Sample records for positive silver clusters

  1. A near ambient pressure XPS study of subnanometer silver clusters on Al 2O 3 and TiO 2 ultrathin film supports

    DOE PAGES

    Mao, Bao -Hua; Chang, Rui; Shi, Lei; ...

    2014-10-29

    Here, we have investigated model systems of silver clusters with different sizes (3 and 15 atoms) deposited on alumina and titania supports using ambient pressure X-ray photoelectron spectroscopy. The electronic structures of silver clusters and support materials are studied upon exposure to various atmospheres (ultrahigh vacuum, O 2 and CO) at different temperatures. Compared to bulk silver, the binding energies of silver clusters are about 0.55 eV higher on TiO 2 and 0.95 eV higher on Al 2O 3 due to the final state effect and the interaction with supports. No clear size effect of the silver XPS peak ismore » observed on different silver clusters among these samples. Silver clusters on titania show better stability against sintering. Al 2p and Ti 2p core level peak positions of the alumina and titania support surfaces change upon exposure to oxygen while the Ag 3d core level position remains unchanged. We discuss the origin of these core level shifts and their implications for catalytic properties of Ag clusters.« less

  2. Density functional theory and surface reactivity study of bimetallic AgnYm (n+m = 10) clusters

    NASA Astrophysics Data System (ADS)

    Hussain, Riaz; Hussain, Abdullah Ijaz; Chatha, Shahzad Ali Shahid; Hussain, Riaz; Hanif, Usman; Ayub, Khurshid

    2018-06-01

    Density functional theory calculations have been performed on pure silver (Agn), yttrium (Ym) and bimetallic silver yttrium clusters AgnYm (n + m = 2-10) for reactivity descriptors in order to realize sites for nucleophilic and electrophilic attack. The reactivity descriptors of the clusters, studied as a function of cluster size and shape, reveal the presence of different type of reactive sites in a cluster. The size and shape of the pure silver, yttrium and bimetallic silver yttrium cluster (n = 2-10) strongly influences the number and position of active sites for an electrophilic and/or nucleophilic attack. The trends of reactivities through reactivity descriptors are confirmed through comparison with experimental data for CO binding with silver clusters. Moreover, the adsorption of CO on bimetallic silver yttrium clusters is also evaluated. The trends of binding energies support the reactivity descriptors values. Doping of pure cluster with the other element also influence the hardness, softness and chemical reactivity of the clusters. The softness increases as we increase the number of silver atoms in the cluster, whereas the hardness decreases. The chemical reactivity increases with silver doping whereas it decreases by increasing yttrium concentration. Silver atoms are nucleophilic in small clusters but changed to electrophilic in large clusters.

  3. Role of Anions Associated with the Formation and Properties of Silver Clusters.

    PubMed

    Wang, Quan-Ming; Lin, Yu-Mei; Liu, Kuan-Guan

    2015-06-16

    Metal clusters have been very attractive due to their aesthetic structures and fascinating properties. Different from nanoparticles, each cluster of a macroscopic sample has a well-defined structure with identical composition, size, and shape. As the disadvantages of polydispersity are ruled out, informative structure-property relationships of metal clusters can be established. The formation of a high-nuclearity metal cluster involves the organization of metal ions into a complex entity in an ordered way. To achieve controllable preparation of metal clusters, it is helpful to introduce a directing agent in the formation process of a cluster. To this end, anion templates have been used to direct the formation of high nuclearity clusters. In this Account, the role of anions played in the formation of a variety of silver clusters has been reviewed. Silver ions are positively charged, so anionic species could be utilized to control the formation of silver clusters on the basis of electrostatic interactions, and the size and shape of the resulted clusters can be dictated by the templating anions. In addition, since the anion is an integral component in the silver clusters described, the physical properties of the clusters can be modulated by functional anions. The templating effects of simple inorganic anions and polyoxometales are shown in silver alkynyl clusters and silver thiolate clusters. Intercluster compounds are also described regarding the importance of anions in determining the packing of the ion pairs and making contribution to electron communications between the positive and negative counterparts. The role of the anions is threefold: (a) an anion is advantageous in stabilizing a cluster via balancing local positive charges of the metal cations; (b) an anion template could help control the size and shape of a cluster product; (c) an anion can be a key factor in influencing the function of a cluster through bringing in its intrinsic properties. Properties including electron communication, luminescent thermochromism, single-molecule magnet, and intercluster charge transfer associated with anion-directed silver clusters have been discussed. We intend to attract chemists' attention to the role that anions could play in determining the structures and properties of metal complexes, especially clusters. We hope that this Account will stimulate more efforts in exploiting new role of anions in various metal cluster systems. Anions can do much more than counterions for charge balance, and they should be considered in the design and synthesis of cluster-based functional materials.

  4. Optical Materials with a Genome: Nanophotonics with DNA-Stabilized Silver Clusters

    NASA Astrophysics Data System (ADS)

    Copp, Stacy M.

    Fluorescent silver clusters with unique rod-like geometries are stabilized by DNA. The sizes and colors of these clusters, or AgN-DNA, are selected by DNA base sequence, which can tune peak emission from blue-green into the near-infrared. Combined with DNA nanostructures, AgN-DNA promise exciting applications in nanophotonics and sensing. Until recently, however, a lack of understanding of the mechanisms controlling AgN-DNA fluorescence has challenged such applications. This dissertation discusses progress toward understanding the role of DNA as a "genome" for silver clusters and toward using DNA to achieve atomic-scale precision of silver cluster size and nanometer-scale precision of silver cluster position on a DNA breadboard. We also investigate sensitivity of AgN-DNA to local solvent environment, with an eye toward applications in chemical and biochemical sensing. Using robotic techniques to generate large data sets, we show that fluorescent silver clusters are templated by certain DNA base motifs that select "magic-sized" cluster cores of enhanced stabilities. The linear arrangement of bases on the phosphate backbone imposes a unique rod-like geometry on the clusters. Harnessing machine learning and bioinformatics techniques, we also demonstrate that sequences of DNA templates can be selected to stabilize silver clusters with desired optical properties, including high fluorescence intensity and specific fluorescence wavelengths, with much higher rates of success as compared to current strategies. The discovered base motifs can be also used to design modular DNA host strands that enable individual silver clusters with atomically precise sizes to bind at specific programmed locations on a DNA nanostructure. We show that DNA-mediated nanoscale arrangement enables near-field coupling of distinct clusters, demonstrated by dual-color cluster assemblies exhibiting resonant energy transfer. These results demonstrate a new degree of control over the optical properties and relative positions of nanoparticles, selected almost solely by the sequence of DNA. AgN-DNA are promising chemical and biochemical sensors due to the sensitivity of their fluorescence to local environment. However, the mechanisms behind many sensing schemes are not understood, and the nature of the excited state of the silver cluster itself remains unknown. To probe the fluorescence mechanisms of AgN-DNA, we investigate the behavior of purified solutions of these clusters in various solvents. We find that standard models for fluorophore solvatochromism, including the Lippert-Mataga model, do not describe AgN-DNA fluorescence because such models neglect specific interactions between the cluster and surrounding solvent molecules. Fluorescence colors are well-modeled by Mie-Gans theory, suggesting that the local dielectric environment of the cluster does play a role in fluorescence, although additional specific solvent interactions and cluster shape changes may also determine fluorescence color and intensity. These results suggest that AgN-DNA may be sensitive to changes in local dielectric environment on nanometer length scales and may also act as sensors for small molecules with affinity for DNA.

  5. Density functional study of structural and electronic properties of bimetallic silver-gold clusters: Comparison with pure gold and silver clusters

    NASA Astrophysics Data System (ADS)

    Bonacic-Koutecky, Vlasta; Burda, Jaroslav; Mitric, Roland; Ge, Maofa; Zampella, Giuseppe; Fantucci, Piercarlo

    2002-08-01

    Bimetallic silver-gold clusters offer an excellent opportunity to study changes in metallic versus "ionic" properties involving charge transfer as a function of the size and the composition, particularly when compared to pure silver and gold clusters. We have determined structures, ionization potentials, and vertical detachment energies for neutral and charged bimetallic AgmAun 3[less-than-or-equal](m+n)[less-than-or-equal]5 clusters. Calculated VDE values compare well with available experimental data. In the stable structures of these clusters Au atoms assume positions which favor the charge transfer from Ag atoms. Heteronuclear bonding is usually preferred to homonuclear bonding in clusters with equal numbers of hetero atoms. In fact, stable structures of neutral Ag2Au2, Ag3Au3, and Ag4Au4 clusters are characterized by the maximum number of hetero bonds and peripheral positions of Au atoms. Bimetallic tetramer as well as hexamer are planar and have common structural properties with corresponding one-component systems, while Ag4Au4 and Ag8 have 3D forms in contrast to Au8 which assumes planar structure. At the density functional level of theory we have shown that this is due to participation of d electrons in bonding of pure Aun clusters while s electrons dominate bonding in pure Agm as well as in bimetallic clusters. In fact, Aun clusters remain planar for larger sizes than Agm and AgnAun clusters. Segregation between two components in bimetallic systems is not favorable, as shown in the example of Ag5Au5 cluster. We have found that the structures of bimetallic clusters with 20 atoms Ag10Au10 and Ag12Au8 are characterized by negatively charged Au subunits embedded in Ag environment. In the latter case, the shape of Au8 is related to a pentagonal bipyramid capped by one atom and contains three exposed negatively charged Au atoms. They might be suitable for activating reactions relevant to catalysis. According to our findings the charge transfer in bimetallic clusters is responsible for formation of negatively charged gold subunits which are expected to be reactive, a situation similar to that of gold clusters supported on metal oxides.

  6. Effect of silver ions and clusters on the luminescence properties of Eu-doped borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Qing, E-mail: jiaoqing@nbu.edu.cn; Wang, Xi; Qiu, Jianbei

    2015-12-15

    Highlights: • Ag{sup +} and Ag clusters are investigated in the borate glasses via ion exchange method. • The aggregation of silver ions to the clusters was controlled by the ion exchange concentration. • Eu{sup 3+}/Eu{sup 2+} ions emission was enhanced with the sensitization of the silver species. • Energy transfer process from Ag ions and Ag clusters to Eu ions is identified by the lifetime measurements. - Abstract: Silver ions and clusters were applied to Eu{sup 3+}-doped borate glasses via the Ag{sup +}–Na{sup +} ion exchange method. Eu{sup 3+}/Eu{sup 2+} ion luminescence enhancement was achieved after silver ion exchange.more » Absorption spectra showed no band at 420 nm, which indicates that silver nanoparticles can be excluded as a silver state in the glass. Silver ion aggregation into clusters during the ion exchange process may be inferred. The effect of silver ions and clusters on rare earth emissions was investigated using spectral information and lifetime measurements. Significant luminescence enhancements were observed from the energy transfer of Ag{sup +} ions and clusters to Eu{sup 3+}/Eu{sup 2+} ions, companied with the silver ions aggregated into the clusters state. The results of this research may extend the current understanding of interactions between rare-earth ions and Ag species.« less

  7. Reactivity and Catalytic Activity of Hydrogen Atom Chemisorbed Silver Clusters.

    PubMed

    Manzoor, Dar; Pal, Sourav

    2015-06-18

    Metal clusters of silver have attracted recent interest of researchers as a result of their potential in different catalytic applications and low cost. However, due to the completely filled d orbital and very high first ionization potential of the silver atom, the silver-based catalysts interact very weakly with the reacting molecules. In the current work, density functional theory calculations were carried out to investigate the effect of hydrogen atom chemisorption on the reactivity and catalytic properties of inert silver clusters. Our results affirm that the hydrogen atom chemisorption leads to enhancement in the binding energy of the adsorbed O2 molecule on the inert silver clusters. The increase in the binding energy is also characterized by the decrease in the Ag-O and increase in the O-O bond lengths in the case of the AgnH silver clusters. Pertinent to the increase in the O-O bond length, a significant red shift in the O-O stretching frequency is also noted in the case of the AgnH silver clusters. Moreover, the hydrogen atom chemisorbed silver clusters show low reaction barriers and high heat of formation of the final products for the environmentally important CO oxidation reaction as compared to the parent catalytically inactive clusters. The obtained results were compared with those of the corresponding gold and hydrogen atom chemisorbed gold clusters obtained at the same level of theory. It is expected the current computational study will provide key insights for future advances in the design of efficient nanosilver-based catalysts through the adsorption of a small atom or a ligand.

  8. Benzoate-Induced High-Nuclearity Silver Thiolate Clusters.

    PubMed

    Su, Yan-Min; Liu, Wei; Wang, Zhi; Wang, Shu-Ao; Li, Yan-An; Yu, Fei; Zhao, Quan-Qin; Wang, Xing-Po; Tung, Chen-Ho; Sun, Di

    2018-04-03

    Compared with the well-known anion-templated effects in shaping silver thiolate clusters, the influence from the organic ligands in the outer shell is still poorly understood. Herein, three new benzoate-functionalized high-nuclearity silver(I) thiolate clusters are isolated and characterized for the first time in the presence of diverse anion templates such as S 2- , α-[Mo 5 O 18 ] 6- , and MoO 4 2- . Single-crystal X-ray analysis reveals that the nuclearities of the three silver clusters (SD/Ag28, SD/Ag29, SD/Ag30) vary from 32 to 38 to 78 with co-capped tBuS - and benzoate ligands on the surface. SD/Ag28 is a turtle-like cluster comprising a Ag 29 shell caging a Ag 3 S 3 trigon in the center, whereas SD/Ag29 is a prolate Ag 38 sphere templated by the α-[Mo 5 O 18 ] 6- anion. Upon changing from benzoate to methoxyl-substituted benzoate, SD/Ag30 is isolated as a very complicated core-shell spherical cluster composed of a Ag 57 shell and a vase-like Ag 21 S 13 core. Four MoO 4 2- anions are arranged in a supertetrahedron and located in the interstice between the core and shell. Introduction of the bulky benzoate changes elaborately the nuclearity and arrangements of silver polygons on the shell of silver clusters, which is exemplified by comparing SD/Ag28 and a known similar silver thiolate cluster. The three new clusters emit luminescence in the near-infrared (NIR) region and show different thermochromic luminescence properties. This work presents a flexible approach to synthetic studies of high-nuclearity silver clusters decorated by different benzoates, and structural modulations are also achieved. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Recent development in deciphering the structure of luminescent silver nanodots

    NASA Astrophysics Data System (ADS)

    Choi, Sungmoon; Yu, Junhua

    2017-05-01

    Matrix-stabilized silver clusters and stable luminescent few-atom silver clusters, referred to as silver nanodots, show notable difference in their photophysical properties. We present recent research on deciphering the nature of silver clusters and nanodots and understanding the factors that lead to variations in luminescent mechanisms. Due to their relatively simple structure, the matrix-stabilized clusters have been well studied. However, the single-stranded DNA (ssDNA)-stabilized silver nanodots that show the most diverse emission wavelengths and the best photophysical properties remain mysterious species. It is clear that their photophysical properties highly depend on their protection scaffolds. Analyses from combinations of high-performance liquid chromatography, inductively coupled plasma-atomic emission spectroscopy, electrophoresis, and mass spectrometry indicate that about 10 to 20 silver atoms form emissive complexes with ssDNA. However, it is possible that not all of the silver atoms in the complex form effective emission centers. Investigation of the nanodot structure will help us understand why luminescent silver nanodots are stable in aqueous solution and how to further improve their chemical and photophysical properties.

  10. Elimination-Fusion Self-Assembly of a Nanometer-Scale 72-Nucleus Silver Cluster Caging a Pair of [EuW10 O36 ]9- Polyoxometalates.

    PubMed

    Zhang, Shan-Shan; Su, Hai-Feng; Wang, Zhi; Wang, Xing-Po; Chen, Wen-Xian; Zhao, Quan-Qin; Tung, Chen-Ho; Sun, Di; Zheng, Lan-Sun

    2018-02-06

    The largest known polyoxometalate (POM)-templated silver-alkynyl cluster, [(EuW 10 O 36 ) 2 @Ag 72 (tBuC≡C) 48 Cl 2 ⋅4 BF 4 ] (SD/Ag20), was isolated under solvothermal conditions and structurally characterized. It was confirmed by single-crystal X-ray diffraction (SCXRD) as a {EuW 10 } 2 -in-{Ag 72 } clusters-in-cluster rod-like compound. The high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) shows that such a double anion-templated cluster is assembled from a crucial single anion-templated Ag 42 intermediate in the solution. The crystallization of Ag 42 species (SD/Ag21), followed by SCXRD, gave an important clue about the assembly route of SD/Ag20 in solution: the Ag 42 cluster eliminates six silver atoms laterally, then fuses together at the vacant face to form the final Ag 72 cluster (elimination-fusion mechanism). The characteristic emission of [EuW 10 O 36 ] 9- is well maintained in SD/Ag20. This work not only provides a new method for the synthesis of larger silver clusters as well as the functional integration of the silver cluster and POMs, but also gives deep insights about the high-nuclear silver cluster assembly mechanism. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Linear self-focusing of continuous UV laser beam in photo-thermo-refractive glasses.

    PubMed

    Sidorov, Alexander I; Gorbyak, Veronika V; Nikonorov, Nikolay V

    2018-03-19

    The experimental and theoretical study of continuous UV laser beam propagation through thick silver-containing photo-thermo-refractive glass is presented. It is shown for the first time that self-action of UV Gaussian beam in glass results in its self-focusing. The observed linear effect is non-reversible and is caused by the transformation of subnanosized charged silver molecular clusters to neutral state under UV laser radiation. Such transformation is accompanied by the increase of molecular clusters polarizability and the refractive index increase in irradiated area. As a result, an extended positive lens is formed in glass bulk. In a theoretical study of linear self-focusing effect, the "aberration-free" approximation was used, taking into account spatial distribution of induced absorption.

  12. Partial Ionic Character beyond the Pauling Paradigm: Metal Nanoparticles

    DOE PAGES

    Duanmu, Kaining; Truhlar, Donald G.

    2014-11-12

    A canonical perspective on the chemical bond is the Pauling paradigm: a bond in a molecule containing only identical atoms has no ionic character. However, we show that homonuclear silver clusters have very uneven charge distributions (for example, the C 2v structure of Ag 4 has a larger dipole moment than formaldehyde or acetone), and we show how to predict the charge distribution from coordination numbers and Hirshfeld charges. The new charge model is validated against Kohn–Sham calculations of dipole moments with four approximations for the exchange–correlation functional. We report Kohn–Sham studies of the binding energies of CO on silvermore » monomer and silver clusters containing 2–18 atoms. We also find that an accurate charge model is essential for understanding the site dependence of binding. In particular we find that atoms with more positive charges tend to have higher binding energies, which can be used for guidance in catalyst modeling and design. Furthermore, the nonuniform charge distribution of silver clusters predisposes the site preference of binding of carbon monoxide, and we conclude that nonuniform charge distributions are an important property for understanding binding of metal nanoparticles in general.« less

  13. Luminescence properties of femtosecond-laser-activated silver oxide nanoparticles embedded in a biopolymer matrix

    NASA Astrophysics Data System (ADS)

    Gleitsmann, T.; Bernhardt, T. M.; Wöste, L.

    2006-01-01

    Strong visible luminescence is observed from silver clusters generated by femtosecond-laser-induced reduction of silver oxide nanoparticles embedded in a polymeric gelatin matrix. Light emission from the femtosecond-laser-activated matrix areas considerably exceeds the luminescence intensity of similarly activated bare silver oxide nanoparticle films. Optical spectroscopy of the activated polymer films supports the assignment of the emissive properties to the formation of small silver clusters under focused femtosecond-laser irradiation. The size of the photogenerated clusters is found to sensitively depend on the laser exposure time, eventually leading to the formation of areas of metallic silver in the biopolymer matrix. In this case, luminescence can still be observed in the periphery of the metallic silver structures, emphasizing the importance of the organic matrix for the stabilization of the luminescent nanocluster structures at the metal matrix interface.

  14. Atomically precise arrays of fluorescent silver clusters: a modular approach for metal cluster photonics on DNA nanostructures.

    PubMed

    Copp, Stacy M; Schultz, Danielle E; Swasey, Steven; Gwinn, Elisabeth G

    2015-03-24

    The remarkable precision that DNA scaffolds provide for arraying nanoscale optical elements enables optical phenomena that arise from interactions of metal nanoparticles, dye molecules, and quantum dots placed at nanoscale separations. However, control of ensemble optical properties has been limited by the difficulty of achieving uniform particle sizes and shapes. Ligand-stabilized metal clusters offer a route to atomically precise arrays that combine desirable attributes of both metals and molecules. Exploiting the unique advantages of the cluster regime requires techniques to realize controlled nanoscale placement of select cluster structures. Here we show that atomically monodisperse arrays of fluorescent, DNA-stabilized silver clusters can be realized on a prototypical scaffold, a DNA nanotube, with attachment sites separated by <10 nm. Cluster attachment is mediated by designed DNA linkers that enable isolation of specific clusters prior to assembly on nanotubes and preserve cluster structure and spectral purity after assembly. The modularity of this approach generalizes to silver clusters of diverse sizes and DNA scaffolds of many types. Thus, these silver cluster nano-optical elements, which themselves have colors selected by their particular DNA templating oligomer, bring unique dimensions of control and flexibility to the rapidly expanding field of nano-optics.

  15. Adduct formation of ionic and nanoparticular silver with amino acids and glutathione

    NASA Astrophysics Data System (ADS)

    Blaske, Franziska; Stork, Lisa; Sperling, Michael; Karst, Uwe

    2013-09-01

    To investigate the interaction of ionic and nanoparticular silver with amino acids and small peptides, an electrospray ionization time-of-flight mass spectrometry method was developed. Monomeric and oligomeric silver adducts were formed with amino acids including cysteine (Cys), methionine, histidine, lysine, or the tripeptide glutathione (GSH). The obtained spectra for ionic silver show clusters in different ratios between Ag+ and the reaction partners (X) including [Ag n X m - ( n + 1)H]- ( n = 1-4, m = 1-3). Regarding Cys, adduct clusters up to n = 5 and m = 4 were observed as well. Considering silver-GSH interactions, even doubly charged oligomers occur generating [Ag( a + 1)GSH a - ( a + 3)H]2- ( a = 5-7) and [Ag b GSH b - ( b + 2)H]2- ( b = 4-8) ions. 1H NMR data of free GSH compared to that after treatment with Ag+ confirm sulfur-metal interactions due to changing chemical shifts for the protons located adjacent to the thiol group. Density functional theory calculations for silver-GSH clusters may explain the formation of experimentally recorded large clusters due to cooperative effects between silver and carboxylic acid side chains. Both sets of experiments indicate the presence of these adducts in the liquid phase. For silver nanoparticles, the respective data confirm the release of silver ions and the subsequent adduct formation.

  16. Preparation of Gelatin Layer Film with Gold Clusters in Using Photographic Film

    NASA Astrophysics Data System (ADS)

    Kuge, Ken'ichi; Arisawa, Michiko; Aoki, Naokazu; Hasegawa, Akira

    2000-12-01

    A gelatin layer film with gold clusters is produced by taking advantage of the photosensitivity of silver halide photography. Through exposure silver specks, which are called latent-image specks and are composed of several reduced silver atoms, are formed on the surface of silver halide grains in the photographic film. As the latent-image specks act as a catalyst for redox reaction, reduced gold atoms are deposited on the latent-image specks when the exposed film is immersed in a gold (I) thiocyanate complex solution for 5-20 days. Subsequently, when the silver halide grains are dissolved and removed, the gelatin layer film with gold clusters remains. The film produced by this method is purple and showed an absorption spectrum having a maximum of approximately 560 nm as a result of plasmon absorption. The clusters continued to grow with immersion time, and the growth rate increased as the concentration of the gold complex solution was increased. The cluster diameter changed from 20 nm to 100 nm. By this method, it is possible to produce a gelatin film of a large area with evenly dispersed gold clusters, and since it is produced only on the exposed area, pattern forming is also possible.

  17. Silver-induced reconstruction of an adeninate-based metal-organic framework for encapsulation of luminescent adenine-stabilized silver clusters.

    PubMed

    Jonckheere, Dries; Coutino-Gonzalez, Eduardo; Baekelant, Wouter; Bueken, Bart; Reinsch, Helge; Stassen, Ivo; Fenwick, Oliver; Richard, Fanny; Samorì, Paolo; Ameloot, Rob; Hofkens, Johan; Roeffaers, Maarten B J; De Vos, Dirk E

    2016-05-21

    Bright luminescent silver-adenine species were successfully stabilized in the pores of the MOF-69A (zinc biphenyldicarboxylate) metal-organic framework, starting from the intrinsically blue luminescent bio-MOF-1 (zinc adeninate 4,4'-biphenyldicarboxylate). Bio-MOF-1 is transformed to the MOF-69A framework by selectively leaching structural adenine linkers from the original framework using silver nitrate solutions in aqueous ethanol. Simultaneously, bright blue-green luminescent silver-adenine clusters are formed inside the pores of the recrystallized MOF-69A matrix in high local concentrations. The structural transition and concurrent changes in optical properties were characterized using a range of structural, physicochemical and spectroscopic techniques (steady-state and time-resolved luminescence, quantum yield determination, fluorescence microscopy). The presented results open new avenues for exploring the use of MOFs containing luminescent silver clusters for solid-state lighting and sensor applications.

  18. Effects of temperature and pressure on the nucleation and growth of silver clusters from supersaturated vapor: A molecular dynamics analysis

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Xie, Hui; Chen, Yongshi; Liu, Chao

    2017-04-01

    The nucleation and growth of silver nanoparticles in the supersaturated system are investigated by molecular dynamics simulation at different temperatures and pressures. The variety of the atoms in the biggest cluster and the size of average clusters in the system versus the time are estimated to reveal the relationship between the nucleation as well as cluster growth. The nucleation rates in different situations are calculated with the threshold method. The effect of temperature and pressure on the nucleation rate is identified as obeying a linear function. Finally, the development of basal elements, such as monomers, dimers and trimmers, is revealed how the temperature and pressure affect the nucleation and growth of the silver cluster.

  19. Ultra-small Ag clusters in zeolite A4: Antibacterial and thermochromic applications

    NASA Astrophysics Data System (ADS)

    Horta-Fraijo, P.; Cortez-Valadez, M.; Flores-Lopez, N. S.; Britto Hurtado, R.; Vargas-Ortiz, R. A.; Perez-Rodriguez, A.; Flores-Acosta, M.

    2018-03-01

    The physical and chemical properties of metal clusters depend on their atomic structure, therefore, it is important to determine the lowest-energy structures of the clusters in order to understand and utilize their properties. In this work, we use the Density Functional Theory (DFT) at the generalized gradient approximation level Becke's three-parameter and the gradient corrected functional of Lee, Yang and Puar (B3LYP) in combination with the basis set LANL2DZ (the effective core potentials and associated double-zeta valence) to determine some of the structural, electronic and vibrational properties of the planar silver clusters (Agn clusters n = 2-24). Additionally, the study reports the experimental synthesis of small silver clusters in synthetic zeolite A4. The synthesis was possible using the ion exchange method with some precursors like silver nitrate (AgNO3) and synthetic zeolite A4. The silver clusters in zeolite powder underwent thermal treatment at 450 °C to release the remaining water or humidity on it. The morphology of the particles was determined by Transmission Electron microscopy. The nanomaterials obtained show thermochromic properties. The structural parameters were correlated theoretically and experimentally.

  20. Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters

    NASA Astrophysics Data System (ADS)

    Ralević, Uroš; Isić, Goran; Anicijević, Dragana Vasić; Laban, Bojana; Bogdanović, Una; Lazović, Vladimir M.; Vodnik, Vesna; Gajić, Radoš

    2018-03-01

    The adsorption of thiacyanine dye molecules on citrate-stabilized silver nanoparticle clusters drop-cast onto freshly cleaved mica or highly oriented pyrolytic graphite surfaces is examined using colocalized surface-enhanced Raman spectroscopy and atomic force microscopy. The incidence of dye Raman signatures in photoluminescence hotspots identified around nanoparticle clusters is considered for both citrate- and borate-capped silver nanoparticles and found to be substantially lower in the former case, suggesting that the citrate anions impede the efficient dye adsorption. Rigorous numerical simulations of light scattering on random nanoparticle clusters are used for estimating the electromagnetic enhancement and elucidating the hotspot formation mechanism. The majority of the enhanced Raman signal, estimated to be more than 90%, is found to originate from the nanogaps between adjacent nanoparticles in the cluster, regardless of the cluster size and geometry.

  1. A first-principles study of the influence of helium atoms on the optical response of small silver clusters.

    PubMed

    Pereiro, M; Baldomir, D; Arias, J E

    2011-02-28

    Optical excitation spectra of Ag(n) and Ag(n)@He(60) (n = 2, 8) clusters are investigated in the framework of the time-dependent density functional theory (TDDFT) within the linear response regime. We have performed the ab initio calculations for two different exact exchange functionals (GGA-exact and LDA-exact). The computed spectra of Ag(n)@He(60) clusters with the GGA-exact functional accounting for exchange-correlation effects are found to be generally in a relatively good agreement with the experiment. A strategy is proposed to obtain the ground-state structures of the Ag(n)@He(60) clusters and in the initial process of the geometry optimization, the He environment is simulated with buckyballs. A redshift of the silver clusters spectra is observed in the He environment with respect to the ones of bare silver clusters. This observation is discussed and explained in terms of a contraction of the Ag-He bonding length and a consequent confinement of the s valence electrons in silver clusters. Likewise, the Mie-Gans predictions combined with our TDDFT calculations also show that the dielectric effect produced by the He matrix is considerably less important in explaining the redshifting observed in the optical spectra of Ag(n)@He(60) clusters.

  2. Ion induced electron emission statistics under Agm- cluster bombardment of Ag

    NASA Astrophysics Data System (ADS)

    Breuers, A.; Penning, R.; Wucher, A.

    2018-05-01

    The electron emission from a polycrystalline silver surface under bombardment with Agm- cluster ions (m = 1, 2, 3) is investigated in terms of ion induced kinetic excitation. The electron yield γ is determined directly by a current measurement method on the one hand and implicitly by the analysis of the electron emission statistics on the other hand. Successful measurements of the electron emission spectra ensure a deeper understanding of the ion induced kinetic electron emission process, with particular emphasis on the effect of the projectile cluster size to the yield as well as to emission statistics. The results allow a quantitative comparison to computer simulations performed for silver atoms and clusters impinging onto a silver surface.

  3. Formation of bimetallic clusters in superfluid helium nanodroplets analysed by atomic resolution electron tomography

    PubMed Central

    Haberfehlner, Georg; Thaler, Philipp; Knez, Daniel; Volk, Alexander; Hofer, Ferdinand; Ernst, Wolfgang E.; Kothleitner, Gerald

    2015-01-01

    Structure, shape and composition are the basic parameters responsible for properties of nanoscale materials, distinguishing them from their bulk counterparts. To reveal these in three dimensions at the nanoscale, electron tomography is a powerful tool. Advancing electron tomography to atomic resolution in an aberration-corrected transmission electron microscope remains challenging and has been demonstrated only a few times using strong constraints or extensive filtering. Here we demonstrate atomic resolution electron tomography on silver/gold core/shell nanoclusters grown in superfluid helium nanodroplets. We reveal morphology and composition of a cluster identifying gold- and silver-rich regions in three dimensions and we estimate atomic positions without using any prior information and with minimal filtering. The ability to get full three-dimensional information down to the atomic scale allows understanding the growth and deposition process of the nanoclusters and demonstrates an approach that may be generally applicable to all types of nanoscale materials. PMID:26508471

  4. [Ag115S34(SCH2C6H4 t Bu)47(dpph)6]: synthesis, crystal structure and NMR investigations of a soluble silver chalcogenide nanocluster.

    PubMed

    Bestgen, Sebastian; Fuhr, Olaf; Breitung, Ben; Kiran Chakravadhanula, Venkata Sei; Guthausen, Gisela; Hennrich, Frank; Yu, Wen; Kappes, Manfred M; Roesky, Peter W; Fenske, Dieter

    2017-03-01

    With the aim to synthesize soluble cluster molecules, the silver salt of (4-( tert -butyl)phenyl)methanethiol [AgSCH 2 C 6 H 4 t Bu] was applied as a suitable precursor for the formation of a nanoscale silver sulfide cluster. In the presence of 1,6-(diphenylphosphino)hexane (dpph), the 115 nuclear silver cluster [Ag 115 S 34 (SCH 2 C 6 H 4 t Bu) 47 (dpph) 6 ] was obtained. The molecular structure of this compound was elucidated by single crystal X-ray analysis and fully characterized by spectroscopic techniques. In contrast to most of the previously published cluster compounds with more than a hundred heavy atoms, this nanoscale inorganic molecule is soluble in organic solvents, which allowed a comprehensive investigation in solution by UV-Vis spectroscopy and one- and two-dimensional NMR spectroscopy including 31 P/ 109 Ag-HSQC and DOSY experiments. These are the first heteronuclear NMR investigations on coinage metal chalcogenides. They give some first insight into the behavior of nanoscale silver sulfide clusters in solution. Additionally, molecular weight determinations were performed by 2D analytical ultracentrifugation and HR-TEM investigations confirm the presence of size-homogeneous nanoparticles present in solution.

  5. Silver Clusters in Zeolites: From Self-Assembly to Ground-Breaking Luminescent Properties.

    PubMed

    Coutiño-Gonzalez, Eduardo; Baekelant, Wouter; Steele, Julian A; Kim, Cheol Woong; Roeffaers, Maarten B J; Hofkens, Johan

    2017-09-19

    Interest for functional silver clusters (Ag-CLs) has rapidly grown over years due to large advances in the field of nanoscale fabrication and materials science. The continuous development of strategies to fabricate small-scale silver clusters, together with their interesting physicochemical properties (molecule-like discrete energy levels, for example), make them very attractive for a wide variety of applied research fields, from biotechnology and the environmental sciences to fundamental chemistry and physics. Apart from useful catalytic properties, silver clusters (Ag n , n < 10) were recently shown to also exhibit exceptional optical properties. The optical properties and performance of Ag-CLs offer strong potential for their integration into appealing micro(nano)-optoelectronic devices. To date, however, the rational design and directed synthesis of Ag-CLs with specific functionalities has remained elusive. The inability for rational design stems mainly from a lack of understanding of their novel atomic-scale phenomena. This is because accurately studying silver cluster systems at such a scale is hindered by the perturbations introduced during exposure to various experimental probes. For instance, silver possesses a strong tendency to cluster and form ever-larger Ag aggregates while probed with high-energy electron beams and X-ray irradiation. As well, there exists a need to provide a stabilizing environment for which Ag n δ+ clusters can persist, setting up a complex interacting guest-host system, as isolated silver clusters are confined within a suitable hosting medium. Fundamental research into Ag n δ+ formation mechanisms and their important optical properties is paramount to establishing truly informed synthesis protocols. Over recent years, we have developed several protocols for the ship-in-a-bottle synthesis of highly luminescent Ag-CLs within the microporous interiors of zeolite frameworks. This approach has yielded materials displaying a wide variety of optical properties, offering a spectrum of possible applications, from nano(micro)photonic devices to smart luminescent labels and sensors. The versatility of the Ag-zeolite multicomponent system is directly related to the intrinsic and complex tunability of the system as a whole. There are several key zeolite parameters that confer properties to the clusters, namely, the framework Si/Al ratio, choice of counterbalancing ions, silver loading, and zeolite topology, and cannot be overlooked. This Account is intended to shed light on the current state-of-the-art of luminescent Ag-CLs confined in zeolitic matrices, emphasizing the use of combinatorial approaches to overcome problems associated with the correct characterization and correlation of their structural, electronic, and photoluminescence properties, all to establish the important design principles for developing functional silver-zeolite-based materials. Additionally, examples of emerging applications and future perspectives for functional luminescent Ag-zeolite materials are addressed in this Account.

  6. Physicochemical study of natural fractionated biocolloid by asymmetric flow field-flow fractionation in tandem with various complementary techniques using biologically synthesized silver nanocomposites.

    PubMed

    Railean-Plugaru, Viorica; Pomastowski, Pawel; Kowalkowski, Tomasz; Sprynskyy, Myroslav; Buszewski, Boguslaw

    2018-04-01

    Asymmetric flow field-flow fractionation coupled with use of ultraviolet-visible, multiangle light scattering (MALLS), and dynamic light scattering (DLS) detectors was used for separation and characterization of biologically synthesized silver composites in two liquid compositions. Moreover, to supplement the DLS/MALLS information, various complementary techniques such as transmission electron spectroscopy, Fourier transform infrared spectroscopy, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) were used. The hydrodynamic diameter and the radius of gyration of silver composites were slightly larger than the sizes obtained by transmission electron microscopy (TEM). Moreover, the TEM results revealed the presence of silver clusters and even several morphologies, including multitwinned. Additionally, MALDI-TOF MS examination showed that the particles have an uncommon cluster structure. It can be described as being composed of two or more silver clusters. The organic surface of the nanoparticles can modify their dispersion. We demonstrated that the variation of the silver surface coating directly influenced the migration rate of biologically synthesized silver composites. Moreover, this study proves that the fractionation mechanism of silver biocolloids relies not only on the particle size but also on the type and mass of the surface coatings. Because silver nanoparticles typically have size-dependent cytotoxicity, this behavior is particularly relevant for biomedical applications. Graphical abstract Workflow for asymmetric flow field-flow fractionation of natural biologically synthesized silver nanocomposites.

  7. Optimal control of the strong-field ionization of silver clusters in helium droplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truong, N. X.; Goede, S.; Przystawik, A.

    Optimal control techniques combined with femtosecond laser pulse shaping are applied to steer and enhance the strong-field induced emission of highly charged atomic ions from silver clusters embedded in helium nanodroplets. With light fields shaped in amplitude and phase we observe a substantial increase of the Ag{sup q+} yield for q>10 when compared to bandwidth-limited and optimally stretched pulses. A remarkably simple double-pulse structure, containing a low-intensity prepulse and a stronger main pulse, turns out to produce the highest atomic charge states up to Ag{sup 20+}. A negative chirp during the main pulse hints at dynamic frequency locking to themore » cluster plasmon. A numerical optimal control study on pure silver clusters with a nanoplasma model converges to a similar pulse structure and corroborates that the optimal light field adapts to the resonant excitation of cluster surface plasmons for efficient ionization.« less

  8. Influence of silver and copper doping on luminescent properties of zinc-phosphate glasses after x-ray irradiation

    NASA Astrophysics Data System (ADS)

    Murashov, Alexander A.; Sidorov, Alexander I.; Shakhverdov, Teimur A.; Stolyarchuk, Maxim V.

    2017-11-01

    It is shown, experimentally, that in silver- and copper-containing zinc-phosphate glasses, metal molecular clusters are formed during the glass synthesis. X-ray irradiation of these glasses led to the considerable increase of its luminescence in visible spectral range. This effect is caused by the transformation of the charged metal molecular clusters into the neutral state. Luminescence and excitation spectra of the glass, doped with silver and copper simultaneously, change significantly in comparison with the spectra of glasses doped with one metal. The reason for this can be the formation of hybrid AgnCum molecular clusters. The computer simulation of the structure and optical properties of such clusters by the time-dependent density functional theory method is presented. It is shown that the optimal luminescent material for photonics application, in comparison with other studied materials, is glass, containing hybrid molecular clusters.

  9. DNA-Templated Molecular Silver Fluorophores

    PubMed Central

    Petty, Jeffrey T.; Story, Sandra P.; Hsiang, Jung-Cheng; Dickson, Robert M.

    2013-01-01

    Conductive and plasmon-supporting noble metals exhibit an especially wide range of size-dependent properties, with discrete electronic levels, strong optical absorption, and efficient radiative relaxation dominating optical behavior at the ~10-atom cluster scale. In this Perspective, we describe the formation and stabilization of silver clusters using DNA templates and highlight the distinct spectroscopic and photophysical properties of the resulting hybrid fluorophores. Strong visible to near-IR emission from DNA-encapsulated silver clusters ranging in size from 5–11 atoms has been produced and characterized. Importantly, this strong Ag cluster fluorescence can be directly modulated and selectively recovered by optically controlling the dark state residence, even when faced with an overwhelming background. The strength and sequence sensitivity of the oligonucleotide-Ag interaction suggests strategies for fine tuning and stabilizing cluster-based emitters in a host of sensing and biolabeling applications that would benefit from brighter, more photostable, and quantifiable emitters in high background environments. PMID:23745165

  10. Theoretical study of Ag doping-induced vacancies defects in armchair graphene

    NASA Astrophysics Data System (ADS)

    Benchallal, L.; Haffad, S.; Lamiri, L.; Boubenider, F.; Zitoune, H.; Kahouadji, B.; Samah, M.

    2018-06-01

    We have performed a density functional theory (DFT) study of the absorption of silver atoms (Ag,Ag2 and Ag3) in graphene using SIESTA code, in the generalized gradient approximation (GGA). The absorption energy, geometry, magnetic moments and charge transfer of Ag clusters-graphene system are calculated. The minimum energy configuration demonstrates that all structures remain planar and silver atoms fit into this plane. The charge transfer between the silver clusters and carbon atoms constituting the graphene surface is an indicative of a strong bond. The structure doped with a single silver atom has a magnetic moment and the two other are nonmagnetic.

  11. Ab initio calculations of optical properties of silver clusters: cross-over from molecular to nanoscale behavior

    NASA Astrophysics Data System (ADS)

    Titantah, John T.; Karttunen, Mikko

    2016-05-01

    Electronic and optical properties of silver clusters were calculated using two different ab initio approaches: (1) based on all-electron full-potential linearized-augmented plane-wave method and (2) local basis function pseudopotential approach. Agreement is found between the two methods for small and intermediate sized clusters for which the former method is limited due to its all-electron formulation. The latter, due to non-periodic boundary conditions, is the more natural approach to simulate small clusters. The effect of cluster size is then explored using the local basis function approach. We find that as the cluster size increases, the electronic structure undergoes a transition from molecular behavior to nanoparticle behavior at a cluster size of 140 atoms (diameter ~1.7 nm). Above this cluster size the step-like electronic structure, evident as several features in the imaginary part of the polarizability of all clusters smaller than Ag147, gives way to a dominant plasmon peak localized at wavelengths 350 nm ≤ λ ≤ 600 nm. It is, thus, at this length-scale that the conduction electrons' collective oscillations that are responsible for plasmonic resonances begin to dominate the opto-electronic properties of silver nanoclusters.

  12. Adamantyl- and Furanyl-Protected Nanoscale Silver Sulfide Clusters.

    PubMed

    Bestgen, Sebastian; Yang, Xiaoxun; Issac, Ibrahim; Fuhr, Olaf; Roesky, Peter W; Fenske, Dieter

    2016-07-11

    The silver salts of 1-adamantanethiol (AdSH) and furan-2-ylmethanethiol (FurCH2 SH) were successfully applied as building blocks for ligand-protected Ag2 S nanoclusters. The reaction of the silver thiolates [AgSAd]x and [AgSCH2 Fur]x with S(SiMe3 )2 and 1,5-bis(diphenylphosphino)pentane (dpppt) afforded three different clusters with 58, 94 and, 190 silver atoms. The intensely colored compounds [Ag58 S13 (SAd)32 ] (1), [Ag94 S34 (SAd)26 (dpppt)6 ] (2), and [Ag190 S58 (SCH2 Fur)74 (dpppt)8 ] (3) were structurally characterized by single-crystal X-ray diffraction and exhibit different cluster core geometries and ligand shells. The diameters of the well-defined sphere-shaped nanoclusters range from 2.2 nm to 3.5 nm. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Soft-landing ion mobility of silver clusters for small-molecule matrix-assisted laser desorption ionization mass spectrometry and imaging of latent fingerprints.

    PubMed

    Walton, Barbara L; Verbeck, Guido F

    2014-08-19

    Matrix-assisted laser desorption ionization (MALDI) imaging is gaining popularity, but matrix effects such as mass spectral interference and damage to the sample limit its applications. Replacing traditional matrices with silver particles capable of equivalent or increased photon energy absorption from the incoming laser has proven to be beneficial for low mass analysis. Not only can silver clusters be advantageous for low mass compound detection, but they can be used for imaging as well. Conventional matrix application methods can obstruct samples, such as fingerprints, rendering them useless after mass analysis. The ability to image latent fingerprints without causing damage to the ridge pattern is important as it allows for further characterization of the print. The application of silver clusters by soft-landing ion mobility allows for enhanced MALDI and preservation of fingerprint integrity.

  14. Beam power-dependent laser-induced fluorescence radiation quenching of silver-ion-exchanged glasses

    NASA Astrophysics Data System (ADS)

    Nahal, Arashmid; Khalesifard, Hamid Reza M.

    2007-04-01

    In this article, results of an investigation about the modification of silver ions embedded in a glass matrix under the action of a CW high-power Ar + laser beam, by means of laser-induced fluorescence, is reported. It is known [A. Nahal, H.R.M. Khalesifard, J. Mostafavi-Amjad, Appl. Phys. B 79 (2004) 513-518] that, as a result of the interaction of the laser beam with the sample, the embedded silver ions reduce to neutral ones and silver clusters are formed. We observed that the fluorescence radiation of the central part of the interaction area, on the sample, diminishes simultaneously with the formation of the neutral clusters. Further increase in the exposure time or the power of the beam results in reappearance of the fluorescence radiation, in the central part of the interaction area. We found that, during and after the interaction the spectrum of the fluorescence radiation changes. This makes it possible to study the laser-induced changes in the embedded silver ions and clusters, in real-time.

  15. Influence of halogenides on luminescence from silver molecular clusters in photothermorefractive glasses

    NASA Astrophysics Data System (ADS)

    Dubrovin, V. D.; Ignat'ev, A. I.; Nikonorov, N. V.; Sidorov, A. I.

    2014-05-01

    It is shown experimentally that a rise in the sodium halogenide (NaCl, NaBr) concentration in photothermorefractive glasses increases the intensity of luminescence from silver neutral molecular clusters. Substitution of NaBr for NaCl with their concentration being the same shifts the luminescence band toward longer waves and raises its intensity. These findings can be explained by the formation of molecular clusters of type Ag n -Hal (Hal = Cl, Br) in photothermorefractive glass.

  16. Optical nonlinearity and charge transfer analysis of pyrene adsorbed on silver: Computational and experimental investigations

    NASA Astrophysics Data System (ADS)

    Reeta Felscia, U.; Rajkumar, Beulah J. M.; Sankar, Pranitha; Philip, Reji; Briget Mary, M.

    2017-09-01

    The interaction of pyrene on silver has been investigated using both experimental and computational methods. Hyperpolarizabilities computed theoretically together with experimental nonlinear absorption from open aperture Z-scan measurements, point towards a possible use of pyrene adsorbed on silver in the rational design of NLO devices. Presence of a red shift in both simulated and experimental UV-Vis spectra confirms the adsorption on silver, which is due to the electrostatic interaction between silver and pyrene, inducing variations in the structural parameters of pyrene. Fukui calculations along with MEP plot predict the electrophilic nature of the silver cluster in the presence of pyrene, with NBO analysis revealing that the adsorption causes charge redistribution from the first three rings of pyrene towards the fourth ring, from where the 2p orbitals of carbon interact with the valence 5s orbitals of the cluster. This is further confirmed by the downshifting of ring breathing modes in both the experimental and theoretical Raman spectra.

  17. Formation of Core-Shell Ethane-Silver Clusters in He Droplets.

    PubMed

    Loginov, Evgeny; Gomez, Luis F; Sartakov, Boris G; Vilesov, Andrey F

    2017-08-17

    Ethane core-silver shell clusters consisting of several thousand particles have been assembled in helium droplets upon capture of ethane molecules followed by Ag atoms. The composite clusters were studied via infrared laser spectroscopy in the range of the C-H stretching vibrations of ethane. The spectra reveal a splitting of the vibrational bands, which is ascribed to interaction with Ag. A rigorous analysis of band intensities for a varying number of trapped ethane molecules and Ag atoms indicates that the composite clusters consist of a core of ethane that is covered by relatively small Ag clusters. This metastable structure is stabilized due to fast dissipation in superfluid helium droplets of the cohesion energy of the clusters.

  18. Complexes of DNA bases and Watson-Crick base pairs interaction with neutral silver Agn (n = 8, 10, 12) clusters: a DFT and TDDFT study.

    PubMed

    Srivastava, Ruby

    2018-03-01

    We study the binding of the neutral Ag n (n = 8, 10, 12) to the DNA base-adenine (A), guanine (G) and Watson-Crick -adenine-thymine, guanine-cytosine pairs. Geometries of complexes were optimized at the DFT level using the hybrid B3LYP functional. LANL2DZ effective core potential was used for silver and 6-31 + G ** was used for all other atoms. NBO charges were analyzed using the Natural population analysis. The absorption properties of Ag n -A,G/WC complexes were also studied using time-dependent density functional theory. The absorption spectra for these complexes show wavelength in the visible region. It was revealed that silver clusters interact more strongly with WC pairs than with isolated DNA complexes. Furthermore, it was found that the electronic charge transferred from silver to isolated DNA clusters are less than the electronic charge transferred from silver to the Ag n -WC complexes. The vertical ionization potential, vertical electron affinity, hardness, and electrophilicity index of Ag n -DNA/WC complexes have also been discussed.

  19. The effect of silver on the optical, spectral-luminescent, and crystallization properties of bromide photo-thermo-refractive glasses

    NASA Astrophysics Data System (ADS)

    Oreshkina, K. V.; Dubrovin, V. D.; Ignat'ev, A. I.; Nikonorov, N. V.

    2017-10-01

    The effect of silver on the optical, spectral-luminescent, and crystallization properties of bromide photo-thermo-refractive glasses is studied. Multicomponent photosensitive glasses of the Na2O-ZnO-Al2O3-SiO2 system with photosensitizing agents (cerium, antimony, silver) and halogenides (fluorine and bromine) are synthesized. Ultraviolet irradiation and thermal treatment below the glass-transition temperature of the glasses cause the formation of silver molecular clusters, which exhibit luminescence in the visible and infrared regions. UV irradiation and thermal treatment of glasses above the glass-transition temperature lead to the growth of silver nanoparticles with plasmon resonance peak in the region of 420 nm. Further thermal treatment of glasses above the glass-transition temperature shifts the plasmon-resonance maximum by 70 nm to longer wavelengths, which is related to the growth of a crystalline shell consisting of mixed silver and sodium bromides on nanoparticles. This formation of a crystalline phase on colloidal centers results in a local increase in the refractive index of the irradiated region by +Δ n 900 ppm compared to the nonirradiated region. Photo-thermo-refractive glasses with increased silver concentration are promising photosensitive materials for creating holographic optical elements and devices for line narrowing and stabilizing filters, spectral beam combiners, and filters for increasing the spectral brightness of laser diodes. A positive change in the refractive index of Photo-thermo-refractive glasses provides the possibility of recording in them 3D waveguide and integrated-optical structures.

  20. [Ag115S34(SCH2C6H4 tBu)47(dpph)6]: synthesis, crystal structure and NMR investigations of a soluble silver chalcogenide nanocluster† †Dedicated to Evamarie Hey-Hawkins on the occasion of her 60th birthday. ‡ ‡Electronic supplementary information (ESI) available: CCDC 1507868. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6sc04578b Click here for additional data file. Click here for additional data file.

    PubMed Central

    Fuhr, Olaf; Breitung, Ben; Kiran Chakravadhanula, Venkata Sei; Guthausen, Gisela; Hennrich, Frank; Yu, Wen; Kappes, Manfred M.; Roesky, Peter W.

    2017-01-01

    With the aim to synthesize soluble cluster molecules, the silver salt of (4-(tert-butyl)phenyl)methanethiol [AgSCH2C6H4 tBu] was applied as a suitable precursor for the formation of a nanoscale silver sulfide cluster. In the presence of 1,6-(diphenylphosphino)hexane (dpph), the 115 nuclear silver cluster [Ag115S34(SCH2C6H4 tBu)47(dpph)6] was obtained. The molecular structure of this compound was elucidated by single crystal X-ray analysis and fully characterized by spectroscopic techniques. In contrast to most of the previously published cluster compounds with more than a hundred heavy atoms, this nanoscale inorganic molecule is soluble in organic solvents, which allowed a comprehensive investigation in solution by UV-Vis spectroscopy and one- and two-dimensional NMR spectroscopy including 31P/109Ag-HSQC and DOSY experiments. These are the first heteronuclear NMR investigations on coinage metal chalcogenides. They give some first insight into the behavior of nanoscale silver sulfide clusters in solution. Additionally, molecular weight determinations were performed by 2D analytical ultracentrifugation and HR-TEM investigations confirm the presence of size-homogeneous nanoparticles present in solution. PMID:28507679

  1. Synthesis of colloidal silver nanoparticle clusters and their application in ascorbic acid detection by SERS.

    PubMed

    Cholula-Díaz, Jorge L; Lomelí-Marroquín, Diana; Pramanick, Bidhan; Nieto-Argüello, Alfonso; Cantú-Castillo, Luis A; Hwang, Hyundoo

    2018-03-01

    Ascorbic acid (vitamin C) has an essential role in the human body mainly due to its antioxidant function. In this work, metallic silver nanoparticle (AgNP) colloids were used in SERS experiments to detect ascorbic acid in aqueous solution. The AgNPs were synthesized by a green method using potato starch as reducing and stabilizing agent, and water as the solvent. The optical properties of the yellowish as-synthesized silver colloids were characterized by UV-vis spectroscopy, in which besides a typical band at 410 nm related to the localized surface plasmon resonance of the silver nanoparticles, a shoulder band around 500 nm, due to silver nanoparticle cluster formation, is presented when relatively higher concentrations of starch are used in the synthesis. These starch-capped silver nanoparticles show an intrinsic Raman peak at 1386 cm -1 assigned to deformation modes of the starch structure. The increase of the intensity of the SERS peak at 1386 cm -1 with an increase in the concentration of the ascorbic acid is related to a decrease of the gap between dimers and trimers of the silver nanoparticle clusters produced by the presence of ascorbic acid in the colloid. The limit of detection of this technique for ascorbic acid is 0.02 mM with a measurement concentration range of 0.02-10 mM, which is relevant for the application of this method for detecting ascorbic acid in biological specimen. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Silver-induced reconstruction of an adeninate-based metal–organic framework for encapsulation of luminescent adenine-stabilized silver clusters† †Electronic supplementary information (ESI) available: Experimental details and additional structural, physicochemical and optical characterisation. See DOI: 10.1039/c6tc00260a Click here for additional data file.

    PubMed Central

    Jonckheere, Dries; Coutino-Gonzalez, Eduardo; Baekelant, Wouter; Bueken, Bart; Reinsch, Helge; Stassen, Ivo; Fenwick, Oliver; Richard, Fanny; Samorì, Paolo; Ameloot, Rob; Hofkens, Johan

    2016-01-01

    Bright luminescent silver-adenine species were successfully stabilized in the pores of the MOF-69A (zinc biphenyldicarboxylate) metal–organic framework, starting from the intrinsically blue luminescent bio-MOF-1 (zinc adeninate 4,4′-biphenyldicarboxylate). Bio-MOF-1 is transformed to the MOF-69A framework by selectively leaching structural adenine linkers from the original framework using silver nitrate solutions in aqueous ethanol. Simultaneously, bright blue-green luminescent silver-adenine clusters are formed inside the pores of the recrystallized MOF-69A matrix in high local concentrations. The structural transition and concurrent changes in optical properties were characterized using a range of structural, physicochemical and spectroscopic techniques (steady-state and time-resolved luminescence, quantum yield determination, fluorescence microscopy). The presented results open new avenues for exploring the use of MOFs containing luminescent silver clusters for solid-state lighting and sensor applications. PMID:28496980

  3. Antimicrobial polyethyleneimine-silver nanoparticles in a stable colloidal dispersion.

    PubMed

    Lee, Hyun Ju; Lee, Se Guen; Oh, Eun Jung; Chung, Ho Yun; Han, Sang Ik; Kim, Eun Jung; Seo, Song Yi; Ghim, Han Do; Yeum, Jeong Hyun; Choi, Jin Hyun

    2011-11-01

    Excellent colloidal stability and antimicrobial activity are important parameters for silver nanoparticles (AgNPs) in a range of biomedical applications. In this study, polyethyleneimine (PEI)-capped silver nanoparticles (PEI-AgNPs) were synthesized in the presence of sodium borohydride (NaBH(4)) and PEI at room temperature. The PEI-AgNPs had a positive zeta potential of approximately +49 mV, and formed a stable nanocolloid against agglomeration due to electrostatic repulsion. The particle size and hydrodynamic cluster size showed significant correlations with the amount of PEI and NaBH(4). PEI-AgNPs and even PEI showed excellent antimicrobial activity against Staphylococus aureus and Klebsiella pneumoniae. The cytotoxic effects of PEI and PEI-AgNPs were confirmed by an evaluation of the cell viability. The results suggest that the amount of PEI should be minimized to the level that maintains the stability of PEI-AgNPs in a colloidal dispersion. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Raman bands in Ag nanoparticles obtained in extract of Opuntia ficus-indica plant

    NASA Astrophysics Data System (ADS)

    Bocarando-Chacon, J.-G.; Cortez-Valadez, M.; Vargas-Vazquez, D.; Rodríguez Melgarejo, F.; Flores-Acosta, M.; Mani-Gonzalez, P. G.; Leon-Sarabia, E.; Navarro-Badilla, A.; Ramírez-Bon, R.

    2014-05-01

    Silver nanoparticles have been obtained in an extract of Opuntia ficus-indica plant. The size and distribution of nanoparticles were quantified by atomic force microscopy (AFM). The diameter was estimated to be about 15 nm. In addition, energy dispersive X-ray spectroscopy (EDX) peaks of silver were observed in these samples. Three Raman bands have been experimentally detected at 83, 110 and 160 cm-1. The bands at 83 and 110 cm-1 are assigned to the silver-silver Raman modes (skeletal modes) and the Raman mode located at 160 cm-1 has been assigned to breathing modes. Vibrational assignments of Raman modes have been carried out based on the Density Functional Theory (DFT) quantum mechanical calculation. Structural and vibrational properties for small Agn clusters with 2≤n≤9 were determined. Calculated Raman modes for small metal clusters have an approximation trend of Raman bands. These Raman bands were obtained experimentally for silver nanoparticles (AgNP).

  5. Reversible redox and clusterization of silver in glasses by X-ray irradiation and heat treatment: Mechanism of photochromic behavior of halogen-free silver-doped glass

    NASA Astrophysics Data System (ADS)

    Isaji, Tomoya; Wakasugi, Takashi; Fukumi, Kohei; Kadono, Kohei

    2012-01-01

    We investigated photochromic behavior, i.e. X-ray irradiation and post-heat-treatment-induced reversible redox and clusterization reactions of silver, in soda-lime silicate (74SiO2·16Na2O·8CaO·2Al2O3) and aluminosilicate ((75 - x)SiO2·25Na2O·xAl2O3 (x = 5-25)) glasses. Generation and annihilation of silver nanoparticles were observed for soda-lime silicate and x = 5 aluminosilicate glasses doped with 0.05 wt.% or less of Ag while no nanoparticles were formed for x = 15-25 aluminosilicate glasses even doped with 0.5 wt.% of Ag. These results were analyzed from the viewpoints of the reaction kinetics and network structures of the glasses.

  6. Coalescence of silver clusters by immersion in diluted HF solution

    NASA Astrophysics Data System (ADS)

    Milazzo, R. G.; Mio, A. M.; D'Arrigo, G.; Grimaldi, M. G.; Spinella, C.; Rimini, E.

    2015-07-01

    The galvanic displacement deposition of silver on H-terminated Si (100) in the time scale of seconds is instantaneous and characterized by a cluster density of 1011-1012 cm-2. The amount of deposited Ag follows a t1/2 dependence in agreement with a Cottrell diffusion limited mechanism. At the same time, during the deposition, the cluster density reduces by a factor 5. This behavior is in contrast with the assumption of immobile clusters. We show in the present work that coalescence and aggregation occur also in the samples immersed in the diluted hydrofluoric acid (HF) solution without the presence of Ag+. Clusters agglomerate according to a process of dynamic coalescence, typical of colloids, followed by atomic redistribution at the contact regions with the generation of multiple internal twins and stacking-faults. The normalized size distributions in terms of r/rmean follow also the prediction of the Smoluchowski ripening mechanism. No variation of the cluster density occurs for samples immersed in pure H2O solution. The different behavior might be associated to the strong attraction of clusters to oxide-terminated Si surface in presence of water. The silver clusters are instead weakly bound to hydrophobic H-terminated Si in presence of HF. HF causes then the detachment of clusters and a random movement on the silicon surface with mobility of about 10-13 cm2/s. Attractive interaction (probably van der Waals) among particles promotes coarsening.

  7. Optical properties of embedded metal nanoparticles at low temperatures

    NASA Astrophysics Data System (ADS)

    Heilmann, A.; Kreibig, U.

    2000-06-01

    Metal nanoparticles (gold, silver, copper) that are embedded in an insulating organic host material exhibit optical plasma resonance absorption in the visible and near-infrared region. The spectral position, the half width and the intensity of the plasma resonance absorption all depend on the particle size, the particle shape, and the optical behavior of the cluster and the host material. The optical extinction of various gold, silver or copper particle assemblies embedded in plasma polymer or gelatin was measured at 4.2 K and 1.2 K as well as at room temperature. The packing density of several samples was high enough to resolve a reversible increase of the plasma resonance absorption intensity towards lower temperatures. Additionally, at larger silver particles D_m > 50 nm a significant blue shift of the plasma resonance absorption was measured. Particle size and shape distribution were determined by transmission electron microscopy (TEM). For the first time, simultaneous measurements of the electrical and optical properties at one and the same particle assembly were performed at low temperatures. Contrary to the increasing optical extinction, the d.c. conductivity decreased to two orders of magnitude. At silver particles embedded in a plasma polymer made from thiophene a significant photocurrent was measured.

  8. Extraordinarily high conductivity of flexible adhesive films by hybrids of silver nanoparticle-nanowires

    NASA Astrophysics Data System (ADS)

    Muhammed Ajmal, C.; Mol Menamparambath, Mini; Ryeol Choi, Hyouk; Baik, Seunghyun

    2016-06-01

    Highly conductive flexible adhesive (CFA) film was developed using micro-sized silver flakes (primary fillers), hybrids of silver nanoparticle-nanowires (secondary fillers) and nitrile butadiene rubber. The hybrids of silver nanoparticle-nanowires were synthesized by decorating silver nanowires with silver nanoparticle clusters using bifunctional cysteamine as a linker. The dispersion in ethanol was excellent for several months. Silver nanowires constructed electrical networks between the micro-scale silver flakes. The low-temperature surface sintering of silver nanoparticles enabled effective joining of silver nanowires to silver flakes. The hybrids of silver nanoparticle-nanowires provided a greater maximum conductivity (54 390 S cm-1) than pure silver nanowires, pure multiwalled carbon nanotubes, and multiwalled carbon nanotubes decorated with silver nanoparticles in nitrile butadiene rubber matrix. The resistance change was smallest upon bending when the hybrids of silver nanoparticle-nanowires were employed. The adhesion of the film on polyethylene terephthalate substrate was excellent. Light emitting diodes were successfully wired to the CFA circuit patterned by the screen printing method for application demonstration.

  9. Femtosecond laser structuring of silver-containing glass: Silver redistribution, selective etching, and surface topology engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desmoulin, Jean-Charles; Petit, Yannick; Cardinal, Thierry, E-mail: thierry.cardinal@icmcb.cnrs.fr

    2015-12-07

    Femtosecond direct laser writing in silver-containing phosphate glasses allows for the three-dimensional (3D) implementation of complex photonic structures. Sample translation along or perpendicular to the direction of the beam propagation has been performed, which led to the permanent formation of fluorescent structures, either corresponding to a tubular shape or to two parallel planes at the vicinity of the interaction voxel, respectively. These optical features are related to significant modifications of the local material chemistry. Indeed, silver depletion areas with a diameter below 200 nm were evidenced at the center of the photo-produced structures while photo-produced luminescence properties are attributed to themore » formation of silver clusters around the multiphoton interaction voxel. The laser-triggered oxidation-reduction processes and the associated photo-induced silver redistribution are proposed to be at the origin of the observed original 3D luminescent structures. Thanks to such material structuring, surface engineering has been also demonstrated. Selective surface chemical etching of the glass has been obtained subsequently to laser writing at the location of the photo-produced structures, revealing features with nanometric depth profiles and radial dimensions strongly related to the spatial distributions of the silver clusters.« less

  10. Effects of different wetting layers on the growth of smooth ultra-thin silver thin films

    NASA Astrophysics Data System (ADS)

    Ni, Chuan; Shah, Piyush; Sarangan, Andrew M.

    2014-09-01

    Ultrathin silver films (thickness below 10 nm) are of great interest as optical coatings on windows and plasmonic devices. However, producing these films has been a continuing challenge because of their tendency to form clusters or islands rather than smooth contiguous thin films. In this work we have studied the effect of Cu, Ge and ZnS as wetting layers (1.0 nm) to achieve ultrasmooth thin silver films. The silver films (5 nm) were grown by RF sputter deposition on silicon and glass substrates using a few monolayers of the different wetting materials. SEM imaging was used to characterize the surface properties such as island formation and roughness. Also the optical properties were measured to identify the optical impact of the different wetting layers. Finally, a multi-layer silver based structure is designed and fabricated, and its performance is evaluated. The comparison between the samples with different wetting layers show that the designs with wetting layers which have similar optical properties to silver produce the best overall performance. In the absence of a wetting layer, the measured optical spectra show a significant departure from the model predictions, which we attribute primarily to the formation of clusters.

  11. PIXE analysis of medieval silver coins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelouahed, H. Ben, E-mail: habdelou@cern.ch; Gharbi, F.; Roumie, M.

    2010-01-15

    We applied the proton-induced X-ray emission (PIXE) analytical technique to twenty-eight medieval silver coins, selected from the Tunisian treasury. The purpose is to study the fineness evolution from the beginning of the 7th to the 15th centuries AD. Each silver coin was cleaned with a diluted acid solution and then exposed to a 3 MeV proton beam from a 1.7 MV tandem accelerator. To allow the simultaneous detection of light and heavy elements, a funny aluminum filter was positioned in front of the Si(Li) detector entrance which is placed at 135{sup o} to the beam direction. The elements Cu, Pb,more » and Au were observed in the studied coins along with the major component silver. The concentration of Ag, presumably the main constituent of the coins, varies from 55% to 99%. This significant variation in the concentration of the major constituent reveals the economical difficulties encountered by each dynasty. It could be also attributed to differences in the composition of the silver mines used to strike the coins in different locations. That fineness evolution also reflects the poor quality of the control practices during this medieval period. In order to verify the ability of PIXE analytical method to distinguish between apparently similar coins, we applied hierarchical cluster analysis to our results to classify them into different subgroups of similar elemental composition.« less

  12. Albumin-stabilized fluorescent silver nanodots

    NASA Astrophysics Data System (ADS)

    Sych, Tomash; Polyanichko, Alexander; Kononov, Alexei

    2017-07-01

    Ligand-stabilized Ag nanoclusters (NCs) possess many attractive features including high fluorescence quantum yield, large absorption cross-section, good photostability, large Stokes shift and two-photon absorption cross sections. While plenty of fluorescent clusters have been synthesized on various polymer templates, only a few studies have been reported on the fluorescent Ag clusters on peptides and proteins. We study silver NCs synthesized on different protein matrices, including bovine serum albumin, human serum albumin, egg albumin, equine serum albumin, and lysozyme. Our results show that red-emitting Ag NCs can effectively be stabilized by the disulfide bonds in proteins and that the looser structure of the denatured protein favors formation of the clusters.

  13. A DNA-Encapsulated and Fluorescent Ag 10 6+ Cluster with a Distinct Metal-Like Core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petty, Jeffrey T.; Ganguly, Mainak; Rankine, Ian J.

    Silver cluster–DNA complexes are optical chromophores, and pairs of these conjugates can be toggled from fluorescently dim to bright states using DNA hybridization. This paper highlights spectral and structural differences for a specific cluster pair. We have previously characterized a cluster with low emission and violet absorption that forms a compact structure with single-stranded oligonucleotides. We now consider its counterpart with blue absorption and strong green emission. This cluster develops with a single-stranded/duplex DNA construct and is favored by low silver concentrations with ≲8 Ag+:DNA, an oxygen atmosphere, and neutral pH. The resulting cluster displays key signatures of a molecularmore » metal with well-defined absorption/emission bands at 490/550 nm, and with a fluorescence quantum yield of 15% and lifetime of 2.4 ns. The molecular cluster conjugates with the larger DNA host because it chromatographically elutes with the DNA and it exhibits circular dichroism. The silver cluster is identified as Ag106+ using two modes of mass spectrometry and elemental analysis. Our key finding is that it adopts a low-dimensional shape, as determined from a Ag K-edge extended X-ray absorption fine structure analysis. The Ag0 in this oxidized cluster segregates from the Ag+ via a sparse number of metal-like bonds and a denser network of silver–DNA bonds. This structure contrasts with the compact, octahedral-like shape of the violet counterpart to the blue cluster, which is also a Ag106+ species. We consider that the blue- and violet-absorbing clusters may be isomers with shapes that are controlled by the secondary structures of their DNA templates.« less

  14. Structural evolution in the crystallization of rapid cooling silver melt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Z.A., E-mail: ze.tian@gmail.com; Laboratory for Simulation and Modelling of Particulate Systems School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052; Dong, K.J.

    2015-03-15

    The structural evolution in a rapid cooling process of silver melt has been investigated at different scales by adopting several analysis methods. The results testify Ostwald’s rule of stages and Frank conjecture upon icosahedron with many specific details. In particular, the cluster-scale analysis by a recent developed method called LSCA (the Largest Standard Cluster Analysis) clarified the complex structural evolution occurred in crystallization: different kinds of local clusters (such as ico-like (ico is the abbreviation of icosahedron), ico-bcc like (bcc, body-centred cubic), bcc, bcc-like structures) in turn have their maximal numbers as temperature decreases. And in a rather wide temperaturemore » range the icosahedral short-range order (ISRO) demonstrates a saturated stage (where the amount of ico-like structures keeps stable) that breeds metastable bcc clusters. As the precursor of crystallization, after reaching the maximal number bcc clusters finally decrease, resulting in the final solid being a mixture mainly composed of fcc/hcp (face-centred cubic and hexagonal-closed packed) clusters and to a less degree, bcc clusters. This detailed geometric picture for crystallization of liquid metal is believed to be useful to improve the fundamental understanding of liquid–solid phase transition. - Highlights: • A comprehensive structural analysis is conducted focusing on crystallization. • The involved atoms in our analysis are more than 90% for all samples concerned. • A series of distinct intermediate states are found in crystallization of silver melt. • A novelty icosahedron-saturated state breeds the metastable bcc state.« less

  15. Fluorescent DNA-templated silver nanoclusters

    NASA Astrophysics Data System (ADS)

    Lin, Ruoqian

    Because of the ultra-small size and biocompatibility of silver nanoclusters, they have attracted much research interest for their applications in biolabeling. Among the many ways of synthesizing silver nanoclusters, DNA templated method is particularly attractive---the high tunability of DNA sequences provides another degree of freedom for controlling the chemical and photophysical properties. However, systematic studies about how DNA sequences and concentrations are controlling the photophysical properties are still lacking. The aim of this thesis is to investigate the binding mechanisms of silver clusters binding and single stranded DNAs. Here in this thesis, we report synthesis and characterization of DNA-templated silver nanoclusters and provide a systematic interrogation of the effects of DNA concentrations and sequences, including lengths and secondary structures. We performed a series of syntheses utilizing five different sequences to explore the optimal synthesis condition. By characterizing samples with UV-vis and fluorescence spectroscopy, we achieved the most proper reactants ratio and synthesis conditions. Two of them were chosen for further concentration dependence studies and sequence dependence studies. We found that cytosine-rich sequences are more likely to produce silver nanoclusters with stronger fluorescence signals; however, sequences with hairpin secondary structures are more capable in stabilizing silver nanoclusters. In addition, the fluorescence peak emission intensities and wavelengths of the DNA templated silver clusters have sequence dependent fingerprints. This potentially can be applied to sequence sensing in the future. However all the current conclusions are not warranted; there is still difficulty in formulating general rules in DNA strand design and silver nanocluster production. Further investigation of more sequences could solve these questions in the future.

  16. Characterization of fluorescence in heat-treated silver-exchanged zeolites.

    PubMed

    De Cremer, Gert; Coutiño-Gonzalez, Eduardo; Roeffaers, Maarten B J; Moens, Bart; Ollevier, Jeroen; Van der Auweraer, Mark; Schoonheydt, Robert; Jacobs, Pierre A; De Schryver, Frans C; Hofkens, Johan; De Vos, Dirk E; Sels, Bert F; Vosch, Tom

    2009-03-04

    Thermal treatment of Ag(+)-exchanged zeolites yields discrete highly photostable luminescent clusters without formation of metallic nanoparticles. Different types of emitters with characteristic luminescence colors are observed, depending on the nature of the cocation, the amount of exchanged silver, and the host topology. The dominant emission bands in LTA samples are situated around 550 and 690 nm for the samples with, respectively, low and high silver content, while in FAU-type materials only a broad band around 550 nm is observed, regardless of the degree of exchange. Analysis of the fluorescent properties in combination with ESR spectroscopy suggests that a Ag(6)(+) cluster with doublet electronic ground state is associated with the appearance of the 690-nm emitter, having a decay of a few hundred microseconds. Tentatively, the nanosecond-decaying 550-nm emitter is assigned to the Ag(3)(+) cluster. This new class of photostable luminescent particles with tunable emission colors offers interesting perspectives for various applications such as biocompatible labels for intracellular imaging.

  17. Medium-induced change of the optical response of metal clusters in rare-gas matrices

    NASA Astrophysics Data System (ADS)

    Xuan, Fengyuan; Guet, Claude

    2017-10-01

    Interaction with the surrounding medium modifies the optical response of embedded metal clusters. For clusters from about ten to a few hundreds of silver atoms, embedded in rare-gas matrices, we study the environment effect within the matrix random phase approximation with exact exchange (RPAE) quantum approach, which has proved successful for free silver clusters. The polarizable surrounding medium screens the residual two-body RPAE interaction, adds a polarization term to the one-body potential, and shifts the vacuum energy of the active delocalized valence electrons. Within this model, we calculate the dipole oscillator strength distribution for Ag clusters embedded in helium droplets, neon, argon, krypton, and xenon matrices. The main contribution to the dipole surface plasmon red shift originates from the rare-gas polarization screening of the two-body interaction. The large size limit of the dipole surface plasmon agrees well with the classical prediction.

  18. Isomerization of one molecule observed through tip enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yanxing; Lee, Joonhee; Apkarian, Vartkess A.; Wu, Ruqian; Ruqian Wu, Yanxing Zhang Team; Joonhee Lee, Vartkess A. Apkarian Team

    While exploring photoisomerization of azobenzyl thiols (ABT) adsorbed on Au(111), through joint scanning tunneling microscopy (STM) and tip-enhanced Raman scattering (TERS) studies, the reversible photoisomerization of one molecule is captured in TERS trajectories. The apparently heterogeneously photo-catalyzed reaction is assigned to cis-trans isomerization of an outlier, which is chemisorbed on the silver tip of the STM. In order to clarify the role of the silver tip of the STM, we perform systematic density functional theory (DFT) calculations. The results show that compared with the case on the flat Ag(111) surface, the energy difference between trans and cis states of ABT decrease as we add one silver atom or a tetrahedron silver cluster on Ag(111) surface which mimic the geometry of a silver tip. In particular, the trans stretches away from the surface on the tetrahedral silver cluster, and the energy difference between trans and cis decreases to 0.27 eV, from ~1 eV for ABT on the flat Ag(111) surface. This significantly increases the possibility of cis-trans isomerization, as observed in our experiments. Work was supported by the National Science Foundation Center for Chemical Innovation on Chemistry at the Space-Time Limit (CaSTL) under Grant No. CHE-1414466.

  19. Green Synthesis of Silver Nanoparticles Decorated by Fe₃O₄/GO with Enhanced Catalytic Activity.

    PubMed

    Guo, Jian; Wang, Yu; Liu, Dan-Dan; Wan, Rong; Han, Guo-Zhi

    2018-05-01

    We report a simple and green approach to synthesize stable water-dispersible silver nanoparticles decorated by magnetic Fe3O4 and graphene oxide (GO). These results of UV-Vis spectra, along with TEM and SEM indicated that the water-dispersible silver nanoparticles had cluster flat structure and retained the optical properties of the original silver particle. Combining the advantages of Fe3O4 and GO, the composite nanoparticles showed enhanced catalytic activity with good recycling utilization rate by magnetic separation.

  20. A cytochemical note on nucleoli of granulocytic precursors and granulocytes in patients suffering from the refractory anemia with excess blasts (RAEB) of the myelodysplastic syndrome (MDS).

    PubMed

    Smetana, K; Jirásková, I; Malasková, V; Cermák, J

    2002-01-01

    Nucleoli were studied in the proliferation as well as maturation granulopoietic compartment in patients suffering from refractory anemia with excess blasts (RAEB) of the myelodysplastic syndrome (MDS) by means of simple cytochemical procedures for the demonstration of nucleolar RNA and silver stained proteins of nucleolus organizer regions. Regardless of the procedure used for the nucleolar visualization, early stages of the granulopoietic compartment and particularly myeloblasts of RAEB patients were characterized by reduction of the nucleolar number expressed by the nucleolar coefficient the values of which resembled those described previously in acute myeloid leukemias. The reduced values of the nucleolar coefficient of these cells in silver stained specimens of RAEB patients were accompanied by a decreased number of clusters of silver stained particles representing interphasic silver stained nucleolus organizer regions (AgNORs). The reduction of these clusters was also described previously in leukemic cells. In addition, the differences in the values of the nucleolar coefficient of granulocytic precursors between specimens stained for RNA and those stained with the silver reaction might reflect changing composition and proportions of nucleolar components in the course of the granulocytic development.

  1. Charge transfer properties of pentacene adsorbed on silver: DFT study

    NASA Astrophysics Data System (ADS)

    N, Rekha T.; Rajkumar, Beulah J. M.

    2015-06-01

    Charge transfer properties of pentacene adsorbed on silver is investigated using DFT methods. Optimized geometry of pentacene after adsorption on silver indicates distortion in hexagonal structure of the ring close to the silver cluster and deviations in co-planarity of carbon atoms due to the variations in bond angles and dihedral angles. Theoretically simulated absorption spectrum has a symmetric surface plasmon resonance peak around 486nm corresponding to the transfer of charge from HOMO-2 to LUMO. Theoretical SERS confirms the process of adsorption, tilted orientation of pentacene on silver surface and the charge transfers reported. Localization of electron density arising from redistribution of electrostatic potential together with a reduced bandgap of pentacene after adsorption on silver suggests its utility in the design of electro active organic semiconducting devices.

  2. Arresting simulated dentine caries with adjunctive application of silver nitrate solution and sodium fluoride varnish: an in vitro study.

    PubMed

    Zhao, Irene Shuping; Mei, May Lei; Li, Quan-Li; Lo, Edward Chin Man; Chu, Chun-Hung

    2017-08-01

    The aim of this in vitro study was to assess the ability of silver nitrate solution, followed by sodium fluoride varnish, to arrest caries. Dentine slices were prepared and demineralised. Each slice was cut into three specimens for three groups (SF, SDF and W). Specimens of the SF group received topical application of 25% silver nitrate solution followed by 5% sodium fluoride varnish. The SDF group received topical application of 38% silver diamine fluoride solution (positive control). Specimens of the W group received deionised water (negative control). All specimens were subjected to pH cycling for 8 days. Dentine surface morphology, crystal characteristics, carious lesion depth and collagen matrix degradation were evaluated by scanning electron microscopy, X-ray diffraction, X-ray microtomography and spectrophotometry with a hydroxyproline assay. Scanning electron microscopy showed that dentine collagen was exposed in group W, but not in groups SF and SDF, while clusters of granular spherical grains were formed in groups SF and SDF. The mean lesion depths (±standard deviation) of groups SF, SDF and W were 128 ± 19, 135 ± 24 and 258 ± 53 μm, respectively (SF, SDF < W; P < 0.001). The X-ray diffraction analysis indicated that silver chloride was formed in groups SF and SDF. The concentration of hydroxyproline released from the dentine matrix was significantly lower in groups SF and SDF than in group W (P < 0.05). The results of this in vitro study indicate that the use of silver nitrate solution and sodium fluoride varnish is effective in inhibiting dentine demineralisation and dentine collagen degradation. © 2017 FDI World Dental Federation.

  3. Positron Annihilation in Polycrystalline Silver Samples Subjected to the Stretching Force

    NASA Astrophysics Data System (ADS)

    Pajak, J.; Rudzińska, W.; Pietrzak, R.; Szymański, Cz.; Smiatek, W.

    Angular distributions of the positron annihilation quanta, positron lifetime and resistivity were measured for polycrystalline silver samples deformed by uniaxial tension up to different deformation degrees. The S parameter as a function of deformation degree of the sample has been determined. The data obtained for silver samples elongated up to different elongation degrees indicate the dominant role of vacancies and larger defects type clusters created during the deformation process. The positron annihilation data are corrob-orated by results obtained by resistivity measurements.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    N, Rekha T.; Rajkumar, Beulah J. M., E-mail: beulah-rajkumar@yahoo.co.in

    Charge transfer properties of pentacene adsorbed on silver is investigated using DFT methods. Optimized geometry of pentacene after adsorption on silver indicates distortion in hexagonal structure of the ring close to the silver cluster and deviations in co-planarity of carbon atoms due to the variations in bond angles and dihedral angles. Theoretically simulated absorption spectrum has a symmetric surface plasmon resonance peak around 486nm corresponding to the transfer of charge from HOMO-2 to LUMO. Theoretical SERS confirms the process of adsorption, tilted orientation of pentacene on silver surface and the charge transfers reported. Localization of electron density arising from redistributionmore » of electrostatic potential together with a reduced bandgap of pentacene after adsorption on silver suggests its utility in the design of electro active organic semiconducting devices.« less

  5. Enhancement of the stability of silver nanoparticles synthesized using aqueous extract of Diospyros discolor Willd. leaves using polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Ardani, H. K.; Imawan, C.; Handayani, W.; Djuhana, D.; Harmoko, A.; Fauzia, V.

    2017-04-01

    Biosynthesis of silver nanoparticles is recently attracting considerable attention because of it reduces the environmental impact and already used in numerous applications. However, the disadvantages such as easy aggregation and instability properties, prevent its’ application. In this papers, biosynthesis of silver nanoparticles using aqueous extract of Diospyros discolor Willd. leaves have been prepared. The effect of biosynthesis variables, like ratio of reactants and reduction time on the particle size distribution, stability, and morphology of the silver nanoparticles were investigated. The resulted silver nanoparticles were characterized using UV spectroscopy, Transmission Electron Microscopy, and Particles Size Analyzer. Polyvinyl alcohol (PVA) was used to enhance the stability of the silver nanoparticles. Silver nanoparticles modification with 1% PVA concentration has produced a better characteristic of particle size distribution compared to the original silver nanoparticles, from highly polydisperse into moderately disperse. The results of the Zetta potential measurement also confirmed the increase stability of cluster distribution in the colloidal Ag/PVA compared to the original Ag.

  6. Tuning the Emission and Quantum Yield of Gold and Silver Nanoclusters Through Ligand Design and Doping

    NASA Astrophysics Data System (ADS)

    Mishra, Dinesh

    Nanoparticles have been extensively studied in the past few decades due to the possibilities they offer in applications ranging from medicine to energy generation. A new class of ultra-small noble metal nanoparticles consisting of tens to hundreds of atoms, commonly known as clusters or nanoclusters, have drawn interest of the research community recently due to their unique optical, electronic and structural properties. Over the past few years, advances have been made in the synthesis of atomically precise noble metal clusters (for example, silver and gold) with distinct optical properties. Their ultra-small size distinguishes them from conventional plasmonic nanoparticles and the properties are very sensitive to the slight variation in the compositon of the cluster, i.e. the number of the metal atoms and/or the nature of the ligands. These clusters are interesting because of their potential applications in field such as sensing, imaging, catalysis, clean energy, photonics, etc. as well as they provide fundamental insight into the evolution of the optical and electronic properties of these clusters. In this project, we explored the strategies to synthesize luminescent metallic clusters of gold and silver and to promote their solubility and stability in aqueous and biological medium. We focused particularly on the thiolate protected clusters due to the higher affinity of gold and silver to sulfur. Lipoic acid (Thioctic acid) is a bio-molecule with a cyclic disulfide ring, which also acts as a chelating ligand. Due to the higher binding affinity of the cyclic disulfide ring to nanocrystal surface, lipoic acid and chemically modified lipoic acid molecules have been widely reported for the synthesis and functionalization of inorganic nanocrystals. Here, we describe the use of bidentate lipoic acid ligands in the one phase growth of luminescent gold and silver nanoclusters. In addition, we have synthesized a new set of monothiol ligands containing PEG and zwitterion for the functionalization of fluorescent clusters. Chapter 1 introduces the fundamental properties of metallic clusters and the origin of these properties from electronic and structural point of view. The optical properties of ultra-small nanocrystals (<2 nm) in comparison to the plasmonic particles is described. In addition, the variation of optical and structural properties from one metal to another as well as one ligand to another is also compared. Chapter 2 describes the synthesis of ultra-small size gold clusters with different optical emission (ranging from blue to red) using photo-activated LA-PEG ligands. The influence of various factors on the growth of the clusters is also studied. Optical properties of the clusters were studied by UV-visible absorption, PL emission and excitation and time resolved fluorescence spectroscopy. XPS and DOSY NMR were used to characterize the oxidation states and sizes of these clusters. The photo-chemical transformation of LA-PEG ligands to thiols and the effect of various experimental parameters such as solvent, oxygen, ligand functional group and effect of acid are described in chapter 3. Thiol yield percentage was quantified using ellman assay. Chapter 4 describes the one phase aqueous synthesis of Ag29 clusters capped with bidentate dihydrolipoic acid (DHLA). We also describe the drastic enhancement of the PL intensity upon gold doping of the Ag29 clusters. Optical properties along with the size characterization by electrospray ionization mass spectrometry is also described. We further describe the growth of these clusters using DHLA-PEG molecules. Chapter 5 describes the synthesis of highly fluorescent Au25-xAgx clusters stabilized with two types of ligands (triphenylphosphine and thiols). We designed a set of monothiolate ligands appended with PEG and zwitterionic moieties. This approach allows to prepare water soluble and stable metallic clusters with enhanced photoluminescence and well defined optical properties. Chapter 6 is the overall summary of our findings and prospects and outlook.

  7. The properties of small Ag clusters bound to DNA bases.

    PubMed

    Soto-Verdugo, Víctor; Metiu, Horia; Gwinn, Elisabeth

    2010-05-21

    We study the binding of neutral silver clusters, Ag(n) (n=1-6), to the DNA bases adenine (A), cytosine (C), guanine (G), and thymine (T) and the absorption spectra of the silver cluster-base complexes. Using density functional theory (DFT), we find that the clusters prefer to bind to the doubly bonded ring nitrogens and that binding to T is generally much weaker than to C, G, and A. Ag(3) and Ag(4) make the stronger bonds. Bader charge analysis indicates a mild electron transfer from the base to the clusters for all bases, except T. The donor bases (C, G, and A) bind to the sites on the cluster where the lowest unoccupied molecular orbital has a pronounced protrusion. The site where cluster binds to the base is controlled by the shape of the higher occupied states of the base. Time-dependent DFT calculations show that different base-cluster isomers may have very different absorption spectra. In particular, we find new excitations in base-cluster molecules, at energies well below those of the isolated components, and with strengths that depend strongly on the orientations of planar clusters with respect to the base planes. Our results suggest that geometric constraints on binding, imposed by designed DNA structures, may be a feasible route to engineering the selection of specific cluster-base assemblies.

  8. Temperature Dependence in Heterogeneous Nucleation with Application to the Direct Determination of Cluster Energy on Nearly Molecular Scale

    DOE PAGES

    McGraw, Robert L.; Winkler, Paul M.; Wagner, Paul E.

    2017-12-04

    A re-examination of measurements of heterogeneous nucleation of water vapor on silver nanoparticles is presented here using a model-free framework that derives the energy of critical cluster formation directly from measurements of nucleation probability. Temperature dependence is correlated with cluster stabilization by the nanoparticle seed and previously found cases of unusual increasing nucleation onset saturation ratio with increasing temperature are explained. A necessary condition for the unusual positive temperature dependence is identified, namely that the critical cluster be more stable, on a per molecule basis, than the bulk liquid to exhibit the effect. Temperature dependence is next examined in themore » classical Fletcher model, modified here to make the energy of cluster formation explicit in the model. The contact angle used in the Fletcher model is identified as the microscopic contact angle, which can be directly obtained from heterogeneous nucleation experimental data by a recently developed analysis method. Here an equivalent condition, increasing contact angle with temperature, is found necessary for occurrence of unusual temperature dependence. Our findings have immediate applications to atmospheric particle formation and nanoparticle detection in condensation particle counters (CPCs).« less

  9. Temperature Dependence in Heterogeneous Nucleation with Application to the Direct Determination of Cluster Energy on Nearly Molecular Scale.

    PubMed

    McGraw, Robert L; Winkler, Paul M; Wagner, Paul E

    2017-12-04

    A re-examination of measurements of heterogeneous nucleation of water vapor on silver nanoparticles is presented here using a model-free framework that derives the energy of critical cluster formation directly from measurements of nucleation probability. Temperature dependence is correlated with cluster stabilization by the nanoparticle seed and previously found cases of unusual increasing nucleation onset saturation ratio with increasing temperature are explained. A necessary condition for the unusual positive temperature dependence is identified, namely that the critical cluster be more stable, on a per molecule basis, than the bulk liquid to exhibit the effect. Temperature dependence is next examined in the classical Fletcher model, modified here to make the energy of cluster formation explicit in the model.  The contact angle used in the Fletcher model is identified as the microscopic contact angle, which can be directly obtained from heterogeneous nucleation experimental data by a recently developed analysis method. Here an equivalent condition, increasing contact angle with temperature, is found necessary for occurrence of unusual temperature dependence. Our findings have immediate applications to atmospheric particle formation and nanoparticle detection in condensation particle counters (CPCs).

  10. Effect of nanosecond UV laser irradiation on luminescence and absorption in silver- and copper-containing phosphate glasses

    NASA Astrophysics Data System (ADS)

    Murashov, A. A.; Sidorov, A. I.; Stoliarchuk, M. V.

    2018-03-01

    Experimental evidence is presented that nanosecond UV laser irradiation of silver- and copper-containing barium phosphate glasses leads to luminescence quenching in the visible range. Subsequent heat treatment induces an absorption in the range 350–500 nm. These effects are due to the ionisation and fragmentation of subnanometre molecular clusters by laser radiation and subsequent (heat treatment-induced) formation of nanoparticles possessing plasmon resonance. Our numerical modelling results demonstrate the feasibility of producing stable AgnCum hybrid molecular clusters in glass. Local modification of the optical properties of glass by laser light can be used for optical information recording.

  11. Electrostatic separation for recycling silver, silicon and polyethylene terephthalate from waste photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Zhang, Zisheng; Sun, Bo; Yang, Jie; Wei, Yusheng; He, Shoujie

    2017-04-01

    Electrostatic separation technology has been proven to be an effective and environmentally friendly way of recycling electronic waste. In this study, this technology was applied to recycle waste solar panels. Mixed particles of silver and polyethylene terephthalate, silicon and polyethylene terephthalate, and silver and silicon were separated with a single-roll-type electrostatic separator. The influence of high voltage level, roll speed, radial position corona electrode and angular position of the corona electrode on the separation efficiency was studied. The experimental data showed that separation of silver/polyethylene terephthalate and silicon/polyethylene terephthalate needed a higher voltage level, while separation of silver and silicon needed a smaller angular position for the corona electrode and a higher roll speed. The change of the high voltage level, roll speed, radial position of the corona electrode, and angular position of the corona electrode has more influence on silicon separation efficiency than silver separation efficiency. An integrated process is proposed using a two-roll-type corona separator for multistage separation of a mixture of these three materials. The separation efficiency for silver and silicon were found to reach 96% and 98%, respectively.

  12. Effect of the size-selective silver clusters on lithium peroxide morphology in lithium–oxygen batteries

    DOE PAGES

    Lu, Jun; Cheng, Lei; Lau, Kah Chun; ...

    2014-09-12

    Lithium–oxygen batteries have the potential needed for long-range electric vehicles, but the charge and discharge chemistries are complex and not well understood. The active sites on cathode surfaces and their role in electrochemical reactions in aprotic lithium–oxygen cells are difficult to ascertain because the exact nature of the sites is unknown. In this paper, we report the deposition of subnanometre silver clusters of exact size and number of atoms on passivated carbon to study the discharge process in lithium–oxygen cells. The results reveal dramatically different morphologies of the electrochemically grown lithium peroxide dependent on the size of the clusters. Thismore » dependence is found to be due to the influence of the cluster size on the formation mechanism, which also affects the charge process. Finally, the results of this study suggest that precise control of subnanometre surface structure on cathodes can be used as a means to improve the performance of lithium–oxygen cells.« less

  13. Mechanical Characterization of Polydopamine-Assisted Silver Deposition on Polymer Substrates

    NASA Astrophysics Data System (ADS)

    Cordes, Amanda Laurence

    Inspired by the adhesive proteins in marine mussels, polydopamine has become a popular adhesive ad-layer for surface functionalization of a variety of substrates. Based on the chemistry of the dopamine monomer, amine and thiol functional groups are hypothesized to increase adhesion between polymer substrates and polydopamine thin films. This hypothesis was the central motivation for development of a tailorable thiol-ene system in order to study the effects of substrate chemistry on polydopamine adhesion. While polydopamine-adhered silver has been studied on a variety of substrates, no in depth mechanical characterization has been performed and to date, no research has been published on thiol-enes coated in polydopamine-adhered silver. The purpose of this study was to characterize the mechanical durability and adhesion properties of a polydopamine-adhered silver film on commercial substrates and a tailorable thiol-ene system. Polydopamine and silver coatings were deposited on a variety of polymer substrates through a simple dip-coat process. The polydopamine forms a thin uniform adhesive layer and the silver deposits in a discontinuous manner with a nanoparticle sized base layer covering the full surface and micron-sized clusters adhered sporadically on top. Mechanical tensile testing was performed to characterize the durability of the silver coating on commercial polymers. Coated nylon and HDPE showed no signs of degradation or delamination of the polydopamine-adhered silver coating up to 30% strain although both substrates showed large plastic deformation. Peel tests were performed on both commercial polymers as well as a tailorable thiol-ene system. Results support the hypothesis that polydopamine adhesion is increased with the presence of functional groups. Parts of the HDPE sample were cleanly peeled, but silver patches were left sporadically across the surface pointing to weaker adhesion between polyethylene and polydopamine. A high adhesive strength tape was used on nylon and the thiol-ene polymers and removed some of the large clusters but was ineffective at removing the particle base layer. The silver base layer remained firmly attached on the surface after multiple rounds of peel testing. With the addition of functional groups in the polymer makeup, the adhesion strength of polydopamine-adhered silver coatings can be increased to create a mechanically durable and adhesively robust silver coating.

  14. Structural characterization and antimicrobial properties of silver nanoparticles prepared by inverse microemulsion method.

    PubMed

    Wani, Irshad A; Khatoon, Sarvari; Ganguly, Aparna; Ahmed, Jahangeer; Ahmad, Tokeer; Manzoor, Nikhat

    2013-01-01

    Silver nanoparticles have been synthesized in the inverse microemulsions formed using three different surfactants viz., cetyl-trimethyl ammonium bromide (CTAB), Tergitol and Triton X-100. We have done a systematic study of the effect of the surfactants on the particle size and properties of the silver nanoparticles. Microscopic studies show the formation of spheres, cubes and discs shaped silver nanostructures with the size in the range from 8 to 40 nm. Surface plasmon resonance (SPR) peak was observed around 400 nm and 500 nm. In addition to SPR some extra peaks have also been observed due to the formation of silver metal clusters. The surface area increases from 3.45 to 15.06 m(2)/g with decreasing the size of silver nanoparticles (40-8 nm). To investigate the antimicrobial activity of silver nanoparticles, the nanoparticles were tested against the yeast, Candida albicans and the bacterium, E. coli. The results suggest very good antimicrobial activity of the silver nanoparticles against the test microbes. The mode of action of the antimicrobial activity was also proposed. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Advanced ultraviolet-resistant silver mirrors for use in solar reflectors

    DOEpatents

    Jorgensen, Gary J [Pine, CO; Gee, Randy [Arvada, CO

    2009-11-03

    A silver mirror construction that maintains a high percentage of hemispherical reflectance throughout the UV and visible spectrum when used in solar reflectors, comprising:a) a pressure sensitive adhesive layer positioned beneath a silver overlay;b) a polymer film disposed on the silver overlay;c) an adhesive layer positioned on the polymer film; andd) a UV screening acrylic film disposed on the adhesive layer.

  16. Sub-monolayer growth of Ag on flat and nanorippled SiO{sub 2} surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatnagar, Mukul; Ranjan, Mukesh; Mukherjee, Subroto

    2016-05-30

    In-situ Rutherford Backscattering Spectrometry (RBS) and Molecular Dynamics (MD) simulations have been used to investigate the growth dynamics of silver on a flat and the rippled silica surface. The calculated sticking coefficient of silver over a range of incidence angles shows a similar behaviour to the experimental results for an average surface binding energy of a silver adatom of 0.2 eV. This value was used to parameterise the MD model of the cumulative deposition of silver in order to understand the growth mechanisms. Both the model and the RBS results show marginal difference between the atomic concentration of silver on themore » flat and the rippled silica surface, for the same growth conditions. For oblique incidence, cluster growth occurs mainly on the leading edge of the rippled structure.« less

  17. Reactions of mixed silver-gold cluster cations AgmAun+ (m+n=4,5,6) with CO: Radiative association kinetics and density functional theory computations

    NASA Astrophysics Data System (ADS)

    Neumaier, Marco; Weigend, Florian; Hampe, Oliver; Kappes, Manfred M.

    2006-09-01

    Near thermal energy reactive collisions of small mixed metal cluster cations AgmAun+ (m +n=4, 5, and 6) with carbon monoxide have been studied in the room temperature Penning trap of a Fourier transform ion-cyclotron-resonance mass spectrometer as a function of cluster size and composition. The tetrameric species AgAu3+ and Ag2Au2+ are found to react dissociatively by way of Au or Ag atom loss, respectively, to form the cluster carbonyl AgAu2CO+. In contrast, measurements on a selection of pentamers and hexamers show that CO is added with absolute rate constants that decrease with increasing silver content. Experimentally determined absolute rate constants for CO adsorption were analyzed using the radiative association kinetics model to obtain cluster cation-CO binding energies ranging from 0.77to1.09eV. High-level ab initio density functional theory (DFT) computations identifying the lowest-energy cluster isomers and the respective CO adsorption energies are in good agreement with the experimental findings clearly showing that CO binds in a "head-on" fashion to a gold atom in the mixed clusters. DFT exploration of reaction pathways in the case of Ag2Au2+ suggests that exoergicities are high enough to access the minimum energy products for all reactive clusters probed.

  18. Green synthesis of silver nanoparticles using Azadirachta indica leaf extract and its antimicrobial study

    NASA Astrophysics Data System (ADS)

    Roy, Pragyan; Das, Bhagyalaxmi; Mohanty, Abhipsa; Mohapatra, Sujata

    2017-11-01

    In this study, green synthesis of silver nanoparticles was done using leaf extracts of Azadirachta indica. The flavonoids and terpenoids present in the extract act as both reducing and capping agent. Microbes ( Escherichia coli and Gram-positive bacteria) were isolated from borewell water using selective media. The silver nanoparticles showed antimicrobial activities against Gram-positive bacteria and E. coli. However the silver nanoparticles were more effective against E. coli as compared to Gram-positive bacteria. Various techniques were used to characterize synthesized silver nanoparticles such as DLS and UV-visible spectrophotometer. The absorbance peak was in the range of 420-450 nm, that varied depending upon the variation in the concentration of neem extract. This is a very rapid and cost-effective method for generation of silver nanoparticle at room temperature, however, its exact dose in water purification has to be determined.

  19. X-ray-induced fluorescent centers formation in zinc- phosphate glasses doped with Ag and Cu ions

    NASA Astrophysics Data System (ADS)

    Klyukin, D. A.; Pshenova, A. S.; Sidorov, A. I.; Stolyarchuk, M. V.

    2016-08-01

    Fluorescent properties of silver and copper doped zinc-phosphate glasses were studied. By X-ray irradiation of silver and copper co-doped glasses we could create and identify new emission centers which do not exist in single-doped samples. Doping of the glass with both silver and copper ions leads to the increase of quantum yield by 2.7 times. The study was complemented by quantum chemical calculations using the time-dependent density functional theory. It was shown that fluorescence may be attributed to the formation of mixed Ag-Cu molecular clusters.

  20. Laser synthesis and spectroscopy of acetonitrile/silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Akin, S. T.; Liu, X.; Duncan, M. A.

    2015-11-01

    Silver nanoparticles with acetonitrile ligands are produced in a laser ablation flow reactor. Excimer laser ablation produces gas phase metal clusters which are thermalized with helium or argon collisions in the flowtube, and reactions with acetonitrile vapor coordinate this ligand to the particle surface. The gaseous mixture is captured in a cryogenic trap; warming produces a solution of excess ligand and coated particles. TEM images reveal particle sizes of 10-30 nm diameter. UV-vis absorption and fluorescence spectra are compared to those of standard silver nanoparticles with surfactant coatings. Deep-UV ligand absorption is strongly enhanced by nanoparticle adsorption.

  1. Ultrafast dynamics in atomic clusters: Analysis and control

    PubMed Central

    Bonačić-Koutecký, Vlasta; Mitrić, Roland; Werner, Ute; Wöste, Ludger; Berry, R. Stephen

    2006-01-01

    We present a study of dynamics and ultrafast observables in the frame of pump–probe negative-to-neutral-to-positive ion (NeNePo) spectroscopy illustrated by the examples of bimetallic trimers Ag2Au−/Ag2Au/Ag2Au+ and silver oxides Ag3O2−/Ag3O2/Ag3O2+ in the context of cluster reactivity. First principle multistate adiabatic dynamics allows us to determine time scales of different ultrafast processes and conditions under which these processes can be experimentally observed. Furthermore, we present a strategy for optimal pump–dump control in complex systems based on the ab initio Wigner distribution approach and apply it to tailor laser fields for selective control of the isomerization process in Na3F2. The shapes of pulses can be assigned to underlying processes, and therefore control can be used as a tool for analysis. PMID:16740664

  2. Ultrafast dynamics in atomic clusters: analysis and control.

    PubMed

    Bonacić-Koutecký, Vlasta; Mitrić, Roland; Werner, Ute; Wöste, Ludger; Berry, R Stephen

    2006-07-11

    We present a study of dynamics and ultrafast observables in the frame of pump-probe negative-to-neutral-to-positive ion (NeNePo) spectroscopy illustrated by the examples of bimetallic trimers Ag2Au-/Ag2Au/Ag2Au+ and silver oxides Ag3O2-/Ag3O2/Ag3O2+ in the context of cluster reactivity. First principle multistate adiabatic dynamics allows us to determine time scales of different ultrafast processes and conditions under which these processes can be experimentally observed. Furthermore, we present a strategy for optimal pump-dump control in complex systems based on the ab initio Wigner distribution approach and apply it to tailor laser fields for selective control of the isomerization process in Na3F2. The shapes of pulses can be assigned to underlying processes, and therefore control can be used as a tool for analysis.

  3. Silver enhancement of nanogold and undecagold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hainfield, J.F.; Furuya, F.R.

    1995-07-01

    A recent advance in immunogold technology has been the use of molecular gold instead of colloidal gold. A number of advantages are realized by this approach, such as stable covalent, site-specific attachment, small probe size and absence of aggregates for improved penetration. Silver enhancement has led to improved and unique results for electron and light microscopy, as well as their use with blots and gels. Most previous work with immunogold silver staining has been done with colloidal gold particles. More recently, large gold compounds (``clusters``) having a definite number of gold atoms and defined organic shell, have been used, frequentlymore » with improved results. These gold dusters, large compared to simple compounds, are, however, at the small end of the colloidal gold scale in size; undecagold is 0.8 nm and Nanogold is 1.4 nm. They may be used in practically all applications where colloidal gold is used (Light and electron microscopy, dot blots, etc.) and in some unique applications, where at least the larger colloidal golds don`t work, such as running gold labeled proteins on gels (which are later detected by silver enhancement). The main differences between gold clusters and colloidal golds are the small size of the dusters and their covalent attachment to antibodies or other molecules.« less

  4. The potent antimicrobial properties of cell penetrating peptide-conjugated silver nanoparticles with excellent selectivity for gram-positive bacteria over erythrocytes.

    PubMed

    Liu, Lihong; Yang, Jun; Xie, Jianping; Luo, Zhentao; Jiang, Jiang; Yang, Yi Yan; Liu, Shaomin

    2013-05-07

    Silver nanoparticles are of great interest for use as antimicrobial agents. Studies aimed at producing potent nano-silver biocides have focused on manipulation of particle size, shape, composition and surface charge. Here, we report the cell penetrating peptide catalyzed formation of antimicrobial silver nanoparticles in N,N-dimethylformamide. The novel nano-composite demonstrated a distinctly enhanced biocidal effect toward bacteria (gram-positive Bacillus subtilis, gram-negative Escherichia coli) and pathogenic yeast (Candida albicans), as compared to triangular and extremely small silver nanoparticles. In addition, a satisfactory biocompatibility was verified by a haemolysis test. Our results provide a paradigm in developing strategies that can maximize the silver nanoparticle application potentials while minimizing the toxic effects.

  5. Studies of Copper, Silver, and Gold Cluster Anions: Evidence of Electronic Shell Structure.

    NASA Astrophysics Data System (ADS)

    Pettiette, Claire Lynn

    A new Ultraviolet Magnetic Time-of-Flight Photoelectron Spectrometer (MTOFPES) has been developed for the study of the electronic structure of clusters produced in a pulsed supersonic molecular beam. This is the first technique which has been successful in probing the valence electronic states of metal clusters. The ultraviolet photoelectron spectra of negative cluster ions of the noble metals have been taken at several different photon energies. These are presented along with the electron affinity and HOMO-LUMO gap measurements for Cu_6^- to Cu_ {41}^-, using 4.66 eV and 6.42 eV detachment energies; Ag_3^- to Ag_{21}^-, using 6.42 eV detachment energy; and Au_3^ - to Au_{21}^-, using 6.42 eV and 7.89 eV detachment energies. The spectra provide the first detailed probes of the s valence electrons of the noble metal clusters. In addition, the 6.42 eV and 7.89 eV spectra probe the first one to two electron volts of the molecular orbitals of the d valence electrons of copper and gold clusters. The electron affinity and HOMO-LUMO gap measurements of the noble metal clusters agree with the predictions of the ellipsoidal shell model for mono-valent metal clusters. In particular, cluster numbers 8, 20, and 40--which correspond to the spherical shell closings of this model--have low electron affinities and large HOMO-LUMO gaps. The spectra of the gold cluster ions indicate that the molecular orbital energies of the cluster valence electrons are more widely spaced for gold than for copper or silver. This is to be expected for the heavy atom clusters when relativistic effects are taken into account.

  6. Preparation, characterization and antimicrobial efficiency of Ag/PDDA-diatomite nanocomposite.

    PubMed

    Panáček, Aleš; Balzerová, Anna; Prucek, Robert; Ranc, Václav; Večeřová, Renata; Husičková, Vendula; Pechoušek, Jiří; Filip, Jan; Zbořil, Radek; Kvítek, Libor

    2013-10-01

    Nanocomposites consisting of diatomaceous earth particles and silver nanoparticles (silver NPs) with high antimicrobial activity were prepared and characterized. For the purpose of nanocomposite preparation, silver NPs with an average size of 28nm prepared by modified Tollens process were used. Nanocomposites were prepared using poly(diallyldimethylammonium) chloride (PDDA) as an interlayer substance between diatomite and silver NPs which enables to change diatomite original negative surface charge to positive one. Due to strong electrostatic interactions between negatively charged silver NPs and positively charged PDDA-modified diatomite, Ag/PDDA-diatomite nanocomposites with a high content of silver (as high as 46.6mgAg/1g of diatomite) were prepared. Because of minimal release of silver NPs from prepared nanocomposites to aqueous media (<0.3mg Ag/1g of nanocomposite), the developed nanocomposites are regarded as a potential useful antimicrobial material with a long-term efficiency showing no risk to human health or environment. All the prepared nanocomposites exhibit a high bactericidal activity against Gram-negative and Gram-positive bacteria and fungicidal activity against yeasts at very low concentrations as low as 0.11g/L, corresponding to silver concentration of 5mg/L. Hence, the prepared nanocomposites constitute a promising candidate suitable for the microbial water treatment in environmental applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Nanostructured Ag-zeolite Composites as Luminescence-based Humidity Sensors.

    PubMed

    Coutino-Gonzalez, Eduardo; Baekelant, Wouter; Dieu, Bjorn; Roeffaers, Maarten B J; Hofkens, Johan

    2016-11-15

    Small silver clusters confined inside zeolite matrices have recently emerged as a novel type of highly luminescent materials. Their emission has high external quantum efficiencies (EQE) and spans the whole visible spectrum. It has been recently reported that the UV excited luminescence of partially Li-exchanged sodium Linde type A zeolites [LTA(Na)] containing luminescent silver clusters can be controlled by adjusting the water content of the zeolite. These samples showed a dynamic change in their emission color from blue to green and yellow upon an increase of the hydration level of the zeolite, showing the great potential that these materials can have as luminescence-based humidity sensors at the macro and micro scale. Here, we describe the detailed procedure to fabricate a humidity sensor prototype using silver-exchanged zeolite composites. The sensor is produced by suspending the luminescent Ag-zeolites in an aqueous solution of polyethylenimine (PEI) to subsequently deposit a film of the material onto a quartz plate. The coated plate is subjected to several hydration/dehydration cycles to show the functionality of the sensing film.

  8. Nanostructured Ag-zeolite Composites as Luminescence-based Humidity Sensors

    PubMed Central

    Dieu, Bjorn; Roeffaers, Maarten B.J.; Hofkens, Johan

    2016-01-01

    Small silver clusters confined inside zeolite matrices have recently emerged as a novel type of highly luminescent materials. Their emission has high external quantum efficiencies (EQE) and spans the whole visible spectrum. It has been recently reported that the UV excited luminescence of partially Li-exchanged sodium Linde type A zeolites [LTA(Na)] containing luminescent silver clusters can be controlled by adjusting the water content of the zeolite. These samples showed a dynamic change in their emission color from blue to green and yellow upon an increase of the hydration level of the zeolite, showing the great potential that these materials can have as luminescence-based humidity sensors at the macro and micro scale. Here, we describe the detailed procedure to fabricate a humidity sensor prototype using silver-exchanged zeolite composites. The sensor is produced by suspending the luminescent Ag-zeolites in an aqueous solution of polyethylenimine (PEI) to subsequently deposit a film of the material onto a quartz plate. The coated plate is subjected to several hydration/dehydration cycles to show the functionality of the sensing film. PMID:27911397

  9. Matilda: A mass filtered nanocluster source

    NASA Astrophysics Data System (ADS)

    Kwon, Gihan

    Cluster science provides a good model system for the study of the size dependence of electronic properties, chemical reactivity, as well as magnetic properties of materials. One of the main interests in cluster science is the nanoscale understanding of chemical reactions and selectivity in catalysis. Therefore, a new cluster system was constructed to study catalysts for applications in renewable energy. Matilda, a nanocluster source, consists of a cluster source and a Retarding Field Analyzer (RFA). A moveable AJA A310 Series 1"-diameter magnetron sputtering gun enclosed in a water cooled aggregation tube served as the cluster source. A silver coin was used for the sputtering target. The sputtering pressure in the aggregation tube was controlled, ranging from 0.07 to 1torr, using a mass flow controller. The mean cluster size was found to be a function of relative partial pressure (He/Ar), sputtering power, and aggregation length. The kinetic energy distribution of ionized clusters was measured with the RFA. The maximum ion energy distribution was 2.9 eV/atom at a zero pressure ratio. At high Ar flow rates, the mean cluster size was 20 ˜ 80nm, and at a 9.5 partial pressure ratio, the mean cluster size was reduced to 1.6nm. Our results showed that the He gas pressure can be optimized to reduce the cluster size variations. Results from SIMION, which is an electron optics simulation package, supported the basic function of an RFA, a three-element lens and the magnetic sector mass filter. These simulated results agreed with experimental data. For the size selection experiment, the channeltron electron multiplier collected ionized cluster signal at different positions during Ag deposition on a TEM grid for four and half hours. The cluster signal was high at the position for neutral clusters, which was not bent by a magnetic field, and the signal decreased rapidly far away from the neutral cluster region. For cluster separation according to mass to charge ratio in a magnetic sector mass filter, the ion energy of the cluster and its distribution must be precisely controlled by acceleration or deceleration. To verify the size separation, a high resolution microscope was required. Matilda provided narrow particle sized distribution from atomic scale to 4nm in size with different pressure ratio without additional mass filter. It is very economical way to produce relatively narrow particle size distribution.

  10. X-Ray Absorption Near-Edge Structure (XANES) Spectroscopy Study of the Interaction of Silver Ions with Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli

    PubMed Central

    Zanzen, Ulrike; Krishna, Katla Sai; Hormes, Josef

    2013-01-01

    Silver ions are widely used as antibacterial agents, but the basic molecular mechanism of this effect is still poorly understood. X-ray absorption near-edge structure (XANES) spectroscopy at the Ag LIII, S K, and P K edges reveals the chemical forms of silver in Staphylococcus aureus and Escherichia coli (Ag+ treated). The Ag LIII-edge XANES spectra of the bacteria are all slightly different and very different from the spectra of silver ions (silver nitrate and silver acetate), which confirms that a reaction occurs. Death or inactivation of bacteria was observed by plate counting and light microscopy. Silver bonding to sulfhydryl groups (Ag-S) in cysteine and Ag-N or Ag-O bonding in histidine, alanine, and dl-aspartic acid was detected by using synthesized silver-amino acids. Significantly lower silver-cysteine content, coupled with higher silver-histidine content, in Gram-positive S. aureus and Listeria monocytogenes cells indicates that the peptidoglycan multilayer could be buffering the biocidal effect of silver on Gram-positive bacteria, at least in part. Bonding of silver to phosphate groups was not detected. Interaction with DNA or proteins can occur through Ag-N bonding. The formation of silver-cysteine can be confirmed for both bacterial cell types, which supports the hypothesis that enzyme-catalyzed reactions and the electron transport chain within the cell are disrupted. PMID:23934494

  11. DNA Encapsulation of Ten Silver Atoms Produces a Bright, Modulatable, Near Infrared-Emitting Cluster

    PubMed Central

    Petty, Jeffrey T.; Fan, Chaoyang; Story, Sandra P.; Sengupta, Bidisha; Iyer, Ashlee St. John; Prudowsky, Zachary; Dickson, Robert M.

    2010-01-01

    Photostability, inherent fluorescence brightness, and optical modulation of fluorescence are key attributes distinguishing silver nanoclusters as fluorophores. DNA plays a central role both by protecting the clusters in aqueous environments and by directing their formation. Herein, we characterize a new near infrared-emitting cluster with excitation and emission maxima at 750 and 810 nm, respectively that is stabilized within C3AC3AC3TC3A. Following chromatographic resolution of the near infrared species, a stoichiometry of 10 Ag/oligonucleotide was determined. Combined with excellent photostability, the cluster’s 30% fluorescence quantum yield and 180,000 M−1cm−1 extinction coefficient give it a fluorescence brightness that significantly improves on that of the organic dye Cy7. Fluorescence correlation analysis shows an optically accessible dark state that can be directly depopulated with longer wavelength co-illumination. The coupled increase in total fluorescence demonstrates that enhanced sensitivity can be realized through Synchronously Amplified Fluorescence Image Recovery (SAFIRe), which further differentiates this new fluorophore. PMID:21116486

  12. Silver ion chromatography for peak resolution enhancement: Application to the preparative separation of two sesquiterpenes using online heart-cutting LC-LC technique.

    PubMed

    Yang, Yang; Zhang, Yongmin; Wei, Chong; Li, Jing; Sun, Wenji

    2018-09-01

    Silver ion chromatography, utilizing columns packed with silver ions bonded to silica gel, has proved to be an invaluable technique for the analysis of some positional isomers. In this work, silver ion chromatography by combination with online heart-cutting LC-LC technique for the preparative separation of two sesquiterpenes positional isomers from a natural product was investigated. On the basis of the evaluation that silver ion content impacts on the separation, the laboratory-made silver ion columns, utilizing silica gel impregnated with 15% silver nitrate as column packing materials, were used for peak resolution improvement of these two isomers and the preparative separation of them in heart-cutting LC-LC. The relationship among the maximal sample load, flow rate and peak resolution in the silver ion column were optimized, and the performance of the silver ion column was compared with conventional C 18 column and silica gel column. Based on the developed chromatographic conditions, online heart-cutting LC-LC chromatographic separation system in combination with a silica gel column and a silver ion column that was applied to preparative separation of these two isomers from a traditional Chinese medicine, Inula racemosa Hook.f., was established. The results showed that the online heart-cutting LC-LC technique by combination of a silica gel column and a silver ion column for the preparative separation of these two positional isomers from this natural plant was superior to the preparative separation performed on a single-column system with C 18 column or silica gel column. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. The characterization of photographic materials as substrates for surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Vaughan, J.; Hortin, N.; Christie, S.; Kvasnik, F.; Scully, P. J.

    2005-06-01

    In this study, five types of photographic materials were obtained from commercial sources and characterized for use as substrates for surface enhanced Raman spectroscopy. The substrates are photographic emulsions coated on glass or paper support. The emulsions were developed to maximize the amount of metallic silver aggregated into clusters. The test analyte, Cresyl Violet, was deposited directly onto the substrate surface. The permeable nature of the supporting gelatin matrix enables the interaction between the target analyte and the solid silver clusters. The surface enhanced Raman spectra of a 2.75 × 10-7 M concentration of Cresyl Violet in ethanol were obtained using these photographic substrates. The Raman and resonant Raman enhancement of Cresyl Violet varies from substrate to substrate, as does the ratio of Raman to resonant Raman peak heights.

  14. Small size yet big action: a simple sulfate anion templated a discrete 78-nuclearity silver sulfur nanocluster with a multishell structure.

    PubMed

    Cheng, Li-Ping; Wang, Zhi; Wu, Qiao-Yu; Su, Hai-Feng; Peng, Tao; Luo, Geng-Geng; Li, Yan-An; Sun, Di; Zheng, Lan-Sun

    2018-03-07

    A discrete 78-nucleus silver-sulfur nanocluster with a sulfate-centered multishell structure was isolated and characterized. Its crystal structure revealed 18 and 60 Ag atoms in the inner and outer shell, respectively. The inner shell of 18-nuclearity Ag atoms is a very rare convex polyhedron featuring an elongated triangular orthobicupola. The incorporation of a sulfate anion and multishell arrangement in the nanocluster led to a dramatic decrease in the band gap (E g = 1.40 eV). Our study showed that simple anions can also induce the formation of high-nuclearity silver clusters with excellent optical properties.

  15. Silver Nanoparticle Impregnated Bio-Based Activated Carbon with Enhanced Antimicrobial Activity

    NASA Astrophysics Data System (ADS)

    Selvakumar, R.; Suriyaraj, S. P.; Jayavignesh, V.; Swaminathan, K.

    2013-08-01

    The present study involves the production of silver nanoparticles using a novel yeast strain Saccharomyces cerevisiae BU-MBT CY-1 isolated from coconut cell sap. The biological reduction of silver nitrate by the isolate was deducted at various time intervals. The yeast cells after biological silver reduction were harvested and subjected to carbonization at 400°C for 1 h and its properties were analyzed using Fourier transform infra-red spectroscopy, X-ray diffraction, scanning electron microscope attached with energy dispersive spectroscopy and transmission electron microscopy. The average size of the silver nanoparticles present on the surface of the carbonized silver containing yeast cells (CSY) was 19 ± 9 nm. The carbonized control yeast cells (CCY) did not contain any particles on its surface. The carbonized silver nanoparticles containing yeast cells (CSY) were made into bioactive emulsion and tested for its efficacy against various pathogenic Gram positive and Gram negative bacteria. The antimicrobial activity studies indicated that CSY bioactive nanoemulsion was effective against Gram negative organisms than Gram positive organism.

  16. High frequency of silver resistance genes in invasive isolates of Enterobacter and Klebsiella species.

    PubMed

    Sütterlin, S; Dahlö, M; Tellgren-Roth, C; Schaal, W; Melhus, Å

    2017-07-01

    Silver-based products have been marketed as an alternative to antibiotics, and their consumption has increased. Bacteria may, however, develop resistance to silver. To study the presence of genes encoding silver resistance (silE, silP, silS) over time in three clinically important Enterobacteriaceae genera. Using polymerase chain reaction (PCR), 752 bloodstream isolates from the years 1990-2010 were investigated. Age, gender, and ward of patients were registered, and the susceptibility to antibiotics and silver nitrate was tested. Clonality and single nucleotide polymorphism were assessed with repetitive element sequence-based PCR, multi-locus sequence typing, and whole-genome sequencing. Genes encoding silver resistance were detected most frequently in Enterobacter spp. (48%), followed by Klebsiella spp. (41%) and Escherichia coli 4%. Phenotypical resistance to silver nitrate was found in Enterobacter (13%) and Klebsiella (3%) isolates. The lowest carriage rate of sil genes was observed in blood isolates from the neonatology ward (24%), and the highest in blood isolates from the oncology/haematology wards (66%). Presence of sil genes was observed in international high-risk clones. Sequences of the sil and pco clusters indicated that a single mutational event in the silS gene could have caused the phenotypic resistance. Despite a restricted consumption of silver-based products in Swedish health care, silver resistance genes are widely represented in clinical isolates of Enterobacter and Klebsiella species. To avoid further selection and spread of silver-resistant bacteria with a high potential for healthcare-associated infections, the use of silver-based products needs to be controlled and the silver resistance monitored. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  17. Inhibitory effect of silver diamine fluoride on dentine demineralisation and collagen degradation.

    PubMed

    Mei, May L; Ito, L; Cao, Y; Li, Q L; Lo, Edward C M; Chu, C H

    2013-09-01

    To investigate the inhibitory effects of 38% silver diamine fluoride (SDF) on demineralised dentine. Human dentine blocks were demineralised and allocated to four groups: SF, F, S and W. The blocks in group SF received a topical application of 38% SDF solution (253,900ppm Ag, 44,800ppm F), group F received a 10% sodium fluoride solution (44,800ppm F), group S received a 42% silver nitrate solution (253,900ppm Ag) and group W received deionised water (control). They were subjected to pH cycling using demineralisation solution (pH 5) and remineralisation solution (pH 7) for 8 days. The surface morphology, crystal characteristics, lesion depth and collagen matrix degradation of the specimens were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), micro-CT testing and spectrophotometry with a hydroxyproline assay. The surface morphology under SEM showed evident demineralisation with exposed collagen in groups S and W, but not in group SF. Clusters of granular spherical grains were observed in the cross-sections of specimens in groups SF and F. XRD revealed precipitates of silver chloride in groups SF and S. The mean lesion depths (±SD) of groups SF, F, S and W were 182 ± 32μm, 204 ± 26μm, 259 ± 42μm and 265 ± 40μm, respectively (SDF, F

  18. Silver-silver sulfate reference electrodes for use in lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Ruetschi, Paul

    Electrochemical properties of silver-silver sulfate reference electrodes for lead-acid batteries are described, and the following possible applications discussed: Determination of individual capacities of positive and negative plates. Monitoring individual electrode behavior during deep discharge and cell reversal. Optimization charge or discharge parameters, by controlling the current such that pre-determined limits of positive or negative half-cell potential are respected. Observation of acid concentration differences, for example due to acid stratification, by measuring diffusion potentials (concentration-cell voltages). Detection of defective cells, and defective plate sets, in a string of cells, at the end of their service life. Silver-silver sulfate reference electrodes, permanently installed in lead-acid cells, may be a means to improve battery management, and therewith to improve reliability and service life. In vented batteries, reference electrodes may be used to limit positive plate polarization during charge, or float-charge. Limiting the positive half-cell potential to an upper, pre-set value would permit to keep anodic corrosion as low as possible. During cycling, discharge could be terminated when the half-cell potential of the positive electrode has dropped to a pre-set limit. This would prevent excessive discharge of the positive electrodes, which could result in an improvement of cycle life. In valve-regulated batteries, reference electrodes may be used to adjust float-charge conditions such as to assure sufficient cathodic polarization of the negative electrodes, in order to avoid sulfation. The use of such reference electrodes could be beneficial particularly in multi-cell batteries, with overall voltages above 12 V, operated in a partial-state-of-charge.

  19. Rapid Fabrication of Silver Nanowires through Photoreduction of Silver Nitrate from an Anodic-Aluminum-Oxide Template

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Hsuan; Chen, Kun-Tso; Ho, Jeng-Rong

    2011-06-01

    A method for rapidly fabricating dense and high-aspect-ratio silver nanowires, with wire diameter of 200 nm and wire length more than 30 µm, is reported. The fabrication process simply involves filling the silver nitrate solution into the pores of an anodic-aluminum-oxide (AAO) membrane through capillary attraction and irradiating the dried template AAO membrane using a pulsed ArF excimer laser. Through varying the thickness and pore diameter of the employed AAO membrane, the primary dimensions of the targeted silver nanowires can be plainly specified; and, by amending the initial concentration of the silver nitrate solution and adjusting the laser operation parameters, laser fluence and number of laser pulses, the surface morphology and size of the resulting nanowires can be finely regulated. The wire formation mechanism is considered through two stages: the period of precipitation of silver particles from the dried silver nitrate film through the laser-induced photoreduction; and, the phase of clustering, merging and fusing of the reduced particles to form nanowires in the template pores by the thermal energy owing to photothermal effect. This approach is straightforward and takes the advantage that all the fabrication processes can be executed in an ambient environment and at room temperature. In addition, by the excellence in local processing that the laser possesses, this method is suitable for precisely growing nanowires.

  20. Coexistence of cyclic (CH3OH)2(H2O)8 heterodecamer and acyclic water trimer in the channels of silver-azelate framework

    NASA Astrophysics Data System (ADS)

    Luo, Geng-Geng; Zhu, Rui-Min; He, Wei-Jun; Li, Ming-Zhi; Zhao, Qing-Hua; Li, Dong-Xu; Dai, Jing-Cao

    2012-08-01

    Flexible azelaic acid (H2aze) and 1,3-bis(4-pyridyl)propane) (bpp) react ultrasonically with silver(I) oxide, generating a new metal-organic framework [Ag2(bpp)2(aze)·7H2O·CH3OH]n (1) that forms a 3D supramolecular structure through H-bonding interactions between solvent molecules and carboxylate O atoms with void spaces. Two kinds of solvent clusters, discrete cyclic (CH3OH)2(H2O)8 heterodecameric and acyclic water trimeric clusters occupy the channels in the structure. Furthermore, 1 exhibits strong photoluminescence maximized at 500 nm upon 350 nm excitation at room temperature, of which CIE chromaticity ordinate (x = 0.28, y = 0.44) is close to that of edge of green component.

  1. 45 CFR 2526.25 - Is a participant in an approved Summer of Service position or approved Silver Scholar position...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 4 2014-10-01 2014-10-01 false Is a participant in an approved Summer of Service... § 2526.25 Is a participant in an approved Summer of Service position or approved Silver Scholar position... Scholar or Summer of Service position is not eligible to receive a pro-rated award. [75 FR 51411, Aug. 20...

  2. 45 CFR 2526.25 - Is a participant in an approved Summer of Service position or approved Silver Scholar position...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 4 2012-10-01 2012-10-01 false Is a participant in an approved Summer of Service... § 2526.25 Is a participant in an approved Summer of Service position or approved Silver Scholar position... Scholar or Summer of Service position is not eligible to receive a pro-rated award. [75 FR 51411, Aug. 20...

  3. 45 CFR 2526.25 - Is a participant in an approved Summer of Service position or approved Silver Scholar position...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 4 2013-10-01 2013-10-01 false Is a participant in an approved Summer of Service... § 2526.25 Is a participant in an approved Summer of Service position or approved Silver Scholar position... Scholar or Summer of Service position is not eligible to receive a pro-rated award. [75 FR 51411, Aug. 20...

  4. 45 CFR 2526.25 - Is a participant in an approved Summer of Service position or approved Silver Scholar position...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Is a participant in an approved Summer of Service... § 2526.25 Is a participant in an approved Summer of Service position or approved Silver Scholar position... Scholar or Summer of Service position is not eligible to receive a pro-rated award. [75 FR 51411, Aug. 20...

  5. 45 CFR 2526.25 - Is a participant in an approved Summer of Service position or approved Silver Scholar position...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Is a participant in an approved Summer of Service... § 2526.25 Is a participant in an approved Summer of Service position or approved Silver Scholar position... Scholar or Summer of Service position is not eligible to receive a pro-rated award. [75 FR 51411, Aug. 20...

  6. The influence of UV laser radiation on the absorption and luminescence of photothermorefractive glasses containing silver ions

    NASA Astrophysics Data System (ADS)

    Ignat'ev, A. I.; Ignat'ev, D. A.; Nikonorov, N. V.; Sidorov, A. I.

    2015-08-01

    It is experimentally shown that irradiation of silver-containing glasses by nanosecond laser pulses with a wavelength of 248 nm leads to the formation of unstable point defects (having absorption bands in the UV and visible spectral ranges) in the irradiated region and causes the transition of ions and charged molecular silver clusters to the neutral state, which is accompanied by an increase in the luminescence intensity in the visible spectral range. The influence of pulsed laser irradiation is compared with the effect of exposure to cw UV light of a mercury lamp. Some models are proposed to explain the influence of the laser effect on the optical properties of glasses.

  7. Factors regulating year‐class strength of Silver Carp throughout the Mississippi River basin

    USGS Publications Warehouse

    Sullivan, Christopher J.; Weber, Michael J.; Pierce, Clay; Wahl, David H.; Phelps, Quinton E.; Camacho, Carlos A.; Colombo, Robert E.

    2018-01-01

    Recruitment of many fish populations is inherently highly variable inter‐annually. However, this variability can be synchronous at broad geographic scales due to fish dispersal and climatic conditions. Herein, we investigated recruitment synchrony of Silver Carp Hypophthalmichthys molitrix across the Mississippi River basin. Year‐class strength (YCS) and synchrony of nine populations (max linear distance = 806.4 km) was indexed using catch‐curve residuals correlated between sites and related to local and regional climatic conditions. Overall, Silver Carp YCS was not synchronous among populations, suggesting local environmental factors are more important determinants of YCS than large‐scale environmental factors. Variation in Silver Carp YCS was influenced by river base flow and discharge variability at each site, indicating that extended periods of static local discharge benefit YCS. Further, river discharge and air temperature were correlated and synchronized among sites, but only similarities in river discharge was correlated with Silver Carp population synchrony, indicating that similarities in discharge (i.e., major flood) among sites can positively synchronize Silver Carp YCS. The positive correlation between Silver Carp YCS and river discharge synchrony suggests that regional flood regimes are an important force determining the degree of population synchrony among Mississippi River Silver Carp populations.

  8. Evaluation of antimicrobial activity of silver nanoparticles for carboxymethylcellulose film applications in food packaging.

    PubMed

    Siqueira, Maria C; Coelho, Gustavo F; de Moura, Márcia R; Bresolin, Joana D; Hubinger, Silviane Z; Marconcini, José M; Mattoso, Luiz H C

    2014-07-01

    In this study, silver nanoparticles were prepared and incorporated into carboxymethylcellulose films to evaluate the antimicrobial activity for food packaging applications. The techniques carried out for material characterization were: infrared spectroscopy and thermal analysis for the silver nanoparticles and films, as well as particle size distribution for the nanoparticles and water vapor permeability for the films. The antimicrobial activity of silver nanoparticles prepared by casting method was investigated. The minimum inhibitory concentration (MIC) value of the silver nanoparticles to test Gram-positive (Enterococcus faecalis) and Gram-negative (Escherichia coli) microorganisms was carried out by the serial dilution technique, tested in triplicate to confirm the concentration used. The results were developed using the Mcfarland scale which indicates that the presence or absence of turbidity tube demonstrates the inhibition of bacteria in relation to the substance inoculated. It was found that the silver nanoparticles inhibited the growth of the tested microorganisms. The carboxymethylcellulose film embedded with silver nanoparticles showed the best antimicrobial effect against Gram-positive (E. faecalis) and Gram-negative (E. coli) bacteria (0.1 microg cm(-3)).

  9. The effect of silver nanoparticles on composite shear bond strength to dentin with different adhesion protocols.

    PubMed

    Fatemeh, Koohpeima; Mohammad Javad, Mokhtari; Samaneh, Khalafi

    2017-01-01

    The purpose of this study was to investigate the effect of silver nanoparticles on composite shear bond strength using one etch and rinse and one self-etch adhesive systems. Silver nanoparticles were prepared. Transmission electron microscope and X-ray diffraction were used to characterize the structure of the particles. Nanoparticles were applied on exposed dentin and then different adhesives and composites were applied. All samples were tested by universal testing machine and shear bond strength was assesed. Particles with average diameter of about 20 nm and spherical shape were found. Moreover, it was shown that pretreatment by silver nanoparticles enhanced shear bond strength in both etch and rinse, and in self-etch adhesive systems (p≤0.05). Considering the positive antibacterial effects of silver nanoparticles, using them is recommended in restorative dentistry. It seems that silver nanoparticles could have positive effects on bond strength of both etch-and-rinse and self-etch adhesive systems. The best results of silver nanoparticles have been achieved with Adper Single Bond and before acid etching.

  10. Orientation of N-benzoyl glycine on silver nanoparticles: SERS and DFT studies

    NASA Astrophysics Data System (ADS)

    Parameswari, A.; Asath, R. Mohamed; Premkumar, R.; Benial, A. Milton Franklin

    2017-05-01

    Surface enhanced Raman scattering (SERS) studies of N-benzoyl glycine (NBG) adsorbed on silver nanoparticles (AgNPs) was studied by experimental and density functional theory (DFT) approach. Single crystals of NBG were prepared using slow evaporation method. The AgNPs were prepared and characterized. The DFT/ B3PW91 method with LanL2DZ basis set was used to optimize the molecular structure of NBG and NBG adsorbed on silver cluster. The calculated and observed vibrational frequencies were assingned on the basis of potential energy distribution calculation. The reduced band gap value was obtained for NBG adsorbed on silver nanoparticles from the frontier molecular orbitals analysis. Natural bond orbital analysis was carried out to inspect the intra-molecular stabilization interactions, which are responsible for the bio activity and nonlinear optical property of the molecule. The spectral analysis was also evidenced that NBG would adsorb tilted orientation on the silver surface over the binding sites such as lone pair electron of N atom in amine group and through phenyl ring π system.

  11. Spectroscopic Studies on the Effect of Some Ferrocene Derivatives in the Formation of Silver Nanoparticles.

    PubMed

    Sanyal, Manik Kumar; Biswas, Bipul; Chowdhury, Avijit; Mallik, Biswanath

    2016-06-01

    Silver nanoparticles were prepared by microwave assisted method using silver nitrate as precursor in the presence of some ferrocene derivatives. The formation of the silver nanoparticles was monitored using UV-Vis spectroscopy. The UV-Vis spectroscopy revealed the formation of silver nanoparticles by exhibiting typical surface plasmon absorption band. The position of plasmon band (406-429 nm) was observed to depend on the nature of a particular ferrocene derivative used. TEM images indicated that the nanoparticles were spherical in shape and well-dispersed. Quantum dots (3.2 nm) were prepared by using ferrocenecarboxylic acid. The surface plasmon absorption band has shown red shift with increasing concentration of ferrocene derivative. For different duration of microwave heating time, intensity of absorption spectra in general was found to increase except in presence of ferrocene carbaldehyde where it decreased. Time-dependent spectra have indicated almost stable position of the surface plasmon band with increasing time of observation confirming that the as prepared silver nanoparticles did not aggregate with lapse of time.

  12. Biomedical properties of laser prepared silver-doped hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Jelínek, M.; Weiserová, M.; Kocourek, T.; Zezulová, M.; Strnad, J.

    2011-07-01

    Thin films of hydroxyapatite (HA) and silver-doped HA were synthesized using KrF excimer laser deposition. Material was ablated from one target composed from silver and HA segments. Layers properties as silver content, structure, color, FTIR spectra and antibacterial properties (Gram-positive Bacillus subtilis) were measured. Silver concentration in HA layers of 0.06, 0.3, 1.2, 4.4, 8.3, and 13.7 at % was detected. The antibacterial efficacy changed with silver dopation from 71.0 to 99.9%. The focus is on investigation of minimum Ag concentration needed to reach a high antibacterial efficacy.

  13. 120 years of nanosilver history: implications for policy makers.

    PubMed

    Nowack, Bernd; Krug, Harald F; Height, Murray

    2011-02-15

    Nanosilver is one nanomaterial that is currently under a lot of scrutiny. Much of the discussion is based on the assumption that nanosilver is something new that has not been seen until recently and that the advances in nanotechnology opened completely new application areas for silver. However, we show in this analysis that nanosilver in the form of colloidal silver has been used for more than 100 years and has been registered as a biocidal material in the United States since 1954. Fifty-three percent of the EPA-registered biocidal silver products likely contain nanosilver. Most of these nanosilver applications are silver-impregnated water filters, algicides, and antimicrobial additives that do not claim to contain nanoparticles. Many human health standards for silver are based on an analysis of argyria occurrence (discoloration of the skin, a cosmetic condition) from the 1930s and include studies that considered nanosilver materials. The environmental standards on the other hand are based on ionic silver and may need to be re-evaluated based on recent findings that most silver in the environment, regardless of the original silver form, is present in the form of small clusters or nanoparticles. The implications of this analysis for policy of nanosilver is that it would be a mistake for regulators to ignore the accumulated knowledge of our scientific and regulatory heritage in a bid to declare nanosilver materials as new chemicals, with unknown properties and automatically harmful simply on the basis of a change in nomenclature to the term "nano".

  14. Silver Nanowire Exposure Results in Internalization and Toxicity to Daphnia Magna

    PubMed Central

    Scanlan, Leona D.; Reed, Robert B.; Loguinov, Alexandre V.; Antczak, Philipp; Tagmount, Abderrahmane; Aloni, Shaul; Nowinski, Daniel Thomas; Luong, Pauline; Tran, Christine; Karunaratne, Nadeeka; Pham, Don; Lin, Xin Xin; Falciani, Francesco; Higgins, Chris P.; Ranville, James F.; Vulpe, Chris D.; Gilbert, Benjamin

    2013-01-01

    Nanowires (NWs), high-aspect-ratio nanomaterials, are increasingly used in technological materials and consumer products and may have toxicological characteristics distinct from nanoparticles. We carried out a comprehensive evaluation of the physico-chemical stability of four silver nanowires (AgNWs) of two sizes and coatings and their toxicity to Daphnia magna. Inorganic aluminum-doped silica coatings were less effective than organic poly(vinyl pyrrolidone) coatings at preventing silver oxidation or Ag+ release and underwent a significant morphological transformation within one-hour following addition to low ionic strength Daphnia growth media. All AgNWs were highly toxic to D. magna but less toxic than ionic silver. Toxicity varied as a function of AgNW dimension, coating and solution chemistry. Ag+ release in the media could not account for observed AgNW toxicity. Single-particle inductively coupled plasma mass spectrometry (spICPMS) distinguished and quantified dissolved and nanoparticulate silver in microliter-scale volumes of Daphnia magna hemolymph with a limit of detection of approximately 10 ppb. The silver levels within the hemolymph of Daphnia exposed to both Ag+ and AgNW met or exceeded the initial concentration in the growth medium, indicating effective accumulation during filter feeding. Silver-rich particles were the predominant form of silver in hemolymph following exposure to both AgNWs and Ag+. Scanning electron microscopy (SEM) imaging of dried hemolymph found both AgNWs and silver precipitates that were not present in the AgNW stock or the growth medium. Both organic and inorganic coatings on the AgNW were transformed during ingestion or absorption. Pathway, gene ontology and clustering analyses of gene expression response indicated effects of AgNWs distinct from ionic silver on Daphnia magna. PMID:24099093

  15. Spherically-clustered porous Au-Ag alloy nanoparticle prepared by partial inhibition of galvanic replacement and its application for efficient multimodal therapy.

    PubMed

    Jang, Hongje; Min, Dal-Hee

    2015-03-24

    The polyvinylpyrrolidone (PVP)-coated spherically clustered porous gold-silver alloy nanoparticle (PVP-SPAN) was prepared by low temperature mediated, partially inhibited galvanic replacement reaction followed by silver etching process. The prepared porous nanostructures exhibited excellent photothermal conversion efficiency under irradiation of near-infrared light (NIR) and allowed a high payload of both doxorubicin (Dox) and thiolated dye-labeled oligonucleotide, DNAzyme (FDz). Especially, PVP-SPAN provided 10 times higher loading capacity for oligonucleotide than conventional hollow nanoshells due to increased pore diameter and surface-to-volume ratio. We demonstrated highly efficient chemo-thermo-gene multitherapy based on codelivery of Dox and FDz with NIR-mediated photothermal therapeutic effect using a model system of hepatitis C virus infected human liver cells (Huh7 human hepatocarcinoma cell line containing hepatitis C virus NS3 gene replicon) compared to conventional hollow nanoshells.

  16. Plasmonic nanoparticles for a bottom-up approach to fabricate optical metamaterials

    NASA Astrophysics Data System (ADS)

    Dintinger, José; Scharf, Toralf

    2012-03-01

    We investigate experimentally metallic nanoparticle composites fabricated by bottom-up techniques as potential candidates for optical metamaterials. Depending on the plasmonic resonances sustained by individual NPs and their nanoscale organization into larger meta-atoms, various properties might emerge. Here, the focus of our contribution is on the fabrication and optical characterization of silver NP clusters with a spherical shape. We start with the characterisation of the "bulk" dielectric constants of silver NP inks by spectroscopic ellipsometry for different nanoparticle densities (i.e from strongly diluted dispersions to solid randomly packed films). The inks are then used to prepare spherical nanoparticle clusters by an oil-in water emulsion technique. The study of their optical properties demonstrates their ability to support Mie resonances in the visible. These resonances are associated with the excitation of a magnetic dipole, which constitutes a prerequisite to the realization of metamaterials with negative permeability.

  17. Self-Organization of Metal Nanoparticles in Light: Electrodynamics-Molecular Dynamics Simulations and Optical Binding Experiments.

    PubMed

    McCormack, Patrick; Han, Fei; Yan, Zijie

    2018-02-01

    Light-driven self-organization of metal nanoparticles (NPs) can lead to unique optical matter systems, yet simulation of such self-organization (i.e., optical binding) is a complex computational problem that increases nonlinearly with system size. Here we show that a combined electrodynamics-molecular dynamics simulation technique can simulate the trajectories and predict stable configurations of silver NPs in optical fields. The simulated dynamic equilibrium of a two-NP system matches the probability density of oscillations for two optically bound NPs obtained experimentally. The predicted stable configurations for up to eight NPs are further compared to experimental observations of silver NP clusters formed by optical binding in a Bessel beam. All configurations are confirmed to form in real systems, including pentagonal clusters with five-fold symmetry. Our combined simulations and experiments have revealed a diverse optical matter system formed by anisotropic optical binding interactions, providing a new strategy to discover artificial materials.

  18. Influence of Particle Size on Persistence and Clearance of Aerosolized Silver Nanoparticles in the Rat Lung

    PubMed Central

    Anderson, Donald S.; Patchin, Esther S.; Silva, Rona M.; Uyeminami, Dale L.; Sharmah, Arjun; Guo, Ting; Das, Gautom K.; Brown, Jared M.; Shannahan, Jonathan; Gordon, Terry; Chen, Lung Chi; Pinkerton, Kent E.; Van Winkle, Laura S.

    2015-01-01

    The growing use of silver nanoparticles (AgNPs) in consumer products raises concerns about potential health effects. This study investigated the persistence and clearance of 2 different size AgNPs (20 and 110 nm) delivered to rats by single nose-only aerosol exposures (6 h) of 7.2 and 5.4 mg/m3, respectively. Rat lung tissue was assessed for silver accumulations using inductively-coupled plasma mass spectrometry (ICP-MS), autometallography, and enhanced dark field microscopy. Involvement of tissue macrophages was assessed by scoring of silver staining in bronchoalveolar lavage fluid (BALF). Silver was abundant in most macrophages at 1 day post-exposure. The group exposed to 20 nm AgNP had the greatest number of silver positive BALF macrophages at 56 days post-exposure. While there was a significant decrease in the amount of silver in lung tissue at 56 days post-exposure compared with 1 day following exposure, at least 33% of the initial delivered dose was still present for both AgNPs. Regardless of particle size, silver was predominantly localized within the terminal bronchial/alveolar duct junction region of the lung associated with extracellular matrix and within epithelial cells. Inhalation of both 20 and 110 nm AgNPs resulted in a persistence of silver in the lung at 56 days post-exposure and local deposition as well as accumulation of silver at the terminal bronchiole alveolar duct junction. Further the smaller particles, 20 nm AgNP, produced a greater silver burden in BALF macrophages as well as greater persistence of silver positive macrophages at later timepoints (21 and 56 days). PMID:25577195

  19. Assessment of environmental and occupational exposure to heavy metals in Taranto and other provinces of Southern Italy by means of scalp hair analysis.

    PubMed

    Buononato, Elena Viola; De Luca, Daniela; Galeandro, Innocenzo Cataldo; Congedo, Maria Luisa; Cavone, Domenica; Intranuovo, Graziana; Guastadisegno, Chiara Monica; Corrado, Vincenzo; Ferri, Giovanni Maria

    2016-06-01

    The monitoring of heavy metals in industrialized areas to study their association with different occupational and environmental factors is carried out in different ways. In this study, scalp hair analysis was used for the assessment of exposure to these metals in the industrial city of Taranto, characterized by a severe environmental pollution. The highest median values were observed for aluminum, barium, cadmium, lead, mercury, and uranium. Moreover, in the industrial area of Taranto, high levels of barium, cadmium, lead, mercury, nickel, and silver were observed in comparison with other Apulia areas. The risk odds ratios (ORs) for observing values above the 50th percentile were elevated for mercury and fish consumption, uranium and milk consumption, lead and female sex, and aluminum and mineral water consumption. No significant increased risk was observed for occupational activities. In a dendrogram of a cluster analysis, three clusters were observed for the different areas of Taranto (Borgo, San Vito, and Statte). A scree plot and score variables plot underline the presence of two principal components: the first regarding antimony, lead, tin, aluminum and silver; the second regarding mercury and uranium. The observed clusters (Borgo, San Vito, and Statte) showed that lead, antimony, tin, aluminum, and silver were the main component. The highest values above the 50th percentile of these minerals, especially lead, were observed in the Borgo area. The observed metal concentration in the Borgo area is compatible with the presence in Taranto of a military dockyard and a reported increase of lung cancer risk among residents of that area.

  20. Surface enhanced Raman spectroscopy (SERS) from a molecule adsorbed on a nanoscale silver particle cluster in a holographic plate

    NASA Astrophysics Data System (ADS)

    Jusinski, Leonard E.; Bahuguna, Ramen; Das, Amrita; Arya, Karamjeet

    2006-02-01

    Surface enhanced Raman spectroscopy has become a viable technique for the detection of single molecules. This highly sensitive technique is due to the very large (up to 14 orders in magnitude) enhancement in the Raman cross section when the molecule is adsorbed on a metal nanoparticle cluster. We report here SERS (Surface Enhanced Raman Spectroscopy) experiments performed by adsorbing analyte molecules on nanoscale silver particle clusters within the gelatin layer of commercially available holographic plates which have been developed and fixed. The Ag particles range in size between 5 - 30 nanometers (nm). Sample preparation was performed by immersing the prepared holographic plate in an analyte solution for a few minutes. We report here the production of SERS signals from Rhodamine 6G (R6G) molecules of nanomolar concentration. These measurements demonstrate a fast, low cost, reproducible technique of producing SERS substrates in a matter of minutes compared to the conventional procedure of preparing Ag clusters from colloidal solutions. SERS active colloidal solutions require up to a full day to prepare. In addition, the preparations of colloidal aggregates are not consistent in shape, contain additional interfering chemicals, and do not generate consistent SERS enhancement. Colloidal solutions require the addition of KCl or NaCl to increase the ionic strength to allow aggregation and cluster formation. We find no need to add KCl or NaCl to create SERS active clusters in the holographic gelatin matrix. These holographic plates, prepared using simple, conventional procedures, can be stored in an inert environment and preserve SERS activity after several weeks subsequent to preparation.

  1. Chiral Silver-Lanthanide Metal-Organic Frameworks Comprised of One-Dimensional Triple Right-Handed Helical Chains Based on [Ln7(μ3-OH)8]13+ Clusters.

    PubMed

    Guo, Yan; Zhang, Lijuan; Muhammad, Nadeem; Xu, Yan; Zhou, Yunshan; Tang, Fang; Yang, Shaowei

    2018-02-05

    Three new isostructural chiral silver-lanthanide heterometal-organic frameworks [Ag 3 Ln 7 (μ 3 -OH) 8 (bpdc) 6 (NO 3 ) 3 (H 2 O) 6 ](NO 3 )·2H 2 O [Ln = Eu (1), Tb (2, Sm (3); H 2 bpdc = 2,2'-bipyridine-3,3'-dicarboxylic acid] based on heptanuclear lanthanide clusters [Ln 7 (μ 3 -OH) 8 ] 13+ comprised of one-dimensional triple right-handed helical chains were hydrothermally synthesized. Various means such as UV-vis spectroscopy, IR spectroscopy, elemental analysis, powder X-ray diffraction, and thermogravimetric/differential thermal analysis were used to characterize the compounds, wherein compound 3 was crystallographically characterized. In the structure of compound 3, eight μ 3 -OH - groups link seven Sm 3+ ions, forming a heptanuclear cluster, [Sm 7 (μ 3 -OH) 8 ] 13+ , and the adjacent [Sm 7 (μ 3 -OH) 8 ] 13+ clusters are linked by the carboxylic groups of bpdc 2- ligands, leading to the formation of a one-dimensional triple right-handed helical chain. The adjacent triple right-handed helical chains are further joined together by coordinating the pyridyl N atoms of the bpdc 2- ligands with Ag + , resulting in a chiral three-dimensional silver(I)-lanthanide(III) heterometal-organic framework with one-dimensional channels wherein NO 3 - anions and crystal lattice H 2 O molecules are trapped. The compounds were studied systematically with respect to their photoluminescence properties and energy-transfer mechanism, and it was found that H 2 bpdc (the energy level for the triplet states of the ligand H 2 bpdc is 21505 cm -1 ) can sensitize Eu 3+ luminescence more effectively than Tb 3+ and Sm 3+ luminescence because of effective energy transfer from bpdc 2- to Eu 3+ under excitation in compound 1.

  2. The in situ synthesis and application of silver nanoparticles as an antimicrobial agent for cotton fibers

    USDA-ARS?s Scientific Manuscript database

    The application of sliver (Ag) as an antimicrobial agent dates back to the 1800s. Silver systems release positively charged silver ions (Ag+), when in aqueous media, that disrupts negatively charged surfaces of bacterial membranes, thus resulting in bacterial death. Its antimicrobial utility is not ...

  3. New, rapid method to measure dissolved silver concentration in silver nanoparticle suspensions by aggregation combined with centrifugation

    NASA Astrophysics Data System (ADS)

    Dong, Feng; Valsami-Jones, Eugenia; Kreft, Jan-Ulrich

    2016-09-01

    It is unclear whether the antimicrobial activities of silver nanoparticles (AgNPs) are exclusively mediated by the release of silver ions (Ag+) or, instead, are due to combined nanoparticle and silver ion effects. Therefore, it is essential to quantify dissolved Ag in nanosilver suspensions for investigations of nanoparticle toxicity. We developed a method to measure dissolved Ag in Ag+/AgNPs mixtures by combining aggregation of AgNPs with centrifugation. We also describe the reproducible synthesis of stable, uncoated AgNPs. Uncoated AgNPs were quickly aggregated by 2 mM Ca2+, forming large clusters that could be sedimented in a low-speed centrifuge. At 20,100g, the sedimentation time of AgNPs was markedly reduced to 30 min due to Ca2+-mediated aggregation, confirmed by the measurements of Ag content in supernatants with graphite furnace atomic absorption spectrometry. No AgNPs were detected in the supernatant by UV-Vis absorption spectra after centrifuging the aggregates. Our approach provides a convenient and inexpensive way to separate dissolved Ag from AgNPs, avoiding long ultracentrifugation times or Ag+ adsorption to ultrafiltration membranes.

  4. A phosphorescent silver(I)-gold (I) cluster complex that specifically lights up the nucleolus of living cells with FLIM imaging.

    PubMed

    Chen, Min; Lei, Zhen; Feng, Wei; Li, Chunyan; Wang, Quan-Ming; Li, Fuyou

    2013-06-01

    The phosphorescent silver(I)-gold(I) cluster complex [CAu6Ag2(dppy)6](BF4)4 (N1) selectively stains the nucleolus, with a much lower uptake in the nucleus and cytoplasm, and exhibits excellent photostability. This Ag-Au cluster, which has a photoluminescent lifetime of microseconds, is particularly attractive as a probe in applications of time-gated microscopy. Investigation of the pathway of cellular entry indicated that N1 permeates the outer membrane and nuclear membrane of living cells through an energy-dependent and non-endocytic route within 10 min. High concentrations of N1 in the nucleolus have been quantified by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and transmission electron microscopy coupled with an energy dispersive X-ray analysis (TEM-EDXA), which also helped to elucidate the mechanism of the specific staining. Intracellular selective staining may be correlated with the microenvironment of the nucleolus, which is consistent with experiments conducted at different phases of the cell cycle. These results prove that N1 is a very attractive phosphorescent staining reagent for visualizing the nucleolus of living cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Femtosecond laser writing of new type of waveguides in silver containing glasses (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Abou Khalil, Alain; Bérubé, Jean-Philippe; Danto, Sylvain; Desmoulin, Jean-Charles; Cardinal, Thierry; Petit, Yannick G.; Canioni, Lionel; Vallée, Réal

    2017-03-01

    Femtosecond laser writing in glasses is a growing field of research and development in photonics, since it provides a versatile, robust and efficient approach to directly address 3D material structuring. Laser-glass interaction process has been studied for many years, especially the local changes of the refractive index that have been classified by three distinct types (types I, II and III, respectively). These refractive index modifications are widely used for the creation of photonics devices such as waveguides [1], couplers, photonic crystals to fabricate integrated optical functions in glasses for photonic applications as optical circuits or integrated sensors. Femtosecond laser writing in a home-developed silver containing zinc phosphate glasses induces the creation of fluorescent silver clusters distributed around the laser-glass interaction voxel [2]. In this paper, we introduce a new type of refractive index modification in glasses. It is based on the creation of these photo-induced silver clusters allowing a local change in the refractive index Δn = 5×10-3, which is sufficient for the creation of waveguides and photonics devices. The wave guiding process in our glasses along these structures with original geometry is demonstrated for wavelengths from visible to NIR [3], giving a promising access to integrated optical circuits in these silver containing glasses. Moreover, the characterization of the waveguides is presented, including their original geometry, the refractive index change, the mode profile, the estimation of propagation losses and a comparison with simulation results. 1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt. Lett. 21, 1729-1731 (1996). 2. M. Bellec, A. Royon, K. Bourhis, J. Choi, B. Bousquet, M. Treguer, T. Cardinal, J.-J. Videau, M. Richardson, and L. Canioni, The Journal of Physical Chemistry C 114, 15584-15588 (2010). 3. S. Danto, F. Désévédavy, Y. Petit, J.-C. Desmoulin, A. Abou Khalil, C. Strutynski, M. Dussauze, F. Smektala, T. Cardinal, and L. Canioni, Advanced Optical Materials 4, 162-168 (2016).

  6. Measuring DNA hybridization using fluorescent DNA-stabilized silver clusters to investigate mismatch effects on therapeutic oligonucleotides.

    PubMed

    de Bruin, Donny; Bossert, Nelli; Aartsma-Rus, Annemieke; Bouwmeester, Dirk

    2018-04-06

    Short nucleic acid oligomers have found a wide range of applications in experimental physics, biology and medicine, and show potential for the treatment of acquired and genetic diseases. These applications rely heavily on the predictability of hybridization through Watson-Crick base pairing to allow positioning on a nanometer scale, as well as binding to the target transcripts, but also off-target binding to transcripts with partial homology. These effects are of particular importance in the development of therapeutic oligonucleotides, where off-target effects caused by the binding of mismatched sequences need to be avoided. We employ a novel method of probing DNA hybridization using optically active DNA-stabilized silver clusters (Ag-DNA) to measure binding efficiencies through a change in fluorescence intensity. In this way we can determine their location-specific sensitivity to individual mismatches in the sequence. The results reveal a strong dependence of the hybridization on the location of the mismatch, whereby mismatches close to the edges and center show a relatively minor impact. In parallel, we propose a simple model for calculating the annealing ratios of mismatched DNA sequences, which supports our experimental results. The primary result shown in this work is a demonstration of a novel technique to measure DNA hybridization using fluorescent Ag-DNA. With this technique, we investigated the effect of mismatches on the hybridization efficiency, and found a significant dependence on the location of individual mismatches. These effects are strongly influenced by the length of the used oligonucleotides. The novel probe method based on fluorescent Ag-DNA functions as a reliable tool in measuring this behavior. As a secondary result, we formulated a simple model that is consistent with the experimental data.

  7. Susceptibility of Halobacteria to Heavy Metals

    PubMed Central

    Nieto, J. J.; Ventosa, A.; Ruiz-Berraquero, F.

    1987-01-01

    Sixty-eight halobacteria, including both culture collection strains and fresh isolates from widely differing geographical areas, were tested for susceptibility to arsenate, cadmium, chromium, cobalt, copper, lead, mercury, nickel, silver, and zinc ions by an agar dilution technique. The culture collection strains showed different susceptibilities, clustering into five groups. Halobacterium mediterranei and Halobacterium volcanii were the most metal tolerant, whereas Haloarcula californiae and Haloarcula sinaiiensis had the highest susceptibilities of the culture collection strains. Different patterns of metal susceptibility were found for all the halobacteria tested, and there was a uniform susceptibility to mercury and silver. All strains tested were multiply metal tolerant. PMID:16347350

  8. Direct observation of small cluster mobility and ripening

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Poppa, H.

    1976-01-01

    Direct evidence is reported for the simultaneous occurrence of Ostwald ripening and short-distance cluster mobility during annealing of discontinuous metal films on clean amorphous substrates. The annealing characteristics of very thin particulate deposits of silver on amorphized clean surfaces of single-crystalline thin graphite substrates have been studied by in situ transmission electron microscopy (TEM) under controlled environmental conditions in the temperature range from 25 to 450 C. It was possible to monitor all stages of the experiments by TEM observation of the same specimen area. Slow Ostwald ripening was found to occur over the entire temperature range, but the overriding surface transport mechanism was short-distance cluster mobility. This was concluded from in situ observations of individual particles during annealing and from measurements of cluster size distributions, cluster number densities, area coverages, and mean cluster diameters.

  9. A model for sputtering from solid surfaces bombarded by energetic clusters

    NASA Astrophysics Data System (ADS)

    Benguerba, Messaoud

    2018-04-01

    A model is developed to explain and predict the sputtering from solid surfaces bombarded by energetic clusters, on the basis of shock wave generated at the impact of cluster. Under the shock compression the temperature increases causing the vaporization of material that requires an internal energy behind the shock, at least, of about twice the cohesive energy of target. The sputtering is treated as a gas of vaporized particles from a hemispherical volume behind the shock front. The sputter yield per cluster atoms is given as a universal function depending on the ratio of target to cluster atomic density and the ratio of cluster velocity to the velocity calculated on the basis of an internal energy equals about twice cohesive energy. The predictions of the model for self sputter yield of copper, gold, tungsten and of silver bombarded by C60 clusters agree well, with the corresponding data simulated by molecular dynamics.

  10. Optically-Enhanced, Near-IR, Silver Cluster Emission Altered by Single Base Changes in the DNA Template

    PubMed Central

    Fan, Chaoyang; Story, Sandra P.; Sengupta, Bidisha; Sartin, Matthew; Hsiang, Jung-Cheng; Perry, Joseph W.

    2011-01-01

    Few-atom silver clusters harbored by DNA are promising fluorophores due to their high molecular brightness along with their long- and short-term photostability. Furthermore, their emission rate can be enhanced when co-illuminated with low-energy light that optically depopulates the fluorescence-limiting dark state. The photophysical basis for this effect is evaluated for two near infrared-emitting clusters. Clusters emitting at ~800 nm form with C3AC3AC3TC3A and C3AC3AC3GC3A and both exhibit a trap state with λmax ~ 840 nm and an absorption cross section of 5–6 × 10−16 cm2/molec that can be optically depopulated. Transient absorption spectra, complemented by fluorescence correlation spectroscopy studies, show that the dark state has an inherent lifetime of 3–4 μs and that absorption from this state is accompanied by photoinduced crossover back to the emissive manifold of states with an action cross section of ~2 × 10−18 cm2/molec. Relative to C3AC3AC3TC3A, C3AC3AC3GC3A produces a longer-lived trap state and permits more facile passage back to the emissive manifold. With the C3AC3AC3AC3G template, a spectrally distinct cluster forms having emission at ~900 nm and its trap state has a ~four-fold shorter lifetime. These studies of optically-gated fluorescence bolster the critical role of the nucleobases on both the formation and excited state dynamics of these highly emissive metallic clusters. PMID:21568292

  11. Green synthesis of silver nanoparticles using leaf extract of medicinally potent plant Saraca indica: a novel study

    NASA Astrophysics Data System (ADS)

    Perugu, Shyam; Nagati, Veerababu; Bhanoori, Manjula

    2016-06-01

    Eco-friendly silver nanoparticles (AgNPs) have various applications in modern biotechnology for better outcomes and benefits to the society. In the present study, we report an eco-friendly synthesis of silver nanoparticles using Saraca indica leaf extract. Characterization of S. indica silver nanoparticles (SAgNPs) was carried out by Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectrometry, Zeta potential, and transmission electron microscopy. SAgNPs showed antimicrobial activity against Gram-negative and Gram-positive bacteria.

  12. Facile, one-pot synthesis, and antibacterial activity of mesoporous silica nanoparticles decorated with well-dispersed silver nanoparticles.

    PubMed

    Tian, Yue; Qi, Juanjuan; Zhang, Wei; Cai, Qiang; Jiang, Xingyu

    2014-08-13

    In this study, we exploit a facile, one-pot method to prepare MCM-41 type mesoporous silica nanoparticles decorated with silver nanoparticles (Ag-MSNs). Silver nanoparticles with diameter of 2-10 nm are highly dispersed in the framework of mesoporous silica nanoparticles. These Ag-MSNs possess an enhanced antibacterial effect against both Gram-positive and Gram-negative bacteria by preventing the aggregation of silver nanoparticles and continuously releasing silver ions for one month. The cytotoxicity assay indicates that the effective antibacterial concentration of Ag-MSNs shows little effect on human cells. This report describes an efficient and economical route to synthesize mesoporous silica nanoparticles with uniform silver nanoparticles, and these nanoparticles show promising applications as antibiotics.

  13. Antimicrobial properties of uncapped silver nanoparticles synthesized by DC arc thermal plasma technique.

    PubMed

    Shinde, Manish; Patil, Rajendra; Karmakar, Soumen; Bhoraskar, Sudha; Rane, Sunit; Gade, Wasudev; Amalnerkar, Dinesh

    2012-02-01

    We, herein, report the antimicrobial properties of uncapped silver nanoparticles for a Gram positive model organism, Bacillus subtilis. Uncapped silver nanoparticles have been prepared using less-explored DC arc thermal plasma technique by considering its large scale generation capability. It is observed that the resultant nanoparticles show size as well as optical property dependent antimicrobial effect.

  14. Femtosecond laser direct writing of monocrystalline hexagonal silver prisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vora, Kevin; Kang, SeungYeon; Moebius, Michael

    Bottom-up growth methods and top-down patterning techniques are both used to fabricate metal nanostructures, each with a distinct advantage: One creates crystalline structures and the other offers precise positioning. Here, we present a technique that localizes the growth of metal crystals to the focal volume of a laser beam, combining advantages from both approaches. We report the fabrication of silver nanoprisms—hexagonal nanoscale silver crystals—through irradiation with focused femtosecond laser pulses. The growth of these nanoprisms is due to a nonlinear optical interaction between femtosecond laser pulses and a polyvinylpyrrolidone film doped with silver nitrate. The hexagonal nanoprisms have bases hundredsmore » of nanometers in size and the crystal growth occurs over exposure times of less than 1 ms (8 orders of magnitude faster than traditional chemical techniques). Electron backscatter diffraction analysis shows that the hexagonal nanoprisms are monocrystalline. The fabrication method combines advantages from both wet chemistry and femtosecond laser direct-writing to grow silver crystals in targeted locations. The results presented in this letter offer an approach to directly positioning and growing silver crystals on a substrate, which can be used for plasmonic devices.« less

  15. A versatile synthesis of highly bactericidal Myramistin® stabilized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Vertelov, G. K.; Krutyakov, Yu A.; Efremenkova, O. V.; Olenin, A. Yu; Lisichkin, G. V.

    2008-09-01

    Silver nanoparticles stabilized by a well-known antibacterial surfactant benzyldimethyl[3-(myristoylamino)propyl]ammonium chloride (Myramistin®) were produced for the first time by borohydride reduction of silver chloride sol in water. Stable aqueous dispersions of silver nanoparticles without evident precipitation for several months could be obtained. In vitro bactericidal tests showed that Myramistin® capped silver NPs exhibited notable activity against six different microorganisms—gram-positive and gram-negative bacteria, yeasts and fungi. The activity was up to 20 times higher (against E. coli) compared to Myramistin® at the same concentrations and on average 2 times higher if compared with citrate-stabilized NPs.

  16. Effect of both protective and reducing agents in the synthesis of multicolor silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Rivero, Pedro Jose; Goicoechea, Javier; Urrutia, Aitor; Arregui, Francisco Javier

    2013-02-01

    In this paper, the influence of variable molar ratios between reducing and loading agents (1:100, 1:50, 1:20, 1:10, 1:5, 1:2, 1:1, 2:1) and between protective and loading agents (0.3:1, 0.75:1, 1.5:1, 3:1, 7.5:1, 30:1, 75:1) in the synthesis of silver nanoparticles by chemical reduction has been evaluated to obtain multicolor nanoparticles with a high stability in time. The protective agent poly(acrylic acid, sodium salt) (PAA) and reducing agent dimethylaminoborane (DMAB) play a key role in the formation of the resultant color. Evolution of the optical absorption bands of the silver nanoparticles as a function of PAA and DMAB molar ratios made it possible to confirm the presence of silver nanoparticles or clusters with a specific shape. The results reveal that a wide range of colors (violet, blue, green, brown, yellow, red, orange), sizes (from nanometer to micrometer), and shapes (cubic, rod, triangle, hexagonal, spherical) can be perfectly tuned by means of a fine control of the PAA and DMAB molar concentrations.

  17. Effect of silver on the phase transition and wettability of titanium oxide films

    PubMed Central

    Mosquera, Adolfo A.; Albella, Jose M.; Navarro, Violeta; Bhattacharyya, Debabrata; Endrino, Jose L.

    2016-01-01

    The effect of silver on the phase transition and microstructure of titanium oxide films grown by pulsed cathodic arc had been investigated by XRD, SEM and Raman spectroscopy. Following successive thermal annealing up to 1000 °C, microstructural analysis of annealed Ag-TiO2 films reveals that the incorporation of Ag nanoparticles strongly affects the transition temperature from the initial metastable amorphous phase to anatase and stable rutile phase. An increase of silver content into TiO2 matrix inhibits the amorphous to anatase phase transition, raising its temperature boundary and, simultaneously reduces the transition temperature to promote rutile structure at lower value of 600 °C. The results are interpreted in terms of the steric effects produced by agglomeration of Ag atoms into larger clusters following annealing which hinders diffusion of Ti and O ions for anatase formation and constrains the volume available for the anatase lattice, thus disrupting its structure to form rutile phase. The effect of silver on the optical and wetting properties of TiO2 was evaluated to demonstrate its improved photocatalytic performance. PMID:27571937

  18. The effect of UV irradiation on the refractive index modulation in photo-thermo-refractive glasses: Mechanisms and application

    NASA Astrophysics Data System (ADS)

    Chernakov, Dmitry I.; Sidorov, Alexander I.; Stolyarchuk, Maxim V.; Kozlova, Darya A.; Krykova, Victoria A.; Nikonorov, Nikolay V.

    2018-02-01

    It is shown experimentally that in photo-thermo-refractive glasses the transformation of charged silver subnanosized molecular clusters to neutral state by UV irradiation results in the increase of glass refractive index. The increment of the refractive index reaches Δn = 0.76·10-4. Computer simulation has shown that the polarizability of neutral molecular clusters is by 20-40% larger than of charged ones. The reason of this is the increase of electron density and volume of electron density surfaces during the transformation of molecular cluster to the neutral state. The transition molecular cluster from the ground state to the excited state also results in the increase of its polarizability.

  19. Structure of fluorescent metal clusters on a DNA template.

    NASA Astrophysics Data System (ADS)

    Vdovichev, A. A.; Sych, T. S.; Reveguk, Z. V.; Smirnova, A. A.; Maksimov, D. A.; Ramazanov, R. R.; Kononov, A. I.

    2016-08-01

    Luminescent metal clusters are a subject of growing interest in recent years due to their bright emission from visible to near infrared range. Detailed structure of the fluorescent complexes of Ag and other metal clusters with ligands still remains a challenging task. In this joint experimental and theoretical study we synthesized Ag-DNA complexes on a DNA oligonucleotide emitting in violet- green spectral range. The structure of DNA template was determined by means of various spectral measurements (CD, MS, XPS). Comparison of the experimental fluorescent excitation spectra and calculated absorption spectra for different QM/MM optimized structures allowed us to determine the detailed structure of the green cluster containing three silver atoms in the stem of the DNA hairpin structure stabilized by cytosine-Ag+-cytosine bonds.

  20. Influence of photon beam energy on the dose enhancement factor caused by gold and silver nanoparticles: An experimental approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guidelli, Eder José, E-mail: ederguidelli@pg.ffclrp.usp.br; Baffa, Oswaldo

    Purpose: Noble metal nanoparticles have found several medical applications in the areas of radiation detection; x-ray contrast agents and cancer radiation therapy. Based on computational methods, many papers have reported the nanoparticle effect on the dose deposition in the surrounding medium. Here the authors report experimental results on how silver and gold nanoparticles affect the dose deposition in alanine dosimeters containing several concentrations of silver and gold nanoparticles, for five different beam energies, using electron spin resonance spectroscopy (ESR). Methods: The authors produced alanine dosimeters containing several mass percentage of silver and gold nanoparticles. Nanoparticle sizes were measured by dynamicmore » light scattering and by transmission electron microscopy. The authors determined the dose enhancement factor (DEF) theoretically, using a widely accepted method, and experimentally, using ESR spectroscopy. Results: The DEF is governed by nanoparticle concentration, size, and position in the alanine matrix. Samples containing gold nanoparticles afford a DEF higher than 1.0, because gold nanoparticle size is homogeneous for all gold concentrations utilized. For samples containing silver particles, the silver mass percentage governs the nanoparticles size, which, in turns, modifies nanoparticle position in the alanine dosimeters. In this sense, DEF decreases for dosimeters containing large and segregated particles. The influence of nanoparticle size-position is more noticeable for dosimeters irradiated with higher beam energies, and dosimeters containing large and segregated particles become less sensitive than pure alanine (DEF < 1). Conclusions: ESR dosimetry gives the DEF in a medium containing metal nanoparticles, although particle concentration, size, and position are closely related in the system. Because this is also the case as in many real systems of materials containing inorganic nanoparticles, ESR is a valuable tool for investigating DEF. Moreover, these results alert to the importance of controlling the size-position of nanoparticles to enhance DEF.« less

  1. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mannix, A. J.; Zhou, X. -F.; Kiraly, B.

    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.

  2. Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria.

    PubMed

    Cavassin, Emerson Danguy; de Figueiredo, Luiz Francisco Poli; Otoch, José Pinhata; Seckler, Marcelo Martins; de Oliveira, Roberto Angelo; Franco, Fabiane Fantinelli; Marangoni, Valeria Spolon; Zucolotto, Valtencir; Levin, Anna Sara Shafferman; Costa, Silvia Figueiredo

    2015-10-05

    Multidrug resistant microorganisms are a growing challenge and new substances that can be useful to treat infections due to these microorganisms are needed. Silver nanoparticle may be a future option for treatment of these infections, however, the methods described in vitro to evaluate the inhibitory effect are controversial. This study evaluated the in vitro activity of silver nanoparticles against 36 susceptible and 54 multidrug resistant Gram-positive and Gram-negative bacteria from clinical sources. The multidrug resistant bacteria were oxacilin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus spp., carbapenem- and polymyxin B-resistant A. baumannii, carbapenem-resistant P. aeruginosa and carbapenem-resistant Enterobacteriaceae. We analyzed silver nanoparticles stabilized with citrate, chitosan and polyvinyl alcohol and commercial silver nanoparticle. Silver sulfadiazine and silver nitrate were used as control. Different methods were used: agar diffusion, minimum inhibitory concentration, minimum bactericidal concentration and time-kill. The activity of AgNPs using diffusion in solid media and the MIC methods showed similar effect against MDR and antimicrobial-susceptible isolates, with a higher effect against Gram-negative isolates. The better results were achieved with citrate and chitosan silver nanoparticle, both with MIC90 of 6.75 μg mL(-1), which can be due the lower stability of these particles and, consequently, release of Ag(+) ions as revealed by X-ray diffraction (XRD). The bactericidal effect was higher against antimicrobial-susceptible bacteria. It seems that agar diffusion method can be used as screening test, minimum inhibitory concentration/minimum bactericidal concentration and time kill showed to be useful methods. The activity of commercial silver nanoparticle and silver controls did not exceed the activity of the citrate and chitosan silver nanoparticles. The in vitro inhibitory effect was stronger against Gram-negative than Gram-positive, and similar against multidrug resistant and susceptible bacteria, with best result achieved using citrate and chitosan silver nanoparticles. The bactericidal effect of silver nanoparticle may, in the future, be translated into important therapeutic and clinical options, especially considering the shortage of new antimicrobials against the emerging antimicrobial resistant microorganisms, in particular against Gram-negative bacteria.

  3. Effect of concentration and pH on the surface-enhanced Raman scattering of captopril on nano-colloidal silver surface

    NASA Astrophysics Data System (ADS)

    Gao, Junxiang; Gu, Huaimin; Liu, Fangfang; Dong, Xiao; Xie, Min; Hu, Yongjun

    2011-07-01

    In this report, Raman and surface-enhanced Raman scattering (SERS) spectra of captopril are studied in detail. Herein, the Raman bands are assigned by the density functional theory (DFT) calculations and potential energy distributions (PED) based on internal coordinates of the molecule, which are found to be in good agree with the experimental values. Furthermore, the concentration and pH dependence of the SERS intensity of the molecule is discussed. By analyzing the intensities variation of SERS bands of the different concentrations of captopril solution, it can be concluded that the molecules orientation adsorbed on the silver nanoparticles surface change with the change of the concentrations. The variation of SERS spectra of captopril with the change of pH suggests that the interaction among the adsorbates with Ag cluster depend on the protonated state of the adsorbate and the aggregation of silver nanoparticles.

  4. Synthesis of positively charged hybrid PHMB-stabilized silver nanoparticles: the search for a new type of active substances used in plant protection products

    NASA Astrophysics Data System (ADS)

    Krutyakov, Yurii A.; Kudrinsky, Alexey A.; Gusev, Alexander A.; Zakharova, Olga V.; Klimov, Alexey I.; Yapryntsev, Alexey D.; Zherebin, Pavel M.; Shapoval, Olga A.; Lisichkin, Georgii V.

    2017-07-01

    Modern agriculture calls for a decrease in pesticide application, particularly in order to decrease the negative impact on the environment. Therefore the development of new active substances and plant protection products (PPP) to minimize the chemical load on ecosystems is a very important problem. Substances based on silver nanoparticles are a promising solution of this problem because of the fact that in correct doses such products significantly increase yields and decrease crop diseases while displaying low toxicity to humans and animals. In this paper we for the first time propose application of polymeric guanidine compounds with varying chain lengths (from 10 to 130 elementary links) for the design and synthesis of modified silver nanoparticles to be used as the basis of a new generation of PPP. Colloidal solutions of nanocrystalline silver containing 0.5 g l-1 of silver and 0.01-0.4 g l-1 of polyhexamethylene biguanide hydrochloride (PHMB) were obtained by reduction of silver nitrate with sodium borohydride in the presence of PHMB. The field experiment has shown that silver-containing solutions have a positive effect on agronomic properties of potato, wheat and apple. Also the increase in activity of such antioxidant system enzymes as peroxidase and catalase in the tissues of plants treated with nanosilver has been registered.

  5. Preparation of the egg membrane bandage contained the antibacterial Ag nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jin; Duan, Guangwen; Fu, Yunzhi, E-mail: yzhfu@hainu.edu.cn

    Silver nanoparticles were synthesized using a rapid, single step, and completely green biosynthetic method employing aqueous aloe leaf extracts as both the reducing and capping agent. Transmission electron microscopy analysis revealed the average size of silver nanoparticles approximately 18.05 nm. Fourier transform infrared spectroscopy observation showed the estimation of two kinds of binding sites between aqueous aloe leaf and aqueous aloe leaf with silver nanoparticles. In addition, the critical roles of the concentration of silver nitrate, temperature, and reaction time in the formation of silver nanoparticles had been illustrated. Furthermore, silver nanoparticles were deposited on egg membrane bandage, forming amore » new egg membrane bandage that contained silver nanoparticles that exhibiting excellent antibacterial effects against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, which was 2.5 times stronger than the commercially available bandage. - Graphical Abstract: Display Omitted.« less

  6. Antimicrobial activity of silver nanoparticles impregnated wound dressing

    NASA Astrophysics Data System (ADS)

    Shinde, V. V.; Jadhav, P. R.; Patil, P. S.

    2013-06-01

    In this work, silver nanoparticles were synthesized by simple wet chemical reduction method. The silver nitrate was reduced by Sodium borohydride used as reducing agent and Poly (vinyl pyrrolidone) (PVP) as stabilizing agent. The formation of silver nanoparticles was evaluated by UV-visible spectroscope and transmission electron microscope (TEM). Absorption spectrum consist two plasmon peaks at 410 and 668 nm revels the formation of anisotropic nanoparticles confirmed by TEM. The formation of silver nanoparticles was also evidenced by dynamic light scattering (DLS) study. DLS showed polydisperse silver nanoparticles with hydrodynamic size 32 nm. Protecting mechanism of PVP was manifested by FT-Raman study. Silver nanoparticles were impregnated into wound dressing by sonochemical method. The Kirby-Bauer disc diffusion methods were used for antimicrobial susceptibility testing. The antimicrobial activity of the samples has been tested against gram-negative bacterium Escherichia coli and gram-positive bacterium Staphylococcus aureus.

  7. Biosynthesis, characterization and antimicrobial action of silver nanoparticles from root bark extract of Berberislycium Royle.

    PubMed

    Mehmood, Ansar; Murtaza, Ghulam; Bhatti, Tariq Mahmood; Kausar, Rehana; Ahmed, Muhammad Jamil

    2016-01-01

    Various biological methods are being recognized for the fabrication of silver nanoparticles, which are used in several fields. The phytosynthesis of nanoparticles came out as a cost effective and enviro-friendly approach. When root bark extract of Berberis lycium was treated with silver ions, they reduced to silver nanoparticles, which were spherical, crystalline, size ranged from 10-100nm and capped by biomolecules. Synthesized silver nanoparticles were characterized by UV-visible spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD) and Fourier Transform Infra Red Spectroscopy (FTIR). The plant mediated synthesized silver nanoparticles showed pronounced antimicrobial activities against both Gram negative bacteria (Escherichia coli, Klebseilla pneumoniae, Pseudomonas aeruginosa) and Gram positive bacteria (Staphylococcus aureus and Bacillus subtilis). The plant mediated process proved to be non-toxic and low cost contender as reducing agent for synthesizing stable silver nanoparticles.

  8. Antibacterial Activity of Silver-Graphene Quantum Dots Nanocomposites Against Gram-Positive and Gram-Negative Bacteria

    NASA Technical Reports Server (NTRS)

    Makarov, Vladimir (Inventor); Habiba, Khaled (Inventor); Weiner, Brad R (Inventor); Morell, Gerardo (Inventor)

    2018-01-01

    The invention provides a composite of silver nanoparticles decorated with graphene quantum dots (Ag-GQDs) using pulsed laser synthesis. The nanocomposites were functionalized with polyethylene glycol (PEG). A concentration of 150 .mu.g/mL of Ag-GQDs, a non-toxic level for human cells, exhibits strong antibacterial activity against both Gram-Positive and Gram-Negative Bacteria.

  9. Silver hake tracks changes in Northwest Atlantic circulation.

    PubMed

    Nye, Janet A; Joyce, Terrence M; Kwon, Young-Oh; Link, Jason S

    2011-08-02

    Recent studies documenting shifts in spatial distribution of many organisms in response to a warming climate highlight the need to understand the mechanisms underlying species distribution at large spatial scales. Here we present one noteworthy example of remote oceanographic processes governing the spatial distribution of adult silver hake, Merluccius bilinearis, a commercially important fish in the Northeast US shelf region. Changes in spatial distribution of silver hake over the last 40 years are highly correlated with the position of the Gulf Stream. These changes in distribution are in direct response to local changes in bottom temperature on the continental shelf that are responding to the same large scale circulation change affecting the Gulf Stream path, namely changes in the Atlantic meridional overturning circulation (AMOC). If the AMOC weakens, as is suggested by global climate models, silver hake distribution will remain in a poleward position, the extent to which could be forecast at both decadal and multidecadal scales.

  10. Publisher Correction: Nanoplasmonic electron acceleration by attosecond-controlled forward rescattering in silver clusters.

    PubMed

    Passig, Johannes; Zherebtsov, Sergey; Irsig, Robert; Arbeiter, Mathias; Peltz, Christian; Göde, Sebastian; Skruszewicz, Slawomir; Meiwes-Broer, Karl-Heinz; Tiggesbäumker, Josef; Kling, Matthias F; Fennel, Thomas

    2018-02-07

    The original PDF version of this Article contained an error in Equation 1. The original HTML version of this Article contained errors in Equation 2 and Equation 4. These errors have now been corrected in both the PDF and the HTML versions of the Article.

  11. A density functional global optimisation study of neutral 8-atom Cu-Ag and Cu-Au clusters

    NASA Astrophysics Data System (ADS)

    Heard, Christopher J.; Johnston, Roy L.

    2013-02-01

    The effect of doping on the energetics and dimensionality of eight atom coinage metal subnanometre particles is fully resolved using a genetic algorithm in tandem with on the fly density functional theory calculations to determine the global minima (GM) for Cu n Ag(8- n) and Cu n Au(8- n) clusters. Comparisons are made to previous ab initio work on mono- and bimetallic clusters, with excellent agreement found. Charge transfer and geometric arguments are considered to rationalise the stability of the particular permutational isomers found. An interesting transition between three dimensional and two dimensional GM structures is observed for copper-gold clusters, which is sharper and appears earlier in the doping series than is known for gold-silver particles.

  12. Synthesis of silver nanoparticles using A. indicum leaf extract and their antibacterial activity.

    PubMed

    Ashokkumar, S; Ravi, S; Kathiravan, V; Velmurugan, S

    2015-01-05

    Green synthesis of silver nanoparticles has been achieved using environmentally acceptable plant extract. It is observed that Abutilon indicum leaf extract can reduce silver ions into silver nanoparticles within 15 min of reaction time. The formation and stability of the reduced silver nanoparticles in the colloidal solution were monitored by UV-Vis spectrophotometer analysis. The mean particle diameter of silver nanoparticles was calculated from the XRD pattern. FT-IR spectra of the leaf extract after the development of nanoparticles are determined to allow identification of possible functional groups responsible for the conversion of metal ions to metal nanoparticles. The AgNPs thus obtained showed highly potent antibacterial activity toward Gram-positive (Staphyloccocus aureus and Bacillus subtilis) and Gram-negative (Salmonella typhi and Escherichia coli) microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Effect of Bombardment with Oxygen Ions on the Surface Composition of Polycrystalline Silver

    NASA Astrophysics Data System (ADS)

    Ashkhotov, O. G.; Khubezhov, S. A.; Aleroev, M. A.; Magkoev, T. T.; Grigorkina, G. S.

    2018-07-01

    Surface layers of polycrystalline silver bombarded with oxygen ions having energies from 100 to 300 eV are studied via Auger electron and X-ray photoelectron spectroscopies. Atomic and molecular oxygen together with silver in the zero-valence state are found in AgO and Ag2O after such treatment in silver surface layers. In addition, there is positive displacement of the Ag 3 d 3/2 peak by 0.5 eV, indicating an increase in spin-orbit splitting for Ag 3 d 5/2-Ag 3 d 3/2.

  14. Bioconjugated nano-bactericidal complex for potent activity against human and phytopathogens with concern of global drug resistant crisis.

    PubMed

    Syed, Baker; Nagendra Prasad, M N; Mohan Kumar, K; Satish, S

    2018-10-01

    The present study emphasizes the need for novel antimicrobial agents to combat the global drug resistant crisis. The development of novel nanomaterials is reported to be of the alternative tool to combat drug resistant pathogens. In present investigation, bioconjugated nano-complex was developed from secondary metabolite secreted from endosymbiont. The endosymbiont capable of secreting antimicrobial metabolite was subjected to fermentation and the culture supernatant was assessed for purification of antimicrobial metabolite via bio-assay guided fraction techniques such as thin layer chromatography (TLC), high performance liquid chromatography (HPLC) and column chromatography. The metabolite was characterized as 2,4-Diacetylphloroglucinol (2,4 DAPG) which was used to develop bioconjugated nano-complex by treating with 1 mM silver nitrate under optimized conditions. The purified metabolite 2,4 DAPG reduced silver nitrate to form bioconjugated nano-complex to form association with silver nanoparticles. The oxidized form of DAPG consists of four hard ligands that can conjugate on to the surface of silver nanoparticles cluster. The bioconjugation was confirmed with UV-visible spectroscopy which displayed the shift and shoulder peak in the absorbance spectra. This biomolecular interaction was further determined by the Fourier-transform spectroscopy (FTIR) and nuclear magnetic resonance (NMR) analyses which displayed different signals ascertaining the molecular binding of 2,4,DAPG with silver nanoparticles. The transmission electron microscopy (TEM) analysis revealed the cluster formation due to bioconjugation. The XRD analysis revealed the crystalline nature of nano-complex with the characteristic peaks indexed to Bragg's reflection occurring at 2θ angle which indicated the (111), (200), (220) and (311) planes. The activity of bioconjugated nano-complex was tested against 12 significant human and phytopathogens. Among all the test pathogens, Shigella flexneri (MTCC 1457) was the most sensitive organisms with 38.33 ± 0.33 zone of inhibition. The results obtained in the present investigation attribute development of nano-complex as one of the effective tools against multi-drug resistant infections across the globe. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs.

    PubMed

    Mannix, Andrew J; Zhou, Xiang-Feng; Kiraly, Brian; Wood, Joshua D; Alducin, Diego; Myers, Benjamin D; Liu, Xiaolong; Fisher, Brandon L; Santiago, Ulises; Guest, Jeffrey R; Yacaman, Miguel Jose; Ponce, Arturo; Oganov, Artem R; Hersam, Mark C; Guisinger, Nathan P

    2015-12-18

    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal. Copyright © 2015, American Association for the Advancement of Science.

  16. Timescale of silver nanoparticle transformation in neural cell cultures impacts measured cell response

    NASA Astrophysics Data System (ADS)

    Hume, Stephanie L.; Chiaramonti, Ann N.; Rice, Katherine P.; Schwindt, Rani K.; MacCuspie, Robert I.; Jeerage, Kavita M.

    2015-07-01

    Both serum protein concentration and ionic strength are important factors in nanoparticle transformation within cell culture environments. However, silver nanoparticles are not routinely tracked at their working concentration in the specific medium used for in vitro toxicology studies. Here we evaluated the transformation of electrostatically stabilized citrate nanoparticles (C-AgNPs) and sterically stabilized polyvinylpyrrolidone nanoparticles (PVP-AgNPs) in a low-serum ( 0.2 mg/mL bovine serum albumin) culture medium, while measuring the response of rat cortex neural progenitor cells, which differentiate in this culture environment. After 24 h, silver nanoparticles at concentrations up to 10 µg/mL did not affect adenosine triphosphate levels, whereas silver ions decreased adenosine triphosphate levels at concentrations of 1.1 µg/mL or higher. After 240 h, both silver nanoparticles, as well as silver ion, unambiguously decreased adenosine triphosphate levels at concentrations of 1 and 1.1 µg/mL, respectively, suggesting particle dissolution. Particle transformation was investigated in 1:10 diluted, 1:2 diluted, or undiluted differentiation medium, all having an identical protein concentration, to separate the effect of serum protein stabilization from ionic strength destabilization. Transmission electron microscopy images indicated that particles in 1:10 medium were not surrounded by proteins, whereas particles became clustered within a non-crystalline protein matrix after 24 h in 1:2 medium and at 0 h in undiluted medium. Despite evidence for a protein corona, particles were rapidly destabilized by high ionic strength media. Polyvinylpyrrolidone increased the stability of singly dispersed particles compared to citrate ligands; however, differences were negligible after 4 h in 1:2 medium or after 1 h in undiluted medium. Thus low-serum culture environments do not provide sufficient colloidal stability for long-term toxicology studies with citrate- or polyvinylpyrrolidone-stabilized silver nanoparticles.

  17. Draft genome sequence of the silver pomfret fish, Pampus argenteus.

    PubMed

    AlMomin, Sabah; Kumar, Vinod; Al-Amad, Sami; Al-Hussaini, Mohsen; Dashti, Talal; Al-Enezi, Khaznah; Akbar, Abrar

    2016-01-01

    Silver pomfret, Pampus argenteus, is a fish species from coastal waters. Despite its high commercial value, this edible fish has not been sequenced. Hence, its genetic and genomic studies have been limited. We report the first draft genome sequence of the silver pomfret obtained using a Next Generation Sequencing (NGS) technology. We assembled 38.7 Gb of nucleotides into scaffolds of 350 Mb with N50 of about 1.5 kb, using high quality paired end reads. These scaffolds represent 63.7% of the estimated silver pomfret genome length. The newly sequenced and assembled genome has 11.06% repetitive DNA regions, and this percentage is comparable to that of the tilapia genome. The genome analysis predicted 16 322 genes. About 91% of these genes showed homology with known proteins. Many gene clusters were annotated to protein and fatty-acid metabolism pathways that may be important in the context of the meat texture and immune system developmental processes. The reference genome can pave the way for the identification of many other genomic features that could improve breeding and population-management strategies, and it can also help characterize the genetic diversity of P. argenteus.

  18. Toxicity of Silver Nanoparticles at the Air-Liquid Interface

    PubMed Central

    Holder, Amara L.; Marr, Linsey C.

    2013-01-01

    Silver nanoparticles are one of the most prevalent nanomaterials in consumer products. Some of these products are likely to be aerosolized, making silver nanoparticles a high priority for inhalation toxicity assessment. To study the inhalation toxicity of silver nanoparticles, we have exposed cultured lung cells to them at the air-liquid interface. Cells were exposed to suspensions of silver or nickel oxide (positive control) nanoparticles at concentrations of 2.6, 6.6, and 13.2 μg cm−2 (volume concentrations of 10, 25, and 50 μg ml−1) and to 0.7 μg cm−2 silver or 2.1 μg cm−2 nickel oxide aerosol at the air-liquid interface. Unlike a number of in vitro studies employing suspensions of silver nanoparticles, which have shown strong toxic effects, both suspensions and aerosolized nanoparticles caused negligible cytotoxicity and only a mild inflammatory response, in agreement with animal exposures. Additionally, we have developed a novel method using a differential mobility analyzer to select aerosolized nanoparticles of a single diameter to assess the size-dependent toxicity of silver nanoparticles. PMID:23484109

  19. Synthesis of silver nanoparticles using Solanum trilobatum fruits extract and its antibacterial, cytotoxic activity against human breast cancer cell line MCF 7

    NASA Astrophysics Data System (ADS)

    Ramar, Manikandan; Manikandan, Beulaja; Marimuthu, Prabhu Narayanan; Raman, Thiagarajan; Mahalingam, Anjugam; Subramanian, Palanisamy; Karthick, Saravanan; Munusamy, Arumugam

    2015-04-01

    In the present study, we have synthesized silver nanoparticles by a simple and eco-friendly method using unripe fruits of Solanum trilobatum. The aqueous silver ions when exposed to unripe fruits extract were reduced and stabilized over long time resulting in biosynthesis of surface functionalized silver nanoparticles. The bio-reduced silver nanoparticles were characterized by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX) and X-ray diffraction (XRD). These biologically synthesized silver nanoparticles were tested for its antibacterial activity against few human pathogenic bacteria including Gram-positive (Streptococcus mutans, Enterococcus faecalis) and Gram-negative (Escherichia coli, Klebsiella pneumoniae) bacteria. In addition, we also demonstrated anticancer activity of these nanoparticles in vitro against human breast cancer cell line (MCF 7) using MTT, nuclear morphology assay, Western blot and RT-PCR expression. These results taken together show the potential applications of biosynthesized silver nanoparticles using S. trilobatum fruits.

  20. Simultaneous treatment of washing, disinfection and sterilization using ultrasonic levitation, silver electrolysis and ozone oxidation.

    PubMed

    Ueda, Toyotoshi; Hara, Masanori; Odagawa, Ikumi; Shigihara, Takanori

    2009-03-01

    A new type of ultrasonic washer-disinfector-sterilizer, able to clean, disinfect and sterilize most kinds of reusable medical devices, has been developed by using the ultrasonic levitation function with umbrella-shape oscillators and ozone bubbling together with sterilization carried out by silver electrolysis. We have examined the biomedical and physicochemical performance of this instrument. Prokariotic and gram-negative Escherichia coli and eukariotic Saccharomyces cerevisiae were killed by silver electrolysis in 18 min and 1 min, respectively. Prokariotic and gram-positive Geobacillus stearothermophilus and Bacillus atrophaeus, which are most resistant to autoclave and gas sterilization, respectively, were killed by silver electrolysis within 20 min. Prokariotic and gram-negative Pseudomonas aeruginosa was also killed by silver electrolysis in 10 min. The intensity distribution of the ultrasonic levitation waves was homogeneous throughout the tank. The concentration of ozone gas was 2.57 mg/ kg. The concentration of dissolved silver ions was around 0.17 mg/L. The disulfide bond in proteins was confirmed to be destroyed by silver electrolysis.

  1. Molecular Evidence for Association of Chlamydiales Bacteria with Epitheliocystis in Leafy Seadragon (Phycodurus eques), Silver Perch (Bidyanus bidyanus), and Barramundi (Lates calcarifer)

    PubMed Central

    Meijer, Adam; Roholl, Paul J. M.; Ossewaarde , Jacobus M.; Jones, Brian; Nowak, Barbara F.

    2006-01-01

    Epitheliocystis in leafy seadragon (Phycodurus eques), silver perch (Bidyanus bidyanus), and barramundi (Lates calcarifer), previously associated with chlamydial bacterial infection using ultrastructural analysis, was further investigated by using molecular and immunocytochemical methods. Morphologically, all three species showed epitheliocystis cysts in the gills, and barramundi also showed lymphocystis cysts in the skin. From gill cysts of all three species and from skin cysts of barramundi 16S rRNA gene fragments were amplified by PCR and sequenced, which clustered by phylogenetic analysis together with other chlamydia-like organisms in the order Chlamydiales in a lineage separate from the family Chlamydiaceae. By using in situ RNA hybridization, 16S rRNA Chlamydiales-specific sequences were detected in gill cysts of silver perch and in gill and skin cysts of barramundi. By applying immunocytochemistry, chlamydial antigens (lipopolysaccharide and/or membrane protein) were detected in gill cysts of leafy seadragon and in gill and skin cysts of barramundi, but not in gill cysts of silver perch. In conclusion, this is the first time epitheliocystis agents of leafy seadragon, silver perch and barramundi have been undoubtedly identified as belonging to bacteria of the order Chlamydiales by molecular methods. In addition, the results suggested that lymphocystis cysts, known to be caused by iridovirus infection, could be coinfected with the epitheliocystis agent. PMID:16391055

  2. Silver nanocrystallites: Facile biofabrication using Shewanella oneidensis, and an evaluation of their comparative toxicity on Gram-negative and Gram-positive bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suresh, Anil K; Wang, Wei; Pelletier, Dale A

    Microorganisms have long been known to develop resistance to metal ions either by sequestering metals inside the cell or by effluxing them into the extracellular media. Here we report the biosynthesis of extracellular silver based single nanocrystallites of well-defined composition and homogeneous morphology utilizing the -proteobacterium, Shewanella oneidensis strain MR-1, upon incubation with an aqueous solution of silver nitrate. Further characterization of these particles revealed that the crystals consist of small, reasonably monodispersed spheres in the size range 2 11 nm (with an average of 4 1.5 nm). The bactericidal effect of these biologically synthesized silver nanoparticles (biogenic-Ag) are comparedmore » to similar chemically synthesized nanoparticles (colloidal silver [colloidal-Ag] and oleate capped silver [oleate-Ag]). The determination of the bactericidal effect of these different silver nanoparticles was assessed using both Gram-negative (E. coli) and Gram-positive (B. subtilis) bacteria and based on the diameter of the inhibition zone in disc diffusion tests, minimum inhibitory concentrations, Live/Dead staining assays, and atomic force microscopy. From a toxicity perspective, a clear synthesis procedure, and a surface coat- and strain-dependent inhibition were observed for silver nanoparticles. Biogenic-Ag was found to be of higher toxicity when compared to colloidal-Ag for both E. coli and B. subtilis. E. coli was found to be more resistant to either of these nanoparticles than B. subtilis. In contrast, Oleate-Ag was not toxic to either of the bacteria. These findings have important implications for the potential uses of Ag nanomaterials and for their fate in biological and environmental systems.« less

  3. Ultrafast coherence transfer in DNA-templated silver nanoclusters

    PubMed Central

    Thyrhaug, Erling; Bogh, Sidsel Ammitzbøll; Carro-Temboury, Miguel R; Madsen, Charlotte Stahl; Vosch, Tom; Zigmantas, Donatas

    2017-01-01

    DNA-templated silver nanoclusters of a few tens of atoms or less have come into prominence over the last several years due to very strong absorption and efficient emission. Applications in microscopy and sensing have already been realized, however little is known about the excited-state structure and dynamics in these clusters. Here we report on a multidimensional spectroscopy investigation of the energy-level structure and the early-time relaxation cascade, which eventually results in the population of an emitting state. We find that the ultrafast intramolecular relaxation is strongly coupled to a specific vibrational mode, resulting in the concerted transfer of population and coherence between excited states on a sub-100 fs timescale. PMID:28548085

  4. Surface-independent antibacterial coating using silver nanoparticle-generating engineered mussel glue.

    PubMed

    Jo, Yun Kee; Seo, Jeong Hyun; Choi, Bong-Hyuk; Kim, Bum Jin; Shin, Hwa Hui; Hwang, Byeong Hee; Cha, Hyung Joon

    2014-11-26

    During implant surgeries, antibacterial agents are needed to prevent bacterial infections, which can cause the formation of biofilms between implanted materials and tissue. Mussel adhesive proteins (MAPs) derived from marine mussels are bioadhesives that show strong adhesion and coating ability on various surfaces even in wet environment. Here, we proposed a novel surface-independent antibacterial coating strategy based on the fusion of MAP to a silver-binding peptide, which can synthesize silver nanoparticles having broad antibacterial activity. This sticky recombinant fusion protein enabled the efficient coating on target surface and the easy generation of silver nanoparticles on the coated-surface under mild condition. The biosynthesized silver nanoparticles showed excellent antibacterial efficacy against both Gram-positive and Gram-negative bacteria and also revealed good cytocompatibility with mammalian cells. In this coating strategy, MAP-silver binding peptide fusion proteins provide hybrid environment incorporating inorganic silver nanoparticle and simultaneously mediate the interaction of silver nanoparticle with surroundings. Moreover, the silver nanoparticles were fully synthesized on various surfaces including metal, plastic, and glass by a simple, surface-independent coating manner, and they were also successfully synthesized on a nanofiber surface fabricated by electrospinning of the fusion protein. Thus, this facile surface-independent silver nanoparticle-generating antibacterial coating has great potential to be used for the prevention of bacterial infection in diverse biomedical fields.

  5. The poly-gamma-glutamate of Bacillus subtilis interacts specifically with silver nanoparticles

    PubMed Central

    Eymard-Vernain, Elise; Coute, Yohann; Adrait, Annie; Rabilloud, Thierry; Sarret, Géraldine

    2018-01-01

    For many years, silver nanoparticles, as with other antibacterial nanoparticles, have been extensively used in manufactured products. However, their fate in the environment is unclear and raises questions. We studied the fate of silver nanoparticles in the presence of bacteria under growth conditions that are similar to those found naturally in the environment (that is, bacteria in a stationary phase with low nutrient concentrations). We demonstrated that the viability and the metabolism of a gram-positive bacteria, Bacillus subtilis, exposed during the stationary phase is unaffected by 1 mg/L of silver nanoparticles. These results can be partly explained by a physical interaction of the poly-gamma-glutamate (PGA) secreted by Bacillus subtilis with the silver nanoparticles. The coating of the silver nanoparticles by the secreted PGA likely results in a loss of the bioavailability of nanoparticles and, consequently, a decrease of their biocidal effect. PMID:29813090

  6. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Singhal, Garima; Bhavesh, Riju; Kasariya, Kunal; Sharma, Ashish Ranjan; Singh, Rajendra Pal

    2011-07-01

    Development of green nanotechnology is generating interest of researchers toward ecofriendly biosynthesis of nanoparticles. In this study, biosynthesis of stable silver nanoparticles was done using Tulsi ( Ocimum sanctum) leaf extract. These biosynthesized nanoparticles were characterized with the help of UV-vis spectrophotometer, Atomic Absorption Spectroscopy (AAS), Dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Transmission electron microscopy (TEM). Stability of bioreduced silver nanoparticles was analyzed using UV-vis absorption spectra, and their antimicrobial activity was screened against both gram-negative and gram-positive microorganisms. It was observed that O. sanctum leaf extract can reduce silver ions into silver nanoparticles within 8 min of reaction time. Thus, this method can be used for rapid and ecofriendly biosynthesis of stable silver nanoparticles of size range 4-30 nm possessing antimicrobial activity suggesting their possible application in medical industry.

  7. Antibacterial and catalytic activities of green synthesized silver nanoparticles.

    PubMed

    Bindhu, M R; Umadevi, M

    2015-01-25

    The aqueous beetroot extract was used as reducing agent for silver nanoparticles synthesis. The synthesized nanoparticles were characterized using UV-visible spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The surface plasmon resonance peak of synthesized nanoparticles was observed at 438 nm. As the concentration of beetroot extract increases, absorption spectra shows blue shift with decreasing particle size. The prepared silver nanoparticles were well dispersed, spherical in shape with the average particle size of 15 nm. The prepared silver nanoparticles are effective in inhibiting the growth of both gram positive and gram negative bacteria. The prepared silver nanoparticles reveal faster catalytic activity. This natural method for synthesis of silver nanoparticles offers a valuable contribution in the area of green synthesis and nanotechnology avoiding the presence of hazardous and toxic solvents and waste. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Silver manganese oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2006-05-09

    This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.

  9. Largely Enhanced Single-molecule Fluorescence in Plasmonic Nanogaps formed by Hybrid Silver Nanostructures

    PubMed Central

    Zhang, Jian; Lakowicz, Joseph R.

    2013-01-01

    It has been suggested that narrow gaps between metallic nanostructures can be practical for producing large field enhancement. We design a hybrid silver nanostructure geometry in which fluorescent emitters are sandwiched between silver nanoparticles and silver island film (SIF). A desired number of polyelectrolyte layers are deposited on the SIF surface before the self-assembly of a second silver nanoparticle layer. Layer-by-layer configuration provides a well-defined dye position. It allows us to study the photophyical behaviors of fluorophores in the resulting gap at the single molecule level. The enhancement factor of a fluorophore located in the gap is much higher than those on silver surfaces alone and on glass. These effects may be used for increased detectability of single molecules bound to surfaces which contain metallic structures for either biophysical studies or high sensitivity assays. PMID:23373787

  10. Nucleation and growth of Ag on Sb-terminated Ge( 1 0 0 )

    NASA Astrophysics Data System (ADS)

    Chan, L. H.; Altman, E. I.

    2002-06-01

    The effect of Sb on Ag growth on Ge(1 0 0) was characterized using scanning tunneling microscopy, low energy electron diffraction, and Auger electron spectroscopy. Silver was found to immediately form three-dimensional clusters on the Sb-covered surface over the entire temperature range studied (320-570 K), thus the growth was Volmer-Weber. Regardless of the deposition conditions, there was no evidence that Sb segregated to the Ag surface, despite Sb having a lower surface tension than either Ag or Ge. The failure of Sb to segregate to the surface could be understood in terms of the much stronger interaction between Sb and Ge versus Ag and Ge creating a driving force to maintain an Sb-Ge interface. Silver nucleation on Sb/Ge(1 0 0) was characterized by measuring the Ag cluster density as a function of deposition rate. The results revealed that the cluster density was nearly independent of the deposition rate below 420 K, indicating that heterogeneous nucleation at defects in the Sb-terminated surface competed with homogeneous nucleation. At higher temperatures, the defects were less effective in trapping diffusing Ag atoms and the dependence of the cluster density on deposition rate suggested a critical size of at least two. For temperatures above 420 K, the Ag diffusion barrier plus the dissociation energy of the critical cluster was estimated by measuring the cluster density as a function of temperature; the results suggested a value of 0.84±0.1 eV which is significantly higher than values reported for Ag nucleation on Sb-free surfaces. In comparison to the bare Ge surface, Ag formed a higher density of smaller, lower clusters when Sb was present. Below 420 K the higher cluster density could be attributed to nucleation at defects in the Sb layer while at higher temperatures the high diffusion barrier restricted the cluster size and density. Although Sb does not act as a surfactant in this system since it does not continuously float to the surface and the growth is not layer-by-layer, adding Sb was found to be useful in limiting the Ag cluster size and height which led to smoother, more continuous Ag films and in preventing the formation of metastable Ag-Ge surface alloys.

  11. Detection of silver nanoparticles in cells by flow cytometry using light scatter and far-red fluorescence.

    PubMed

    Zucker, R M; Daniel, K M; Massaro, E J; Karafas, S J; Degn, L L; Boyes, W K

    2013-10-01

    The cellular uptake of different sized silver nanoparticles (AgNP) (10, 50, and 75 nm) coated with polyvinylpyrrolidone (PVP) or citrate on a human derived retinal pigment epithelial cell line (ARPE-19) was detected by flow cytometry following 24-h incubation of the cells with AgNP. A dose dependent increase of side scatter and far red fluorescence was observed with both PVP and citrate-coated 50 nm or 75 nm silver particles. Using five different flow cytometers, a far red fluorescence signal in the 700-800 nm range increased as much as 100 times background as a ratio comparing the intensity measurements of treated sample and controls. The citrate-coated silver nanoparticles (AgNP) revealed slightly more side scatter and far red fluorescence than did the PVP coated silver nanoparticles. This increased far red fluorescence signal was observed with 50 and 75 nm particles, but not with 10 nm particles. Morphological evaluation by dark field microscopy showed silver particles (50 and 75 nm) clumped and concentrated around the nucleus. One possible hypothesis to explain the emission of far red fluorescence from cells incubated with silver nanoparticles is that the silver nanoparticles inside cells agglomerate into small nano clusters that form surface plasmon resonance which interacts with laser light to emit a strong far red fluorescence signal. The results demonstrate that two different parameters (side scatter and far red fluorescence) on standard flow cytometers can be used to detect and observe metallic nanoparticles inside cells. The strength of the far red fluorescence suggests that it may be particularly useful for applications that require high sensitivity. © Published 2013 Wiley-Periodicals, Inc. Published 2013 Wiley‐Periodicals, Inc. This article is a US government work and, as such, is in the public domain in the United States of America.

  12. Experimental demonstration of high sensitivity for silver rectangular grating-coupled surface plasmon resonance (SPR) sensing

    NASA Astrophysics Data System (ADS)

    Dai, Yanqiu; Xu, Huimei; Wang, Haoyu; Lu, Yonghua; Wang, Pei

    2018-06-01

    We experimentally demonstrated a high sensitivity of surface plasmon resonance (SPR) sensor with silver rectangular grating coupling. The reflection spectra of the silver gratings indicated that surface plasmon resonance can be excited by either positive or negative order diffraction of the grating, depending on the period of the gratings. Comparing to prism-coupled SPR sensor, the sensitivities are higher for negative order diffraction coupling in bigger coupling angle, but much smaller for positive order diffraction coupling of the gratings. High sensitivity of 254.13 degree/RIU is experimentally realized by grating-based SPR sensor in the negative diffraction excitation mode. Our work paves the way for compact and sensitive SPR sensor in the applications of biochemical and gas sensing.

  13. Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat

    PubMed Central

    2010-01-01

    Silver nanoparticles have been used in numerous commercial products, including textiles, to prevent bacterial growth. Meanwhile, there is increasing concern that exposure to these nanoparticles may cause potential adverse effects on humans as well as the environment. This study determined the quantity of silver released from commercially claimed nanosilver and laboratory-prepared silver coated fabrics into various formulations of artificial sweat, each made according to AATCC, ISO and EN standards. For each fabric sample, the initial amount of silver and the antibacterial properties against the model Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria on each fabric was investigated. The results showed that silver was not detected in some commercial fabrics. Furthermore, antibacterial properties of the fabrics varied, ranging from 0% to greater than 99%. After incubation of the fabrics in artificial sweat, silver was released from the different fabrics to varying extents, ranging from 0 mg/kg to about 322 mg/kg of fabric weight. The quantity of silver released from the different fabrics was likely to be dependent on the amount of silver coating, the fabric quality and the artificial sweat formulations including its pH. This study is the unprecedented report on the release of silver nanoparticles from antibacterial fabrics into artificial sweat. This information might be useful to evaluate the potential human risk associated with the use of textiles containing silver nanoparticles. PMID:20359338

  14. Preparation of poly(lactic acid)/siloxane/calcium carbonate composite membranes with antibacterial activity.

    PubMed

    Tokuda, Shingo; Obata, Akiko; Kasuga, Toshihiro

    2009-05-01

    A poly(lactic acid) (PLA)/siloxane/calcium carbonate composite membrane containing mercapto groups (PSC-SH) with antibacterial ability and excellent bone-forming ability was prepared using 3-mercaptopropyltrimethoxysilane for application in guided bone regeneration. Mercapto groups were reported to adsorb silver ions, which are well known to show antibacterial activity. Ionic silicon species were reported to stimulate the proliferation of osteoblasts. A PSC-SH membrane with a thickness of about 10 microm shows high flexibility. The PLA in PSC-SH was converted from the crystalline phase to the amorphous phase due to dispersion of condensed siloxane clusters. The amount of mercapto group on PSC-SH surface was estimated to be about 55 nmol mm(-2) by quantitative analysis using the thiol-disulfide exchange reaction. PSC-SH adsorbed silver ions on its surface after being soaked in 6 microM silver acetate aqueous solution for 1 min. The adsorbed silver ions were seen by X-ray photoelectron spectroscopy to form SAg and SO3Ag bonds. A trace amount of ionic silicon species was released from the membrane after soaking in culture medium. PSC-SH with adsorbed silver ions showed good antibacterial activity and cellular compatibility in tests conducted with Staphylococcus aureus and mouse osteoblast-like cells, respectively. Antibacterial activity is expected to occur during the implantation operation by the silver ions but not to remain in the body for a long period, as the ions were present on the surface of the membrane but not inside the structure. The membrane should be useful as a biodegradable material with antibacterial activity and bone-forming ability.

  15. Imaging of Biological Cells Using Luminescent Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kravets, Vira; Almemar, Zamavang; Jiang, Ke; Culhane, Kyle; Machado, Rosa; Hagen, Guy; Kotko, Andriy; Dmytruk, Igor; Spendier, Kathrin; Pinchuk, Anatoliy

    2016-01-01

    The application of luminescent silver nanoparticles as imaging agents for neural stem and rat basophilic leukemia cells was demonstrated. The experimental size dependence of the extinction and emission spectra for silver nanoparticles were also studied. The nanoparticles were functionalized with fluorescent glycine dimers. Spectral position of the resonance extinction and photoluminescence emission for particles with average diameters ranging from 9 to 32 nm were examined. As the particle size increased, the spectral peaks for both extinction and the intrinsic emission of silver nanoparticles shifted to the red end of the spectrum. The intrinsic photoluminescence of the particles was orders of magnitude weaker and was spectrally separated from the photoluminescence of the glycine dimer ligands. The spectral position of the ligand emission was independent of the particle size; however, the quantum yield of the nanoparticle-ligand system was size-dependent. This was attributed to the enhancement of the ligand's emission caused by the local electric field strength's dependence on the particle size. The maximum quantum yield determined for the nanoparticle-ligand complex was (5.2 ± 0.1) %. The nanoparticles were able to penetrate cell membranes of rat basophilic leukemia and neural stem cells fixed with paraformaldehyde. Additionally, toxicity studies were performed. It was found that towards rat basophilic leukemia cells, luminescent silver nanoparticles had a toxic effect in the silver atom concentration range of 10-100 μM.

  16. Preparation, characterization, and optical properties of gold, silver, and gold-silver alloy nanoshells having silica cores.

    PubMed

    Kim, Jun-Hyun; Bryan, William W; Lee, T Randall

    2008-10-07

    This report describes the structural and optical properties of a series of spherical shell/core nanoparticles in which the shell is comprised of a thin layer of gold, silver, or gold-silver alloy, and the core is comprised of a monodispersed silica nanoparticle. The silica core particles were prepared using the Stöber method, functionalized with terminal amine groups, and then seeded with small gold nanoparticles (approximately 2 nm in diameter). The gold-seeded silica particles were coated with a layer of gold, silver, or gold-silver alloy via solution-phase reduction of an appropriate metal ion or mixture of metal ions. The size, morphology, and elemental composition of the composite nanoparticles were characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermal gravimetric analysis (TGA), dynamic light scattering (DLS), and transmission electron microscopy (TEM). The optical properties of the nanoparticles were analyzed by UV-vis spectroscopy, which showed strong absorptions ranging from 400 nm into the near-IR region, where the position of the plasmon band reflected not only the thickness of the metal shell, but also the nature of the metal comprising the shell. Importantly, the results demonstrate a new strategy for tuning the position of the plasmon resonance without having to vary the core diameter or the shell thickness.

  17. Phototherapeutic spectrum expansion through synergistic effect of mesoporous silica trio-nanohybrids against antibiotic-resistant gram-negative bacterium.

    PubMed

    Kuthati, Yaswanth; Kankala, Ranjith Kumar; Busa, Prabhakar; Lin, Shi-Xiang; Deng, Jin-Pei; Mou, Chung-Yuan; Lee, Chia-Hung

    2017-04-01

    The extensive impact of antibiotic resistance has led to the exploration of new anti-bacterial modalities. We designed copper impregnated mesoporous silica nanoparticles (Cu-MSN) with immobilizing silver nanoparticles (SNPs) to apply photodynamic inactivation (PDI) of antibiotic-resistant E. coli. SNPs were decorated over the Cu-MSN surfaces by coordination of silver ions on diamine-functionalized Cu-MSN and further reduced to silver nanoparticles with formalin. We demonstrate that silver is capable of sensitizing the gram-negative bacteria E. coli to a gram-positive specific phototherapeutic agent in vitro; thereby expanding curcumin's phototherapeutic spectrum. The mesoporous structure of Cu-MSN remains intact after the exterior decoration with silver nanoparticles and subsequent curcumin loading through an enhanced effect from copper metal-curcumin affinity interaction. The synthesis, as well as successful assembly of the functional nanomaterials, was confirmed by various physical characterization techniques. Curcumin is capable of producing high amounts of reactive oxygen species (ROS) under light irradiation, which can further improve the silver ion release kinetics for antibacterial activity. In addition, the positive charged modified surfaces of Cu-MSN facilitate antimicrobial response through electrostatic attractions towards negatively charged bacterial cell membranes. The antibacterial action of the synthesized nanocomposites can be activated through a synergistic mechanism of energy transfer of the absorbed light from SNP to curcumin. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Reaction Mechanism for Direct Propylene Epoxidation by Alumina-Supported Silver Aggregates. The Role of the Particle / Support Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Lei; Yin, Chunrong; Mehmood, Faisal

    2013-11-21

    Sub-nanometer Ag aggregates on alumina supports have been found to be active toward direct propylene epoxidation to propylene oxide by molecular oxygen at low temperatures, with a negligible amount of carbon dioxide formation (Science 328, p. 224, 2010). In this work, we computationally and experimentally investigate the origin of the high reactivity of the sub-nanometer Ag aggregates. Computationally, we study O 2 dissociation and propylene epoxidation on unsupported Ag 19 and Ag 20 clusters, as well as alumina-supported Ag 19. The O 2 dissociation and propylene epoxidation apparent barriers at the interface between the Ag aggregate and the alumina supportmore » are calculated to be 0.2 and 0.2~0.4 eV, respectively. These barriers are somewhat lower than those on sites away from the interface. The mechanism at the interface is similar to what was previously found for the silver trimer on alumina and can account for the high activity observed for the direct oxidation of propylene on the Ag aggregates. The barriers for oxygen dissociation on these model systems both at the interface and on the surfaces are small compared to crystalline surfaces, indicating that availability of oxygen will not be a rate limiting step for the aggregates, as in the case of the crystalline surfaces. Experimentally, we investigate Ultrananocrystalline Diamond (UNCD)-supported silver aggregates under reactive conditions of propylene partial oxidation. The UNCD-supported Ag clusters are found to be not measurably active toward propylene oxidation, in contrast to the alumina supported Ag clusters. This suggests that the lack of metal-oxide interfacial sites of the Ag-UNCD catalyst, limits the epoxidation catalytic activity. This combined computational and experimental study shows the importance of the metal-oxide interface as well as the non-crystalline nature of the alumina-supported sub-nanometer Ag aggregate catalysts for propylene epoxidation.« less

  19. Ambiance-dependent agglomeration and surface-enhanced Raman spectroscopy response of self-assembled silver nanoparticles for plasmonic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Gwamuri, Jephias; Venkatesan, Ragavendran; Sadatgol, Mehdi; Mayandi, Jeyanthinath; Guney, Durdu O.; Pearce, Joshua M.

    2017-07-01

    The agglomeration/dewetting process of thin silver films provides a scalable method of obtaining self-assembled nanoparticles (SANPs) for plasmonics-based thin-film solar photovoltaic (PV) devices. We show the effect of annealing ambiance on silver SANP average size, particle/cluster finite shape, substrate area coverage/particle distribution, and how these physical parameters influence optical properties and surface-enhanced Raman scattering (SERS) responses of SANPs. Statistical analysis performed indicates that generally Ag SANPs processed in the presence of a gas (argon and nitrogen) ambiance tend to have smaller average size particles compared to those processed under vacuum. Optical properties are observed to be highly dependent on particle size, separation distance, and finite shape. The greatest SERS enhancement was observed for the argon-processed samples. There is a correlation between simulation and experimental data that indicate argon-processed AgNPs have a great potential to enhance light coupling when integrated to thin-film PV.

  20. Poling-assisted bleaching of soda-lime float glasses containing silver nanoparticles with a decreasing filling factor across the depth

    NASA Astrophysics Data System (ADS)

    Deparis, Olivier; Kazansky, Peter G.; Podlipensky, Alexander; Abdolvand, Amin; Seifert, Gerhard; Graener, Heinrich

    2006-08-01

    The recently discovered poling-assisted bleaching of glass with embedded silver nanoparticles has renewed the interest in thermal poling as a simple, reliable, and low-cost technique for controlling locally the surface-plasmon-resonant optical properties of metal-doped nanocomposite glasses. In the present study, the emphasis is put on the influence of the volume filling factor of metallic clusters on poling-assisted bleaching. Soda-lime silicate glass samples containing spherical silver nanoparticles with a decreasing filling factor across the depth were subject to thermal poling experiments with various poling temperatures, voltages, and times. Optical extinction spectra were measured from ultraviolet to near-infrared ranges and the surface-plasmon-resonant extinction due to silver nanoparticles (around 410nm) was modeled by the Maxwell Garnett [Philos. Trans. R. Soc. London, Ser. A 203, 385 (1904); 205, 237 (1906)] effective medium theory which was adapted in order to take into account the filling factor depth profile. A method was proposed for the retrieval of the filling factor depth profile from optical extinction spectra recorded in fresh and chemically etched samples. A stretched exponential depth profile turned out to be necessary in order to model samples having a high filling factor near the surface. Based on the fact that the electric-field-assisted dissolution of embedded metallic nanoparticles proceeded progressively from the top surface, a bleaching front was defined that moved forward in depth as time elapsed. The position of the bleaching front was determined after each poling experiment by fitting the measured extinction spectrum to the theoretical one. In samples with higher peak value and steeper gradient of the filling factor, the bleaching front reached more rapidly a steady-state depth as poling time increased. Also it increased less strongly with increasing poling voltage. These results were in agreement with the physics of the dissolution process. Finally, clear evidence of injection of hydrogenated ionic species from the atmosphere into the sample during poling was obtained from the growth of the infrared extinction peak associated with OH radicals.

  1. Artificial intelligence: Collective behaviors of synthetic micromachines

    NASA Astrophysics Data System (ADS)

    Duan, Wentao

    Synthetic nano- and micromotors function through the conversion of chemical free energy or forms of energy into mechanical motion. Ever since the first reports, such motors have been the subject of growing interest. In addition to motility in response to gradients, these motors interact with each other, resulting in emergent collective behavior like schooling, exclusion, and predator-prey. However, most of these systems only exhibit a single type of collective behavior in response to a certain stimuli. The research projects in the disseratation aim at designing synthetic micromotors that can exhibit transition between various collective behaviors in response to different stimuli, as well as quantitative understanding on the pairwise interaction and propulsion mechanism of such motors. Chapter 1 offers an overview on development of synthetic micromachines. Interactions and collective behaviors of micromotors are also summarized and included. Chapter 2 presents a silver orthophosphate microparticle system that exhibits collective behaviors. Transition between two collective patterns, clustering and dispersion, can be triggered by shift in chemical equilibrium upon the addition or removal of ammonia, in response to UV light, or under two orthogonal stimuli (UV and acoustic field) and powering mechanisms. The transitions can be explained by the self-diffusiophoresis mechanism resulting from either ionic or neutral solute gradients. Potential applications of the reported system in logic gates, microscale pumping, and hierarchical assembly have been demonstrated. Chapter 3 introduces a self-powered oscillatory micromotor system in which active colloids form clusters whose size changes periodically. The system consists of an aqueous suspension of silver orthophosphate particles under UV radiation, in the presence of a mixture of glucose and hydrogen peroxide. The colloid particles first attract with each other to form clusters. After a lag time of around 5min, chemical oscillation initiates, and triggers periodic change of the associated self-diffusiophoretic effects as well as interactions between particles. As a result, dispersion and clustering of particles take place alternatively, and sizes of colloidal clusters vary periodically together with local colloid concentration, formulating a namely "colloidal clock". In the system, oscillation can propagate from individual clusters to nearby clusters, and there can exist more than one oscillation frequencies in one system, possibly due to different local particle concentrations or cluster size. Chapter 4 quantitatively investigates the influence of pairwise interaction between motors on their diffusional behaviors by analyzing motion of light-powered silver chloride particles. Powered by UV light, nano/micrometer-sized silver chloride (AgCl) particles exhibit autonomous movement and form "schools" in aqueous solution. Motion of these AgCl particles are tracked and analyzed. AgCl particles exhibit ballistic motion at short time intervals that transition to enhanced diffusive motion as the time interval is increased. The onset of this transition was found to occur more quickly for particles with more neighbors. If the active particles became "trapped" in a formed "school", the diffusive behavior further changes to subdiffusion. The correlation between these transitions and the number of neighboring particles was verified by simulation, and confirms the influence of pairwise interaction between motors. Chapter 5 aims at quantitative understanding on the self-diffusiophoresis propulsion mechanism through numerical simulation with COMSOL Multiphysics. A self-powered micropump based on ion-exchange is chosen as the experimental model system. Weakly acidicform ion-exchange resin can function as self-powered micropumps in aqueous solution, manipulating fluid flow at vicinity and transporting inert tracer colloids. Pumping direction in the system can be dynamically altered in response to pH change: lower pH leads to outward pumping, and higer pH results in inward particle motion. A COMSOL Multiphysics model is built with different boundary conditions and parameters, in accordance with the experimental system. The reasonable agreement between experimental and simulation results confirms self-diffusiophoresis as the powering mechanism. By varing parameters, the model also suggests possible routes to tune the performance of the micropump. COMSOL simulations on micropumps that are based on density-driven mechanism are also included.

  2. Multifaceted prismatic silver nanoparticles: synthesis by chloride-directed selective growth from thiolate-protected clusters and SERS properties.

    PubMed

    Cathcart, Nicole; Kitaev, Vladimir

    2012-11-21

    We describe the synthetic preparation of well-defined symmetric multifaceted prismatic silver nanoparticles with chemically controlled faceting advantageous for strong and tunable surface-enhanced Raman scattering, SERS. These silver nanoparticles, that have been termed nanoflowers, AgNFls for their characteristic morphologies, have been prepared by a one-pot aqueous reaction under ambient conditions. AgNFl faceting is synthetically controlled by selective nanoparticle growth driven by chloride ions. Selective chloride binding to the surface of growing AgNFls results in nanoparticle enlargement predominantly at the points of their highest energy. These growth points are located at the tips of prismatic polygons in precursor prismatic morphologies that have been produced from thiolate-protected silver clusters whose coalescence is triggered with a strong base. For the practical aspects of AgNFl synthesis, concentrations of thiol and a strong base were found to be the key variables reliably controlling the extent of AgNFl faceting, as well as the kinetics of AgNFl formation and their stability. The selective growth of AgNFls progresses slower compared to that of non-faceted prisms: fewer nuclei can form leading to larger AgNFls with the diameter ranging from 130 to 2250 nm and asperity sizes on the order of 20 to 100 nm. Self-assembly of AgNFls yields columnar stacking. AgNFls were demonstrated to function as a promising substrate for surface-enhanced Raman scattering. SERS measurements were performed for a series of AgNFls with variable faceting, where the enhancement factors of 4.6 × 10(8) and 425 have been achieved for dry solid films and aqueous dispersions of non-aggregated AgNFls with single-particle enhancement, respectively. These SERS results are promising, especially in combination with that AgNFl nanoscale asperities can be conveniently tailored synthetically. Overall, AgNFls offer valuable opportunities for a system with synthetically variable nanoscale asperities.

  3. [Application of Warthin-Starry stain, immunohistochemistry and transmission electron microscopy in diagnosis of cat scratch disease].

    PubMed

    Huang, Juan; Dai, Lin; Lei, Song; Liao, Dian-ying; Wang, Xiao-qing; Luo, Tian-you; Chen, Yu; Hang, Zhen-biao; Li, Gan-di; Dong, Dan-dan; Xu, Gang; Gu, Zheng-ce; Hao, Ji-ling; Hua, Ping; He, Lei; Duan, Fang-lei

    2010-04-01

    To evaluate the diagnostic utility of Warthin-Starry silver stain, immunohistochemistry and transmission electron microscopy in the detection of human Bartonella henselae infection and pathologic diagnosis of cat scratch disease (CSD). The paraffin-embedded lymph node tissues of 77 histologically-defined cases of cat scratch disease collected during the period from January, 1998 to December, 2008 were retrieved and studied using Warthin-Starry silver stain (WS stain) and mouse monoclonal antibody against Bartonella henselae (BhmAB stain). Five cases rich in bacteria were selected for transmission electron microscopy. Under electron microscope, the organisms Bartonella henselae appeared polymorphic, round, elliptical, short rod or bacilliform shapes, ranged from 0.489 to 1.110 microm by 0.333 to 0.534 microm and often clustered together. Black short rod-shaped bacilli arranged in chains or clumps were demonstrated in 61.0% (47/77) of CSD by WS stain. The organisms were located outside the cells and lie mainly in the necrotic debris, especially near the nodal capsule. In 72.7% (56/77) of the cases, dot-like, granular as well as few linear positive signals were observed using BhmAB immunostain and showed similar localization. Positive results for both stains were identified in 59.7% (46/77) of the cases. When applying both stains together, Bartonella henselae was observed in 74.0% (57/77) of the case. The difference between the results obtained by WS stain and BhmAB immunostain was of statistical significance (P < 0.05). Bartonella henselae is the causative pathogen of cat scratch disease. WS stain, BhmAB immunostain and transmission electron microscopy are helpful in confirming the histologic diagnosis. Immunostaining using BhmAB can be a better alternative than WS stain in demonstrating the organisms.

  4. Responsiveness of cats (Felidae) to silver vine (Actinidia polygama), Tatarian honeysuckle (Lonicera tatarica), valerian (Valeriana officinalis) and catnip (Nepeta cataria).

    PubMed

    Bol, Sebastiaan; Caspers, Jana; Buckingham, Lauren; Anderson-Shelton, Gail Denise; Ridgway, Carrie; Buffington, C A Tony; Schulz, Stefan; Bunnik, Evelien M

    2017-03-16

    Olfactory stimulation is an often overlooked method of environmental enrichment for cats in captivity. The best known example of olfactory enrichment is the use of catnip, a plant that can cause an apparently euphoric reaction in domestic cats and most of the Pantherinae. It has long been known that some domestic cats and most tigers do not respond to catnip. Although many anecdotes exist of other plants with similar effects, data are lacking about the number of cats that respond to these plants, and if cats that do not respond to catnip respond to any of them. Furthermore, much is still unknown about which chemicals in these plants cause this response. We tested catnip, silver vine, Tatarian honeysuckle and valerian root on 100 domestic cats and observed their response. Each cat was offered all four plant materials and a control, multiple times. Catnip and silver vine also were offered to nine tigers. The plant materials were analyzed by gas chromatography coupled with mass spectrometry to quantify concentrations of compounds believed to exert stimulating effects on cats. Nearly all domestic cats responded positively to olfactory enrichment. In agreement with previous studies, one out of every three cats did not respond to catnip. Almost 80% of the domestic cats responded to silver vine and about 50% to Tatarian honeysuckle and valerian root. Although cats predominantly responded to fruit galls of the silver vine plant, some also responded positively to its wood. Of the cats that did not respond to catnip, almost 75% did respond to silver vine and about one out of three to Tatarian honeysuckle. Unlike domestic cats, tigers were either not interested in silver vine or responded disapprovingly. The amount of nepetalactone was highest in catnip and only present at marginal levels in the other plants. Silver vine contained the highest concentrations of all other compounds tested. Olfactory enrichment for cats may have great potential. Silver vine powder from dried fruit galls and catnip were most popular among domestic cats. Silver vine and Tatarian honeysuckle appear to be good alternatives to catnip for domestic cats that do not respond to catnip.

  5. Theoretical Analysis of Optical Absorption and Emission in Mixed Noble Metal Nanoclusters.

    PubMed

    Day, Paul N; Pachter, Ruth; Nguyen, Kiet A

    2018-04-26

    In this work, we studied theoretically two hybrid gold-silver clusters, which were reported to have dual-band emission, using density functional theory (DFT) and linear and quadratic response time-dependent DFT (TDDFT). Hybrid functionals were found to successfully predict absorption and emission, although explanation of the NIR emission from the larger cluster (cluster 1) requires significant vibrational excitation in the final state. For the smaller cluster (cluster 2), the Δ H(0-0) value calculated for the T1 → S0 transition, using the PBE0 functional, is in good agreement with the measured NIR emission, and the calculated T2 → S0 value is in fair agreement with the measured visible emission. The calculated T1 → S0 phosphorescence Δ H(0-0) for cluster 1 is close to the measured visible emission energy. In order for the calculated phosphorescence for cluster 1 to agree with the intense NIR emission reported experimentally, the vibrational energy of the final state (S0) is required to be about 0.7 eV greater than the zero-point vibrational energy.

  6. Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles.

    PubMed

    Ahmad, Tokeer; Wani, Irshad A; Manzoor, Nikhat; Ahmed, Jahangeer; Asiri, Abdullah M

    2013-07-01

    An eco friendly simple biosynthetic route was used for the preparation of monodisperse and highly crystalline gold and silver nanoparticles using cell free extract of fungus, Candida albicans. Transmission electron microscopic studies show the formation of gold and silver nanocrystals of average size of 5 nm and 30 nm with the specific surface areas of 18.9 m(2)/g and 184.4 m(2)/g respectively. The interaction of gold and silver nanoparticles with proteins has been formulated by FT-IR spectroscopy and thermal gravimetric analysis. The formation of gold and silver nanoparticles was also confirmed by the appearance of a surface plasmon band at 540 nm and 450 nm respectively. The antimicrobial activity of the synthesized gold and silver nanoparticles was investigated against both Staphylococcus aureus and Escherichia coli. The results suggest that these nanoparticles can be used as effective growth inhibitors against the test microorganisms. Greater bactericidal activity was observed for silver nanoparticles. The E. coli, a gram negative bacterium was found to be more susceptible to gold and silver nanoparticles than the S. aureus, a gram positive bacterium. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Irradiation of silver and agar/silver nanoparticles with argon, oxygen glow discharge plasma, and mercury lamp.

    PubMed

    Ahmad, Mahmoud M; Abdel-Wahab, Essam A; El-Maaref, A A; Rawway, Mohammed; Shaaban, Essam R

    2014-01-01

    The irradiation effect of argon, oxygen glow discharge plasma, and mercury lamp on silver and agar/silver nanoparticle samples is studied. The irradiation time dependence of the synthesized silver and agar/silver nanoparticle absorption spectra and their antibacterial effect are studied and compared. In the agar/silver nanoparticle sample, as the irradiation time of argon glow discharge plasma or mercury lamp increases, the peak intensity and the full width at half maximum, FWHM, of the surface plasmon resonance absorption band is increased, however a decrease of the peak intensity with oxygen glow plasma has been observed. In the silver nanoparticle sample, as the irradiation time of argon, oxygen glow discharge plasma or mercury lamp increases, the peak intensity of the surface plasmon resonance absorption band is increased, however, there is no significant change in the FWHM of the surface plasmon resonance absorption band. The SEM results for both samples showed nanoparticle formation with mean size about 50 nm and 40 nm respectively. Throughout the irradiation time with the argon, oxygen glow discharge plasma or mercury lamp, the antibacterial activity of several kinds of Gram-positive and Gram-negative bacteria has been examined.

  8. Potent antimicrobial and antibiofilm activities of bacteriogenically synthesized gold-silver nanoparticles against pathogenic bacteria and their physiochemical characterizations.

    PubMed

    Ramasamy, Mohankandhasamy; Lee, Jin-Hyung; Lee, Jintae

    2016-09-01

    The objective of this study was to develop a bimetallic nanoparticle with enhanced antibacterial activity that would improve the therapeutic efficacy against bacterial biofilms. Bimetallic gold-silver nanoparticles were bacteriogenically synthesized using γ-proteobacterium, Shewanella oneidensis MR-1. The antibacterial activities of gold-silver nanoparticles were assessed on the planktonic and biofilm phases of individual and mixed multi-cultures of pathogenic Gram negative (Escherichia coli and Pseudomonas aeruginosa) and Gram positive bacteria (Enterococcus faecalis and Staphylococcus aureus), respectively. The minimum inhibitory concentration of gold-silver nanoparticles was 30-50 µM than that of other nanoparticles (>100 µM) for the tested bacteria. Interestingly, gold-silver nanoparticles were more effective in inhibiting bacterial biofilm formation at 10 µM concentration. Both scanning and transmission electron microscopy results further accounted the impact of gold-silver nanoparticles on biocompatibility and bactericidal effect that the small size and bio-organic materials covering on gold-silver nanoparticles improves the internalization and thus caused bacterial inactivation. Thus, bacteriogenically synthesized gold-silver nanoparticles appear to be a promising nanoantibiotic for overcoming the bacterial resistance in the established bacterial biofilms. © The Author(s) 2016.

  9. Assessment of interaction-strength interpolation formulas for gold and silver clusters

    NASA Astrophysics Data System (ADS)

    Giarrusso, Sara; Gori-Giorgi, Paola; Della Sala, Fabio; Fabiano, Eduardo

    2018-04-01

    The performance of functionals based on the idea of interpolating between the weak- and the strong-interaction limits the global adiabatic-connection integrand is carefully studied for the challenging case of noble-metal clusters. Different interpolation formulas are considered and various features of this approach are analyzed. It is found that these functionals, when used as a correlation correction to Hartree-Fock, are quite robust for the description of atomization energies, while performing less well for ionization potentials. Future directions that can be envisaged from this study and a previous one on main group chemistry are discussed.

  10. Optical Refraction in Silver: Counterposition, Negative Phase Velocity and Orthogonal Phase Velocity

    ERIC Educational Resources Information Center

    Naqvi, Qaisar A.; Mackay, Tom G.; Lakhtakia, Akhlesh

    2011-01-01

    Complex behaviour associated with metamaterials can arise even in commonplace isotropic dielectric materials. We demonstrate how silver, for example, can support negative phase velocity and counterposition, but not negative refraction, at optical frequencies. The transition from positive to negative phase velocity is not accompanied by remarkable…

  11. Fabrication and characterization of flaky core-shell particles by magnetron sputtering silver onto diatomite

    NASA Astrophysics Data System (ADS)

    Wang, Yuanyuan; Zhang, Deyuan; Cai, Jun

    2016-02-01

    Diatomite has delicate porous structures and various shapes, making them ideal templates for microscopic core-shell particles fabrication. In this study, a new process of magnetron sputtering assisted with photoresist positioning was proposed to fabricate lightweight silver coated porous diatomite with superior coating quality and performance. The diatomite has been treated with different sputtering time to investigate the silver film growing process on the surface. The morphologies, constituents, phase structures and surface roughness of the silver coated diatomite were analyzed with SEM, EDS, XRD and AFM respectively. The results showed that the optimized magnetron sputtering time was 8-16 min, under which the diatomite templates were successfully coated with uniform silver film, which exhibits face centered cubic (fcc) structure, and the initial porous structures were kept. Moreover, this silver coating has lower surface roughness (RMS 4.513 ± 0.2 nm) than that obtained by electroless plating (RMS 15.692 ± 0.5 nm). And the infrared emissivity of coatings made with magnetron sputtering and electroless plating silver coated diatomite can reach to the lowest value of 0.528 and 0.716 respectively.

  12. X-ray diffraction analysis of LiCu2O2 crystals with additives of silver atoms

    NASA Astrophysics Data System (ADS)

    Sirotinkin, V. P.; Bush, A. A.; Kamentsev, K. E.; Dau, H. S.; Yakovlev, K. A.; Tishchenko, E. A.

    2015-09-01

    Silver-containing LiCu2O2 crystals up to 4 × 8 × 8 mm in size were grown by the crystallization of 80(1- x)CuO · 20 x AgNO3 · 20Li2CO3 (0 ≤ х ≤ 0.5) mixture melt. According to the X-ray spectral and Rietveld X-ray diffraction data, the maximum amount of silver incorporated in the LiCu2O2 structure is about 4 at % relative to the copper content. It was established that silver atoms occupy statistically crystallographic positions of lithium atoms. The incorporation of silver atoms is accompanied by a noticeable increase in parameter с of the LiCu2O2 rhombic unit cell, a slight increase in parameter а, and a slight decrease in parameter b.

  13. Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity.

    PubMed

    Kaviya, S; Santhanalakshmi, J; Viswanathan, B; Muthumary, J; Srinivasan, K

    2011-08-01

    Biosynthesis of silver nanoparticles (AgNPs) was achieved by a novel, simple green chemistry procedure using citrus sinensis peel extract as a reducing and a capping agent. The effect of temperature on the synthesis of silver nanoparticles was carried out at room temperature (25°C) and 60°C. The successful formation of silver nanoparticles has been confirmed by UV-vis, FTIR, XRD, EDAX, FESEM and TEM analysis and their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa (gram-negative), and Staphylococcus aureus (gram-positive) has been studied. The results suggest that the synthesized AgNPs act as an effective antibacterial agent. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Formation of silicon nanowire packed films from metallurgical-grade silicon powder using a two-step metal-assisted chemical etching method.

    PubMed

    Ouertani, Rachid; Hamdi, Abderrahmen; Amri, Chohdi; Khalifa, Marouan; Ezzaouia, Hatem

    2014-01-01

    In this work, we use a two-step metal-assisted chemical etching method to produce films of silicon nanowires shaped in micrograins from metallurgical-grade polycrystalline silicon powder. The first step is an electroless plating process where the powder was dipped for few minutes in an aqueous solution of silver nitrite and hydrofluoric acid to permit Ag plating of the Si micrograins. During the second step, corresponding to silicon dissolution, we add a small quantity of hydrogen peroxide to the plating solution and we leave the samples to be etched for three various duration (30, 60, and 90 min). We try elucidating the mechanisms leading to the formation of silver clusters and silicon nanowires obtained at the end of the silver plating step and the silver-assisted silicon dissolution step, respectively. Scanning electron microscopy (SEM) micrographs revealed that the processed Si micrograins were covered with densely packed films of self-organized silicon nanowires. Some of these nanowires stand vertically, and some others tilt to the silicon micrograin facets. The thickness of the nanowire films increases from 0.2 to 10 μm with increasing etching time. Based on SEM characterizations, laser scattering estimations, X-ray diffraction (XRD) patterns, and Raman spectroscopy, we present a correlative study dealing with the effect of the silver-assisted etching process on the morphological and structural properties of the processed silicon nanowire films.

  15. Formation of silicon nanowire packed films from metallurgical-grade silicon powder using a two-step metal-assisted chemical etching method

    PubMed Central

    2014-01-01

    In this work, we use a two-step metal-assisted chemical etching method to produce films of silicon nanowires shaped in micrograins from metallurgical-grade polycrystalline silicon powder. The first step is an electroless plating process where the powder was dipped for few minutes in an aqueous solution of silver nitrite and hydrofluoric acid to permit Ag plating of the Si micrograins. During the second step, corresponding to silicon dissolution, we add a small quantity of hydrogen peroxide to the plating solution and we leave the samples to be etched for three various duration (30, 60, and 90 min). We try elucidating the mechanisms leading to the formation of silver clusters and silicon nanowires obtained at the end of the silver plating step and the silver-assisted silicon dissolution step, respectively. Scanning electron microscopy (SEM) micrographs revealed that the processed Si micrograins were covered with densely packed films of self-organized silicon nanowires. Some of these nanowires stand vertically, and some others tilt to the silicon micrograin facets. The thickness of the nanowire films increases from 0.2 to 10 μm with increasing etching time. Based on SEM characterizations, laser scattering estimations, X-ray diffraction (XRD) patterns, and Raman spectroscopy, we present a correlative study dealing with the effect of the silver-assisted etching process on the morphological and structural properties of the processed silicon nanowire films. PMID:25349554

  16. In Vitro Assessment of the Antibacterial Potential of Silver Nano-Coatings on Cotton Gauzes for Prevention of Wound Infections

    PubMed Central

    Paladini, Federica; Di Franco, Cinzia; Panico, Angelica; Scamarcio, Gaetano; Sannino, Alessandro; Pollini, Mauro

    2016-01-01

    Multidrug-resistant organisms are increasingly implicated in acute and chronic wound infections, thus compromising the chance of therapeutic options. The resistance to conventional antibiotics demonstrated by some bacterial strains has encouraged new approaches for the prevention of infections in wounds and burns, among them the use of silver compounds and nanocrystalline silver. Recently, silver wound dressings have become widely accepted in wound healing centers and are commercially available. In this work, novel antibacterial wound dressings have been developed through a silver deposition technology based on the photochemical synthesis of silver nanoparticles. The devices obtained are completely natural and the silver coatings are characterized by an excellent adhesion without the use of any binder. The silver-treated cotton gauzes were characterized through scanning electron microscopy (SEM) and thermo-gravimetric analysis (TGA) in order to verify the distribution and the dimension of the silver particles on the cotton fibers. The effectiveness of the silver-treated gauzes in reducing the bacterial growth and biofilm proliferation has been demonstrated through agar diffusion tests, bacterial enumeration test, biofilm quantification tests, fluorescence and SEM microscopy. Moreover, potential cytotoxicity of the silver coating was evaluated through 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide colorimetric assay (MTT) and the extract method on fibroblasts and keratinocytes. Inductively coupled plasma mass spectrometry (ICP-MS) was performed in order to determine the silver release in different media and to relate the results to the biological characterization. All the results obtained were compared with plain gauzes as a negative control, as well as gauzes treated with a higher silver percentage as a positive control. PMID:28773531

  17. Preparation of silver-chitosan nanocomposites and coating on bandage for antibacterial wound dressing application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susilowati, Endang, E-mail: endwati@yahoo.co.id; Ashadi; Maryani

    Bandage is a medical device that is essential for wound dressing. To improve the performance of the bandage, it has been coated by silver-chitosan nanocomposites (Ag/Chit) with pad-dry-cure method. The nanocomposites were performed by chemical reduction method at room temperature using glucose as reducing agent, sodium hydroxide (NaOH) as accelerator reagent, silver nitrate (AgNO{sub 3}) as metal precursor and chitosan as stabilizing agent. Localized surface plasmon resonance (LSPR) absorption band of silver nanoparticles was investigated using UV-Vis spectrophotometer. The bandage coated Ag/Chit nanocomposites (B-Ag/Chit) were characterized by fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM).more » In addition, antibacterial activity of the bandage toward Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli) were also studied. The formation of silver nanoparticles was confirmed by the appearance of LSPR absorption peak at 412.2 – 423.2 nm. Coating of nanocomposite cause increasing rigidity of bandage and decreasing on crystallinity. The bandages of B-Ag/Chit demonstrated good activity against both Gram positive (S. aureus) and Gram negative (E.Coli). Thus the bandages have a potential to be used for antibacterial wound dressing application.« less

  18. Process for the Production of Star Tracklng [Tracking] Reticles

    NASA Technical Reports Server (NTRS)

    Smith, Wade O. (Inventor); Toft, Albert R. (Inventor)

    1972-01-01

    A method for the production of reticles, particularly those for use in outer space, wherein the product is a quartz base coated with highly adherent layers of chromium, chromium-silver, and silver vacuum deposited through a mask, and then coated with an electrodeposit of copper from a copper sulfate solution followed by an electrodeposit of black chromium. The masks are produced by coating a beryllium-copper alloy substrate with a positive working photoresist, developing the photoresist according to a pattern to leave a positive mask, plating uncoated areas with gold, removing the photoresist, coating the substrate with a negative working photoresist, developing the negative working photoresist to expose the base metal of the pattern, and chemically etching the unplated side of the pattern to produce the mask. The mask produced is then used in the vacuum deposition of: (1) chromium metal on the surface of a quartz base to obtain a highly adherent quartz-chromium interface; (2) silver on the chromium deposit, during the final stage of chromium deposit, to produce a silver chromium alloy layer; and (3) silver onto the surface of the alloy layer. The coated quartz base is then coated by electroplating utilizing an acid copper deposit followed by a black chromium electrodeposit to produce the product of the present invention.

  19. Green synthesis of silver nanoparticles using Terminalia chebula extract at room temperature and their antimicrobial studies

    NASA Astrophysics Data System (ADS)

    Mohan Kumar, Kesarla; Sinha, Madhulika; Mandal, Badal Kumar; Ghosh, Asit Ranjan; Siva Kumar, Koppala; Sreedhara Reddy, Pamanji

    2012-06-01

    A green rapid biogenic synthesis of silver nanoparticles (Ag NPs) using Terminalia chebula (T. chebula) aqueous extract was demonstrated in this present study. The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance (SPR) at 452 nm using UV-visible spectrophotometer. The reduction of silver ions to silver nanoparticles by T. chebula extract was completed within 20 min which was evidenced potentiometrically. Synthesised nanoparticles were characterised using UV-vis spectroscopy, Fourier transformed infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM). The hydrolysable tannins such as di/tri-galloyl-glucose present in the extract were hydrolyzed to gallic acid and glucose that served as reductant while oxidised polyphenols acted as stabilizers. In addition, it showed good antimicrobial activity towards both Gram-positive bacteria (S. aureus ATCC 25923) and Gram-negative bacteria (E. coli ATCC 25922). Industrially it may be a smart option for the preparation of silver nanoparticles.

  20. Silver nanostructures synthesis via optically induced electrochemical deposition

    NASA Astrophysics Data System (ADS)

    Li, Pan; Liu, Na; Yu, Haibo; Wang, Feifei; Liu, Lianqing; Lee, Gwo-Bin; Wang, Yuechao; Li, Wen Jung

    2016-06-01

    We present a new digitally controlled, optically induced electrochemical deposition (OED) method for fabricating silver nanostructures. Projected light patterns were used to induce an electrochemical reaction in a specialized sandwich-like microfluidic device composed of one indium tin oxide (ITO) glass electrode and an optically sensitive-layer-covered ITO electrode. Silver polyhedral nanoparticles, triangular and hexagonal nanoplates, and nanobelts were controllably synthesized in specific positions at which projected light was illuminated. The silver nanobelts had rectangular cross-sections with an average width of 300 nm and an average thickness of 100 nm. By controlling the applied voltage, frequency, and time, different silver nanostructure morphologies were obtained. Based on the classic electric double-layer theory, a dynamic process of reduction and crystallization can be described in terms of three phases. Because it is template- and surfactant-free, the digitally controlled OED method facilitates the easy, low cost, efficient, and flexible synthesis of functional silver nanostructures, especially quasi-one-dimensional nanobelts.

  1. Silver nanoparticles with gelatin nanoshells: photochemical facile green synthesis and their antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Pourjavadi, Ali; Soleyman, Rouhollah

    2011-10-01

    In the current study, a facile green synthesis of silver-gelatin core-shell nanostructures (spherical, spherical/cubic hybrid, and cubic, DLS diameter: 4.1-6.9 nm) is reported via the wet chemical synthesis procedure. Sunlight-UV as an available reducing agent cause mild reduction of silver ions into the silver nanoparticles (Ag-NPs). Gelatin protein, as an effective capping/shaping agent, was used in the reaction to self-assemble silver nanostructures. The formation of silver nanostructures and their self-assembly pattern was confirmed by SEM, AFM, and TEM techniques. Further investigations were carried out using zeta-potential, UV-Vis, FTIR, GPC, and TGA/DTG/DTA data. The prepared Ag-NPs showed proper and acceptable antimicrobial activity against three classes of microorganisms ( Escherichia coli Gram-negative bacteria, Staphylococcus aureus Gram-positive bacteria, and Candida albicans fungus). The antibacterial and antifungal Ag-NPs exhibit good stability in solution and can be considered as promising candidates for a wide range of biomedical applications.

  2. TEM and SP-ICP-MS analysis of the release of silver nanoparticles from decoration of pastry.

    PubMed

    Verleysen, E; Van Doren, E; Waegeneers, N; De Temmerman, P-J; Abi Daoud Francisco, M; Mast, J

    2015-04-08

    Metallic silver is an EU approved food additive referred to as E174. It is generally assumed that silver is only present in bulk form in the food chain. This work demonstrates that a simple treatment with water of "silver pearls", meant for decoration of pastry, results in the release of a subfraction of silver nanoparticles. The number-based size and shape distributions of the single, aggregated, and/or agglomerated particles released from the silver pearls were determined by combining conventional bright-field TEM imaging with semiautomatic particle detection and analysis. In addition, the crystal structure of the particles was studied by electron diffraction and chemical information was obtained by combining HAADF-STEM imaging with EDX spectroscopy and mapping. The TEM results were confirmed by SP-ICP-MS. The representative Ag test nanomaterial NM-300 K was used as a positive control to determine the uncertainty on the measurement of the size and shape of the particles.

  3. Antimicrobial properties and dental pulp stem cell cytotoxicity using carboxymethyl cellulose-silver nanoparticles deposited on titanium plates

    PubMed Central

    Laredo-Naranjo, Martha Alicia; Carrillo-Gonzalez, Roberto; De La Garza-Ramos, Myriam Angelica; Garza-Navarro, Marco Antonio; Torre-Martinez, Hilda H. H.; Del Angel-Mosqueda, Casiano; Mercado-Hernandez, Roberto; Carrillo-Fuentevilla, Roberto

    2016-01-01

    Abstract Objective: To evaluate the antimicrobial properties and dental pulp stem cells (DPSCs) cytotoxicity of synthesized carboxymethyl cellulose-silver nanoparticles impregnated on titanium plates. Material and methods: The antibacterial effect of silver nanoparticles in a carboxymethyl cellulose matrix impregnated on titanium plates (Ti-AgNPs) in three concentrations: 16%, 50% and 100% was determined by adding these to bacterial cultures of Streptococcus mutans and Porphyromonas gingivalis. The Ti-AgNPs cytotoxicity on DPSCs was determined using a fluorimetric cytotoxicity assay with 0.12% chlorhexidine as a positive control. Results: Silver nanoparticles in all concentrations were antimicrobial, with concentrations of 50% and 100% being more cytotoxic with 4% cell viability. Silver nanoparticles 16% had a cell viability of 95%, being less cytotoxic than 0.12% chlorhexidine. Conclusions: Silver nanoparticles are a promising structure because of their antimicrobial properties. These have high cell viability at a concentration of 16%, and are less toxic than chlorhexidine. PMID:28642914

  4. Studying the silver nanoparticles influence on thermodynamic behavior and antimicrobial activities of novel amide Gemini cationic surfactants.

    PubMed

    Shaban, Samy M; Abd-Elaal, Ali A

    2017-07-01

    Three novels amide Gemini cationic surfactants with various alkyl chains and their silver nanohybrid with silver nanoparticles were synthesized and a confirmation study for surfactant and their nanoparticles formation has been established using IR, 1 HNMR, TEM and UV-Vis spectroscopy. The surface-active properties of these surfactants and their nanoform were investigated through surface tension and electrical conductivity measurements and a comparative study has been established. The thermodynamic parameters of micellization and adsorption were assessed at temperatures range from 25 to 65°C. The effect of silver particles on the surface behavior of the synthesized surfactant has been discussed. The aggregation behavior of silver nanoparticles with these synthesized Gemini surfactants in water were investigated using dynamic light scattering and transmission electron microscopy. Furthermore, the antimicrobial activities of these synthesized amide Gemini surfactants and their nanostructure with silver against both Gram positive and Gram negative bacteria were also investigated. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Central Doping of a Foreign Atom into the Silver Cluster for Catalytic Conversion of CO2 toward C-C Bond Formation.

    PubMed

    Liu, Yuanyuan; Chai, Xiaoqi; Cai, Xiao; Chen, Mingyang; Jin, Rongchao; Ding, Weiping; Zhu, Yan

    2018-06-19

    Clusters with an exact number of atoms are of particular research interest in catalysis. Their catalytic behaviors can be potentially altered with the addition or removal of a single atom. Herein we explore the effects of the single-foreign-atom (Au, Pd and Pt) doping into the core of an Ag cluster with 25-atoms on the catalytic properties, where the foreign atom is protected by 24 Ag atoms (i.e., Au@Ag24, Pd@Ag24, and Pt@Ag24). The central doping of a single atom into the Ag25 cluster is found to have a substantial influence on the catalytic performance in the carboxylation reaction of CO2 with terminal alkyne through C-C bond formation to produce propiolic acid. Our studies reveal that the catalytic properties of the cluster catalysts can be dramatically changed with the subtle alteration by a single atom away from the active sites. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Phyto-synthesis and antibacterial studies of bio-based silver nanoparticles using Sesbania grandiflora (Avisa) leaf tea extract

    NASA Astrophysics Data System (ADS)

    Mallikarjuna, K.; Balasubramanyam, K.; Narasimha, G.; Kim, Haekyoung

    2018-01-01

    Green nanobiotechnology using plants, micro-organisms, and their extracts has improved the utilization of natural resources. More efficient and eco-friendly routes are being developed for the creation of benign, biodegradable materials that have medical applicability. We developed silver nanoparticles encapsulated with Sesbania grandiflora (Avisa) leaf extract, which served as a reducing and capping material. The structure and functionalization of the synthesized nanoparticles were investigated using UV-vis, XRD, FE-TEM, SAED, and FTIR analyses. The nanoparticles were found to be isotropic and spherical, with a core of Ag wrapped in phytochemicals. The presence of phytochemicals stabilized the nanoparticles during production by preventing agglomeration. Antibacterial properties against both gram-positive and gram-negative bacteria were also tested. The phytochemical-wrapped silver nanoparticles were more effective antibiotics than were bare silver nanoparticles. The phytochemicals were likely responsible for both direct and indirect improvements in the bactericidal properties of the Ag particles. Additionally, the developed nanoparticles showed higher antibacterial activity towards gram-negative bacteria than towards gram-positive bacteria, with the cell wall playing an important role in adsorption and absorption of Ag+.

  7. Investigation on the adsorption characteristics of anserine on the surface of colloidal silver nanoparticles.

    PubMed

    Thomas, S; Maiti, N; Mukherjee, T; Kapoor, S

    2013-08-01

    The surface-enhanced Raman scattering (SERS) studies of anserine (beta-alanyl-N-methylhistidine) was carried out on colloidal silver nanoparticles to understand its adsorption characteristics. The experimentally observed Raman bands were assigned based on the results of DFT calculations. The studies suggest that the interaction of anserine is primarily through the carboxylate group with the imidazole ring in an upright position with respect to the silver surface. Concentration dependent SERS studies suggest a change in orientation at sub-monolayer concentration. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Green synthesis and characterization of monodispersed silver nanoparticles using root bark aqueous extract of Annona muricata Linn and their antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Ezealisiji, K. M.; Noundou, X. S.; Ukwueze, S. E.

    2017-11-01

    In recent time, various phytosynthetic methods have been employed for the fabrication of silver nanoparticles; these unique metal nanoparticles are used in several applications which include pharmaceuticals and material engineering. The current research reports a rapid and simple synthetic partway for silver nanoparticles (AgNPs) using root bark aqueous extract of Annona muricata and the evaluation of its antimicrobial efficacy against pathogenic microorganisms. The root bark extract was treated with aqueous silver nitrate solution. Silver ions were reduced to silver atoms which on aggregation gave Silver nanoparticles; the biosynthesized AgNPs were characteristically spherical, discreet and stabilized by phytochemical entities and were characterized using ultraviolet visible spectroscopy, transmission electron microscope (TEM) and photon correlation microscopy. The aqueous plant extract-AgNPs suspension was subjected to Fourier transform infrared spectroscopy. TEM result for the average particle size is 22 ± 2 nm. The polydispersity index and zeta-potential were found to be 0.44 ± 0.02 and - 27.90 ± 0.01 mV, respectively (Zeta-Sizer). The antimicrobial evaluation result showed that the synthesized silver nanoparticles at different concentration were very active against the Gram-positive bacteria ( B. subtilis, S. aureous) and Gram-negative bacteria ( K. Pneumonia, E. Coli and Pseudomonas aeruginosa), P. aeruginosa being most susceptible to the anti microbial effect of the silver nanoparticles. Stable silver nanoparticles with antimicrobial activity were obtained through biosynthesis.

  9. Holocentric chromosomes of psocids (Insecta, Psocoptera) analysed by C-banding, silver impregnation and sequence specific fluorochromes CMA3 and DAPI.

    PubMed

    Golub, Natalia V; Nokkala, Seppo; Kuznetsova, Valentina G

    2004-01-01

    The pattern of nucleolus attachment and C-heterochromatin distribution and molecular composition in the karyotypes of psocid species Psococerastis gibbosa (2n = 16+X), Blaste conspurcata (2n = 16+X) and Amphipsocus japonicus (2n = 14+neo-XY) were studied by C-banding, silver impregnation and sequence specific fluorochromes CMA3 and DAPI. Every species was found to have a single nucleolus in male meiosis. In P. gibbosa the nucleolus is attached to an autosomal bivalent; in B. conspurcata to the X-chromosome; in A. japonicus to the neo-XY bivalent. The species show a rather small amount of constitutive heterochromatin, C-blocks demonstrating telomeric localization with rare exceptions. P. gibbosa is characterized by a polymorphism for C-blocks occurrence and distribution. In the autosomes of this species, C-heterochromatin consists of AT-rich DNA except for the nucleolus organizing region, which is also GC-rich; the X-chromosome shows both AT- and GC-rich clusters. In A. japonicus and B. conspurcata, C-heterochromatin of the autosomes and sex chromosomes consists of both GC-rich and AT-rich DNA clusters, which are largely co-localized.

  10. Description of plasmon-like band in silver clusters: the importance of the long-range Hartree-Fock exchange in time-dependent density-functional theory simulations.

    PubMed

    Rabilloud, Franck

    2014-10-14

    Absorption spectra of Ag20 and Ag55(q) (q = +1, -3) nanoclusters are investigated in the framework of the time-dependent density functional theory in order to analyse the role of the d electrons in plasmon-like band of silver clusters. The description of the plasmon-like band from calculations using density functionals containing an amount of Hartree-Fock exchange at long range, namely, hybrid and range-separated hybrid (RSH) density functionals, is in good agreement with the classical interpretation of the plasmon-like structure as a collective excitation of valence s-electrons. In contrast, using local or semi-local exchange functionals (generalized gradient approximations (GGAs) or meta-GGAs) leads to a strong overestimation of the role of d electrons in the plasmon-like band. The semi-local asymptotically corrected model potentials also describe the plasmon as mainly associated to d electrons, though calculated spectra are in fairly good agreement with those calculated using the RSH scheme. Our analysis shows that a portion of non-local exchange modifies the description of the plasmon-like band.

  11. X-ray diffraction analysis of LiCu{sub 2}O{sub 2} crystals with additives of silver atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirotinkin, V. P., E-mail: irotinkin.vladimir@mail.ru; Bush, A. A.; Kamentsev, K. E.

    2015-09-15

    Silver-containing LiCu{sub 2}O{sub 2} crystals up to 4 × 8 × 8 mm in size were grown by the crystallization of 80(1-x)CuO · 20{sub x}AgNO{sub 3} · 20Li{sub 2}CO{sub 3} (0 ≤ x ≤ 0.5) mixture melt. According to the X-ray spectral and Rietveld X-ray diffraction data, the maximum amount of silver incorporated in the LiCu{sub 2}O{sub 2} structure is about 4 at % relative to the copper content. It was established that silver atoms occupy statistically crystallographic positions of lithium atoms. The incorporation of silver atoms is accompanied by a noticeable increase in parameter c of the LiCu{sub 2}O{submore » 2} rhombic unit cell, a slight increase in parameter a, and a slight decrease in parameter b.« less

  12. Synthesis of silver nano-materials from Grevillea robusta A Cunn (Silver-oak tree) leaves extract and shape directing role of cetyltrimethylammonium bromide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Rabia; Faisal, Qamer; Hussain, Sajjad

    Grevillea robusta (Silver-oak tree) tree is a medicinal tree. Conventional UV-visible spectrophotometric and transmission electron microscopic technique were used to determine the morphology of silver nanoplates (AgNP) using Grevillea robusta (Silver-oak tree) aqueous leaves extract for the first time. The visible spectra showed the presence of three well defined surface plasmon absorption (SPR) bands at 500, 550 and 675 nm which was attributed to the anisotropic growth of Ag-nanoplates. Transmission electron microscopic (TEM) analysis of AgNP showed formation of truncated triangular, polyhedral with some irregular shapes nanoplates in the size range 8-20 nm. Cetyltrimethylammonium bromide (CTAB) has no significant effect on themore » shape of the spectra, position of SPR bands, size and size distribution of AgNP.« less

  13. Selective Deposition of Silver Oxide on Single-Domain Ferroelectric Nanoplates and Their Efficient Visible-Light Photoactivity.

    PubMed

    Chen, Fang; Ren, Zhaohui; Gong, Siyu; Li, Xiang; Shen, Ge; Han, Gaorong

    2016-08-16

    In this work, single-crystal and single-domain PbTiO3 nanoplates are employed as substrates to prepare Ag2 O/PbTiO3 composite materials through a photodeposition method. It is revealed that silver oxide nanocrystals with an average size of 63 nm are selectively deposited on the positive polar surface of the ferroelectric substrate. The possible mechanism leading to the formation of silver oxide is that silver ions are first reduced to silver and then oxidized by oxygen generation. The composite shows an efficient photodegradation performance towards rhodamine B (RhB) and methyl orange (MO) under visible-light irradiation. Such highly efficient photoactivity can be attributed to the ferroelectric polarization effect of the substrate, which promotes the separation of photogenerated electrons and holes at the interface. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Manipulation of visible-light polarization with dendritic cell-cluster metasurfaces.

    PubMed

    Fang, Zhen-Hua; Chen, Huan; An, Di; Luo, Chun-Rong; Zhao, Xiao-Peng

    2018-06-26

    Cross-polarization conversion plays an important role in visible light manipulation. Metasurface with asymmetric structure can be used to achieve polarization conversion of linearly polarized light. Based on this, we design a quasi-periodic dendritic metasurface model composed of asymmetric dendritic cells. The simulation indicates that the asymmetric dendritic structure can vertically rotate the polarization direction of the linear polarization wave in visible light. Silver dendritic cell-cluster metasurface samples were prepared by the bottom-up electrochemical deposition. It experimentally proved that they could realize the cross - polarization conversion in visible light. Cross-polarized propagating light is deflected into anomalous refraction channels. Dendritic cell-cluster metasurface with asymmetric quasi-periodic structure conveys significance in cross-polarization conversion research and features extensive practical application prospect and development potential.

  15. Novel SERS materials for multiplex biomolecular detection via controlled nanoparticle linking and polymer encapsulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, G B; Lee, S J; Laurence, T

    2008-07-21

    Over the past decade the emphasis on single-molecule sensitivity of surface-enhanced Raman spectroscopy (SERS) has brought to prominence the special role played by so-called SERS 'hot spots', oftentimes nanometer-scale junctions between nanostructures. In this report, optimally SERS enhancing silver clusters were synthesized using bifunctional linkers and polymer and/or protein encapsulation. The synthesis, which results in stable clusters even when stored for months or dried and re-dissolved, is scalable to large quantities. Using a sacrificial linker approach we also employ a permeable polymer/protein shell for general small molecule sensing. Finally, we utilize these nanomaterials by tagging specific epitopes on cancer cellsmore » and show that SERS signals from single clusters can be measured routinely.« less

  16. Catalytically and biologically active silver nanoparticles synthesized using essential oil

    NASA Astrophysics Data System (ADS)

    Vilas, Vidya; Philip, Daizy; Mathew, Joseph

    2014-11-01

    There are numerous reports on phytosynthesis of silver nanoparticles and various phytochemicals are involved in the reduction and stabilization. Pure explicit phytosynthetic protocol for catalytically and biologically active silver nanoparticles is of importance as it is an environmentally benign green method. This paper reports the use of essential oil of Myristica fragrans enriched in terpenes and phenyl propenes in the reduction and stabilization. FTIR spectra of the essential oil and the synthesized biogenic silver nanoparticles are in accordance with the GC-MS spectral analysis reports. Nanosilver is initially characterized by an intense SPR band around 420 nm, followed by XRD and TEM analysis revealing the formation of 12-26 nm sized, highly pure, crystalline silver nanoparticles. Excellent catalytic and bioactive potential of the silver nanoparticles is due to the surface modification. The chemocatalytic potential of nanosilver is exhibited by the rapid reduction of the organic pollutant, para nitro phenol and by the degradation of the thiazine dye, methylene blue. Significant antibacterial activity of the silver colloid against Gram positive, Staphylococcus aureus (inhibition zone - 12 mm) and Gram negative, Escherichia coli (inhibition zone - 14 mm) is demonstrated by Agar-well diffusion method. Strong antioxidant activity of the biogenic silver nanoparticles is depicted through NO scavenging, hydrogen peroxide scavenging, reducing power, DPPH and total antioxidant activity assays.

  17. A photochemical approach designed to improve the coating of nanoscale silver films onto food plastic wrappings intended to control bacterial hazards

    NASA Astrophysics Data System (ADS)

    Mustatea, Gabriel; Vidal, Loïc; Calinescu, Ioan; Dobre, Alina; Ionescu, Mariana; Balan, Lavinia

    2015-01-01

    Plasmonic silver film was directly generated on a variety of substrates through a facile and environmentally friendly method, which involves a UV-photoreduction process without any reducing or stabilizing agent and requiring no thermal step. Top-coated films of unprotected silver nanoparticles (3-11 nm) were generated from hydroalcoholic AgNO3 solution and directly on glass substrates or food packaging plastic wraps, low density polyethylene film, and polyvinyl chloride. The natural antibacterial activity of the material was evaluated. The correlation between silver migration and antimicrobial activity of silver-functionalized substrates against pure strains of gram-negative bacteria ( Escherichia coli) and gram-positive bacteria ( Staphylococcus aureus) was demonstrated. By way of illustration, food plastic wraps top-coated in this way exhibited a high antibacterial activity. The metal nanoparticle film obtained in this way was characterized and the influence of several parameters (fluence, exposure, silver nitrate concentration, and nature of the free radicals generator) on their formation was studied. Moreover, by shaping the actinic beam with an appropriate device, it is very easy to pattern the brown yellow silver nanofilm or to print messages in plain text.

  18. Pyrrolo-dC Metal-Mediated Base Pairs in the Reverse Watson-Crick Double Helix: Enhanced Stability of Parallel DNA and Impact of 6-Pyridinyl Residues on Fluorescence and Silver-Ion Binding.

    PubMed

    Yang, Haozhe; Mei, Hui; Seela, Frank

    2015-07-06

    Reverse Watson-Crick DNA with parallel-strand orientation (ps DNA) has been constructed. Pyrrolo-dC (PyrdC) nucleosides with phenyl and pyridinyl residues linked to the 6 position of the pyrrolo[2,3-d]pyrimidine base have been incorporated in 12- and 25-mer oligonucleotide duplexes and utilized as silver-ion binding sites. Thermal-stability studies on the parallel DNA strands demonstrated extremely strong silver-ion binding and strongly enhanced duplex stability. Stoichiometric UV and fluorescence titration experiments verified that a single (2py) PyrdC-(2py) PyrdC pair captures two silver ions in ps DNA. A structure for the PyrdC silver-ion base pair that aligns 7-deazapurine bases head-to-tail instead of head-to-head, as suggested for canonical DNA, is proposed. The silver DNA double helix represents the first example of a ps DNA structure built up of bidentate and tridentate reverse Watson-Crick base pairs stabilized by a dinuclear silver-mediated PyrdC pair. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. VASQUEZ PEAK WILDERNESS STUDY AREA, AND ST. LOUIS PEAK, AND WILLIAMS FORK ROADLESS AREAS, COLORADO.

    USGS Publications Warehouse

    Theobald, P.K.; Bielski, A.M.

    1984-01-01

    A mineral-resource survey was conducted during the years 1979-82 in the Vasquez Peak Wilderness Study Area and in the St. Louis Peak and Williams Fork Roadless Areas, central Front Range, Colorado. Probable resource potential for the occurrence of copper, lead, zinc, and silver in massive sulfide deposits has been identified in calcareous metamorphic rocks in the northern part of the St. Louis Peak Roadless Area and in the southern part of the Williams Fork Roadless Area. A probable resource potential for vein-type uranium deposits is identified along the Berthoud Pass fault zone in the eastern part of the Vasquez Peak Wilderness Study Area. A large area encompassing the eastern and southeastern part of each of the three areas has probable and substantiated potential for either high-grade lead-zinc-silver vein deposits, or larger, lower-grade clustered vein deposits. A probable resource potential for stockwork molybdenum deposits related to porphyry molybdenum type mineralization exists beneath the lead-zinc-silver-rich veins. The nature of the geologic terrane indicates little likelihood for the occurrence of organic fuels.

  20. The crossover between tunnel and hopping conductivity in granulated films of noble metals

    NASA Astrophysics Data System (ADS)

    Kavokin, Alexey; Kutrovskaya, Stella; Kucherik, Alexey; Osipov, Anton; Vartanyan, Tigran; Arakelyan, Sergey

    2017-11-01

    The conductivity of thin films composed by clusters of gold and silver nanoparticles has been studies in a wide range of temperatures. The switch from a temperature independence to an exponential thermal dependence of the conductivity manifests the crossover between the tunnel and thermally activated hopping regimes of the electronic transport at the temperature of 60 °C. The characteristic thermal activation energy that governs hopping of electrons between nanoparticles is estimated as 1.3 eV. We have achieved a good control of the composition and thicknesses of nano-cluster films by use of the laser ablation method in colloidal solutions.

  1. Intermittent use of copper-silver ionization for Legionella control in water distribution systems: a potential option in buildings housing individuals at low risk of infection.

    PubMed

    Liu, Z; Stout, J E; Boldin, M; Rugh, J; Diven, W F; Yu, V L

    1998-01-01

    One copper-silver ionization system was sequentially installed onto the hot-water recirculation lines of two hospital buildings colonized with Legionella pneumophila, serogroup 1. A third building with the same water supply and also colonized with Legionella served as a control. Four weeks after activation of the system, distal site positivity for Legionella in the first test building dropped to zero. After operating for 16 weeks, the system was disconnected and installed onto the second test building. Twelve weeks of disinfection reduced the distal site positivity for Legionella in the second test building to zero. Legionella recolonization did not occur in the first test building for 6-12 weeks and in the second test building for 8-12 weeks after inactivation of the system. The control building remained Legionella-positive throughout the experimental period. A significantly higher copper concentration was found in the biofilm taken from a sampling device than in that from water. This is likely to be the reason that the copper-silver ionization system had the residual effect of preventing early recolonization. Our study raises the possibility that one copper-silver unit could be rotated among several buildings to maintain a Legionella-free environment. Such an approach may be cost-effective for buildings housing individuals at low risk for contracting legionnaires' disease.

  2. Microstructural, spectroscopic, and antibacterial properties of silver-based hybrid nanostructures biosynthesized using extracts of coriander leaves and seeds

    PubMed Central

    Luna, Carlos; Barriga-Castro, Enrique Díaz; Gómez-Treviño, Alberto; Núñez, Nuria O; Mendoza-Reséndez, Raquel

    2016-01-01

    Coriander leaves and seeds have been highly appreciated since ancient times, not only due to their pleasant flavors but also due to their inhibitory activity on food degradation and their beneficial properties for health, both ascribed to their strong antioxidant activity. Recently, it has been shown that coriander leaf extracts can mediate the synthesis of metallic nanoparticles through oxidation/reduction reactions. In the present study, extracts of coriander leaves and seeds have been used as reaction media for the wet chemical synthesis of ultrafine silver nanoparticles and nanoparticle clusters, with urchin- and tree-like shapes, coated by biomolecules (mainly, proteins and polyphenols). In this greener route of nanostructure preparation, the active biocompounds of coriander simultaneously play the roles of reducing and stabilizing agents. The morphological and microstructural studies of the resulting biosynthesized silver nanostructures revealed that the nanostructures prepared with a small concentration of the precursor Ag salt (AgNO3 =5 mM) exhibit an ultrafine size and a narrow size distribution, whereas particles synthesized with high concentrations of the precursor Ag salt (AgNO3 =0.5 M) are polydisperse and formation of supramolecular structures occurs. Fourier transform infrared and Raman spectroscopy studies indicated that the bioreduction of the Ag− ions takes place through their interactions with free amines, carboxylate ions, and hydroxyl groups. As a consequence of such interactions, residues of proteins and polyphenols cap the biosynthesized Ag nanoparticles providing them a hybrid core/shell structure. In addition, these biosynthesized Ag nanomaterials exhibited size-dependent plasmon extinction bands and enhanced bactericidal activities against both Gram-positive and Gram-negative bacteria, displaying minimal inhibitory Ag concentrations lower than typical values reported in the literature for Ag nanoparticles, probably due to the synergy of the bactericidal activities of the Ag nanoparticle cores and their capping ligands. PMID:27703347

  3. Optical trapping/modification of nano-(micro)particles by gradient and photorefractive forces during laser illumination

    NASA Astrophysics Data System (ADS)

    Kukhtarev, N.; Kukhtareva, T.; Okafor, F.

    2010-08-01

    In this paper we describe photo-induced trapping/redistribution of silver nano-(micro) particles near the surface of photorefractive crystal LiNbO3:Fe. This type of optical trapping is due to combined forces of direct gradient-force trapping and asymmetric photorefractive forces of electro-phoresis and dielectro-phoresis. The silver nanoparticles were produced through extracellular biosynthesis on exposure to the fungus, Fusarium oxysporum (FO) and to the plant extracts. Pulsed and CW visible laser radiation lead to significant modification of nanoparticle clusters. This study indicates that extracellular biosynthesis can constitute a possible viable alternative method for the production of nanoparticles. In addition, the theoretical modeling of asymmetric photorefractive electric field grating has been presented and compared with the experimental results.

  4. Characterization and antimicrobial activity of silver nanoparticles, biosynthesized using Bacillus species

    NASA Astrophysics Data System (ADS)

    Ghiuță, I.; Cristea, D.; Croitoru, C.; Kost, J.; Wenkert, R.; Vyrides, I.; Anayiotos, A.; Munteanu, D.

    2018-04-01

    In this work, the biosynthesis of silver nanoparticles, using AgNO3 as a precursor, by two Bacillus species, namely Bacillus amyloliquefaciens and Bacillus subtillis, is reported. After the synthesis stages, the absorbance of the brown nanoparticle colloidal solutions was assessed by UV-vis spectrophotometry, which showed the peak absorbance values at 418 nm and 414 nm, corresponding to surface plasmon resonance of silver nanoparticles. The EDX, SEM and DLS analyses confirmed the formation of spherical silver nanoparticles with an average diameter smaller than 140 nm. XRD confirmed the presence of face-centered cubic silver crystals, with the highest intensity peak at 2θ = 38.12°, which corresponds to the (111) diffraction planes. The antibacterial activity after 24 h of incubation was observed against gram negative bacteria: Escherichia coli, Pseudomonas aeruginosa, Salmonella, as well as gram positive: Staphylococcus aureus, Streptococcus pyogenes. Furthermore, the antifungal activity was assessed against Candida albicans. The inhibition zone was clearly observed on the plates containing silver nanoparticles, either standalone or in combination with antibiotics, thus showing their potentiating antibacterial effect.

  5. Silver nanoparticle-E. coli colloidal interaction in water and effect on E. coli survival.

    PubMed

    Dror-Ehre, A; Mamane, H; Belenkova, T; Markovich, G; Adin, A

    2009-11-15

    Silver nanoparticles exhibit antibacterial properties via bacterial inactivation and growth inhibition. The mechanism is not yet completely understood. This work was aimed at elucidating the effect of silver nanoparticles on inactivation of Escherichia coli, by studying particle-particle interactions in aqueous suspensions. Stable, molecularly capped, positively or negatively charged silver nanoparticles were mixed at 1 to 60microgmL(-1) with suspended E. coli cells to examine their effect on inactivation of the bacteria. Gold nanoparticles with the same surfactant were used as a control, being of similar size but made up of a presumably inert metal. Log reduction of 5log(10) and complete inactivation were obtained with the silver nanoparticles while the gold nanoparticles did not show any inactivation ability. The effect of molecularly capped nanoparticles on E. coli survival was dependent on particle number. Log reduction of E. coli was associated with the ratio between the number of nanoparticles and the initial bacterial cell count. Electrostatic attraction or repulsion mechanisms in silver nanoparticle-E. coli cell interactions did not contribute to the inactivation process.

  6. [Morphological changes of the intestine in experimental acute intestinal infection in the treatment of colloidal silver].

    PubMed

    Polov'ian, E S; Chemich, N D; Moskalenko, R A; Romaniuk, A N

    2012-06-01

    At the present stage of infectionist practice in the treatment of acute intestinal infections caused by opportunistic microorganisms, colloidal silver is used with a particle size of 25 nm as an alternative to conventional causal therapy. In 32 rats, distributed in 4 groups of 8 animals each (intact; healthy, got colloidal silver; with a modeled acute intestinal infection in the basic treatment and with the addition of colloidal silver), histological examination was performed of small and large intestine of rats. Oral administration of colloidal silver at a dose of 0.02 mg/day to intact rats did not lead to changes in morphometric parameters compared to the norm, and during early convalescence in rats with acute intestinal infections were observed destructive and compensatory changes in the intestine, which depended on the treatment regimen. With the introduction of colloidal silver decreased activity of the inflammatory process and the severity of morphological changes in tissues of small and large intestine, indicating that the positive effect of study drug compared with baseline therapy.

  7. Highly bacterial resistant silver nanoparticles: synthesis and antibacterial activities

    NASA Astrophysics Data System (ADS)

    Chudasama, Bhupendra; Vala, Anjana K.; Andhariya, Nidhi; Mehta, R. V.; Upadhyay, R. V.

    2010-06-01

    In this article, we describe a simple one-pot rapid synthesis route to produce uniform silver nanoparticles by thermal reduction of AgNO3 using oleylamine as reducing and capping agent. To enhance the dispersal ability of as-synthesized hydrophobic silver nanoparticles in water, while maintaining their unique properties, a facile phase transfer mechanism has been developed using biocompatible block co-polymer pluronic F-127. Formation of silver nanoparticles is confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-vis spectroscopy. Hydrodynamic size and its distribution are obtained from dynamic light scattering (DLS). Hydrodynamic size and size distribution of as-synthesized and phase transferred silver nanoparticles are 8.2 ± 1.5 nm (σ = 18.3%) and 31.1 ± 4.5 nm (σ = 14.5%), respectively. Antimicrobial activities of hydrophilic silver nanoparticles is tested against two Gram positive ( Bacillus megaterium and Staphylococcus aureus), and three Gram negative ( Escherichia coli, Proteus vulgaris and Shigella sonnei) bacteria. Minimum inhibitory concentration (MIC) values obtained in the present study for the tested microorganisms are found much better than those reported for commercially available antibacterial agents.

  8. Growth model and structure evolution of Ag layers deposited on Ge films.

    PubMed

    Ciesielski, Arkadiusz; Skowronski, Lukasz; Górecka, Ewa; Kierdaszuk, Jakub; Szoplik, Tomasz

    2018-01-01

    We investigated the crystallinity and optical parameters of silver layers of 10-35 nm thickness as a function 2-10 nm thick Ge wetting films deposited on SiO 2 substrates. X-ray reflectometry (XRR) and X-ray diffraction (XRD) measurements proved that segregation of germanium into the surface of the silver film is a result of the gradient growth of silver crystals. The free energy of Ge atoms is reduced by their migration from boundaries of larger grains at the Ag/SiO 2 interface to boundaries of smaller grains near the Ag surface. Annealing at different temperatures and various durations allowed for a controlled distribution of crystal dimensions, thus influencing the segregation rate. Furthermore, using ellipsometric and optical transmission measurements we determined the time-dependent evolution of the film structure. If stored under ambient conditions for the first week after deposition, the changes in the transmission spectra are smaller than the measurement accuracy. Over the course of the following three weeks, the segregation-induced effects result in considerably modified transmission spectra. Two months after deposition, the slope of the silver layer density profile derived from the XRR spectra was found to be inverted due to the completed segregation process, and the optical transmission spectra increased uniformly due to the roughened surfaces, corrosion of silver and ongoing recrystallization. The Raman spectra of the Ge wetted Ag films were measured immediately after deposition and ten days later and demonstrated that the Ge atoms at the Ag grain boundaries form clusters of a few atoms where the Ge-Ge bonds are still present.

  9. Probing the effect of charge transfer enhancement in off resonance mode SERS via conjugation of the probe dye between silver nanoparticles and metal substrates.

    PubMed

    Selvakannan, Pr; Ramanathan, Rajesh; Plowman, Blake J; Sabri, Ylias M; Daima, Hemant K; O'Mullane, Anthony P; Bansal, Vipul; Bhargava, Suresh K

    2013-08-21

    The charge transfer-mediated surface enhanced Raman scattering (SERS) of crystal violet (CV) molecules that were chemically conjugated between partially polarized silver nanoparticles and optically smooth gold and silver substrates has been studied under off-resonant conditions. Tyrosine molecules were used as a reducing agent to convert silver ions into silver nanoparticles where oxidised tyrosine caps the silver nanoparticle surface with its semiquinone group. This binding through the quinone group facilitates charge transfer and results in partially oxidised silver. This establishes a chemical link between the silver nanoparticles and the CV molecules, where the positively charged central carbon of CV molecules can bind to the terminal carboxylate anion of the oxidised tyrosine molecules. After drop casting Ag nanoparticles bound with CV molecules it was found that the free terminal amine groups tend to bind with the underlying substrates. Significantly, only those CV molecules that were chemically conjugated between the partially polarised silver nanoparticles and the underlying gold or silver substrates were found to show SERS under off-resonant conditions. The importance of partial charge transfer at the nanoparticle/capping agent interface and the resultant conjugation of CV molecules to off resonant SERS effects was confirmed by using gold nanoparticles prepared in a similar manner. In this case the capping agent binds to the nanoparticle through the amine group which does not facilitate charge transfer from the gold nanoparticle and under these conditions SERS enhancement in the sandwich configuration was not observed.

  10. A multi-material coating containing chemically-modified apatites for combined enhanced bioactivity and reduced infection via a drop-on-demand micro-dispensing technique.

    PubMed

    Lim, Poon Nian; Wang, Zuyong; Chang, Lei; Konishi, Toshiisa; Choong, Cleo; Ho, Bow; Thian, Eng San

    2017-01-01

    Prevention of infection and enhanced osseointegration are closely related, and required for a successful orthopaedic implant, which necessitate implant designs to consider both criteria in tandem. A multi-material coating containing 1:1 ratio of silicon-substituted hydroxyapatite and silver-substituted hydroxyapatite as the top functional layer, and hydroxyapatite as the base layer, was produced via the drop-on-demand micro-dispensing technique, as a strategic approach in the fight against infection along with the promotion of bone tissue regeneration. The homogeneous distribution of silicon-substituted hydroxyapatite and silver-substituted hydroxyapatite micro-droplets at alternate position in silicon-substituted hydroxyapatite-silver-substituted hydroxyapatite/hydroxyapatite coating delayed the exponential growth of Staphylococcus aureus for up to 24 h, and gave rise to up-regulated expression of alkaline phosphatase activity, type I collagen and osteocalcin as compared to hydroxyapatite and silver-substituted hydroxyapatite coatings. Despite containing reduced amounts of silicon-substituted hydroxyapatite and silver-substituted hydroxyapatite micro-droplets over the coated area than silicon-substituted hydroxyapatite and silver-substituted hydroxyapatite coatings, silicon-substituted hydroxyapatite-silver-substituted hydroxyapatite/hydroxyapatite coating exhibited effective antibacterial property with enhanced bioactivity. By exhibiting good controllability of distributing silicon-substituted hydroxyapatite, silver-substituted hydroxyapatite and hydroxyapatite micro-droplets, it was demonstrated that drop-on-demand micro-dispensing technique was capable in harnessing the advantages of silver-substituted hydroxyapatite, silicon-substituted hydroxyapatite and hydroxyapatite to produce a multi-material coating along with enhanced bioactivity and reduced infection.

  11. Fabrication and characterization of electrospun poly(e-caprolactone) fibrous membrane with antibacterial functionality

    NASA Astrophysics Data System (ADS)

    Cerkez, Idris; Sezer, Ayse; Bhullar, Sukhwinder K.

    2017-02-01

    This research study is mainly targeted on fabrication and characterization of antibacterial poly(e-caprolactone) (PCL) based fibrous membrane containing silver chloride particles. Micro/nano fibres were produced by electrospinning and characterized with TGA, DSC, SEM and mechanical analysis. It was found that addition of silver particles slightly reduced onset of thermal degradation and increased crystallization temperature of neat PCL. Silver-loaded samples exhibited higher tensile stress and lower strain revealing that the particles behaved as reinforcing agent. Moreover, addition of silver chloride resulted in beaded surface texture and formation of finer fibres as opposed to the neat. Antibacterial properties were tested against Gram-negative and Gram-positive bacteria and remarkable biocidal functionalities were obtained with about six logs reduction of Staphylococcus aureus and Escherichia coli O157:H7.

  12. Silver enhances antibiotic activity against gram-negative bacteria.

    PubMed

    Morones-Ramirez, J Ruben; Winkler, Jonathan A; Spina, Catherine S; Collins, James J

    2013-06-19

    A declining pipeline of clinically useful antibiotics has made it imperative to develop more effective antimicrobial therapies, particularly against difficult-to-treat Gram-negative pathogens. Silver has been used as an antimicrobial since antiquity, yet its mechanism of action remains unclear. We show that silver disrupts multiple bacterial cellular processes, including disulfide bond formation, metabolism, and iron homeostasis. These changes lead to increased production of reactive oxygen species and increased membrane permeability of Gram-negative bacteria that can potentiate the activity of a broad range of antibiotics against Gram-negative bacteria in different metabolic states, as well as restore antibiotic susceptibility to a resistant bacterial strain. We show both in vitro and in a mouse model of urinary tract infection that the ability of silver to induce oxidative stress can be harnessed to potentiate antibiotic activity. Additionally, we demonstrate in vitro and in two different mouse models of peritonitis that silver sensitizes Gram-negative bacteria to the Gram-positive-specific antibiotic vancomycin, thereby expanding the antibacterial spectrum of this drug. Finally, we used silver and antibiotic combinations in vitro to eradicate bacterial persister cells, and show both in vitro and in a mouse biofilm infection model that silver can enhance antibacterial action against bacteria that produce biofilms. This work shows that silver can be used to enhance the action of existing antibiotics against Gram-negative bacteria, thus strengthening the antibiotic arsenal for fighting bacterial infections.

  13. Studying the morphological features of plasma treated silver and PEGylated silver nanoparticles: antibacterial activity

    NASA Astrophysics Data System (ADS)

    Waseem, M.; Awan, T.; Yasin, H. M.; Rehman, N. U.

    2018-03-01

    A strategy to treat the silver and PEGylated silver nanoparticles with plasma was being purposed. Oil in water (o/w) microemulsion method was used for the synthesis of Ag nanoparticles (AgNPs). Polyethylene glycol (PEG) having molecular weight 600 was used to coat the surface of AgNPs. Optical emission spectroscopy (OES) was used to characterize the plasma and it is noted that plasma treatment is useful to modify the structural characteristic of silver nanoparticles. The nanoparticles were treated with helium-oxygen mixture plasma, generated in plasma needle at atmospheric pressure. Both AgNPs and PEGylated AgNPs before and after plasma treatment were characterized by x-rays diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The crystallite size of silver nanoparticles after the treatment of plasma decreases from 71 nm to 27 nm. The SEM micrographs show that the size of Ag nanoparticles was nearly 118 nm whereas the thickness of the silver needle was around 135 nm. All the characteristics IR bands associated to the silver nanoparticles were detected. The FTIR spectrum also support the accumulation of OH radicals in the plasma treated samples. The samples before and after plasma treatment were screened against Gram positive (Bacillus Subtilis and Staphylococcus Aureus) and Gram negative (Escherichia Coli and Pseudomonas Aeruginosa) bacteria. The promising response was detected when plasma treated PEGylated AgNPs was tested against bacterial strains.

  14. Silver nanoparticles decorated lipase-sensitive polyurethane micelles for on-demand release of silver nanoparticles.

    PubMed

    Su, Yuling; Zhao, Lili; Meng, Fancui; Wang, Quanxin; Yao, Yongchao; Luo, Jianbin

    2017-04-01

    In order to improve the antibacterial activities while decrease the cytotoxity of silver nanoparticles, we prepared a novel nanocomposites composed of silver nanoparticles decorated lipase-sensitive polyurethane micelles (PUM-Ag) with MPEG brush on the surface. The nanocomposite was characterized by UV-vis, TEM and DLS. UV-vis and TEM demonstrated the formation of silver nanoparticles on PU micelles and the nanoassembly remained intact without the presence of lipase. The silver nanoparticles were protected by the polymer matrix and PEG brush which show good cytocompatibility to HUVEC cells and low hemolysis. Moreover, at the presence of lipase, the polymer matrix of nanocomposites is subject to degradation and the small silver nanoparticles were released as is shown by DLS and TEM. The MIC and MBC studies showed an enhanced toxicity of the nanocomposites to both gram negative and gram positive bacteria, i.e. E. coli and S. aureus, as the result of the degradation of polymer matrix by bacterial lipase. Therefore, the nanocomposites are biocompatible to mammalian cells cells which can also lead to activated smaller silver nanoparticles release at the presence of bacteria and subsequently enhanced inhibition of bacteria growth. The satisfactory selectivity for bacteria compared to HUVEC and RBCs make PUM-Ag a promising antibacterial nanomedicine in biomedical field. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Removal of Protein Capping Enhances the Antibacterial Efficiency of Biosynthesized Silver Nanoparticles

    PubMed Central

    Jain, Navin; Bhargava, Arpit; Rathi, Mohit; Dilip, R. Venkataramana; Panwar, Jitendra

    2015-01-01

    The present study demonstrates an economical and environmental affable approach for the synthesis of “protein-capped” silver nanoparticles in aqueous solvent system. A variety of standard techniques viz. UV-visible spectroscopy, transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) measurements were employed to characterize the shape, size and composition of nanoparticles. The synthesized nanoparticles were found to be homogenous, spherical, mono-dispersed and covered with multi-layered protein shell. In order to prepare bare silver nanoparticles, the protein shell was removed from biogenic nanoparticles as confirmed by UV-visible spectroscopy, FTIR and photoluminescence analysis. Subsequently, the antibacterial efficacy of protein-capped and bare silver nanoparticles was compared by bacterial growth rate and minimum inhibitory concentration assay. The results revealed that bare nanoparticles were more effective as compared to the protein-capped silver nanoparticles with varying antibacterial potential against the tested Gram positive and negative bacterial species. Mechanistic studies based on ROS generation and membrane damage suggested that protein-capped and bare silver nanoparticles demonstrate distinct mode of action. These findings were strengthened by the TEM imaging along with silver ion release measurements using inductively coupled plasma atomic emission spectroscopy (ICP-AES). In conclusion, our results illustrate that presence of protein shell on silver nanoparticles can decrease their bactericidal effects. These findings open new avenues for surface modifications of nanoparticles to modulate and enhance their functional properties. PMID:26226385

  16. Monodisperse hexagonal silver nanoprisms: synthesis via thiolate-protected cluster precursors and chiral, ligand-imprinted self-assembly.

    PubMed

    Cathcart, Nicole; Kitaev, Vladimir

    2011-09-27

    Silver nanoprisms of a predominantly hexagonal shape have been prepared using a ligand combination of a strongly binding thiol, captopril, and charge-stabilizing citrate together with hydrogen peroxide as an oxidative etching agent and a strong base that triggered nanoprism formation. The role of the reagents and their interplay in the nanoprism synthesis is discussed in detail. The beneficial role of chloride ions to attain a high degree of reproducibility and monodispersity of the nanoprisms is elucidated. Control over the nanoprism width, thickness, and, consequently, plasmon resonance in the system has been demonstrated. One of the crucial factors in the nanoprism synthesis was the slow, controlled aggregation of thiolate-stabilized silver nanoclusters as the intermediates. The resulting superior monodispersity (better than ca. 10% standard deviation in lateral size and ca. 15% standard deviation in thickness (<1 nm variation)) and charge stabilization of the produced silver nanoprisms enabled the exploration of the rich diversity of the self-assembled morphologies in the system. Regular columnar assemblies of the self-assembled nanoprisms spanning 2-3 μm in length have been observed. Notably, the helicity of the columnar phases was evident, which can be attributed to the chirality of the strongly binding thiol ligand. Finally, the enhancement of Raman scattering has been observed after oxidative removal of thiolate ligands from the AgNPR surface. © 2011 American Chemical Society

  17. Silver sub-nanoclusters electrocatalyze ethanol oxidation and provide protection against ethanol toxicity in cultured mammalian cells.

    PubMed

    Selva, Javier; Martínez, Susana E; Buceta, David; Rodríguez-Vázquez, María J; Blanco, M Carmen; López-Quintela, M Arturo; Egea, Gustavo

    2010-05-26

    Silver atomic quantum clusters (AgAQCs), with two or three silver atoms, show electrocatalytic activities that are not found in nanoparticles or in bulk silver. AgAQCs supported on glassy carbon electrodes oxidize ethanol and other alcohols in macroscopic electrochemical cells in acidic and basic media. This electrocatalysis occurs at very low potentials (from approximately +200 mV vs RHE), at physiological pH, and at ethanol concentrations that are found in alcoholic patients. When mammalian cells are co-exposed to ethanol and AgAQCs, alcohol-induced alterations such as rounded cell morphology, disorganization of the actin cytoskeleton, and activation of caspase-3 are all prevented. This cytoprotective effect of AgAQCs is also observed in primary cultures of newborn rat astrocytes exposed to ethanol, which is a cellular model of fetal alcohol syndrome. AgAQCs oxidize ethanol from the culture medium only when ethanol and AgAQCs are added to cells simultaneously, which suggests that cytoprotection by AgAQCs is provided by the ethanol electro-oxidation mediated by the combined action of AgAQCs and cells. Overall, these findings not only show that AgAQCs are efficient electrocatalysts at physiological pH and prevent ethanol toxicity in cultured mammalian cells, but also suggest that AgAQCs could be used to modify redox reactions and in this way promote or inhibit biological reactions.

  18. Analysis of experimental nucleation data for silver and SiO using scaled nucleation theory

    NASA Astrophysics Data System (ADS)

    Hale, Barbara N.; Kemper, Paul; Nuth, Joseph A.

    1989-10-01

    The experimental vapor phase nucleation data of Nuth et al., for silver [J. A. Nuth, K. A. Donnelly, B. Donn, and L. U. Lilleleht, J. Chem. Phys. 77, 2639 (1982)] and SiO [J. A. Nuth and B. Donn, J. Chem. Phys. 85, 1116 (1986)] are reanalyzed using a scaled model for homogeneous nucleation [B. N. Hale, Phys. Rev. A 33, 4156 (1986)]. The approximation is made that the vapor pressure at the nucleation site is not diminished significantly from that at the source (crucible). It is found that the data for ln S have a temperature dependence consistent with the scaled theory ln S≊ΓΩ3/2 [Tc/T-1]3/2, and predict critical temperatures 3800±200 K for silver and 3700±200 K for SiO. One can also extract an effective excess surface entropy per atom Ω=2.1±0.1 and an effective surface tension σ≊1500-0.45T ergs/cm2 for the small silver clusters (assuming a range of nucleation rates from 105 to 1011 cm-3 s-1). The corresponding values for SiO are Ω≊1.7±0.1 and σ≊820-0.22T ergs/cm2 (assuming a range of nucleation rates from 109 to 1012 cm-3 s-1).

  19. Biosynthesis of silver nanoparticles using Bacillus subtilis EWP-46 cell-free extract and evaluation of its antibacterial activity.

    PubMed

    Velmurugan, Palanivel; Iydroose, Mahudunan; Mohideen, Mohmed Hanifa Abdul Kader; Mohan, Thankiah Selva; Cho, Min; Oh, Byung-Taek

    2014-08-01

    This study highlights the ability of nitrate-reducing Bacillus subtilis EWP-46 cell-free extract used for preparation of silver nanoparticles (AgNPs) by reduction of silver ions into nano silver. The production of AgNPs was optimized with several parameters such as hydrogen ion concentration, temperature, silver ion (Ag(+) ion) and time. The maximum AgNPs production was achieved at pH 10.0, temperature 60 °C, 1.0 mM Ag(+) ion and 720 min. The UV-Vis spectrum showed surface plasmon resonance peak at 420 nm, energy-dispersive X-ray spectroscopy (SEM-EDX) spectra showed the presence of element silver in pure form. Atomic force microscopy (AFM) and transmission electron microscopy images illustrated the nanoparticle size, shape, and average particle size ranging from 10 to 20 nm. Fourier transform infrared spectroscopy provided the evidence for the presence of biomolecules responsible for the reduction of silver ion, and X-ray diffraction analysis confirmed that the obtained nanoparticles were in crystalline form. SDS-PAGE was performed to identify the proteins and its molecular mass in the purified nitrate reductase from the cell-free extract. In addition, the minimum inhibitory concentration and minimum bactericidal concentration of AgNPs were investigated against gram-negative (Pseudomonas fluorescens) and gram-positive (Staphylococcus aureus) bacteria.

  20. Negative pressure and nanocrystalline silver dressings for nonhealing ulcer: A randomized pilot study.

    PubMed

    Sáez-Martín, Luis C; García-Martínez, Lourdes; Román-Curto, Concepción; Sánchez-Hernández, Miguel V; Suárez-Fernández, Ricardo M

    2015-01-01

    Chronic wounds have a high prevalence and wound care, treatment, and prevention consume large quantities of resources. Chronic wounds are a growing challenge for clinicians. A prospective randomized pilot study was conducted to assess the effectiveness in terms of reduction in area and safety of the combined use of negative-pressure wound therapy and nanocrystalline silver dressings as compared to negative pressure wound therapy (NPWT) alone in the management of outpatients with chronic wounds. A total of 17 patients were included in the study, 10 were treated with the combined method and 7 with NPWT. Patients were followed for 6 weeks, with a final assessment at 3 months. Clinical improvement, microbiologic data, and toxicity of silver were evaluated. The antibacterial effects of ionic silver together with the development of granulation tissue promoted by NPWT reduced significantly the median extension of the wound between weeks 3 and 6 of treatment. The combination with silver also reduced bacterial colonization with Pseudomonas aeruginosa and the bacterial load on the surface of the wound. The silver levels correlated positively with the extension of the wound, although in none of the patients' toxic levels were reached. The combination of NPWT with nanocrystalline silver dressings was safe and as effective as NPWT alone. © 2015 by the Wound Healing Society.

  1. Collective behavior of silver plasma during pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Dildar, I. M.; Rehman, S.; Khaleeq-ur-Rahman, M.; Bhatti, K. A.; Shuaib, A.

    2015-07-01

    The present work reports an electrical investigation of silver plasma using a self-fabricated Langmuir probe in air and under a low vacuum (~10-3 torr). A silver target was irradiated with a Q-switched Nd:YAG laser with the wavelength 1.064 µm, energy 10 mJ, pulse duration 9-14 ns and power 1.1 MW. The collective behavior of a silver plasma plume is studied using a Langmuir probe as an electrical diagnostic technique. By applying different positive and negative voltages to the probe, the respective signals are collected on a four channels digital storage oscilloscope having a frequency of 500 MHz. An I-V curve helps to measure electron temperature and electron density directly and plasma frequency, response time, Debye length and number of particles in ‘Debye’s sphere’ indirectly using the theory of Langmuir probe and mathematical formulas. The floating potential is measured as negative for laser induced silver plasma in air and vacuum, following the theory of plasma.

  2. Subnanometer and nanometer catalysts, method for preparing size-selected catalysts

    DOEpatents

    Vajda, Stefan , Pellin, Michael J.; Elam, Jeffrey W [Elmhurst, IL; Marshall, Christopher L [Naperville, IL; Winans, Randall A [Downers Grove, IL; Meiwes-Broer, Karl-Heinz [Roggentin, GR

    2012-04-03

    Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes. Invented size-selected cluster deposition provides a unique tool to tune material properties by atom-by-atom fashion, which can be stabilized by protective overcoats.

  3. Subnanometer and nanometer catalysts, method for preparing size-selected catalysts

    DOEpatents

    Vajda, Stefan [Lisle, IL; Pellin, Michael J [Naperville, IL; Elam, Jeffrey W [Elmhurst, IL; Marshall, Christopher L [Naperville, IL; Winans, Randall A [Downers Grove, IL; Meiwes-Broer, Karl-Heinz [Roggentin, GR

    2012-03-27

    Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes. Invented size-selected cluster deposition provides a unique tool to tune material properties by atom-by-atom fashion, which can be stabilized by protective overcoats.

  4. Synthesis and characterization of silver doped hydroxyapatite nanocomposite coatings and evaluation of their antibacterial and corrosion resistance properties in simulated body fluid.

    PubMed

    Mirzaee, Majid; Vaezi, Mohammadreza; Palizdar, Yahya

    2016-12-01

    Silver-doped hydroxyapatite (Ca10-xAgx(PO4)6(OH)2-x) films were synthesized and deposited on anodized titanium (Ti) using electrophoretic. The influence of different silver-dopant contents (X=0, 0.02, 0.05, 0.08 and 0.1) on the phase formation and microstructure of the powders were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscope (XPS), and Fourier transform infrared spectrum analysis (FT-IR). XRD analysis confirmed the formation of Hexagonal structure of hydroxyapatite (HAp) annealed at 600°C with a small shift in the major peak position toward lower angles with adding silver. FT-IR spectroscopy disclosed the presence of the different vibrational modes matching to phosphates and hydroxyl groups and the absence of any band characteristics to silver. XPS analysis showed that 75% and 23% of silver was in the chemical states of Ag(2+) and Ag(+), respectively. However, only about 2% of silver was in the Ag(0) state, resulting in the high quality of nanocomposite films. The anodization treatment improves the bond strength between the Ag doped HAp deposited layers on TiO2. HAp and silver doped HAp (X=0.05) are regarded to be hydrophilic due to a large number of -OH groups on the surface. The sample with content of silver (x=0.05) also showed excellent antimicrobial efficacy (>99% reduction in viable cells). Electrochemical reveals the passive current densities of the HAp coated anodized Ti are lower than those of silver doped HAp coated anodized Ti, leading to a slightly lower corrosion resistance. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Trimethyl chitosan-capped silver nanoparticles with positive surface charge: Their catalytic activity and antibacterial spectrum including multidrug-resistant strains of Acinetobacter baumannii.

    PubMed

    Chang, T Y; Chen, C C; Cheng, K M; Chin, C Y; Chen, Y H; Chen, X A; Sun, J R; Young, J J; Chiueh, T S

    2017-07-01

    We report a facile route for the green synthesis of trimethyl chitosan nitrate-capped silver nanoparticles (TMCN-AgNPs) with positive surface charge. In this synthesis, silver nitrate, glucose, and trimethyl chitosan nitrate (TMCN) were used as silver precursor, reducing agent, and stabilizer, respectively. The reaction was carried out in a stirred basic aqueous medium at room temperature without the use of energy-consuming or expensive equipment. We investigated the effects of the concentrations of NaOH, glucose, and TMCN on the particle size, zeta potential, and formation yield. The AgNPs were characterized by UV-vis spectroscopy, photon correlation spectroscopy, laser Doppler anemometry, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The catalytic activity of the TMCN-AgNPs was studied by the reduction of 4-nitrophenol using NaBH 4 as a reducing agent. We evaluated the antibacterial effects of the TMCN-AgNPs on Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus using the broth microdilution method. The results showed that both gram-positive and gram-negative bacteria were killed by the TMCN-AgNPs at very low concentration (<6.13μg/mL). Moreover, the TMCN-AgNPs also showed high antibacterial activity against clinically isolated multidrug-resistant A. baumannii strains, and the minimum inhibitory concentration (MIC) was ≤12.25μg/mL. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Silver binding in argentiferous manganese oxide minerals investigated by synchrotron radiation X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Fan, Chenzi; Li, Qiaoying; Chu, Binbin; Lu, Guohui; Gao, Yuhong; Xu, Lingxiao

    2018-02-01

    The knowledge of the nature of silver occurrence and sites in argentiferous manganese oxides is significant for developing better process to extract silver from manganese-silver ores. Synchrotron radiation has been used to collect Ag K-edge X-ray absorption spectroscopy of three natural and five synthetic samples of silver-containing manganese oxide, basically in the phases of tunnel-type cryptomelane or todorokite and layer-type birnessite or chalcophanite. Data were also gathered on five standards including Ag foil, Ag2O, Ag2SO4, Ag2CO3, and AgNO3 to compare the local environments of Ag atoms with the samples. Ag K-edge XANES studies show that Ag is present in most of the samples in Ag+ oxidation state, except in the Ag-Tod sample through annealing step in the form of Ag0 nanoparticles which are also identified by TEM. The natural samples from Xiangguang manganese-silver ores exhibit similar coordination distances as the corresponding tunnel or layer structured synthetic samples. In the argentiferous cryptomelanes, silver cations do not occupy the tunnel centers like K+, but rather place on the common face sites of the cubic cage formed by MnO6 octahedra, coordinated with about four oxygen anions at 2.4 Å bond distances proved by the EXAFS results. In the silver-exchanged birnessites or natural argentiferous chalcophanite, silver cations probably occupy a tetrahedral coordination to interlayer O atoms and a position located above or below the vacant cavities in the Mn octahedra layers.

  7. The hoard of Beçin—non-destructive analysis of the silver coins

    NASA Astrophysics Data System (ADS)

    Rodrigues, M.; Schreiner, M.; Mäder, M.; Melcher, M.; Guerra, M.; Salomon, J.; Radtke, M.; Alram, M.; Schindel, N.

    2010-05-01

    We report the results of an analytical investigation on 416 silver-copper coins stemming from the Ottoman Empire (end of 16th and beginning of 17th centuries), using synchrotron micro X-ray fluorescence analysis (SRXRF). In the past, analyses had already been conducted with energy dispersive X-ray fluorescence analysis (EDXRF), scanning electron microscopy with energy dispersive X-ray spectrometry (SEM/EDX) and proton induced X-ray emission spectroscopy (PIXE). With this combination of techniques it was possible to confirm the fineness of the coinage as well as to study the provenance of the alloy used for the coins. For the interpretation of the data statistical analysis (principal component analysis—PCA) has been performed. A definite local assignment was explored and significant clustering was obtained regarding the minor and trace elements composing the coin alloys.

  8. Theoretical study of water-gas shift reaction on the silver nanocluster

    NASA Astrophysics Data System (ADS)

    Arab, Ali; Sharafie, Darioush; Fazli, Mostafa

    2017-10-01

    The kinetics of water gas shift reaction (WGSR) on the silver nanocluster was investigated using density functional theory according to the carboxyl associative mechanism. The hybrid B3PW91 functional along with the 6-31+G* and LANL2DZ basis sets were used throughout the calculations. It was observed that CO and H2O molecules adsorb physically on the Ag5 cluster without energy barrier as the initial steps of WGSR. The next three steps including H2Oads dissociation, carboxyl (OCOHads) formation, and CO2(ads) formation were accompanied by activation barrier. Transition states, as well as energy profiles of these three steps, were determined and analyzed. Our results revealed that the carboxyl and CO2(ads) formation were fast steps whereas H2Oads dissociation was the slowest step of WGSR.

  9. Green synthesis of silver nanoparticles by Ricinus communis var. carmencita leaf extract and its antibacterial study

    NASA Astrophysics Data System (ADS)

    Ojha, Sunita; Sett, Arghya; Bora, Utpal

    2017-09-01

    In this study, we report synthesis of silver nanoparticles (RcAgNPs) from silver nitrate solution using methanolic leaf extract of Ricinus communis var. carmencita. The polyphenols present in the leaves reduce Ag++ ions to Ag0 followed by a color change. Silver nanoparticle formation was ensured by surface plasmon resonance between 400 nm to 500 nm. Crystallinity of the synthesized nanoparticles was confirmed by UHRTEM, SAED and XRD analysis. The capping of phytochemicals and thermal stability of RcAgNPs were assessed by FTIR spectra and TGA analysis, respectively. It also showed antibacterial activity against both gram positive and gram negative strains. RcAgNPs were non-toxic against normal cell line (mouse fibroblast cell line L929) at lower concentrations (80 µg ml-1).

  10. Synergistic bactericidal activity of chlorhexidine-loaded, silver-decorated mesoporous silica nanoparticles.

    PubMed

    Lu, Meng-Meng; Wang, Qiu-Jing; Chang, Zhi-Min; Wang, Zheng; Zheng, Xiao; Shao, Dan; Dong, Wen-Fei; Zhou, Yan-Min

    2017-01-01

    Combination of chlorhexidine (CHX) and silver ions could engender synergistic bactericidal effect and improve the bactericidal efficacy. It is highly desired to develop an efficient carrier for the antiseptics codelivery targeting infection foci with acidic microenvironment. In this work, monodisperse mesoporous silica nanoparticle (MSN) nanospheres were successfully developed as an ideal carrier for CHX and nanosilver codelivery through a facile and environmentally friendly method. The CHX-loaded, silver-decorated mesoporous silica nanoparticles (Ag-MSNs@CHX) exhibited a pH-responsive release manner of CHX and silver ions simultaneously, leading to synergistically antibacterial effect against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli . Moreover, the effective antibacterial concentration of Ag-MSNs@CHX showed less cytotoxicity on normal cells. Given their synergistically bactericidal ability and good biocompatibility, these nanoantiseptics might have effective and broad clinical applications for bacterial infections.

  11. Silver nanoparticles as a key feature of a plasma polymer composite layer in mitigation of charge injection into polyethylene under dc stress

    NASA Astrophysics Data System (ADS)

    Milliere, L.; Maskasheva, K.; Laurent, C.; Despax, B.; Boudou, L.; Teyssedre, G.

    2016-01-01

    The aim of this work is to limit charge injection from a semi-conducting electrode into low density polyethylene (LDPE) under dc field by tailoring the polymer surface using a silver nanoparticles-containing layer. The layer is composed of a plane of silver nanoparticles embedded in a semi-insulating organosilicon matrix deposited on the polyethylene surface by a plasma process. Size, density and surface coverage of the nanoparticles are controlled through the plasma process. Space charge distribution in 300 μm thick LDPE samples is measured by the pulsed-electroacoustic technique following a short term (step-wise voltage increase up to 50 kV mm-1, 20 min in duration each, followed by a polarity inversion) and a longer term (up to 12 h under 40 kV mm-1) protocols for voltage application. A comparative study of space charge distribution between a reference polyethylene sample and the tailored samples is presented. It is shown that the barrier effect depends on the size distribution and the surface area covered by the nanoparticles: 15 nm (average size) silver nanoparticles with a high surface density but still not percolating form an efficient barrier layer that suppress charge injection. It is worthy to note that charge injection is detected for samples tailored with (i) percolating nanoparticles embedded in organosilicon layer; (ii) with organosilicon layer only, without nanoparticles and (iii) with smaller size silver particles (<10 nm) embedded in organosilicon layer. The amount of injected charges in the tailored samples increases gradually in the samples ranking given above. The mechanism of charge injection mitigation is discussed on the basis of complementary experiments carried out on the nanocomposite layer such as surface potential measurements. The ability of silver clusters to stabilize electrical charges close to the electrode thereby counterbalancing the applied field appears to be a key factor in explaining the charge injection mitigation effect.

  12. New Guar Biopolymer Silver Nanocomposites for Wound Healing Applications

    PubMed Central

    Abdullah, Md Farooque; Das, Suvadra; Roy, Partha; Datta, Sriparna; Mukherjee, Arup

    2013-01-01

    Wound healing is an innate physiological response that helps restore cellular and anatomic continuity of a tissue. Selective biodegradable and biocompatible polymer materials have provided useful scaffolds for wound healing and assisted cellular messaging. In the present study, guar gum, a polymeric galactomannan, was intrinsically modified to a new cationic biopolymer guar gum alkylamine (GGAA) for wound healing applications. Biologically synthesized silver nanoparticles (Agnp) were further impregnated in GGAA for extended evaluations in punch wound models in rodents. SEM studies showed silver nanoparticles well dispersed in the new guar matrix with a particle size of ~18 nm. In wound healing experiments, faster healing and improved cosmetic appearance were observed in the new nanobiomaterial treated group compared to commercially available silver alginate cream. The total protein, DNA, and hydroxyproline contents of the wound tissues were also significantly higher in the treated group as compared with the silver alginate cream (P < 0.05). Silver nanoparticles exerted positive effects because of their antimicrobial properties. The nanobiomaterial was observed to promote wound closure by inducing proliferation and migration of the keratinocytes at the wound site. The derivatized guar gum matrix additionally provided a hydrated surface necessary for cell proliferation. PMID:24175306

  13. Antibacterial potential of silver nanoparticles against isolated urinary tract infectious bacterial pathogens

    NASA Astrophysics Data System (ADS)

    Jacob Inbaneson, Samuel; Ravikumar, Sundaram; Manikandan, Nachiappan

    2011-12-01

    The silver nanoparticles were synthesized by chemical reduction method and the nanoparticles were characterized using ultraviolet-visible (UV-Vis) absorption spectroscopy and X-ray diffraction (XRD) studies. The synthesized silver nanoparticles were investigated to evaluate the antibacterial activity against urinary tract infectious (UTIs) bacterial pathogens. Thirty-two bacteria were isolated from mid urine samples of 25 male and 25 female patients from Thondi, Ramanathapuram District, Tamil Nadu, India and identified by conventional methods. Escherichia coli was predominant (47%) followed by Pseudomonas aeruginosa (22%), Klebsiella pneumoniae (19%), Enterobacter sp. (6%), Proteus morganii (3%) and Staphylococcus aureus (3%). The antibacterial activity of silver nanoparticles was evaluated by disc diffusion assay. P. aeruginosa showed maximum sensitivity (11 ± 0.58 mm) followed by Enterobacter sp. (8 ± 0.49 mm) at a concentration of 20 μg disc-1 and the sensitivity was highly comparable with the positive control kanamycin and tetracycline. K. pneumoniae, E. coli, P. morganii and S. aureus showed no sensitivity against all the tested concentrations of silver nanoparticles. The results provided evidence that, the silver nanoparticles might indeed be the potential sources to treat urinary tract infections caused by P. aeruginosa and Enterobacter sp.

  14. New guar biopolymer silver nanocomposites for wound healing applications.

    PubMed

    Ghosh Auddy, Runa; Abdullah, Md Farooque; Das, Suvadra; Roy, Partha; Datta, Sriparna; Mukherjee, Arup

    2013-01-01

    Wound healing is an innate physiological response that helps restore cellular and anatomic continuity of a tissue. Selective biodegradable and biocompatible polymer materials have provided useful scaffolds for wound healing and assisted cellular messaging. In the present study, guar gum, a polymeric galactomannan, was intrinsically modified to a new cationic biopolymer guar gum alkylamine (GGAA) for wound healing applications. Biologically synthesized silver nanoparticles (Agnp) were further impregnated in GGAA for extended evaluations in punch wound models in rodents. SEM studies showed silver nanoparticles well dispersed in the new guar matrix with a particle size of ~18 nm. In wound healing experiments, faster healing and improved cosmetic appearance were observed in the new nanobiomaterial treated group compared to commercially available silver alginate cream. The total protein, DNA, and hydroxyproline contents of the wound tissues were also significantly higher in the treated group as compared with the silver alginate cream (P < 0.05). Silver nanoparticles exerted positive effects because of their antimicrobial properties. The nanobiomaterial was observed to promote wound closure by inducing proliferation and migration of the keratinocytes at the wound site. The derivatized guar gum matrix additionally provided a hydrated surface necessary for cell proliferation.

  15. A facile and rapid method for the black pepper leaf mediated green synthesis of silver nanoparticles and the antimicrobial study

    NASA Astrophysics Data System (ADS)

    Augustine, Robin; Kalarikkal, Nandakumar; Thomas, Sabu

    2014-10-01

    Green synthesis of nanoparticles is widely accepted due to the less toxicity in comparison with chemical methods. But there are certain drawbacks like slow formation of nanoparticles, difficulty to control particle size and shape make them less convenient. Here we report a novel cost-effective and eco-friendly method for the rapid green synthesis of silver nanoparticles using leaf extracts of Piper nigrum. Our results suggest that this method can be used for obtaining silver nanoparticles with controllable size within a few minutes. The fabricated nanoparticles possessed excellent antibacterial property against both Gram-positive and Gram-negative bacteria.

  16. Quantification of silver nanoparticle uptake and distribution within individual human macrophages by FIB/SEM slice and view.

    PubMed

    Guehrs, Erik; Schneider, Michael; Günther, Christian M; Hessing, Piet; Heitz, Karen; Wittke, Doreen; López-Serrano Oliver, Ana; Jakubowski, Norbert; Plendl, Johanna; Eisebitt, Stefan; Haase, Andrea

    2017-03-21

    Quantification of nanoparticle (NP) uptake in cells or tissues is very important for safety assessment. Often, electron microscopy based approaches are used for this purpose, which allow imaging at very high resolution. However, precise quantification of NP numbers in cells and tissues remains challenging. The aim of this study was to present a novel approach, that combines precise quantification of NPs in individual cells together with high resolution imaging of their intracellular distribution based on focused ion beam/ scanning electron microscopy (FIB/SEM) slice and view approaches. We quantified cellular uptake of 75 nm diameter citrate stabilized silver NPs (Ag 75 Cit) into an individual human macrophage derived from monocytic THP-1 cells using a FIB/SEM slice and view approach. Cells were treated with 10 μg/ml for 24 h. We investigated a single cell and found in total 3138 ± 722 silver NPs inside this cell. Most of the silver NPs were located in large agglomerates, only a few were found in clusters of fewer than five NPs. Furthermore, we cross-checked our results by using inductively coupled plasma mass spectrometry and could confirm the FIB/SEM results. Our approach based on FIB/SEM slice and view is currently the only one that allows the quantification of the absolute dose of silver NPs in individual cells and at the same time to assess their intracellular distribution at high resolution. We therefore propose to use FIB/SEM slice and view to systematically analyse the cellular uptake of various NPs as a function of size, concentration and incubation time.

  17. Assembly of silver Trigons into a buckyball-like Ag180 nanocage

    PubMed Central

    Wang, Zhi; Su, Hai-Feng; Tan, Yuan-Zhi; Schein, Stan; Lin, Shui-Chao; Liu, Wei; Wang, Shu-Ao; Wang, Wen-Guang; Tung, Chen-Ho; Zheng, Lan-Sun

    2017-01-01

    Buckminsterfullerene (C60) represents a perfect combination of geometry and molecular structural chemistry. It has inspired many creative ideas for building fullerene-like nanopolyhedra. These include other fullerenes, virus capsids, polyhedra based on DNA, and synthetic polynuclear metal clusters and cages. Indeed, the regular organization of large numbers of metal atoms into one highly complex structure remains one of the foremost challenges in supramolecular chemistry. Here we describe the design, synthesis, and characterization of a Ag180 nanocage with 180 Ag atoms as 4-valent vertices (V), 360 edges (E), and 182 faces (F)––sixty 3-gons, ninety 4-gons, twelve 5-gons, and twenty 6-gons––in agreement with Euler’s rule V − E + F = 2. If each 3-gon (or silver Trigon) were replaced with a carbon atom linked by edges along the 4-gons, the result would be like C60, topologically a truncated icosahedron, an Archimedean solid with icosahedral (Ih) point-group symmetry. If C60 can be described mathematically as a curling up of a 6.6.6 Platonic tiling, the Ag180 cage can be described as a curling up of a 3.4.6.4 Archimedean tiling. High-resolution electrospray ionization mass spectrometry reveals that {Ag3}n subunits coexist with the Ag180 species in the assembly system before the final crystallization of Ag180, suggesting that the silver Trigon is the smallest building block in assembly of the final cage. Thus, we assign the underlying growth mechanism of Ag180 to the Silver-Trigon Assembly Road (STAR), an assembly path that might be further employed to fabricate larger, elegant silver cages. PMID:29087328

  18. Size-selective reactivity of subnanometer Ag 4 and Ag 16 clusters on a TiO 2 surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Po-Tuan; Tyo, Eric C.; Hayashi, Michitoshi

    Size-selected Ag 4 and Ag 16 clusters on a titania surface have been studied for their potential in CO oxidation using theoretical calculations and X-ray absorption near edge spectroscopy. The first peak at the measured Ag K-edge of Ag 16@TiO 2 is more prominent in air than in carbon monoxide environment, but no variation was found between the spectra of Ag 4@TiO 2 in air and in carbon monoxide environments. Density functional theory calculations show a preference for molecular oxygen adsorption for Ag 4@TiO 2 and that for a dissociative one on Ag 16@TiO 2, while carbon monoxide reactions withmore » adsorbed oxygen reduced the Ag 16@TiO 2 cluster. The dissociated oxygen atoms increased the oxidation state of Ag 16 cluster and resulted in the prominent first peak in Ag K-edge spectrum in quasi-particle theory calculations, with the subsequent carbon monoxide oxidation reversing the character of Ag K-edge spectrum associated with the reduction of the cluster. Finally, the results provide insight into the size selectivity of supported subnanometer silver clusters in their interactions with oxygen and carbon monoxide, with implications on the cluster catalytic properties in oxidative reactions.« less

  19. Size-selective reactivity of subnanometer Ag 4 and Ag 16 clusters on a TiO 2 surface

    DOE PAGES

    Chen, Po-Tuan; Tyo, Eric C.; Hayashi, Michitoshi; ...

    2017-03-08

    Size-selected Ag 4 and Ag 16 clusters on a titania surface have been studied for their potential in CO oxidation using theoretical calculations and X-ray absorption near edge spectroscopy. The first peak at the measured Ag K-edge of Ag 16@TiO 2 is more prominent in air than in carbon monoxide environment, but no variation was found between the spectra of Ag 4@TiO 2 in air and in carbon monoxide environments. Density functional theory calculations show a preference for molecular oxygen adsorption for Ag 4@TiO 2 and that for a dissociative one on Ag 16@TiO 2, while carbon monoxide reactions withmore » adsorbed oxygen reduced the Ag 16@TiO 2 cluster. The dissociated oxygen atoms increased the oxidation state of Ag 16 cluster and resulted in the prominent first peak in Ag K-edge spectrum in quasi-particle theory calculations, with the subsequent carbon monoxide oxidation reversing the character of Ag K-edge spectrum associated with the reduction of the cluster. Finally, the results provide insight into the size selectivity of supported subnanometer silver clusters in their interactions with oxygen and carbon monoxide, with implications on the cluster catalytic properties in oxidative reactions.« less

  20. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents

    PubMed Central

    Ghosh, Sougata; Patil, Sumersing; Ahire, Mehul; Kitture, Rohini; Kale, Sangeeta; Pardesi, Karishma; Cameotra, Swaranjit S; Bellare, Jayesh; Dhavale, Dilip D; Jabgunde, Amit; Chopade, Balu A

    2012-01-01

    Background Development of an environmentally benign process for the synthesis of silver nanomaterials is an important aspect of current nanotechnology research. Among the 600 species of the genus Dioscorea, Dioscorea bulbifera has profound therapeutic applications due to its unique phytochemistry. In this paper, we report on the rapid synthesis of silver nanoparticles by reduction of aqueous Ag+ ions using D. bulbifera tuber extract. Methods and results Phytochemical analysis revealed that D. bulbifera tuber extract is rich in flavonoid, phenolics, reducing sugars, starch, diosgenin, ascorbic acid, and citric acid. The biosynthesis process was quite fast, and silver nanoparticles were formed within 5 hours. Ultraviolet-visible absorption spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy, energy dispersive spectroscopy, and x-ray diffraction confirmed reduction of the Ag+ ions. Varied morphology of the bioreduced silver nanoparticles included spheres, triangles, and hexagons. Optimization studies revealed that the maximum rate of synthesis could be achieved with 0.7 mM AgNO3 solution at 50°C in 5 hours. The resulting silver nanoparticles were found to possess potent antibacterial activity against both Gram-negative and Gram-positive bacteria. Beta-lactam (piperacillin) and macrolide (eryth-romycin) antibiotics showed a 3.6-fold and 3-fold increase, respectively, in combination with silver nanoparticles selectively against multidrug-resistant Acinetobacter baumannii. Notable synergy was seen between silver nanoparticles and chloramphenicol or vancomycin against Pseudomonas aeruginosa, and was supported by a 4.9-fold and 4.2-fold increase in zone diameter, respectively. Similarly, we found a maximum 11.8-fold increase in zone diameter of streptomycin when combined with silver nanoparticles against E. coli, providing strong evidence for the synergistic action of a combination of antibiotics and silver nanoparticles. Conclusion This is the first report on the synthesis of silver nanoparticles using D. bulbifera tuber extract followed by an estimation of its synergistic potential for enhancement of the antibacterial activity of broad spectrum antimicrobial agents. PMID:22334779

  1. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents.

    PubMed

    Ghosh, Sougata; Patil, Sumersing; Ahire, Mehul; Kitture, Rohini; Kale, Sangeeta; Pardesi, Karishma; Cameotra, Swaranjit S; Bellare, Jayesh; Dhavale, Dilip D; Jabgunde, Amit; Chopade, Balu A

    2012-01-01

    Development of an environmentally benign process for the synthesis of silver nanomaterials is an important aspect of current nanotechnology research. Among the 600 species of the genus Dioscorea, Dioscorea bulbifera has profound therapeutic applications due to its unique phytochemistry. In this paper, we report on the rapid synthesis of silver nanoparticles by reduction of aqueous Ag(+) ions using D. bulbifera tuber extract. Phytochemical analysis revealed that D. bulbifera tuber extract is rich in flavonoid, phenolics, reducing sugars, starch, diosgenin, ascorbic acid, and citric acid. The biosynthesis process was quite fast, and silver nanoparticles were formed within 5 hours. Ultraviolet-visible absorption spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy, energy dispersive spectroscopy, and x-ray diffraction confirmed reduction of the Ag(+) ions. Varied morphology of the bioreduced silver nanoparticles included spheres, triangles, and hexagons. Optimization studies revealed that the maximum rate of synthesis could be achieved with 0.7 mM AgNO(3) solution at 50°C in 5 hours. The resulting silver nanoparticles were found to possess potent antibacterial activity against both Gram-negative and Gram-positive bacteria. Beta-lactam (piperacillin) and macrolide (eryth-romycin) antibiotics showed a 3.6-fold and 3-fold increase, respectively, in combination with silver nanoparticles selectively against multidrug-resistant Acinetobacter baumannii. Notable synergy was seen between silver nanoparticles and chloramphenicol or vancomycin against Pseudomonas aeruginosa, and was supported by a 4.9-fold and 4.2-fold increase in zone diameter, respectively. Similarly, we found a maximum 11.8-fold increase in zone diameter of streptomycin when combined with silver nanoparticles against E. coli, providing strong evidence for the synergistic action of a combination of antibiotics and silver nanoparticles. This is the first report on the synthesis of silver nanoparticles using D. bulbifera tuber extract followed by an estimation of its synergistic potential for enhancement of the antibacterial activity of broad spectrum antimicrobial agents.

  2. Intra‐annual variability of Silver Carp populations in the Des Moines River, USA

    USGS Publications Warehouse

    Sullivan, Christopher J.; Camacho, Carlos A.; Weber, Michael J.; Pierce, Clay

    2017-01-01

    Since their introduction in the 1970s, Silver Carp Hypophthalmichthys molitrix have spread throughout the Mississippi River basin. Management of any species relies on an accurate understanding of population characteristics and dynamics. However, Silver Carp seasonal sampling variation is unknown. Sampling during periods of peak catch rates would facilitate Silver Carp assessment and management, improving monitoring and removal techniques. The objective of this study was to evaluate adult Silver Carp seasonal sampling variation with boat electroshocking and trammel nets. Silver Carp were collected monthly (April–October) during 2014 and 2015 from four locations in the Des Moines River, Iowa. Trammel nets rarely captured Silver Carp (mean ± SE = 4.9 ± 1.6 fish/net; 60% of fish were captured in 6.3% of net sets) and therefore were not included in analyses. Electroshocking catch rates (CPUEs) exhibited a bimodal distribution, with peak CPUEs generally occurring in May, June, and September and lower catch rates observed during July and August. Catch rates were positively related to river discharge at upstream sites but not at downstream sites. Silver Carp size structure was similar among months and sites except at Cliffland, where fish were smaller during August and October compared to earlier in the year. Finally, Silver Carp condition peaked during April and May and decreased throughout the year except at Keokuk, where peaks were observed during both May and August. Although spatiotemporal variability was substantial, these results suggest that sampling of Silver Carp via electroshocking in May–June and September–October generally produces higher catch rates compared to July–August sampling and generates a more representative size structure. Using site‐specific knowledge, monitoring and surveillance programs could more effectively sample during these periods of high vulnerability and densities in order to manage the spread and impacts of Silver Carp at statewide and regionwide scales.

  3. Spectroscopic properties of triangular silver nanoplates immobilized on polyelectrolyte multilayer-modified glass substrates

    NASA Astrophysics Data System (ADS)

    Rabor, Janice B.; Kawamura, Koki; Muko, Daiki; Kurawaki, Junichi; Niidome, Yasuro

    2017-07-01

    Fabrication of surface-immobilized silver nanostructures with reproducible plasmonic properties by dip-coating technique is difficult due to shape alteration. To address this challenge, we used a polyelectrolyte multilayer to promote immobilization of as-received triangular silver nanoplates (TSNP) on a glass substrate through electrostatic interaction. The substrate-immobilized TSNP were characterized by absorption spectrophotometry and scanning electron microscopy. The bandwidth and peak position of localized surface plasmon resonance (LSPR) bands can be tuned by simply varying the concentration of the colloidal solution and immersion time. TSNP immobilized from a higher concentration of colloidal solution with longer immersion time produced broadened LSPR bands in the near-IR region, while a lower concentration with shorter immersion time produced narrower bands in the visible region. The shape of the nanoplates was retained even at long immersion time. Analysis of peak positions and bandwidths also revealed the point at which the main species of the immobilization had been changed from isolates to aggregates.

  4. Physiological Strain During Load Carrying: Effects of Mass and Type of Backpack

    DTIC Science & Technology

    2001-05-01

    load did not significantly increase the EMG signal of the trapezius shoulder muscle (pars descenders). While walking, load carrying significantly...descending part of the right trapezius muscle was measured with two surface silver-silver chloride electrodes (PPG, Hellige), positioned on the distal...values using a previously determined RMS versus force relationship. This calibration curve between RMS of the EMG of the trapezius muscle and the force

  5. Brain Vulnerability to Repeated Blast Overpressure and Polytrauma

    DTIC Science & Technology

    2010-05-28

    devoid of any obvious cell loss or injury when assessed using either Nissl or Fluoro Jade stains , they consistently showed widespread fiber degeneration...injured brain after thionine (l) or silver (r) staining . experimental parameters (e.g. driver volume, tube position, Mylar membrane thickness, and type...5. Thionine- (top) and silver- (bottom) stained brain sections following exposure to 126 kPa airblast at the mouth of the tube. From Long et al

  6. Silver nanoparticles synthesized with Rumex hymenosepalus extracts: effective broad-spectrum microbicidal agents and cytotoxicity study.

    PubMed

    Rodríguez-León, Ericka; Íñiguez-Palomares, Ramón A; Navarro, Rosa Elena; Rodríguez-Beas, César; Larios-Rodríguez, Eduardo; Alvarez-Cirerol, Francisco J; Íñiguez-Palomares, Claudia; Ramírez-Saldaña, Maricela; Hernández Martínez, Javier; Martínez-Higuera, Aarón; Galván-Moroyoqui, José Manuel; Martínez-Soto, Juan Manuel

    2017-08-21

    We synthesized silver nanoparticles using Rumex hymenosepalus root extract (Rh). Nanoparticles were subjected to a purification process and final product is a composite of Rh and silver nanoparticles (AgNPsC). Transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to perform a microstructure study. Additionally, two fractions (RhA and RhB) were obtained from the original extract by filtration with tetrahydrofuran (THF); both fractions were analyzed using UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and 2,2-diphenyl-1-picrylhydrazyl (DPPH); total polyphenol content was also determined. Separate inhibition tests for AgNPsC and RhA and RhB were applied to Gram-positive bacteria, Gram-negative bacteria, and yeast (Candida albicans) using the well diffusion method. Extract fractions were found to have inhibitory effects only over Gram-positive bacteria, and silver nanoparticles showed inhibitory effects over all the evaluated microorganisms. Cytotoxicity was evaluated using the tetrazolium dye (MTT) assay in mononuclear peripheral blood cells. In addition, we assessment AgNPsC in THP-1 monocyte cell line, using the cell viability estimation by trypan blue dye exclusion test (TB) and Live/Dead (LD) cell viability assays by confocal microscopy.

  7. Toxicity of silver nanoparticles towards tumoral human cell lines U-937 and HL-60.

    PubMed

    Barbasz, Anna; Oćwieja, Magdalena; Roman, Maciej

    2017-08-01

    The toxicity of three types of silver nanoparticles towards histiocytic lymphoma (U-937) and human promyelocytic cells (HL-60) was studied. The nanoparticles were synthesized in a chemical reduction method using sodium borohydride. Trisodium citrate and cysteamine hydrochloride were used to generate a negative and positive nanoparticle surface charge. The evaluation of cell viability, membrane integrity, antioxidant activity and the induction of inflammation were used to evaluate the difference in cellular response to the nanoparticle treatment. The results revealed that the cysteamine-stabilized (positively charged) nanoparticles (SBATE) were the least toxic although they exhibited a similar ion release profile as the unmodified (negatively charged) nanoparticles obtained using sodium borohydride (SBNM). Citrate-stabilized nanoparticles (SBTC) induced superoxide dismutase (SOD) activity in the HL-60 cells and total antioxidant activity in the U-937 cells despite their resistance to oxidative dissolution. The toxicity of SBNM nanoparticles was manifested in the disruption of membrane integrity, decrease in the mitochondrial functions of cells and the induction of inflammation. These findings allowed to conclude that mechanism of silver nanoparticle cytotoxicity is the combination of effects coming from the surface charge of nanoparticles, released silver ions and biological activity of stabilizing agent molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A comparative study of the effect of α-, β-, and γ-cyclodextrins as stabilizing agents in the synthesis of silver nanoparticles using a green chemistry method.

    PubMed

    Suárez-Cerda, Javier; Nuñez, Gabriel Alonso; Espinoza-Gómez, Heriberto; Flores-López, Lucía Z

    2014-10-01

    This paper describes the effect of different types of cyclodextrins (CDs) in the synthesis of silver nanoparticles (Ag-NPs), using an easy green chemistry method. The Ag-NPs were obtained using an aqueous silver nitrate solution (AgNO3) with α-, β-, or γ-CDs (aqueous solutions) as stabilizing agents, employing the chemical reduction method with citric acid as a reducing agent. A comparative study was done to determine which cyclodextrin (CD) was the best stabilizing agent, and we found out that β-CD was the best due to the number of glucopyranose units in its structure. The formation of the Ag-NPs was demonstrated by analysis of UV-vis spectroscopy, atomic force microscopy (AFM), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and transmission electron microscopy (TEM). SEM-EDS showed the formation of a cluster with a significant amount of silver, for β-CD-Ag-NPs, spherical agglomerates can be observed. However, for α-, γ-CD, the agglomerates do not have a specific form, but their appearance is porous. TEM analysis shows spherical nanoparticles in shape and size between ~0.5 to 7 nm. The clear lattice fringes in TEM images and the typical selected area electron diffraction (SAED) pattern, showed that the Ag-NPs obtained were highly crystalline with a face cubic center structure (FCC). Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Synthesis and study of silver nanoparticles for antibacterial activity against Escherichia coli and Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Hoa Vu, Xuan; Thanh Tra Duong, Thi; Pham, Thi Thu Ha; Kha Trinh, Dinh; Huong Nguyen, Xuan; Dang, Van-Son

    2018-06-01

    The colloidal silver solution was synthesized by reducing silver nitrate () using sodium borohydride () and starch as a stabilizer agent. The size and optical properties of synthesized AgNPs were characterized by UV-Vis spectroscopy, Fourier transform-infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The effects of several parameters on AgNPs were also investigated. The results have shown that the size of synthesized spherical silver nanoparticles was and disperse in water. The synthesized AgNPs of his study exhibited a strong antibacterial activity against Gram-negative bacteria Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). The average zones of inhibition of AgNPs were of 7.7 mm for bacteria E. coli and 7.0 mm for S. aureus. In this study, the zone of inhibition of AgNPs was also compared to the reference antibiotics drug.

  10. Silver deposition on polypyrrole films electrosynthesised onto Nitinol alloy. Corrosion protection and antibacterial activity.

    PubMed

    Saugo, M; Flamini, D O; Brugnoni, L I; Saidman, S B

    2015-11-01

    The electrosynthesis of polypyrrole films onto Nitinol from sodium salicylate solutions of different concentrations is reported. The morphology and corrosion protection properties of the resulting coatings were examined and they both depend on the sodium salicylate concentration. The immobilisation of silver species in PPy films constituted by hollow rectangular microtubes was studied as a function of the polymer oxidation degree. The highest amount of silver was deposited when the coated electrode was prepolarised at -1.00V (SCE) before silver deposition, suggesting an increase in the amount of non-oxidised segments in the polymer. Finally, the antibacterial activity of the coating against the Gram positive Staphylococcus aureus and Staphylococcus epidermidis bacteria was evaluated. Both strains resulted sensitive to the modified coatings, obtaining a slightly better result against S. aureus. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Embedment of silver into temperature- and pH-responsive microgel for the development of smart textiles with simultaneous moisture management and controlled antimicrobial activities.

    PubMed

    Štular, Danaja; Jerman, Ivan; Naglič, Iztok; Simončič, Barbara; Tomšič, Brigita

    2017-03-01

    Silver nanoparticles were embedded into a temperature- and pH-responsive microgel based on poly-(N-isopropylacrylamide) and chitosan (PNCS) before or after its application to cotton fabric to create a smart stimuli-responsive textile with simultaneous moisture management and controlled antimicrobial activities. Two different methods of silver embedment into the PNCS microgel using two different forms of silver nanoparticles were studied, i.e., in-situ synthesis of AgCl nanocrystals into PNCS microgel particles that had previously been applied to cotton fabric, as well as the direct incorporation of colloidal silver into the microgel suspension prior to its deposition on cellulose fibres. SEM and FT-IR analysis were employed to determine the morphological and chemical changes of the modified cotton fibres, while EDS and ICP MS analysis were used to confirm the presence of the silver nanoparticles. The influence of silver embedment on the swelling/deswelling activity of the PNCS microgel was studied using the temperature- and pH-responsiveness, as determined by the moisture content, water vapour transmission rate and water uptake. The antimicrobial activity against the bacteria Staphylococcus aureus and Escherichia coli was assessed. Regardless of the embedment technique, the presence of silver nanoparticles resulted in impaired moisture management activity of the studied microgel. The PNCS microgel proved to be a suitable carrier of antimicrobial agents, assuring the effective controlled release of silver triggered by changes in the temperature and pH of the surroundings, which granted the cotton fabric excellent antimicrobial activity against Gram-negative E. coli (>99%) and Gram-positive S. aureus (>85%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Electrode for a lithium cell

    DOEpatents

    Thackeray, Michael M [Naperville, IL; Vaughey, John T [Elmhurst, IL; Dees, Dennis W [Downers Grove, IL

    2008-10-14

    This invention relates to a positive electrode for an electrochemical cell or battery, and to an electrochemical cell or battery; the invention relates more specifically to a positive electrode for a non-aqueous lithium cell or battery when the electrode is used therein. The positive electrode includes a composite metal oxide containing AgV.sub.3O.sub.8 as one component and one or more other components consisting of LiV.sub.3O.sub.8, Ag.sub.2V.sub.4O.sub.11, MnO.sub.2, CF.sub.x, AgF or Ag.sub.2O to increase the energy density of the cell, optionally in the presence of silver powder and/or silver foil to assist in current collection at the electrode and to improve the power capability of the cell or battery.

  13. Synthesis, Characterization and Application of Water-soluble Gold and Silver Nanoclusters

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh

    The term `nanotechnology' has emerged as a buzzword since the last few decades. It has found widespread applications across disciplines, from medicine to energy. The synthesis of gold and silver nanoclusters has found much excitement, due to their novel material properties. Seminal work by various groups, including ours, has shown that the size of these clusters can be controlled with atomic precision. This control gives access to tuning the optical and electronic properties. The majority of nanoclusters reported thus far are not water soluble, which limit their applications in biology that requires water-solubility. Going from organic to aqueous phase is by no means a simple task, as it is associated with many challenges. Their stability in the presence of oxygen, difficulty in characterization, and separation of pure nanoclusters are some of the major bottlenecks associated with the synthesis of water-soluble gold nanoclusters. Water-soluble gold nanoclusters hold great potential in biological labeling, bio-catalysis and nano-bioconjugates. To overcome this problem, a new ligand with structural rigidity is needed. After considering various possibilities, we chose Captopril as a candidate ligand. In my thesis research, the synthesis of Au25 nanocluster capped with captopril has been reported. Captopril-protected Au25 nanocluster showed significantly higher thermal stability and enhanced chiroptical properties than the Glutathione-capped cluster, which confirms our initial rationale, that the ligand is critical in protecting the nanocluster. The optical absorption properties of these Au25 nanoclusters are studied and compared to the plasmonic nanoparticles. The high thermal stability and solubility of Au25 cluster capped with Captopril motivated us to explore this ligand for the synthesis of other gold clusters. Captopril is a chiral molecule with two chiral centers. The chiral ligand can induce chirality to the overall cluster, even if the core is achiral. Therefore, to obtain Au38 clusters as an enantiomer, the ligand employed should be chiral. The enantioselective synthesis of Au 38 capped with different chiral ligands has been reported and their chiroptical properties have been compared. The synthesis of a series of water-soluble Au nanoclusters has motivated us to study the effect of capping ligands and the core-size on their steady-state and time-resolved fluorescence properties, since the photoluminescence properties are particularly important for bioimaging and biomedical applications of nanoclusters. To gain fundamental insights into the origin of luminescence in nanoclusters, the effect of temperature on the fluorescence properties of these clusters has also been studied. The different sized nanoclusters ranging from a few dozen atoms to hundreds of atoms form a bridge between discrete atoms and the plasmonic nanocrystals; the latter involves essentially collective electron excitation-a phenomenon well explained by classical physics as opposed to quantum physics. The central question is: at what size does this transition from quantum behavior to classical behavior occur? To unravel this, we have successfully synthesized a series of silver nanoclusters. The precise formula assignment and their structural determination are still ongoing. We have successfully demonstrated the application of these water-soluble Au nanoclusters in photodynamic therapy for the treatment of cancer. We have successfully demonstrated that Au nanocluster system can produce singlet oxygen without the presence of any organic photosensitizers. In a collaborative project with Dr. Peteanu's group, the quenching efficiency of organic dyes by these water soluble nanoclusters is studied in different systems. Overall, this thesis outlines the successful synthesis of a family of water-soluble nanoclusters, their optical, chiroptical and fluorescence properties, as well as some applications of these nanoclusters.

  14. Utilizing the Power of Nanostructures to Their Fullest Capability in Energetic Formulations

    DTIC Science & Technology

    2016-02-01

    aluminum-cyclopentadienyl clusters. J Phys Chem A. 2011;115(48):14100– 14109. Zeng Q, Jiang X, Yu A, Lu G. Growth mechanisms of silver nanoparticles : a...assemblies of gas generators containing nanoscale Al (conventional Al nanoparticles and Al nanoclusters) to overcome the sintering and/or oxide-formation...issues. Experimentally, a previously published hypothesis for the mechanism leading to enhanced energy release from Al nanoparticles in the presence of

  15. Data Mining Meets HCI: Making Sense of Large Graphs

    DTIC Science & Technology

    2012-07-01

    graph algo- rithms, won the Open Source Software World Challenge, Silver Award. We have released Pegasus as free , open-source software, downloaded by...METIS [77], spectral clustering [108], and the parameter- free “Cross-associations” (CA) [26]. Belief Propagation can also be used for clus- tering, as...number of tools have been developed to support “ landscape ” views of information. These include WebBook and Web- Forager [23], which use a book metaphor

  16. A Study on the Plasmonic Properties of Silver Core Gold Shell Nanoparticles: Optical Assessment of the Particle Structure

    NASA Astrophysics Data System (ADS)

    Mott, Derrick; Lee, JaeDong; Thi Bich Thuy, Nguyen; Aoki, Yoshiya; Singh, Prerna; Maenosono, Shinya

    2011-06-01

    This paper reports a qualitative comparison between the optical properties of a set of silver core, gold shell nanoparticles with varying composition and structure to those calculated using the Mie solution. To achieve this, silver nanoparticles were synthesized in aqueous phase from a silver hydroxide precursor with sodium acrylate as dual reducing-capping agent. The particles were then coated with a layer of gold with controllable thickness through a reduction-deposition process. The resulting nanoparticles reveal well defined optical properties that make them suitable for comparison to ideal calculated results using the Mie solution. The discussion focuses on the correlation between the synthesized core shell nanoparticles with varying Au shell thickness and the Mie solution results in terms of the optical properties. The results give insight in how to design and synthesize silver core, gold shell nanoparticles with controllable optical properties (e.g., SPR band in terms of intensity and position), and has implications in creating nanoparticle materials to be used as biological probes and sensing elements.

  17. Enhancement of antidandruff activity of shampoo by biosynthesized silver nanoparticles from Solanum trilobatum plant leaf

    NASA Astrophysics Data System (ADS)

    Pant, Gaurav; Nayak, Nitesh; Gyana Prasuna, R.

    2013-10-01

    The present investigation describes simple and effective method for synthesis of silver nanoparticles via green route. Solanum trilobatum Linn extract were prepared by both conventional and homogenization method. We optimized the production of silver nanoparticles under sunlight, microwave and room temperature. The best results were obtained with sunlight irradiation, exhibiting 15-20 nm silver nanoparticles having cubic and hexagonal shape. Biosynthesized nanoparticles were highly toxic to various bacterial strains tested. In this study we report antibacterial activity against various Gram negative ( Klebsiella pneumoniae, Vibrio cholerae and Salmonella typhi) and Gram positive ( Staphylococcus aureus, Bacillus cereus and Micrococcus luteus) bacterial strains. Screening was also performed for any antifungal properties of the nanoparticles against human pathogenic fungal strains ( Candida albicans and Candida parapsilosis). We also demonstrated that these nanoparticles when mixed with shampoo enhance the anti-dandruff effect against dandruff causing fungal pathogens ( Pityrosporum ovale and Pityrosporum folliculitis). The present study showed a simple, rapid and economical route to synthesize silver nanoparticles and their applications hence has a great potential in biomedical field.

  18. Study of oxygen gas production phenomenon during stand and discharge in silver-zinc batteries

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The effects of a number of cell process and performance variables upon the oxygen evolution rate of silver/silver oxide cathodes are studied to predict and measure the conditions which would result in the production of a minimum of oxygen. The following five tasks comprise the study: the design and fabrication of two pilot test cells to be used for electrode testing; the determination of the sensitivity and accuracy of the test cell; the determination of total volumes and rates of generation by cathodes of standard production procedures; the construction of a sequential test plan; and the construction of a series of positive formation cells in which formation process factors can be controlled.

  19. First description of the karyotype and localization of major and minor ribosomal genes in Rhoadsia altipinna Fowler, 1911 (Characiformes, Characidae) from Ecuador

    PubMed Central

    Sánchez-Romero, Omar; Abad, César Quezada; Cordero, Patricio Quizhpe; de Sene, Viviani França; Nirchio, Mauro; Oliveira, Claudio

    2015-01-01

    Abstract Karyotypic features of Rhoadsia altipinna Fowler, 1911 from Ecuador were investigated by examining metaphase chromosomes through Giemsa staining, C-banding, Ag-NOR, and two-color-fluorescence in situ hybridization (FISH) for mapping of 18S and 5S ribosomal genes. The species exhibit a karyotype with 2n = 50, composed of 10 metacentric, 26 submetacentric and 14 subtelocentric elements, with a fundamental number FN=86 and is characterized by the presence of a larger metacentric pair (number 1), which is about 2/3 longer than the average length of the rest of the metacentric series. Sex chromosomes were not observed. Heterochromatin is identifiable on 44 chromosomes, distributed in paracentromeric position near the centromere. The first metacentric pair presents two well-defined heterochromatic blocks in paracentromeric position, near the centromere. Impregnation with silver nitrate showed a single pair of Ag-positive NORs localized at terminal regions of the short arms of the subtelocentric chromosome pair number 12. FISH assay confirmed these localization of NORs and revealed that minor rDNA clusters occur interstitially on the larger metacentric pair number 1. Comparison of results here reported with those available on other Characidae permit to hypothesize that the presence of a very large metacentric pair might represent a unique and derived condition that characterize one of four major lineages molecularly identified in this family. PMID:26140168

  20. Core-shell structure disclosed in self-assembled Cu-Ag nanoalloy particles

    NASA Astrophysics Data System (ADS)

    Tchaplyguine, M.; Andersson, T.; Zhang, Ch.; Björneholm, O.

    2013-03-01

    Core-shell segregation of copper and silver in self-assembled, free nanoparticles is established by means of photoelectron spectroscopy in a wide range of relative Cu-Ag concentrations. These conclusions are based on the analysis of the photon-energy-dependent changes of the Cu 3d and Ag 4d photoelectron spectra. The nanoparticles are formed from mixed Cu-Ag atomic vapor created by magnetron sputtering of a bimetallic sample in a gas-aggregation cluster source. Even at similar Cu and Ag fractions in the primary vapor the surface of the nanoparticles is dominated by silver. Only at low Ag concentration copper appears on the surface of nanoparticles. For the latter case, a threefold decrease in the Ag 4d spin-orbit splitting has been detected. The specific component distribution and electronic structure changes are discussed in connection with the earlier results on Cu-Ag macroscopic and surface alloys.

  1. Complete genome sequence of a Watermelon silver mottle virus isolate from China.

    PubMed

    Rao, Xueqin; Wu, Zhuyan; Li, Yuan

    2013-06-01

    The complete genome of a Watermelon silver mottle virus (WSMoV) (genus Tospovirus, family Bunyaviridae) isolate (WSMoV-GZ) from Guangdong province, China was sequenced. The genomes of WSMoV-GZ contained 3,603, 4,909, and 8,914 nt of small (S), medium (M), and large (L) RNA segments, respectively, and had a genomic organization characteristic of members of the genus Tospovirus. The amino acid sequence of the nucleocapsid (N) protein, S RNA-encoded nonstructural (NSs) protein, M RNA-encoded nonstructural (NSm) protein, Gn/Gc glycoprotein precursor, and RNA-dependent RNA polymerase (RdRp) protein showed 94.3-97.5 % identity with those of other WSMoV isolates. Phylogenetic analysis showed that the N protein of WSMoV-GZ was clustered together with those of the WSMoV isolates. The full sequence of WSMoV-GZ provides a reference genome for comparison with other tospoviruses.

  2. Effects of gamma irradiation and silver nano particles on microbiological characteristics of saffron, using hurdle technology.

    PubMed

    Hamid Sales, E; Motamedi Sedeh, F; Rajabifar, S

    2012-03-01

    Saffron, a plant from the Iridaceae family, is the world's most expensive spice. Gamma irradiation and silver nano particles whose uses are gradually increasing worldwide, have positive effects on preventing decay by sterilizing the microorganisms and by improving the safety without compromising the nutritional properties and sensory quality of the foods. In the present study combination effects of gamma irradiation and silver nano particles packaging on the microbial contamination of saffron were considered during storage. A combination of hurdles can ensure stability and microbial safety of foods. For this purpose, saffron samples were packaged by Poly Ethylene films that posses up to 300 ppm nano silver particles as antimicrobial agents and then irradiated in cobalt-60 irradiator (gamma cell PX30, dose rate 0.55 Gry/Sec) to 0, 1, 2,3 and 4 kGy at room temperature. The antimicrobial activities against Total Aerobic Mesophilic Bacteria, Entrobacteriace, Escherichia Coli and Clostridium Perfringines were higher in the irradiated samples, demonstrating the inhibition zone for their growth. Irradiation of the saffron samples packaged by Poly Ethylene films with nano silver particles showed the best results for decreasing microbial contamination at 2 kGy and for Poly Ethylene films without silver nano particles; it was 4 kGy.

  3. A platonic solid templating Archimedean solid: an unprecedented nanometre-sized Ag37 cluster

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Yu; Su, Hai-Feng; Yu, Kai; Tan, Yuan-Zhi; Wang, Xing-Po; Zhao, Ya-Qin; Sun, Di; Zheng, Lan-Sun

    2015-04-01

    The spontaneous formation of discrete spherical nanosized molecules is prevalent in nature, but the authentic structural mimicry of such highly symmetric polyhedra from edge sharing of regular polygons has remained elusive. Here we present a novel ball-shaped {(HNEt3)[Ag37S4(SC6H4tBu)24(CF3COO)6(H2O)12]} cluster (1) that is assembled via a one-pot process from polymeric {(HNEt3)2[Ag10(SC6H4tBu)12]}n and CF3COOAg. Single crystal X-ray analysis confirmed that 1 is a Td symmetric spherical molecule with a [Ag36(SC6H4tBu)24] anion shell enwrapping a AgS4 tetrahedron. The shell topology of 1 belongs to one of 13 Archimedean solids, a truncated tetrahedron with four edge-shared hexagons and trigons, which are supported by a AgS4 Platonic solid in the core. Interestingly, the cluster emits green luminescence centered at 515 nm at room temperature. Our investigations have provided a promising synthetic protocol for a high-nuclearity silver cluster based on underlying geometrical principles.The spontaneous formation of discrete spherical nanosized molecules is prevalent in nature, but the authentic structural mimicry of such highly symmetric polyhedra from edge sharing of regular polygons has remained elusive. Here we present a novel ball-shaped {(HNEt3)[Ag37S4(SC6H4tBu)24(CF3COO)6(H2O)12]} cluster (1) that is assembled via a one-pot process from polymeric {(HNEt3)2[Ag10(SC6H4tBu)12]}n and CF3COOAg. Single crystal X-ray analysis confirmed that 1 is a Td symmetric spherical molecule with a [Ag36(SC6H4tBu)24] anion shell enwrapping a AgS4 tetrahedron. The shell topology of 1 belongs to one of 13 Archimedean solids, a truncated tetrahedron with four edge-shared hexagons and trigons, which are supported by a AgS4 Platonic solid in the core. Interestingly, the cluster emits green luminescence centered at 515 nm at room temperature. Our investigations have provided a promising synthetic protocol for a high-nuclearity silver cluster based on underlying geometrical principles. Electronic supplementary information (ESI) available: detailed synthesis procedure, tables, crystal data in CIF files, IR data, TGA results and powder X-ray diffractogram for 1. CCDC 1042228. See DOI: 10.1039/c5nr01222h

  4. New bioactive silver(I) complexes: Synthesis, characterization, anticancer, antibacterial and anticarbonic anhydrase II activities

    NASA Astrophysics Data System (ADS)

    Ozdemir, Ummuhan O.; Ozbek, Neslihan; Genc, Zuhal Karagoz; İlbiz, Firdevs; Gündüzalp, Ayla Balaban

    2017-06-01

    Silver(I) complexes of alkyl sulfonic acide hydrazides were newly synthesized as homologous series. Methanesulfonic acide hydrazide (L1), ethanesulfonic acide hydrazide (L2), propanesulfonic acide hydrazide (L3) and butanesulfonic acide hydrazide (L4) were used for complexation with Ag(I) ions. The silver complexes obtained in the mol ratio of 1:2 have the structural formula as Ag(L1)2NO3 (I), Ag(L2)2NO3 (II), Ag(L3)2NO3(III), (Ag(L4)2NO3 (IV). The Ag(I) complexes exhibit distorted linear two-fold coordination in [AgL2]+ cations with uncoordinated nitrates. Ligands are chelated with silver(I) ions through unsubstituted primary nitrogen in hydrazide group. Ag(I) complexes were characterized by using elemental analysis, spectroscopic methods (FT-IR, LC-MS), magnetic susceptibility and conductivity measurements. Silver(I) complexes were optimized using PBEPBE/LanL2DZ/DEF2SV basic set performed by DFT method with the Gaussian 09 program package. The geometrical parameters, frontier molecular orbitals (HOMOs and LUMOs) and molecular electrostatic potential (MEP) mapped surfaces of the optimized geometries were also determined by this quantum set. The anticancer activities of silver(I) complexes on MCF-7 human breast cancer cell line were investigated by comparing IC50 values. The antibacterial activities of complexes were studied against Gram positive bacteria; S. aureus ATCC 6538, B. subtilis ATCC 6633, B. cereus NRRL-B-3711, E. faecalis ATCC 29212 and Gram negative bacteria; E. coli ATCC 11230, P. aeruginosa ATCC 15442, K. pneumonia ATCC 70063 by using disc diffusion method. The inhibition activities of Ag(I) complexes on carbonic anhydrase II enzyme (hCA II) were also investigated by comparing IC50 and Ki values. The biological activity screening shows that Ag(I) complex of butanesulfonicacidehydrazide (IV) has the highest activity against tested breast cancer cell lines MCF-7, Gram positive/Gram negative bacteria and carbonic anhydrase II (hCA II) isoenzyme.

  5. Sculpture, perspective view looking to pair of lions positioned at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Sculpture, perspective view looking to pair of lions positioned at top of stairs leading down into the Glen - National Park Seminary, Bounded by Capitol Beltway (I-495), Linden Lane, Woodstove Avenue, & Smith Drive, Silver Spring, Montgomery County, MD

  6. Study of space charge layer in silver bromide microcrystals by means of ultraviolet photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Tani, Tadaaki; Inami, Yoshiyasu

    2000-09-01

    Ultraviolet photoelectron spectroscopy has been successfully used to measure the heights of the tops of the valence bands of the surfaces of AgBr layers on Ag substrates for the verification of the space charge layer model. According to this model, the positive space charge layer (composed of negative charges with excess negative kink sites on the surface and corresponding positive charges with interstitial silver ions in the interior) is formed in silver halides, causing the difference in the electronic energy levels between their surface and interior. The depression of the positive space charge layer of AgBr caused by such adsorbates as photographic stabilizers and antifoggants was estimated from the decrease in the ionic conductivity of cubic AgBr microcrystals by the adsorbates. It was confirmed by the decrease in the heights of the tops of the valence bands of the surfaces of AgBr layers caused by the adsorbates in the presence of thin gelatin membranes on their surfaces. This result provided the explanation for the fact that the adsorbates increased the number of the microcrystals which formed latent image centers on the surface and decreased the number of the microcrystals, which formed latent image centers in the interior.

  7. Extracellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 and their biological applications.

    PubMed

    Singh, Priyanka; Singh, Hina; Kim, Yeon Ju; Mathiyalagan, Ramya; Wang, Chao; Yang, Deok Chun

    2016-05-01

    The present study highlights the microbial synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 strain, in an efficient way. The synthesized nanoparticles were characterized by ultraviolet-visible spectrophotometry, which displayed maximum absorbance at 424nm and 531nm for silver and gold nanoparticles, respectively. The spherical shape of nanoparticles was characterized by field emission transmission electron microscopy. The energy dispersive X-ray spectroscopy and elemental mapping were displayed the purity and maximum elemental distribution of silver and gold elements in the respective nanoproducts. The X-ray diffraction spectroscopy results demonstrate the crystalline nature of synthesized nanoparticles. The particle size analysis demonstrate the nanoparticles distribution with respect to intensity, volume and number of nanoparticles. For biological applications, the silver nanoparticles have been explored in terms of MIC and MBC against pathogenic microorganisms such as Vibrio parahaemolyticus, Escherichia coli, Salmonella enterica, Bacillus anthracis, Bacillus cereus and Staphylococcus aureus. Moreover, the silver nanoparticles in combination with commercial antibiotics, such as vancomycin, rifampicin, oleandomycin, penicillin G, novobiocin, and lincomycin have been explored for the enhancement of antibacterial activity and the obtained results showed that 3μg concentration of silver nanoparticles sufficiently enhance the antimicrobial efficacy of commercial antibiotics against pathogenic microorganism. Furthermore, the silver nanoparticles potential has been reconnoitered for the biofilm inhibition by S. aureus, Pseudomonas aeruginosa and E. coli and the results revealed sufficient activity at 6μg concentration. In addition, gold nanoparticles have been applied for catalytic activity, for the reduction of 4-nitrophenol to 4-aminophenol using sodium borohydride and positive results were attained. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Antibacterial activity of plastics coated with silver-doped organic-inorganic hybrid coatings prepared by sol-gel processes.

    PubMed

    Marini, M; De Niederhausern, S; Iseppi, R; Bondi, M; Sabia, C; Toselli, M; Pilati, F

    2007-04-01

    Silver-doped organic-inorganic hybrid coatings were prepared starting from tetraethoxysilane- and triethoxysilane-terminated poly(ethylene glycol)-block-polyethylene by the sol-gel process. They were applied as a thin layer (0.6-1.1 microm) to polyethylene (PE) and poly(vinyl chloride) (PVC) films and the antibacterial activity of the coated films was tested against Gram-negative (Escherichia coli ATCC 25922) and Gram-positive (Staphylococcus aureus ATCC 6538) bacteria. The effect of several factors (such as organic-inorganic ratio, type of catalyst, time of post-curing, silver ion concentration, etc.) was investigated. Measurements at different contact times showed a rapid decrease of the viable count for both tested strains. The highest antibacterial activity [more than 6 log reduction within 6 h starting from 106 colony-forming units (cfu) mL-1] was obtained for samples with an organic-inorganic weight ratio of 80:20 and 5 wt % silver salt with respect to the coating. For the coatings prepared by an acid-catalyzed process, a high level of permanence of the antibacterial activity of the coated films was demonstrated by repeatedly washing the samples in warm water or by immersion in physiological saline solution at 37 degrees C for 3 days. The release of silver ions per square meter of coating is very similar to that previously observed for polyamides filled with metallic silver nanoparticles; however, when compared on the basis of Ag content, the concentration of silver ions released from the coating is much higher than that released from 1 mm thick specimens of polyamide (PA) filled with silver nanoparticles. Transparency and good adhesion of the coating to PE and PVC plastic substrates without any previous surface treatment are further interesting features.

  9. Anti-inflammatory activity of nanocrystalline silver-derived solutions in porcine contact dermatitis

    PubMed Central

    2010-01-01

    Background Nanocrystalline silver dressings have anti-inflammatory activity, unlike solutions containing Ag+ only, which may be due to dissolution of multiple silver species. These dressings can only be used to treat surfaces. Thus, silver-containing solutions with nanocrystalline silver properties could be valuable for treating hard-to-dress surfaces and inflammatory conditions of the lungs and bowels. This study tested nanocrystalline silver-derived solutions for anti-inflammatory activity. Methods Inflammation was induced on porcine backs using dinitrochlorobenzene. Negative and positive controls were treated with distilled water. Experimental groups were treated with solutions generated by dissolving nanocrystalline silver in distilled water adjusted to starting pHs of 4 (using CO2), 5.6 (as is), 7, and 9 (using Ca(OH)2). Solution samples were analyzed for total silver. Daily imaging, biopsying, erythema and oedema scoring, and treatments were performed for three days. Biopsies were processed for histology, immunohistochemistry (for IL-4, IL-8, IL-10, TNF-α, EGF, KGF, KGF-2, and apoptotic cells), and zymography (MMP-2 and -9). One-way ANOVAs with Tukey-Kramer post tests were used for statistical analyses. Results Animals treated with pH 7 and 9 solutions showed clear visual improvements. pH 9 solutions resulted in the most significant reductions in erythema and oedema scores. pH 4 and 7 solutions also reduced oedema scores. Histologically, all treatment groups demonstrated enhanced re-epithelialisation, with decreased inflammation. At 24 h, pMMP-2 expression was significantly lowered with pH 5.6 and 9 treatments, as was aMMP-2 expression with pH 9 treatments. In general, treatment with silver-containing solutions resulted in decreased TNF-α and IL-8 expression, with increased IL-4, EGF, KGF, and KGF-2 expression. At 24 h, apoptotic cells were detected mostly in the dermis with pH 4 and 9 treatments, nowhere with pH 5.6, and in both the epidermis and dermis with pH 7. Solution anti-inflammatory activity did not correlate with total silver content, as pH 4 solutions contained significantly more silver than all others. Conclusions Nanocrystalline silver-derived solutions appear to have anti-inflammatory/pro-healing activity, particularly with a starting pH of 9. Solutions generated differently may have varying concentrations of different silver species, only some of which are anti-inflammatory. Nanocrystalline silver-derived solutions show promise for a variety of anti-inflammatory treatment applications. PMID:20170497

  10. Impedimetric detection of bacteria by using a microfluidic chip and silver nanoparticle based signal enhancement.

    PubMed

    Wang, Renjie; Xu, Yi; Sors, Thomas; Irudayaraj, Joseph; Ren, Wen; Wang, Rong

    2018-02-19

    The authors describe a method that can significantly improve the performance of impedimetric detection of bacteria. A multifunctional microfluidic chip was designed consisting of interdigitated microelectrodes and a micro-mixing zone with a Tesla structure. This maximizes the coating of bacterial surfaces with nanoparticles and results in improved impedimetric detection. The method was applied to the detection of Escherichia coli O157:H7 (E. coli). Silver enhancement was accomplished by coating E.coli with the cationic polymer diallyldimethylammonium chloride (PDDA) to form positively charged E. coli/PDDA complexes. Then, gold nanoparticles (AuNPs) were added, and the resulting E. coli/PDDA/AuNPs complexes were collected at interdigitated electrodes via positive dielectrophoresis (pDEP). A silver adduct was then formed on the E. coli/PDDA/AuNP complexes by using silver enhancement solutions and by using the AuNPs as catalysts. The combination of pDEP based capture and of using silver adducts reduces impedance by increasing the conductivity of the solution and the double layer capacitance around the microelectrodes. Impedance decreases linearly in the 2 × 10 3 -2 × 10 5  cfu·mL -1 E. coli concentration range, with a 500 cfu·mL -1 detection limit. Egg shell wash samples and tap water spiked with E. coli were successfully used for validation, and this demonstrates the practical application of this method. Graphical abstract Schematic representation of the AuNP@Ag enhancement method integrated with multifunctional microfluidic chip platform for impedimetric quantitation of bacteria. The method significantly improves the performance of impedimetric detection of bacteria.

  11. Silver-doped manganese dioxide and trioxide nanoparticles inhibit both gram positive and gram negative pathogenic bacteria.

    PubMed

    Kunkalekar, R K; Prabhu, M S; Naik, M M; Salker, A V

    2014-01-01

    Palladium, ruthenium and silver-doped MnO2 and silver doped Mn2O3 nanoparticles were synthesized by simple co-precipitation technique. SEM-TEM analysis revealed the nano-size of these synthesized samples. XPS data illustrates that Mn is present in 4+ and 3+ oxidation states in MnO2 and Mn2O3 respectively. Thermal analysis gave significant evidence for the phase changes with increasing temperature. Antibacterial activity of these synthesized nanoparticles on three Gram positive bacterial cultures (Staphylococcus aureus ATCC 6538, Streptococcus epidermis ATCC 12228, Bacillus subtilis ATCC 6633) and three Gram negative cultures (Escherichia coli ATCC 8739, Salmonella abony NCTC 6017 and Klebsiella pneumoniae ATCC 1003) was investigated using a disc diffusion method and live/dead assay. Only Ag-doped MnO2 and Ag-doped Mn2O3 nanoparticles showed antibacterial property against all six-test bacteria but Ag-doped MnO2 was found to be more effective than Ag-doped Mn2O3. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Antimicrobial activity of biopolymeric thin films containing flavonoid natural compounds and silver nanoparticles fabricated by MAPLE: A comparative study

    NASA Astrophysics Data System (ADS)

    Cristescu, R.; Visan, A.; Socol, G.; Surdu, A. V.; Oprea, A. E.; Grumezescu, A. M.; Chifiriuc, M. C.; Boehm, R. D.; Yamaleyeva, D.; Taylor, M.; Narayan, R. J.; Chrisey, D. B.

    2016-06-01

    The purpose of this study was to investigate the interactions between microorganisms, including the planktonic and adherent organisms, and biopolymer (polyvinylpyrrolidone), flavonoid (quercetin dihydrate and resveratrol)-biopolymer, and silver nanoparticles-biopolymer composite thin films that were deposited using matrix assisted pulsed laser evaporation (MAPLE). A pulsed KrF* excimer laser source was used to deposit the aforementioned composite thin films, which were characterized using Fourier transform infrared spectroscopy (FT-IR), infrared microscopy (IRM), scanning electron microscopy (SEM), Grazing incidence X-ray diffraction (GIXRD) and atomic force microscopy (AFM). The antimicrobial activity of thin films was quantified using an adapted disk diffusion assay against Gram-positive and Gram-negative bacteria strains. FT-IR, AFM and SEM studies confirmed that MAPLE may be used to fabricate thin films with chemical properties corresponding to the input materials as well as surface properties that are appropriate for medical use. The silver nanoparticles and flavonoid-containing films exhibited an antimicrobial activity both against Gram-positive and Gram-negative bacterial strains demonstrating the potential use of these hybrid systems for the development of novel antimicrobial strategies.

  13. Synthesis and characterization of poly(3-sulfopropylmethacrylate) brushes for potential antibacterial applications.

    PubMed

    Ramstedt, Madeleine; Cheng, Nan; Azzaroni, Omar; Mossialos, Dimitris; Mathieu, Hans Jörg; Huck, Wilhelm T S

    2007-03-13

    This article describes the aqueous atom transfer radical polymerization synthesis of poly(3-sulfopropylmethacrylate) brushes onto gold and Si/SiO2 surfaces in a controlled manner. The effect of Cu(I)/Cu(II) ratio was examined, and a quartz crystal microbalance was used to study the kinetics of the brush synthesis. The synthesized brushes displayed a thickness from a few nanometers to several hundred nanometers and were characterized using atomic force microscopy, ellipsometry, Fourier transform infrared spectroscopy (FTIR), contact angle measurements, and X-ray photoelectron spectroscopy (XPS). The as-synthesized sulfonate brushes had very good ion-exchange properties for the ions tested in this study, i.e., Na+, K+, Cu2+, and Ag+. FTIR and XPS show that the metal ions are coordinating to sulfonate moieties inside the brushes. The brushes were easily loaded with silver ions, and the effect of silver ion concentration on silver loading of the brush was examined. The silver-loaded brushes were shown to be antibacterial toward both gram negative and gram positive bacteria. The silver leaching was studied through leaching experiments into water, NaNO3, and NaCl (physiological medium). The results from these leaching experiments are compared and discussed in the article.

  14. A Nanocomposite Hydrogel with Potent and Broad-Spectrum Antibacterial Activity.

    PubMed

    Dai, Tianjiao; Wang, Changping; Wang, Yuqing; Xu, Wei; Hu, Jingjing; Cheng, Yiyun

    2018-05-02

    Local bacterial infection is a challenging task and still remains a serious threat to human health in clinics. Systemic administration of antibiotics has only short-term antibacterial activity and usually causes adverse effects and bacterial resistance. A bioadhesive hydrogel with broad-spectrum and on-demand antibiotic activity is highly desirable. Here, we designed a pH-responsive nanocomposite hydrogel via a Schiff base linkage between oxidized polysaccharides and cationic dendrimers encapsulated with silver nanoparticles. The antibacterial components, both the cationic dendrimers and silver species, could be released in response to the acidity generated by growing bacteria. The released cationic polymer and silver exhibited a synergistic effect in antibacterial activity, and thus, the nanocomposite hydrogel showed potent antibacterial activity against both Gram-negative ( Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria ( Staphylococcus epidermidis and Staphylococcus aureus). The gel showed superior in vivo antibacterial efficacy against S. aureus infection compared with a commercial silver hydrogel at the same silver concentration. In addition, no obvious hemolytic toxicity, cytotoxicity, and tissue and biochemical toxicity were observed for the antibacterial hydrogel after incubation with cells or implantation. This study provides a facile and promising strategy to develop smart hydrogels to treat local bacterial infections.

  15. Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource.

    PubMed

    Patil, Maheshkumar Prakash; Singh, Rahul Dheerendra; Koli, Prashant Bhimrao; Patil, Kalpesh Tumadu; Jagdale, Bapu Sonu; Tipare, Anuja Rajesh; Kim, Gun-Do

    2018-05-25

    The green and one-step synthesis of silver nanoparticles (AgNPs) has been proposed as simple and ecofriendly. In the present study, a flower extract of Madhuca longifolia was used for the reduction of silver nitrate into AgNPs, with phytochemicals from the flower extract as a reducing and stabilizing agents. The synthesized AgNPs were spherical and oval shaped and about 30-50 nm sizes. The appearance of a brown color in the reaction mixture is a primary indication of AgNPs formation, and it was confirmed by observing UV-visible spectroscopy peak at 436 nm. The Energy Dispersive X-ray spectra and X-ray diffraction analysis results together confirm that the synthesized nanoparticles contain silver and silver chloride nanoparticles. The Zeta potential analysis indicates presence of negative charges on synthesized AgNPs. The FT-IR study represents involvement of functional groups in AgNPs synthesis. Synthesized AgNPs shows potential antibacterial activity against Gram-positive and Gram-negative pathogens. M. longifolia flower is a good source for AgNPs synthesis and synthesized AgNPs are applicable as antibacterial agent in therapeutics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Synthesis of SiC/Ag/Cellulose Nanocomposite and Its Antibacterial Activity by Reactive Oxygen Species Generation

    PubMed Central

    Borkowski, Andrzej; Cłapa, Tomasz; Szala, Mateusz; Gąsiński, Arkadiusz; Selwet, Marek

    2016-01-01

    We describe the synthesis of nanocomposites, based on nanofibers of silicon carbide, silver nanoparticles, and cellulose. Silver nanoparticle synthesis was achieved with chemical reduction using hydrazine by adding two different surfactants to obtain a nanocomposite with silver nanoparticles of different diameters. Determination of antibacterial activity was based on respiration tests. Enzymatic analysis indicates oxidative stress, and viability testing was conducted using an epifluorescence microscope. Strong bactericidal activity of nanocomposites was found against bacteria Escherichia coli and Bacillus cereus, which were used in the study as typical Gram-negative and Gram-positive bacteria, respectively. It is assumed that reactive oxygen species generation was responsible for the observed antibacterial effect of the investigated materials. Due to the properties of silicon carbide nanofiber, the obtained nanocomposite may have potential use in technology related to water and air purification. Cellulose addition prevented silver nanoparticle release and probably enhanced bacterial adsorption onto aggregates of the nanocomposite material. PMID:28335299

  17. Extracellular biosynthesis of silver nanoparticles: effects of shape-directing cetyltrimethylammonium bromide, pH, sunlight and additives.

    PubMed

    Hussain, Shokit; Akrema; Rahisuddin; Khan, Zaheer

    2014-05-01

    The work reported in this paper describes the preparation, morphology, stability and sensitivity of Ag-nanoparticles towards sunlight using Allium sativum, garlic extract for the first time. The synthesized silver particles show an intense surface plasmon resonance band in the visible region at 410 nm. The position of the wavelength maxima, blue and red shift, strongly depends on the sunlight and pH. TEM analysis revealed the presence of spherical, different size (from 5.0 to 30 nm) and garlic constituents bio-conjugated, stabilized and/or layered silver nanoparticles. The concentrations of garlic extract, cetyltrimethylammonium bromide, Ag(+) ions and reaction time play vital roles for nucleus formation and the growth processes. Sulfur-containing biomolecules of extract, especially cysteine, are responsible for the reduction of Ag(+) ions into metallic Ag(0). The agglomeration number of the silver nanoparticles (N Ag) and the average number of free electrons per particle (n fe) are calculated and discussed.

  18. Early use of negative pressure therapy in combination with silver dressings in a difficult breast abscess.

    PubMed

    Richards, Alastair J; Hagelstein, Sue M; Patel, Girish K; Ivins, Nicola M; Sweetland, Helen M; Harding, Keith G

    2011-12-01

    Combining silver-based dressings with negative pressure therapy after radical excision of chronically infected breast disease is a novel application of two technologies. One patient with complex, chronic, infected breast disease underwent radical excision of the affected area and was treated early with a combination of silver-based dressings and topical negative pressure therapy. The wound was then assessed sequentially using clinical measurements of wound area and depth, pain severity scores and level of exudation. It is possible to combine accepted techniques with modern dressing technologies that result in a positive outcome. In this case, the combination of a silver-based dressing with negative pressure therapy following radical excision proved safe and was well tolerated by the patient. Full epithelisation of the wound was achieved and there was no recurrence of the infection for the duration of the treatment. © 2011 The Authors. © 2011 Blackwell Publishing Ltd and Medicalhelplines.com Inc.

  19. Cytotoxic outcomes of orthodontic bands with and without silver solder in different cell lineages.

    PubMed

    Jacoby, Letícia Spinelli; Rodrigues Junior, Valnês da Silva; Campos, Maria Martha; Macedo de Menezes, Luciane

    2017-05-01

    The safety of orthodontic materials is a matter of high interest. In this study, we aimed to assess the in-vitro cytotoxicity of orthodontic band extracts, with and without silver solder, by comparing the viability outcomes of the HaCat keratinocytes, the fibroblastic cell lineages HGF and MRC-5, and the kidney epithelial Vero cells. Sterilized orthodontic bands with and without silver solder joints were added to culture media (6 cm 2 /mL) and incubated for 24 hours at 37°C under continuous agitation. Subsequently, the cell cultures were exposed to the obtained extracts for 24 hours, and an assay was performed to evaluate the cell viability. Copper strip extracts were used as positive control devices. The extracts from orthodontic bands with silver solder joints significantly reduced the viability of the HaCat, MRC-5, and Vero cell lines, whereas the viability of HGF was not altered by this material. Conversely, the extracts of orthodontic bands without silver solder did not significantly modify the viability index of all evaluated cell lines. Except for HGF fibroblasts, all tested cell lines showed decreased viability percentages after exposure to extracts of orthodontic bands containing silver solder joints. These data show the relevance of testing the toxicity of orthodontic devices in different cell lines. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  20. Use of copper-silver ionization for the control of legionellae in alkaline environments at health care facilities.

    PubMed

    Dziewulski, David M; Ingles, Erin; Codru, Neculai; Strepelis, John; Schoonmaker-Bopp, Dianna

    2015-09-01

    There are multiple treatment options for the control of legionellae in premise hot water systems. Water chemistry plays a role in the efficacy of these treatments and should be considered when selecting a treatment. This study demonstrated the efficacy of copper-silver ionization (CSI) under alkaline water conditions in 2 health care facilities. Monitoring for copper (Cu) and silver (Ag) ions was performed, and the corresponding percentage of positive Legionella cultures was monitored. Low Legionella colony forming units (CFU), with a mean <10 CFU/100 mL, and ≤30% positive culture for each sampling period, along with no recurrent disease, were considered indicative of control. CSI treatment was shown to reduce both the number of CFU found and the percentage of samples found to be culture positive. After treatment was established, culture positivity was, for example, reduced from 70% (>10(3) CFU/100 mL) to consistently <30% (38 CFU/100 mL). Control of legionellae in premise water systems may be a complex process requiring long-term assessments for adequate control. This work found that CSI could be successful in controlling Legionella under alkaline water conditions, and the evidence suggests that Ag ions are responsible for the control of Legionella pneumophila 1, L pneumophila 6, and L anisa. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  1. Focusing geometry-induced size tailoring of silver nanoparticles obtained by laser ablation in water

    NASA Astrophysics Data System (ADS)

    Stasic, Jelena; Joksic, Gordana; Zivkovic, Ljiljana; Mihailescu, Ion N.; Ghica, Corneliu; Kuncser, Andrei; Trtica, Milan

    2014-10-01

    Silver nanoparticles were obtained by picosecond laser ablation in water at 1064 nm, using focusing geometry to design the particles’ size. The position of the target surface with respect to the focal point strongly influences the NPs’ size: above and in the focus it is up to 20 nm and below focus ≤ 150 nm. Generated particles have a spherical shape. The solutions were further employed on human cells and the tests showed a deteriorating effect on DNA.

  2. Collective photonic-plasmonic resonances in noble metal - dielectric nanoparticle hybrid arrays

    DOE PAGES

    Hong, Yan; Reinhard, Björn M.

    2014-10-27

    Coherent scattering of gold and silver nanoparticles (NPs) in regular arrays can generate Surface Lattice Resonances (SLRs) with characteristically sharp spectral features. Herein, we investigate collective resonances in compositionally more complex arrays comprising NP clusters and NPs with different chemical compositions at pre-defined lattice sites. We first characterize the impact of NP clustering by exchanging individual gold NPs in the array through dimers of electromagnetically strongly coupled gold NPs. Then, we analyze hybrid arrays that contain both gold metal NP dimers and high refractive index dielectric NPs as building blocks. We demonstrate that the integration of gold NP clusters andmore » dielectric NPs into one array enhances E-field intensities not only in the vicinity of the NPs but also in the ambient medium of the entire array. In addition, this work shows that the ability to integrate multiple building blocks with different resonance conditions in one array provides new degrees of freedom for engineering optical fields in the array plane with variable amplitude and phase.« less

  3. Direct observation of small cluster mobility and ripening. [during annealing of metal films on amorphous substrates

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Poppa, H.

    1975-01-01

    Direct evidence is reported for the simultaneous occurrence of Ostwald ripening and short-distance cluster mobility during annealing of discontinuous metal films on clean amorphous substrates. The annealing characteristics of very thin particulate deposits of silver on amorphized clean surfaces of single crystalline thin graphite substrates were studied by in-situ transmission electron microscopy (TEM) under controlled environmental conditions (residual gas pressure of 10 to the minus 9th power torr) in the temperature range from 25 to 450 C. Sputter cleaning of the substrate surface, metal deposition, and annealing were monitored by TEM observation. Pseudostereographic presentation of micrographs in different annealing stages, the observation of the annealing behavior at cast shadow edges, and measurements with an electronic image analyzing system were employed to aid the visual perception and the analysis of changes in deposit structure recorded during annealing. Slow Ostwald ripening was found to occur in the entire temperature range, but the overriding surface transport mechanism was short-distance cluster mobility.

  4. Voltage-dependent cluster expansion for electrified solid-liquid interfaces: Application to the electrochemical deposition of transition metals

    NASA Astrophysics Data System (ADS)

    Weitzner, Stephen E.; Dabo, Ismaila

    2017-11-01

    The detailed atomistic modeling of electrochemically deposited metal monolayers is challenging due to the complex structure of the metal-solution interface and the critical effects of surface electrification during electrode polarization. Accurate models of interfacial electrochemical equilibria are further challenged by the need to include entropic effects to obtain accurate surface chemical potentials. We present an embedded quantum-continuum model of the interfacial environment that addresses each of these challenges and study the underpotential deposition of silver on the gold (100) surface. We leverage these results to parametrize a cluster expansion of the electrified interface and show through grand canonical Monte Carlo calculations the crucial need to account for variations in the interfacial dipole when modeling electrodeposited metals under finite-temperature electrochemical conditions.

  5. Star tracking reticles

    NASA Technical Reports Server (NTRS)

    Smith, W. O.; Toft, A. R. (Inventor)

    1973-01-01

    A method for the production of reticles, particularly those for use in outer space, where the product is a quartz base coated with highly adherent layers of chromium, chromium-silver, and silver vacuum deposited through a mask, and then coated with an electrodeposit of copper from a copper sulfate solution followed by an electrodeposit of black chromium is described. The masks are produced by coating a beryllium-copper alloy substrate with a positive working photoresist, developing the photoresist, according to a pattern to leave a positive mask, plating uncoated areas with gold, removing the photoresist, coating the substrate with a negative working photoresist, developing the negative working photoresist to expose the base metal of the pattern, and chemically etching the unplated side of the pattern to produce the mask.

  6. Ion generation and CPC detection efficiency studies in sub 3-nm size range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kangasluoma, J.; Junninen, H.; Sipilae, M.

    2013-05-24

    We studied the chemical composition of commonly used condensation particle counter calibration ions with a mass spectrometer and found that in our calibration setup the negatively charged ammonium sulphate, sodium chloride and tungsten oxide are the least contaminated whereas silver on both positive and negative and the three mentioned earlier in positive mode are contaminated with organics. We report cut-off diameters for Airmodus Particle Size Magnifier (PSM) 1.1, 1.3, 1.4, 1.6 and 1.6-1.8 nm for negative sodium chloride, ammonium sulphate, tungsten oxide, silver and positive organics, respectively. To study the effect of sample relative humidity on detection efficiency of themore » PSM we used different humidities in the differential mobility analyzer sheath flow and found that with increasing relative humidity also the detection efficiency of the PSM increases.« less

  7. Surface-enhanced Raman scattering studies on bombesin, its selected fragments and related peptides adsorbed at the silver colloidal surface

    NASA Astrophysics Data System (ADS)

    Podstawka-Proniewicz, Edyta; Ozaki, Yukihiro; Kim, Younkyoo; Xu, Yizhuang; Proniewicz, Leonard M.

    2011-07-01

    SERS studies presented in this work on BN8-14, [ D-Phe 6,β-Ala11,Phe13,Nle14]BN6-14, [ D-Tyr 6, β-Ala11,Phe13,Nle14]BN6-14, BN and its modified analogues, as well as NMB, NMC, and PG-L show that these molecules at pH 8.3 bind to a colloidal silver surface mainly through Trp 8 and Met 14 residues. Trp 8 adsorbs at the surface almost perpendicularly. Met 14 appears on the surface mainly as a P C-G conformer. His 12, as is evident from the spectra, practically does not take part in the adsorption process. Substitution of L-leucine at the 13 position of amino acid sequence with L-phenylalanine does not change substantially the pattern of the adsorption mechanism; however, substitution of phenylalanine at the 12 position (instead of L-histidine) causes changes in the SERS spectra that show that Phe 12 takes parallel orientation to the surface upon adsorption of [ D-Phe 12]BN, while in the case of [Tyr4, D-Phe 12]BN this residue is perpendicular to the surface and influences the orientation of the bound Trp 8. On the other hand, substitution of Asn with Tyr in the 6 position in nonapeptide fragment causes changes in the adsorption mechanism. In this case, the discussed fragment binds to the silver colloidal surface by Tyr 6, Trp 8, and Met 14. The SERS spectrum of NMC is very similar to that of BN; although it differs by the binding orientation of the amide bond towards the surface. Appearance of Phe 13 in NMB and PG-L causes that this residue competes successfully with Trp 8 forcing it to take tilted orientation. As seen from the enhancement of the characteristic Phe vibrations this moiety in NMB and PG-L adsorbs on the silver surface in a tilted fashion. This arrangements cause that the 8-14 peptide chain in all these studied compounds takes almost a parallel orientation to the surface while the 1-5 fragment of the peptide chain is removed from the silver surface vicinity.

  8. Space environmental effects on silvered Teflon thermal control surfaces

    NASA Technical Reports Server (NTRS)

    Hemminger, C. S.; Stuckey, W. K.; Uht, J. C.

    1992-01-01

    Cumulative space environmental effects on silver/fluorinated ethylene propylene (Ag/FEP) were a function of exposure orientation. Samples from nineteen silvered Teflon (Ag/FEP) thermal control surfaces recovered from the Long Duration Exposure Facility (LDEF) were analyzed to determine changes in this material as a function of position on the spacecraft. Although solar absorptance and infrared emittance of measured thermal blanket specimens are relatively unchanged from control specimen values, significant changes in surface morphology, composition, and chemistry were observed. We hypothesize that the FEP surfaces on the LDEF are degraded by UV radiation at all orientations, but that the damaged material has been removed by erosion from the blankets exposed to atomic oxygen flux and that contamination is masking the damage in some areas on the trays flanking the trailing edge.

  9. Surface colonized silver nano particles over chitosan poly-electrolyte micro-spheres and their multi-functional behavior

    NASA Astrophysics Data System (ADS)

    Prakash, B.; Asha, S.; Nimrodh Ananth, A.; Vanithakumari, G.; Okram, G. S.; Jose, Sujin P.; Jothi Rajan, M. A.

    2018-02-01

    Chitosan/tripolyphosphate polyelectrolyte (TPP) microspheres, decorated and surface functionalized with silver nanoparticles (NPs) of average diameter of 15 nm, were synthesized following a simple two-step procedure. These Ag NP-functionalized polyelectrolyte microspheres (Ag-CSPMs) are found to be biocompatible and enhancing the reactive oxygen species in curcumin with excellent anti-bacterial activity for selected Gram-positive and negative bacterial strains, making them much attractive relative to bare surface counterparts; the well-stabilized silver NPs do not form any agglomerations on the surface of the chitosan microspheres. They also show excellent cytotoxic behavior towards MCF7 cell lines, showing a half-maximal inhibitory concentration (IC50) of 32 μg ml-1. Therefore, Ag-CSPMs exhibit multi-functional ability having potential towards theranostics applications.

  10. Green Synthesis of Silver Nanoparticles, Their Characterization, Application and Antibacterial Activity †

    PubMed Central

    Okafor, Florence; Janen, Afef; Kukhtareva, Tatiana; Edwards, Vernessa; Curley, Michael

    2013-01-01

    Our research focused on the production, characterization and application of silver nanoparticles (AgNPs), which can be utilized in biomedical research and environmental cleaning applications. We used an environmentally friendly extracellular biosynthetic technique for the production of the AgNPs. The reducing agents used to produce the nanoparticles were from aqueous extracts made from the leaves of various plants. Synthesis of colloidal AgNPs was monitored by UV-Visible spectroscopy. The UV-Visible spectrum showed a peak between 417 and 425 nm corresponding to the Plasmon absorbance of the AgNPs. The characterization of the AgNPs such as their size and shape was performed by Atom Force Microscopy (AFM), and Transmission Electron Microscopy (TEM) techniques which indicated a size range of 3 to 15 nm. The anti-bacterial activity of AgNPs was investigated at concentrations between 2 and 15 ppm for Gram-negative and Gram-positive bacteria. Staphylococcus aureus and Kocuria rhizophila, Bacillus thuringiensis (Gram-positive organisms); Escherichia coli, Pseudomonas aeruginosa, and Salmonella typhimurium (Gram-negative organisms) were exposed to AgNPs using Bioscreen C. The results indicated that AgNPs at a concentration of 2 and 4 ppm, inhibited bacterial growth. Preliminary evaluation of cytotoxicity of biosynthesized silver nanoparticles was accomplished using the InQ™ Cell Research System instrument with HEK 293 cells. This investigation demonstrated that silver nanoparticles with a concentration of 2 ppm and 4 ppm were not toxic for human healthy cells, but inhibit bacterial growth. PMID:24157517

  11. Monoterpenoids (thymol, carvacrol and S-(+)-linalool) with anesthetic activity in silver catfish (Rhamdia quelen): evaluation of acetylcholinesterase and GABAergic activity

    PubMed Central

    Bianchini, A.E.; Garlet, Q.I.; da Cunha, J.A.; Bandeira, G.; Brusque, I.C.M.; Salbego, J.; Heinzmann, B.M.; Baldisserotto, B.

    2017-01-01

    This study evaluated the anesthetic potential of thymol and carvacrol, and their influence on acetylcholinesterase (AChE) activity in the muscle and brain of silver catfish (Rhamdia quelen). The AChE activity of S-(+)-linalool was also evaluated. We subsequently assessed the effects of thymol and S-(+)-linalool on the GABAergic system. Fish were exposed to thymol and carvacrol (25, 50, 75, and 100 mg/L) to evaluate time for anesthesia and recovery. Both compounds induced sedation at 25 mg/L and anesthesia with 50–100 mg/L. However, fish exposed to carvacrol presented strong muscle contractions and mortality. AChE activity was increased in the brain of fish at 50 mg/L carvacrol and 100 mg/L thymol, and decreased in the muscle at 100 mg/L carvacrol. S-(+)-linalool did not alter AChE activity. Anesthesia with thymol was reversed by exposure to picrotoxin (GABAA antagonist), similar to the positive control propofol, but was not reversed by flumazenil (antagonist of benzodiazepine binding site), as observed for the positive control diazepam. Picrotoxin did not reverse the effect of S-(+)-linalool. Thymol exposure at 50 mg/L is more suitable than carvacrol for anesthesia in silver catfish, because this concentration did not cause any mortality or interference with AChE activity. Thymol interacted with GABAA receptors, but not with the GABAA/benzodiazepine site. In contrast, S-(+)-linalool did not act in GABAA receptors in silver catfish. PMID:29069225

  12. Monoterpenoids (thymol, carvacrol and S-(+)-linalool) with anesthetic activity in silver catfish (Rhamdia quelen): evaluation of acetylcholinesterase and GABAergic activity.

    PubMed

    Bianchini, A E; Garlet, Q I; da Cunha, J A; Bandeira, G; Brusque, I C M; Salbego, J; Heinzmann, B M; Baldisserotto, B

    2017-10-19

    This study evaluated the anesthetic potential of thymol and carvacrol, and their influence on acetylcholinesterase (AChE) activity in the muscle and brain of silver catfish (Rhamdia quelen). The AChE activity of S-(+)-linalool was also evaluated. We subsequently assessed the effects of thymol and S-(+)-linalool on the GABAergic system. Fish were exposed to thymol and carvacrol (25, 50, 75, and 100 mg/L) to evaluate time for anesthesia and recovery. Both compounds induced sedation at 25 mg/L and anesthesia with 50-100 mg/L. However, fish exposed to carvacrol presented strong muscle contractions and mortality. AChE activity was increased in the brain of fish at 50 mg/L carvacrol and 100 mg/L thymol, and decreased in the muscle at 100 mg/L carvacrol. S-(+)-linalool did not alter AChE activity. Anesthesia with thymol was reversed by exposure to picrotoxin (GABAA antagonist), similar to the positive control propofol, but was not reversed by flumazenil (antagonist of benzodiazepine binding site), as observed for the positive control diazepam. Picrotoxin did not reverse the effect of S-(+)-linalool. Thymol exposure at 50 mg/L is more suitable than carvacrol for anesthesia in silver catfish, because this concentration did not cause any mortality or interference with AChE activity. Thymol interacted with GABAA receptors, but not with the GABAA/benzodiazepine site. In contrast, S-(+)-linalool did not act in GABAA receptors in silver catfish.

  13. Spectral staining of tumor tissue by fiber optic FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Salzer, Reiner; Steiner, Gerald; Kano, Angelique; Richter, Tom; Bergmann, Ralf; Rodig, Heike; Johannsen, Bernd; Kobelke, Jens

    2003-07-01

    Infrared (IR) optical fiber have aroused great interest in recent years because of their potential in in-vivo spectroscopy. This potential includes the ability to be flexible, small and to guide IR light in a very large range of wavelengths. Two types - silver halide and chalcogenide - infrared transmitting fibers are investigated in the detection of a malignant tumor. As a test sample for all types of fibers we used a thin section of an entire rat brain with glioblastoma. The fibers were connected with a common infrared microscope. Maps across the whole tissue section with more than 200 spectra were recorded by moving the sample with an XY stage. Data evaluation was performed using fuzzy c-means cluster analysis (FCM). The silver halide fibers provided excellent results. The tumor was clearly discernible from healthy tissue. Chalcogenide fibers are not suitable to distinguish tumor from normal tissue because the fiber has a very low transmittance in the important fingerprint region.

  14. Why Do Silver Trimers Intercalated in DNA Exhibit Unique Nonlinear Properties That Are Promising for Applications?

    PubMed

    Bonačić-Koutecký, Vlasta; Perić, Martina; Sanader, Željka

    2018-05-17

    Our investigation of one-photon absorption (OPA) and nonlinear optical (NLO) properties such as two-photon absorption (TPA) of silver trimer intercalated in DNA based on TDDFT approach allowed us to propose a mechanism responsible for large TPA cross sections of such NLO-phores. We present a concept that illustrates the key role of quantum cluster as well as of nucleotide bases from the immediate neighborhood. For this purpose, different surroundings consisting of guanine-cytosine and adenine-thymine such as (GCGC) and (ATAT) have been investigated that are exhibiting substantially different values of TPA cross sections. This has been confirmed by extending the immediate surroundings as well as using the two-layer quantum mechanics/molecular mechanics (QM/MM) approach. We focus on the cationic closed-shell system and illustrate that the neutral open-shell system shifts OPA spectra into the NIR regime, which is suitable for applications. Thus, in this contribution, we propose novel NLO-phores inducing large TPA cross sections, opening the route for multiphoton imaging.

  15. Nano-volcanic Eruption of Silver

    NASA Astrophysics Data System (ADS)

    Lin, Shih-Kang; Nagao, Shijo; Yokoi, Emi; Oh, Chulmin; Zhang, Hao; Liu, Yu-Chen; Lin, Shih-Guei; Suganuma, Katsuaki

    2016-10-01

    Silver (Ag) is one of the seven metals of antiquity and an important engineering material in the electronic, medical, and chemical industries because of its unique noble and catalytic properties. Ag thin films are extensively used in modern electronics primarily because of their oxidation-resistance. Here we report a novel phenomenon of Ag nano-volcanic eruption that is caused by interactions between Ag and oxygen (O). It involves grain boundary liquation, the ejection of transient Ag-O fluids through grain boundaries, and the decomposition of Ag-O fluids into O2 gas and suspended Ag and Ag2O clusters. Subsequent coating with re-deposited Ag-O and the de-alloying of O yield a conformal amorphous Ag coating. Patterned Ag hillock arrays and direct Ag-to-Ag bonding can be formed by the homogenous crystallization of amorphous coatings. The Ag “nano-volcanic eruption” mechanism is elaborated, shedding light on a new mechanism of hillock formation and new applications of amorphous Ag coatings.

  16. Nano-volcanic Eruption of Silver.

    PubMed

    Lin, Shih-Kang; Nagao, Shijo; Yokoi, Emi; Oh, Chulmin; Zhang, Hao; Liu, Yu-Chen; Lin, Shih-Guei; Suganuma, Katsuaki

    2016-10-05

    Silver (Ag) is one of the seven metals of antiquity and an important engineering material in the electronic, medical, and chemical industries because of its unique noble and catalytic properties. Ag thin films are extensively used in modern electronics primarily because of their oxidation-resistance. Here we report a novel phenomenon of Ag nano-volcanic eruption that is caused by interactions between Ag and oxygen (O). It involves grain boundary liquation, the ejection of transient Ag-O fluids through grain boundaries, and the decomposition of Ag-O fluids into O 2 gas and suspended Ag and Ag 2 O clusters. Subsequent coating with re-deposited Ag-O and the de-alloying of O yield a conformal amorphous Ag coating. Patterned Ag hillock arrays and direct Ag-to-Ag bonding can be formed by the homogenous crystallization of amorphous coatings. The Ag "nano-volcanic eruption" mechanism is elaborated, shedding light on a new mechanism of hillock formation and new applications of amorphous Ag coatings.

  17. Biomimetic Synthesis of Gelatin Polypeptide-Assisted Noble-Metal Nanoparticles and Their Interaction Study

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Liu, Xiaoheng; Wang, Xin

    2011-12-01

    Herein, the generation of gold, silver, and silver-gold (Ag-Au) bimetallic nanoparticles was carried out in collagen (gelatin) solution. It first showed that the major ingredient in gelatin polypeptide, glutamic acid, acted as reducing agent to biomimetically synthesize noble metal nanoparticles at 80°C. The size of nanoparticles can be controlled not only by the mass ratio of gelatin to gold ion but also by pH of gelatin solution. Interaction between noble-metal nanoparticles and polypeptide has been investigated by TEM, UV-visible, fluorescence spectroscopy, and HNMR. This study testified that the degradation of gelatin protein could not alter the morphology of nanoparticles, but it made nanoparticles aggregated clusters array (opposing three-dimensional α-helix folding structure) into isolated nanoparticles stabilized by gelatin residues. This is a promising merit of gelatin to apply in the synthesis of nanoparticles. Therefore, gelatin protein is an excellent template for biomimetic synthesis of noble metal/bimetallic nanoparticle growth to form nanometer-sized device.

  18. Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations.

    PubMed

    Salvioni, Lucia; Galbiati, Elisabetta; Collico, Veronica; Alessio, Giulia; Avvakumova, Svetlana; Corsi, Fabio; Tortora, Paolo; Prosperi, Davide; Colombo, Miriam

    2017-01-01

    The discovery of new solutions with antibacterial activity as efficient and safe alternatives to common preservatives (such as parabens) and to combat emerging infections and drug-resistant bacterial pathogens is highly expected in cosmetics and pharmaceutics. Colloidal silver nanoparticles (NPs) are attracting interest as novel effective antimicrobial agents for the prevention of several infectious diseases. Water-soluble, negatively charged silver nanoparticles (AgNPs) were synthesized by reduction with citric and tannic acid and characterized by transmission electron microscopy, dynamic light scattering, zeta potential, differential centrifuge sedimentation, and ultraviolet-visible spectroscopy. AgNPs were tested with model Gram-negative and Gram-positive bacteria in comparison to two different kinds of commercially available AgNPs. In this work, AgNPs with higher antibacterial activity compared to the commercially available colloidal silver solutions were prepared and investigated. Bacteria were plated and the antibacterial activity was tested at the same concentration of silver ions in all samples. The AgNPs did not show any significant reduction in the antibacterial activity for an acceptable time period. In addition, AgNPs were transferred to organic phase and retained their antibacterial efficacy in both aqueous and nonaqueous media and exhibited no toxicity in eukaryotic cells. We developed AgNPs with a 20 nm diameter and negative zeta potential with powerful antibacterial activity and low toxicity compared to currently available colloidal silver, suitable for cosmetic preservatives and pharmaceutical preparations administrable to humans and/or animals as needed.

  19. Nano silver decorated polyacrylamide/dextran nanohydrogels hybrid composites for drug delivery applications.

    PubMed

    Prusty, Kalyani; Swain, Sarat K

    2018-04-01

    Herein, novel biodegradable, stimuli responsive, chemically cross-linked and porous polyacrylamide/dextran (PAM/D) nanohydrogels hybrid composites are synthesized by in situ polymerization technique with incorporation of reduced nano silver. The interaction of nano silver with PAM in presence of dextran is investigated by Fourier transforms infrared spectroscopy (FTIR) and X-ray diffraction (XRD) studies. The elemental composition of the hybrid nanohydrogels is studied by X-ray photoelectron spectroscopy (XPS) whereas; the surface morphology of nanohydrogels hybrid composites is studied by field emission scanning electron microscope (FESEM) by which, it is observed that, the silver nanoparticles are homogeneously dispersed throughout the nanohydrogel network. From high resolution transmission electron microscopy (HRTEM), the average size of silver nanoparticles is found to be 20nm. The swelling, deswelling and water retention properties of nanohydrogels hybrid composites are measured in order to investigate the release rate of the ornidazole drugs. The in vitro release rate of ornidazole drugs is found to be 98.5% in 6h. The antibacterial activities and the cytotoxicity tests along with positive and negative control of hybrid nanohydrogels are investigated. The loss modulus, gain modulus and complex viscosities are determined from rheological behaviour of the nanohydrogels. It is found that, the value of tanδ varies from 0.1 to 0.8. Nano silver decorated PAM/D nanohydrogels are stable, nontoxic with antibacterial behaviour may be suitable for drugs delivery vehicle. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations

    PubMed Central

    Salvioni, Lucia; Galbiati, Elisabetta; Collico, Veronica; Alessio, Giulia; Avvakumova, Svetlana; Corsi, Fabio; Tortora, Paolo; Prosperi, Davide; Colombo, Miriam

    2017-01-01

    Background The discovery of new solutions with antibacterial activity as efficient and safe alternatives to common preservatives (such as parabens) and to combat emerging infections and drug-resistant bacterial pathogens is highly expected in cosmetics and pharmaceutics. Colloidal silver nanoparticles (NPs) are attracting interest as novel effective antimicrobial agents for the prevention of several infectious diseases. Methods Water-soluble, negatively charged silver nanoparticles (AgNPs) were synthesized by reduction with citric and tannic acid and characterized by transmission electron microscopy, dynamic light scattering, zeta potential, differential centrifuge sedimentation, and ultraviolet–visible spectroscopy. AgNPs were tested with model Gram-negative and Gram-positive bacteria in comparison to two different kinds of commercially available AgNPs. Results In this work, AgNPs with higher antibacterial activity compared to the commercially available colloidal silver solutions were prepared and investigated. Bacteria were plated and the antibacterial activity was tested at the same concentration of silver ions in all samples. The AgNPs did not show any significant reduction in the antibacterial activity for an acceptable time period. In addition, AgNPs were transferred to organic phase and retained their antibacterial efficacy in both aqueous and nonaqueous media and exhibited no toxicity in eukaryotic cells. Conclusion We developed AgNPs with a 20 nm diameter and negative zeta potential with powerful antibacterial activity and low toxicity compared to currently available colloidal silver, suitable for cosmetic preservatives and pharmaceutical preparations administrable to humans and/or animals as needed. PMID:28408822

  1. The toxic effects of silver nanoparticles on blood mononuclear cells.

    PubMed

    Barkhordari, A; Barzegar, S; Hekmatimoghaddam, H; Jebali, A; Rahimi Moghadam, S; Khanjani, N

    2014-07-01

    Nanoparticles have become one of the leading technologies over the past two years. The extensive use of nanoparticles has raised great concern about their occupational fate and biological effects. With an increase in the production and use of nanomaterial, it is more likely to get exposed to them occupationally and environmentally. To assess the toxicity of silver nanoparticles on human mononuclear cells. In this in vitro experimental study, suspensions of blood mononuclear cells from 10 young healthy men were incubated with 10-nm silver nanoparticles in different concentrations (range: 1-500 μg/mL) for 6 and 24 hours by MTT assay. Positive and negative controls were used for comparison. After 6 hours of exposure, 10.9% to 48.4% of the cells died. After 24 hours of exposure, the rate ranged from 56.8% to 86.3%. Regardless of the exposure time, the maximum cytotoxicity was observed at the concentration of 500 μg/mL of silver nanoparticles. By increasing the exposure time to 24 hours, the cytotoxicity of nanoparticles substantially increased at all concentrations. Cell death was significantly higher when compared to the controls (p<0.01). Silver nanoparticles possess both time- and dose-dependent cytotoxicity and can thus be considered as very toxic for mononuclear cells.

  2. Chemical synthesis and characterization of chitosan/silver nanocomposites films and their potential antibacterial activity.

    PubMed

    Shah, Aamna; Hussain, Izhar; Murtaza, Ghulam

    2018-05-12

    This study provides the optimum preparation parameters for functional chitosan silver nanocomposite (CSN) films with promising antibacterial efficacy though prepared with very low silver nitrate (AgNO 3 ) concentration. Chitosan nano‑silver composites were fabricated by In-situ chemical method utilizing the reducing ability of sodium borohydride (NaBH 4 ) and afterward casted into films. Utilization of response surface methodology, NCSS, and SigmaPlot for the optimization of CSN and their predicted antibacterial efficacy assessment of the selected bacterial strains (standard and clinical) was the essential part of the study. The cumulative silver ions released from the CSN films was examined by AAS and was found pH dependent. The developed nanocomposite films exhibited strong antibacterial activity against ATCC strains of Gram-positive Staphylococcus aureus, Gram-negative bacteria (Pseudomonas aeruginosa) and clinically isolated strains of MRSA. The antibacterial activity CSN films were compared with three commercially available dressings (Aquacel Ag®, Bactigras®, and Kaltostat®) and Quench cream. Statistical analysis of the results indicated that the developed CSN films were equally or even more effective than commercial products. Thus the fabricated CSN films may act as a potential candidate to overcome the emerging antibiotic resistance particularly in hospital-acquired skin infections caused by MRSA. Copyright © 2018. Published by Elsevier B.V.

  3. Irradiation-induced Ag nanocluster nucleation in silicate glasses: Analogy with photography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espiau de Lamaestre, R.; Fontainebleau Research Center, Corning SA, 77210 Avon; Bea, H.

    2007-11-15

    The synthesis of Ag nanoclusters in soda lime silicate glasses and silica was studied by optical absorption and electron spin resonance experiments under both low (gamma ray) and high (MeV ion) deposited energy density irradiation conditions. Both types of irradiation create electrons and holes whose density and thermal evolution--notably via their interaction with defects--are shown to determine the clustering and growth rates of Ag nanocrystals. We thus establish the influence of redox interactions of defects and silver (poly)ions. The mechanisms are similar to the latent image formation in photography: Irradiation-induced photoelectrons are trapped within the glass matrix, notably on dissolvedmore » noble metal ions and defects, which are thus neutralized (reverse oxidation reactions are also shown to exist). Annealing promotes metal atom diffusion, which, in turn, leads to cluster nuclei formation. The cluster density depends not only on the irradiation fluence but also--and primarily--on the density of deposited energy and the redox properties of the glass. Ion irradiation (i.e., large deposited energy density) is far more effective in cluster formation, despite its lower neutralization efficiency (from Ag{sup +} to Ag{sup 0}) as compared to gamma photon irradiation.« less

  4. Antibacterial properties of nano-silver coated PEEK prepared through magnetron sputtering.

    PubMed

    Liu, Xiuju; Gan, Kang; Liu, Hong; Song, Xiaoqing; Chen, Tianjie; Liu, Chenchen

    2017-09-01

    We aimed to investigate the cytotoxicity and antibacterial properties of nano-silver-coated polyetheretherketone (PEEK) produced through magnetron sputtering and provide a theoretical basis for its use in clinical applications. The surfaces of PEEKs were coated with nano-silver at varying thicknesses (3, 6, 9, and 12nm) through magnetron sputtering technology. The resulting coated PEEK samples were classified into the following groups according to the thickness of the nano-silver coating: PEEK-3 (3nm), PEEK-6 (6nm), PEEK-9 (9nm), PEEK-12 (12nm), and PEEK control group. The surface microstructure and composition of each sample were observed by scanning electron microscopy (SEM), atomic force microscopy (AFM), and energy dispersive spectrum (EDS) analysis. The water contact angle of each sample was then measured by contact angle meters. A cell counting kit (CCK-8) was used to analyze the cytotoxicity of the mouse fibroblast cells (L929) in the coated groups (n=5) and group test samples (n=6), negative control (polyethylene, PE) (n=6), and positive control group (phenol) (n=6). The antibacterial properties of the samples were tested by co-culturing Streptococcus mutans and Straphylococcus aureus. The bacteria that adhered to the surface of samples were observed by SEM. The antibacterial adhesion ability of each sample was then evaluated. SEM and AFM analysis results showed that the surfaces of control group samples were smooth but compact. Homogeneous silver nano-particles (AgNPs) and nano-silver coating were uniformly distributed on the surface of the coated group samples. Compared with the control samples, the nano-silver coated samples had a significant increase in surface roughness (P<0.05) as the thickness of their nano-silver coating increased. EDS analysis showed that not only C and O but also Ag were present on the surface of the coated samples. Moreover, the water contact angle of modified samples significantly increased after nano-silver coating modification (P<0.01). CCK-8 cytotoxicity test results showed that coated samples did not exhibit cytotoxicity. The antibacterial experimental results showed that the nano-silver coating can significantly improve the antibacterial activity and bacterial adhesion ability of the PEEK samples. The compact and homogeneous nano-silver coating was successfully prepared on the surface of PEEK through magnetron sputtering. The nano-silver coated PEEKs demonstrated enhanced antibacterial activities and bacterial adhesion abilities and had no cytotoxic effects. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Carotenoid stabilized gold and silver nanoparticles derived from the Actinomycete Gordonia amicalis HS-11 as effective free radical scavengers.

    PubMed

    Sowani, Harshada; Mohite, Pallavi; Damale, Shailesh; Kulkarni, Mohan; Zinjarde, Smita

    2016-12-01

    The Actinomycete Gordonia amicalis HS-11 produced orange pigments when cultivated on n-hexadecane as the sole carbon source. When cells of this pigmented bacterium were incubated with 1mM chloroauric acid (HAuCl 4 ) or silver nitrate (AgNO 3 ), pH 9.0, at 25°C, gold and silver nanoparticles, respectively, were obtained in a cell associated manner. It was hypothesized that the pigments present in the cells may be mediating metal reduction reactions. After solvent extraction and High Performance Liquid Chromatography, two major pigments displaying UV-vis spectra characteristic of carotenoids were isolated. These were identified on the basis of Atmospheric Pressure Chemical Ionization Mass Spectrometry (APCI-MS) in the positive mode as 1'-OH-4-keto-γ-carotene (Carotenoid K) and 1'-OH-γ-carotene (Carotenoid B). The hydroxyl groups present in the carotenoids were eliminated under alkaline conditions and provided the reducing equivalents necessary for synthesizing nanoparticles. Cell associated and carotenoid stabilized nanoparticles were characterized by different analytical techniques. In vitro free radical scavenging activities of cells (control, gold and silver nanoparticle loaded), purified carotenoids and carotenoid stabilized gold and silver nanoparticles were evaluated. Silver nanoparticle loaded cells and carotenoid stabilized silver nanoparticles exhibited improved nitric oxide (NO) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activities compared to their control and gold counterparts. This paper thus reports cell associated nanoparticle synthesis by G. amicalis, describes for the first time the role of carotenoid pigments in metal reduction processes and demonstrates enhanced free radical scavenging activities of the carotenoid stabilized nanoparticles. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Antimicrobial activity of silver and gold in toothpastes: A comparative analysis.

    PubMed

    Junevičius, Jonas; Žilinskas, Juozas; Česaitis, Kęstutis; Česaitienė, Gabrielė; Gleiznys, Darius; Maželienė, Žaneta

    2015-01-01

    In this study, we compared the antimicrobial activity of identical toothpastes differing only in silver or gold nanoparticles against the activity of one of the common toothpastes containing a chemical active ingredient. We also compared the active concentrations of the toothpastes. For this study, we selected "Royal Denta" toothpastes containing silver and gold particles, and the "Blend-A-Med Complete" toothpaste containing zinc citrate as the active ingredient. We used 8 standard microorganism cultures on the basis of their individual mechanisms of protection. The antimicrobial activity of each studied preparation was evaluated at 9 concentrations. Most effective against gram-positive bacteria (Staphylococcus aureus and Enterococcus faecalis) was the "Silver Technology" – MIC was 0.004-0.0015 g/mL. Neither "Silver Technology" nor "Orange and Gold Technology" had any effect on Escherichia coli or Proteus mirabilis. Antimicrobial activity against the motile bacterium Proteus mirabilis was observed in "Silver Technology", "Orange and Gold Technology", and "Blend-A-Med Complete" – the MIC was 0.015 g/mL or lower. No antimicrobial activity against Candida albicans fungus at the studied concentrations was observed in the "Orange and Gold Technology". The toothpaste "Blend-A-Med" demonstrated the most effective antimicrobial activity - the MIC of 0.0015 g/mL and 0.015 g/mL inhibited Staphylococcus aureus and Enterococcus faecalis, respectively, and the MIC of 0.15 g/mL inhibited the growth of the bacteria Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, and fungus Candida albicans. Silver in toothpaste has a greater antimicrobial effect than gold, but its effect is still inferior to that of a chemical antimicrobial agent.

  7. Multicenter Cohort Study to Assess the Impact of a Silver-Alloy and Hydrogel-Coated Urinary Catheter on Symptomatic Catheter-Associated Urinary Tract Infections

    PubMed Central

    Lederer, James W.; Jarvis, William R.; Thomas, Lendon

    2014-01-01

    PURPOSE: The purpose of this study was to determine the effect of a silver-alloy hydrogel catheter on symptomatic catheter-associated urinary tract infections (CAUTIs). DESIGN: Multicenter before-after non-randomized cohort study. SUBJECTS AND SETTING: Seven acute care hospitals ranging in size from 124 to 607 beds participated in this study. The study population included adult patients with a positive urine culture 2 or more days after admission, who underwent Foley catheterization. METHODS: Catheter-associated urinary tract infection surveillance was conducted at each hospital for at least 3 months during the use of a standard catheter and 3 months during the use of the silver-alloy hydrogel catheter. Both the National Healthcare Safety Network (NHSN) surveillance and a clinical definition of CAUTI were used for rate calculation. RESULTS: A 47% relative reduction in the CAUTI rate was observed with the silver-alloy hydrogel catheter compared to the standard catheter when both infection definitions were used (0.945/1000 patient days vs 0.498/1000 patient days) (odds ratio = 0.53; P < .0001; 95% CI: 0.45–0.62). When only NHSN-defined CAUTIs were considered, a 58% relative reduction occurred in the silver-alloy hydrogel period (0.60/1000 patient days vs 0.25/1000 patient days) (odds ratio = 0.42; P < .0001; 95% CI: 0.34–0.53). Antimicrobial days for CAUTIs decreased from 1165 (standard catheter period) to 406 (silver-alloy hydrogel period). CONCLUSIONS: Use of a silver-alloy hydrogel urinary catheter reduced symptomatic CAUTI occurrences as defined by both NHSN and clinical criteria. PMID:24922561

  8. A systematic review of silver-releasing dressings in the management of infected chronic wounds.

    PubMed

    Lo, Shu-Fen; Hayter, Mark; Chang, Chee-Jen; Hu, Wen-Yu; Lee, Ling-Ling

    2008-08-01

    This paper is a systematic review with the objective of determining the effectiveness of silver-releasing dressing in the management of infected chronic wounds. Chronic wounds exhibit increased bacterial burdens which not only result in a negative physical impact on patients, impairing their quality of life, but also increase treatment costs. Silver dressings are wound products designed to control and inhibit infection and provide a wound environment conducive to healing. However, there is limited evidence on their effectiveness in doing so. A systematic review of literature from 1950-May 2007 was conducted using the PubMed, CINAHL, Cochrane, MEDLINE, British Nursing Index, EBSCO Host, OCLC, Proquest and PsychInfo databases. The review included randomised or non-randomised control trials, published in English or non-English, of silver-releasing dressings in infected chronic wounds. Of the over 1957 potentially releasing studies examined, 14 pertinent articles involving 1285 participants were identified. Almost all the participants reported one or more statistically significant outcomes. The main points to emerge from this review of studies are that silver-releasing dressings show positive effects on infected chronic wounds. The quality of the trials was limited by the potential for bias associated with inadequate concealment, no detailed description of the outcome measurement and no reported intention-to-treat analysis. Moreover, problems existed in some studies with confounding factors. The review clearly highlights the need for well-designed, methodologically standardised outcome measurement research into the effectiveness of silver-releasing dressings. It also points to the need for a comprehensive assessment of wound bed status in further studies. This review strengthens the case for the use of silver dressings when managing infected chronic wounds. They appear more effective and are tolerated well by patients. However, their use should be accompanied by a comprehensive wound assessment.

  9. Fabrication of biogenic antimicrobial silver nanoparticles by Streptomyces aegyptia NEAE 102 as eco-friendly nanofactory.

    PubMed

    El-Naggar, Noura El-Ahmady; Abdelwahed, Nayera A M; Darwesh, Osama M M

    2014-04-01

    The current research was focused on the extracellular biosynthesis of bactericidal silver nanoparticles (AgNPs) using cell-free supernatant of a local isolate previously identified as a novel Streptomyces aegyptia NEAE 102. The biosynthesis of silver nanoparticles by Streptomyces aegyptia NEAE 102 was quite fast and required far less time than previously published strains. The produced particles showed a single surface plasmon resonance peak at 400 nm by UV-Vis spectroscopy, which confirmed the presence of AgNPs. Response surface methodology was chosen to evaluate the effects of four process variables (AgNO3 concentration, incubation period, pH levels, and inoculum size) on the biosynthesis of silver nanoparticles by Streptomyces aegyptia NEAE 102. Statistical analysis of the results showed that the linear and quadratic effects of incubation period, initial pH, and inoculum size had a significant effect (p < 0.05) on the biosynthesis of silver nanoparticles by Streptomyces aegyptia NEAE 102. The maximum silver nanoparticles biosynthesis (2.5 OD, at 400 nm ) was achieved in runs number 5 and 14 under the conditions of 1 mM AgNO3 (1-1.5% (v/v)), incubation period (72-96 h), initial pH (9-10), and inoculum size (2-4% (v/v)). An overall 4-fold increase in AgNPs biosynthesis was obtained as compared with that of unoptimized conditions. The biosynthesized silver nanoparticles were characterized using UV-VIS spectrophotometer and Fourier transform infrared spectroscopy analysis, in addition to antimicrobial properties. The biosynthesized AgNPs significantly inhibited the growth of medically important pathogenic gram-positive (Staphylococcus aureus) and gram-negative bacteria (Pseudomonas aeruginosa) and yeast (Candida albicans).

  10. Complexes of silver(I) ions and silver phosphate nanoparticles with hyaluronic acid and/or chitosan as promising antimicrobial agents for vascular grafts.

    PubMed

    Chudobova, Dagmar; Nejdl, Lukas; Gumulec, Jaromir; Krystofova, Olga; Rodrigo, Miguel Angel Merlos; Kynicky, Jindrich; Ruttkay-Nedecky, Branislav; Kopel, Pavel; Babula, Petr; Adam, Vojtech; Kizek, Rene

    2013-06-28

    Polymers are currently widely used to replace a variety of natural materials with respect to their favourable physical and chemical properties, and due to their economic advantage. One of the most important branches of application of polymers is the production of different products for medical use. In this case, it is necessary to face a significant disadvantage of polymer products due to possible and very common colonization of the surface by various microorganisms that can pose a potential danger to the patient. One of the possible solutions is to prepare polymer with antibacterial/antimicrobial properties that is resistant to bacterial colonization. The aim of this study was to contribute to the development of antimicrobial polymeric material ideal for covering vascular implants with subsequent use in transplant surgery. Therefore, the complexes of polymeric substances (hyaluronic acid and chitosan) with silver nitrate or silver phosphate nanoparticles were created, and their effects on gram-positive bacterial culture of Staphylococcus aureus were monitored. Stages of formation of complexes of silver nitrate and silver phosphate nanoparticles with polymeric compounds were characterized using electrochemical and spectrophotometric methods. Furthermore, the antimicrobial activity of complexes was determined using the methods of determination of growth curves and zones of inhibition. The results of this study revealed that the complex of chitosan, with silver phosphate nanoparticles, was the most suitable in order to have an antibacterial effect on bacterial culture of Staphylococcus aureus. Formation of this complex was under way at low concentrations of chitosan. The results of electrochemical determination corresponded with the results of spectrophotometric methods and verified good interaction and formation of the complex. The complex has an outstanding antibacterial effect and this effect was of several orders higher compared to other investigated complexes.

  11. Complexes of Silver(I) Ions and Silver Phosphate Nanoparticles with Hyaluronic Acid and/or Chitosan as Promising Antimicrobial Agents for Vascular Grafts

    PubMed Central

    Chudobova, Dagmar; Nejdl, Lukas; Gumulec, Jaromir; Krystofova, Olga; Rodrigo, Miguel Angel Merlos; Kynicky, Jindrich; Ruttkay-Nedecky, Branislav; Kopel, Pavel; Babula, Petr; Adam, Vojtech; Kizek, Rene

    2013-01-01

    Polymers are currently widely used to replace a variety of natural materials with respect to their favourable physical and chemical properties, and due to their economic advantage. One of the most important branches of application of polymers is the production of different products for medical use. In this case, it is necessary to face a significant disadvantage of polymer products due to possible and very common colonization of the surface by various microorganisms that can pose a potential danger to the patient. One of the possible solutions is to prepare polymer with antibacterial/antimicrobial properties that is resistant to bacterial colonization. The aim of this study was to contribute to the development of antimicrobial polymeric material ideal for covering vascular implants with subsequent use in transplant surgery. Therefore, the complexes of polymeric substances (hyaluronic acid and chitosan) with silver nitrate or silver phosphate nanoparticles were created, and their effects on gram-positive bacterial culture of Staphylococcus aureus were monitored. Stages of formation of complexes of silver nitrate and silver phosphate nanoparticles with polymeric compounds were characterized using electrochemical and spectrophotometric methods. Furthermore, the antimicrobial activity of complexes was determined using the methods of determination of growth curves and zones of inhibition. The results of this study revealed that the complex of chitosan, with silver phosphate nanoparticles, was the most suitable in order to have an antibacterial effect on bacterial culture of Staphylococcus aureus. Formation of this complex was under way at low concentrations of chitosan. The results of electrochemical determination corresponded with the results of spectrophotometric methods and verified good interaction and formation of the complex. The complex has an outstanding antibacterial effect and this effect was of several orders higher compared to other investigated complexes. PMID:23812079

  12. Enhanced Cellular Internalization: A Bactericidal Mechanism More Relative to Biogenic Nanoparticles than Chemical Counterparts.

    PubMed

    Kumari, Madhuree; Shukla, Shatrunajay; Pandey, Shipra; Giri, Ved P; Bhatia, Anil; Tripathi, Tusha; Kakkar, Poonam; Nautiyal, Chandra S; Mishra, Aradhana

    2017-02-08

    Biogenic synthesis of silver nanoparticles for enhanced antimicrobial activity has gained a lot of momentum making it an urgent need to search for a suitable biocandidate which could be utilized for efficient capping and shaping of silver nanoparticles with enhanced bactericidal activity utilizing its secondary metabolites. Current work illustrates the enhancement of antimicrobial efficacy of silver nanoparticles by reducing and modifying their surface with antimicrobial metabolites of cell free filtrate of Trichoderma viride (MTCC 5661) in comparison to citrate stabilized silver nanoparticles. Nanoparticles were characterized by visual observations, UV-visible spectroscopy, zetasizer, and transmission electron microscopy (TEM). Synthesized particles were monodispersed, spherical in shape and 10-20 nm in size. Presence of metabolites on surface of biosynthesized silver nanoparticles was observed by gas chromatography-mass spectroscopy (GC-MS), energy dispersive X-ray analysis (EDAX), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The antimicrobial activity of both silver nanoparticles was tested against Shigella sonnei, Pseudomonas aeruginosa (Gram-negative) and Staphylococcus aureus (Gram-positive) by growth inhibition curve analysis and colony formation unit assay. Further, it was noted that internalization of biosynthesized nanoparticles inside the bacterial cell was much higher as compared to citrate stabilized particles which in turn lead to higher production of reactive oxygen species. Increase in oxidative stress caused severe damage to bacterial membrane enhancing further uptake of particles and revoking other pathways for bacterial disintegration resulting in complete and rapid death of pathogens as evidenced by fluorescein diacetate/propidium iodide dual staining and TEM. Thus, study reveals that biologically synthesized silver nanoarchitecture coated with antimicrobial metabolites of T. viride was more potent than their chemical counterpart in killing of pathogenic bacteria.

  13. Characterization and Comparative Profiling of MiRNA Transcriptomes in Bighead Carp and Silver Carp

    PubMed Central

    Chi, Wei; Tong, Chaobo; Gan, Xiaoni; He, Shunping

    2011-01-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules that are processed from large ‘hairpin’ precursors and function as post-transcriptional regulators of target genes. Although many individual miRNAs have recently been extensively studied, there has been very little research on miRNA transcriptomes in teleost fishes. By using high throughput sequencing technology, we have identified 167 and 166 conserved miRNAs (belonging to 108 families) in bighead carp (Hypophthalmichthys nobilis) and silver carp (Hypophthalmichthys molitrix), respectively. We compared the expression patterns of conserved miRNAs by means of hierarchical clustering analysis and log2 ratio. Results indicated that there is not a strong correlation between sequence conservation and expression conservation, most of these miRNAs have similar expression patterns. However, high expression differences were also identified for several individual miRNAs. Several miRNA* sequences were also found in our dataset and some of them may have regulatory functions. Two computational strategies were used to identify novel miRNAs from un-annotated data in the two carps. A first strategy based on zebrafish genome, identified 8 and 22 novel miRNAs in bighead carp and silver carp, respectively. We postulate that these miRNAs should also exist in the zebrafish, but the methodologies used have not allowed for their detection. In the second strategy we obtained several carp-specific miRNAs, 31 in bighead carp and 32 in silver carp, which showed low expression. Gain and loss of family members were observed in several miRNA families, which suggests that duplication of animal miRNA genes may occur through evolutionary processes which are similar to the protein-coding genes. PMID:21858165

  14. Morphological, histological and molecular characterization of three Myxobolus species (Cnidaria: Myxosporea) from silver carp Hypophthalmichthys molitrix Valenciennes and bighead carp Hypophthalmichthys nobilis Richardson in China.

    PubMed

    Zhang, Bo; Gu, Zemao; Liu, Yang

    2018-05-01

    Three Myxobolus species were obtained from silver carp Hypophthalmichthys molitrix Valenciennes and bighead carp Hypophthalmichthys nobilis Richardson in China. In the present study, we supplemented their taxonomic characteristics by the morphological, histological and molecular methods. Myxobolus kiuchowensis Chen in Chen et Ma, 1998 formed small ellipsoidal plasmodia in the intestinal wall of bighead carp. Its spores appeared asymmetrical obovate in frontal view and fusiform in lateral view. Tiny mamillary protrusion in the anterior of some spores was observed. Two pyriform polar capsules were unequal. Histologically, M. kiuchowensis infected the tunica muscularis of host intestine. Myxobolus abitus Li et Nie, 1973 formed sausage-like plasmodia in the gills of silver carp. Its spores appeared oblate in frontal view and fusiform in lateral view. Two pyriform polar capsules were unequal and an obvious inter-capsule appendix was observed. Histological examination revealed that M. abitus developed in the interlamellar-epithelium of host gills. Myxobolus pavlovskii (Akhmerov, 1954) Landsberg et Lom, 1991 formed sausage-like plasmodia both in the gills of silver carp and bighead carp. Spores of M. pavlovskii were proximate oval in frontal view and fusiform in lateral view. Two pyriform polar capsules were unequal. The BLAST search indicated the SSU rDNA sequences of M. kiuchowensis and M. abitus were not identical to any sequence, however, the SSU rDNA sequences of M. pavlovskii were identical to that of M. pavlovskii recorded previously. Phylogenetic analysis showed that the present three species robustly clustered together in Cyprinid group and Asia group. Copyright © 2018. Published by Elsevier B.V.

  15. The structure of deposited metal clusters generated by laser evaporation

    NASA Astrophysics Data System (ADS)

    Faust, P.; Brandstättner, M.; Ding, A.

    1991-09-01

    Metal clusters have been produced using a laser evaporation source. A Nd-YAG laser beam focused onto a solid silver rod was used to evaporate the material, which was then cooled to form clusters with the help of a pulsed high pressure He beam. TOF mass spectra of these clusters reveal a strong occurrence of small and medium sized clusters ( n<100). Clusters were also deposited onto grid supported thin layers of carbon-films which were investigated by transmission electron microscopy. Very high resolution pictures of these grids were used to analyze the size distribution and the structure of the deposited clusters. The diffraction pattern caused by crystalline structure of the clusters reveals 3-and 5-fold symmetries as well as fcc bulk structure. This can be explained in terms of icosahedron and cuboctahedron type clusters deposited on the surface of the carbon layer. There is strong evidence that part of these cluster geometries had already been formed before the depostion process. The non-linear dependence of the cluster size and the cluster density on the generating conditions is discussed. Therefore the samples were observed in HREM in the stable DEEKO 100 microscope of the Fritz-Haber-Institut operating at 100 KV with the spherical aberration c S =0.5 mm. The quality of the pictures was improved by using the conditions of minimum phase contrast hollow cone illumination. This procedure led to a minimum of phase contrast artefacts. Among the well-crystallized particles were a great amount of five- and three-fold symmetries, icosahedra and cuboctahedra respectively. The largest clusters with five- and three-fold symmetries have been found with diameters of 7 nm; the smallest particles displaying the same undistorted symmetries were of about 2 mm. Even smaller ones with strong distortions could be observed although their classification is difficult. The quality of the images was improved by applying Fourier filtering techniques.

  16. Medal of Honor Award Process Review: U.S. Army Noncommissioned Officer Nominee (Redacted)

    DTIC Science & Technology

    2016-05-04

    award the nominee the Silver Star. We determined Secretary McHugh acted within his authority when he decided to award the SS. We found no evidence...why the Honorable John M. McHugh , Secretary of the Army, downgraded the nominee’s MOH award recommendation to the Silver Star (SS).1 In a memorandum...valorous actions as documented in the MOH award 1 The Honorable John M. McHugh left his position as Secretary of the Army on November 1, 2015. 2 We did

  17. Optimization of process variables for the biosynthesis of silver nanoparticles by Aspergillus wentii using statistical experimental design

    NASA Astrophysics Data System (ADS)

    Biswas, Supratim; Mulaba-Bafubiandi, Antoine F.

    2016-12-01

    The present scientific endeavour focuses on the optimization of process parameters using central composite design towards development of an efficient technique for the biosynthesis of silver nanoparticles. The combined effects of three process variables (days of fermentation, duration of incubation, concentration of AgNO3) upon extracellular biological synthesis of silver nanoparticles (AgNPs) by Aspergillus wentii NCIM 667 were studied. A single absorption peak at 455 nm confirming the presence of silver nanoparticles was observed in the UV-visible spectrophotometric graph. Using Fourier transform infrared spectroscopic analysis the presence of proteins as viable reducing agents for the formation AgNPs was recorded. High resolution transmission electron microscopy showed the realization of spherically shaped AgNPs of size 15-40 nm. Biologically formed AgNPs revealed higher antimicrobial activity against gram-negative than gram-positive bacterial strains. We present the enumeration of the properties of biosynthesized nanoparticles which exhibit photocatalysis exhausting an organic dye, the methyl orange, upon exposure to sunlight thereby accomplishing the degradation of almost (88%) the methyl orange dye within 5 h.

  18. Association between titanium and silver concentrations in maternal hair and risk of neural tube defects in offspring: A case-control study in north China.

    PubMed

    Li, Zhenjiang; Huo, Wenhua; Li, Zhiwen; Wang, Bin; Zhang, Jingxu; Ren, Aiguo

    2016-12-01

    Increasing uses of titanium and silver in various products raise concerns for their potential adverse effects on pregnancy outcomes. We aimed to examine the associations between titanium and silver concentrations in maternal hair growing during the periconception period and the risk of neural tube defects (NTDs) in offspring. Our case-control study recruited 191 women with NTD-affected pregnancies and 261 women delivering healthy infants. Metal concentrations in maternal hair were measured by inductively coupled plasma-mass spectrometry. The adjusted odds ratios (AOR) of titanium concentration above the median were 1.46 (95% confidence interval (CI), 0.99-2.13) for total NTDs and 2.10 (95% CI, 1.12-3.94) for anencephaly, while OR of silver wasn't statistically significant. Titanium concentration was positively correlated with consumptions of vegetables and fruits. Maternal exposure to titanium during the periconception period was associated with an increased NTD risk in offspring, which may be partly mediated through maternal dietary habits. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Effects of ionic surfactants on the morphology of silver nanoparticles using Paan (Piper betel) leaf petiole extract.

    PubMed

    Khan, Zaheer; Bashir, Ommer; Hussain, Javed Ijaz; Kumar, Sunil; Ahmad, Rabia

    2012-10-01

    Stable silver nanoparticles were synthesized by the reduction of silver ions with a Paan (Piper betel) leaf petiole extract in absence and presence of cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulphate (SDS). The reaction process was simple and convenient to handle, and was monitored using ultraviolet-visible spectroscopy. Absorbance of Ag-nanoparticles increases with the concentrations of Paan leaf extract, acts as reducing, stabilizing and capping agents. The polyphenolic groups of petiole extract are responsible to the rapid reduction of Ag(+) ions into metallic Ag(0). The results indicated that the shape of the spectra, number of peaks and its position strongly depend on the concentration of CTAB, which played a shape-controlling role during the formation of silver nanoparticles in the solutions, whereas SDS has no significant effect. The morphology (spherical, truncated triangular polyhedral plate and some irregular nanoparticles) and crystalline phase of the particles were determined from transmission electron microscopy (TEM) and selected area electron diffraction (SAED). Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Hotspot-mediated non-dissipative and ultrafast plasmon passage

    NASA Astrophysics Data System (ADS)

    Roller, Eva-Maria; Besteiro, Lucas V.; Pupp, Claudia; Khorashad, Larousse Khosravi; Govorov, Alexander O.; Liedl, Tim

    2017-08-01

    Plasmonic nanoparticles hold great promise as photon handling elements and as channels for coherent transfer of energy and information in future all-optical computing devices. Coherent energy oscillations between two spatially separated plasmonic entities via a virtual middle state exemplify electron-based population transfer, but their realization requires precise nanoscale positioning of heterogeneous particles. Here, we show the assembly and optical analysis of a triple-particle system consisting of two gold nanoparticles with an inter-spaced silver island. We observe strong plasmonic coupling between the spatially separated gold particles, mediated by the connecting silver particle, with almost no dissipation of energy. As the excitation energy of the silver island exceeds that of the gold particles, only quasi-occupation of the silver transfer channel is possible. We describe this effect both with exact classical electrodynamic modelling and qualitative quantum-mechanical calculations. We identify the formation of strong hotspots between all particles as the main mechanism for the lossless coupling and thus coherent ultrafast energy transfer between the remote partners. Our findings could prove useful for quantum gate operations, as well as for classical charge and information transfer processes.

  1. Growth graphene on silver-copper nanoparticles by chemical vapor deposition for high-performance surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Zhang, Xiumei; Xu, Shicai; Jiang, Shouzhen; Wang, Jihua; Wei, Jie; Xu, Shida; Gao, Shoubao; Liu, Hanping; Qiu, Hengwei; Li, Zhen; Liu, Huilan; Li, Zhenhua; Li, Hongsheng

    2015-10-01

    We present a graphene/silver-copper nanoparticle hybrid system (G/SCNPs) to be used as a high-performance surface-enhanced Raman scattering (SERS) substrate. The silver-copper nanoparticles wrapped by a monolayer graphene layer are directly synthesized on SiO2/Si substrate by chemical vapor deposition in a mixture of methane and hydrogen. The G/SCNPs shows excellent SERS enhancement activity and high reproducibility. The minimum detected concentration of R6G is as low as 10-10 M and the calibration curve shows a good linear response from 10-6 to 10-10 M. The date fluctuations from 20 positions of one SERS substrate are less than 8% and from 20 different substrates are less than 10%. The high reproducibility of the enhanced Raman signals could be due to the presence of an ultrathin graphene layer and uniform morphology of silver-copper nanoparticles. The use of G/SCNPs for detection of nucleosides extracted from human urine demonstrates great potential for the practical applications on a variety of detection in medicine and biotechnology field.

  2. Heterogeneous precipitation of silver nanoparticles on kaolinite plates

    NASA Astrophysics Data System (ADS)

    Cabal, B.; Torrecillas, R.; Malpartida, F.; Moya, J. S.

    2010-11-01

    Two different methods to obtain silver nanoparticles supported on kaolin crystals have been performed: the first one followed a thermal reduction and the second one a chemical reduction. In both cases, the silver nanoparticles with two different average particles size (ca.12 and 30 nm) were perfectly isolated and attached to the surface of the kaolin plates. The silver nanoparticles were localized mainly at the edge of the single crystal plates, the hydroxyl groups being the main centres of adsorption. The samples were fully characterized by XRD, UV-vis spectroscopy and TEM. The antimicrobial benefits of the composites were evaluated as antibacterial against common Gram-positive and Gram-negative bacteria, and antifungal activity against yeast. The results indicated a high antimicrobial activity for Escherichia coli JM 110 and Micrococcus luteus, while being inactive against yeast under our experimental conditions. The chemical analysis of Ag in the fermentation broths show that only a small portion of metal (<9 ppm) is released from the kaolin/metakaolin particles. Therefore, the risk of toxicity due to a high concentration of metal in the medium is minimized.

  3. Insight into acid-base nucleation experiments by comparison of the chemical composition of positive, negative, and neutral clusters.

    PubMed

    Bianchi, Federico; Praplan, Arnaud P; Sarnela, Nina; Dommen, Josef; Kürten, Andreas; Ortega, Ismael K; Schobesberger, Siegfried; Junninen, Heikki; Simon, Mario; Tröstl, Jasmin; Jokinen, Tuija; Sipilä, Mikko; Adamov, Alexey; Amorim, Antonio; Almeida, Joao; Breitenlechner, Martin; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Kangasluoma, Juha; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Laaksonen, Ari; Lawler, Michael J; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Mathot, Serge; Onnela, Antti; Petäjä, Tuukka; Riccobono, Francesco; Rissanen, Matti P; Rondo, Linda; Tomé, António; Virtanen, Annele; Viisanen, Yrjö; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Curtius, Joachim; Kulmala, Markku; Worsnop, Douglas R; Donahue, Neil M; Baltensperger, Urs

    2014-12-02

    We investigated the nucleation of sulfuric acid together with two bases (ammonia and dimethylamine), at the CLOUD chamber at CERN. The chemical composition of positive, negative, and neutral clusters was studied using three Atmospheric Pressure interface-Time Of Flight (APi-TOF) mass spectrometers: two were operated in positive and negative mode to detect the chamber ions, while the third was equipped with a nitrate ion chemical ionization source allowing detection of neutral clusters. Taking into account the possible fragmentation that can happen during the charging of the ions or within the first stage of the mass spectrometer, the cluster formation proceeded via essentially one-to-one acid-base addition for all of the clusters, independent of the type of the base. For the positive clusters, the charge is carried by one excess protonated base, while for the negative clusters it is carried by a deprotonated acid; the same is true for the neutral clusters after these have been ionized. During the experiments involving sulfuric acid and dimethylamine, it was possible to study the appearance time for all the clusters (positive, negative, and neutral). It appeared that, after the formation of the clusters containing three molecules of sulfuric acid, the clusters grow at a similar speed, independent of their charge. The growth rate is then probably limited by the arrival rate of sulfuric acid or cluster-cluster collision.

  4. Preparation, characterization, and antibacterial activity of γ-irradiated silver nanoparticles in aqueous gelatin

    NASA Astrophysics Data System (ADS)

    Darroudi, Majid; Ahmad, Mansor B.; Hakimi, Mohammad; Zamiri, Reza; Zak, Ali Khorsand; Hosseini, Hasan Ali; Zargar, Mohsen

    2013-04-01

    Colloidal silver nanoparticles (Ag-NPs) were obtained through γ-irradiation of aqueous solutions containing AgNO3 and gelatin as a silver source and stabilizer, respectively. The absorbed dose of γ-irradiation influences the particle diameter of the Ag-NPs, as evidenced from surface plasmon resonance (SPR) and transmission electron microscopy (TEM) images. When the γ-irradiation dose was increased (from 2 to 50 kGy), the mean particle size was decreased continuously as a result of γ-induced Ag-NPs fragmentation. The antibacterial properties of the Ag-NPs were tested against Methicillinresistant Staphylococcus aureus (MRSA) (Gram-positive) and Pseudomonas aeruginosa (P.a) (Gram-negative) bacteria. This approach reveals that the γ-irradiation-mediated method is a promising simple route for synthesizing highly stable Ag-NPs in aqueous solutions with good antibacterial properties for different applications.

  5. Growth of in situ functionalized luminescent silver nanoclusters by direct reduction and size focusing.

    PubMed

    Muhammed, Madathumpady Abubaker Habeeb; Aldeek, Fadi; Palui, Goutam; Trapiella-Alfonso, Laura; Mattoussi, Hedi

    2012-10-23

    We have used one phase growth reaction to prepare a series of silver nanoparticles (NPs) and luminescent nanoclusters (NCs) using sodium borohydride (NaBH(4)) reduction of silver nitrate in the presence of molecular scale ligands made of polyethylene glycol (PEG) appended with lipoic acid (LA) groups at one end and reactive (-COOH/-NH(2)) or inert (-OCH(3)) functional groups at the other end. The PEG segment in the ligand promotes solubility in a variety of solvents including water, while LAs provide multidentate coordinating groups that promote Ag-ligand complex formation and strong anchoring onto the NP/NC surface. The particle size and properties were primarily controlled by varying the Ag-to-ligand (Ag:L) molar ratios and the molar amount of NaBH(4) used. We found that while higher Ag:L ratios produced NPs, luminescent NCs were formed at lower ratios. We also found that nonluminescent NPs can be converted into luminescent clusters, via a process referred to as "size focusing", in the presence of added excess ligands and reducing agent. The nanoclusters emit in the far red region of the optical spectrum with a quantum yield of ~12%. They can be redispersed in a number of solvents with varying polarity while maintaining their optical and spectroscopic properties. Our synthetic protocol also allowed control over the number and type of reactive functional groups per nanocluster.

  6. A Spatial Division Clustering Method and Low Dimensional Feature Extraction Technique Based Indoor Positioning System

    PubMed Central

    Mo, Yun; Zhang, Zhongzhao; Meng, Weixiao; Ma, Lin; Wang, Yao

    2014-01-01

    Indoor positioning systems based on the fingerprint method are widely used due to the large number of existing devices with a wide range of coverage. However, extensive positioning regions with a massive fingerprint database may cause high computational complexity and error margins, therefore clustering methods are widely applied as a solution. However, traditional clustering methods in positioning systems can only measure the similarity of the Received Signal Strength without being concerned with the continuity of physical coordinates. Besides, outage of access points could result in asymmetric matching problems which severely affect the fine positioning procedure. To solve these issues, in this paper we propose a positioning system based on the Spatial Division Clustering (SDC) method for clustering the fingerprint dataset subject to physical distance constraints. With the Genetic Algorithm and Support Vector Machine techniques, SDC can achieve higher coarse positioning accuracy than traditional clustering algorithms. In terms of fine localization, based on the Kernel Principal Component Analysis method, the proposed positioning system outperforms its counterparts based on other feature extraction methods in low dimensionality. Apart from balancing online matching computational burden, the new positioning system exhibits advantageous performance on radio map clustering, and also shows better robustness and adaptability in the asymmetric matching problem aspect. PMID:24451470

  7. 17 CFR Appendix B to Part 151 - Examples of Bona Fide Hedging Transactions and Positions

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Processor A processes and refines the scrap to repay Bank B. Although Bank B has lent the silver, it is..., its net cash position is equal to long two million bushels of corn. To reduce its price risk...—will fall in value. Because the firm's net cash position is equal to long two million bushels of corn...

  8. Sculpture, view looking to pair of lions, positioned at top ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Sculpture, view looking to pair of lions, positioned at top of stairs leading down into the Glen from DeWitt Circle, just north of the American Bungalow (note: Windmill in background) - National Park Seminary, Bounded by Capitol Beltway (I-495), Linden Lane, Woodstove Avenue, & Smith Drive, Silver Spring, Montgomery County, MD

  9. Physical model of protein cluster positioning in growing bacteria

    NASA Astrophysics Data System (ADS)

    Wasnik, Vaibhav; Wang, Hui; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2017-10-01

    Chemotaxic receptors in bacteria form clusters at cell poles and also laterally, and this clustering plays an important role in signal transduction. These clusters were found to be periodically arranged on the surface of the bacterium Escherichia coli, independent of any known positioning mechanism. In this work we extend a model based on diffusion and aggregation to more realistic geometries and present a means based on ‘bursty’ protein production to distinguish spontaneous positioning from an independently existing positioning mechanism. We also consider the case of isotropic cellular growth and characterize the degree of order arising spontaneously. Our model could also be relevant for other examples of periodically positioned protein clusters in bacteria.

  10. Lithium formate ion clusters formation during electrospray ionization: Evidence of magic number clusters by mass spectrometry and ab initio calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Anil, E-mail: Anil.Shukla@pnnl.gov; Bogdanov, Bogdan

    2015-02-14

    Small cationic and anionic clusters of lithium formate were generated by electrospray ionization and their fragmentations were studied by tandem mass spectrometry (collision-induced dissociation with N{sub 2}). Singly as well as multiply charged clusters were formed in both positive and negative ion modes with the general formulae, (HCOOLi){sub n}Li{sup +}, (HCOOLi){sub n}Li{sub m}{sup m+}, (HCOOLi){sub n}HCOO{sup −}, and (HCOOLi){sub n}(HCOO){sub m}{sup m−}. Several magic number cluster (MNC) ions were observed in both the positive and negative ion modes although more predominant in the positive ion mode with (HCOOLi){sub 3}Li{sup +} being the most abundant and stable cluster ion. Fragmentations ofmore » singly charged positive clusters proceed first by the loss of a dimer unit ((HCOOLi){sub 2}) followed by the loss of monomer units (HCOOLi) although the former remains the dominant dissociation process. In the case of positive cluster ions, all fragmentations lead to the magic cluster (HCOOLi){sub 3}Li{sup +} as the most abundant fragment ion at higher collision energies which then fragments further to dimer and monomer ions at lower abundances. In the negative ion mode, however, singly charged clusters dissociated via sequential loss of monomer units. Multiply charged clusters in both positive and negative ion modes dissociated mainly via Coulomb repulsion. Quantum chemical calculations performed for smaller cluster ions showed that the trimer ion has a closed ring structure similar to the phenalenylium structure with three closed rings connected to the central lithium ion. Further additions of monomer units result in similar symmetric structures for hexamer and nonamer cluster ions. Thermochemical calculations show that trimer cluster ion is relatively more stable than neighboring cluster ions, supporting the experimental observation of a magic number cluster with enhanced stability.« less

  11. Characterization and antibacterial properties of stable silver substituted hydroxyapatite nanoparticles synthesized through surfactant assisted microwave process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iqbal, Nida; Abdul Kadir, Mohammed Rafiq, E-mail: rafiq@biomedical.utm.my; Nik Malek, Nik Ahmad Nazim

    Highlights: • Stable nano sized silver substitute hydroxyapatite is prepared under surfactant assisted microwave process at 600 W power for 7 min. • The nanoparticles are in the size range of 58–72 nm and exert uniform elongated spheroid morphology. • Increase in silver concentration resulted in better dielectric properties. • Good antibacterial activity and silver release. - Abstract: The present study reports a relatively simple method for the synthesis of stable silver substituted hydroxyapatite nanoparticles with controlled morphology and particle size. In order to achieve this, CTAB is included as a surfactant in the microwave refluxing process (600 W formore » 7 min). The nanoparticles produced with different silver ion concentrations (0.05, 0.1 and 0.2 wt%) were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX) and Brunauer–Emmett–Teller (BET) analysis. XRD and FTIR analyses reveal that the Ag-HA nanoparticles were phase pure at 1000 °C. FESEM images showed that the produced nanoparticles are in the size range of 58–72 nm and exert uniform elongated spheroid morphology. The dielectric properties suggest that the increase in dielectric constant (ε′) and dissipation factor (D) values with increasing Ag concentrations. Antibacterial performance of the Ag-HA samples elucidated using disk diffusion technique (DDT) and minimum inhibitory concentration (MIC) demonstrates anti-bacterial activity against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Escherichia coli. This effect was dose dependent and was more pronounced against Gram-negative bacteria than Gram-positive organisms.« less

  12. Anomalous absorption of isolated silver nanoparticulate films in visible region of electromagnetic field.

    PubMed

    Kim, Sang Woo; Hui, Bang Jae; Bae, Dong-Sik

    2008-02-01

    Anomalous absorption of isolated silver nanoparticulate films with different morphological patterns prepared by the wet colloidal route and followed by thermal treatment were investigated. A polymer embedded silver nanoparticulate film thermally treated at 200 degrees C showed maximum absorbance at approximately 412 nm. The peak position of the surface plasmon band was slightly different but still consistent with theoretical prediction derived by the Mie theory. An isolated nanopariculate film thermally treated at 300 degrees C showed anomalous absorption. Its maximum absorption band was shifted to green regime of 506.9 nm and the bandwidth at half-maximum absorbance of the surface plasmon band was greatly broadened. The plasmon band and its bandwidth were much deviated compared to the theoretical prediction calculated for the silver nanoparticles in the surrounding medium of air and poly(vinyl pyrrolidone) or soda-lime-silica glass. Even though there was no significant growth of silver nanoparticles during thermal treatment at 300 degrees C, the anomalous absorption was observed. The anomalous absorption was not attributed to effects of particle shape and size but to effects of pores induced by development of a great number of pores in the nanoparticulate film. The anomalous absorption greatly decreased with increase in heating temperature from 400 degrees C to 500 degrees C. The extraordinary plasmon damping of the isolated film decreased and the plasmon absorption band was re-shifted to violet regime of 416 nm because of large decrease in size of particles with dramatic change of pore morphology from circular pores with rim to small continuous pores induced by spontaneous formation of new silver nanoparticles.

  13. Tannic acid-mediated green synthesis of antibacterial silver nanoparticles.

    PubMed

    Kim, Tae Yoon; Cha, Song-Hyun; Cho, Seonho; Park, Youmie

    2016-04-01

    The search for novel antibacterial agents is necessary to combat microbial resistance to current antibiotics. Silver nanoparticles (AgNPs) have been reported to be effective antibacterial agents. Tannic acid is a polyphenol compound from plants with antioxidant and antibacterial activities. In this report, AgNPs were prepared from silver ions by tannic acid-mediated green synthesis (TA-AgNPs). The reaction process was facile and involved mixing both silver ions and tannic acid. The absorbance at 423 nm in the UV-Visible spectra demonstrated that tannic acid underwent a reduction reaction to produce TA-AgNPs from silver ions. The synthetic yield of TA-AgNPs was 90.5% based on inductively coupled plasma mass spectrometry analysis. High-resolution transmission electron microscopy and atomic force microscopy images indicated that spherical-shaped TA-AgNPs with a mean particle size of 27.7-46.7 nm were obtained. Powder high-resolution X-ray diffraction analysis indicated that the TA-AgNP structure was face-centered cubic with a zeta potential of -27.56 mV. The hydroxyl functional groups of tannic acid contributed to the synthesis of TA-AgNPs, which was confirmed by Fourier transform infrared spectroscopy. The in vitro antibacterial activity was measured using the minimum inhibitory concentration (MIC) method. The TA-AgNPs were more effective against Gram-negative bacteria than Gram-positive bacteria. The MIC for the TA-AgNPs in all of the tested strains was in a silver concentration range of 6.74-13.48 μg/mL. The tannic acid-mediated synthesis of AgNPs afforded biocompatible nanocomposites for antibacterial applications.

  14. Biosynthesis of AgNPs using Carica Papaya peel extract and evaluation of its antioxidant and antimicrobial activities.

    PubMed

    Kokila, T; Ramesh, P S; Geetha, D

    2016-12-01

    Waste fruit peel mediated synthesis of silver nanoparticles (AgNPs) is a green chemistry approach that links nanotechnology and biotechnology. Using biological medium such as peel extract for the biosynthesis of nanoparticles is an ecofriendly and emerging scientific trend. With this back drop the present study focused on the biosynthesis of AgNPs using Carica Papaya peel extract (CPPE) and evaluation of its antimicrobial potentials of the nanoparticles against different human pathogens and to investigate the free radical scavenging activity. Water soluble antioxidant constituents present in Carica Papaya peel extract were mainly responsible for the reduction of silver ions to nanosized Ag particles. UV-vis spectral analysis shows surface plasmon resonance band at 430nm. The presence of active proteins and phenolic groups present in the biomass before and after reduction was identified by Fourier transform infrared spectroscopy. X-ray diffraction study shows the average size of the silver nanoparticles is in the range of 28nm, as well as revealed their face centered cubic structure. Atomic force microscope image gives the 3D topological characteristic of silver nanoparticles and the particle size ranges from 10 to 30nm. The average particle size distribution of silver nanoparticles is 161nm (Dynamic light scattering) and the corresponding average zeta potential value is -20.5mV, suggesting higher stability of silver nanoparticles. Biologically synthesized nanoparticles efficiently inhibited pathogenic organisms both gram-positive and gram-negative bacteria. The biosynthesized nanoparticles might serve as a potent antioxidant as revealed by DPPH and ABT S+ assay. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Quantum confinement effects on electronic photomobilities at nanostructured semiconductor surfaces: Si(111) without and with adsorbed Ag clusters

    NASA Astrophysics Data System (ADS)

    Hembree, Robert H.; Vazhappilly, Tijo; Micha, David A.

    2017-12-01

    The conductivity of holes and electrons photoexcited in Si slabs is affected by the slab thickness and by adsorbates. The mobilities of those charged carriers depend on how many layers compose the slab, and this has important scientific and technical consequences for the understanding of photovoltaic materials. A previously developed general computational procedure combining density matrix and electronic band structure treatments has been applied to extensive calculations of mobilities of photoexcited electrons and holes at Si(111) nanostructured surfaces with varying slab thickness and for varying photon energies, to investigate the expected change in mobility magnitudes as the slab thickness is increased. Results have been obtained with and without adsorbed silver clusters for comparison of their optical and photovoltaic properties. Band states were generated using a modified ab initio density functional treatment with the PBE exchange and correlation density functionals and with periodic boundary conditions for large atomic supercells. An energy gap correction was applied to the unoccupied orbital energies of each band structure by running more accurate HSE hybrid functional calculations for a Si(111) slab. Photoexcited state populations for slabs with 6, 8, 10, and 12 layers were generated using a steady state reduced density matrix including dissipative effects due to energy exchange with excitons and phonons in the medium. Mobilities have been calculated from the derivatives of voltage-driven electronic energies with respect to electronic momentum, for each energy band and for the average over bands. Results show two clear trends: (a) adding Ag increases the hole photomobilities and (b) decreasing the slab thickness increases hole photomobilities. The increased hole populations in 6- and 8-layer systems and the large increase in hole mobility for these thinner slabs can be interpreted as a quantum confinement effect of hole orbitals. As the slab thickness increases to ten and twelve layers, the effect of silver adsorbates decreases leading to smaller relative enhancements to the conduction electron and hole mobilities, but the addition of the silver nanoclusters still increases the absorbance of light and the mobility of holes compared to their mobilities in the pure Si slabs.

  16. Green production of microalgae-based silver chloride nanoparticles with antimicrobial activity against pathogenic bacteria.

    PubMed

    da Silva Ferreira, Veronica; ConzFerreira, Mateus Eugenio; Lima, Luís Maurício T R; Frasés, Susana; de Souza, Wanderley; Sant'Anna, Celso

    2017-02-01

    Silver nanoparticles are powerful antimicrobial agents. Here, the synthesis of silver chloride nanoparticles (AgCl-NPs) was consistently evidenced from a commercially valuable microalgae species, Chlorella vulgaris. Incubation of C. vulgaris conditioned medium with AgNO 3 resulted in a medium color change to yellow/brown (with UV-vis absorbance at 415nm), indicative of silver nanoparticle formation. Energy-dispersive X-ray spectroscopy (EDS) of purified nanoparticles confirmed the presence of both silver and chlorine atoms, and X-ray diffraction (XRD) showed the typical pattern of cubic crystalline AgCl-NPs. Transmission electron microscopy (TEM) showed that most particles (65%) were spherical, with average diameter of 9.8±5.7nm. Fourier transform infrared spectroscopy (FTIR) of purified nanoparticle fractions suggested that proteins are the main molecular entities involved in AgCl-NP formation and stabilization. AgCl-NPs (from 10μg/mL) decreased by 98% the growth of Gram-positive Staphylococcus aureus and Gram-negative Klebsiella pneumoniae bacterial pathogens, and had a dose-dependent effect on cell viability, which was measured by automated image-based high content screening (HCS). Ultrastructural analysis of treated bacteria by TEM revealed the abnormal arrangement of the chromosomal DNA. Our findings strongly indicated that the AgCl-NPs from C. vulgaris conditioned medium is a promising 'green' alternative for biomedical application as antimicrobials. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Biosynthesis of silver and zinc oxide nanoparticles using Pichia fermentans JA2 and their antimicrobial property

    NASA Astrophysics Data System (ADS)

    Chauhan, Ritika; Reddy, Arpita; Abraham, Jayanthi

    2015-01-01

    The development of eco-friendly alternative to chemical synthesis of metal nanoparticles is of great challenge among researchers. The present study aimed to investigate the biological synthesis, characterization, antimicrobial study and synergistic effect of silver and zinc oxide nanoparticles against clinical pathogens using Pichia fermentans JA2. The extracellular biosynthesis of silver and zinc oxide nanoparticles was investigated using Pichia fermentans JA2 isolated from spoiled fruit pulp bought in Vellore local market. The crystalline and stable metallic nanoparticles were characterized evolving several analytical techniques including UV-visible spectrophotometer, X-ray diffraction pattern analysis and FE-scanning electron microscope with EDX-analysis. The biosynthesized metallic nanoparticles were tested for their antimicrobial property against medically important Gram positive, Gram negative and fungal pathogenic microorganisms. Furthermore, the biosynthesized nanoparticles were also evaluated for their increased antimicrobial activities with various commercially available antibiotics against clinical pathogens. The biosynthesized silver nanoparticles inhibited most of the Gram negative clinical pathogens, whereas zinc oxide nanoparticles were able to inhibit only Pseudomonas aeruginosa. The combined effect of standard antibiotic disc and biosynthesized metallic nanoparticles enhanced the inhibitory effect against clinical pathogens. The biological synthesis of silver and zinc oxide nanoparticles is a novel and cost-effective approach over harmful chemical synthesis techniques. The metallic nanoparticles synthesized using Pichia fermentans JA2 possess potent inhibitory effect that offers valuable contribution to pharmaceutical associations.

  18. Cellulose nanocrystals as templates for cetyltrimethylammonium bromide mediated synthesis of Ag nanoparticles and their novel use in PLA films.

    PubMed

    Yalcinkaya, E E; Puglia, D; Fortunati, E; Bertoglio, F; Bruni, G; Visai, L; Kenny, J M

    2017-02-10

    In the present paper, we reported how cellulose nanocrystals (CNC) from microcrystalline cellulose have the capacity to assist in the synthesis of metallic nanoparticles chains. A cationic surfactant, cetyltrimethylammonium bromide (CTAB), was used as modifier for CNC surface. Silver nanoparticles were synthesized on CNC, and nanoparticle density and size were optimized by varying concentrations of nitrate and reducing agents, and the reduction time. The experimental conditions were optimized for the synthesis and the resulting Ag grafted CNC (Ag-g-CNC) were characterized by means of TGA, SEM, FTIR and XRD, and then introduced in PLA matrix. PLA nanocomposite containing silver grafted cellulose nanocrystals (PLA/0.5Ag-g-1CNC) was characterized by optical and thermal analyses and the obtained data were compared with results from PLA nanocomposites containing 1% wt. of CNC (PLA/1CNC), 0.5% wt. of silver nanoparticles (PLA/0.5Ag) and hybrid system containing CNC and silver in the same amount (PLA/1CNC/0.5Ag). The results demonstrated that grafting of silver nanoparticles on CNC positively affected the thermal degradation process and cold crystallization processes of PLA matrix. Finally, the antibacterial activity of the different systems was studied at various incubation times and temperatures, showing the best performance for PLA/1CNC/0.5Ag based nanocomposite. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa

    2011-01-01

    Using the chemical reduction method, silver nanoparticles (Ag NPs) were effectively synthesized into the zeolite framework in the absence of any heat treatment. Zeolite, silver nitrate, and sodium borohydride were used as an inorganic solid support, a silver precursor, and a chemical reduction agent, respectively. Silver ions were introduced into the porous zeolite lattice by an ion-exchange path. After the reduction process, Ag NPs formed in the zeolite framework, with a mean diameter of about 2.12–3.11 nm. The most favorable experimental condition for the synthesis of Ag/zeolite nanocomposites (NCs) is described in terms of the initial concentration of AgNO3. The Ag/zeolite NCs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, and Fourier transform infrared. The results show that Ag NPs form a spherical shape with uniform homogeneity in the particle size. The antibacterial activity of Ag NPs in zeolites was investigated against Gram-negative bacteria (ie, Escherichia coli and Shigella dysentriae) and Gram-positive bacteria (ie, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus) by disk diffusion method using Mueller–Hinton agar at different sizes of Ag NPs. All of the synthesized Ag/zeolite NCs were found to have antibacterial activity. These results show that Ag NPs in the zeolite framework can be useful in different biological research and biomedical applications. PMID:21383858

  20. Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity.

    PubMed

    Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa

    2011-01-01

    Using the chemical reduction method, silver nanoparticles (Ag NPs) were effectively synthesized into the zeolite framework in the absence of any heat treatment. Zeolite, silver nitrate, and sodium borohydride were used as an inorganic solid support, a silver precursor, and a chemical reduction agent, respectively. Silver ions were introduced into the porous zeolite lattice by an ion-exchange path. After the reduction process, Ag NPs formed in the zeolite framework, with a mean diameter of about 2.12-3.11 nm. The most favorable experimental condition for the synthesis of Ag/zeolite nanocomposites (NCs) is described in terms of the initial concentration of AgNO(3). The Ag/zeolite NCs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, and Fourier transform infrared. The results show that Ag NPs form a spherical shape with uniform homogeneity in the particle size. The antibacterial activity of Ag NPs in zeolites was investigated against Gram-negative bacteria (ie, Escherichia coli and Shigella dysentriae) and Gram-positive bacteria (ie, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus) by disk diffusion method using Mueller-Hinton agar at different sizes of Ag NPs. All of the synthesized Ag/zeolite NCs were found to have antibacterial activity. These results show that Ag NPs in the zeolite framework can be useful in different biological research and biomedical applications.

  1. In situ formation of antimicrobial silver nanoparticles and the impregnation of hydrophobic polycaprolactone matrix for antimicrobial medical device applications.

    PubMed

    Tran, Phong A; Hocking, Dianna M; O'Connor, Andrea J

    2015-02-01

    Bacterial infection associated with medical devices remains a challenge to modern medicine as more patients are being implanted with medical devices that provide surfaces and environment for bacteria colonization. In particular, bacteria are commonly found to adhere more preferably to hydrophobic materials and many of which are used to make medical devices. Bacteria are also becoming increasingly resistant to common antibiotic treatments as a result of misuse and abuse of antibiotics. There is an urgent need to find alternatives to antibiotics in the prevention and treatment of device-associated infections world-wide. Silver nanoparticles have emerged as a promising non-drug antimicrobial agent which has shown effectiveness against a wide range of both Gram-negative and Gram-positive pathogen. However, for silver nanoparticles to be clinically useful, they must be properly incorporated into medical device materials whose wetting properties could be detrimental to not only the incorporation of the hydrophilic Ag nanoparticles but also the release of active Ag ions. This study aimed at impregnating the hydrophobic polycaprolactone (PCL) polymer, which is a FDA-approved polymeric medical device material, with hydrophilic silver nanoparticles. Furthermore, a novel approach was employed to uniformly, incorporate silver nanoparticles into the PCL matrix in situ and to improve the release of Ag ions from the matrix so as to enhance antimicrobial efficacy. Copyright © 2014. Published by Elsevier B.V.

  2. Use of sand wave habitats by silver hake

    USGS Publications Warehouse

    Auster, P.J.; Lindholm, J.; Schaub, S.; Funnell, G.; Kaufman, L.S.; Valentine, P.C.

    2003-01-01

    Silver hake Merluccius bilinearis are common members of fish communities in sand wave habitats on Georges Bank and on Stellwagen Bank in the Gulf of Maine. Observations of fish size v. sand wave period showed that silver hake are not randomly distributed within sand wave landscapes. Regression analyses showed a significant positive relationship between sand wave period and fish length. Correlation coefficients, however, were low, suggesting other interactions with sand wave morphology, the range of current velocities, and available prey may also influence their distribution. Direct contact with sand wave habitats varied over diel periods, with more fish resting on the seafloor during daytime than at night. Social foraging, in the form of polarized groups of fish swimming in linear formations during crepuscular and daytime periods, was also observed. Sand wave habitats may provide shelter from current flows and mediate fish-prey interactions. ?? 2003 The Fisheries Society of the British Isles.

  3. [Study on screening differentially expressed genes in mice livers by silver staining DD-PCR].

    PubMed

    Luan, Xin-Hong; Hu, Zhong-Ming; Liu, Wei-Quan; Jiang, Yu; Wang, Kai; Wu, Yong-Kui; Li, Qian-Xue

    2005-08-01

    To screen swimming-fatigue related genes in mice and lay theoretic basis for researching the molecular mechanism of fatigue. 30 male BALB/c mice (20 +/- 2g) were divided into control group, dipping in water group and swimming-fatigue group respectively. After fatigue for swimming in swimming-fatigue group, with control group and dipping in water group, liver tissues in mice were collected. With improved silver staining mRNA differential display method, the differentially expressed genes in mice livers were screened and evaluated by reversed Northern blot. The positive segments were analyzed homology by BLAST. 7 of DD-ESTs were gained. Two of them only expressed in swimming-fatigue group, two down-regulated expressed, and three up-regulated. One of them was a novel gene and was accepted by GenBank, AY615302. Seven DD-ESTs in swimming-fatigue mice were gained by silver staining mRNA differential display method.

  4. Hydroxyapatites and europium(III) doped hydroxyapatites as a carrier of silver nanoparticles and their antimicrobial activity.

    PubMed

    Wiglusz, Rafal J; Kedziora, Anna; Lukowiak, Anna; Doroszkiewicz, Wlodzimierz; Strek, Wieslaw

    2012-08-01

    Hydroxyapatites (Ca10(PO4)6(OH)2 and Eu3+:Ca10(PO4)6(OH)2) were synthesized by aqueous synthesis route. Hydroxyapatites were impregnated with silver ions that were subsequently reduced. XRD, TEM, and SAED measurements were used in order to determine the crystal structure and morphology of the final products. The results showed the well crystallized hydroxyapatite grains with diameter of about 35 nm and with silver nanoparticles on their surface. The antimicrobial activity of the nanoparticles against: Staphylococcus aureus ATCC 6538 as model of the Gram-positive bacteria, Escherichia coli ATCC 11229, and Klebsiella pneumoniae ATCC 4352 as model of Gram-negative bacteria, were shown with the best activity against K. pneumoniae. These nanocomposite powders can be a promising antimicrobial agent and a fluorescent material for biodetection due to their optical and bioactive properties.

  5. Comparison between histochemical and immunohistochemical methods for diagnosis of sporotrichosis.

    PubMed Central

    Marques, M E; Coelho, K I; Sotto, M N; Bacchi, C E

    1992-01-01

    AIMS: To compare the efficacy of histochemical and immunohistochemical methods in detecting forms of Sporothrix schenckii in tissue. METHODS: Thirty five cutaneous biopsy specimens from 27 patients with sporotrichosis were stained by histochemical haematoxylin and eosin, periodic acid Schiff, and Gomori's methenamine silver methods and an immunohistochemical (avidin-biotin complex immunoperoxidase) (ABC) technique associated with a newly produced rabbit polyclonal antibody anti-Sporothrix schenckii. RESULTS: A total of 29 (83%) cases were positive by the ABC method used in association with anti-Sporothrix schenckii rabbit polyclonal antibodies. Histochemical methods, using silver staining, periodic acid Schiff, and conventional haematoxylin and eosin detected 37%, 23%, and 23% of forms of S schenckii, respectively. The ABC technique was significantly more reliable than periodic acid Schiff and silver staining techniques. CONCLUSIONS: It is concluded that immunostaining is an easy and rapid method which can efficiently increase the accuracy of the diagnosis of sporotrichosis in human tissue. Images PMID:1479036

  6. Implications of Pearl, Gold, Silver (PGS) craft industrial cluster towards settlements region in Karang Pule Village, Sekarbela District Of Mataram City

    NASA Astrophysics Data System (ADS)

    Sushanti, I. R.; Fitri, I. S.

    2017-06-01

    The existence of industry clusters in Mataram City gave effect to the surrounding residential areas [1]. In accordance Spatial Plan of Mataram City in 2011-2031 PGS industry cluster in the village of Karang Pule, Sekarbela district established as shopping tourism area. Distribution of industrial locations were in four of seven environments in Karang Pule. Distribution of PGS industry is divided into three (3) groups: craftsmen, craftsmen who is also a seller, and the seller (merchant). The location of the craftsmen, craftsmen who are also businessmen and entrepreneurs are also used as a dwelling house or workshop and store. So most of the people living in settlements around clusters of industry that there is a link between industry cluster and settlements. This study aims to determine the implications or the impact of the presence of PGS industry clusters the surrounding residential areas. The method used in this research is descriptive qualitative with the collection of primary data through direct observation and questionnaires. Based on direct observation on the shopping tourism area there are inequality between the conditions of industry clusters and settlements area by the presence of slums. The results showed that the PGS industry cluster impact on social, economic and environment near settlements area. Impacts that occur are: 1) the social aspect, there is a significant change in the level of education, social welfare and social disparities but less significant to the formation of institutions, particularly in community participation, 2) the economic aspect of the change status of community work, and increased revenue and 3) the environmental aspects of the change to the condition of the building, the quality of public housing, the presence of slums, changes in infrastructure and the environmental pollution.

  7. Self-organization and positioning of bacterial protein clusters

    NASA Astrophysics Data System (ADS)

    Murray, Seán M.; Sourjik, Victor

    2017-10-01

    Many cellular processes require proteins to be precisely positioned within the cell. In some cases this can be attributed to passive mechanisms such as recruitment by other proteins in the cell or by exploiting the curvature of the membrane. However, in bacteria, active self-positioning is likely to play a role in multiple processes, including the positioning of the future site of cell division and cytoplasmic protein clusters. How can such dynamic clusters be formed and positioned? Here, we present a model for the self-organization and positioning of dynamic protein clusters into regularly repeating patterns based on a phase-locked Turing pattern. A single peak in the concentration is always positioned at the midpoint of the model cell, and two peaks are positioned at the midpoint of each half. Furthermore, domain growth results in peak splitting and pattern doubling. We argue that the model may explain the regular positioning of the highly conserved structural maintenance of chromosomes complexes on the bacterial nucleoid and that it provides an attractive mechanism for the self-positioning of dynamic protein clusters in other systems.

  8. Phytofabrication of bioinduced silver nanoparticles for biomedical applications.

    PubMed

    Ahmad, Nabeel; Bhatnagar, Sharad; Ali, Syed Salman; Dutta, Rajiv

    2015-01-01

    Synthesis of nanomaterials holds infinite possibilities as nanotechnology is revolutionizing the field of medicine by its myriad applications. Green synthesis of nanoparticles has become the need of the hour because of its eco-friendly, nontoxic, and economic nature. In this study, leaf extract of Rosa damascena was used as a bioreductant to reduce silver nitrate, leading to synthesis of silver nanoparticles (AgNPs) in a single step, without the use of any additional reducing or capping agents. The synthesized nanoparticles were characterized by the use of UV-visible spectroscopy, fourier transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy, and field emission scanning electron microscopy. Time-dependent synthesis of AgNPs was studied spectrophotometrically. Synthesized AgNPs were found to possess flower-like spherical structure where individual nanoparticles were of 16 nm in diameter, whereas the agglomerated AgNPs were in the range of 60-80 nm. These biologically synthesized AgNPs exhibited significant antibacterial activity against Gram-negative bacterial species but not against Gram-positive ones (Escherichia coli and Bacillus cereus). Anti-inflammatory and analgesic activities were studied on a Wistar rat model to gauge the impact of AgNPs for a probable role in these applications. AgNPs tested positive for both these activities, although the potency was less as compared to the standard drugs.

  9. Interaction of gold and silver nanoparticles with human plasma: Analysis of protein corona reveals specific binding patterns.

    PubMed

    Lai, Wenjia; Wang, Qingsong; Li, Lumeng; Hu, Zhiyuan; Chen, Jiankui; Fang, Qiaojun

    2017-04-01

    Determining how nanomaterials interact with plasma will assist in understanding their effects on the biological system. This work presents a systematic study of the protein corona formed from human plasma on 20nm silver and gold nanoparticles with three different surface modifications, including positive and negative surface charges. The results show that all nanoparticles, even those with positive surface modifications, acquire negative charges after interacting with plasma. Approximately 300 proteins are identified on the coronas, while 99 are commonly found on each nanomaterial. The 20 most abundant proteins account for over 80% of the total proteins abundance. Remarkably, the surface charge and core of the nanoparticles, as well as the isoelectric point of the plasma proteins, are found to play significant roles in determining the nanoparticle coronas. Albumin and globulins are present at levels of less than 2% on these nanoparticle coronas. Fibrinogen, which presents in the plasma but not in the serum, preferably binds to negatively charged gold nanoparticles. These observations demonstrate the specific plasma protein binding pattern of silver and gold nanoparticles, as well as the importance of the surface charge and core in determining the protein corona compositions. The potential downstream biological impacts of the corona proteins were also investigated. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Phytofabrication of bioinduced silver nanoparticles for biomedical applications

    PubMed Central

    Ahmad, Nabeel; Bhatnagar, Sharad; Ali, Syed Salman; Dutta, Rajiv

    2015-01-01

    Synthesis of nanomaterials holds infinite possibilities as nanotechnology is revolutionizing the field of medicine by its myriad applications. Green synthesis of nanoparticles has become the need of the hour because of its eco-friendly, nontoxic, and economic nature. In this study, leaf extract of Rosa damascena was used as a bioreductant to reduce silver nitrate, leading to synthesis of silver nanoparticles (AgNPs) in a single step, without the use of any additional reducing or capping agents. The synthesized nanoparticles were characterized by the use of UV-visible spectroscopy, fourier transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy, and field emission scanning electron microscopy. Time-dependent synthesis of AgNPs was studied spectrophotometrically. Synthesized AgNPs were found to possess flower-like spherical structure where individual nanoparticles were of 16 nm in diameter, whereas the agglomerated AgNPs were in the range of 60–80 nm. These biologically synthesized AgNPs exhibited significant antibacterial activity against Gram-negative bacterial species but not against Gram-positive ones (Escherichia coli and Bacillus cereus). Anti-inflammatory and analgesic activities were studied on a Wistar rat model to gauge the impact of AgNPs for a probable role in these applications. AgNPs tested positive for both these activities, although the potency was less as compared to the standard drugs. PMID:26648715

  11. [Structure-functional organization of eukaryotic high-affinity copper importer CTR1 determines its ability to transport copper, silver and cisplatin].

    PubMed

    Skvortsov, A N; Zatulovskiĭ, E A; Puchkova, L V

    2012-01-01

    It was shown recently, that high affinity Cu(I) importer eukaryotic protein CTR1 can also transport in vitro abiogenic Ag(I) ions and anticancer drug cisplatin. At present there is no rational explanation how CTR1 can transfer platinum group, which is different by coordination properties from highly similar Cu(I) and Ag(I). To understand this phenomenon we analyzed 25 sequences of chordate CTR1 proteins, and found out conserved patterns of organization of N-terminal extracellular part of CTR1 which correspond to initial metal binding. Extracellular copper-binding motifs were qualified by their coordination properties. It was shown that relative position of Met- and His-rich copper-binding motifs in CTR1 predisposes the extracellular CTR1 part to binding of copper, silver and cisplatin. Relation between tissue-specific expression of CTR1 gene, steady-state copper concentration, and silver and platinum accumulation in organs of mice in vivo was analyzed. Significant positive but incomplete correlation exists between these variables. Basing on structural and functional peculiarities of N-terminal part of CTR1 a hypothesis of coupled transport of copper and cisplatin has been suggested, which avoids the disagreement between CTR1-mediated cisplatin transport in vitro, and irreversible binding of platinum to Met-rich peptides.

  12. Plectranthus amboinicus-mediated silver, gold, and silver-gold nanoparticles: phyto-synthetic, catalytic, and antibacterial studies

    NASA Astrophysics Data System (ADS)

    Purusottam Reddy, B.; Mallikarjuna, K.; Narasimha, G.; Park, Si-Hyun

    2017-08-01

    Bio-based green nanotechnology aims to characterize compounds from natural sources and establish efficient routes for the preparation of nontoxic materials that have applicability in biodegradable and biocompatible devices. The present study has investigated the use of Plectranthus amboinicus leaf extracts as reducing and capping materials for the green fabrication of silver, gold, and silver-gold (Ag, Au, and Ag/Au) metal and bimetallic nanoparticles. The catalytic behavior of these phyto-inspired nanoparticles was then assessed in terms of the reduction of 4-nitrophenol. Transmission electron microscopy was used to investigate the shape, morphology, distribution, and diameter of the phytomolecules capped with Ag, Au, and Ag/Au metal nanoparticles. The nature of the crystallinity of the nanoparticles was studied by small area electron diffraction (SAED) and x-ray diffraction analysis (XRD), and Fourier transform infrared (FTIR) spectroscopy was used to study the reduction and stabilizing involvement of the phyto-organic moieties in aqueous medium. The phyto-inspired Ag and Ag/Au nanoparticles demonstrated good antibacterial properties toward Gram-negative Escherichia coli and Pseudomonas spp. and Gram-positive Bacillus spp. and Staphylococcus spp. microorganisms using the well diffusion method. Notably, the Ag nanoparticles were shown to possess effective antibacterial properties.

  13. Water-dispersible silver nanoparticles-decorated carbon nanomaterials: synthesis and enhanced antibacterial activity

    NASA Astrophysics Data System (ADS)

    Dinh, Ngo Xuan; Chi, Do Thi; Lan, Nguyen Thi; Lan, Hoang; Van Tuan, Hoang; Van Quy, Nguyen; Phan, Vu Ngoc; Huy, Tran Quang; Le, Anh-Tuan

    2015-04-01

    In recent years, a growing number of outbreak of infectious diseases have emerged all over the world. The outbreak of re-emerging and emerging infectious diseases is a considerable burden on global economies and public health. Nano-antimicrobials have been studied as an effective solution for the prevention of infectious diseases. In this work, we demonstrated a modified photochemical approach for the preparation of carbon nanotubes-silver nanoparticles (CNTs-Ag) and graphene oxide-silver nanoparticles (GO-Ag) nanocomposites, which can be stably dispersible in aqueous solution. The formation of silver nanoparticles (Ag-NPs) on the functionalized CNTs and GO nanosheets was analyzed by X-ray diffraction, transmission electron microscopy, Raman spectroscopy and UV-Vis measurements. These analyses indicated that the average particle sizes of Ag-NPs deposited on GO/CNTs nanostructures were ~6-7 nm with nearly uniform size distribution. Moreover, these nanocomposites were found to exhibit enhanced antibacterial activity against two strains of infectious bacteria including Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria as compared to bare Ag-NPs. Our obtained studies showed a high potential of GO-Ag and CNTs-Ag nanocomposites as effective and long-term disinfection solution to eliminate infectious bacterial pathogens.

  14. Plasmonic and silicon spherical nanoparticle antireflective coatings

    NASA Astrophysics Data System (ADS)

    Baryshnikova, K. V.; Petrov, M. I.; Babicheva, V. E.; Belov, P. A.

    2016-03-01

    Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflective properties of plasmonic and all-dielectric nanoparticle coatings based on silver and crystalline silicon respectively. Our simulation results for spherical nanoparticles array on top of amorphous silicon show that both silicon and silver coatings demonstrate strong antireflective properties in the visible spectral range. For the first time, we show that zero reflectance from the structure with silicon coatings originates from the destructive interference of electric- and magnetic-dipole responses of nanoparticle array with the wave reflected from the substrate, and we refer to this reflection suppression as substrate-mediated Kerker effect. We theoretically compare the silicon and silver coating effectiveness for the thin-film photovoltaic applications. Silver nanoparticles can be more efficient, enabling up to 30% increase of the overall absorbance in semiconductor layer. Nevertheless, silicon coatings allow up to 64% absorbance increase in the narrow band spectral range because of the substrate-mediated Kerker effect, and band position can be effectively tuned by varying the nanoparticles sizes.

  15. Simple one step synthesis of nonionic dithiol surfactants and their self-assembling with silver nanoparticles: Characterization, surface properties, biological activity

    NASA Astrophysics Data System (ADS)

    Abd-Elaal, Ali A.; Tawfik, Salah M.; Shaban, Samy M.

    2015-07-01

    Simple esterification of 2-mercaptoacetic acid and polyethylene glycol with different molecular weights was done to form the desired nonionic dithiol surfactants. The chemical structures of synthesized thiol surfactants were confirmed using FT-IR and 1H NMR spectra. The surface activity of the synthesized surfactants was determined by measurement of the surface tension at different temperatures. The surface activity measurements showed their high tendency towards adsorption and micellization. The thermodynamic parameters of micellization (ΔGmic, ΔHmic and ΔSmic) and adsorption (ΔGads, ΔGads and ΔSads) showed their tendency toward adsorption at the interfaces and also micellization in the bulk of their solutions. The nanostructure of the synthesized nonionic dithiol surfactants with silver nanoparticles was prepared and investigated using UV and TEM techniques. Screening tests of the synthesized dithiol surfactants and their nanostructure with silver nanoparticles, against gram positive bacteria (Bacillus subtilis and Microccus luteus), gram negative bacteria (Escherichia coli and Bordatella pertussis) and fungi (Aspergillus niger and Candida albicans) showed that they are highly active biocides. The presence of silver nanoparticles enhancement the biological activities of the individual synthesized nonionic dithiol surfactants.

  16. Response of carnation (Dianthus caryophyllus) cultivars to different postharvest preservatives.

    PubMed

    Adugna, Biniam; Belew, Derbew; Kassa, Negussie

    2013-10-01

    Experiments were conducted to assess the effect of selected pulsing solutions on the days to flower bud shrinkage, leaf wilting and petal edge drying occurrence of carnation cultivars (Green-Go and Galy). The pulsing solutions used for this investigation were Silver Thiosulfate (STS) (0.2, 0.6, 1 mM) and also ethanol (6, 8, 10%), both received equal amount of sucrose (10%). Besides, to simulate the actual practice of the farm (0.4 mM Silver Thiosulfate (STS) plus 0.3 mM T.O.G) was used as a standard control. Senescence symptoms such as flower bud shrinkage, petal edge drying and leaf wilting were monitored. The results obtained showed that 1 mM STS plus 25 g sucrose achieved rapid petal edge drying for Green-Go cultivar. On the other hand, positive effects were also observed in days to flower bud shrinkage extended by 6 mM Silver Thiosulfate (STS) plus 25 g sucrose and being in par with 8% ethanol plus 25 g sucrose for Green-Go cultivar. Subsequently, the standard control, 0.6 mM Silver Thiosulfate (STS) plus 25 g sucrose and 8% ethanol plus 25 g sucrose attended comparable increment on the days to leaf wilting occurrences.

  17. Plasmonic and silicon spherical nanoparticle antireflective coatings

    PubMed Central

    Baryshnikova, K. V.; Petrov, M. I.; Babicheva, V. E.; Belov, P. A.

    2016-01-01

    Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflective properties of plasmonic and all-dielectric nanoparticle coatings based on silver and crystalline silicon respectively. Our simulation results for spherical nanoparticles array on top of amorphous silicon show that both silicon and silver coatings demonstrate strong antireflective properties in the visible spectral range. For the first time, we show that zero reflectance from the structure with silicon coatings originates from the destructive interference of electric- and magnetic-dipole responses of nanoparticle array with the wave reflected from the substrate, and we refer to this reflection suppression as substrate-mediated Kerker effect. We theoretically compare the silicon and silver coating effectiveness for the thin-film photovoltaic applications. Silver nanoparticles can be more efficient, enabling up to 30% increase of the overall absorbance in semiconductor layer. Nevertheless, silicon coatings allow up to 64% absorbance increase in the narrow band spectral range because of the substrate-mediated Kerker effect, and band position can be effectively tuned by varying the nanoparticles sizes. PMID:26926602

  18. Hot spot-mediated non-dissipative and ultrafast plasmon passage.

    PubMed

    Roller, Eva-Maria; Besteiro, Lucas V; Pupp, Claudia; Khorashad, Larousse Khosravi; Govorov, Alexander O; Liedl, Tim

    2017-08-01

    Plasmonic nanoparticles hold great promise as photon handling elements and as channels for coherent transfer of energy and information in future all-optical computing devices.1-5 Coherent energy oscillations between two spatially separated plasmonic entities via a virtual middle state exemplify electron-based population transfer, but their realization requires precise nanoscale positioning of heterogeneous particles.6-10 Here, we show the assembly and optical analysis of a triple particle system consisting of two gold nanoparticles with an inter-spaced silver island. We observe strong plasmonic coupling between the spatially separated gold particles mediated by the connecting silver particle with almost no dissipation of energy. As the excitation energy of the silver island exceeds that of the gold particles, only quasi-occupation of the silver transfer channel is possible. We describe this effect both with exact classical electrodynamic modeling and qualitative quantum-mechanical calculations. We identify the formation of strong hot spots between all particles as the main mechanism for the loss-less coupling and thus coherent ultra-fast energy transfer between the remote partners. Our findings could prove useful for quantum gate operations, but also for classical charge and information transfer processes.

  19. Molecular oxygen adsorption and dissociation on Au12M clusters with M = Cu, Ag or Ir

    NASA Astrophysics Data System (ADS)

    Jiménez-Díaz, Laura M.; Pérez, Luis A.

    2018-03-01

    In this work, we present a density functional theory study of the structural and electronic properties of isolated neutral clusters of the type Au12M, with M = Cu, Ag, or Ir. On the other hand, there is experimental evidence that gold-silver, gold-copper and gold-iridium nanoparticles have an enhanced catalytic activity for the CO oxidation reaction. In order to address these phenomena, we also performed density functional calculations of the adsorption and dissociation of O2 on these nanoparticles. Moreover, to understand the effects of Cu, Ag, and Ir impurity atoms on the dissociation of O2, we also analyze this reaction in the corresponding pure gold cluster. The results indicate that the substitution of one gold atom in a Au13 cluster by Ag, Cu or Ir diminishes the activation energy barrier for the O2 dissociation by nearly 1 eV. This energy barrier is similar for Au12Ag and Au12Cu, whereas for Au12Ir is even lower. These results suggest that the addition of other transition metal atoms to gold nanoclusters can enhance their catalytic activity towards the CO oxidation reaction, independently of the effect that the substrate could have on supported nanoclusters.

  20. First principles absorption spectra of Cu{sub n} (n = 2 - 20) clusters.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baishya, K.; Idrobo, J. C.; Ogut, S.

    2011-06-17

    Optical absorption spectra for the computed ground state structures of copper clusters (Cu{sub n}, n = 2-20) are investigated from first principles using time-dependent density functional theory in the adiabatic local density approximation (TDLDA). The results are compared with available experimental data, existing calculations, and with results from our previous computations on silver and gold clusters. The main effects of d electrons on the absorption spectra, quenching the oscillator strengths, and getting directly involved in low-energy excitations increase in going from Ag{sub n} to Au{sub n} to Cu{sub n} due to the increase in the hybridization of the occupied, yetmore » shallow, d orbitals and the partially occupied s orbitals. We predict that while Cu nanoparticles of spherical or moderately ellipsoidal shape do not exhibit Mie (surface plasmon) resonances, unlike the case for Ag and Au, extremely prolate or oblate Cu nanoparticles with eccentricities near unity should give rise to Mie resonances in the lower end of the visible range and in the infrared. This tunable resonance predicted by the classical Mie-Gans theory is reproduced with remarkable accuracy by our TDLDA computations on hypothetical Cu clusters in the form of zigzag chains with as few as 6 to 20 atoms.« less

  1. Green engineered biomolecule-capped silver and copper nanohybrids using Prosopis cineraria leaf extract: Enhanced antibacterial activity against microbial pathogens of public health relevance and cytotoxicity on human breast cancer cells (MCF-7).

    PubMed

    Jinu, U; Gomathi, M; Saiqa, I; Geetha, N; Benelli, G; Venkatachalam, P

    2017-04-01

    This research focused on green engineering and characterization of silver (PcAgNPs) and copper nanoparticles (PcCuNPs) using Prosopis cineraria (Pc) leaf extract prepared by using microwave irradiation. We studied their enhanced antimicrobial activity on human pathogens as well as cytotoxicity on breast cancer cells (MCF-7). Biofabricated silver and copper nanoparticles exhibited UV-Visible absorbance peaks at 420 nm and 575 nm, confirming the bioreduction and stabilization of nanoparticles. Nanoparticles were characterized by FTIR, XRD, FESEM, and EDX analysis. FTIR results indicated the presence of alcohols, alkanes, aromatics, phenols, ethers, benzene, amines and amides that were possibly involved in the reduction and capping of silver and copper ions. XRD analysis was performed to confirm the crystalline nature of the silver and copper nanoparticles. FESEM analysis suggested that the nanoparticles were hexagonal or spherical in shape with size ranging from 20 to 44.49 nm and 18.9-32.09 nm for AgNPs and CuNPs, respectively. EDX analysis confirmed the presence of silver and copper elemental signals in the nanoparticles. The bioengineered silver and copper nanohybrids showed enhanced antimicrobial activity against Gram-positive and Gram-negative MDR human pathogens. MTT assay results indicated that CuNPs show potential cytotoxic effect followed by AgNPs against MCF-7 cancer cell line. IC 50 were 65.27 μg/ml, 37.02 μg/ml and 197.3 μg/ml for PcAgNPs, PcCuNPs and P. cineraria leaf extracts, respectively, treated MCF-7 cells. The present investigation highlighted an effective protocol for microwave-assisted synthesis of biomolecule-loaded silver and copper nanoparticles with enhanced antibacterial and anticancer activity. Results strongly suggested that bioengineered AgNPs and CuNPs could be used as potential tools against microbial pathogens and cancer cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Antibacterial Activity of Polyaniline Coated Silver Nanoparticles Synthesized from Piper Betle Leaves Extract.

    PubMed

    Mamun Or Rashida, Md; Shafiul Islam, Md; Azizul Haque, Md; Arifur Rahman, Md; Tanvir Hossain, Md; Abdul Hamid, Md

    2016-01-01

    Plants or natural resources have been found to be a good alternative method for nanoparticles synthesis. In this study, polyaniline coated silver nanoparticles (AgNPs) synthesized from Piper betle leaves extract were investigated for their antibacterial activity. Silver nanoparticles were prepared from the reduction of silver nitrate and NaBH4 was used as reducing agent. Silver nanoparticles and extracts were mixed thoroughly and then coated by polyaniline. Prepared nanoparticles were characterized by Visual inspection, Ultraviolet-visible spectroscopy (UV), Fourier transform infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM) techniques. Antibacterial activities of the synthesized silver nanoparticles were tested against Staphylococcus aureus ATCC 25923, Salmonella typhi ATCC 14028, Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853. UV-Vis spectrum of reaction mixture showed strong absorption peak with centering at 400 nm. The FT-IR results imply that Ag-NPs were successfully synthesized and capped with bio-compounds present in P. betle. TEM image showed that Ag-NPs formed were well dispersed with a spherical structures and particle size ranging from 10 to 30 nm. The result revealed that Ag-Extract NPs showed 32.78±0.64 mm zone of inhibition against S. aureus, whereas norfloxacin (positive control) showed maximum 32.15±0.40 mm zone of inhibition for S. aureus. Again, maximum zone of inhibition 29.55±0.45 mm was found for S. typhi, 27.12±0.38 mm for E. coli and 21.95±0.45 mm for P. aeruginosa. The results obtained by this study can't be directly extrapolated to human; so further studies should be undertaken to established the strong antimicrobial activity of Ag-Extract NPs for drug development program.

  3. Antibacterial Activity of Polyaniline Coated Silver Nanoparticles Synthesized from Piper Betle Leaves Extract

    PubMed Central

    Mamun Or Rashida, Md.; Shafiul Islam, Md.; Azizul Haque, Md.; Arifur Rahman, Md.; Tanvir Hossain, Md.; Abdul Hamid, Md.

    2016-01-01

    Plants or natural resources have been found to be a good alternative method for nanoparticles synthesis. In this study, polyaniline coated silver nanoparticles (AgNPs) synthesized from Piper betle leaves extract were investigated for their antibacterial activity. Silver nanoparticles were prepared from the reduction of silver nitrate and NaBH4 was used as reducing agent. Silver nanoparticles and extracts were mixed thoroughly and then coated by polyaniline. Prepared nanoparticles were characterized by Visual inspection, Ultraviolet-visible spectroscopy (UV), Fourier transform infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM) techniques. Antibacterial activities of the synthesized silver nanoparticles were tested against Staphylococcus aureus ATCC 25923, Salmonella typhi ATCC 14028, Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853. UV–Vis spectrum of reaction mixture showed strong absorption peak with centering at 400 nm. The FT-IR results imply that Ag-NPs were successfully synthesized and capped with bio-compounds present in P. betle. TEM image showed that Ag-NPs formed were well dispersed with a spherical structures and particle size ranging from 10 to 30 nm. The result revealed that Ag-Extract NPs showed 32.78±0.64 mm zone of inhibition against S. aureus, whereas norfloxacin (positive control) showed maximum 32.15±0.40 mm zone of inhibition for S. aureus. Again, maximum zone of inhibition 29.55±0.45 mm was found for S. typhi, 27.12±0.38 mm for E. coli and 21.95±0.45 mm for P. aeruginosa. The results obtained by this study can’t be directly extrapolated to human; so further studies should be undertaken to established the strong antimicrobial activity of Ag-Extract NPs for drug development program. PMID:27642330

  4. Domination of volumetric toughening by silver nanoparticles over interfacial strengthening of carbon nanotubes in bactericidal hydroxyapatite biocomposite.

    PubMed

    Herkendell, Katharina; Shukla, Vishnu Raj; Patel, Anup Kumar; Balani, Kantesh

    2014-01-01

    In order to address the problem of bacterial infections in bone-substitution surgery, it is essential that bone replacement biomaterials are equipped with bactericidal components. This research aims to optimize the content of silver (Ag), a well-known antibacterial metal, in a multiwalled carbon nanotube (CNT) reinforced hydroxyapatite (HA) composite, to yield a bioceramic which can be used as an antibacterial and tough surface of bone replacement prosthesis. The bactericidal properties evaluated using Escherichia coli and Staphylococcus epidermidis indicate that CNT reinforcement supports growth of Gram negative E. coli bacteria (~8.5% more adhesion than pure HA); but showed a strong decrease of Gram positive S. epidermidis bacteria (~diminished to 66%) compared to that of pure HA. Small amounts of silver (2-5wt.%) already show a severe bactericidal effect when compared to that of HA-CNT (by 30% and ~60% respectively). MTT assay confirmed enhanced biocompatibility of L929 cells on HA-4wt.% CNT (~121%), HA-4wt.% CNT-1wt.% Ag (~124%) sample and HA-4wt.% CNT-2wt.% Ag (~100%) when compared to that of pure HA. The samples with higher silver content showed decreased biocompatibility (77% for HA-4wt.% CNT-5wt.% Ag sample and 73% for HA-4wt.% CNT-10wt.% Ag). Though reinforcement of 4wt.% CNT has shown an increase of fracture toughness by ~62%, silver reinforcement has shown enhancement of up to 244% (i.e. 3.43 times). Accordingly, isolation of toughening contribution indicates that volumetric toughening by silver dominates over interfacial strengthening contributed by CNTs towards enhanced fracture toughness of potential HA-Ag-CNT biocomposites. © 2013.

  5. Two-dimensional collagen-graphene as colloidal templates for biocompatible inorganic nanomaterial synthesis

    PubMed Central

    Kumari, Divya; Sheikh, Lubna; Bhattacharya, Soumya; Webster, Thomas J; Nayar, Suprabha

    2017-01-01

    In this study, natural graphite was first converted to collagen-graphene composites and then used as templates for the synthesis of nanoparticles of silver, iron oxide, and hydroxyapatite. X-ray diffraction did not show any diffraction peaks of graphene in the composites after inorganic nucleation, compared to the naked composite which showed (002) and (004) peaks. Scanning electron micrographs showed lateral gluing/docking of these composites, possibly driven by an electrostatic attraction between the positive layers of one stack and negative layers of another, which became distorted after inorganic nucleation. Docking resulted in single layer-like characteristics in certain places, as seen under transmission electron microscopy, but sp2/sp3 ratios from Raman analysis inferred three-layer composite formation. Strain-induced folding of these layers into uniform clusters at the point of critical nucleation, revealed beautiful microstructures under scanning electron microscopy. Lastly, cell viability studies using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays showed the highest cell viability for the collagen-graphene-hydroxyapatite composites. In this manner, this study provided – to the field of nanomedicine – a new process for the synthesis of several nanoparticles (with low toxicity) of high interest for numerous medical applications. PMID:28553102

  6. Two-dimensional collagen-graphene as colloidal templates for biocompatible inorganic nanomaterial synthesis.

    PubMed

    Kumari, Divya; Sheikh, Lubna; Bhattacharya, Soumya; Webster, Thomas J; Nayar, Suprabha

    2017-01-01

    In this study, natural graphite was first converted to collagen-graphene composites and then used as templates for the synthesis of nanoparticles of silver, iron oxide, and hydroxyapatite. X-ray diffraction did not show any diffraction peaks of graphene in the composites after inorganic nucleation, compared to the naked composite which showed (002) and (004) peaks. Scanning electron micrographs showed lateral gluing/docking of these composites, possibly driven by an electrostatic attraction between the positive layers of one stack and negative layers of another, which became distorted after inorganic nucleation. Docking resulted in single layer-like characteristics in certain places, as seen under transmission electron microscopy, but sp 2 /sp 3 ratios from Raman analysis inferred three-layer composite formation. Strain-induced folding of these layers into uniform clusters at the point of critical nucleation, revealed beautiful microstructures under scanning electron microscopy. Lastly, cell viability studies using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays showed the highest cell viability for the collagen-graphene-hydroxyapatite composites. In this manner, this study provided - to the field of nanomedicine - a new process for the synthesis of several nanoparticles (with low toxicity) of high interest for numerous medical applications.

  7. Silver-Russell syndrome and Beckwith-Wiedemann syndrome phenotypes associated with 11p duplication in a single family.

    PubMed

    Cardarelli, Laura; Sparago, Angela; De Crescenzo, Agostina; Nalesso, Elisa; Zavan, Barbara; Cubellis, Maria Vittoria; Selicorni, Angelo; Cavicchioli, Paola; Pozzan, Giovanni Battista; Petrella, Marilena; Riccio, Andrea

    2010-01-01

    Genomic imprinting is an epigenetic phenomenon resulting in differential expression of maternal and paternal alleles of a subset of genes. In the mouse, mutation of imprinted genes often results in contrasting phenotypes, depending on parental origin. The overgrowth-associated Beckwith-Wiedemann syndrome (BWS) and the growth restriction-associated Silver-Russell syndrome (SRS) have been linked with a variety of epigenetic and genetic defects affecting a cluster of imprinted genes at chromosome 11p15.5. Paternally derived and maternally derived 11p15.5 duplications represent infrequent findings in BWS and SRS, respectively. Here, we report a case in which a 6.5 Mb duplication of 11p15.4-pter resulted in SRS and BWS phenotypes in a child and her mother, respectively. Molecular analyses demonstrated that the duplication involved the maternal chromosome 11p15 in the child and the paternal chromosome 11p15 in the mother. This observation provides a direct demonstration that SRS and BWS represent specular images, both at the clinical and molecular levels.

  8. Surface-enhanced Raman scattering on single-wall carbon nanotubes.

    PubMed

    Kneipp, Katrin; Kneipp, Harald; Dresselhaus, Mildred S; Lefrant, Serge

    2004-11-15

    Exploiting the effect of surface-enhanced Raman scattering (SERS), the Raman signal of single-wall carbon nanotubes (SWNTs) can be enhanced by up to 14 orders of magnitude when the tubes are in contact with silver or gold nanostructures and Raman scattering takes place predominantly in the enhanced local optical fields of the nanostructures. Such a level of enhancement offers exciting opportunities for ultrasensitive Raman studies on SWNTs and allows resonant and non-resonant Raman experiments to be done on single SWNTs at relatively high signal levels. Since the optical fields are highly localized within so-called "hot spots" on fractal silver colloidal clusters, lateral confinement of the Raman scattering can be as small as 5 nm, allowing spectroscopic selection of a single nanotube from a larger population. Moreover, since SWNTs are very stable "artificial molecules" with a high aspect ratio and a strong electron-phonon coupling, they are unique "test molecules" for investigating the SERS effect itself and for probing the "electromagnetic field contribution" and "charge transfer contribution" to the effect. SERS is also a powerful tool for monitoring the "chemical" interaction between the nanotube and the metal nanostructure.

  9. Melamine sensing based on evanescent field enhanced optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Luo, Ji; Yao, Jun; Wang, Wei-min; Zhuang, Xu-ye; Ma, Wen-ying; Lin, Qiao

    2013-08-01

    Melamine is an insalubrious chemical, and has been frequently added into milk products illegally, to make the products more protein-rich. However, it can cause some various diseases, such as kidney stones and bladder cancer. In this paper, a novel optical fiber sensor with high sensitivity based on absorption of the evanescent field for melamine detection is successfully proposed and developed. Different concentrations of melamine changing from 0 to 10mg/mL have been detected using the micro/nano-sensing fiber decorated with silver nanoparticles cluster layer. As the concentration increases, the sensing fiber's output intensity gradually deceases and the absorption of the analyte becomes large. The concentration changing of 1mg/ml can cause the absorbance varying 0.664 and the limit of the melamine detectable concentration is 1ug/mL. Besides, the coupling properties between silver nanoparticles have also been analyzed by the FDTD method. Overall, this evanescent field enhanced optical fiber sensor has potential to be used in oligo-analyte detection and will promote the development of biomolecular and chemical sensing applications.

  10. Atmospheric pulsed laser deposition of plasmonic nanoparticle films of silver with flowing gas and flowing atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Khan, T. M.; Pokle, A.; Lunney, J. G.

    2018-04-01

    Two methods of atmospheric pulsed laser deposition of plasmonic nanoparticle films of silver are described. In both methods the ablation plume, produced by a 248 nm, 20 ns excimer laser in gas, is strongly confined near the target and forms a nanoparticle aerosol. For both the flowing gas, and the atmospheric plasma from a dielectric barrier discharge plasma source, the aerosol is entrained in the flow and carried to a substrate for deposition. The nanoparticle films produced by both methods were examined by electron microscopy and optical absorption spectroscopy. With plasma assistance, the deposition rate was significantly enhanced and the film morphology altered. With argon gas, isolated nanoparticles of 20 nm size were obtained, whereas in argon plasma, the nanoparticles are aggregated in clusters of 90 nm size. Helium gas also leads to the deposition of isolated nanoparticles, but with helium plasma, two populations of nanoparticles are observed: one of rounded particles with a mean size of 26 nm and the other of faceted particles with a mean size 165 nm.

  11. Surface enhanced Raman spectroscopic studies on aspirin : An experimental and theoretical approach

    NASA Astrophysics Data System (ADS)

    Premkumar, R.; Premkumar, S.; Rekha, T. N.; Parameswari, A.; Mathavan, T.; Benial, A. Milton Franklin

    2016-05-01

    Surface enhanced Raman scattering (SERS) studies on aspirin molecule adsorbed on silver nanoparticles (AgNPs) were investigated by experimental and density functional theory approach. The AgNPs were synthesized by the solution-combustion method and characterized by the X-ray diffraction and high resolution-transmission electron microscopy techniques. The averaged particle size of synthesized AgNPs was calculated as ˜55 nm. The normal Raman spectrum (nRs) and SERS spectrum of the aspirin were recorded. The molecular structure of the aspirin and aspirin adsorbed on silver cluster were optimized by the DFT/ B3PW91 method with LanL2DZ basis set. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculation. The calculated nRs and SERS frequencies were correlated well with the observed frequencies. The flat-on orientation was predicted from the nRs and SERS spectra, when the aspirin adsorbed on the AgNPs. Hence, the present studies lead to the understanding of adsorption process of aspirin on the AgNPs, which paves the way for biomedical applications.

  12. Surface enhanced Raman spectroscopic studies on aspirin : An experimental and theoretical approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Premkumar, R.; Premkumar, S.; Parameswari, A.

    Surface enhanced Raman scattering (SERS) studies on aspirin molecule adsorbed on silver nanoparticles (AgNPs) were investigated by experimental and density functional theory approach. The AgNPs were synthesized by the solution-combustion method and characterized by the X-ray diffraction and high resolution-transmission electron microscopy techniques. The averaged particle size of synthesized AgNPs was calculated as ∼55 nm. The normal Raman spectrum (nRs) and SERS spectrum of the aspirin were recorded. The molecular structure of the aspirin and aspirin adsorbed on silver cluster were optimized by the DFT/ B3PW91 method with LanL2DZ basis set. The vibrational frequencies were calculated and assigned on the basismore » of potential energy distribution calculation. The calculated nRs and SERS frequencies were correlated well with the observed frequencies. The flat-on orientation was predicted from the nRs and SERS spectra, when the aspirin adsorbed on the AgNPs. Hence, the present studies lead to the understanding of adsorption process of aspirin on the AgNPs, which paves the way for biomedical applications.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhter, Perveen; Huang, Mengbing, E-mail: mhuang@albany.edu; Spratt, William

    Plasmonic effects associated with metal nanostructures are expected to hold the key to tailoring light emission/propagation and harvesting solar energy in materials including single crystal silicon which remains the backbone in the microelectronics and photovoltaics industries but unfortunately, lacks many functionalities needed for construction of advanced photonic and optoelectronics devices. Currently, silicon plasmonic structures are practically possible only in the configuration with metal nanoparticles or thin film arrays on a silicon surface. This does not enable one to exploit the full potential of plasmonics for optical engineering in silicon, because the plasmonic effects are dominant over a length of ∼50 nm,more » and the active device region typically lies below the surface much beyond this range. Here, we report on a novel method for the formation of silver nanoparticles embedded within a silicon crystal through metal gettering from a silver thin film deposited at the surface to nanocavities within the Si created by hydrogen ion implantation. The refractive index of the Ag-nanostructured layer is found to be 3–10% lower or higher than that of silicon for wavelengths below or beyond ∼815–900 nm, respectively. Around this wavelength range, the optical extinction values increase by a factor of 10–100 as opposed to the pure silicon case. Increasing the amount of gettered silver leads to an increased extinction as well as a redshift in wavelength position for the resonance. This resonance is attributed to the surface plasmon excitation of the resultant silver nanoparticles in silicon. Additionally, we show that the profiles for optical constants in silicon can be tailored by varying the position and number of nanocavity layers. Such silicon crystals with embedded metal nanostructures would offer novel functional base structures for applications in silicon photonics, optoelectronics, photovoltaics, and plasmonics.« less

  14. Use of termite mounds in geochemical exploration in North Ethiopia [rapid communication

    NASA Astrophysics Data System (ADS)

    Kebede, Fassil

    2004-09-01

    The geochemistry of the termite mounds was studied in lower Giba River basin, Kolla Tambien district, northern Ethiopia to show that they are useful in searching for metals. Specimens from the termite mounds and parent materials were collected to quantify gold, silver, copper, zinc, cobalt, manganese, iron and nickel. The results of the geochemical analysis of the samples indicated that these metals exist both in the termite mound and the parent material in the surrounding area. Correlation analysis shows that termite mounds and the parent materials are positively correlated for gold ( r = 0.75∗), copper ( r = 0.77∗), silver ( r = 0.56∗) and manganese ( r = 0.72). This positive correlation leads to the conclusion that there is a direct relation between the concentration of metals in termite mound and the parent rocks. Termite mounds can therefore be used as tools in exploring for these metals.

  15. Silver-loaded seaweed-based cellulosic fiber improves epidermal skin physiology in atopic dermatitis: safety assessment, mode of action and controlled, randomized single-blinded exploratory in vivo study.

    PubMed

    Fluhr, Joachim W; Breternitz, Maria; Kowatzki, Doreen; Bauer, Andrea; Bossert, Joerg; Elsner, Peter; Hipler, Uta-Christina

    2010-08-01

    The epidermal part of the skin is the major interface between the internal body and the external environment. The skin has a specific physiology and is to different degrees adapted for protection against multiple exogenous stress factors. Clothing is the material with the longest and most intensive contact to human skin. It plays a critical role especially in inflammatory dermatoses or skin conditions with an increased susceptibility of bacterial and fungal infections like atopic dermatitis. Previously, we have shown a dose-dependent antibacterial and antifungal activity of silver-loaded seaweed-based cellulosic fibres. We studied the mode of action of silver-loaded seaweed-based cellulosic fiber and performed a broad safety assessment. The principal aim was to analyse the effects of wearing the textile on epidermal skin physiology in 37 patients with atopic dermatitis in a controlled, randomized single-blinded in vivo study. Furthermore, the sensitization potential was tested in a patch test in 111 panellists. We could demonstrate in vitro a dose-dependent scavenging of induced reactive oxygen species by silver-loaded seaweed-based cellulosic fibers. Safety assessment of these fibres showed no detectable release of silver ions. Furthermore, ex vivo assessment after 24 h application both in healthy volunteers and patients with atopic dermatitis by sequential tape stripping and subsequently raster electron microscopy and energy dispersive microanalysis analysis revealed no detectable amounts of silver in any of stratum corneum layers. Serum analysis of silver showed no detectable levels. The in vivo patch testing of 111 volunteers revealed no sensitization against different SeaCell Active (SeaCell GmbH, Rudolstadt, Germany) containing fabrics. The in vivo study on 37 patients with known atopic dermatitis and mild-to-moderate eczema on their arms were randomly assigned to either silver-loaded seaweed fibre T-shirts or to cotton T-shirts for 8 weeks. A significant reduction in Staphylococcus aureus colonization was detectable for the silver T-shirts compared with cotton T-shirts without any changes in non-pathogenic surface bacteria colonization. Furthermore, a more pronounced improvement in barrier function (transepidermal water loss) was observed in mildly involved eczema areas during the first 4 weeks of the study. Stratum corneum hydration and surface pH improved in both treatment groups over time. The tested silver-loaded seaweed fibre can be regarded as safe and seams to be suited for application in bio-active textiles in atopic dermatitis based on its positive in vivo activity.

  16. Typology of schizotypy in non-clinical young adults: Psychopathological and personality disorder traits correlates.

    PubMed

    Raynal, Patrick; Goutaudier, Nelly; Nidetch, Victoria; Chabrol, Henri

    2016-12-30

    Few typological studies address schizotypy in young adults. Schizotypal traits were assessed on 466 college students using the Schizotypal Personality Questionnaire-Brief (SPQ-B). Other measures evaluated personality traits previously associated with schizotypy (borderline, obsessionnal, and autistic traits), psychopathological symptoms (suicidal ideations, depressive and obsessive-compulsive symptoms) and psychosocial functioning. A factor analysis was first performed on SPQ-B results, leading to four factors: negative schizotypy, positive schizotypy, social anxiety, and reference ideas. Based on these factors, a cluster analysis was conducted, which yielded four clearly distinct groups characterized by "Low" (non schizotypy), "High schizotypy" (mixed positive and negative), "Positive schizotypy", and "Social impairment". Regarding personality disorder traits and psychopathological symptoms, the "High schizotypy" cluster scored higher than the "Positive" and the "Social impairment" groups, which scored higher than the "Low" cluster. The "Positive" group had higher levels of interpersonal relationships than in the "High" and the "Social impairment" clusters, suggesting that positive schizotypy was associated to benefits such as perceived social relationships. Nevertheless the "Positive" cluster was also linked to high levels of personality disorder traits and psychopathological symptoms, and to low academic achievement, at levels similar those observed in the "Social impairment" cluster, confirming an unhealthy side to positive schizotypy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Fine Scale Spatiotemporal Clustering of Dengue Virus Transmission in Children and Aedes aegypti in Rural Thai Villages

    PubMed Central

    Yoon, In-Kyu; Getis, Arthur; Aldstadt, Jared; Rothman, Alan L.; Tannitisupawong, Darunee; Koenraadt, Constantianus J. M.; Fansiri, Thanyalak; Jones, James W.; Morrison, Amy C.; Jarman, Richard G.; Nisalak, Ananda; Mammen, Mammen P.; Thammapalo, Suwich; Srikiatkhachorn, Anon; Green, Sharone; Libraty, Daniel H.; Gibbons, Robert V.; Endy, Timothy; Pimgate, Chusak; Scott, Thomas W.

    2012-01-01

    Background Based on spatiotemporal clustering of human dengue virus (DENV) infections, transmission is thought to occur at fine spatiotemporal scales by horizontal transfer of virus between humans and mosquito vectors. To define the dimensions of local transmission and quantify the factors that support it, we examined relationships between infected humans and Aedes aegypti in Thai villages. Methodology/Principal Findings Geographic cluster investigations of 100-meter radius were conducted around DENV-positive and DENV-negative febrile “index” cases (positive and negative clusters, respectively) from a longitudinal cohort study in rural Thailand. Child contacts and Ae. aegypti from cluster houses were assessed for DENV infection. Spatiotemporal, demographic, and entomological parameters were evaluated. In positive clusters, the DENV infection rate among child contacts was 35.3% in index houses, 29.9% in houses within 20 meters, and decreased with distance from the index house to 6.2% in houses 80–100 meters away (p<0.001). Significantly more Ae. aegypti were DENV-infectious (i.e., DENV-positive in head/thorax) in positive clusters (23/1755; 1.3%) than negative clusters (1/1548; 0.1%). In positive clusters, 8.2% of mosquitoes were DENV-infectious in index houses, 4.2% in other houses with DENV-infected children, and 0.4% in houses without infected children (p<0.001). The DENV infection rate in contacts was 47.4% in houses with infectious mosquitoes, 28.7% in other houses in the same cluster, and 10.8% in positive clusters without infectious mosquitoes (p<0.001). Ae. aegypti pupae and adult females were more numerous only in houses containing infectious mosquitoes. Conclusions/Significance Human and mosquito infections are positively associated at the level of individual houses and neighboring residences. Certain houses with high transmission risk contribute disproportionately to DENV spread to neighboring houses. Small groups of houses with elevated transmission risk are consistent with over-dispersion of transmission (i.e., at a given point in time, people/mosquitoes from a small portion of houses are responsible for the majority of transmission). PMID:22816001

  18. Copper Efflux Is Induced during Anaerobic Amino Acid Limitation in Escherichia coli To Protect Iron-Sulfur Cluster Enzymes and Biogenesis

    PubMed Central

    Fung, Danny Ka Chun; Lau, Wai Yin; Chan, Wing Tat

    2013-01-01

    Adaptation to changing environments is essential to bacterial physiology. Here we report a unique role of the copper homeostasis system in adapting Escherichia coli to its host-relevant environment of anaerobiosis coupled with amino acid limitation. We found that expression of the copper/silver efflux pump CusCFBA was significantly upregulated during anaerobic amino acid limitation in E. coli without the supplement of exogenous copper. Inductively coupled plasma mass spectrometry analysis of the total intracellular copper content combined with transcriptional assay of the PcusC-lacZ reporter in the presence of specific Cu(I) chelators indicated that anaerobic amino acid limitation led to the accumulation of free Cu(I) in the periplasmic space of E. coli, resulting in Cu(I) toxicity. Cells lacking cusCFBA and another copper transporter, copA, under this condition displayed growth defects and reduced ATP production during fumarate respiration. Ectopic expression of the Fe-S cluster enzyme fumarate reductase (Frd), or supplementation with amino acids whose biosynthesis involves Fe-S cluster enzymes, rescued the poor growth of ΔcusC cells. Yet, Cu(I) treatment did not impair the Frd activity in vitro. Further studies revealed that the alternative Fe-S cluster biogenesis system Suf was induced during the anaerobic amino acid limitation, and ΔcusC enhanced this upregulation, indicating the impairment of the Fe-S cluster assembly machinery and the increased Fe-S cluster demands under this condition. Taken together, we conclude that the copper efflux system CusCFBA is induced during anaerobic amino acid limitation to protect Fe-S cluster enzymes and biogenesis from the endogenously originated Cu(I) toxicity, thus facilitating the physiological adaptation of E. coli. PMID:23893112

  19. Essential oil mediated synthesis of silver nanocrystals for environmental, anti-microbial and antioxidant applications.

    PubMed

    Vilas, Vidya; Philip, Daizy; Mathew, Joseph

    2016-04-01

    Our quest for a green, non-toxic and environmentally benign synthetic design for the fabrication of metal nanoparticles has led to the use of essential oil present in plant parts as the bioreductant. In this report, silver particles at nanoscale have been synthesized using essential oil present in the leaves of Coleus aromaticus at physiological pH and at 373 K. UV-vis spectra of the colloid display strong plasmon bands centred around 396-411 nm, characteristic of silver nanoparticles. Comparative studies of the FTIR spectra of essential oil and silver nanoparticles reveal the involvement of terpenes and their phenolic derivatives in reduction and subsequent stabilization. TEM micrographs and XRD pattern show the formation of 26 and 28 nm sized face centred cubic structured crystalline nanospheroids with intermittent formation of nanorods. The phytosynthesized silver nanoparticles are found to be effective in degrading hazardous organic pollutants including methyl orange, methylene blue, eosin yellowish and para nitro phenol within a span of a few minutes. Dose dependant antibacterial activity of the biogenic nanosilver against pathogenic Gramme-negative Escherichia coli (ATCC 25922) and Gramme-positive Staphylococcus aureus (ATCC 25923) has been portrayed through agar-well dispersion method. The antioxidant activity including antiradical activity and reducing power have been depicted through superoxide radical scavenging activity, hydroxyl radical scavenging activity, hydrogen peroxide scavenging activity, nitric oxide scavenging activity, DPPH assay and reducing power activity involving the reduction of ferric ion. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Looking for the Silver Lining: Benefit Finding after Hurricanes Katrina and Rita in Middle-Aged, Older, and Oldest-Old Adults.

    PubMed

    Stanko, Katie E; Cherry, Katie E; Ryker, Kyle S; Mughal, Farra; Marks, Loren D; Brown, Jennifer Silva; Gendusa, Patricia F; Sullivan, Marisa C; Bruner, John; Welsh, David A; Su, L Joseph; Jazwinski, S Michal

    2015-09-01

    Looking for potentially positive outcomes is one way that people cope with stressful events. In two studies, we examined perceived "silver linings" after the 2005 Hurricanes Katrina and Rita among indirectly affected adults. In Study 1, middle-aged (ages 47-64 years), older (ages 65-89 years), and oldest-old (ages 90-95 years) adults in the Louisiana Healthy Aging Study (LHAS) responded to an open-ended question on perceived silver linings in a longitudinal assessment carried out during the immediate impact (1 to 4 months after landfall) and post-disaster recovery phase (6 to 14 months post-storm). Qualitative grounded theory methods were employed to analyze these narrative data. Team-based coding yielded three core themes: (1) learning experience and better preparedness for future disasters, (2) having improved cities (Baton Rouge and New Orleans), and (3) an increase in "Good Samaritan" acts such as strangers helping one another. Responses were similar across age groups, although older adults were the least likely to report positive outcomes. Study 2 was a conceptual replication using a different sample of adults (ages 31 to 82 years) tested at least five years after the storms. A learning experience and preparedness core theme replicated Study 1's findings while improved social cohesion amongst family and friends emerged as a new core theme in Study 2. These data indicate that identifying lessons learned and potentially positive outcomes are psychological reactions that may facilitate post-disaster coping and foster resilience for indirectly affected adults in the years after disaster.

  1. Spatial and temporal clustering of dengue virus transmission in Thai villages.

    PubMed

    Mammen, Mammen P; Pimgate, Chusak; Koenraadt, Constantianus J M; Rothman, Alan L; Aldstadt, Jared; Nisalak, Ananda; Jarman, Richard G; Jones, James W; Srikiatkhachorn, Anon; Ypil-Butac, Charity Ann; Getis, Arthur; Thammapalo, Suwich; Morrison, Amy C; Libraty, Daniel H; Green, Sharone; Scott, Thomas W

    2008-11-04

    Transmission of dengue viruses (DENV), the leading cause of arboviral disease worldwide, is known to vary through time and space, likely owing to a combination of factors related to the human host, virus, mosquito vector, and environment. An improved understanding of variation in transmission patterns is fundamental to conducting surveillance and implementing disease prevention strategies. To test the hypothesis that DENV transmission is spatially and temporally focal, we compared geographic and temporal characteristics within Thai villages where DENV are and are not being actively transmitted. Cluster investigations were conducted within 100 m of homes where febrile index children with (positive clusters) and without (negative clusters) acute dengue lived during two seasons of peak DENV transmission. Data on human infection and mosquito infection/density were examined to precisely (1) define the spatial and temporal dimensions of DENV transmission, (2) correlate these factors with variation in DENV transmission, and (3) determine the burden of inapparent and symptomatic infections. Among 556 village children enrolled as neighbors of 12 dengue-positive and 22 dengue-negative index cases, all 27 DENV infections (4.9% of enrollees) occurred in positive clusters (p < 0.01; attributable risk [AR] = 10.4 per 100; 95% confidence interval 1-19.8 per 100]. In positive clusters, 12.4% of enrollees became infected in a 15-d period and DENV infections were aggregated centrally near homes of index cases. As only 1 of 217 pairs of serologic specimens tested in positive clusters revealed a recent DENV infection that occurred prior to cluster initiation, we attribute the observed DENV transmission subsequent to cluster investigation to recent DENV transmission activity. Of the 1,022 female adult Ae. aegypti collected, all eight (0.8%) dengue-infected mosquitoes came from houses in positive clusters; none from control clusters or schools. Distinguishing features between positive and negative clusters were greater availability of piped water in negative clusters (p < 0.01) and greater number of Ae. aegypti pupae per person in positive clusters (p = 0.04). During primarily DENV-4 transmission seasons, the ratio of inapparent to symptomatic infections was nearly 1:1 among child enrollees. Study limitations included inability to sample all children and mosquitoes within each cluster and our reliance on serologic rather than virologic evidence of interval infections in enrollees given restrictions on the frequency of blood collections in children. Our data reveal the remarkably focal nature of DENV transmission within a hyperendemic rural area of Thailand. These data suggest that active school-based dengue case detection prompting local spraying could contain recent virus introductions and reduce the longitudinal risk of virus spread within rural areas. Our results should prompt future cluster studies to explore how host immune and behavioral aspects may impact DENV transmission and prevention strategies. Cluster methodology could serve as a useful research tool for investigation of other temporally and spatially clustered infectious diseases.

  2. Spatial and Temporal Clustering of Dengue Virus Transmission in Thai Villages

    PubMed Central

    Mammen, Mammen P; Pimgate, Chusak; Koenraadt, Constantianus J. M; Rothman, Alan L; Aldstadt, Jared; Nisalak, Ananda; Jarman, Richard G; Jones, James W; Srikiatkhachorn, Anon; Ypil-Butac, Charity Ann; Getis, Arthur; Thammapalo, Suwich; Morrison, Amy C; Libraty, Daniel H; Green, Sharone; Scott, Thomas W

    2008-01-01

    Background Transmission of dengue viruses (DENV), the leading cause of arboviral disease worldwide, is known to vary through time and space, likely owing to a combination of factors related to the human host, virus, mosquito vector, and environment. An improved understanding of variation in transmission patterns is fundamental to conducting surveillance and implementing disease prevention strategies. To test the hypothesis that DENV transmission is spatially and temporally focal, we compared geographic and temporal characteristics within Thai villages where DENV are and are not being actively transmitted. Methods and Findings Cluster investigations were conducted within 100 m of homes where febrile index children with (positive clusters) and without (negative clusters) acute dengue lived during two seasons of peak DENV transmission. Data on human infection and mosquito infection/density were examined to precisely (1) define the spatial and temporal dimensions of DENV transmission, (2) correlate these factors with variation in DENV transmission, and (3) determine the burden of inapparent and symptomatic infections. Among 556 village children enrolled as neighbors of 12 dengue-positive and 22 dengue-negative index cases, all 27 DENV infections (4.9% of enrollees) occurred in positive clusters (p < 0.01; attributable risk [AR] = 10.4 per 100; 95% confidence interval 1–19.8 per 100]. In positive clusters, 12.4% of enrollees became infected in a 15-d period and DENV infections were aggregated centrally near homes of index cases. As only 1 of 217 pairs of serologic specimens tested in positive clusters revealed a recent DENV infection that occurred prior to cluster initiation, we attribute the observed DENV transmission subsequent to cluster investigation to recent DENV transmission activity. Of the 1,022 female adult Ae. aegypti collected, all eight (0.8%) dengue-infected mosquitoes came from houses in positive clusters; none from control clusters or schools. Distinguishing features between positive and negative clusters were greater availability of piped water in negative clusters (p < 0.01) and greater number of Ae. aegypti pupae per person in positive clusters (p = 0.04). During primarily DENV-4 transmission seasons, the ratio of inapparent to symptomatic infections was nearly 1:1 among child enrollees. Study limitations included inability to sample all children and mosquitoes within each cluster and our reliance on serologic rather than virologic evidence of interval infections in enrollees given restrictions on the frequency of blood collections in children. Conclusions Our data reveal the remarkably focal nature of DENV transmission within a hyperendemic rural area of Thailand. These data suggest that active school-based dengue case detection prompting local spraying could contain recent virus introductions and reduce the longitudinal risk of virus spread within rural areas. Our results should prompt future cluster studies to explore how host immune and behavioral aspects may impact DENV transmission and prevention strategies. Cluster methodology could serve as a useful research tool for investigation of other temporally and spatially clustered infectious diseases. PMID:18986209

  3. Stomatal characteristics and infection biology of Pyrenopeziza betulicola in Betula pendula trees grown under elevated CO2 and O3.

    PubMed

    Riikonen, Johanna; Syrjälä, Leena; Tulva, Ingmar; Mänd, Pille; Oksanen, Elina; Poteri, Marja; Vapaavuori, Elina

    2008-11-01

    Two silver birch clones were exposed to ambient and elevated concentrations of CO(2) and O(3), and their combination for 3 years, using open-top chambers. We evaluated the effects of elevated CO(2) and O(3) on stomatal conductance (g(s)), density (SD) and index (SI), length of the guard cells, and epidermal cell size and number, with respect to crown position and leaf type. The relationship between the infection biology of the fungus (Pyrenopeziza betulicola) causing leaf spot disease and stomatal characteristics was also studied. Leaf type was an important determinant of O(3) response in silver birch, while crown position and clone played only a minor role. Elevated CO(2) reduced the g(s), but had otherwise no significant effect on the parameters studied. No significant interactions between elevated CO(2) and O(3) were found. The infection biology of P. betulicola was not correlated with SD or g(s), but it did occasionally correlate positively with the length of the guard cells.

  4. Observation of ambipolar switching in a silver nanoparticle single-electron transistor with multiple molecular floating gates

    NASA Astrophysics Data System (ADS)

    Yamamoto, Makoto; Shinohara, Shuhei; Tamada, Kaoru; Ishii, Hisao; Noguchi, Yutaka

    2016-03-01

    Ambipolar switching behavior was observed in a silver nanoparticle (AgNP)-based single-electron transistor (SET) with tetra-tert-butyl copper phthalocyanine (ttbCuPc) as a molecular floating gate. Depending on the wavelength of the incident light, the stability diagram shifted to the negative and positive directions along the gate voltage axis. These results were explained by the photoinduced charging of ttbCuPc molecules in the vicinity of AgNPs. Moreover, multiple device states were induced by the light irradiation at a wavelength of 600 nm, suggesting that multiple ttbCuPc molecules individually worked as a floating gate.

  5. Study on Data Clustering and Intelligent Decision Algorithm of Indoor Localization

    NASA Astrophysics Data System (ADS)

    Liu, Zexi

    2018-01-01

    Indoor positioning technology enables the human beings to have the ability of positional perception in architectural space, and there is a shortage of single network coverage and the problem of location data redundancy. So this article puts forward the indoor positioning data clustering algorithm and intelligent decision-making research, design the basic ideas of multi-source indoor positioning technology, analyzes the fingerprint localization algorithm based on distance measurement, position and orientation of inertial device integration. By optimizing the clustering processing of massive indoor location data, the data normalization pretreatment, multi-dimensional controllable clustering center and multi-factor clustering are realized, and the redundancy of locating data is reduced. In addition, the path is proposed based on neural network inference and decision, design the sparse data input layer, the dynamic feedback hidden layer and output layer, low dimensional results improve the intelligent navigation path planning.

  6. Optical properties of ultrarough silver films on silicon

    NASA Astrophysics Data System (ADS)

    Neff, H.; Henkel, S.; Sass, J. K.; Steinbeiss, E.; Ratz, P.; Müller, J.; Michalke, W.

    1996-07-01

    The optical properties of inhomogeneously grown rough silver films have been analyzed on the basis of reflectance measurements. Data have been recorded within the wave number range 50 cm-1<λ-1<50 000 cm-1. The results are compared with compact and fairly smooth films, made from the same metal. Rough films reveal very low reflectance and high absorptivity values of nearly 1, at wave numbers ≳200 cm-1. The reflectance of these films is peaking at the bulk plasma resonance hvp of silver at 3.87 eV. Smooth compact films, in contrast, show a pronounced minimum at the same energy. Based on an effective medium approach and available literature data, the dielectric function (DF) and absorption coefficient have been calculated. For rough films, the real part of the DF remains positive within the whole spectral range, but is negative for compact films below hvp, in agreement with published data. The calculated DF of the inhomogeneously grown films fully resembles the experimental observations.

  7. A novel management of streptococcal pharyngotonsillar infections by laser-activated silver nanoparticles and methylene blue conjugate, in vitro study.

    PubMed

    Kassab, Ahmed; Dabous, Ola; Morsy, Mona

    2017-09-01

    Species of Streptococcus are classified based on their hemolytic properties into alpha and beta types. And, since antimicrobial drug resistance is an increasingly problematic issue, the efforts to develop modalities that would overcome this obstacle and avoid antibiotic side effects is an ongoing challenge. 20 patients from both sexes were selected. The isolated organisms were identified according to standard laboratory methods. Bacterial Cultures were subjected to the low-level diode laser (660 nm), methylene blue (MB) as a photosensitizing agent and for silver nanoparticles. All the experimental groups showed statistically lower values of CFU/ml than the positive control group. The photoactivated MB, silver nanoparticles conjugate showed the maximum inhibitory effect on Streptococci, which opens a gate to further investigation of such a promising protocol to establish a safe and efficient method of management for resistant cases of streptococcal tonsillar infections. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Preparation, characterization, and antibacterial activity studies of silver-loaded poly(styrene-co-acrylic acid) nanocomposites.

    PubMed

    Song, Cunfeng; Chang, Ying; Cheng, Ling; Xu, Yiting; Chen, Xiaoling; Zhang, Long; Zhong, Lina; Dai, Lizong

    2014-03-01

    A simple method for preparing a new type of stable antibacterial agent was presented. Monodisperse poly(styrene-co-acrylic acid) (PSA) nanospheres, serving as matrices, were synthesized via soap-free emulsion polymerization. Field-emission scanning electron microscopy micrographs indicated that PSA nanospheres have interesting surface microstructures and well-controlled particle size distributions. Silver-loaded poly(styrene-co-acrylic acid) (PSA/Ag-NPs) nanocomposites were prepared in situ through interfacial reduction of silver nitrate with sodium borohydride, and further characterized by transmission electron microscopy and X-ray diffraction. Their effects on antibacterial activity including inhibition zone, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and bactericidal kinetics were evaluated. In the tests, PSA/Ag-NPs nanocomposites showed excellent antibacterial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. These nanocomposites are considered to have potential application in antibacterial coatings on biomedical devices to reduce nosocomial infection rates. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Synthesis and characterization of bovine femur bone hydroxyapatite containing silver nanoparticles for the biomedical applications

    NASA Astrophysics Data System (ADS)

    Nirmala, R.; Sheikh, Faheem A.; Kanjwal, Muzafar A.; Lee, John Hwa; Park, Soo-Jin; Navamathavan, R.; Kim, Hak Yong

    2011-05-01

    Bovine femur bone hydroxyapatite (HA) containing silver (Ag) nanoparticles was synthesized by thermal decomposition method and subsequent reduction of silver nitrate with N, N-dimethylformamide (DMF) in the presence of poly(vinylacetate) (PVAc). The structural, morphological, and chemical properties of the HA-Ag nanoparticles were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). TEM images showed that the Ag nanoparticles with size ranging from 8 to 20 nm and were arranged at the periphery of HA crystals. Bactericidal activity of HA-Ag with different concentration of Ag nanoparticles immobilized on the surface of HA was investigated against gram-positive Staphylococcus aureus ( S. aureus, non-MRSA), Methicillin resistant S. aureus (MRSA) and gram-negative Escherichia coli ( E. coli) by the disc diffusion susceptibility test. The HA-Ag nanoparticles showed that broad spectrum activity against non-MRSA, MRSA, and E. coli bacterial strains.

  10. Low-friction nanojoint prototype

    NASA Astrophysics Data System (ADS)

    Vlassov, Sergei; Oras, Sven; Antsov, Mikk; Butikova, Jelena; Lõhmus, Rünno; Polyakov, Boris

    2018-05-01

    High surface energy of individual nanostructures leads to high adhesion and static friction that can completely hinder the operation of nanoscale systems with movable parts. For instance, silver or gold nanowires cannot be moved on silicon substrate without plastic deformation. In this paper, we experimentally demonstrate an operational prototype of a low-friction nanojoint. The movable part of the prototype is made either from a gold or silver nano-pin produced by laser-induced partial melting of silver and gold nanowires resulting in the formation of rounded bulbs on their ends. The nano-pin is then manipulated into the inverted pyramid (i-pyramids) specially etched in a Si wafer. Due to the small contact area, the nano-pin can be repeatedly tilted inside an i-pyramid as a rigid object without noticeable deformation. At the same time in the absence of external force the nanojoint is stable and preserves its position and tilt angle. Experiments are performed inside a scanning electron microscope and are supported by finite element method simulations.

  11. Sexually disrupting effects of nonylphenol and diethylstilbestrol on male silver carp (Carassius auratus) in aquatic microcosms.

    PubMed

    Yang, Lihua; Lin, Li; Weng, Shaoping; Feng, Zhiqin; Luan, Tiangang

    2008-10-01

    Based on detected nonylphenol (NP) levels in aquaculture water, this study investigated sexually disrupting effects in mature male silver carp (Carassius auratus) exposed to NP and a positive control diethylstilbestrol (DES). The combined evidences of steroid hormone (17beta-estradiol, estrone and testosterone) levels and hispathological pictures showed that NP (10 microg/L) and DES could exert estrogenic effects through indirect mechanisms [i.e. increased estrogens levels (up to two times) and decreased androgen level in serum (down to 20-30%)], which might subsequently induce vitellogenin synthesis in liver. Environmental realistic concentrations of NP might be on the verge of inducing significant estrogenic effects in male silver carps. High amounts of NP and DES might be accumulated in fish serum, and the uptake by fish was possibly responsible for their quick attenuation in experimental tank water. NP and DES might have different metabolic mechanisms, the estrogenic effects of DES were more significant than those of NP.

  12. Chitosan nanocomposite films based on Ag-NP and Au-NP biosynthesis by Bacillus Subtilis as packaging materials.

    PubMed

    Youssef, Ahmed M; Abdel-Aziz, Mohamed S; El-Sayed, Samah M

    2014-08-01

    Chitosan-silver (CS-Ag) and Chitosan-gold (CS-Au) nanocomposites films were synthesized by a simple chemical method. A local bacterial isolate identified as Bacillus subtilis ss subtilis was found to be capable to synthesize both silver nanoparticles (Ag-NP) and gold nanoparticles (Au-NP) from silver nitrate (AgNO3) and chloroauric acid (AuCl(4-)) solutions, respectively. The biosynthesis of both Ag-NP and Au-NP characterize using UV/vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), and then added to chitosan by different ratios (0.5, 1 and 2%). The prepared chitosan nanocomposites films were characterize using UV, XRD, SEM and TEM. Moreover, the antibacterial activity of the prepared films was evaluated against gram positive (Staphylococcus aureus) and gram negative bacteria (Pseudomonas aerugenosa), fungi (Aspergillus niger) and yeast (Candida albicans). Therefore, these materials can be potential used as antimicrobial agents in packaging applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Estimation of satellite position, clock and phase bias corrections

    NASA Astrophysics Data System (ADS)

    Henkel, Patrick; Psychas, Dimitrios; Günther, Christoph; Hugentobler, Urs

    2018-05-01

    Precise point positioning with integer ambiguity resolution requires precise knowledge of satellite position, clock and phase bias corrections. In this paper, a method for the estimation of these parameters with a global network of reference stations is presented. The method processes uncombined and undifferenced measurements of an arbitrary number of frequencies such that the obtained satellite position, clock and bias corrections can be used for any type of differenced and/or combined measurements. We perform a clustering of reference stations. The clustering enables a common satellite visibility within each cluster and an efficient fixing of the double difference ambiguities within each cluster. Additionally, the double difference ambiguities between the reference stations of different clusters are fixed. We use an integer decorrelation for ambiguity fixing in dense global networks. The performance of the proposed method is analysed with both simulated Galileo measurements on E1 and E5a and real GPS measurements of the IGS network. We defined 16 clusters and obtained satellite position, clock and phase bias corrections with a precision of better than 2 cm.

  14. Hubble Sees a Silver Needle in the Sky

    NASA Image and Video Library

    2014-08-22

    This stunning new image from the NASA/ESA Hubble Space Telescope shows part of the sky in the constellation of Canes Venatici (The Hunting Dogs). Although this region of the sky is not home to any stellar heavyweights, being mostly filled with stars of average brightness, it does contain five Messier objects and numerous intriguing galaxies — including NGC 5195, a small barred spiral galaxy considered to be one of the most beautiful galaxies visible, and its nearby interacting partner the Whirlpool Galaxy (heic0506a). The quirky Sunflower Galaxy is another notable galaxy in this constellation, and is one of the largest and brightest edge-on galaxies in our skies. Joining this host of characters is spiral galaxy NGC 4244, nicknamed the Silver Needle Galaxy, shown in this new image from Hubble. This galaxy spans some 65,000 light-years and lies around 13.5 million light-years away. It appears as a wafer-thin streak across the sky, with loosely wound spiral arms hidden from view as we observe the galaxy from the side. It is part of a group of galaxies known as the M94 Group. Numerous bright clumps of gas can be seen scattered across its length, along with dark dust lanes surrounding the galaxy’s core. NGC 4244 also has a bright star cluster at its center. Although we can make out the galaxy’s bright central region and star-spattered arms, we cannot see any more intricate structure due to the galaxy’s position; from Earth, we see it stretched out as a flattened streak across the sky. A number of different observations were pieced together to form this mosaic, and gaps in Hubble’s coverage have been filled in using ground-based data. The Hubble observations were taken as part of the Galaxy Halos, Outer disks, Substructure, Thick disks and Star clusters (GHOSTS) survey, which is scanning nearby galaxies to explore how they and their stars formed to get a more complete view of the history of the Universe. European Space Agency Credit: NASA & ESA, Acknowledgement: Roelof de Jong NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Optimization of silver-dielectric-silver nanoshell for sensing applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirzaditabar, Farzad; Saliminasab, Maryam

    2013-08-15

    In this paper, resonance light scattering (RLS) properties of a silver-dielectric-silver nanoshell, based on quasi-static approach and plasmon hybridization theory, are investigated. Scattering spectrum of silver-dielectric-silver nanoshell has two intense and clearly separated RLS peaks and provides a potential for biosensing based on surface plasmon resonance and surface-enhanced Raman scattering. The two RLS peaks in silver-dielectric-silver nanoshell are optimized by tuning the geometrical dimensions. In addition, the optimal geometry is discussed to obtain the high sensitivity of silver-dielectric-silver nanoshell. As the silver core radius increases, the sensitivity of silver-dielectric-silver nanoshell decreases whereas increasing the middle dielectric thickness increases the sensitivitymore » of silver-dielectric-silver nanoshell.« less

  16. Seesaw-like polarized transmission behavior of silver nanowire arrays aligned by off-center spin-coating

    NASA Astrophysics Data System (ADS)

    Kang, Lu; Chen, Hui; Yang, Zhong-Jian; Yuan, Yongbo; Huang, Han; Yang, Bingchu; Gao, Yongli; Zhou, Conghua

    2018-05-01

    Straight silver nanowires were synthesized by accelerated oxidization and then aligned into ordered arrays by off-center spin-coating. Seesaw-like behavior was observed in the polarized transmission spectra of the arrays. With the increment of polarization angle (θP, defined as the angle between axis of nanowires and direction of electric field of light), transmission changed repeatedly with a period of 180°, but it moved to opposite directions between the two regions separated by supporting points locating at 494 nm. The behavior is ascribed to the competition between the extinction behaviors of the two modes of surface plasma polaritons on silver nanowires. One is the longitudinal mode which is excited by long wavelengths and tuned by function of cos2( θ p ) and the other is the transverse mode that is excited by short wavelengths and tuned by function of sin2( θ p ). Simulation was performed based on the finite-difference time domain method. The effect of the nanowire diameter and length (aspect ratio) on the position of the supporting point was studied. As nanowire width increased from 20 nm to 350 nm, the supporting point moved from 400 to 500 nm. While it changed slightly when the nanowire length increased from 3 μm to infinitely long (width fixed at 260 nm). In current study, the position of the supporting point is mainly determined by the nanowire width.

  17. Anaerobic Toxicity of Cationic Silver Nanoparticles | Science ...

    EPA Pesticide Factsheets

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag+ under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged polyvinylpyrrolidone coated AgNPs (PVP-AgNps) and (3) positively charged branched polyethyleneimine coated AgNPs (BPEI-AgNPs). The AgNPs investigated in this experiment were similar in size (10-15 nm), spherical in shape, but varied in surface charge which ranged from highly negative to highly positive. While, at AgNPs concentrations lower than 5 mg L-1, the anaerobic decomposition process was not influenced by the presence of the nanoparticles, there was an observed impact on the diversity of the microbial community. At elevated concentrations (100 mg L-1 as silver), only the cationic BPEI-AgNPs demonstrated toxicity similar in magnitude to that of Ag+. Both citrate and PVP-AgNPs did not exhibit toxicity at the 100 mg L-1 as measured by biogas evolution. These findings further indicate the varying modes of action for nanoparticle toxicity and represent one of the few studies that evaluate end-of-life management concerns with regards to the increasing use of nanomaterials in our everyday life. These findings also highlight some of the concerns with a one size fits all approach to the evaluation of environmental health and safety concerns associated with the use of nanoparticles. The current

  18. Canopy1, a positive feedback regulator of FGF signaling, controls progenitor cell clustering during Kupffer's vesicle organogenesis

    PubMed Central

    Matsui, Takaaki; Thitamadee, Siripong; Murata, Tomoko; Kakinuma, Hisaya; Nabetani, Takuji; Hirabayashi, Yoshio; Hirate, Yoshikazu; Okamoto, Hitoshi; Bessho, Yasumasa

    2011-01-01

    The assembly of progenitor cells is a crucial step for organ formation during vertebrate development. Kupffer's vesicle (KV), a key organ required for the left–right asymmetric body plan in zebrafish, is generated from a cluster of ∼20 dorsal forerunner cells (DFCs). Although several genes are known to be involved in KV formation, how DFC clustering is regulated and how cluster formation then contributes to KV formation remain unclear. Here we show that positive feedback regulation of FGF signaling by Canopy1 (Cnpy1) controls DFC clustering. Cnpy1 positively regulates FGF signals within DFCs, which in turn promote Cadherin1-mediated cell adhesion between adjacent DFCs to sustain cell cluster formation. When this FGF positive feedback loop is disrupted, the DFC cluster fails to form, eventually leading to KV malformation and defects in the establishment of laterality. Our results therefore uncover both a previously unidentified role of FGF signaling during vertebrate organogenesis and a regulatory mechanism underlying cell cluster formation, which is an indispensable step for formation of a functional KV and establishment of the left–right asymmetric body plan. PMID:21628557

  19. Characterization, antibacterial, and neurotoxic effect of Green synthesized nanosilver using Ziziphus spina Christi aqueous leaf extract collected from Riyadh, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    El-Ansary, Afaf; Warsy, Arjumand; Daghestani, Maha; Merghani, Nada M.; Al-Dbass, Abeer; Bukhari, Wadha; Al-Ojayan, Badryah; Ibrahim, Eiman M.; Al-Qahtani, Asma M.; Shafi Bhat, Ramesa

    2018-02-01

    The current study aims to synthesize silver nanoparticles using Ziziphus spina Christi (ZSC) or (Sidr) aqueous leaf extract collected from Riyadh, Saudi Arabia. The green synthesis of silver nanoparticles using sidr leaves extract was successful. Production of silver nanoparticles was confirmed through UV-vis Spectrophotometer, particles size and zeta potential analysis, Infra-red spectroscopy, Scanning, and Transmission Electron Microscope (SEM and TEM). The UV-visible spectra showed that the absorption peak existed at 400 nm. SEM analysis showed that the synthesized AgNPs were spherical but in slightly aggregated form. TEM demonstrated different size range of 4-33 nm with an average size of 13. The element analysis profile showed silver signal together with oxygen, calcium, and potassium peaks which might be related to the plant structure. Biological effects of the synthesized AgNPs exhibit satisfactory inhibitory effect against ten tested microorganisms. It inhibited the growth of 5 gram-positive and five gram-negative bacteria. Moreover, AgNPs demonstrated a synergistic effect on the neurotoxicity induced in rat pups with orally administered methyl mercury (MeHg). The present study showed that AgNPs prepared from ZSC might be a promising antimicrobial agent for successful treatment of bacterial infection in intensive care units (ICU) especially in case of antibiotic resistance.

  20. Substrate effect on the growth of Sn thin films

    NASA Astrophysics Data System (ADS)

    Chakraborty, Suvankar; Menon, Krishnakumar S. R.

    2018-05-01

    Growth of tin (Sn) on Ag(001), Ag(111) and W(110) substrate has been studied at elevated temperatures (473 K) using x-ray photoemission spectroscopy (XPS) and low energy electron diffraction (LEED). For Sn growth on silver substrates, it is noticed that both Sn 3d and Ag 3d core-level spectra shift in the higher binding energy direction due to the formation of surface alloy with the substrate. In both cases, surface alloy finally transforms into bulk alloy finally reaching bulk Sn value. For Sn growth on W(110) only Sn 3d core-level spectra shift in the higher binding energy direction due to surface core-level effect whereas no shift for tungsten core-level was noticed confirming no alloy formation. Sn is incorporated into the surface of substrate silver layer by removing every alternate or every third silver atoms to relieve the surface tensile stress as confirmed by LEED. On the other hand, tungsten being hard, Sn forms an overlayer structure by sitting in different energetically available positions rather than forming an alloy as energetically also it is not possible. Sn forms alloy with soft substrate silver and form overlayer films with tungsten. These studies are important in understanding the growth mechanism of Sn films on metal substrates.

  1. Optical absorption and TEM studies of silver nanoparticle embedded BaO-CaF{sub 2}-P{sub 2}O{sub 5} glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayanan, Manoj Kumar, E-mail: manukokkal01@gmail.com; Shashikala, H. D.

    Silver nanoparticle embedded 30BaO-20CaF{sub 2}-50P{sub 2}O{sub 5}-4Ag{sub 2}O-4SnO glasses were prepared by melt-quenching and subsequent heat treatment process. Silver-doped glasses were heat treated at temperatures 500 °C, 525°C and 550 °C for a fixed duration of 10 hours to incorporate metal nanoparticles into the glass matrix. Appearance and shift in peak positions of the surface plasmon resonance (SPR) bands in the optical absorption spectra of heat treated glass samples indicated that both formation and growth of nanoparticle depended on heat treatment temperature. Glass sample heat treated at 525 °C showed a SPR peak around 3 eV, which indicated that sphericalmore » nanoparticles smaller than 20 nm were formed inside the glass matrix. Whereas sample heat treated at 550 °C showed a size dependent red shift in SPR peak due to the presence of silver nanoparticles of size larger than 20 nm. Size of the nanoparticles calculated using full-width at half-maximum (FWHM) of absorption band showed a good agreement with the particle size obtained from transmission electron microscopy (TEM) analysis.« less

  2. Synthesis and Characterization of Silver-Doped Mesoporous Bioactive Glass and Its Applications in Conjunction with Electrospinning

    PubMed Central

    Ciraldo, Francesca E.; Goldmann, Wolfgang H.

    2018-01-01

    Since they were first developed in 2004, mesoporous bioactive glasses (MBGs) rapidly captured the interest of the scientific community thanks to their numerous beneficial properties. MBGs are synthesised by a combination of the sol–gel method with the chemistry of surfactants to obtain highly mesoporous (pore size from 5 to 20 nm) materials that, owing to their high surface area and ordered structure, are optimal candidates for controlled drug-delivery systems. In this work, we synthesised and characterised a silver-containing mesoporous bioactive glass (Ag-MBG). It was found that Ag-MBG is a suitable candidate for controlled drug delivery, showing a perfectly ordered mesoporous structure ideal for the loading of drugs together with optimal bioactivity, sustained release of silver from the matrix, and fast and strong bacterial inhibition against both Gram-positive and Gram-negative bacteria. Silver-doped mesoporous glass particles were used in three electrospinning-based techniques to produce PCL/Ag-MBG composite fibres, to coat bioactive glass scaffolds (via electrospraying), and for direct sol electrospinning. The results obtained in this study highlight the versatility and efficacy of Ag-substituted mesoporous bioactive glass and encourage further studies to characterize the biological response to Ag-MBG-based antibacterial controlled-delivery systems for tissue-engineering applications. PMID:29710768

  3. Synthesis, characterization, optical and antimicrobial studies of polyvinyl alcohol-silver nanocomposites

    NASA Astrophysics Data System (ADS)

    Mahmoud, K. H.

    2015-03-01

    Silver nanoparticles (Ag NPs) were synthesized by chemical reduction of silver salt (AgNO3) through sodium borohydride. The characteristic surface plasmon resonance band located at around 400 nm in the UV-Visible absorption spectrum confirmed the formation of Ag nanoparticles. Polyvinyl alcohol-silver (PVA-Ag) nanocomposite films were prepared by the casting technique. The morphology and interaction of PVA with Ag NPs were examined by transmission electron microscopy and FTIR spectroscopy. Optical studies show that PVA exhibited indirect allowed optical transition with optical energy gap of 4.8 eV, which reduced to 4.45 eV under addition of Ag NPs. Optical parameters such as refractive index, complex dielectric constant and their dispersions have been analyzed using Wemple and DiDomenco model. Color properties of the nanocomposites are discussed in the framework of CIE L∗u∗v∗ color space. The antimicrobial activity of the nanocomposite samples was tested against Gram positive bacteria (Staphylococcus aureus NCTC 7447 &Bacillus subtillis NCIB 3610), Gram negative bacteria (Escherichia coli, NTC10416 &Pseudomonas aeruginosa NCIB 9016) and fungi (Aspergillus niger Ferm - BAM C-21) using the agar diffusion technique. The antimicrobial study showed that PVA has moderate antibacterial activity against B. subtillis and the 0.04 wt% Ag NPs composite sample effect was strong against S. aureus.

  4. Unraveling the solvent induced welding of silver nanowires for high performance flexible transparent electrodes.

    PubMed

    Zhang, Kui; Li, Jia; Fang, Yunsheng; Luo, Beibei; Zhang, Yanli; Li, Yanqiu; Zhou, Jun; Hu, Bin

    2018-04-25

    A solution processed metal nanowire network is a promising flexible transparent electrode to replace brittle metal oxides for printable optoelectronics applications, but suffers from the issue of pseudo contact between nanowires. Herein, using volatile solvent mists as a powerful "zipper", we demonstrate a simple and rapid method to effectively weld silver nanowires, which dramatically improves the conductivity and robustness of the silver nanowire network based flexible transparent electrodes. We reveal that for a stacked network structure, the unique wedge-shaped nanogaps between the long nanowires and substrate provide a strong capillary force during solvent evaporation, which is much larger than that between zero-dimensional nanoparticles and gives a decisive contribution for nanowire junction welding, and this nanowire-substrate interplay force is positively related to the wettability of the substrate. At the same time, the dissolution-reprecipitation of the capping agent on the silver nanowire surface as the natural adhesive can fix the network on the substrate tightly, which enhances the robustness of the network. Our approach solves two key issues in solution-processed transparent electrodes in one simple step, and is compatible with various mild solution-processed optoelectronic devices, especially those containing heat-sensitive or chemical-sensitive materials. Moreover, a new type of invisible infrared encryption display is demonstrated based on this approach.

  5. Egg extract of apple snail for eco-friendly synthesis of silver nanoparticles and their antibacterial activity.

    PubMed

    Janthima, Ratima; Khamhaengpol, Arunrat; Siri, Sineenat

    2018-03-01

    Green synthesis of silver nanoparticles (AgNPs) provides the alternative method with cost effectiveness and the eco-friendly process by using natural biomolecules as reducing and stabilizing agents. Alternative to the most studies of plant extracts, this work demonstrated a use of egg extract of apple snail (Pomacea canaliculata) for an eco-friendly production of AgNPs. The extract contained at least six proteins with the molecular weight in a range of 24-65 kDa that exhibited the reducing activity. The dispersive AgNPs were produced in the reaction containing only the extract and silver nitrate, as determined by the characteristic surface plasmon resonance peak of silver at 412 nm. The synthesized AgNPs were spherical with the average diameter of 9.0 ± 5.9 nm. The X-ray diffraction pattern and selected area electron diffraction (SAED) analyses confirmed the face-cubic centre (fcc) unit cell structure of AgNPs. The synthesized AgNPs exhibited the antibacterial activity against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. Results of this work clearly showed the potential use of the egg extract of apple snail for a green synthesis of small size AgNPs exhibiting the antibacterial activity.

  6. Bathymetric Contour Maps for Lakes Surveyed in Iowa in 2006

    USGS Publications Warehouse

    Linhart, S.M.; Lund, K.D.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, conducted bathymetric surveys on two lakes in Iowa during 2006 (Little Storm Lake and Silver Lake). The surveys were conducted to provide the Iowa Department of Natural Resources with information for the development of total maximum daily load limits, particularly for estimating sediment load and deposition rates. The bathymetric surveys can provide a baseline for future work on sediment loads and deposition rates for these lakes. Both of the lakes surveyed in 2006 are natural lakes. For Silver Lake, bathymetric data were collected using boat-mounted, differential global positioning system, echo depth-sounding equipment, and computer software. For Little Storm Lake, because of its shallow nature, bathymetric data were collected using manual depth measurements. Data were processed with commercial hydrographic software and exported into a geographic information system for mapping and calculating area and volume. Lake volumes were estimated to be 7,547,000 cubic feet (173 acre-feet) at Little Storm Lake and 126,724,000 cubic feet (2,910 acre-feet) at Silver Lake. Surface areas were estimated to be 4,110,000 square feet (94 acres) at Little Storm Lake and 27,957,000 square feet (640 acres) at Silver Lake.

  7. Cluster Nucleation and Growth from a Highly Supersaturated Adatom Phase: Silver on Magnetite

    PubMed Central

    2014-01-01

    The atomic-scale mechanisms underlying the growth of Ag on the (√2×√2)R45°-Fe3O4(001) surface were studied using scanning tunneling microscopy and density functional theory based calculations. For coverages up to 0.5 ML, Ag adatoms populate the surface exclusively; agglomeration into nanoparticles occurs only with the lifting of the reconstruction at 720 K. Above 0.5 ML, Ag clusters nucleate spontaneously and grow at the expense of the surrounding material with mild annealing. This unusual behavior results from a kinetic barrier associated with the (√2×√2)R45° reconstruction, which prevents adatoms from transitioning to the thermodynamically favorable 3D phase. The barrier is identified as the large separation between stable adsorption sites, which prevents homogeneous cluster nucleation and the instability of the Ag dimer against decay to two adatoms. Since the system is dominated by kinetics as long as the (√2×√2)R45° reconstruction exists, the growth is not well described by the traditional growth modes. It can be understood, however, as the result of supersaturation within an adsorption template system. PMID:24945923

  8. Eb&D: A new clustering approach for signed social networks based on both edge-betweenness centrality and density of subgraphs

    NASA Astrophysics Data System (ADS)

    Qi, Xingqin; Song, Huimin; Wu, Jianliang; Fuller, Edgar; Luo, Rong; Zhang, Cun-Quan

    2017-09-01

    Clustering algorithms for unsigned social networks which have only positive edges have been studied intensively. However, when a network has like/dislike, love/hate, respect/disrespect, or trust/distrust relationships, unsigned social networks with only positive edges are inadequate. Thus we model such kind of networks as signed networks which can have both negative and positive edges. Detecting the cluster structures of signed networks is much harder than for unsigned networks, because it not only requires that positive edges within clusters are as many as possible, but also requires that negative edges between clusters are as many as possible. Currently, we have few clustering algorithms for signed networks, and most of them requires the number of final clusters as an input while it is actually hard to predict beforehand. In this paper, we will propose a novel clustering algorithm called Eb &D for signed networks, where both the betweenness of edges and the density of subgraphs are used to detect cluster structures. A hierarchically nested system will be constructed to illustrate the inclusion relationships of clusters. To show the validity and efficiency of Eb &D, we test it on several classical social networks and also hundreds of synthetic data sets, and all obtain better results compared with other methods. The biggest advantage of Eb &D compared with other methods is that the number of clusters do not need to be known prior.

  9. Cluster-level statistical inference in fMRI datasets: The unexpected behavior of random fields in high dimensions.

    PubMed

    Bansal, Ravi; Peterson, Bradley S

    2018-06-01

    Identifying regional effects of interest in MRI datasets usually entails testing a priori hypotheses across many thousands of brain voxels, requiring control for false positive findings in these multiple hypotheses testing. Recent studies have suggested that parametric statistical methods may have incorrectly modeled functional MRI data, thereby leading to higher false positive rates than their nominal rates. Nonparametric methods for statistical inference when conducting multiple statistical tests, in contrast, are thought to produce false positives at the nominal rate, which has thus led to the suggestion that previously reported studies should reanalyze their fMRI data using nonparametric tools. To understand better why parametric methods may yield excessive false positives, we assessed their performance when applied both to simulated datasets of 1D, 2D, and 3D Gaussian Random Fields (GRFs) and to 710 real-world, resting-state fMRI datasets. We showed that both the simulated 2D and 3D GRFs and the real-world data contain a small percentage (<6%) of very large clusters (on average 60 times larger than the average cluster size), which were not present in 1D GRFs. These unexpectedly large clusters were deemed statistically significant using parametric methods, leading to empirical familywise error rates (FWERs) as high as 65%: the high empirical FWERs were not a consequence of parametric methods failing to model spatial smoothness accurately, but rather of these very large clusters that are inherently present in smooth, high-dimensional random fields. In fact, when discounting these very large clusters, the empirical FWER for parametric methods was 3.24%. Furthermore, even an empirical FWER of 65% would yield on average less than one of those very large clusters in each brain-wide analysis. Nonparametric methods, in contrast, estimated distributions from those large clusters, and therefore, by construct rejected the large clusters as false positives at the nominal FWERs. Those rejected clusters were outlying values in the distribution of cluster size but cannot be distinguished from true positive findings without further analyses, including assessing whether fMRI signal in those regions correlates with other clinical, behavioral, or cognitive measures. Rejecting the large clusters, however, significantly reduced the statistical power of nonparametric methods in detecting true findings compared with parametric methods, which would have detected most true findings that are essential for making valid biological inferences in MRI data. Parametric analyses, in contrast, detected most true findings while generating relatively few false positives: on average, less than one of those very large clusters would be deemed a true finding in each brain-wide analysis. We therefore recommend the continued use of parametric methods that model nonstationary smoothness for cluster-level, familywise control of false positives, particularly when using a Cluster Defining Threshold of 2.5 or higher, and subsequently assessing rigorously the biological plausibility of the findings, even for large clusters. Finally, because nonparametric methods yielded a large reduction in statistical power to detect true positive findings, we conclude that the modest reduction in false positive findings that nonparametric analyses afford does not warrant a re-analysis of previously published fMRI studies using nonparametric techniques. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Occupational risk factors for Wilms' tumor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunin, G.; Kramer, S.; Nass, C.

    A matched case-control study of Wilms' tumor investigated parental occupational risk factors. Cases diagnosed in 1970-1983 were identified through a population-based tumor registry and hospital registries in the Greater Philadelphia area. Controls were selected by random digit dialing and were matched to cases on race, birth date (+/- 3 years), and the area code and exchange of the case's telephone number at diagnosis. Parents of 100 matched pairs were interviewed by telephone. Parents of patients and controls were generally similar in demographic characteristics, except that mothers differed in religion. Published schemes were used to group jobs into clusters of similarmore » exposures and to determine exposures from industry and job title. Analyses were done for preconception, pregnancy, and postnatal time periods. More case than control fathers had jobs in a cluster that includes machinists and welders (odds ratios (ORs) = 4.0-5.7, p less than or equal to 0.04). Paternal exposures to lead, silver, tin, and iron (some exposures of this cluster) were associated with Wilms' tumor in some analyses, with moderate odds ratios (ORs = 1.5-3.4). In general, the highest odds ratios were found for the preconception period among the genetic (prezygotic) cases. No maternal job clusters or exposures gave significantly elevated odds ratios. These results support a previous finding that lead is a risk factor, but not radiation, hydrocarbon, or boron exposures.« less

  11. Lithium formate ion clusters formation during electrospray ionization: Evidence of magic number clusters by mass spectrometry and ab initio calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Anil; Bogdanov, Bogdan

    2015-02-14

    Small cationic and anionic clusters of lithium formate were generated by electrospray ionization and their fragmentations were studied by tandem mass spectrometry. Singly as well as multiply charged clusters were formed with the general formulae, (HCOOLi)nLi+, (HCOOLi)nLimm+, (HCOOLi)nHCOO- and (HCOOLi)n(HCOO)mm-. Several magic number cluster ions were observed in both the positive and negative ion modes although more predominant in the positive ion mode with (HCOOLi)3Li+ being the most abundant and stable cluster ions. Fragmentations of singly charged clusters proceed first by the loss of a dimer unit ((HCOOLi)2) followed by sequential loss of monomer units (HCOOLi). In the case ofmore » positive cluster ions, all fragmentations lead to the magic cluster (HCOOLi)3Li+ at higher collision energies which later fragments to dimer and monomer ions in lower abundance. Quantum mechanical calculations performed for smaller cluster ions showed that the trimer ion has a closed ring structure similar to the phenalenylium structure with three closed rings connected to the lithium ion. Further additions of monomer units result in similar symmetric structures for hexamer and nonamer cluster ions. Thermochemical calculations show that trimer cluster ion is relatively more stable than neighboring cluster ions, supporting the experimental observation of a magic number cluster with enhanced stability.« less

  12. Incorporation of a Theranostic "Two-Tone" Luminescent Silver Complex into Biocompatible Agar Hydrogel Composite for the Eradication of ESKAPE Pathogens in a Skin and Soft Tissue Infection Model.

    PubMed

    Pinto, Miguel N; Martinez-Gonzalez, Jorge; Chakraborty, Indranil; Mascharak, Pradip K

    2018-06-04

    Microbial invasion and colonization of the skin and underlying soft tissues are among the most common types of infections, becoming increasingly prevalent in hospital settings. Systemic antibiotic chemotherapies are now extremely limited due to emergence of drug-resistant Gram-positive and multidrug-resistant Gram-negative bacterial strains. Topical administration of antimicrobials provides an effective route for the treatment of skin and soft tissue infections (SSTIs). Therefore, the development of new and effective materials for the delivery of these agents is of paramount importance. Silver is a broad-spectrum antibiotic used for the treatment and prevention of infections since ancient times. However, the high reactivity of silver cation (Ag + ) makes its incorporation into delivery materials quite challenging. Herein we report a novel soft agar hydrogel composite for the delivery of Ag + into infected wound sites. This material incorporates a Ag(I) complex [Ag 2 (DSX) 2 (NO 3 ) 2 ] (1; DSX = 5-(dimethylamino)- N, N-bis(pyridin-2-ylmethyl) naphthalene-1-sulfonamide) that exhibits a change in fluorescence upon Ag + release and qualitatively indicates the end point of silver delivery. The antibacterial efficacy of the material was tested against several bacterial strains in an SSTI model. The complex 1-agar composite proved effective at eradicating the pathogens responsible for the majority of SSTIs. The theranostic (therapeutic/diagnostic) properties coupled with its stability, softness, ease of application, and removal make this material an attractive silver-delivery vehicle for the treatment and prevention of SSTIs.

  13. Optimization for extracellular biosynthesis of silver nanoparticles by Penicillium aculeatum Su1 and their antimicrobial activity and cytotoxic effect compared with silver ions.

    PubMed

    Ma, Liang; Su, Wei; Liu, Jian-Xin; Zeng, Xiao-Xi; Huang, Zhi; Li, Wen; Liu, Zheng-Chun; Tang, Jian-Xin

    2017-08-01

    The present study addresses an eco-friendly and energy-saving method for extracellular biosynthesis of silver nanoparticles (AgNPs) using a cell free filtrate of the fungus strain Penicillium aculeatum Su1 as a reducing agent. Parametric optimization of the biosynthesis process demonstrated different effects on the size, distribution, yield, and synthesis rate of biosynthesized AgNPs. The transmission electron microscopy (TEM) measurements demonstrated that AgNPs were spherical or approximately spherical, with a size between 4 and 55nm. High-resolution transmission electron microscopy (HR-TEM) and X-ray diffraction (XRD) analyses indicated that AgNPs were nanocrystalline by nature, with the character of a face-centered cubic (fcc). Fourier transform infrared spectroscopy (FTIR) analysis confirmed the existence of protein molecules that acted as a reducing agent and a capping agent during the biosynthesis process. Furthermore, the biosynthesized AgNPs exhibited higher antimicrobial activity than silver ions against Gram negative bacteria, Gram positive bacteria and fungi. Compared with silver ions, the biosynthesized AgNPs presented higher biocompatibility toward human bronchial epithelial (HBE) cells and high cytotoxicity in a dose-dependent manner with an IC 50 of 48.73μg/mL toward A549 cells. These results demonstrate that Penicillium aculeatum Su1 is a potential bioresource that can be used to produce low-cost and eco-friendly AgNPs as efficient antimicrobial agent, drug delivery vehicle or anticancer drug for clinic treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Transcriptome analysis of the plateau fish (Triplophysa dalaica): Implications for adaptation to hypoxia in fishes.

    PubMed

    Wang, Ying; Yang, Liandong; Wu, Bo; Song, Zhaobin; He, Shunping

    2015-07-10

    Triplophysa dalaica, endemic species of Qinghai-Tibetan Plateau, is informative for understanding the genetic basis of adaptation to hypoxic conditions of high altitude habitats. Here, a comprehensive gene repertoire for this plateau fish was generated using the Illumina deep paired-end high-throughput sequencing technology. De novo assembly yielded 145, 256 unigenes with an average length of 1632 bp. Blast searches against GenBank non-redundant database annotated 74,594 (51.4%) unigenes encoding for 30,047 gene descriptions in T. dalaica. Functional annotation and classification of assembled sequences were performed using Gene Ontology (GO), clusters of euKaryotic Orthologous Groups (KOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. After comparison with other fish transcriptomes, including silver carp (Hypophthalmichthys molitrix) and mud loach (Misgurnus anguillicaudatus), 2621 high-quality orthologous gene alignments were constructed among these species. 61 (2.3%) of the genes were identified as having undergone positive selection in the T. dalaica lineage. Within the positively selected genes, 13 genes were involved in hypoxia response, of which 11 were listed in HypoxiaDB. Furthermore, duplicated hif-α (hif-1αA/B and hif-2αA/B), EGLN1 and PPARA candidate genes involved in adaptation to hypoxia were identified in T. dalaica transcriptome. Branch-site model in PAML validated that hif-1αB and hif-2αA genes have undergone positive selection in T.dalaica. Finally, 37,501 simple sequence repeats (SSRs) and 19,497 high-quality single nucleotide polymorphisms (SNPs) were identified in T. dalaica. The identified SSR and SNP markers will facilitate the genetic structure, population geography and ecological studies of Triplophysa fishes. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Silver Nanoparticles Mediated by Costus afer Leaf Extract: Synthesis, Antibacterial, Antioxidant and Electrochemical Properties.

    PubMed

    Elemike, Elias E; Fayemi, Omolola E; Ekennia, Anthony C; Onwudiwe, Damian C; Ebenso, Eno E

    2017-04-29

    Synthesis of metallic and semiconductor nanoparticles through physical and chemical routes has been extensively reported. However, green synthesized metal nanoparticles are currently in the limelight due to the simplicity, cost-effectiveness and eco-friendliness of their synthesis. This study explored the use of aqueous leaf extract of Costus afer in the synthesis of silver nanoparticles (CA-AgNPs). The optical and structural properties of the resulting silver nanoparticles were studied using UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infra-red spectrophotometer (FTIR). TEM images of the silver nanoparticles confirmed the existence of monodispersed spherical nanoparticles with a mean size of 20 nm. The FTIR spectra affirmed the presence of phytochemicals from the Costus afer leaf extract on the surface of the silver nanoparticles. The electrochemical characterization of a CA-AgNPs/multiwalled carbon nanotubes (MWCNT)-modified electrode was carried out to confirm the charge transfer properties of the nanocomposites. The comparative study showed that the CA-AgNPs/MWCNT-modified electrode demonstrated faster charge transport behaviour. The anodic current density of the electrodes in Fe(CN)₆] 4- /[Fe(CN)₆] 3- redox probe follows the order: GCE/CA-Ag/MWCNT (550 mA/cm²) > GCE/MWCNT (270 mA/cm²) > GCE (80 mA/cm²) > GCE/CA-Ag (7.93 mA/cm²). The silver nanoparticles were evaluated for their antibacterial properties against Gram negative ( Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa ) and Gram positive ( Bacillus subtilis and Staphylococcus aureus ) pathogens. The nanoparticles exhibited better inhibition of the bacterial strains compared to the precursors (leaf extract of Costus afer and silver nitrate). Furthermore, the ability of the nanoparticles to scavenge DPPH radicals at different concentrations was studied using the DPPH radical scavenging assay and compared to that of the leaf extract and ascorbic acid. The nanoparticles were better DPPH scavengers compared to the leaf extract and their antioxidant properties compared favorably the antioxidant results of ascorbic acid. The green approach to nanoparticles synthesis carried out in this research work is simple, non-polluting, inexpensive and non-hazardous.

  16. Coupling multielectrode array recordings with silver labeling of recording sites to study cervical spinal network connectivity.

    PubMed

    Streeter, K A; Sunshine, M D; Patel, S R; Liddell, S S; Denholtz, L E; Reier, P J; Fuller, D D; Baekey, D M

    2017-03-01

    Midcervical spinal interneurons form a complex and diffuse network and may be involved in modulating phrenic motor output. The intent of the current work was to enable a better understanding of midcervical "network-level" connectivity by pairing the neurophysiological multielectrode array (MEA) data with histological verification of the recording locations. We first developed a method to deliver 100-nA currents to electroplate silver onto and subsequently deposit silver from electrode tips after obtaining midcervical (C3-C5) recordings using an MEA in anesthetized and ventilated adult rats. Spinal tissue was then fixed, harvested, and histologically processed to "develop" the deposited silver. Histological studies verified that the silver deposition method discretely labeled (50-μm resolution) spinal recording locations between laminae IV and X in cervical segments C3-C5. Using correlative techniques, we next tested the hypothesis that midcervical neuronal discharge patterns are temporally linked. Cross-correlation histograms produced few positive peaks (5.3%) in the range of 0-0.4 ms, but 21.4% of neuronal pairs had correlogram peaks with a lag of ≥0.6 ms. These results are consistent with synchronous discharge involving mono- and polysynaptic connections among midcervical neurons. We conclude that there is a high degree of synaptic connectivity in the midcervical spinal cord and that the silver-labeling method can reliably mark metal electrode recording sites and "map" interneuron populations, thereby providing a low-cost and effective tool for use in MEA experiments. We suggest that this method will be useful for further exploration of midcervical network connectivity. NEW & NOTEWORTHY We describe a method that reliably identifies the locations of multielectrode array (MEA) recording sites while preserving the surrounding tissue for immunohistochemistry. To our knowledge, this is the first cost-effective method to identify the anatomic locations of neuronal ensembles recorded with a MEA during acute preparations without the requirement of specialized array electrodes. In addition, evaluation of activity recorded from silver-labeled sites revealed a previously unappreciated degree of connectivity between midcervical interneurons. Copyright © 2017 the American Physiological Society.

  17. Biosynthesis of silver nanoparticles using bark extracts of Butea monosperma (Lam.) Taub. and study of their antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Das, Manoja; Smita, Soumya Shuvra

    2018-03-01

    Biosynthesis of silver nanoparticles was achieved using bark extract of Butea monosperma (Lam.) Taub., a native plant of Indian subcontinent and southeast Asia. The plant parts are familiar for ailment of different diseases. The bioactive compounds present in bark of the plant were extracted with Soxhlet extractor. Silver nitrate (AgNO3) was used as a raw material for preparation of silver nanoparticles (AgNPs). The ratio of bark extract and silver nitrate solution for synthesis of AgNPs was standardized as 3:5. The change in colour of the solution from pale yellow to deep brown can be correlated to reduction reaction catalyzed by plant bioactive compounds. The formation of AgNPs was confirmed by UV-Vis spectrophotometer. The surface plasmon resonance (SPR) maxima, λmax, were recorded at 452 nm. SPR indicates the nature and type of particles present in the solution. The suitable concentration of AgNO3 was found to be 10 mM to carry out reduction reaction with the bark extract. Alkaline environment (pH 9) suitably promotes the reaction. FTIR graph of synthesized AgNPs shows the shifting peak of 3265.0 wavelength/cm and 1635.40 wavelength/cm indicates that AgNPs were coated with plant biomolecules, which is attributed to the stabilization of AgNPs. XRD and SEM photograph of the AgNPs showed that they were spherical in shape and capped with bioactive compounds. Thus, the synthesized AgNPs are more stable, less toxic and homogenous in shape. The average diameter of the nanoparticles was 81 nm. The synthesized AgNPs had efficacy against a Gram-negative bacteria (Escherichia coli), a Gram-positive bacteria (Staphylococcus aureus), and a mold (Aspergillus niger). The maximum conversion was 66%. From the present investigation, it can be concluded that the bioactive compounds present in the bark of Butea have the capacity to reduce silver ion into silver nanoparticles in aqueous condition and the synthesized AgNPs are stabilized and loss toxic. Moreover, they also possess antimicrobial properties against human pathogens.

  18. Chalcogenide Nanoionic-based Radio Frequency Switch

    NASA Technical Reports Server (NTRS)

    Nessel, James (Inventor); Lee, Richard (Inventor)

    2013-01-01

    A nonvolatile nanoionic switch is disclosed. A thin layer of chalcogenide glass engages a substrate and a metal selected from the group of silver and copper photo-dissolved in the chalcogenide glass. A first oxidizable electrode and a second inert electrode engage the chalcogenide glass and are spaced apart from each other forming a gap therebetween. A direct current voltage source is applied with positive polarity applied to the oxidizable electrode and negative polarity applied to the inert electrode which electrodeposits silver or copper across the gap closing the switch. Reversing the polarity of the switch dissolves the electrodeposited metal and returns it to the oxidizable electrode. A capacitor arrangement may be formed with the same structure and process.

  19. Chalcogenide Nanoionic-Based Radio Frequency Switch

    NASA Technical Reports Server (NTRS)

    Nessel, James (Inventor); Lee, Richard (Inventor)

    2011-01-01

    A nonvolatile nanoionic switch is disclosed. A thin layer of chalcogenide glass engages a substrate and a metal selected from the group of silver and copper photo-dissolved in the chalcogenide glass. A first oxidizable electrode and a second inert electrode engage the chalcogenide glass and are spaced apart from each other forming a gap there between. A direct current voltage source is applied with positive polarity applied to the oxidizable electrode and negative polarity applied to the inert electrode which electrodeposits silver or copper across the gap closing the switch. Reversing the polarity of the switch dissolves the electrodeposited metal and returns it to the oxidizable electrode. A capacitor arrangement may be formed with the same structure and process.

  20. A Mixed Approach to Similarity Metric Selection in Affinity Propagation-Based WiFi Fingerprinting Indoor Positioning.

    PubMed

    Caso, Giuseppe; de Nardis, Luca; di Benedetto, Maria-Gabriella

    2015-10-30

    The weighted k-nearest neighbors (WkNN) algorithm is by far the most popular choice in the design of fingerprinting indoor positioning systems based on WiFi received signal strength (RSS). WkNN estimates the position of a target device by selecting k reference points (RPs) based on the similarity of their fingerprints with the measured RSS values. The position of the target device is then obtained as a weighted sum of the positions of the k RPs. Two-step WkNN positioning algorithms were recently proposed, in which RPs are divided into clusters using the affinity propagation clustering algorithm, and one representative for each cluster is selected. Only cluster representatives are then considered during the position estimation, leading to a significant computational complexity reduction compared to traditional, flat WkNN. Flat and two-step WkNN share the issue of properly selecting the similarity metric so as to guarantee good positioning accuracy: in two-step WkNN, in particular, the metric impacts three different steps in the position estimation, that is cluster formation, cluster selection and RP selection and weighting. So far, however, the only similarity metric considered in the literature was the one proposed in the original formulation of the affinity propagation algorithm. This paper fills this gap by comparing different metrics and, based on this comparison, proposes a novel mixed approach in which different metrics are adopted in the different steps of the position estimation procedure. The analysis is supported by an extensive experimental campaign carried out in a multi-floor 3D indoor positioning testbed. The impact of similarity metrics and their combinations on the structure and size of the resulting clusters, 3D positioning accuracy and computational complexity are investigated. Results show that the adoption of metrics different from the one proposed in the original affinity propagation algorithm and, in particular, the combination of different metrics can significantly improve the positioning accuracy while preserving the efficiency in computational complexity typical of two-step algorithms.

  1. A Mixed Approach to Similarity Metric Selection in Affinity Propagation-Based WiFi Fingerprinting Indoor Positioning

    PubMed Central

    Caso, Giuseppe; de Nardis, Luca; di Benedetto, Maria-Gabriella

    2015-01-01

    The weighted k-nearest neighbors (WkNN) algorithm is by far the most popular choice in the design of fingerprinting indoor positioning systems based on WiFi received signal strength (RSS). WkNN estimates the position of a target device by selecting k reference points (RPs) based on the similarity of their fingerprints with the measured RSS values. The position of the target device is then obtained as a weighted sum of the positions of the k RPs. Two-step WkNN positioning algorithms were recently proposed, in which RPs are divided into clusters using the affinity propagation clustering algorithm, and one representative for each cluster is selected. Only cluster representatives are then considered during the position estimation, leading to a significant computational complexity reduction compared to traditional, flat WkNN. Flat and two-step WkNN share the issue of properly selecting the similarity metric so as to guarantee good positioning accuracy: in two-step WkNN, in particular, the metric impacts three different steps in the position estimation, that is cluster formation, cluster selection and RP selection and weighting. So far, however, the only similarity metric considered in the literature was the one proposed in the original formulation of the affinity propagation algorithm. This paper fills this gap by comparing different metrics and, based on this comparison, proposes a novel mixed approach in which different metrics are adopted in the different steps of the position estimation procedure. The analysis is supported by an extensive experimental campaign carried out in a multi-floor 3D indoor positioning testbed. The impact of similarity metrics and their combinations on the structure and size of the resulting clusters, 3D positioning accuracy and computational complexity are investigated. Results show that the adoption of metrics different from the one proposed in the original affinity propagation algorithm and, in particular, the combination of different metrics can significantly improve the positioning accuracy while preserving the efficiency in computational complexity typical of two-step algorithms. PMID:26528984

  2. A Self-Organizing Spatial Clustering Approach to Support Large-Scale Network RTK Systems.

    PubMed

    Shen, Lili; Guo, Jiming; Wang, Lei

    2018-06-06

    The network real-time kinematic (RTK) technique can provide centimeter-level real time positioning solutions and play a key role in geo-spatial infrastructure. With ever-increasing popularity, network RTK systems will face issues in the support of large numbers of concurrent users. In the past, high-precision positioning services were oriented towards professionals and only supported a few concurrent users. Currently, precise positioning provides a spatial foundation for artificial intelligence (AI), and countless smart devices (autonomous cars, unmanned aerial-vehicles (UAVs), robotic equipment, etc.) require precise positioning services. Therefore, the development of approaches to support large-scale network RTK systems is urgent. In this study, we proposed a self-organizing spatial clustering (SOSC) approach which automatically clusters online users to reduce the computational load on the network RTK system server side. The experimental results indicate that both the SOSC algorithm and the grid algorithm can reduce the computational load efficiently, while the SOSC algorithm gives a more elastic and adaptive clustering solution with different datasets. The SOSC algorithm determines the cluster number and the mean distance to cluster center (MDTCC) according to the data set, while the grid approaches are all predefined. The side-effects of clustering algorithms on the user side are analyzed with real global navigation satellite system (GNSS) data sets. The experimental results indicate that 10 km can be safely used as the cluster radius threshold for the SOSC algorithm without significantly reducing the positioning precision and reliability on the user side.

  3. Enhancement of photothermal heat generation by metallodielectric nanoplasmonic clusters.

    PubMed

    Ahmadivand, Arash; Pala, Nezih; Güney, Durdu Ö

    2015-06-01

    A four-member homogenous quadrumer composed of silver core-shell nanostructures is tailored to enhance photothermal heat generation efficiency in sub-nanosecond time scale. Calculating the plasmonic and photothermal responses of metallic cluster, we show that it is possible to achieve thermal heat flux generation of 64.7 μW.cm-2 and temperature changes in the range of ΔT = 150 K, using Fano resonant effect. Photothermal heat generation efficiency is even further enhanced by adding carbon nanospheres to the offset gap between particles and obtained thermal heat flux generation of 93.3 μW.cm-2 and temperature increase of ΔT = 172 K. It is also shown that placement of dielectric spheres gives rise to arise collective magnetic dark plasmon modes that improves the quality of the observed Fano resonances. The presented data attests the superior performance of the proposed metallodielectric structures to utilize in practical tumor and cancer therapies and drug delivery applications.

  4. An Atomically Precise Au10 Ag2 Nanocluster with Red-Near-IR Dual Emission.

    PubMed

    Lei, Zhen; Guan, Zong-Jie; Pei, Xiao-Li; Yuan, Shang-Fu; Wan, Xian-Kai; Zhang, Jin-Yuan; Wang, Quan-Ming

    2016-08-01

    A red-near-IR dual-emissive nanocluster with the composition [Au10 Ag2 (2-py-C≡C)3 (dppy)6 ](BF4 )5 (1; 2-py-C≡C is 2-pyridylethynyl, dppy=2-pyridyldiphenylphosphine) has been synthesized. Single-crystal X-ray structural analysis reveals that 1 has a trigonal bipyramidal Au10 Ag2 core that contains a planar Au4 (2-py-C≡C)3 unit sandwiched by two Au3 Ag(dppy)3 motifs. Cluster 1 shows intense red-NIR dual emission in solution. The visible emission originates from metal-to-ligand charge transfer (MLCT) from silver atoms to phosphine ligands in the Au3 Ag(dppy)3 motifs, and the intense NIR emission is associated with the participation of 2-pyridylethynyl in the frontier orbitals of the cluster, which is confirmed by a time-dependent density functional theory (TD-DFT) calculation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Comparison of secondary ion intensity enhancement from polymers on silicon and silver substrates by using Au-TOF-SIMS

    NASA Astrophysics Data System (ADS)

    Kudo, M.; Aimoto, K.; Sunagawa, Y.; Kato, N.; Aoyagi, S.; Iida, S.; Sanada, N.

    2008-12-01

    The usefulness of the usage of cluster primary ion source together with an Ag substrate and detection of Ag cationized molecular ions was studied from the standpoint to realize high sensitivity TOF-SIMS analysis of organic materials. Although secondary ions from polymer thin films on a Si substrate can be detected in a higher sensitivity with Au 3+ cluster primary ion compared with Ga + ion bombardment, it was clearly observed that the secondary ion intensities from samples on an Ag substrate showed quite a different tendency from that on Si. When monoatomic primary ions, e.g., Au + and Ga +, were used for the measurement of the sample on an Ag substrate, [M+Ag] + ions (M corresponds to polyethylene glycol molecule) were detected in a high sensitivity. On the contrary, when Au 3+ was used, no intensity enhancement of [M+Ag] + ions was observed. The acceleration energy dependence of the detected secondary ions implies the different ionization mechanisms on the different substrates.

  6. Targeting TMPRSS2-ERG in Prostate Cancer

    DTIC Science & Technology

    2017-11-01

    phosphorylated proteins in ERG positive versus negative cell lines following suppression of kinases by shRNA or knockout using CRISPR /Cas9...the cofactor is below detection by silver staining. Future experiments are aimed at generating a stable cell line using CRISPR /Cas9 that has

  7. Molecular aspect of silver nanoparticles regulated embryonic development in Zebrafish (Danio rerio) by Oct-4 expression.

    PubMed

    Sarkar, Biplab; Verma, Suresh K; Akhtar, Javed; Netam, Surya Prakash; Gupta, Sanjay Kr; Panda, Pritam Kumar; Mukherjee, Koel

    2018-09-01

    With the enhancement of commercial manifestation of silver nanoparticles, concerned has risen on their accumulation in aquatic system and consequent effects on fish development and metabolism. In this study, experiments were conducted to assess the impacts of silver nanoparticles on early life cycles of fish considering Zebrafish (Danio rerio) as experimental model. Silver nanoparticles were synthesized through chemical reduction method and characterized through UV-visible spectroscopy, dynamic light scattering (DLS), and HR-TEM. Different sub lethal doses of nanosilver were applied (13.6, 21.6, 42.4, 64, and 128 μgL -1 ) to post-fertilization phases of Zebrafish embryos and their interaction effects were monitored up to six days period. No significant morphological variations were observed at 13.6, 21.6, 42.4 μgL -1 dose of silver nanoparticles, whereas 64 and 128 μgL -1 exposure dose exhibited bending in myotome, deformity in tail region, somites, notochord and swelling in anterior and posterior region of embryos and larva. Hatching performances analysis elicited highest hatching success in 13.6 and 21.6 μgL -1 doses of silver nanoparticles followed by positive and negative control, whereas exposure dose of 64 and 128 μgL -1 exhibited comparatively lower success. Western blot analysis were conducted on developing hatchlings with Oct4 antibody and at 13.6 and 21.6 μgL -1 dose,it showed over expression elucidating stimulatory role of nanosilver in these mentioned doses. In silico analysis depicted a firm interaction of nanosilver with Oct4 revealing their key role in growth stimulation of developing embryos. The study demonstrates the function of nanosilver as a growth promoter rather only as a toxicant in fish metabolic system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Rapid doubling of the critical current of YBa 2Cu 3O 7-δ coated conductors for viable high-speed industrial processing

    DOE PAGES

    Leroux, M.; Kihlstrom, K. J.; Holleis, S.; ...

    2015-11-09

    Here, we demonstrate that 3.5-MeV oxygen irradiation can markedly enhance the in-field critical current of commercial second generation superconducting tapes with an exposure time of just 1 s per 0.8 cm 2. Furthermore we demonstrate how speed is now at the level required for an industrial reel-to-reel post-processing. The irradiation is made on production line samples through the protective silver coating and does not require any modification of the growth process. From TEM imaging, we identify small clusters as the main source of increased vortex pinning.

  9. Single-step generation of metal-plasma polymer multicore@shell nanoparticles from the gas phase.

    PubMed

    Solař, Pavel; Polonskyi, Oleksandr; Olbricht, Ansgar; Hinz, Alexander; Shelemin, Artem; Kylián, Ondřej; Choukourov, Andrei; Faupel, Franz; Biederman, Hynek

    2017-08-17

    Nanoparticles composed of multiple silver cores and a plasma polymer shell (multicore@shell) were prepared in a single step with a gas aggregation cluster source operating with Ar/hexamethyldisiloxane mixtures and optionally oxygen. The size distribution of the metal inclusions as well as the chemical composition and the thickness of the shells were found to be controlled by the composition of the working gas mixture. Shell matrices ranging from organosilicon plasma polymer to nearly stoichiometric SiO 2 were obtained. The method allows facile fabrication of multicore@shell nanoparticles with tailored functional properties, as demonstrated here with the optical response.

  10. The cluster charge identification in the GEM detector for fusion plasma imaging by soft X-ray diagnostics

    NASA Astrophysics Data System (ADS)

    Czarski, T.; Chernyshova, M.; Malinowski, K.; Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zabolotny, W.

    2016-11-01

    The measurement system based on gas electron multiplier detector is developed for soft X-ray diagnostics of tokamak plasmas. The multi-channel setup is designed for estimation of the energy and the position distribution of an X-ray source. The focal measuring issue is the charge cluster identification by its value and position estimation. The fast and accurate mode of the serial data acquisition is applied for the dynamic plasma diagnostics. The charge clusters are counted in the space determined by 2D position, charge value, and time intervals. Radiation source characteristics are presented by histograms for a selected range of position, time intervals, and cluster charge values corresponding to the energy spectra.

  11. The cluster charge identification in the GEM detector for fusion plasma imaging by soft X-ray diagnostics.

    PubMed

    Czarski, T; Chernyshova, M; Malinowski, K; Pozniak, K T; Kasprowicz, G; Kolasinski, P; Krawczyk, R; Wojenski, A; Zabolotny, W

    2016-11-01

    The measurement system based on gas electron multiplier detector is developed for soft X-ray diagnostics of tokamak plasmas. The multi-channel setup is designed for estimation of the energy and the position distribution of an X-ray source. The focal measuring issue is the charge cluster identification by its value and position estimation. The fast and accurate mode of the serial data acquisition is applied for the dynamic plasma diagnostics. The charge clusters are counted in the space determined by 2D position, charge value, and time intervals. Radiation source characteristics are presented by histograms for a selected range of position, time intervals, and cluster charge values corresponding to the energy spectra.

  12. Bio-fabricated silver nanoparticles preferentially targets Gram positive depending on cell surface charge.

    PubMed

    Mandal, Debasis; Kumar Dash, Sandeep; Das, Balaram; Chattopadhyay, Sourav; Ghosh, Totan; Das, Debasis; Roy, Somenath

    2016-10-01

    Recently bio-inspired experimental processes for synthesis of nanoparticles are receiving significant attention in nanobiotechnology. Silver nanoparticles (Ag NPs) have been used very frequently in recent times to the wounds, burns and bacterial infections caused by drug-resistant microorganisms. Though, the antibacterial effects of Ag NPs on some multi drug-resistant bacteria specially against Gram positive bacteria has been established, but further investigation is needed to elicit its effectiveness against Gram negatives and to identify the probable mechanism of action. Thus, the present study was conducted to synthesize Ag NPs using Andrographis paniculata leaf extract and to investigate its antibacterial efficacy. After synthesis process the biosynthesized nanoparticles were purified and characterized with the help of various physical measurement techniques which raveled their purity, stability and small size range. The antimicrobial activity of Ag NPs was determined against both Gram-positive Enterococcus faecalis and Gram-negative Proteus vulgaris. Results showed comparatively higher antibacterial efficacy of Ag NPs against Gram positive Enterococcus faecalis strains. It was found that greater difference in zeta potential values between Gram positive bacteria and Ag NPs triggers better internalization of the particles. Thus the cell surface charge played vital role in cell killing which was confirmed by surface zeta potential study. Finally it may be concluded that green synthesized Ag NPs using Andrographis paniculata leaf extract can be very useful against both multi drug resistant Gram-positive and Gram-negative bacteria. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Using nuclear microscopy to characterize the interaction of textile-used silver nanoparticles with a biological wastewater treatment system

    NASA Astrophysics Data System (ADS)

    Bento, J. B.; Franca, R. D. G.; Pinheiro, T.; Alves, L. C.; Pinheiro, H. M.; Lourenço, N. D.

    2017-08-01

    The use of engineered nanoparticles in the textile industry has been rapidly increasing but their fate during biological wastewater treatment is largely unknown. The goal of the current study was to characterize the interaction of silver nanoparticles (AgNPs), used in the textile industry, with a biological wastewater treatment system based on aerobic granular sludge (AGS). The exposure tests were performed using a laboratory-scale sequencing batch reactor (SBR) system with AGS. The behavior and fate of textile AgNPs in the AGS system was studied with nuclear microscopy techniques. Elemental maps of AGS samples collected from the SBR showed that AgNPs typically clustered in agglomerates of small dimensions (<10 μm), which were preferentially associated with extracellular polymeric substances (EPS). This preliminary study highlights the potential application of nuclear microscopy for the characterization of the behavior and fate of AgNPs in AGS. The detailed compartmentalization of AgNPs in AGS components obtained with nuclear microscopy provides new and relevant information concerning AgNPs retention. This will be important in biotechnological terms to delineate strategies for AgNPs removal from textile wastewater.

  14. Colorimetric recognition of 6-benzylaminopurine in environmental samples by using thioglycolic acid functionalized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Zheng, Mingda; He, Jiang; Wang, Yingying; Wang, Chenge; Ma, Shuang; Sun, Xiaohan

    2018-03-01

    A simple and selective colorimetric sensor thioglycolic acid capped silver nanoparticles (TGA-AgNPs) was developed for the detection of 6-benzylaminopurine (6-BAP). The synthesized TGA-AgNPs were characterized by UV-vis spectroscopy, dynamic light scattering (DLS), and transmission electron microscopic (TEM) techniques. The TGA-AgNPs as a sensor for binding 6-BAP through hydrogen-bonding and π-π bonding that causes large conjugate clusters, resulting in a color change from yellow to reddish orange. The surface plasmon resonance (SPR) band of TGA-AgNPs at 397 nm is red-shifted to 510 nm, which confirms that 6-BAP induces the aggregation of TGA-AgNPs. Under the optimized conditions, a linear relationship between the absorption ratio (A510 nm/A397 nm) and 6-BAP concentration was found in the range of 4-26 μM. The detection limit of 6-BAP was 0.2 μM, which is lower than the other analytical techniques. Moreover, the proposed sensor was successfully applied for the detection of 6-BAP in environmental samples with good recoveries. The proposed assay provides a simple and cost-effective method for the analysis of 6-BAP in vegetable and water samples.

  15. Global gene response in Saccharomyces cerevisiae exposed to silver nanoparticles.

    PubMed

    Niazi, Javed H; Sang, Byoung-In; Kim, Yeon Seok; Gu, Man Bock

    2011-08-01

    Silver nanoparticles (AgNPs), exhibiting a broad size range and morphologies with highly reactive facets, which are widely applicable in real-life but not fully verified for biosafety and ecotoxicity, were subjected to report transcriptome profile in yeast Saccharomyces cerevisiae. A large number of genes accounted for ∼3% and ∼5% of the genome affected by AgNPs and Ag-ions, respectively. Principal component and cluster analysis suggest that the different physical forms of Ag were the major cause in differential expression profile. Among 90 genes affected by both AgNPs and Ag-ions, metalloprotein mediating high resistance to copper (CUP1-1 and CUP1-2) were strongly induced by AgNPs (∼45-folds) and Ag-ions (∼22-folds), respectively. A total of 17 genes, responsive to chemical stimuli, stress, and transport processes, were differentially induced by AgNPs. The differential expression was also seen with Ag-ions that affected 73 up- and 161 down-regulating genes, and most of these were involved in ion transport and homeostasis. This study provides new information on the knowledge for impact of nanoparticles on living microorganisms that can be extended to other nanoparticles.

  16. Carbon dot-Au(i)Ag(0) assembly for the construction of an artificial light harvesting system.

    PubMed

    Jana, Jayasmita; Aditya, Teresa; Pal, Tarasankar

    2018-03-06

    Artificial light harvesting systems (LHS) with inorganic counterparts are considered to be robust as well as mechanistically simple, where the system follows the donor-acceptor principle with an unchanged structural pattern. Plasmonic gold or silver nanoparticles are mostly chosen as inorganic counterparts to design artificial LHS. To capitalize on its electron accepting capability, Au(i) has been considered in this work for the synergistic stabilization of a system with intriguingly fluorescing silver(0) clusters produced in situ. Thus a stable fluorescent Au(i)Ag(0) assembly is generated with electron accepting capabilities. On the other hand, carbon dots have evolved as new fluorescent probes due to their unique physicochemical properties. Utilizing the simple electronic behavior of carbon dots, an electronic interaction between the fluorescent Au(i)Ag(0) and a carbon dot has been investigated for the construction of a new artificial light harvesting system. This coinage metal assembly allows surface energy transfer where it acts as an acceptor, while the carbon dot behaves as a good donor. The energy transfer efficiency has been calculated experimentally to be significant (81.3%) and the Au(i)Ag(0)-carbon dot assembly paves the way for efficient artificial LHS.

  17. [Influence of collagen/fibroin scaffolds containing silver nanoparticles on dermal regeneration of full-thickness skin defect wound in rat].

    PubMed

    You, Z G; Zhang, L P; Wang, X G; Zhou, H L; Guo, S X; Wu, P; Han, C M

    2017-02-20

    Objective: To explore the influence of collagen/fibroin scaffolds containing silver nanoparticles on dermal regeneration of full-thickness skin defect wound in rat. Methods: Eighty-one collagen/fibroin scaffolds containing silver nanoparticles (with the mass concentration of silver nanoparticles as 10 mg/L) and 81 collagen/fibroin scaffolds without silver nanoparticles were produced respectively with freeze-drying method and enrolled as silver nanoparticles scaffold group (SNS) and control scaffold group (CS). Nine scaffolds in each group were cultured with human fibroblasts. At post culture hour (PCH) 2, 12, and 24, the human fibroblasts adherent to the scaffolds ( n =3) in two groups were counted. Four full-thickness skin defect wounds were reproduced on the back of each one of the 36 SD rats. The rats were divided into groups SNS (wounds were transplanted with collagen/fibroin scaffolds containing silver nanoparticles) and CS (wounds were transplanted with collagen/fibroin scaffolds without silver nanoparticles) according to the random number table, with 18 rats in each group. In post surgery week (PSW) 1, 2, and 4, 6 rats in each group were sacrificed respectively for general observation, observation of histological structure, inflammatory cell infiltration, and collagen deposition with HE staining, count of CD68 positive cells with immunohistochemical staining, and mRNA expressions of interleukin-6 (IL-6) and IL-10 with real-time fluorescent quantitative reverse transcription polymerase chain reaction. Data were processed with analysis of variance of factorial design, t test, and Bonferroni correction. Results: (1) At PCH 2, 12, and 24, the numbers of human fibroblasts adherent to the scaffolds in the two groups were close (with t values from 1.77 to 2.60, P values above 0.05). (2) In PSW 1, no obvious symptom of infection was observed in wound or wound edge of rats in group SNS with obvious vascularization of scaffolds, while obvious symptoms of infection were observed in wounds of rats in group CS with some scaffolds exfoliated. In PSW 2, the scaffolds were firmly attached to the wounds of rats in group SNS, while obvious contracture was observed in the wounds of rats in group CS with a lot of scaffolds exfoliated. In PSW 4, the scaffolds covered the wounds of rats in group SNS with obvious epithelization on the surface of the scaffolds, while all the scaffolds exfoliated, leaving obvious contracture of residual wounds of rats in group CS. (3) In PSW 1 and 2, compared with those in group CS, more collagen secretion and tissue regeneration and less inflammatory cell infiltration in the scaffolds were observed in the wounds of rats in group SNS. In PSW 4, obvious epithelization was observed in the wounds of rats in group SNS, while inflammatory cell infiltration was observed without obvious epithelization in the wounds of rats in group CS. (4) In PSW 1, the number of CD68 positive cells in the wounds of rats in group SNS [(54±10) /mm(2)] was similar to that in group CS [(78±7) /mm(2,) t =1.52, P >0.05]. In PSW 2 and 4, the numbers of CD68 positive cells in the wounds of rats in group SNS [(154±10) and (77±7) /mm(2)] were significantly less than those in group CS [(268±16) and (136±13) /mm(2,) with t values respectively 7.31 and 3.83, P values below 0.01] respectively. (5) Except for the expression in PSW 4 ( t =1.23, P >0.05), the mRNA expressions of IL-6 in the wounds of rats in group SNS in PSW 1 and 2 were significantly lower than those in group CS (with t values respectively 13.12 and 4.65, P values below 0.01). Except for the expression in PSW 1 ( t =3.08, P <0.05), the mRNA expressions of IL-10 in PSW 2 and 4 in the wounds of rats in the two groups were similar (with t values respectively 2.14 and 0.49, P values above 0.05). Conclusions: Besides good biocompatibility, collagen/fibroin scaffolds containing silver nanoparticles have obvious effect in modulating inflammation, thus they can accelerate dermal regeneration induced by collagen/fibroin scaffolds for wound repair.

  18. CometQ: An automated tool for the detection and quantification of DNA damage using comet assay image analysis.

    PubMed

    Ganapathy, Sreelatha; Muraleedharan, Aparna; Sathidevi, Puthumangalathu Savithri; Chand, Parkash; Rajkumar, Ravi Philip

    2016-09-01

    DNA damage analysis plays an important role in determining the approaches for treatment and prevention of various diseases like cancer, schizophrenia and other heritable diseases. Comet assay is a sensitive and versatile method for DNA damage analysis. The main objective of this work is to implement a fully automated tool for the detection and quantification of DNA damage by analysing comet assay images. The comet assay image analysis consists of four stages: (1) classifier (2) comet segmentation (3) comet partitioning and (4) comet quantification. Main features of the proposed software are the design and development of four comet segmentation methods, and the automatic routing of the input comet assay image to the most suitable one among these methods depending on the type of the image (silver stained or fluorescent stained) as well as the level of DNA damage (heavily damaged or lightly/moderately damaged). A classifier stage, based on support vector machine (SVM) is designed and implemented at the front end, to categorise the input image into one of the above four groups to ensure proper routing. Comet segmentation is followed by comet partitioning which is implemented using a novel technique coined as modified fuzzy clustering. Comet parameters are calculated in the comet quantification stage and are saved in an excel file. Our dataset consists of 600 silver stained images obtained from 40 Schizophrenia patients with different levels of severity, admitted to a tertiary hospital in South India and 56 fluorescent stained images obtained from different internet sources. The performance of "CometQ", the proposed standalone application for automated analysis of comet assay images, is evaluated by a clinical expert and is also compared with that of a most recent and related software-OpenComet. CometQ gave 90.26% positive predictive value (PPV) and 93.34% sensitivity which are much higher than those of OpenComet, especially in the case of silver stained images. The results are validated using confusion matrix and Jaccard index (JI). Comet assay images obtained after DNA damage repair by incubation in the nutrient medium were also analysed, and CometQ showed a significant change in all the comet parameters in most of the cases. Results show that CometQ is an accurate and efficient tool with good sensitivity and PPV for DNA damage analysis using comet assay images. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Positive feedback can lead to dynamic nanometer-scale clustering on cell membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehrens, Martijn; Rein ten Wolde, Pieter; Mugler, Andrew, E-mail: amugler@purdue.edu

    2014-11-28

    Clustering of molecules on biological membranes is a widely observed phenomenon. A key example is the clustering of the oncoprotein Ras, which is known to be important for signal transduction in mammalian cells. Yet, the mechanism by which Ras clusters form and are maintained remains unclear. Recently, it has been discovered that activated Ras promotes further Ras activation. Here we show using particle-based simulation that this positive feedback is sufficient to produce persistent clusters of active Ras molecules at the nanometer scale via a dynamic nucleation mechanism. Furthermore, we find that our cluster statistics are consistent with experimental observations ofmore » the Ras system. Interestingly, we show that our model does not support a Turing regime of macroscopic reaction-diffusion patterning, and therefore that the clustering we observe is a purely stochastic effect, arising from the coupling of positive feedback with the discrete nature of individual molecules. These results underscore the importance of stochastic and dynamic properties of reaction diffusion systems for biological behavior.« less

  20. Photochemical Study of Silver Nanoparticles Formed from the Reduction of Silver Ions by Humic Acid

    NASA Astrophysics Data System (ADS)

    Leslie, Renee M.

    This study focuses on the ability of silver ions and humic acid to form silver nanoparticles in the presence of UV and visible light. Silver nanoparticles have a number of industrial applications due primarily to their antimicrobial properties, but these properties pose an environmental threat. Silver nanoparticles can directly disrupt sensitive ecosystems by harming bacteria. Consumption of silver nanoparticles results in silver ions and silver nanoparticles entering waterways; the presence of silver ions raises the question of whether nanoparticles can reform in environmental waters. As our data show, silver nanoparticles can form from the reduction of silver ions by humic acid after irradiation with UV and visible light. In order to better understand the mechanism of these naturally synthesized silver nanoparticles, we investigated the effects of reactant concentration, experimental conditions and presence of ions/reactive species. We monitored silver nanoparticle growth with UV-visible spectroscopy. The evolution in time of nanoparticle size was monitored by dynamic light scattering (DLS).

  1. Noble metal superparticles and methods of preparation thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yugang; Hu, Yongxing

    A method comprises heating an aqueous solution of colloidal silver particles. A soluble noble metal halide salt is added to the aqueous solution which undergoes a redox reaction on a surface of the silver particles to form noble metal/silver halide SPs, noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs on the surface of the silver particles. The heat is maintained for a predetermined time to consume the silver particles and release the noble metal/silver halide SPs, the noble metal halide/silver halide SPs or the noble metal oxide/silver halide SPs into the aqueous solution. The aqueous solution ismore » cooled. The noble metal/silver halide SPs, the noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs are separated from the aqueous solution. The method optionally includes adding a soluble halide salt to the aqueous solution.« less

  2. Multidrug-Resistant CTX-M-(15, 9, 2)- and KPC-2-Producing Enterobacter hormaechei and Enterobacter asburiae Isolates Possessed a Set of Acquired Heavy Metal Tolerance Genes Including a Chromosomal sil Operon (for Acquired Silver Resistance).

    PubMed

    Andrade, Leonardo N; Siqueira, Thiago E S; Martinez, Roberto; Darini, Ana Lucia C

    2018-01-01

    Bacterial resistance to antibiotics is concern in healthcare-associated infections. On the other hand, bacterial tolerance to other antimicrobials, like heavy metals, has been neglected and underestimated in hospital pathogens. Silver has long been used as an antimicrobial agent and it seems to be an important indicator of heavy metal tolerance. To explore this perspective, we searched for the presence of acquired silver resistance genes ( sil operon: silE, silS, silR, silC, silF, silB, silA , and silP ) and acquired extended-spectrum cephalosporin and carbapenem resistance genes ( bla CTX-M and bla KPC ) in Enterobacter cloacae Complex (EcC) ( n = 27) and Enterobacter aerogenes ( n = 8) isolated from inpatients at a general hospital. Moreover, the genetic background of the silA (silver-efflux pump) and the presence of other acquired heavy metal tolerance genes, pcoD (copper-efflux pump), arsB (arsenite-efflux pump), terF (tellurite resistance protein), and merA (mercuric reductase) were also investigated. Outstandingly, 21/27 (78%) EcC isolates harbored silA gene located in the chromosome. Complete sil operon was found in 19/21 silA -positive EcC isolates. Interestingly, 8/20 (40%) E. hormaechei and 5/6 (83%) E. asburiae co-harbored silA/pcoD genes and bla CTX-M-(15,2,or9) and/or bla KPC-2 genes. Frequent occurrences of arsB, terF , and merA genes were detected, especially in silA/pcoD -positive, multidrug-resistant (MDR) and/or CTX-M-producing isolates. Our study showed co-presence of antibiotic and heavy metal tolerance genes in MDR EcC isolates. In our viewpoint, there are few studies regarding to bacterial heavy metal tolerance and we call attention for more investigations and discussion about this issue in different hospital pathogens.

  3. Multidrug-Resistant CTX-M-(15, 9, 2)- and KPC-2-Producing Enterobacter hormaechei and Enterobacter asburiae Isolates Possessed a Set of Acquired Heavy Metal Tolerance Genes Including a Chromosomal sil Operon (for Acquired Silver Resistance)

    PubMed Central

    Andrade, Leonardo N.; Siqueira, Thiago E. S.; Martinez, Roberto; Darini, Ana Lucia C.

    2018-01-01

    Bacterial resistance to antibiotics is concern in healthcare-associated infections. On the other hand, bacterial tolerance to other antimicrobials, like heavy metals, has been neglected and underestimated in hospital pathogens. Silver has long been used as an antimicrobial agent and it seems to be an important indicator of heavy metal tolerance. To explore this perspective, we searched for the presence of acquired silver resistance genes (sil operon: silE, silS, silR, silC, silF, silB, silA, and silP) and acquired extended-spectrum cephalosporin and carbapenem resistance genes (blaCTX−M and blaKPC) in Enterobacter cloacae Complex (EcC) (n = 27) and Enterobacter aerogenes (n = 8) isolated from inpatients at a general hospital. Moreover, the genetic background of the silA (silver-efflux pump) and the presence of other acquired heavy metal tolerance genes, pcoD (copper-efflux pump), arsB (arsenite-efflux pump), terF (tellurite resistance protein), and merA (mercuric reductase) were also investigated. Outstandingly, 21/27 (78%) EcC isolates harbored silA gene located in the chromosome. Complete sil operon was found in 19/21 silA-positive EcC isolates. Interestingly, 8/20 (40%) E. hormaechei and 5/6 (83%) E. asburiae co-harbored silA/pcoD genes and blaCTX−M−(15,2,or9) and/or blaKPC−2 genes. Frequent occurrences of arsB, terF, and merA genes were detected, especially in silA/pcoD-positive, multidrug-resistant (MDR) and/or CTX-M-producing isolates. Our study showed co-presence of antibiotic and heavy metal tolerance genes in MDR EcC isolates. In our viewpoint, there are few studies regarding to bacterial heavy metal tolerance and we call attention for more investigations and discussion about this issue in different hospital pathogens. PMID:29628916

  4. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Kwon, Deug-Nam; Kim, Jin-Hoi

    2014-07-01

    Silver nanoparticles (AgNPs) have been used as antibacterial, antifungal, antiviral, anti-inflammtory, and antiangiogenic due to its unique properties such as physical, chemical, and biological properties. The present study was aimed to investigate antibacterial and anti-biofilm activities of silver nanoparticles alone and in combination with conventional antibiotics against various human pathogenic bacteria. Here, we show that a simple, reliable, cost effective and green method for the synthesis of AgNPs by treating silver ions with leaf extract of Allophylus cobbe. The A. cobbe-mediated synthesis of AgNPs (AgNPs) was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the antibacterial and anti-biofilm activity of antibiotics or AgNPs, or combinations of AgNPs with an antibiotic was evaluated using a series of assays: such as in vitro killing assay, disc diffusion assay, biofilm inhibition, and reactive oxygen species generation in Pseudomonas aeruginosa, Shigella flexneri, Staphylococcus aureus, and Streptococcus pneumonia. The results suggest that, in combination with antibiotics, there were significant antimicrobial and anti-biofilm effects at lowest concentration of AgNPs using a novel plant extract of A. cobbe, otherwise sublethal concentrations of the antibiotics. The significant enhancing effects were observed for ampicillin and vancomycin against Gram-negative and Gram-positive bacteria, respectively. These data suggest that combining antibiotics and biogenic AgNPs can be used therapeutically for the treatment of infectious diseases caused by bacteria. This study presented evidence of antibacterial and anti-biofilm effects of A. cobbe-mediated synthesis of AgNPs and their enhanced capacity against various human pathogenic bacteria. These results suggest that AgNPs could be used as an adjuvant for the treatment of infectious diseases.

  5. Changes in Soil Bacterial Communities and Diversity in ...

    EPA Pesticide Factsheets

    Silver-induced selective pressure is becoming increasingly important due to the growing use of silver (Ag) as an antimicrobial agent in biomedical and commercial products. With demonstrated links between environmental resistomes and clinical pathogens, it is important to identify microbial profiles related to silver tolerance/resistance. We investigated the effects of ionic Ag stress on soil bacterial communities and identified resistant/persistant bacterial populations. Silver treatments of 50 - 400 mg Ag kg-1 soil were established in five soils. Chemical lability measurements using diffusive gradients in thin-film devices confirmed that significant (albeit decreasing) labile Ag concentrations were present throughout the 9-month incubation period. Synchrotron X-ray absorption near edge structure spectroscopy demonstrate that this decreasing lability was due to changes in Ag speciation to less soluble forms such as Ag0 and Ag2S. Real-time PCR and Illumina MiSeq screening of 16S rRNA bacterial genes showed β-diversity in response to Ag pressure, and immediate and significant reductions in 16S rRNA gene counts with varying degrees of recovery. These effects were more strongly influenced by exposure time than by Ag dose at these rates. Ag-selected dominant OTUs principally resided in known persister taxa (mainly Gram positive), including metal-tolerant bacteria and slow-growing Mycobacteria. Soil microbial communities have been implicated as sources of an

  6. Evaluation of cytotoxicity, immune compatibility and antibacterial activity of biogenic silver nanoparticles.

    PubMed

    Składanowski, M; Golinska, P; Rudnicka, K; Dahm, H; Rai, M

    2016-12-01

    The study was focused on assessment of antibacterial activity, cytotoxicity and immune compatibility of biogenic silver nanoparticles (AgNPs) synthesized from Streptomyces sp. NH28 strain. Nanoparticles were biosynthesized and characterized by UV-Vis spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, nanoparticle tracking analysis system and zeta potential. Antibacterial activity was tested against Gram-positive and Gram-negative bacteria; minimal inhibitory concentration was recorded. Cytotoxicity was estimated using L929 mouse fibroblasts via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test. Biocompatibility of AgNPs was performed using THP1-XBlue™ cells. Biogenic AgNPs presented high antibacterial activity against all tested bacteria. Minimum inhibitory concentration of AgNPs against bacterial cells was found to be in range of 1.25-10 μg/mL. Silver nanoparticles did not show any harmful interaction to mouse fibroblast cell line, and no activation of nuclear factor kappa-light-chain-enhancer of activated B (NF-κB) cells was observed at concentration below 10 µg/mL. The half-maximal inhibitory concentration (IC 50 ) value was established at 64.5 μg/mL. Biological synthesis of silver can be used as an effective system for formation of metal nanoparticles. Biosynthesized AgNPs can be used as an antibacterial agent, which can be safe for eukaryotic cells.

  7. Surface enhanced Raman scattering of new acridine based fluorophore adsorbed on silver electrode

    NASA Astrophysics Data System (ADS)

    Solovyeva, Elena V.; Myund, Liubov A.; Denisova, Anna S.

    2015-10-01

    4,5-Bis(N,N-di(2-hydroxyethyl)iminomethyl)acridine (BHIA) is a new acridine based fluoroionophore and a highly-selective sensor for cadmium ion. The direct interaction of the aromatic nitrogen atom with a surface is impossible since there are bulky substituents in the 4,5-positions of the acridine fragment. Nevertheless BHIA molecule shows a reliable SERS spectrum while adsorbed on a silver electrode. The analysis of SERS spectra pH dependence reveals that BHIA species adsorbed on a surface can exist in both non-protonated and protonated forms. The adsorption of BHIA from alkaline solution is accompanied by carbonaceous species formation at the surface. The intensity of such "carbon bands" turned out to be related with the supporting electrolyte (KCl) concentration. Upon lowering the electrode potential the SERS spectra of BHIA do not undergo changes but the intensity of bands decreases. This indicates that the adsorption mechanism on the silver surface is realized via aromatic system of acridine fragment. In case of such an adsorption mechanism the chelate fragment of the BHIA molecule is capable of interaction with the solution components. Addition of Cd2+ ions to a system containing BHIA adsorbed on a silver electrode in equilibrium with the solution leads to the formation of BHIA/Cd2+ complex which desorption causes the loss of SERS signal.

  8. Preparation and characterization of bio-nanocomposite films of agar and silver nanoparticles: laser ablation method.

    PubMed

    Rhim, Jong-Whan; Wang, Long-Feng; Lee, Yonghoon; Hong, Seok-In

    2014-03-15

    Silver nanoparticles (AgNPs) were prepared by a laser ablation method and composite films with the AgNPs and agar were prepared by solvent casting method. UV-vis absorbance test and transmission electron microscopy (TEM) analysis results revealed that non-agglomerated spherical AgNPs were formed by the laser ablation method. The surface color of the resulting agar/AgNPs films exhibited the characteristic plasmonic effect of the AgNPs with the maximum absorption peaks of 400-407 nm. X-ray diffraction (XRD) test results also exhibited characteristic AgNPs crystals with diffraction peaks observed at 2θ values of 38.39°, 44.49°, and 64.45°, which were corresponding to (111), (200), and (220) crystallographic planes of face-centered cubic (fcc) silver crystals, respectively. Thermogravimetric analysis (TGA) results showed that thermal stability of the agar/AgNPs composite films was increased by the inclusion of metallic silver. Water vapor barrier properties and surface hydrophobicity of the agar/AgNPs films increased slightly with the increase in AgNPs content but they were not statistically significant (p>0.05), while mechanical strength and stiffness of the composite films decreased slightly (p<0.05). The agar/AgNPs films exhibited distinctive antimicrobial activity against both Gram-positive (Listeria monocytogenes) and Gram-negative (Escherichia coli O157:H7) bacterial pathogens. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Nanowires of silver-polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent.

    PubMed

    Tamboli, Mohaseen S; Kulkarni, Milind V; Patil, Rajendra H; Gade, Wasudev N; Navale, Shalaka C; Kale, Bharat B

    2012-04-01

    Silver-polyaniline (Ag-PANI) nanocomposite was synthesized by in situ polymerization method using ammonium persulfate (APS) as an oxidizing agent in the presence of dodecylbenzene sulfonic acid (DBSA) and silver nitrate (AgNO(3)). The as synthesized Ag-PANI nanocomposite was characterized by using different analytical techniques such as UV-visible (UV-vis) and Fourier transform Infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), thermo gravimetric analysis (TGA), X-ray diffraction (XRD), and transmission electron microscopy (TEM). UV-visible spectra of the synthesized nanocomposite showed a sharp peak at ~420 nm corresponding to the surface plasmon resonance (SPR) of the silver nanoparticles (AgNPs) embedded in the polymer matrix which is overlapped by the polaronic peak of polyaniline appearing at that wavelength. Nanowires of Ag-PANI nanocomposite with diameter 50-70 nm were observed in FE-SEM and TEM. TGA has indicated an enhanced thermal stability of nanocomposite as compared to that of pure polymer. The Ag-PANI nanocomposite has shown an antibacterial activity against model organisms, a gram positive Bacillus subtilis NCIM 6633 in Mueller-Hinton (MH) medium, which is hitherto unattempted. The Ag-PANI nanocomposite with monodispersed AgNPs is considered to have potential applications in sensors, catalysis, batteries and electronic devices. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Silver sulfadoxinate: Synthesis, structural and spectroscopic characterizations, and preliminary antibacterial assays in vitro

    NASA Astrophysics Data System (ADS)

    Zanvettor, Nina T.; Abbehausen, Camilla; Lustri, Wilton R.; Cuin, Alexandre; Masciocchi, Norberto; Corbi, Pedro P.

    2015-02-01

    The sulfa drug sulfadoxine (SFX) reacted with Ag+ ions in aqueous solution, affording a new silver(I) complex (AgSFX), which was fully characterized by chemical, spectroscopic and structural methods. Elemental, ESI-TOF mass spectrometric and thermal analyses of AgSFX suggested a [Ag(C12H13N4O2S)] empirical formula. Infrared spectroscopic measurements indicated ligand coordination to Ag(I) through the nitrogen atoms of the (deprotonated) sulfonamide group and by the pyrimidine ring, as well as through oxygen atom(s) of the sulfonamide group. These hypotheses were corroborated by 13C and 15N SS-NMR spectroscopy and by an unconventional structural characterization based on X-ray powder diffraction data. The latter showed that AgSFX crystallizes as centrosymmetric dimers with a strong Ag⋯Ag interaction of 2.7435(6) Å, induced by the presence of exo-bidentate N,N‧ bridging ligands and the formation of an eight-membered ring of [AgNCN]2 sequence, nearly planar. Participation of oxygen atoms of the sulfonamide residues generates in the crystal a 1D coordination polymer, likely responsible for its very limited solubility in all common solvents. Besides the analytical, spectroscopic and structural description, the antibacterial properties of AgSFX were assayed using disc diffusion methods against Escherichia coli and Pseudomonas aeruginosa (Gram-negative), and Staphylococcus aureus (Gram-positive) bacterial strains. The AgSFX complex showed to be active against Gram-positive and Gram-negative bacterial strains, being comparable to the activities of silver sulfadiazine.

  11. Roster of NSAP (Navy Science Assistance Program) Field Team Members, Fiscal Years 1971-1986

    DTIC Science & Technology

    1985-08-05

    CAPTOR Evaluation Program, NSWC. Current Job/Position: Operational Requirements Analyst for a new generation of mines. Current Address: Officer in...to NSAP Field Assignment: General Engineer; combat systems engineering on new ship design concepts, NSWC. Current Job/Position: Electronic Engineer...ADDRESS 12. REPORT DATE Naval Surface Weapons Center (Code D23) 5 August 1985 10901 New Hampshire Avenue 13. NUMBER OF PAGES Silver Spring, MD 20910

  12. Trace elements and heavy metals in hair of stage III breast cancer patients.

    PubMed

    Benderli Cihan, Yasemin; Sözen, Selim; Oztürk Yıldırım, Sema

    2011-12-01

    This prospective study was designed to compare the hair levels of 36 elements in 52 patients with stage III breast cancer to those of an equal number of healthy individuals. Principal component and cluster analysis were used for source of identification and apportionment of heavy metals and trace elements in these two groups. A higher average level of iron was found in samples from patients while controls had higher levels of calcium. Both patients and controls had elevated levels of tin, magnesium, zinc, and sodium. Almost all element values in cancer patients showed higher dispersion and asymmetry than in healthy controls. Between the two groups, there were statistically significant differences in the concentrations of silver, arsenic, gold, boron, barium, beryllium, calcium, cadmium, cerium, cobalt, cesium, gadolinium, manganese, nickel, lead, antimony, scandium, selenium, and zinc (p < 0.05). Strong positive correlations were found between lead and gold (r = 0.785) in the cancer group and between palladium and cobalt (r = 0.945) in the healthy individuals. Our results show that there are distinct patterns of heavy metals and trace elements in the hair of breast cancer patients in comparison to healthy controls. These results could be of significance in the diagnosis of breast cancer.

  13. Synthesis and Characterization of BSA Conjugated Silver Nanoparticles (Ag/BSA Nanoparticles) and Evaluation of Biological Properties of Ag/BSA Nanoparticles and Ag/BSA Nanoparticles Loaded Poly(hydroxy butyrate valerate) PHBV Films

    NASA Astrophysics Data System (ADS)

    Ambaye, Almaz

    Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa are the etiological agents of several infectious diseases. Antibiotic resistance by these three microbes has emerged as a prevalent problem due in part to the misuse of existing antibiotics and the lack of novel antibiotics. Nanoparticles have emerged as an alternative antibacterial agents to conventional antibiotics owing to their high surface area to volume ratio and their unique chemical and physical properties. Among the nanoparticles, silver nanoparticles have gained increasing attention because silver nanoparticles exhibit antibacterial activity against a range of gram positive and gram negative bacteria. Nanoparticles of well-defined chemistry and morphology can be used in broad biomedical applications, especially in bone tissue engineering applications, where bone infection by bacteria can be acute and lethal. It is commonly noted in the literature that the activity of nanoparticles against microorganisms is dependent upon the size and concentration of the nanoparticles as well as the chemistry of stabilizing agent. To the best of our knowledge, a comprehensive study that evaluates the antibacterial activity of well characterized silver nanoparticles in particular Bovine Serum Albumin (BSA) stabilized against S. aureus and E. coli and cytotoxicity level of BSA stabilized silver nanoparticles towards osteoblast cells (MC3T3-E1) is currently lacking. Therefore, the primary objective of this study was to characterize protein conjugated silver nanoparticles prepared by chemical reduction of AgNO3 and BSA mixture. The formation of Ag/BSA nanoparticles was studied by UV-Vis spectroscopy. The molar ratio of silver to BSA in the Ag/BSA nanoparticles was established to be 27+/- 3: 1, based on Thermogravimetric Analysis and Atomic Absorption Spectroscopy. Based on atomic force microscopy, dynamic light scattering,and transmission electron microscopy(TEM) measurements, the particle size (diameter) of Ag/BSA nanoparticles was found to be in a range of 9-13 nm. X-ray photo electron spectroscopy measurements of argon sputtered Ag/BSA nanoparticles provided evidence that the outer and inner region of nanoparticles are mainly composed of BSA and silver, respectively. Having characterized the nanoparticles, the next phase of the study was to evaluate the antibacterial activity and cytotoxicity level of BSA stabilized silver nanoparticles. The antibacterial efficacy of Ag/BSA nanoparticles against E. coli and S. aureus was evaluated, and minimum lethal concentration was found to be 2ppm and 7ppm, respectively. E. coli showed a higher susceptibility to silver nanoparticles than S. aureus, which could be attributed to the difference in the cell wall structure. We have also investigated the cytotoxicity level of Ag/BSA nanoparticles towards MC3T3-E1 osteoblast cells. The minimum bactericidal concentration found for both strains is lower than the silver nanoparticles concentration that was toxic to the osteoblast cells. Preliminary studies of Ag/BSA nanoparticles loaded collagen immobilized PHBV film showed that the Ag/BSA nanoparticles loaded PHBV film inhibit bacterial growth. The findings of our study can be extremely useful in the design of novel scaffold to address the critical needs of bone tissue engineering community.

  14. The cluster charge identification in the GEM detector for fusion plasma imaging by soft X-ray diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czarski, T., E-mail: tomasz.czarski@ifpilm.pl; Chernyshova, M.; Malinowski, K.

    2016-11-15

    The measurement system based on gas electron multiplier detector is developed for soft X-ray diagnostics of tokamak plasmas. The multi-channel setup is designed for estimation of the energy and the position distribution of an X-ray source. The focal measuring issue is the charge cluster identification by its value and position estimation. The fast and accurate mode of the serial data acquisition is applied for the dynamic plasma diagnostics. The charge clusters are counted in the space determined by 2D position, charge value, and time intervals. Radiation source characteristics are presented by histograms for a selected range of position, time intervals,more » and cluster charge values corresponding to the energy spectra.« less

  15. In vitro studies of nanosilver-doped titanium implants for oral and maxillofacial surgery

    PubMed Central

    Pokrowiecki, Rafał; Zaręba, Tomasz; Szaraniec, Barbara; Pałka, Krzysztof; Mielczarek, Agnieszka; Menaszek, Elżbieta; Tyski, Stefan

    2017-01-01

    The addition of an antibacterial agent to dental implants may provide the opportunity to decrease the percentage of implant failures due to peri-implantitis. For this purpose, in this study, the potential efficacy of nanosilver-doped titanium biomaterials was determined. Titanium disks were incorporated with silver nanoparticles over different time periods by Tollens reaction, which is considered to be an eco-friendly, cheap, and easy-to-perform method. The surface roughness, wettability, and silver release profile of each disc were measured. In addition, the antibacterial activity was also evaluated by using disk diffusion tests for bacteria frequently isolated from the peri-implant biofilm: Streptococcus mutans, Streptococcus mitis, Streptococcus oralis, Streptococcus sanguis, Porphyromonas gingivalis, Staphylococcus aureus, and Escherichia coli. Cytotoxicity was evaluated in vitro in a natural human osteoblasts cell culture. The addition of nanosilver significantly increased the surface roughness and decreased the wettability in a dose-dependent manner. These surfaces were significantly toxic to all the tested bacteria following a 48-hour exposure, regardless of silver doping duration. A concentration of 0.05 ppm was sufficient to inhibit Gram-positive and Gram-negative species, with the latter being significantly more susceptible to silver ions. However, after the exposure of human osteoblasts to 0.1 ppm of silver ions, a significant decrease in cell viability was observed by using ToxiLight™ BioAssay Kit after 72 hours. Data from the present study indicated that the incorporation of nanosilver may influence the surface properties that are important in the implant healing process. The presence of nanosilver on the titanium provides an antibacterial activity related to the bacteria involved in peri-implantitis. Finally, the potential toxicological considerations of nanosilver should further be investigated, as both the antibacterial and cytotoxic properties may be observed at similar concentration ranges. PMID:28652733

  16. Green synthesis of chondroitin sulfate-capped silver nanoparticles: characterization and surface modification.

    PubMed

    Cheng, Kuang-ming; Hung, Yao-wen; Chen, Cheng-cheung; Liu, Cheng-che; Young, Jenn-jong

    2014-09-22

    A one-step route for the green synthesis of highly stable and nanosized silver metal particles with narrow distribution is reported. In this environmentally friendly synthetic method, silver nitrate was used as silver precursor and biocompatible chondroitin sulfate (ChS) was used as both reducing agent and stabilizing agent. The reaction was carried out in a stirring aqueous medium at the room temperature without any assisted by microwave, autoclave, laser irradiation, γ-ray irradiation or UV irradiation. The transparent colorless solution was converted to the characteristics light red then deep red-brown color as the reaction proceeds, indicating the formation of silver nanoparticles (Ag NPs). The Ag NPs were characterized by UV-visible spectroscopy (UV-vis), photon correlation spectroscopy, laser Doppler anemometry, transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). The results demonstrated that the obtained metallic nanoparticles were Ag NPs capped with ChS. In this report, dynamic light scattering (DLS) was used as a routinely analytical tool for measuring size and distribution in a liquid environment. The effects of the reaction time, reaction temperature, concentration and the weight ratio of ChS/Ag+ on the particle size and zeta potential were investigated. The TEM image clearly shows the morphology of the well-dispersed ChS-capped Ag NPs are spherical in shape, and the average size (<20 nm) is much smaller than the Z-average value (76.7 nm) measured by DLS. Meanwhile, the ChS-capped Ag NPs coated with N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride (HTCC) were prepared by an ionic gelation method and the surface charge of Ag NPs was switched from negative to positive. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Power and Time Dependent Microwave Assisted Fabrication of Silver Nanoparticles Decorated Cotton (SNDC) Fibers for Bacterial Decontamination.

    PubMed

    Bhardwaj, Abhishek K; Shukla, Abhishek; Mishra, Rohit K; Singh, S C; Mishra, Vani; Uttam, K N; Singh, Mohan P; Sharma, Shivesh; Gopal, R

    2017-01-01

    Plasmonic nanoparticles (NPs) such as silver and gold have fascinating optical properties due to their enhanced optical sensitivity at a wavelength corresponding to their surface plasmon resonance (SPR) absorption. Present work deals with the fabrication of silver nanoparticles decorated cotton (SNDC) fibers as a cheap and efficient point of contact disinfectant. SNDC fibers were fabricated by a simple microwave assisted route. The microwave power and irradiation time were controlled to optimize size and density of silver nanoparticles (SNPs) on textile fibers. As prepared cotton fabric was characterized for ATR-FTIR, UV-VIS diffuse reflectance, SEM and TEM investigations. Size of SNPs as well as total density of silver atoms on fabric gets increased with the increase of microwave power from 100 W to 600 W. The antibacterial efficacy of SNPs extracted from SNDC fibers was found to be more effective against Gram-negative bacteria than Gram-positive bacteria with MIC 38.5 ± 0.93 μg/mL against Salmonella typhimurium MTCC-98 and 125 ± 2.12 μg/mL against Staphylococcus aureus MTCC-737, a linear correlation coefficient with R 2 ranging from ∼0.928-0.935 was also observed. About >50% death cells were observed through Propidium Iodide (PI) internalization after treatment of SNPs extracted from SNDC fibers with concentration 31.25 μg/mL. Generation of ROS and free radical has also been observed which leads to cell death. Excellent Escherichia coli deactivation efficacy suggested that SNDC fibers could be used as potentially safe disinfectants for cleaning of medical equipment, hand, wound, water and preservation of food and beverages.

  18. Power and Time Dependent Microwave Assisted Fabrication of Silver Nanoparticles Decorated Cotton (SNDC) Fibers for Bacterial Decontamination

    PubMed Central

    Bhardwaj, Abhishek K.; Shukla, Abhishek; Mishra, Rohit K.; Singh, S. C.; Mishra, Vani; Uttam, K. N.; Singh, Mohan P.; Sharma, Shivesh; Gopal, R.

    2017-01-01

    Plasmonic nanoparticles (NPs) such as silver and gold have fascinating optical properties due to their enhanced optical sensitivity at a wavelength corresponding to their surface plasmon resonance (SPR) absorption. Present work deals with the fabrication of silver nanoparticles decorated cotton (SNDC) fibers as a cheap and efficient point of contact disinfectant. SNDC fibers were fabricated by a simple microwave assisted route. The microwave power and irradiation time were controlled to optimize size and density of silver nanoparticles (SNPs) on textile fibers. As prepared cotton fabric was characterized for ATR-FTIR, UV-VIS diffuse reflectance, SEM and TEM investigations. Size of SNPs as well as total density of silver atoms on fabric gets increased with the increase of microwave power from 100 W to 600 W. The antibacterial efficacy of SNPs extracted from SNDC fibers was found to be more effective against Gram-negative bacteria than Gram-positive bacteria with MIC 38.5 ± 0.93 μg/mL against Salmonella typhimurium MTCC-98 and 125 ± 2.12 μg/mL against Staphylococcus aureus MTCC-737, a linear correlation coefficient with R2 ranging from ∼0.928–0.935 was also observed. About >50% death cells were observed through Propidium Iodide (PI) internalization after treatment of SNPs extracted from SNDC fibers with concentration 31.25 μg/mL. Generation of ROS and free radical has also been observed which leads to cell death. Excellent Escherichia coli deactivation efficacy suggested that SNDC fibers could be used as potentially safe disinfectants for cleaning of medical equipment, hand, wound, water and preservation of food and beverages. PMID:28316594

  19. Gold-silver alloy nanoshells: a new candidate for nanotherapeutics and diagnostics

    NASA Astrophysics Data System (ADS)

    Gheorghe, Dana E.; Cui, Lili; Karmonik, Christof; Brazdeikis, Audrius; Penaloza, Jose M.; Young, Joseph K.; Drezek, Rebekah A.; Bikram, Malavosklish

    2011-10-01

    We have developed novel gold-silver alloy nanoshells as magnetic resonance imaging (MRI) dual T 1 (positive) and T 2 (negative) contrast agents as an alternative to typical gadolinium (Gd)-based contrast agents. Specifically, we have doped iron oxide nanoparticles with Gd ions and sequestered the ions within the core by coating the nanoparticles with an alloy of gold and silver. Thus, these nanoparticles are very innovative and have the potential to overcome toxicities related to renal clearance of contrast agents such as nephrogenic systemic fibrosis. The morphology of the attained nanoparticles was characterized by XRD which demonstrated the successful incorporation of Gd(III) ions into the structure of the magnetite, with no major alterations of the spinel structure, as well as the growth of the gold-silver alloy shells. This was supported by TEM, ICP-AES, and SEM/EDS data. The nanoshells showed a saturation magnetization of 38 emu/g because of the presence of Gd ions within the crystalline structure with r 1 and r 2 values of 0.0119 and 0.9229 mL mg-1 s-1, respectively (Au:Ag alloy = 1:1). T 1- and T 2-weighted images of the nanoshells showed that these agents can both increase the surrounding water proton signals in the T 1-weighted image and reduce the signal in T 2-weighted images. The as-synthesized nanoparticles exhibited strong absorption in the range of 600-800 nm, their optical properties being strongly dependent upon the thickness of the gold-silver alloy shell. Thus, these nanoshells have the potential to be utilized for tumor cell ablation because of their absorption as well as an imaging agent.

  20. Towards Environmentally-benign Nanoengineering: Antimicrobial Nanoparticles Based on Silver-infused Lignin Cores

    NASA Astrophysics Data System (ADS)

    Richter, Alexander Philipp

    Engineered nanomaterials are capable of solving challenges in industries important to society such as energy, agriculture, and health care. Antimicrobial silver nanoparticles (AgNPs) are the most widely used nanoparticles by number of commercial products in commerce today. However, the increased introduction of AgNPs in industrial applications may lead to discharge of persistent nanoparticles in the environment and undesired impacts on living organisms. This dissertation will present a new class of antimicrobial environmentallybenign nanoparticles (EbNPs) designed with green chemistry principles, which can serve as highly efficient microbicide substitutes of the AgNPs. The EbNP core is made of biodegradable lignin, and is infused with an optimal amount of silver ions. We report on the fabrication of environmentally benign nanoparticles (EbNPs) using two types of lignin precursors with simple, inexpensive, and non-toxic processes, (i) by employing a solvent exchange precipitation method at room temperature and (ii) by applying an environmentally friendly water-based acid precipitation method. The synthesis of Organosolv (High Purity Lignin) nanoparticles via antisolvent flash precipitation method in water resulted in particles in the size range of 45 to 250 nm in diameter. We investigate the synthesis parameters of Kraft (Indulin AT) lignin nanoparticles by flash precipitation induced by pH drop in ethylene glycol. Furthermore, we evaluate the ionic strength and pH stability of both lignin nanoparticle suspensions and highlight differences in the systems. After silver ion infusion of Indulin AT nanoparticles followed by surface modification, we show that the EbNPs exhibit higher antimicrobial activity towards Gram-negative human pathogens Escherichia coli and Pseudomonas aeruginosa and Gram-positive human pathogens Staphylococcus epidermidis in direct comparison with silver nanoparticles and silver nitrate solution, and that the particles are effective against quaternary ammonium resistant Ralstonia bacteria. The enhanced antimicrobial action is due to highly-biocidal silver ions released from the EbNP matrix at the cell. High-throughput bioactivity screening using mammalian cell and zebrafish embryo assays performed in collaboration with the U.S. Environmental Protection Agency did not reveal increased safety concerns of the EbNPs, when compared to equivalent amount of AgNPs or AgNO3 solution. The silver ion functionalized EbNPs exhibit broad spectrum microbicide action and are capable of neutralizing common gram-negative human pathogens as well as quaternary amineresistant bacteria, while using ten times less silver when compared with conventional AgNPs and AgNO3 aqueous solution. We envisage that the overall environmental impact of silver ion functionalized EbNPs is likely to be significantly smaller when compared to AgNPs. As more general impact, the approach of engineering environmentally-benign lignin-core nanoparticles with matching functionality to persistent nanoparticles illustrates how green chemistry principles including atom economy, use of renewable feedstocks, and design for degradation can be applied to design more sustainable nanomaterials with increased functionality and decreased environmental footprint.

  1. Microwave-accelerated cytochemical stains for the image analysis and the electron microscopic examination of light microscopy diagnostic slides.

    PubMed

    Hanker, J; Giammara, B

    1993-01-01

    Recent studies in our laboratories have shown how microwave (MW) irradiation can accelerate a number of tissue-processing techniques, especially staining, to aid in the preparation of single specimens on glass microscope slides or coverslips for examination by light microscopy (and electron microscopy, if required) for diagnostic purposes. Techniques have been developed, which give permanently stained preparations, that can be studied initially by light microscopy, their areas of interest mapped, and computer-automated image analysis performed to obtain quantitative information. This is readily performed after MW-accelerated staining with silver methenamine by the Giammara-Hanker PATS or PATS-TS reaction. This variation of the PAS reaction gives excellent markers for specific infectious agents such as lipopolysaccharides for gram-negative bacteria or mannans for fungi. It is also an excellent stain for glycogen and basement membranes and an excellent marker for type III collagen or reticulin in the endoneurium or perineurium of peripheral nerve or in the capillary walls. Our improved MW-accelerated Feulgen reaction with silver methenamine for nuclear DNA is useful to show the nuclei of bacteria and fungi as well as of cells they are infecting. Improved coating and penetration of tissue surfaces by thiocarbohydrazide bridging of ruthenium red, applied under MW-acceleration, render biologic specimens sufficiently conductive for SEM so that sputter coating with gold is unnecessary. The specimens treated with these highly visible electron-opaque stains can be screened with the light microscope after mounting in polyethylene glycol (PEG) and the structures or areas selected for EM study are mapped with a Micro-Locator slide. After removal of the water soluble PEG the specimens are remounted in the usual EM media for scanning electron microscopy (SEM) or transmission electron microscopy (TEM) study of the mapped areas. By comparing duplicate smears from areas of infection, such as two coverslips of buffy coat smears of blood from a patient with septicemia, the microorganisms responsible can occasionally be classified for antimicrobial therapy long before culture results are available; gram-negative bacteria are positive with the Giammara-Hanker PATS-TS stain, and gram-positive bacteria are positive with the SIGMA HT40 Gram stain. The gram-positive as well as gram-negative bacteria are both initially stained by the crystal violet component of the Gram stain. The crystal violet stain is readily removed from the gram-negative (but not the gram-positive) bacteria when the specimens are rinsed with alcohol/acetone. If this rinse step is omitted, the crystal violet remains attached to both gram-negative and gram-positive bacteria. It can then be rendered insoluble, electron-opaque, and conductive by treatment with silver methenamine solution under MW-irradiation. This metallized crystal violet is a more effective silver stain than the PATS-TS stain for a number of gram-negative spirochetes such as Treponema pallidum, the microbe that causes syphilis.

  2. The Healing Effect of N-Hexan- Dichloromethane Extract Root Onosma Bulbotrichum in Second Degree Burns

    PubMed Central

    Hemmati, Aliasghar; Namjuyan, Forough; Yousefi, Sadegh; Housmand, Gholamreza; Khadem Haghighian, Hossein; Rezaei, Anahita

    2018-01-01

    BACKGROUND Wound healing is the process of repair following an injury to the skin and other soft tissues. In this study, the effect of n-hexane d-chloromethane extract (1: 1) of root Onosma bulbotrichum DC on the second degree burn in rabbit model was investigated. METHODS Thirty-six adult rabbits of both sexes were randomly divided into six groups, control (without treatment), negative control (treatment with cold cream), positive control (treatment with silver sulfadiazine), and treatment groups with 5%, 1% and 2% O. bulbotrichum cream and assessed histologically. RESULTS The best result was shown in 5% O. bulbotrichum group similar to silver sulfadiazine group. The maximum amount of collagen and the tensile strength of tissue were observed in 5% O. bulbotrichum and silver sulfadiazine groups. Histopathological examination showed that burn healing in treatment group with 5% O. bulbotrichum was faster than other groups. CONCLUSION The 5% O. bulbotrichum cream was shown to have healing, and anti-inflammatory effects when used in treatment of second degree burns. PMID:29651389

  3. Evaluation of a Ag/Ag 2S reference electrode with long-term stability for electrochemistry in ionic liquids

    DOE PAGES

    Horwood, Corie; Stadermann, Michael

    2018-02-08

    We report on a reference electrode designed for use in ionic liquids, based on a silver wire coated with silver sulfide. The reference electrode potential is determined by the concentrations of Ag + and S 2-, which are established by the solubility of the Ag 2S coating on the Ag wire. While potential shifts of >100 mV during an experiment have been reported when using silver or platinum wire quasi-reference electrodes, the reference electrode reported here provides a stable potential over several months of experimental use. Additionally, our reference electrode can be prepared and used in a normal air atmosphere,more » and does not need to be assembled and used in a glovebox, or protected from light. In conclusion, the reference electrode has been characterized by voltammetry measurements of ferrocene and cobaltocenium hexafluorophosphate, and was found to slowly drift to more positive potentials at a rate of <1 mV/day for five of the six ionic liquids investigated.« less

  4. Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite.

    PubMed

    Shao, Wei; Liu, Xiufeng; Min, Huihua; Dong, Guanghui; Feng, Qingyuan; Zuo, Songlin

    2015-04-01

    In this work, we report a facile and green approach to prepare a uniform silver nanoparticles (AgNPs) decorated graphene oxide (GO) nanocomposite (GO-Ag). The nanocomposite was fully characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectra, ultraviolet-visible (UV-vis) absorption spectra, and X-ray photoelectron spectroscopy (XPS), which demonstrated that AgNPs with a diameter of approximately 22 nm were uniformly and compactly deposited on GO. To investigate the silver ion release behaviors, HEPES buffers with different pH (5.5, 7, and 8.5) were selected and the mechanism of release actions was discussed in detail. The cytotoxicity of GO-Ag nanocomposite was also studied using HEK 293 cells. GO-Ag nanocomposite displayed good cytocompatibility. Furthermore, the antibacterial properties of GO-Ag nanocomposite were studied using Gram-negative E. coli ATCC 25922 and Gram-positive S. aureus ATCC 6538 by both the plate count method and disk diffusion method. The nanocomposite showed excellent antibacterial activity. These results demonstrated that GO-Ag nanocomposite, as a kind of antibacterial material, had a great promise for application in a wide range of biomedical applications.

  5. Adaptation of the ammoniacal silver reaction to cytochemical demonstration of myelin basic protein.

    PubMed

    Staykova, M; Jordanov, J; Goranov, I

    1978-01-01

    A modification of Black and Ansley's ammoniacal silver reaction (ASR) for histones is proposed for visualizing myelin basic protien (MBP) in the nervous system. The reaction is performed on histological sections of tissues fixed in neutralized formalin-alcohol and delipidized in the course of the routine paraffin embedding. The deparaffinized sections are again treated with formalin in order to make the "unmasked" by the delipidization basic groups of MBP reactive to ammoniacal silver. After treatment with this reagent MBP of the myelin sheaths of the nerve fibres is impregnated brownish-black. Deparaffinized sections subjected to an extraction of MBP with hydrochloric acid exhibit a negative reaction at the level of the myelin sheaths the same reaction being preserved at the level of the nuclear histones. The reaction is positive in paper spots of nervous tissue extracts obtained with the same acid. These assays indicate the specificity of the modified ASR. The method can be used for studies on the processes of myelination and demylination in normal histogenesis and in pathology of the nervous tissue.

  6. Cellulose aerogels functionalized with polypyrrole and silver nanoparticles: In-situ synthesis, characterization and antibacterial activity.

    PubMed

    Wan, Caichao; Li, Jian

    2016-08-01

    Green porous and lightweight cellulose aerogels have been considered as promising candidates to substitute some petrochemical host materials to support various nanomaterials. In this work, waste wheat straw was collected as feedstock to fabricate cellulose hydrogels, and a green inexpensive NaOH/polyethylene glycol solution was used as cellulose solvent. Prior to freeze-drying treatment, the cellulose hydrogels were integrated with polypyrrole and silver nanoparticles by easily-operated in-situ oxidative polymerization of pyrrole using silver ions as oxidizing agent. The tri-component hybrid aerogels were characterized by scanning electron microscope, transmission electron microscope, energy dispersive X-ray spectroscopy, selected area electron diffraction, X-ray photoelectron spectroscopy, and X-ray diffraction. Moreover, the antibacterial activity of the hybrid aerogels against Escherichia coli (Gram-negative), Staphylococcus aureus (Gram-positive) and Listeria monocytogenes (intracellular bacteria) was qualitatively and quantitatively investigated by parallel streak method and determination of minimal inhibitory concentration, respectively. This work provides an example of combining cellulose aerogels with nanomaterials, and helps to develop novel forms of cellulose-based functional materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Preparation of SiO2@Ag Composite Nanoparticles and Their Antimicrobial Activity.

    PubMed

    Qin, Rui; Li, Guian; Pan, Liping; Han, Qingyan; Sun, Yan; He, Qiao

    2017-04-01

    At normal atmospheric temperature, the modified sol–gel method was employed to synthesize SiO2 nanospheres (SiO2 NSs) whose average size was about 352 nm. Silver nanoparticles (Ag NPs) were uniformly distributed on the surface of SiO2 nanospheres (SiO2 NSs) by applying chemical reduction method at 95 °C and the size of silver nanoparticles (Ag NPs) could be controlled by simply tuning the reaction time and the concentration of sodium citrate. Besides, the size, morphology, structure and optical absorption properties of SiO2@Ag composite nanoparticles were measured and characterized by laser particle size analyzer (LPSA), transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray diffraction (XRD) and ultraviolet visible absorption spectrometer (UV-Vis), respectively. Furthermore, antimicrobial effect experiments that against gram-negative bacteria (E. coli) and gram-positive bacteria (S. aureus) were carried out to characterize the antibacterial activity of synthesized SiO2@Ag composite nanoparticles. The results show that the prepared SiO2@Ag composite nanoparticles have strong antimicrobial activity, which is associated with the size of silver nanoparticles.

  8. Hemocompatibility and cytocompatibility of pristine and plasma-treated silver-zeolite-chitosan composites

    NASA Astrophysics Data System (ADS)

    Taaca, Kathrina Lois M.; Vasquez, Magdaleno R.

    2018-02-01

    Silver-exchanged zeolite-chitosan (AgZ-Ch) composites with varying AgZ content were prepared by solvent casting and modified under argon (Ar) plasma excited by a 13.56 MHz radio frequency (RF) power source. Silver (Ag) was successfully incorporated in a natural zeolite host without losing its antibacterial activity against Escherichia coli and Staphylococcus aureus. The AgZ particles were incorporated into a chitosan matrix without making significant changes in the matrix structure. The composites also exhibited antibacterial sensitivity due to the inclusion of AgZ. Plasma treatment enhanced the surface wettability of polar and nonpolar test liquids of the composites. The average increase in total surface free energy after treatment was around 49% with the polar component having a significant change. Cytocompatibility tests showed at least 87% cell viability for pristine and plasma-treated composites comparable with supplemented RPMI as positive control. Hemocompatibility tests revealed that pristine composites does not promote hemolysis and the blood clotting ability is less than 10 min. Coupled with antibacterial property, the fabricated composites have promising biomedical applications.

  9. Thermoelectric Coolers with Sintered Silver Interconnects

    NASA Astrophysics Data System (ADS)

    Kähler, Julian; Stranz, Andrej; Waag, Andreas; Peiner, Erwin

    2014-06-01

    The fabrication and performance of a sintered Peltier cooler (SPC) based on bismuth telluride with sintered silver interconnects are described. Miniature SPC modules with a footprint of 20 mm2 were assembled using pick-and-place pressure-assisted silver sintering at low pressure (5.5 N/mm2) and moderate temperature (250°C to 270°C). A modified flip-chip bonder combined with screen/stencil printing for paste transfer was used for the pick-and-place process, enabling high positioning accuracy, easy handling of the tiny bismuth telluride pellets, and immediate visual process control. A specific contact resistance of (1.4 ± 0.1) × 10-5 Ω cm2 was found, which is in the range of values reported for high-temperature solder interconnects of bismuth telluride pellets. The realized SPCs were evaluated from room temperature to 300°C, considerably outperforming the operating temperature range of standard commercial Peltier coolers. Temperature cycling capability was investigated from 100°C to 235°C over more than 200 h, i.e., 850 cycles, during which no degradation of module resistance or cooling performance occurred.

  10. Synthesis and characterization of antimicrobial nanosilver/diatomite nanocomposites and its water treatment application

    NASA Astrophysics Data System (ADS)

    Xia, Yijie; Jiang, Xiaoyu; Zhang, Jing; Lin, Ming; Tang, Xiaosheng; Zhang, Jie; Liu, Hongjun

    2017-02-01

    Nanotechnology for water disinfection application gains increasing attention. Diatomite is one kind of safe natural material, which has been widely used as absorbent, filtration agents, mineral fillers, especially in water treatment industry. Nanosilver/diatomite nanocomposites were developed in this publication with a facile, effective in-situ reduction method. The as-prepared nanosilver/diatomite nanocomposites demonstrated amazing antibacterial properties to gram-positive and gram-negative bacteria. The corresponding property has been characterized by UV-vis absorbance, Transmission Electron Microscopy (TEM), Energy Dispersive X-ray (EDX) and X-ray Photoelectron Spectroscopy (XPS). Moreover, the detailed bacteria killing experiments further displayed that 0.5 g of the nanosilver diatomite could kill >99.999% of E. Coli within half an hour time. And the silver leaching test demonstrated that the concentrations of silver in the filtered water under varies pH environment were below the limit for silver level of WHO standard. Considering the low price of natural diatomite, it is believed that the nanosilver/diatomite nanocomposites have potential application in water purification industry due to its excellent antimicrobial property.

  11. Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications.

    PubMed

    Zain, N Mat; Stapley, A G F; Shama, G

    2014-11-04

    Silver and copper nanoparticles were produced by chemical reduction of their respective nitrates by ascorbic acid in the presence of chitosan using microwave heating. Particle size was shown to increase by increasing the concentration of nitrate and reducing the chitosan concentration. Surface zeta potentials were positive for all nanoparticles produced and these varied from 27.8 to 33.8 mV. Antibacterial activities of Ag, Cu, mixtures of Ag and Cu, and Ag/Cu bimetallic nanoparticles were tested using Bacillus subtilis and Escherichia coli. Of the two, B. subtilis proved more susceptible under all conditions investigated. Silver nanoparticles displayed higher activity than copper nanoparticles and mixtures of nanoparticles of the same mean particle size. However when compared on an equal concentration basis Cu nanoparticles proved more lethal to the bacteria due to a higher surface area. The highest antibacterial activity was obtained with bimetallic Ag/Cu nanoparticles with minimum inhibitory concentrations (MIC) of 0.054 and 0.076 mg/L against B. subtilis and E. coli, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Application of Silver Ion High-Performance Liquid Chromatography for Quantitative Analysis of Selected n-3 and n-6 PUFA in Oil Supplements.

    PubMed

    Czajkowska-Mysłek, Anna; Siekierko, Urszula; Gajewska, Magdalena

    2016-04-01

    The aim of this study was to develop a simple method for simultaneous determination of selected cis/cis PUFA-LNA (18:2), ALA (18:3), GLA (18:3), EPA (20:5), and DHA (22:6) by silver ion high-performance liquid chromatography coupled to a diode array detector (Ag-HPLC-DAD). The separation was performed on three Luna SCX Silver Loaded columns connected in series maintained at 10 °C with isocratic elution by 1% acetonitrile in n-hexane. The applied chromatographic system allowed a baseline separation of standard mixture of n-3 and n-6 fatty acid methyl esters containing LNA, DHA, and EPA and partial separation of ALA and GLA positional isomers. The method was validated by means of linearity, precision, stability, and recovery. Limits of detection (LOD) for considered PUFA standard solutions ranged from 0.27 to 0.43 mg L(-1). The developed method was used to evaluate of n-3 and n-6 fatty acids contents in plant and fish softgel oil capsules, results were compared with reference GC-FID based method.

  13. Evaluation of a Ag/Ag 2S reference electrode with long-term stability for electrochemistry in ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horwood, Corie; Stadermann, Michael

    We report on a reference electrode designed for use in ionic liquids, based on a silver wire coated with silver sulfide. The reference electrode potential is determined by the concentrations of Ag + and S 2-, which are established by the solubility of the Ag 2S coating on the Ag wire. While potential shifts of >100 mV during an experiment have been reported when using silver or platinum wire quasi-reference electrodes, the reference electrode reported here provides a stable potential over several months of experimental use. Additionally, our reference electrode can be prepared and used in a normal air atmosphere,more » and does not need to be assembled and used in a glovebox, or protected from light. In conclusion, the reference electrode has been characterized by voltammetry measurements of ferrocene and cobaltocenium hexafluorophosphate, and was found to slowly drift to more positive potentials at a rate of <1 mV/day for five of the six ionic liquids investigated.« less

  14. Effect of nano silver and silver nitrate on seed yield of (Ocimum basilicum L.)

    PubMed Central

    2014-01-01

    Background The aim of this study was to evaluate the effect of nano silver and silver nitrate on yield of seed in basil plant. The study was carried out in a randomized block design with three replications. Results Four levels of either silver nitrate (0, 100, 200 and 300 ppm) or nano silver (0, 20, 40, and 60 ppm) were sprayed on basil plant at seed growth stage. The results showed that there was no significant difference between 100 ppm of silver nitrate and 60 ppm concentration of nano silver on the shoot silver concentration. However, increasing the concentration of silver nitrate from 100 to 300 ppm caused a decrease in seed yield. In contrast, a raise in the concentration of nano silver from 20 to 60 ppm has led to an improvement in the seed yield. Additionally, the lowest amount of seed yield was found with control plants. Conclusions Finally, with increasing level of silver nitrate, the polyphenol compound content was raised but the enhancing level of nano silver resulting in the reduction of these components. In conclusion, nano silver can be used instead of other compounds of silver. PMID:25383311

  15. The Empirical Formula of Silver Sulfide: An Experiment for Introductory Chemistry

    ERIC Educational Resources Information Center

    Trujillo, Carlos Alexander

    2007-01-01

    An experiment is described that allows students to experimentally determine an empirical formula for silver sulfide. At elevated temperatures, silver sulfide reacts in air to form silver, silver sulfate, and sulfur dioxide. At higher temperatures (960 [degree]C) silver sulfate decomposes to produce metallic silver. (Contains 1 figure and 1 table.)

  16. Factors influencing the preparation of silver-coated glass frit with polyvinyl-pyrrolidone

    NASA Astrophysics Data System (ADS)

    Xiang, Feng; Gan, Weiping

    2018-01-01

    In this work, a new electroless silver plating method for the synthesis of silver-coated glass frit composite powders with good morphology has been proposed and the polyvinyl-pyrrolidone (PVP) was used the activating agent. It was found that the weight ratio of PVP to glass frit affected the distribution and number of silver nanoparticles. Moreover, the loading capacity of the glass frit, the pH value and reaction temperature could influence the size of the silver nanoparticles and morphology of silver on the surface of glass frit. The as-prepared silver-coated glass frit was used to prepare a silver paste using an optimized process to form silver nanoparticles with uniform size and high density. The silver paste with silver-coated glass frit increased the photovoltaic conversion efficiency of silicon solar cells by 0.271% compared with the silver paste prepared with pure glass frit. The silver nanoparticles can promoted the precipitation of Ag crystallites on the silicon wafer. Therefore, the silver-coated glass frit can further optimize and enhance the electrical performance of solar cells.

  17. Method for the recovery of silver from silver zeolite

    DOEpatents

    Reimann, G.A.

    1985-03-05

    High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.

  18. Method for the recovery of silver from silver zeolite

    DOEpatents

    Reimann, George A.

    1986-01-01

    High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.

  19. Supersonic Bare Metal Cluster Beams. Technical Progress Report, March 16, 1984 - April 1, 1985

    DOE R&D Accomplishments Database

    Smalley, R. E.

    1985-01-01

    There have been four major areas of concentration for the study of bare metal cluster beams: neutral cluster, chemical reactivity, cold cluster ion source development (both positive and negative), bare cluster ion ICR (ion cyclotron resonance) development, and photofragmentation studies of bare metal cluster ions.

  20. Glass frits coated with silver nanoparticles for silicon solar cells

    NASA Astrophysics Data System (ADS)

    Li, Yingfen; Gan, Weiping; Zhou, Jian; Li, Biyuan

    2015-06-01

    Glass frits coated with silver nanoparticles were prepared by electroless plating. Gum Arabic (GA) was used as the activating agent of glass frits without the assistance of stannous chloride or palladium chloride. The silver-coated glass frits prepared with different GA dosages were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA). The characterization results indicated that silver-coated glass frits had the structures of both glass and silver. Spherical silver nanoparticles were distributed on the glass frits evenly. The density and particle size of silver nanoparticles on the glass frits can be controlled by adjusting the GA dosage. The silver-coated glass frits were applied to silver pastes to act as both the densification promoter and silver crystallite formation aid in the silver electrodes. The prepared silver-coated glass frits can improve the photovoltaic performances of solar cells.

Top