NASA Technical Reports Server (NTRS)
Chaky, R. C.; Inouye, G. T.
1985-01-01
Charging of spacecraft surfaces by the environmental plasma can result in differential potentials between metallic structure and adjacent dielectric surfaces in which the relative polarity of the voltage stress is either negative dielectric/positive metal or negative metal/positive dielectric. Negative metal/positive dielectric is a stress condition that may arise if relatively large areas of spacecraft surface metals are shadowed from solar UV and/or if the UV intensity is reduced as in the situation in which the spacecraft is entering into or leaving eclipse. The results of experimental studies of negative metal/positive dielectric systems are given. Information is given on: enhanced electron emission I-V curves; e(3) corona noise vs e(3) steady-state current; the localized nature of e(3) and negative metal arc discharge currents; negative metal arc discharges at stress thresholds below 1 kilovolt; negative metal arc discharge characteristics; dependence of blowoff arc discharge current on spacecraft capacitance to space (linear dimension); and damage to second surface mirrors due to negative metal arcs.
The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle
Arakha, Manoranjan; Saleem, Mohammed; Mallick, Bairagi C.; Jha, Suman
2015-01-01
The work investigates the role of interfacial potential in defining antimicrobial propensity of ZnO nanoparticle (ZnONP) against different Gram positive and Gram negative bacteria. ZnONPs with positive and negative surface potential are tested against different bacteria with varying surface potentials, ranging −14.7 to −23.6 mV. Chemically synthesized ZnONPs with positive surface potential show very high antimicrobial propensity with minimum inhibitory concentration of 50 and 100 μg/mL for Gram negative and positive bacterium, respectively. On other hand, ZnONPs of the same size but with negative surface potential show insignificant antimicrobial propensity against the studied bacteria. Unlike the positively charged nanoparticles, neither Zn2+ ion nor negatively charged ZnONP shows any significant inhibition in growth or morphology of the bacterium. Potential neutralization and colony forming unit studies together proved adverse effect of the resultant nano-bacterial interfacial potential on bacterial viability. Thus, ZnONP with positive surface potential upon interaction with negative surface potential of bacterial membrane enhances production of the reactive oxygen species and exerts mechanical stress on the membrane, resulting in the membrane depolarization. Our results show that the antimicrobial propensity of metal oxide nanoparticle mainly depends upon the interfacial potential, the potential resulting upon interaction of nanoparticle surface with bacterial membrane. PMID:25873247
Assessment of Biomarkers Associated with Joint Injury and Subsequent Post-Traumatic Arthritis
2016-12-01
Studio, Research Triangle Park, NC). Changes in cartilage thickness between post -operative and 18-month follow-up images were quantified using an in...surface were measured, and defined as the distance to a test surface ( post -fx bone surface) that was either outside (positive) or inside (negative) of... test surface ( post -fx bone surface) that was either outside (positive) or inside (negative) of the reference surface (pre-fx bone surface). A
Wave propagation in and around negative-dielectric-constant discharge plasma
NASA Astrophysics Data System (ADS)
Sakai, Osamu; Iwai, Akinori; Omura, Yoshiharu; Iio, Satoshi; Naito, Teruki
2018-03-01
The modes of wave propagation in media with a negative dielectric constant are not simple, unlike those for electromagnetic waves in media with a positive dielectric constant (where modes propagate inside the media with positive phase velocity since the refractive index is usually positive). Instead, they depend on the permeability sign, either positive or negative, and exhibit completely different features. In this report, we investigated a wave confined on the surface of a negative-dielectric-constant and a positive-permeability plasma medium for which the refractive index is imaginary. The propagation mode is similar to surface plasmon polaritons on the metal containing free electrons, but its frequency band is different due to the significant spatial gradient of the dielectric constant and a different pressure term. We also studied a wave with a negative dielectric constant and negative permeability, where the refractive index is negative. This wave can propagate inside the media, but its phase velocity is negative. It also shares similar qualities with waves in plasmonic devices with negative permeability in the photon range.
Effect of electrical polarization of hydroxyapatite ceramics on new bone formation.
Itoh, S; Nakamura, S; Kobayashi, T; Shinomiya, K; Yamashita, K; Itoh, S
2006-03-01
Large surface charges can be induced on hydroxyapatite (HAp) ceramics by proton transport polarization, but this does not affect beta-tricalcium phosphate (TCP) because of its low polarizability. We wished to examine differences in osteogenic cell activity and new bone growth between positively or negatively surface-charged HAp and HAp/TCP plates using a calvarial bone defect model. In the first group of rats, test pieces were placed with their positively charged surfaces face down on the dura mater. In the second group, test pieces were placed with their negatively charged surfaces face down on the dura mater. A third group received noncharged test pieces. Histological examination, including enzymatic staining for osteoblasts and osteoclasts, was carried out. While no bone formation was observed at the pericranium, direct bone formation on the cranial bone debris and new bone growth expanded from the margins of the sites of injury to bridge across both the positively and negatively charged surfaces of HAp and HAp/TCP plates occurred. Electrical polarization of implanted plates, including positive charge, led to enhanced osteoblast activity, though decreased osteoclast activity was seen on the positively charged plate surface. Thus, polarization of HAp ceramics may modulate new bone formation and resorption.
Role of protein surface charge in monellin sweetness.
Xue, Wei-Feng; Szczepankiewicz, Olga; Thulin, Eva; Linse, Sara; Carey, Jannette
2009-03-01
A small number of proteins have the unusual property of tasting intensely sweet. Despite many studies aimed at identifying their sweet taste determinants, the molecular basis of protein sweetness is not fully understood. Recent mutational studies of monellin have implicated positively charged residues in sweetness. In the present work, the effect of overall net charge was investigated using the complementary approach of negative charge alterations. Multiple substitutions of Asp/Asn and Glu/Gln residues radically altered the surface charge of single-chain monellin by removing six negative charges or adding four negative charges. Biophysical characterization using circular dichroism, fluorescence, and two-dimensional NMR demonstrates that the native fold of monellin is preserved in the variant proteins under physiological solution conditions although their stability toward chemical denaturation is altered. A human taste test was employed to determine the sweetness detection threshold of the variants. Removal of negative charges preserves monellin sweetness, whereas added negative charge has a large negative impact on sweetness. Meta-analysis of published charge variants of monellin and other sweet proteins reveals a general trend toward increasing sweetness with increasing positive net charge. Structural mapping of monellin variants identifies a hydrophobic surface predicted to face the receptor where introduced positive or negative charge reduces sweetness, and a polar surface where charges modulate long-range electrostatic complementarity.
do Nascimento, Rodney Marcelo; de Carvalho, Vanessa Rafaela; Govone, José Silvio; Hernandes, Antônio Carlos; da Cruz, Nilson Cristino
2017-02-01
This manuscript reports an evaluation of the effects of simple chemical-heat treatments on the deposition of different ceramic coatings, i.e., TiO 2 , CaTiO 3 and CaP, on commercially pure titanium (cp-Ti) and Ti6Al4V and the influence of the coatings on cells interaction with the surfaces. The ceramic materials were prepared by the sol-gel method and the coating adhesion was analyzed by pull-off bending tests. The wettability of positively or negatively charged surfaces was characterized by contact angle measurements, which also enabled the calculation of the surface free energy through the polar-apolar liquids approach. Both acid and alkaline treatments activated the cp-Ti, whereas Ti6Al4V was only activated by the alkaline treatment. Such treatment led to increased hydrophilicity with inhibition of the fibroblastic response on Ti6Al4V. On the other hand, osteoblastic cells adhered to and proliferated on the positively and negatively charged surfaces. The maximum adhesion strength (~ 3400 N) was obtained with a negative Ti6Al4V-CaTiO 3 -CaP multilayer surface.
NASA Astrophysics Data System (ADS)
Fubiani, G.; Boeuf, J. P.
2013-11-01
Results from a 3D self-consistent Particle-In-Cell Monte Carlo Collisions (PIC MCC) model of a high power fusion-type negative ion source are presented for the first time. The model is used to calculate the plasma characteristics of the ITER prototype BATMAN ion source developed in Garching. Special emphasis is put on the production of negative ions on the plasma grid surface. The question of the relative roles of the impact of neutral hydrogen atoms and positive ions on the cesiated grid surface has attracted much attention recently and the 3D PIC MCC model is used to address this question. The results show that the production of negative ions by positive ion impact on the plasma grid is small with respect to the production by atomic hydrogen or deuterium bombardment (less than 10%).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toga, Yuta; Suzuki, Tsuneaki; Sakuma, Akimasa, E-mail: sakuma@solid.apph.tohoku.ac.jp
2015-06-14
Using first-principles calculations, we investigate the positional dependence of trace elements such as O and Cu on the crystal field parameter A{sub 2}{sup 0}, proportional to the magnetic anisotropy constant K{sub u} of Nd ions placed at the surface of Nd{sub 2}Fe{sub 14}B grains. The results suggest the possibility that the A{sub 2}{sup 0} parameter of Nd ions at the (001) surface of Nd{sub 2}Fe{sub 14}B grains exhibits a negative value when the O or Cu atom is located near the surface, closer than its equilibrium position. At the (110) surface, however, O atoms located at the equilibrium position providemore » a negative A{sub 2}{sup 0}, while for Cu additions A{sub 2}{sup 0} remains positive regardless of Cu's position. Thus, Cu atoms are expected to maintain a positive local K{sub u} of surface Nd ions more frequently than O atoms when they approach the grain surfaces in the Nd-Fe-B grains.« less
Composition of Plasma Formed from Hypervelocity Dust Impacts
NASA Astrophysics Data System (ADS)
Lee, N.; Close, S.; Rymer, A. M.; Mocker, A.
2012-12-01
Dust impacts can occur on all solar system bodies but are especially prevalent in the case of the Saturnian moons that are near or within the dust torus produced by Enceladus's plumes. Depending on the mass and charge on these plume particles, they will be influenced by both gravitational and electrodynamic forces, resulting in a range of possible impact speeds on the moons. The plasma formed upon impact can have very different characteristics depending on impact speed and on the electric field due to surface charging at the impact point. Through recent tests conducted at the Max Planck Institute for Nuclear Physics using a Van de Graaff dust accelerator, iron dust particles were electrostatically accelerated to speeds of 3-65 km/s and impacted on a variety of target materials including metallic and glassy surfaces. The target surfaces were connected to a biasing supply to represent surface charging effects. Because of the high specific kinetic energy of the dust particles, upon impact they vaporize along with part of the target surface and a fraction of this material is ionized forming a dense plasma. The impacts produced both positive and negative ions. We made measurements of the net current imparted by this expanding plasma at a distance of several centimeters from the impact point. By setting the bias of the target, we impose an electric field on the charge population, allowing a measurement of plasma composition through time of flight analysis. The figure shows representative measurements of the net current measured by a retarding potential analyzer (RPA) from separate 18 and 19 km/s impacts of 7 fg particles on a glassy surface that was negatively and positively biased, respectively. This target was an optical solar reflector donated by J. Likar of Lockheed Martin for these experiments. These results show that ions of both positive and negative charge can be formed through the mechanism of dust impacts, and has implications on the surface plasma environment at Enceladus and other airless bodies in the solar system. Measurements of net current from impact plasmas. The horizontal axis is normalized to particle mass based on time of flight. The red trace is from an impact on a positively biased surface, ejecting positive ions toward the sensor. The blue trace is from an impact on a negatively biased surface, ejecting electrons and negative ions toward the sensor. The first positive peak is from electrons causing secondary emission off the sensor. The subsequent negative peaks are from negative ions.
NASA Technical Reports Server (NTRS)
Hegyi, Bradley M.; Taylor, Patrick C.
2017-01-01
An analysis of 2000-2015 monthly Clouds and the Earth's Radiant Energy System-Energy Balanced and Filled (CERES-EBAF) and Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA2) data reveals statistically significant fall and wintertime relationships between Arctic surface longwave (LW) radiative flux anomalies and the Arctic Oscillation (AO) and Arctic Dipole (AD). Signifying a substantial regional imprint, a negative AD index corresponds with positive downwelling clear-sky LW flux anomalies (greater than10W m(exp -2)) north of western Eurasia (0 deg E-120 deg E) and reduced sea ice growth in the Barents and Kara Seas in November-February. Conversely, a positive AO index coincides with negative clear-sky LW flux anomalies and minimal sea ice growth change in October-November across the Arctic. Increased (decreased) atmospheric temperature and water vapor coincide with the largest positive (negative) clear-sky flux anomalies. Positive surface LW cloud radiative effect anomalies also accompany the negative AD index in December-February. The results highlight a potential pathway by which Arctic atmospheric variability influences the regional surface radiation budget over areas of Arctic sea ice growth.
Strongly Emitting Surfaces Unable to Float below Plasma Potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campanell, M. D.; Umansky, M. V.
2016-02-25
One important unresolved question in plasma physics concerns the effect of strong electron emission on plasma-surface interactions. Previous papers reported solutions with negative and positive floating potentials relative to the plasma edge. For these two models a very different predictions for particle and energy balance is given. Here we show that the positive potential state is the only possible equilibrium in general. Even if a negative floating potential existed at t=0, the ionization collisions near the surface will force a transition to the positive floating potential state. Moreover, this transition is demonstrated with a new simulation code.
Physical and Chemical Processes in Turbulent Flames
2015-06-23
positive aerodynamics stretch, into a multitude of wrinkled flamelets possessing either positive or negative stretch, such that the intensified...flame surface, such as the flame surface area ratio, build up this global measure. The turbulent flame surface is typically highly wrinkled and folded...consider a filtered/average location of the flame positions to represent a smooth surface. The information contained in the wrinkled surface if
Grafted Polystyrene Monolayer Brush as Both Negative and Positive Tone Electron Beam Resist.
Aydinoglu, Ferhat; Yamada, Hirotaka; Dey, Ripon K; Cui, Bo
2017-05-23
Although spin coating is the most widely used electron-beam resist coating technique in nanolithography, it cannot typically be applied for nonflat or irregular surfaces. Here, we demonstrate that monolayer polystyrene brush can be grafted on substrates and used as both positive and negative electron-beam resist, which can be applied for such unconventional surfaces. Polystyrene is a popular negative resist when using solvent developer but solvent cannot be used for grafted polystyrene brush that is firmly bonded to the substrate. Instead, we employed two unconventional development methods to lead polystyrene brush to positive or negative tone behavior. Negative tone was achieved by thermal development at 300 °C because exposed thus cross-linked polystyrene brush is more thermally stable against vaporization than unexposed linear one. Surprisingly, positive tone behavior occurred when the brush was grafted onto an aluminum (Al) layer and the film stack was developed using diluted hydrofluoric acid (HF) that etched the underlying Al layer. By transferring the patterns into the silicon (Si) substrates using the thin Al layer as a sacrificial hard mask for dry etch, well-defined structures in Si were obtained in two different electron-beam resist tones as well as in nonflat surfaces.
Chen, Liang; Mccrate, Joseph M.; Lee, James C-M.; Li, Hao
2011-01-01
The objective of this study is to evaluate the effect of hydroxyapatite (HAP) nanoparticles with different surface charges on the cellular uptake behavior and in vitro cell viability and proliferation of MC3T3-E1 cell lines (osteoblast). The nanoparticles surface charge was varied by the surface modification with two carboxylic acids: 12-aminododecanoic acid (positive) and dodecanedioic acid (negative). The untreated HAP nanoparticles and dodecanoic acid modified HAP nanoparticles (neutral) were used as the control. X-ray diffraction (XRD) revealed that surface modifications by the three carboxylic acids did not change the crystal structure of HAP nanoparticles; Fourier transform infrared spectroscopy (FTIR) confirmed the adsorption and binding of the carboxylic acids on HAP nanoparticle surface; and zeta potential measurement confirmed that the chemicals successfully modified the surface charge of HAP nanoparticles in water based solution. Transmission electron microscopy (TEM) images showed that positively charged, negatively charged and untreated HAP nanoparticles, with similar size and shape, all penetrated into the cells and cells had more uptake of HAP nanoparticles with positive charge compared to those with negative charge, which might be attributed to the attractive or repulsive interaction between the negatively charged cell membrane and positively/negatively charged HAP nanoparticles. The neutral HAP nanoparticles could not penetrate cell membrane due to the larger size. MTT assay and LDH assay results indicated that as compared with the polystyrene control, greater cell viability and cell proliferation were measured on MC3T3-E1 cells treated with the three kinds of the HAP nanoparticles (neutral, positive, and untreated), among which positively charged HAP nanoparticles shows strongest improvement for cell viability and cell proliferation. In summary, the surface charge of HAP nanoparticles can be modified to influence the cellular uptake of HAP nanoparticles and the different uptake also influence the behavior of cells. These in-vitro results may also provide useful information for investigations of HAP nanoparticles applications in the gene delivery and intracellular drug delivery. PMID:21289408
Hu, Jingjing; Cheng, Yiyun; Wu, Qinglin; Zhao, Libo; Xu, Tongwen
2009-08-06
The host-guest chemistry of dendrimer-drug complexes is investigated by NMR techniques, including (1)H NMR and 2D-NOESY studies. The effects of molecular properties of drug molecules (protonation ability and spatial steric hindrance of charged groups) and surface functionalities of dendrimers (positively charged amine groups and negatively charged carboxylate groups) on the host-guest interactions are discussed. Different interaction mechanisms between dendrimers and drug molecules are proposed on the basis of NMR results. Primary amine- and secondary amine-containing drugs preferentially bind to negatively charged dendrimers by strong electrostatic interactions, whereas tertiary amine and quaternary ammonium-containing drugs have weak binding ability with dendrimers due to relatively low protonation ability of the tertiary amine group and serious steric hindrance of the quaternary ammonium group. Positively charged drugs locate only on the surface of negatively charged dendrimers, whereas negatively charged drugs locate both on the surface and in the interior cavities of positively charged dendrimers. The host-guest chemistry of dendrimer-drug complexes is promising for the development of new drug delivery systems.
Positive and negative ZnO micropatterning on functionalized polymer surfaces.
Yang, Peng; Zou, Shengli; Yang, Wantai
2008-09-01
Patterned ZnO deposition on substrates has received increasing attention because of its great potential in photocatalysis, energy conversion, and electro-optical techniques. Chemical solution growth is especially promising for organic substrates due to its very mild reaction conditions. Here this method is used on functionality-patterned polymer surfaces in order to fabricate positive and negative ZnO micropatterns. A ZnO film made of arrayed rods, typically 500-750 nm in diameter and 2.5 microm in length, is selectively obtained on sulfated and hydroxylated regions of biaxially oriented poly(propylene), giving rise to positive patterns. For reactive polyesters such as poly(ethylene terephthalate), the ZnO rods selectively remain on the unmodified original regions, creating negative patterns. Unlike complex photolithography procedures, the irradiation and patterning processes do not require the use of positive or negative photoresists, and possible damage from acidic solutions on the underlying substrate during the chemical etching process is avoided. The process thus proves to be a simple, creditable, and low-cost method, which could be easily applied on a variety of inert and reactive polymer surfaces.
Ruzicka, Filip; Horka, Marie; Hola, Veronika; Votava, Miroslav
2007-03-01
The biofilm formation is an important factor of S. epidermidis virulence. Biofilm-positive strains might be clinically more important than biofilm-negative ones. Unlike biofilm-negative staphylococci, biofilm-positive staphylococci are surrounded with an extracellular polysaccharide substance. The presence of this substance on the surface can affect physico-chemical properties of the bacterial cell, including surface charge. 73 S. epidermidis strains were examined for the presence of ica operon, for the ability to form biofilm by Christensen test tube method and for the production of slime by Congo red agar method. Isoelectric points (pI) of these strains were determined by means of Capillary Isoelectric Focusing. The biofilm negative strains focused near pI value 2.3, while the pI values of the biofilm positive strains were near 2.6. Isoelectric point is a useful criterion for the differentiation between biofilm-positive and biofilm-negative S. epidermidis strains.
Antibody-immobilized column for quick cell separation based on cell rolling.
Mahara, Atsushi; Yamaoka, Tetsuji
2010-01-01
Cell separation using methodological standards that ensure high purity is a very important step in cell transplantation for regenerative medicine and for stem cell research. A separation protocol using magnetic beads has been widely used for cell separation to isolate negative and positive cells. However, not only the surface marker pattern, e.g., negative or positive, but also the density of a cell depends on its developmental stage and differentiation ability. Rapid and label-free separation procedures based on surface marker density are the focus of our interest. In this study, we have successfully developed an antiCD34 antibody-immobilized cell-rolling column, that can separate cells depending on the CD34 density of the cell surfaces. Various conditions for the cell-rolling column were optimized including graft copolymerization, and adjustment of the column tilt angle, and medium flow rate. Using CD34-positive and -negative cell lines, the cell separation potential of the column was established. We observed a difference in the rolling velocities between CD34-positive and CD34-negative cells on antibody-immobilized microfluidic device. Cell separation was achieved by tilting the surface 20 degrees and the increasing medium flow. Surface marker characteristics of the isolated cells in each fraction were analyzed using a cell-sorting system, and it was found that populations containing high density of CD34 were eluted in the delayed fractions. These results demonstrate that cells with a given surface marker density can be continuously separated using the cell rolling column.
NASA Astrophysics Data System (ADS)
Han, Zhiwu; Li, Bo; Mu, Zhengzhi; Yang, Meng; Niu, Shichao; Zhang, Junqiu; Ren, Luquan
2015-11-01
The polydimethylsiloxane (PDMS) positive replica templated twice from the excellent light trapping surface of butterfly Trogonoptera brookiana wing scales was fabricated by a simple and promising route. The exact SiO2 negative replica was fabricated by using a synthesis method combining a sol-gel process and subsequent selective etching. Afterwards, a vacuum-aided process was introduced to make PDMS gel fill into the SiO2 negative replica, and the PDMS gel was solidified in an oven. Then, the SiO2 negative replica was used as secondary template and the structures in its surface was transcribed onto the surface of PDMS. At last, the PDMS positive replica was obtained. After comparing the PDMS positive replica and the original bio-template in terms of morphology, dimensions and reflectance spectra and so on, it is evident that the excellent light trapping structures of butterfly wing scales were inherited by the PDMS positive replica faithfully. This bio-inspired route could facilitate the preparation of complex light trapping nanostructure surfaces without any assistance from other power-wasting and expensive nanofabrication technologies.
Experimental verification of ‘waveguide’ plasmonics
NASA Astrophysics Data System (ADS)
Prudêncio, Filipa R.; Costa, Jorge R.; Fernandes, Carlos A.; Engheta, Nader; Silveirinha, Mário G.
2017-12-01
Surface plasmons polaritons are collective excitations of an electron gas that occur at an interface between negative-ɛ and positive-ɛ media. Here, we report the experimental observation of such surface waves using simple waveguide metamaterials filled only with available positive-ɛ media at microwave frequencies. In contrast to optical designs, in our setup the propagation length of the surface plasmons can be rather long as low loss conventional dielectrics are chosen to avoid typical losses from negative-ɛ media. Plasmonic phenomena have potential applications in enhancing light-matter interactions, implementing nanoscale photonic circuits and integrated photonics.
NASA Astrophysics Data System (ADS)
Yoon, Ok Ja; Lee, Hyun Jung; Jang, Yeong Mi; Kim, Hyun Woo; Lee, Won Bok; Kim, Sung Su; Lee, Nae-Eung
2011-08-01
The O 2 and N 2/H 2 plasma treatments of single-walled carbon nanotube (SWCNT) papers as scaffolds for enhanced neuronal cell growth were conducted to functionalize their surfaces with different functional groups and to roughen their surfaces. To evaluate the effects of the surface roughness and functionalization modifications of the SWCNT papers, we investigated the neuronal morphology, mitochondrial membrane potential, and acetylcholine/acetylcholinesterase levels of human neuroblastoma during SH-SY5Y cell growth on the treated SWCNT papers. Our results demonstrated that the plasma-chemical functionalization caused changes in the surface charge states with functional groups with negative and positive charges and then the increased surface roughness enhanced neuronal cell adhesion, mitochondrial membrane potential, and the level of neurotransmitter in vitro. The cell adhesion and mitochondrial membrane potential on the negatively charged SWCNT papers were improved more than on the positively charged SWCNT papers. Also, measurements of the neurotransmitter level showed an enhanced acetylcholine level on the negatively charged SWCNT papers compared to the positively charged SWCNT papers.
NASA Astrophysics Data System (ADS)
Herdiech, M. W.; Mönig, H.; Altman, E. I.
2014-08-01
Adsorption of the strong Lewis acid BF3 was investigated to probe the sensitivity of the Lewis basicity of surface oxygens on LiNbO3 (0001) to the ferroelectric polarization direction. Adsorption and desorption were characterized by using X-ray photoelectron spectroscopy (XPS) to monitor the intensity and binding energy of the F 1s core level as a function of BF3 exposure and temperature. The results indicate that both BF3 uptake and desorption are very similar on the positively and negatively poled surfaces. In particular, BF3 only weakly adsorbs with the majority of the adsorbed BF3 desorbing below 200 K. Despite the similarities in the uptake and desorption behavior, the binding energy of the F 1s peak relative to the substrate Nb 3d5/2 peak was sensitive to the polarization direction, with the F 1s peak occurring at a binding energy up to 0.3 eV lower on positively poled than negatively poled LiNbO3 for equivalent BF3 exposures. Rather than reflecting a difference in bonding to the surface, however, this shift could be associated with oppositely oriented dipoles at the positively and negatively poled surfaces creating opposite band offsets between the adsorbate and the substrate. A similar effect was observed with lead zirconate titanate thin films where the Pb 4f XPS peak position changes as a function of temperature as a result of the pyroelectric effect which changes the magnitude of the surface and interface dipoles.
Bernstein, Roy; Belfer, Sofia; Freger, Viatcheslav
2011-07-15
Concentration polarization-enhanced radical graft polymerization, a facile surface modification technique, was examined as an approach to reduce bacterial deposition onto RO membranes and thus contribute to mitigation of biofouling. For this purpose an RO membrane ESPA-1 was surface-grafted with a zwitterionic and negatively and positively charged monomers. The low monomer concentrations and low degrees of grafting employed in modifications moderately reduced flux (by 20-40%) and did not affect salt rejection, yet produced substantial changes in surface chemistry, charge and hydrophilicity. The propensity to bacterial attachment of original and modified membranes was assessed using bacterial deposition tests carried out in a parallel plate flow setup using a fluorescent strain of Pseudomonas fluorescens. Compared to unmodified ESPA-1 the deposition (mass transfer) coefficient was significantly increased for modification with the positively charged monomer. On the other hand, a substantial reduction in bacterial deposition rates was observed for membranes modified with zwitterionic monomer and, still more, with very hydrophilic negatively charged monomers. This trend is well explained by the effects of surface charge (as measured by ζ-potential) and hydrophilicity (contact angle). It also well correlated with force distance measurements by AFM using surrogate spherical probes with a negative surface charge mimicking the bacterial surface. The positively charged surface showed a strong hysteresis with a large adhesion force, which was weaker for unmodified ESPA-1 and still weaker for zwitterionic surface, while negatively charged surface showed a long-range repulsion and negligible hysteresis. These results demonstrate the potential of using the proposed surface- modification approach for varying surface characteristics, charge and hydrophilicity, and thus minimizing bacterial deposition and potentially reducing propensity biofouling.
Cao, Li-Hua; Li, Yun-Ru; Wang, Shou-Yun; Liu, Zhi-Min; Sun, Shao-Chun; Xu, Dong-Bo; Zhang, Ji-Dong
2015-07-01
The aim of the present study was to investigate the effects of vaccination with the hepatitis B vaccine (HBVac) in HB surface antibody (HBsAb)-negative pregnant mothers on the vertical transmission of HB virus (HBV) from father to infant. All the fathers tested positive for the serum HBV DNA and HB surface antigen (HBsAg) markers. The pregnant females were divided into an observation group or a control group depending on whether their serum was HBsAb-negative or positive. A total of 93 healthy individuals without HBV infection were included in a blank group, while 96 females who were serum HBV marker-negative or HB core antibody (HBcAb)-positive/(HBsAb)-negative were included in the observation group. The control group comprised 89 females who all tested positive for serum HBsAb, HB envelope antibodies and HBcAb. In the observation group, the positive rate of HBV DNA in the newborns was 7.29% (7/96), the positive rate of HBsAg was 3.13% (3/96) and the positive rate of HBsAb was 81.3% (78/96). In the control group, the positive rates of HBV DNA, HBsAg and HBsAb in the newborns were 4.49% (4/89), 2.25% (2/89) and 89.9% (80/89), respectively. No statistically significant differences were observed between the two groups. Therefore, the results of the present study indicate that HBVac treatment for HBsAb-negative pregnant females may have a positive role in blocking the vertical transmission of HBV from father to infant, as long as the vaccination is able to induce the production of a sufficient quantity of HBsAb. The HBVac exhibited no difference compared with pre-pregnancy HBsAb in blocking the vertical transmission of HBV from father to infant.
Sakulkhu, Usawadee; Mahmoudi, Morteza; Maurizi, Lionel; Coullerez, Geraldine; Hofmann-Amtenbrink, Margarethe; Vries, Marcel; Motazacker, Mahdi; Rezaee, Farhad; Hofmann, Heinrich
2015-02-01
As nanoparticles (NPs) are increasingly used in many applications their safety and efficient applications in nanomedicine have become concerns. Protein coronas on nanomaterials' surfaces can influence how the cell "recognizes" nanoparticles, as well as the in vitro and in vivo NPs' behaviors. The SuperParamagnetic Iron Oxide Nanoparticle (SPION) is one of the most prominent agents because of its superparamagnetic properties, which is useful for separation applications. To mimic surface properties of different types of NPs, a core-shell SPION library was prepared by coating with different surfaces: polyvinyl alcohol polymer (PVA) (positive, neutral and negative), SiO2 (positive and negative), titanium dioxide and metal gold. The SPIONs with different surfaces were incubated at a fixed serum : nanoparticle surface ratio, magnetically trapped and washed. The tightly bound proteins were quantified and identified. The surface charge has a great impact on protein adsorption, especially on PVA and silica where proteins preferred binding to the neutral and positively charged surfaces. The importance of surface material on protein adsorption was also revealed by preferential binding on TiO2 and gold coated SPION, even negatively charged. There is no correlation between the protein net charge and the nanoparticle surface charge on protein binding, nor direct correlation between the serum proteins' concentration and the proteins detected in the coronas.
NASA Astrophysics Data System (ADS)
Dai, Yanqiu; Xu, Huimei; Wang, Haoyu; Lu, Yonghua; Wang, Pei
2018-06-01
We experimentally demonstrated a high sensitivity of surface plasmon resonance (SPR) sensor with silver rectangular grating coupling. The reflection spectra of the silver gratings indicated that surface plasmon resonance can be excited by either positive or negative order diffraction of the grating, depending on the period of the gratings. Comparing to prism-coupled SPR sensor, the sensitivities are higher for negative order diffraction coupling in bigger coupling angle, but much smaller for positive order diffraction coupling of the gratings. High sensitivity of 254.13 degree/RIU is experimentally realized by grating-based SPR sensor in the negative diffraction excitation mode. Our work paves the way for compact and sensitive SPR sensor in the applications of biochemical and gas sensing.
Negative ion source with hollow cathode discharge plasma
Hershcovitch, Ady; Prelec, Krsto
1983-01-01
A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.
Padmanabhan, Jaya L; Tandon, Neeraj; Haller, Chiara S; Mathew, Ian T; Eack, Shaun M; Clementz, Brett A; Pearlson, Godfrey D; Sweeney, John A; Tamminga, Carol A; Keshavan, Matcheri S
2015-01-01
Structural alterations may correlate with symptom severity in psychotic disorders, but the existing literature on this issue is heterogeneous. In addition, it is not known how cortical thickness and cortical surface area correlate with symptom dimensions of psychosis. Subjects included 455 individuals with schizophrenia, schizoaffective, or bipolar I disorders. Data were obtained as part of the Bipolar Schizophrenia Network for Intermediate Phenotypes study. Diagnosis was made through the Structured Clinical Interview for DSM-IV. Positive and negative symptom subscales were assessed using the Positive and Negative Syndrome Scale. Structural brain measurements were extracted from T1-weight structural MRIs using FreeSurfer v5.1 and were correlated with symptom subscales using partial correlations. Exploratory factor analysis was also used to identify factors among those regions correlating with symptom subscales. The positive symptom subscale correlated inversely with gray matter volume (GMV) and cortical thickness in frontal and temporal regions, whereas the negative symptom subscale correlated inversely with right frontal cortical surface area. Among regions correlating with the positive subscale, factor analysis identified four factors, including a temporal cortical thickness factor and frontal GMV factor. Among regions correlating with the negative subscale, factor analysis identified a frontal GMV-cortical surface area factor. There was no significant diagnosis by structure interactions with symptom severity. Structural measures correlate with positive and negative symptom severity in psychotic disorders. Cortical thickness demonstrated more associations with psychopathology than cortical surface area. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Pawar, S. D.; Kamra, A. K.
2002-12-01
Surface observations of the electric field recovery curves of the lightning discharges occurring between the positive charge pocket and negative main charge centre in an overhead thundercloud are reported. Such recovery curves are observed to have an additional step of very slow field-change observed at an after-discharge value of electric field equal to 5-6 kV m-1. The behavior of recovery curves is explained in terms of the coronae charge and the relative efficiencies of the charge generating processes responsible for growth of positive charge pocket and main negative charge centre in the thundercloud. The charging currents responsible for the growth of charge in positive charge pockets is computed to be 2-4 times larger than that for the growth of the main negative charge. However, the charge destroyed in such a discharge is found to be comparable to that in a discharge between the main charge centres of the thundercloud.
NASA Astrophysics Data System (ADS)
Liu, Zijian; Corley, Steven; Shenderova, Olga; Brenner, Donald; Krim, Jacqueline
2013-03-01
Nano-diamond (ND) particles are known to be beneficial for wear and friction reduction when used as additives in liquids, but the fundamental origins of the improvement in tribological properties has not been established. In order to explore this issue, we have investigated the nanotribological properties of ND coated with self-assembled monolayers (SAM) as additives to solutions, employing gold/chrome coated quartz crystal microbalances (QCM). Measurements were performed with the QCM initially immersed in deionized water. ND particles with positively and negatively charged SAM end groups were then added to the water, while the frequency and amplitude of the QCM were monitored. Negative shifts in both the QCM frequency and amplitude were observed when ND with positively charged SAM end groups were added, while positive shifts in both the QCM frequency and amplitude were observed when ND with negatively charged ND end groups were added. The results are consistent with a lubricating effect for the negatively charged ND, but were only observed for sufficiently small negative ND particle size. Experiments on QCM surfaces with differing textures and roughness are in progress, to determine the separate contributing effects of surface roughness charge-water interactions. Funding provided by NSF DMR.
Biochemical Study of Anti-Inflammatory Proteins vCCI and vMIP-II
2014-07-17
protein ), where we showed that vCCI is able to bind so many different chemokines due to its general negatively charged surface , allowing it to bind...sample of these competition curves. Our conclusion from the data in Table 1 and Figure 1 is that the negatively charged surface of vCCI allows it to...Similar to our mutagenesis results, the overall data indicate that vCCI uses a negatively charged surface to bind positive charges on the chemokine
Nickel-hydrogen battery with oxygen and electrolyte management features
Sindorf, John F.
1991-10-22
A nickel-hydrogen battery or cell having one or more pressure vessels containing hydrogen gas and a plurality of cell-modules therein. Each cell-module includes a configuration of cooperatively associated oxygen and electrolyte mangement and component alignment features. A cell-module having electrolyte includes a negative electrode, a positive electrode adapted to facilitate oxygen diffusion, a separator disposed between the positive and negative electrodes for separating them and holding electrolyte for ionic conductivity, an absorber engaging the surface of the positive electrode facing away from the separator for providing electrolyte to the positive electrode, and a pair of surface-channeled diffusion screens for enclosing the positive and negative electrodes, absorber, and separator and for maintaining proper alignment of these components. The screens, formed in the shape of a pocket by intermittently sealing the edges together along as many as three sides, permit hydrogen gas to diffuse therethrough to the negative electrodes, and prevent the edges of the separator from swelling. Electrolyte is contained in the cell-module, absorbhed by the electrodes, the separator and the absorber.
Baspinar, Yücel; Borchert, Hans-Hubert
2012-07-01
The surface of all tissues, including the stratum corneum, carries a negative charge. Following that fact it is assumed that a positively charged topical formulation could lead to an enhanced penetration because of an increased interaction with the negative charge of the membrane. The intention of this study is to prove an enhanced penetration of a positively charged nanoemulsion compared to a negatively charged nanoemulsion, both containing prednicarbate. The release and penetration of these nanoemulsions, produced with the high pressure homogenization method, were investigated. Regarding these results reveals that the release of the negatively charged formulation is higher compared to the positively charged nanoemulsion, while the penetration of the positively charged nanoemulsion is enhanced compared to the negatively charged formulation. The results of the investigated positively charged nanoemulsion containing prednicarbate show that its topical use could be advantageous for the therapy of atopic dermatitis, especially regarding phytosphingosine, which was responsible for the positive charge. Copyright © 2012 Elsevier B.V. All rights reserved.
Negative ion source with hollow cathode discharge plasma
Hershcovitch, A.; Prelec, K.
1980-12-12
A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface is described. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.
Microelectrophoretic study of calcium oxalate monohydrate in macromolecular solutions
NASA Technical Reports Server (NTRS)
Curreri, P. A.; Onoda, G. Y., Jr.; Finlayson, B.
1987-01-01
Electrophoretic mobilities were measured for calcium oxalate monohydrate (COM) in solutions containing macromolecules. Two mucopolysaccharides (sodium heparin and chondroitin sulfate) and two proteins (positively charged lysozyme and negatively charged bovine serum albumin) were studied as adsorbates. The effects of pH, calcium oxalate surface charge (varied by calcium or oxalate ion activity), and citrate concentration were investigated. All four macromolecules showed evidence for adsorption. The macromolecule concentrations needed for reversing the surface charge indicated that the mucopolysaccharides have greater affinity for the COM surface than the proteins. Citrate ions at high concentrations appear to compete effectively with the negative protein for surface sites but show no evidence for competing with the positively charged protein.
The Role of Nanoparticle Surface Functionality in the Disruption of Model Cell Membranes
Moghadam, Babak Y.; Hou, Wen-Che; Corredor, Charlie; Westerhoff, Paul; Posner, Jonathan D.
2012-01-01
Lipid bilayers are biomembranes common to cellular life and constitute a continuous barrier between cells and their environment. Understanding the interaction of engineered nanomaterials (ENMs) with lipid bilayers is an important step toward predicting subsequent biological effects. In this study, we assess the effect of varying the surface functionality and concentration of 10 nm-diameter gold (Au) and titanium dioxide (TiO2) ENMs on the disruption of negatively charged lipid bilayer vesicles (liposomes) using a dye leakage assay. Our findings show that Au ENMs having both positive and negative surface charge induce leakage that reaches a steady state after several hours. Positively charged particles with identical surface functionality and different core composition show similar leakage effects and result in faster and greater leakage than negatively charged particles, which suggests that surface functionality, not particle core composition, is a critical factor in determining the interaction between ENMs and lipid bilayers. The results suggest that particles permanently adsorb to bilayers and that only one positively charged particle is required to disrupt a liposome and trigger leakage of its entire contents in contrast to mellitin molecules, the most widely studied membrane lytic peptide, which requires hundred of molecules to generate leakage. PMID:22921268
The possible physical mechanism for the EAP-SR co-action
NASA Astrophysics Data System (ADS)
Gong, Zhiqiang; Feng, Guolin; Dogar, Muhammad Mubashar; Huang, Gang
2017-11-01
The anomalous characteristics of summer precipitation and atmospheric circulation in the East Asia-West Pacific Region (EA-WP) associated with the co-action of East Asia/Pacific teleconnection-Silk Road teleconnection (EAP-SR) are investigated in this study. The compositions of EAP-SR phase anomalies can be expressed as pattern I (+ +), pattern II (+ -), pattern III (- -), and pattern IV (- +) using EAP and SR indices. It is found that the spatial distribution of summer precipitation anomalies in EA-WP corresponding to pattern I (III) shows a tripole structure in the meridional direction and a zonal dipole structure in the subtropical region, while pattern II (IV) presents a tripole pattern in meridional direction with compressed and continuous anomalies in the zonal direction over the subtropical region. The similar meridional and zonal structures are also found in the geopotential height anomalies at 500-hPa, as well as wind anomalies and moisture convergence at 850-hPa. Finally, a schematic mechanism for the EAP-SR co-action upon the summer precipitation in EA-WP is built: (1) Pattern I (III) exhibits that the negative (positive) sea surface temperature (SST) anomalies over tropical East Pacific may cause the enhanced (weakened) convective activity dominating the West Pacific, trigger the positive (negative) EAP teleconnection and produce more (less) precipitation. Besides, the negative (positive) SST anomalies over the Indonesia Maritime Continent (IMC) may further weaken (strengthen) anomalous downward (upward) motion over the South China Sea (SCS), cause negative (positive) geopotential height anomalies at the middle troposphere and surrounding regions through the function of the tropical Hadley circulation. Then the negative (positive) geopotential height anomalies could motivate the positive (negative) EAP teleconnection through the northward propagation of wave-activity perturbation. Meanwhile, a positive (negative) geopotential height anomalous pattern over Eastern Europe motivates a Rossby wave train propagation from Western Europe to west-central Asia. This circumstance can cause suppressed (enhanced) convection and less (more) precipitation over northwestern India and Pakistan, which could strengthen the negative (positive) geopotential height and positive (negative) vorticity anomalies over central East Asia, resulting in a negative (positive) SR teleconnection along the Asian jet stream. A positive (negative) lobe over the Korean Peninsula and Japan corresponding to SR overlaps with a positive (negative) lobe of EAP, which strengthens the anomalous phase contrast on both sides of 120°E. Accordingly, summer precipitation anomalies in EA-WP exhibit the meridional tripole pattern and the zonal dipole pattern. (2) Pattern II (IV) indicates that the normal SST anomalies over the tropical East Pacific cause the weak tele-impact on the tropical West Pacific, while the positive (negative) SST anomalies over the IMC will lead to a negative (positive) lobe of EAP over the subtropical region. This circumstance can weaken the positive (negative) lobe of SR over subtropical region, causing compressed and continuous negative (positive) anomalies of 500-hPa geopotential height and positive (negative) surface precipitation anomalies from central East China to Japan.
NASA Astrophysics Data System (ADS)
Kastanos, Evdokia; Hadjigeorgiou, Katerina; Kyriakides, Alexandros; Pitris, Costas
2011-03-01
Urinary tract infection (UTI) diagnosis requires an overnight culture to identify a sample as positive or negative for a UTI. Additional cultures are required to identify the pathogen responsible for the infection and to test its sensitivity to antibiotics. A rise in ineffective treatments, chronic infections, rising health care costs and antibiotic resistance are some of the consequences of this prolonged waiting period of UTI diagnosis. In this work, Surface Enhanced Raman Spectroscopy (SERS) is used for classifying bacterial samples as positive or negative for UTI. SERS spectra of serial dilutions of E.coli bacteria, isolated from a urine culture, were classified as positive (105-108 cells/ml) or negative (103-104 cells/ml) for UTI after mixing samples with gold nanoparticles. A leave-one-out cross validation was performed using the first two principal components resulting in the correct classification of 82% of all samples. Sensitivity of classification was 88% and specificity was 67%. Antibiotic sensitivity testing was also done using SERS spectra of various species of gram negative bacteria collected 4 hours after exposure to antibiotics. Spectral analysis revealed clear separation between the spectra of samples exposed to ciprofloxacin (sensitive) and amoxicillin (resistant). This study can become the basis for identifying urine samples as positive or negative for a UTI and determining their antibiogram without requiring an overnight culture.
Nordwald, Erik M; Kaar, Joel L
2013-08-01
We have recently developed a general approach to improve the utility of enzymes in ionic liquids (ILs) via tuning of the ratio of enzyme-containing positive to negative surface charges. In this work, the impact of enzyme surface charge ratio on the biophysical interaction of 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]) with chymotrypsin and lipase was investigated to understand this approach at the molecular level. Results of fluorescence quenching assays indicated that the extent of binding of the [BMIM] cation decreased (7- and 3.5-fold for chymotrypsin and lipase, respectively) as a function of increasing ratio of positive to negative surface charges. Conformational stability assays further showed a close correlation between thermodynamic stabilization and enzyme surface charge ratio as well as [BMIM] binding. As evidence of this correlation, succinylation and acetylation resulted in the stabilization of chymotrypsin in 10% (v/v) [BMIM][Cl] by 17.0 and 6.6 kJ/mol, respectively, while cationization destabilized chymotrypsin by 3.6 kJ/mol. Combined, these results indicate that altering the surface charge ratio mediates the organization of IL molecules, namely, [BMIM] and [Cl], around the enzymes. Preferential exclusion of [Cl], in particular, via lowering of the ratio of positive to negative surface charges, correlated with increased enzyme stability. Accordingly, these results more broadly provide insight into the mechanism of stabilization in ILs via charge modification.
Hydration and Thermal Expansion in Anatase Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, He; Li, Qiang; Ren, Yang
A tunable thermal expansion is reported in nanosized anatase by taking advantage of surface hydration. The coefficient of thermal expansion of 4 nm TiO2 along a-axis is negative with a hydrated surface and is positive without a hydrated surface. High-energy synchrotron X-ray pair distribution function analysis combined with ab initio calculations on the specific hydrated surface are carried out to reveal the local structure distortion that is responsible for the unusual negative thermal expansion.
NASA Astrophysics Data System (ADS)
Bhattacharjee, Sourav; van Opstal, Edward J.; Alink, Gerrit M.; Marcelis, Antonius T. M.; Zuilhof, Han; Rietjens, Ivonne M. C. M.
2013-06-01
The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size 45 nm) and polystyrene nanoparticles (PSNPs/size 50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).
Wang, Hui; Bi, Xiaohui; Xu, Lei; Li, Yirong
2017-01-01
Background Rheumatoid factor causes positive interference in multiple immunoassays. Recently, negative interference has also been found in immunoassays in the presence of rheumatoid factor. The chemiluminescent microparticle immunoassay is widely used to determine serum alpha-fetoprotein. However, it is not clear whether the presence of rheumatoid factor in the serum causes interference in the chemiluminescent microparticle immunoassay of alpha-fetoprotein. Methods Serum alpha-fetoprotein was determined using the ARCHITECT alpha-fetoprotein assay. The estimation of alpha-fetoprotein recovery was carried out in samples prepared by diluting high-concentration alpha-fetoprotein serum with rheumatoid factor-positive or rheumatoid factor-negative serum. Paramagnetic microparticles coated with hepatitis B surface antigen-anti-HBs complexes were used to remove rheumatoid factor from the serum. Results The average recovery of alpha-fetoprotein was 88.4% and 93.8% in the rheumatoid factor-positive and rheumatoid factor-negative serum samples, respectively. The recovery of alpha-fetoprotein was significantly lower in the rheumatoid factor-positive serum samples than in the rheumatoid factor-negative serum samples. In two of five rheumatoid factor-positive samples, a large difference was found (9.8%) between the average alpha-fetoprotein recoveries in the serially diluted and initial recoveries. Fourteen rheumatoid factor-positive serum samples were pretreated with hepatitis B surface antigen-anti-HBs complex-coated paramagnetic microparticles. The alpha-fetoprotein concentrations measured in the pretreated samples increased significantly. Conclusions It was concluded that the alpha-fetoprotein chemiluminescent microparticle immunoassay is susceptible to interference by rheumatoid factor, leading to significantly lower results. Eliminating the incidence of negative interference from rheumatoid factor should be an important goal for immunoassay providers. In the meantime, laboratorians must remain alert to the negative interference by rheumatoid factor, and in some cases, pretreat rheumatoid factor-positive samples with blocking or absorbing reagents.
Numerical modelling of needle-grid electrodes for negative surface corona charging system
NASA Astrophysics Data System (ADS)
Zhuang, Y.; Chen, G.; Rotaru, M.
2011-08-01
Surface potential decay measurement is a simple and low cost tool to examine electrical properties of insulation materials. During the corona charging stage, a needle-grid electrodes system is often used to achieve uniform charge distribution on the surface of the sample. In this paper, a model using COMSOL Multiphysics has been developed to simulate the gas discharge. A well-known hydrodynamic drift-diffusion model was used. The model consists of a set of continuity equations accounting for the movement, generation and loss of charge carriers (electrons, positive and negative ions) coupled with Poisson's equation to take into account the effect of space and surface charges on the electric field. Four models with the grid electrode in different positions and several mesh sizes are compared with a model that only has the needle electrode. The results for impulse current and surface charge density on the sample clearly show the effect of the extra grid electrode with various positions.
Zhang, Zhongwei; Chen, Jie; Li, Baowen
2017-09-28
From the mathematic category of surface Gaussian curvature, carbon allotropes can be classified into three types: zero curvature, positive curvature, and negative curvature. By performing Green-Kubo equilibrium molecular dynamics simulations, we found that surface curvature has a significant impact on the phonon vibration and thermal conductivity (κ) of carbon crystals. When curving from zero curvature to negative or positive curvature structures, κ is reduced by several orders of magnitude. Interestingly, we found that κ of negatively curved carbon crystals exhibits a monotonic dependence on curvature. Through phonon mode analysis, we show that curvature induces remarkable phonon softening in phonon dispersion, which results in the reduction of phonon group velocity and flattening of phonon band structure. Furthermore, the curvature was found to induce phonon mode hybridization, leading to the suppression of phonon relaxation time. Our study provides physical insight into thermal transport in curvature materials, and will be valuable in the modulation of phonon activity through surface curvature.
Positive zeta potential of a negatively charged semi-permeable plasma membrane
NASA Astrophysics Data System (ADS)
Sinha, Shayandev; Jing, Haoyuan; Das, Siddhartha
2017-08-01
The negative charge of the plasma membrane (PM) severely affects the nature of moieties that may enter or leave the cells and controls a large number of ion-interaction-mediated intracellular and extracellular events. In this letter, we report our discovery of a most fascinating scenario, where one interface (e.g., membrane-cytosol interface) of the negatively charged PM shows a positive surface (or ζ) potential, while the other interface (e.g., membrane-electrolyte interface) still shows a negative ζ potential. Therefore, we encounter a completely unexpected situation where an interface (e.g., membrane-cytosol interface) that has a negative surface charge density demonstrates a positive ζ potential. We establish that the attainment of such a property by the membrane can be ascribed to an interplay of the nature of the membrane semi-permeability and the electrostatics of the electric double layer established on either side of the charged membrane. We anticipate that such a membrane property can lead to such capabilities of the cell (in terms of accepting or releasing certain kinds of moieties as well regulating cellular signaling) that was hitherto inconceivable.
The influence of PAMAM dendrimers surface groups on their interaction with porcine pepsin.
Ciolkowski, Michal; Rozanek, Monika; Bryszewska, Maria; Klajnert, Barbara
2013-10-01
In this study the ability of three polyamidoamine (PAMAM) dendrimers with different surface charge (positive, neutral and negative) to interact with a negatively charged protein (porcine pepsin) was examined. It was shown that the dendrimer with a positively charged surface (G4 PAMAM-NH2), as well as the dendrimer with a neutral surface (G4 PAMAM-OH), were able to inhibit enzymatic activity of pepsin. It was also found that these dendrimers act as mixed partially non-competitive pepsin inhibitors. The negatively charged dendrimer (G3.5 PAMAM-COOH) was not able to inhibit the enzymatic activity of pepsin, probably due to the electrostatic repulsion between this dendrimer and the protein. No correlation between changes in enzymatic activity of pepsin and alterations in CD spectrum of the protein was observed. It indicates that the interactions between dendrimers and porcine pepsin are complex, multidirectional and not dependent only on disturbances of the secondary structure. © 2013.
ERIC Educational Resources Information Center
Schonborn, Konrad; Host, Gunnar; Palmerius, Karljohan
2010-01-01
To help in interpreting the polarity of a molecule, charge separation can be visualized by mapping the electrostatic potential at the van der Waals surface using a color gradient or by indicating positive and negative regions of the electrostatic potential using different colored isosurfaces. Although these visualizations capture the molecular…
A surface physicochemical rationale for calculus formation in the oral cavity
NASA Astrophysics Data System (ADS)
Busscher, Henk J.; White, Don J.; Kamminga-Rasker, Hannetta J.; van der Mei, Henny C.
2004-01-01
Surface free energies of dental hard tissues, including salivary conditioning films on enamel, play a crucial role in mineralization, dissolution and adhesion processes at the tooth surface. These mineralization reactions at oral surfaces control the development and progression of various diseases. In this paper, we compare the surface free energies, as derived from measured contact angles with liquids, of salivary conditioning films on enamel after exposure to dentifrices with and without anti-calculus additives, such as hexametaphosphate, pyrophosphate or zinc citrate trihydrate. Measured contact angles were converted to surface free energies using the concept of Lifshitz-Van der Waals and Lewis acid-base components. Nearly all dentifrices yield film properties with a negative interfacial tension against an aqueous phase, which thermodynamically opposes mineralization. Concurrent with negative interfacial tensions, are positive values of the interfacial free energy of adhesion for octacalcium-phosphate (OCP) to the film surfaces, indicating that adhesion of newly mineralized, calcium-phosphate rich phases is thermodynamically unfavorable. Interestingly, two out of the three dentifrices with anti-calculus additives containing hexametaphosphate and pyrophosphate cause most positive interfacial free energies for OCP adhesion of 5.8 and 2.6 mJ/m 2, respectively. In summary, surface thermodynamical analyses indicate that anti-calculus effects of commercial dentifrice formulations are consistent with more negative interfacial tensions of salivary conditioning films on enamel surfaces and thus with more positive values for the interfacial free energy of adhesion toward newly formed mineral phases. A dentifrice containing hexametaphosphate yielded thermodynamic properties of salivary conditioning films most unfavorable for calculus formation.
Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy†
Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin; Lohse, Samuel E.; Lee, Chang-soo; Torelli, Marco D.; Hamers, Robert J.; Murhpy, Catherine J.; Orr, Galya
2015-01-01
A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate eficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localization patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells. PMID:24816810
Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin
A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate efficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localizationmore » patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells.« less
Charging of dust grains in a plasma with negative ions
NASA Astrophysics Data System (ADS)
Kim, Su-Hyun; Merlino, Robert L.
2006-05-01
The effect of negative ions on the charging of dust particles in a plasma is investigated experimentally. A plasma containing a very low percentage of electrons is formed in a single-ended SF6 is admitted into the vacuum system. The relatively cold (Te≈0.2eV ) readily attach to SF6 molecules to form SF6- negative ions. Calculations of the dust charge indicate that for electrons, negative ions, and positive ions of comparable temperatures, the charge (or surface potential) of the dust can be positive if the positive ion mass is smaller than the negative ion mass and if ɛ, the ratio of the electron to positive ion density, is sufficiently small. The K+ positive ions (mass 39amu) and SF6- negative ions (mass 146amu), and also utilizes a rotating cylinder to dispense dust into the plasma column. Analysis of the current-voltage characteristics of a Langmuir probe in the dusty plasma shows evidence for the reduction in the (magnitude) of the negative dust charge and the transition to positively charged dust as the relative concentration of the residual electrons is reduced. Some remarks are offered concerning experiments that could become possible in a dusty plasma with positive grains.
The electrokinetic behavior of calcium oxalate monohydrate in macromolecular solutions
NASA Technical Reports Server (NTRS)
Curreri, P. A.; Onoda, G. Y., Jr.; Finlayson, B.
1988-01-01
Electrophoretic mobilities were measured for calcium oxalate monohydrate (COM) in solutions containing macromolecules. Two mucopolysaccharides (sodium heparin and chrondroitin sulfate) and two proteins (positively charged lysozyme and negatively charged bovine serum albumin) were studied as adsorbates. The effects of pH, calcium oxalate surface charge (varied by calcium or oxalate ion activity), and citrate concentration were investigated. All four macromolecules showed evidence for chemical adsorption. The macromolecule concentrations needed for reversing the surface charge indicated that the mucopopolysacchrides have greater affinity for the COM surface than the proteins. The amount of proteins that can chemically adsorb appears to be limited to approximately one monomolecular layer. When the surface charge is high, an insufficient number of proteins can chemically adsorb to neutralize or reverse the surface charge. The remaining surface charge is balanced by proteins held near the surface by longer range electrostatic forces only. Citrate ions at high concentrations appear to compete effectively with the negative protein for surface sites but show no evidence for competing with the positively charged protein.
Multiwalled Carbon Nanotube Deposition on Model Environmental Surfaces
Deposition of multiwalled carbon nanotubes (MWNTs) on model environmental surfaces was investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Deposition behaviors of MWNTs on positively and negatively charged surfaces were in good agreement with Der...
On charging of snow particles in blizzard
NASA Technical Reports Server (NTRS)
Shio, Hisashi
1991-01-01
The causes of the charge polarity on the blizzard, which consisted of fractured snow crystals and ice particles, were investigated. As a result, the charging phenomena showed that the characteristics of the blizzard are as follows: (1) In the case of the blizzard with snowfall, the fractured snow particles drifting near the surface of snow field (lower area: height 0.3 m) had positive charge, while those drifting at higher area (height 2 m) from the surface of snow field had negative charge. However, during the series of blizzards two kinds of particles positively and negatively charged were collected in equal amounts in a Faraday Cage. It may be considered that snow crystals with electrically neutral properties were separated into two kinds of snow flakes (charged positively and negatively) by destruction of the snow crystals. (2) In the case of the blizzard which consisted of irregularly formed ice drops (generated by peeling off the hardened snow field), the charge polarity of these ice drops salting over the snow field was particularly controlled by the crystallographic characteristics of the surface of the snow field hardened by the powerful wind pressure.
Detecting negative ions on board small satellites
NASA Astrophysics Data System (ADS)
Lepri, S. T.; Raines, J. M.; Gilbert, J. A.; Cutler, J.; Panning, M.; Zurbuchen, T. H.
2017-04-01
Recent measurements near comets, planets, and their satellites have shown that heavy ions, energetic neutral atoms, molecular ions, and charged dust contain a wealth of information about the origin, evolution, and interaction of celestial bodies with their space environment. Using highly sensitive plasma instruments, positively charged heavy ions have been used to trace exospheric and surface composition of comets, planets, and satellites as well as the composition of interplanetary and interstellar dust. While positive ions dominate throughout the heliosphere, negative ions are also produced from surface interactions. In fact, laboratory experiments have shown that oxygen released from rocky surfaces is mostly negatively charged. Negative ions and negatively charged nanograins have been detected with plasma electron analyzers in several different environments (e.g., by Cassini and Rosetta), though more extensive studies have been challenging without instrumentation dedicated to negative ions. We discuss an adaptation of the Fast Imaging Plasma Spectrometer (FIPS) flown on MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) for the measurement of negatively charged particles. MESSENGER/FIPS successfully measured the plasma environment of Mercury from 2011 until 2015, when the mission ended, and has been used to map multiple ion species (H+ through Na+ and beyond) throughout Mercury's space environment. Modifications to the existing instrument design fits within a 3U CubeSat volume and would provide a low mass, low power instrument, ideal for future CubeSat or distributed sensor missions seeking, for the first time, to characterize the contribution of negative particles in the heliospheric plasmas near the planets, moons, comets, and other sources.
Uniform refraction in negative refractive index materials.
Gutiérrez, Cristian E; Stachura, Eric
2015-11-01
We study the problem of constructing an optical surface separating two homogeneous, isotropic media, one of which has a negative refractive index. In doing so, we develop a vector form of Snell's law, which is used to study surfaces possessing a certain uniform refraction property, in both the near- and far-field cases. In the near-field problem, unlike the case when both materials have positive refractive indices, we show that the resulting surfaces can be neither convex nor concave.
NASA Astrophysics Data System (ADS)
Kim, Hyun-Ha; Teramoto, Yoshiyuki; Ogata, Atsushi; Kang, Woo Seok; Hur, Min; Song, Young-Hoon
2018-06-01
Surface streamers propagating on the surface of titanium dioxide (TiO2) and alumina (γ-Al2O3) were studied in negative polarity using intensified charge coupled device (ICCD) imaging and numerical simulation. Detailed time-resolved ICCD images of cathode-directed streamers (CDSs) emanating from a ground electrode are first presented in this report. Instead of primary streamers in positive polarity, only a glow-like discharge appeared in the early stage at the cathode under negative polarity. After this discharge disappeared, a counter-propagating CDS initiated from the ground electrode (anode). Numerical simulation indicated that strong electric fields at the pellet-anode and the formation of positive ion rich local spots were the main reason for the CDS formation near the ground electrode. The maximum velocity was 750 km s‑1 for Ag-supported γ-Al2O3 and 550 km s‑1 for Ag-supported TiO2, respectively. In contrast to the CDS in the gas-phase with a positive polarity, the CDS in a catalyst packed-bed under negative polarity showed more branching and a larger number of streamers in the presence of oxygen than in pure N2.
Lim, Bernard; Venkatachalam, Kalpathi L; Jahangir, Arshad; Johnson, Susan B; Asirvatham, Samuel J
2008-08-01
Thromboembolism resulting from coagulum formation on the catheter and electrode surfaces is a serious complication with radiofrequency ablation procedures for heart rhythm disorders. Why coagulum occurs despite therapeutic heparinization is unclear. In this report, we demonstrate a novel approach to minimize coagulum formation based on the electromolecular characteristics of fibrinogen. Atomic force microscopy was used to establish that fibrinogen deposited on surfaces underwent conformational changes that resulted in spontaneous clot formation. We then immersed ablation catheters that were uncharged, negatively, or positively charged in heparinized blood for 30 minutes and noted the extent of clot formation. In separate experiments, ablation catheters were sutured to the ventricle of an excised porcine heart immersed in whole, heparinized blood and radiofrequency ablation performed for 5 minutes with and without charge delivered to the catheter tips. Electron microscopy of the catheter tips showed surface coverage of fibrin clot of the catheter to be 33.8% for negatively charged catheters, compared with 84.7% (P = 0.01) in noncharged catheters. There was no significant difference in surface coverage of fibrin clot between positively charged catheters (93.8%) and noncharged catheters (84.7%, P = ns). In contrast, the thickness of surface clot coverage for positively charged catheters was 87.5%, compared with 28.45% (P= 0.03) for noncharged catheters and 11.25% (P = 0.03) for negatively charged catheters, compared with noncharged catheters. We describe a novel method of placing negative charge on electrodes during ablation that reduced coagulum formation. This may decrease thromboembolism-related complications with radiofrequency ablation procedures.
Investigation of a single barrier discharge in submillimeter air gaps. Nonuniform field
NASA Astrophysics Data System (ADS)
Bondarenko, P. N.; Emel'yanov, O. A.; Shemet, M. V.
2014-08-01
Pulse characteristics of single barrier discharges as well as parameters of charges accumulated on the surface of a dielectric under the atmospheric pressure in the "needle-(0.1-2.0)-mm air gap-polymer barrier-plane" system are investigated. It is found experimentally that for the positive polarity of the needle, the voltage for the discharge initiation is higher than in the case of the negative polarity by ˜25-35%. The reversal of the needle polarity from negative to positive increases the amplitude of the discharge current and the accumulated surface charge by ˜1.5-3 times. For the positive polarity of the needle, the discharge is governed by a streamer mechanism, while for the negative polarity, the discharge is initiated by the formation of a single Trichel pulse. The single pulse regime is observed for the discharge current up to a certain electrode gap d CR. For the positive needle and for air gap width d air > d CR ≈ 1.5 mm, a multipulse burst corona is formed, while for the negative needle and d air > d CR ≈ 0.9 mm, a damped sequence of Trichel pulses evolves in the system.
Triboelectricity: macroscopic charge patterns formed by self-arraying ions on polymer surfaces.
Burgo, Thiago A L; Ducati, Telma R D; Francisco, Kelly R; Clinckspoor, Karl J; Galembeck, Fernando; Galembeck, Sergio E
2012-05-15
Tribocharged polymers display macroscopically patterned positive and negative domains, verifying the fractal geometry of electrostatic mosaics previously detected by electric probe microscopy. Excess charge on contacting polyethylene (PE) and polytetrafluoroethylene (PTFE) follows the triboelectric series but with one caveat: net charge is the arithmetic sum of patterned positive and negative charges, as opposed to the usual assumption of uniform but opposite signal charging on each surface. Extraction with n-hexane preferentially removes positive charges from PTFE, while 1,1-difluoroethane and ethanol largely remove both positive and negative charges. Using suitable analytical techniques (electron energy-loss spectral imaging, infrared microspectrophotometry and carbonization/colorimetry) and theoretical calculations, the positive species were identified as hydrocarbocations and the negative species were identified as fluorocarbanions. A comprehensive model is presented for PTFE tribocharging with PE: mechanochemical chain homolytic rupture is followed by electron transfer from hydrocarbon free radicals to the more electronegative fluorocarbon radicals. Polymer ions self-assemble according to Flory-Huggins theory, thus forming the experimentally observed macroscopic patterns. These results show that tribocharging can only be understood by considering the complex chemical events triggered by mechanical action, coupled to well-established physicochemical concepts. Patterned polymers can be cut and mounted to make macroscopic electrets and multipoles.
Signs of depth-luminance covariance in 3-D cluttered scenes.
Scaccia, Milena; Langer, Michael S
2018-03-01
In three-dimensional (3-D) cluttered scenes such as foliage, deeper surfaces often are more shadowed and hence darker, and so depth and luminance often have negative covariance. We examined whether the sign of depth-luminance covariance plays a role in depth perception in 3-D clutter. We compared scenes rendered with negative and positive depth-luminance covariance where positive covariance means that deeper surfaces are brighter and negative covariance means deeper surfaces are darker. For each scene, the sign of the depth-luminance covariance was given by occlusion cues. We tested whether subjects could use this sign information to judge the depth order of two target surfaces embedded in 3-D clutter. The clutter consisted of distractor surfaces that were randomly distributed in a 3-D volume. We tested three independent variables: the sign of the depth-luminance covariance, the colors of the targets and distractors, and the background luminance. An analysis of variance showed two main effects: Subjects performed better when the deeper surfaces were darker and when the color of the target surfaces was the same as the color of the distractors. There was also a strong interaction: Subjects performed better under a negative depth-luminance covariance condition when targets and distractors had different colors than when they had the same color. Our results are consistent with a "dark means deep" rule, but the use of this rule depends on the similarity between the color of the targets and color of the 3-D clutter.
Chou, Huei Yin; Hecker, Rob; Martin, Angela
2012-05-01
The aim of the present study was to investigate the effects of job demands and resources as well as emotional labour on job satisfaction and emotional exhaustion among nurses. While emotional labour is a construct that has considerable significance in health care as nurses often need to express organizationally desired emotions, little research has investigated the relationships between emotional labour, job demands and resources in the prediction of nurses' well-being. The questionnaire was distributed to 450 registered nurses (RN) working in a teaching hospital in Taiwan during February 2007, of which 240 valid questionnaires were returned and analysed (53.33% response rate). In addition to descriptive statistics and correlation, structural equation modelling (LISREL 8.8) was conducted. The findings showed that the frequency of interacting with difficult patients positively related to surface acting. Perceived organizational support (POS) positively related to deep acting and negatively to surface acting. The results also showed that surface acting related negatively, and deep acting related positively, to job satisfaction. The frequency of interactions with difficult patients related positively to emotional exhaustion, and negatively to job satisfaction. Perceived organizational support related negatively to emotional exhaustion and positively to job satisfaction. The results suggest that job demands, resources and emotional labour can predict nurses' well-being. The results of the present study indicate that nurses' well-being can be predicted by job demands, resources and emotional labour. There is a need to address organizational support and training programmes to enhance job satisfaction and reduce emotional exhaustion among nurses. © 2011 Blackwell Publishing Ltd.
Wang, Karyn L; Groth, Markus
2014-03-01
The impact of emotional labor on customer outcomes is gaining considerable attention in the literature, with research suggesting that the authenticity of emotional displays may positively impact customer outcomes. However, research investigating the impact of more inauthentic emotions on service delivery outcomes is mixed (see Chi, Grandey, Diamond, & Krimmel, 2011). This study explores 2 potential reasons for why the service outcomes of inauthentic emotions are largely inconsistent: the impact of distinct surface acting strategies and the role of service delivery context. Drawing on social-functional theories of emotions, we surveyed 243 dyads of employees and customers from a wide variety of services to examine the links between employee surface acting and customer service satisfaction, and whether this relationship is moderated by relationship strength and service personalization. Our findings suggest that faking positive emotions has no bearing on service satisfaction, but suppressing negative emotions interacts with contextual factors to predict customers' service satisfaction, in line with social-functional theories of emotions. Specifically, customers who know the employee well are less sensitive to the negative effects of suppressed negative emotions, and customers in highly personalized service encounters are more sensitive to the negative effects of suppressed negative emotions. We conclude with a discussion of theoretical and practical implications.
NASA Astrophysics Data System (ADS)
Lee, Meng-Shiu; Huang, Jui-Chan; Wu, Tzu-Jung
2017-06-01
The purpose of this study is to investigate the relationship among surface acting, mental health, and positive group affective tone. According to the prior theory, this study attempts to establish a comprehensive research framework among these variables, and furthermore tests the moderating effect of positive group affective tone. Data were collected from 435 employees in 52 service industrial companies by questionnaire, and this study conducted multilevel analysis. The results showed that surface acting will negatively affect the mental health. In addition, the positive group affective tone have significant moderating effect on the relationship among surface acting and mental health. Finally, this study discusses managerial implications and highlights future research suggestions.
Kitagawa, Shinya; Tsuda, Takao
2003-05-02
The behavior of neutral sample solutes in pressurized flow driven electrochromatography using a mixed stationary phase, which consisted of ODS and anion-exchange (ODS-SAX), was studied. Applications of both positive and negative voltage on a column induced increases in retention factors of sample solutes. The direction of an electroosmotic flow under applications of positive and negative voltage were the same, therefore, the sign of the surface charge density under positive and negative voltage was opposite. We proposed a new equation for the relationship between applied voltage and surface charge density, and the practical electroosmotic flow conformed to this equation. Studying the electroosmotic flow using our proposed equation revealed that the applied negative voltage accelerates the protonation of the quaternary ammonium group and dissociation of the silanol group on packing materials. The retention behavior of a neutral solute was affected by the existence of the charged functional groups. We propose that this phenomenon is applicable to the control of the retention behavior of a sample solute using an electric field.
Chen, Wei; Yu, Zunxiong; Pang, Jinshan; Yu, Peng; Tan, Guoxin; Ning, Chengyun
2017-01-01
The discovery of piezoelectricity in natural bone has attracted extensive research in emulating biological electricity for various tissue regeneration. Here, we carried out experiments to build biocompatible potassium sodium niobate (KNN) ceramics. Then, influence substrate surface charges on bovine serum albumin (BSA) protein adsorption and cell proliferation on KNN ceramics surfaces was investigated. KNN ceramics with piezoelectric constant of ~93 pC/N and relative density of ~93% were fabricated. The adsorption of protein on the positive surfaces (Ps) and negative surfaces (Ns) of KNN ceramics with piezoelectric constant of ~93 pC/N showed greater protein adsorption capacity than that on non-polarized surfaces (NPs). Biocompatibility of KNN ceramics was verified through cell culturing and live/dead cell staining of MC3T3. The cells experiment showed enhanced cell growth on the positive surfaces (Ps) and negative surfaces (Ns) compared to non-polarized surfaces (NPs). These results revealed that KNN ceramics had great potential to be used to understand the effect of surface potential on cells processes and would benefit future research in designing piezoelectric materials for tissue regeneration. PMID:28772704
Chen, Wei; Yu, Zunxiong; Pang, Jinshan; Yu, Peng; Tan, Guoxin; Ning, Chengyun
2017-03-26
The discovery of piezoelectricity in natural bone has attracted extensive research in emulating biological electricity for various tissue regeneration. Here, we carried out experiments to build biocompatible potassium sodium niobate (KNN) ceramics. Then, influence substrate surface charges on bovine serum albumin (BSA) protein adsorption and cell proliferation on KNN ceramics surfaces was investigated. KNN ceramics with piezoelectric constant of ~93 pC/N and relative density of ~93% were fabricated. The adsorption of protein on the positive surfaces (Ps) and negative surfaces (Ns) of KNN ceramics with piezoelectric constant of ~93 pC/N showed greater protein adsorption capacity than that on non-polarized surfaces (NPs). Biocompatibility of KNN ceramics was verified through cell culturing and live/dead cell staining of MC3T3. The cells experiment showed enhanced cell growth on the positive surfaces (Ps) and negative surfaces (Ns) compared to non-polarized surfaces (NPs). These results revealed that KNN ceramics had great potential to be used to understand the effect of surface potential on cells processes and would benefit future research in designing piezoelectric materials for tissue regeneration.
Divergent surface and total soil moisture projections under global warming
Berg, Alexis; Sheffield, Justin; Milly, Paul C.D.
2017-01-01
Land aridity has been projected to increase with global warming. Such projections are mostly based on off-line aridity and drought metrics applied to climate model outputs but also are supported by climate-model projections of decreased surface soil moisture. Here we comprehensively analyze soil moisture projections from the Coupled Model Intercomparison Project phase 5, including surface, total, and layer-by-layer soil moisture. We identify a robust vertical gradient of projected mean soil moisture changes, with more negative changes near the surface. Some regions of the northern middle to high latitudes exhibit negative annual surface changes but positive total changes. We interpret this behavior in the context of seasonal changes in the surface water budget. This vertical pattern implies that the extensive drying predicted by off-line drought metrics, while consistent with the projected decline in surface soil moisture, will tend to overestimate (negatively) changes in total soil water availability.
Mandal, Debasis; Kumar Dash, Sandeep; Das, Balaram; Chattopadhyay, Sourav; Ghosh, Totan; Das, Debasis; Roy, Somenath
2016-10-01
Recently bio-inspired experimental processes for synthesis of nanoparticles are receiving significant attention in nanobiotechnology. Silver nanoparticles (Ag NPs) have been used very frequently in recent times to the wounds, burns and bacterial infections caused by drug-resistant microorganisms. Though, the antibacterial effects of Ag NPs on some multi drug-resistant bacteria specially against Gram positive bacteria has been established, but further investigation is needed to elicit its effectiveness against Gram negatives and to identify the probable mechanism of action. Thus, the present study was conducted to synthesize Ag NPs using Andrographis paniculata leaf extract and to investigate its antibacterial efficacy. After synthesis process the biosynthesized nanoparticles were purified and characterized with the help of various physical measurement techniques which raveled their purity, stability and small size range. The antimicrobial activity of Ag NPs was determined against both Gram-positive Enterococcus faecalis and Gram-negative Proteus vulgaris. Results showed comparatively higher antibacterial efficacy of Ag NPs against Gram positive Enterococcus faecalis strains. It was found that greater difference in zeta potential values between Gram positive bacteria and Ag NPs triggers better internalization of the particles. Thus the cell surface charge played vital role in cell killing which was confirmed by surface zeta potential study. Finally it may be concluded that green synthesized Ag NPs using Andrographis paniculata leaf extract can be very useful against both multi drug resistant Gram-positive and Gram-negative bacteria. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Qi, Bo; Gao, Chunjia; Sun, Zelai; Li, Chengrong
2017-11-01
Surface charge accumulation can incur changes in electric field distribution, involved in the electron propagation process, and result in a significant decrease in the surface flashover voltage. The existing 2D surface charge measurement fails to meet the actual needs in real engineering applications that usually adopt the 45° conical frustum insulators. The present research developed a novel 3D measurement platform to capture surface charge distribution on solid insulation under nanosecond pulse in a vacuum. The results indicate that all surface charges are positive under a positive pulse and negative under a negative pulse. Surface charges tend to accumulate more near the upper electrode. Surface charge density increases significantly with the increase in pulse counts and amplitudes. Accumulation of surface charge results in a certain decrease of flashover voltage. Taking consideration of the secondary electron emission for the surface charge accumulation, four materials were obtained to demonstrate the effects on surface charge. Combining the effect incurred by secondary electron emission and the weighty action taken by surface charge accumulation on the flashover phenomena, the discharge mechanism along the insulator surface under nanosecond pulse voltage was proposed.
METHOD OF OBTAINING AN IMPROVED WELD IN INERT ARC WELDING
Correy, T.B.
1962-12-11
A method is reported for inert arc welding. An a-c welding current is applied to the workpiece and welding electrode such that the positive portion of each cycle thereof, with the electrode positive, has only sufficient energy to clean the surface of the workpiece and the negative portion of each cycle thereof, with the electrode negative, contains the energy required to weld. (AEC)
Interactions of microbicide nanoparticles with a simulated vaginal fluid.
das Neves, José; Rocha, Cristina M R; Gonçalves, Maria Pilar; Carrier, Rebecca L; Amiji, Mansoor; Bahia, Maria Fernanda; Sarmento, Bruno
2012-11-05
The interaction with cervicovaginal mucus presents the potential to impact the performance of drug nanocarriers. These systems must migrate through this biological fluid in order to deliver their drug payload to the underlying mucosal surface. We studied the ability of dapivirine-loaded polycaprolactone (PCL)-based nanoparticles (NPs) to interact with a simulated vaginal fluid (SVF) incorporating mucin. Different surface modifiers were used to produce NPs with either negative (poloxamer 338 NF and sodium lauryl sulfate) or positive (cetyltrimethylammonium bromide) surface charge. Studies were performed using the mucin particle method, rheological measurements, and real-time multiple particle tracking. Results showed that SVF presented rheological properties similar to those of human cervicovaginal mucus. Analysis of NP transport indicated mild interactions with mucin and low adhesive potential. In general, negatively charged NPs underwent subdiffusive transport in SVF, i.e., hindered as compared to their diffusion in water, but faster than for positively charged NPs. These differences were increased when the pH of SVF was changed from 4.2 to 7.0. Diffusivity was 50- and 172-fold lower in SVF at pH 4.2 than in water for negatively charged and positively charged NPs, respectively. At pH 7.0, this decrease was around 20- and 385-fold, respectively. The estimated times required to cross a layer of SVF were equal to or lower than 1.7 h for negatively charged NPs, while for positively charged NPs these values were equal to or higher than 7 h. Overall, our results suggest that negatively charged PCL NPs may be suitable to be used as carriers in order to deliver dapivirine and potentially other antiretroviral drugs to the cervicovaginal mucosal lining. Also, they further reinforce the importance in characterizing the interactions of nanosystems with mucus fluids or surrogates when considering mucosal drug delivery.
NASA Astrophysics Data System (ADS)
Zhang, Xinyue; Xia, Chunhui; Li, Kaitao; Lin, Yanjun
2018-06-01
Highly dispersed negative carboxyl groups can be formed on carbon black (CB) surface modified with strong nitric acid. Therefore positive cations can be uniformly absorbed by carboxyl groups and precipitated within a confinement space on modified CB surface to prepare highly dispersed nanomaterials. In this paper, the formation and dispersion status of surface negative carboxyl groups, adsorption status of Ce3+, surface confinement nucleation, crystallization and calcination process were studied by EDS, SEM, and laser particle size analysis. The results show that the carboxyl groups formed on modified CB surface are highly dispersed, and Ce3+ cations can be uniformly anchored by carboxyl groups. Therefore, highly dispersed Ce3+ can react with OH- within a confinement surface region to form positive nano-Ce(OH)4 nuclei which also can be adsorbed by electrostatic attraction. After independent growth of Ce(OH)4 without agglomeration, highly dispersed CeO2 nanoparticles without agglomeration can be prepared together with the help of effectively isolates by CO2 released in the combustion of CB.
NASA Astrophysics Data System (ADS)
Zhang, Xinyue; Xia, Chunhui; Li, Kaitao; Lin, Yanjun
2018-04-01
Highly dispersed negative carboxyl groups can be formed on carbon black (CB) surface modified with strong nitric acid. Therefore positive cations can be uniformly absorbed by carboxyl groups and precipitated within a confinement space on modified CB surface to prepare highly dispersed nanomaterials. In this paper, the formation and dispersion status of surface negative carboxyl groups, adsorption status of Ce3+, surface confinement nucleation, crystallization and calcination process were studied by EDS, SEM, and laser particle size analysis. The results show that the carboxyl groups formed on modified CB surface are highly dispersed, and Ce3+ cations can be uniformly anchored by carboxyl groups. Therefore, highly dispersed Ce3+ can react with OH- within a confinement surface region to form positive nano-Ce(OH)4 nuclei which also can be adsorbed by electrostatic attraction. After independent growth of Ce(OH)4 without agglomeration, highly dispersed CeO2 nanoparticles without agglomeration can be prepared together with the help of effectively isolates by CO2 released in the combustion of CB.
Surface sensitization mechanism on negative electron affinity p-GaN nanowires
NASA Astrophysics Data System (ADS)
Diao, Yu; Liu, Lei; Xia, Sihao; Feng, Shu; Lu, Feifei
2018-03-01
The surface sensitization is the key to prepare negative electron affinity photocathode. The thesis emphasizes on the study of surface sensitization mechanism of p-type doping GaN nanowires utilizing first principles based on density function theory. The adsorption energy, work function, dipole moment, geometry structure, electronic structure and optical properties of Mg-doped GaN nanowires surfaces with various coverages of Cs atoms are investigated. The GaN nanowire with Mg doped in core position is taken as the sensitization base. At the initial stage of sensitization, the best adsorption site for Cs atom on GaN nanowire surface is BN, the bridge site of two adjacent N atoms. Surface sensitization generates a p-type internal surface with an n-type surface state, introducing a band bending region which can help reduce surface barrier and work function. With increasing Cs coverage, work functions decrease monotonously and the "Cs-kill" phenomenon disappears. For Cs coverage of 0.75 ML and 1 ML, the corresponding sensitization systems reach negative electron affinity state. Through surface sensitization, the absorption curves are red shifted and the absorption coefficient is cut down. All theoretical calculations can guide the design of negative electron affinity Mg doped GaN nanowires photocathode.
Rational Design of Multilayer Collagen Nanosheets with Compositional and Structural Control.
Jiang, Tao; Vail, Owen A; Jiang, Zhigang; Zuo, Xiaobing; Conticello, Vincent P
2015-06-24
Two collagen-mimetic peptides, CP(+) and CP(-), are reported in which the sequences comprise a multiblock architecture having positively charged N-terminal (Pro-Arg-Gly)3 and negatively charged C-terminal (Glu-Hyp-Gly)3 triad extensions, respectively. CP(+) rapidly self-associates into positively charged nanosheets based on a monolayer structure. In contrast, CP(-) self-assembles to form negatively charged monolayer nanosheets at a much slower rate, which can be accelerated in the presence of calcium(II) ion. A 2:1 mixture of unassociated CP(-) peptide with preformed CP(+) nanosheets generates structurally defined triple-layer nanosheets in which two CP(-) monolayers have formed on the identical surfaces of the CP(+) nanosheet template. Experimental data from electrostatic force microscopy (EFM) image analysis, zeta potential measurements, and charged nanoparticle binding assays support a negative surface charge state for the triple-layer nanosheets, which is the reverse of the positive surface charge state observed for the CP(+) monolayer nanosheets. The electrostatic complementarity between the CP(+) and CP(-) triple helical cohesive ends at the layer interfaces promotes a (CP(-)/CP(+)/CP(-)) compositional gradient along the z-direction of the nanosheet. This structurally informed approach represents an attractive strategy for the fabrication of two-dimensional nanostructures with compositional control.
Nirei, K; Kaneko, M; Moriyama, M; Arakawa, Y
2000-01-01
Hepatitis B virus (HBV) DNA has been detected in the sera of hepatitis patients who are negative for hepatitis B surface antigen (HBsAg) by polymerase chain reaction (PCR). The purpose of the present study was to clarify the clinical characteristics of patients with chronic hepatitis C who are negative for serum HBsAg and positive for HBV DNA. The subjects included 49 patients with chronic hepatitis C who were negative for serum HBsAg and 119 blood donors who served as healthy controls. Serum samples were tested for the presence of HBV DNA by the nested PCR method. Serum HBV DNA was detected in 18 (37.7%) of the 49 chronic hepatitis C patients and in none (0%) of the 119 blood donors. Among the hepatitis C patients, HBV DNA was detected in 20.7% of those who were negative for all HBV-associated markers and in 57.1% of those who were positive for one or more HBV-associated marker. The HBV DNA-positive rate among those in each F stage did not significantly differ. The liver function parameters of the HBV DNA-positive and the HBV DNA-negative chronic hepatitis C patients did not significantly differ. These results suggest that hepatitis C virus is frequently coinfected with serum HBsAg-negative HBV, and that the incidence of HBV infection in blood donors is low. However, it is considered that HBsAg-negative HBV infection does not modify the blood biochemical features of chronic hepatitis C. Copyright 2000 S. Karger AG, Basel
Principal curvatures and area ratio of propagating surfaces in isotropic turbulence
NASA Astrophysics Data System (ADS)
Zheng, Tianhang; You, Jiaping; Yang, Yue
2017-10-01
We study the statistics of principal curvatures and the surface area ratio of propagating surfaces with a constant or nonconstant propagating velocity in isotropic turbulence using direct numerical simulation. Propagating surface elements initially constitute a plane to model a planar premixed flame front. When the statistics of evolving propagating surfaces reach the stationary stage, the statistical profiles of principal curvatures scaled by the Kolmogorov length scale versus the constant displacement speed scaled by the Kolmogorov velocity scale collapse at different Reynolds numbers. The magnitude of averaged principal curvatures and the number of surviving surface elements without cusp formation decrease with increasing displacement speed. In addition, the effect of surface stretch on the nonconstant displacement speed inhibits the cusp formation on surface elements at negative Markstein numbers. In order to characterize the wrinkling process of the global propagating surface, we develop a model to demonstrate that the increase of the surface area ratio is primarily due to positive Lagrangian time integrations of the area-weighted averaged tangential strain-rate term and propagation-curvature term. The difference between the negative averaged mean curvature and the positive area-weighted averaged mean curvature characterizes the cellular geometry of the global propagating surface.
NASA Astrophysics Data System (ADS)
Sato, Shintaro; Takahashi, Masayuki; Ohnishi, Naofumi
2017-05-01
An approach for electrohydrodynamic (EHD) force production is proposed with a focus on a charge cycle on a dielectric surface. The cycle, consisting of positive-charging and neutralizing strokes, is completely different from the conventional methodology, which involves a negative-charging stroke, in that the dielectric surface charge is constantly positive. The two-stroke charge cycle is realized by applying a DC voltage combined with repetitive pulses. Simulation results indicate that the negative pulse eliminates the surface charge accumulated during constant voltage phase, resulting in repetitive EHD force generation. The time-averaged EHD force increases almost linearly with increasing repetitive pulse frequency and becomes one order of magnitude larger than that driven by the sinusoidal voltage, which has the same peak-to-peak voltage.
NASA Technical Reports Server (NTRS)
Lim, Young-Kwon; Cullather, Richard I.; Nowicki, Sophie M.; Kim, Kyu-Myong
2017-01-01
The inter-relationship between subtropical western-central Pacific sea surface temperatures (STWCPSST), sea ice concentration in the Beaufort Sea (SICBS), and the North Atlantic Oscillation (NAO) are investigated for the last 37 summers and winters (1980-2016). Lag-correlation of the STWCPSST×(-1) in spring with the NAO phase and SICBS in summer increases over the last two decades, reaching r = 0.4-0.5 with significance at 5 percent, while winter has strong correlations in approximately 1985-2005. Observational analysis and the atmospheric general circulation model experiments both suggest that STWCPSST warming acts to increase the Arctic geopotential height and temperature in the following season. This atmospheric response extends to Greenland, providing favorable conditions for developing the negative phase of the NAO. SIC and surface albedo tend to decrease over the Beaufort Sea in summer, linked to the positive surface net shortwave flux. Energy balance considering radiative and turbulent fluxes reveal that available energy that can heat surface is larger over the Arctic and Greenland and smaller over the south of Greenland, in response to the STWCPSST warming in spring. XXXX Arctic & Atlantic: Positive upper-level height/T anomaly over the Arctic and Greenland, and a negative anomaly over the central-eastern Atlantic, resembling the (-) phase of the NAO. Pacific: The negative height/T anomaly over the mid-latitudes, along with the positive anomaly over the STWCP, where 1degC warming above climatology is prescribed. Discussion: It is likely that the Arctic gets warm and the NAO is in the negative phase in response to the STWCP warming. But, there are other factors (e.g., internal variability) that contribute to determination of the NAO phase: not always the negative phase of the NAO in the event of STWCP warming (e.g.: recent winters and near neutral NAO in 2017 summer).
Ríos-Castillo, Abel G; González-Rivas, Fabián; Rodríguez-Jerez, José J
2017-10-01
In order to develop disinfectant formulations that leverage the effectiveness of hydrogen peroxide (H 2 O 2 ), this study evaluated the bactericidal efficacy of hydrogen peroxide-based disinfectants against Gram-positive and Gram-negative bacteria on stainless steel surfaces. Low concentration of hydrogen peroxide as 0.5% with a cationic polymer, ethoxylated fatty alcohol, and ethyl alcohol had bactericidal efficacy (reductions ≥ 4 log 10 CFU/mL) against Escherichia coli, Staphylococcus aureus, Enterococcus hirae, and Pseudomonas aeruginosa. Hydrogen peroxide-based disinfectants were more effective against E. hirae and P. aeruginosa than to S. aureus. However, the efficacy of hydrogen peroxide against catalase positive bacteria such as S. aureus was increased when this compound was formulated with low concentrations of benzalkonium chloride or ethyl alcohol, lactic acid, sodium benzoate, cationic polymer, and salicylic acid. This study demonstrates that the use of hydrogen peroxide with other antimicrobial products, in adequate concentrations, had bactericidal efficacy in Gram-positive and Gram-negative bacteria on stainless steel surfaces, enabling to reduce the effective concentration of hydrogen peroxide. In the same way, the use of hydrogen peroxide-based disinfectants could reduce the concentrations of traditional disinfectants as quaternary ammonium compounds and therefore a reduction of their chemical residues in the environment after being used. The study of the bactericidal properties of environmentally nontoxic disinfectants such as hydrogen peroxide, sole or in formulations with other disinfectants against Gram-positive and Gram-negative bacteria can enhance the efficacy of various commonly used disinfectant formulations with the hygiene benefits that it entails. Also, the use of hydrogen peroxide formulations can reduce the concentration levels of products that generate environmental residues. © 2017 Institute of Food Technologists®.
O'Brien, Sheila F; Fearon, Margaret A; Yi, Qi-Long; Fan, Wenli; Scalia, Vito; Muntz, Irene R; Vamvakas, Eleftherios C
2007-10-01
The benefit of introducing anti-hepatitis B core antigen (HBc) screening for intercepting potentially infectious donations missed by hepatitis B surface antigen (HBsAg) screening in Canada was studied. Anti-HBc testing of all donations was implemented in April 2005, along with antibody to hepatitis B surface antigen (anti-HBs) and hepatitis B virus (HBV) DNA supplemental testing of anti-HBc repeat-reactive, HBsAg-negative donations. The proportion of potentially infectious donations intercepted by anti-HBc over the initial 18 months of testing was calculated based on three assumptions relating infectivity of HBV DNA-positive units to anti-HBs levels. Lookback was conducted for all DNA-positive donations. Of 493,344 donors, 5,585 (1.13%) were repeat-reactive for the presence of anti-HBc, with 29 (0.52%) being HBV DNA-positive and HBsAg-negative. The proportion of potentially infectious donations intercepted by anti-HBc screening was 1 in 17,800 if all HBV DNA-positive donations were infectious, 1 in 26,900 if infectivity was limited to donations with an anti-HBs level of not more than 100 mIU per mL, and 1 in 69,300 if only donations with undetectable anti-HBs were infectious. For 279 components in the lookback study, no traced recipients were HBsAg-positive and 7 recipients were anti-HBc-reactive in association with 4 donors, 3 of whom had an anti-HBs level of more than 100 mIU per mL and 1 of whom had a level of 61 mIU per mL. Implementation of anti-HBc screening reduced the risk of transfusing potentially infectious units by at least as much as had been expected based on the literature. The lookback did not provide proof of transfusion transmission of HBV from HBV DNA-positive, anti-HBc-reactive, HBsAg-negative donors but it did not establish lack of transmission either.
Electrochemical cell having improved pressure vent
Dean, Kevin; Holland, Arthur; Fillmore, Donn
1993-01-01
The electrochemical cell of the instant invention includes a case having a gas outlet, one or more positive electrodes positioned within the case, one or more negative electrodes positioned within the case electrode separators positioned between the positive and negative electrodes, electrolyte positioned within the case, and a pressure vent for releasing internal pressure occurring in the case to the surrounding atmosphere. The pressure vent is affixed to the case covering the gas outlet, the pressure vent includes a vent housing having a hollow interior area in gaseous communication with the surrounding atmosphere and the interior of the case via the gas outlet, a pressure release piston positioned within the hollow interior area, the pressure release piston sized to surround the gas outlet and having a seal groove configured to encapsulate all but one surface of a seal mounted within the seal groove, leaving the non-encapsulated surface of the seal exposed, and a compression spring positioned to urge the pressure release piston to compress the seal in the seal groove and block the gas outlet in the case.
NASA Astrophysics Data System (ADS)
Gay, S. M., III
2016-02-01
Using spatial principal component (PC) analysis, the variation in freshwater contents and temperatures in the upper 100m are quantified for small fjords and primary basins within Prince William Sound, Alaska. Two EOF modes explain over 90% of the variance in the freshwater content anomalies (FWCA) giving the total magnitude and vertical structure of the FWCAs respectively. Large, positive PC amplitudes (PCAs) of modes 1 and 2 indicate stratification from surface freshening, shown also by negative surface salinity anomalies, whereas positive FWCA PCAs in conjunction with negative mode 2 amplitudes infer higher subsurface freshening due to either vertical mixing or advection. In contrast, basins with negative mode 1 amplitudes are typically salty to slightly brackish, but the mode 2 PCAs determine if the FWC is concentrated near the surface or mixed deeper in the water column. The vertical structure of the temperature anomalies (TA) is more complicated, and at least three EOF modes are required to explain over 90% of the variance. The reasons for this include differences in solar heating (i.e. local climates) modulated by cold alpine runoff and advection of cold, brackish surface and subsurface glacial water. Fjords and major basins influenced by the latter exhibit large, positive mode 1 amplitudes of FWCA and negative mode 1 and 2 PCAs of TA and FWCA respectively. In certain fjords, however, advection of glacial water into the outer basins enhances the total FWC, whereas other fjords exhibit atypically low FWC due to unusual topographic features of the watersheds and inner basins. This combination of factors leads to generally poor correlations between average FWC and watershed to fjord surface area ratios or hydrology. With exception of a few sites, gradients in FWC between the small fjords and major basins are relatively weak. Thus the main driver of baroclinic flow in northern and western PWS is cold, brackish surface and subsurface water propagating from large tidewater glacial fjords. The glacial water has a marked affect on the dynamic topography, which shows southerly baroclinic-geostrophic flows within the western sound. At Montague Strait and Hinchinbrook Entrance inflows may occur from either fresh or salty conditions; low water density of the latter being shown by negative (positive) FWCA (TA) PCAs respectively.
Srikantha, Nishanthan; Mourad, Fatma; Suhling, Klaus; Elsaid, Naba; Levitt, James; Chung, Pei Hua; Somavarapu, Satyanarayana; Jackson, Timothy L
2012-09-01
The purpose of this study was to investigate the influence of molecular shape, conformability, net surface charge and tissue interaction on transscleral diffusion. Unfixed, porcine sclera was clamped in an Ussing chamber. Fluorophore-labelled neutral albumin, neutral dextran, or neutral ficoll were placed in one hemi-chamber and the rate of transscleral diffusion was measured over 24 h using a spectrophotometer. Experiments were repeated using dextrans and ficoll with positive or negative net surface charges. Fluorescence recovery after photobleaching (FRAP) was undertaken to compare transscleral diffusion with diffusion through a solution. All molecules were 70 kDa. With FRAP, the diffusion coefficient (D) of neutral molecules was highest for albumin, followed by ficoll, then dextran (p < 0.0001). Positive dextrans diffused fastest, followed by negative, then neutral dextrans (p = 0.0004). Neutral ficoll diffused the fastest, followed by positive then negative ficoll (p = 0.5865). For the neutral molecules, transscleral D was highest for albumin, followed by dextran, then ficoll (p < 0.0001). D was highest for negative ficoll, followed by neutral, then positive ficoll (p < 0.0001). By contrast, D was highest for positive dextran, followed by neutral, then negative dextran (p = 0.0021). In conclusion, diffusion in free solution does not predict transscleral diffusion and the molecular-tissue interaction is important. Molecular size, shape, and charge may all markedly influence transscleral diffusion, as may conformability to a lesser degree, but their effects may be diametrically opposed in different molecules, and their influence on diffusion is more complex than previously thought. Each variable cannot be considered in isolation, and the interplay of all these variables needs to be tested, when selecting or designing drugs for transscleral delivery. Copyright © 2012 Elsevier Ltd. All rights reserved.
Macdonald, Thomas J.; Wu, Ke; Sehmi, Sandeep K.; Noimark, Sacha; Peveler, William J.; du Toit, Hendrik; Voelcker, Nicolas H.; Allan, Elaine; MacRobert, Alexander J.; Gavriilidis, Asterios; Parkin, Ivan P.
2016-01-01
A simple procedure to develop antibacterial surfaces using thiol-capped gold nanoparticles (AuNPs) is shown, which effectively kill bacteria under dark and light conditions. The effect of AuNP size and concentration on photo-activated antibacterial surfaces is reported and we show significant size effects, as well as bactericidal activity with crystal violet (CV) coated polyurethane. These materials have been proven to be powerful antibacterial surfaces against both Gram-positive and Gram-negative bacteria. AuNPs of 2, 3 or 5 nm diameter were swell-encapsulated into PU before a coating of CV was applied (known as PU-AuNPs-CV). The antibacterial activity of PU-AuNPs-CV samples was tested against Staphylococcus aureus and Escherichia coli as representative Gram-positive and Gram-negative bacteria under dark and light conditions. All light conditions in this study simulated a typical white-light hospital environment. This work demonstrates that the antibacterial activity of PU-AuNPs-CV samples and the synergistic enhancement of photoactivity of triarylmethane type dyes is highly dependent on nanoparticle size and concentration. The most powerful PU-AuNPs-CV antibacterial surfaces were achieved using 1.0 mg mL−1 swell encapsulation concentrations of 2 nm AuNPs. After two hours, Gram-positive and Gram-negative bacteria were reduced to below the detection limit (>4 log) under dark and light conditions. PMID:27982122
NASA Astrophysics Data System (ADS)
Wertheimer, Michael R.; St-Georges-Robillard, Amélie; Lerouge, Sophie; Mwale, Fackson; Elkin, Bentsian; Oehr, Christian; Wirges, Werner; Gerhard, Reimund
2012-11-01
In recent communications from these laboratories, we observed that amine-rich thin organic layers are very efficient surfaces for the adhesion of mammalian cells. We prepare such deposits by plasma polymerization at low pressure, atmospheric pressure, or by vacuum-ultraviolet photo-polymerization. More recently, we have also investigated a commercially available material, Parylene diX AM. In this article we first briefly introduce literature relating to electrostatic interactions between cells, proteins, and charged surfaces. We then present certain selected cell-response results that pertain to applications in orthopedic and cardiovascular medicine: we discuss the influence of surface properties on the observed behaviors of two particular cell lines, human U937 monocytes, and Chinese hamster ovary cells. Particular emphasis is placed on possible electrostatic attractive forces due to positively charged R-NH3+ groups and negatively charged proteins and cells, respectively. Experiments carried out with electrets, polymers with high positive or negative surface potentials are added for comparison.
Allan, Andrea M.; Hostetler, Steven W.; Alder, Jay R.
2014-01-01
We use the NCEP/NCAR Reanalysis (NCEP) and the MPI/ECHAM5 general circulation model to drive the RegCM3 regional climate model to assess the ability of the models to reproduce the spatiotemporal aspects of the Pacific-North American teleconnection (PNA) pattern. Composite anomalies of the NCEP-driven RegCM3 simulations for 1982–2000 indicate that the regional model is capable of accurately simulating the key features (500-hPa heights, surface temperature, and precipitation) of the positive and negative phases of the PNA with little loss of information in the downscaling process. The basic structure of the PNA is captured in both the ECHAM5 global and ECHAM5-driven RegCM3 simulations. The 1950–2000 ECHAM5 simulation displays similar temporal and spatial variability in the PNA index as that of NCEP; however, the magnitudes of the positive and negative phases are weaker than those of NCEP. The RegCM3 simulations clearly differentiate the climatology and associated anomalies of snow water equivalent and soil moisture of the positive and negative PNA phases. In the RegCM3 simulations of the future (2050–2100), changes in the location and extent of the Aleutian low and the continental high over North America alter the dominant flow patterns associated with positive and negative PNA modes. The future projections display a shift in the patterns of the relationship between the PNA and surface climate variables, which suggest the potential for changes in the PNA-related surface hydrology of North America.
NASA Astrophysics Data System (ADS)
Hashir, Muhammad Ahsan; Stecher, Guenther; Mayr, Stefan; Bonn, Guenther K.
2009-01-01
In the present study, different silica gel modifications were evaluated for their application as target surface for material enhanced laser desorption/ionisation mass spectrometric (MELDI-MS) investigation of amino acids. 4,4'-Azodianiline (ADA-silica) modified silica gel was successfully employed for the qualitative analysis of amino acids in positive- and in negative-ion mode. Further no derivatisation of amino acids was necessary, as the introduced system allowed the direct analysis of targets and delivered spectra with excellent signal intensity and signal-to-noise ratio within a few minutes. The influence of surface chemistry, ionisation mode and the nature of analytes on signal intensity was studied and discussed. Detection limit of 2.10 pg (10 fmol) was achieved by employing ADA-silica in positive-ion mode. Finally, xylem saps from different types of trees were analysed. This proved the high performance and excellent behaviour of the introduced target surface material.
NASA Astrophysics Data System (ADS)
Bhowal, Ashim Chandra; Kundu, Sarathi
2018-04-01
PEDOT:PSS is a water soluble conducting polymer consists of positively charged PEDOT and negatively charged PSS. However, this polymer suffers low conductivity problem which restrict its use. In this paper, electrical conductivity of PEDOT:PSS thin films is improved by using charged gold nanoparticles. The nanoparticles used are synthesized using lysozyme protein. The nanoparticles coated with lysozyme protein possess positive zeta potential. In the presence of gold nanoparticles due to electrostatic interaction between positively charged nanoparticles and negatively charged PSS chains, modification takes place in the surface morphology and electrical behaviors of PEDOT:PSS thin films. The changes in the polymer matrix conformations in the presence of nanoparticles are studied by Fourier transformed Infra-red (FTIR) spectroscopy, whereas the surface morphology of prepared thin films before and after interaction with nanoparticles is investigated through atomic force microscopy (AFM). Four probe method is used to measure the variation of electrical conductivity from I-V characteristics curves.
NASA Astrophysics Data System (ADS)
Tani, Tadaaki; Inami, Yoshiyasu
2000-09-01
Ultraviolet photoelectron spectroscopy has been successfully used to measure the heights of the tops of the valence bands of the surfaces of AgBr layers on Ag substrates for the verification of the space charge layer model. According to this model, the positive space charge layer (composed of negative charges with excess negative kink sites on the surface and corresponding positive charges with interstitial silver ions in the interior) is formed in silver halides, causing the difference in the electronic energy levels between their surface and interior. The depression of the positive space charge layer of AgBr caused by such adsorbates as photographic stabilizers and antifoggants was estimated from the decrease in the ionic conductivity of cubic AgBr microcrystals by the adsorbates. It was confirmed by the decrease in the heights of the tops of the valence bands of the surfaces of AgBr layers caused by the adsorbates in the presence of thin gelatin membranes on their surfaces. This result provided the explanation for the fact that the adsorbates increased the number of the microcrystals which formed latent image centers on the surface and decreased the number of the microcrystals, which formed latent image centers in the interior.
Boundary layer friction of solvate ionic liquids as a function of potential.
Li, Hua; Rutland, Mark W; Watanabe, Masayoshi; Atkin, Rob
2017-07-01
Atomic force microscopy (AFM) has been used to investigate the potential dependent boundary layer friction at solvate ionic liquid (SIL)-highly ordered pyrolytic graphite (HOPG) and SIL-Au(111) interfaces. Friction trace and retrace loops of lithium tetraglyme bis(trifluoromethylsulfonyl)amide (Li(G4) TFSI) at HOPG present clearer stick-slip events at negative potentials than at positive potentials, indicating that a Li + cation layer adsorbed to the HOPG lattice at negative potentials which enhances stick-slip events. The boundary layer friction data for Li(G4) TFSI shows that at HOPG, friction forces at all potentials are low. The TFSI - anion rich boundary layer at positive potentials is more lubricating than the Li + cation rich boundary layer at negative potentials. These results suggest that boundary layers at all potentials are smooth and energy is predominantly dissipated via stick-slip events. In contrast, friction at Au(111) for Li(G4) TFSI is significantly higher at positive potentials than at negative potentials, which is comparable to that at HOPG at the same potential. The similarity of boundary layer friction at negatively charged HOPG and Au(111) surfaces indicates that the boundary layer compositions are similar and rich in Li + cations for both surfaces at negative potentials. However, at Au(111), the TFSI - rich boundary layer is less lubricating than the Li + rich boundary layer, which implies that anion reorientations rather than stick-slip events are the predominant energy dissipation pathways. This is confirmed by the boundary friction of Li(G4) NO 3 at Au(111), which shows similar friction to Li(G4) TFSI at negative potentials due to the same cation rich boundary layer composition, but even higher friction at positive potentials, due to higher energy dissipation in the NO 3 - rich boundary layer.
Hardie, Diana Ruth; Korsman, Stephen N; Hsiao, Nei-Yuan; Morobadi, Molefi Daniel; Vawda, Sabeehah; Goedhals, Dominique
2017-01-01
In South Africa where the prevalence of HIV infection is very high, 4th generation HIV antibody/p24 antigen combo immunoassays are the tests of choice for laboratory based screening. Testing is usually performed in clinical pathology laboratories on automated analysers. To investigate the cause of false positive results on 4th generation HIV testing platforms in public sector laboratories, the performance of two automated platforms was compared in a clinical pathology setting, firstly on routine diagnostic specimens and secondly on known sero-negative samples. Firstly, 1181 routine diagnostic specimens were sequentially tested on Siemens and Roche automated 4th generation platforms. HIV viral load, western blot and follow up testing were used to determine the true status of inconclusive specimens. Subsequently, known HIV seronegative samples from a single donor were repeatedly tested on both platforms and an analyser was tested for surface contamination with HIV positive serum to identify how suspected specimen contamination could be occurring. Serial testing of diagnostic specimens yielded 163 weakly positive or discordant results. Only 3 of 163 were conclusively shown to indicate true HIV infection. Specimen contamination with HIV antibody was suspected, based on the following evidence: the proportion of positive specimens increased on repeated passage through the analysers; viral loads were low or undetectable and western blots negative or indeterminate on problem specimens; screen negative, 2nd test positive specimens tested positive when reanalysed on the screening assay; follow up specimens (where available) were negative. Similarly, an increasing number of known negative specimens became (repeatedly) sero-positive on serial passage through one of the analysers. Internal and external analyser surfaces were contaminated with HIV serum, evidence that sample splashes occur during testing. Due to the extreme sensitivity of these assays, contamination with minute amounts of HIV antibody can cause a negative sample to test positive. Better contamination control measures are needed on analysers used in clinical pathology environments, especially in regions where HIV sero-prevalence is high.
Ferromagnets as pure spin current generators and detectors
Qu, Danru; Miao, Bingfeng; Chien, Chia -Ling; Huang, Ssu -Yen
2015-09-08
Provided is a spintronics device. The spintronics can include a ferromagnetic metal layer, a positive electrode disposed on a first surface portion of the ferromagnetic metal layer, and a negative electrode disposed on a second surface portion of the ferromagnetic metal.
Lai, Wenjia; Wang, Qingsong; Li, Lumeng; Hu, Zhiyuan; Chen, Jiankui; Fang, Qiaojun
2017-04-01
Determining how nanomaterials interact with plasma will assist in understanding their effects on the biological system. This work presents a systematic study of the protein corona formed from human plasma on 20nm silver and gold nanoparticles with three different surface modifications, including positive and negative surface charges. The results show that all nanoparticles, even those with positive surface modifications, acquire negative charges after interacting with plasma. Approximately 300 proteins are identified on the coronas, while 99 are commonly found on each nanomaterial. The 20 most abundant proteins account for over 80% of the total proteins abundance. Remarkably, the surface charge and core of the nanoparticles, as well as the isoelectric point of the plasma proteins, are found to play significant roles in determining the nanoparticle coronas. Albumin and globulins are present at levels of less than 2% on these nanoparticle coronas. Fibrinogen, which presents in the plasma but not in the serum, preferably binds to negatively charged gold nanoparticles. These observations demonstrate the specific plasma protein binding pattern of silver and gold nanoparticles, as well as the importance of the surface charge and core in determining the protein corona compositions. The potential downstream biological impacts of the corona proteins were also investigated. Copyright © 2017 Elsevier B.V. All rights reserved.
Response to "The Iris Hypothesis: A Negative or Positive Cloud Feedback?"
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Lindzen, Richard S.; Hou, Arthur Y.; Lau, William K. M. (Technical Monitor)
2001-01-01
Based on radiance measurements of Japan's Geostationary Meteorological Satellite, Lindzen et al. found that the high-level cloud cover averaged over the tropical western Pacific decreases with increasing sea surface temperature. They further found that the response of high-level clouds to the sea surface temperature had an effect of reducing the magnitude of climate change, which is referred as a negative climate feedback. Lin et al. reassessed the results found by Lindzen et al. by analyzing the radiation and clouds derived from the Tropical Rainfall Measuring Mission Clouds and the Earth's Radiant Energy System measurements. They found a weak positive feedback between high-level clouds and the surface temperature. We have found that the approach taken by Lin et al. to estimating the albedo and the outgoing longwave radiation is incorrect and that the inferred climate sensitivity is unreliable.
Effect of surface material on electrostatic charging of houseflies (Musca domestica L).
McGonigle, Daniel F; Jackson, Chris W
2002-04-01
Houseflies (Musca domestica L) accumulated electrostatic charges when walking over clean, uncharged dielectric surfaces. The charges elicited on a walking housefly by a range of materials were quantified, allowing a triboelectric series to be determined relative to M domestica. This ranged from surfaces that charged individuals positively, e.g. Correx (corrugated polypropylene) [.1 (+/- 4.2)pC], to those that applied a negative charge, e.g. clear cast acrylic [-14.9 (+/- 2.9)pC]. Maximum positive and negative charges accumulated by individual M domestica were +73 and -27 pC. Replicate measurements on the same fly and surface showed little variation. Variation between individuals was not related to sex and was not consistent between surfaces. Different materials charged M domestica significantly differently and individual flies had significantly different charging properties. Variation in temperature between 21.3 degrees C and 24.7 degrees C and humidity between 24% and 41% RH significantly affected charge accumulated by M domestica on some surfaces, although further experimentation is needed to confirm this. The implications of this work are discussed in relation to insect trap design and pollination biology.
Sambursky, Robert
2016-01-01
The presence of clinically significant inflammation has been confirmed in the tears of 40%-65% of patients with symptoms of dry eye. Ocular surface inflammation may lead to tear film instability, epithelial cell irregularities, and permeability, resulting in chronic symptomatic pain and fluctuating vision as well as negative surgical outcomes. A retrospective single center medical chart review of 100 patients was conducted. All patients were tested with the InflammaDry test to determine if patients exhibited elevated levels of matrix metalloproteinase 9 (MMP-9). InflammaDry-positive patients were started on a combination of cyclosporine 0.05% twice daily, 2,000-4,000 mg oral omega-3 fatty acids, and frequent artificial tear replacement. InflammaDry-negative patients were started on 2,000-4,000 mg of oral omega-3 fatty acids and frequent artificial tear replacement. Each patient was retested at ~90 days. A symptom questionnaire was performed at the initial visit and at 90 days. 60% of the patients with dry eye symptoms tested positive for elevated MMP-9 at the initial visit. 78% of all patients returned for follow-up at ~90 days including 80% (48/60) of the previously InflammaDry-positive patients and 75% (30/40) of the previously InflammaDry-negative patients. A follow-up symptom questionnaire reported at least 75% symptomatic improvement in 65% (31/48) of the originally InflammaDry-positive patients and in 70% (21/30) of the initially InflammaDry-negative patients. Symptomatic improvement of at least 50% was reported in 85% (41/48) of previously InflammaDry-positive patients and 86% (26/30) of previously InflammaDry-negative patients. Following treatment, 54% (26/48) of previously InflammaDry-positive patients converted to a negative InflammaDry result. Identifying which symptomatic dry eye patients have underlying inflammation may predict patient responses to treatment and influence clinical management strategies.
Sambursky, Robert
2016-01-01
Background The presence of clinically significant inflammation has been confirmed in the tears of 40%–65% of patients with symptoms of dry eye. Ocular surface inflammation may lead to tear film instability, epithelial cell irregularities, and permeability, resulting in chronic symptomatic pain and fluctuating vision as well as negative surgical outcomes. Patients and methods A retrospective single center medical chart review of 100 patients was conducted. All patients were tested with the InflammaDry test to determine if patients exhibited elevated levels of matrix metalloproteinase 9 (MMP-9). InflammaDry-positive patients were started on a combination of cyclosporine 0.05% twice daily, 2,000–4,000 mg oral omega-3 fatty acids, and frequent artificial tear replacement. InflammaDry-negative patients were started on 2,000–4,000 mg of oral omega-3 fatty acids and frequent artificial tear replacement. Each patient was retested at ~90 days. A symptom questionnaire was performed at the initial visit and at 90 days. Results 60% of the patients with dry eye symptoms tested positive for elevated MMP-9 at the initial visit. 78% of all patients returned for follow-up at ~90 days including 80% (48/60) of the previously InflammaDry-positive patients and 75% (30/40) of the previously InflammaDry-negative patients. A follow-up symptom questionnaire reported at least 75% symptomatic improvement in 65% (31/48) of the originally InflammaDry-positive patients and in 70% (21/30) of the initially InflammaDry-negative patients. Symptomatic improvement of at least 50% was reported in 85% (41/48) of previously InflammaDry-positive patients and 86% (26/30) of previously InflammaDry-negative patients. Following treatment, 54% (26/48) of previously InflammaDry-positive patients converted to a negative InflammaDry result. Conclusion Identifying which symptomatic dry eye patients have underlying inflammation may predict patient responses to treatment and influence clinical management strategies. PMID:27920494
NASA Astrophysics Data System (ADS)
Jeong, Yerim; Ham, Yoo-Geun
2016-04-01
The convection activity and variability are active in Tropic-subtropic area because of equatorial warm pool. The variability's impacts on not only subtropic also mid-latitude. The impact effects on through teleconnection between equatorial and mid-latitude like Pacific-Japan(PJ) pattern. In this paper, two groups are divided based on PJ pattern and JJA Korean precipitation for the analysis that Korean precipitation is affected by PJ pattern. 'PJ+NegKorpr' is indicated when PJ pattern occur that JJA(Jun-July_August) Korean precipitation has negative value. In this case, positive precipitation in subtropic is expanded to central Pacific. And the positive precipitation's pattern is increasing toward north. Because, the subtropical south-eastly wind is forming subtropical precipitation's pattern through cold Kelvin wave is expanding eastward. Cold Kelvin wave is because of Indian negative SST. Also, Korea has negative moisture advection and north-eastly is the role that is moving high-latitude's cold and dry air to Korea. So strong high pressure is formed in Korea. The strong high pressure involves that short wave energy is increasing on surface. As a result, The surface temperature is increased on Korea. But the other case, that 'PJ_Only' case, is indicated when PJ pattern occur and JJA Korean precipitation doesn't have negative value over significant level. The subtropic precipitation's pattern in 'PJ_Only' shows precipitation is confined in western Pacific and expended northward to 25°N near 130°E. And tail of precipitation is toward equatorial(south-eastward). Also, Korean a little positive moisture advection and south-westly is the role that is moving low-latitude's warm and wet air to Korea. So weak high pressure is formed in Korea. The weak high pressure influence amount of short wave energy, so Korean surface temperature is lower. In addition, the case of 'PJ_Only' and Pacific Decal Oscillation(PDO) are occur at the same time has negative impact in Korea temperature through subtropical cyclone and positive PDO. The positive PDO is the role that negative temperature in Korea. So, Korean temperature confined lower by subtropical cyclone and positive PDO. In summary, the relation between PJ pattern and JJA Korean temperature and precipitation depends on subtropical precipitation's pattern. And The subtropical precipitation is effected by Indian SST and PDO's teleconnection.
Characterization of oxidized coal surfaces: Quarterly report, January 1987-April 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hercules, D.M.
1987-04-01
The work has focused on exploration of ambient temperature in-situ derivatization of aldehydes and ketones on carbon surfaces. 2,4-Dinitrophenylhydrazine, bisulfite, -ylium dichloro-iodate, and iminium perchlorate derivatizations were performed on a set of model aldehydes and ketones. Positive and negative ion laser mass spectra (LMS) of the 2,4-dinitrophenylhydrazine derivatives were obtained on zinic which is a common metal support used for LMS analysis. Although positive ion spectra were informative, negative ion spectra were more satisfactory as most compounds yielded molecular ion species in negative ion analysis. Spectra of selected preformed derivatives placed on charcoal and of benzaldehyde derivatized on charcoal weremore » also obtained. Molecular ion species that can be distinguished readily from carbon background ions were observed. Thus, the results established that in-situ derivatization followed by analysis is indeed possible. 3 refs., 8 figs.« less
Dust Grain Charge in the Lunar Environment
NASA Astrophysics Data System (ADS)
Vaverka, Jakub; Richterova, Ivana; Vysinka, Marek; Pavlu, Jiri; Safrankova, Jana; Nemecek, Zdenek
2014-05-01
Interaction of a lunar surface with solar wind and magnetosphere plasmas leads to it charging by several processes as photoemission, a collection of primary particles and secondary electron emission. Nevertheless, charging of the lunar surface is complicated by a presence of crustal magnetic anomalies with can generate a "mini-magnetosphere" capable for more or less complete shielding the surface. On the other hand, shielding of solar light and plasma particles by rocks and craters can also locally influence the surface potential as well as a presence of a plasma wake strongly changes this potential at the night side of the Moon. A typical surface potential varies from slightly positive (dayside) to negative values of the order of several hundred of volts (night side). At the night side, negative potentials can reach -4 kV during solar energetic particle (SEP) events. Recent measurements of the surface potential by Lunar Prospector and Artemis spacecraft have shown surprisingly high negative dayside surface potentials (-500 V) during the magnetotail crossings as well as the positive surface potential higher than 100 V. One possible explanation is its non-monotonic profile above a surface where the potential minimum is formed by the space charge. Dust grains presented in this complicated environment are also charged by similar processes as the lunar surface. A strong dependence of the secondary electron yield on the grain size can significantly influence dust charging mainly in the Earth's plasma sheet where an equilibrium grain potential can by different than the surface potential and can reach even the opposite sign. This process can lead to levitation of dust above a surface observed by the Surveyor spacecraft.
Effect of extremely low frequency electromagnetic fields on bacterial membrane.
Oncul, Sule; Cuce, Esra M; Aksu, Burak; Inhan Garip, Ayse
2016-01-01
The effect of extremely low frequency electromagnetic fields (ELF-EMF) on bacteria has attracted attention due to its potential for beneficial uses. This research aimed to determine the effect of ELF-EMF on bacterial membrane namely the membrane potential, surface potential, hydrophobicity, respiratory activity and growth. Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli were subjected to ELF-EMF, 50 Hz, 1 mT for 2 h. Membrane potential was determined by fluorescence spectroscopy with or without EDTA (Ethylenediaminetetraacetic acid) with DisC3(5) (3,3-dipropylthiacarbocyanine iodide), zeta potential measurements were performed by electrophoretic mobility, hydrophobicity of the membrane was measured with MATH (Microbial Adhesion to Hydrocarbons) test, respiratory activity was determined with CTC (5-Cyano-2,3-ditolyl tetrazolium chloride), colony forming unit (CFU) and DAPI (4',6-diamidino-2-phenylindole, dihydrochloride) was used for growth determinations. ELF-EMF caused changes in physicochemical properties of both Gram-positive and Gram-negative bacteria. Hyperpolarization was seen in S. aureus and EDTA-treated E. coli. Surface potential showed a positive shift in S. aureus contrariwise to the negative shift seen in EDTA-untreated E. coli. Respiratory activity increased in both bacteria. A slight decrease in growth was observed. These results show that ELF-EMF affects the crucial physicochemical processes in both Gram-positive and Gram-negative bacteria which need further research.
Beaussart, Audrey; Beloin, Christophe; Ghigo, Jean-Marc; Chapot-Chartier, Marie-Pierre; Kulakauskas, Saulius; Duval, Jérôme F L
2018-06-27
The safe use and design of nanoparticles (NPs) ask for a comprehensive interpretation of their potentially adverse effects on (micro)organisms. In this respect, the prior assessment of the interactions experienced by NPs in the vicinity of - and in contact with - complex biological surfaces is mandatory. It requires the development of suitable techniques for deciphering the processes that govern nano-bio interactions when a single organism is exposed to an extremely low dose of NPs. Here, we used atomic force spectroscopy (AFM)-based force measurements to investigate at the nanoscale the interactions between carboxylate-terminated polyamidoamine (PAMAM) nanodendrimers (radius ca. 4.5 nm) and two bacteria with very distinct surface properties, Escherichia coli and Lactococcus lactis. The zwitterionic nanodendrimers exhibit a negative peripheral surface charge and/or a positive intraparticulate core depending on the solution pH and salt concentration. Following an original strategy according to which a single dendrimer NP is grafted at the very apex of the AFM tip, the density and localization of NP binding sites are probed at the surface of E. coli and L. lactis mutants expressing different cell surface structures (presence/absence of the O-antigen of the lipopolysaccharides (LPS) or of a polysaccharide pellicle). In line with electrokinetic analysis, AFM force measurements evidence that adhesion of NPs onto pellicle-decorated L. lactis is governed by their underlying electrostatic interactions as controlled by the pH-dependent charge of the peripheral and internal NP components, and the negatively-charged cell surface. In contrast, the presence of the O-antigen on E. coli systematically suppresses the adhesion of nanodendrimers onto cells, may the apparent NP surface charge be determined by the peripheral carboxylate groups or by the internal amine functions. Altogether, this work highlights the differentiated roles played by surface polysaccharides in mediating NP attachment to Gram-positive and Gram-negative bacteria. It further demonstrates that the assessment of NP bioadhesion features requires a critical analysis of the electrostatic contributions stemming from the various structures composing the stratified cell envelope, and those originating from the bulk and surface NP components. The joint use of electrokinetics and AFM provides a valuable option for rapidly addressing the binding propensity of NPs to microorganisms, as urgently needed in NP risk assessments.
NASA Technical Reports Server (NTRS)
Zhang, Minghua; Bretherton, Christopher S.; Blossey, Peter N.; Austin, Phillip H.; Bacmeister, Julio T.; Bony, Sandrine; Brient, Florent; Cheedela, Suvarchal K.; Cheng, Anning; DelGenio, Anthony;
2013-01-01
1] CGILS-the CFMIP-GASS Intercomparison of Large Eddy Models (LESs) and single column models (SCMs)-investigates the mechanisms of cloud feedback in SCMs and LESs under idealized climate change perturbation. This paper describes the CGILS results from 15 SCMs and 8 LES models. Three cloud regimes over the subtropical oceans are studied: shallow cumulus, cumulus under stratocumulus, and well-mixed coastal stratus/stratocumulus. In the stratocumulus and coastal stratus regimes, SCMs without activated shallow convection generally simulated negative cloud feedbacks, while models with active shallow convection generally simulated positive cloud feedbacks. In the shallow cumulus alone regime, this relationship is less clear, likely due to the changes in cloud depth, lateral mixing, and precipitation or a combination of them. The majority of LES models simulated negative cloud feedback in the well-mixed coastal stratus/stratocumulus regime, and positive feedback in the shallow cumulus and stratocumulus regime. A general framework is provided to interpret SCM results: in a warmer climate, the moistening rate of the cloudy layer associated with the surface-based turbulence parameterization is enhanced; together with weaker large-scale subsidence, it causes negative cloud feedback. In contrast, in the warmer climate, the drying rate associated with the shallow convection scheme is enhanced. This causes positive cloud feedback. These mechanisms are summarized as the "NESTS" negative cloud feedback and the "SCOPE" positive cloud feedback (Negative feedback from Surface Turbulence under weaker Subsidence-Shallow Convection PositivE feedback) with the net cloud feedback depending on how the two opposing effects counteract each other. The LES results are consistent with these interpretations
Wang, Jun-Ying; Chen, Jie; Yang, Jiang; Wang, Hao; Shen, Xiu; Sun, Yuan-Ming; Guo, Meili; Zhang, Xiao-Dong
2016-01-01
Gold nanoclusters (Au NCs) have exhibited great advantages in medical diagnostics and therapies due to their efficient renal clearance and high tumor uptake. The in vivo effects of the surface chemistry of Au NCs are important for the development of both nanobiological interfaces and potential clinical contrast reagents, but these properties are yet to be fully investigated. In this study, we prepared glutathione-protected Au NCs of a similar hydrodynamic size but with three different surface charges: positive, negative, and neutral. Their in vivo biodistribution, excretion, and toxicity were investigated over a 90-day period, and tumor uptake and potential application to radiation therapy were also evaluated. The results showed that the surface charge greatly influenced pharmacokinetics, particularly renal excretion and accumulation in kidney, liver, spleen, and testis. Negatively charged Au NCs displayed lower excretion and increased tumor uptake, indicating a potential for NC-based therapeutics, whereas positively charged clusters caused transient side effects on the peripheral blood system.
2015-01-01
To study the importance of the surface charge for cellular uptake of silica nanoparticles (NPs), we synthesized five different single- or multifunctionalized fluorescent silica NPs (FFSNPs) by introducing various ratios of amino and sulfonate groups into their surface. The zeta potential values of these FFSNPs were customized from highly positive to highly negative, while other physicochemical properties remained almost constant. Irrespective of the original surface charge, serum proteins adsorbed onto the surface, neutralized the zeta potential values, and prevented the aggregation of the tailor-made FFSNPs. Depending on the surface charge and on the absence or presence of serum, two opposite trends were found concerning the cellular uptake of FFSNPs. In the absence of serum, positively charged NPs were more strongly accumulated by human osteoblast (HOB) cells than negatively charged NPs. In contrast, in serum-containing medium, anionic FFSNPs were internalized by HOB cells more strongly, despite the similar size and surface charge of all types of protein-covered FFSNPs. Thus, at physiological condition, when the presence of proteins is inevitable, sulfonate-functionalized silica NPs are the favorite choice to achieve a desired high rate of NP internalization. PMID:26030456
Barnes, Christopher A.; Roy, David P.
2010-01-01
Satellite-derived land cover land use (LCLU), snow and albedo data, and incoming surface solar radiation reanalysis data were used to study the impact of LCLU change from 1973 to 2000 on surface albedo and radiative forcing for 58 ecoregions covering 69% of the conterminous United States. A net positive surface radiative forcing (i.e., warming) of 0.029 Wm−2 due to LCLU albedo change from 1973 to 2000 was estimated. The forcings for individual ecoregions were similar in magnitude to current global forcing estimates, with the most negative forcing (as low as −0.367 Wm−2) due to the transition to forest and the most positive forcing (up to 0.337 Wm−2) due to the conversion to grass/shrub. Snow exacerbated both negative and positive forcing for LCLU transitions between snow-hiding and snow-revealing LCLU classes. The surface radiative forcing estimates were highly sensitive to snow-free interannual albedo variability that had a percent average monthly variation from 1.6% to 4.3% across the ecoregions. The results described in this paper enhance our understanding of contemporary LCLU change on surface radiative forcing and suggest that future forcing estimates should model snow and interannual albedo variation.
Häder, D P
1994-05-01
Many motile microorganisms including flagellates such as the green Euglena gracilis move up and down within the water column and use a number of external clues for their orientation, the most important of which may be light and gravity. The cells use positive phototaxis and negative gravitaxis to move closer to the surface of the water column which for energetic reasons is vital for their survival. However, most phytoplankton organisms cannot tolerate the bright irradiance of unfiltered solar radiation at the surface which also bleaches the photosynthetic pigments, disables the photosynthetic apparatus and impairs phototaxis, gravitaxis and motility in Euglena. Thus, it is not surprising that at higher irradiances negative phototaxis operates antagonistically to the responses described above to guide the cells into deeper water where they are protected from excessive radiation. Phototaxis and gravitaxis are not independent from one another: in a vertically positioned cuvette negative gravitaxis can be "titrated" by light impinging from above and is compensated at about 30 W m-2. While the photoreceptor for phototaxis has been identified in Euglena gracilis biochemically and spectroscopically, the gravireceptor is not yet known. Young cultures of Euglena gracilis show a positive gravitaxis, the ecological signficance of which is not yet understood while older cultures show negative gravitaxis. One hypothesis concerning the nature of graviperception is based on a passive physical process such as an asymmetric distribution of the mass within the cell. However, the observation that short term UV irradiation decreases the precision of negative gravitaxis rather indicates the involvement of an active physiological gravireceptor. Furthermore, some heavy metal ions have been found to change the direction of movement from positive to negative gravitaxis in young cells.
Kim, Hyun-Min; Himeno, Teruyuki; Kokubo, Tadashi; Nakamura, Takashi
2005-07-01
The surfaces of two hydroxyapatites (HA), which have been sintered at different temperatures of 800 and 1200 degrees C, was investigated as a function of soaking time in simulated body fluid (SBF) using transmission electron microscopy (TEM) attached with energy-dispersive spectrometry (EDX) and laser electrophoresis spectroscopy. The TEM-EDX indicated that after soaking in SBF, both the HAs form bonelike apatite by undergoing the same surface structural change, i.e., formations of a Ca-rich amorphous or nano-crystalline calcium phosphate (ACP) and a Ca-poor ACP, which eventually crystallized into bonelike apatite. Zeta potential characterized by the electrophoresis indicated that during exposure to SBF, the HA surfaces reveal negative surface charge, thereby interacting with the positive calcium ions in the fluid to form the Ca-rich ACP, which gains positive surface charge. The Ca-rich ACP on the HAs then interacts with the negative phosphate ions in the fluid to form the Ca-poor ACP, which stabilizes by being crystallized into bonelike apatite with a low solubility in the SBF. The exposure times for formations of these phases of the Ca-rich ACP, the Ca-poor ACP as well as the apatite were, however, all late on HA sintered at 1200 degrees C, compared with the HA sintered at 800 degrees C. This phenomenon was attributed to a lower initial negative surface charge of the HA sintered at 800 degrees C than of that one sintered at 1200 degrees C, owing to poverty in surface hydroxyl and phosphate groups which are responsible for the surface negativity of the HA. These indicate that sintered temperature of HA might influence not in terms of the process but in terms of the rate of formation of biologically active bonelike apatite on its surface, through which the HA integrates with living bone.
Vanderas, Apostole P; Kavvadia, Katerina; Papagiannoulis, Lisa
2004-01-01
This study investigated the effect of the primary second molars' distal surface caries on the incidence of the permanent first molars' mesial surface caries in 613 paired tooth surfaces of children ages 6 to 8 years at baseline examination. Proximal caries and its progression were diagnosed by bite-wing radiographs taken at a 1-year interval over a period of 4 years. The permanent first molars' mesial surfaces and primary second molars' distal surfaces were examined. Recorded were: (1) sound surfaces; (2) carious lesions on the enamel's external and internal half and on the dentin's external, middle, and internal third; (3) filled, extracted, and exfoliated teeth. The logistic model for panel data was employed to estimate the effect of proximal caries of the primary second molars' distal surfaces on the incidence of the permanent first molars' mesial surface caries. The 95% confidence interval probability was used. Sensitivity and specificity as well as the positive and negative predictive rates were computed. The results showed that the presence of proximal caries on each primary second molars' distal surfaces significantly affected the development of proximal caries on the corresponding permanent first molar's mesial surfaces. Age was estimated to exert a positive and highly significant impact, while gender had no effect. The odds ratio values ranged from 4.86 to 63.43. The values of sensitivity and specificity ranged from 45% to 97% and 80% to 89%, respectively, while the positive and negative rates ranged from 40% to 56% and 90% to 99%, respectively. Proximal caries present on the primary second molars' distal surfaces increases the risk of developing caries on the permanent first molars' mesial surfaces. This risk, however, is different among the paired surfaces studied.
NASA Technical Reports Server (NTRS)
Asnin, V. M.; Krainsky, I. L.
1998-01-01
A fine structure was discovered in the low-energy peak of the secondary electron emission spectra of the diamond surface with negative electron affinity. We studied this structure for the (100) surface of the natural type-IIb diamond crystal. We have found that the low-energy peak consists of a total of four maxima. The relative energy positions of three of them could be related to the electron energy minima near the bottom of the conduction band. The fourth peak, having the lowest energy, was attributed to the breakup of the bulk exciton at the surface during the process of secondary electron emission.
Characteristics of pulse corona discharge over water surface
NASA Astrophysics Data System (ADS)
Fujii, Tomio; Arao, Yasushi; Rea, Massimo
2008-12-01
Production of ozone and OH radical is required to advance the plasma chemical reactions in the NOx removal processes for combustion gas treatment. The corona discharge to the water surface is expected to induce the good conditions for the proceeding of the NO oxidation and the NO2 dissolution removal into water. In order to get the fundamental data of the corona discharge over the water surface, the positive and negative V-I characteristics and the ozone production were measured with the multi needle and the saw-edge type of the discharge electrodes. The pulse corona characteristics were also measured with some different waveforms of the applied pulse voltage. The experiments were carried out under the atmospheric pressure and room temperature. Both the DC and the pulse corona to the water surface showed a stable and almost the same V-I characteristics as to plate electrodes though the surface of water was waved by corona wind. The positive streamer corona showed more ozone production than the negative one both in the DC and in the pulse corona.
Development of Functional Thin Polymer Films Using a Layer-by-Layer Deposition Technique.
Yoshida, Kentaro
2017-01-01
Functional thin films containing insulin were prepared using layer-by-layer (LbL) deposition of insulin and negatively- or positively-charged polymers on the surface of solid substrates. LbL films composed of insulin and negatively-charged polymers such as poly(acrylic acid) (PAA), poly(vinylsulfate) (PVS), and dextran sulfate (DS) were prepared through electrostatic affinity between the materials. The insulin/PAA, insulin/PVS, and insulin/DS films were stable in acidic solutions, whereas they decomposed under physiological conditions as a result of a change in the net electric charge of insulin from positive to negative. Interestingly, the insulin-containing LbL films were stable even in the presence of a digestive-enzyme (pepcin) at pH 1.4 (stomach pH). In contrast, LbL films consisting of insulin and positively-charged polymers such as poly(allylamine hydrochloride) (PAH) decomposed in acidic solutions due to the positive charges of insulin generated in acidic media. The insulin-containing LbL films can be prepared not only on the surface of flat substrates, such as quartz slides, but also on the surface of microparticles, such as poly(lactic acid) (PLA) microbeads. Thus, insulin-containing LbL film-coated PLA microbeads can be handled as a powder. In addition, insulin-containing microcapsules were prepared by coating LbL films on the surface of insulin-doped calcium carbonate (CaCO 3 ) microparticles, followed by dissolution of the CaCO 3 core. The release of insulin from the microcapsules was accelerated at pH 7.4, whereas it was suppressed in acidic solutions. These results suggest the potential use of insulin-containing microcapsules in the development of oral formulations of insulin.
The influence of space charge shielding on dielectric multipactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, C.; Liu, G. Z.; Tang, C. X.
2009-05-15
A model of space charge influenced by multipactor electrons and plasma has been established. The positive space charge potential/field for vacuum dielectric multipactor is analytically studied. After considering the plasma, the positive space charge field is further shielded, and multipactor saturates at higher surface accumulated field, compared with that for only considering multipactor electrons. The negative space charge potential/field for dielectric breakdown at high pressure is analyzed. It is found that the negative potential can be nonmonotonously varied, forming a minimum potential well.
Bounding Extreme Spacecraft Charging in the Lunar Environment
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Parker, Linda N.
2008-01-01
Robotic and manned spacecraft from the Apollo era demonstrated that the lunar surface in daylight will charge to positive potentials of a few tens of volts because the photoelectron current dominates the charging process. In contrast, potentials of the lunar surface in darkness which were predicted to be on the order of a hundred volts negative in the Apollo era have been shown more recently to reach values of a few hundred volts negative with extremes on the order of a few kilovolts. The recent measurements of night time lunar surface potentials are based on electron beams in the Lunar Prospector Electron Reflectometer data sets interpreted as evidence for secondary electrons generated on the lunar surface accelerated through a plasma sheath from a negatively charged lunar surface. The spacecraft potential was not evaluated in these observations and therefore represents a lower limit to the magnitude of the lunar negative surface potential. This paper will describe a method for obtaining bounds on the magnitude of lunar surface potentials from spacecraft measurements in low lunar orbit based on estimates of the spacecraft potential. We first use Nascap-2k surface charging analyses to evaluate potentials of spacecraft in low lunar orbit and then include the potential drops between the ambient space environment and the spacecraft to the potential drop between the lunar surface and the ambient space environment to estimate the lunar surface potential from the satellite measurements.
NASA Astrophysics Data System (ADS)
Bumpus, P. B.; Kruse, S. E.
2013-12-01
A year of continuous monitoring with two grids of 12-15 electrodes each measured self-potential (SP) over two small covered-karst conduits in Tampa, Florida. Positive and negative SP anomalies episodically manifested over conduits, suggesting that conduit flow is dynamic, not static. Various SP flow regimes in the conduits are postulated: flow in the conduit is faster than through surrounding surficial sediment, flow in the conduit is slower than through surrounding sediment, and conduit flow rates match those through the surrounding sediments. It is further postulated that conduits change permeability with inflow and washing out of sediment, especially associated with rain events. Numerical simulations of the postulated flow regimes were run with 2D simulations using the Comsol finite element modeling code. Simulations show that each regime produces different SP patterns. Models simulate the Tampa field setting in which a 1-2 meter-thick high permeability sand layer overlies a low-permeability clay-rich layer. A funnel-shaped conduit breaches both layers. In the models, when the permeability of the conduit sands is equal to surrounding surficial sands, a small (several mV) negative anomaly manifests locally at the conduit. This negative anomaly can be explained as the result of the depression of the SPS surface (the first sediment surface with a change in conductance or streaming potential coefficient) in the conduit. However a permeability difference of as little as 5 to 20 percent between conduit and background can cause an SP anomaly of tens to several hundred millivolts, either positive or negative. When the permeability is higher in the conduit than the surficial sands, lateral flow into the conduit within the sand layer and through the conduit to the underlying aquifer are both high, and the SP signal over the conduit is positive. This may contradict the concept exemplified in other studies that downward flow creates a negative anomaly. In our case the positive voltage is the result of high lateral flow toward a high flux conduit. As a result, the horizontal dimension of the conduit plays a role in whether a positive or negative anomaly is observed locally near the surface, depending on the degree to which the terminus of the inward lateral flow affects voltage over the conduit center. When the conduit has lower permeability than surrounding surficial sediment, models show that the SP anomaly is negative. In this case lateral flow is small to a low-flux conduit and there is little build-up of positive SP to overcome the negative potential associated with the SPS trough.
Dijkstra, J; van Galen, M; Scherphof, G
1985-03-14
We studied the interaction of large unilamellar liposomes carrying different surface charges with rat Kupffer cells in maintenance culture. In addition to 14C-labeled phosphatidylcholine, all liposome preparations contained either 3H-labeled inulin or 125I-labeled bovine serum albumin as a non-degradable or a degradable aqueous space marker, respectively. With vesicles carrying no net charge, intracellular processing of internalized liposomes caused nearly complete release of protein label into the medium in acid-soluble form, while phospholipid label was predominantly retained by the cells, only about one third being released. The presence of the lysosomotropic agent, ammonia, inhibited the release of both labels from the cells. At 4 degrees C, the association and degradation of the vesicles were strongly reduced. These results are very similar to what we reported on negatively charged liposomes (Dijkstra, J., Van Galen, W.J.M., Hulstaert, C.E., Kalicharan, D., Roerdink, F.H. and Scherphof, G.L. (1984) Exp. Cell Res. 150, 161-176). The interaction of both types of vesicles apparently proceeds by adsorption to the cell surface followed by virtually complete internalization by endocytosis. Similar experiments with positively charged vesicles indicated that only about half of the liposomes were taken up by the endocytic route, the other half remaining adsorbed to the cell-surface. Attachment of all types of liposomes to the cells was strongly dependent on the presence of divalent cations; Ca2+ appeared to be required for optimal binding. Neutral liposomes only slightly competed with the uptake of negatively charged vesicles, both at 4 degrees and 37 degrees C, whereas negatively charged small unilamellar vesicles and negatively charged latex beads were found to compete very effectively with the large negatively charged liposomes. Neutral vesicles competed effectively for uptake with positively charged ones. These results suggest that neutral and positively charged liposomes are largely bound by the same cell-surface binding sites, while negatively charged vesicles attach mainly to other binding sites.
Brightbill, Robin A.; Riva-Murray, Karen; Bilger, Michael D.; Byrnes, John D.
2004-01-01
Within the Delaware River Basin, fish-tissue samples were analyzed for total mercury (tHg). Water and bed-sediment samples were analyzed for tHg and methylmercury (MeHg), and methylation efficiencies were calculated. This study was part of a National Mercury Pilot Program conducted by the U.S. Geological Survey (USGS). The Delaware River Basin was chosen because it is part of the USGS National Water-Quality Assessment Program that integrates physical, chemical, and biological sampling efforts to determine status and trends in surface-water and ground-water resources. Of the 35 sites in the study, 31 were sampled for fish. The species sampled at these sites include smallmouth bass (Micropterus dolomieu), the target species, and where smallmouth bass could not be collected, brown trout (Salmo trutta), chain pickerel (Esox niger), largemouth bass (Micropterus salmoides), and rock bass (Ambloplites rupestris). There were a total of 32 fish samples; 7 of these exceeded the 0.3 ?g/g (micrograms per gram) wet-weight mercury (Hg) concentration set for human health by the U.S. Environmental Protection Agency and 27 of these exceeded the U.S. Fish and Wildlife Service criteria of 0.1 ?g/g wet weight for the protection of fish-eating birds and wildlife. Basinwide analysis of Hg in fish, water, and bed sediment showed tHg concentration in fillets correlated positively with population density, urban land cover, and impervious land surface. Negative correlations included wetland land cover, septic density, elevation, and latitude. Smallmouth bass from the urban sites had a higher median concentration of tHg than fish from agricultural, low intensity-agricultural, or forested sites. Concentrations of tHg and MeHg in water were higher in samples from the more urbanized areas of the basin and were positively correlated with urbanization and negatively correlated with forested land cover. Methylation efficiency of water was negatively correlated with urbanization. Bed-sediment patterns were similar to those observed in water. Concentrations of tHg were higher in samples from the urbanized areas. In the more forested areas, MeHg concentrations were higher than in other land-use areas. Concentrations of tHg in bed sediment were positively correlated with urbanization factors (population, urban land cover, and impervious land surface) and negatively correlated with forested land cover and elevation. Forested land cover and latitude were positively correlated with concentrations of MeHg. The methylation efficiency was higher in samples from the forested areas and was negatively correlated with urbanization. Analyses within land-use groups showed that tHg concentrations in fish fillets from the urban sites were positively correlated with forested land cover and wetland cover. Urbanization factors within the agricultural group were positively correlated with tHg in fish; concentrations of tHg in fish from sites in the low intensity-agricultural group were negatively correlated with urbanization factors. Within the agricultural land-use group, tHg concentrations in water were negatively correlated with septic density, and MeHg concentrations were negatively correlated with elevation. In the forested and low intensity-agricultural groups, MeHg in water was negatively correlated with forested and agricultural land cover. Methylation efficiency in water also was negatively correlated with forested land cover but positively correlated with agricultural land cover. Bed sediment concentrations of tHg in the forested and low-agricultural groups were positively correlated with agricultural land cover and negatively correlated with forested land cover. Concentrations of MeHg in bed sediment were positively correlated with septic density and drainage area and negatively correlated with forested land cover. Methylation efficiency was negatively correlated with population density, a
Negative charge emission due to excimer laser bombardment of sodium trisilicate glass
NASA Astrophysics Data System (ADS)
Langford, S. C.; Jensen, L. C.; Dickinson, J. T.; Pederson, L. R.
1990-10-01
We describe measurements of negative charge emission accompanying irradiation of sodium trisilicate glass (Na2Oṡ3SiO2) with 248-nm excimer laser light at fluences on the order of 2 J/cm2 per pulse, i.e., at the threshold for ablative etching of the glass surface. The negative charge emission consists of a very prompt photoelectron burst coincident with the laser pulse, followed by a much slower plume of electrons and negative ions traveling with a high density cloud of positive ions, previously identified as primarily Na+. Using combinations of E and B fields in conjunction with time-of-flight methods, the negative ions were successfully separated from the plume and tentatively identified as O-, Si-, NaO-, and perhaps NaSi-. These negative species are probably formed by gas phase collisions in the near-surface region which result in electron attachment.
Serum ALT levels as a surrogate marker for serum HBV DNA levels in HBeAg-negative pregnant women.
Sangfelt, Per; Von Sydow, Madeleine; Uhnoo, Ingrid; Weiland, Ola; Lindh, Gudrun; Fischler, Björn; Lindgren, Susanne; Reichard, Olle
2004-01-01
In Stockholm, Sweden, the majority of pregnant women positive for hepatitis B surface antigen (HBsAg) are hepatitis Be antigen (HBeAg) negative. Newborns to HBeAg positive mothers receive vaccination and hepatitis B immunoglobulin (HBIg). Newborns to HBeAg negative mothers receive vaccine and HBIg only if the mothers have elevated ALT levels. The aim of this study was to retrospectively evaluate ALT levels as a surrogate marker for HBV DNA levels in HBeAg negative carrier mothers. Altogether 8947 pregnant women were screened for HBV markers from 1999 to 2001 at the Virology Department, Karolinska Hospital. Among mothers screened 192 tested positive for HBsAg (2.2%). 13 of these samples could not be retrieved. Of the remaining 179 sera, 8 (4%) tested positive for HBeAg and 171 (95.5%) were HBeAg negative. Among the HBeAg negative mothers, 9 had HBV DNA levels > 10(5) copies/ml, and of these 7 had normal ALT levels indicating low sensitivity of an elevated ALT level as a surrogate marker for high HBV DNA level. Furthermore, no correlation was found between ALT and HBV DNA levels. Hence, it is concluded that the use of ALT as a surrogate marker for high viral replication in HBeAg negative mothers could be questioned.
In Vitro Assessment of Early Bacterial Activity on Micro/Nanostructured Ti6Al4V Surfaces.
Valdez-Salas, Benjamin; Beltrán-Partida, Ernesto; Castillo-Uribe, Sandra; Curiel-Álvarez, Mario; Zlatev, Roumen; Stoytcheva, Margarita; Montero-Alpírez, Gisela; Vargas-Osuna, Lidia
2017-05-18
It is imperative to understand and systematically compare the initial interactions between bacteria genre and surface properties. Thus, we fabricated a flat, anodized with 80 nm TiO₂ nanotubes (NTs), and a rough Ti6Al4V surface. The materials were characterized using field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM). We cultured in vitro Staphylococcus epidermidis ( S. epidermidis ) and Pseudomonas aeruginosa ( P. aeruginosa ) to evaluate the bacterial-surface behavior by FE-SEM and viability calculation. In addition, the initial effects of human osteoblasts were tested on the materials. Gram-negative bacteria showed promoted adherence and viability over the flat and rough surface, while NTs displayed opposite activity with altered morphology. Gram-positive bacteria illustrated similar cellular architecture over the surfaces but with promoted surface adhesion bonds on the flat alloy. Rough surfaces supported S. epidermidis viability, whilst NTs exhibited lower vitality. NTs advocated promoted better osteoblast organization with enhanced vitality. Gram-positive bacteria suggested preferred adhesion capability over flat and carbon-rich surfaces. Gram-negative bacteria were strongly disturbed by NTs but largely stimulated by flat and rough materials. Our work proposed that the chemical profile of the material surface and the bacterial cell wall characteristics might play an important role in the bacteria-surface interactions.
Vertical-velocity skewness in the marine stratus-topped boundary layer
NASA Technical Reports Server (NTRS)
Moeng, Chin-Hoh; Rotunno, Richard; Paluch, Ilga R.
1990-01-01
Vertical-velocity skewness, S(sub w), in a turbulent flow is important in several regards. S(sub w) is indicative of the structure of the motion when it is positive, updrafts are narrower and stronger than surrounding downdrafts, and vice versa. Aircraft measurements often suggest cool, narrow downdrafts at some distance below the stratus cloud top, indicating a negative S(sub w) (Nicholls and Leighton, 1986). This seems natural as the turbulence within the stratus-topped boundary layer (CTBL) is driven mainly by the radiative cooling at the cloud top (although sometimes surface heating can also play a major role). One expects intuitively (e.g., Nicolls, 1984) that, in the situations where cloud-top cooling and surface heating coexist, the turbulence statistics in the upper part of the CTBL are influenced more by the cloud-top cooling, while those in the lower part, more by the surface heating. Thus one expects negative S(sub w) in the upper part, and positive in the lower part, in this case. In contradistinction, large-eddy simulations (LES) of the CTBL show just the opposite: the S(sub w) is positive in the upper part and negative in the lower part of the layer. To understand the nature of vertical-velocity skewness, the simplest type of buoyancy-driven turbulence (turbulent Rayleigh-Benard convection) is studied through direct numerical simulation.
Perceptions of temperature, moisture and comfort in clothing during environmental transients.
Li, Y
2005-02-22
A study has been carried out to investigate the psychophysical mechanisms of the perception of temperature and moisture sensations in clothing during environmental transients. A series of wear trials was conducted to measure the psychological perception of thermal and moisture sensations and the simultaneous temperature and humidity at the skin surface, fabric surface and in the clothing under simulated moderate rain conditions. Jumpers made from wool and acrylic fibres were used in the trial. Analysis has been carried out to study the relationship between psychological perceptions of temperature and moisture and the objectively measured skin and fabric temperatures and relative humidity in clothing microclimate. The perception of warmth seems to follow Fechner's law and Stevens' power law, having positive relationships with the skin temperature and fabric temperatures. The perception of dampness appears to follow Fechner's law more closely than Stevens' power law with a negative relationship with skin temperature, and is nonlinearly and positively correlated with relative humidity in clothing microclimate. The perception of comfort is positively related to the perception of warmth and negatively to the perception of dampness. This perception of comfort is positively related to the skin temperature, which appears to follow both Fechner's law and Stevens' law, also non-linearly and negatively related to relative humidity in clothing microclimate.
Schneider, Karolin; Bol, Vanesa; Grégoire, Vincent
2017-09-01
Clinical studies indicate that patients with HPV/p16-associated head & neck squamous cell carcinoma (HNSCC) represent a subgroup with a better prognosis and improved response to conventional radiotherapy. Involvement of immune-based factors has been hypothesized. In the present study, we investigated radiation-induced differences in release of damage associated molecular patterns (DAMPs), cytokines and activation of dendritic cells (DCs) in HPV-positive and negative HNSCC cancer cell lines. Calreticulin (CRT) exposure was detected on cancer cell surface. ATP, HMGB1 and cytokines were measured in culture supernatants. Maturation marker CD83 surface exposure was determined on DCs after co-incubation with irradiated tumor cells. There was no increase in DAMPs and cytokine profiles after radiation treatment and no difference between HPV+ and HPV- cell lines. The HPV/p16-positive SCC90 cells showed a trend for increased total CRT, HMGB1, and number of cytokines compared to all other cell lines. None of the irradiated cancer cell lines could affect DC maturation. Radiation treatment did not increase immunogenicity of HNSCC cell lines assessed by membrane CRT, ATP, HMGB1, cytokines production, and by activation of immature DCs. There was no difference between HPV-positive and HPV-negative cell lines. Copyright © 2017 Elsevier B.V. All rights reserved.
ENSO related SST anomalies and relation with surface heat fluxes over south Pacific and Atlantic
NASA Astrophysics Data System (ADS)
Chatterjee, S.; Nuncio, M.; Satheesan, K.
2017-07-01
The role of surface heat fluxes in Southern Pacific and Atlantic Ocean SST anomalies associated with El Nino Southern Oscillation (ENSO) is studied using observation and ocean reanalysis products. A prominent dipole structure in SST anomaly is found with a positive (negative) anomaly center over south Pacific (65S-45S, 120W-70W) and negative (positive) one over south Atlantic (50S-30S, 30W-0E) during austral summer (DJF) of El Nino (LaNina). During late austral spring-early summer (OND) of El Nino (LaNina), anomalous northerly (southerly) meridional moisture transport and a positive (negative) sea level pressure anomaly induces a suppressed (enhanced) latent heat flux from the ocean surface over south Pacific. This in turn results in a shallower than normal mixed layer depth which further helps in development of the SST anomaly. Mixed layer thins further due to anomalous shortwave radiation during summer and a well developed SST anomaly evolves. The south Atlantic pole exhibits exactly opposite characteristics at the same time. The contribution from the surface heat fluxes to mixed layer temperature change is found to be dominant over the advective processes over both the basins. Net surface heat fluxes anomaly is also found to be maximum during late austral spring-early summer period, with latent heat flux having a major contribution to it. The anomalous latent heat fluxes between atmosphere and ocean surface play important role in the growth of observed summertime SST anomaly. Sea-surface height also shows similar out-of-phase signatures over the two basins and are well correlated with the ENSO related SST anomalies. It is also observed that the magnitude of ENSO related anomalies over the southern ocean are weaker in LaNina years than in El Nino years, suggesting an intensified tropics-high latitude tele-connection during warm phases of ENSO.
Nardi, James B; Pilas, Barbara; Bee, Charles Mark; Zhuang, Shufei; Garsha, Karl; Kanost, Michael R
2006-01-01
Observations of hemocyte aggregation on abiotic surfaces suggested that certain plasmatocytes from larvae of Manduca sexta act as foci for hemocyte aggregation. To establish how these particular plasmatocytes form initial attachments to foreign surfaces, they were cultured separately from other selected populations of hemocytes. While all circulating plasmatocytes immunolabel with anti-beta-integrin monoclonal antibody (MAb), only these larger plasmatocytes immunolabel with a MAb to the adhesion protein neuroglian. Neuroglian-negative plasmatocytes and granular cells that have been magnetically segregated from the majority of granular cells adhere to each other but fail to adhere to foreign substrata; by contrast, neuroglian-positive plasmatocytes that segregate with most granular cells adhere firmly to a substratum. Hemocytes form stable aggregates around the large, neuroglian-positive plasmatocytes. However, if neuroglian-positive plasmatocytes are separated from most granular cells, attachment of these plasmatocytes to foreign surfaces is suppressed.
Sagnelli, Evangelista; Coppola, Nicola; Pisaturo, Mariantonietta; Pisapia, Raffaella; Onofrio, Mirella; Sagnelli, Caterina; Catuogno, Antonio; Scolastico, Carlo; Piccinino, Felice; Filippini, Pietro
2006-06-01
We evaluated the clinical and virological characteristics of hepatitis A virus infection in persons concomitantly infected with hepatitis B virus (HBV) or hepatitis C virus (HCV). We enrolled 21 patients with acute hepatitis A and chronic hepatitis with no sign of liver cirrhosis, 13 patients who were positive for hepatitis B surface antigen (case B group), 8 patients who were anti-HCV positive (case C group), and 21 patients with acute hepatitis A without a preexisting liver disease (control A group). Two control groups of patients with chronic hepatitis B (control B group) or C (control C group) were also chosen. All control groups were pair-matched by age and sex with the corresponding case group. Fulminant hepatitis A was never observed, and hepatitis A had a severe course in 1 patient in the case B group and in 1 patient in the control A group. Both patients recovered. On admission, HBV DNA was detected in 1 patient in the case B group (7.7%) and in 13 patients (50%) in the control B group; HCV RNA was found in no patient in the case C group and in 16 patients (81.2%) in the control C group. Of 9 patients in the case B group who were followed up for 6 months, 3 became negative for hepatitis B surface antigen and positive for hepatitis B surface antibody, 2 remained positive for hepatitis B surface antigen and negative for HBV DNA, and 4 became positive for HBV DNA with a low viral load [corrected] Of 6 patients in the case C group who were followed up for 6 months, 3 remained negative for HCV RNA, and 3 had persistently low viral loads. Concomitant hepatitis A was always self-limited, associated with a marked inhibition of HBV and HCV genomes, and possibly had a good prognosis for the underlying chronic hepatitis.
2010-01-01
Background Occult hepatitis B virus (HBV) infection might transmit viremic units into the public blood supply if only hepatitis B surface antigen (HBsAg) testing is used for donor screening. Our aim was to evaluate the prevalence of occult HBV infection among the HBsAg negative/antiHBc positive donations from a highly HIV prevalent region of India. Methods A total of 729 HBsAg negative donor units were included in this study. Surface gene and precore region were amplified by in house nucleic acid test (NAT) for detection of occult HBV infection and surface gene was analyzed after direct sequencing. Results A total of 220 (30.1%) HBsAg negative donors were antiHBc positive, of them 66 (30%) were HBV DNA positive by NAT. HBV DNA positivity among 164 antiHBc only group, was 27.1% and among 40 antiHBs positive group was 30.0%. HBV/D (93.3%) was predominant and prevalence of both HBV/C and HBV/A was 3.3%. Single or multiple amino acids substitutions were found in 95% samples. Conclusion Thus, a considerable number of HBV infected donors remain undiagnosed, if only HBsAg is used for screening. Addition of antiHBc testing for donor screening, although will lead to rejection of a large number of donor units, will definitely eliminate HBV infected donations and help in reducing HBV transmission with its potential consequences, especially among the immunocompromised population. The HBV genetic diversity found in this donor population are in accordance with other parts of India. PMID:20799931
Panigrahi, Rajesh; Biswas, Avik; Datta, Sibnarayan; Banerjee, Arup; Chandra, Partha K; Mahapatra, Pradip K; Patnaik, Bharat; Chakrabarti, Sekhar; Chakravarty, Runu
2010-08-27
Occult hepatitis B virus (HBV) infection might transmit viremic units into the public blood supply if only hepatitis B surface antigen (HBsAg) testing is used for donor screening. Our aim was to evaluate the prevalence of occult HBV infection among the HBsAg negative/antiHBc positive donations from a highly HIV prevalent region of India. A total of 729 HBsAg negative donor units were included in this study. Surface gene and precore region were amplified by in house nucleic acid test (NAT) for detection of occult HBV infection and surface gene was analyzed after direct sequencing. A total of 220 (30.1%) HBsAg negative donors were antiHBc positive, of them 66 (30%) were HBV DNA positive by NAT. HBV DNA positivity among 164 antiHBc only group, was 27.1% and among 40 antiHBs positive group was 30.0%. HBV/D (93.3%) was predominant and prevalence of both HBV/C and HBV/A was 3.3%. Single or multiple amino acids substitutions were found in 95% samples. Thus, a considerable number of HBV infected donors remain undiagnosed, if only HBsAg is used for screening. Addition of antiHBc testing for donor screening, although will lead to rejection of a large number of donor units, will definitely eliminate HBV infected donations and help in reducing HBV transmission with its potential consequences, especially among the immunocompromised population. The HBV genetic diversity found in this donor population are in accordance with other parts of India.
NASA Astrophysics Data System (ADS)
Derr, Igor; Bruns, Michael; Langner, Joachim; Fetyan, Abdulmonem; Melke, Julia; Roth, Christina
2016-09-01
Electrochemical degradation (ED) of carbon felt electrodes was investigated by cycling of a flow through all-vanadium redox flow battery (VRFB) and conducting half-cell measurements with two reference electrodes inside the test bench. ED was detected using half-cell and full-cell electrochemical impedance spectroscopy (EIS) at different states of charge (SOC). Reversing the polarity of the battery to recover cell performance was performed with little success. Renewing the electrolyte after a certain amount of cycles restored the capacity of the battery. X-ray photoelectron spectroscopy (XPS) reveals that the amount of surface functional increases by more than a factor of 3 for the negative side as well as for the positive side. Scanning electron microscope (SEM) images show a peeling of the fiber surface after cycling the felts, which leads to a loss of electrochemically active surface area (ECSA). Long term cycling shows that ED has a stronger impact on the negative half-cell [V(II)/V(III)] than the positive half-cell [V(IV)/V(V)] and that the negative half-cell is the rate-determining half-cell for the VRFB.
Oceanic Precondition and Evolution of the Indian Ocean Dipole Events
NASA Astrophysics Data System (ADS)
Horii, T.; Masumoto, Y.; Ueki, I.; Hase, H.; Mizuno, K.
2008-12-01
Indian Ocean Dipole (IOD) is one of the interannual climate variability in the Indian Ocean, associated with the negative (positive) SST anomaly in the eastern (western) equatorial region developing during boreal summer/autumn seasons. Japan Agency for Marine-Earth Science and Technology (JAMSTEC) has been deploying TRITON buoys in the eastern equatorial Indian Ocean since October 2001. Details of subsurface ocean conditions associated with IOD events were observed by the mooring buoys in the eastern equatorial Indian Ocean in 2006, 2007, and 2008. In the 2006 IOD event, large-scale sea surface signals in the tropical Indian Ocean associated with the positive IOD started in August 2006, and the anomalous conditions continued until December 2006. Data from the mooring buoys, however, captured the first appearance of the negative temperature anomaly at the thermocline depth with strong westward current anomalies in May 2006, about three months earlier than the development of the surface signatures. Similar appearance of negative temperature anomalies in the subsurface were also observed in 2007 and 2008, while the amplitude, the timing, and the relation to the surface layer were different among the events. The implications of the subsurface conditions for the occurrences of these IOD events are discussed.
Method for resurrecting negative electron affinity photocathodes after exposure to an oxidizing gas
Mulhollan, Gregory A; Bierman, John C
2012-10-30
A method by which negative electron affinity photocathodes (201), single crystal, amorphous, or otherwise ordered, can be made to recover their quantum yield following exposure to an oxidizing gas has been discovered. Conventional recovery methods employ the use of cesium as a positive acting agent (104). In the improved recovery method, an electron beam (205), sufficiently energetic to generate a secondary electron cloud (207), is applied to the photocathode in need of recovery. The energetic beam, through the high secondary electron yield of the negative electron affinity surface (203), creates sufficient numbers of low energy electrons which act on the reduced-yield surface so as to negate the effects of absorbed oxidizing atoms thereby recovering the quantum yield to a pre-decay value.
Relating Silica Scaling in Reverse Osmosis to Membrane Surface Properties.
Tong, Tiezheng; Zhao, Song; Boo, Chanhee; Hashmi, Sara M; Elimelech, Menachem
2017-04-18
We investigated the relationship between membrane surface properties and silica scaling in reverse osmosis (RO). The effects of membrane hydrophilicity, free energy for heterogeneous nucleation, and surface charge on silica scaling were examined by comparing thin-film composite polyamide membranes grafted with a variety of polymers. Results show that the rate of silica scaling was independent of both membrane hydrophilicity and free energy for heterogeneous nucleation. In contrast, membrane surface charge demonstrated a strong correlation with the extent of silica scaling (R 2 > 0.95, p < 0.001). Positively charged membranes significantly facilitated silica scaling, whereas a more negative membrane surface charge led to reduced scaling. This observation suggests that deposition of negatively charged silica species on the membrane surface plays a critical role in silica scale formation. Our findings provide fundamental insights into the mechanisms governing silica scaling in reverse osmosis and highlight the potential of membrane surface modification as a strategy to reduce silica scaling.
Modeling of surface-dominated plasmas: from electric thruster to negative ion source.
Taccogna, F; Schneider, R; Longo, S; Capitelli, M
2008-02-01
This contribution shows two important applications of the particle-in-cell/monte Carlo technique on ion sources: modeling of the Hall thruster SPT-100 for space propulsion and of the rf negative ion source for ITER neutral beam injection. In the first case translational degrees of freedom are involved, while in the second case inner degrees of freedom (vibrational levels) are excited. Computational results show how in both cases, plasma-wall and gas-wall interactions play a dominant role. These are secondary electron emission from the lateral ceramic wall of SPT-100 and electron capture from caesiated surfaces by positive ions and atoms in the rf negative ion source.
Yagil, Dana; Medler-Liraz, Hana
2017-10-01
Individual differences in emotional labor and subsequent vulnerability to burnout have been explored through the prism of Congruence Theory, which examines the congruence between personality traits and job requirements (Bono & Vey, 2007; Moskowitz & Coté, 1995). Drawing on theory and research dealing with the association between the need to belong and self-regulation (Baumeister, DeWall, Ciarocco & Twenge, 2005), this study examined the relationship between need to belong and service employees' surface acting and associated outcomes. In Study 1, participants (N = 54) were asked to write a response to an aggressive email from a hypothetical customer. The need to belong was positively related to display of positive emotions and negatively to display of negative emotions in the responses, but not related to felt anger, suggesting that it is associated with the inclination to engage in surface acting. In Study 2, a field study conducted with 170 service employee-customer dyads, surface acting mediated the positive relationship between fear of isolation and emotional exhaustion, and emotional exhaustion mediated the relationship between surface acting and customer satisfaction. These results suggested that service employees with a strong need to belong might have a heightened risk of burnout because of their inclination to engage in emotional labor. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Holtkamp, Derald J; Myers, Jacqueline; Thomas, Paul R; Karriker, Locke A; Ramirez, Alejandro; Zhang, Jianqiang; Wang, Chong
2017-04-01
In May of 2013, porcine epidemic diarrhea virus (PEDV) was detected in swine for the first time in North America. It spread rapidly, in part due to contaminated livestock trailers. The objective of this study was to test the efficacy of an accelerated hydrogen peroxide disinfectant for inactivating PEDV in the presence of feces on metal surfaces, such as those found in livestock trailers. Three-week-old barrows were inoculated intragastrically with 5 mL of PEDV-negative feces for the negative control, 5 mL of untreated PEDV-positive feces for the positive control, and 5 mL or 10 mL of PEDV-positive feces that was subjected to treatment with a 1:16 or 1:32 concentrations of accelerated hydrogen peroxide disinfectant for a contact time of 30 min at 20°C. These pigs served as a bioassay to determine the infectivity of virus following treatment. Rectal swabs collected from the inoculated pigs on days 3 and 7 post-inoculation were tested by using PEDV-specific real-time reverse transcription polymerase chain reaction and the proportion of pigs in each group that became infected with PEDV was assessed. None of the pigs used for the bioassay in the 4 treatment groups and the negative control group became infected with PEDV, which was significantly different from the positive control group ( P < 0.05) in which all pigs were infected. The results suggest that the application of the accelerated hydrogen peroxide under these conditions was sufficient to inactivate the virus in feces found on metal surfaces.
Holtkamp, Derald J.; Myers, Jacqueline; Thomas, Paul R.; Karriker, Locke A.; Ramirez, Alejandro; Zhang, Jianqiang; Wang, Chong
2017-01-01
In May of 2013, porcine epidemic diarrhea virus (PEDV) was detected in swine for the first time in North America. It spread rapidly, in part due to contaminated livestock trailers. The objective of this study was to test the efficacy of an accelerated hydrogen peroxide disinfectant for inactivating PEDV in the presence of feces on metal surfaces, such as those found in livestock trailers. Three-week-old barrows were inoculated intragastrically with 5 mL of PEDV-negative feces for the negative control, 5 mL of untreated PEDV-positive feces for the positive control, and 5 mL or 10 mL of PEDV-positive feces that was subjected to treatment with a 1:16 or 1:32 concentrations of accelerated hydrogen peroxide disinfectant for a contact time of 30 min at 20°C. These pigs served as a bioassay to determine the infectivity of virus following treatment. Rectal swabs collected from the inoculated pigs on days 3 and 7 post-inoculation were tested by using PEDV-specific real-time reverse transcription polymerase chain reaction and the proportion of pigs in each group that became infected with PEDV was assessed. None of the pigs used for the bioassay in the 4 treatment groups and the negative control group became infected with PEDV, which was significantly different from the positive control group (P < 0.05) in which all pigs were infected. The results suggest that the application of the accelerated hydrogen peroxide under these conditions was sufficient to inactivate the virus in feces found on metal surfaces. PMID:28408777
Bacterial and fungal biofilm formation on anodized titanium alloys with fluorine.
Perez-Jorge, Concepcion; Arenas, Maria-Angeles; Conde, Ana; Hernández-Lopez, Juan-Manuel; de Damborenea, Juan-Jose; Fisher, Steve; Hunt, Alessandra M Agostinho; Esteban, Jaime; James, Garth
2017-01-01
Orthopaedic device-related infections are closely linked to biofilm formation on the surfaces of these devices. Several modified titanium (Ti-6Al-4V) surfaces doped with fluorine were studied in order to evaluate the influence of these modifications on biofilm formation by Gram-positive and Gram-negative bacteria as well as a yeast. The biofilm studies were performed according to the standard test method approved by ASTM (Designation: E2196-12) using the Rotating Disk Reactor. Four types of Ti-6Al-4V samples were tested; chemically polished (CP), two types of nanostructures containing fluorine, nanoporous (NP) and nanotubular (NT), and non-nanostructured fluorine containing samples (fluoride barrier layers, FBL). Different species of Gram-positive cocci, (Staphylococcus aureus and epidermidis), Gram-negative rods (Escherichia coli, Pseudomonas aeruginosa), and a yeast (Candida albicans) were studied. For one of the Gram-positive (S. epidermidis) and one of the Gram-negative (E. coli) species a statistically-significant decrease in biofilm accumulation for NP and NT samples was found when compared with the biofilm accumulation on CP samples. The results suggest an effect of the modified materials on the biofilm formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Juan; Zhou, Yufan; Sui, Xiao
Switchable ionic liquids (SWIL) play an important role in green chemistry. Due to the nature of SWIL chemistry, such as air sensitivity and pressure and temperature dependence, it is difficult to characterize SWIL using vacuum-based surface techniques. The fully CO2 loaded and none-loaded DBU and hexanol mixtures, a SWIL system, were analyzed in situ by time-of-flight secondary ion mass spectrometry (ToF-SIMS) coupled with the System for Analysis at the Liquid Vacuum Interface (SALVI), respectively. The DBU/Hexanol/CO2 SWIL was injected into the microchannel before liquid SIMS analysis. Bi3+ primary ion beam was used. The positive and negative spectra of the SWILmore » chemical components are presented. The characteristic peaks m/z 153 (reduced DBU) in the positive mode and m/z 101 (oxidized hexanol) in negative mode were observed. In addition, ion pair peaks including m/z 253, 319, 305, 451 in the positive mode and m/z 145, 223, 257 in the negative mode are first observed using this approach. These results demonstrate that the SALVI microfluidic reactor enables the vacuum-based surface technique (i.e., ToF-SIMS) for in situ characterization of challenging liquid samples such as ionic liquids.« less
Surface Chemistry and Tribology of Copper Surfaces in Carbon Dioxide and Water Vapor Environments
2011-02-23
state that the copper brushes in the superconducting homopolar motor experience wear at rates greater than 3X10" wear /distance traveled when biased...positively. It has been found the motor operates best in an atmosphere of carbon dioxide and water vapor. The objective of our research therefore is...possible to prepare different chemical states of the Cu, as those produced in the motor electrodes under positive and negative bias. In situ XAS
NASA Astrophysics Data System (ADS)
Misra, Santosh K.; Chang, Huei-Huei; Mukherjee, Prabuddha; Tiwari, Saumya; Ohoka, Ayako; Pan, Dipanjan
2015-10-01
A plethora of nanoarchitectures have been evaluated preclincially for applications in early detection and treatment of diseases at molecular and cellular levels resulted in limited success of their clinical translation. It is important to identify the factors that directly or indirectly affect their use in human. We bring a fundamental understanding of how to adjust the biocompatibility of carbon based spherical nanoparticles (CNPs) through defined chemistry and a vigilant choice of surface functionalities. CNPs of various size are designed by tweaking size (2-250 nm), surface chemistries (positive, or negatively charged), molecular chemistries (linear, dendritic, hyperbranched) and the molecular weight of the coating agents (MW 400-20 kDa). A combination of in vitro assays as tools were performed to determine the critical parameters that may trigger toxicity. Results indicated that hydrodynamic sizes are potentially not a risk factor for triggering cellular and systemic toxicity, whereas the presence of a highly positive surface charge and increasing molecular weight enhance the chance of inducing complement activation. Bare and carboxyl-terminated CNPs did present some toxicity at the cellular level which, however, is not comparable to those caused by positively charged CNPs. Similarly, negatively charged CNPs with hydroxyl and carboxylic functionalities did not cause any hemolysis.
Prevalence of occult hepatitis B virus infection in hemodialysis patients in Isfahan, Iran.
Kalantari, Hamid; Ferdowsi, Faezeh; Yaran, Majid
2016-01-01
The absence of a detectable hepatitis B surface antigen (HBsAg) with or without hepatitis B core antibody (anti-HBc) or hepatitis B surface antibody (anti-HBs) in the presence of hepatitis B virus-DNA (HBV-DNA) is defined as occult HBV infection. This study was aimed to evaluate the prevalence of occult HBV infection in patients receiving hemodialysis (HD) in Isfahan, Iran. This cross sectional study was done on 400 patients without acute or chronic HBV infection with end-stage renal disease undergoing regular HD. Blood samples were collected prior to the HD session, and serological markers of viral hepatitis B included HBsAg, anti-HBs and anti-HBc were measured using standard third generation commercially available enzyme immunoassays kit, then samples of positive anti-HBc and negative anti-HBs were tested for HBV DNA using quantitative real-time polymerase chain reaction techniques. Data were analyzed by SPSS using t -test and Chi-square test. The mean age of patients was 51.6 ± 11.2 years. Anti-HBc positive was observed in 32 (8%) of 400 studied patients with negative HBsAg. Of 32 patients with anti-HBc positive, 15 were males and 17 were females with mean age of 49.7 ± 12.6 years. Among 32 patients with anti-HBc positive, 10 patients were negative for anti-HBs. All of 10 patients were negative for HBV DNA. The prevalence of occult HBV infection was 0%. The prevalence of occult HBV infection in HBsAg negative patients undergoing HD was 0% and look to be among the lowest worldwide. So, occult HBV infection is not a significant health problem in HD patients in this region.
Surface ozone concentrations in Europe: Links with the regional-scale atmospheric circulation
NASA Astrophysics Data System (ADS)
Davies, T. D.; Kelly, P. M.; Low, P. S.; Pierce, C. E.
1992-06-01
Daily surface ozone observations from 1978 (1976 for some analyses) to 1988 for Bottesford (United Kingdom), Cabauw, Kloosterburen (The Netherlands), Hohenpeissenberg, Neuglobsow, Hamburg, and Arkona (Germany) are used to analyze links between surface ozone variations and the atmospheric circulation. A daily Europe-wide synoptic classification highlights marked differences between surface ozone/meteorology relationships in summer and winter. These relationships are characterized by correlations between daily surface ozone concentrations at each station and a local subregional surface pressure gradient (a wind speed index). Although there are geographical variations, which are explicable in terms of regional climatology, there are distinct annual cycles. In summer, the surface ozone/wind speed relationship exhibits the expected negative sign; however, in winter, the relationship is, in the main, strongly positive, especially at those stations which are more influenced by the vigorous westerlies. Spring and autumn exhibit negative, positive, or transitional (between summer and winter) behavior, depending on geographical position. It is suggested that these relationships reflect the importance of vertical exchange from the free troposphere to the surface in the nonsummer months. Composite surface pressure patterns and surface pressure anomaly (from the long-term mean) patterns associated with high surface ozone concentrations on daily and seasonal time scales are consistent with the surface ozone/wind speed relationships. Moreover, they demonstrate that high surface ozone concentrations, in a climatological time frame, can be associated with mean surface pressure patterns which have a synoptic reality and are robust. Such an approach may be useful in interpreting past variations in surface ozone and may help to isolate the effect of human activity. It is also possible that assessments can be made of the effect of projected future changes in the atmospheric circulation. This potential is illustrated by the fact that up to 65% of the interannual variance in 6-month mean surface ozone concentrations can be explained by the subregional wind speed index.
Positive and negative ion outflow at Rhea as observed by Cassini
NASA Astrophysics Data System (ADS)
Desai, Ravindra; Jones, Geraint; Regoli, Leonardo; Cowee, Misa; Coates, Andrew; Kataria, Dhiren
2017-04-01
Rhea is Saturn's largest icy moon and hosts an ethereal oxygen and carbon-dioxide atmosphere as was detected when Cassini observed positive and negative pickup ions outflowing from the moon and an extended neutral exosphere. These pickup ions can form current systems which, with the resulting jxB force, act to slow-down the incident magneto-plasma and cause field-line draping. As well as impacting the plasma interaction, the composition and density of picked up ions provide key diagnostics of the moon's sputter-induced atmosphere and surface. During the first Cassini-Rhea encounter (R1), the Cassini Plasma Spectrometer (CAPS) observed positively and negatively charged pickup ions before and after passing through the moon's plasma wake respectively, in agreement with their anticipated cycloidal trajectories. On the subsequent more distant wake encounter (R1.5) however, only positively charged pickup ions were observed, indicating high loss rates of the negative ions in Saturn's magnetosphere. Here, using an updated model of Cassini's Electron Spectrometer response function, we are able to estimate the outward flux of negatively charged pickup ions, the first time such a plasma population has been constrained. Using test-particle simulations we trace both the positive and negative particles back to Rhea's exobase to better understand their production and loss processes and the implications for Rhea's sputter-induced exosphere. We also look to examine whether the calculated ion densities could generate ion cyclotron wave activity.
Pulsed field sample neutralization
Appelhans, Anthony D.; Dahl, David A.; Delmore, James E.
1990-01-01
An apparatus and method for alternating voltage and for varying the rate of extraction during the extraction of secondary particles, resulting in periods when either positive ions, or negative ions and electrons are extracted at varying rates. Using voltage with alternating charge during successive periods to extract particles from materials which accumulate charge opposite that being extracted causes accumulation of surface charge of opposite sign. Charge accumulation can then be adjusted to a ratio which maintains a balance of positive and negative charge emission, thus maintaining the charge neutrality of the sample.
[Fabric static effect after the use of synthetic detergents].
Golenkova, L G; Voloshchenko, O I; Antomonov, M Iu
2003-01-01
The residues of surfactants that are present on textile materials were found to affect the surface charge of tissues. If physical properties of clothes materials, such as electrifiability, the positive or negative charge, resistivity, hygroscopicity are known, you may predict the values of residues of surfactants to be adsorbed onto the surface of tissues.
Three types of Indian Ocean Basin modes
NASA Astrophysics Data System (ADS)
Guo, Feiyan; Liu, Qinyu; Yang, Jianling; Fan, Lei
2017-04-01
The persistence of the Indian Ocean Basin Mode (IOBM) from March to August is important for the prediction of Asian summer monsoon. Based on the observational data and the pre-industrial control run outputs of the Community Climate System Model, version 4 (CCSM4), the IOBM is categorized into three types: the first type can persist until August; the second type transforms from the positive (negative) IOBM into the negative (positive) Indian Ocean Dipole Mode (IODM), accompanied by the El Niño-to-La Niña (La Niña-to-El Niño) transition in the boreal summer; the third type transforms from the positive (negative) IOBM into the positive (negative) IODM in early summer. It is discovered that aside from the influence of anomalous Walker Circulation resulted from the phase transition of ENSO, the persistence of Australia high anomaly (AHA) over the southeastern tropical Indian Ocean (TIO) and the west of Australia from March to May is favorable for the positive (negative) IOBM transformation into the positive (negative) IODM in the boreal summer. The stronger equatorially asymmetric sea surface temperature anomalies (SSTAs) in the boreal spring are the main mechanism for the persistence of IOBM, because the asymmetric atmospheric responses to the stronger equatorially asymmetric SSTAs in the TIO confine the AHA to the east of Australia from May to August. This result indicates a possibility of predicting summer atmospheric circulation based on the equatorial symmetry of SSTAs in the TIO in spring.
ESI-MS of Cucurbituril Complexes Under Negative Polarity.
Rodrigues, Maria A A; Mendes, Débora C; Ramamurthy, Vaidhyanathan; Da Silva, José P
2017-11-01
Electrospray ionization mass spectrometry (ESI-MS) is a powerful tool to study host-guest supramolecular interactions. ESI-MS can be used for detailed gas-phase reactivity studies, to clarify the structure, or simply to verify the formation of complexes. Depending on the structure of the host and of the guest, negative and/or positive ESI are used. Here we report the unexpected formation of host-guest complexes between cucurbit[n]urils (n = 7, 8, CB[n]) and amine, styryl pyridine, and styryl pyridine dimer cations, under negative ESI. Non-complexed CB[n] form double charged halide (Br - , Cl - , F - ) adducts. Under negative ESI, halide ions interact with CB[n] outer surface hydrogen atoms. One to one host-guest complexes (1:1) of CB[n] with positive charged guests were also observed as single and double charged ions under negative ESI. The positive charge of guests is neutralized by ion-pairing with halide anions. Depending on the number of positive charges guests retain in the gas phase, one or two additional halide ions are required for neutralization. Complexes 1:2 of CB[8] with styryl pyridines retain two halide ions in the gas phase, one per guest. Styryl pyridine dimers form 1:1 complexes possessing a single extra halide ion and therefore a single positive charge. Negative ESI is sensitive to small structural differences between complexes, distinguishing between 1:2 complexes of styryl pyridine-CB[8] and corresponding 1:1 complexes with the dimer. Negative ESI gives simpler spectra than positive ESI and allows the determination of guest charge state of CB[n] complexes in the gas phase. Graphical Abstract ᅟ.
Single-atom detection of isotopes
Meyer, Fred W.
2002-01-01
A method for performing accelerator mass spectrometry, includes producing a beam of positive ions having different multiple charges from a multicharged ion source; selecting positive ions having a charge state of from +2 to +4 to define a portion of the beam of positive ions; and scattering at least a portion of the portion of the beam of positive ions off a surface of a target to directly convert a portion of the positive ions in the portion of the beam of positive ions to negative ions.
OCT-based full crystalline lens shape change during accommodation in vivo.
Martinez-Enriquez, Eduardo; Pérez-Merino, Pablo; Velasco-Ocana, Miriam; Marcos, Susana
2017-02-01
The full shape of the accommodating crystalline lens was estimated using custom three-dimensional (3-D) spectral OCT and image processing algorithms. Automatic segmentation and distortion correction were used to construct 3-D models of the lens region visible through the pupil. The lens peripheral region was estimated with a trained and validated parametric model. Nineteen young eyes were measured at 0-6 D accommodative demands in 1.5 D steps. Lens volume, surface area, diameter, and equatorial plane position were automatically quantified. Lens diameter & surface area correlated negatively and equatorial plane position positively with accommodation response. Lens volume remained constant and surface area decreased with accommodation, indicating that the lens material is incompressible and the capsular bag elastic.
Statistical analysis of the 70 meter antenna surface distortions
NASA Technical Reports Server (NTRS)
Kiedron, K.; Chian, C. T.; Chuang, K. L.
1987-01-01
Statistical analysis of surface distortions of the 70 meter NASA/JPL antenna, located at Goldstone, was performed. The purpose of this analysis is to verify whether deviations due to gravity loading can be treated as quasi-random variables with normal distribution. Histograms of the RF pathlength error distribution for several antenna elevation positions were generated. The results indicate that the deviations from the ideal antenna surface are not normally distributed. The observed density distribution for all antenna elevation angles is taller and narrower than the normal density, which results in large positive values of kurtosis and a significant amount of skewness. The skewness of the distribution changes from positive to negative as the antenna elevation changes from zenith to horizon.
OCT-based full crystalline lens shape change during accommodation in vivo
Martinez-Enriquez, Eduardo; Pérez-Merino, Pablo; Velasco-Ocana, Miriam; Marcos, Susana
2017-01-01
The full shape of the accommodating crystalline lens was estimated using custom three-dimensional (3-D) spectral OCT and image processing algorithms. Automatic segmentation and distortion correction were used to construct 3-D models of the lens region visible through the pupil. The lens peripheral region was estimated with a trained and validated parametric model. Nineteen young eyes were measured at 0-6 D accommodative demands in 1.5 D steps. Lens volume, surface area, diameter, and equatorial plane position were automatically quantified. Lens diameter & surface area correlated negatively and equatorial plane position positively with accommodation response. Lens volume remained constant and surface area decreased with accommodation, indicating that the lens material is incompressible and the capsular bag elastic. PMID:28270993
Kim, Kyoung-Min; Choi, Mun-Hyoung; Lee, Jong-Kwon; Jeong, Jayoung; Kim, Yu-Ri; Kim, Meyoung-Kon; Paek, Seung-Min; Oh, Jae-Min
2014-01-01
In this study, four types of standardized ZnO nanoparticles were prepared for assessment of their potential biological risk. Powder-phased ZnO nanoparticles with different particle sizes (20 nm and 100 nm) were coated with citrate or L-serine to induce a negative or positive surface charge, respectively. The four types of coated ZnO nanoparticles were subjected to physicochemical evaluation according to the guidelines published by the Organisation for Economic Cooperation and Development. All four samples had a well crystallized Wurtzite phase, with particle sizes of ∼30 nm and ∼70 nm after coating with organic molecules. The coating agents were determined to have attached to the ZnO surfaces through either electrostatic interaction or partial coordination bonding. Electrokinetic measurements showed that the surface charges of the ZnO nanoparticles were successfully modified to be negative (about −40 mV) or positive (about +25 mV). Although all the four types of ZnO nanoparticles showed some agglomeration when suspended in water according to dynamic light scattering analysis, they had clearly distinguishable particle size and surface charge parameters and well defined physicochemical properties. PMID:25565825
Dispersing surface-modified imogolite nanotubes in polar and non-polar solvents
NASA Astrophysics Data System (ADS)
Li, Ming; Brant, Jonathan A.
2018-02-01
Furthering the development of nanocomposite structures, namely membranes for water treatment applications, requires that methods be developed to ensure nanoparticle dispersion in polar and non-polar solvents, as both are widely used in associated synthesis techniques. Here, we report on a two-step method to graft polyvinylpyrrolidone (PVP), and a one-step method for octadecylphosphonic acid (OPA), onto the outer surfaces of imogolite nanotubes. The goal of these approaches was to improve and maintain nanotube dispersion in polymer compatible polar and non-polar solvents. The PVP coating modified the imogolite surface charge from positive to weakly negative at pH ≤ 9; the OPA made it weakly positive at acidic pH values to negative at pH ≥ 7. The PVP surface coating stabilized the nanotubes through steric hindrance in polar protic, dipolar aprotic, and chloroform. In difference to the PVP, the OPA surface coating allowed the nanotubes to be dispersed in n-hexane and chloroform, but not in the polar solvents. The lack of miscibility in the polar solvents, as well as the better dispersion in n-hexane, was attributed to the stronger hydrophobicity of the OPA polymer relative to the PVP. [Figure not available: see fulltext.
Positive electrode current collector for liquid metal cells
Shimotake, Hiroshi; Bartholme, Louis G.
1984-01-01
A current collector for the positive electrode of an electrochemical cell with a positive electrode including a sulfide. The cell also has a negative electrode and a molten salt electrolyte including halides of a metal selected from the alkali metals and the alkaline earth metals in contact with both the positive and negative electrodes. The current collector has a base metal of copper, silver, gold, aluminum or alloys thereof with a coating thereon of iron, nickel, chromium or alloys thereof. The current collector when subjected to cell voltage forms a sulfur-containing compound on the surface thereby substantially protecting the current collector from further attack by sulfur ions during cell operation. Both electroless and electrolytic processes may be used to deposit coatings.
NASA Technical Reports Server (NTRS)
Kwok, Ron; Comiso, Josefino C.; Koblinsky, Chester J. (Technical Monitor)
2002-01-01
The 17-year (1982-1998) trend in surface temperature shows a general cooling over the Antarctic continent, warming of the sea ice zone, with moderate changes over the oceans. Warming of the peripheral seas is associated with negative trends in the regional sea ice extent. Effects of the Southern Hemisphere Annular Mode (SAM) and the extrapolar Southern Oscillation (SO) on surface temperature are quantified through regression analysis. Positive polarities of the SAM are associated with cold anomalies over most of Antarctica, with the most notable exception of the Antarctic Peninsula. Positive temperature anomalies and ice edge retreat in the Pacific sector are associated with El Nino episodes. Over the past two decades, the drift towards high polarity in the SAM and negative polarity in the SO indices couple to produce a spatial pattern with warmer temperatures in the Antarctic Peninsula and peripheral seas, and cooler temperatures over much of East Antarctica.
Hydrophilic crosslinked-polymeric surface capable of effective suppression of protein adsorption
NASA Astrophysics Data System (ADS)
Kamon, Yuri; Inoue, Naoko; Mihara, Erika; Kitayama, Yukiya; Ooya, Tooru; Takeuchi, Toshifumi
2016-08-01
We investigated the nonspecific adsorption of proteins towards three hydrophilic crosslinked-polymeric thin layers prepared by surface-initiated atom transfer radical polymerization using N,N‧-methylenebisacrylamide, 2-(methacryloyloxy)ethyl-[N-(2-methacryloyloxy)ethyl]phosphorylcholine (MMPC), or 6,6‧-diacryloyl-trehalose crosslinkers. Protein binding experiments were performed by surface plasmon resonance with six proteins of different pI values including α-lactalbumin, bovine serum albumin (BSA), myoglobin, ribonuclease A, cytochrome C, and lysozyme in buffer solution at pH 7.4. All of the obtained crosslinked-polymeric thin layers showed low nonspecific adsorption of negatively charged proteins at pH 7.4 such as α-lactalbumin, BSA, and myoglobin. Nonspecific adsorption of positively charged proteins including ribonuclease A, cytochrome C, and lysozyme was the lowest for poly(MMPC). These results suggest poly(MMPC) can effectively reduce nonspecific adsorption of a wide range of proteins that are negatively or positively charged at pH 7.4. MMPC is a promising crosslinker for a wide range of polymeric materials requiring low nonspecific protein binding.
Kauppila, Tiina J; Wiseman, Justin M; Ketola, Raimo A; Kotiaho, Tapio; Cooks, R Graham; Kostiainen, Risto
2006-01-01
The performance of desorption electrospray ionization (DESI) in the analysis of a group of pharmaceuticals and their glucuronic acid conjugates is reported. The suitability of different sprayer solvents and different surfaces was examined. In the positive ion mode, water/methanol/trifluoroacetic acid performed best, whereas, in the negative ion mode, water/methanol/ammonium hydroxide was found to be the most suitable spray solvent. Of the surfaces investigated, polymethylmethacrylate (PMMA) was found to give the best performance in terms of sensitivity. Spray solution flow rate and the distance of the sprayer tip from the surface were also found to have significant effects on the signal intensity. Analytes with basic groups efficiently formed the corresponding protonated molecules in the positive ion mode, whereas acidic analytes, such as the glucuronic acid conjugates, formed intense signals due to the deprotonated molecules in the negative ion mode. Ionization of neutral compounds was less efficient and in many cases it was achieved through adduct formation with simple anions or cations. Copyright (c) 2005 John Wiley & Sons, Ltd.
Kim, Dongyoung; Yang, Jun-Ho; Choi, Soojin; Yoh, Jack J
2018-01-01
Environments affect mineral surfaces, and the surface contamination or alteration can provide potential information to understanding their regional environments. However, when investigating mineral surfaces, mineral and environmental elements appear mixed in data. This makes it difficult to determine their atomic compositions independently. In this research, we developed four analytical methods to distinguish mineral and environmental elements into positive and negative spectra based on depth profiling data using laser-induced breakdown spectroscopy (LIBS). The principle of the methods is to utilize how intensity varied with depth for creating a new spectrum. The methods were applied to five mineral samples exposed to four environmental conditions including seawater, crude oil, sulfuric acid, and air as control. The proposed methods are then validated by applying the resultant spectra to principal component analysis and data were classified by the environmental conditions and atomic compositions of mineral. By applying the methods, the atomic information of minerals and environmental conditions were successfully inferred in the resultant spectrum.
Zhang, Yaqiong; Niu, Yuge; Luo, Yangchao; Ge, Mei; Yang, Tian; Yu, Liangli Lucy; Wang, Qin
2014-01-01
Thymol-loaded zein nanoparticles stabilized with sodium caseinate (SC) and chitosan hydrochloride (CHC) were prepared and characterized. The SC stabilized nanoparticles had well-defined size range and negatively charged surface. Due to the presence of SC, the stabilized zein nanoparticles showed a shift of isoelectric point from 6.18 to 5.05, and had a desirable redispersibility in water at neutral pH after lyophilization. Coating with CHC onto the SC stabilized zein nanoparticles resulted in increased particle size, reversal of zeta potential value from negative to positive, and improved encapsulation efficiency. Both thymol-loaded zein nanoparticles and SC stabilized zein nanoparticles had a spherical shape and smooth surface, while the surfaces of CHC-SC stabilized zein nanoparticles seemed rough and had some clumps. Encapsulated thymol was more effective in suppressing gram-positive bacterium than un-encapsulated thymol for a longer time period. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Natarajan, Murali; Pierce, R. Bradley; Lenzen, Allen J.; Al-Saadi, Jassim A.; Soja, Amber J.; Charlock, Thomas P.; Rose, Fred G.; Winker, David M.; Worden, John R.
2012-01-01
Simulations of tropospheric ozone and carbonaceous aerosol distributions, conducted with the Real-time Air Quality Modeling System (RAQMS), are used to study the effects of major outbreaks of fires that occurred in three regions of Asia, namely Thailand, Kazakhstan, and Siberia, during spring 2008. RAQMS is a global scale meteorological and chemical modeling system. Results from these simulations, averaged over April 2008, indicate that tropospheric ozone column increases by more than 10 Dobson units (DU) near the Thailand region, and by lesser amounts in the other regions due to the fires. Widespread increases in the optical depths of organic and black carbon aerosols are also noted. We have used an off-line radiative transfer model to evaluate the direct radiative forcing due to the fire-induced changes in atmospheric composition. For clear sky, the monthly averaged radiative forcing at the top of the atmosphere (TOA) is mostly negative with peak values less than -12 W/sq m occurring near the fire regions. The negative forcing represents the increased outgoing shortwave radiation caused by scattering due to carbonaceous aerosols. At high latitudes, the radiative forcing is positive due to the presence of absorbing aerosols over regions of high surface albedo. Regions of positive forcing at TOA are more pronounced under total sky conditions. The monthly averaged radiative forcing at the surface is mostly negative, and peak values of less than -30 W/sq m occur near the fire regions. Persistently large negative forcing at the surface could alter the surface energy budget and potentially weaken the hydrological cycle.
Chlamydia and gonorrhoea contamination of clinic surfaces.
Lewis, Natasha; Dube, Gail; Carter, Christine; Pitt, Rachel; Alexander, Sarah; Ison, Catherine A; Harding, Jan; Brown, Louise; Fryer, John; Hodson, James; Ross, Jonathan
2012-10-01
Nucleic acid amplification tests, with their ability to detect very small amounts of nucleic acid, have become the principle diagnostic tests for Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (GC) in many sexual health clinics. The aim of this study was to investigate the extent of surface contamination with CT and GC within a city centre sexual health clinic and to evaluate the potential for contamination of containers used for the collection of self-taken swabs. Surface contamination with CT and GC was assessed by systematically sampling 154 different sites within one clinic using transcription-mediated amplification (TMA), quantitative PCR and culture. The caps of containers used by patients to collect self-taken samples were also tested for CT and GC using TMA. Of the 154 sites sampled, 20 (13.0%) tested positive on TMA. Of these, five (3.2%) were positive for CT alone, 11 (7.1%) for GC alone and four (2.6%) for both CT and GC. The proportion of GC TMA-positive test results differed by gender, with 11 (18.3%) positive results from the male patient clinic area compared with one (1.6%) from the female area (p=0.002). Positive samples were obtained from a variety of locations in the clinic, but the patient toilets were more likely to be contaminated than examination rooms (p=0.015). Quantitative PCR and culture assays were negative for all samples. 46 caps of the containers used for self-taken swabs were negative for both CT and GC on TMA testing. Surface contamination with chlamydial and gonococcal rRNA can occur within sexual health clinics, but the quantity of nucleic acid detected is low and infection risk to patients and staff is small. There remains a potential risk of contamination of patient samples leading to false-positive results.
Mestayer, Mac; Christo, Steve; Taylor, Mark
2014-10-21
A device and method for characterizing quality of a conducting surface. The device including a gaseous ionizing chamber having centrally located inside the chamber a conducting sample to be tested to which a negative potential is applied, a plurality of anode or "sense" wires spaced regularly about the central test wire, a plurality of "field wires" at a negative potential are spaced regularly around the sense, and a plurality of "guard wires" at a positive potential are spaced regularly around the field wires in the chamber. The method utilizing the device to measure emission currents from the conductor.
NASA Astrophysics Data System (ADS)
Oudini, N.; Sirse, N.; Taccogna, F.; Ellingboe, A. R.; Bendib, A.
2018-05-01
We propose a new technique for diagnosing negative ion properties using Langmuir probe assisted pulsed laser photo-detachment. While the classical technique uses a laser pulse to convert negative ions into electron-atom pairs and a positively biased Langmuir probe tracking the change of electron saturation current, the proposed method uses a negatively biased Langmuir probe to track the temporal evolution of positive ion current. The negative bias aims to avoid the parasitic electron current inherent to probe tip surface ablation. In this work, we show through analytical and numerical approaches that, by knowing electron temperature and performing photo-detachment at two different laser wavelengths, it is possible to deduce plasma electronegativity (ratio of negative ion to electron densities) α, and anisothermicity (ratio of electron to negative ion temperatures) γ-. We present an analytical model that links the change in the collected positive ion current to plasma electronegativity and anisothermicity. Particle-In-Cell simulation is used as a numerical experiment covering a wide range of α and γ- to test the new analysis technique. The new technique is sensitive to α in the range 0.5 < α < 10 and yields γ- for large α, where negative ion flux affects the probe sheath behavior, typically α > 1.
NASA Astrophysics Data System (ADS)
Sato, A.; Omiya, S.
2011-12-01
It is known that the average atmospheric electric field is +100V/m in fair weather (positive electric field vector points downward). An increase of atmospheric electric field is reported when the blowing snow occurred. This phenomenon is mainly explained by the fact that the blowing snow particles have negative charge in average. It is suggested that an electrostatic force, given by the product of the electric field and the charge of the particle, may influence the particle trajectory and change those movements, saltation and suspension. The purpose of this experiment is to clarify the characteristics of the electric field during blowing snow event. Experiments were carried out in the cryogenic wind tunnel of Snow and Ice Research Center, NIED. A non-contact voltmeter was used to measure the electric field. An artificial blowing snow was generated by a snow particle supply machine. The rolling brushes of the machine scratch the snow surface and supply snow particles into the airflow. This machine made it possible to supply the snow particles at an arbitrary rate. This experiment was conducted in the following experimental conditions; wind speed of 5 to 7 m/s (3 patterns), supply snow quantity of 8.7 to 34.9 g/m/s (4 patterns), air temperature of -10 degree Celsius, fetch of 10 m and hard snow surface. Measured electric field was all negative, which is opposite direction to the previous measurements. This means that the blowing snow particles had positive charges. The negative electric field tended to increase with increase of the wind speed and the mass flux. These results can be explained from the previous experiment by Omiya and Sato (2010). The snow particles gain positive charges by the friction with the rolling brush which is made from polypropylene, however the particles accumulate negative charges gradually with increase of the collisions to the snow surface. Probably, the positive charges might have remained on the snow particles that had passed over the measurement point. Moreover, it is thought that because the saltation length is longer when the wind speed is higher, fewer collision frequencies left the particles more positive charges. REFERENCE:Omiya and Sato(2010): Measurement of electrostatic charge of blowing snow particles in a wind tunnel focusing on collision frequency to the snow surface. Hokkaido University Collection of Scholarly and Academic Papers
Vitrac, Heidi; Bogdanov, Mikhail; Heacock, Phil; Dowhan, William
2011-04-29
The N-terminal six-transmembrane domain (TM) bundle of lactose permease of Escherichia coli is uniformly inverted when assembled in membranes lacking phosphatidylethanolamine (PE). Inversion is dependent on the net charge of cytoplasmically exposed protein domains containing positive and negative residues, net charge of the membrane surface, and low hydrophobicity of TM VII acting as a molecular hinge between the two halves of lactose permease (Bogdanov, M., Xie, J., Heacock, P., and Dowhan, W. (2008) J. Cell Biol. 182, 925-935). Net neutral lipids suppress the membrane translocation potential of negatively charged amino acids, thus increasing the cytoplasmic retention potential of positively charged amino acids. Herein, TM organization of sucrose permease (CscB) and phenylalanine permease (PheP) as a function of membrane lipid composition was investigated to extend these principles to other proteins. For CscB, topological dependence on PE only becomes evident after a significant increase in the net negative charge of the cytoplasmic surface of the N-terminal TM bundle. High negative charge is required to overcome the thermodynamic block to inversion due to the high hydrophobicity of TM VII. Increasing the positive charge of the cytoplasmic surface of the N-terminal TM hairpin of PheP, which is misoriented in PE-lacking cells, favors native orientation in the absence of PE. PheP and CscB also display co-existing dual topologies dependent on changes in the charge balance between protein domains and the membrane lipids. Therefore, the topology of both permeases is dependent on PE. However, CscB topology is governed by thermodynamic balance between opposing lipid-dependent electrostatic and hydrophobic interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meehl, Gerald A.; Hu, Aixue; Teng, Haiyan
The negative phase of the Interdecadal Pacific Oscillation (IPO), a dominant mode of multi-decadal variability of sea surface temperatures (SSTs) in the Pacific, contributed to the reduced rate of global surface temperature warming in the early 2000s. Here, a proposed mechanism for IPO multidecadal variability indicates that the presence of decadal timescale upper ocean heat content in the off-equatorial western tropical Pacific can provide conditions for an interannual El Nino/Southern Oscillation event to trigger a transition of tropical Pacific SSTs to the opposite IPO phase. Here we show that a decadal prediction initialized in 2013 simulates predicted Nino3.4 SSTs thatmore » have qualitatively tracked the observations through 2015. The year three to seven average prediction (2015-2019) from the 2013 initial state shows a transition to the positive phase of the IPO from the previous negative phase and a resumption of larger rates of global warming over the 2013-2022 period consistent with a positive IPO phase.« less
Meehl, Gerald A.; Hu, Aixue; Teng, Haiyan
2016-06-02
The negative phase of the Interdecadal Pacific Oscillation (IPO), a dominant mode of multi-decadal variability of sea surface temperatures (SSTs) in the Pacific, contributed to the reduced rate of global surface temperature warming in the early 2000s. Here, a proposed mechanism for IPO multidecadal variability indicates that the presence of decadal timescale upper ocean heat content in the off-equatorial western tropical Pacific can provide conditions for an interannual El Nino/Southern Oscillation event to trigger a transition of tropical Pacific SSTs to the opposite IPO phase. Here we show that a decadal prediction initialized in 2013 simulates predicted Nino3.4 SSTs thatmore » have qualitatively tracked the observations through 2015. The year three to seven average prediction (2015-2019) from the 2013 initial state shows a transition to the positive phase of the IPO from the previous negative phase and a resumption of larger rates of global warming over the 2013-2022 period consistent with a positive IPO phase.« less
Parallel tempering Monte Carlo simulations of lysozyme orientation on charged surfaces
NASA Astrophysics Data System (ADS)
Xie, Yun; Zhou, Jian; Jiang, Shaoyi
2010-02-01
In this work, the parallel tempering Monte Carlo (PTMC) algorithm is applied to accurately and efficiently identify the global-minimum-energy orientation of a protein adsorbed on a surface in a single simulation. When applying the PTMC method to simulate lysozyme orientation on charged surfaces, it is found that lysozyme could easily be adsorbed on negatively charged surfaces with "side-on" and "back-on" orientations. When driven by dominant electrostatic interactions, lysozyme tends to be adsorbed on negatively charged surfaces with the side-on orientation for which the active site of lysozyme faces sideways. The side-on orientation agrees well with the experimental results where the adsorbed orientation of lysozyme is determined by electrostatic interactions. As the contribution from van der Waals interactions gradually dominates, the back-on orientation becomes the preferred one. For this orientation, the active site of lysozyme faces outward, which conforms to the experimental results where the orientation of adsorbed lysozyme is co-determined by electrostatic interactions and van der Waals interactions. It is also found that despite of its net positive charge, lysozyme could be adsorbed on positively charged surfaces with both "end-on" and back-on orientations owing to the nonuniform charge distribution over lysozyme surface and the screening effect from ions in solution. The PTMC simulation method provides a way to determine the preferred orientation of proteins on surfaces for biosensor and biomaterial applications.
Magneto-phonon polaritons of antiferromagnetic/ion-crystal superlattices
NASA Astrophysics Data System (ADS)
Ta, Jin-Xing; Song, Yu-Ling; Wang, Xuan-Zhang
2010-07-01
Magnetophonon polaritons in the superlattices composed of alternating antiferromagnetic and ion-crystal components are investigated with the transfer matrix method. Numerical simulations based on FeF2/TlBr superlattices show that there are four different bulk polariton bands, with negative refraction and positive refraction. Many surface polariton modes with various features arise around the bulk bands with negative refraction.
Ion temperature gradient driven transport in tokamaks with square shaping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joiner, N.; Dorland, W.
2010-06-15
Advanced tokamak schemes which may offer significant improvement to plasma confinement on the usual large aspect ratio Dee-shaped flux surface configuration are of great interest to the fusion community. One possibility is to introduce square shaping to the flux surfaces. The gyrokinetic code GS2[Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1996)] is used to study linear stability and the resulting nonlinear thermal transport of the ion temperature gradient driven (ITG) mode in tokamak equilibria with square shaping. The maximum linear growth rate of ITG modes is increased by negative squareness (diamond shaping) and reduced by positive values (square shaping).more » The dependence of thermal transport produced by saturated ITG instabilities on squareness is not as clear. The overall trend follows that of the linear instability, heat and particle fluxes increase with negative squareness and decrease with positive squareness. This is contradictory to recent experimental results [Holcomb et al., Phys. Plasmas 16, 056116 (2009)] which show a reduction in transport with negative squareness. This may be reconciled as a reduction in transport (consistent with the experiment) is observed at small negative values of the squareness parameter.« less
Functionalized nanoparticle interactions with polymeric membranes
Ladner, D.A.; Steele, M.; Weir, A.; Hristovski, K.; Westerhoff, P.
2011-01-01
A series of experiments was performed to measure the retention of a class of functionalized nanoparticles (NPs) onporous (microfiltration and ultrafiltration) membranes. The findings impact engineered water and wastewater treatment using membrane technology, characterization and analytical schemes for NP detection, and the use of NPs in waste treatment scenarios. The NPs studied were composed of silver, titanium dioxide, and gold; had organic coatings to yield either positive or negative surface charge; and were between 2 and 10 nm in diameter. NP solutions were applied to polymeric membranes composed of different materials and pore sizes (ranging from ~2 nm [3 kDa molecular weight cutoff] to 0.2 μm). Greater than 99% rejection was observed of positively charged NPs by negatively charged membranes even though pore diameters were up to 20 times the NP diameter; thus, sorption caused rejection. Negatively charged NPs were less well rejected, but behavior was dependant not only on surface functionality but on NP core material (Ag, TiO2, or Au). NP rejection depended more upon NP properties than membrane properties; all of the negatively charged polymeric membranes behaved similarly. The NP-membrane interaction behavior fell into four categories, which are defined and described here. PMID:22177020
Ice nucleation triggered by negative pressure.
Marcolli, Claudia
2017-11-30
Homogeneous ice nucleation needs supercooling of more than 35 K to become effective. When pressure is applied to water, the melting and the freezing points both decrease. Conversely, melting and freezing temperatures increase under negative pressure, i.e. when water is stretched. This study presents an extrapolation of homogeneous ice nucleation temperatures from positive to negative pressures as a basis for further exploration of ice nucleation under negative pressure. It predicts that increasing negative pressure at temperatures below about 262 K eventually results in homogeneous ice nucleation while at warmer temperature homogeneous cavitation, i. e. bubble nucleation, dominates. Negative pressure occurs locally and briefly when water is stretched due to mechanical shock, sonic waves, or fragmentation. The occurrence of such transient negative pressure should suffice to trigger homogeneous ice nucleation at large supercooling in the absence of ice-nucleating surfaces. In addition, negative pressure can act together with ice-inducing surfaces to enhance their intrinsic ice nucleation efficiency. Dynamic ice nucleation can be used to improve properties and uniformity of frozen products by applying ultrasonic fields and might also be relevant for the freezing of large drops in rainclouds.
Assessment of Biomarkers Associated with Joint Injury and Subsequent Post-Traumatic Arthritis
2016-12-01
patella and patellar cartilage (Geomagic Studio, Research Triangle Park, NC). Changes in cartilage thickness between post -operative and 18-month...defined as the distance to a test surface ( post -fx bone surface) that was either outside (positive) or inside (negative) of the reference surface (pre-fx...of the Orthopaedic Research Society, San Diego, CA. (poster presentation) "Assessment of Biomarkers Associated with Joint Injury and Subsequent Post
Negative charge emission due to excimer laser bombardment of sodium trisilicate glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langford, S.C.; Jensen, L.C.; Dickinson, J.T.
We describe measurements of negative charge emission accompanying irradiation of sodium trisilicate glass (Na{sub 2}O{center dot}3SiO{sub 2}) with 248-nm excimer laser light at fluences on the order of 2 J/cm{sup 2} per pulse, i.e., at the threshold for ablative etching of the glass surface. The negative charge emission consists of a very prompt photoelectron burst coincident with the laser pulse, followed by a much slower plume of electrons and negative ions traveling with a high density cloud of positive ions, previously identified as primarily Na{sup +}. Using combinations of {bold E} and {bold B} fields in conjunction with time-of-flight methods,more » the negative ions were successfully separated from the plume and tentatively identified as O{sup {minus}}, Si{sup {minus}}, NaO{sup {minus}}, and perhaps NaSi{sup {minus}}. These negative species are probably formed by gas phase collisions in the near-surface region which result in electron attachment.« less
The Peculiar Negative Greenhouse Effect Over Antarctica
NASA Astrophysics Data System (ADS)
Sejas, S.; Taylor, P. C.; Cai, M.
2017-12-01
Greenhouse gases warm the climate system by reducing the energy loss to space through the greenhouse effect. Thus, a common way to measure the strength of the greenhouse effect is by taking the difference between the surface longwave (LW) emission and the outgoing LW radiation. Based on this definition, a paradoxical negative greenhouse effect is found over the Antarctic Plateau, which suprisingly indicates that greenhouse gases enhance energy loss to space. Using 13 years of NASA satellite observations, we verify the existence of the negative greenhouse effect and find that the magnitude and sign of the greenhouse effect varies seasonally and spectrally. A previous explanation attributes the negative greenhouse effect solely to stratospheric CO2 and warmer than surface stratospheric temperatures. However, we surprisingly find that the negative greenhouse effect is predominantly caused by tropospheric water vapor. A novel principle-based explanation provides the first complete account of the Antarctic Plateau's negative greenhouse effect indicating that it is controlled by the vertical variation of temperature and greenhouse gas absorption strength. Our findings indicate that the strong surface-based temperature inversion and scarcity of free tropospheric water vapor over the Antarctic Plateau cause the negative greenhouse effect. These are climatological features uniquely found in the Antarctic Plateau region, explaining why the greenhouse effect is positive everywhere else.
Sensory and Emotional Perception of Wooden Surfaces through Fingertip Touch
Bhatta, Shiv R.; Tiippana, Kaisa; Vahtikari, Katja; Hughes, Mark; Kyttä, Marketta
2017-01-01
Previous studies on tactile experiences have investigated a wide range of material surfaces across various skin sites of the human body in self-touch or other touch modes. Here, we investigate whether the sensory and emotional aspects of touch are related when evaluating wooden surfaces using fingertips in the absence of other sensory modalities. Twenty participants evaluated eight different pine and oak wood surfaces, using sensory and emotional touch descriptors, through the lateral motion of active fingertip exploration. The data showed that natural and smooth wood surfaces were perceived more positively in emotional touch than coated surfaces. We highlight the importance of preserving the naturalness of the surface texture in the process of wood-surface treatment so as to improve positive touch experiences, as well as avoid negative ones. We argue that the results may offer possibilities in the design of wood-based interior products with a view to improving consumer touch experiences. PMID:28348541
A three-dimensional He-CO potential energy surface with improved long-range behavior
NASA Astrophysics Data System (ADS)
McBane, George C.
2016-12-01
A weakness of the "CBS + corr" He-CO potential energy surface (Peterson and McBane, 2005) has been rectified by constraining the potential to adopt accurate long-range behavior for He-CO distances well beyond 15a0 . The resulting surface is very similar to the original in the main part of the interaction. Comparison with accurately known bound-state energies indicates that the surface is slightly improved in the region sampled by the highest lying bound states. The positions of shape and Feshbach resonances within a few cm-1 of the j = 1 excitation threshold are essentially unchanged. The low-energy scattering lengths changed noticeably. The revised surface generates a small negative limiting scattering length for collisions with 4He, while the original surface gave a small positive one. Both surfaces yield scattering lengths quite different from the widely used surface of Heijmen et al. (1997) for both He isotopes.
[Sorption of microorganisms by fiber materials].
Nikovskaia, G N; Gordienko, A S; Globa, L I
1986-01-01
Candida guilliermondii and Escherichia coli cells were adsorbed on glass and basalt fibres with a similar specific surface, but with a different charge. The quantity of adsorbed microorganisms did not depend on the type and charge of a fibre surface. However, cells were adsorbed faster and more firmly on positively charged and uncharged fibres than on negatively charged fibres.
Characterizing the effects of regolith surface roughness on photoemission from surfaces in space
NASA Astrophysics Data System (ADS)
Dove, A.; Horanyi, M.; Wang, X.
2017-12-01
Surfaces of airless bodies and spacecraft in space are exposed to a variety of charging environments. A balance of currents due to plasma bombardment, photoemission, electron and ion emission and collection, and secondary electron emission determines the surface's charge. Photoelectron emission is the dominant charging process on sunlit surfaces in the inner solar system due to the intense solar UV radiation. This can result in a net positive surface potential, with a cloud of photoelectrons immediately above the surface, called the photoelectron sheath. Conversely, the unlit side of the body will charge negatively due the collection of the fast-moving solar wind electrons. The interaction of charged dust grains with these positively and negatively charged surfaces, and within the photoelectron and plasma sheaths may explain the occurrence of dust lofting, levitation and transport above the lunar surface. The surface potential of exposed objects is also dependent on the material properties of their surfaces. Composition and particle size primarily affect the quantum efficiency of photoelectron generation; however, surface roughness can also control the charging process. In order to characterize these effects, we have conducted laboratory experiments to examine the role of surface roughness in generating photoelectrons in dedicated laboratory experiments using solid and dusty surfaces of the same composition (CeO2), and initial comparisons with JSC-1 lunar simulant. Using Langmuir probe measurements, we explore the measured potentials above insulating surfaces exposed to UV and an electric field, and we show that the photoemission current from a dusty surface is largely reduced due to its higher surface roughness, which causes a significant fraction of the emitted photoelectrons to be re-absorbed within the surface. We will discuss these results in context of similar situations on planetary surfaces.
Skepö, Marie; Linse, Per; Arnebrant, Thomas
2006-06-22
Structural properties of the acidic proline rich protein PRP-1 of salivary origin in bulk solution and adsorbed onto a negatively charged surface have been studied by Monte Carlo simulations. A simple model system with focus on electrostatic interactions and short-ranged attractions among the uncharged amino acids has been used. In addition to PRP-1, some mutants were considered to assess the role of the interactions in the systems. Contrary to polyelectrolytes, the protein has a compact structure in salt-free bulk solutions, whereas at high salt concentration the protein becomes more extended. The protein adsorbs to a negatively charged surface, although its net charge is negative. The adsorbed protein displays an extended structure, which becomes more compact upon addition of salt. Hence, the conformational response upon salt addition in the adsorbed state is the opposite as compared to that in bulk solution. The conformational behavior of PRP-1 in bulk solution and at charged surfaces as well as its propensity to adsorb to surfaces with the same net charge are rationalized by the block polyampholytic character of the protein. The presence of a triad of positively charged amino acids in the C-terminal was found to be important for the adsorption of the protein.
Ulissi, Zachary W; Govind Rajan, Ananth; Strano, Michael S
2016-08-23
Entropic surfaces represented by fluctuating two-dimensional (2D) membranes are predicted to have desirable mechanical properties when unstressed, including a negative Poisson's ratio ("auxetic" behavior). Herein, we present calculations of the strain-dependent Poisson ratio of self-avoiding 2D membranes demonstrating desirable auxetic properties over a range of mechanical strain. Finite-size membranes with unclamped boundary conditions have positive Poisson's ratio due to spontaneous non-zero mean curvature, which can be suppressed with an explicit bending rigidity in agreement with prior findings. Applying longitudinal strain along a singular axis to this system suppresses this mean curvature and the entropic out-of-plane fluctuations, resulting in a molecular-scale mechanism for realizing a negative Poisson's ratio above a critical strain, with values significantly more negative than the previously observed zero-strain limit for infinite sheets. We find that auxetic behavior persists over surprisingly high strains of more than 20% for the smallest surfaces, with desirable finite-size scaling producing surfaces with negative Poisson's ratio over a wide range of strains. These results promise the design of surfaces and composite materials with tunable Poisson's ratio by prestressing platelet inclusions or controlling the surface rigidity of a matrix of 2D materials.
Reconciling spatial and temporal soil moisture effects on afternoon rainfall
Guillod, Benoit P.; Orlowsky, Boris; Miralles, Diego G.; Teuling, Adriaan J.; Seneviratne, Sonia I.
2015-01-01
Soil moisture impacts on precipitation have been strongly debated. Recent observational evidence of afternoon rain falling preferentially over land parcels that are drier than the surrounding areas (negative spatial effect), contrasts with previous reports of a predominant positive temporal effect. However, whether spatial effects relating to soil moisture heterogeneity translate into similar temporal effects remains unknown. Here we show that afternoon precipitation events tend to occur during wet and heterogeneous soil moisture conditions, while being located over comparatively drier patches. Using remote-sensing data and a common analysis framework, spatial and temporal correlations with opposite signs are shown to coexist within the same region and data set. Positive temporal coupling might enhance precipitation persistence, while negative spatial coupling tends to regionally homogenize land surface conditions. Although the apparent positive temporal coupling does not necessarily imply a causal relationship, these results reconcile the notions of moisture recycling with local, spatially negative feedbacks. PMID:25740589
NASA Astrophysics Data System (ADS)
Harit, Tarik; Bellaouchi, Reda; Asehraou, Abdeslam; Rahal, Mahmoud; Bouabdallah, Ibrahim; Malek, Fouad
2017-04-01
The synthesis of new thiophene-tripods with different side arms was reported. These compounds were obtained in good yields and their structures were confirmed by NMR spectroscopy, elemental analysis, infrared spectroscopy and mass spectrometry. The in vitro antibacterial and antifungal activities of these products were screened against Gram positive bacteria (Micrococcus luteus and Bacillus subtilis), Gram negative bacteria (Escherichia coli) and fungi (Candida pelliculosa). The obtained results showed that tripods containing a hydroxyl group in the side arm inhibited both Gram-positive and Gram-negative bacteria, while the tripod with an isopropyl side arm inhibited only the Gram-negative bacteria. DFT calculations with B3LYP/6-31G* level have been used to analyze the electronic and geometric characteristics. The molecular electrostatic potential surface (MEPS) indicated that the presence of electrophile site in the side arm could be responsible for activities against Gram-positive bacteria.
de Ridder, D J; Verliefde, A R D; Heijman, S G J; Verberk, J Q J C; Rietveld, L C; van der Aa, L T J; Amy, G L; van Dijk, J C
2011-01-01
Natural organic matter (NOM) can influence pharmaceutical adsorption onto granular activated carbon (GAC) by direct adsorption competition and pore blocking. However, in the literature there is limited information on which of these mechanisms is more important and how this is related to NOM and pharmaceutical properties. Adsorption batch experiments were carried out in ultrapure, waste- and surface water and fresh and NOM preloaded GAC was used. Twenty-one pharmaceuticals were selected with varying hydrophobicity and with neutral, negative or positive charge. The influence of NOM competition and pore blocking could not be separated. However, while reduction in surface area was similar for both preloaded GACs, up to 50% lower pharmaceutical removal was observed on wastewater preloaded GAC. This was attributed to higher hydrophobicity of wastewater NOM, indicating that NOM competition may influence pharmaceutical removal more than pore blocking. Preloaded GAC was negatively charged, which influenced removal of charged pharmaceuticals significantly. At a GAC dose of 6.7 mg/L, negatively charged pharmaceuticals were removed for 0-58%, while removal of positively charged pharmaceuticals was between 32-98%. Charge effects were more pronounced in ultrapure water, as it contained no ions to shield the surface charge. Solutes with higher log D could compete better with NOM, resulting in higher removal.
Cyclic diguanylate signaling in Gram-positive bacteria
Purcell, Erin B.; Tamayo, Rita
2016-01-01
The nucleotide second messenger 3′-5′ cyclic diguanylate monophosphate (c-di-GMP) is a central regulator of the transition between motile and non-motile lifestyles in bacteria, favoring sessility. Most research investigating the functions of c-di-GMP has focused on Gram-negative species, especially pathogens. Recent work in Gram-positive species has revealed that c-di-GMP plays similar roles in Gram-positives, though the precise targets and mechanisms of regulation may differ. The majority of bacterial life exists in a surface-associated state, with motility allowing bacteria to disseminate and colonize new environments. c-di-GMP signaling regulates flagellum biosynthesis and production of adherence factors and appears to be a primary mechanism by which bacteria sense and respond to surfaces. Ultimately, c-di-GMP influences the ability of a bacterium to alter its transcriptional program, physiology and behavior upon surface contact. This review discusses how bacteria are able to sense a surface via flagella and type IV pili, and the role of c-di-GMP in regulating the response to surfaces, with emphasis on studies of Gram-positive bacteria. PMID:27354347
NASA Astrophysics Data System (ADS)
Jafari Nodoushan, Emad; Ebrahimi, Nadereh Golshan; Ayazi, Masoumeh
2017-11-01
In this paper, we introduced thermal annealing treatment as an effective way of increasing the nanoscale roughness of a semi-crystalline polymer surface. Annealing treatment applied to a biomimetic microscale pattern of rice leaf to achieve a superhydrophobic surface with a hierarchical roughness. Resulted surfaces was characterized by XRD, AFM and FE-SEM instruments and showed an increase of roughness and cristallinity within both time and temperature of treatment. These two parameters also impact on measured static contact angle up to 158°. Bacterial attachment potency has an inverse relationship with the similarity of surface pattern dimensions and bacterial size and due to that, thermal annealing could be an effective way to create anti-bacterial surface beyond its effect on water repellency. Point in case, the anti-bacterial properties of produced water-repellence surfaces of PP were measured and counted colonies of both gram-negative (E. coli) and gram-positive (S. aureus) bacteria reduced with the nature of PP and hierarchical pattern on that. Anti-bacterial characterization of the resulted surface reveals a stunning reduction in adhesion of gram-positive bacteria to the surface. S. aureus reduction rates equaled to 95% and 66% when compared to control blank plate and smooth surface of PP. Moreover, it also could affect the other type of bacteria, gram-negative (E. coli). In the latter case, adhesion reduction rates calculated 66% and 53% when against to the same controls, respectively.
Gravitropism and phototropism in protonemata of the moss Pohlia nutans (HEDW.) lindb.
NASA Astrophysics Data System (ADS)
Demkiv, O. T.; Kordyum, E. L.; Kardash, O. R.; Khorkavtsiv, O. Ya.
1999-01-01
The gravitropism of protonemata of Pohlia nutans is described and compared with that of other mosses. In darkness, protonemata showed negative gravitropism. Under uniform illumination they grew radially over the substrate surface, whereas unilateral illumination induced positive phototropic growth. Gravitropism was coupled with starch synthesis and amyloplast formation. Protonematal gravitropic growth is more variable than the strict negative gravitropism of Ceratodon chloronema.
Assessment of Biomarkers Associated with Joint Injury and Subsequent Post-Traumatic Arthritis
2016-12-01
models of the patella and patellar cartilage (Geomagic Studio, Research Triangle Park, NC). Changes in cartilage thickness between post -operative... quantitative scales, and "Assessment of Biomarkers Associated with Joint Injury and Subsequent Post -Traumatic Arthritis" Start date: 9/30/2012 PIs...Geomagic®). Positive and negative deviations of the bone surface were measured, and defined as the distance to a test surface ( post -fx bone surface
Surface microbial consortia from Livarot, a French smear-ripened cheese.
Larpin-Laborde, Sandra; Imran, Muhammad; Bonaïti, Catherine; Bora, Nagamani; Gelsomino, Roberto; Goerges, Stefanie; Irlinger, Françoise; Goodfellow, Michael; Ward, Alan C; Vancanneyt, Marc; Swings, Jean; Scherer, Siegfried; Guéguen, Micheline; Desmasures, Nathalie
2011-08-01
The surface microflora (902 isolates) of Livarot cheeses from three dairies was investigated during ripening. Yeasts were mainly identified by Fourier transform infrared spectroscopy. Geotrichum candidum was the dominating yeast among 10 species. Bacteria were identified using Biotype 100 strips, dereplicated by repetitive extragenic palindromic PCR (rep-PCR); 156 representative strains were identified by either BOX-PCR or (GTG)(5)-PCR, and when appropriate by 16S rDNA sequencing and SDS-PAGE analysis. Gram-positive bacteria accounted for 65% of the isolates and were mainly assigned to the genera Arthrobacter , Brevibacterium , Corynebacterium , and Staphylococcus . New taxa related to the genera Agrococcus and Leucobacter were found. Yeast and Gram-positive bacteria strains deliberately added as smearing agents were sometimes undetected during ripening. Thirty-two percent of the isolates were Gram-negative bacteria, which showed a high level of diversity and mainly included members of the genera Alcaligenes , Hafnia , Proteus , Pseudomonas , and Psychrobacter . Whatever the milk used (pasteurized or unpasteurized), similar levels of biodiversity were observed in the three dairies, all of which had efficient cleaning procedures and good manufacturing practices. It appears that some of the Gram-negative bacteria identified should now be regarded as potentially useful in some cheese technologies. The assessment of their positive versus negative role should be objectively examined.
Surface modification for interaction study with bacteria and preosteoblast cells
NASA Astrophysics Data System (ADS)
Song, Qing
Surface modification plays a pivotal role in bioengineering. Polymer coatings can provide biocompatibility and biofunctionalities to biomaterials through surface modification. In this dissertation, initiated chemical vapor deposition (iCVD) was utilized to coat two-dimensional (2D) and three-dimensional (3D) substrates with differently charged polyelectrolytes in order to generate antimicrobial and osteocompatible biomaterials. ICVD is a modified CVD technique that enables surface modification in an all-dry condition without substrate damage and solvent contamination. The free-radical polymerization allows the vinyl polymers to conformally coat on various micro- and nano-structured substrates and maintains the delicate structure of the functional groups. The vapor deposition of polycations provided antimicrobial activity to planar and porous substrates through destroying the negatively charged bacterial membrane and brought about high contact-killing efficiency (99.99%) against Gram-positive Bacillus subtilis and Gram-negative Escherichia coli. Additionally, the polyampholytes synthesized by iCVD exhibited excellent antifouling performance against the adhesion of Gram-positive Listeria innocua and Gram-negative E. coli in phosphate buffered saline (PBS). Their antifouling activities were attributed to the electrostatic interaction and hydration layers that served as physical and energetic barriers to prevent bacterial adhesion. The contact-killing and antifouling polymers synthesized by iCVD can be applied to surface modification of food processing equipment and medical devices with the aim of reducing foodborne diseases and medical infections. Moreover, the charged polyelectrolyte modified 2D polystyrene surfaces displayed good osteocompatibility and enhanced osteogenesis of preosteoblast cells than the un-modified polystyrene surface. In order to promote osteoinduction of hydroxyapatite (HA) scaffolds, bioinspired polymer-controlled mineralization was conducted on the polyelectrolyte modified HA scaffolds. The mineralized scaffolds stimulated osteogenesis of preosteoblast cells compared with the control HA scaffolds. Therefore, the surface modification through vapor deposition of polyelectrolytes and polymer-controlled mineralization can improve osteoinduction of bone materials. In summary, the iCVD-mediated surface modification is a simple and promising approach to biofunctionalizing various structured substrates and generating antimicrobial and biocompatible biomaterials.
Neuronal surface antibodies in HIV-infected patients with isolated psychosis.
Cunill, Vanessa; Arboleya, Susana; Jiménez, Maria de Los Reyes; Campins, Antoni; Herbera, Patricia; Mestre, LLuïsa; Clemente, Antonio; Barceló, Maria Inés; Leyes, Maria; Canellas, Francesca; Julià, Maria Rosa
2016-12-15
Neuronal surface antibodies (NSA) involved in autoimmune encephalitis (AE) have been related to relapses in HVS encephalitis. Their role in non-encephalitic psychosis is controversial. We previously reported an HIV-infected patient, NSA-positive, only presenting psychosis. Therefore, we determined the NSA prevalence in a prospective cohort of 22 HIV-positive patients with psychosis and we analyzed the frequency of HIV infection among NSA tested patients due to AE suspicion. We found no NSA in the prospective cohort. In the retrospective analysis, 22% of NSA-positive versus 4.6% of negative patients were HIV-positive. Wider studies are required to clarify the relationship between NSA and HIV infection. Copyright © 2016 Elsevier B.V. All rights reserved.
Upper mantle heterogeneity: Comparisons of regions south of Australia with Philippine Basin
NASA Technical Reports Server (NTRS)
1982-01-01
The nature of mass anomalies that occur beneath the regions of negative residual depth anomalies were identified. Residual geoid anomalies with negative residual depth anomalies are identified in the Philippine Basin (negative) and in the region south of Australia (positive and negative). In the latter region the geoid anomalies are eastward and the depth anomaly is northeast. It is suggested that the negative depth anomaly and the compensating mass excess in the uppermost mantle developed in the Eocene as the lithosphere of the west Philippine basin formed. Heating of the deeper upper mantle which causes slow surface wave velocities and negative gravity and geoid anomalies may be a younger phenomenon which is still in progress.
Involvement of flocculin in negative potential-applied ITO electrode adhesion of yeast cells
Koyama, Sumihiro; Tsubouchi, Taishi; Usui, Keiko; Uematsu, Katsuyuki; Tame, Akihiro; Nogi, Yuichi; Ohta, Yukari; Hatada, Yuji; Kato, Chiaki; Miwa, Tetsuya; Toyofuku, Takashi; Nagahama, Takehiko; Konishi, Masaaki; Nagano, Yuriko; Abe, Fumiyoshi
2015-01-01
The purpose of this study was to develop novel methods for attachment and cultivation of specifically positioned single yeast cells on a microelectrode surface with the application of a weak electrical potential. Saccharomyces cerevisiae diploid strains attached to an indium tin oxide/glass (ITO) electrode to which a negative potential between −0.2 and −0.4 V vs. Ag/AgCl was applied, while they did not adhere to a gallium-doped zinc oxide/glass electrode surface. The yeast cells attached to the negative potential-applied ITO electrodes showed normal cell proliferation. We found that the flocculin FLO10 gene-disrupted diploid BY4743 mutant strain (flo10Δ /flo10Δ) almost completely lost the ability to adhere to the negative potential-applied ITO electrode. Our results indicate that the mechanisms of diploid BY4743 S. cerevisiae adhesion involve interaction between the negative potential-applied ITO electrode and the Flo10 protein on the cell wall surface. A combination of micropatterning techniques of living single yeast cell on the ITO electrode and omics technologies holds potential of novel, highly parallelized, microchip-based single-cell analysis that will contribute to new screening concepts and applications. PMID:26187908
MgO-templated carbon as a negative electrode material for Na-ion capacitors
NASA Astrophysics Data System (ADS)
Kado, Yuya; Soneda, Yasushi
2016-12-01
In this study, MgO-templated carbon with different pore structures was investigated as a negative electrode material for Na-ion capacitors. With increasing the Brunauer-Emmett-Teller surface area, the irreversible capacity increased, and the coulombic efficiency of the 1st cycle decreased because of the formation of solid electrolyte interface layers. MgO-templated carbon annealed at 1000 °C exhibited the highest capacity and best rate performance, suggesting that an appropriate balance between surface area and crystallinity is imperative for fast Na-ion storage, attributed to the storage mechanism: combination of non-faradaic electric double-layer capacitance and faradaic Na intercalation in the carbon layers. Finally, a Na-ion capacitor cell using MgO-templated carbon and activated carbon as the negative and positive electrodes, respectively, exhibited an energy density at high power density significantly greater than that exhibited by the cell using a commercial hard carbon negative electrode.
Landsat detection of oil from natural seeps
Deutsch, M.; Estes, J.E.
1980-01-01
Oil on the ocean surface from the natural seeps in the Santa Barbara Channel, California, could not be detected on frames of any of the four bands of standard Landsat positive or negative film transparencies, nor could the slicks be detected using digital scaling, density slicing, or ratioing techniques. Digital contrast-stretch enhancement, however, showed the distribution of oil on the surface. - from Authors
pH-Switchable Interaction of a Carboxybetaine Ester-Based SAM with DNA and Gold Nanoparticles.
Filip, Jaroslav; Popelka, Anton; Bertok, Tomas; Holazova, Alena; Osicka, Josef; Kollar, Jozef; Ilcikova, Marketa; Tkac, Jan; Kasak, Peter
2017-07-11
We describe a self-assembled monolayer (SAM) on a gold surface with a carboxybetaine ester functionality to control the interaction between DNA and gold nanoparticles via pH. The negatively charged phosphate backbone of DNA interacts with and adsorbs to the positively charged carboxybetaine esters on the SAM. DNA release can be achieved by the hydrolysis of carboxybetaine ester (CBE) to a zwitterionic carboxybetaine state. Furthermore, the adsorption of negatively charged citrate-capped gold nanoparticles to a SAM-modified plain gold surface can be controlled by the pH. The SAM based on carboxybetaine ester allows for the homogeneous adsorption of particles, whereas the SAM after hydrolysis at high pH repels AuNP adsorption. The antifouling surface properties of the surface modified with carboxybetaine were investigated with protein samples.
Jacobson, Gary P; McCaslin, Devin L; Piker, Erin G; Gruenwald, Jill; Grantham, Sarah; Tegel, Lauren
2011-01-01
The objective of this study was to assess the sensitivity, specificity, and positive and negative predictive value of the Romberg Test of Standing Balance on Firm and Compliant Support Surfaces (RTSBFCSS) for the identification of patients with vestibular system impairments affecting the horizontal semicircular canal, saccule, and/or inferior and superior vestibular nerves. The RTSBFCSS was developed for the National Health and Nutrition Examination Survey (NHANES) and was used recently to estimate the numbers of individuals aged 40 yr or older with vestibular system impairments among the general population of the United States. A retrospective analysis of the medical records of 103 consecutive patients aged 40 yr or older (mean age 59 ± 12 yr, 71 females) who had undergone vestibular assessment at the Balance Disorders Clinic at the Vanderbilt University School of Medicine. Patients with complete electro- or videonystagmography testing, cervical vestibular evoked myogenic potential (cVEMP) testing, and the RTSBFCSS screening test were included in the analysis. A series of 2 × 2 tables were created that represented the number of "true positives," "true negatives," "false positives," and "false negatives" of the RTSBFCSS under conditions where the caloric test was abnormal and then separately where the cVEMP test was abnormal. The data were analyzed in a manner such that sensitivity, specificity, and both positive and negative predictive value of the RTSBFCSS could be calculated. When the caloric test was used as the criterion standard and the subject selection criteria in the NHANES study were used (i.e., subjects who were able to maintain postural stability for trials 1-3 of the RTSBFCSS; N = 45), the sensitivity and specificity of the RTSBFCSS to impairment of the horizontal semicircular canal or superior vestibular nerve were 55% and 64%, respectively, yielding positive and negative predictive values of 55% and 64%, respectively. When all patients aged 40 yr or older were evaluated (N = 103), the sensitivity and specificity were 61% and 58%, respectively, yielding positive and negative predictive values of 39% and 78%, respectively. Using the cVEMP test as the criterion standard for the detection of impairment affecting the saccule and/or inferior vestibular nerve did not improve the performance criteria of the NHANES screening measure. The RTSBFCSS should not be used as a screening measure for vestibular impairment.
Dissipative inertial transport patterns near coherent Lagrangian eddies in the ocean.
Beron-Vera, Francisco J; Olascoaga, María J; Haller, George; Farazmand, Mohammad; Triñanes, Joaquín; Wang, Yan
2015-08-01
Recent developments in dynamical systems theory have revealed long-lived and coherent Lagrangian (i.e., material) eddies in incompressible, satellite-derived surface ocean velocity fields. Paradoxically, observed drifting buoys and floating matter tend to create dissipative-looking patterns near oceanic eddies, which appear to be inconsistent with the conservative fluid particle patterns created by coherent Lagrangian eddies. Here, we show that inclusion of inertial effects (i.e., those produced by the buoyancy and size finiteness of an object) in a rotating two-dimensional incompressible flow context resolves this paradox. Specifically, we obtain that anticyclonic coherent Lagrangian eddies attract (repel) negatively (positively) buoyant finite-size particles, while cyclonic coherent Lagrangian eddies attract (repel) positively (negatively) buoyant finite-size particles. We show how these results explain dissipative-looking satellite-tracked surface drifter and subsurface float trajectories, as well as satellite-derived Sargassum distributions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barada, Daisuke; Center for Optical Research and Education; Juman, Guzhaliayi
It was discovered that optical vortices twist isotropic and homogenous materials, e.g., azo-polymer films to form spiral structures on a nano- or micro-scale. However, the formation mechanism has not yet been established theoretically. To understand the mechanism of the spiral surface relief formation in the azo-polymer film, we theoretically investigate the optical radiation force induced in an isotropic and homogeneous material under irradiation using a continuous-wave optical vortex with arbitrary topological charge and polarization. It is revealed that the spiral surface relief formation in azo-polymer films requires the irradiation of optical vortices with a positive (negative) spin angular momentum andmore » a positive (negative) orbital angular momentum (constructive spin-orbital angular momentum coupling), i.e., the degeneracy among the optical vortices with the same total angular momentum is resolved.« less
NASA Astrophysics Data System (ADS)
Nagano, Akira; Hasegawa, Takuya; Ueki, Iwao; Ando, Kentaro
2017-07-01
We examined the covariation of sea surface salinity (SSS) and freshwater flux in the western tropical and northern subtropical Pacific on the El Niño-Southern Oscillation time scale, using a canonical correlation analysis of monthly data between 2001 and 2013. The dominant covariation, i.e., the first canonical mode, has large positive and negative amplitudes in regions east of the Philippines and New Guinea, respectively, and reaches peaks in autumn to winter of El Niño years. The positive SSS anomaly east of the Philippines is advected to the Kuroshio Extension region. We found that the second canonical mode is another coupled variation with localized amplitudes of SSS under the atmospheric convergence zones in winter to spring of La Niña years. However, the negative SSS anomaly is annihilated possibly by the evaporation in the subtropical region.
Effect of photoelectric emission on blunt probe conductivity measurements in the stratosphere
NASA Astrophysics Data System (ADS)
John, Thomas; Chopra, P.; Garg, S. C.
2009-06-01
Two identical planar blunt probes of stainless steel material, biased with a bipolar ramp voltage, are used to measure the stratospheric polar conductivities to altitudes of 34 km. One probe (DP) is mounted closer to the gondola, looking downwards and shielded from sunlight, while the other (SP) is mounted looking sideways, away from the gondola. The daytime observations of positive ions in the 29-34 km altitude range with SP, and of negative ions at 34 km with DP, show photoelectric contaminations induced by solar UV radiations in the 190-230 nm band. These contaminations are found to be due to photoemissions from the SP probe steel surface and from the carbon paint that coats the surface of the gondola, respectively. It is found that, a segment of the photocurrent contaminated I-V curve, recorded with SP at higher negative probe potentials, is linear, and it can give the ambient positive polar conductivity.
Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles.
Asati, Atul; Santra, Santimukul; Kaittanis, Charalambos; Perez, J Manuel
2010-09-28
Cerium oxide nanoparticles (nanoceria) have shown great potential as antioxidant and radioprotective agents for applications in cancer therapy. Recently, various polymer-coated nanoceria preparations have been developed to improve their aqueous solubility and allow for surface functionalization of these nanoparticles. However, the interaction of polymer-coated nanoceria with cells, their uptake mechanism, and subcellular localization are poorly understood. Herein, we engineered polymer-coated cerium oxide nanoparticles with different surface charges (positive, negative, and neutral) and studied their internalization and toxicity in normal and cancer cell lines. The results showed that nanoceria with a positive or neutral charge enters most of the cell lines studied, while nanoceria with a negative charge internalizes mostly in the cancer cell lines. Moreover, upon entry into the cells, nanoceria is localized to different cell compartments (e.g., cytoplasm and lysosomes) depending on the nanoparticle's surface charge. The internalization and subcellular localization of nanoceria plays a key role in the nanoparticles' cytotoxicity profile, exhibiting significant toxicity when they localize in the lysosomes of the cancer cells. In contrast, minimal toxicity is observed when they localize into the cytoplasm or do not enter the cells. Taken together, these results indicate that the differential surface-charge-dependent localization of nanoceria in normal and cancer cells plays a critical role in the nanoparticles' toxicity profile.
MAGNETIC ACTIVITY ANALYSIS FOR A SAMPLE OF G-TYPE MAIN SEQUENCE KEPLER TARGETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehrabi, Ahmad; He, Han; Khosroshahi, Habib, E-mail: mehrabi@basu.ac.ir
2017-01-10
The variation of a stellar light curve owing to rotational modulation by magnetic features (starspots and faculae) on the star’s surface can be used to investigate the magnetic properties of the host star. In this paper, we use the periodicity and magnitude of the light-curve variation as two proxies to study the stellar magnetic properties for a large sample of G-type main sequence Kepler targets, for which the rotation periods were recently determined. By analyzing the correlation between the two magnetic proxies, it is found that: (1) the two proxies are positively correlated for most of the stars in ourmore » sample, and the percentages of negative, zero, and positive correlations are 4.27%, 6.81%, and 88.91%, respectively; (2) negative correlation stars cannot have a large magnitude of light-curve variation; and (3) with the increase of rotation period, the relative number of positive correlation stars decreases and the negative correlation one increases. These results indicate that stars with shorter rotation period tend to have positive correlation between the two proxies, and a good portion of the positive correlation stars have a larger magnitude of light-curve variation (and hence more intense magnetic activities) than negative correlation stars.« less
Electron affinity of cubic boron nitride terminated with vanadium oxide
NASA Astrophysics Data System (ADS)
Yang, Yu; Sun, Tianyin; Shammas, Joseph; Kaur, Manpuneet; Hao, Mei; Nemanich, Robert J.
2015-10-01
A thermally stable negative electron affinity (NEA) for a cubic boron nitride (c-BN) surface with vanadium-oxide-termination is achieved, and its electronic structure was analyzed with in-situ photoelectron spectroscopy. The c-BN films were prepared by electron cyclotron resonance plasma-enhanced chemical vapor deposition employing BF3 and N2 as precursors. Vanadium layers of ˜0.1 and 0.5 nm thickness were deposited on the c-BN surface in an electron beam deposition system. Oxidation of the metal layer was achieved by an oxygen plasma treatment. After 650 °C thermal annealing, the vanadium oxide on the c-BN surface was determined to be VO2, and the surfaces were found to be thermally stable, exhibiting an NEA. In comparison, the oxygen-terminated c-BN surface, where B2O3 was detected, showed a positive electron affinity of ˜1.2 eV. The B2O3 evidently acts as a negatively charged layer introducing a surface dipole directed into the c-BN. Through the interaction of VO2 with the B2O3 layer, a B-O-V layer structure would contribute a dipole between the O and V layers with the positive side facing vacuum. The lower enthalpy of formation for B2O3 is favorable for the formation of the B-O-V layer structure, which provides a thermally stable surface dipole and an NEA surface.
Kowalewicz-Kulbat, Magdalena; Ograczyk, Elżbieta; Włodarczyk, Marcin; Krawczyk, Krzysztof; Fol, Marek
2016-06-01
The immunomagnetic separation technique is the basis of monocyte isolation and further generation of monocyte-derived dendritic cells. To compare the efficiency of monocyte positive and negative separation, concentration of beads, and their impact on generated dendritic cells. Monocytes were obtained using monoclonal antibody-coated magnetic beads followed the Ficoll-Paque gradient separation of mononuclear cell fraction from the peripheral blood of 6 healthy volunteers. CD14 expression was analyzed by flow cytometry. Both types of magnetic separation including recommended and reduced concentrations of beads did not affect the yield and the purity of monocytes and their surface CD14 expression. However, DCs originated from the "positively" separated monocytes had noticeable higher expression of CD80.
Front contact solar cell with formed emitter
Cousins, Peter John
2014-11-04
A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.
Front contact solar cell with formed emitter
Cousins, Peter John [Menlo Park, CA
2012-07-17
A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.
NASA Astrophysics Data System (ADS)
Guarnieri, Daniela; Malvindi, Maria Ada; Belli, Valentina; Pompa, Pier Paolo; Netti, Paolo
2014-02-01
Silica nanoparticles could be promising delivery vehicles for drug targeting or gene therapy. However, few studies have been undertaken to determine the biological behavior effects of silica nanoparticles on primary endothelial cells. Here we investigated uptake, cytotoxicity and angiogenic properties of silica nanoparticle with positive and negative surface charge and sizes ranging from 25 to 115 nm in primary human umbilical vein endothelial cells. Dynamic light scattering measurements and nanoparticle tracking analysis were used to estimate the dispersion status of nanoparticles in cell culture media, which was a key aspect to understand the results of the in vitro cellular uptake experiments. Nanoparticles were taken up by primary endothelial cells in a size-dependent manner according to their degree of agglomeration occurring after transfer in cell culture media. Functionalization of the particle surface with positively charged groups enhanced the in vitro cellular uptake, compared to negatively charged nanoparticles. However, this effect was contrasted by the tendency of particles to form agglomerates, leading to lower internalization efficiency. Silica nanoparticle uptake did not affect cell viability and cell membrane integrity. More interestingly, positively and negatively charged 25 nm nanoparticles did not influence capillary-like tube formation and angiogenic sprouting, compared to controls. Considering the increasing interest in nanomaterials for several biomedical applications, a careful study of nanoparticle-endothelial cells interactions is of high relevance to assess possible risks associated to silica nanoparticle exposure and their possible applications in nanomedicine as safe and effective nanocarriers for vascular transport of therapeutic agents.
l-Proline and RNA Duplex m-Value Temperature Dependence.
Schwinefus, Jeffrey J; Baka, Nadia L; Modi, Kalpit; Billmeyer, Kaylyn N; Lu, Shutian; Haase, Lucas R; Menssen, Ryan J
2017-08-03
The temperature dependence of l-proline interactions with the RNA dodecamer duplex surface exposed after unfolding was quantified using thermal and isothermal titration denaturation monitored by uv-absorbance. The m-value quantifying proline interactions with the RNA duplex surface area exposed after unfolding was measured using RNA duplexes with GC content ranging between 17 and 83%. The m-values from thermal denaturation decreased with increasing GC content signifying increasingly favorable proline interactions with the exposed RNA surface area. However, m-values from isothermal titration denaturation at 25.0 °C were independent of GC content and less negative than those from thermal denaturation. The m-value from isothermal titration denaturation for a 50% GC RNA duplex decreased (became more negative) as the temperature increased and was in nearly exact agreement with the m-value from thermal denaturation. Since RNA duplex transition temperatures increased with GC content, the more favorable proline interactions with the high GC content duplex surface area observed from thermal denaturation resulted from the temperature dependence of proline interactions rather than the RNA surface chemical composition. The enthalpy contribution to the m-value was positive and small (indicating a slight increase in duplex unfolding enthalpy with proline) while the entropic contribution to the m-value was positive and increased with temperature. Our results will facilitate proline's use as a probe of solvent accessible surface area changes during biochemical reactions at different reaction temperatures.
Playford, R J; Hanby, A M; Gschmeissner, S; Peiffer, L P; Wright, N A; McGarrity, T
1996-01-01
BACKGROUND: While it is clear that luminal epidermal growth factor (EGF) stimulates repair of the damaged bowel, its significance in maintaining normal gut growth remains uncertain. If EGF is important in maintaining normal gut growth, the EGF receptor (EGF-R) should be present on the apical (luminal) surface in addition to the basolateral surface. AIMS/SUBJECTS/METHODS: This study examined the distribution of the EGF-R in the epithelium throughout the human gastro-intestinal tract using immunohistochemistry, electron microscopy, and western blotting of brush border preparations. RESULTS: Immunostaining of the oesophagus showed circumferential EGF-R positivity in the cells of the basal portions of the stratified squamous epithelium but surface cells were EGF-R negative. In the normal stomach, small intestine, and colon, immunostaining localised the receptor to the basolateral surface with the apical membranes being consistently negative. EGF-R positivity within the small intestine appeared to be almost entirely restricted to the proliferative (crypt) region. Western blotting demonstrated a 170 kDa protein in whole tissue homogenates but not in the brush border vesicle preparations. CONCLUSIONS: As the EGF-R is located only on the basolateral surfaces in the normal adult gastrointestinal tract, the major role of luminal EGF is probably to stimulate repair rather than to maintain normal gut growth. Images Figure 1 Figure 2 Figure 3 PMID:8977341
Barling, Julian; Akers, Amy; Beiko, Darren
2018-01-01
The effects of surgeons' leadership on team performance are not well understood. The purpose of this study was to examine the simultaneous effects of transformational, passive, abusive supervision and over-controlling leadership behaviors by surgeons on surgical team performance. Trained observers attended 150 randomly selected operations at a tertiary care teaching hospital. Observers recorded instances of the four leadership behaviors enacted by the surgeon. Postoperatively, team members completed validated questionnaires rating team cohesion and collective efficacy. Multiple regression analyses were computed. Data were analyzed using the complex modeling function in MPlus. Surgeons' abusive supervision was negatively associated with psychological safety (unstandardized B = -0.352, p < 0.01). Both surgeons' abusive supervision (unstandardized B = -0.237, p < 0.01), and over-controlling leadership (unstandardized B = -0.230, p < 0.05) were negatively associated with collective efficacy. This study is the first to assess the simultaneous effects of surgeons' positive and negative leadership behaviors on intraoperative team performance. Significant effects only surfaced for negative leadership behaviors; transformational leadership did not positively influence team performance. Copyright © 2017 Elsevier Inc. All rights reserved.
Datta, Sibnarayan; Banerjee, Arup; Chandra, Partha K; Chakraborty, Subhasis; Basu, Subir Kumar; Chakravarty, Runu
2007-11-01
In blood donors, HBV infection is detected by the presence of serum hepatitis B surface antigen (HBsAg). However, some mutations in the surface gene region may result in altered or truncated HBsAg that can escape from immunoassay-based diagnosis. Such diagnostic escape mutants pose a potential risk for blood transfusion services. In the present study, we report a blood donor seronegative for HBsAg and antiHBc, but positive for antiHBs who was HBV DNA positive by PCR. Sequencing of the HBsAg gene revealed presence of a point mutation (T-A) at 207th nucleotide of the HBsAg ORF, which resulted in a premature stop codon at position 69. This results in a truncated HBsAg gene lacking the entire 'a' determinant region. However, follow-up of the donor after 2 years revealed clearance of HBV DNA from the serum. The case illustrates an unusual mutation, which causes HBsAg negativity. The finding emphasizes the importance of molecular assays in reducing the possibility of HBV transmission through blood transfusion. However, developing more sensitive serological assays, capable of detecting HBV mutants, is an alternative to expensive and complex amplification-based assays for developing countries.
A Feasibility Study to Control Airfoil Shape Using THUNDER
NASA Technical Reports Server (NTRS)
Pinkerton, Jennifer L.; Moses, Robert W.
1997-01-01
The objective of this study was to assess the capabilities of a new out-of-plane displacement piezoelectric actuator called thin-layer composite-unimorph ferroelectric driver and sensor (THUNDER) to alter the upper surface geometry of a subscale airfoil to enhance performance under aerodynamic loading. Sixty test conditions, consisting of combinations of five angles of attack, four dc applied voltages, and three tunnel velocities, were studied in a tabletop wind tunnel. Results indicated that larger magnitudes of applied voltage produced larger wafer displacements. Wind-off displacements were also consistently larger than wind-on. Higher velocities produced larger displacements than lower velocities because of increased upper surface suction. Increased suction also resulted in larger displacements at higher angles of attack. Creep and hysteresis of the wafer, which were identified at each test condition, contributed to larger negative displacements for all negative applied voltages and larger positive displacements for the smaller positive applied voltage (+102 V). An elastic membrane used to hold the wafer to the upper surface hindered displacements at the larger positive applied voltage (+170 V). Both creep and hysteresis appeared bounded based on the analysis of several displacement cycles. These results show that THUNDER can be used to alter the camber of a small airfoil under aerodynamic loads.
Functionalized nanoparticle interactions with polymeric membranes.
Ladner, D A; Steele, M; Weir, A; Hristovski, K; Westerhoff, P
2012-04-15
A series of experiments was performed to measure the retention of a class of functionalized nanoparticles (NPs) on porous (microfiltration and ultrafiltration) membranes. The findings impact engineered water and wastewater treatment using membrane technology, characterization and analytical schemes for NP detection, and the use of NPs in waste treatment scenarios. The NPs studied were composed of silver, titanium dioxide, and gold; had organic coatings to yield either positive or negative surface charge; and were between 2 and 10nm in diameter. NP solutions were applied to polymeric membranes composed of different materials and pore sizes (ranging from ≈ 2 nm [3 kDa molecular weight cutoff] to 0.2 μm). Greater than 99% rejection was observed of positively charged NPs by negatively charged membranes even though pore diameters were up to 20 times the NP diameter; thus, sorption caused rejection. Negatively charged NPs were less well rejected, but behavior was dependent not only on surface functionality but on NP core material (Ag, TiO(2), or Au). NP rejection depended more upon NP properties than membrane properties; all of the negatively charged polymeric membranes behaved similarly. The NP-membrane interaction behavior fell into four categories, which are defined and described here. Copyright © 2011 Elsevier B.V. All rights reserved.
Floating potential of emitting surfaces in plasmas with respect to the space potential
Kraus, B. F.; Raitses, Y.
2018-03-19
The potential difference between a floating emitting surface and the plasma surrounding it has been described by several sheath models, including the space-charge-limited sheath, the electron sheath with high emission current, and the inverse sheath produced by charge-exchange ion trapping. Our measurements reveal that each of these models has its own regime of validity. We determine the potential of an emissive filament relative to the plasma potential, emphasizing variations in emitted current density and neutral particle density. The potential of a filament in a diffuse plasma is first shown to vanish, consistent with the electron sheath model and increasing electronmore » emission. In a denser plasma with ample neutral pressure, the floating filament potential is positive, as predicted by a derived ion trapping condition. In conclusion, the filament floated negatively in a third plasma, where flowing ions and electrons and nonnegligible electric fields may have disrupted ion trapping. Depending on the regime chosen, emitting surfaces can float positively or negatively with respect to the plasma potential.« less
NASA Astrophysics Data System (ADS)
Uematsu, Yuki; Netz, Roland R.; Bonthuis, Douwe Jan
2018-02-01
Using a box profile approximation for the non-electrostatic surface adsorption potentials of anions and cations, we calculate the differential capacitance of aqueous electrolyte interfaces from a numerical solution of the Poisson-Boltzmann equation, including steric interactions between the ions and an inhomogeneous dielectric profile. Preferential adsorption of the positive (negative) ion shifts the minimum of the differential capacitance to positive (negative) surface potential values. The trends are similar for the potential of zero charge; however, the potential of zero charge does not correspond to the minimum of the differential capacitance in the case of asymmetric ion adsorption, contrary to the assumption commonly used to determine the potential of zero charge. Our model can be used to obtain more accurate estimates of ion adsorption properties from differential capacitance or electrocapillary measurements. Asymmetric ion adsorption also affects the relative heights of the characteristic maxima in the differential capacitance curves as a function of the surface potential, but even for strong adsorption potentials the effect is small, making it difficult to reliably determine the adsorption properties from the peak heights.
Floating potential of emitting surfaces in plasmas with respect to the space potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraus, B. F.; Raitses, Y.
The potential difference between a floating emitting surface and the plasma surrounding it has been described by several sheath models, including the space-charge-limited sheath, the electron sheath with high emission current, and the inverse sheath produced by charge-exchange ion trapping. Our measurements reveal that each of these models has its own regime of validity. We determine the potential of an emissive filament relative to the plasma potential, emphasizing variations in emitted current density and neutral particle density. The potential of a filament in a diffuse plasma is first shown to vanish, consistent with the electron sheath model and increasing electronmore » emission. In a denser plasma with ample neutral pressure, the floating filament potential is positive, as predicted by a derived ion trapping condition. In conclusion, the filament floated negatively in a third plasma, where flowing ions and electrons and nonnegligible electric fields may have disrupted ion trapping. Depending on the regime chosen, emitting surfaces can float positively or negatively with respect to the plasma potential.« less
NASA Astrophysics Data System (ADS)
Huang, Jie; Xu, Fanghua; Zhou, Kuanbo; Xiu, Peng; Lin, Yanluan
2017-08-01
Temporal evolution of near-surface chlorophyll (CHL) associated with mesoscale eddies over entire eddy lifespan is complicated. Based on satellite measurements and a reanalysis data set, we identify and quantify major temporal and spatial CHL responses in cyclonic eddies in the southeastern Pacific, and explore the associated mechanisms. Only few temporal CHL variations can be directly linked to the four primary mechanisms: "eddy pumping," "eddy trapping," "eddy stirring," and "eddy-induced Ekman pumping." About 80% of the temporal CHL variations are too complex to be explained by a single mechanism. Five characteristic CHL responses, including classic dipoles (CD), positive-dominant dipoles (PD), negative-dominant dipoles (ND), positive monopoles (PM), and negative monopoles (NM) are identified using the self-organizing map (SOM). CD, a dominant response induced primarily by "eddy stirring," has a continued increasing of frequency of occurrence with time, although its contribution to the total CHL variability remains low. As the secondary prominent response, NM has two peaks of frequency of occurrence at eddy formation and maturation stages, mainly accounted by "eddy trapping" after eddy breakup and "eddy-induced Ekman pumping," respectively. The sum of frequency of occurrence of PD and PM are comparable to that of NM. The initial positive CHL at eddy formation stage is associated with "eddy trapping." The significant positive CHL increase from the eddy intensification to early decay stage is mainly attributed to "eddy pumping." Although the frequency of occurrence of ND is the smallest, its contribution to negative CHL anomalies is unnegligible.
A quality monitor and monitoring technique employing optically stimulated electron emission
NASA Technical Reports Server (NTRS)
Yost, William T. (Inventor); Welch, Christopher S. (Inventor); Joe, Edmond J. (Inventor); Hefner, Bill Bryan, Jr. (Inventor)
1995-01-01
A light source directs ultraviolet light onto a test surface and a detector detects a current of photoelectrons generated by the light. The detector includes a collector which is positively biased with respect to the test surface. Quality is indicated based on the photoelectron current. The collector is then negatively biased to replace charges removed by the measurement of a nonconducting substrate to permit subsequent measurements. Also, the intensity of the ultraviolet light at a particular wavelength is monitored and the voltage of the light source varied to maintain the light a constant desired intensity. The light source is also cooled via a gas circulation system. If the test surface is an insulator, the surface is bombarded with ultraviolet light in the presence of an electron field to remove the majority of negative charges from the surface. The test surface is then exposed to an ion field until it possesses no net charge. The technique described above is then performed to assess quality.
Zhao, Xue Qiang; Bao, Xue Min; Wang, Chao; Xiao, Zuo Yi; Hu, Zhen Min; Zheng, Chun Li; Shen, Ren Fang
2017-10-01
Aluminum (Al) is ubiquitous and toxic to microbes. High Al 3+ concentration and low pH are two key factors responsible for Al toxicity, but our present results contradict this idea. Here, an Al-tolerant yeast strain Rhodotorula taiwanensis RS1 was incubated in glucose media containing Al with a continuous pH gradient from pH 3.1-4.2. The cells became more sensitive to Al and accumulated more Al when pH increased. Calculations using an electrostatic model Speciation Gouy Chapman Stern indicated that, the increased Al sensitivity of cells was associated with AlOH 2+ and Al(OH) 2 + rather than Al 3+ . The alcian blue (a positively charged dye) adsorption and zeta potential determination of cell surface indicated that, higher pH than 3.1 increased the negative charge and Al adsorption at the cell surface. Taken together, the enhanced sensitivity of R. taiwanensis RS1 to Al from pH 3.1-4.2 was associated with increased hydroxy-Al and cell-surface negativity.
Tan, Zhaoxia; Li, Maoshi; Kuang, Xuemei; Tang, Yu; Fan, Yi; Deng, Guohong; Wang, Yuming; He, Dengming
2014-04-01
HBsAg quantitation may be useful for managing patients with hepatitis B virus (HBV) infection. We explored the clinical implications of HBsAg quantitation for patients with HBsAg levels >250IU/ml (Abbott Diagnostics). Two hundred and thirty-three HBV-infected patients comprising 29 immune tolerance cases, 49 treatment-naïve HBeAg-positive chronic hepatitis B (CHB) cases, 91 inactive HBV carrier cases, and 64 treatment-naïve HBeAg-negative CHB cases were analyzed. HBsAg was quantified by the Architect HBsAg assay (Abbott Diagnostics) after a 1:500 automated dilution. HBsAg (log10IU/ml) was established for immune tolerance (4.50±0.43), HBeAg-positive CHB (4.17±0.66), inactive HBV carrier (3.32±0.44), and HBeAg-negative CHB (3.23±0.40); (p=4.92×10(-35)). No significant difference was observed between inactive HBV carrier and HBeAg-negative CHB (p=0.247). The proportions of HBsAg <2000IU/ml for inactive HBV carrier and HBeAg-negative CHB were 51.6% and 59.3%, respectively (p=0.341). Positive correlations between HBsAg and HBV DNA were observed for immune tolerance (p=1.23×10(-4)) and HBeAg-positive CHB (p=0.003), but not for HBeAg-negative CHB (p=0.432). A negative correlation between HBsAg and age was observed for immune tolerance (p=0.030), HBeAg-positive CHB (p=0.016), and inactive HBV carrier (p=0.001), but not in HBeAg-negative CHB (p=0.249). No significant differences between HBsAg and ALT for HBeAg-positive (p=0.338) or HBeAg-negative CHB (p=0.564) were observed. For patients with HBsAg quantitation >250IU/ml, HBsAg may reflect HBV DNA replication for HBeAg-positive cases. HBsAg is not a suitable marker for evaluating hepatitis activity and distinguishing between cases of HBeAg-negative CHB and inactive HBV carrier state. Copyright © 2014 Elsevier B.V. All rights reserved.
Borentain, P; Colson, P; Coso, D; Bories, E; Charbonnier, A; Stoppa, A M; Auran, T; Loundou, A; Motte, A; Ressiot, E; Norguet, E; Chabannon, C; Bouabdallah, R; Tamalet, C; Gérolami, R
2010-11-01
We studied clinical outcome and clinico-virological factors associated with hepatitis B virus reactivation (HBV-R) following cancer treatment in hepatitis B virus surface antigen (HBsAg)-negative/anti-hepatitis B core antibodies (anti-HBcAb)-positive patients. Between 11/2003 and 12/2005, HBV-R occurred in 7/84 HBsAg-negative/anti-HBcAb-positive patients treated for haematological or solid cancer. Virological factors including HBV genotype, core promoter, precore, and HBsAg genotypic and amino acid (aa) patterns were studied. Patients presenting with reactivation were men, had an hepatitis B virus surface antibody (HBsAb) titre <100 IU/L and underwent >1 line of chemotherapy (CT) significantly more frequently than controls. All were treated for haematological cancer, 3/7 received haematopoietic stem cell transplantation (HSCT), and 4/7 received rituximab. Using multivariate analysis, receiving >1 line of CT was an independent risk factor for HBV-R. Fatal outcome occurred in 3/7 patients (despite lamivudine therapy in two), whereas 2/4 survivors had an HBsAg seroconversion. HBV-R involved non-A HBV genotypes and core promoter and/or precore HBV mutants in all cases. Mutations known to impair HBsAg antigenicity were detected in HBV DNA from all seven patients. HBV DNA could be retrospectively detected in two patients prior cancer treatment and despite HBsAg negativity. HBV-R is a concern in HBsAg-negative/anti-HBcAb-positive patients undergoing cancer therapy, especially in males presenting with haematological cancer, a low anti-HBsAb titre and more than one chemotherapeutic agent. HBV DNA testing is mandatory to improve diagnosis and management of HBV-R in these patients. The role of specific therapies such as rituximab or HSCT as well as of HBV aa variability deserves further studies. © 2009 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Qu, Yinying; Li, Xiaoshuang; Zhang, Sheng; Wei, Qingsong; Shi, Yusheng; Chen, Lili
2014-06-01
Electrophoretic deposition has been widely used for the fabrication of functional coatings onto metal implant. A characteristic feature of this process is that positively charged materials migrate toward the cathode and can deposit on it. In this study, silk fibroin was decorated with tetracycline in aqueous solution to impart positive charge, and then deposited on negatively titanium cathode under certain electric field. The characterization of the obtained coatings indicated that the intermolecular hydrogen bonds formed between the backbone of silk fibroin and tetracycline molecular. In vitro biological tests demonstrated that osteoblast-like cells achieved acceptable cell affinity on the tetracycline cross-linked silk fibroin coatings, although greater cell viability was seen on pure silk fibroin coatings. The cationic silk fibroin coatings showed remarkable antibacterial activity against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria. Therefore, we concluded that electrophoretic deposition was an effective and efficient technique to prepare cationic silk fibroin coatings on the titanium surface and that cationic silk fibroin coatings with acceptable biocompatibility and antibacterial property were promising candidates for further loading of functional agents.
Surface stress mediated image force and torque on an edge dislocation
NASA Astrophysics Data System (ADS)
Raghavendra, R. M.; Divya, Iyer, Ganesh; Kumar, Arun; Subramaniam, Anandh
2018-07-01
The proximity of interfaces gives prominence to image forces experienced by dislocations. The presence of surface stress alters the traction-free boundary conditions existing on free-surfaces and hence is expected to alter the magnitude of the image force. In the current work, using a combined simulation of surface stress and an edge dislocation in a semi-infinite body, we evaluate the configurational effects on the system. We demonstrate that if the extra half-plane of the edge dislocation is parallel to the surface, the image force (glide) is not altered due to surface stress; however, the dislocation experiences a torque. The surface stress breaks the 'climb image force' symmetry, thus leading to non-equivalence between positive and negative climb. We discover an equilibrium position for the edge dislocation in the positive 'climb geometry', arising due to a competition between the interaction of the dislocation stress fields with the surface stress and the image dislocation. Torque in the climb configuration is not affected by surface stress (remains zero). Surface stress is computed using a recently developed two-scale model based on Shuttleworth's idea and image forces using a finite element model developed earlier. The effect of surface stress on the image force and torque experienced by the dislocation monopole is analysed using illustrative 3D models.
Thurman, E.M.; Ferrer, I.
2002-01-01
The formation of metal ion adducts in liquid chromatography/mass spectrometry positive-ion electrospray analysis of pharmaceuticals and pesticides was investigated. The evidence of surface-catalyzed ionization in the electrospray analysis was also studied. Both positive and negative ion mass spectrometry were used for the analysis of the products. It was found that the sodium adducts formed in the analysis included single, double, and triple sodium adducts. Adduction was found to occur by attachment of the metal ion to carboxyl, carbonyl and aromatic pi electrons of the molecule.
Gu, Juan; Sun, An-Yuan; Wang, Xue-Dong; Shao, Chao-Peng; Li, Zheng; Huang, Li-Hua; Pan, Zhao-Lin; Wang, Qing-Ping; Sun, Guang-Ming
2014-04-01
The characteristics of the D antigen are important as they influence the immunogenicity of D variant cells. Several studies on antigenic sites have been reported in normal D positive, weak D and partial D cases, including a comprehensive analysis of DEL types in Caucasians. The aim of this study was to assess D antigen density and epitopes on the erythrocyte surface of Asian type DEL phenotypic individuals carrying the RHD1227A allele in the Chinese population. A total of 154 DEL phenotypic individuals carrying the RHD1227A allele were identified through adsorption and elution tests and polymerase chain reaction analysis with sequence-specific primers in the Chinese population. D antigen density on the erythrocyte surface of these individuals was detected using a flow cytometric method. An erythrocyte sample with known D antigen density was used as a standard. Blood samples from D-negative and D-positive individuals were used as controls. In addition, D antigen epitopes on the erythrocyte surface of DEL individuals carrying the RHD1227A allele were investigated with 18 monoclonal anti-D antibodies specific for different D antigen epitopes. The means of the median fluorescence intensity of D antigen on the erythrocyte membrane surface of D-negative, D-positive and DEL individuals were 2.14±0.25, 193.61±11.43 and 2.45±0.82, respectively. The DEL samples were estimated to have approximately 22 D antigens per cell. The samples from all 154 DEL individuals reacted positively with 18 monoclonal anti-D antibodies specific for different D antigen epitopes. In this study, D antigen density on the erythrocyte surface of DEL individuals carrying the RHD1227A allele was extremely low, there being only very few antigenic molecules per cell, but the D antigen epitopes were grossly complete.
Versatile microbial surface-display for environmental remediation and biofuels production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Cindy H.; Mulchandani, Ashok; Chen, wilfred
2008-02-14
Surface display is a powerful technique that utilizes natural microbial functional components to express proteins or peptides on the cell exterior. Since the reporting of the first surface-display system in the mid-1980s, a variety of new systems have been reported for yeast, Gram-positive and Gram-negative bacteria. Non-conventional display methods are emerging, eliminating the generation of genetically modified microorganisms. Cells with surface display are used as biocatalysts, biosorbents and biostimulants. Microbial cell-surface display has proven to be extremely important for numerous applications ranging from combinatorial library screening and protein engineering to bioremediation and biofuels production.
Bactericidal activity of partially oxidized nanodiamonds.
Wehling, Julia; Dringen, Ralf; Zare, Richard N; Maas, Michael; Rezwan, Kurosch
2014-06-24
Nanodiamonds are a class of carbon-based nanoparticles that are rapidly gaining attention, particularly for biomedical applications, i.e., as drug carriers, for bioimaging, or as implant coatings. Nanodiamonds have generally been considered biocompatible with a broad variety of eukaryotic cells. We show that, depending on their surface composition, nanodiamonds kill Gram-positive and -negative bacteria rapidly and efficiently. We investigated six different types of nanodiamonds exhibiting diverse oxygen-containing surface groups that were created using standard pretreatment methods for forming nanodiamond dispersions. Our experiments suggest that the antibacterial activity of nanodiamond is linked to the presence of partially oxidized and negatively charged surfaces, specifically those containing acid anhydride groups. Furthermore, proteins were found to control the bactericidal properties of nanodiamonds by covering these surface groups, which explains the previously reported biocompatibility of nanodiamonds. Our findings describe the discovery of an exciting property of partially oxidized nanodiamonds as a potent antibacterial agent.
NASA Astrophysics Data System (ADS)
Haubner, Konstanze; Box, Jason E.; Schlegel, Nicole J.; Larour, Eric Y.; Morlighem, Mathieu; Solgaard, Anne M.; Kjeldsen, Kristian K.; Larsen, Signe H.; Rignot, Eric; Dupont, Todd K.; Kjær, Kurt H.
2018-04-01
Tidewater glacier velocity and mass balance are known to be highly responsive to terminus position change. Yet it remains challenging for ice flow models to reproduce observed ice margin changes. Here, using the Ice Sheet System Model (ISSM; Larour et al. 2012), we simulate the ice velocity and thickness changes of Upernavik Isstrøm (north-western Greenland) by prescribing a collection of 27 observed terminus positions spanning 164 years (1849-2012). The simulation shows increased ice velocity during the 1930s, the late 1970s and between 1995 and 2012 when terminus retreat was observed along with negative surface mass balance anomalies. Three distinct mass balance states are evident in the reconstruction: (1849-1932) with near zero mass balance, (1932-1992) with ice mass loss dominated by ice dynamical flow, and (1998-2012), when increased retreat and negative surface mass balance anomalies led to mass loss that was twice that of any earlier period. Over the multi-decadal simulation, mass loss was dominated by thinning and acceleration responsible for 70 % of the total mass loss induced by prescribed change in terminus position. The remaining 30 % of the total ice mass loss resulted directly from prescribed terminus retreat and decreasing surface mass balance. Although the method can not explain the cause of glacier retreat, it enables the reconstruction of ice flow and geometry during 1849-2012. Given annual or seasonal observed terminus front positions, this method could be a useful tool for evaluating simulations investigating the effect of calving laws.
Sanitary quality, occurrence and identification of Staphylococcus sp. in food services.
de Mello, Jozi Fagundes; da Rocha, Laura Braga; Lopes, Ester Souza; Frazzon, Jeverson; da Costa, Marisa
2014-01-01
Sanitary conditions are essential for the production of meals and control of the presence of pathogensis important to guarantee the health of customers. The aim of this study was to evaluate the sanitary quality of food services by checking the presence of thermotolerant coliforms, Staphylococcus sp. and evaluate the toxigenic potential from the latter. The analysis was performed on water, surfaces, equipment, ready-to-eat foods, hands and nasal cavity of handlers in seven food services. The water used in food services proved to be suitable for the production of meals. Most food, equipment and surfaces showed poor sanitary conditions due to the presence of thermotolerant coliforms (60.6%). Twenty-six Staphylococcus species were identified from the 121 Staphylococcus isolates tested. Staphylococci coagulase-negative species were predominant in the foods, equipment and surfaces. In food handlers and foods, the predominant species was Staphylococcus epidermidis. Twelve different genotypes were found after PCR for the classical enterotoxin genes. The seb gene (19.8%) was the most prevalent among all Staphylococcus sp. Both coagulase-positive and coagulase-negative Staphylococci showed some of the genes of the enterotoxins tested. We conclude that there are hygienic and sanitary deficiencies in the food services analyzed. Although coagulase-positive Staphylococci have not been present in foods there is a wide dispersion of enterotoxigenic coagulase-negative Staphylococci in the environment and in the foods analyzed, indicating a risk to consumer health.
Sanitary quality, occurrence and identification of Staphylococcus sp. in food services
de Mello, Jozi Fagundes; da Rocha, Laura Braga; Lopes, Ester Souza; Frazzon, Jeverson; da Costa, Marisa
2014-01-01
Sanitary conditions are essential for the production of meals and control of the presence of pathogensis important to guarantee the health of customers. The aim of this study was to evaluate the sanitary quality of food services by checking the presence of thermotolerant coliforms, Staphylococcus sp. and evaluate the toxigenic potential from the latter. The analysis was performed on water, surfaces, equipment, ready-to-eat foods, hands and nasal cavity of handlers in seven food services. The water used in food services proved to be suitable for the production of meals. Most food, equipment and surfaces showed poor sanitary conditions due to the presence of thermotolerant coliforms (60.6%). Twenty-six Staphylococcus species were identified from the 121 Staphylococcus isolates tested. Staphylococci coagulase-negative species were predominant in the foods, equipment and surfaces. In food handlers and foods, the predominant species was Staphylococcus epidermidis. Twelve different genotypes were found after PCR for the classical enterotoxin genes. The seb gene (19.8%) was the most prevalent among all Staphylococcus sp. Both coagulase-positive and coagulase-negative Staphylococci showed some of the genes of the enterotoxins tested. We conclude that there are hygienic and sanitary deficiencies in the food services analyzed. Although coagulase-positive Staphylococci have not been present in foods there is a wide dispersion of enterotoxigenic coagulase-negative Staphylococci in the environment and in the foods analyzed, indicating a risk to consumer health. PMID:25477940
Optical Probes for Laser Induced Shocks
1992-03-01
target by the strong water. As the shock passes the material interface, it is pressure transients. only partially transmitted. The shock pressure is...T. Swimm , J. Appl. Phys. 61, evaporated, t1137(1987). vapor flow substantially. The coupling coefficient thus de- 3 v. A. Batanov and V. B. Fedorov...Waist-Surface Distance [mm] isurface on the drilling mechanismC Positive ( negative ) To roughly estimate the total recoil momentum positions
Stability study of solution-processed zinc tin oxide thin-film transistors
NASA Astrophysics Data System (ADS)
Zhang, Xue; Ndabakuranye, Jean Pierre; Kim, Dong Wook; Choi, Jong Sun; Park, Jaehoon
2015-11-01
In this study, the environmental dependence of the electrical stability of solution-processed n-channel zinc tin oxide (ZTO) thin-film transistors (TFTs) is reported. Under a prolonged negative gate bias stress, a negative shift in threshold voltage occurs in atmospheric air, whereas a negligible positive shift in threshold voltage occurs under vacuum. In the positive bias-stress experiments, a positive shift in threshold voltage was invariably observed both in atmospheric air and under vacuum. In this study, the negative gate-bias-stress-induced instability in atmospheric air is explained through an internal potential in the ZTO semiconductor, which can be generated owing to the interplay between H2O molecules and majority carrier electrons at the surface of the ZTO film. The positive bias-stress-induced instability is ascribed to electron-trapping phenomenon in and around the TFT channel region, which can be further augmented in the presence of air O2 molecules. These results suggest that the interaction between majority carriers and air molecules will have crucial implications for a reliable operation of solution-processed ZTO TFTs. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Tristán, Ferdinando; Solís, Araceli; Palestino, Gabriela; Gergely, Csilla; Cuisinier, Frédéric; Pérez, Elías
2005-04-01
The adsorption of Glucose Oxidase (GOX) on layers of poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) deposited on Sequentially Adsorbed Polyelectrolyte Films (SAPFs) were studied by three different spectroscopic techniques. These techniques are: Optical Wave Light Spectroscopy (OWLS) to measure surface density; Fluorescence Resonance Energy Transfer (FRET) to verify the adsorption of GOX on the surface; and Fourier Transform Infrared Spectroscopy in Attenuated Total Reflection mode (FTIR-HATR) to inspect local structure of polyelectrolytes and GOX. Two positive and two negative polyelectrolytes are used: Cationic poly(ethyleneimine) (PEI) and poly(allylamine hydrochloride) (PAH) and anionic poly(sodium 4-styrene sulfonate) (PSS) and poly(acrylic acid) (PAA). These spectroscopic techniques do not require any labeling for GOX or SAPFs, specifically GOX and PSS are naturally fluorescent and are used as a couple donor-acceptor for the FRET technique. The SAPFs are formed by a (PEI)-(PSS/PAH)2 film followed by (PAA/PAH)n bilayers. GOX is finally deposited on top of SAPFs at different values of n (n=1..5). Our results show that GOX is adsorbed on positive ended SAPFs forming a monolayer. Contrary, GOX adsorption is not observed on negative ended film polyelectrolyte. GOX stability was tested adding a positive and a negative polyelectrolyte after GOX adsorption. Protein is partially removed by PAH and PAA, with lesser force by PAA.
Influence of humic acid concentration on nTiO2 attachment to quartz sand and Fe-coated quartz sand
NASA Astrophysics Data System (ADS)
Cheng, T.; Wu, Y.
2016-12-01
The transport of nano-scale or micro-scale titanium dioxide particles (nTiO2) in subsurface environments are strongly influenced by nTiO2 attachment to sediment grains. The objective of this study is to investigate the role of humic acid (HA) in the attachment of nTiO2 to sand at low HA concentrations that are relevant to typical groundwater conditions, so that mechanisms that control nTiO2 immobilization and transport in groundwater can be elucidated. nTiO2 may carry either positive or negative charges in natural water, therefore, environmental factors such as pH, humic substances, and Fe oxyhydroxide coatings on sediment grains, which are known to control the transport of negatively-charged colloids, may influence nTiO2 in different manners. Attachment of nTiO2 to quartz sand and Fe oxyhydroxide coated quartz sand are experimentally measured under a range of HA concentrations at fixed pH. Experimental results show that at pH 5, negatively-charged HA strongly adsorbs to positively-charged nTiO2 and Fe oxyhydroxide, which, at low HA concentrations, partially neutralizes the positive charges on nTiO2 and Fe oxyhydroxide, and therefore decreases the repulsive electrostatic forces between the surfaces, resulting in relatively high nTiO2 attachment. At high HA concentrations, adsorbed HA reverses the surface charges of nTiO2 and Fe oxyhydroxide, and makes nTiO2 and Fe oxyhydroxide strongly negatively charged, resulting in low nTiO2 attachment. At pH 9, HA, nTiO2, and Fe oxyhydroxide are all negatively charged, and HA adsorption is low and does not have a strong impact on the attachment of nTiO2. This study demonstrates that the changes in surface charges of nTiO2 and Fe oxyhydroxide coating caused by HA adsorption could be a key factor that controls the attachment of nTiO2 to sediment grains.
Analysis of 12 AH aerospace nickel-cadmium cells from the design variable program
NASA Technical Reports Server (NTRS)
Vasanth, Kunigahalli L.; Morrow, George
1987-01-01
The Design Variable Program of NASA/GSFC provided a systematic approach to evaluate the performance of 12 Ampere-Hour Nickel-Cadmium cells of different designs. Design Variables tested in this program included teflonated negative plates, silver treated negative plates, lightly loaded negative plates, positive plates with no cadmium treatment, plate design of 1968 utilizing old and new processing techniques and electrochemically impregnated positive plates. These cells were life cycled in a Low-Earth Orbit (LEO) regime for 3 to 4 years. Representative cells taken from the Design Variable Program were examined via chemical, electrochemical and surface analyses. The results indicate the following: (1) positive swelling and carbonate content in the electrolyte increase as a function of number of cycles; (2) electrolyte distribution follows a general order NEG greater than POS greater than SEP; (3) control and No PQ groups outperformed the rest of the groups; and (4) the polyproylene group exhibited heavy cadmium migration and poor performance.
Mechanisms of Polyelectrolyte Enhanced Surfactant Adsorption at the Air-Water Interface
Stenger, Patrick C.; Palazoglu, Omer A.; Zasadzinski, Joseph A.
2009-01-01
Chitosan, a naturally occurring cationic polyelectrolyte, restores the adsorption of the clinical lung surfactant Survanta to the air-water interface in the presence of albumin at much lower concentrations than uncharged polymers such as polyethylene glycol. This is consistent with the positively charged chitosan forming ion pairs with negative charges on the albumin and lung surfactant particles, reducing the net charge in the double-layer, and decreasing the electrostatic energy barrier to adsorption to the air-water interface. However, chitosan, like other polyelectrolytes, cannot perfectly match the charge distribution on the surfactant, which leads to patches of positive and negative charge at net neutrality. Increasing the chitosan concentration further leads to a reduction in the rate of surfactant adsorption consistent with an over-compensation of the negative charge on the surfactant and albumin surfaces, which creates a new repulsive electrostatic potential between the now cationic surfaces. This charge neutralization followed by charge inversion explains the window of polyelectrolyte concentration that enhances surfactant adsorption; the same physical mechanism is observed in flocculation and re-stabilization of anionic colloids by chitosan and in alternate layer deposition of anionic and cationic polyelectrolytes on charged colloids. PMID:19366599
Mechanisms of polyelectrolyte enhanced surfactant adsorption at the air-water interface.
Stenger, Patrick C; Palazoglu, Omer A; Zasadzinski, Joseph A
2009-05-01
Chitosan, a naturally occurring cationic polyelectrolyte, restores the adsorption of the clinical lung surfactant Survanta to the air-water interface in the presence of albumin at much lower concentrations than uncharged polymers such as polyethylene glycol. This is consistent with the positively charged chitosan forming ion pairs with negative charges on the albumin and lung surfactant particles, reducing the net charge in the double-layer, and decreasing the electrostatic energy barrier to adsorption to the air-water interface. However, chitosan, like other polyelectrolytes, cannot perfectly match the charge distribution on the surfactant, which leads to patches of positive and negative charge at net neutrality. Increasing the chitosan concentration further leads to a reduction in the rate of surfactant adsorption consistent with an over-compensation of the negative charge on the surfactant and albumin surfaces, which creates a new repulsive electrostatic potential between the now cationic surfaces. This charge neutralization followed by charge inversion explains the window of polyelectrolyte concentration that enhances surfactant adsorption; the same physical mechanism is observed in flocculation and re-stabilization of anionic colloids by chitosan and in alternate layer deposition of anionic and cationic polyelectrolytes on charged colloids.
Naylor, Andrew; Talwalkar, Sumedh C.; Trail, Ian A.; Joyce, Thomas J.
2016-01-01
The articulating surfaces of four different sizes of unused pyrolytic carbon proximal interphalangeal prostheses (PIP) were evaluated though measuring several topographical parameters using a white light interferometer: average roughness (Sa); root mean-square roughness (Sq); skewness (Ssk); and kurtosis (Sku). The radii of the articulating surfaces were measured using a coordinate measuring machine, and were found to be: 2.5, 3.3, 4.2 and 4.7 mm for proximal, and 4.0, 5.1, 5.6 and 6.3 mm for medial components. ANOVA was used to assess the relationship between the component radii and each roughness parameter. Sa, Sq and Ssk correlated negatively with radius (p = 0.001, 0.001, 0.023), whilst Sku correlated positively with radius (p = 0.03). Ergo, the surfaces with the largest radii possessed the better topographical characteristics: low roughness, negative skewness, high kurtosis. Conversely, the surfaces with the smallest radii had poorer topographical characteristics. PMID:27089375
Seroprevalence of occult hepatitis B among Egyptian paediatric hepatitis C cancer patients.
Raouf, H E; Yassin, A S; Megahed, S A; Ashour, M S; Mansour, T M
2015-02-01
Occult hepatitis B infection is characterized by the presence of hepatitis B virus (HBV) DNA in the serum in the absence of hepatitis B surface antigen (HBsAg). Prevalence of hepatitis C virus (HCV) infections in Egypt is among the highest in the world. In this study, we aim at analysing the rates of occult HBV infections among HCV paediatric cancer patients in Egypt. The prevalence of occult HBV was assessed in two groups of paediatric cancer patients (HCV positive and HCV negative), in addition to a third group of paediatric noncancer patients, which was used as a general control. All groups were negative for HBsAg and positive for HCV antibody. HBV DNA was detected by nested PCR and real-time PCR. HCV was detected by real-time PCR. Sequencing was carried out in order to determine HBV genotypes to all HBV patients as well as to detect any mutation that might be responsible for the occult phenotype. Occult hepatitis B infection was observed in neither the non-HCV paediatric cancer patients nor the paediatric noncancer patients but was found in 31% of the HCV-positive paediatric cancer patients. All the detected HBV patients belonged to HBV genotype D, and mutations were found in the surface genome of HBV leading to occult HBV. Occult HBV infection seems to be relatively frequent in HCV-positive paediatric cancer patients, indicating that HBsAg negativity is not sufficient to completely exclude HBV infection. These findings emphasize the importance of considering occult HBV infection in HCV-positive paediatric cancer patients especially in endemic areas as Egypt. © 2014 John Wiley & Sons Ltd.
Curtis, Colin K; Marek, Antonin; Smirnov, Alex I
2017-01-01
This article reports a comparative study of the nanoscale and macroscale tribological attributes of alumina and stainless steel surfaces immersed in aqueous suspensions of positively (hydroxylated) or negatively (carboxylated) charged nanodiamonds (ND). Immersion in −ND suspensions resulted in a decrease in the macroscopic friction coefficients to values in the range 0.05–0.1 for both stainless steel and alumina, while +ND suspensions yielded an increase in friction for stainless steel contacts but little to no increase for alumina contacts. Quartz crystal microbalance (QCM), atomic force microscopy (AFM) and scanning electron microscopy (SEM) measurements were employed to assess nanoparticle uptake, surface polishing, and resistance to solid–liquid interfacial shear motion. The QCM studies revealed abrupt changes to the surfaces of both alumina and stainless steel upon injection of –ND into the surrounding water environment that are consistent with strong attachment of NDs and/or chemical changes to the surfaces. AFM images of the surfaces indicated slight increases in the surface roughness upon an exposure to both +ND and −ND suspensions. A suggested mechanism for these observations is that carboxylated −NDs from aqueous suspensions are forming robust lubricious deposits on stainless and alumina surfaces that enable gliding of the surfaces through the −ND suspensions with relatively low resistance to shear. In contrast, +ND suspensions are failing to improve tribological performance for either of the surfaces and may have abraded existing protective boundary layers in the case of stainless steel contacts. This study therefore reveals atomic scale details associated with systems that exhibit starkly different macroscale tribological properties, enabling future efforts to predict and design complex lubricant interfaces. PMID:29046852
Yao, Qing-Qing; Dong, Xiao-Lian; Wang, Xue-Cai; Ge, Sheng-Xiang; Hu, An-Qun; Liu, Hai-Yan; Wang, Yueping Alex; Yuan, Quan; Zheng, Ying-Jie
2013-02-01
It is unclear whether a mother who is negative for hepatitis B virus surface antigen (HBsAg) but positive for hepatitis B virus (HBV) is at potential risk for mother-to-child transmission of HBV. This study, using a paired mother-teenager population, aimed to assess whether maternal HBsAg-negative HBV infection ((hn)HBI) is a significant source of child HBV infection (HBI). A follow-up study with blood collection has been conducted on the 93 mother-teenager pairs from the initial 135 pregnant woman-newborn pairs 13 years after neonatal HBV vaccination. Serological and viral markers of HBV have been tested, and phylogenetic analysis of HBV isolates has been done. The HBI prevalence was 1.9% (1 (hn)HBI/53) for teenage children of non-HBI mothers, compared with 16.7% (1 (hn)HBI/6) for those of (hn)HBI mothers and 2.9% (1 HBsAg-positive HBV infection [(hp)HBI]/34) for those of (hp)HBI mothers. Similar viral sequences have been found in one pair of whom both the mother and teenager have had (hn)HBI. In comparison with the (hp)HBI cases, those with (hn)HBI had a lower level of HBV load and a higher proportion of genotype-C strains, which were accompanied by differentiated mutations (Q129R, K141E, and Y161N) of the "a" determinant of the HBV surface gene. Our findings suggest that mother-to-teenager transmission of (hn)HBI can occur among those in the neonatal HBV vaccination program.
Yao, Qing-Qing; Dong, Xiao-Lian; Wang, Xue-Cai; Ge, Sheng-Xiang; Hu, An-Qun; Liu, Hai-Yan; Wang, Yueping Alex
2013-01-01
It is unclear whether a mother who is negative for hepatitis B virus surface antigen (HBsAg) but positive for hepatitis B virus (HBV) is at potential risk for mother-to-child transmission of HBV. This study, using a paired mother-teenager population, aimed to assess whether maternal HBsAg-negative HBV infection (hnHBI) is a significant source of child HBV infection (HBI). A follow-up study with blood collection has been conducted on the 93 mother-teenager pairs from the initial 135 pregnant woman-newborn pairs 13 years after neonatal HBV vaccination. Serological and viral markers of HBV have been tested, and phylogenetic analysis of HBV isolates has been done. The HBI prevalence was 1.9% (1 hnHBI/53) for teenage children of non-HBI mothers, compared with 16.7% (1 hnHBI/6) for those of hnHBI mothers and 2.9% (1 HBsAg-positive HBV infection [hpHBI]/34) for those of hpHBI mothers. Similar viral sequences have been found in one pair of whom both the mother and teenager have had hnHBI. In comparison with the hpHBI cases, those with hnHBI had a lower level of HBV load and a higher proportion of genotype-C strains, which were accompanied by differentiated mutations (Q129R, K141E, and Y161N) of the “a” determinant of the HBV surface gene. Our findings suggest that mother-to-teenager transmission of hnHBI can occur among those in the neonatal HBV vaccination program. PMID:23254298
NASA Astrophysics Data System (ADS)
Feng, Yongjiu; Liu, Yang; Chen, Xinjun
2018-06-01
There are substantial spatial variations in the relationships between catch-per-unit-effort (CPUE) and oceanographic conditions with respect to pelagic species. This study examines the monthly spatiotemporal distribution of CPUE of the neon flying squid, Ommastrephes bartramii, in the Northwest Pacific from July to November during 2004-2013, and analyzes the relationships with oceanographic conditions using a generalized additive model (GAM) and geographically weighted regression (GWR) model. The results show that most of the squids were harvested in waters with sea surface temperature (SST) between 7.6 and 24.6°C, chlorophyll- a (Chl- a) concentration below 1.0 mg m-3, sea surface salinity (SSS) between 32.7 and 34.6, and sea surface height (SSH) between -12.8 and 28.4 cm. The monthly spatial distribution patterns of O. bartramii predicted using GAM and GWR models are similar to observed patterns for all months. There are notable variations in the local coefficients of GWR, indicating the presence of spatial non-stationarity in the relationship between O. bartramii CPUE and oceanographic conditions. The statistical results show that there were nearly equal positive and negative coefficients for Chl- a, more positive than negative coefficients for SST, and more negative than positive coefficients for SSS and SSH. The overall accuracies of the hot spots predicted by GWR exceed 60% (except for October), indicating a good performance of this model and its improvement over GAM. Our study provides a better understanding of the ecological dynamics of O. bartramii CPUE and makes it possible to use GWR to study the spatially nonstationary characteristics of other pelagic species.
Two-stage microfluidic chip for selective isolation of circulating tumor cells (CTCs).
Hyun, Kyung-A; Lee, Tae Yoon; Lee, Su Hyun; Jung, Hyo-Il
2015-05-15
Over the past few decades, circulating tumor cells (CTCs) have been studied as a means of overcoming cancer. However, the rarity and heterogeneity of CTCs have been the most significant hurdles in CTC research. Many techniques for CTC isolation have been developed and can be classified into positive enrichment (i.e., specifically isolating target cells using cell size, surface protein expression, and so on) and negative enrichment (i.e., specifically eluting non-target cells). Positive enrichment methods lead to high purity, but could be biased by their selection criteria, while the negative enrichment methods have relatively low purity, but can isolate heterogeneous CTCs. To compensate for the known disadvantages of the positive and negative enrichments, in this study we introduced a two-stage microfluidic chip. The first stage involves a microfluidic magnetic activated cell sorting (μ-MACS) chip to elute white blood cells (WBCs). The second stage involves a geometrically activated surface interaction (GASI) chip for the selective isolation of CTCs. We observed up to 763-fold enrichment in cancer cells spiked into 5 mL of blood sample using the μ-MACS chip at 400 μL/min flow rate. Cancer cells were successfully separated with separation efficiencies ranging from 10.19% to 22.91% based on their EpCAM or HER2 surface protein expression using the GASI chip at a 100 μL/min flow rate. Our two-stage microfluidic chips not only isolated CTCs from blood cells, but also classified heterogeneous CTCs based on their characteristics. Therefore, our chips can contribute to research on CTC heterogeneity of CTCs, and, by extension, personalized cancer treatment. Copyright © 2014 Elsevier B.V. All rights reserved.
Thiol antioxidant-functionalized CdSe/ZnS quantum dots: Synthesis, Characterization, Cytotoxicity
Zheng, Hong; Mortensen, Luke J.; DeLouise, Lisa A.
2016-01-01
Nanotechnology is a growing industry with wide ranging applications in consumer product and technology development. In the biomedical field, nanoparticles are finding increasing use as imaging agents for biomolecular labeling and tumor targeting. The nanoparticle physiochemical properties must be tailored for the specific application but chemical and physical stability in the biological milieu (no oxidation, aggregation, agglomeration or toxicity) are often required. Nanoparticles used for biomolecular fluorescent imaging should also have high quantum yield (QY). The aim of this paper is to examine the QY, stability, and cell toxicity of a series of positive, negative and neutral surface charge quantum dot (QD) nanoparticles. Simple protocols are described to prepare water soluble QDs by modifying the surface with thiol containing antioxidant ligands and polymers keeping the QD core/shell composition constant. The ligands used to produce negatively charged QDs include glutathione (GSH), N-acetyl-L-cysteine (NAC), dihydrolipoic acid (DHLA), tiopronin (TP), bucilliamine (BUC), and mercaptosuccinic acid (MSA). Ligands used to produce positively charged QDs include cysteamine (CYS) and polyethylenimine (PEI). Dithiothreitol (DTT) was used to produce neutral charged QDs. Commercially available nonaqueous octadecylamine (ODA) capped QDs served as the starting material. Our results suggest that QD uptake and cytotoxicity are both dependent on surface ligand coating composition. The negative charged GSH coated QDs show superior performance exhibiting low cytotoxicity, high stability, high QY and therefore are best suited for bioimaging applications. PEI coated QD also show superior performance exhibiting high QY and stability. However, they are considerably more cytotoxic due to their high positive charge which is an advantageous property that can be exploited for gene transfection and/or tumor targeting applications. The synthetic procedures described are straightforward and can be easily adapted in most laboratory settings. PMID:23620993
Negatively Charged Lipid Membranes Promote a Disorder-Order Transition in the Yersinia YscU Protein
Weise, Christoph F.; Login, Frédéric H.; Ho, Oanh; Gröbner, Gerhard; Wolf-Watz, Hans; Wolf-Watz, Magnus
2014-01-01
The inner membrane of Gram-negative bacteria is negatively charged, rendering positively charged cytoplasmic proteins in close proximity likely candidates for protein-membrane interactions. YscU is a Yersinia pseudotuberculosis type III secretion system protein crucial for bacterial pathogenesis. The protein contains a highly conserved positively charged linker sequence that separates membrane-spanning and cytoplasmic (YscUC) domains. Although disordered in solution, inspection of the primary sequence of the linker reveals that positively charged residues are separated with a typical helical periodicity. Here, we demonstrate that the linker sequence of YscU undergoes a largely electrostatically driven coil-to-helix transition upon binding to negatively charged membrane interfaces. Using membrane-mimicking sodium dodecyl sulfate micelles, an NMR derived structural model reveals the induction of three helical segments in the linker. The overall linker placement in sodium dodecyl sulfate micelles was identified by NMR experiments including paramagnetic relaxation enhancements. Partitioning of individual residues agrees with their hydrophobicity and supports an interfacial positioning of the helices. Replacement of positively charged linker residues with alanine resulted in YscUC variants displaying attenuated membrane-binding affinities, suggesting that the membrane interaction depends on positive charges within the linker. In vivo experiments with bacteria expressing these YscU replacements resulted in phenotypes displaying significantly reduced effector protein secretion levels. Taken together, our data identify a previously unknown membrane-interacting surface of YscUC that, when perturbed by mutations, disrupts the function of the pathogenic machinery in Yersinia. PMID:25418176
Negatively charged lipid membranes promote a disorder-order transition in the Yersinia YscU protein.
Weise, Christoph F; Login, Frédéric H; Ho, Oanh; Gröbner, Gerhard; Wolf-Watz, Hans; Wolf-Watz, Magnus
2014-10-21
The inner membrane of Gram-negative bacteria is negatively charged, rendering positively charged cytoplasmic proteins in close proximity likely candidates for protein-membrane interactions. YscU is a Yersinia pseudotuberculosis type III secretion system protein crucial for bacterial pathogenesis. The protein contains a highly conserved positively charged linker sequence that separates membrane-spanning and cytoplasmic (YscUC) domains. Although disordered in solution, inspection of the primary sequence of the linker reveals that positively charged residues are separated with a typical helical periodicity. Here, we demonstrate that the linker sequence of YscU undergoes a largely electrostatically driven coil-to-helix transition upon binding to negatively charged membrane interfaces. Using membrane-mimicking sodium dodecyl sulfate micelles, an NMR derived structural model reveals the induction of three helical segments in the linker. The overall linker placement in sodium dodecyl sulfate micelles was identified by NMR experiments including paramagnetic relaxation enhancements. Partitioning of individual residues agrees with their hydrophobicity and supports an interfacial positioning of the helices. Replacement of positively charged linker residues with alanine resulted in YscUC variants displaying attenuated membrane-binding affinities, suggesting that the membrane interaction depends on positive charges within the linker. In vivo experiments with bacteria expressing these YscU replacements resulted in phenotypes displaying significantly reduced effector protein secretion levels. Taken together, our data identify a previously unknown membrane-interacting surface of YscUC that, when perturbed by mutations, disrupts the function of the pathogenic machinery in Yersinia.
NASA Astrophysics Data System (ADS)
Visacro, Silverio; Guimaraes, Miguel; Murta Vale, Maria Helena
2017-12-01
Original simultaneous records of currents, close electric field, and high-speed videos of natural negative cloud-to-ground lightning striking the tower of Morro do Cachimbo Station are used to reveal typical features of upward positive leaders before the attachment, including their initiation and mode of propagation. According to the results, upward positive leaders initiate some hundreds of microseconds prior to the return stroke, while a continuous uprising current of about 4 A and superimposed pulses of a few tens amperes flow along the tower. Upon leader initiation, the electric field measured 50 m away from the tower at ground level is about 60 kV/m. The corresponding average field roughly estimated 0.5 m above the tower top is higher than 0.55 MV/m. As in laboratory experiments, the common propagation mode of upward positive leaders is developing continuously, without steps, from their initiation. Unlike downward negative leaders, upward positive leaders typically do not branch off, though they can bifurcate under the effect of a downward negative leader's secondary branch approaching their lateral surface. The upward positive leader's estimated average two-dimensional propagation speed, in the range of 0.06 × 106 to 0.16 × 106 m/s, has the same order of magnitude as that of downward negative leaders. Apparently, the speed tends to increase just before attachment.
NASA Astrophysics Data System (ADS)
Few, A. A.
2013-12-01
The two photographs containing the green lightning channels appeared on the Boston.com web site (The Big Picture, June 4, 2008). These web photographs were of limited resolution (176 Kb) making the interpretation of the green channels difficult. The agent for Gutierrez, Landov LLC, made available the two photographs as high resolution digital photographs (1.4 Mb and 1.5 Mb) that appear on the poster. Upon close examination of the green channels it is possible to exclude negative discharges or their remnants as being the source of the green channels; negative discharges require white-hot ionization processes at the leading tip of the channel. There are several examples of the white negative channels on the photographs. The green channels might be positive streamers. In thunderstorms positive streamers propagate within the negative charged region of the cloud collecting electrons, which are supplied to the connected negative discharge channel, hence they are not observed in thunderstorms. They can be detected and mapped inside the thunderstorm from observations of their electromagnetic radiations. Positive streamers are cooler than negative discharges because electrons are convergent on the leading tip of the positive streamer maintaining its conductivity. For the negative leading tips the electrons are divergent and new electrons must be generated by hot ionization processes. A close examination reveals that the green channels track the edge of the ash cloud, which if a positive streamer would indicate a negative surface charge on the cloud. Most likely the green color results from excited oxygen atoms returning to the ground state and emitting a green photon. This is the process that produces the green aurora, and if this produces green lightning, it places several constraints on the conditions of the channel. The two photographs below are selected clips from the much larger photographs; these show the green lightning channels.
Repression of enhancer II activity by a negative regulatory element in the hepatitis B virus genome.
Lo, W Y; Ting, L P
1994-01-01
Enhancer II of human hepatitis B virus has dual functions in vivo. Located at nucleotides (nt) 1646 to 1741, it can stimulate the surface and X promoters from a downstream position. Moreover, the same sequence can also function as upstream regulatory element that activates the core promoter in a position- and orientation-dependent manner. In this study, we report the identification and characterization of a negative regulatory element (NRE) upstream of enhancer II (nt 1613 to 1636) which can repress both the enhancer and upstream stimulatory function of the enhancer II sequence in differentiated liver cells. This NRE has marginal inhibitory effect by itself but a strong repressive function in the presence of a functional enhancer II. Mutational analysis reveals that sequence from nt 1616 to 1621 is required for repression of enhancer activity by the NRE. Gel shift analysis reveals that this negative regulatory region can be recognized by a specific protein factor(s) present at the 0.4 M NaCl fraction of HepG2 nuclear extracts. The discovery of the NRE indicates that HBV gene transcription is controlled by combined effects of both positive and negative regulation. It also provides a unique system with which to study the mechanism of negative regulation of gene expression. Images PMID:8107237
Liu, Zhao-Dong; Wang, Hai-Cui; Zhou, Qin; Xu, Ren-Kou
2017-11-01
Iron (Fe) and aluminum (Al) hydroxides in variable charge soils attached to rice roots may affect surface-charge properties and subsequently the adsorption and uptake of nutrients and toxic metals by the roots. Adhesion of amorphous Fe and Al hydroxides onto rice roots and their effects on zeta potential of roots and adsorption of potassium (K + ) and cadmium (Cd 2+ ) by roots were investigated. Rice roots adsorbed more Al hydroxide than Fe hydroxide because of the greater positive charge on Al hydroxide. Adhesion of Fe and Al hydroxides decreased the negative charge on rice roots, and a greater effect of the Al hydroxide. Consequently, adhesion of Fe and Al hydroxides reduced the K + and Cd 2+ adsorption by rice roots. The results of attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and desorption of K + and Cd 2+ from rice roots indicated that physical masking by Fe and Al hydroxides and diffuse-layer overlapping between the positively-charged hydroxides and negatively-charged roots were responsible for the reduction of negative charge on roots induced by adhesion of the hydroxides. Therefore, the interaction between Fe and Al hydroxides and rice roots reduced negative charge on roots and thus inhibited their adsorption of nutrient and toxic cations. Copyright © 2017 Elsevier Inc. All rights reserved.
Positive Voltage Hazard to EMU Crewman from Currents through Plasma
NASA Astrophysics Data System (ADS)
Kramer, Leonard; Hamilton, Doug; Mikatarian, Ronald; Thomas, Joseph; Koontz, Steven
2010-09-01
The International Space Station(ISS) in its transit through the ionosphere experiences a variable electrical potential between its bonded structure and the overlying ionospheric plasma. The 160 volt solar arrays on ISS are grounded negative and drive structure to negative floating potential(FP) relative to plasma. This potential is a result of the asymmetric collection properties of currents from ions and electrons moderated by geomagnetic; so called v Å~ B induction distributing an additional 20 volts both positive and negative across ISS’s main structural truss element. Since the space suit or extravehicular mobility unit(EMU) does not protect the crewperson from electrical shock, during extra vehicular activity(EVA) the person is exposed to a hazard from the potential when any of the several metallic suit penetrations come in direct contact with ISS structure. The moisture soaked garment worn by the crewperson and the large interior metal contact areas facilitate currents through the crewperson’s body. There are two hazards; Negative and Positive FP. The Negative hazard is the better known risk created by a shock hazard from arcing of anodized material on the EMU. Negative hazard has been controlled by plasma contactor units(PCU) containing a reserve of Xenon gas which is expelled from ISS. The PCU provide a ground path for the negative charge from the structure to flow to exterior plasma bringing ISS FP closer to zero. The understanding has now emerged that the operation of PCUs to protect the crewmen from negative voltage exposes him to low to moderate positive voltage(≤15V). Positive voltage is also a hazard as it focuses electrons onto exposed metal EMU penetrations completing a circuit from plasma through interior contact with the moist crewman’s body and on to ISS ground through any of several secondary isolated metal penetrations. The resulting direct current from positive voltage exposure is now identified as an electrical shock hazard. This paper describes the model of the EMU with a human body in the circuit that has been used by NASA to evaluate the low positive voltage hazard. The model utilizes the electron collection characterization from on orbit Langmuir probe data as representative of electron collection to a positive charged surface with a wide range of on orbit plasma temperature and density conditions. The data has been unified according to nonlinear theoretical temperature and density variation of the electron saturated probe current collection theory and used as a model for the electron collection at EMU surfaces. Vulnerable paths through the EMU connecting through the crewman’s body have been identified along with electrical impedance of the exposed body parts. The body impedance information is merged with the electron collection characteristics in circuit simulation software known as SPICE. The assessment shows that currents can be on the order of 20 mA for a 15 V exposure and of order 4 mA at 3V. These currents formally violate NASA protocol for electric current exposures. However the human factors associated with subjective consequences of noxious stimuli from low voltage exposure during the stressful conditions of EVA are an area of active inquiry.
Plasmon-negative refraction at the heterointerface of graphene sheet arrays.
Huang, He; Wang, Bing; Long, Hua; Wang, Kai; Lu, Peixiang
2014-10-15
We demonstrate negative refraction of surface plasmon polaritons (SPPs) at the heterointerface of two monolayer graphene sheet arrays (MGSAs) with different periods. The refraction angle is specifically related to the period ratio of the two MGSAs. By varying the incident Bloch momentum, the SPPs might be refracted in the direction normal to the heterointerface. Moreover, both positive and negative refraction could appear simultaneously. Because of the linear diffraction relation, the incident and refracted SPP beams experience diffraction-free propagation. The heterostructures composed of the MGSAs may find great applications in deep-subwavelength spatial light modulators, optical splitters, and switches.
Dosta, Pere; Segovia, Nathaly; Cascante, Anna; Ramos, Victor; Borrós, Salvador
2015-07-01
Here we present an extended family of pBAEs that incorporate terminal oligopeptide moieties synthesized from both positive and negative amino acids. Polymer formulations of mixtures of negative and positive oligopeptide-modified pBAEs are capable of condensing siRNA into discrete nanoparticles. We have demonstrated that efficient delivery of nucleic acids in a cell-type dependent manner can be achieved by careful control of the pBAE formulation. In addition, our approach of adding differently charged oligopeptides to the termini of poly(β-amino ester)s is of great interest for the design of tailored complexes having specific features, such as tuneable zeta potential. We anticipate that this surface charge tunability may be a powerful strategy to control unwanted electrostatic interactions, while preserving high silencing efficiency and reduced toxicity. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Silver Nanoparticle Impregnated Bio-Based Activated Carbon with Enhanced Antimicrobial Activity
NASA Astrophysics Data System (ADS)
Selvakumar, R.; Suriyaraj, S. P.; Jayavignesh, V.; Swaminathan, K.
2013-08-01
The present study involves the production of silver nanoparticles using a novel yeast strain Saccharomyces cerevisiae BU-MBT CY-1 isolated from coconut cell sap. The biological reduction of silver nitrate by the isolate was deducted at various time intervals. The yeast cells after biological silver reduction were harvested and subjected to carbonization at 400°C for 1 h and its properties were analyzed using Fourier transform infra-red spectroscopy, X-ray diffraction, scanning electron microscope attached with energy dispersive spectroscopy and transmission electron microscopy. The average size of the silver nanoparticles present on the surface of the carbonized silver containing yeast cells (CSY) was 19 ± 9 nm. The carbonized control yeast cells (CCY) did not contain any particles on its surface. The carbonized silver nanoparticles containing yeast cells (CSY) were made into bioactive emulsion and tested for its efficacy against various pathogenic Gram positive and Gram negative bacteria. The antimicrobial activity studies indicated that CSY bioactive nanoemulsion was effective against Gram negative organisms than Gram positive organism.
The characterization of GH shifts of surface plasmon resonance in a waveguide using the FDTD method.
Oh, Geum-Yoon; Kim, Doo Gun; Choi, Young-Wan
2009-11-09
We have explicated the Goos-Hänchen (GH) shift in a mum-order Kretchmann-Raether configuration embedded in an optical waveguide structure by using the finite-difference time-domain method. For optical waveguide-type surface plasmon resonance (SPR) devices, the precise derivation of the GH shift has become critical. Artmann's equation, which is accurate enough for bulk optics, is difficult to apply to waveguide-type SPR devices. This is because Artmann's equation, based on the differentiation of the phase shift, is inaccurate at the critical and resonance angles where drastic phase changes occur. In this study, we accurately identified both the positive and the negative GH shifts around the incidence angle of resonance. In a waveguide-type Kretchmann-Raether configuration with an Au thin film of 50 nm, positive and negative lateral shifts of -0.75 and + 1.0 microm are obtained on the SPR with the incident angles of 44.4 degrees and 47.5 degrees, respectively, at a wavelength of 632.8 nm.
NASA Astrophysics Data System (ADS)
Sakulkhu, Usawadee; Mahmoudi, Morteza; Maurizi, Lionel; Salaklang, Jatuporn; Hofmann, Heinrich
2014-05-01
Because of their biocompatibility and unique magnetic properties, superparamagnetic iron oxide nanoparticles NPs (SPIONs) are recognized as some of the most prominent agents for theranostic applications. Thus, understanding the interaction of SPIONs with biological systems is important for their safe design and efficient applications. In this study, SPIONs were coated with 2 different polymers: polyvinyl alcohol polymer (PVA) and dextran. The obtained NPs with different surface charges (positive, neutral, and negative) were used as a model study of the effect of surface charges and surface polymer materials on protein adsorption using a magnetic separator. We found that the PVA-coated SPIONs with negative and neutral surface charge adsorbed more serum proteins than the dextran-coated SPIONs, which resulted in higher blood circulation time for PVA-coated NPs than the dextran-coated ones. Highly abundant proteins such as serum albumin, serotransferrin, prothrombin, alpha-fetoprotein, and kininogen-1 were commonly found on both PVA- and dextran-coated SPIONs. By increasing the ionic strength, soft- and hard-corona proteins were observed on 3 types of PVA-SPIONs. However, the tightly bound proteins were observed only on negatively charged PVA-coated SPIONs after the strong protein elution.
Collins, Susan M.; Hacek, Donna M.; Degen, Lisa A.; Wright, Marc O.; Noskin, Gary A.; Peterson, Lance R.
2001-01-01
We surveyed environmental surfaces in our clinical microbiology laboratory to determine the prevalence of vancomycin-resistant enterococci (VRE) and multidrug-resistant Enterobacteriaceae (MDRE) during a routine working day. From a total of 193 surfaces, VRE were present on 20 (10%) and MDRE were present on 4 (2%) of the surfaces tested. In a subsequent survey after routine cleaning, all of the 24 prior positive surfaces were found to be negative. Thus, those in the laboratory should recognize that many surfaces may be contaminated by resistant organisms during routine processing of patient specimens. PMID:11574615
Wei, Mengshi; Zhou, Chao; Tang, Jinyao; Wang, Wei
2018-01-24
Synthetic microswimmers, or micromotors, are finding potential uses in a wide range of applications, most of which involve boundaries. However, subtle yet important effects beyond physical confinement on the motor dynamics remain less understood. In this letter, glass substrates were functionalized with positively and negatively charged polyelectrolytes, and the dynamics of micromotors moving close to the modified surfaces was examined. Using acoustic levitation and numerical simulation, we reveal how the speed of a chemically propelled micromotor slows down significantly near a polyelectrolyte-modified surface by the combined effects of surface charges, surface morphology, and ions released from the films.
Tan, Guoxin; Wang, Shuangying; Zhu, Ye; Zhou, Lei; Yu, Peng; Wang, Xiaolan; He, Tianrui; Chen, Junqi; Mao, Chuanbin; Ning, Chengyun
2016-09-21
Reactive oxygen species (ROS) can be used to kill bacterial cells, and thus the selective generation of ROS from material surfaces is an emerging direction in antibacterial material discovery. We found the polarization of piezoelectric ceramic causes the two sides of the disk to become positively and negatively charged, which translate into cathode and anode surfaces in an aqueous solution. Because of the microelectrolysis of water, ROS are preferentially formed on the cathode surface. Consequently, the bacteria are selectively killed on the cathode surface. However, the cell experiment suggested that the level of ROS is safe for normal mammalian cells.
High-touch surfaces: microbial neighbours at hand.
Cobrado, L; Silva-Dias, A; Azevedo, M M; Rodrigues, A G
2017-11-01
Despite considerable efforts, healthcare-associated infections (HAIs) continue to be globally responsible for serious morbidity, increased costs and prolonged length of stay. Among potentially preventable sources of microbial pathogens causing HAIs, patient care items and environmental surfaces frequently touched play an important role in the chain of transmission. Microorganisms contaminating such high-touch surfaces include Gram-positive and Gram-negative bacteria, viruses, yeasts and parasites, with improved cleaning and disinfection effectively decreasing the rate of HAIs. Manual and automated surface cleaning strategies used in the control of infectious outbreaks are discussed and current trends concerning the prevention of contamination by the use of antimicrobial surfaces are taken into consideration in this manuscript.
PAR and UV effects on vertical migration and photosynthesis in Euglena gracilis.
Richter, Peter; Helbling, Walter; Streb, Christine; Häder, Donat-P
2007-01-01
Recently it was shown that the unicellular flagellate Euglena gracilis changes the sign of gravitaxis from negative to positive upon excessive radiation. This sign change persists in a cell culture for hours even if subsequently transferred to dim light. To test the ecological relevance of this behavior, a vertical column experiment was performed (max. depth 65 cm) to test distribution, photosynthetic efficiency and motility in different horizons of the column (surface, 20, 40 and 65 cm). One column was covered with a UV cut-off filter, which transmits photosynthetically active radiation (PAR) only, the other with a filter which transmits PAR and UV. The columns were irradiated with a solar simulator (PAR 162 W m(-2), UV-A 32.6 W m(-2), UV-B 1.9 W m(-2)). The experiment was conducted for 10 days, normally with a light/dim light cycle of 12 h:12 h, but in some cases the light regime was changed (dim light instead of full radiation). Under irradiation the largest fraction of cells was found at the bottom of the column. The cell density decreased toward the surface. Photosynthetic efficiency, determined with a pulse amplitude modulated fluorometer, was negligible at the surface and increased toward the bottom. While the cell suspension showed a positive gravitaxis at the bottom, the cells in the 40 cm horizon were bimodally oriented (about the same percentage of cells swimming upward and downward, respectively). At 20 cm and at the surface the cells showed negative gravitaxis. Positive gravitaxis was more pronounced in the UV + PAR samples. At the surface and in the 20 and 40 cm horizons photosynthetic efficiency was better in the PAR-only samples than in the PAR + UV samples. At the bottom photosynthetic efficiency was similar in both light treatments. The data suggest that high light reverses gravitaxis of the cells, so that they move downward in the water column. At the bottom the light intensity is lower (attenuation of the water column and self shading of the cells) and the cells recover. After recovery the cells swim upward again until the negative gravitaxis is reversed again.
The improvement of SiO2 nanotubes electrochemical behavior by hydrogen atmosphere thermal treatment
NASA Astrophysics Data System (ADS)
Spataru, Nicolae; Anastasescu, Crina; Radu, Mihai Marian; Balint, Ioan; Negrila, Catalin; Spataru, Tanta; Fujishima, Akira
2018-06-01
Highly defected SiO2 nanotubes (SiO2-NT) were obtained by a simple sol-gel procedure followed by calcination. Boron-doped diamond (BDD) polycrystalline films coated with SiO2-NT were used as working electrodes and, unexpectedly, cyclic voltammetric experiments have shown that the concentration of both positive and negative defects at the surface is high enough to enable redox processes involving positively charged Ru(bpy)32+/3+ to occur. Conversely, no electrochemical activity was put into evidence for Fe(CN)63-/4- species, most likely as a result of the strong electrostatic repulsion exerted by the negatively charged SiO2 surface. The concentration of surface defects was further increased by a subsequent thermal treatment in a hydrogen atmosphere which, as EIS measurements have shown, significantly promotes Ru(bpy)32+ anodic oxidation. Digital simulation of the voltammetric responses demonstrated that this treatment does not lead to a similar increase of the number of electron-donor sites. It was also found that methanol anodic oxidation at hydrogenated SiO2-NT-supported platinum results in Tafel slopes of 116-220 mV decade-1, comparable to those reported for both conventional PtRu and Pt-oxide catalysts.
Encoding Gaussian curvature in glassy and elastomeric liquid crystal solids
Mostajeran, Cyrus; Ware, Taylor H.; White, Timothy J.
2016-01-01
We describe shape transitions of thin, solid nematic sheets with smooth, preprogrammed, in-plane director fields patterned across the surface causing spatially inhomogeneous local deformations. A metric description of the local deformations is used to study the intrinsic geometry of the resulting surfaces upon exposure to stimuli such as light and heat. We highlight specific patterns that encode constant Gaussian curvature of prescribed sign and magnitude. We present the first experimental results for such programmed solids, and they qualitatively support theory for both positive and negative Gaussian curvature morphing from flat sheets on stimulation by light or heat. We review logarithmic spiral patterns that generate cone/anti-cone surfaces, and introduce spiral director fields that encode non-localized positive and negative Gaussian curvature on punctured discs, including spherical caps and spherical spindles. Conditions are derived where these cap-like, photomechanically responsive regions can be anchored in inert substrates by designing solutions that ensure compatibility with the geometric constraints imposed by the surrounding media. This integration of such materials is a precondition for their exploitation in new devices. Finally, we consider the radial extension of such director fields to larger sheets using nematic textures defined on annular domains. PMID:27279777
NASA Astrophysics Data System (ADS)
Purewal, Justin; Wang, John; Graetz, Jason; Soukiazian, Souren; Tataria, Harshad; Verbrugge, Mark W.
2014-12-01
Capacity fade is reported for 1.5 Ah Li-ion batteries containing a mixture of Li-Ni-Co-Mn oxide (NCM) + Li-Mn oxide spinel (LMO) as positive electrode material and a graphite negative electrode. The batteries were cycled at a wide range of temperatures (10 °C-46 °C) and discharge currents (0.5C-6.5C). The measured capacity losses were fit to a simple physics-based model which calculates lithium inventory loss from two related mechanisms: (1) mechanical degradation at the graphite anode particle surface caused by diffusion-induced stresses (DIS) and (2) chemical degradation caused by lithium loss to continued growth of the solid-electrolyte interphase (SEI). These two mechanisms are coupled because lithium is consumed through SEI formation on newly exposed crack surfaces. The growth of crack surface area is modeled as a fatigue phenomenon due to the cyclic stresses generated by repeated lithium insertion and de-insertion of graphite particles. This coupled chemical-mechanical degradation model is consistent with the observed capacity loss features for the NCM + LMO/graphite cells.
Method of manufacturing battery plate groups
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marui, T.; Uwani, T.
A method is described of manufacturing battery plate groups which comprises (a) providing a pliable, smooth, continuous glass fiber mat which has a predetermined thickness, (b) providing a pair of plastic rotors which are aligned in parallel, the rotors including circumferential surfaces and equal numbers of projections extending outwardly from their circumferential surfaces a distance of between 0.7 mm and 2mm, (c) spacing the rotors apart such that a clearance is provided between the projections on one rotor and the circumferential surface of the other rotor which is between 1/3 and 1/2 the predetermined thickness of the glass fiber mat,more » (d) rotating both the rotors such that the projections from one rotor are displaced by half a pitch from the projections from the other rotor, (e) passing the glass fiber mat between the rotors such that the projections thereon form alternately-directed folding habits therein at regular intervals along its length and to provide interconnected separator portions which are aligned in an accordion-like fashion, (f) providing an alternating series of positive and negative battery plates on only one side of the interconnected separator portions, and (g) sequentially inserting the positive and negative battery plates between adjacent separator portions.« less
García, Beatriz; Merayo-Lloves, Jesús; Rodríguez, David; Alcalde, Ignacio; García-Suárez, Olivia; Alfonso, José F.; Baamonde, Begoña; Fernández-Vega, Andrés; Vazquez, Fernando; Quirós, Luis M.
2016-01-01
The epithelium of the cornea is continuously exposed to pathogens, and adhesion to epithelial cells is regarded as an essential first step in bacterial pathogenesis. In this article, the involvement of glycosaminoglycans in the adhesion of various pathogenic bacteria to corneal epithelial cells is analyzed. All microorganisms use glycosaminoglycans as receptors, but arranged in different patterns depending on the Gram-type of the bacterium. The heparan sulfate chains of syndecans are the main receptors, though other molecular species also seem to be involved, particularly in Gram-negative bacteria. Adherence is inhibited differentially by peptides, including heparin binding sequences, indicating the participation of various groups of Gram-positive, and -negative adhesins. The length of the saccharides produces a major effect, and low molecular weight chains inhibit the binding of Gram-negative microorganisms but increase the adherence of Gram-positives. Pathogen adhesion appears to occur preferentially through sulfated domains, and is very dependent on N- and 6-O-sulfation of the glucosamine residue and, to a lesser extent, 2-O sulfation of uronic acid. These data show the differential use of corneal receptors, which could facilitate the development of new anti-infective strategies. PMID:27965938
Tribological Properties of Nanodiamonds in Aqueous Suspensions: Effect of the Surface Charge
NASA Astrophysics Data System (ADS)
Krim, J.; Liu, Zijian; Leininger, D. A.; Kooviland, A.; Smirnov, A. I.; Shendarova, O.; Brenner, D. W.
The presence of granular nanoparticulates, be they wear particles created naturally by frictional rubbing at a geological fault line or products introduced as lubricant additives, can dramatically alter friction at solid-liquid interfaces. Given the complexity of such systems, understanding system properties at a fundamental level is particularly challenging. The Quartz Crystal Microbalance (QCM) is an ideal tool for studies of material-liquid-nanoparticulate interfaces. We have employed it here to study the uptake and nanotribological properties of positively and negatively charged 5-15 nm diameter nanodiamonds dispersed in water[1] in the both the presence and absence of a macroscopic contact with the QCM electrode. The nanodiamonds were found to impact tribological performance at both nanometer and macroscopic scales. The tribological effects were highly sensitive to the sign of the charge: negatively (positively) charged particles were more weakly (strongly) bound and reduced (increased) frictional drag at the solid-liquid interface. For the macroscopic contacts, negatively charged nanodiamonds appeared to be displaced from the contact, while the positively charged ones were not. Overall, the negatively charged nanodiamonds were more stable in an aqueous dispersion for extended time periods. Work supported by NSF and DOE.
Inner-Helmholtz potential development at the hematite (α-Fe 2O 3) (0 0 1) surface
NASA Astrophysics Data System (ADS)
Boily, Jean-François; Chatman, Shawn; Rosso, Kevin M.
2011-08-01
Electric potentials of the (0 0 1) surface of hematite were measured as a function of pH and ionic strength in solutions of sodium nitrate and oxalic acid using the single-crystal electrode approach. The surface is predominantly charge-neutral in the pH 4-14 range, and develops a positive surface potential below pH 4 due to protonation of μ-OH 0 sites (p K1,1,0,int = -1.32). This site is resilient to deprotonation up to at least pH 14 (-p K-1,1,0,int ≫ 19). The associated Stern layer capacitance of 0.31-0.73 F/m 2 is smaller than typical values of powders, and possibly arises from a lower degree of surface solvation. Acid-promoted dissolution under elevated concentrations of HNO 3 etches the (0 0 1) surface, yielding a convoluted surface populated by -OH20.5+ sites. The resulting surface potential was therefore larger under these conditions than in the absence of dissolution. Oxalate ions also promoted (0 0 1) dissolution. Associated electric potentials were strongly negative, with values as large as -0.5 V, possibly from metal-bonded interactions with oxalate. The hematite surface can also acquire negative potentials in the pH 7-11 range due to surface complexation and/or precipitation of iron species (0.0038 Fe/nm 2) produced from acidic conditions. Oxalate-bearing systems also result in negative potentials in the same pH range, and may include ferric-oxalate surface complexes and/or surface precipitates. All measurements can be modeled by a thermodynamic model that can be used to predict inner-Helmholtz potentials of hematite surfaces.
NASA Technical Reports Server (NTRS)
Kuntz, Kip; Collier, Michael R.; Stubbs, Timothy J.; Farrell, William M.
2011-01-01
Shadowed regions on the lunar surface acquire a negative potential. In particular, shadowed craters can have a negative potential with respect to the surrounding lunar regolith in sunlight, especially near the terminator regions. Here we analyze the motion of a positively charged lnnar dust grain in the presence of a shadowed crater at a negative potential in vacuum. Previous models describing the transport of charged lunar dust close to the surface have typically been limited to one-dimensional motion in the vertical direction, e.g. electrostatic levitation; however. the electric fields in the vicinity of shadowed craters will also have significant components in the horizontal directions. We propose a model that includes both the horizontal and vertical motion of charged dust grains near shadowed craters. We show that the dust grains execute oscillatory trajectories and present an expression for the period of oscillation drawing an analogy to the motion of a pendulum.
NASA Technical Reports Server (NTRS)
Collier, Michael R.; Stubbs, Timothy J.; Farrell, William M.
2011-01-01
Shadowed regions on the lunar surface acquire a negative potential. In particular, shadowed craters can have a negative potential with respect to the surrounding lunar regolith in sunlight, especially near the terminator regions. Here we analyze the motion of a positively charged lunar dust grain in the presence of a shadowed crater at a negative potential in vacuum. Previous models describing the transport of charged lunar dust close to the surface have typically been limited to one-dimensional motion in the vertical direction, e.g. electrostatic levitation; however, the electric fields in the vicinity of shadowed craters will also have significant components in the horizontal directions. We propose a model that includes both the horizontal and vertical motion of charged dust grains near shadowed craters. We show that the dust grains execute oscillatory trajectories and present an expression for the period of oscillation drawing an analogy to the motion of a pendulum.
Research progress on ionic plasmas generated in an intense hydrogen negative ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeiri, Y., E-mail: takeiri@nifs.ac.jp; Tsumori, K.; Nagaoka, K.
2015-04-08
Characteristics of ionic plasmas, observed in a high-density hydrogen negative ion source, are investigated with a multi-diagnostics system. The ionic plasma, which consists of hydrogen positive- and negative-ions with a significantly low-density of electrons, is generated in the ion extraction region, from which the negative ions are extracted through the plasma grid. The negative ion density, i.e., the ionic plasma density, as high as the order of 1×10{sup 17}m{sup −3}, is measured with cavity ring-down spectroscopy, while the electron density is lower than 1×10{sup 16}m{sup −3}, which is confirmed with millimeter-wave interferometer. Reduction of the negative ion density is observedmore » at the negative ion extraction, and at that time the electron flow into the ionic plasma region is observed to conserve the charge neutrality. Distribution of the plasma potential is measured in the extraction region in the direction normal to the plasma grid surface with a Langmuir probe, and the results suggest that the sheath is formed at the plasma boundary to the plasma grid to which the bias voltage is applied. The beam extraction should drive the negative ion transport in the ionic plasma across the sheath formed on the extraction surface. Larger reduction of the negative ions at the beam extraction is observed in a region above the extraction aperture on the plasma grid, which is confirmed with 2D image measurement of the Hα emission and cavity ring-down spectroscopy. The electron distribution is also measured near the plasma grid surface. These various properties observed in the ionic plasma are discussed.« less
NASA Astrophysics Data System (ADS)
Ding, Hong-sheng; Tong, Li-ge; Chen, Geng-hua
2001-08-01
A new confocal Fabry-Pérot interferometer (CFPI) has been constructed. By using both of the conjugate rays, the sensitivity of the system was doubled. Moreover, the negative feedback control loop of a single-chip microcomputer (MCS-51) was applied to stabilize the working point at an optimum position. The system has been used in detecting the piezoelectric ultrasonic vibration on the surface of an aluminium sample.
On the Control of the Fixed Charge Densities in Al2O3-Based Silicon Surface Passivation Schemes.
Simon, Daniel K; Jordan, Paul M; Mikolajick, Thomas; Dirnstorfer, Ingo
2015-12-30
A controlled field-effect passivation by a well-defined density of fixed charges is crucial for modern solar cell surface passivation schemes. Al2O3 nanolayers grown by atomic layer deposition contain negative fixed charges. Electrical measurements on slant-etched layers reveal that these charges are located within a 1 nm distance to the interface with the Si substrate. When inserting additional interface layers, the fixed charge density can be continuously adjusted from 3.5 × 10(12) cm(-2) (negative polarity) to 0.0 and up to 4.0 × 10(12) cm(-2) (positive polarity). A HfO2 interface layer of one or more monolayers reduces the negative fixed charges in Al2O3 to zero. The role of HfO2 is described as an inert spacer controlling the distance between Al2O3 and the Si substrate. It is suggested that this spacer alters the nonstoichiometric initial Al2O3 growth regime, which is responsible for the charge formation. On the basis of this charge-free HfO2/Al2O3 stack, negative or positive fixed charges can be formed by introducing additional thin Al2O3 or SiO2 layers between the Si substrate and this HfO2/Al2O3 capping layer. All stacks provide very good passivation of the silicon surface. The measured effective carrier lifetimes are between 1 and 30 ms. This charge control in Al2O3 nanolayers allows the construction of zero-fixed-charge passivation layers as well as layers with tailored fixed charge densities for future solar cell concepts and other field-effect based devices.
Electrical structure in two thunderstorm anvil clouds
NASA Technical Reports Server (NTRS)
Marshall, Thomas C.; Rust, W. David; Winn, William P.; Gilbert, Kenneth E.
1989-01-01
Electrical structures in two thunderstorm anvil clouds (or 'anvils'), one in New Mexico, the other in Oklahoma, were investigated, using measurements of electric field by balloon-carried instruments and a one-dimensional model to calculate the time and spatial variations of electrical parameters in the clear air below the anvil. The electric field soundings through the two thunderstorm anvils showed similar charge structures; namely, negatively charged screening layers on the top and the bottom surfaces, a layer of positive charge in the interior, and one or two layers of zero charge. It is suggested that the positive charge originated in the main positive charge region normally found at high altitudes in the core of thunderclouds, and the negatively charged layers probably formed as screening layers, resulting from the discontinuity in the electrical conductivity at the cloud boundaries.
Hydration of excess electrons trapped in charge pockets on molecular surfaces
NASA Astrophysics Data System (ADS)
Jalbout, Abraham F.; Del Castillo, R.; Adamowicz, Ludwik
2007-01-01
In this work we strive to design a novel electron trap located on a molecular surface. The process of electron trapping involves hydration of the trapped electron. Previous calculations on surface electron trapping revealed that clusters of OH groups can form stable hydrogen-bonded networks on one side of a hydrocarbon surface (i.e. cyclohexane sheets), while the hydrogen atoms on the opposite side of the surface form pockets of positive charge that can attract extra negative charge. The excess electron density on such surfaces can be further stabilized by interactions with water molecules. Our calculations show that these anionic systems are stable with respect to vertical electron detachment (VDE).
Polarization-induced surface charges in hydroxyapatite ceramics
NASA Astrophysics Data System (ADS)
Horiuchi, N.; Nakaguki, S.; Wada, N.; Nozaki, K.; Nakamura, M.; Nagai, A.; Katayama, K.; Yamashita, K.
2014-07-01
Calcium hydroxyapatite (HAp; Ca10(PO4)6(OH)2) is a well-known biomaterial that is the main inorganic component of bones and teeth. Control over the surface charge on HAp would be a key advance in the development of the material for tissue engineering. We demonstrate here that surface charge can be induced by an electrical poling process using the Kelvin method. Positive and negative charges were induced on the HAp surface in response to the applied electric field in the poling process. The surface charging is attributed to dipole polarization that is homogeneously distributed in HAp. Additionally, the surface charging is considered to originate from the organization of OH- ions into a polar phase in the structure.
Northwood, Ewen; Fisher, John
2007-08-01
The wear of the biomaterial/cartilage interface is vital for the development of innovative chondroplasty therapies. The aim of this study was to investigate potential chondroplasty biomaterials when sliding against natural articular cartilage under uniaxial reciprocating and multi-directional rotation/reciprocating motions. Three biphasic hydrogels were compared to articular cartilage (negative control) and stainless steel (positive control). Friction was measured by means of a simple geometry friction and wear simulator. All tests were completed in 25% bovine serum at 20 degrees C. Mechanical alterations to the surface structure were quantified using surface topography. Articular cartilage produced a constant friction value of 0.05 (confidence interval=0.015) with and without rotation. Stainless steel against articular cartilage produced an increase in friction over time resulting in a peak value of 0.7 (confidence interval=0.02) without rotation, increasing to 0.88 (confidence interval=0.03) with rotation. All biphasic hydrogels produced peak friction values lower than the positive control and demonstrated no difference between uni- and multi-directional motion. Degradation of the opposing cartilage surface showed a significant difference between the positive and negative controls, with the greater cartilage damage when sliding against stainless steel under uni-directional motion. The lower friction and reduction of opposing cartilage surface degradation with the potential chondroplasty biomaterials can be attributed to their biphasic properties. This study illustrated the importance of biphasic properties within the tribology of cartilage substitution materials and future work will focus on the optimisation of biphasic properties such that materials more closely mimic natural cartilage.
Active chiral control of GHz acoustic whispering-gallery modes
NASA Astrophysics Data System (ADS)
Mezil, Sylvain; Fujita, Kentaro; Otsuka, Paul H.; Tomoda, Motonobu; Clark, Matt; Wright, Oliver B.; Matsuda, Osamu
2017-10-01
We selectively generate chiral surface-acoustic whispering-gallery modes in the gigahertz range on a microscopic disk by means of an ultrafast time-domain technique incorporating a spatial light modulator. Active chiral control is achieved by making use of an optical pump spatial profile in the form of a semicircular arc, positioned on the sample to break the symmetry of clockwise- and counterclockwise-propagating modes. Spatiotemporal Fourier transforms of the interferometrically monitored two-dimensional acoustic fields measured to micron resolution allow individual chiral modes and their azimuthal mode order, both positive and negative, to be distinguished. In particular, for modes with 15-fold rotational symmetry, we demonstrate ultrafast chiral control of surface acoustic waves in a micro-acoustic system with picosecond temporal resolution. Applications include nondestructive testing and surface acoustic wave devices.
NASA Astrophysics Data System (ADS)
Yu, An; Geng, Tingting; Fu, Qiang; Chen, Chao; Cui, Yali
2007-04-01
Using GoldMag (Fe3O4/Au) nanoparticles as a carrier, a biotin-avidin amplified ELISA was developed to detect hepatitis B surface antigen (HBsAg). A specific antibody was labeled with biotin and then used to detect the antigen with an antibody coated on GoldMag nanoparticles by a sandwich ELISA assay. The results showed that 5 mol of biotin were surface bound per mole of antibody. The biotin-avidin amplified ELISA assay has a higher sensitivity than that of the direct ELISA assay. There is 5-fold difference between HBsAg positive and negative serum even at dilution of 1:10000, and the relative standard deviation of the parallel positive serum at dilution of 1:4000 is 5.98% (n=11).
Candida albicans and Pseudomonas aeruginosa adhesion on soft contact lenses.
Onurdağ, Fatma Kaynak; Ozkan, Semiha; Ozgen, Selda; Olmuş, Hülya; Abbasoğlu, Ufuk
2011-04-01
In this study it was aimed to determine the adherence of Pseudomonas and Candida to contact lens surfaces, and to determine the difference in adherence between five contact lens types. Biofilm-negative control strains were also used to emphasize the difference between biofilm-positive and biofilm-negative strains in adherence. Five different soft contact lenses were used to investigate the adherence of Pseudomonas aeruginosa and Candida albicans strains. P. aeruginosa ATCC 27853, P. aeruginosa ATCC 10145, C.albicans ATCC 10231 standard strains and C. albicans clinical isolate were included in the study. Slime formation was investigated by two methods; modified Christensen macrotube method, and a modified microtiter plate test. P. aeruginosa and C. albicans slime formation on soft contact lenses was studied in adherence and separation phases. Pseudomonas and Candida suspensions were serially diluted and inoculated to blood agar and sabouraud dextrose agar surfaces respectively. After overnight incubation, the colonies were counted. Sterile unworn contact lenses were used as negative controls, and bacterial and fungal culture suspensions were used as positive controls. The experiments were conducted in three parallel series. The number of adherent Pseudomonas was as follows from high to low in polymacon, etafilcon A, hilafilcon, ocufilcon and lotrafilcon contact lenses respectively. However, the number of adherent yeast were determined higher in lotrafilcon and ocufilcon contact lenses, followed by hilafilcon, etafilcon A and polymacon contact lenses. Biofilm-negative Pseudomonas ATCC standard strain and Candida clinical isolate were used to confirm that the number of adherent cells were lower than the biofilm-positive ones. This study demonstrates that in addition to the contact lens properties, the microorganisms themselves and their interactions with the lens material also play an important role in adherence.
Chelikani, Rahul; Kim, Yong Hwan; Yoon, Do-Young; Kim, Dong-Shik
2009-05-01
Anacardic acid, separated from cashew nut shell liquid, is well known for its strong antibiotic and antioxidant activities. Recent findings indicate that phenolic compounds from plant sources have an effect on Gram-negative bacteria biofilm formation. In this work, a polyphenolic coating was prepared from anacardic acid using enzymatic synthesis and tested for its effects on biofilm formation of both Gram-negative and Gram-positive bacteria. Natural anacardic acid was enzymatically polymerized using soybean peroxidase. Hydrogen peroxide and phenothiazine-10-propionic acid were used as an oxidizing agent and redox mediator, respectively. Nuclear magnetic resonance and Fourier transform infrared (FTIR) analyses showed the formation of oxyphenylene and phenylene units through the phenol rings. No linkage through the alkyl chain was observed, which proved a high chemo-selectivity of the enzyme. Aqueous solvents turned out to play an important role in the polymer production yield and molecular weight. With 2-propanol, the highest production yield (61%) of polymer (molecular weight = 3,900) was observed, and with methanol, higher-molecular-weight polymers (5,000) were produced with lower production yields (43%). The resulting polyanacardic acid was cross-linked on a solid surface to form a permanent natural polymer coating. The FTIR analysis indicates that the cross-linking between the polymers took place through the unsaturated alkyl side chains. The polyanacardic acid coating was then tested for its antibiofouling effect against Gram-negative and Gram-positive bacteria and compared with the antibiofouling effects of polycardanol coatings reported in the literature. The polyanacardic acid coating showed more reduction in biofilm formation on its surface than polycardanol coatings in the case of Gram-positive bacteria, while in the case of Gram-negative bacteria, it showed a similar reduction in biofilm formation as polycardanol.
Syed, Atiq U.; Fogarty, Lisa R.
2005-01-01
To demonstrate the value of long-term, water-quality monitoring, the Michigan Department of Environmental Quality (MDEQ), in cooperation with the U.S. Geological Survey (USGS), initiated a study to evaluate potential trends in water-quality constituents for selected National Stream Quality Accounting Network (NASQAN) stations in Michigan. The goal of this study is to assist the MDEQ in evaluating the effectiveness of water-pollution control efforts and the identification of water-quality concerns. The study included a total of nine NASQAN stations in Michigan. Approximately 28 constituents were analyzed for trend tests. Station selection was based on data availability, land-use characteristics, and station priority for the MDEQ Water Chemistry Monitoring Project. Trend analyses were completed using the uncensored Seasonal Kendall Test in the computer program Estimate Trend (ESTREND), a software program for the detection of trends in water-quality data. The parameters chosen for the trend test had (1) at least a 5-year period of record (2) about 5 percent of the observations censored at a single reporting limit, and (3) 40 percent of the values within the beginning one-fifth and ending one-fifth of the selected period. In this study, a negative trend indicates a decrease in concentration of a particular constituent, which generally means an improvement in water quality; whereas a positive trend means an increase in concentration and possible degradation of water quality. The results of the study show an overall improvement in water quality at the Clinton River at Mount Clemens, Manistee River at Manistee, and Pigeon River near Caseville. The detected trend for these stations show decreases in concentrations of various constituents such as nitrogen compounds, conductance, sulfate, fecal coliform bacteria, and fecal streptococci bacteria. The negative trend may indicate an overall improvement in agricultural practices, municipal and industrial wastewater-treatment processes, and effective regulations. Phosphorus data for most of the study stations could not be analyzed because of the data limitations for trend tests. The only station with a significant negative trend in total phosphorus concentration is the Clinton River at Mount Clemens. However, scatter-plot analyses of phosphorus data indicate decreasing concentrations with time for most of the study stations. Positive trends in concentration of nitrogen compounds were detected at the Kalamazoo River near Saugatuck and Muskegon River near Bridgeton. Positive trends in both fecal coliform and total fecal coliform were detected at the Tahquamenon River near Paradise. Various different point and nonpoint sources could produce such positive trends, but most commonly the increase in concentrations of nitrogen compounds and fecal coliform bacteria are associated with agricultural practices and sewage-plant discharges. The constituent with the most numerous and geographically widespread significant trend is pH. The pH levels increased at six out of nine stations on all the major rivers in Michigan, with no negative trend at any station. The cause of pH increase is difficult to determine, as it could be related to a combination of anthropogenic activities and natural processes occurring simultaneously in the environment. Trends in concentration of major ions, such as calcium, sodium, magnesium, sulfate, fluoride, chloride, and potassium, were detected at eight out of nine stations. A negative trend was detected only in sulfate and fluoride concentrations; a positive trend was detected only in calcium concentration. The major ions with the most widespread significant trends are sodium and chloride; three positive and two negative trends were detected for sodium, and three negative and two positive trends were detected for chloride. The negative trends in chloride concentrations outnumbered the positive trends. This result indicates a slight improvement in surface-water quality because chloride as a point source in natural water comes from deicing salt, sewage effluents, industrial wastes, and oil fields. For other major ions, such as magnesium and potassium, both positive and negative trends were detected. These changes in trends indicate changes in surface-water quality caused by a variety of point and non-point sources throughout Michigan, as well as natural changes in the environment.
Surface charge effects in protein adsorption on nanodiamonds
NASA Astrophysics Data System (ADS)
Aramesh, M.; Shimoni, O.; Ostrikov, K.; Prawer, S.; Cervenka, J.
2015-03-01
Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids.Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids. Electronic supplementary information (ESI) available: The FTIR spectrum of nanodiamonds, QCM-D profiles of 50 nm nanodiamond adsorption on silica surfaces, QCM-D profiles of protein desorption after rinsing with water (rinsing experiment) and the full FTIR spectrum of proteins before and after adsorption on ND particles. See DOI: 10.1039/c5nr00250h
Almeida, Andréa Sobral de; Werneck, Guilherme Loureiro; Resendes, Ana Paula da Costa
2014-08-01
This study explored the use of object-oriented classification of remote sensing imagery in epidemiological studies of visceral leishmaniasis (VL) in urban areas. To obtain temperature and environmental information, an object-oriented classification approach was applied to Landsat 5 TM scenes from the city of Teresina, Piauí State, Brazil. For 1993-1996, VL incidence rates correlated positively with census tracts covered by dense vegetation, grass/pasture, and bare soil and negatively with areas covered by water and densely populated areas. In 2001-2006, positive correlations were found with dense vegetation, grass/pasture, bare soil, and densely populated areas and negative correlations with occupied urban areas with some vegetation. Land surface temperature correlated negatively with VL incidence in both periods. Object-oriented classification can be useful to characterize landscape features associated with VL in urban areas and to help identify risk areas in order to prioritize interventions.
Efficiency of Cs-free materials for negative ion production in H2 and D2 plasmas
NASA Astrophysics Data System (ADS)
Friedl, R.; Kurutz, U.; Fantz, U.
2017-08-01
High power negative ion sources use caesium to reduce the work function of the converter surface which significantly increases the negative ion yield. Caesium, however, is a very reactive alkali-metal and shows complex redistribution dynamics in consequence of plasma-surface-interaction. Thus, maintaining a stable and homogenous low work function surface is a demanding task, which is not easily compatible with the RAMI issues (reliability, availability, maintainability, inspectability) for a future DEMO fusion reactor. Hence, Cs-free alternative materials for efficient negative ion formation are desirable. At the laboratory experiment HOMER materials which are referred to as promising are investigated under identical and ion source relevant parameters: the refractory metals Ta and W, non-doped and boron-doped diamond as well as materials with inherent low work function (lanthanum-doped molybdenum, MoLa and lanthanum hexaboride, LaB6). The results are compared to the effect of in-situ caesiation, which at HOMER leads to a maximal increase of the negative ion density by a factor of 2.5. Among the examined samples low work function materials are most efficient. In particular, MoLa leads to an increase of almost 50 % compared to pure volume formation. The difference to a caesiated surface can be attributed to the still higher work function of MoLa, which is expected to be slightly below 3 eV. Using deuterium instead of hydrogen leads to increased atomic and positive ion densities, while comparable negative ion densities are achieved. In contrast to the low work function materials, bulk samples of the refractory metals as well as carbon based materials have no enhancing effect on H-, where the latter materials furthermore show severe erosion due to the hydrogen plasma.
Human fibrinogen adsorption on positively charged latex particles.
Zeliszewska, Paulina; Bratek-Skicki, Anna; Adamczyk, Zbigniew; Cieśla, Michał
2014-09-23
Fibrinogen (Fb) adsorption on positively charged latex particles (average diameter of 800 nm) was studied using the microelectrophoretic and the concentration depletion methods based on AFM imaging. Monolayers on latex were adsorbed from diluted bulk solutions at pH 7.4 and an ionic strength in the range of 10(-3) to 0.15 M where fibrinogen molecules exhibited an average negative charge. The electrophoretic mobility of the latex after controlled fibrinogen adsorption was systematically measured. A monotonic decrease in the electrophoretic mobility of fibrinogen-covered latex was observed for all ionic strengths. The results of these experiments were interpreted according to the three-dimensional electrokinetic model. It was also determined using the concentration depletion method that fibrinogen adsorption was irreversible and the maximum coverage was equal to 0.6 mg m(-2) for ionic strength 10(-3) M and 1.3 mg m(-2) for ionic strength 0.15 M. The increase of the maximum coverage was confirmed by theoretical modeling based on the random sequential adsorption approach. Paradoxically, the maximum coverage of fibrinogen on positively charged latex particles was more than two times lower than the maximum coverage obtained for negative latex particles (3.2 mg m(-2)) at pH 7.4 and ionic strength of 0.15 M. This was interpreted as a result of the side-on adsorption of fibrinogen molecules with their negatively charged core attached to the positively charged latex surface. The stability and acid base properties of fibrinogen monolayers on latex were also determined in pH cycling experiments where it was observed that there were no irreversible conformational changes in the fibrinogen monolayers. Additionally, the zeta potential of monolayers was more positive than the zeta potential of fibrinogen in the bulk, which proves a heterogeneous charge distribution. These experimental data reveal a new, side-on adsorption mechanism of fibrinogen on positively charged surfaces and confirmed the decisive role of electrostatic interactions in this process.
Assembly of purple membranes on polyelectrolyte films.
Saab, Marie-belle; Estephan, Elias; Cloitre, Thierry; Legros, René; Cuisinier, Frédéric J G; Zimányi, László; Gergely, Csilla
2009-05-05
The membrane protein bacteriorhodopsin in its native membrane bound form (purple membrane) was adsorbed and incorporated into polyelectrolyte multilayered films, and adsorption was in situ monitored by optical waveguide light-mode spectroscopy. The formation of a single layer or a double layer of purple membranes was observed when adsorbed on negatively or positively charged surfaces, respectively. The purple membrane patches adsorbed on the polyelectrolyte multilayers were also evidenced by atomic force microscopy images. The driving forces of the adsorption process were evaluated by varying the ionic strength of the solution as well as the purple membrane concentration. At high purple membrane concentration, interpenetrating polyelectrolyte loops might provide new binding sites for the adsorption of a second layer of purple membranes, whereas at lower concentrations only a single layer is formed. Negative surfaces do not promote a second protein layer adsorption. Driving forces other than just electrostatic ones, such as hydrophobic forces, should play a role in the polyelectrolyte/purple membrane layering. The subtle interplay of all these factors determines the formation of the polyelectrolyte/purple membrane matrix with a presumably high degree of orientation for the incorporated purple membranes, with their cytoplasmic, or extracellular side toward the bulk on negatively or positively charged polyelectrolyte, respectively. The structural stability of bacteriorhodopsin during adsorption onto the surface and incorporation into the polyelectrolyte multilayers was investigated by Fourier transform infrared spectroscopy in attenuated total reflection mode. Adsorption and incorporation of purple membranes within polyelectrolyte multilayers does not disturb the conformational majority of membrane-embedded alpha-helix structures of the protein, but may slightly alter the structure of the extramembraneous segments or their interaction with the environment. This high stability is different from the lower stability of the predominantly beta-sheet structures of numerous globular proteins when adsorbed onto surfaces.
Interaction Between Cyanine Dye IR-783 and Polystyrene Nanoparticles in Solution.
Zhang, Yunzhi; Xu, Hui; Casabianca, Leah B
2018-05-17
The interactions between small molecule drugs or dyes and nanoparticles are important to the use of nanoparticles in medicine. Noncovalent adsorption of dyes on nanoparticle surfaces is also important to the development of nanoparticle dual-use imaging contrast agents. In the present work, solution-state NMR is used to examine the noncovalent interaction between a near-infrared cyanine dye and the surface of polystyrene nanoparticles in solution. Using 1D proton NMR, we can approximate the number of dye molecules that associate with each nanoparticle for different sized nanoparticles. Saturation-Transfer Difference (STD)-NMR was also used to show that protons near the positively-charged nitrogen in the dye are more strongly associated with the negatively-charged nanoparticle surface than protons near the negatively-charged sulfate groups of the dye. The methods described here can be used to study similar drug or dye molecules interacting with the surface of organic nanoparticles. This article is protected by copyright. All rights reserved.
Removal of Microbial Contamination from Surface by Plasma
NASA Astrophysics Data System (ADS)
Feng, Xinxin; Liu, Hongxia; Shen, Zhenxing; Wang, Taobo
2018-01-01
Microbial contamination is closely associated with human and environmental health, they can be tested on food surfaces, medical devices, packing material and so on. In this paper the removal of the microbial contamination from surface using plasma treatment is investigated. The Escherichia coli (E. coli) has been chosen as a bio-indicator enabling to evaluate the effect of plasma assisted microbial inactivation. Oxygen gas was as the working gas. The plasma RF power, plasma exposition time, gas flow and the concentration of organic pollutant were varied in order to see the effect of the plasma treatment on the Gram-negative germ removal. After the treatment, the microbial abatement was evaluated by the standard plate count method. This proved a positive effect of the plasma treatment on Gram-negative germ removal. The kinetics and mathematical model of removal were studied after plasma treatment, and then the removing course of E. coli was analyzed. This work is meaningful for deepening our understanding of the fundamental scientific principles regarding microbial contamination from surface by plasma.
Reversal of the asymmetry in a cylindrical coaxial capacitively coupled Ar/Cl 2 plasma
Upadhyay, Janardan; Im, Do; Popović, Svetozar; ...
2015-10-08
The reduction of the asymmetry in the plasma sheath voltages of a cylindrical coaxial capacitively coupled plasma is crucial for efficient surface modification of the inner surfaces of concave three-dimensional structures, including superconducting radio frequency cavities. One critical asymmetry effect is the negative dc self-bias, formed across the inner electrode plasma sheath due to its lower surface area compared to the outer electrode. The effect on the self-bias potential with the surface enhancement by geometric modification on the inner electrode structure is studied. The shapes of the inner electrodes are chosen as cylindrical tube, large and small pitch bellows, andmore » disc-loaded corrugated structure (DLCS). The dc self-bias measurements for all these shapes were taken at different process parameters in Ar/Cl 2 discharge. Lastly, the reversal of the negative dc self-bias potential to become positive for a DLCS inner electrode was observed and the best etch rate is achieved due to the reduction in plasma asymmetry.« less
Owoseni, Olasehinde; Zhang, Yueheng; Su, Yang; He, Jibao; McPherson, Gary L; Bose, Arijit; John, Vijay T
2015-12-29
The carbonization of hydrophilic particle surfaces provides an effective route for tuning particle wettability in the preparation of particle-stabilized emulsions. The wettability of naturally occurring halloysite clay nanotubes (HNT) is successfully tuned by the selective carbonization of the negatively charged external HNT surface. The positively charge chitosan biopolymer binds to the negatively charged external HNT surface by electrostatic attraction and hydrogen bonding, yielding carbonized halloysite nanotubes (CHNT) on pyrolysis in an inert atmosphere. Relative to the native HNT, the oil emulsification ability of the CHNT at intermediate levels of carbonization is significantly enhanced due to the thermodynamically more favorable attachment of the particles at the oil-water interface. Cryogenic scanning electron microscopy (cryo-SEM) imaging reveals that networks of CHNT attach to the oil-water interface with the particles in a side-on orientation. The concepts advanced here can be extended to other inorganic solids and carbon sources for the optimal design of particle-stabilized emulsions.
NASA Astrophysics Data System (ADS)
Guenneau, Sébastien; Ramakrishna, S. Anantha
2009-06-01
Newly discovered metamaterials have opened new vistas for better control of light via negative refraction, whereby light refracts in the "wrong" manner. These are dielectric and metallic composite materials structured at subwavelength lengthscales. Their building blocks consist of local resonators such as conducting thin bars and split rings driving the material parameters such as the dielectric permittivity and magnetic permeability to negative (complex) values. Combined together, these structural elements can bring about a (complex valued) negative effective refractive index for the Snell-Descartes law and result in negative refraction of radiation. Negative refractive index materials can support a host of surface plasmon states for both polarizations of light. This makes possible unique effects such as imaging with subwavelength image resolution through the Pendry-Veselago slab lens. Other geometries have also been investigated, such as cylindrical or spherical lenses that enable a magnification of images with subwavelength resolution. Superlenses of three-fold (equilateral triangle), four-fold (square) and six-fold (hexagonal) geometry allow for multiple images, respectively two, three, and five. Generalization to rectangular and triangular checkerboards consisting of alternating cells of positive and negative refractive index represents a very singular situation in which the density of modes diverges at the corners, with an infinity of images. Sine-cosecant anisotropic heterogeneous square and triangular checkerboards can be respectively mapped onto three-dimensional cubic and icosahedral corner lenses consisting of alternating positive and negative refractive regions. All such systems with corners between negative and positive refractive media display very singular behavior with the local density of states becoming infinitely large at the corner, in the limit of no dissipation. We investigate all of these, using the unifying viewpoint of transformation optics. To cite this article: S. Guenneau, S.A. Ramakrishna, C. R. Physique 10 (2009).
NASA Astrophysics Data System (ADS)
Albrecht, Rachel I.; Morales, Carlos A.; Silva Dias, Maria A. F.
2011-04-01
This study investigated the physical processes involved in the development of thunderstorms over southwestern Amazon by hypothesizing causalities for the observed cloud-to-ground lightning variability and the local environmental characteristics. Southwestern Amazon experiences every year a large variety of environmental factors, such as the gradual increase in atmospheric moisture, extremely high pollution due to biomass burning, and intense deforestation, which directly affects cloud development by differential surface energy partition. In the end of the dry period it was observed higher percentages of positive cloud-to-ground (+CG) lightning due to a relative increase in +CG dominated thunderstorms (positive thunderstorms). Positive (negative) thunderstorms initiated preferentially over deforested (forest) areas with higher (lower) cloud base heights, shallower (deeper) warm cloud depths, and higher (lower) convective potential available energy. These features characterized the positive (negative) thunderstorms as deeper (relatively shallower) clouds, stronger (relatively weaker) updrafts with enhanced (decreased) mixed and cold vertically integrated liquid. No significant difference between thunderstorms (negative and positive) and nonthunderstorms were observed in terms of atmospheric pollution, once the atmosphere was overwhelmed by pollution leading to an updraft-limited regime. However, in the wet season both negative and positive thunderstorms occurred during periods of relatively higher aerosol concentration and differentiated size distributions, suggesting an aerosol-limited regime where cloud electrification could be dependent on the aerosol concentration to suppress the warm and enhance the ice phase. The suggested causalities are consistent with the invoked hypotheses, but they are not observed facts; they are just hypotheses based on plausible physical mechanisms.
Lunar Surface Charging during Solar Energetic Particle Events
NASA Astrophysics Data System (ADS)
Halekas, Jasper S.; Delory, G. T.; Mewaldt, R. A.; Lin, R. P.; Fillingim, M. O.; Brain, D. A.; Lee, C. O.; Stubbs, T. J.; Farrell, W. M.; Hudson, M. K.
2006-09-01
The surface of the Moon, not protected by any substantial atmosphere, is directly exposed to the impact of both solar UV and solar wind plasma and energetic particles. This creates a complex lunar electrostatic environment, with the surface typically charging slightly positive in sunlight, and negative in shadow. Observations from the Apollo era and theoretical considerations strongly suggest that surface charging leads to dust electrification and transport, posing a potentially significant hazard for exploration. The most significant charging effects should occur when the Moon is exposed to high-temperature plasmas like those encountered in the terrestrial plasmasheet or in solar storms. We now present evidence for kilovolt-scale negative charging of the shadowed lunar surface during solar energetic particle (SEP) events, utilizing data from the Lunar Prospector Electron Reflectometer (LP ER). We find that SEP events are associated with the most extreme lunar surface charging observed during the LP mission - rivaled only by previously reported charging during traversals of the terrestrial plasmasheet. The largest charging event observed by LP is a 4 kV negative surface potential (as compared to typical values of V) during a SEP event in May 1998. We characterize lunar surface charging during several SEP events, and compare to energetic particle measurements from ACE, Wind, and SOHO in order to determine the relationship between SEP events and extreme lunar surface charging. Space weather events are already considered by NASA to be a significant hazard to lunar exploration, due to high-energy ionizing radiation. Our observations demonstrate that plasma interactions with the lunar surface during SEP events, causing extreme surface charging and potentially significant dust electrification and transport, represent an additional hazard associated with space weather.
The effect of particle surface charge on the biological activation of immortalized mouse microglia (BV2) was examined. Same size (~850-950 nm) spherical polystyrene microparticles (SPM) with net negative (carboxyl, COOH-) or positive (dimethyl amino, CH3)2
Education and the Immunization Paradigm
ERIC Educational Resources Information Center
Lewis, Tyson E.
2009-01-01
In this paper I chart the origins of modern day "biopedagogy" through an analysis of two historically specific figures of abnormality: the nervous child and the degenerate. These two figures form the positive (hygienic) and negative (eugenic) surfaces of biopolitics in education, sustained and articulated through the category of immunization. By…
Cherepova, N; Spasova, D; Radoevska, S
2001-01-01
The localization of succinate dehydrogenase in some gram-negative and gram-positive bacteria (Salmonella typhimurium, Pseudomonas pseudomallei, Pseudomonas aeruginosa and Listeria monocytogenes) treated with the surface membrane active agent, Lubrol W1, was studied by a cytochemical method combined with electron microscopy.
ELECTROSTATIC FORCES IN WIND-POLLINATION: PART 2: SIMULATIONS OF POLLEN CAPTURE
During fair-weather conditions, a 100 V m-1 electric field exists between positive charge suspended in the air and negative charge distributed on the surfaces of plants and on the ground. The fields surrounding plants are highly complex reaching magnitudes up to 3x106 ...
Electro-Osmotic Pulse Technology for Control of Water Seepage in Various Civil Works Structures
2006-10-01
where: re temperatu constantBoltzman system theof field electric theofstrength ion (negative) positive a of mass charge electric elementary...water molecules, forming acid at the anode surface. This acid , in turn, attacks the mixed metal oxide coating on the anode eroding it, creating
NASA Astrophysics Data System (ADS)
Hoppe, H.-G.; Giesenhagen, H. C.; Koppe, R.; Hansen, H.-P.; Gocke, K.
2013-07-01
Phytoplankton and bacteria are sensitive indicators of environmental change. The temporal development of these key organisms was monitored from 1988 to the end of 2007 at the time series station Boknis Eck in the western Baltic Sea. This period was characterized by the adaption of the Baltic Sea ecosystem to changes in the environmental conditions caused by the conversion of the political system in the southern and eastern border states, accompanied by the general effects of global climate change. Measured variables were chlorophyll, primary production, bacteria number, -biomass and -production, glucose turnover rate, macro-nutrients, pH, temperature and salinity. Negative trends with time were recorded for chlorophyll, bacteria number, bacterial biomass and bacterial production, nitrate, ammonia, phosphate, silicate, oxygen and salinity while temperature, pH, and the ratio between bacteria numbers and chlorophyll increased. Strongest reductions with time occurred for the annual maximum values, e.g. for chlorophyll during the spring bloom or for nitrate during winter, while the annual minimum values remained more stable. In deep water above sediment the negative trends of oxygen, nitrate, phosphate and bacterial variables as well as the positive trend of temperature were similar to those in the surface while the trends of salinity, ammonia and silicate were opposite to those in the surface. Decreasing oxygen, even in the surface layer, was of particular interest because it suggested enhanced recycling of nutrients from the deep hypoxic zones to the surface by vertical mixing. The long-term seasonal patterns of all variables correlated positively with temperature, except chlorophyll and salinity. Salinity correlated negatively with all bacterial variables (as well as precipitation) and positively with chlorophyll. Surprisingly, bacterial variables did not correlate with chlorophyll, which may be inherent with the time lag between the peaks of phytoplankton and bacteria during spring. Compared to the 20-yr averages of the environmental and microbial variables, the strongest negative deviations of corresponding annual averages were measured about ten years after political change for nitrate and bacterial secondary production (~ -60%), followed by chlorophyll (-50%) and bacterial biomass (-40%). Considering the circulation of surface currents in the Baltic Sea we interpret the observed patterns of the microbial variables at the Boknis Eck time series station as a consequence of the improved management of water resources after 1989 and - to a minor extent - the trends of the climate variables salinity and temperature.
NASA Astrophysics Data System (ADS)
Hoppe, H.-G.; Giesenhagen, H. C.; Koppe, R.; Hansen, H.-P.; Gocke, K.
2012-12-01
Phytoplankton and bacteria are sensitive indicators of environmental change. The temporal development of these key organisms was monitored from 1988 to the end of 2007 at the time series station Boknis Eck in the Western Baltic Sea. This period was characterized by the adaption of the Baltic Sea ecosystem to changes in the environmental conditions caused by the collapse and conversion of the political system in the Southern and Eastern Border States, accompanied by the general effects of global climate change. Measured variables were chlorophyll, primary production, bacteria number, -biomass and -production, glucose turnover rate, macro-nutrients, pH, temperature and salinity. Negative trends with time were recorded for chlorophyll, the bacterial variables, nitrate, ammonia, phosphate, silicate, oxygen and salinity while temperature, pH, and the ratio between bacteria numbers and chlorophyll increased. The strongest reductions with time occurred for the annual maximum values, e.g. for chlorophyll during the spring bloom or for nitrate during winter, while the annual minimum values remained more stable. In deep water above sediment the negative trends of oxygen, nitrate, phosphate and bacterial variables as well as the positive trend of temperature were similar to those in the surface while the trends of salinity, ammonia and silicate were opposite to those in the surface. Decreasing oxygen even in the surface layer was of particular interest because it suggested enhanced recycling of nutrients from the deep hypoxic zones to the surface by vertical mixing. In the long run all variables correlated positively with temperature, except chlorophyll and salinity. Salinity correlated negatively with all bacterial variables as well as precipitation and positively with chlorophyll. Surprisingly, bacterial variables did not correlate with chlorophyll which may be inherent with the time lag between the peaks of phytoplankton and bacteria during spring. Compared to the 20-yr averages of the environmental and microbial variables, the strongest negative deviations of corresponding annual averages were measured about ten years after political change for nitrate and bacterial secondary production (~ -60%), followed by chlorophyll (-50%) and bacterial biomass (-40%). Considering the circulation of surface currents in the Baltic Sea we conclude that the improved management of water resources after 1989 together with the trends of the climate variables salinity and temperature were responsible for the observed patterns of the microbial variables at the Boknis Eck time series station.
1994-02-01
years have witnessed substantial advances in our knowledge of metal reconstruction in electrochemical systems, primarily for low-index gold surfaces in...index gold surfaces, reconstruction can be formed or removed by applying electrode potentials corresponding to negative or positive electronic charge...potential and gold oxidation regions, for Au(100) in 0.1 M KOH, obtained in a conventional electrochemical cell (solid trace). The voltammetric
Ion manipulation device to prevent loss of ions
Tolmachev, Aleksey; Smith, Richard D; Ibrahim, Yehia M; Anderson, Gordon A; Baker, Erin M
2015-03-03
An ion manipulation method and device to prevent loss of ions is disclosed. The device includes a pair of surfaces. An inner array of electrodes is coupled to the surfaces. A RF voltage and a DC voltage are alternately applied to the inner array of electrodes. The applied RF voltage is alternately positive and negative so that immediately adjacent or nearest neighbor RF applied electrodes are supplied with RF signals that are approximately 180 degrees out of phase.
Babolmorad, Ghazal; Emtiazi, Giti; Emamzadeh, Rahman
2014-05-01
S-layer is a self-assemble regularly crystalline surface that covers major cell wall component of many bacteria and archaea and exhibits a high metal-binding capacity. We have studied the effect of the calcium ions and type of solid support (glass or mica) on the structure of the S-layers from Bacillus coagulans HN-68 and Bacillus thuringiensis MH14 upon simple methods based on light microscopy and AFM. Furthermore, the Fourier transform infrared spectroscopy (FTIR) study is indicated that the calcium-S-layer interaction occurred mainly through the carboxylate groups of the side chains of aspartic acid (Asp) and glutamic acid (Glu) and nitrogen atoms of Lys, Asn, and histidine (His) amino acids and N-H groups of the peptide backbone. Studied FTIR revealed that inner faces of S-layer are mainly negative, and outer faces of S-layer are mainly positive. Probably, calcium ions with positive charges bound to the carboxyl groups of Glu and Asp. Accordingly, calcium ions are anchored in the space between the inner faces of S-layer with negative charge and the surface of mica with negative charge. This leads to regular arrangement of the S-layer subunits.
Rouster, Paul; Pavlovic, Marko; Horváth, Endre; Forró, László; Dey, Sandwip K; Szilagyi, Istvan
2017-09-26
The colloidal stability of titanium oxide nanosheets (TNS) and nanowires (TiONW) was studied in the presence of protamine (natural polyelectrolyte) in aqueous dispersions, where the nanostructures possessed negative net charge, and the protamine was positively charged. Regardless of their shape, similar charging and aggregation behaviors were observed for both TNS and TiONW. Electrophoretic experiments performed at different protamine loadings revealed that the adsorption of protamine led to charge neutralization and charge inversion depending on the polyelectrolyte dose applied. Light scattering measurements indicated unstable dispersions once the surface charge was close to zero or slow aggregation below and above the charge neutralization point with negatively or positively charged nanostructures, respectively. These stability regimes were confirmed by the electron microscopy images taken at different polyelectrolyte loadings. The protamine dose and salt-dependent colloidal stability confirmed the presence of DLVO-type interparticle forces, and no experimental evidence was found for additional interactions (e.g., patch-charge, hydrophobic, or steric forces), which are usually present in similar polyelectrolyte-particle systems. These findings indicate that the polyelectrolyte adsorbs on the TNS and TiONW surfaces in a flat and extended conformation giving rise to the absence of surface heterogeneities. Therefore, protamine is an excellent biocompatible candidate to form smooth surfaces, for instance in multilayers composed of polyelectrolytes and particles to be used in biomedical applications.
Adsorption and spectroscopic characterization of lactoferrin on hydroxyapatite nanocrystals.
Iafisco, Michele; Di Foggia, Michele; Bonora, Sergio; Prat, Maria; Roveri, Norberto
2011-01-28
Lactoferrin (LF), a well-characterized protein of blood plasma and milk with antioxidant, cariostatic, anticarcinogenic and anti-inflammatory properties, has been adsorbed onto biomimetic hydroxyapatite (HA) nanocrystals at two different pH values (7.4 and 9.0). The interaction was herein investigated by spectroscopic, thermal and microscopic techniques. The positive electrostatic surface potential of LF at pH 7.4 allows a strong surface interaction with the slightly negative HA nanocrystals and avoids the protein-protein interaction, leading to the formation of a coating protein monolayer. In contrast, at pH 9.0 the surface potential of LF is a mix of negative and positive zones favouring the protein-protein interaction and reducing the interaction with HA nanocrystals; as a result a double layer of coating protein was formed. These experimental findings are supported by the good fittings of the adsorption isotherms by different theoretical models according to Langmuir, Freundlich and Langmuir-Freundlich models. The nanosized HA does not appreciably affect the conformation of the adsorbed protein. In fact, using FT-Raman and FT-IR, we found that after adsorption the protein was only slightly unfolded with a small fraction of the α-helix structure being converted into turn, while the β-sheet content remained almost unchanged. The bioactive surface of HA functionalized with LF could be utilized to improve the material performance towards the biological environment for biomedical applications.
Black Sea thermohaline properties: Long‐term trends and variations
Stips, A.; Garcia‐Gorriz, E.; Macias Moy, D.
2017-01-01
Abstract The current knowledge about spatial and temporal dynamics of the Black Sea's thermohaline structure is incomplete because of missing data and sparse distribution of existing measurements in space and time. This study presents 56 year continuous simulations of the Black Sea's hydrodynamics using the 3D General Estuarine Transport Model (GETM), without incorporating any relaxation toward climatological or observational data fields. This property of the model allows us to estimate independent temporal trends, in addition to resolving the spatial structure. The simulations suggest that the intermediate layer temperature is characterized by a weak positive trend (warming), whereas the surface temperature does not show a clear linear trend. Different salinity trends have been established at the surface (negative), upper (weaker negative) and main halocline (positive). Three distinct dynamic periods are identified (1960–1970, 1970–1995, 1995–2015), which exhibit pronounced changes in the Black Sea's thermohaline properties and basin circulation. Strengthening of the main cyclonic circulation, accompanied by intensification of the mesoscale anticyclonic eddy formation is found. Both events strongly affect the sea surface salinity but contribute in opposing directions. Specifically, strong composite large‐scale circulation leads to an increase in sea surface salinity, while enhanced formation of mesoscale anticyclones decreases it. Salinity evolution with time is thus the result of the competition of these two opposing yet interdependent processes. PMID:28989833
NASA Astrophysics Data System (ADS)
Chen, Minghua; Xin, Lijun; Zhou, Qi; He, Lijia; Wu, Fufa
2018-01-01
The coupling effect between a laser and arc plasma was studied in situations in which the laser acts at the positive and negative waveforms of the arc discharge during the laser-arc hybrid welding of magnesium alloy. Using the methods of direct observation, high speed imaging, and spectral analysis, the surface status of weld seams, weld penetration depths, plasma behavior, and spectral characteristics of welding plasma were investigated, respectively. Results show that, as compared with the laser pulse acting at the negative waveform of the arc plasma discharge, a better weld seam formation can be achieved when the laser pulse acts at the positive waveform of the arc discharge. At the same time, the radiation intensity of Mg atoms in the arc plasma increases significantly. However, the weld penetration depth is weaker. The findings show that when the laser pulse is acting at the negative waveform of the arc plasma discharge, the position of the arc plasma discharge on the workpiece can be restrained by the laser action point, which improves the energy density of the welding arc.
Dong, Yongqi; Xu, Haoran; Luo, Zhenlin; ...
2017-05-16
The effect of gate voltage polarity on the behavior of NdNiO 3 epitaxial thin films during ionic liquid gating is studied using in situ synchrotron X-ray techniques. We show that while negative biases have no discernible effect on the structure or composition of the films, large positive gate voltages result in the injection of a large concentration of oxygen vacancies (similar to 3%) and pronounced lattice expansion (0.17%) in addition to a 1000-fold increase in sheet resistance at room temperature. Despite the creation of large defect densities, the heterostructures exhibit a largely reversible switching behavior when sufficient time is providedmore » for the vacancies to migrate in and out of the thin film surface. The results confirm that electrostatic gating takes place at negative gate voltages for p-type complex oxides while positive voltages favor the electrochemical reduction of Ni 3+. Switching between positive and negative gate voltages therefore involves a combination of electronic and ionic doping processes that may be utilized in future electrochemical transistors.« less
Dyawanapelly, Sathish; Koli, Uday; Dharamdasani, Vimisha; Jain, Ratnesh; Dandekar, Prajakta
2016-08-01
The main aim of the present study was to compare mucoadhesion and cellular uptake efficiency of chitosan (CS) and chitosan oligosaccharide (COS) surface-modified polymer nanoparticles (NPs) for mucosal delivery of proteins. We have developed poly (D, L-lactide-co-glycolide) (PLGA) NPs, surface-modified COS-PLGA NPs and CS-PLGA NPs, by using double emulsion solvent evaporation method, for encapsulating bovine serum albumin (BSA) as a model protein. Surface modification of NPs was confirmed using physicochemical characterization methods such as particle size and zeta potential, SEM, TEM and FTIR analysis. Both surface-modified PLGA NPs displayed a slow release of protein compared to PLGA NPs. Furthermore, we have explored the mucoadhesive property of COS as a material for modifying the surface of polymeric NPs. During in vitro mucoadhesion test, positively charged COS-PLGA NPs and CS-PLGA NPs exhibited enhanced mucoadhesion, compared to negatively charged PLGA NPs. This interaction was anticipated to improve the cell interaction and uptake of NPs, which is an important requirement for mucosal delivery of proteins. All nanoformulations were found to be safe for cellular delivery when evaluated in A549 cells. Moreover, intracellular uptake behaviour of FITC-BSA loaded NPs was extensively investigated by confocal laser scanning microscopy and flow cytometry. As we hypothesized, positively charged COS-PLGA NPs and CS-PLGA NPs displayed enhanced intracellular uptake compared to negatively charged PLGA NPs. Our results demonstrated that CS- and COS-modified polymer NPs could be promising carriers for proteins, drugs and nucleic acids via nasal, oral, buccal, ocular and vaginal mucosal routes.
Serra-Casas, Elisa; Menéndez, Clara; Bardají, Azucena; Quintó, Llorenç; Dobaño, Carlota; Sigauque, Betuel; Jiménez, Alfons; Mandomando, Inacio; Chauhan, Virander S; Chitnis, Chetan E; Alonso, Pedro L; Mayor, Alfredo
2010-01-01
Intermittent preventive treatment during pregnancy (IPTp) with sulfadoxine-pyrimethamine (SP) is recommended for malaria prevention in sub-Saharan Africa. However, studies reporting the effect of IPTp on malaria-specific immunity are scarce and are based on findings in human immunodeficiency virus (HIV)-negative primigravidae. Plasma samples obtained from 302 pregnant women (177 who were HIV negative, 88 who were HIV positive, and 37 who were of unknown HIV status) participating in a placebo-controlled trial of IPTp with SP (IPTp-SP) were analyzed for the presence of antibodies against merozoite antigens, whole asexual parasites, and variant surface antigens from chondroitin sulfate A-binding and nonbinding lines. Antibody levels were compared between intervention groups, and their association with morbidity outcomes was assessed. HIV-positive mothers receiving SP had lower levels of peripheral antibodies against apical membrane antigen-1 and variant surface antigens, as well as lower levels of cord antibodies against erythrocyte-binding antigen-175 and parasite lysate, than did HIV-positive placebo recipients. No difference between intervention groups was observed among HIV-negative mothers. High antibody levels were associated with maternal infection and an increased risk of a first malaria episode in infants. Antibody responses were not consistently associated with reduced maternal anemia, prematurity, or low birth weight. The IPTp-associated reduction in antibodies in HIV-infected women, but not in HIV-uninfected women, may reflect a higher efficacy of the intervention in preventing malaria among HIV-positive mothers. This reduction did not translate into an enhanced risk of malaria-associated morbidity in mothers and infants. Trial registration. Clinicaltrials.gov identifier NCT00209781.
IMMUNOGLOBULIN SPOTS ON THE SURFACE OF RABBIT LYMPHOCYTES
Pernis, Benvenuto; Forni, Luciana; Amante, Luisa
1970-01-01
Small and medium lymphocytes from the peripheral blood and lymphoid tissues of the rabbit react in suspension with antibodies directed against different immunoglobulin determinants. Through immunofluorescence, it was possible to show that numerous discrete spots on the surface of the positive lymphocytes carry immunoglobulin molecules. The positive lymphocytes are about one-half of all lymphocytes in the different preparations; thymus lymphocytes are all negative. With antisera specific for rabbit IgM as well as with antisera directed against allotypic determinants specific for IgM or IgG, it was possible to show that about nine-tenths of the immunoglobulin-positive lymphocytes carry IgM molecules on their surface. With antisera directed against a- and b-locus determinants, it was also possible to demonstrate that both heavy and light chains were present in the surface immunoglobulins. Furthermore, in animals which were heterozygous at the a or the b locus, it was found that each lymphocyte had immunoglobulins synthesized under the influence of only one of two alleles. A very small proportion of lymphocytes could be shown to have a specific surface reaction with one antigen (horse ferritin); the proportion of these cells increased very much after immunization. PMID:4919141
Neutralization by a Corona Discharge Ionizer in Nitrogen Atmosphere
NASA Astrophysics Data System (ADS)
Ikeuchi, Toru; Takahashi, Kazunori; Ohkubo, Takahiro; Fujiwara, Tamiya
An electrostatic neutralization of multilayer-loading silicon wafers is demonstrated using a corona discharge ionizer in nitrogen atmosphere, where ac and dc voltages are applied to two needle electrodes for generation of the negative- and positive-charged particles, respectively. We observe a surface potential of the silicon wafer decreases from ±1kV to ±20V within three seconds. Moreover, the density profiles of the charged particles generated by the electrodes are experimentally and theoretically investigated in nitrogen and air atmospheres. Our results show the possibility that the negative-charged particles contributing to the electrostatic neutralization are electrons and negative ions in nitrogen and air atmospheres, respectively.
Clinical characteristics of Staphylococcus epidermidis: a systematic review
Namvar, Amirmorteza Ebrahimzadeh; Bastarahang, Sara; Abbasi, Niloufar; Ghehi, Ghazaleh Sheikhi; Farhadbakhtiarian, Sara; Arezi, Parastoo; Hosseini, Mahsa; Baravati, Sholeh Zaeemi; Jokar, Zahra; Chermahin, Sara Ganji
2014-01-01
Staphylococci are known as clustering Gram-positive cocci, nonmotile, non-spore forming facultatively anaerobic that classified in two main groups, coagulase-positive and coagulase-negative. Staphylococcus epidermidis with the highest percentage has the prominent role among coagulase-negative Staphylococci that is the most important reason of clinical infections. Due to various virulence factors and unique features, this microorganism is respected as a common cause of nosocomial infections. Because of potential ability in biofilm formation and colonization in different surfaces, also using of medical implant devices in immunocompromised and hospitalized patients the related infections have been increased. In recent decades the clinical importance and the emergence of methicillin-resistant Staphylococcus epidermidis strains have created many challenges in the treatment process. PMID:25285267
Safe use of liver grafts from hepatitis B surface antigen positive donors in liver transplantation.
Yu, Songfeng; Yu, Jun; Zhang, Wei; Cheng, Longyu; Ye, Yufu; Geng, Lei; Yu, Zhiyong; Yan, Sheng; Wu, Lihua; Wang, Weilin; Zheng, Shusen
2014-10-01
Liver grafts from hepatitis B surface antigen (HBsAg) positive donors could have potential to increase the donor pool. However, knowledge is extremely limited in this setting because currently available data are mostly from case reports. We aimed to assess the outcomes and experiences of liver transplantation from HBsAg positive donors in a single centre study. From January 2010 to February 2013, 42 adult patients underwent liver transplantation from HBsAg positive donors and 327 patients from HBsAg negative ones. The outcomes including complications and survival of two groups were compared and antiviral therapy retrospectively reviewed. HBsAg positive liver grafts were more likely to be allocated to patients with hepatitis B (HBV)-related diseases. Post-transplant evaluation showed similar graft function regaining pace and no differences in complications such as primary non-function, acute rejection and biliary complications. Patient and graft survivals were comparable to that of HBsAg negative grafts. Furthermore, HBsAg persisted after transplant in all patients that received positive grafts. The donor HBV serum status determined the one of the recipient after transplantation. No HBV flare-ups were observed under antiviral therapy of oral nucleotide analogues, regardless of using hepatitis B immunoglobulin combination. Utilization of HBsAg positive liver grafts seems not to increase postoperative morbidity and mortality. Therefore it is a safe way to expand the donor pool when no suitable donor is available. Our experience also suggests that hepatitis B immunoglobulin should be abandoned in recipients of HBsAg positive liver grafts, in whom HBV prophylaxis could be the only oral antiviral therapy. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Electro-osmotic flow of semidilute polyelectrolyte solutions.
Uematsu, Yuki; Araki, Takeaki
2013-09-07
We investigate electro-osmosis in aqueous solutions of polyelectrolytes using mean-field equations. A solution of positively charged polyelectrolytes is confined between two negatively charged planar surfaces, and an electric field is applied parallel to the surfaces. When electrostatic attraction between the polymer and the surface is strong, the polymers adhere to the surface, forming a highly viscous adsorption layer that greatly suppresses the electro-osmosis. Conversely, electro-osmosis is enhanced by depleting the polymers from the surfaces. We also found that the electro-osmotic flow is invertible when the electrostatic potential decays to its bulk value with the opposite sign. These behaviors are well explained by a simple mathematical form of the electro-osmotic coefficient.
Urban Soil: Assessing Ground Cover Impact on Surface Temperature and Thermal Comfort.
Brandani, Giada; Napoli, Marco; Massetti, Luciano; Petralli, Martina; Orlandini, Simone
2016-01-01
The urban population growth, together with the contemporary deindustrialization of metropolitan areas, has resulted in a large amount of available land with new possible uses. It is well known that urban green areas provide several benefits in the surrounding environment, such as the improvement of thermal comfort conditions for the population during summer heat waves. The purpose of this study is to provide useful information on thermal regimes of urban soils to urban planners to be used during an urban transformation to mitigate surface temperatures and improve human thermal comfort. Field measurements of solar radiation, surface temperature (), air temperature (), relative humidity, and wind speed were collected on four types of urban soils and pavements in the city of Florence during summer 2014. Analysis of days under calm, clear-sky condition is reported. During daytime, sun-to-shadow differences for , apparent temperature index (ATI), and were significantly positive for all surfaces. Conversely, during nighttime, differences among all surfaces were significantly negative, whereas ATI showed significantly positive differences. Moreover, was significantly negative for grass and gravel. Relative to the shaded surfaces, was higher on white gravel and grass than gray sandstone and asphalt during nighttime, whereas gray sandstone was always the warmest surface during daytime. Conversely, no differences were found during nighttime for ATI and measured over surfaces that were exposed to sun during the day, whereas showed higher values on gravel than grass and asphalt during nighttime. An exposed surface warms less if its albedo is high, leading to a significant reduction of during daytime. These results underline the importance of considering the effects of surface characteristics on surface temperature and thermal comfort. This would be fundamental for addressing urban environment issues toward the heat island mitigation considering also the impact of urban renovation on microclimate. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Stability of nTiO2 particles and their attachment to sand: Effects of humic acid at different pH.
Wu, Yang; Cheng, Tao
2016-01-15
The fate and transport of nano-scale or micro-scale titanium dioxide particles (nTiO2) in subsurface environments are strongly influenced by the stability of nTiO2 and their attachment to sediment grains. nTiO2 may carry either positive or negative charges in natural water, therefore, environmental factors such as pH, humic substances, and Fe oxyhydroxide coatings on sediment grains, which are known to control the stability and transport of negatively-charged colloids, may influence nTiO2 in different manners. The objective of this study is to investigate the effects of pH and humic acid (HA) on the stability and attachment of nTiO2 to sand at HA concentrations that are relevant to typical groundwater conditions, so that mechanisms that control nTiO2 immobilization and transport in natural systems can be elucidated. Stability and attachment of nTiO2 to quartz sand and Fe oxyhydroxide coated quartz sand are experimentally measured under a range of HA concentrations at pH5 and 9. Results show that at pH5, negatively-charged HA strongly adsorbs to positively-charged nTiO2 and Fe oxyhydroxide, which, at low HA concentrations, partially neutralizes the positive charges on nTiO2 and Fe oxyhydroxide, and therefore decreases the repulsive electrostatic forces between the surfaces, resulting in nTiO2 aggregation and attachment. At high HA concentrations, adsorbed HA reverses the surface charges of nTiO2 and Fe oxyhydroxide, and makes nTiO2 and Fe oxyhydroxide strongly negatively charged, resulting in stable nTiO2 suspension and low nTiO2 attachment. At pH9, HA, nTiO2, and Fe oxyhydroxide are all negatively charged, and HA adsorption is low and does not have a strong impact on the stability and attachment of nTiO2. Overall, this study shows that changes in surface charges of nTiO2 and Fe oxyhydroxide coating caused by HA adsorption is a key factor that influences the stability and attachment of nTiO2. Copyright © 2015 Elsevier B.V. All rights reserved.
Helicity in the atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Kurgansky, Michael; Koprov, Boris; Koprov, Victor; Chkhetiani, Otto
2017-04-01
An overview is presented of recent direct field measurements at the Tsimlyansk Scientific Station of A.M. Obukhov Institute of Atmospheric Physics in Moscow of turbulent helicity (and potential vorticity) using four acoustic anemometers positioned, within the atmospheric surface-adjacent boundary layer, in the vertices of a rectangular tetrahedron, with an approximate 5 m distance between the anemometers and a 5.5 m elevation of the tetrahedron base above the ground surface (Koprov, Koprov, Kurgansky and Chkhetiani. Izvestiya, Atmospheric and Oceanic Physics, 2015, Vol.51, 565-575). The same ideology was applied in a later field experiment in Tsimlyansk with the tetrahedron's size of 0.7 m and variable elevation over the ground from 3.5 to 25 m. It is illustrated with examples of the statistical distribution of instantaneous (both positive and negative) turbulent helicity values. A theory is proposed that explains the measured mean turbulent helicity sign, including the sign of contribution to helicity from the horizontal and vertical velocity & vorticity components, respectively, and the sign of helicity buoyant production term. By considering a superposition of the classic Ekman spiral solution and a jet-like wind profile that mimics a shallow breeze circulation over a non-uniformly heated Earth surface, a possible explanation is provided, why the measured mean turbulent helicity sign is negative. The pronounced breeze circulation over the Tsimlyansk polygon which is located nearby the Tsimlyansk Reservoir was, indeed, observed during the measurements period. Whereas, essentially positive helicity is injected into the boundary layer from the free atmosphere in the Northern Hemisphere.
Validation of the ANSR Listeria method for detection of Listeria spp. in environmental samples.
Wendorf, Michael; Feldpausch, Emily; Pinkava, Lisa; Luplow, Karen; Hosking, Edan; Norton, Paul; Biswas, Preetha; Mozola, Mark; Rice, Jennifer
2013-01-01
ANSR Listeria is a new diagnostic assay for detection of Listeria spp. in sponge or swab samples taken from a variety of environmental surfaces. The method is an isothermal nucleic acid amplification assay based on the nicking enzyme amplification reaction technology. Following single-step sample enrichment for 16-24 h, the assay is completed in 40 min, requiring only simple instrumentation. In inclusivity testing, 48 of 51 Listeria strains tested positive, with only the three strains of L. grayi producing negative results. Further investigation showed that L. grayi is reactive in the ANSR assay, but its ability to grow under the selective enrichment conditions used in the method is variable. In exclusivity testing, 32 species of non-Listeria, Gram-positive bacteria all produced negative ANSR assay results. Performance of the ANSR method was compared to that of the U.S. Department of Agriculture-Food Safety and Inspection Service reference culture procedure for detection of Listeria spp. in sponge or swab samples taken from inoculated stainless steel, plastic, ceramic tile, sealed concrete, and rubber surfaces. Data were analyzed using Chi-square and probability of detection models. Only one surface, stainless steel, showed a significant difference in performance between the methods, with the ANSR method producing more positive results. Results of internal trials were supported by findings from independent laboratory testing. The ANSR Listeria method can be used as an accurate, rapid, and simple alternative to standard culture methods for detection of Listeria spp. in environmental samples.
Soil pH on mobility of imazaquin in oxisols with positive balance of charges.
Regitano, Jussara B; da Rocha, Wadson S D; Alleoni, Luís R F
2005-05-18
The influence of soil pH on the leaching potential of the ionizable herbicide imazaquin was assessed on the profile of two highly weathered soils having a net positive charge in the B horizon, in contrast to a soil having a net negative charge in the whole profile, using packed soil column experiments. Imazaquin leached to a large extent and faster at Kd values lower than 1.0 L kg(-1), a much more lenient limit than usually proposed for pesticides in the literature (Kd < 5.0 L kg(-1)). The amount of imazaquin leached increased with soil pH. As the soil pH increased, the percentage of imazaquin in the anionic forms, the negative surface potential of the soils, as well as imazaquin water solubility also increased, thus reducing sorption because of repulsive electrostatic forces (hydrophilic interactions). For all surface samples (0-0.2 m), imazaquin did not leach at soil pH values lower than pKa (3.8) and more than 80% of the applied amount was leached at pH values higher than 5.5. For subsurface samples from the acric soils, imazaquin only began to leach at soil pH values > zero point of salt effects (ZPSE > 5.7). In conclusion, the use of surface K(oc) values to predict the amount of imazaquin leached within soil profiles having a positive balance of charges may greatly overestimate its actual leaching potential.
Tseng, Min-Chen; Chen, Chia-Cheng
2017-06-01
This study investigated the self-regulatory behaviors of arts students, namely memory strategy, goal-setting, self-evaluation, seeking assistance, environmental structuring, learning responsibility, and planning and organizing. We also explored approaches to learning, including deep approach (DA) and surface approach (SA), in a comparison between students' professional training and English learning. The participants consisted of 344 arts majors. The Academic Self-Regulation Questionnaire and the Revised Learning Process Questionnaire were adopted to examine students' self-regulatory behaviors and their approaches to learning. The results show that a positive and significant correlation was found in students' self-regulatory behaviors between professional training and English learning. The results indicated that increases in using self-regulatory behaviors in professional training were associated with increases in applying self-regulatory behaviors in learning English. Seeking assistance, self-evaluation, and planning and organizing were significant predictors for learning English. In addition, arts students used the deep approach more often than the surface approach in both their professional training and English learning. A positive correlation was found in DA, whereas a negative correlation was shown in SA between students' self-regulatory behaviors and their approaches to learning. Students with high self-regulation adopted a deep approach, and they applied the surface approach less in professional training and English learning. In addition, a SEM model confirmed that DA had a positive influence; however, SA had a negative influence on self-regulatory behaviors.
NASA Astrophysics Data System (ADS)
Zhao, Changyu; Chen, Haishan; Sun, Shanlei
2018-04-01
Soil enthalpy ( H) contains the combined effects of both soil moisture ( w) and soil temperature ( T) in the land surface hydrothermal process. In this study, the sensitivities of H to w and T are investigated using the multi-linear regression method. Results indicate that T generally makes positive contributions to H, while w exhibits different (positive or negative) impacts due to soil ice effects. For example, w negatively contributes to H if soil contains more ice; however, after soil ice melts, w exerts positive contributions. In particular, due to lower w interannual variabilities in the deep soil layer (i.e., the fifth layer), H is more sensitive to T than to w. Moreover, to compare the potential capabilities of H, w and T in precipitation ( P) prediction, the Huanghe-Huaihe Basin (HHB) and Southeast China (SEC), with similar sensitivities of H to w and T, are selected. Analyses show that, despite similar spatial distributions of H-P and T-P correlation coefficients, the former values are always higher than the latter ones. Furthermore, H provides the most effective signals for P prediction over HHB and SEC, i.e., a significant leading correlation between May H and early summer (June) P. In summary, H, which integrates the effects of T and w as an independent variable, has greater capabilities in monitoring land surface heating and improving seasonal P prediction relative to individual land surface factors (e.g., T and w).
Study on the relationship between backpack use and back and neck pain among adolescents.
Navuluri, Neelima; Navuluri, Ramesh B
2006-12-01
A descriptive correlation study was conducted in Hobbs, New Mexico, USA, to find the relationship between backpack use and back and neck pain among adolescent boys and girls. A higher percentage of girls than boys rated their pain as being moderate to extremely strong. The correlation between pain and backpack weight per body mass index among girls was positive and significant, but negative and non-significant among boys. The correlation between pain and backpack weight was positive and non-significant among both boys and girls. The correlation between pain and each of the variables of backpack weight per body weight, backpack weight per height, and backpack weight per body surface area was negative and non-significant among boys, but positive and non-significant among girls. Gender-based research studies with additional variables and safe backpack use education in schools are recommended.
Guo, Shanshan; Jańczewski, Dominik; Zhu, Xiaoying; Quintana, Robert; He, Tao; Neoh, Koon Gee
2015-08-15
Electrostatic interactions play an important role in adhesion phenomena particularly for biomacromolecules and microorganisms. Zero charge valence of zwitterions has been claimed as the key to their antifouling properties. However, due to the differences in the relative strength of their acid and base components, zwitterionic materials may not be charge neutral in aqueous environments. Thus, their charge on surfaces should be further adjusted for a specific pH environment, e.g. physiological pH typical in biomedical applications. Surface zeta potential for thin polymeric films composed of polysulfobetaine methacrylate (pSBMA) brushes is controlled through copolymerizing zwitterionic SBMA and cationic methacryloyloxyethyltrimethyl ammonium chloride (METAC) via surface-initiated atom transfer polymerization. Surface properties including zeta potential, roughness, free energy and thickness are measured and the antifouling performance of these surfaces is assessed. The zeta potential of pSBMA brushes is -40 mV across a broad pH range. By adding 2% METAC, the zeta potential of pSBMA can be tuned to zero at physiological pH while minimally affecting other physicochemical properties including dry brush thickness, surface free energy and surface roughness. Surfaces with zero and negative zeta potential best resist fouling by bovine serum albumin, Escherichia coli and Staphylococcus aureus. Surfaces with zero zeta potential also reduce fouling by lysozyme more effectively than surfaces with negative and positive zeta potential. Copyright © 2015 Elsevier Inc. All rights reserved.
Frayssinet, P; Rouquet, N; Fages, J; Durand, M; Vidalain, P O; Bonel, G
1997-06-05
HA-ceramics used in human surgery as osteoconductive surfaces show a great variety of characteristics. Certain characteristics such as grain size, porosity, and surface area, are controlled by the sintering temperature of the slurry. We grew L-929 fibroblast cells on HA-ceramic disks that had been sintered at different temperatures ranging from 850 degrees-1350 degrees C. The cell line growth rate was lower on ceramic disks than on the culture-grade polystyrene used as a negative control. Cell growth correlated with the ceramic sintering temperature although no significant difference in the cell adhesion to the different ceramics was shown. Growth rate on ceramics sintered at low temperatures (850 degrees and 950 degrees C) was negative whereas it was positive on disks sintered at higher temperatures. When the cells were separated from the disks by a polycarbonate membrane, the growth rate was negative on those membranes in contact with low-temperature sintered disks and positive on the high-temperature sintered disks. The calcium and phosphorus concentration in the culture medium in contact with ceramics sintered below 1050 degrees C decreased during the culture period. Ceramics sintered between 1100 degrees and 1250 degrees C brought about an increase in Ca and P concentrations while ceramics sintered at higher temperatures did not induce any changes. SEM examination of the 850 degrees and 1200 degrees C sintered ceramics showed that the 850 degrees C sintered ceramics consisted of small grains with pores between them and the 1200 degrees C sintered ceramics were made of larger grains without any visible pores, thereby decreasing the surface of material in contact with the culture medium. This difference in surface area was confirmed by the fact that the amount of albumin absorbed onto the ceramic was dependent on the sintering temperature. In conclusion, the modification of the culture medium brought about by high-surfaced ceramics could influence the growth of cells with which such ceramics come in contact.
NASA Astrophysics Data System (ADS)
Dixon, D.; Babu, D. J.; Langner, J.; Bruns, M.; Pfaffmann, L.; Bhaskar, A.; Schneider, J. J.; Scheiba, F.; Ehrenberg, H.
2016-11-01
Oxygen plasma treatment was applied on commercially available graphite felt electrodes based on rayon (GFA) and polyacrylonitrile (GFD). The formation of functional groups on the surface of the felt was confirmed by X-ray photoelectron spectroscopy measurements. The BET studies of the plasma treated electrodes showed no significant increase in surface area for both the rayon as well as the PAN based felts. Both plasma treated electrodes showed significantly enhanced V3+/V2+ redox activity compared to the pristine electrodes. Since an increase of the surface area has been ruled out for plasma treated electrode the enhanced activity could be attributed to surface functional groups. Interestingly, plasma treated GFD felts showed less electrochemical activity towards V5+/V4+ compared to the pristine electrode. Nevertheless, an overall increase of the single cell performance was still observed as the negative electrode is known to be the performance limiting electrode. Thus, to a great extent the present work helps to preferentially understand the importance of functional groups on the electrochemical activity of negative and positive redox reaction. The study emphasizes the need of highly active electrodes especially at the negative electrode side as inactive electrodes can still facilitate hydrogen evolution and degrade the electrolyte in VRFBs.
NASA Astrophysics Data System (ADS)
Chen, Xiaoyue; Lan, Lei; Lu, Hailiang; Wang, Yu; Wen, Xishan; Du, Xinyu; He, Wangling
2017-10-01
A numerical simulation method of negative direct current (DC) corona discharge based on a plasma chemical model is presented, and a coaxial cylindrical gap is adopted. There were 15 particle species and 61 kinds of collision reactions electrons involved, and 22 kinds of reactions between ions are considered in plasma chemical reactions. Based on this method, continuous Trichel pulses are calculated on about a 100 us timescale, and microcosmic physicochemical process of negative DC corona discharge in three different periods is discussed. The obtained results show that the amplitude of Trichel pulses is between 1-2 mA, and that pulse interval is in the order of 10-5 s. The positive ions produced by avalanche ionization enhanced the electric field near the cathode at the beginning of the pulse, then disappeared from the surface of cathode. The electric field decreases and the pulse ceases to develop. The negative ions produced by attachment slowly move away from the cathode, and the electric field increases gradually until the next pulse begins to develop. The positive and negative ions with the highest density during the corona discharge process are O4+ and O3- , respectively.
Gura, Sigalit; Guerra-Diaz, Patricia; Lai, Hanh; Almirall, José R
2009-07-01
Trace detection of illicit drugs challenges the scientific community to develop improved sensitivity and selectivity in sampling and detection techniques. Ion mobility spectrometry (IMS) is one of the prominent trace detectors for illicit drugs and explosives, mostly due to its portability, high sensitivity and fast analysis. Current sampling methods for IMS rely on wiping suspected surfaces or withdrawing air through filters to collect particulates. These methods depend greatly on the particulates being bound onto surfaces or having sufficient vapour pressure to be airborne. Many of these compounds are not readily available in the headspace due to their low vapour pressure. This research presents a novel SPME device for enhanced air sampling and shows the use of optimized IMS by genetic algorithms to target volatile markers and/or odour signatures of illicit substances. The sampling method was based on unique static samplers, planar substrates coated with sol-gel polydimethyl siloxane (PDMS) nanoparticles, also known as planar solid-phase microextraction (PSPME). Due to its surface chemistry, high surface area and capacity, PSPME provides significant increases in sensitivity over conventional fibre SPME. The results show a 50-400 times increase in the detection capacity for piperonal, the odour signature of 3,4-methylenedioxymethamphetamine (MDMA). The PSPME-IMS technique was able to detect 600 ng of piperonal in a 30 s extraction from a quart-sized can containing 5 MDMA tablets, while detection using fibre SPME-IMS was not attainable. In a blind study of six cases suspected to contain varying amounts of MDMA in the tablets, PSPME-IMS successfully detected five positive cases and also produced no false positives or false negatives. One positive case had minimal amounts of MDMA resulting in a false negative response for fibre SPME-IMS.
Interference techniques in fluorescence microscopy
NASA Astrophysics Data System (ADS)
Dogan, Mehmet
We developed a set of interference-based optical microscopy techniques to study biological structures through nanometer-scale axial localization of fluorescent biomarkers. Spectral self-interference fluorescence microscopy (SSFM) utilizes interference of direct and reflected waves emitted from fluorescent molecules in the vicinity of planar reflectors to reveal the axial position of the molecules. A comprehensive calculation algorithm based on Green's function formalism is presented to verify the validity of approximations used in a far-field approach that describes the emission of fluorescent markers near interfaces. Using the validated model, theoretical limits of axial localization were determined with emphasis given to numerical aperture (NA) dependence of localization uncertainty. SSFM was experimentally demonstrated in conformational analysis of nucleoproteins. In particular, interaction between surface-tethered 75-mer double strand DNA and integration host factor (IHF) protein was probed on Si-SiO2 substrates by determining the axial position of fluorescent labels attached to the free ends of DNA molecules. Despite its sub-nanometer precision axial localization capability, SSFM lacks high lateral resolution due to the low-NA requirement for planar reflectors. We developed a second technique, 4Pi-SSFM, which improves the lateral resolution of a conventional SSFM system by an order of magnitude while achieving nanometer-scale axial localization precision. Using two opposing high-NA objectives, fluorescence signal is interferometrically collected and spectral interference pattern is recorded. Axial position of emitters is found from analysis of the spectra. The 4Pi-SSFM technique was experimentally demonstrated by determining the surface profiles of fabricated glass surfaces and outer membranes of Shigella, a type of Gram-negative bacteria. A further discussion is presented to localize surface O antigen, which is an important oligosaccharide structure in the virulence mechanism of the Gram-negative bacteria, including E. coli and Shigella.
Nomura, Kouji; Nakaji-Hirabayashi, Tadashi; Gemmei-Ide, Makoto; Kitano, Hiromi; Noguchi, Hidenori; Uosaki, Kohei
2014-09-01
Surfaces of both a cover glass and the flat plane of a semi-cylindrical quartz prism were modified with a mixture of positively and negatively charged silane coupling reagents (3-aminopropyltriethoxysilane (APTES) and 3-(trihydroxysilyl)propylmethylphosphonate (THPMP), respectively). The glass surface modified with a self-assembled monolayer (SAM) prepared at a mixing ratio of APTES:THPMP=4:6 was electrically almost neutral and was resistant to non-specific adsorption of proteins, whereas fibroblasts gradually adhered to an amphoteric (mixed) SAM surface probably due to its stiffness, though the number of adhered cells was relatively small. Sum frequency generation (SFG) spectra indicated that total intensity of the OH stretching region (3000-3600cm(-1)) for the amphoteric SAM-modified quartz immersed in liquid water was smaller than those for the positively and negatively charged SAM-modified quartz prisms and a bare quartz prism in contact with liquid water. These results suggested that water molecules at the interface of water and an amphoteric SAM-modified quartz prism are not strongly oriented in comparison with those at the interface of a lopsidedly charged SAM-modified quartz prism and bare quartz. The importance of charge neutralization for the anti-biofouling properties of solid materials was strongly suggested. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Xuechen; Geng, Jinling; Jia, Pengying; Zhang, Panpan; Zhang, Qi; Li, Yaru
2017-11-01
Excited by an alternating current voltage, a patterned discharge and a diffuse discharge are generated in a needle to liquid configuration. Using an intensified charge-coupled device (ICCD), temporal evolution of the discharge between the two electrodes is investigated for the diffuse mode and the patterned mode, respectively. For the diffuse mode, the positive discharge is in a glow regime, and the negative discharge is in a Townsend discharge regime. For the patterned mode, the discharge always belongs to the Townsend discharge regime. Moreover, in the patterned mode, various patterns including the single loop, single loop with the surrounding corona, triple loops, and concentric loops with a central spot are observed on the water surface with the increasing positive peak-value of the applied voltage (Upp). Temporally resolved images of the loop-patterns are captured on the water surface. From the electrical measurements and the ICCD imaging, it is found that the loop pattern emerges after the discharge bridges the two electrodes. Then, it begins to evolve and finally degenerates with the decrease in the discharge current. The pattern does not disappear until the discharge quenches. Formation of the loop-patterns is attributed to the role of negative ions.
Surface charge effects in protein adsorption on nanodiamonds.
Aramesh, M; Shimoni, O; Ostrikov, K; Prawer, S; Cervenka, J
2015-03-19
Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids.
NASA Astrophysics Data System (ADS)
Huang, J.; Kang, Q.; Yang, J. X.; Jin, P. W.
2017-08-01
The surface runoff and soil infiltration exert significant influence on soil erosion. The effects of slope gradient/length (SG/SL), individual rainfall amount/intensity (IRA/IRI), vegetation cover (VC) and antecedent soil moisture (ASM) on the runoff depth (RD) and soil infiltration (INF) were evaluated in a series of natural rainfall experiments in the South of China. RD is found to correlate positively with IRA, IRI, and ASM factors and negatively with SG and VC. RD decreased followed by its increase with SG and ASM, it increased with a further decrease with SL, exhibited a linear growth with IRA and IRI, and exponential drop with VC. Meanwhile, INF exhibits a positive correlation with SL, IRA and IRI and VC, and a negative one with SG and ASM. INF was going up and then down with SG, linearly rising with SL, IRA and IRI, increasing by a logit function with VC, and linearly falling with ASM. The VC level above 60% can effectively lower the surface runoff and significantly enhance soil infiltration. Two RD and INF prediction models, accounting for the above six factors, were constructed using the multiple nonlinear regression method. The verification of those models disclosed a high Nash-Sutcliffe coefficient and low root-mean-square error, demonstrating good predictability of both models.
Current rectification for transport of room-temperature ionic liquids through conical nanopores
Jiang, Xikai; Liu, Ying; Qiao, Rui
2016-02-09
Here, we studied the transport of room-temperature ionic liquids (RTILs) through charged conical nanopores using a Landau-Ginzburg-type continuum model that takes steric effect and strong ion-ion correlations into account. When the surface charge is uniform on the pore wall, weak current rectification is observed. When the charge density near the pore base is removed, the ionic current is greatly suppressed under negative bias voltage while nearly unchanged under positive bias voltage, thereby leading to enhanced current rectification. These predictions agree qualitatively with prior experimental observations, and we elucidated them by analyzing the different components of the ionic current and themore » structural changes of electrical double layers (EDLs) at the pore tip under different bias voltages and surface charge patterns. These analyses reveal that the different modifications of the EDL structure near the pore tip by the positive and negative bias voltages cause the current rectification and the observed dependence on the distribution of surface charge on the pore wall. The fact that the current rectification phenomena are captured qualitatively by the simple model originally developed for describing EDLs at equilibrium conditions suggests that this model may be promising for understanding the ionic transport under nonequilibrium conditions when the EDL structure is strongly perturbed by external fields.« less
1987-12-15
interactions (ac- either positive or negative surface cording to Bakker), occurred for all charge and ]inked this to OB bchavior. tested btomaterinls, but were...an~d 10 weeks. treated for edentulousuesa an excellent At t*e end of the test period, the imp- function can be a-intained for decades. plants vers...covotiers and tested in tjtmro as probably collagen) rather than synovium potential intestinal bloadhesives. The is the sperific target for microbial ad
2011-03-01
into separate parts, transmitted into different directions , and then recombined upon a surface to produce interference. The concern with this type of...photoresist (PR), is a radiation sensitive compound that is classified as positive or negative, depending on how it responds to radiation . Each is designed...emerging waves, and are referred to as diffraction gratings. Upon reflection from these kinds of gratings, light scattered from the periodic surface
NASA Astrophysics Data System (ADS)
Mochalskyy, S.; Wünderlich, D.; Ruf, B.; Franzen, P.; Fantz, U.; Minea, T.
2014-02-01
Decreasing the co-extracted electron current while simultaneously keeping negative ion (NI) current sufficiently high is a crucial issue on the development plasma source system for ITER Neutral Beam Injector. To support finding the best extraction conditions the 3D Particle-in-Cell Monte Carlo Collision electrostatic code ONIX (Orsay Negative Ion eXtraction) has been developed. Close collaboration with experiments and other numerical models allows performing realistic simulations with relevant input parameters: plasma properties, geometry of the extraction aperture, full 3D magnetic field map, etc. For the first time ONIX has been benchmarked with commercial positive ions tracing code KOBRA3D. A very good agreement in terms of the meniscus position and depth has been found. Simulation of NI extraction with different e/NI ratio in bulk plasma shows high relevance of the direct negative ion extraction from the surface produced NI in order to obtain extracted NI current as in the experimental results from BATMAN testbed.
Huang, Ke; Boerhan, Rena; Liu, Changming; Jiang, Guoqiang
2017-12-04
Nanoparticles (NPs) are widely studied as tumor targeted vehicles. The penetration of NPs into the tumor is considered as a major barrier for delivery of NPs into tumor cell and a big challenge to translate NPs from lab to the clinic. The objective of this study is to know how the surface charge of NPs, the protein corona surrounding the NPs, and the fluid flow around the tumor surface affect the penetration and accumulation of NPs into the tumor, through in vitro penetration study based on a spheroid-on-chip system. Surface decorated polystyrene (PS) NPs (100 nm) carrying positive and negative surface charge were loaded to the multicellular spheroids under static and flow conditions, in the presence or absence of serum proteins. NP penetration was investigated by confocal laser microscopy scanning followed with quantitative image analysis. The results reveal that negatively charged NPs are attached more on the spheroid surface and easier to penetrate into the spheroids. Protein corona, which is formed surrounding the NPs in the presence of serum protein, changes the surface properties of the NPs, weakens the NP-cell affinity, and, therefore, results in lower NP concentration on the spheroid surface but might facilitate deeper penetration. The exterior fluid flow enhances the interstitial flow into the spheroid, which benefits the penetration but also strips the NPs (especially the NPs with protein corona) on the spheroid surface, which decreases the penetration flux significantly. The maximal penetration was obtained by applying negatively charged NPs without protein corona under the flow condition. We hope the present study will help to understand the spatiotemporal performance of drug delivery NPs and inform the rational design of NPs with highly defined drug accumulation localized at a target site.
MacDonald, Daniel E.; Rapuano, Bruce E.; Schniepp, Hannes C.
2010-01-01
In the current study, we have compared the effects of heat and radiofrequency plasma glow discharge (RFGD) treatment of a Ti6Al4V alloy on the physico-chemical properties of the alloy’s surface oxide. Titanium alloy (Ti6Al4V) disks were passivated alone, heated to 600 °C, or RFGD plasma treated in pure oxygen. RFGD treatment did not alter the roughness, topography, elemental composition or thickness of the alloy’s surface oxide layer. In contrast, heat treatment altered oxide topography by creating a pattern of oxide elevations approximately 50–100 nm in diameter. These nanostructures exhibited a three-fold increase in roughness compared to untreated surfaces when RMS roughness was calculated after applying a spatial high-pass filter with a 200 nm cutoff wavelength. Heat treatment also produced a surface enrichment in aluminum and vanadium oxides. Both RFGD and heat treatment produced similar increases in oxide wettability. Atomic force microscopy (AFM) measurements of metal surface oxide net charge signified by a long range force of attraction to or repulsion from a (negatively charged) silicon nitride AFM probe were also obtained for all three experimental groups. Force measurements showed that the RFGD-treated Ti6Al4V samples demonstrated a higher net positive surface charge at pH values below 6 and a higher net negative surface charge at physiological pH (pH values between 7 and 8) compared to control and heat-treated samples These findings suggest that RFGD treatment of metallic implant materials can be used to study the role of negatively charged surface oxide functional groups in protein bioactivity, osteogenic cell behavior and osseointegration independently of oxide topography. PMID:20880672
Patel, Naiya B.; Hinojosa, Jorge A.; Zhu, Meifang
2018-01-01
Purpose We have previously shown that invasive strains of Pseudomonas aeruginosa exploit the robust neutrophil response to form biofilms on contact lens surfaces and invade the corneal epithelium. The present study investigated the ability of multiple bacterial genera, all commonly recovered during contact lens–related infectious events, to adhere to and form biofilms on contact lens surfaces in the presence of neutrophils. Methods Five reference strains from the American Type Culture Collection were used: P. aeruginosa, Serratia marcescens, Stenotrophomonas maltophilia, Staphylococcus aureus, and Staphylococcus epidermidis. Each bacterial strain was incubated overnight with or without stimulated human neutrophils in the presence of an unworn contact lens. Standard colony counts and laser scanning confocal microscopy of BacLight-stained contact lenses were used to assess bacterial viability. Three-dimensional modeling of lens-associated biofilms with Imaris software was used to determine the biofilm volume. Lenses were further examined using scanning electron microscopy. Results Less than 1% of the starting inoculum adhered to the contact lens surface incubated with bacteria alone. There were no differences in adhesion rates to contact lens surfaces between bacteria in the absence of neutrophils for either the Gram-negative or Gram-positive test strains. Bacterial adhesion to contact lens surfaces was accelerated in the presence of human neutrophils for all test strains. This effect was least evident with S. epidermidis. There was also an increase in the number of viable bacteria recovered from contact lens surfaces (p<0.001 for the Gram-negative and Gram-positive test strains, respectively) and in biofilm volume (p<0.001 for the Gram-negative test strains, p = 0.005 for S. aureus). Conclusions These results show that in addition to P. aeruginosa, other bacteria commonly encountered during contact lens wear possess the capacity to utilize neutrophil-derived cellular debris to facilitate colonization of the lens surface. These data suggest that this phenomenon is conserved among multiple genera. Thus, during contact lens wear, the presence of inflammation and the accumulation of neutrophil debris under the posterior lens surface likely contribute to colonization of the lens. Further studies are needed to correlate these findings with risk for infection in an animal model. PMID:29422767
USDA-ARS?s Scientific Manuscript database
The application of sliver (Ag) as an antimicrobial agent dates back to the 1800s. Silver systems release positively charged silver ions (Ag+), when in aqueous media, that disrupts negatively charged surfaces of bacterial membranes, thus resulting in bacterial death. Its antimicrobial utility is not ...
NASA Astrophysics Data System (ADS)
Buchner, E.; Hoelzel, M.; Schmieder, M.; Rasser, M.; Fietzke, J.; Frische, M.; Kutterolf, S.
2017-07-01
A metallic fragment on a shatter cone surface of a shattered limestone block is composed of Fe, Ni, and Co. Kamacite, taenite, troilite, and schreibersite were identified. These findings suggest this fragment is a piece of the Steinheim projectile.
USDA-ARS?s Scientific Manuscript database
Transport and retention behavior of multiwalled carbon nanotubes (MWCNTs) was studied in mixtures of negatively charged quartz sand (QS) and positively charged goethite-coated sand (GQS) to assess the role of chemical heterogeneity. The linear equilibrium sorption model provided a good description o...
Ruzicka, Filip; Horka, Marie; Hola, Veronika; Kubesova, Anna; Pavlik, Tomas; Votava, Miroslav
2010-03-01
The isoelectric points of 39 Candida parapsilosis strains were determined by means of capillary isoelectric focusing. The value of the isoelectric point corresponded well with cell surface hydrophobicity, as well as with the ability to form biofilm in these yeasts. Copyright 2010 Elsevier B.V. All rights reserved.
Magiorkinis, E; Paraskevis, D; Pavlopoulou, I D; Kantzanou, M; Haida, C; Hatzakis, A; Boletis, I N
2013-08-01
The purpose of this study was to present a fatal case of fulminant hepatitis B (FHB) that developed in a renal transplant recipient, immunized against hepatitis B, 1 year post transplantation. Polymerase chain reaction amplification and full genome sequencing were performed to investigate whether specific mutations were associated with hepatitis B virus (HBV) transmission and FHB. Molecular analysis revealed multiple mutations in various open reading frames of HBV, the most important being the G145R escape mutation and a frameshift mutation-insertion (1838insA) within the pre-C/C reading frame. Our results highlight the possibility of developing FHB, despite previous immunization against HBV or administration of hyperimmune gammaglobulin, because of the selection of escape virus mutants. The current literature and guidelines regarding renal transplantation from hepatitis B surface antigen (HBsAg)-positive to HBsAg-negative patients were also reviewed. © 2013 John Wiley & Sons A/S.
Anionic and cationic drug sorption on interpolyelectrolyte complexes.
de Lima, C R M; Gomes, D N; de Morais Filho, J R; Pereira, M R; Fonseca, J L C
2018-06-15
Interpolyelectrolyte complexes of chitosan and poly(sodium 4-styrenesulfonate) [NaPSS] were synthesized and obtained in the form of solid particles, with two different sulfonate to aminium molar ratios: 0.7, resulting in particles with positive zeta potential (IPEC + ), and 1.4, yielding particles with negative zeta potential (IPEC - ). Both particles were characterized as potential drug sorbents using differently charged drugs: sodium cromoglycate (negatively charged), and tetracycline hydrochloride (positively charged). The adsorption isotherm for cromoglycate and tetracycline on IPEC + was adequately described by the Langmuir model, while the IPEC - sorption of tetracycline followed the Redlich-Peterson isotherm without the occurrence of cromoglycate sorption. The sorption kinetics consisted of two processes, one fast and the other slow, which were correlated to purely surface-related interactions and processes that resulted in diffusion and/or destruction/rearrangement on the particle surface and subsurface, respectively. Charge build up equilibrium and kinetics were also monitored via zeta potential measurements, and the differences between mass drug uptake and particle charging were used to propose adsorption mechanisms for the systems studied in this work. Copyright © 2018 Elsevier B.V. All rights reserved.
Analysis of Static Spacecraft Floating Potential at Low Earth Orbit (LEO)
NASA Technical Reports Server (NTRS)
Herr, Joel L.; Hwang, K. S.; Wu, S. T.
1995-01-01
Spacecraft floating potential is the charge on the external surfaces of orbiting spacecraft relative to the space. Charging is caused by unequal negative and positive currents to spacecraft surfaces. The charging process continues until the accelerated particles can be collected rapidly enough to balance the currents at which point the spacecraft has reached its equilibrium or floating potential. In low inclination. Low Earth Orbit (LEO), the collection of positive ion and negative electrons. in a particular direction. are typically not equal. The level of charging required for equilibrium to be established is influenced by the characteristics of the ambient plasma environment. by the spacecraft motion, and by the geometry of the spacecraft. Using the kinetic theory, a statistical approach for studying the interaction is developed. The approach used to study the spacecraft floating potential depends on which phenomena are being applied. and on the properties of the plasma. especially the density and temperature. The results from kinetic theory derivation are applied to determine the charging level and the electric potential distribution at an infinite flat plate perpendicular to a streaming plasma using finite-difference scheme.
Galor, Anat; Garg, Nisha; Nanji, Afshan; Joag, Madhura; Nuovo, Gerard; Palioura, Sotiria; Wang, Gaofeng; Karp, Carol L
2015-11-01
To identify the frequency of human papilloma virus (HPV) in ocular surface squamous neoplasia (OSSN) and to evaluate differences in clinical features and treatment response of tumors with positive versus negative HPV results. Retrospective case series. Twenty-seven patients with OSSN. Ocular surface squamous neoplasia specimens were analyzed for the presence of HPV. Clinical features and response to interferon were determined retrospectively and linked to the presence (versus absence) of HPV. Clinical characteristics of OSSN by HPV status. Twenty-one of 27 tumors (78%) demonstrated positive HPV results. The HPV genotypes identified included HPV-16 in 10 tumors (48%), HPV-31 in 5 tumors, HPV-33 in 1 tumor, HPV-35 in 2 tumors, HPV-51 in 2 tumors, and a novel HPV in 3 tumors (total of 23 tumors because 1 tumor had 3 identified genotypes). Tumors found in the superior limbus were more likely to show positive HPV results (48% vs. 0%; P=0.06, Fisher exact test). Tumors with positive HPV-16 results were larger (68 vs. 34 mm2; P=0.08, Mann-Whitney U test) and were more likely to have papillomatous morphologic features (50% vs. 12%; P=0.07, Fisher exact test) compared with tumors showing negative results for HPV-16. Human papilloma virus status was not found to be associated with response to interferon therapy (P=1.0, Fisher exact test). Metrics found to be associated with a nonfavorable response to interferon were male gender and tumors located in the superior conjunctivae. The presence of HPV in OSSN seems to be more common in lesions located in the nonexposed, superior limbus. Human papilloma virus presence does not seem to be required for a favorable response to interferon therapy. Copyright © 2015 American Academy of Ophthalmology. All rights reserved.
Rodríguez-Cattáneo, A; Aguilera, P; Cilleruelo, E; Crampton, W G R; Caputi, A A
2013-04-15
Previous studies describe six factors accounting for interspecific diversity of electric organ discharge (EOD) waveforms in Gymnotus. At the cellular level, three factors determine the locally generated waveforms: (1) electrocyte geometry and channel repertoire; (2) the localization of synaptic contacts on electrocyte surfaces; and (3) electric activity of electromotor axons preceding the discharge of electrocytes. At the organismic level, three factors determine the integration of the EOD as a behavioral unit: (4) the distribution of different types of electrocytes and specialized passive tissue forming the electric organ (EO); (5) the neural mechanisms of electrocyte discharge coordination; and (6) post-effector mechanisms. Here, we reconfirm the importance of the first five of these factors based on comparative studies of a wider diversity of Gymnotus than previously investigated. Additionally, we report a hitherto unseen aspect of EOD diversity in Gymnotus. The central region of the EO (which has the largest weight on the conspecific-received field) usually exhibits a negative-positive-negative pattern where the delay between the early negative and positive peaks (determined by neural coordination mechanisms) matches the delay between the positive and late negative peaks (determined by electrocyte responsiveness). Because delays between peaks typically determine the peak power frequency, this matching implies a co-evolution of neural and myogenic coordination mechanisms in determining the spectral specificity of the intraspecific communication channel. Finally, we define four functional species groups based on EO/EOD structure. The first three exhibit a heterogeneous EO in which doubly innervated electrocytes are responsible for a main triphasic complex. Group I species exhibit a characteristic cephalic extension of the EO. Group II species exhibit an early positive component of putative neural origin, and strong EO auto-excitability. Group III species exhibit an early, slow, negative wave of abdominal origin, and variation in EO auto-excitability. Representatives of Group IV generate a unique waveform comprising a main positive peak followed by a small, load-dependent negative component.
Gastpar, Robert; Gehrmann, Mathias; Bausero, Maria A; Asea, Alexzander; Gross, Catharina; Schroeder, Josef A; Multhoff, Gabriele
2005-06-15
Detergent-soluble membrane vesicles are actively released by human pancreas (Colo-/Colo+) and colon (CX-/CX+) carcinoma sublines, differing in their capacity to present heat shock protein 70 (Hsp70)/Bag-4 on their plasma membranes. Floating properties, acetylcholine esterase activity, and protein composition characterized them as exosomes. An enrichment of Rab-4 documented their intracellular transport route from early endosomes to the plasma membrane. After solubilization, comparable amounts of cytosolic proteins, including tubulin, Hsp70, Hsc70, and Bag-4, but not ER-residing Grp94 and calnexin, were detectable in tumor-derived exosomes. However, with respect to the exosomal surface, only Colo+/CX+ but not Colo-/CX- derived exosomes were Hsp70 membrane positive. Therefore, concomitant with an up-regulated cell surface density of activation markers, migration and Hsp70 reactivity of natural killer (NK) cells was stimulated selectively by Hsp70/Bag-4 surface-positive exosomes, but not by their negative counterparts and tumor cell lysates. Moreover, the exosome-mediated lytic activity of NK cells was blockable by Hsp70-specific antibody. As already shown for TKD stimulation, NK cells preincubated with Hsp70 surface-positive exosomes initiated apoptosis in tumors through granzyme B release. In summary, our data provide an explanation how Hsp70 reactivity in NK cells is induced by tumor-derived exosomes.
Gastpar, Robert; Gehrmann, Mathias; Bausero, Maria A.; Asea, Alexzander; Gross, Catharina; Schroeder, Josef A.
2006-01-01
Detergent-soluble membrane vesicles are actively released by human pancreas (Colo−/Colo+) and colon (CX−/CX+) carcinoma sublines, differing in their capacity to present heat shock protein 70 (Hsp70)/Bag-4 on their plasma membranes. Floating properties, acetylcholine esterase activity, and protein composition characterized them as exosomes. An enrichment of Rab-4 documented their intracellular transport route from early endosomes to the plasma membrane. After solubilization, comparable amounts of cytosolic proteins, including tubulin, Hsp70, Hsc70, and Bag-4, but not ER-residing Grp94 and calnexin, were detectable in tumor-derived exosomes. However, with respect to the exosomal surface, only Colo+/CX+ but not Colo−/CX exosomes were Hsp70 membrane derived positive. Therefore, concomitant with an up-regulated cell surface density of activation markers, migration and Hsp70 reactivity of natural killer (NK) cells was stimulated selectively by Hsp70/Bag-4 surface-positive exosomes, but not by their negative counterparts and tumor cell lysates. Moreover, the exosome-mediated lytic activity of NK cells was blockable by Hsp70-specific antibody. As already shown for TKD stimulation, NK cells preincubated with Hsp70 surface-positive exosomes initiated apoptosis in tumors through granzyme B release. In summary, our data provide an explanation how Hsp70 reactivity in NK cells is induced by tumor-derived exosomes. PMID:15958569
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nozaki, T., E-mail: nozaki@ecei.tohoku.ac.jp; Oida, M.; Ashida, T.
We investigated the effect of Pt insertion on a Cr{sub 2}O{sub 3}/Co exchange coupling system. The perpendicular exchange bias μ{sub 0}H{sub ex} decreased with increasing Pt insertion layer thickness, and we observed positive μ{sub 0}H{sub ex} for samples with relatively thick Pt insertion layers. We also examined the cooling field μ{sub 0}H{sub fc} dependence of μ{sub 0}H{sub ex} for the samples. At small μ{sub 0}H{sub fc}, all samples exhibited negative μ{sub 0}H{sub ex}. With increasing μ{sub 0}H{sub fc}, a shift of μ{sub 0}H{sub ex} from negative to positive was observed. In the past, similar behaviors were observed for FeF{sub 2}/Femore » systems exhibiting positive μ{sub 0}H{sub ex}. In addition, the μ{sub 0}H{sub fc} dependence of μ{sub 0}H{sub ex} was well fitted by an equation taking into account the Zeeman energy at the surface of an antiferromagnet as well as an antiferromagnetic exchange coupling. The results strongly suggest that (1) Cr{sub 2}O{sub 3} surface spin is affected by the external magnetic field and (2) the coupling at the Cr{sub 2}O{sub 3}/Pt/Co interface is antiferromagnetic.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bray, Jacob; Hensley, Alyssa J. R.; Collinge, Greg
The impact of an external electric field on the concerted behavior of oxygen over a multi-faceted catalytic Fe grain is determined via the interpolation of ab initio models of oxygen adsorption on Fe(100), Fe(110), and Fe(111) in the presence of an external electric field. The application of both negative and positive electric fields weaken the adsorption strength for oxygen on all three surface facets, with Fe(110) experiencing the greatest effect. Kinetic models of a multi-faceted catalytic Fe grain show that the average oxygen coverage over the grain surface is reduced under the influence of both a negative and positive electricmore » field, which are consistent with phase diagram results at comparable pressures. Furthermore, we show that there is a weak synergistic effect between a Pd promoter and a positive electric field on the oxygen adsorption energy, i.e. the Pd promoter and electric field combination weaken the oxygen adsorption energy to a greater degree than the simple addition of both components separately. In conclusion, the work shows that the application of an applied external electric field may be a useful tool in fine-tuning chemical properties of Fe-based catalysts in hydrodeoxygenation applications.« less
Bray, Jacob; Hensley, Alyssa J. R.; Collinge, Greg; ...
2018-04-15
The impact of an external electric field on the concerted behavior of oxygen over a multi-faceted catalytic Fe grain is determined via the interpolation of ab initio models of oxygen adsorption on Fe(100), Fe(110), and Fe(111) in the presence of an external electric field. The application of both negative and positive electric fields weaken the adsorption strength for oxygen on all three surface facets, with Fe(110) experiencing the greatest effect. Kinetic models of a multi-faceted catalytic Fe grain show that the average oxygen coverage over the grain surface is reduced under the influence of both a negative and positive electricmore » field, which are consistent with phase diagram results at comparable pressures. Furthermore, we show that there is a weak synergistic effect between a Pd promoter and a positive electric field on the oxygen adsorption energy, i.e. the Pd promoter and electric field combination weaken the oxygen adsorption energy to a greater degree than the simple addition of both components separately. In conclusion, the work shows that the application of an applied external electric field may be a useful tool in fine-tuning chemical properties of Fe-based catalysts in hydrodeoxygenation applications.« less
Cloud-radiation interactions - Effects of cirrus optical thickness feedbacks
NASA Technical Reports Server (NTRS)
Somerville, Richard C. J.; Iacobellis, Sam
1987-01-01
The paper is concerned with a cloud-radiation feedback mechanism which may be an important component of the climate changes expected from increased atmospheric concentrations of carbon dioxide and other trace greenhouse gases. A major result of the study is that cirrus cloud optical thickness feedbacks may indeed tend to increase the surface warming due to trace gas increases. However, the positive feedback from cirrus appears to be generally weaker than the negative effects due to lower clouds. The results just confirm those of earlier research indicating that the net effect of cloud optical thickness feedbacks may be a negative feedback which may substantially (by a factor of about 2) reduce the surface warming due to the doubling of CO2, even in the presence of cirrus clouds.
NASA Astrophysics Data System (ADS)
Abel, R.; Boning, C. W.
2016-02-01
Current practice in ocean-only model simulations is to force the ocean with a prescribed atmospheric state using bulk formulations. This practice provides a strong thermal restoring to the surface ocean with a typical time-scale of one month. In the real ocean a positive feedback (salinity advection) and a negative feedback (temperature advection) are associated with the Atlantic Meridional Overturning Circulation (AMOC). The surface branch of the AMOC transports warm and salty (relative to the mean conditions) to the subpolar North Atlantic and mix with the near-surface waters. A strong AMOC would therefore warm the subpolar North Atlantic, decrease deep water formation and also reduce AMOC strength (negative feedback). This negative feedback is diminished due to the surface forcing formulation and makes the system excessively sensitive to details in the freshwater fluxes . Instead, additional and unrealistic Sea Surface Salinity (SSS) restoring is applied. There have been several suggestions during the last 20 years for at least partially alleviating the problem. This includes some simplified model of the atmospheric mixed layer (AML) (CheapAML; Deremble et al., 2013) with prescribed winds which allows some feedback of SST anomalies on the near-surface air temperature and humidity needed to calculate the turbulent surface fluxes. We show that if the turbulent heat fluxes are modelled by the simple AML model net-fluxes get more realistic. Commonly ocean models experience an AMOC slowdown if SSS restoring is turned off. In the new system (ORCA05 with turbulent fluxes from CheapAML) this slowdown can be eliminated.
Hassan, Hatem A.F.M.; Smyth, Lesley; Rubio, Noelia; Ratnasothy, Kulachelvy; Wang, Julie T.-W.; Bansal, Sukhvinder S.; Summers, Huw D.; Diebold, Sandra S.; Lombardi, Giovanna; Al-Jamal, Khuloud T.
2016-01-01
Carbon nanotubes (CNTs) have shown marked capabilities in enhancing antigen delivery to antigen presenting cells. However, proper understanding of how altering the physical properties of CNTs may influence antigen uptake by antigen presenting cells, such as dendritic cells (DCs), has not been established yet. We hypothesized that altering the physical properties of multi-walled CNTs (MWNTs)-antigen conjugates, e.g. length and surface charge, can affect the internalization of MWNT-antigen by DCs, hence the induced immune response potency. For this purpose, pristine MWNTs (p-MWNTs) were exposed to various chemical reactions to modify their physical properties then conjugated to ovalbumin (OVA), a model antigen. The yielded MWNTs-OVA conjugates were long MWNT-OVA (~ 386 nm), bearing net positive charge (5.8 mV), or short MWNTs-OVA (~ 122 nm) of increasing negative charges (− 23.4, − 35.8 or − 39 mV). Compared to the short MWNTs-OVA bearing high negative charges, short MWNT-OVA with the lowest negative charge demonstrated better cellular uptake and OVA-specific immune response both in vitro and in vivo. However, long positively-charged MWNT-OVA showed limited cellular uptake and OVA specific immune response in contrast to short MWNT-OVA displaying the least negative charge. We suggest that reduction in charge negativity of MWNT-antigen conjugate enhances cellular uptake and thus the elicited immune response intensity. Nevertheless, length of MWNT-antigen conjugate might also affect the cellular uptake and immune response potency; highlighting the importance of physical properties as a consideration in designing a MWNT-based vaccine delivery system. PMID:26802552
Roy, Biplab; Panda, Amiya Kumar; Parimi, Srinivas; Ametov, Igor; Barnes, Timothy; Prestidge, Clive A
2014-01-01
Studies on the interaction of different generation poly (amido amine) (PAMAM) dendrimers (2G, 4G and 6G) and liposomes of different compositions were carried out by a combined turbidity, dynamic light scattering and atomic force microscopic measurements. Liposomes comprising soy lecithin (SLC, negative surface charge), 1, 2-palmitoyl-sn-glycero-3-phosphatidylcholine (DPPC, mildly positive surface charge), 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol (DPPG, negatively charged) and a biologically simulated mixture of DPPC + DPPG (7:3, M/M, negatively charged) were used as model bilayers. 30 wt% cholesterol was used in each combination as it is known to control the fluidity of membrane bilayers. Silica was used as a negatively charged hard sphere model with an aim to compare the results. Both the turbidity and hydrodynamic diameter values of all the liposomes, except DPPC, passed through maxima upon the progressive addition of PAMAM; the effect was insignificant in case of DPPC. Formation of dendriosome, a complex formed between dendrimer and liposome, resulted in the charge reversal of the negatively charged liposomes. Interaction between PAMAM and liposome was found to be governed by electrostatic as well as hydrogen bonding. Generation dependent PAMAM activity followed the order: 6G >4G>2G in terms of overall dendrimer concentration. However, interestingly, the order was reverse when PAMAM activity was considered in terms of total end group concentrations. AFM studies reveal the rupture of bilayer structure upon addition of dendrimer.
Asymmetric Response of the Equatorial Pacific SST to Climate Warming and Cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Fukai; Luo, Yiyong; Lu, Jian
The response of the equatorial Pacific Ocean to heat fluxes of equal amplitude but opposite sign is investigated using the Community Earth System Model (CESM). Results show a strong asymmetry in SST changes. In the eastern equatorial Pacific (EEP), the warming responding to the positive forcing exceeds the cooling to the negative forcing; while in the western equatorial Pacific (WEP), it is the other way around and the cooling surpasses the warming. This leads to a zonal dipole asymmetric structure, with positive values in the east and negative values in the west. A surface heat budget analysis suggests that themore » SST asymmetry is mainly resulted from the oceanic horizontal advection and vertical entrainment, with both of their linear and nonlinear components playing a role. For the linear component, its change appears to be more significant over the EEP (WEP) in the positive (negative) forcing scenario, favoring the seesaw pattern of the SST asymmetry. For the nonlinear component, its change acts to warm (cool) the EEP (WEP) in both scenarios, also favorable for the development of the SST asymmetry. Additional experiments with a slab ocean confirm the dominant role of ocean dynamical processes for this SST asymmetry. The net surface heat flux, in contrast, works to reduce the SST asymmetry through its shortwave radiation and latent heat flux components, with the former being related to the nonlinear relationship between SST and convection, and the latter being attributable to Newtonian damping and air-sea stability effects. The suppressing effect of shortwave radiation on SST asymmetry is further verified by partially coupled overriding experiments.« less
Asymmetric response of the equatorial Pacific SST to climate warming and cooling
NASA Astrophysics Data System (ADS)
Luo, Y.; Liu, F.; Lu, J.
2017-12-01
The response of the equatorial Pacific Ocean to heat fluxes of equal amplitude but opposite sign is investigated using the Community Earth System Model (CESM). Results show a strong asymmetry in SST changes. In the eastern equatorial Pacific (EEP), the warming responding to the positive forcing exceeds the cooling to the negative forcing; while in the western equatorial Pacific (WEP), it is the other way around and the cooling surpasses the warming. This leads to a zonal dipole asymmetric structure, with positive values in the east and negative values in the west. A surface heat budget analysis suggests that the SST asymmetry is mainly resulted from the oceanic horizontal advection and vertical entrainment, with both of their linear and nonlinear components playing a role. For the linear component, its change appears to be more significant over the EEP (WEP) in the positive (negative) forcing scenario, favoring the seesaw pattern of the SST asymmetry. For the nonlinear component, its change acts to warm (cool) the EEP (WEP) in both scenarios, also favorable for the development of the SST asymmetry. Additional experiments with a slab ocean confirm the dominant role of ocean dynamical processes for this SST asymmetry. The net surface heat flux, in contrast, works to reduce the SST asymmetry through its shortwave radiation and latent heat flux components, with the former being related to the nonlinear relationship between SST and convection, and the latter being attributable to Newtonian damping and air-sea stability effects. The suppressing effect of shortwave radiation on SST asymmetry is further verified by partially coupled overriding experiments.
Keechilot, Cinzia S; Shenoy, Veena; Kumar, Anil; Biswas, Lalitha; Vijayrajratnam, Sukhithasri; Dinesh, Kavitha; Nair, Prem
With the introduction of highly sensitive hepatitis B surface antigen immunoassay, transfusion associated HBV infection have reduced drastically but they still tend to occur due to blood donors with occult hepatitis B infection (OBI) and window period (WP) infection. Sera from, 24338 healthy voluntary blood donors were screened for HBsAg, HIV and HCV antibody using Vitros Enhanced Chemiluminescent Immunoassay. The median age of the donor population was 30 (range 18-54) with male preponderance (98%). All serologically negative samples were screened by nucleic acid testing (NAT) for viral DNA and RNA. NAT-positive samples were subjected to discriminatory NAT for HBV, HCV, and HIV and all samples positive for HBV DNA were tested for anti-HBc, anti-HBs, HBeAg. Viral load was determined using artus HBV RG PCR Kit. Of the 24,338 donors screened, 99.81% (24292/24338) were HBsAg negative of which NAT was positive for HBV DNA in 0.0205% (5/24292) donors. Four NAT positive donors had viral load of <200 IU/ml making them true cases of OBI. One NAT positive donor was negative for all antibodies making it a case of WP infection. Among OBI donors, 75% (3/4) were immune and all were negative for HBeAg. Precise HBV viral load could not be determined in all (5/5) NAT positive donors due to viral loads below the detection limit of the artus HBV RG PCR Kit. The overall incidence of OBI and WP infections was found to be low at 1 in 6503 and 1 in 24214 donations, respectively. More studies are needed to determine the actual burden of WP infections in Indian blood donors.
Ozeki, Itaru; Nakajima, Tomoaki; Suii, Hirokazu; Tatsumi, Ryoji; Yamaguchi, Masakatsu; Kimura, Mutsuumi; Arakawa, Tomohiro; Kuwata, Yasuaki; Ohmura, Takumi; Hige, Shuhei; Karino, Yoshiyasu; Toyota, Joji
2018-02-01
We investigated the utility of high-sensitivity hepatitis B surface antigen (HBsAg) assays compared with conventional HBsAg assays. Using serum samples from 114 hepatitis B virus (HBV) carriers in whom HBsAg seroclearance was confirmed by conventional HBsAg assays (cut-off value, 0.05 IU/mL), the amount of HBsAg was re-examined by high-sensitivity HBsAg assays (cut-off value, 0.005 IU/mL). Cases negative for HBsAg in both assays were defined as consistent cases, and cases positive for HBsAg in the high-sensitivity HBsAg assay only were defined as discrepant cases. There were 55 (48.2%) discrepant cases, and the range of HBsAg titers determined by high-sensitivity HBsAg assays was 0.005-0.056 IU/mL. Multivariate analysis showed that the presence of nucleos(t)ide analog therapy, liver cirrhosis, and negative anti-HBs contributed to the discrepancies between the two assays. Cumulative anti-HBs positivity rates among discrepant cases were 12.7%, 17.2%, 38.8%, and 43.9% at baseline, 1 year, 3 years, and 5 years, respectively, whereas the corresponding rates among consistent cases were 50.8%, 56.0%, 61.7%, and 68.0%, respectively. Hepatitis B virus DNA negativity rates were 56.4% and 81.4% at baseline, 51.3% and 83.3% at 1 year, and 36.8% and 95.7% at 3 years, among discrepant and consistent cases, respectively. Hepatitis B surface antigen reversion was observed only in discrepant cases. Re-examination by high-sensitivity HBsAg assays revealed that HBsAg was positive in approximately 50% of cases. Cumulative anti-HBs seroconversion rates and HBV-DNA seroclearance rates were lower in these cases, suggesting a population at risk for HBsAg reversion. © 2017 The Japan Society of Hepatology.
Macro-Invertebrate Decline in Surface Water Polluted with Imidacloprid
Van Dijk, Tessa C.; Van Staalduinen, Marja A.; Van der Sluijs, Jeroen P.
2013-01-01
Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we expected that surface water pollution with imidacloprid would negatively impact aquatic ecosystems. Availability of extensive monitoring data on the abundance of aquatic macro-invertebrate species, and on imidacloprid concentrations in surface water in the Netherlands enabled us to test this hypothesis. Our regression analysis showed a significant negative relationship (P<0.001) between macro-invertebrate abundance and imidacloprid concentration for all species pooled. A significant negative relationship was also found for the orders Amphipoda, Basommatophora, Diptera, Ephemeroptera and Isopoda, and for several species separately. The order Odonata had a negative relationship very close to the significance threshold of 0.05 (P = 0.051). However, in accordance with previous research, a positive relationship was found for the order Actinedida. We used the monitoring field data to test whether the existing three water quality norms for imidacloprid in the Netherlands are protective in real conditions. Our data show that macrofauna abundance drops sharply between 13 and 67 ng l−1. For aquatic ecosystem protection, two of the norms are not protective at all while the strictest norm of 13 ng l−1 (MTR) seems somewhat protective. In addition to the existing experimental evidence on the negative effects of imidacloprid on invertebrate life, our study, based on data from large-scale field monitoring during multiple years, shows that serious concern about the far-reaching consequences of the abundant use of imidacloprid for aquatic ecosystems is justified. PMID:23650513
Study of negative ion transport phenomena in a plasma source
NASA Astrophysics Data System (ADS)
Riz, D.; Paméla, J.
1996-07-01
NIETZSCHE (Negative Ions Extraction and Transport ZSimulation Code for HydrogEn species) is a negative ion (NI) transport code developed at Cadarache. This code calculates NI trajectories using a 3D Monte-Carlo technique, taking into account the main destruction processes, as well as elastic collisions (H-/H+) and charge exchanges (H-/H0). It determines the extraction probability of a NI created at a given position. According to the simulations, we have seen that in the case of volume production, only NI produced close to the plasma grid (PG) can be extracted. Concerning the surface production, we have studied how NI produced on the PG and accelerated by the plasma sheath backward into the source could be extracted. We demonstrate that elastic collisions and charge exchanges play an important role, which in some conditions dominates the magnetic filter effect, which acts as a magnetic mirror. NI transport in various conditions will be discussed: volume/surface production, high/low plasmas density, tent filter/transverse filter.
Positively charged particles in dusty plasmas.
Samarian, A A; Vaulina, O S; Nefedov, A P; Fortov, V E; James, B W; Petrov, O F
2001-11-01
The trapping of dust particles has been observed in a dc abnormal glow discharge dominated by electron attachment. A dust cloud of several tens of positively charged particles was found to form in the anode sheath region. An analysis of the experimental conditions revealed that these particles were positively charged due to emission process, in contrast to most other experiments on the levitation of dust particles in gas-discharge plasmas where negatively charged particles are found. An estimate of the particle charge, taking into account the processes of photoelectron and secondary electron emission from the particle surface, is in agreement with the experimental measured values.
Homogenization of Tianjin monthly near-surface wind speed using RHtestsV4 for 1951-2014
NASA Astrophysics Data System (ADS)
Si, Peng; Luo, Chuanjun; Liang, Dongpo
2018-05-01
Historical Chinese surface meteorological records provided by the special fund for basic meteorological data from the National Meteorological Information Center (NMIC) were processed to produce accurate wind speed data. Monthly 2-min near-surface wind speeds from 13 observation stations in Tianjin covering 1951-2014 were homogenized using RHtestV4 combined with their metadata. Results indicate that 10 stations had significant breakpoints—77% of the Tianjin stations—suggesting that inhomogeneity was common in the Tianjin wind speed series. Instrument change accounted for most changes, based on the metadata, including changes in type and height, especially for the instrument type. Average positive quantile matching (QM) adjustments were more than negative adjustments at 10 stations; positive biases with a probability density of 0.2 or more were mainly concentrates in the range 0.2 m s-1 to 1.2 m s-1, while the corresponding negative biases were mainly in the range -0.1 to -1.2 m s-1. Here, changes in variances and trends in the monthly mean surface wind speed series at 10 stations before and after adjustment were compared. Climate characteristics of wind speed in Tianjin were more reasonably reflected by the adjusted data; inhomogeneity in wind speed series was largely corrected. Moreover, error analysis reveals that there was a high consistency between the two datasets here and that from the NMIC, with the latter as the reference. The adjusted monthly near-surface wind speed series shows a certain reliability for the period 1951-2014 in Tianjin.
NASA Astrophysics Data System (ADS)
Zhou, S.
2017-12-01
Using Monte Carlo results as a reference, a classical density functional theory ( CDFT) is shown to reliably predict the forces between two heterogeneously charged surfaces immersed in an electrolyte solution, whereas the Poisson-Boltzmann ( PB) theory is demonstrated to deteriorate obviously for the same system even if the system parameters considered fall within the validity range of the PB theory in the homogeneously charged surfaces. By applying the tested CDFT, we study the effective electrostatic potential of mean force ( EPMF) between two face-face planar and hard surfaces of zero net charge on which positive and negative charges are separated and considered to present as discontinuous spots on the inside edges of the two surfaces. Main conclusions are summarized as follows: (i) strength of the EPMF in the surface charge separation case is very sensitively and positively correlated with the surface charge separation level and valency of the salt ion. Particularly, the charge separation level and the salt ion valency have a synergistic effect, which makes high limit of the EPMF strength in the surface charge separation case significantly go beyond that of the ideal homogeneously charged surface counterpart at average surface charge density similar to the average surface positive or negative charge density in the charge separation case. (ii) The surface charge distribution patterns mainly influence sign of the EPMF: symmetrical and asymmetrical patterns induce repulsive and attractive (at small distances) EPMF, respectively; but with low valency salt ions and low charge separation level the opposite may be the case. With simultaneous presence of both higher valency cation and anion, the EPMF can be repulsive at intermediate distances for asymmetrical patterns. (iii) Salt ion size has a significant impact, which makes the EPMF tend to become more and more repulsive with the ion diameter regardless of the surface charge distribution patterns and the valency of the salt ion; whereas if the 1:1 type electrolyte and the symmetrical patterns are considered, then the opposite may be the case. All of these findings can be explained self-consistently from several perspectives: an excess adsorption of the salt ions (induced by the surface charge separation) serving to raise the osmotic pressure between the plates, configuration fine-tuning in the thinner ion adsorption layer driven by the energy decrease principle, direct Coulombic interactions operating between charged objects on the two face-to-face plates involved, and net charge strength in the ion adsorption layer responsible for the net electrostatic repulsion.
Dual-polarity plasmonic metalens for visible light
NASA Astrophysics Data System (ADS)
Chen, Xianzhong; Huang, Lingling; Mühlenbernd, Holger; Li, Guixin; Bai, Benfeng; Tan, Qiaofeng; Jin, Guofan; Qiu, Cheng-Wei; Zhang, Shuang; Zentgraf, Thomas
2012-11-01
Surface topography and refractive index profile dictate the deterministic functionality of a lens. The polarity of most lenses reported so far, that is, either positive (convex) or negative (concave), depends on the curvatures of the interfaces. Here we experimentally demonstrate a counter-intuitive dual-polarity flat lens based on helicity-dependent phase discontinuities for circularly polarized light. Specifically, by controlling the helicity of the input light, the positive and negative polarity are interchangeable in one identical flat lens. Helicity-controllable real and virtual focal planes, as well as magnified and demagnified imaging, are observed on the same plasmonic lens at visible and near-infrared wavelengths. The plasmonic metalens with dual polarity may empower advanced research and applications in helicity-dependent focusing and imaging devices, angular-momentum-based quantum information processing and integrated nano-optoelectronics.
Townsend, Leigh; Williams, Richard L.; Anuforom, Olachi; Berwick, Matthew R.; Halstead, Fenella; Hughes, Erik; Stamboulis, Artemis; Oppenheim, Beryl; Gough, Julie; Grover, Liam; Scott, Robert A. H.; Webber, Mark; Peacock, Anna F. A.; Belli, Antonio; Logan, Ann
2017-01-01
The interface between implanted devices and their host tissue is complex and is often optimized for maximal integration and cell adhesion. However, this also gives a surface suitable for bacterial colonization. We have developed a novel method of modifying the surface at the material–tissue interface with an antimicrobial peptide (AMP) coating to allow cell attachment while inhibiting bacterial colonization. The technology reported here is a dual AMP coating. The dual coating consists of AMPs covalently bonded to the hydroxyapatite surface, followed by deposition of electrostatically bound AMPs. The dual approach gives an efficacious coating which is stable for over 12 months and can prevent colonization of the surface by both Gram-positive and Gram-negative bacteria. PMID:28077764
Gutierrez, H; Portman, T; Pershin, V; Ringuette, M
2013-03-01
To analyse the biocidal efficacy of thermal sprayed copper surfaces. Copper alloy sheet metals containing >60% copper have been shown to exhibit potent biocidal activity. Surface biocidal activity was assessed by epifluorescence microscopy. After 2-h exposure at 20 °C in phosphate-buffered saline (PBS), contact killing of Gram-negative Escherichia coli and Gram-positive Staphylococcus epidermidis by brass sheet metal and phosphor bronze was 3-4-times higher than that by stainless steel. SEM observations revealed that the surface membranes of both bacterial strains were slightly more irregular when exposed to brass sheet metal than stainless steel. However, when exposed to phosphor bronze coating, E. coli were 3-4 times larger with irregular membrane morphology. In addition, the majority of the cells were associated with spherical carbon-copper-phosphate crystalline nanostructures characteristic of nanoflowers. The membranes of many of the S. epidermidis exhibited blebbing, and a small subset was also associated with nanoflowers. Our data indicate that increasing the surface roughness of copper alloys had a pronounced impact on the membrane integrity of Gram-positive and, to a lesser degree, Gram-negative bacteria. In the presence of PBS, carbon-copper-phosphate-containing nanoflowers were formed, likely nucleated by components derived from killed bacteria. The intimate association of the bacteria with the nanoflowers and phosphor bronze coating likely contributed to their nonreversible adhesion. Thermal spraying of copper alloys provides a strategy for the rapid coating of three-dimensional organic and inorganic surfaces with biocidal copper alloys. Our study demonstrates that the macroscale surface roughness generated by the thermal spray process enhances the biocidal activity of copper alloys compared with the nanoscale surface roughness of copper sheet metals. Moreover, the coating surface topography provides conditions for the rapid formation of organic copper phosphate nanocrystals/nanoflowers. © 2012 The Society for Applied Microbiology.
Goos-Hanchen shifts in tilted uniaxial crystals
NASA Astrophysics Data System (ADS)
Wu, Xiaohu
2018-06-01
The Goos-Hanchen shifts at the surface of the tilted uniaxial crystals have been studied with the help of the stationary phase method. It is found that the permittivity and the optical axis of the uniaxial crystal have outstanding influence on the Goos-Hanchen shift. The numerical results show that the negative Goos-Hanchen shift can occur even when the refractive index of the material is not negative. Besides, the Goos-Hanchen shift can be negative or positive infinite under certain conditions. Our results may provide useful information in manipulating the Goos-Hanchen shift in uniaxial crystals. We believe this method could find practical applications in tunable sensors and switches, which are based on Goos-Hanchen shifts.
Negative gravity anomalies on the moon
NASA Technical Reports Server (NTRS)
Bowin, C.
1975-01-01
Two kinds of negative gravity anomalies on the moon are distinguished - those which show a correspondence to lunar topography and those which appear to be unrelated to surface topography. The former appear to be due to mass deficiencies caused by the cratering process, in large part probably by ejection of material from the crater. Anomalies on the far side which do not correspond to topography are thought to have resulted from irregularities in the thickness of the lunar crust. Localized large negative anomalies adjacent to mascons are considered. Although structures on the moon having a half-wavelength of 800 km or less and large negative or positive gravity anomalies are not in isostatic equilibrium, many of these features have mass loadings of about 1000 kg/sq cm which can be statically sustained on the moon.
NASA Astrophysics Data System (ADS)
Cristofolini, Andrea; Neretti, Gabriele; Borghi, Carlo A.
2013-08-01
The Electro-Hydro-Dynamics (EHD) interaction induced by a surface dielectric barrier discharge in the aerodynamic boundary layer at one atmosphere still air has been investigated. Three different geometrical configurations of the actuator have been utilized. In the first configuration, an electrode pair separated by a 2 mm dielectric sheet has been used. The second and the third configurations have been obtained by adding a third electrode on the upper side of the dielectric surface. This electrode has been placed downstream of the upper electrode and has been connected to ground or has been left floating. Three different dielectric materials have been utilized. The high voltage upper electrode was fed by an a.c. electric tension. Measurements of the dielectric surface potential generated by the charge deposition have been done. The discharge has been switched off after positive and negative phases of the plasma current (the current phase was characterized by a positive or a negative value, respectively). The measurements have been carried out after both phases. The charge distribution strongly depended on the switching off phase and was heavily affected by the geometrical configuration. A remarkable decrease of the charge deposited on the dielectric surface has been detected when the third electrode was connected to ground. Velocity profiles were obtained by using a Pitot probe. They showed that the presence of the third electrode limits the fluid dynamics performance of the actuator. A relation between the charge surface distribution and the EHD interaction phenomenon has been found. Imaging of the plasma has been done to evaluate the discharge structure and the extension of the plasma in the configurations investigated.
Polarized Neutron Reflectometry of Nickel Corrosion Inhibitors.
Wood, Mary H; Welbourn, Rebecca J L; Zarbakhsh, Ali; Gutfreund, Philipp; Clarke, Stuart M
2015-06-30
Polarized neutron reflectometry has been used to investigate the detailed adsorption behavior and corrosion inhibition mechanism of two surfactants on a nickel surface under acidic conditions. Both the corrosion of the nickel surface and the structure of the adsorbed surfactant layer could be monitored in situ by the use of different solvent contrasts. Layer thicknesses and roughnesses were evaluated over a range of pH values, showing distinctly the superior corrosion inhibition of one negatively charged surfactant (sodium dodecyl sulfate) compared to a positively charged example (dodecyl trimethylammonium bromide) due to its stronger binding interaction with the surface. It was found that adequate corrosion inhibition occurs at significantly less than full surface coverage.
Effect of Surfaces on Amyloid Fibril Formation
Moores, Bradley; Drolle, Elizabeth; Attwood, Simon J.; Simons, Janet; Leonenko, Zoya
2011-01-01
Using atomic force microscopy (AFM) we investigated the interaction of amyloid beta (Aβ) (1–42) peptide with chemically modified surfaces in order to better understand the mechanism of amyloid toxicity, which involves interaction of amyloid with cell membrane surfaces. We compared the structure and density of Aβ fibrils on positively and negatively charged as well as hydrophobic chemically-modified surfaces at physiologically relevant conditions. We report that due to the complex distribution of charge and hydrophobicity amyloid oligomers bind to all types of surfaces investigated (CH3, COOH, and NH2) although the charge and hydrophobicity of surfaces affected the structure and size of amyloid deposits as well as surface coverage. Hydrophobic surfaces promote formation of spherical amorphous clusters, while charged surfaces promote protofibril formation. We used the nonlinear Poisson-Boltzmann equation (PBE) approach to analyze the electrostatic interactions of amyloid monomers and oligomers with modified surfaces to complement our AFM data. PMID:22016789
Schlegelová, J; Babák, V; Holasová, M; Dendis, M
2008-01-01
Isolates from the "farm to fork" samples (182 isolates from 2779 samples) were examined genotypically (icaAB genes) and phenotypically (in vitro biofilm formation, typical growth on Congo red agar; CRA) with the aim to assess the risk of penetration of virulent strains of Staphylococcus epidermidis into the food chain. The contamination of meat and milk products was significantly higher in comparison with raw materials. Contamination of contact surfaces in the meat-processing plants was significantly lower than that of contact surfaces in the dairy plants. The ica genes (which precondition the biofilm formation) were concurrently detected in 20 isolates that also showed a typical growth on CRA. Two ica operon-negative isolates produced biofilm in vitro but perhaps by an ica-independent mechanism. The surfaces in the dairy plants and the milk products were more frequently contaminated with ica operon-positive strains (2.3 and 1.2 % samples) than the other sample types (0-0.6 % samples).
NASA Technical Reports Server (NTRS)
deGoncalves, Luis Gustavo G.; Shuttleworth, William J.; Vila, Daniel; Larroza, Elaine; Bottino, Marcus J.; Herdies, Dirceu L.; Aravequia, Jose A.; De Mattos, Joao G. Z.; Toll, David L.; Rodell, Matthew;
2008-01-01
The definition and derivation of a 5-year, 0.125deg, 3-hourly atmospheric forcing dataset for the South America continent is described which is appropriate for use in a Land Data Assimilation System and which, because of the limited surface observational networks available in this region, uses remotely sensed data merged with surface observations as the basis for the precipitation and downward shortwave radiation fields. The quality of this data set is evaluated against available surface observations. There are regional difference in the biases for all variables in the dataset, with biases in precipitation of the order 0-1 mm/day and RMSE of 5-15 mm/day, biases in surface solar radiation of the order 10 W/sq m and RMSE of 20 W/sq m, positive biases in temperature typically between 0 and 4 K, depending on region, and positive biases in specific humidity around 2-3 g/Kg in tropical regions and negative biases around 1-2 g/Kg further south.
Ribosome surface properties may impose limits on the nature of the cytoplasmic proteome
2017-01-01
Much of the molecular motion in the cytoplasm is diffusive, which possibly limits the tempo of processes. We studied the dependence of protein mobility on protein surface properties and ionic strength. We used surface-modified fluorescent proteins (FPs) and determined their translational diffusion coefficients (D) in the cytoplasm of Escherichia coli, Lactococcus lactis and Haloferax volcanii. We find that in E. coli D depends on the net charge and its distribution over the protein, with positive proteins diffusing up to 100-fold slower than negative ones. This effect is weaker in L. lactis and Hfx. volcanii due to electrostatic screening. The decrease in mobility is probably caused by interaction of positive FPs with ribosomes as shown in in vivo diffusion measurements and confirmed in vitro with purified ribosomes. Ribosome surface properties may thus limit the composition of the cytoplasmic proteome. This finding lays bare a paradox in the functioning of prokaryotic (endo)symbionts. PMID:29154755
Biological and surface-active properties of double-chain cationic amino acid-based surfactants.
Greber, Katarzyna E; Dawgul, Małgorzata; Kamysz, Wojciech; Sawicki, Wiesław; Łukasiak, Jerzy
2014-08-01
Cationic amino acid-based surfactants were synthesized via solid phase peptide synthesis and terminal acylation of their α and ε positions with saturated fatty acids. Five new lipopeptides, N-α-acyl-N-ε-acyl lysine analogues, were obtained. Minimum inhibitory concentration and minimum bactericidal (fungicidal) concentration were determined on reference strains of bacteria and fungi to evaluate the antimicrobial activity of the lipopeptides. Toxicity to eukaryotic cells was examined via determination of the haemolytic activities. The surface-active properties of these compounds were evaluated by measuring the surface tension and formation of micelles as a function of concentration in aqueous solution. The cationic surfactants demonstrated diverse antibacterial activities dependent on the length of the fatty acid chain. Gram-negative bacteria and fungi showed a higher resistance than Gram-positive bacterial strains. It was found that the haemolytic activities were also chain length-dependent values. The surface-active properties showed a linear correlation between the alkyl chain length and the critical micelle concentration.
Thornton, J.D.
1959-03-24
A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.
NASA Astrophysics Data System (ADS)
Xie, Yun; Pan, Yufang; Zhang, Rong; Liang, Ying; Li, Zhanchao
2015-01-01
Molecular dynamics simulations were employed to investigate the modulation of protein behaviors on the electrically responsive zwitterionic phosphorylcholine self-assembled monolayers (PC-SAMs). Results show that PC-SAMs could sensitively respond to the applied electric fields and exhibit three states with different charge distributions, namely both the negatively charged phosphate groups and the positively charged choline groups are exposed to the solution in the absence of electric fields (state 1), phosphate groups exposed in the presence of positive electric fields (state 2), and choline groups exposed in the presence of negative electric fields (state 3). Under state 1, the adsorption of Cyt c on the PC-SAM is reversible and the orientations of Cyt c are randomly distributed. Under state 2, the adsorption of Cyt c is enhanced due to the electrostatic attractions between the exposed phosphate groups and the positively charged protein; when adsorbed on the PC-SAMs, Cyt c tends to adopt the orientation with the heme plane perpendicular to the surface plane, and the percentage of this orientation increases as the field strength rises up. Under state 3, the adsorption of Cyt c is retarded because of the electrostatic repulsions between the exposed choline groups and the protein; however, if the gaps between PC chains are large enough, Cyt c could insert into the PC-SAM and access the phosphate groups after overcoming a slight energy barrier. Under three states, the basic backbone structures of Cyt c are well kept within the simulation time since the conformation of Cyt c is mainly affected by the surface-generated electric fields, whose strengths are modulated by the external electric fields and are not strong enough to deform protein. The results indicate the possibility of regulating protein behaviors, including promoting or retarding protein adsorption and regulating protein orientations, on responsive surfaces by applying electric fields on the surfaces without worrying protein deformation, which may be helpful in the applications of protein separation and controlled drug delivery.
Thermoelectric properties of CVD grown large area graphene
NASA Astrophysics Data System (ADS)
Sherehiy, Andriy; Jayasinghe, Ruwantha; Stallard, Robert; Sumanasekera, Gamini; Sidorov, Anton; Benjamin, Daniel; Jiang, Zhigang; Yu, Qingkai; Wu, Wei; Bao, Jiming; Liu, Zhihong; Pei, Steven; Chen, Yong
2010-03-01
The thermoelectric power (TEP) of CVD (Chemical Vapor Deposition) grown large area graphene transferred onto a Si/SiO2 substrate was measured by simply attaching two miniature thermocouples and a resistive heater. Availability of such large area graphene facilitates straight forward TEP measurement without the use of any microfabrication processes. All investigated graphene samples showed a positive TEP ˜ + 30 μV/K in ambient conditions and saturated at a negative value as low as ˜ -75 μV/K after vacuum-annealing at 500 K in a vacuum of ˜10-7 Torr. The observed p-type behavior under ambient conditions is attributed to the oxygen doping, while the n-type behavior under degassed conditions is due to electron doping from SiO2 surface states. It was observed that the sign of the TEP switched from negative to positive for the degassed graphene when exposed to acceptor gases. Conversely, the TEP of vacuum-annealed graphene exposed to the donor gases became even more negative than the TEP of vacuum-annealed sample.
Model for thickness dependence of radiation charging in MOS structures
NASA Technical Reports Server (NTRS)
Viswanathan, C. R.; Maserjian, J.
1976-01-01
The model considers charge buildup in MOS structures due to hole trapping in the oxide and the creation of sheet charge at the silicon interface. The contribution of hole trapping causes the flatband voltage to increase with thickness in a manner in which square and cube dependences are limiting cases. Experimental measurements on samples covering a 200 - 1000 A range of oxide thickness are consistent with the model, using independently obtained values of hole-trapping parameters. An important finding of our experimental results is that a negative interface charge contribution due to surface states created during irradiation compensates most of the positive charge in the oxide at flatband. The tendency of the surface states to 'track' the positive charge buildup in the oxide, for all thicknesses, applies both in creation during irradiation and in annihilation during annealing. An explanation is proposed based on the common defect origin of hole traps and potential surface states.
Speck, Thomas; Bohn, Holger F.
2018-01-01
The surfaces of plant leaves are rarely smooth and often possess a species-specific micro- and/or nano-structuring. These structures usually influence the surface functionality of the leaves such as wettability, optical properties, friction and adhesion in insect–plant interactions. This work presents a simple, convenient, inexpensive and precise two-step micro-replication technique to transfer surface microstructures of plant leaves onto highly transparent soft polymer material. Leaves of three different plants with variable size (0.5–100 µm), shape and complexity (hierarchical levels) of their surface microstructures were selected as model bio-templates. A thermoset epoxy resin was used at ambient conditions to produce negative moulds directly from fresh plant leaves. An alkaline chemical treatment was established to remove the entirety of the leaf material from the cured negative epoxy mould when necessary, i.e. for highly complex hierarchical structures. Obtained moulds were filled up afterwards with low viscosity silicone elastomer (PDMS) to obtain positive surface replicas. Comparative scanning electron microscopy investigations (original plant leaves and replicated polymeric surfaces) reveal the high precision and versatility of this replication technique. This technique has promising future application for the development of bioinspired functional surfaces. Additionally, the fabricated polymer replicas provide a model to systematically investigate the structural key points of surface functionalities. PMID:29765666
NASA Astrophysics Data System (ADS)
Kölsch, S.; Fritz, F.; Fenner, M. A.; Kurch, S.; Wöhrl, N.; Mayne, A. J.; Dujardin, G.; Meyer, C.
2018-01-01
Hydrogen-terminated diamond is known for its unusually high surface conductivity that is ascribed to its negative electron affinity. In the presence of acceptor molecules, electrons are expected to transfer from the surface to the acceptor, resulting in p-type surface conductivity. Here, we present Kelvin probe force microscopy (KPFM) measurements on carbon nanotubes and C60 adsorbed onto a hydrogen-terminated diamond(001) surface. A clear reduction in the Kelvin signal is observed at the position of the carbon nanotubes and C60 molecules as compared with the bare, air-exposed surface. This result can be explained by the high positive electron affinity of carbon nanotubes and C60, resulting in electron transfer from the surface to the adsorbates. When an oxygen-terminated diamond(001) is used instead, no reduction in the Kelvin signal is obtained. While the presence of a charged adsorbate or a difference in work function could induce a change in the KPFM signal, a charge transfer effect of the hydrogen-terminated diamond surface, by the adsorption of the carbon nanotubes and the C60 fullerenes, is consistent with previous theoretical studies.
Differential tinnitus-related neuroplastic alterations of cortical thickness and surface area.
Meyer, Martin; Neff, Patrick; Liem, Franziskus; Kleinjung, Tobias; Weidt, Steffi; Langguth, Berthold; Schecklmann, Martin
2016-12-01
Structural neuroimaging techniques have been used to identify cortical and subcortical regions constituting the neuroarchitecture of tinnitus. One recent investigation used voxel-based morphometry (VBM) to analyze a sample of tinnitus patients (TI, n = 257) (Schecklmann et al., 2013). A negative relationship between individual distress and cortical volume (CV) in bilateral auditory regions was observed. However, CV has meanwhile been identified as a neuroanatomical measurement that confounds genetically distinct neuroanatomical traits, namely cortical thickness (CT) and cortical surface area (CSA). We performed a re-analysis of the identical sample using the automated FreeSurfer surface-based morphometry (SBM) approach (Fischl, 2012). First, we replicated the negative correlation between tinnitus distress and bilateral supratemporal gray matter volume. Second, we observed a negative correlation for CSA in the left periauditory cortex and anterior insula. Furthermore, we noted a positive correlation between tinnitus duration and CT in the left periauditory cortex as well as a negative correlation in the subcallosal anterior cingulate, a region collated to the serotonergic circuit and germane to inhibitory functions. In short, the results elucidate differential neuroanatomical alterations of CSA and CT for the two independent tinnitus-related psychological traits distress and duration. Beyond this, the study provides further evidence for the distinction and specific susceptibility of CSA and CT within the context of neuroplasticity of the human brain. Copyright © 2016 Elsevier B.V. All rights reserved.
Biofilm formation in an ice cream plant.
Gunduz, Gulten Tiryaki; Tuncel, Gunnur
2006-01-01
The sites of biofilm formation in an ice cream plant were investigated by sampling both the production line and the environment. Experiments were carried out twice within a 20-day period. First, stainless steel coupons were fixed to surfaces adjacent to food contact surfaces, the floor drains and the doormat. They were taken for the analysis of biofilm at three different production stages. Then, biofilm forming bacteria were enumerated and also presence of Listeria monocytogenes was monitored. Biofilm forming isolates were selected on the basis of colony morphology and Gram's reaction; Gram negative cocci and rod, Gram positive cocci and spore forming isolates were identified. Most of the biofilm formations were seen on the conveyor belt of a packaging machine 8 h after the beginning of the production, 6.5 x 10(3) cfu cm(-2). Most of the Gram negative bacteria identified belong to Enterobacteriaceae family such as Proteus, Enterobacter, Citrobacter, Shigella, Escherichia, Edwardsiella. The other Gram negative microflora included Aeromonas, Plesiomonas, Moraxella, Pseudomonas or Alcaligenes spp. were also isolated. Gram positive microflora of the ice cream plant included Staphyloccus, Bacillus, Listeria and lactic acid bacteria such as Streptococcus, Leuconostoc or Pediococcus spp. The results from this study highlighted the problems of spread of pathogens like Listeria and Shigella and spoilage bacteria. In the development of cleaning and disinfection procedures in ice cream plants, an awareness of these biofilm-forming bacteria is essential for the ice cream plants.
Kuthati, Yaswanth; Kankala, Ranjith Kumar; Busa, Prabhakar; Lin, Shi-Xiang; Deng, Jin-Pei; Mou, Chung-Yuan; Lee, Chia-Hung
2017-04-01
The extensive impact of antibiotic resistance has led to the exploration of new anti-bacterial modalities. We designed copper impregnated mesoporous silica nanoparticles (Cu-MSN) with immobilizing silver nanoparticles (SNPs) to apply photodynamic inactivation (PDI) of antibiotic-resistant E. coli. SNPs were decorated over the Cu-MSN surfaces by coordination of silver ions on diamine-functionalized Cu-MSN and further reduced to silver nanoparticles with formalin. We demonstrate that silver is capable of sensitizing the gram-negative bacteria E. coli to a gram-positive specific phototherapeutic agent in vitro; thereby expanding curcumin's phototherapeutic spectrum. The mesoporous structure of Cu-MSN remains intact after the exterior decoration with silver nanoparticles and subsequent curcumin loading through an enhanced effect from copper metal-curcumin affinity interaction. The synthesis, as well as successful assembly of the functional nanomaterials, was confirmed by various physical characterization techniques. Curcumin is capable of producing high amounts of reactive oxygen species (ROS) under light irradiation, which can further improve the silver ion release kinetics for antibacterial activity. In addition, the positive charged modified surfaces of Cu-MSN facilitate antimicrobial response through electrostatic attractions towards negatively charged bacterial cell membranes. The antibacterial action of the synthesized nanocomposites can be activated through a synergistic mechanism of energy transfer of the absorbed light from SNP to curcumin. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gassara, S.; Abdelkafi, A.; Quémener, D.; Amar, R. Ben; Deratani, A.
2015-07-01
Poly(ether imide) (PEI) ultrafiltration membranes were chemically modified with branched poly(ethyleneimine) to obtain nanofiltration (NF) membrane Cat PEI with a positive charge in the pH range below 9. An oppositely charged polyelectrolyte layer was deposited on the resulting membrane surface by using sodium polystyrene sulfonate (PSSNa) and sodium polyvinyl sulfonate (PVSNa) to prepare a bipolar layered membrane NF Cat PEI_PSS and Cat PEI_PVS having a negatively charged surface and positively charged pores. Cat PEI exhibited good performance to remove multivalent cations (more than 90% of Ca2+) from single salt solutions except in presence of sulfate ions. Adding an anionic polyelectrolyte layer onto the positively charged surface resulted in a significant enhancement of rejection performance even in presence of sulfate anions. Application of the prepared membranes in water softening of natural complex mixtures was successful for the different studied membranes and a large decrease of hardness was obtained. Moreover, Cat PEI_PSS showed a good selectivity for nitrate removal. Fouling experiments were carried out with bovine serum albumin, as model protein foulant. Cat PEI_PSS showed much better fouling resistance than Cat PEI with a quantitative flux recovery ratio.
Novel leukocyte protein, Trojan, differentially expressed during thymocyte development.
Petrov, Petar; Motobu, Maki; Salmi, Jussi; Uchida, Tatsuya; Vainio, Olli
2010-04-01
"Trojan" is a novel cell surface protein, discovered from chicken embryonic thymocytes on the purpose to identify molecules involved in T cell differentiation. The molecule is predicted as a type I transmembrane protein having a Sushi and two fibronectin type III domains and a pair of intracellular phosphorylation sites. Its transcript expression is specific for lymphoid tissues and the presence of the protein on the surface of recirculating lymphocytes and macrophages was confirmed by immunofluorescence analysis. In thymus, about half of the double negative (CD4(-) CD8(-)) and CD8 single positive and the majority of CD4 single positive cells express Trojan with a relatively high intensity. However, only a minority of the double positive (CD4(+) CD8(+)) cells are positive for Trojan. This expression pattern, similar to that of some proteins with anti-apoptotic and function, like IL-7Ralpha, makes Trojan an attractive candidate of having an anti-apoptotic role. Copyright 2010 Elsevier Ltd. All rights reserved.
Solvation Free Energies of Alanine Peptides: The Effect of Flexibility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kokubo, Hironori; Harris, Robert C.; Asthagiri, Dilip
The electrostatic (?Gel), cavity-formation (?Gvdw), and total (?G) solvation free energies for 10 alanine peptides ranging in length (n) from 1 to 10 monomers were calculated. The free energies were computed both with xed, extended conformations of the peptides and again for some of the peptides without constraints. The solvation free energies, ?Gel, ?Gvdw, and ?G, were found to be linear in n, with the slopes of the best-fit lines being gamma_el, gamma_vdw, and gamma, respectively. Both gamma_el and gamma were negative for fixed and flexible peptides, and gamma_vdw was negative for fixed peptides. That gamma_vdw was negative was surprising,more » as experimental data on alkanes, theoretical models, and MD computations on small molecules and model systems generally suggest that gamma_vdw should be positive. A negative gamma_vdw seemingly contradicts the notion that ?Gvdw drives the initial collapse of the protein when it folds by favoring conformations with small surface areas, but when we computed ?Gvdw for the flexible peptides, thereby allowing the peptides to assume natural ensembles of more compact conformations, gamma-vdw was positive. Because most proteins do not assume extended conformations, a ?Gvdw that increases with increasing surface area may be typical for globular proteins. An alternative hypothesis is that the collapse is driven by intramolecular interactions. We show that the intramolecular van der Waal's interaction energy is more favorable for the flexible than for the extended peptides, seemingly favoring this hypothesis, but the large fluctuations in this energy may make attributing the collapse of the peptide to this intramolecular energy difficult.« less
ELECTROSTATIC FORCES IN WIND-POLLINATION: PART 1: MEASUREMENT OF THE ELECTROSTATIC CHARGE ON POLLEN
Under fair weather conditions, a weak electric field exists between negative charge induced on the surface of plants and positive charge in the air. This field is magnified around points (e.g. stigmas) and can reach values up to 3x106 V m-1. If wind-disperse...
Top-Down LESA Mass Spectrometry Protein Analysis of Gram-Positive and Gram-Negative Bacteria
NASA Astrophysics Data System (ADS)
Kocurek, Klaudia I.; Stones, Leanne; Bunch, Josephine; May, Robin C.; Cooper, Helen J.
2017-10-01
We have previously shown that liquid extraction surface analysis (LESA) mass spectrometry (MS) is a technique suitable for the top-down analysis of proteins directly from intact colonies of the Gram-negative bacterium Escherichia coli K-12. Here we extend the application of LESA MS to Gram-negative Pseudomonas aeruginosa PS1054 and Gram-positive Staphylococcus aureus MSSA476, as well as two strains of E. coli (K-12 and BL21 mCherry) and an unknown species of Staphylococcus. Moreover, we demonstrate the discrimination between three species of Gram-positive Streptococcus ( Streptococcus pneumoniae D39, and the viridans group Streptococcus oralis ATCC 35037 and Streptococcus gordonii ATCC35105), a recognized challenge for matrix-assisted laser desorption ionization time-of-flight MS. A range of the proteins detected were selected for top-down LESA MS/MS. Thirty-nine proteins were identified by top-down LESA MS/MS, including 16 proteins that have not previously been observed by any other technique. The potential of LESA MS for classification and characterization of novel species is illustrated by the de novo sequencing of a new protein from the unknown species of Staphylococcus. [Figure not available: see fulltext.
Type IV Pili in Gram-Positive Bacteria
Craig, Lisa
2013-01-01
SUMMARY Type IV pili (T4P) are surface-exposed fibers that mediate many functions in bacteria, including locomotion, adherence to host cells, DNA uptake (competence), and protein secretion and that can act as nanowires carrying electric current. T4P are composed of a polymerized protein, pilin, and their assembly apparatuses share protein homologs with type II secretion systems in eubacteria and the flagella of archaea. T4P are found throughout Gram-negative bacterial families and have been studied most extensively in certain model Gram-negative species. Recently, it was discovered that T4P systems are also widespread among Gram-positive species, in particular the clostridia. Since Gram-positive and Gram-negative bacteria have many differences in cell wall architecture and other features, it is remarkable how similar the T4P core proteins are between these organisms, yet there are many key and interesting differences to be found as well. In this review, we compare the two T4P systems and identify and discuss the features they have in common and where they differ to provide a very broad-based view of T4P systems across all eubacterial species. PMID:24006467
Qiao, Yuan; Yang, Chuan; Coady, Daniel J; Ong, Zhan Yuin; Hedrick, James L; Yang, Yi-Yan
2012-02-01
The development of biodegradable antimicrobial polymers adds to the toolbox of attractive antimicrobial agents against antibiotic-resistant microbes. To this end, the potential of polycarbonate polymers as such materials were explored. A series of random polycarbonate polymers consisting of monomers MTC-OEt and MTC-CH(2)CH(3)Cl were designed and synthesized using metal-free organocatalytic ring-opening polymerization. Random polycarbonate polymers self-assembled in solution but appeared highly dynamic; such behaviors are desirable as ready disassembly of polymers at the microbial membrane facilitates membrane disruption. Their activities against clinically relevant Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (E.coli and Pseudomonas aeruginosa) revealed that the hydrophobic-hydrophilic composition balance in polymers are important to render antimicrobial potency. Scanning electron microscopy (SEM) studies indicated microbial cell surface damage after treatment with polymers, and confocal microscopy studies also showed entry of FITC-dextran dye in Escherichia coli as a result of membrane disruption. On the other hand, the polymers exhibited minimal toxicity against red blood cells in hemolysis tests. Therefore, these random polycarbonate polymers are promising antimicrobial agents against both Gram-positive and Gram-negative bacteria for various biomedical applications. Copyright © 2011 Elsevier Ltd. All rights reserved.
Effects of limiter biasing on the ATF torsatron
NASA Astrophysics Data System (ADS)
Uckan, T.; Aceto, S. C.; Baylor, L. R.; Bell, J. D.; Bigelow, T. S.; England, A. C.; Harris, J. H.; Isler, R. C.; Jernigan, T. C.; Lyon, J. F.; Ma, C. H.; Mioduszewski, P. K.; Murakami, M.; Rasmussen, D. A.; Wilgen, J. B.; Zielinski, J. J.
1992-12-01
Positive limiter biasing on the currentless ATF torsatron produces a significant increase in the particle confinement with no improvement in the energy confinement. Experiments have been carried out in 1-T plasmas with ˜400 kW of ECH. Two rail limiters located at the last closed flux surface (LCFS), one at the top and one at the bottom of the device, are biased at positive and negative potentials with respect to the vessel. When the limiters are positively biased at up to 300 V, the density increases sharply to the ECH cutoff value. At the same time, the H α radiation drops, indicating that the particle confinement improves. When the density is kept constant, the H α radiation is further reduced and there is almost no change of plasma stored energy. Under these conditions, the density profiles become peaked and the electric field becomes outward-pointing outside the LCFS and more negative inside the LCFS. In contrast, negative biasing yields some reduction of the density and stored energy at constant gas feed, and the plasma potential profile remains the same. Biasing has almost no effect on the intrinsic impurity levels in the plasma.
Tunable coating of gold nanostars: tailoring robust SERS labels for cell imaging
NASA Astrophysics Data System (ADS)
Bassi, B.; Taglietti, A.; Galinetto, P.; Marchesi, N.; Pascale, A.; Cabrini, E.; Pallavicini, P.; Dacarro, G.
2016-07-01
Surface modification of noble metal nanoparticles with mixed molecular monolayers is one of the most powerful tools in nanotechnology, and is used to impart and tune new complex surface properties. In imaging techniques based on surface enhanced Raman spectroscopy (SERS), precise and controllable surface modifications are needed to carefully design reproducible, robust and adjustable SERS nanoprobes. We report here the attainment of SERS labels based on gold nanostars (GNSs) coated with a mixed monolayer composed of a poly ethylene glycol (PEG) thiol (neutral or negatively charged) that ensure stability in biological environments, and of a signalling unit 7-Mercapto-4-methylcoumarin as a Raman reporter molecule. The composition of the coating mixture is precisely controlled using an original method, allowing the modulation of the SERS intensity and ensuring overall nanoprobe stability. The further addition of a positively charged layer of poly (allylamine hydrocloride) on the surface of negatively charged SERS labels does not change the SERS response, but it promotes the penetration of GNSs in SH-SY5Y neuroblastoma cells. As an example of an application of such an approach, we demonstrate here the internalization of these new labels by means of visualization of cell morphology obtained with SERS mapping.
Grin and Bear It?: Employees' Use of Surface Acting During Co-worker Conflict.
Nixon, Ashley E; Bruk-Lee, Valentina; Spector, Paul E
2017-04-01
Using survey data from 459 employed individuals, the conditional indirect effects of three types of interpersonal conflict at work on strains and performance through surface acting were tested. Results indicated that task, relationship and non-task organizational conflict were positively related to depressive and physical symptoms and negatively related to performance. Task conflict had a significantly weaker association with employee outcomes than either relationship or non-task organizational conflict. Surface acting negatively related to all types of conflict, although it had a weaker association with relationship conflict than task or non-task organizational conflict. Support was found for moderated mediation relationships whereby surface acting mediated the associations between all types of conflict with depressive symptoms, as well as the association between relationship and non-task organizational conflict with physical symptoms, when conflict was infrequent. Surface acting also mediated the associations between all types of conflict and performance when conflict was frequent. Future research directions are discussed that can advance our theoretical understanding of how emotional labour and interpersonal conflict interact to affect employees, as well as further our ability to improve employee well-being and organizational functioning. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Silbaugh, Trent L.; Boaventura, Jaime S.; Barteau, Mark A.
2016-08-01
The first quantitative surface acidity scale for Brønsted acids on a solid surface is presented through the use of titration-displacement and equilibrium experiments on anatase TiO2. Surface acidities of species on TiO2 correlated with gas phase acidities, as was previously observed in qualitative studies of Brønsted acid displacement on Ag(110), Cu(110) and Au(111). A 90% compression of the surface acidity scale relative to the gas phase was observed due to compensation from the covalent component of the conjugate base - surface bond. Adsorbed conjugate bases need not be completely anionic for correlations with gas phase acidities to hold. Positive and negative substituent effects, such as substituted fluorine and hydrocarbon sidechain dispersion interactions with the surface, may modify the surface acidity scale, in agreement with previous experimental and theoretical work on Au(111).
Over-limiting Current and Control of Dendritic Growth by Surface Conduction in Nanopores
Han, Ji-Hyung; Khoo, Edwin; Bai, Peng; Bazant, Martin Z.
2014-01-01
Understanding over-limiting current (faster than diffusion) is a long-standing challenge in electrochemistry with applications in desalination and energy storage. Known mechanisms involve either chemical or hydrodynamic instabilities in unconfined electrolytes. Here, it is shown that over-limiting current can be sustained by surface conduction in nanopores, without any such instabilities, and used to control dendritic growth during electrodeposition. Copper electrodeposits are grown in anodized aluminum oxide membranes with polyelectrolyte coatings to modify the surface charge. At low currents, uniform electroplating occurs, unaffected by surface modification due to thin electric double layers, but the morphology changes dramatically above the limiting current. With negative surface charge, growth is enhanced along the nanopore surfaces, forming surface dendrites and nanotubes behind a deionization shock. With positive surface charge, dendrites avoid the surfaces and are either guided along the nanopore centers or blocked from penetrating the membrane. PMID:25394685
NASA Astrophysics Data System (ADS)
Balbin, Jessie R.; Hortinela, Carlos C.; Garcia, Ramon G.; Baylon, Sunnycille; Ignacio, Alexander Joshua; Rivera, Marco Antonio; Sebastian, Jaimie
2017-06-01
Pattern recognition of concrete surface crack defects is very important in determining stability of structure like building, roads or bridges. Surface crack is one of the subjects in inspection, diagnosis, and maintenance as well as life prediction for the safety of the structures. Traditionally determining defects and cracks on concrete surfaces are done manually by inspection. Moreover, any internal defects on the concrete would require destructive testing for detection. The researchers created an automated surface crack detection for concrete using image processing techniques including Hough transform, LoG weighted, Dilation, Grayscale, Canny Edge Detection and Haar Wavelet Transform. An automatic surface crack detection robot is designed to capture the concrete surface by sectoring method. Surface crack classification was done with the use of Haar trained cascade object detector that uses both positive samples and negative samples which proved that it is possible to effectively identify the surface crack defects.
Interannual-to-decadal air-sea interactions in the tropical Atlantic region
NASA Astrophysics Data System (ADS)
Ruiz-Barradas, Alfredo
2001-09-01
The present research identifies modes of atmosphere-ocean interaction in the tropical Atlantic region and the mechanisms by which air-sea interactions influence the regional climate. Novelties of the present work are (1)the use of relevant ocean and atmosphere variables important to identity coupled variability in the system. (2)The use of new data sets, including realistic diabatic heating. (3)The study of interactions between ocean and atmosphere relevant at interannual-to-decadal time scales. Two tropical modes of variability are identified during the period 1958-1993, the Atlantic Niño mode and the Interhemispheric mode. Those modes have defined structures in both ocean and atmosphere. Anomalous sea surface temperatures and winds are associated to anomalous placement of the Intertropical Convergence Zone (ITCZ). They develop maximum amplitude during boreal summer and spring, respectively. The anomalous positioning of the ITCZ produces anomalous precipitation in some places like Nordeste, Brazil and the Caribbean region. Through the use of a diagnostic primitive equation model, it is found that the most important terms controlling local anomalous surface winds over the ocean are boundary layer temperature gradients and diabatic heating anomalies at low levels (below 780 mb). The latter is of particular importance in the deep tropics in producing the anomalous meridional response to the surface circulation. Simulated latent heat anomalies indicate that a thermodynamic feedback establishes positive feedbacks at both sides of the equator and west of 20°W in the deep tropics and a negative feedback in front of the north west coast of Africa for the Interhemispheric mode. This thermodynamic feedback only establishes negative feedbacks for the Atlantic Niño mode. Transients establish some connection between the tropical Atlantic and other basins. Interhemispheric gradients of surface temperature in the tropical Atlantic influence winds in the midlatitude North Atlantic but winds and heating of the midlatitude North Atlantic have little impact on the deep tropics. The remote influence of El Niño-Southern Oscillation in the tropical Atlantic, similar to the Interhemispheric mode, is the result of two mechanisms triggered by anomalous warming in the central and eastern tropical Pacific: enhancement of the Atlantic Walker circulation, and coupled intrusion of negative 200 mb geopotential height anomalies and negative sea level pressure anomalies that induce southwesterly surface wind anomalies in the northern tropical Atlantic.
McUmber, Aaron C; Randolph, Theodore W; Schwartz, Daniel K
2015-07-02
High-throughput single-molecule total internal reflection fluorescence microscopy was used to investigate the effects of pH and ionic strength on bovine serum albumin (BSA) adsorption, desorption, and interfacial diffusion at the aqueous-fused silica interface. At high pH and low ionic strength, negatively charged BSA adsorbed slowly to the negatively charged fused silica surface. At low pH and low ionic strength, where BSA was positively charged, or in solutions at higher ionic strength, adsorption was approximately 1000 times faster. Interestingly, neither surface residence times nor the interfacial diffusion coefficients of BSA were influenced by pH or ionic strength. These findings suggested that adsorption kinetics were dominated by energy barriers associated with electrostatic interactions, but once adsorbed, protein-surface interactions were dominated by short-range nonelectrostatic interactions. These results highlight the ability of single-molecule techniques to isolate elementary processes (e.g., adsorption and desorption) under steady-state conditions, which would be impossible to measure using ensemble-averaging methods.
NASA Astrophysics Data System (ADS)
Koval'ová, Zuzana; Tarabová, Kataŕna; Hensel, Karol; Machala, Zdenko
2013-02-01
Cold air plasmas of DC and pulsed corona discharges: positive streamers and negative Trichel pulses were used for bio-decontamination of Streptococci biofilm and Bacillus cereus spores on polypropylene plastic surfaces. The reduction of bacterial population (evaluated as log10) in the biofilm on plastic surfaces treated by DC corona reached 2.4 logs with 10 min treatment time and 3.3 logs with 2 min treatment time with water spraying. The enhancement of plasma biocidal effects on the biofilm by electro-spraying of water through a hollow needle high-voltage electrode was investigated. No significant polarity effect was found with DC corona. Pulsed corona was demonstrated slightly more bactericidal for spores, especially in the negative polarity where the bacterial population reduction reached up to 2.2 logs at 10 min exposure time. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.
Bodger, K; Bromelow, K; Wyatt, J; Heatley, R
2001-01-01
Background/Aims—Interleukin 10 (IL-10) is a counterinflammatory peptide implicated in the downregulation of human intestinal immune responses. Enhanced secretion of IL-10 has been documented in gastric biopsy organ culture in Helicobacter pylori infection. This study aimed to define the cellular origins of IL-10 in H pylori associated gastritis, and to determine the effects of endogenous IL-10 on proinflammatory cytokine secretion in vitro. Methods—Endoscopic biopsies were obtained from the gastric antrum at endoscopy from patients with dyspepsia. Two pairs of antral biopsies were cultured in vitro for 24 hours, one pair in the presence of neutralising anti-IL-10 monoclonal antibody, the other pair as controls. The cytokine content of culture supernatants (tumour necrosis factor α (TNF-α), IL-6, and IL-8) was determined by enzyme linked immunosorbent assay and corrected for biopsy weight. Helicobacter pylori status was established by histology and biopsy urease test, and histopathology graded by the Sydney system. In a subgroup of patients, western blotting was used to establish CagA serological status. Immunohistochemistry for IL-10 was performed on formalin fixed tissues using a combination of microwave antigen retrieval and the indirect avidin–biotin technique. Immunoreactivity was scored semiquantitatively. Results—In vitro culture was performed in 41 patients: 31 with H pylori positive chronic gastritis and 10 H pylori negative. In vitro secretion of TNF-α, IL-6, and IL-8 for "control" biopsies was significantly higher in H pylori positive versus negative samples, with values of TNF-α and IL-6 correlating with the degree of active and chronic inflammation and being higher in CagA seropositive cases. No evidence for enhanced cytokine secretion was seen in biopsies cocultured in the presence of anti-IL-10 monoclonal antibody. Immunohistochemistry was performed in 29 patients, of whom 13 were H pylori positive. IL-10 immunoreactivity was observed in the surface epithelium in all H pylori positive cases and in 13 of 16 negative cases, especially in areas of surface epithelial degeneration. Lamina propria mononuclear cells (LPMNCs) were positively stained in all H pylori positive cases and in 12 of 16 negative cases, with a significantly greater proportion of positive LPMNCs in the positive group. Conclusions—This study localised IL-10 protein to the gastric epithelium and LPMNCs. In vitro proinflammatory cytokine secretion was increased in H pylori infection (especially CagA positive infection), but blocking endogenous IL-10 secretion did not significantly increase cytokine secretion. IL-10 is implicated in H pylori infection and might "damp down" local inflammation. The role of gastric IL-10 secretion in determining the clinicopathological outcome of infection merits further study. Key Words: Helicobacter pylori infection • interleukin 10 • gastritis • immunohistochemistry PMID:11304845
Flatland Photonics: Circumventing Diffraction with Planar Plasmonic Architectures
NASA Astrophysics Data System (ADS)
Dionne, Jennifer Anne
On subwavelength scales, photon-matter interactions are limited by diffraction. The diffraction limit restricts the size of optical devices and the resolution of conventional microscopes to wavelength-scale dimensions, severely hampering our ability to control and probe subwavelength-scale optical phenomena. Circumventing diffraction is now a principle focus of integrated nanophotonics. Surface plasmons provide a particularly promising approach to sub-diffraction-limited photonics. Surface plasmons are hybrid electron-photon modes confined to the interface between conductors and transparent materials. Combining the high localization of electronic waves with the propagation properties of optical waves, plasmons can achieve extremely small mode wavelengths and large local electromagnetic field intensities. Through their unique dispersion, surface plasmons provide access to an enormous phase space of refractive indices and propagation constants that can be readily tuned with material or geometry. In this thesis, we explore both the theory and applications of dispersion in planar plasmonic architectures. Particular attention is given to the modes of metallic core and plasmon slot waveguides, which can span positive, near-zero, and even negative indices. We demonstrate how such basic plasmonic geometries can be used to develop a suite of passive and active plasmonic components, including subwavelength waveguides, color filters, negative index metamaterials, and optical MOS field effect modulators. Positive index modes are probed by near- and far-field techniques, revealing plasmon wavelengths as small as one-tenth of the excitation wavelength. Negative index modes are characterized through direct visualization of negative refraction. By fabricating prisms comprised of gold, silicon nitride, and silver multilayers, we achieve the first experimental demonstration of a negative index material at visible frequencies, with potential applications for sub-diffraction-limited microscopy and electromagnetic cloaking. We exploit this tunability of complex plasmon mode indices to create a compact metal-oxide-Si (MOS) field effect plasmonic modulator (or plasMOStor). By transforming the MOS gate oxide into an optical channel, amplitude modulation depths of 11.2 dB are achieved in device volumes as small as one one-fifth of a cubic wavelength. Our results indicate the accessibility of tunable refractive indices over a wide frequency band, facilitating design of a new materials class with extraordinary optical properties and applications.
Enzymatic Detachment of Staphylococcus epidermidis Biofilms
Kaplan, Jeffrey B.; Ragunath, Chandran; Velliyagounder, Kabilan; Fine, Daniel H.; Ramasubbu, Narayanan
2004-01-01
The gram-positive bacterium Staphylococcus epidermidis is the most common cause of infections associated with catheters and other indwelling medical devices. S. epidermidis produces an extracellular slime that enables it to form adherent biofilms on plastic surfaces. We found that a biofilm-releasing enzyme produced by the gram-negative periodontal pathogen Actinobacillus actinomycetemcomitans rapidly and efficiently removed S. epidermidis biofilms from plastic surfaces. The enzyme worked by releasing extracellular slime from S. epidermidis cells. Precoating surfaces with the enzyme prevented S. epidermidis biofilm formation. Our findings demonstrate that biofilm-releasing enzymes can exhibit broad-spectrum activity and that these enzymes may be useful as antibiofilm agents. PMID:15215120
Investigation of high voltage spacecraft system interactions with plasma environments
NASA Technical Reports Server (NTRS)
Stevens, N. J.; Berkopec, F. D.; Purvis, C. K.; Grier, N.; Staskus, J. V.
1978-01-01
An experimental investigation was undertaken for insulator and conductor test surfaces biased up to + or - 1kV in a simulated low earth orbit charged particle environment. It was found that these interactions are controlled by the insulator surfaces surrounding the biased conductors. For positive applied voltages the electron current collection can be enhanced by the insulators. For negative applied voltages the insulator surface confines the voltage to the conductor region. Understanding these interactions and the technology to control their impact on system operation is essential to the design of solar cell arrays for ion drive propulsion applications that use direct drive power processing.
Aerosol Radiative Effects on Deep Convective Clouds and Associated Radiative Forcing
NASA Technical Reports Server (NTRS)
Fan, J.; Zhang, R.; Tao, W.-K.; Mohr, I.
2007-01-01
The aerosol radiative effects (ARE) on the deep convective clouds are investigated by using a spectral-bin cloud-resolving model (CRM) coupled with a radiation scheme and an explicit land surface model. The sensitivity of cloud properties and the associated radiative forcing to aerosol single-scattering albedo (SSA) are examined. The ARE on cloud properties is pronounced for mid-visible SSA of 0.85. Relative to the case excluding the ARE, cloud fraction and optical depth decrease by about 18% and 20%, respectively. Cloud droplet and ice particle number concentrations, liquid water path (LWP), ice water path (IWP), and droplet size decrease significantly when the ARE is introduced. The ARE causes a surface cooling of about 0.35 K and significantly high heating rates in the lower troposphere (about 0.6K/day higher at 2 km), both of which lead to a more stable atmosphere and hence weaker convection. The weaker convection and the more desiccation of cloud layers explain the less cloudiness, lower cloud optical depth, LWP and IWP, smaller droplet size, and less precipitation. The daytime-mean direct forcing induced by black carbon is about 2.2 W/sq m at the top of atmosphere (TOA) and -17.4 W/sq m at the surface for SSA of 0.85. The semi-direct forcing is positive, about 10 and 11.2 W/sq m at the TOA and surface, respectively. Both the TOA and surface total radiative forcing values are strongly negative for the deep convective clouds, attributed mostly to aerosol indirect forcing. Aerosol direct and semi-direct effects are very sensitive to SSA. Because the positive semi-direct forcing compensates the negative direct forcing at the surface, the surface temperature and heat fluxes decrease less significantly with the increase of aerosol absorption (decreasing SSA). The cloud fraction, optical depth, convective strength, and precipitation decrease with the increase of absorption, resulting from a more stable and dryer atmosphere due to enhanced surface cooling and atmospheric heating.
Marginal sea surface temperature variation as a pre-cursor of heat waves over the Korean Peninsula
NASA Astrophysics Data System (ADS)
Ham, Yoo-Geun; Na, Hye-Yun
2017-11-01
This study examines the role of the marginal sea surface temperature (SST) on heat waves over Korea. It is found that sea surface warming in the south sea of Korea/Japan (122-138°E, 24- 33°N) causes heat waves after about a week. Due to the frictional force, the positive geopotential height anomalies associated with the south sea warming induce divergent flows over the boundary layer. This divergent flow induces the southerly in Korea, which leads to a positive temperature advection. On the other hand, over the freeatmosphere, the geostrophic wind around high-pressure anomalies flows in a westerly direction over Korea during the south sea warming, which is not effective in temperature advection. Therefore, the positive temperature advection in Korea due to the south sea warming decreases with height. This reduces the vertical potential temperature gradient, which indicates a negative potential vorticity (PV) tendency over Korea. Therefore, the high-pressure anomaly over the south sea of Korea is propagated northward, which results in heat waves due to more incoming solar radiation.
Light-induced negative differential resistance in gate-controlled graphene-silicon photodiode
NASA Astrophysics Data System (ADS)
Liu, Wei; Guo, Hongwei; Li, Wei; Wan, Xia; Bodepudi, Srikrishna Chanakya; Shehzad, Khurram; Xu, Yang
2018-05-01
In this letter, we investigated light-induced negative differential resistance (L-NDR) effects in a hybrid photodiode formed by a graphene-silicon (GS) junction and a neighboring graphene-oxide-Si (GOS) capacitor. We observed two distinct L-NDR effects originating from the gate-dependent surface recombination and the potential-well-induced confinement of photo-carriers in the GOS region. We verified this by studying the gate-controlled GS diode, which can distinguish the photocurrent from the GS region with that from the GOS region (gate). A large peak-to-valley ratio of up to 12.1 has been obtained for the L-NDR due to gate-dependent surface recombination. Such strong L-NDR effect provides an opportunity to further engineer the optoelectronic properties of GS junctions along with exploring its potential applications in photodetectors, photo-memories, and position sensitive devices.
NASA Astrophysics Data System (ADS)
Otomi, Yuriko; Tachibana, Yoshihiro; Nakamura, Tetsu
2013-04-01
In 2010, the Northern Hemisphere, in particular Russia and Japan, experienced an abnormally hot summer characterized by record-breaking warm temperatures and associated with a strongly positive Arctic Oscillation (AO), that is, low pressure in the Arctic and high pressure in the midlatitudes. In contrast, the AO index the previous winter and spring (2009/2010) was record-breaking negative. The AO polarity reversal that began in summer 2010 can explain the abnormally hot summer. The winter sea surface temperatures (SST) in the North Atlantic Ocean showed a tripolar anomaly pattern—warm SST anomalies over the tropics and high latitudes and cold SST anomalies over the midlatitudes—under the influence of the negative AO. The warm SST anomalies continued into summer 2010 because of the large oceanic heat capacity. A model simulation strongly suggested that the AO-related summertime North Atlantic oceanic warm temperature anomalies remotely caused blocking highs to form over Europe, which amplified the positive summertime AO. Thus, a possible cause of the AO polarity reversal might be the "memory" of the negative winter AO in the North Atlantic Ocean, suggesting an interseasonal linkage of the AO in which the oceanic memory of a wintertime negative AO induces a positive AO in the following summer. Understanding of this interseasonal linkage may aid in the long-term prediction of such abnormal summer events.
NASA Astrophysics Data System (ADS)
Tachibana, Yoshihiro; Otomi, Yuriko; Nakamura, Tetsu
2013-04-01
In 2010, the Northern Hemisphere, in particular Russia and Japan, experienced an abnormally hot summer characterized by record-breaking warm temperatures and associated with a strongly positive Arctic Oscillation (AO), that is, low pressure in the Arctic and high pressure in the midlatitudes. In contrast, the AO index the previous winter and spring (2009/2010) was record-breaking negative. The AO polarity reversal that began in summer 2010 can explain the abnormally hot summer. The winter sea surface temperatures (SST) in the North Atlantic Ocean showed a tripolar anomaly pattern—warm SST anomalies over the tropics and high latitudes and cold SST anomalies over the midlatitudes—under the influence of the negative AO. The warm SST anomalies continued into summer 2010 because of the large oceanic heat capacity. A model simulation strongly suggested that the AO-related summertime North Atlantic oceanic warm temperature anomalies remotely caused blocking highs to form over Europe, which amplified the positive summertime AO. Thus, a possible cause of the AO polarity reversal might be the "memory" of the negative winter AO in the North Atlantic Ocean, suggesting an interseasonal linkage of the AO in which the oceanic memory of a wintertime negative AO induces a positive AO in the following summer. Understanding of this interseasonal linkage may aid in the long-term prediction of such abnormal summer events.
Trait Affect, Emotion Regulation, and the Generation of Negative and Positive Interpersonal Events.
Hamilton, Jessica L; Burke, Taylor A; Stange, Jonathan P; Kleiman, Evan M; Rubenstein, Liza M; Scopelliti, Kate A; Abramson, Lyn Y; Alloy, Lauren B
2017-07-01
Positive and negative trait affect and emotion regulatory strategies have received considerable attention in the literature as predictors of psychopathology. However, it remains unclear whether individuals' trait affect is associated with responses to state positive affect (positive rumination and dampening) or negative affect (ruminative brooding), or whether these affective experiences contribute to negative or positive interpersonal event generation. Among 304 late adolescents, path analyses indicated that individuals with higher trait negative affect utilized dampening and brooding rumination responses, whereas those with higher trait positive affect engaged in rumination on positive affect. Further, there were indirect relationships between trait negative affect and fewer positive and negative interpersonal events via dampening, and between trait positive affect and greater positive and negative interpersonal events via positive rumination. These findings suggest that individuals' trait negative and positive affect may be associated with increased utilization of emotion regulation strategies for managing these affects, which may contribute to the occurrence of positive and negative events in interpersonal relationships. Copyright © 2017. Published by Elsevier Ltd.
Bacterial Immobilization for Imaging by Atomic Force Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allison, David P; Sullivan, Claretta; Mortensen, Ninell P
2011-01-01
AFM is a high-resolution (nm scale) imaging tool that mechanically probes a surface. It has the ability to image cells and biomolecules, in a liquid environment, without the need to chemically treat the sample. In order to accomplish this goal, the sample must sufficiently adhere to the mounting surface to prevent removal by forces exerted by the scanning AFM cantilever tip. In many instances, successful imaging depends on immobilization of the sample to the mounting surface. Optimally, immobilization should be minimally invasive to the sample such that metabolic processes and functional attributes are not compromised. By coating freshly cleaved micamore » surfaces with porcine (pig) gelatin, negatively charged bacteria can be immobilized on the surface and imaged in liquid by AFM. Immobilization of bacterial cells on gelatin-coated mica is most likely due to electrostatic interaction between the negatively charged bacteria and the positively charged gelatin. Several factors can interfere with bacterial immobilization, including chemical constituents of the liquid in which the bacteria are suspended, the incubation time of the bacteria on the gelatin coated mica, surface characteristics of the bacterial strain and the medium in which the bacteria are imaged. Overall, the use of gelatin-coated mica is found to be generally applicable for imaging microbial cells.« less
Ravna, Aina W; Sylte, Ingebrigt; Sager, Georg
2007-01-01
Background Multidrug resistance is a particular limitation to cancer chemotherapy, antibiotic treatment and HIV medication. The ABC (ATP binding cassette) transporters human P-glycoprotein (ABCB1) and the human MRP5 (ABCC5) are involved in multidrug resistance. Results In order to elucidate structural and molecular concepts of multidrug resistance, we have constructed a molecular model of the ATP-bound outward facing conformation of the human multidrug resistance protein ABCB1 using the Sav1866 crystal structure as a template, and compared the ABCB1 model with a previous ABCC5 model. The electrostatic potential surface (EPS) of the ABCB1 substrate translocation chamber, which transports cationic amphiphilic and lipophilic substrates, was neutral with negative and weakly positive areas. In contrast, EPS of the ABCC5 substrate translocation chamber, which transports organic anions, was generally positive. Positive-negative ratios of amino acids in the TMDs of ABCB1 and ABCC5 were also analyzed, and the positive-negative ratio of charged amino acids was higher in the ABCC5 TMDs than in the ABCB1 TMDs. In the ABCB1 model residues Leu65 (transmembrane helix 1 (TMH1)), Ile306 (TMH5), Ile340 (TMH6) and Phe343 (TMH6) may form a binding site, and this is in accordance with previous site directed mutagenesis studies. Conclusion The Sav1866 X-ray structure may serve as a suitable template for the ABCB1 model, as it did with ABCC5. The EPS in the substrate translocation chambers and the positive-negative ratio of charged amino acids were in accordance with the transport of cationic amphiphilic and lipophilic substrates by ABCB1, and the transport of organic anions by ABCC5. PMID:17803828
NASA Astrophysics Data System (ADS)
Heki, K.; He, L.; Muafiry, I. N.
2016-12-01
We developed a simple program to perform three-dimensional (3-D) tomography of ionospheric anomalies observed using Global Navigation Satellite System (GNSS), and applied it for cases of ionospheric anomalies prior to two recent earthquakes, i.e. (1) positive and negative TEC anomalies starting 20 minutes before the 2015 September Illapel earthquake, Central Chile, and (2) stagnant MSTID that appeared 20-30 minutes before the 2016 April Kumamoto earthquake (mainshock), Kyushu, SW Japan, and stayed there until the earthquake occurred. Regarding (1), we analyzed GNSS data before and after three large earthquakes in Chile, and have reported that both positive and negative anomalies of ionospheric Total Electron Content (TEC) started 40 minutes (2010 Maule) and 20 minutes (2014 Iquique and 2015 Illapel) before earthquakes in He and Heki (2016 GRL). For the 2015 event, we further suggested that positive and negative anomalies occurred at altitudes of 200 and 400 km, respectively. This makes the epicenter, the positive anomaly, and the negative anomaly line up along the local geomagnetic field, consistent with the structure expected to occur in response to surface positive charges (e.g. Kuo et al., 2014 JGR). As for (2), we looked for ionospheric anomalies before the foreshock (Mw6.2) and the mainshock (Mw7.0) of the 2016 Kumamoto earthquakes, shallow inland earthquakes, using TEC derived from the Japanese dense GNSS network. Although we did not find anomalies as often seen before larger earthquakes (e.g. Heki and Enomoto, 2015 JGR), we found that a stationary linear positive TEC anomaly, with a shape similar to a night-time medium-scale traveling ionospheric disturbance (MSTID), emerged just above the epicenter 20 minutes before the mainshock. Unlike typical night-time MSTID, it did not propagate southwestward; instead, its positive crest stayed above the epicenter for 30 min. (see attached figure). This unusual behavior might be linked to crust-origin electric fields.
Responses to hepatitis B vaccine in isolated anti-HBc positive adults
Yao, Jun; Ren, Wen; Chen, Yongdi; Jiang, Zhenggang; Shen, Lingzhi; Shan, Huan; Dai, Xuewei; Li, Jing; Liu, Ying; Qiu, Yan; Ren, Jingjing
2016-01-01
ABSTRACT Immune responses of isolated anti-HBc subjects are not well characterized in populations in China. This study aimed to evaluate immune responses to hepatitis B vaccination in isolated anti-HBc positive subjects. A cohort of 608 subjects were selected and separated into isolated anti-HBc (negative for HBsAg and anti-HBs, positive for anti-HBc) and control (negative for HBsAg, anti-HBs, and anti-HBc) groups, who were matched by age and sex. All subjects received 3 doses of hepatitis B vaccine (20μg) at months 0, 1, and 3, followed by testing for serological responses 1 month after the third vaccination. The positive seroprotection rate and geometric mean titer (GMT) for hepatitis B surface antibody (anti-HBs) of isolated anti-HBc subjects were significantly lower than those in the control group(86.2% vs.92.1%, P = 0.02; 47.26 vs.97.81 mIU/mL, P < 0.001). When stratified by age, positive seroprotection rate in the isolated anti-HBc group were 92%, 88.5% and 79.4% in the 20–34, 35–49, and 50–60 y old subgroups, respectively (χ2 = 5.919, P = 0.04). Additionally, the GMT level for anti-HBs in the isolated anti-HBc group for different age subgroups were 104.43, 47.87 and 31.79 mIU/mL respectively (χ2 = 19.44, P < 0.001). The GMT level for anti-HBc before vaccination were negatively correlated with GMT for anti-HBs after 3 doses of hepatitis B vaccine (r = −0.165, P < 0.001). In conclusion, isolated anti-HBc positive subjects can achieve good immune responses after hepatitis B vaccination, and the positive seroprotection rate and GMT level for anti-HBs were lower than the control group. Better responses could be observed in young adults, and significant negative correlations were found between GMT of anti-HBc before vaccination and GMT of anti-HBs after vaccination. PMID:27065099
Responses to hepatitis B vaccine in isolated anti-HBc positive adults.
Yao, Jun; Ren, Wen; Chen, Yongdi; Jiang, Zhenggang; Shen, Lingzhi; Shan, Huan; Dai, Xuewei; Li, Jing; Liu, Ying; Qiu, Yan; Ren, Jingjing
2016-07-02
Immune responses of isolated anti-HBc subjects are not well characterized in populations in China. This study aimed to evaluate immune responses to hepatitis B vaccination in isolated anti-HBc positive subjects. A cohort of 608 subjects were selected and separated into isolated anti-HBc (negative for HBsAg and anti-HBs, positive for anti-HBc) and control (negative for HBsAg, anti-HBs, and anti-HBc) groups, who were matched by age and sex. All subjects received 3 doses of hepatitis B vaccine (20μg) at months 0, 1, and 3, followed by testing for serological responses 1 month after the third vaccination. The positive seroprotection rate and geometric mean titer (GMT) for hepatitis B surface antibody (anti-HBs) of isolated anti-HBc subjects were significantly lower than those in the control group(86.2% vs.92.1%, P = 0.02; 47.26 vs.97.81 mIU/mL, P < 0.001). When stratified by age, positive seroprotection rate in the isolated anti-HBc group were 92%, 88.5% and 79.4% in the 20-34, 35-49, and 50-60 y old subgroups, respectively (χ2 = 5.919, P = 0.04). Additionally, the GMT level for anti-HBs in the isolated anti-HBc group for different age subgroups were 104.43, 47.87 and 31.79 mIU/mL respectively (χ2 = 19.44, P < 0.001). The GMT level for anti-HBc before vaccination were negatively correlated with GMT for anti-HBs after 3 doses of hepatitis B vaccine (r = -0.165, P < 0.001). In conclusion, isolated anti-HBc positive subjects can achieve good immune responses after hepatitis B vaccination, and the positive seroprotection rate and GMT level for anti-HBs were lower than the control group. Better responses could be observed in young adults, and significant negative correlations were found between GMT of anti-HBc before vaccination and GMT of anti-HBs after vaccination.
Vibrational fingerprinting of bacterial pathogens by surface enhanced Raman scattering (SERS)
NASA Astrophysics Data System (ADS)
Premasiri, W. Ranjith; Moir, D. T.; Ziegler, Lawrence D.
2005-05-01
The surface enhanced Raman scattering (SERS) spectra of vegetative whole-cell bacteria were obtained using in-situ grown gold nanoparticle cluster-covered silicon dioxide substrates excited at 785 nm. SERS spectra of Gram-negative bacteria; E. coli and S. typhimurium, and Gram-positive bacteria; B. subtilis, B. cereus, B. thuringeinsis and B. anthracis Sterne, have been observed. Raman enhancement factors of ~104-105 per cell are found for both Gram positive and Gram negative bacteria on this novel SERS substrate. The bacterial SERS spectra are species specific and exhibit greater species differentiation and reduced spectral congestion than their corresponding non-SERS (bulk) Raman spectra. Fluorescence observed in the 785 nm excited bulk Raman emission of Bacillus species is not apparent in the corresponding SERS spectra. The surface enhancement effect allows the observation of Raman spectra at the single cell level excited by low incident laser powers (< 3 mW) and short data acquisition times (~20 sec.). Comparison with previous SERS studies suggests that these SERS vibrational signatures are sensitively dependent on the specific morphology and nature of the SERS active substrate. Exposure to biological environments, such as human blood serum, has an observable effect on the bacterial SERS spectra. However, reproducible, species specific SERS vibrational fingerprints are still obtained. The potential of SERS for detection and identification of bacteria with species specificity on these gold nanoparticle coated substrates is demonstrated by these results.
Microstructure of a-C:H films prepared on a microtrench and analysis of ions and radicals behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirata, Yuki; Choi, Junho, E-mail: choi@mech.t.u-tokyo.ac.jp
2015-08-28
Amorphous carbon films (a-C:H) were prepared on a microtrench (4-μm pitch and 4-μm depth), and the uniformity of film thickness and microstructure of the films on the top, sidewall, and bottom surfaces of the microtrench were evaluated by scanning electron microscopy and Raman spectroscopy. The a-C:H films were prepared by bipolar-type plasma based ion implantation and deposition (bipolar PBII&D), and the negative pulse voltage, which is the main parameter dominating the film structure, was changed from −1.0 to −15 kV. Moreover, the behavior of ions and radicals was analyzed simultaneously by combining the calculation methods of Particle-In-Cell/Monte Carlo Collision (PIC-MCC) andmore » Direct Simulation Monte Carlo (DSMC) to investigate the coating mechanism for the microtrench. The results reveal that the thickness uniformity of a-C:H films improves with decreasing negative pulse voltage due to the decreasing inertia of incoming ions from the trench mouth, although the film thickness on the sidewall tends to be much smaller than that on the top and bottom surfaces of the trench. The normalized flux and the film thickness show similar behavior, i.e., the normalized flux or thickness at the bottom surface increases at low negative pulse voltages and then saturates at a certain value, whereas at the sidewall it monotonically decreases with increasing negative voltage. The microstructure of a-C:H films on the sidewall surface is very different from that on the top and bottom surfaces. The film structure at a low negative pulse voltage shifts to more of a polymer-like carbon (PLC) structure due to the lower incident energy of ions. Although the radical flux on the sidewall increases slightly, the overall film structure is not significantly changed because this film formation at a low negative voltage is originally dominated by radicals. On the other hand, the flux of radicals is dominant on the sidewall in the case of high negative pulse voltage, resulting in a deviation from the Raman behavior of a-C:H films deposited by bipolar PBII&D. This tendency intensifies as the negative voltage becomes greater. Also, the energy of incident ions on the sidewall of the trench increases with increasing negative voltage, which causes a shift in the Raman data of the sidewall to the bottom right corner on the figure depicting the relationship of the FWHM(G) and the G-peak position, indicating increased graphitization of a-C:H film.« less
Microstructure of a-C:H films prepared on a microtrench and analysis of ions and radicals behavior
NASA Astrophysics Data System (ADS)
Hirata, Yuki; Choi, Junho
2015-08-01
Amorphous carbon films (a-C:H) were prepared on a microtrench (4-μm pitch and 4-μm depth), and the uniformity of film thickness and microstructure of the films on the top, sidewall, and bottom surfaces of the microtrench were evaluated by scanning electron microscopy and Raman spectroscopy. The a-C:H films were prepared by bipolar-type plasma based ion implantation and deposition (bipolar PBII&D), and the negative pulse voltage, which is the main parameter dominating the film structure, was changed from -1.0 to -15 kV. Moreover, the behavior of ions and radicals was analyzed simultaneously by combining the calculation methods of Particle-In-Cell/Monte Carlo Collision (PIC-MCC) and Direct Simulation Monte Carlo (DSMC) to investigate the coating mechanism for the microtrench. The results reveal that the thickness uniformity of a-C:H films improves with decreasing negative pulse voltage due to the decreasing inertia of incoming ions from the trench mouth, although the film thickness on the sidewall tends to be much smaller than that on the top and bottom surfaces of the trench. The normalized flux and the film thickness show similar behavior, i.e., the normalized flux or thickness at the bottom surface increases at low negative pulse voltages and then saturates at a certain value, whereas at the sidewall it monotonically decreases with increasing negative voltage. The microstructure of a-C:H films on the sidewall surface is very different from that on the top and bottom surfaces. The film structure at a low negative pulse voltage shifts to more of a polymer-like carbon (PLC) structure due to the lower incident energy of ions. Although the radical flux on the sidewall increases slightly, the overall film structure is not significantly changed because this film formation at a low negative voltage is originally dominated by radicals. On the other hand, the flux of radicals is dominant on the sidewall in the case of high negative pulse voltage, resulting in a deviation from the Raman behavior of a-C:H films deposited by bipolar PBII&D. This tendency intensifies as the negative voltage becomes greater. Also, the energy of incident ions on the sidewall of the trench increases with increasing negative voltage, which causes a shift in the Raman data of the sidewall to the bottom right corner on the figure depicting the relationship of the FWHM(G) and the G-peak position, indicating increased graphitization of a-C:H film.
Development of Omniphobic Desalination Membranes Using a Charged Electrospun Nanofiber Scaffold.
Lee, Jongho; Boo, Chanhee; Ryu, Won-Hee; Taylor, André D; Elimelech, Menachem
2016-05-04
In this study, we present a facile and scalable approach to fabricate omniphobic nanofiber membranes by constructing multilevel re-entrant structures with low surface energy. We first prepared positively charged nanofiber mats by electrospinning a blend polymer-surfactant solution of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and cationic surfactant (benzyltriethylammonium). Negatively charged silica nanoparticles (SiNPs) were grafted on the positively charged electrospun nanofibers via dip-coating to achieve multilevel re-entrant structures. Grafted SiNPs were then coated with fluoroalkylsilane to lower the surface energy of the membrane. The fabricated membrane showed excellent omniphobicity, as demonstrated by its wetting resistance to various low surface tension liquids, including ethanol with a surface tension of 22.1 mN/m. As a promising application, the prepared omniphobic membrane was tested in direct contact membrane distillation to extract water from highly saline feed solutions containing low surface tension substances, mimicking emerging industrial wastewaters (e.g., from shale gas production). While a control hydrophobic PVDF-HFP nanofiber membrane failed in the desalination/separation process due to low wetting resistance, our fabricated omniphobic membrane exhibited a stable desalination performance for 8 h of operation, successfully demonstrating clean water production from the low surface tension feedwater.
Ono, Keisuke; Suzuki, Takuya Alan; Toyoshima, Youichi; Suzuki, Tomoya; Tsutsui, Shigeyuki; Odaka, Tomoyuki; Miyadai, Toshiaki; Nakamura, Osamu
2018-05-01
The surface defense molecules of aquatic invertebrates against infectious microorganisms have remained largely unexplored. In the present study, hemagglutinins were isolated from an extract of body surface layer of Japanese sea cucumber, Apostichopus japonicus, by affinity chromatography with fixed rabbit erythrocyte membranes. The N-terminal sequence of a 15-kDa agglutinin was almost identical with that of SJL-1, a C-type lectin formerly identified in this species. Because cDNA sequence and tissue distribution of SJL-1 have not been reported, we performed cDNA sequencing, gene expression analysis, and western blotting and immunohistochemical evaluation with anti-recombinant SJL-1 (rSJL-1) antibodies. The hemagglutinin gene was transcribed mainly in the integument, tentacles, and respiratory tree. Western blotting revealed that SJL-I is present in a body surface rinse, indicating that SJL-1 is secreted onto the body surface. SJL-1-positive cells scattered beneath the outermost layer of the integument were detected by immunohistochemistry. Furthermore, rSJL-1 agglutinated Gram-positive and Gram-negative bacteria, and yeast. These results indicate that SJL-1 acts as a surface defense molecule in A. japonicus. Copyright © 2018 Elsevier Ltd. All rights reserved.
Townsend, Leigh; Williams, Richard L; Anuforom, Olachi; Berwick, Matthew R; Halstead, Fenella; Hughes, Erik; Stamboulis, Artemis; Oppenheim, Beryl; Gough, Julie; Grover, Liam; Scott, Robert A H; Webber, Mark; Peacock, Anna F A; Belli, Antonio; Logan, Ann; de Cogan, Felicity
2017-01-01
The interface between implanted devices and their host tissue is complex and is often optimized for maximal integration and cell adhesion. However, this also gives a surface suitable for bacterial colonization. We have developed a novel method of modifying the surface at the material-tissue interface with an antimicrobial peptide (AMP) coating to allow cell attachment while inhibiting bacterial colonization. The technology reported here is a dual AMP coating. The dual coating consists of AMPs covalently bonded to the hydroxyapatite surface, followed by deposition of electrostatically bound AMPs. The dual approach gives an efficacious coating which is stable for over 12 months and can prevent colonization of the surface by both Gram-positive and Gram-negative bacteria. © 2017 The Author(s).
Electrostatic attraction between overall neutral surfaces.
Adar, Ram M; Andelman, David; Diamant, Haim
2016-08-01
Two overall neutral surfaces with positively and negatively charged domains ("patches") have been shown in recent experiments to exhibit long-range attraction when immersed in an ionic solution. Motivated by the experiments, we calculate analytically the osmotic pressure between such surfaces within the Poisson-Boltzmann framework, using a variational principle for the surface-averaged free energy. The electrostatic potential, calculated beyond the linear Debye-Hückel theory, yields an overall attraction at large intersurface separations, over a wide range of the system's controlled length scales. In particular, the attraction is stronger and occurs at smaller separations for surface patches of larger size and charge density. In this large patch limit, we find that the attraction-repulsion crossover separation is inversely proportional to the square of the patch-charge density and to the Debye screening length.
Martinez, Maria Carmela; Kok, Chee Choy; Baleriola, Cristina; Robertson, Peter; Rawlinson, William D
2015-01-01
Occult hepatitis B infection (OBI) is manifested by presence of very low levels (<200IU/mL) of Hepatitis B viral DNA (HBV DNA) in the blood and the liver while exhibiting undetectable HBV surface antigen (HBsAg). The molecular mechanisms underlying this occurrence are still not completely understood. This study investigated the prevalence of OBI in a high-risk Australian population and compared the HBV S gene sequences of our cohort with reference sequences. Serum from HBV DNA positive, HBsAg negative, and hepatitis B core antibody (anti-HBc) positive patients (study cohort) were obtained from samples tested at SEALS Serology Laboratory using the Abbott Architect, as part of screening and diagnostic testing. From a total of 228,108 samples reviewed, 1,451 patients were tested for all three OBI markers. Only 10 patients (0.69%) out of the 1,451 patients were found to fit the selection criteria for OBI. Sequence analysis of the HBV S gene from 5 suspected OBI infected patients showed increased sequence variability in the 'a' epitope of the major hydrophilic region compared to reference sequences. In addition, a total of eight consistent nucleotide substitutions resulting in seven amino acid changes were observed, and three patients had truncated S gene sequence. These mutations appeared to be stable and may result in alterations in HBsAg conformation. These may negatively impact the affinity of hepatitis B surface antibody (anti-HBs) and may explain the false negative results in serological HBV diagnosis. These changes may also enable the virus to persist in the liver by evading immune surveillance. Further studies on a bigger cohort are required to determine whether these amino acid variations have been acquired in the process of immune escape and serve as markers of OBI.
Yao, Jun; Shan, Huan; Chen, Yongdi; Jiang, Zheng-gang; Dai, Xue-wei; Ren, Jing-jing; Xu, Kai-jin; Ruan, Bing; Yang, Shi-gui; Li, Qian
2015-01-01
The aim of this study was to evaluate hepatitis B surface antibody (anti-HBs) levels one year after hepatitis B booster vaccination in anti-HBs-negative (<10 mIU/mL) children 11-15 y after primary vaccination. Anti-HBs titers were examined in 235 children who were negative for hepatitis B surface antigen (HBsAg), anti-HBs, and hepatitis B core antibody (anti-HBc). The children were then divided into 3 groups based on their anti-HBs levels pre-booster: Group I, <0 .1 mIU/mL; Group II, 0.1 to <1 .0 mIU/mL; and Group III, 1.0 to <10 .0 mIU/mL. They were vaccinated with 3 doses of hepatitis B vaccine (0-1-6 month, 20 ug), and anti-HBs levels were measured. One month after the first dose, the anti-HBs positive rates (≥ 10 mIU/mL) in Groups I-III were 56.14%, 83.61% and 100%. One month after the third dose, the anti-HBs-positive rates in Groups I-III were 96.49%, 98.36% and 100%. One year after the third dose, the anti-HBs-positive rates in Groups I-III were 73.68%, 75.41% and 98.29%, respectively. Protective levels declined more rapidly for those with lower titers. Children with pre-booster anti-HBs titers of 1-9.9 mIU/mL might not need any booster dose, and the children with pre-booster titers of 0.1-0.9 and <0 .1 mIU/mL might need more than one dose booster vaccination.
Yao, Jun; Shan, Huan; Chen, Yongdi; Jiang, Zheng-gang; Dai, Xue-wei; Ren, Jing-jing; Xu, Kai-jin; Ruan, Bing; Yang, Shi-gui; Li, Qian
2015-01-01
The aim of this study was to evaluate hepatitis B surface antibody (anti-HBs) levels one year after hepatitis B booster vaccination in anti-HBs-negative (<10 mIU/mL) children 11–15 y after primary vaccination. Anti-HBs titers were examined in 235 children who were negative for hepatitis B surface antigen (HBsAg), anti-HBs, and hepatitis B core antibody (anti-HBc). The children were then divided into 3 groups based on their anti-HBs levels pre-booster: Group I, <0 .1 mIU/mL; Group II, 0.1 to <1 .0 mIU/mL; and Group III, 1.0 to <10 .0 mIU/mL. They were vaccinated with 3 doses of hepatitis B vaccine (0–1–6 month, 20 ug), and anti-HBs levels were measured. One month after the first dose, the anti-HBs positive rates (≥10 mIU/mL) in Groups I–III were 56.14%, 83.61% and 100%. One month after the third dose, the anti-HBs-positive rates in Groups I–III were 96.49%, 98.36% and 100%. One year after the third dose, the anti-HBs-positive rates in Groups I–III were 73.68%, 75.41% and 98.29%, respectively. Protective levels declined more rapidly for those with lower titers. Children with pre-booster anti-HBs titers of 1–9.9 mIU/mL might not need any booster dose, and the children with pre-booster titers of 0.1–0.9 and <0 .1 mIU/mL might need more than one dose booster vaccination. PMID:25692413
Talia, Karen L; McCluggage, W Glenn
2017-04-01
We report a series of 7 unusual and morphologically distinct cervical or upper vaginal lesions in women aged 41 to 70 years. The lesions involved the cervix in 3 cases, the upper vagina in 2, the cervix and vagina in 1, and in 1 case the site of origin could not be determined. The lesions had a consistent morphologic appearance with a surface "plaque-like" or "stuck-on" configuration apparent in those cases where surrounding normal tissues were present. Broad coalescing solid sheets and interconnecting trabeculae of cytologically bland cells with a rather "basaloid" appearance emanated from the surface and there were scattered squamous eddies. Other features included peripheral palisading and a stroma containing hyalinized basement membrane-like material. Immunohistochemically, the lesions were diffusely positive with p63, CK5/6, and 34βE12 and focally positive with CK7, but largely negative with CK20, EMA, CEA, and BerEP4. p16 was negative or exhibited nonblock-type immunoreactivity and GATA3 was negative or weakly positive. Molecular testing detected human papillomavirus type 42 in 3 of 7 cases, with no virus detected in the remaining 4 cases. Rarely, similar cases have been reported previously as inverted transitional papilloma of the cervix or vagina, but based on the morphology and immunophenotype we do not feel these represent transitional lesions. We suggest the term seborrheic keratosis-like lesions to designate this new and rare entity, which may be associated with low-risk human papillomavirus infection. Limited follow-up in a small number of cases suggests that these lesions follow a benign clinical course.
Olotu, Amadin A; Oyelese, Adesola O; Salawu, Lateef; Audu, Rosemary A; Okwuraiwe, Azuka P; Aboderin, Aaron O
2016-05-05
Hepatitis B virus (HBV) transmission through blood transfusion is reduced by screening for hepatitis B surface antigen (HBsAg). However this method cannot detect the presence of occult hepatitis B virus infection. This study sought to determine the prevalence of occult hepatitis B virus infection among blood donors in Ile-Ife, Nigeria. For the first time in Nigeria we employed an automated real-time PCR- method to investigate the prevalence of occult HBV in blood donors. Blood donors screened with HBsAg immunochromatographic rapid test kits at the blood transfusion units of two hospitals and found to be negative were recruited into the study. Questionnaires to elicit risk factors for HBV infection were administered and then 10 ml of blood was collected from each donor. Plasma samples obtained from these HBsAg negative blood donors were screened again for HBsAg using an enzyme-linked immunosorbent assay (ELISA) method, and those found negative were screened for the presence of total antibody to the HBV core antigen (anti-HBc) using ELISA method. Those positive to anti-HBc were then tested for HBV DNA, using an automated real-time PCR method. Five hundred and seven blood donors found HBsAg negative by immunochromatographic rapid test kits at both blood transfusion units, were tested for HBsAg using ELISA and 5 (1 %) were HBsAg positive. The 502 found negative were tested for anti-HBc and 354 (70.5 %) were found positive implying previous exposure to HBV and 19 (5.4 %) of the 354 anti-HBc positive had HBV DNA signifying occult HBV infection. No risk factors were found to be associated with the presence of HBV DNA among those who tested positive. Occult HBV infection exists in blood donors in Ile-Ife, Nigeria and the use of HBsAg alone for screening prospective donors will not eliminate the risk of HBV transmission in blood transfusion or stem cell transplantation.
NASA Astrophysics Data System (ADS)
Feng, Guolin; Zou, Meng; Qiao, Shaobo; Zhi, Rong; Gong, Zhiqiang
2018-03-01
This study investigates the changing relationship between the December North Atlantic Oscillation (NAO) and the following February East Asian trough (EAT) throughout the past 60 years. We found that the relationship between the December NAO and the following February EAT is significantly enhanced after the late 1980s compared with the period before the late 1980s. The changing relationship mainly results from the enhanced relationship between the December NAO and the following February North Atlantic mid-latitudes' sea surface temperature (SST) anomalies (NAMA) during the same period. During the period after the late 1980s, the persistent positive (negative) NAO pattern from December to the following January contributes to a positive (negative) NAMA, which reaches its maximum magnitude in the following February and excites an anomalous wave train along the North Atlantic and northern Eurasia, and significantly impacts the EAT. During the period before the late 1980s, the positive (negative) NAO pattern during December cannot persist into the following January, and the related positive (negative) NAMA is insignificant during the following February, causing the response of the simultaneous EAT to be insignificant as well. Moreover, there exists a significant impact of the December NAO on the December-January NAMA after the late 1980s, while the December-January NAMA is relatively less affected by the December NAO before the late 1980s. As a result, the simultaneous response of the atmospheric circulation anomalies to the December-January NAMA are evident before the late 1980s, and the positive (negative) NAMA can excite an anomalous wave train along the North Atlantic and northern Eurasia and significantly deepen (shallow) the downstream EAT. By contrast, after involving a feature of atmosphere forcing of SST, the simultaneous feedback of the December-January NAMA on EAT is significantly decreased after the 1980s.
Clow, David W.; Nanus, Leora; Huggett, Brian
2010-01-01
An abundance of exposed bedrock, sparse soil and vegetation, and fast hydrologic flushing rates make aquatic ecosystems in Yosemite National Park susceptible to nutrient enrichment and episodic acidification due to atmospheric deposition of nitrogen (N) and sulfur (S). In this study, multiple linear regression (MLR) models were created to estimate fall‐season nitrate and acid neutralizing capacity (ANC) in surface water in Yosemite wilderness. Input data included estimated winter N deposition, fall‐season surface‐water chemistry measurements at 52 sites, and basin characteristics derived from geographic information system layers of topography, geology, and vegetation. The MLR models accounted for 84% and 70% of the variance in surface‐water nitrate and ANC, respectively. Explanatory variables (and the sign of their coefficients) for nitrate included elevation (positive) and the abundance of neoglacial and talus deposits (positive), unvegetated terrain (positive), alluvium (negative), and riparian (negative) areas in the basins. Explanatory variables for ANC included basin area (positive) and the abundance of metamorphic rocks (positive), unvegetated terrain (negative), water (negative), and winter N deposition (negative) in the basins. The MLR equations were applied to 1407 stream reaches delineated in the National Hydrography Data Set for Yosemite, and maps of predicted surface‐water nitrate and ANC concentrations were created. Predicted surface‐water nitrate concentrations were highest in small, high‐elevation cirques, and concentrations declined downstream. Predicted ANC concentrations showed the opposite pattern, except in high‐elevation areas underlain by metamorphic rocks along the Sierran Crest, which had relatively high predicted ANC (>200 μeq L−1). Maps were created to show where basin characteristics predispose aquatic resources to nutrient enrichment and acidification effects from N and S deposition. The maps can be used to help guide development of water‐quality programs designed to monitor and protect natural resources in national parks.
NASA Astrophysics Data System (ADS)
Wang, Haonan; Huang, Zhenzhen; Guo, Zilong; Yang, Wensheng
2017-07-01
In this paper, we reported an approach for efficient incorporation of glutathione-capped gold nanoclusters (GSH-Au NCs) into silica particles with the assistance of a polyelectrolyte, poly-diallyldimethyl-ammoniumchloride (PDDA). In this approach, the negatively charged GSH-Au NCs were firstly mixed with the positively charged PDDA to form PDDA-Au NC complexes. Then, the complexes were added into a pre-hydrolyzed Stöber system to get the Au NCs-doped silica particles. With increased ratio of PDDA in the complexes, the negative charges on surface of the Au NCs were neutralized gradually and finally reversed to positive in presence of excess PDDA, which facilitated the incorporation of the Au NCs into the negatively charged silica matrix. Under the optimal amount of PDDA in the complexes, the incorporation efficiency of Au NCs could be as high as 88%. After being incorporated into the silica matrix, the Au NCs become much robust against pH and heavy metal ions attributed to the protection effect of silica and PDDA. This approach was also extendable to highly efficient incorporation of other negatively charged metal nanoclusters, such as bovine serum albumin-capped Cu nanoclusters, into silica matrix.
Observation of local cloud and moisture feedbacks over high ocean and desert surface temperatures
NASA Technical Reports Server (NTRS)
Chahine, Moustafa T.
1995-01-01
New data on clouds and moisture, made possible by reanalysis of weather satellite observations, show that the atmosphere reacts to warm clusters of very high sea surface temperatures in the western Pacific Ocean with increased moisture, cloudiness, and convection, suggesting a negative feedback limiting the sea surface temperature rise. The reverse was observed over dry and hot deserts where both moisture and cloudiness decrease, suggesting a positive feedback perpetuating existing desert conditions. In addition, the observations show a common critical surface temperature for both oceans and land; the distribution of atmospheric moisture is observed to reach a maximum value when the daily surface temperatures approach 304 +/- 1 K. These observations reveal complex dynamic-radiative interactions where multiple processes act simultaneously at the surface as well as in the atmosphere to regulate the feedback processes.
Dalino Ciaramella, Paolo; Vertemati, Maurizio; Petrella, Duccio; Bonacina, Edgardo; Grossrubatscher, Erika; Duregon, Eleonora; Volante, Marco; Papotti, Mauro; Loli, Paola
2017-07-01
Diagnosis of benign and purely localized malignant adrenocortical lesions is still a complex issue. Moreover, histology-based diagnosis may suffer of a moment of subjectivity due to inter- and intra-individual variations. The aim of the present study was to assess, by computerized morphometry, the morphological features in benign and malignant adrenocortical neoplasms. Eleven adrenocortical adenomas (ACA) were compared with 18 adrenocortical cancers (ACC). All specimens were stained with H&E, cellular proliferation marker Ki-67 and reticulin. We generated a morphometric model based on the analysis of volume fractions occupied by Ki-67 positive and negative cells (nuclei and cytoplasm), vascular and inflammatory compartment; we also analyzed the surface fraction occupied by reticulin. We compared the quantitative data of Ki-67 obtained by morphometry with the quantification resulting from pathologist's visual reading. The volume fraction of Ki-67 positive cells in ACCs was higher than in ACAs. The volume fraction of nuclei in unit volume and the nuclear/cytoplasmic ratio in both Ki-67 negative cells and Ki-67 positive cells were prominent in ACCs. The surface fraction of reticulin was considerably lower in ACCs. Our computerized morphometric model is simple, reproducible and can be used by the pathologist in the histological workup of adrenocortical tumors to achieve precise and reader-independent quantification of several morphological characteristics of adrenocortical tumors. Copyright © 2017 Elsevier GmbH. All rights reserved.
Surface tension and density of Si-Ge melts
NASA Astrophysics Data System (ADS)
Ricci, Enrica; Amore, Stefano; Giuranno, Donatella; Novakovic, Rada; Tuissi, Ausonio; Sobczak, Natalia; Nowak, Rafal; Korpala, Bartłomiej; Bruzda, Grzegorz
2014-06-01
In this work, the surface tension and density of Si-Ge liquid alloys were determined by the pendant drop method. Over the range of measurements, both properties show a linear temperature dependence and a nonlinear concentration dependence. Indeed, the density decreases with increasing silicon content exhibiting positive deviation from ideality, while the surface tension increases and deviates negatively with respect to the ideal solution model. Taking into account the Si-Ge phase diagram, a simple lens type, the surface tension behavior of the Si-Ge liquid alloys was analyzed in the framework of the Quasi-Chemical Approximation for the Regular Solutions model. The new experimental results were compared with a few data available in the literature, obtained by the containerless method.
NASA Astrophysics Data System (ADS)
Finkelstein, D. B.; Pratt, L. M.
2004-12-01
Prevalence of wildfires or peat fires associated with seasonally dry conditions in the Cretaceous is supported by recent studies documenting the widespread presence of pyrolytic polycyclic aromatic hydrocarbons and fusinite. Potential roles of CO2 emissions from fire have been overlooked in many discussions of Cretaceous carbon-isotope excursions (excluding K-P boundary discussions). Enhanced atmospheric CO2 levels could increase fire frequency through elevated lightning activity. When biomass or peat is combusted, emissions of CO2 are more negative than atmospheric CO2. Five reservoirs (atmosphere, vegetation, soil, and shallow and deep oceans), and five fluxes (productivity, respiration, litter fall, atmosphere-ocean exchange, and surface-deep ocean exchange) were modeled as a closed system. The size of the Cretaceous peat reservoir was estimated by compilation of published early Cretaceous coal resources. Initial pCO2 was assumed to be 2x pre-industrial atmospheric levels (P.A.L.). Critical variables in the model are burning efficiency and post-fire growth rates. Assuming 1% of standing terrestrial biomass is consumed by wildfires each year for ten years (without combustion of peat), an increase of atmospheric CO2 (from 2.0 to 2.2x P.A.L.) and a negative carbon isotope excursion (-1.2 ‰ ) are recorded by both atmosphere and new growth. Net primary productivity linked to the residence time of the vegetation and soil reservoirs results in a negative isotope shift followed by a broad positive isotope excursion. Decreasing the rate of re-growth dampens this trailing positive shift and increases the duration of the excursion. Post-fire pCO2 and new growth returned to initial values after 72 years. Both negative and positive isotope excursions are recorded in the model in surface ocean waters. Exchange of CO2 with the surface- and deep-ocean dampens the isotopic shift of the atmosphere. Excursions are first recorded in the atmosphere (and new growth), followed by the ocean, vegetation, and soil reservoirs. Ten to twenty five-year cycles of drought and fire are not recorded as individual excursions in the soil reservoir as the rate of transfer between the vegetation and soil reservoirs homogenizes the signal. A wildfire-modeled excursion does not propagate a geologically significant excursion through time. Combustion of a peat reservoir is necessary to drive and validate a geologically and isotopically significant excursion. Assuming 0.5% of the standing early Cretaceous peat reservoir is consumed by fire for each year for ten years coupled with the earlier scenario, the atmospheric CO2 increases from 2.0 to 3.1x P.A.L., atmosphere, vegetation, and the surface ocean record a negative carbon isotope excursion of -5.1 ‰ , -3.8 ‰ and -1.8 ‰ respectively, with a duration of 741 years. Increasing the size of the vegetation reservoir translates the excursions from the centennial to millennial scale. For example, doubling the vegetation reservoir (from 1.4 to 2.8E+16 gC) for a 25 year global peat conflagration (0.5% combusted each year) results in a CO2 increase from 2.0 to 4.0x P.A.L., and the atmosphere, vegetation, and the surface ocean reservoirs with a negative carbon isotope excursion of -5.7 ‰ , -8.7 ‰ and -2.3 ‰ respectively. Addition of carbonaceous aerosols (black carbon and polycyclic aromatic hydrocarbons) to pelagic marine sediments could potentially serve as a high-resolution record of ancient fires and firmly tie isotopic shifts to paleofires.
Montplaisir, S.; Côté, P. P.; Martineau, B.; Roche, A. J.; Mongeau, J. G.; Robitaille, P.
1976-01-01
The demonstration by immuno-fluorescence of antibodies on the surface of urinary bacteria, a new method of determining the site of a urinary tract infection, was found to be as valuable in children as it is in adults. A clear correlation exists between a positive test result and renal parenchymal infection on one hand, and a negative result and lower urinary tract infection on the other. Moreover, immunoglobulins were still detectable in original positive urine samples that had been standing at 4degrees C for 7 weeks. The constant finding of IgA on bacteria suggests a particular synthesis for this class of immunoglobulin. A pathophysiologic role for complement would appear to be excluded by the facts that the serum concentrations of C3 were normal and that C3 was invariably absent from the bacterial surface. Images FIG. 1 PMID:793701
Dielectric boundary force and its crucial role in gramicidin
NASA Astrophysics Data System (ADS)
Nadler, Boaz; Hollerbach, Uwe; Eisenberg, R. S.
2003-08-01
In an electrostatic problem with nonuniform geometry, a charge Q in one region induces surface charges [called dielectric boundary charges (DBC)] at boundaries between different dielectrics. These induced surface charges, in return, exert a force [called dielectric boundary force (DBF)] on the charge Q that induced them. The DBF is often overlooked. It is not present in standard continuum theories of (point) ions in or near membranes and proteins, such as Gouy-Chapman, Debye-Huckel, Poisson-Boltzmann or Poisson-Nernst- Planck. The DBF is important when a charge Q is near dielectric interfaces, for example, when ions permeate through protein channels embedded in biological membranes. In this paper, we define the DBF and calculate it explicitly for a planar dielectric wall and for a tunnel geometry resembling the ionic channel gramicidin. In general, we formulate the DBF in a form useful for continuum theories, namely, as a solution of a partial differential equation with boundary conditions. The DBF plays a crucial role in the permeation of ions through the gramicidin channel. A positive ion in the channel produces a DBF of opposite sign to that of the fixed charge force (FCF) produced by the permanent charge of the gramicidin polypeptide, and so the net force on the positive ion is reduced. A negative ion creates a DBF of the same sign as the FCF and so the net (repulsive) force on the negative ion is increased. Thus, a positive ion can permeate the channel, while a negative ion is excluded from it. In gramicidin, it is this balance between the FCF and DBF that allows only singly charged positive ions to move into and through the channel. The DBF is not directly responsible, however, for selectivity between the alkali metal ions (e.g., Li+, Na+, K+): we prove that the DBF on a mobile spherical ion is independent of the ion’s radius.
Urbanization alters communities of flying arthropods in parks and gardens of a medium-sized city.
Lagucki, Edward; Burdine, Justin D; McCluney, Kevin E
2017-01-01
Urbanization transforms undeveloped landscapes into built environments, causing changes in communities and ecological processes. Flying arthropods play important roles in these processes as pollinators, decomposers, and predators, and can be important in structuring food webs. The goal of this study was to identify associations between urbanization and the composition of communities of flying (and floating) arthropods within gardens and parks in a medium-sized mesic city. We predicted that flying arthropod abundance and diversity would respond strongly to percent impervious surface and distance to city center, measurements of urbanization. Flying arthropods were sampled from 30 gardens and parks along an urbanization gradient in Toledo, Ohio, during July and August 2016, using elevated pan traps. A variety of potential predictor variables were also recorded at each site. We collected a total of 2,369 individuals representing nine orders. We found that flying arthropod community composition was associated with percent impervious surface and canopy cover. Overall flying arthropod abundance was negatively associated with percent impervious surface and positively associated with distance to city center. Hymenoptera (bees, wasps, ants), Lepidoptera (moths, butterflies), and Araneae (spiders) were positively associated with distance to city center. Hemiptera (true bugs), Diptera (flies), and Araneae were negatively associated with percent impervious surface. Both distance to city center and percent impervious surface are metrics of urbanization, and this study shows how these factors influence flying arthropod communities in urban gardens and city parks, including significant reductions in taxa that contain pollinators and predators important to urban agriculture and forestry. A variety of environmental factors also showed significant associations with responses (e.g. canopy cover and soil moisture), suggesting these factors may underlie or modulate the urbanization effects. More research is needed to determine mechanisms of change.
Urbanization alters communities of flying arthropods in parks and gardens of a medium-sized city
Lagucki, Edward
2017-01-01
Urbanization transforms undeveloped landscapes into built environments, causing changes in communities and ecological processes. Flying arthropods play important roles in these processes as pollinators, decomposers, and predators, and can be important in structuring food webs. The goal of this study was to identify associations between urbanization and the composition of communities of flying (and floating) arthropods within gardens and parks in a medium-sized mesic city. We predicted that flying arthropod abundance and diversity would respond strongly to percent impervious surface and distance to city center, measurements of urbanization. Flying arthropods were sampled from 30 gardens and parks along an urbanization gradient in Toledo, Ohio, during July and August 2016, using elevated pan traps. A variety of potential predictor variables were also recorded at each site. We collected a total of 2,369 individuals representing nine orders. We found that flying arthropod community composition was associated with percent impervious surface and canopy cover. Overall flying arthropod abundance was negatively associated with percent impervious surface and positively associated with distance to city center. Hymenoptera (bees, wasps, ants), Lepidoptera (moths, butterflies), and Araneae (spiders) were positively associated with distance to city center. Hemiptera (true bugs), Diptera (flies), and Araneae were negatively associated with percent impervious surface. Both distance to city center and percent impervious surface are metrics of urbanization, and this study shows how these factors influence flying arthropod communities in urban gardens and city parks, including significant reductions in taxa that contain pollinators and predators important to urban agriculture and forestry. A variety of environmental factors also showed significant associations with responses (e.g. canopy cover and soil moisture), suggesting these factors may underlie or modulate the urbanization effects. More research is needed to determine mechanisms of change. PMID:28890848
Surface Ozone Variability and Trends over the South African Highveld from 1990 to 2007
NASA Technical Reports Server (NTRS)
Balashov, Nikolay V.; Thompson, Anne M.; Piketh, Stuart J.; Langerman, Kristy E.
2014-01-01
Surface ozone is a secondary air pollutant formed from reactions between nitrogen oxides (NOx = NO + NO2) and volatile organic compounds in the presence of sunlight. In this work we examine effects of the climate pattern known as the El Niño-Southern Oscillation (ENSO) and NOx variability on surface ozone from 1990 to 2007 over the South African Highveld, a heavily populated region in South Africa with numerous industrial facilities. Over summer and autumn (December-May) on the Highveld, El Niño, as signified by positive sea surface temperature (SST) anomalies over the central Pacific Ocean, is typically associated with drier and warmer than normal conditions favoring ozone formation. Conversely, La Niña, or negative SST anomalies over the central Pacific Ocean, is typically associated with cloudier and above normal rainfall conditions, hindering ozone production. We use a generalized regression model to identify any linear dependence that the Highveld ozone, measured at five air quality monitoring stations, may have on ENSO and NOx. Our results indicate that four out of the five stations exhibit a statistically significant sensitivity to ENSO at some point over the December-May period where El Niño amplifies ozone formation and La Niña reduces ozone formation. Three out of the five stations reveal statistically significant sensitivity to NOx variability, primarily in winter and spring. Accounting for ENSO and NOx effects throughout the study period of 18 years, two stations exhibit statistically significant negative ozone trends in spring, one station displays a statistically significant positive trend in August, and two stations show no statistically significant change in surface ozone.
2010-01-01
Background Surface charge and oxidative stress are often hypothesized to be important factors in cytotoxicity of nanoparticles. However, the role of these factors is not well understood. Hence, the aim of this study was to systematically investigate the role of surface charge, oxidative stress and possible involvement of mitochondria in the production of intracellular reactive oxygen species (ROS) upon exposure of rat macrophage NR8383 cells to silicon nanoparticles. For this aim highly monodisperse (size 1.6 ± 0.2 nm) and well-characterized Si core nanoparticles (Si NP) were used with a surface charge that depends on the specific covalently bound organic monolayers: positively charged Si NP-NH2, neutral Si NP-N3 and negatively charged Si NP-COOH. Results Positively charged Si NP-NH2 proved to be more cytotoxic in terms of reducing mitochondrial metabolic activity and effects on phagocytosis than neutral Si NP-N3, while negatively charged Si NP-COOH showed very little or no cytotoxicity. Si NP-NH2 produced the highest level of intracellular ROS, followed by Si NP-N3 and Si NP-COOH; the latter did not induce any intracellular ROS production. A similar trend in ROS production was observed in incubations with an isolated mitochondrial fraction from rat liver tissue in the presence of Si NP. Finally, vitamin E and vitamin C induced protection against the cytotoxicity of the Si NP-NH2 and Si NP-N3, corroborating the role of oxidative stress in the mechanism underlying the cytotoxicity of these Si NP. Conclusion Surface charge of Si-core nanoparticles plays an important role in determining their cytotoxicity. Production of intracellular ROS, with probable involvement of mitochondria, is an important mechanism for this cytotoxicity. PMID:20831820
Time-of-flight SIMS/MSRI reflectron mass analyzer and method
Smentkowski, Vincent S.; Gruen, Dieter M.; Krauss, Alan R.; Schultz, J. Albert; Holecek, John C.
1999-12-28
A method and apparatus for analyzing the surface characteristics of a sample by Secondary Ion Mass Spectroscopy (SIMS) and Mass Spectroscopy of Recoiled Ions (MSRI) is provided. The method includes detecting back scattered primary ions, low energy ejected species, and high energy ejected species by ion beam surface analysis techniques comprising positioning a ToF SIMS/MSRI mass analyzer at a predetermined angle .theta., where .theta. is the angle between the horizontal axis of the mass analyzer and the undeflected primary ion beam line, and applying a specific voltage to the back ring of the analyzer. Preferably, .theta. is less than or equal to about 120.degree. and, more preferably, equal to 74.degree.. For positive ion analysis, the extractor, lens, and front ring of the reflectron are set at negative high voltages (-HV). The back ring of the reflectron is set at greater than about +700V for MSRI measurements and between the range of about +15 V and about +50V for SIMS measurements. The method further comprises inverting the polarity of the potentials applied to the extractor, lens, front ring, and back ring to obtain negative ion SIMS and/or MSRI data.
Wang, Qi; Larese-Casanova, Philip; Webster, Thomas J
2015-01-01
There are wide spread bacterial contamination issues on various paper products, such as paper towels hanging in sink splash zones or those used to clean surfaces, filter papers used in water and air purifying systems, and wrappings used in the food industry; such contamination may lead to the potential spread of bacteria and consequent severe health concerns. In this study, selenium nanoparticles were coated on normal paper towel surfaces through a quick precipitation method, introducing antibacterial properties to the paper towels in a healthy way. Their effectiveness at preventing biofilm formation was tested in bacterial assays involving Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus epidermidis. The results showed significant and continuous bacteria inhibition with about a 90% reduction from 24 to 72 hours for gram-positive bacteria including S. aureus and S. epidermidis. The selenium coated paper towels also showed significant inhibition of gram-negative bacteria like P. aeruginosa and E. coli growth at about 57% and 84%, respectively, after 72 hours of treatment. Therefore, this study established a promising selenium-based antibacterial strategy to prevent bacterial growth on paper products, which may lead to the avoidance of bacteria spreading and consequent severe health concerns. PMID:25926733
Martian Atmospheric Pressure Static Charge Elimination Tool
NASA Technical Reports Server (NTRS)
Johansen, Michael R.
2014-01-01
A Martian pressure static charge elimination tool is currently in development in the Electrostatics and Surface Physics Laboratory (ESPL) at NASA's Kennedy Space Center. In standard Earth atmosphere conditions, static charge can be neutralized from an insulating surface using air ionizers. These air ionizers generate ions through corona breakdown. The Martian atmosphere is 7 Torr of mostly carbon dioxide, which makes it inherently difficult to use similar methods as those used for standard atmosphere static elimination tools. An initial prototype has been developed to show feasibility of static charge elimination at low pressure, using corona discharge. A needle point and thin wire loop are used as the corona generating electrodes. A photo of the test apparatus is shown below. Positive and negative high voltage pulses are sent to the needle point. This creates positive and negative ions that can be used for static charge neutralization. In a preliminary test, a floating metal plate was charged to approximately 600 volts under Martian atmospheric conditions. The static elimination tool was enabled and the voltage on the metal plate dropped rapidly to -100 volts. This test data is displayed below. Optimization is necessary to improve the electrostatic balance of the static elimination tool.
Wang, Qi; Larese-Casanova, Philip; Webster, Thomas J
2015-01-01
There are wide spread bacterial contamination issues on various paper products, such as paper towels hanging in sink splash zones or those used to clean surfaces, filter papers used in water and air purifying systems, and wrappings used in the food industry; such contamination may lead to the potential spread of bacteria and consequent severe health concerns. In this study, selenium nanoparticles were coated on normal paper towel surfaces through a quick precipitation method, introducing antibacterial properties to the paper towels in a healthy way. Their effectiveness at preventing biofilm formation was tested in bacterial assays involving Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus epidermidis. The results showed significant and continuous bacteria inhibition with about a 90% reduction from 24 to 72 hours for gram-positive bacteria including S. aureus and S. epidermidis. The selenium coated paper towels also showed significant inhibition of gram-negative bacteria like P. aeruginosa and E. coli growth at about 57% and 84%, respectively, after 72 hours of treatment. Therefore, this study established a promising selenium-based antibacterial strategy to prevent bacterial growth on paper products, which may lead to the avoidance of bacteria spreading and consequent severe health concerns.
Hepatocellular carcinoma developed in a living donor after left lobe donation: a case for caution.
Ikegami, Toru; Yoshizumi, Tomoharu; Kawasaki, Junji; Shimagaki, Tomonari; Uchiyama, Hideaki; Soejima, Yuji; Maehara, Yoshihiko
2017-06-01
Although it has been recognized that those who are positive for anti-hepatitis B core antibody (anti-HBcAb) and negative for hepatitis B surface antigen (HBsAg) with normal liver function could be donors for living donor liver transplantation under appropriate prophylaxis, the negative impact of positive HBcAb on such donors themselves has not been reported. We present a case of a living donor with positive HBcAb, who donated his left lobe for his sister with unresectable giant hepatic hemangioma, and the donor himself developed a de novo hepatocellular carcinoma (HCC) 10 years after donation. He had been lost from the follow-up program since 1 year after donation. Imaging studies showed a heterogeneously enhanced mass compatible with HCC, which was 9 cm in size with portal invasion into the anterior portal vein of the remnant liver. Re-laparotomy for hepatectomy with the removal of the tumor thrombus in the anterior portal vein of the remnant liver was carried out, and he is free from recurrence 6 months after surgery on prophylactic sorafenib. At our institute, 58 (9.6%) donors among the 603 living donors were anti-HBcAb positive and anti-HBsAg negative, and we started regular HCC surveillance using sonogram every 6 months for these patients. © 2016 The Japan Society of Hepatology.
Rowe, Matthew K; Moore, Peter; Pratap, Jit; Coucher, John; Gould, Paul A; Kaye, Gerald C
2017-05-01
Controversy exists regarding the optimal lead position for chronic right ventricular (RV) pacing. Placing a lead at the RV septum relies upon fluoroscopy assisted by a surface 12-lead electrocardiogram (ECG). We compared the postimplant lead position determined by ECG-gated multidetector contrast-enhanced computed tomography (MDCT) with the position derived from the surface 12-lead ECG. Eighteen patients with permanent RV leads were prospectively enrolled. Leads were placed in the RV septum (RVS) in 10 and the RV apex (RVA) in eight using fluoroscopy with anteroposterior and left anterior oblique 30° views. All patients underwent MDCT imaging and paced ECG analysis. ECG criteria were: QRS duration; QRS axis; positive or negative net QRS amplitude in leads I, aVL, V1, and V6; presence of notching in the inferior leads; and transition point in precordial leads at or after V4. Of the 10 leads implanted in the RVS, computed tomography (CT) imaging revealed seven to be at the anterior RV wall, two at the anteroseptal junction, and one in the true septum. For the eight RVA leads, four were anterior, two septal, and two anteroseptal. All leads implanted in the RVS met at least one ECG criteria (median 3, range 1-6). However, no criteria were specific for septal position as judged by MDCT. Mean QRS duration was 160 ± 24 ms in the RVS group compared with 168 ± 14 ms for RVA pacing (P = 0.38). We conclude that the surface ECG is not sufficiently accurate to determine RV septal lead tip position compared to cardiac CT. © 2017 Wiley Periodicals, Inc.
Mille, Caroline; Debarnot, Dominique; Zorzi, Willy; El Moualij, Benaïssa; Coudreuse, Arnaud; Legeay, Gilbert; Quadrio, Isabelle; Perret-Liaudet, Armand; Poncin-Epaillard, Fabienne
2012-04-18
The main objective of this paper was to illustrate the enhancement of the sensitivity of ELISA titration for neurodegenerative proteins by reducing nonspecific adsorptions that could lead to false positives. This goal was obtained thanks to the association of plasma and wet chemistries applied to the inner surface of the titration well. The polypropylene surface was plasma-activated and then, dip-coated with different amphiphilic molecules. These molecules have more or less long hydrocarbon chains and may be charged. The modified surfaces were characterized in terms of hydrophilic-phobic character, surface chemical groups and topography. Finally, the coated wells were tested during the ELISA titration of the specific antibody capture of the α-synuclein protein. The highest sensitivity is obtained with polar (Θ = 35°), negatively charged and smooth inner surface.
Mille, Caroline; Debarnot, Dominique; Zorzi, Willy; Moualij, Benaïssa El; Coudreuse, Arnaud; Legeay, Gilbert; Quadrio, Isabelle; Perret-Liaudet, Armand; Poncin-Epaillard, Fabienne
2012-01-01
The main objective of this paper was to illustrate the enhancement of the sensitivity of ELISA titration for neurodegenerative proteins by reducing nonspecific adsorptions that could lead to false positives. This goal was obtained thanks to the association of plasma and wet chemistries applied to the inner surface of the titration well. The polypropylene surface was plasma-activated and then, dip-coated with different amphiphilic molecules. These molecules have more or less long hydrocarbon chains and may be charged. The modified surfaces were characterized in terms of hydrophilic—phobic character, surface chemical groups and topography. Finally, the coated wells were tested during the ELISA titration of the specific antibody capture of the α-synuclein protein. The highest sensitivity is obtained with polar (Θ = 35°), negatively charged and smooth inner surface. PMID:24955533
Correa, Hebelin; Zorro, Pamela; Arevalo-Ferro, Catalina; Puyana, Monica; Duque, Carmenza
2012-09-01
The gorgonian Pseudopterogorgia elisabethae collected at Providencia Island (Colombia) has an unfouled surface, free of obvious algal and invertebrate growth. This gorgonian produces significant amounts of the glycosilated diterpenes pseudopterosins and seco-pseudopterosins (Ps and seco-Ps). Our previous experiments have shown activity of these compounds against eukaryotic (human cancer cell lines and Candida albicans) and prokaryotic cells (Staphylococcus aureus and Enterococcus faecalis). However, the potential role of pseudopterosins on the regulation of the fouling process is still under study. We evaluated the activity of these compounds against bacteria isolated from heavily fouled marine surfaces as an indicator of antifouling activity. Additionally, we assessed their activity against bacteria isolated from P. elisabethae to determine whether potentially they play a role in preventing surface bacterial colonization, thus impairing presumptively the establishment of further successional stages of fouling communities. Results showed that Ps and seco-Ps seem to modulate bacterial growth (controlling Gram-positive bacterial growth and inducing Gram-negative bacterial associations). We thus hypothesized that Ps and seco-Ps may play a role in controlling microbial fouling communities on the surface of this gorgonian. By using bTEFAP and FISH we showed that the most abundant bacteria present in the microbial communities associated with P. elisabethae are Gram-negative bacteria, with Proteobacteria and Gammaproteobacteria the most representative. To evaluate whether Ps and seco-Ps have a direct effect on the structure of the bacterial community associated with P. elisabethae, we tested these compounds against culturable bacteria associated with the surface of P. elisabethae, finding remarkable selectivity against Gram-positive bacteria. The evidence presented here suggests that Ps and seco-Ps might have a role in the selection of organisms associated with the gorgonian surface and in the regulation of the associated bacterial community composition.
A process-level attribution of the annual cycle of surface temperature over the Maritime Continent
NASA Astrophysics Data System (ADS)
Li, Yana; Yang, Song; Deng, Yi; Hu, Xiaoming; Cai, Ming
2017-12-01
The annual cycle of the surface temperature over the Maritime Continent (MC) is characterized by two periods of rapid warming in March-April and September-October, respectively, and a period of rapid cooling in June-July. Based upon an analysis of energy balance within individual atmosphere-surface columns, the seasonal variations of surface temperature in the MC are partitioned into partial temperature changes associated with various radiative and non-radiative (dynamical) processes. The seasonal variations in direct solar forcing and surface latent heat flux show the largest positive contributions to the annual cycle of MC surface temperature while the changes in oceanic dynamics (including ocean heat content change) work against the temperature changes related to the annual cycle. The rapid warming in March-April is mainly a result of the changes in atmospheric quick processes and ocean-atmosphere coupling such as water vapor, surface latent heat flux, clouds, and atmospheric dynamics while the contributions from direct solar forcing and oceanic dynamics are negative. This feature is in contrast to that associated with the warming in September-October, which is driven mainly by the changes in solar forcing with a certain amount of contributions from water vapor and latent heat flux change. More contribution from atmospheric quick processes and ocean-atmosphere coupling in March-April coincides with the sudden northward movement of deep convection belt, while less contribution from these quick processes and coupling is accompanied with the convection belt slowly moving southward. The main contributors to the rapid cooling in June-July are the same as those to the rapid warming in March-April, and the cooling is also negatively contributed by direct solar forcing and oceanic dynamics. The changes in water vapor in all three periods contribute positively to the change in total temperature and they are associated with the change in the location of the center of large-scale moisture convergence during the onset and demise stages of the East Asian summer monsoon.
NASA Astrophysics Data System (ADS)
Surendran, Divya E.; Ghude, Sachin D.; Beig, G.; Emmons, L. K.; Jena, Chinmay; Kumar, Rajesh; Pfister, G. G.; Chate, D. M.
2015-12-01
This study presents the distribution of tropospheric ozone and related species for South Asia using the Model for Ozone and Related chemical Tracers (MOZART-4) and Hemispheric Transport of Air Pollution version-2 (HTAP-v2) emission inventory. The model present-day simulated ozone (O3), carbon monoxide (CO) and nitrogen dioxide (NO2) are evaluated against surface-based, balloon-borne and satellite-based (MOPITT and OMI) observations. The model systematically overestimates surface O3 mixing ratios (range of mean bias about: 1-30 ppbv) at different ground-based measurement sites in India. Comparison between simulated and observed vertical profiles of ozone shows a positive bias from the surface up to 600 hPa and a negative bias above 600 hPa. The simulated seasonal variation in surface CO mixing ratio is consistent with the surface observations, but has a negative bias of about 50-200 ppb which can be attributed to a large part to the coarse model resolution. In contrast to the surface evaluation, the model shows a positive bias of about 15-20 × 1017 molecules/cm2 over South Asia when compared to satellite derived CO columns from the MOPITT instrument. The model also overestimates OMI retrieved tropospheric column NO2 abundance by about 100-250 × 1013 molecules/cm2. A response to 20% reduction in all anthropogenic emissions over South Asia shows a decrease in the anuual mean O3 mixing ratios by about 3-12 ppb, CO by about 10-80 ppb and NOX by about 3-6 ppb at the surface level. During summer monsoon, O3 mixing ratios at 200 hPa show a decrease of about 6-12 ppb over South Asia and about 1-4 ppb over the remote northern hemispheric western Pacific region.
NASA Astrophysics Data System (ADS)
Wan, Yiqun; Wang, Xiaofen; Gu, Yun; Guo, Lan; Xu, Zhaodi
2016-03-01
A kind of novel composite ZnS/In(OH)3/In2S3 is synthesized using zinc oxide nanoplates as zinc raw material during hydrothermal process. Although the obtained samples are composited of ZnS and In(OH)3 and In2S3 phase, the samples possess different structure, morphology and optical absorption property depending on molar ratio of raw materials. Zeta potential analysis indicates different surface electrical property since various content and particle size of the phases. The equilibrium adsorption study confirms the composite ZnS/In(OH)3/In2S3 with surface negative charge is good adsorbent for Rhodamine B (Rh B) dye. In addition, the degradation of Rh B over the samples with surface negative charge under visible light (λ ≥ 420 nm) is more effective than the samples with surface positive charge. The samples before and after adsorbing Rh B molecule are examined by FTIR spectra and Zetasizer. It is found that the three function groups of Rh B molecule, especially carboxyl group anchors to surface of the sample through electrostatic adsorption, coordination and hydrogen-bond. It contributes to rapid transformation of photogenerated electron to conduction band of In(OH)3 and suppresses the recombination of photogenerated carrier. The possible adsorption modes of Rh B are discussed on the basis of the experiment results.
Engineering a nanostructured "super surface" with superhydrophobic and superkilling properties.
Hasan, Jafar; Raj, Shammy; Yadav, Lavendra; Chatterjee, Kaushik
2015-05-12
We present a nanostructured "super surface" fabricated using a simple recipe based on deep reactive ion etching of a silicon wafer. The topography of the surface is inspired by the surface topographical features of dragonfly wings. The super surface is comprised of nanopillars 4 μm in height and 220 nm in diameter with random inter-pillar spacing. The surface exhibited superhydrophobicity with a static water contact angle of 154.0° and contact angle hysteresis of 8.3°. Bacterial studies revealed the bactericidal property of the surface against both gram negative ( Escherichia coli ) and gram positive ( Staphylococcus aureus ) strains through mechanical rupture of the cells by the sharp nanopillars. The cell viability on these nanostructured surfaces was nearly six-fold lower than on the unmodified silicon wafer. The nanostructured surface also killed mammalian cells (mouse osteoblasts) through mechanical rupture of the cell membrane. Thus, such nanostructured super surfaces could find applications for designing self-cleaning and anti-bacterial surfaces in diverse applications such as microfluidics, surgical instruments, pipelines and food packaging.
Kubiak-Ossowska, Karina; Mulheran, Paul A; Nowak, Wieslaw
2014-08-21
The mechanism of human fibronectin adhesion synergy region (known as integrin binding region) in repeat 9 (FN(III)9) domain adsorption at pH 7 onto various and contrasting model surfaces has been studied using atomistic molecular dynamics simulations. We use an ionic model to mimic mica surface charge density but without a long-range electric field above the surface, a silica model with a long-range electric field similar to that found experimentally, and an Au {111} model with no partial charges or electric field. A detailed description of the adsorption processes and the contrasts between the various model surfaces is provided. In the case of our model silica surface with a long-range electrostatic field, the adsorption is rapid and primarily driven by electrostatics. Because it is negatively charged (-1e), FN(III)9 readily adsorbs to a positively charged surface. However, due to its partial charge distribution, FN(III)9 can also adsorb to the negatively charged mica model because of the absence of a long-range repulsive electric field. The protein dipole moment dictates its contrasting orientation at these surfaces, and the anchoring residues have opposite charges to the surface. Adsorption on the model Au {111} surface is possible, but less specific, and various protein regions might be involved in the interactions with the surface. Despite strongly influencing the protein mobility, adsorption at these model surfaces does not require wholesale FN(III)9 conformational changes, which suggests that the biological activity of the adsorbed protein might be preserved.
Kwon, So Ran; Kurti, Steven R; Oyoyo, Udochukwu; Li, Yiming
2015-09-01
The purpose of this study was to evaluate the effect of four whitening modalities on surface enamel as assessed with microhardness tester, profilometer, and scanning electron microscopy (SEM). Whitening was performed according to manufacturer's directions for over-the-counter (OTC), dentist dispensed for home use (HW) and in-office (OW) whitening. Do-it-yourself (DIY) whitening consisted of a strawberry and baking soda mix. Additionally, negative and positive controls were used. A total of 120 enamel specimens were used for microhardness testing at baseline and post-whitening. Following microhardness testing specimens were prepared for SEM observations. A total of 120 enamel specimens were used for surface roughness testing at baseline and post-whitening (n = 20 per group). Rank-based Analysis of Covariance was performed to compare microhardness and surface roughness changes. Tests of hypotheses were two-sided with α = 0.05. There was a significant difference in Knoop hardness changes (ΔKHN) among the groups (Kruskal-Wallis test, p < 0.0001). Significant hardness reduction was observed in the positive control and DIY group (p < 0.0001). Mean surface roughness changes (ΔRa) were significantly different among the groups (Kruskal-Wallis test, p < 0.0001). Surface roughness increased in the OTC group (p = 0.03) and in the positive control (p < 0.0001). The four whitening modalities-DIY, OTC, HW and OW induced minimal surface morphology changes when observed with SEM. It can be concluded that none of the four whitening modalities adversely affected enamel surface morphology. However, caution should be advised when using a DIY regimen as it may affect enamel microhardness and an OTC product as it has the potential to increase surface roughness.
Interactions of Fluorescein Dye with Spherical and Star Shaped Gold Nanoparticles.
Pal, Gopa Dutta; Paul, Somnath; Bardhan, Munmun; Ganguly, Tapan
2018-04-01
UV-vis absorption, FT-IR, steady state fluorescence and fluorescence lifetime measurements were made on Fluorescein dye (Fl dye) molecules in presence of gold nanoparticles of different morphologies: spherical gold nanoparticles (GNP) and star shaped gold nanoparticles (GNS). The experimental observations demonstrate that Fl dye molecules form dimers when adsorbed on nanosurface of spherical gold particles. On the other hand possibly due to lack of adsorption on the surface of GNS the dye molecules were unable to form dimers. The projected tips on the surface of GNS may possibly hinder the dyes to adsorb on the surface of this nanoparticle. From the spectral analysis and measurements of thermodynamic parameters it is inferred that two different types of ground state interactions occur between Fl-dye-GNP and Fl dye-GNS systems. Both the observed negative values of the thermodynamic parameters ΔH and ΔS in the case of the former system predict the possibility of occurrences of hydrogen bonding interactions between two neighboring Fl dye molecules when adsorbed on the nanosurface of GNP. On the other hand in Fl dye-GNS system electrostatic interactions appear to occur, as evidenced from negative ΔH and positive value of ΔS, between the positive charges residing on the tips of the nanoparticles and anionic form of Fl dye. It has been concluded that as the adsorption of organic dyes on solid surfaces is prerequisite for the degradation of dye pollutants, the present experimental observations demonstrate that GNP could be used as a better candidate than GNS in degradation mechanism of the xanthenes dyes.
No association between hair cortisol or cortisone and brain morphology in children.
Chen, Ruoqing; Muetzel, Ryan L; El Marroun, Hanan; Noppe, Gerard; van Rossum, Elisabeth F C; Jaddoe, Vincent W; Verhulst, Frank C; White, Tonya; Fang, Fang; Tiemeier, Henning
2016-12-01
Little is known about the relationship between the long-term hypothalamic-pituitary-adrenal (HPA) axis functioning and brain structure in children. Glucocorticoid in hair has emerged as an important biomarker of HPA activity. In this study, we investigated the associations of hair cortisol and cortisone concentrations with brain morphology in young children. We included 219 children aged 6-10 years from the Generation R Study in Rotterdam, the Netherlands. We examined cortisol and cortisone concentrations by hair analysis using liquid chromatography-tandem mass spectrometry, and assessed brain morphometric measures with structural magnetic resonance imaging. The relationships of hair cortisol and cortisone concentrations with brain volumetrics, cortical thickness, cortical surface area and gyrification were analyzed separately after adjustment for several potential confounding factors. We observed a positive association between cortisol concentrations and cortical surface area in the parietal lobe, positive associations of cortisone concentrations with thalamus volume, occipital lobe volume and cortical surface area in the parietal lobe, and a negative association between cortisone concentrations and cortical surface area in the temporal lobe in the regions of interest analyses. A negative association between cortisol or cortisone concentrations and hippocampal volume was observed in children with behavioral problems. The whole brain vertex-wise analyses did however not show any association between cortisol or cortisone concentration and brain morphometric measures after correction for multiple testing. Although some associations are noted in region of interest analyses, we do not observe clear association of hair cortisol or cortisone with brain morphometric measures in typically developing young children. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Xue-chen; Jia, Peng-ying; Liu, Zhi-hui; Li, Li-chun; Dong, Li-fang
2008-12-01
In the present paper, stable glow discharges were obtained in air at low pressure with a dielectric barrier surface discharge device. Light emission from the discharge was detected by photomultiplier tubes and the research results show that the light signal exhibited one discharge pulse per half cycle of the applied voltage. The light pulses were asymmetric between the positive half cycle and the negative one of the applied voltage. The images of the glow surface discharge were processed by Photoshop software and the results indicate that the emission intensity remained almost constant for different places with the same distance from the powered electrode, while the emission intensity decreased with the distance from the powered electrode increasing. In dielectric barrier discharge, net electric field is determined by the applied voltage and the wall charges accumulated on the dielectric layer during the discharge, and consequently, it is important to obtain information about the net electric field distribution. For this purpose, optical emission spectroscopy method was used. The distribution of the net electric field can be deduced from the intensity ratio of spectral line 391.4 nm emitted from the first negative system of N2+ (B 2sigma u+ -->X 2sigma g+) to 337.1 nm emitted from the second positive system of N2 (C 3IIu-B 3IIg). The research results show that the electric field near the powered electric field is higher than at the edge of the discharge. These experimental results are very important for numerical study and industrial application of the surface discharge.
Sakata, Sho; Inoue, Yuuki; Ishihara, Kazuhiko
2016-10-01
Various molecular interaction forces are generated during protein adsorption process on material surfaces. Thus, it is necessary to control them to suppress protein adsorption and the subsequent cell and tissue responses. A series of binary copolymer brush layers were prepared via surface-initiated atom transfer radical polymerization, by mixing the cationic monomer unit and anionic monomer unit randomly in various ratios. Surface characterization revealed that the constructed copolymer brush layers exhibited an uniform super-hydrophilic nature and different surface potentials. The strength of the electrostatic interaction forces operating on these mixed-charge copolymer brush surfaces was evaluated quantitatively using force-versus-distance (f-d) curve measurements by atomic force microscopy (AFM) and probes modified by negatively charged carboxyl groups or positively charged amino groups. The electrostatic interaction forces were determined based on the charge ratios of the copolymer brush layers. Notably, the surface containing equivalent cationic/anionic monomer units hardly interacted with both the charged groups. Furthermore, the protein adsorption force and the protein adsorption mass on these surfaces were examined by AFM f-d curve measurement and surface plasmon resonance measurement, respectively. To clarify the influence of the electrostatic interaction on the protein adsorption behavior on the surface, three kinds of proteins having negative, positive, and relatively neutral net charges under physiological conditions were used in this study. We quantitatively demonstrated that the amount of adsorbed proteins on the surfaces would have a strong correlation with the strength of surface-protein interaction forces, and that the strength of surface-protein interaction forces would be determined from the combination between the properties of the electrostatic interaction forces on the surfaces and the charge properties of the proteins. Especially, the copolymer brush surface composed of equivalent cationic/anionic monomer units exhibited no significant interaction forces, and dramatically suppressed the adsorption of proteins regardless of their charge properties. We conclude that the established methodology could elucidate relationship between the protein adsorption behavior and molecular interaction, especially the electrostatic interaction forces, and demonstrated that the suppression of the electrostatic interactions with the ionic functional groups would be important for the development of new polymeric biomaterials with a high repellency of protein adsorption. Copyright © 2016 Elsevier Ltd. All rights reserved.
Study of negative ion transport phenomena in a plasma source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riz, D.; Pamela, J.
1996-07-01
NIETZSCHE (Negative Ions Extraction and Transport ZSimulation Code for HydrogEn species) is a negative ion (NI) transport code developed at Cadarache. This code calculates NI trajectories using a 3D Monte-Carlo technique, taking into account the main destruction processes, as well as elastic collisions (H{sup {minus}}/H{sup +}) and charge exchanges (H{sup {minus}}/H{sup 0}). It determines the extraction probability of a NI created at a given position. According to the simulations, we have seen that in the case of volume production, only NI produced close to the plasma grid (PG) can be extracted. Concerning the surface production, we have studied how NImore » produced on the PG and accelerated by the plasma sheath backward into the source could be extracted. We demonstrate that elastic collisions and charge exchanges play an important role, which in some conditions dominates the magnetic filter effect, which acts as a magnetic mirror. NI transport in various conditions will be discussed: volume/surface production, high/low plasmas density, tent filter/transverse filter. {copyright} {ital 1996 American Institute of Physics.}« less
Hamid, Rossuriati Dol; Swedlund, Peter J; Song, Yantao; Miskelly, Gordon M
2011-11-01
The effect of ionic strength on reactions at aqueous interfaces can provide insights into the nature of the chemistry involved. The adsorption of H(4)SiO(4) on iron oxides at low surface silicate concentration (Γ(Si)) forms monomeric silicate complexes with Fe-O-Si linkages, but as Γ(Si) increases silicate oligomers with Si-O-Si linkages become increasingly prevalent. In this paper, the effect of ionic strength (I) on both Γ(Si) and the extent of silicate oligomerization on the ferrihydrite surface is determined at pH 4, 7, and 10, where the surface is, respectively, positive, nearly neutral, and negatively charged. At pH 4, an increase in ionic strength causes Γ(Si) to decrease at a given H(4)SiO(4) solution concentration, while the proportion of oligomers on the surface at a given Γ(Si) increases. At pH 10, the opposite is observed; Γ(Si) increases as I increases, while the proportion of surface oligomers at a given Γ(Si) decreases. Ionic strength has only a small effect on the surface chemistry of H(4)SiO(4) at pH 7, but at low Γ(Si) this effect is in the direction observed at pH 4 while at high Γ(Si) the effect is in the direction observed at pH 10. The pH where the surface has zero charge decreases from ≈8 to 6 as Γ(Si) increases so that the surface potential (Ψ) is positive at pH 4 for all Γ(Si) and at pH 7 with low Γ(Si). Likewise, Ψ < 0 at pH 10 for all Γ(Si) and at pH 7 with high Γ(Si). The diffuse layer model is used to unravel the complex and subtle interactions between surface potential (Ψ) and chemical parameters that influence interfacial silicate chemistry. This analysis reveals that the decrease in the absolute value of Ψ as I increases causes Γ(Si) to decrease or increase where Ψ is, respectively, positive or negative. Therefore, at a given Γ(Si), the solution H(4)SiO(4) concentration changes with I, and because oligomerization has a higher H(4)SiO(4) stoichiometry coefficient than monomer adsorption, this results in the observed dependence of the extent of silicate oligomerization on I.
Wang, Mei; Tulman, David B.; Sholl, Andrew B.; Kimbrell, Hillary Z.; Mandava, Sree H.; Elfer, Katherine N.; Luethy, Samuel; Maddox, Michael M.; Lai, Weil; Lee, Benjamin R.; Brown, J. Quincy
2016-01-01
Achieving cancer-free surgical margins in oncologic surgery is critical to reduce the need for additional adjuvant treatments and minimize tumor recurrence; however, there is a delicate balance between completeness of tumor removal and preservation of adjacent tissues critical for normal post-operative function. We sought to establish the feasibility of video-rate structured illumination microscopy (VR-SIM) of the intact removed tumor surface as a practical and non-destructive alternative to intra-operative frozen section pathology, using prostate cancer as an initial target. We present the first images of the intact human prostate surface obtained with pathologically-relevant contrast and subcellular detail, obtained in 24 radical prostatectomy specimens immediately after excision. We demonstrate that it is feasible to routinely image the full prostate circumference, generating gigapixel panorama images of the surface that are readily interpreted by pathologists. VR-SIM confirmed detection of positive surgical margins in 3 out of 4 prostates with pathology-confirmed adenocarcinoma at the circumferential surgical margin, and furthermore detected extensive residual cancer at the circumferential margin in a case post-operatively classified by histopathology as having negative surgical margins. Our results suggest that the increased surface coverage of VR-SIM could also provide added value for detection and characterization of positive surgical margins over traditional histopathology. PMID:27257084
Photo electron emission microscopy of polarity-patterned materials
NASA Astrophysics Data System (ADS)
Yang, W.-C.; Rodriguez, B. J.; Gruverman, A.; Nemanich, R. J.
2005-04-01
This study presents variable photon energy photo electron emission microscopy (PEEM) of polarity-patterned epitaxial GaN films, and ferroelectric LiNbO3 (LNO) single crystals and PbZrTiO3 (PZT) thin films. The photo electrons were excited with spontaneous emission from the tunable UV free electron laser (FEL) at Duke University. We report PEEM observation of polarity contrast and measurement of the photothreshold of each polar region of the materials. For a cleaned GaN film with laterally patterned Ga- and N-face polarities, we found a higher photoelectric yield from the N-face regions compared with the Ga-face regions. Through the photon energy dependent contrast in the PEEM images of the surfaces, we can deduce that the threshold of the N-face region is less than ~4.9 eV while that of the Ga-face regions is greater than 6.3 eV. In both LNO and PZT, bright emission was detected from the negatively poled domains, indicating that the emission threshold of the negative domain is lower than that of the positive domain. For LNO, the measured photothreshold was ~4.6 eV at the negative domain and ~6.2 eV at the positive domain, while for PZT, the threshold of the negative domain was less than 4.3 eV. Moreover, PEEM observation of the PZT surface at elevated temperatures displayed that the domain contrast disappeared near the Curie temperature of ~300 °C. The PEEM polarity contrast of the polar materials is discussed in terms of internal screening from free carriers and defects and the external screening due to adsorbed ions.
NASA Astrophysics Data System (ADS)
Rao, Wei; Pan, Ning; Tian, Xiang; Yang, Zhibo
2016-01-01
We have used the Single-probe, a miniaturized sampling device utilizing in-situ surface microextraction for ambient mass spectrometry (MS) analysis, for the high resolution MS imaging (MSI) of negatively charged species in the positive ionization mode. Two dicationic compounds, 1,5-pentanediyl-bis(1-butylpyrrolidinium) difluoride [C5(bpyr)2F2] and 1,3-propanediyl-bis(tripropylphosphonium) difluoride [C3(triprp)2F2], were added into the sampling solvent to form 1+ charged adducts with the negatively charged species extracted from tissues. We were able to detect 526 and 322 negatively charged species this way using [C5(bpyr)2F2] and [C3(triprp)2F2], respectively, including oleic acid, arachidonic acid, and several species of phosphatidic acid, phosphoethanolamine, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, and others. In conjunction with the identification of the non-adduct cations, we have tentatively identified a total number of 1200 and 828 metabolites from mouse brain sections using [C5(bpyr)2F2] and [C3(triprp)2F2], respectively, through high mass accuracy measurements (mass error <5 ppm); MS/MS analyses were also performed to verify the identity of selected species. In addition to the high mass accuracy measurement, we were able to generate high spatial resolution (~17 μm) MS images of mouse brain sections. Our study demonstrated that utilization of dicationic compounds in the surface microextraction with the Single-probe device can perform high mass and spatial resolution ambient MSI measurements of broader types of compounds in tissues. Other reagents can be potentially used with the Single-probe device for a variety of reactive MSI studies to enable the analysis of species that are previously intractable.
Endotoxin hitchhiking on polymer nanoparticles
NASA Astrophysics Data System (ADS)
Donnell, Mason L.; Lyon, Andrew J.; Mormile, Melanie R.; Barua, Sutapa
2016-07-01
The control of microbial infections is critical for the preparation of biological media including water to prevent lethal septic shock. Sepsis is one of the leading causes of death in the United States. More than half a million patients suffer from sepsis every year. Both gram-positive and gram-negative bacteria are responsible for septic infection by the most common organisms i.e., Escherichia coli and Pseuodomonas aeruginosa. The bacterial cell membrane releases negatively charged endotoxins upon death and enzymatic destruction, which stimulate antigenic response in humans to gram-negative infections. Several methods including distillation, ethylene oxide treatment, filtration and irradiation have been employed to remove endotoxins from contaminated samples, however, the reduction efficiency remains low, and presents a challenge. Polymer nanoparticles can be used to overcome the current inability to effectively sequester endotoxins from water. This process is termed endotoxin hitchhiking. The binding of endotoxin on polymer nanoparticles via electrostatic and hydrophobic interactions offers efficient removal from water. However, the effect of polymer nanoparticles and its surface areas has not been investigated for removal of endotoxins. Poly(ε-caprolactone) (PCL) polymer was tested for its ability to effectively bind and remove endotoxins from water. By employing a simple one-step phase separation technique, we were able to synthesize PCL nanoparticles of 398.3 ± 95.13 nm size and a polydispersity index of 0.2. PCL nanoparticles showed ∼78.8% endotoxin removal efficiency, the equivalent of 3.9 × 105 endotoxin units (EU) per ml. This is 8.34-fold more effective than that reported for commercially available membranes. Transmission electron microscopic images confirmed binding of multiple endotoxins to the nanoparticle surface. The concept of using nanoparticles may be applicable not only to eliminate gram-negative bacteria, but also for any gram-positive bacteria, fungi and parasites.
Dynamic electrophoretic fingerprinting of the HIV-1 envelope glycoprotein
2013-01-01
Background Interactions between the HIV-1 envelope glycoprotein (Env) and its primary receptor CD4 are influenced by the physiological setting in which these events take place. In this study, we explored the surface chemistry of HIV-1 Env constructs at a range of pH and salinities relevant to mucosal and systemic compartments through electrophoretic mobility (EM) measurements. Sexual transmission events provide a more acidic environment for HIV-1 compared to dissemination and spread of infection occurring in blood or lymph node. We hypothesize functional, trimeric Env behaves differently than monomeric forms. Results The dynamic electrophoretic fingerprint of trimeric gp140 revealed a change in EM from strongly negative to strongly positive as pH increased from that of the lower female genital tract (pHx) to that of the blood (pHy). Similar findings were observed using a trimeric influenza Haemagglutinin (HA) glycoprotein, indicating that this may be a general attribute of trimeric viral envelope glycoproteins. These findings were supported by computationally modeling the surface charge of various gp120 and HA crystal structures. To identify the behavior of the infectious agent and its target cells, EM measurements were made on purified whole HIV-1 virions and primary T-lymphocytes. Viral particles had a largely negative surface charge, and lacked the regions of positivity near neutral pH that were observed with trimeric Env. T cells changed their surface chemistry as a function of activation state, becoming more negative over a wider range of pH after activation. Soluble recombinant CD4 (sCD4) was found to be positively charged under a wide range of conditions. Binding studies between sCD4 and gp140 show that the affinity of CD4-gp140 interactions depends on pH. Conclusions Taken together, these findings allow a more complete model of the electrochemical forces involved in HIV-1 Env functionality. These results indicate that the influence of the localized environment on the interactions of HIV with target cells are more pronounced than previously appreciated. There is differential chemistry of trimeric, but not monomeric, Env under conditions which mimic the mucosa compared to those found systemically. This should be taken into consideration during design of immunogens which targets virus at mucosal portals of entry. PMID:23514633
Sagi, H C; DiPasquale, Thomas; Sanders, Roy; Herscovici, Dolfi
2002-01-01
To determine if the exhaust from surgical compressed-air power tools contains bacteria and if the exhaust leads to contamination of sterile surfaces. Bacteriologic study of orthopaedic power tools. Level I trauma center operative theater. None. Part I. Exhaust from two sterile compact air drills was sampled directly at the exhaust port. Part II. Exhaust from the drills was directed at sterile agar plates from varying distances. The agar plates represented sterile surfaces within the operative field. Part III. Control cultures. A battery-powered drill was operated over open agar plates in similar fashion as the compressed-air drills. Agar plates left open in the operative theater served as controls to rule out atmospheric contamination. Random cultures were taken from agar plates, gloves, drills, and hoses. Incidence of positive cultures. In Part I, all filters from both compressed-air drill exhausts were culture negative ( = 0.008). In Part II, the incidence of positive cultures for air drills number one and number two was 73% and 82%, respectively. The most commonly encountered organisms were, coagulase-negative Staphylococcus, and Micrococcus species. All control cultures from agar plates, battery-powered drill, gloves, and hoses were negative ( < 0.01). Exhaust from compressed-air power tools in orthopaedic surgery may contribute to the dissemination of bacteria onto the surgical field. We do not recommend the use of compressed-air power tools that do not have a contained exhaust.
Herruzo, R; Vizcaíno, M J; Herruzo, I
2014-07-01
Microbial contamination of hospital surfaces may be a source of infection for hospitalized patients. We evaluated the efficacy of Glosair™ 400 against two American Type Culture Collection strains and 18 clinical isolates, placed on glass germ-carriers. Carriers were left to air-dry for 60 min and then exposed to a cycle before detection of any surviving micro-organisms. Antibiotic-susceptible Gram-negative bacilli were less susceptible (although not significantly) to this technique than resistant Gram-negative bacilli or Gram-positive cocci and yeasts (3, 3.4 and 4.6 log10 reduction, respectively). In conclusion, in areas that had not been cleaned, aerosolized hydrogen peroxide obtained >3 log10 mean destruction of patients' micro-organisms. Copyright © 2014 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Kinetics of the crust thickness development of bread during baking.
Soleimani Pour-Damanab, Alireza; Jafary, A; Rafiee, Sh
2014-11-01
The development of crust thickness of bread during baking is an important aspect of bread quality and shelf-life. Computer vision system was used for measuring the crust thickness via colorimetric properties of bread surface during baking process. Crust thickness had a negative and positive relationship with Lightness (L (*) ) and total color change (E (*) ) of bread surface, respectively. A linear negative trend was found between crust thickness and moisture ratio of bread samples. A simple mathematical model was proposed to predict the development of crust thickness of bread during baking, where the crust thickness was depended on moisture ratio that was described by the Page moisture losing model. The independent variables of the model were baking conditions, i.e. oven temperature and air velocity, and baking time. Consequently, the proposed model had well prediction ability, as the mean absolute estimation error of the model was 7.93 %.
Image statistics and the perception of surface gloss and lightness.
Kim, Juno; Anderson, Barton L
2010-07-01
Despite previous data demonstrating the critical importance of 3D surface geometry in the perception of gloss and lightness, I. Motoyoshi, S. Nishida, L. Sharan, and E. H. Adelson (2007) recently proposed that a simple image statistic--histogram or sub-band skew--is computed by the visual system to infer the gloss and albedo of surfaces. One key source of evidence used to support this claim was an experiment in which adaptation to skewed image statistics resulted in opponent aftereffects in observers' judgments of gloss and lightness. We report a series of adaptation experiments that were designed to assess the cause of these aftereffects. We replicated their original aftereffects in gloss but found no consistent aftereffect in lightness. We report that adaptation to zero-skew adaptors produced similar aftereffects as positively skewed adaptors, and that negatively skewed adaptors induced no reliable aftereffects. We further find that the adaptation effect observed with positively skewed adaptors is not robust to changes in mean luminance that diminish the intensity of the luminance extrema. Finally, we show that adaptation to positive skew reduces (rather than increases) the apparent lightness of light pigmentation on non-uniform albedo surfaces. These results challenge the view that the adaptation results reported by Motoyoshi et al. (2007) provide evidence that skew is explicitly computed by the visual system.
NASA Astrophysics Data System (ADS)
Chirko, K.; Krasik, Ya. E.; Sayapin, A.; Felsteiner, J.; Bernshtam, V.
2003-08-01
Experimental results are presented of dense plasma formation on the surface of a BaTi-based ferroelectric sample during the fall time of a driving pulse. A negative or positive driving pulse (⩽14 kV), with a slow rise time (˜450 ns) and a fast fall time (40-200 ns), was applied to the rear electrode of the ferroelectric. It was found by different electrical, optical, and spectroscopic diagnostics that this method allows one to form a plasma with a larger density (˜3×1013 cm-3) as compared with that formed by a driving pulse with a fast rise time (⩽4×1012 cm-3). It was shown that the shorter the fall time of the driving pulse the more intense plasma formation occurs. The most uniform and dense plasma formation occurs with a positive driving pulse. In addition, it was found that the shorter the fall time of the positive driving pulse the larger are the current amplitude, the energy, and the divergence of the emitted electrons. The obtained results are discussed in terms of the surface plasma formation and the compensation process of the polarization surface charge of the ferroelectric sample.
Koopaei, Mona Noori; Dinarvand, Rassoul; Amini, Mohsen; Rabbani, Hojatollah; Emami, Shaghayegh; Ostad, Seyed Nasser; Atyabi, Fatemeh
2011-01-01
The objective of this study was to develop pegylated poly lactide-co-glycolide acid (PLGA) immunonanocarriers for targeting delivery of docetaxel to human breast cancer cells. The polyethylene glycol (PEG) groups on the surface of the PLGA nanoparticles were functionalized using maleimide groups. Trastuzumab, a monoclonal antibody against human epidermal growth factor receptor 2 (HER2) antigens of cancer cells, used as the targeting moiety, was attached to the maleimide groups on the surface of pegylated PLGA nanoparticles. Nanoparticles prepared by a nanoprecipitation method were characterized for their size, size distribution, surface charge, surface morphology, drug-loading, and in vitro drug release profile. The average size of the trastuzumab-decorated nanoparticles was 254 ± 16.4 nm and their zeta potential was -11.5 ± 1.4 mV. The average size of the nontargeted PLGA nanoparticles was 183 ± 22 nm and their zeta potential was -2.6 ± 0.34 mV. The cellular uptake of nanoparticles was studied using both HER2-positive (SKBR3 and BT-474) and HER2-negative (Calu-6) cell lines. The cytotoxicity of the immunonanocarriers against HER2-positive cell lines was significantly higher than that of nontargeted PLGA nanoparticles and free docetaxel.
NASA Technical Reports Server (NTRS)
Los, Sietse Oene
1998-01-01
A monthly global 1 degree by 1 degree data set from 1982 until 1990 was derived from data collected by the Advanced Very High Resolution Radiometer on board the NOAA 7, 9, and 11 satellites. This data set was used to study the interactions between variations in climate and variations in the "greenness" of vegetation. Studies with the Colorado State University atmospheric general circulation model coupled to the Simple Biosphere model showed a large sensitivity of the hydrological balance to changes in vegetation at low latitudes. The depletion of soil moisture as a result of increased vegetation density provided a negative feedback in an otherwise positive association between increased vegetation, increased evaporation, and increased precipitation proposed by Charney and coworkers. Analysis of climate data showed, at temperate to high latitudes, a positive association between variation in land surface temperature, sea surface temperature and vegetation greenness. At low latitudes the data indicated a positive association between variations in sea surface temperature, rainfall and vegetation greenness. The variations in mid- to high latitude temperatures affected the global average greenness and this could provide an explanation for the increased carbon uptake by the terrestrial surface over the past couple of decades.
Kallmeyer, R J; Chang, E C
1998-02-01
The present study examined the general emotional content of dreams reported by individuals who typically experience "positive" versus "negative" dreams. Self-reports of the 153 participants indicated that positive versus negative dreamers (ns = 42 and 24, respectively) generally experienced more positive emotions, e.g., joviality, self-assurance, and fewer negative emotions, e.g., fear, sadness. No differences were found in the self-reports of the participants in the experience of surprise, guilt, fatigue, and shyness between the groups, hence, positive and negative dreams do not appear to reflect simply more positive and fewer negative emotions, respectively.
Li, Dien; Kaplan, Daniel I; Roberts, Kimberly A; Seaman, John C
2012-03-06
Cementitious materials are increasingly used as engineered barriers and waste forms for radiological waste disposal. Yet their potential effect on mobile colloid generation is not well-known, especially as it may influence colloid-facilitated contaminant transport. Whereas previous papers have studied the introduction of cement colloids into sediments, this study examined the influence of cement leachate chemistry on the mobilization of colloids from a subsurface sediment collected from the Savannah River Site, USA. A sharp mobile colloid plume formed with the introduction of a cement leachate simulant. Colloid concentrations decreased to background concentrations even though the aqueous chemical conditions (pH and ionic strength) remained unchanged. Mobile colloids were mainly goethite and to a lesser extent kaolinite. The released colloids had negative surface charges and the mean particle sizes ranged primarily from 200 to 470 nm. Inherent mineralogical electrostatic forces appeared to be the controlling colloid removal mechanism in this system. In the background pH of ~6.0, goethite had a positive surface charge, whereas quartz (the dominant mineral in the immobile sediment) and kaolinite had negative surface charges. Goethite acted as a cementing agent, holding kaolinite and itself onto the quartz surfaces due to the electrostatic attraction. Once the pH of the system was elevated, as in the cementitious high pH plume front, the goethite reversed to a negative charge, along with quartz and kaolinite, then goethite and kaolinite colloids were mobilized and a sharp spike in turbidity was observed. Simulating conditions away from the cementitious source, essentially no colloids were mobilized at 1:1000 dilution of the cement leachate or when the leachate pH was ≤ 8. Extreme alkaline pH environments of cementitious leachate may change mineral surface charges, temporarily promoting the formation of mobile colloids.
Wu, Bo; Chun, Byong-Wa; Gu, Le; Kuhl, Tonya L
2018-05-09
Poly(carboxylate ether)-based (PCE) superplasticizers consist of a carboxylic acid backbone and grafted poly(ethylene glycol) (PEG) side chains. Ca 2+ ion bridging mechanism is commonly purported to control PCE's adsorption on negatively charged cement particle surfaces in cement suspension, thus PCE was expected to adsorb on negatively charged surfaces in synthetic pore solutions via Ca 2+ /COO - interactions. Adsorption behaviors of a commercial PCE on negatively charged mica were studied in aqueous electrolyte solutions by a surface forces apparatus. Direct force measurements indicated that the PCE adsorbed onto mica from 0.1 M K 2 SO 4 due to K + ion chelation by the ether oxygen units CH 2 CH 2 O on the PEG chains, but surprisingly did not adsorb from either 0.1 M K 2 SO 4 with saturated Ca(OH) 2 or 0.1 M Ca(NO 3 ) 2 . The adsorption in K 2 SO 4 was weak, enabling the adsorbed PCE layers to be squeezed out under modest compression. Upon separating the surfaces, the PCE immediately achieved an identical re-adsorption. In high-calcium conditions, the PCE was highly positively charged due to Ca 2+ ion chelation by PEG chains and backbone carboxylic groups COO - , and mica also underwent charge reversal due to electrostatic adsorption/binding of Ca 2+ ions. Consequently, the interaction between mica and PCE was electrostatically repulsive and no PCE adsorption occurred. These findings can be explained by the complex interplay of ion chelation by PEG chains, electrostatic binding and screening interactions with charged surfaces in the presence of monovalent and divalent counterions, and ultimately charge reversal of both the charged surfaces and polyelectrolyte in high divalent ion conditions. Copyright © 2018 Elsevier Inc. All rights reserved.
Báez, José C.; Gimeno, Luis; Gómez-Gesteira, Moncho; Ferri-Yáñez, Francisco; Real, Raimundo
2013-01-01
We explored the possible effects of the North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) on interannual sea surface temperature (SST) variations in the Alborán Sea, both separately and combined. The probability of observing mean annual SST values higher than average was related to NAO and AO values of the previous year. The effect of NAO on SST was negative, while that of AO was positive. The pure effects of NAO and AO on SST are obscuring each other, due to the positive correlation between them. When decomposing SST, NAO and AO in seasonal values, we found that variation in mean annual SST and mean winter SST was significantly related to the mean autumn NAO of the previous year, while mean summer SST was related to mean autumn AO of the previous year. The one year delay in the effect of the NAO and AO on the SST could be partially related to the amount of accumulated snow, as we found a significant correlation between the total snow in the North Alborán watershed for a year with the annual average SST of the subsequent year. A positive AO implies a colder atmosphere in the Polar Regions, which could favour occasional cold waves over the Iberian Peninsula which, when coupled with precipitations favoured by a negative NAO, may result in snow precipitation. This snow may be accumulated in the high peaks and melt down in spring-summer of the following year, which consequently increases the runoff of freshwater to the sea, which in turn causes a diminution of sea surface salinity and density, and blocks the local upwelling of colder water, resulting in a higher SST. PMID:23638005
NASA Astrophysics Data System (ADS)
Hasson, Audrey; Delcroix, Thierry; Boutin, Jacqueline; Dussin, Raphael; Ballabrera-Poy, Joaquim
2014-06-01
The tropical Pacific Ocean remained in a La Niña phase from mid-2010 to mid-2012. In this study, the 2010-2011 near-surface salinity signature of ENSO (El Niño-Southern Oscillation) is described and analyzed using a combination of numerical model output, in situ data, and SMOS satellite salinity products. Comparisons of all salinity products show a good agreement between them, with a RMS error of 0.2-0.3 between the thermosalinograph (TSG) and SMOS data and between the TSG and model data. The last 6 months of 2010 are characterized by an unusually strong tripolar anomaly captured by the three salinity products in the western half of the tropical Pacific. A positive SSS anomaly sits north of 10°S (>0.5), a negative tilted anomaly lies between 10°S and 20°S and a positive one south of 20°S. In 2011, anomalies shift south and amplify up to 0.8, except for the one south of 20°S. Equatorial SSS changes are mainly the result of anomalous zonal advection, resulting in negative anomalies during El Niño (early 2010), and positive ones thereafter during La Niña. The mean seasonal and interannual poleward drift exports those anomalies toward the south in the southern hemisphere, resulting in the aforementioned tripolar anomaly. The vertical salinity flux at the bottom of the mixed layer tends to resist the surface salinity changes. The observed basin-scale La Niña SSS signal is then compared with the historical 1998-1999 La Niña event using both observations and modeling.
Guo, Cecilia Yan; Hong Tang, Alexander Tin; Hon Tsoi, James Kit; Matinlinna, Jukka Pekka
2014-04-01
It has been reported that sandblasting titanium with alumina (Al2O3) powder could generate a negative electric charge on titanium surface. This has been proven to promote osteoblast activities and possibly osseointegration. The purpose of this pilot study was to investigate the effects of different blasting materials, in terms of the grit sizes and electro-negativity, on the generation of a negative charge on the titanium surface. The aim was also to make use of these results to deduct the underlying mechanism of charge generation by sandblasting. Together 60 c.p. 2 titanium plates were machine-cut and polished for sandblasting, and divided into 6 groups with 10 plates in each. Every plate in the study groups was sandblasted with one of the following 6 powder materials: 110µm Al2O3 grits, 50µm Al2O3 grits, 150-300µm glass beads, 45-75µm glass beads, 250µm Al powder and 44µm Al powder. The static voltage on the surface of every titanium plate was measured immediately after sandblasting. The static voltages of the titanium plates were recorded and processed using statistical analysis. The results suggested that only sandblasting with 45-75µm glass beads generated a positive charge on titanium, while using all other blasting materials lead to a negative charge. Furthermore, blasting grits of the same powder material but of different sizes might lead to different amount and polarity of the charges. This triboelectric effect is likely to be the main mechanism for charge generation through sandblasting. Copyright © 2014 Elsevier Ltd. All rights reserved.
Specialized cell surface structures in cellulolytic bacteria.
Lamed, R; Naimark, J; Morgenstern, E; Bayer, E A
1987-01-01
The cell surface topology of various gram-negative and -positive, anaerobic and aerobic, mesophilic and thermophilic, cellulolytic and noncellulolytic bacteria was investigated by scanning electron microscopic visualization using cationized ferritin. Characteristic protuberant structures were observed on cells of all cellulolytic strains. These structures appeared to be directly related to the previously described exocellular cellulase-containing polycellulosomes of Clostridium thermocellum YS (E. A. Bayer and R. Lamed, J. Bacteriol. 167:828-836, 1986). Immunochemical evidence and lectin-binding studies suggested a further correlation on the molecular level among cellulolytic bacteria. The results indicate that such cell surface cellulase-containing structures may be of general consequence to the bacterial interaction with and degradation of cellulose. Images PMID:3301817
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, V.; Schwank, J.; Gland, J.
In this study, hard/soft Lewis acid-base (HSAB) principles are used to modify a thin-polycrystalline platinum film to promote preferential chemisorption of molecules such as piperidine, n-hexane, and cyclohexane. Specifically, the particle size and electron density distribution of the platinum surface is modified using thermal treatment and co-adsorption of electro-positive and negative species. These studies are conducted in an ultra-high vacuum chamber. The platinum surface is characterized, before and after modification protocols, using a variety of in-situ and ex-situ techniques. These include temperature programmed desorption (TPD), both resistance change and work function measurements, and both X-ray photoelectron spectroscopy and diffraction.
Optimization of the parameters of ITO-CdTe photovoltaic cells
NASA Astrophysics Data System (ADS)
Adib, N.; Simashkevich, A. V.; Sherban, D. A.
The effect of the surface state density at the interface and of the static charge in the intermediate oxide layer on the photoelectric parameters of solar cells based on ITO-nCdTe semiconductor-insulator-semiconductor structures is calculated theoretically. It is shown that,under AMI conditions, the conversion efficiency of such cells can be as high as 12 percent (short-circuit current, 23 mA/sq cm; open-circuit voltage, 0.65 V; fill factor, 0.8), provided that the surface states are acceptors and the oxide is negatively charged. It is concluded that surface states and the dielectric layer charge have a positive effect on the efficiency of solar cells of this type.
Sánchez, Daniel; Johnson, Nick; Li, Chao; Novak, Pavel; Rheinlaender, Johannes; Zhang, Yanjun; Anand, Uma; Anand, Praveen; Gorelik, Julia; Frolenkov, Gregory I.; Benham, Christopher; Lab, Max; Ostanin, Victor P.; Schäffer, Tilman E.; Klenerman, David; Korchev, Yuri E.
2008-01-01
Mechanosensitivity in living biological tissue is a study area of increasing importance, but investigative tools are often inadequate. We have developed a noncontact nanoscale method to apply quantified positive and negative force at defined positions to the soft responsive surface of living cells. The method uses applied hydrostatic pressure (0.1–150 kPa) through a pipette, while the pipette-sample separation is kept constant above the cell surface using ion conductance based distance feedback. This prevents any surface contact, or contamination of the pipette, allowing repeated measurements. We show that we can probe the local mechanical properties of living cells using increasing pressure, and hence measure the nanomechanical properties of the cell membrane and the underlying cytoskeleton in a variety of cells (erythrocytes, epithelium, cardiomyocytes and neurons). Because the cell surface can first be imaged without pressure, it is possible to relate the mechanical properties to the local cell topography. This method is well suited to probe the nanomechanical properties and mechanosensitivity of living cells. PMID:18515369
Brolin, Kim J M; Persson, Kristina E M; Wahlgren, Mats; Rogerson, Stephen J; Chen, Qijun
2010-02-16
Plasmodium falciparum infected red blood cells (iRBC) express variant surface antigens (VSA) of which VAR2CSA is involved in placental sequestration and causes pregnancy-associated malaria (PAM). Primigravidae are most susceptible to PAM whereas antibodies associated with protection are often present at higher levels in multigravid women. However, HIV co-infection with malaria has been shown to alter this parity-dependent acquisition of immunity, with more severe symptoms as well as more malaria episodes in HIV positive women versus HIV negative women of a similar parity. Using VAR2CSA DBL-domains expressed on the surface of CHO-745 cells we quantified levels of DBL-domain specific IgG in sera from pregnant Malawian women by flow cytometry. Dissociations constants of DBL5epsilon specific antibodies were determined using a surface plasmon resonance technique, as an indication of antibody affinities. VAR2CSA DBL5epsilon was recognized in a gender and parity-dependent manner with anti-DBL5epsilon IgG correlating significantly with IgG levels to VSA-PAM on the iRBC surface. HIV positive women had lower levels of anti-DBL5epsilon IgG than HIV negative women of similar parity. In primigravidae, antibodies in HIV positive women also showed significantly lower affinity to VAR2CSA DBL5epsilon. Pregnant women from a malaria-endemic area had increased levels of anti-DBL5epsilon IgG by parity, indicating this domain of VAR2CSA to be a promising vaccine candidate against PAM. However, it is important to consider co-infection with HIV, as this seems to change the properties of antibody response against malaria. Understanding the characteristics of antibody response against VAR2CSA is undoubtedly imperative in order to design a functional and efficient vaccine against PAM.
Observation of Iron Specific Interaction with a Charge Neutral Phospholipid
NASA Astrophysics Data System (ADS)
Wang, Wenjie; Zhang, Honghu; Feng, Shuren; San Emeterio, Josue; Kuzmenko, Ivan; Nilsen-Hamilton, Marit; Mallapragada, Surya; Vaknin, David
2015-03-01
Using surface sensitive X-ray scattering and spectroscopic techniques we show that phosphatidyl choline (PC) head groups attract positively charged iron ions and complexes even at pH values that are lower than 3. DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) is a zwitterionic lipid typically used as a model system for cell membranes. Within a large pH range (3 -11), it carries a negative charge on the phosphate group and a positive charge on the quaternary ammonium cation, thus appears charge neutral. Further lowering the pH, i.e. adding a proton to the phosphate group, results in a positively charged headgroup. Surprisingly, we detect significant enrichment of iron at the interface of the DPPC monolayer and the aqueous subphase with the pH maintained at 3 or even lower. With a supposedly charge neutral or even positive surface, the observation of surface bound, charge positive iron ions or iron hydroxides is counter-intuitive and suggests iron-specific interaction with the phospholipid headgroup, which is not governed by electrostatic interaction. The effect of the integration of Mms6, a membrane protein that promotes the formation of magnetic nanocrystals, into the DPPC monolayer will also be discussed. Research supported by the U.S. Department of Energy under Contract No. DE-AC02-07CH11358 and DE-AC02-06CH11357.
Zhang, Lin-Hai; Tong, Chuan; Zeng, Cong-Sheng
2014-03-01
Characteristics of diurnal and seasonal variations of surface atmospheric CO2 concentration were analyzed in the Minjiang River estuarine marsh from December 2011 to November 2012. The results revealed that both the diurnal and seasonal variation of surface atmospheric CO2 concentration showed single-peak patterns, with the valley in the daytime and the peak value at night for the diurnal variations, and the maxima in winter and minima in summer for the seasonal variation. Diurnal amplitude of CO2 concentration varied from 16.96 micromol x mol(-1) to 38.30 micromol x mol(-1). The seasonal averages of CO2 concentration in spring, summer, autumn and winter were (353.74 +/- 18.35), (327.28 +/- 8.58), (354.78 +/- 14.76) and (392.82 +/- 9.71) micromol x mol(-1), respectively, and the annual mean CO2 concentration was (357.16 +/- 26.89) micromol x mol(-1). The diurnal CO2 concentration of surface atmospheric was strongly negatively correlated with temperature, wind speed, photosynthetically active radiation and total solar radiation (P < 0.05). The diurnal concentration of CO2 was negatively related with tidal level in January, but significantly positively related in July.
Convection and the Soil-Moisture Precipitation Feedback
NASA Astrophysics Data System (ADS)
Schar, C.; Froidevaux, P.; Keller, M.; Schlemmer, L.; Langhans, W.; Schmidli, J.
2014-12-01
The soil moisture - precipitation (SMP) feedback is of key importance for climate and climate change. A positive SMP feedback tends to amplify the hydrological response to external forcings (and thereby fosters precipitation and drought extremes), while a negative SMP feedback tends to moderate the influence of external forcings (and thereby stabilizes the hydrological cycle). The sign of the SMP feedback is poorly constrained by the current literature. Theoretical, modeling and observational studies partly disagree, and have suggested both negative and positive feedback loops. Can wet soil anomalies indeed result in either an increase or a decrease of precipitation (positive or negative SMP feedback, respectively)? Here we investigate the local SMP feedback using real-case and idealized convection-resolving simulations. An idealized simulation strategy is developed, which is able to replicate both signs of the feedback loop, depending on the environmental parameters. The mechanism relies on horizontal soil moisture variations, which may develop and intensify spontaneously. The positive expression of the feedback is associated with the initiation of convection over dry soil patches, but the convective cells then propagate over wet patches, where they strengthen and preferentially precipitate. The negative feedback may occur when the wind profile is too weak to support the propagation of convective features from dry to wet areas. Precipitation is then generally weaker and falls preferentially over dry patches. The results highlight the role of the mid-tropospheric flow in determining the sign of the feedback. A key element of the positive feedback is the exploitation of both low convective inhibition (CIN) over dry patches (for the initiation of convection), and high CAPE over wet patches (for the generation of precipitation). The results of this study will also be discussed in relation to climate change scenarios that exhibit large biases in surface temperature and interannual variability over mid-latitude summer climates, both over Europe and North America. It is argued that parameterized convection may contribute towards such biases by overemphasizing a positive SMP feedback.
Haeggblom, Linnea; Nordfors, Cecilia; Tertipis, Nikolaos; Bersani, Cinzia; Ramqvist, Torbjörn; Näsman, Anders; Dalianis, Tina
2017-03-16
Human papillomavirus (HPV) infection is a risk factor for oropharyngeal cancer, besides smoking and alcohol. Patients with HPV-positive tumors have a better prognosis than those with HPV-negative tumors. Furthermore, patients with HPV-positive tumors, with high CD8+ tumor infiltrating lymphocyte counts or absent/low human leukocyte antigen (HLA) class I expression have the best outcome. The latter is paradoxical, since HLA class I expression is important for tumor recognition. Below, the hypothesis that radiation therapy increases HLA class I expression was tested. HPV16 positive head and neck cancer cell lines UPCI-SCC-154, UPCI-SCC-090 and UM-SCC-47, and the HPV-negative cancer cell line UT-SCC-14, were treated with 2-10 Gray (Gy) and tested for HLA class I expression, cell cycle changes and apoptosis by flow cytometry. HPV16 E5, E7 and HLA-A mRNA expression was tested by quantitative PCR. A dose of 10 Gy resulted in a tendency of increased HLA class I cell surface expression for all cell lines and reached statistical significance for UPCI-SCC-154 and UPCI-SCC-090. There were, however, no significant changes in HLA-A mRNA expression in any of the cell lines, or HPV16 E5, or E7 mRNA expression for UPCI-SCC-47 and UPCI-SCC-154, while for UPCI-SCC-090 HPV16 E5 mRNA decreased. In all cell lines there was a shift towards G2/M phase and increased apoptosis after irradiation with 10 Gy. To conclude, irradiation with 10 Gy increased HLA class I expression in the HPV-positive cell lines UPCI-SCC-154 and UPCI-SCC-090. A similar tendency was observed for HPV-positive UM-SCC-47 and HPV-negative UT-SCC-14.
Thermoelectic properties of CVD grown large area graphene
NASA Astrophysics Data System (ADS)
Sherehiy, Andriy
This thesis is based on experimental work on thermoelectric properties of CVD grown large area graphene. The thermoelectric power (TEP) of CVD (Chemical Vapor Deposition) grown large area graphene transferred onto a Si/SiO 2_substrate was measured by simply attaching two miniature thermocouples and a resistive heater. Availability of such large area graphene facilitates straight forward TEP measurement without the use of any microfabrication processes. All investigated graphene samples showed a positive TEP S ≈ 20 mVK in ambient conditions and saturated at a negative value as low as S ≈ -50 mVK after vacuum-annealing at 500 K in a vacuum of 10-7 Torr. The observed p-type behavior under ambient conditions is attributed to the oxygen doping, while the n-type behavior under degassed conditions is due to electron doping from SiO2 surface states. It was observed that the sign of the TEP switched from negative to positive for the degassed graphene when exposed to acceptor gases. Conversely, the TEP of vacuum-annealed graphene exposed to the donor gases became even more negative than the TEP of vacuum-annealed sample.
Bashshur, Michael R; Hernández, Ana; González-Romá, Vicente
2011-05-01
The authors argue that over time the difference between team members' perception of the organizational support received by the team (or team climate for organizational support) and their manager's perception of the organizational support received by the team has an effect on important outcomes and emergent states, such as team performance and team positive and negative affect above and beyond the main effects of climate perceptions themselves. With a longitudinal sample of 179 teams at Time 1 and 154 teams at Time 2, the authors tested their predictions using a combined polynomial regression and response surface analyses approach. The results supported the authors' predictions. When team managers and team members' perceptions of organizational support were high and in agreement, outcomes were maximized. When team managers and team members disagreed, team negative affect increased and team performance and team positive affect decreased. The negative effects of disagreement were most amplified when managers perceived that the team received higher levels of support than did the team itself.