, developed and operated by CNES. This work presents the results obtained on HD 50844: the 140,016 datapoints allowed us to reach the level of 10-5 mag in the amplitude spectra. The frequency analysis of the CoRoT timeseries revealed hundreds of terms in the frequency range 0-30 d-1. The initial guess that δ Sct stars have a very rich frequency content is confirmed. The spectroscopic mode identification gives theoretical support since very high-degree modes (up to = 14) are identified. We also prove that cancellation effects are not sufficient in removing the flux variations associated to these modes at the noise level of the CoRoT measurements. The ground-based observations indicate that HD 50844 is an evolved star that is slightly underabundant in heavy elements, located on the Terminal Age Main Sequence. The predominant term (f1 = 6.92 d-1) has been identified as the fundamental radial mode combining ground-based photometric and spectroscopic data.

  13. Loss of knee extensor torque complexity during fatiguing isometric muscle contractions occurs exclusively above the critical torque.

    PubMed

    Pethick, Jamie; Winter, Samantha L; Burnley, Mark

    2016-06-01

    The complexity of knee extensor torque time series decreases during fatiguing isometric muscle contractions. We hypothesized that because of peripheral fatigue, this loss of torque complexity would occur exclusively during contractions above the critical torque (CT). Nine healthy participants performed isometric knee extension exercise (6 s of contraction, 4 s of rest) on six occasions for 30 min or to task failure, whichever occurred sooner. Four trials were performed above CT (trials S1-S4, S1 being the lowest intensity), and two were performed below CT (at 50% and 90% of CT). Global, central, and peripheral fatigue were quantified using maximal voluntary contractions (MVCs) with femoral nerve stimulation. The complexity of torque output was determined using approximate entropy (ApEn) and the detrended fluctuation analysis-α scaling exponent (DFA-α). The MVC torque was reduced in trials below CT [by 19 ± 4% (means ± SE) in 90%CT], but complexity did not decrease [ApEn for 90%CT: from 0.82 ± 0.03 to 0.75 ± 0.06, 95% paired-samples confidence intervals (CIs), 95% CI = -0.23, 0.10; DFA-α from 1.36 ± 0.01 to 1.32 ± 0.03, 95% CI -0.12, 0.04]. Above CT, substantial reductions in MVC torque occurred (of 49 ± 8% in S1), and torque complexity was reduced (ApEn for S1: from 0.67 ± 0.06 to 0.14 ± 0.01, 95% CI = -0.72, -0.33; DFA-α from 1.38 ± 0.03 to 1.58 ± 0.01, 95% CI 0.12, 0.29). Thus, in these experiments, the fatigue-induced loss of torque complexity occurred exclusively during contractions performed above the CT. Copyright © 2016 the American Physiological Society.

  14. Measurement of the force and torque produced in the calcium response of reactivated rat sperm flagella.

    PubMed

    Moritz, M J; Schmitz, K A; Lindemann, C B

    2001-05-01

    Rat sperm that are demembranated with Triton X-100 and reactivated with Mg-ATP show a strong mechanical response to the presence of free calcium ion. At pCa < 4, the midpiece region of the flagellum develops a strong and sustained curvature that gives the cell the overall appearance of a fishhook [Lindemann and Goltz, 1988: Cell Motil. Cytoskeleton 10:420-431]. In the present study, the force and torque that maintain the calcium-induced hook have been examined quantitatively. In addition, full-length and shortened flagella were manipulated to evaluate the plasticity of the hooks and determined the critical length necessary for maintaining the curvature. The hooks were found to be highly resilient, returning to their original configuration (>95%) after being straightened and released. The results from manipulating the shortened flagella suggest that the force holding the hook in the curved configuration is generated in the basal 60 microm of the flagellum. The force required to straighten the calcium-induced hooks was measured with force-calibrated glass microprobes, and the bending torque was calculated from the measured force. The force and torque required to straighten the flagellum were found to be proportional to the change in curvature of the hooked region of the flagellum, suggesting an elastic-like behavior. The average torque to open the hooks to a straight position was 2.6 (+/-1.4) x 10(-7) dyne x cm (2.6 x 10(-14) N x m) and the apparent stiffness was 4.3 (+/-1.3) x 10(-10) dyne x cm(2) (4.3 x 10(-19) N x m(2)). The stiffness of the hook was determined to be approximately one quarter the rigor stiffness of a rat sperm flagellum measured under comparable conditions.

  15. Micro-leakage at the implant-abutment interface with different tightening torques in vitro.

    PubMed

    Silva-Neto, João Paulo da; Prudente, Marcel Santana; Carneiro, Thiago de Almeida Prado Naves; Nóbilo, Mauro Antônio de Arruda; Penatti, Mario Paulo Amante; Neves, Flávio Domingues das

    2012-01-01

    This study evaluated the microleakage at the implant/abutment interface of external hexagon (eH) implants and abutments with different amounts of bacteria and tightening torques. A bacterial suspension was prepared to inoculate the implants. The first phase of this study used nine EH implants and abutments that were divided into three groups with different amounts of bacterial suspension (n=3): V0.5: 0.5 µL; V1.0: 1.0 µL e V1.5: 1.5 µL, and tightened to the manufacturer's recommended torque. The second phase of this experiment used 27 assemblies that were similar to those used in the first phase. These samples were inoculated with 0.5 µL of bacterial suspension and divided into three groups (n=9). T10: 10 Ncm; T20: 20 Ncm and T32: 32 Ncm. The samples were evaluated according to the turbidity of the broth every 24 hours for 14 days, and the bacteria viability was tested after that period. The statistical evaluation was conducted by Kruskal-Wallis testing (p<.05). During the first phase, groups V1.0 and V1.5 was presented with bacterial contamination in all samples after 24 h. During the second phase, two samples from group T10 and one from T20 presented positive results for bacterial contamination. Different amounts of bacterial solution led to overflow and contamination during the first 24 h of the experiment. The tightening torques did not statistically affect the microleakage in the assemblies. However, the group that was tightened to 32 Ncm torque did not show any bacterial contamination. After 14 days of experimentation, the bacteria were proven to remain viable inside the implant internal cavity.

  16. Micro-leakage at the implant-abutment interface with different tightening torques in vitro

    PubMed Central

    da SILVA-NETO, João Paulo; PRUDENTE, Marcel Santana; CARNEIRO, Thiago de Almeida Prado Naves; NÓBILO, Mauro Antônio de Arruda; PENATTI, Mario Paulo Amante; NEVES, Flávio Domingues das

    2012-01-01

    Objectives This study evaluated the microleakage at the implant/abutment interface of external hexagon (EH) implants and abutments with different amounts of bacteria and tightening torques. Material and Methods A bacterial suspension was prepared to inoculate the implants. The first phase of this study used nine EH implants and abutments that were divided into three groups with different amounts of bacterial suspension (n=3): V0.5: 0.5 µL; V1.0: 1.0 µL e V1.5: 1.5 µL, and tightened to the manufacturer's recommended torque. The second phase of this experiment used 27 assemblies that were similar to those used in the first phase. These samples were inoculated with 0.5 µL of bacterial suspension and divided into three groups (n=9). T10: 10 Ncm; T20: 20 Ncm and T32: 32 Ncm. The samples were evaluated according to the turbidity of the broth every 24 hours for 14 days, and the bacteria viability was tested after that period. The statistical evaluation was conducted by Kruskal-Wallis testing (p<.05). Results During the first phase, groups V1.0 and V1.5 was presented with bacterial contamination in all samples after 24 h. During the second phase, two samples from group T10 and one from T20 presented positive results for bacterial contamination. Different amounts of bacterial solution led to overflow and contamination during the first 24 h of the experiment. The tightening torques did not statistically affect the microleakage in the assemblies. However, the group that was tightened to 32 Ncm torque did not show any bacterial contamination. Conclusion After 14 days of experimentation, the bacteria were proven to remain viable inside the implant internal cavity. PMID:23138747

  17. EMG-Torque correction on Human Upper extremity using Evolutionary Computation

    NASA Astrophysics Data System (ADS)

    JL, Veronica; Parasuraman, S.; Khan, M. K. A. Ahamed; Jeba DSingh, Kingsly

    2016-09-01

    There have been many studies indicating that control system of rehabilitative robot plays an important role in determining the outcome of the therapy process. Existing works have done the prediction of feedback signal in the controller based on the kinematics parameters and EMG readings of upper limb's skeletal system. Kinematics and kinetics based control signal system is developed by reading the output of the sensors such as position sensor, orientation sensor and F/T (Force/Torque) sensor and there readings are to be compared with the preceding measurement to decide on the amount of assistive force. There are also other works that incorporated the kinematics parameters to calculate the kinetics parameters via formulation and pre-defined assumptions. Nevertheless, these types of control signals analyze the movement of the upper limb only based on the movement of the upper joints. They do not anticipate the possibility of muscle plasticity. The focus of the paper is to make use of the kinematics parameters and EMG readings of skeletal system to predict the individual torque of upper extremity's joints. The surface EMG signals are fed into different mathematical models so that these data can be trained through Genetic Algorithm (GA) to find the best correlation between EMG signals and torques acting on the upper limb's joints. The estimated torque attained from the mathematical models is called simulated output. The simulated output will then be compared with the actual individual joint which is calculated based on the real time kinematics parameters of the upper movement of the skeleton when the muscle cells are activated. The findings from this contribution are extended into the development of the active control signal based controller for rehabilitation robot.

  18. Robot Position Sensor Fault Tolerance

    NASA Technical Reports Server (NTRS)

    Aldridge, Hal A.

    1997-01-01

    Robot systems in critical applications, such as those in space and nuclear environments, must be able to operate during component failure to complete important tasks. One failure mode that has received little attention is the failure of joint position sensors. Current fault tolerant designs require the addition of directly redundant position sensors which can affect joint design. A new method is proposed that utilizes analytical redundancy to allow for continued operation during joint position sensor failure. Joint torque sensors are used with a virtual passive torque controller to make the robot joint stable without position feedback and improve position tracking performance in the presence of unknown link dynamics and end-effector loading. Two Cartesian accelerometer based methods are proposed to determine the position of the joint. The joint specific position determination method utilizes two triaxial accelerometers attached to the link driven by the joint with the failed position sensor. The joint specific method is not computationally complex and the position error is bounded. The system wide position determination method utilizes accelerometers distributed on different robot links and the end-effector to determine the position of sets of multiple joints. The system wide method requires fewer accelerometers than the joint specific method to make all joint position sensors fault tolerant but is more computationally complex and has lower convergence properties. Experiments were conducted on a laboratory manipulator. Both position determination methods were shown to track the actual position satisfactorily. A controller using the position determination methods and the virtual passive torque controller was able to servo the joints to a desired position during position sensor failure.

  19. Analysis of Solar Wind Plasma Properties of Co-Rotating Interaction Regions at Mars with MSL/RAD

    NASA Astrophysics Data System (ADS)

    Lohf, H.; Kohler, J.; Zeitlin, C. J.; Ehresmann, B.; Guo, J.; Wimmer-Schweingruber, R. F.; Hassler, D.; Reitz, G.; Posner, A.; Heber, B.; Appel, J. K.; Matthiae, D.; Brinza, D. E.; Weigle, E.; Böttcher, S. I.; Burmeister, S.; Martin-Garcia, C.; Boehm, E.; Rafkin, S. C.; Kahanpää, H.; Martín-Torres, J.; Zorzano, M. P.

    2014-12-01

    The measurements of the Radiation Assessment Detector (RAD) onboard Mars Science Laboratory's rover Curiosity have given us the very first opportunity to evaluate the radiation environment on the surface of Mars, which consists mostly of Galactic Cosmic Rays (GCRs) and secondary particles created in the Martian Atmosphere. The solar wind can have an influence on the modulation of the GCR, e.g. when the fast solar wind (~ 750 km/s) interacts with the slow solar wind (~ 400 km/s) at so-called Stream Interaction Regions (SIRs) resulting in an enhancement of the local magnetic field which could affect the shielding of GCRs. SIRs often occur periodically as Co-rotating Interaction Regions (CIRs) which may-be observed at Mars as a decrease in the radiation data measured by MSL/RAD. Considering the difference of the Earth-Mars orbit, we correlate these in-situ radiation data at Mars with the solar wind properties measured by spacecrafts at 1 AU, with the aim to eventually determine the solar wind properties at Mars based on MSL/RAD measurements.

  20. Ankle and hip postural strategies defined by joint torques

    NASA Technical Reports Server (NTRS)

    Runge, C. F.; Shupert, C. L.; Horak, F. B.; Zajac, F. E.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    Previous studies have identified two discrete strategies for the control of posture in the sagittal plane based on EMG activations, body kinematics, and ground reaction forces. The ankle strategy was characterized by body sway resembling a single-segment-inverted pendulum and was elicited on flat support surfaces. In contrast, the hip strategy was characterized by body sway resembling a double-segment inverted pendulum divided at the hip and was elicited on short or compliant support surfaces. However, biomechanical optimization models have suggested that hip strategy should be observed in response to fast translations on a flat surface also, provided the feet are constrained to remain in contact with the floor and the knee is constrained to remain straight. The purpose of this study was to examine the experimental evidence for hip strategy in postural responses to backward translations of a flat support surface and to determine whether analyses of joint torques would provide evidence for two separate postural strategies. Normal subjects standing on a flat support surface were translated backward with a range of velocities from fast (55 cm/s) to slow (5 cm/s). EMG activations and joint kinematics showed pattern changes consistent with previous experimental descriptions of mixed hip and ankle strategy with increasing platform velocity. Joint torque analyses revealed the addition of a hip flexor torque to the ankle plantarflexor torque during fast translations. This finding indicates the addition of hip strategy to ankle strategy to produce a continuum of postural responses. Hip torque without accompanying ankle torque (pure hip strategy) was not observed. Although postural control strategies have previously been defined by how the body moves, we conclude that joint torques, which indicate how body movements are produced, are useful in defining postural control strategies. These results also illustrate how the biomechanics of the body can transform discrete control

  1. Assessment of finger forces and wrist torques for functional grasp using new multichannel textile neuroprostheses.

    PubMed

    Lawrence, Marc; Gross, Gion-Pitschen; Lang, Martin; Kuhn, Andreas; Keller, Thierry; Morari, Manfred

    2008-08-01

    New multichannel textile neuroprotheses were developed, which comprise multiple sets of transcutaneous electrode arrays and connecting wires embroidered into a fabric layer. The electrode arrays were placed on the forearm above the extrinsic finger flexors and extensors. Activation regions for selective finger flexion and wrist extension were configured by switching a subset of the array elements between cathode, anode, and off states. We present a new isometric measurement system for the assessment of finger forces and wrist torques generated using the new neuroprostheses. Finger forces (from the middle phalanxes) were recorded using five load cells mounted on a "grasp handle" that can be arbitrarily positioned in space. The hand and the grasp handle were rigidly mounted to a 6-degree of freedom load cell, and the forces and torques about the wrist were recorded. A vacuum cushion was used to comfortably fixate the forearm. The position and orientation of the forearm, wrist, fingers, and handle were recorded using a new three-dimensional position measurement system (accuracy <+/-1 mm). The measurement system was integrated into the real-time multichannel transcutaneous electrode environment, which is able to control the spatiotemporal position of multiple activation regions. Using the combined system and textile neuroprosthesis, we were able to optimize the activation regions to produce selective finger and wrist articulation, enabling improved functional grasp.

  2. Reconstruction of Twist Torque in Main Parachute Risers

    NASA Technical Reports Server (NTRS)

    Day, Joshua D.

    2015-01-01

    The reconstruction of twist torque in the Main Parachute Risers of the Capsule Parachute Assembly System (CPAS) has been successfully used to validate CPAS Model Memo conservative twist torque equations. Reconstruction of basic, one degree of freedom drop tests was used to create a functional process for the evaluation of more complex, rigid body simulation. The roll, pitch, and yaw of the body, the fly-out angles of the parachutes, and the relative location of the parachutes to the body are inputs to the torque simulation. The data collected by the Inertial Measurement Unit (IMU) was used to calculate the true torque. The simulation then used photogrammetric and IMU data as inputs into the Model Memo equations. The results were then compared to the true torque results to validate the Model Memo equations. The Model Memo parameters were based off of steel risers and the parameters will need to be re-evaluated for different materials. Photogrammetric data was found to be more accurate than the inertial data in accounting for the relative rotation between payload and cluster. The Model Memo equations were generally a good match and when not matching were generally conservative.

  3. Spin-transfer torque in spin filter tunnel junctions

    NASA Astrophysics Data System (ADS)

    Ortiz Pauyac, Christian; Kalitsov, Alan; Manchon, Aurelien; Chshiev, Mairbek

    2014-12-01

    Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green's function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.

  4. Effect of capping layer on spin-orbit torques

    NASA Astrophysics Data System (ADS)

    Sun, Chi; Siu, Zhuo Bin; Tan, Seng Ghee; Yang, Hyunsoo; Jalil, Mansoor B. A.

    2018-04-01

    In order to enhance the magnitude of spin-orbit torque (SOT), considerable experimental works have been devoted to studying the thickness dependence of the different layers in multilayers consisting of heavy metal (HM), ferromagnet (FM), and capping layers. Here, we present a theoretical model based on the spin-drift-diffusion formalism to investigate the effect of the capping layer properties such as its thickness on the SOT observed in experiments. It is found that the spin Hall-induced SOT can be significantly enhanced by incorporating a capping layer with an opposite spin Hall angle to that of the HM layer. The spin Hall torque can be maximized by tuning the capping layer thickness. However, in the absence of the spin Hall effect (SHE) in the capping layer, the torque decreases monotonically with the capping layer thickness. Conversely, the spin Hall torque is found to decrease monotonically with the FM layer thickness, irrespective of the presence or absence of the SHE in the capping layer. All these trends are in correspondence with experimental observations. Finally, our model suggests that capping layers with a long spin diffusion length and high resistivity would also enhance the spin Hall torque.

  5. Cogging Torque Reduction Techniques for Spoke-type IPMSM

    NASA Astrophysics Data System (ADS)

    Bahrim, F. S.; Sulaiman, E.; Kumar, R.; Jusoh, L. I.

    2017-08-01

    A spoke-type interior permanent magnet synchronous motor (IPMSM) is extending its tentacles in industrial arena due to good flux-weakening capability and high power density. In many of the application, high strength of permanent magnet causes the undesirable effects of high cogging torque that can aggravate performance of the motor. High cogging torque is significantly produced by IPMSM due to the similar length and the effectiveness of the magnetic air-gap. The address of this study is to analyze and compare the cogging torque effect and performance of four common techniques for cogging torque reduction such as skewing, notching, pole pairing and rotor pole pairing. With the aid of 3-D finite element analysis (FEA) by JMAG software, a 6S-4P Spoke-type IPMSM with various rotor-PM configurations has been designed. As a result, the cogging torque effect reduced up to 69.5% for skewing technique, followed by 31.96%, 29.6%, and 17.53% by pole pairing, axial pole pairing and notching techniques respectively.

  6. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer

    2010-01-01

    A space suit's mobility is critical to an astronaut's ability to perform work efficiently. As mobility increases, the astronaut can perform tasks for longer durations with less fatigue. Mobility can be broken down into two parts: range of motion (ROM) and torque. These two measurements describe how the suit moves and how much force it takes to move. Two methods were chosen to define mobility requirements for the Constellation Space Suit Element (CSSE). One method focuses on range of motion and the second method centers on joint torque. A joint torque test was conducted to determine a baseline for current advanced space suit joint torques. This test utilized the following space suits: Extravehicular Mobility Unit (EMU), Advanced Crew Escape Suit (ACES), I-Suit, D-Suit, Enhanced Mobility (EM)- ACES, and Mark III (MK-III). Data was collected data from 16 different joint movements of each suit. The results were then reviewed and CSSE joint torque requirement values were selected. The focus of this paper is to discuss trends observed during data analysis.

  7. Hydrodynamic Torques and Rotations of Superparamagnetic Bead Dimers

    NASA Astrophysics Data System (ADS)

    Pease, Christopher; Etheridge, J.; Wijesinghe, H. S.; Pierce, C. J.; Prikockis, M. V.; Sooryakumar, R.

    Chains of micro-magnetic particles are often rotated with external magnetic fields for many lab-on-a-chip technologies such as transporting beads or mixing fluids. These applications benefit from faster responses of the actuated particles. In a rotating magnetic field, the magnetization of superparamagnetic beads, created from embedded magnetic nano-particles within a polymer matrix, is largely characterized by induced dipoles mip along the direction of the field. In addition there is often a weak dipole mop that orients out-of-phase with the external rotating field. On a two-bead dimer, the simplest chain of beads, mop contributes a torque Γm in addition to the torque from mip. For dimers with beads unbound to each other, mop rotates individual beads which generate an additional hydrodynamic torque on the dimer. Whereas, mop directly torques bound dimers. Our results show that Γm significantly alters the average frequency-dependent dimer rotation rate for both bound and unbound monomers and, when mop exceeds a critical value, increases the maximum dimer rotation frequency. Models that include magnetic and hydrodynamics torques provide good agreement with the experimental findings over a range of field frequencies.

  8. Direct mechanical torque sensor for model wind turbines

    NASA Astrophysics Data System (ADS)

    Kang, Hyung Suk; Meneveau, Charles

    2010-10-01

    A torque sensor is developed to measure the mechanical power extracted by model wind turbines. The torque is measured by mounting the model generator (a small dc motor) through ball bearings to the hub and by preventing its rotation by the deflection of a strain-gauge-instrumented plate. By multiplying the measured torque and rotor angular velocity, a direct measurement of the fluid mechanical power extracted from the flow is obtained. Such a measurement is more advantageous compared to measuring the electrical power generated by the model generator (dc motor), since the electrical power is largely affected by internal frictional, electric and magnetic losses. Calibration experiments are performed, and during testing, the torque sensor is mounted on a model wind turbine in a 3 rows × 3 columns array of wind turbines in a wind tunnel experiment. The resulting electrical and mechanical powers are quantified and compared over a range of applied loads, for three different incoming wind velocities. Also, the power coefficients are obtained as a function of the tip speed ratio. Significant differences between the electrical and mechanical powers are observed, which highlights the importance of using the direct mechanical power measurement for fluid dynamically meaningful results. A direct calibration with the measured current is also explored. The new torque sensor is expected to contribute to more accurate model wind tunnel tests which should provide added flexibility in model studies of the power that can be harvested from wind turbines and wind-turbine farms.

  9. Eddy Current Sensing of Torque in Rotating Shafts

    NASA Astrophysics Data System (ADS)

    Varonis, Orestes J.; Ida, Nathan

    2013-12-01

    The noncontact torque sensing in machine shafts is addressed based on the stress induced in a press-fitted magnetoelastic sleeve on the shaft and eddy current sensing of the changes of electrical conductivity and magnetic permeability due to the presence of stress. The eddy current probe uses dual drive, dual sensing coils whose purpose is increased sensitivity to torque and decreased sensitivity to variations in distance between probe and shaft (liftoff). A mechanism of keeping the distance constant is also employed. Both the probe and the magnetoelastic sleeve are evaluated for performance using a standard eddy current instrument. An eddy current instrument is also used to drive the coils and analyze the torque data. The method and sensor described are general and adaptable to a variety of applications. The sensor is suitable for static and rotating shafts, is independent of shaft diameter and operational over a large range of torques. The torque sensor uses a differential eddy current measurement resulting in cancellation of common mode effects including temperature and vibrations.

  10. Rotational and peak torque stiffness of rugby shoes.

    PubMed

    Ballal, Moez S; Usuelli, Federico Giuseppe; Montrasio, Umberto Alfieri; Molloy, Andy; La Barbera, Luigi; Villa, Tomaso; Banfi, Giuseppe

    2014-09-01

    Sports people always strive to avoid injury. Sports shoe designs in many sports have been shown to affect traction and injury rates. The aim of this study is to demonstrate the differing stiffness and torque in rugby boots that are designed for the same effect. Five different types of rugby shoes commonly worn by scrum forwards were laboratory tested for rotational stiffness and peak torque on a natural playing surface generating force patterns that would be consistent with a rugby scrum. The overall internal rotation peak torque was 57.75±6.26 Nm while that of external rotation was 56.55±4.36 Nm. The Peak internal and external rotational stiffness were 0.696±0.1 and 0.708±0.06 Nm/deg respectively. Our results, when compared to rotational stiffness and peak torques of football shoes published in the literature, show that shoes worn by rugby players exert higher rotational and peak torque stiffness compared to football shoes when tested on the same natural surfaces. There was significant difference between the tested rugby shoes brands. In our opinion, to maximize potential performance and lower the potential of non-contact injury, care should be taken in choosing boots with stiffness appropriate to the players main playing role. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Estimation of muscle torque in various combat sports.

    PubMed

    Pędzich, Wioletta; Mastalerz, Andrzej; Sadowski, Jerzy

    2012-01-01

    The purpose of the research was to compare muscle torque of elite combat groups. Twelve taekwondo WTF athletes, twelve taekwondo ITF athletes and nine boxers participated in the study. Measurements of muscle torques were done under static conditions on a special stand which belonged to the Department of Biomechanics. The sum of muscle torque of lower right and left extremities of relative values was significantly higher for taekwondo WTF athletes than for boxers (16%, p < 0.001 for right and 10%, p < 0.05 for left extremities) and taekwondo ITF (10%, p < 0.05 for right and 8% for left extremities). Taekwondo ITF athletes attained significantly higher absolute muscle torque values than boxers for elbow flexors (20%, p < 0.05 for right and 11% for left extremities) and extensors (14% for right and 18%, p < 0.05 for left extremities) and shoulder flexors (10% for right and 12%, p < 0.05 for left extremities) and extensors (11% for right and 1% for left extremities). Taekwondo WTF and taekwondo ITF athletes obtained significantly different relative values of muscle torque of the hip flexors (16%, p < 0.05) and extensors (11%, p < 0.05) of the right extremities.

  12. Large Torque Variations in Two Soft Gamma Repeaters

    NASA Technical Reports Server (NTRS)

    Woods, Peter M.; Kouveliotou, Chryssa; Gogus, Ersin; Finger, Mark H.; Swank, Jean; Markwardt, Craig B.; Hurley, Kevin; vanderKlis, Michiel

    2002-01-01

    We have monitored the pulse frequencies of the two soft gamma repeaters SGR 1806-20 and SGR 1900+14 through the beginning of year 2001 using primarily Rossi X-Ray Timing Explorer Proportional Counter Array observations. In both sources, we observe large changes in the spin-down torque up to a factor of approximately 4, which persist for several months. Using long-baseline phase-connected timing solutions as well as the overall frequency histories, we construct torque noise power spectra for each SGR (Soft Gamma Repeater). The power spectrum of each source is very red (power-law slope is approximately -3.5). The torque noise power levels are consistent with some accreting systems on timescales of approximately 1 yr, yet the full power spectrum is much steeper in frequency than any known accreting source. To the best of our knowledge, torque noise power spectra with a comparably steep frequency dependence have been seen only in young, glitching radio pulsars (e.g., Vela). The observed changes in spin-down rate do not correlate with burst activity; therefore, the physical mechanisms behind each phenomenon are also likely unrelated. Within the context of the magnetar model, seismic activity can not account for both the bursts and the long-term torque changes unless the seismically active regions are decoupled from one another.

  13. Acceleration and torque feedback for robotic control - Experimental results

    NASA Technical Reports Server (NTRS)

    Mclnroy, John E.; Saridis, George N.

    1990-01-01

    Gross motion control of robotic manipulators typically requires significant on-line computations to compensate for nonlinear dynamics due to gravity, Coriolis, centripetal, and friction nonlinearities. One controller proposed by Luo and Saridis avoids these computations by feeding back joint acceleration and torque. This study implements the controller on a Puma 600 robotic manipulator. Joint acceleration measurement is obtained by measuring linear accelerations of each joint, and deriving a computationally efficient transformation from the linear measurements to the angular accelerations. Torque feedback is obtained by using the previous torque sent to the joints. The implementation has stability problems on the Puma 600 due to the extremely high gains inherent in the feedback structure. Since these high gains excite frequency modes in the Puma 600, the algorithm is modified to decrease the gain inherent in the feedback structure. The resulting compensator is stable and insensitive to high frequency unmodeled dynamics. Moreover, a second compensator is proposed which uses acceleration and torque feedback, but still allows nonlinear terms to be fed forward. Thus, by feeding the increment in the easily calculated gravity terms forward, improved responses are obtained. Both proposed compensators are implemented, and the real time results are compared to those obtained with the computed torque algorithm.

  14. Negative optical spin torque wrench of a non-diffracting non-paraxial fractional Bessel vortex beam

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2016-10-01

    An absorptive Rayleigh dielectric sphere in a non-diffracting non-paraxial fractional Bessel vortex beam experiences a spin torque. The axial and transverse radiation spin torque components are evaluated in the dipole approximation using the radiative correction of the electric field. Particular emphasis is given on the polarization as well as changing the topological charge α and the half-cone angle of the beam. When α is zero, the axial spin torque component vanishes. However, when α becomes a real positive number, the vortex beam induces left-handed (negative) axial spin torque as the sphere shifts off-axially from the center of the beam. The results show that a non-diffracting non-paraxial fractional Bessel vortex beam is capable of inducing a spin reversal of an absorptive Rayleigh sphere placed arbitrarily in its path. Potential applications are yet to be explored in particle manipulation, rotation in optical tweezers, optical tractor beams, and the design of optically-engineered metamaterials to name a few areas.

  15. A testing machine for dental air-turbine handpiece characteristics: free-running speed, stall torque, bearing resistance.

    PubMed

    Darvell, Brain W; Dyson, J E

    2005-01-01

    The measurement of performance characteristics of dental air turbine handpieces is of interest with respect to product comparisons, standards specifications and monitoring of bearing longevity in clinical service. Previously, however, bulky and expensive laboratory equipment was required. A portable test machine is described for determining three key characteristics of dental air-turbine handpieces: free-running speed, stall torque and bearing resistance. It relies on a special circuit design for performing a hardware integration of a force signal with respect to rotational position, independent of the rate at which the turbine is allowed to turn during both stall torque and bearing resistance measurements. Free-running speed without the introduction of any imbalance can be readily monitored. From the essential linear relationship between torque and speed, dynamic torque and, hence, power, can then be calculated. In order for these measurements to be performed routinely with the necessary precision of location on the test stage, a detailed procedure for ensuring proper gripping of the handpiece is described. The machine may be used to verify performance claims, standard compliance checks should this be established as appropriate, monitor deterioration with time and usage in the clinical environment and for laboratory investigation of design development.

  16. Muscular activity and torque of the foot dorsiflexor muscles during decremental isometric test: A cross-sectional study.

    PubMed

    Ruiz-Muñoz, Maria; González-Sánchez, Manuel; Martín-Martín, Jaime; Cuesta-Vargas, Antonio I

    2017-06-01

    To analyse the torque variation level that could be explained by the muscle activation (EMG) amplitude of the three major foot dorsiflexor muscles (tibialis anterior (TA), extensor digitorum longus (EDL), extensor hallucis longus (EHL)) during isometric foot dorsiflexion at different intensities. In a cross-sectional study, forty-one subjects performed foot dorsiflexion at 100%, 75%, 50% and 25% of maximal voluntary contractions (MVC) with the hip and knee flexed 90° and the ankle in neutral position (90° between leg and foot). Three foot dorsiflexions were performed for each intensity. Outcome variables were: maximum (100% MVC) and relative torque (75%, 50%, 25% MVC), maximum and relative EMG amplitude. A linear regression analysis was calculated for each intensity of the isometric foot dorsiflexion. The degree of torque variation (dependent variable) from the independent variables explain (EMG amplitude of the three major foot dorsiflexor muscles) the increases when the foot dorsiflexion intensity is increased, with values of R 2 that range from 0.194 (during 25% MVC) to 0.753 (during 100% MVC). The reliability of the outcome variables was excellent. The EMG amplitude of the three main foot dorsiflexors exhibited more variance in the dependent variable (torque) when foot dorsiflexion intensity increases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Design and experimental evaluation of a lightweight, high-torque and compliant actuator for an active ankle foot orthosis.

    PubMed

    Moltedo, Marta; Bacek, Tomislav; Langlois, Kevin; Junius, Karen; Vanderborght, Bram; Lefeber, Dirk

    2017-07-01

    The human ankle joint plays a crucial role during walking. At the push-off phase the ankle plantarflexors generate the highest torque among the lower limb joints during this activity. The potential of the ankle plantarflexors is affected by numerous pathologies and injuries, which cause a decrease in the ability of the subject to achieve a natural gait pattern. Active orthoses have shown to have potential in assisting these subjects. The design of such robots is very challenging due to the contrasting design requirements of wearability (light weight and compact) and high torques capacity. This paper presents the development of a high-torque ankle actuator to assist the ankle joint in both dorsiflexion and plantarflexion. The compliant actuator is a spindle-driven MACCEPA (Mechanically Adjustable Compliance and Controllable Equilibrium Position Actuator). The design of the actuator was made to keep its weight as low as possible, while being able to provide high torques. As a result of this novel design, the actuator weighs 1.18kg. Some static characterization tests were perfomed on the actuator and their results are shown in the paper.

  18. Magnetic torque anomaly in the quantum limit of Weyl semimetals

    PubMed Central

    Moll, Philip J. W.; Potter, Andrew C.; Nair, Nityan L.; Ramshaw, B. J.; Modic, K. A.; Riggs, Scott; Zeng, Bin; Ghimire, Nirmal J.; Bauer, Eric D.; Kealhofer, Robert; Ronning, Filip; Analytis, James G.

    2016-01-01

    Electrons in materials with linear dispersion behave as massless Weyl- or Dirac-quasiparticles, and continue to intrigue due to their close resemblance to elusive ultra-relativistic particles as well as their potential for future electronics. Yet the experimental signatures of Weyl-fermions are often subtle and indirect, in particular if they coexist with conventional, massive quasiparticles. Here we show a pronounced anomaly in the magnetic torque of the Weyl semimetal NbAs upon entering the quantum limit state in high magnetic fields. The torque changes sign in the quantum limit, signalling a reversal of the magnetic anisotropy that can be directly attributed to the topological nature of the Weyl electrons. Our results establish that anomalous quantum limit torque measurements provide a direct experimental method to identify and distinguish Weyl and Dirac systems. PMID:27545105

  19. Magnetic torque anomaly in the quantum limit of Weyl semimetals

    DOE PAGES

    Moll, Philip J. W.; Potter, Andrew C.; Nair, Nityan L.; ...

    2016-08-22

    Electrons in materials with linear dispersion behave as massless Weyl- or Dirac-quasiparticles, and continue to intrigue due to their close resemblance to elusive ultra-relativistic particles as well as their potential for future electronics. Yet the experimental signatures of Weyl-fermions are often subtle and indirect, in particular if they coexist with conventional, massive quasiparticles. Here we show a pronounced anomaly in the magnetic torque of the Weyl semimetal NbAs upon entering the quantum limit state in high magnetic fields. The torque changes sign in the quantum limit, signalling a reversal of the magnetic anisotropy that can be directly attributed to themore » topological nature of the Weyl electrons. Our results establish that anomalous quantum limit torque measurements provide a direct experimental method to identify and distinguish Weyl and Dirac systems.« less

  20. Mechanics of Re-Torquing in Bolted Flange Connections

    NASA Technical Reports Server (NTRS)

    Gordon, Ali P.; Drilling Brian; Weichman, Kyle; Kammerer, Catherine; Baldwin, Frank

    2010-01-01

    It has been widely accepted that the phenomenon of time-dependent loosening of flange connections is a strong consequence of the viscous nature of the compression seal material. Characterizing the coupled interaction between gasket creep and elastic bolt stiffness has been useful in predicting conditions that facilitate leakage. Prior advances on this sub-class of bolted joints has lead to the development of (1) constitutive models for elastomerics, (2) initial tightening strategies, (3) etc. The effect of re-torque, which is a major consideration for typical bolted flange seals used on the Space Shuttle fleet, has not been fully characterized, however. The current study presents a systematic approach to characterizing bolted joint behavior as the consequence of sequentially applied torques. Based on exprimenta1 and numerical results, the optimal re-torquing parameters have been identified that allow for the negligible load loss after pre-load application