Quantum cosmological Friedman models with a Yang-Mills field and positive energy levels
NASA Astrophysics Data System (ADS)
Gerhardt, Claus
2010-02-01
We prove the existence of a spectral resolution of the Wheeler-DeWitt equation when the matter field is provided by a Yang-Mills field, with or without mass term, if the spatial geometry of the underlying spacetime is homothetic to {\\bb R}^{3} . The energy levels of the resulting quantum model, i.e. the eigenvalues of the corresponding self-adjoint Hamiltonian with a pure point spectrum, are strictly positive. This work has been supported by the DFG.
Zhang, Boning; Herbold, Eric B.; Homel, Michael A.; Regueiro, Richard A.
2015-12-01
An adaptive particle fracture model in poly-ellipsoidal Discrete Element Method is developed. The poly-ellipsoidal particle will break into several sub-poly-ellipsoids by Hoek-Brown fracture criterion based on continuum stress and the maximum tensile stress in contacts. Also Weibull theory is introduced to consider the statistics and size effects on particle strength. Finally, high strain-rate split Hopkinson pressure bar experiment of silica sand is simulated using this newly developed model. Comparisons with experiments show that our particle fracture model can capture the mechanical behavior of this experiment very well, both in stress-strain response and particle size redistribution. The effects of density and packings o the samples are also studied in numerical examples.
NASA Technical Reports Server (NTRS)
Sapyta, Joe; Reid, Hank; Walton, Lew
1993-01-01
The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.
MODELING DEPOSITION OF INHALED PARTICLES
Modeling Deposition of Inhaled Particles: ABSTRACT
The mathematical modeling of the deposition and distribution of inhaled aerosols within human lungs is an invaluable tool in predicting both the health risks associated with inhaled environmental aerosols and the therapeut...
Patchy Particle Model for Vitrimers
NASA Astrophysics Data System (ADS)
Smallenburg, Frank; Leibler, Ludwik; Sciortino, Francesco
2013-11-01
Vitrimers—a recently invented new class of polymers—consist of covalent networks that can rearrange their topology via a bond shuffling mechanism, preserving the total number of network links. We introduce a patchy particle model whose dynamics directly mimic the bond exchange mechanism and reproduce the observed glass-forming ability. We calculate the free energy of this model in the limit of strong (chemical) bonds between the particles, both via the Wertheim thermodynamic perturbation theory and using computer simulations. The system exhibits an entropy-driven phase separation between a network phase and a dilute cluster gas, bringing new insight into the swelling behavior of vitrimers in solvents.
CFD Modeling of Particle Resuspension
NASA Astrophysics Data System (ADS)
Degraw, Jason; Cimbala, John; Freihaut, James
2006-11-01
The phenomenon of resuspension plays a role in everyday life and is an important factor in indoor air quality. There are several models available for particle detachment, but the mechanisms by which particles are induced to lift off of a surface are not well explained in the literature. The lifting forces on a particle are generally too small to resuspend it, especially in the air flows generated by human activity (e.g., walking). We model the interaction of the aerodynamic disturbances and a thin layer of particles deposited on the surface. A standard CFD solver is used to compute the flow, and the particle transport model is one-way-coupled with the flow solution. Several time-dependent flows are considered, including an idealized footstep. The foot is represented using an immersed boundary technique, and is modeled as a disk that moves up and down with a trajectory patterned after experimental gait data. A jet and a radially moving vortex are generated as the foot approaches the floor. The strength of the jet is determined by the details of the foot movement near the surface. If the foot is slowed as it nears the floor, we find maximum velocities around 3 m/s, while the maximum velocity is more than doubled by a sudden stop. We have also computed a ``vacuum cleaner'' case to model the airflow generated by cleaning activities. In either case, the wall shear along the floor and the near-wall flow structure are used to examine the resuspension of particles.
Gravitational positive energy theorems from information inequalities
NASA Astrophysics Data System (ADS)
Lashkari, Nima; Lin, Jennifer; Ooguri, Hirosi; Stoica, Bogdan; Van Raamsdonk, Mark
2016-12-01
In this paper we argue that classical asymptotically anti-de Sitter spacetimes that arise as states in consistent ultraviolet completions of Einstein gravity coupled to matter must satisfy an infinite family of positive energy conditions. To each ball-shaped spatial region B of the boundary spacetime we can associate a bulk spatial region Σ between B and the bulk extremal surface \\Btilde with the same boundary as B. We show that there exists a natural notion of a gravitational energy for every such region that is non-negative, and non-increasing as one makes the region smaller. The results follow from identifying this gravitational energy with a quantum relative entropy in the associated dual conformal field theory state. The positivity and monotonicity properties of the gravitational energy are implied by the positivity and monotonicity of relative entropy, which holds universally in all quantum systems.
Modeling particle loss in ventilation ducts
Sippola, Mark R.; Nazaroff, William W.
2003-04-01
Empirical equations were developed and applied to predict losses of 0.01-100 {micro}m airborne particles making a single pass through 120 different ventilation duct runs typical of those found in mid-sized office buildings. For all duct runs, losses were negligible for submicron particles and nearly complete for particles larger than 50 {micro}m. The 50th percentile cut-point diameters were 15 {micro}m in supply runs and 25 {micro}m in return runs. Losses in supply duct runs were higher than in return duct runs, mostly because internal insulation was present in portions of supply duct runs, but absent from return duct runs. Single-pass equations for particle loss in duct runs were combined with models for predicting ventilation system filtration efficiency and particle deposition to indoor surfaces to evaluate the fates of particles of indoor and outdoor origin in an archetypal mechanically ventilated building. Results suggest that duct losses are a minor influence for determining indoor concentrations for most particle sizes. Losses in ducts were of a comparable magnitude to indoor surface losses for most particle sizes. For outdoor air drawn into an unfiltered ventilation system, most particles smaller than 1 {micro}m are exhausted from the building. Large particles deposit within the building, mostly in supply ducts or on indoor surfaces. When filters are present, most particles are either filtered or exhausted. The fates of particles generated indoors follow similar trends as outdoor particles drawn into the building.
Discrete Element Modeling of Triboelectrically Charged Particles
NASA Technical Reports Server (NTRS)
Hogue, Michael D.; Calle, Carlos I.; Weitzman, Peter S.; Curry, David R.
2008-01-01
Tribocharging of particles is common in many processes including fine powder handling and mixing, printer toner transport and dust extraction. In a lunar environment with its high vacuum and lack of water, electrostatic forces are an important factor to consider when designing and operating equipment. Dust mitigation and management is critical to safe and predictable performance of people and equipment. The extreme nature of lunar conditions makes it difficult and costly to carry out experiments on earth which are necessary to better understand how particles gather and transfer charge between each other and with equipment surfaces. DEM (Discrete Element Modeling) provides an excellent virtual laboratory for studying tribocharging of particles as well as for design of devices for dust mitigation and for other purposes related to handling and processing of lunar regolith. Theoretical and experimental work has been performed pursuant to incorporating screened Coulombic electrostatic forces into EDEM, a commercial DEM software package. The DEM software is used to model the trajectories of large numbers of particles for industrial particulate handling and processing applications and can be coupled with other solvers and numerical models to calculate particle interaction with surrounding media and force fields. While simple Coulombic force between two particles is well understood, its operation in an ensemble of particles is more complex. When the tribocharging of particles and surfaces due to frictional contact is also considered, it is necessary to consider longer range of interaction of particles in response to electrostatic charging. The standard DEM algorithm accounts for particle mechanical properties and inertia as a function of particle shape and mass. If fluid drag is neglected, then particle dynamics are governed by contact between particles, between particles and equipment surfaces and gravity forces. Consideration of particle charge and any tribocharging and
Exploring the Standard Model of Particles
ERIC Educational Resources Information Center
Johansson, K. E.; Watkins, P. M.
2013-01-01
With the recent discovery of a new particle at the CERN Large Hadron Collider (LHC) the Higgs boson could be about to be discovered. This paper provides a brief summary of the standard model of particle physics and the importance of the Higgs boson and field in that model for non-specialists. The role of Feynman diagrams in making predictions for…
Observations and Modeling of Geospace Energetic Particles
NASA Astrophysics Data System (ADS)
Li, Xinlin
2016-07-01
Comprehensive measurements of energetic particles and electric and magnetic fields from state-of-art instruments onboard Van Allen Probes, in a geo-transfer-like orbit, revealed new features of the energetic particles and the fields in the inner magnetosphere and impose new challenges to any quantitative modeling of the physical processes responsible for these observations. Concurrent measurements of energetic particles by satellites in highly inclined low Earth orbits and plasma and fields by satellites in farther distances in the magnetospheres and in the up stream solar wind are the critically needed information for quantitative modeling and for leading to eventual accurate forecast of the variations of the energetic particles in the magnetosphere. In this presentation, emphasis will be on the most recent advance in our understanding of the energetic particles in the magnetosphere and the missing links for significantly advance in our modeling and forecasting capabilities.
Polarizable water model for Dissipative Particle Dynamics
NASA Astrophysics Data System (ADS)
Pivkin, Igor; Peter, Emanuel
2015-11-01
Dissipative Particle Dynamics (DPD) is an efficient particle-based method for modeling mesoscopic behavior of fluid systems. DPD forces conserve the momentum resulting in a correct description of hydrodynamic interactions. Polarizability has been introduced into some coarse-grained particle-based simulation methods; however it has not been done with DPD before. We developed a new polarizable coarse-grained water model for DPD, which employs long-range electrostatics and Drude oscillators. In this talk, we will present the model and its applications in simulations of membrane systems, where polarization effects play an essential role.
Modeling of particle agglomeration in nanofluids
NASA Astrophysics Data System (ADS)
Krishna, K. Hari; Neti, S.; Oztekin, A.; Mohapatra, S.
2015-03-01
Agglomeration strongly influences the stability or shelf life of nanofluid. The present computational and experimental study investigates the rate of agglomeration quantitatively. Agglomeration in nanofluids is attributed to the net effect of various inter-particle interaction forces. For the nanofluid considered here, a net inter-particle force depends on the particle size, volume fraction, pH, and electrolyte concentration. A solution of the discretized and coupled population balance equations can yield particle sizes as a function of time. Nanofluid prepared here consists of alumina nanoparticles with the average particle size of 150 nm dispersed in de-ionized water. As the pH of the colloid was moved towards the isoelectric point of alumina nanofluids, the rate of increase of average particle size increased with time due to lower net positive charge on particles. The rate at which the average particle size is increased is predicted and measured for different electrolyte concentration and volume fraction. The higher rate of agglomeration is attributed to the decrease in the electrostatic double layer repulsion forces. The rate of agglomeration decreases due to increase in the size of nano-particle clusters thus approaching zero rate of agglomeration when all the clusters are nearly uniform in size. Predicted rates of agglomeration agree adequate enough with the measured values; validating the mathematical model and numerical approach is employed.
Modeling of particle agglomeration in nanofluids
Krishna, K. Hari; Neti, S.; Oztekin, A.; Mohapatra, S.
2015-03-07
Agglomeration strongly influences the stability or shelf life of nanofluid. The present computational and experimental study investigates the rate of agglomeration quantitatively. Agglomeration in nanofluids is attributed to the net effect of various inter-particle interaction forces. For the nanofluid considered here, a net inter-particle force depends on the particle size, volume fraction, pH, and electrolyte concentration. A solution of the discretized and coupled population balance equations can yield particle sizes as a function of time. Nanofluid prepared here consists of alumina nanoparticles with the average particle size of 150 nm dispersed in de-ionized water. As the pH of the colloid was moved towards the isoelectric point of alumina nanofluids, the rate of increase of average particle size increased with time due to lower net positive charge on particles. The rate at which the average particle size is increased is predicted and measured for different electrolyte concentration and volume fraction. The higher rate of agglomeration is attributed to the decrease in the electrostatic double layer repulsion forces. The rate of agglomeration decreases due to increase in the size of nano-particle clusters thus approaching zero rate of agglomeration when all the clusters are nearly uniform in size. Predicted rates of agglomeration agree adequate enough with the measured values; validating the mathematical model and numerical approach is employed.
Modeling Deposition of Inhaled Particles
The mathematical modeling of the deposition and distribution of inhaled aerosols within human lungs is an invaluable tool in predicting both the health risks associated with inhaled environmental aerosols and the therapeutic dose delivered by inhaled pharmacological drugs. Howeve...
Probabilistic Solar Energetic Particle Models
NASA Technical Reports Server (NTRS)
Adams, James H., Jr.; Dietrich, William F.; Xapsos, Michael A.
2011-01-01
To plan and design safe and reliable space missions, it is necessary to take into account the effects of the space radiation environment. This is done by setting the goal of achieving safety and reliability with some desired level of confidence. To achieve this goal, a worst-case space radiation environment at the required confidence level must be obtained. Planning and designing then proceeds, taking into account the effects of this worst-case environment. The result will be a mission that is reliable against the effects of the space radiation environment at the desired confidence level. In this paper we will describe progress toward developing a model that provides worst-case space radiation environments at user-specified confidence levels. We will present a model for worst-case event-integrated solar proton environments that provide the worst-case differential proton spectrum. This model is based on data from IMP-8 and GOES spacecraft that provide a data base extending from 1974 to the present. We will discuss extending this work to create worst-case models for peak flux and mission-integrated fluence for protons. We will also describe plans for similar models for helium and heavier ions.
Polarizable protein model for Dissipative Particle Dynamics
NASA Astrophysics Data System (ADS)
Peter, Emanuel; Lykov, Kirill; Pivkin, Igor
2015-11-01
In this talk, we present a novel polarizable protein model for the Dissipative Particle Dynamics (DPD) simulation technique, a coarse-grained particle-based method widely used in modeling of fluid systems at the mesoscale. We employ long-range electrostatics and Drude oscillators in combination with a newly developed polarizable water model. The protein in our model is resembled by a polarizable backbone and a simplified representation of the sidechains. We define the model parameters using the experimental structures of 2 proteins: TrpZip2 and TrpCage. We validate the model on folding of five other proteins and demonstrate that it successfully predicts folding of these proteins into their native conformations. As a perspective of this model, we will give a short outlook on simulations of protein aggregation in the bulk and near a model membrane, a relevant process in several Amyloid diseases, e.g. Alzheimer's and Diabetes II.
Model of Image Artifacts from Dust Particles
NASA Technical Reports Server (NTRS)
Willson, Reg
2008-01-01
A mathematical model of image artifacts produced by dust particles on lenses has been derived. Machine-vision systems often have to work with camera lenses that become dusty during use. Dust particles on the front surface of a lens produce image artifacts that can potentially affect the performance of a machine-vision algorithm. The present model satisfies a need for a means of synthesizing dust image artifacts for testing machine-vision algorithms for robustness (or the lack thereof) in the presence of dust on lenses. A dust particle can absorb light or scatter light out of some pixels, thereby giving rise to a dark dust artifact. It can also scatter light into other pixels, thereby giving rise to a bright dust artifact. For the sake of simplicity, this model deals only with dark dust artifacts. The model effectively represents dark dust artifacts as an attenuation image consisting of an array of diffuse darkened spots centered at image locations corresponding to the locations of dust particles. The dust artifacts are computationally incorporated into a given test image by simply multiplying the brightness value of each pixel by a transmission factor that incorporates the factor of attenuation, by dust particles, of the light incident on that pixel. With respect to computation of the attenuation and transmission factors, the model is based on a first-order geometric (ray)-optics treatment of the shadows cast by dust particles on the image detector. In this model, the light collected by a pixel is deemed to be confined to a pair of cones defined by the location of the pixel s image in object space, the entrance pupil of the lens, and the location of the pixel in the image plane (see Figure 1). For simplicity, it is assumed that the size of a dust particle is somewhat less than the diameter, at the front surface of the lens, of any collection cone containing all or part of that dust particle. Under this assumption, the shape of any individual dust particle artifact
Lagrangian Trajectory Modeling of Lunar Dust Particles
NASA Technical Reports Server (NTRS)
Lane, John E.; Metzger, Philip T.; Immer, Christopher D.
2008-01-01
Apollo landing videos shot from inside the right LEM window, provide a quantitative measure of the characteristics and dynamics of the ejecta spray of lunar regolith particles beneath the Lander during the final 10 [m] or so of descent. Photogrammetry analysis gives an estimate of the thickness of the dust layer and angle of trajectory. In addition, Apollo landing video analysis divulges valuable information on the regolith ejecta interactions with lunar surface topography. For example, dense dust streaks are seen to originate at the outer rims of craters within a critical radius of the Lander during descent. The primary intent of this work was to develop a mathematical model and software implementation for the trajectory simulation of lunar dust particles acted on by gas jets originating from the nozzle of a lunar Lander, where the particle sizes typically range from 10 micron to 500 micron. The high temperature, supersonic jet of gas that is exhausted from a rocket engine can propel dust, soil, gravel, as well as small rocks to high velocities. The lunar vacuum allows ejected particles to travel great distances unimpeded, and in the case of smaller particles, escape velocities may be reached. The particle size distributions and kinetic energies of ejected particles can lead to damage to the landing spacecraft or to other hardware that has previously been deployed in the vicinity. Thus the primary motivation behind this work is to seek a better understanding for the purpose of modeling and predicting the behavior of regolith dust particle trajectories during powered rocket descent and ascent.
Computer Models Simulate Fine Particle Dispersion
NASA Technical Reports Server (NTRS)
2010-01-01
Through a NASA Seed Fund partnership with DEM Solutions Inc., of Lebanon, New Hampshire, scientists at Kennedy Space Center refined existing software to study the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces. The software, EDEM, allows users to import particles and obtain accurate representations of their shapes for modeling purposes, such as simulating bulk solids behavior, and was enhanced to be able to more accurately model fine, abrasive, cohesive particles. These new EDEM capabilities can be applied in many industries unrelated to space exploration and have been adopted by several prominent U.S. companies, including John Deere, Pfizer, and Procter & Gamble.
Stochastic model for supersymmetric particle branching process
NASA Astrophysics Data System (ADS)
Zhang, Yuanyuan; Chan, Aik Hui; Oh, Choo Hiap
2017-01-01
We develop a stochastic branching model to describe the jet evolution of supersymmetric (SUSY) particles. This model is a modified two-phase branching process, or more precisely, a two-phase simple birth process plus Poisson process. Both pure SUSY partons initiated jets and SUSY plus ordinary partons initiated jets scenarios are considered. The stochastic branching equations are established and the Multiplicity Distributions (MDs) are derived for these two scenarios. We also fit the distribution of the general case (SUSY plus ordinary partons initiated jets) with experimental data. The fitting shows the SUSY particles have not participated in branching at current collision energy yet.
Parallelization of the Lagrangian Particle Dispersion Model
Buckley, R.L.; O`Steen, B.L.
1997-08-01
An advanced stochastic Lagrangian Particle Dispersion Model (LPDM) is used by the Atmospheric Technologies Group (ATG) to simulate contaminant transport. The model uses time-dependent three-dimensional fields of wind and turbulence to determine the location of individual particles released into the atmosphere. This report describes modifications to LPDM using the Message Passing Interface (MPI) which allows for execution in a parallel configuration on the Cray Supercomputer facility at the SRS. Use of a parallel version allows for many more particles to be released in a given simulation, with little or no increase in computational time. This significantly lowers (greater than an order of magnitude) the minimum resolvable concentration levels without ad hoc averaging schemes and/or without reducing spatial resolution. The general changes made to LPDM are discussed and a series of tests are performed comparing the serial (single processor) and parallel versions of the code.
Bonded-cell model for particle fracture.
Nguyen, Duc-Hanh; Azéma, Emilien; Sornay, Philippe; Radjai, Farhang
2015-02-01
Particle degradation and fracture play an important role in natural granular flows and in many applications of granular materials. We analyze the fracture properties of two-dimensional disklike particles modeled as aggregates of rigid cells bonded along their sides by a cohesive Mohr-Coulomb law and simulated by the contact dynamics method. We show that the compressive strength scales with tensile strength between cells but depends also on the friction coefficient and a parameter describing cell shape distribution. The statistical scatter of compressive strength is well described by the Weibull distribution function with a shape parameter varying from 6 to 10 depending on cell shape distribution. We show that this distribution may be understood in terms of percolating critical intercellular contacts. We propose a random-walk model of critical contacts that leads to particle size dependence of the compressive strength in good agreement with our simulation data.
A Classical WR Model with Particle Types
NASA Astrophysics Data System (ADS)
Mazel, A.; Suhov, Y.; Stuhl, I.
2015-06-01
A version of the Widom-Rowlinson model is considered, where particles of types coexist, subject to pairwise hard-core exclusions. For , in the case of large equal fugacities, we give a complete description of the pure phase picture based on the theory of dominant ground states.
Impact modeling with Smooth Particle Hydrodynamics
Stellingwerf, R.F.; Wingate, C.A.
1993-07-01
Smooth Particle Hydrodynamics (SPH) can be used to model hypervelocity impact phenomena via the addition of a strength of materials treatment. SPH is the only technique that can model such problems efficiently due to the combination of 3-dimensional geometry, large translations of material, large deformations, and large void fractions for most problems of interest. This makes SPH an ideal candidate for modeling of asteroid impact, spacecraft shield modeling, and planetary accretion. In this paper we describe the derivation of the strength equations in SPH, show several basic code tests, and present several impact test cases with experimental comparisons.
Identical particle model on biophoton emission
NASA Astrophysics Data System (ADS)
Liu, T. C.; Liu, Songhao; Popp, Fritz A.; Tang, Ao-Qing
1996-09-01
Biophoton emission (PE) method is a non-invasive way revealing biophysical interactions in living tissues. Since its mechanism is not very clear, its acceptance is limited. Gu has presented the quantum theory on biophoton emission according to the Dicke model. However, the Dicke model does not apply to biological system. In this paper, we studied PE by using the identical particle model, the interaction of identical particles by quantum chemistry, as well as the transition of the system interacting with radiation by the time quantum theory on radiation-matter interaction put forward by the first author and his cooperators. It was shown that the identical particles form coherent states, the photon emission probability of the superradiant state is a liner function of N and N2, and the one of the subradiant state is zero. In other words, the photon emission intensity represents the coherent states of the identical particle system. The linear relationship of N and N2 agrees with the PE experiment results on early drosophila embryos. The research on the cell division cycle showed that the superradiant states correspond to the late S phase. This is why PE can be used to differentiate human tumor tissues from normal ones. We also studied induced PE.
Beyond the standard model of particle physics.
Virdee, T S
2016-08-28
The Large Hadron Collider (LHC) at CERN and its experiments were conceived to tackle open questions in particle physics. The mechanism of the generation of mass of fundamental particles has been elucidated with the discovery of the Higgs boson. It is clear that the standard model is not the final theory. The open questions still awaiting clues or answers, from the LHC and other experiments, include: What is the composition of dark matter and of dark energy? Why is there more matter than anti-matter? Are there more space dimensions than the familiar three? What is the path to the unification of all the fundamental forces? This talk will discuss the status of, and prospects for, the search for new particles, symmetries and forces in order to address the open questions.This article is part of the themed issue 'Unifying physics and technology in light of Maxwell's equations'.
Modeling Deep Burn TRISO particle nuclear fuel
NASA Astrophysics Data System (ADS)
Besmann, T. M.; Stoller, R. E.; Samolyuk, G.; Schuck, P. C.; Golubov, S. I.; Rudin, S. P.; Wills, J. M.; Coe, J. D.; Wirth, B. D.; Kim, S.; Morgan, D. D.; Szlufarska, I.
2012-11-01
Under the DOE Deep Burn program TRISO fuel is being investigated as a fuel form for consuming plutonium and minor actinides, and for greater efficiency in uranium utilization. The result will thus be to drive TRISO particulate fuel to very high burn-ups. In the current effort the various phenomena in the TRISO particle are being modeled using a variety of techniques. The chemical behavior is being treated utilizing thermochemical analysis to identify phase formation/transformation and chemical activities in the particle, including kernel migration. Density functional theory is being used to understand fission product diffusion within the plutonia oxide kernel, the fission product's attack on the SiC coating layer, as well as fission product diffusion through an alternative coating layer, ZrC. Finally, a multiscale approach is being used to understand thermal transport, including the effect of radiation damage induced defects, in a model SiC material.
Particle-based model for skiing traffic.
Holleczek, Thomas; Tröster, Gerhard
2012-05-01
We develop and investigate a particle-based model for ski slope traffic. Skiers are modeled as particles with a mass that are exposed to social and physical forces, which define the riding behavior of skiers during their descents on ski slopes. We also report position and speed data of 21 skiers recorded with GPS-equipped cell phones on two ski slopes. A comparison of these data with the trajectories resulting from computer simulations of our model shows a good correspondence. A study of the relationship among the density, speed, and flow of skiers reveals that congestion does not occur even with arrival rates of skiers exceeding the maximum ski lift capacity. In a sensitivity analysis, we identify the kinetic friction coefficient of skis on snow, the skier mass, the range of repelling social forces, and the arrival rate of skiers as the crucial parameters influencing the simulation results. Our model allows for the prediction of speed zones and skier densities on ski slopes, which is important in the prevention of skiing accidents.
Langangian Particle Model of Friction Stir Welding
Tartakovsky, Alexandre M.
2006-12-13
Since its invention fifteen years ago, Friction Stir Welding (FSW) has found commercial application in the marine, aerospace, rail, and now automotive industries. Development of the FSW process for each new application, however, has remained largely empirical. Few detailed numerical modeling techniques have been developed that can explain and predict important features of the process physics. This is particularly true in the areas of material flow, mixing mechanisms, and void prediction. In this paper we present a novel modeling approach to simulate FSW processes that may have significant advantages over current traditional finite element or finite difference based methods. The proposed model is based on the Smoothed Particle Hydrodynamics (SPH) method. Unlike traditional grid-based methods, Lagrangian particle methods such as SPH can simulate the dynamics of interfaces, large material deformations, void formations and the material's strain and temperature history without employing complex tracking schemes. Two- and three-dimensional FSW simulations for different tool designs are presented. Preliminary numerical results are in qualitative agreement with experimental observations. Detailed comparisons between experimental measurements and larger scale FSW simulations are required to further validate and calibrate the SPH based FSW model.
Discrete particle modelling of granular roll waves
NASA Astrophysics Data System (ADS)
Tsang, Jonathan; Dalziel, Stuart; Vriend, Nathalie
2016-11-01
A granular current flowing down an inclined chute or plane can undergo an instability that leads to the formation of surface waves, known as roll waves. Examples of roll waves are found in avalanches and debris flows in landslides, and in many industrial processes. Although related to the Kapitza instability of viscous fluid films, granular roll waves are not yet as well understood. Laboratory experiments typically measure the surface height and velocity of a current as functions of position and time, but they do not give insight into the processes below the surface: in particular, the possible formation of a boundary layer at the free surface as well as the base. To overcome this, we are running discrete particle model (DPM) simulations. Simulations are validated against our laboratory experiments, but they also allow us to examine a much larger range of parameters, such as material properties, chute geometry and particle size dispersity, than that which is possible in the lab. We shall present results from simulations in which we vary particle size and dispersity, and examine the implications on roll wave formation and propagation. Future work will include simulations in which the shape of the chute is varied, both cross-sectionally and in the downstream direction. EPSRC studentship (Tsang) and Royal Society Research Fellowship (Vriend).
NASA Astrophysics Data System (ADS)
Thakur, Siddharth; Neal, Chris; Mehta, Yash; Sridharan, Prasanth; Jackson, Thomas; Balachandar, S.
2017-01-01
Micrsoscale simulations are being conducted for developing point-particle and other related models that are needed for the mesoscale and macroscale simulations of explosive dispersal of particles. These particle models are required to compute (a) instantaneous aerodynamic force on the particle and (b) instantaneous net heat transfer between the particle and the surrounding. A strategy for a sequence of microscale simulations has been devised that allows systematic development of the hybrid surrogate models that are applicable at conditions representative of the explosive dispersal application. The ongoing microscale simulations seek to examine particle force dependence on: (a) Mach number, (b) Reynolds number, and (c) volume fraction (different particle arrangements such as cubic, face-centered cubic (FCC), body-centered cubic (BCC) and random). Future plans include investigation of sequences of fully-resolved microscale simulations consisting of an array of particles subjected to more realistic time-dependent flows that progressively better approximate the actual problem of explosive dispersal. Additionally, effects of particle shape, size, and number in simulation as well as the transient particle deformation dependence on various parameters including: (a) particle material, (b) medium material, (c) multiple particles, (d) incoming shock pressure and speed, (e) medium to particle impedance ratio, (f) particle shape and orientation to shock, etc. are being investigated.
Particle Tracking Model (PTM) with Coastal Modeling System (CMS)
2014-10-31
System ( CMS ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER...www.erdc.usace.army.mil/Missions/WaterResources/CIRP.aspx Coastal Inlets Research Program Particle Tracking Model (PTM) with Coastal Modeling System ( CMS ) The...System ( CMS ), which provides coupled wave and current forcing for PTM simulations. CMS -PTM is implemented in the Surface-water Modeling System, a
Model-independent particle accelerator tuning
Scheinker, Alexander; Pang, Xiaoying; Rybarcyk, Larry
2013-10-21
We present a new model-independent dynamic feedback technique, rotation rate tuning, for automatically and simultaneously tuning coupled components of uncertain, complex systems. The main advantages of the method are: 1) It has the ability to handle unknown, time-varying systems, 2) It gives known bounds on parameter update rates, 3) We give an analytic proof of its convergence and its stability, and 4) It has a simple digital implementation through a control system such as the Experimental Physics and Industrial Control System (EPICS). Because this technique is model independent it may be useful as a real-time, in-hardware, feedback-based optimization scheme for uncertain and time-varying systems. In particular, it is robust enough to handle uncertainty due to coupling, thermal cycling, misalignments, and manufacturing imperfections. As a result, it may be used as a fine-tuning supplement for existing accelerator tuning/control schemes. We present multi-particle simulation results demonstrating the scheme’s ability to simultaneously adaptively adjust the set points of twenty two quadrupole magnets and two RF buncher cavities in the Los Alamos Neutron Science Center Linear Accelerator’s transport region, while the beam properties and RF phase shift are continuously varying. The tuning is based only on beam current readings, without knowledge of particle dynamics. We also present an outline of how to implement this general scheme in software for optimization, and in hardware for feedback-based control/tuning, for a wide range of systems.
SEM++: A particle model of cellular growth, signaling and migration
NASA Astrophysics Data System (ADS)
Milde, Florian; Tauriello, Gerardo; Haberkern, Hannah; Koumoutsakos, Petros
2014-06-01
We present a discrete particle method to model biological processes from the sub-cellular to the inter-cellular level. Particles interact through a parametrized force field to model cell mechanical properties, cytoskeleton remodeling, growth and proliferation as well as signaling between cells. We discuss the guiding design principles for the selection of the force field and the validation of the particle model using experimental data. The proposed method is integrated into a multiscale particle framework for the simulation of biological systems.
Toward a descriptive model of solar particles in the heliosphere
NASA Technical Reports Server (NTRS)
Shea, M. A.; Smart, D. F.; Adams, James H., Jr.; Chenette, D.; Feynman, Joan; Hamilton, Douglas C.; Heckman, G. R.; Konradi, A.; Lee, Martin A.; Nachtwey, D. S.
1988-01-01
During a workshop on the interplanetary charged particle environment held in 1987, a descriptive model of solar particles in the heliosphere was assembled. This model includes the fluence, composition, energy spectra, and spatial and temporal variations of solar particles both within and beyong 1 AU. The ability to predict solar particle fluences was also discussed. Suggestions for specific studies designed to improve the basic model were also made.
Shock Particle Interaction - Fully Resolved Simulations and Modeling
NASA Astrophysics Data System (ADS)
Mehta, Yash; Neal, Chris; Jackson, Thomas L.; Balachandar, S. "Bala"; Thakur, Siddharth
2016-11-01
Currently there is a substantial lack of fully resolved data for shock interacting with multiple particles. In this talk we will fill this gap by presenting results of shock interaction with 1-D array and 3-D structured arrays of particles. Objectives of performing fully resolved simulations of shock propagation through packs of multiple particles are twofold, 1) To understand the complicated physical phenomena occurring during shock particle interaction, and 2) To translate the knowledge from microscale simulations in building next generation point-particle models for macroscale simulations that can better predict the motion (forces) and heat transfer for particles. We compare results from multiple particle simulations against the single particle simulations and make relevant observations. The drag history and flow field for multiple particle simulations are markedly different from those of single particle simluations, highlighting the effect of neighboring particles. We propose new models which capture this effect of neighboring particles. These models are called Pair-wise Interaction Extended Point Particle models (PIEP). Effect of multiple neighboring particles is broken down into pair-wise interactions, and these pair-wise interactions are superimposed to get the final model U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.
Evaluation of Drying Rates of Lignite Particles in Superheated Steam Using Single-Particle Model
NASA Astrophysics Data System (ADS)
Kiriyama, Tsuyoshi; Sasaki, Hideaki; Hashimoto, Akira; Kaneko, Shozo; Maeda, Masafumi
2016-12-01
Drying rates of lignite particle groups in superheated steam are evaluated using a single-particle model developed for Australian lignite. Size distributions of the particles are assumed to obey the Rosin-Rammler equation with the maximum particle diameters defined as 100, 50, and 6 mm. The results show the drying rate of a lignite group depends strongly on the maximum particle size, and removal of large particles prior to drying is shown to be effective to reduce the drying time. The calculation model is available for simulations of drying behaviors of lignite in various dryers when an appropriate heat transfer coefficient is given. This study simulates the drying of particles smaller than 6 mm using a heat transfer coefficient in a fluidized bed dryer reported elsewhere. The required drying time estimated from the calculation is comparable to the processing time reported in an actual fluidized bed dryer, supporting the validity of the calculation model.
Model-independent particle accelerator tuning
Scheinker, Alexander; Pang, Xiaoying; Rybarcyk, Larry
2013-10-21
We present a new model-independent dynamic feedback technique, rotation rate tuning, for automatically and simultaneously tuning coupled components of uncertain, complex systems. The main advantages of the method are: 1) It has the ability to handle unknown, time-varying systems, 2) It gives known bounds on parameter update rates, 3) We give an analytic proof of its convergence and its stability, and 4) It has a simple digital implementation through a control system such as the Experimental Physics and Industrial Control System (EPICS). Because this technique is model independent it may be useful as a real-time, in-hardware, feedback-based optimization scheme formore » uncertain and time-varying systems. In particular, it is robust enough to handle uncertainty due to coupling, thermal cycling, misalignments, and manufacturing imperfections. As a result, it may be used as a fine-tuning supplement for existing accelerator tuning/control schemes. We present multi-particle simulation results demonstrating the scheme’s ability to simultaneously adaptively adjust the set points of twenty two quadrupole magnets and two RF buncher cavities in the Los Alamos Neutron Science Center Linear Accelerator’s transport region, while the beam properties and RF phase shift are continuously varying. The tuning is based only on beam current readings, without knowledge of particle dynamics. We also present an outline of how to implement this general scheme in software for optimization, and in hardware for feedback-based control/tuning, for a wide range of systems.« less
Multiscale modelling of nucleosome core particle aggregation
NASA Astrophysics Data System (ADS)
Lyubartsev, Alexander P.; Korolev, Nikolay; Fan, Yanping; Nordenskiöld, Lars
2015-02-01
The nucleosome core particle (NCP) is the basic building block of chromatin. Under the influence of multivalent cations, isolated mononucleosomes exhibit a rich phase behaviour forming various columnar phases with characteristic NCP-NCP stacking. NCP stacking is also a regular element of chromatin structure in vivo. Understanding the mechanism of nucleosome stacking and the conditions leading to self-assembly of NCPs is still incomplete. Due to the complexity of the system and the need to describe electrostatics properly by including the explicit mobile ions, novel modelling approaches based on coarse-grained (CG) methods at the multiscale level becomes a necessity. In this work we present a multiscale CG computer simulation approach to modelling interactions and self-assembly of solutions of NCPs induced by the presence of multivalent cations. Starting from continuum simulations including explicit three-valent cobalt(III)hexammine (CoHex3+) counterions and 20 NCPs, based on a previously developed advanced CG NCP model with one bead per amino acid and five beads per two DNA base pair unit (Fan et al 2013 PLoS One 8 e54228), we use the inverse Monte Carlo method to calculate effective interaction potentials for a ‘super-CG’ NCP model consisting of seven beads for each NCP. These interaction potentials are used in large-scale simulations of up to 5000 NCPs, modelling self-assembly induced by CoHex3+. The systems of ‘super-CG’ NCPs form a single large cluster of stacked NCPs without long-range order in agreement with experimental data for NCPs precipitated by the three-valent polyamine, spermidine3+.
NASA Astrophysics Data System (ADS)
Moreno, P. A.; Bombardelli, F. A.
2012-12-01
Particles laying motionless at the bed of rivers, lakes and estuaries can be put into motion when the shear stress exerted by the flow on the particles exceeds the critical shear stress. When these particles start their motion they can either remain suspended by long periods of time (suspended load) or move close to the bed (bed load). Particles are transported as bed load in three different modes: Sliding, rolling and saltation. Saltation is usually described as the bouncing motion of sediment particles in a layer a few particle diameters thick. The amount of particles and the bed-load mode in which they move depend on the particle size and density, and the flow intensity, usually quantified by the shear velocity. The bottom shear stress in natural streams will most likely be large enough to set saltation as the most important bed-load transport mechanism among all three modes. Thus, studying the saltation process is crucial for the overall understanding of bed-load transport. Particularly, numerical simulations of this process have been providing important insight regarding the relative importance of the physical mechanisms involved in it. Several processes occur when particles are saltating near the bed: i) Particles collide with the bed, ii) they "fly" between collisions with the bed, as a result of their interaction with the fluid flow, iii) and they collide among themselves. These processes can be simulated using a three-dimensional Eulerian-Lagrangian model. In order to mimic these processes we have experimented with an averaged turbulent flow field represented by the logarithmic law of the wall, and with a more involved approach in which a computed turbulent velocity field for a flat plate was used as a surrogate of the three-dimensional turbulent conditions present close to stream beds. Since flat-plate and open-channel boundary layers are essentially different, a dynamic similarity analysis was performed showing that the highly-resolved three
A phase-field point-particle model for particle-laden interfaces
NASA Astrophysics Data System (ADS)
Gu, Chuan; Botto, Lorenzo
2014-11-01
The irreversible attachment of solid particles to fluid interfaces is exploited in a variety of applications, such as froth flotation and Pickering emulsions. Critical in these applications is to predict particle transport in and near the interface, and the two-way coupling between the particles and the interface. While it is now possible to carry out particle-resolved simulations of these systems, simulating relatively large systems with many particles remains challenging. We present validation studies and preliminary results for a hybrid Eulerian-Lagrangian simulation method, in which the dynamics of the interface is fully-resolved by a phase-field approach, while the particles are treated in the ``point-particle'' approximation. With this method, which represents a compromise between the competing needs of resolving particle and interface scale phenomena, we are able to simulate the adsorption of a large number of particles in the interface of drops, and particle-interface interactions during the spinodal coarsening of a multiphase system. While this method models the adsorption phenomenon efficiently and with reasonable accuracy, it still requires understanding subtle issues related to the modelling of hydrodynamic and capillary forces for particles in contact with interface.
Multiscale Modeling of Metallic Materials Containing Embedded Particles
NASA Technical Reports Server (NTRS)
Phillips, Dawn R.; Iesulauro, Erin; Glaessgen, Edward H.
2004-01-01
Multiscale modeling at small length scales (10(exp -9) to 10(exp -3) m) is discussed for aluminum matrices with embedded particles. A configuration containing one particle surrounded by about 50 grains and subjected to uniform tension and lateral constraint is considered. The analyses are performed to better understand the effects of material configuration on the initiation and progression of debonding of the particles from the surrounding aluminum matrix. Configurational parameters considered include particle aspect ratio and orientation within the surrounding matrix. Both configurational parameters are shown to have a significant effect on the behavior of the materials as a whole. For elliptical particles with the major axis perpendicular to the direction of loading, a particle with a 1:1 aspect ratio completely debonds from the surrounding matrix at higher loads than particles with higher aspect ratios. As the particle major axis is aligned with the direction of the applied load, increasing amounts of load are required to completely debond the particles.
Cluster kinetics model of particle separation in vibrated granular media
NASA Astrophysics Data System (ADS)
McCoy, Benjamin J.; Madras, Giridhar
2006-01-01
We model the Brazil-nut effect (BNE) by hypothesizing that granules form clusters that fragment and aggregate. This provides a heterogeneous medium in which the immersed intruder particle rises (BNE) or sinks (reverse BNE) according to relative convection currents and buoyant and drag forces. A simple relationship proposed for viscous drag in terms of the vibrational intensity and the particle to grain density ratio allows simulation of published experimental data for rise and sink times as functions of particle radius, initial depth of the particle, and particle-grain density ratio. The proposed model correctly describes the experimentally observed maximum in risetime.
A study on the validity of the point-particle model for particle-turbulence interaction
NASA Astrophysics Data System (ADS)
Zhang, Zhongzhen; Prosperetti, Andrea
2002-11-01
The point-particle model, widely used in simulations of particle-turbulence interaction, is justified when the particle size is smaller than or comparable to the Kolmogorov scale. The precise limits of validity of the approximation and the manner in which errors accrue when the particle size increases are not well known. In the present work, direct simulations are conducted for a single finite-size particle suspended in a decaying homogeneous turbulent flow generated with a spectral code as an intial condition. The simulations are conducted by means of the PHYSALIS method. The trajectories of finite-size and point particles are compared as the particle radius is increased above the Kolmogorov scale for different Stokes numbers.
Modeling the effects of particle deformation in chemical mechanical polishing
NASA Astrophysics Data System (ADS)
Chen, Xiaochun; Zhao, Yongwu; Wang, Yongguang
2012-09-01
In a chemical mechanical polishing (CMP) process, an active abrasive particle participating in the wear process will contact the pad and the wafer at the same time. The applied polishing load causes the deformation of the pad in the contact interface of the particle and the pad, and the deformation of the wafer in the contact interface of the particle and the wafer. Besides, this force causes the deformation of the abrasive particle. Based on the elastic-plastic micro-contact mechanics and abrasive wear theory, a novel model for material removal rate (MRR) with consideration of the abrasive particle deformation is presented in this paper. The deformation of the abrasive particle, affecting the indentation depth of the particle into the wafer, is quantitatively incorporated into the model. The results and analyses show that the present model is in good agreement with the experimental data.
Particle hopping vs. fluid-dynamical models for traffic flow
Nagel, K.
1995-12-31
Although particle hopping models have been introduced into traffic science in the 19509, their systematic use has only started recently. Two reasons for this are, that they are advantageous on modem computers, and that recent theoretical developments allow analytical understanding of their properties and therefore more confidence for their use. In principle, particle hopping models fit between microscopic models for driving and fluiddynamical models for traffic flow. In this sense, they also help closing the conceptual gap between these two. This paper shows connections between particle hopping models and traffic flow theory. It shows that the hydrodynamical limits of certain particle hopping models correspond to the Lighthill-Whitham theory for traffic flow, and that only slightly more complex particle hopping models produce already the correct traffic jam dynamics, consistent with recent fluid-dynamical models for traffic flow. By doing so, this paper establishes that, on the macroscopic level, particle hopping models are at least as good as fluid-dynamical models. Yet, particle hopping models have at least two advantages over fluid-dynamical models: they straightforwardly allow microscopic simulations, and they include stochasticity.
Modeling of particle interactions in magnetorheological elastomers
Biller, A. M. Stolbov, O. V. Raikher, Yu. L.
2014-09-21
The interaction between two particles made of an isotropic linearly polarizable magnetic material and embedded in an elastomer matrix is studied. In this case, when an external field is imposed, the magnetic attraction of the particles, contrary to point dipoles, is almost wraparound. The exact solution of the magnetic problem in the linear polarization case, although existing, is not practical; to circumvent its use, an interpolation formula is proposed. One more interpolation expression is developed for the resistance of the elastic matrix to the field-induced particle displacements. Minimization of the total energy of the pair reveals its configurational bistability in a certain field range. One of the possible equilibrium states corresponds to the particles dwelling at a distance, the other—to their collapse in a tight dimer. This mesoscopic bistability causes magnetomechanical hysteresis which has important implications for the macroscopic behavior of magnetorheological elastomers.
Medical Modeling of Particle Size Effects for CB Inhalation Hazards
2015-09-01
typical city. As has been described , many of the parameters in the model are hard-coded due to limitations in data transfer with SCIPUFF. When fully... describes the resulting medical impact. Many current models assume that only the 1 to 5 micron “respirable” particles capable of reaching the pulmonary...well. Inhalation mechanics , FXCODA, DARRT, bioagent, aerosol, particle size, particle deposition, biological agents, ricin, tularemia Unclassified
Modeling inertial particle acceleration statistics in isotropic turbulence
NASA Astrophysics Data System (ADS)
Ayyalasomayajula, S.; Warhaft, Z.; Collins, L. R.
2008-09-01
Our objective is to explain recent Lagrangian acceleration measurements of inertial particles in decaying, nearly isotropic turbulence [Ayyalasomayajula et al., Phys. Rev. Lett. 97, 144507 (2006)]. These experiments showed that as particle inertial effects increased, the variance in the particle acceleration fluctuations was reduced, and the tails of the normalized particle acceleration probability density function (PDF) became systematically attenuated. We model this phenomenon using a base flow that consists of a two-dimensional array of evenly spaced vortices with signs and intensities that vary randomly in time. We simulate a large sample of inertial particles moving through the fluid without disturbing the flow (one-way coupling). Consistent with Bec et al. [J. Fluid Mech. 550, 349 (2006)], we find that our model exhibits preferential concentration or clustering of particles in regions located away from the vortex centers. That is, inertial particles selectively sample the flow field, oversampling regions with high strains and undersampling regions with high vorticities. At low Stokes numbers, this biased "sampling" of the flow is responsible for the reduction in the acceleration variance and partially explains the attenuation of the tails of the acceleration PDF. However, contrary to previous findings, we show that the tails of the PDF are also diminished by "filtering" induced by the attenuated response of the inertial particles to temporal variations in the fluid acceleration: Inertial particles do not respond to fluctuations with frequencies much higher than the inverse of the particle stopping time. We show that larger fluid acceleration events have higher frequencies and hence experience greater filtering by particle inertia. We contrast the vortex model with previous Lagrangian acceleration models by Sawford [Phys. Fluids A 3, 1577 (1991)] and Reynolds [Phys. Fluids 15, L1 (2003)] and show that although these models capture some aspects of the inertial
An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows
Snider, D.M.; O`Rourke, P.J.; Andrews, M.J.
1997-06-01
A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.
Experimental validation of different modeling approaches for solid particle receivers.
Khalsa, Siri Sahib S.; Amsbeck, Lars , Spain and Stuttgart, Germany); Roger, Marc , Spain and Stuttgart, Germany); Siegel, Nathan Phillip; Kolb, Gregory J.; Buck, Reiner , Spain and Stuttgart, Germany); Ho, Clifford Kuofei
2009-07-01
Solid particle receivers have the potential to provide high-temperature heat for advanced power cycles, thermochemical processes, and thermal storage via direct particle absorption of concentrated solar energy. This paper presents two different models to evaluate the performance of these systems. One model is a detailed computational fluid dynamics model using FLUENT that includes irradiation from the concentrated solar flux, two-band re-radiation and emission within the cavity, discrete-phase particle transport and heat transfer, gas-phase convection, wall conduction, and radiative and convective heat losses. The second model is an easy-to-use and fast simulation code using Matlab that includes solar and thermal radiation exchange between the particle curtain, cavity walls, and aperture, but neglects convection. Both models were compared to unheated particle flow tests and to on-sun heating tests. Comparisons between measured and simulated particle velocities, opacity, particle volume fractions, particle temperatures, and thermal efficiencies were found to be in good agreement. Sensitivity studies were also performed with the models to identify parameters and modifications to improve the performance of the solid particle receiver.
NASA Astrophysics Data System (ADS)
Mai-Duy, N.; Phan-Thien, N.; Khoo, B. C.
2015-04-01
In the Dissipative Particle Dynamics (DPD) simulation of suspension, the fluid (solvent) and colloidal particles are replaced by a set of DPD particles and therefore their relative sizes (as measured by their exclusion zones) can affect the maximal packing fraction of the colloidal particles. In this study, we investigate roles of the conservative, dissipative and random forces in this relative size ratio (colloidal/solvent). We propose a mechanism of adjusting the DPD parameters to properly model the solvent phase (the solvent here is supposed to have the same isothermal compressibility to that of water).
Modeling photoacoustic spectral features of micron-sized particles.
Strohm, Eric M; Gorelikov, Ivan; Matsuura, Naomi; Kolios, Michael C
2014-10-07
The photoacoustic signal generated from particles when irradiated by light is determined by attributes of the particle such as the size, speed of sound, morphology and the optical absorption coefficient. Unique features such as periodically varying minima and maxima are observed throughout the photoacoustic signal power spectrum, where the periodicity depends on these physical attributes. The frequency content of the photoacoustic signals can be used to obtain the physical attributes of unknown particles by comparison to analytical solutions of homogeneous symmetric geometric structures, such as spheres. However, analytical solutions do not exist for irregularly shaped particles, inhomogeneous particles or particles near structures. A finite element model (FEM) was used to simulate photoacoustic wave propagation from four different particle configurations: a homogeneous particle suspended in water, a homogeneous particle on a reflecting boundary, an inhomogeneous particle with an absorbing shell and non-absorbing core, and an irregularly shaped particle such as a red blood cell. Biocompatible perfluorocarbon droplets, 3-5 μm in diameter containing optically absorbing nanoparticles were used as the representative ideal particles, as they are spherical, homogeneous, optically translucent, and have known physical properties. The photoacoustic spectrum of micron-sized single droplets in suspension and on a reflecting boundary were measured over the frequency range of 100-500 MHz and compared directly to analytical models and the FEM. Good agreement between the analytical model, FEM and measured values were observed for a droplet in suspension, where the spectral minima agreed to within a 3.3 MHz standard deviation. For a droplet on a reflecting boundary, spectral features were correctly reproduced using the FEM but not the analytical model. The photoacoustic spectra from other common particle configurations such as particle with an absorbing shell and a
Modeling photoacoustic spectral features of micron-sized particles
NASA Astrophysics Data System (ADS)
Strohm, Eric M.; Gorelikov, Ivan; Matsuura, Naomi; Kolios, Michael C.
2014-10-01
The photoacoustic signal generated from particles when irradiated by light is determined by attributes of the particle such as the size, speed of sound, morphology and the optical absorption coefficient. Unique features such as periodically varying minima and maxima are observed throughout the photoacoustic signal power spectrum, where the periodicity depends on these physical attributes. The frequency content of the photoacoustic signals can be used to obtain the physical attributes of unknown particles by comparison to analytical solutions of homogeneous symmetric geometric structures, such as spheres. However, analytical solutions do not exist for irregularly shaped particles, inhomogeneous particles or particles near structures. A finite element model (FEM) was used to simulate photoacoustic wave propagation from four different particle configurations: a homogeneous particle suspended in water, a homogeneous particle on a reflecting boundary, an inhomogeneous particle with an absorbing shell and non-absorbing core, and an irregularly shaped particle such as a red blood cell. Biocompatible perfluorocarbon droplets, 3-5 μm in diameter containing optically absorbing nanoparticles were used as the representative ideal particles, as they are spherical, homogeneous, optically translucent, and have known physical properties. The photoacoustic spectrum of micron-sized single droplets in suspension and on a reflecting boundary were measured over the frequency range of 100-500 MHz and compared directly to analytical models and the FEM. Good agreement between the analytical model, FEM and measured values were observed for a droplet in suspension, where the spectral minima agreed to within a 3.3 MHz standard deviation. For a droplet on a reflecting boundary, spectral features were correctly reproduced using the FEM but not the analytical model. The photoacoustic spectra from other common particle configurations such as particle with an absorbing shell and a
White dwarfs constraints on dark sector models with light particles
Ubaldi, Lorenzo
2014-06-24
The white dwarf luminosity function is well understood in terms of standard model physics and leaves little room for exotic cooling mechanisms related to the possible existence of new weakly interacting light particles. This puts significant constraints on the parameter space of models that contain a massive dark photon and light dark sector particles.
Computer modeling of test particle acceleration at oblique shocks
NASA Technical Reports Server (NTRS)
Decker, Robert B.
1988-01-01
The present evaluation of the basic techniques and illustrative results of charged particle-modeling numerical codes suitable for particle acceleration at oblique, fast-mode collisionless shocks emphasizes the treatment of ions as test particles, calculating particle dynamics through numerical integration along exact phase-space orbits. Attention is given to the acceleration of particles at planar, infinitessimally thin shocks, as well as to plasma simulations in which low-energy ions are injected and accelerated at quasi-perpendicular shocks with internal structure.
TSI Model 3936 Scanning Mobility Particle Spectrometer Instrument Handbook
Kuang, C.
2016-02-01
The Model 3936 Scanning Mobility Particle Spectrometer (SMPS) measures the size distribution of aerosols ranging from 10 nm up to 1000 nm. The SMPS uses a bipolar aerosol charger to keep particles within a known charge distribution. Charged particles are classified according to their electrical mobility, using a long-column differential mobility analyzer (DMA). Particle concentration is measured with a condensation particle counter (CPC). The SMPS is well-suited for applications including: nanoparticle research, atmospheric aerosol studies, pollution studies, smog chamber evaluations, engine exhaust and combustion studies, materials synthesis, filter efficiency testing, nucleation/condensation studies, and rapidly changing aerosol systems.
Modelling complete particle-size distributions from operator estimates of particle-size
NASA Astrophysics Data System (ADS)
Roberson, Sam; Weltje, Gert Jan
2014-05-01
Estimates of particle-size made by operators in the field and laboratory represent a vast and relatively untapped data archive. The wide spatial distribution of particle-size estimates makes them ideal for constructing geological models and soil maps. This study uses a large data set from the Netherlands (n = 4837) containing both operator estimates of particle size and complete particle-size distributions measured by laser granulometry. This study introduces a logit-based constrained-cubic-spline (CCS) algorithm to interpolate complete particle-size distributions from operator estimates. The CCS model is compared to four other models: (i) a linear interpolation; (ii) a log-hyperbolic interpolation; (iii) an empirical logistic function; and (iv) an empirical arctan function. Operator estimates were found to be both inaccurate and imprecise; only 14% of samples were successfully classified using the Dutch classification scheme for fine sediment. Operator estimates of sediment particle-size encompass the same range of values as particle-size distributions measured by laser analysis. However, the distributions measured by laser analysis show that most of the sand percentage values lie between zero and one, so the majority of the variability in the data is lost because operator estimates are made to the nearest 1% at best, and more frequently to the nearest 5%. A method for constructing complete particle-size distributions from operator estimates of sediment texture using a logit constrained cubit spline (CCS) interpolation algorithm is presented. This model and four other previously published methods are compared to establish the best approach to modelling particle-size distributions. The logit-CCS model is the most accurate method, although both logit-linear and log-linear interpolation models provide reasonable alternatives. Models based on empirical distribution functions are less accurate than interpolation algorithms for modelling particle-size distributions in
Particle Physics Primer: Explaining the Standard Model of Matter.
ERIC Educational Resources Information Center
Vondracek, Mark
2002-01-01
Describes the Standard Model, a basic model of the universe that describes electromagnetic force, weak nuclear force radioactivity, and the strong nuclear force responsible for holding particles within the nucleus together. (YDS)
Applying Particle Tracking Model In The Coastal Modeling System
2011-01-01
Rev. 8-98) Prescribed by ANSI Std Z39-18 ERDC/CHL CHETN-IV-78 January 2011 2 Figure 1. CMS domain, grid, and bathymetry . CMS-Flow is driven by...through the simulation. At the end of the simulation, about 65 percent of the released clay particles are considered “ dead ,” ERDC/CHL CHETN-IV-78 January...2011 11 which means that they are either permanently buried at the sea bed or have moved out of the model domain. Figure 11. Specifications of
Merging for Particle-Mesh Complex Particle Kinetic Modeling of the Multiple Plasma Beams
NASA Technical Reports Server (NTRS)
Lipatov, Alexander S.
2011-01-01
We suggest a merging procedure for the Particle-Mesh Complex Particle Kinetic (PMCPK) method in case of inter-penetrating flow (multiple plasma beams). We examine the standard particle-in-cell (PIC) and the PMCPK methods in the case of particle acceleration by shock surfing for a wide range of the control numerical parameters. The plasma dynamics is described by a hybrid (particle-ion-fluid-electron) model. Note that one may need a mesh if modeling with the computation of an electromagnetic field. Our calculations use specified, time-independent electromagnetic fields for the shock, rather than self-consistently generated fields. While a particle-mesh method is a well-verified approach, the CPK method seems to be a good approach for multiscale modeling that includes multiple regions with various particle/fluid plasma behavior. However, the CPK method is still in need of a verification for studying the basic plasma phenomena: particle heating and acceleration by collisionless shocks, magnetic field reconnection, beam dynamics, etc.
Evaluation of stochastic particle dispersion modeling in turbulent round jets
Sun, Guangyuan; Hewson, John C.; Lignell, David O.
2016-11-02
ODT (one-dimensional turbulence) simulations of particle-carrier gas interactions are performed in the jet flow configuration. Particles with different diameters are injected onto the centerline of a turbulent air jet. The particles are passive and do not impact the fluid phase. Their radial dispersion and axial velocities are obtained as functions of axial position. The time and length scales of the jet are varied through control of the jet exit velocity and nozzle diameter. Dispersion data at long times of flight for the nozzle diameter (7 mm), particle diameters (60 and 90 µm), and Reynolds numbers (10, 000–30, 000) are analyzed to obtain the Lagrangian particle dispersivity. Flow statistics of the ODT particle model are compared to experimental measurements. It is shown that the particle tracking method is capable of yielding Lagrangian prediction of the dispersive transport of particles in a round jet. In this study, three particle-eddy interaction models (Type-I, -C, and -IC) are presented to examine the details of particle dispersion and particle-eddy interaction in jet flow.
Evaluation of stochastic particle dispersion modeling in turbulent round jets
Sun, Guangyuan; Hewson, John C.; Lignell, David O.
2016-11-02
ODT (one-dimensional turbulence) simulations of particle-carrier gas interactions are performed in the jet flow configuration. Particles with different diameters are injected onto the centerline of a turbulent air jet. The particles are passive and do not impact the fluid phase. Their radial dispersion and axial velocities are obtained as functions of axial position. The time and length scales of the jet are varied through control of the jet exit velocity and nozzle diameter. Dispersion data at long times of flight for the nozzle diameter (7 mm), particle diameters (60 and 90 µm), and Reynolds numbers (10, 000–30, 000) are analyzedmore » to obtain the Lagrangian particle dispersivity. Flow statistics of the ODT particle model are compared to experimental measurements. It is shown that the particle tracking method is capable of yielding Lagrangian prediction of the dispersive transport of particles in a round jet. In this study, three particle-eddy interaction models (Type-I, -C, and -IC) are presented to examine the details of particle dispersion and particle-eddy interaction in jet flow.« less
Phytoplankton as Particles - A New Approach to Modeling Algal Blooms
2013-07-01
behaviors. A particle- tracking model is inserted into the CE-QUAL-ICM eutrophication model. Phytoplankton are quantified as carbonaceous biomass attached to...phytoplankton transport and production is central to the understanding and remediation of a host of environmental problems, including eutrophication ...comprehensive eutrophication model which will provide transport and ambient conditions to the modeled particles. ERDC/EL TR-13-13 3 Figure 1
NASA Astrophysics Data System (ADS)
Tsai, C.; Lin, E.
2014-12-01
In this study, modeling of suspended sediment particle movement in extreme flows is proposed by stochastic particle tracking modeling approaches. The proposed stochastic model is governed by a stochastic differential equation (SDE) composed of two random processes (a Wiener process and a Poisson process), and a random variable (i.e., flow magnitude) simulated by the extreme value Type I distribution. An extreme flow is defined as a hydrologic flow event (such as a flash flood) or a large flow perturbation with a low probability of occurrence and a high impact on its ambient flow environment. In the proposed particle tracking model, a random term mainly caused by fluid eddy motions is modeled as a Wiener process, while the random occurrences of a sequence of extreme flows can be modeled as a Poisson process. Following previous work by Oh and Tsai (2010)[1] and Tsai et al. (2014)[2], this study is intended to modify the jump term, which models the abrupt changes of particle position in the extreme flow environments. It is proposed that the probabilistic magnitude of extreme events can be simulated by the extreme value type I (EV I) distribution. The ensemble mean and variance of particle trajectory can be obtained from the proposed stochastic models via simulations. Our findings suggest that the ability to consider the probabilistic magnitude of extreme events can provide a more comprehensive and realistic estimate of the uncertainty of particle movement when extreme flow events occur. It is also found that the variance of particle position may be attributed to both the random magnitudes and occurrences of particle jumps in the presence of extreme flow events. It is demonstrated from this study that the proposed model can more explicitly quantify the uncertainty of particle movement by taking into considerations both the random arrival process of extreme flows and the variability of the extreme flow magnitude. [1] Oh, J. S., and Tsai, C.W.(2010). "A stochastic jump
Hydrodynamic model for particle size segregation in granular media
NASA Astrophysics Data System (ADS)
Trujillo, Leonardo; Herrmann, Hans J.
2003-12-01
We present a hydrodynamic theoretical model for “Brazil nut” size segregation in granular materials. We give analytical solutions for the rise velocity of a large intruder particle immersed in a medium of monodisperse fluidized small particles. We propose a new mechanism for this particle size-segregation due to buoyant forces caused by density variations which come from differences in the local “granular temperature”. The mobility of the particles is modified by the energy dissipation due to inelastic collisions and this leads to a different behavior from what one would expect for an elastic system. Using our model we can explain the size ratio dependence of the upward velocity.
NASA Astrophysics Data System (ADS)
Graeser, M.; Bente, K.; Buzug, T. M.
2015-06-01
The dynamical behaviour of superparamagnetic iron oxide nanoparticles (SPIONs) is not yet fully understood. In magnetic particle imaging (MPI) SPIONs are used to determine quantitative real-time medical images of a tracer material distribution. For reaching spatial resolution in the sub-millimetre range, MPI requires a well engineered instrumentation providing a magnetic field gradient exceeding 2 T m{}-{1} . However, as the particle performance strongly affects the sensitivity of the imaging process, optimization of the particle parameters is a crucial factor, which is not easy to address. Today most simulations of MPI use the Langevin model to describe the particle behaviour. In equilibrium, the model matches the measured data. If alternating fields in the mid kHz frequency range are applied, the dynamic behaviour of the particles differs from the Langevin theory due to anisotropy effects, particle-particle-interactions and/or exchange interaction in case of multi-core particles. In this paper a model based on previous work is introduced, which was adopted to include crystal and shape anisotropy of immobilised mono-domain single-core particles. The model is applied to typical MPI frequencies and field strengths with different possible superposition of the anisotropy effects, leading to differences in the particle response. It is shown that, despite comparatively high anisotropy constants, the magnetocrystalline anisotropy energy does not quench the signal response for MPI. The constructive superposition of shape and crystal anisotropy leads to the best performance in terms of sensitivity and resolution of the associated imaging modality and slightly reduces the energy barriers compared to a sole-shape anisotropy.
Modeling of the signals of an optical particle counter for real nonspherical particles.
Heintzenberg, Jost; Okada, Kikuo; Trautmann, Thomas; Hoffmann, Peter
2004-11-01
An optical particle counter (OPC) was exposed to atmospheric particles of diameters of 200, 300, and 400 nm. The OPC data were combined with the results of single-particle analysis with a transmission electron microscope (TEM) on samples taken in parallel with the OPC measurements. With a T-matrix-based optical model the measured OPC spectra of scattered light pulses could be approximated with good precision. With an algorithm that simulated the response of the OPC to a given population of model particles derived from the TEM results, average absorption properties of different particle types were retrieved. For mobility sizes of 400 nm, higher light absorption was retrieved with the optical model for soot aggregates than for the rest of the morphological particle types. At smaller mobility sizes no compositional information could be derived from the model particles derived from the TEM data. Despite the limited success of the new methodology applied to the present experiment the results encourage the use of OPCs in combination with electrical mobility analyzers to derive more than aerosol-size distributions. With state-of-the-art pulse-height analysis the light-scattering pulses could be resolved with much finer resolution than in the instrument used.
Modeling of the Signals of an Optical Particle Counter for Real Nonspherical Particles
NASA Astrophysics Data System (ADS)
Heintzenberg, Jost; Okada, Kikuo; Trautmann, Thomas; Hoffmann, Peter
2004-11-01
An optical particle counter (OPC) was exposed to atmospheric particles of diameters of 200, 300, and 400 nm. The OPC data were combined with the results of single-particle analysis with a transmission electron microscope (TEM) on samples taken in parallel with the OPC measurements. With a T-matrix-based optical model the measured OPC spectra of scattered light pulses could be approximated with good precision. With an algorithm that simulated the response of the OPC to a given population of model particles derived from the TEM results, average absorption properties of different particle types were retrieved. For mobility sizes of 400 nm, higher light absorption was retrieved with the optical model for soot aggregates than for the rest of the morphological particle types. At smaller mobility sizes no compositional information could be derived from the model particles derived from the TEM data. Despite the limited success of the new methodology applied to the present experiment the results encourage the use of OPCs in combination with electrical mobility analyzers to derive more than aerosol-size distributions. With state-of-the-art pulse-height analysis the light-scattering pulses could be resolved with much finer resolution than in the instrument used.
Confidence in climate models including those with suspended particles
NASA Astrophysics Data System (ADS)
Reck, Ruth A.
1982-05-01
Confidence in the predictions of atmospheric models is limited, (1) by the uncertainty in our knowledge of the existing atmospheric system as it is defined by input data, and (2) by the ability of the model to describe all pertinent atmospheric processes. This paper describes a thermal sensitivity study of the global parameters in one version of the Manabe-Wetherald radiative-convective model which inclkudes Mie scattering particles. The relative importance of the usual global model parameters is identified in addition to other atmospheric constituents not commonly included in climate models. In particular this work emphasizes the role of Mie scattering suspended aerosol particles, a component which is seldom included in climate models. Here we discuss the major sources of particles, how the optical properties of individual particles determine the radiative effects of a particle layer, and also illustrate the separate role of absorption and backscatter in determining the sign of the surface temperature change. In addition, the coupling of the particle effects to surface albedo is indicated. Finally, the sign of the surface temperature change from anthropogenic particles is estimated using (1) global maps of particle abundance developed by Kellogg, (2) previous calculations for the Northern Hemisphere published by the author and (3) the surface albedo maps of Hummel and Reck.
Modeling particle transport in downward and upward flows
NASA Astrophysics Data System (ADS)
Basha, H. A.; Culligan, P. J.
2010-07-01
Experimental data obtained for particle transport in downward and upward flows in smooth and rough porous media are analyzed at various flow rates. The data analysis and interpretation are aided through an analytical model with linear kinetics that assumes two sites for particle deposition within a medium, namely, reversible and irreversible, together with a dual mode of irreversible deposition. The bimodal particle transport model is obtained using the Green's function method and is capable of fitting, with reasonable accuracy, the observed transport and deposition behavior of particles. Approximations for advection-dominated flows are also obtained that could represent a simplified modeling tool. Expressions of the temporal moments are developed and algebraic equations are derived that express the model parameters in terms of the moments of the measured particle concentration distributions. The transport models helped define the relationship of the modeled parameters to flow velocity and media roughness. The fitting results show that the parameters for rough and smooth media vary in a systematic way with the pore fluid velocity. The results also reveal that flow direction has a significant influence on the mode and magnitude of irreversible particle deposition for the conditions investigated. For the same seepage velocity, the rate of particle deposition is greater for upward flows than for downward flows. Moreover, roughness effects increase the irreversible particle deposition in downward flows but have little effect in upward flows.
A Particle-based model for water simulation
Max, N., LLNL
1998-01-01
The Smooth-Particle Applied Mechanics (SPAM) model is a relatively recent physical modeling technique It can model both fluids and solids using free-moving particles An implemented SPAM model is described that solved the compressible Navier-Stokes equations to produce animations of splashing and pooling water Because the particle positions are known explicitly each timestep, the SPAM technique produces data amenable to visualization A ray-tracing renderer is also described It samples the underwater light-field distribution and stores tbe information into a Light Accumulation Lattice which is used for scattered light calculations and caustics.
Particle tracking modeling of sediment-laden jets
NASA Astrophysics Data System (ADS)
Chan, S. N.; Lee, J. H. W.
2014-06-01
This paper presents a general model to predict the particulate transport and deposition from a sediment-laden horizontal momentum jet. A three-dimensional (3-D) stochastic particle tracking model is developed based on the governing equation of particle motion. The turbulent velocity fluctuations are modelled by a Lagrangian velocity autocorrelation function that captures the trapping of sediment particles in turbulent eddies, which result in the reduction of settling velocity. Using classical solutions of mean jet velocity, and turbulent fluctuation and dissipation rate profiles derived from computational fluid dynamics calculations of a pure jet, the equation of motion is solved numerically to track the particle movement in the jet flow field. The 3-D particle tracking model predictions of sediment deposition and concentration profiles are in excellent agreement with measured data. The computationally demanding Basset history force is shown to be negligible in the prediction of bottom deposition profiles.
Impact modeling with Smooth Particle Hydrodynamics
Stellingwerf, R.F.; Wingate, C.A.
1992-01-01
Smooth Particle Hydrodynamics (SPH) is a new computational technique uniquely suited to computation of hypervelocity impact phenomena. This paper reviews the characteristics, philosophy, and a bit of the derivation of the method. As illustrations of the technique, several test case computations and several application computations are shown.
Impact modeling with Smooth Particle Hydrodynamics
Stellingwerf, R.F.; Wingate, C.A.
1992-09-01
Smooth Particle Hydrodynamics (SPH) is a new computational technique uniquely suited to computation of hypervelocity impact phenomena. This paper reviews the characteristics, philosophy, and a bit of the derivation of the method. As illustrations of the technique, several test case computations and several application computations are shown.
The charged particle accelerators subsystems modeling
NASA Astrophysics Data System (ADS)
Averyanov, G. P.; Kobylyatskiy, A. V.
2017-01-01
Presented web-based resource for information support the engineering, science and education in Electrophysics, containing web-based tools for simulation subsystems charged particle accelerators. Formulated the development motivation of Web-Environment for Virtual Electrophysical Laboratories. Analyzes the trends of designs the dynamic web-environments for supporting of scientific research and E-learning, within the framework of Open Education concept.
Modelling Liquid Particle Composition In Polar Stratospheric Clouds
NASA Astrophysics Data System (ADS)
Lowe, D.; MacKenzie, A. R.
Polar Stratospheric Clouds (PSCs) are thought to be composed of solid ni- tric acid trihydrate (NAT) particles, water ice particles, or supercooled liquid HNO3/H2SO4/H2O particles under different conditions and depending on the ther- mal history of the air mass. The solid particles are believed to form by the freezing of the liquid particles, the rate of which depends on the composition and size of the liquid particles. Lagrangian-in-radius-space numerical schemes have been used be- fore to study particle composition across the PSC size spectrum, in simple box model runs and in domain-filling Lagrangian studies. However these models were not de- signed to be compatible with global chemistry and transport models (CTMs), which currently model PSCs by assuming equilibrium with the atmosphere.We report here on an adaptation of a continuous (Eulerian-in-radius) distribution scheme, modelling the evolution of liquid PSC particles in non-equilibrium conditions. It uses an effi- cient numerical scheme, designed to be compatible with CTMs. Results from the new scheme have been validated against analytical solutions, and corroborate the compo- sition gradients across the size distribution under rapid cooling conditions that were reported in earlier studies.
An aggregation model for ash particles in volcanic clouds
NASA Astrophysics Data System (ADS)
Costa, A.; Folch, A.; Macedonio, G.; Durant, A.
2009-12-01
A large fraction of fine ash particles injected into the atmosphere during explosive eruptions aggregate through complex interactions of surface liquid layers, electrostatic forces, and differences in particle settling velocities. The aggregates formed have a different size and density compared to primary particles formed during eruption which dramatically changes the dynamics of sedimentation from the volcanic cloud. Consequently, the lifetime of ash particles in the atmosphere is reduced and a distal mass deposition maximum is often generated in resulting tephra deposits. A complete and rigorous description of volcanic ash fallout requires the full coupling of models of volcanic cloud dynamics and dispersion, and ash particle transport, aggregation and sedimentation. Furthermore, volcanic ash transport models should include an aggregation model that accounts for the interaction of all particle size classes. The problem with this approach is that simulations would require excessively long computational times thereby prohibiting its application in an operational setting during an explosive volcanic eruption. Here we present a simplified model for ash particle transport and aggregation that includes the effects of water in the volcanic cloud and surrounding atmosphere. The aggregation model assumes a fractal relationship for the number of primary particles in aggregates, average sticking efficiency factors, and collision frequency functions that account for Brownian motion, laminar and turbulent fluid shear, and differential settling velocity. A parametric study on the key parameters of the model was performed. We implemented the aggregation model in the WRF+FALL3D coupled modelling system and applied it to different eruptions where aggregation has been recognized to play an important role, including the August and September 1992 Crater Peak eruptions and the 1980 Mt St Helens eruption. In these cases, mass deposited as a function of deposit area and the particle
An extended dissipative particle dynamics model
NASA Astrophysics Data System (ADS)
Cotter, C. J.; Reich, S.
2003-12-01
The method of dissipative particle dynamics (DPD) was introduced by Hoogerbrugge and Koelman (Europhys. Lett., 19 (1992) 155) to study meso-scale material processes. The theoretical investigation of the DPD method was initiated by Espanol (Phys. Rev. E, 52 (1995) 1734) who used a Fokker-Planck formulation of the DPD method and applied the Mori-Zwanzig projection operator calculus to obtain the equations of hydrodynamics for DPD. A current limitation of DPD is that it requires a clear separation of scales between the resolved and unresolved processes. In this letter, we suggest a simple extension of DPD that allows for inclusion of unresolved stochastic processes with exponentially decaying variance for any value of the decay rate, and give an application of this algorithm to the simulation of the shallow-water equations using the Hamiltonian particle-mesh method. The proposed extension is as easy to implement as the standard DPD methods.
Modeling Water Waves with Smoothed Particle Hydrodynamics
2011-09-30
Robert A. Dalrymple Dept of Civil Engineering The Johns Hopkins University 3400 North Charles Street Baltimore, MD 21218 hone: (410) 516...TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) The Johns Hopkins University,Dept of Civil Engineering,3400 North...Computational Physics, 229, 3652-3663. Monaghan , J.J. and Kajtar, J.B., 2009, SPH Particle Boundary Forces for Arbitrary Boundaries, Computer Physics
Models of motor-assisted transport of intracellular particles.
Smith, D A; Simmons, R M
2001-01-01
One-dimensional models are presented for the macroscopic intracellular transport of vesicles and organelles by molecular motors on a network of aligned intracellular filaments. A motor-coated vesicle or organelle is described as a diffusing particle binding intermittently to filaments, when it is transported at the motor velocity. Two models are treated in detail: 1) a unidirectional model, where only one kind of motor is operative and all filaments have the same polarity; and 2) a bidirectional model, in which filaments of both polarities exist (for example, a randomly polarized actin network for myosin motors) and/or particles have plus-end and minus-end motors operating on unipolar filaments (kinesin and dynein on microtubules). The unidirectional model provides net particle transport in the absence of a concentration gradient. A symmetric bidirectional model, with equal mixtures of filament polarities or plus-end and minus-end motors of the same characteristics, provides rapid transport down a concentration gradient and enhanced dispersion of particles from a point source by motor-assisted diffusion. Both models are studied in detail as a function of the diffusion constant and motor velocity of bound particles, and their rates of binding to and detachment from filaments. These models can form the basis of more realistic models for particle transport in axons, melanophores, and the dendritic arms of melanocytes, in which networks of actin filaments and microtubules coexist and motors for both types of filament are implicated. PMID:11159382
Particle-scale modelling of financial price dynamics
NASA Astrophysics Data System (ADS)
Liu, David
2017-02-01
This paper proposes a particle-based computational framework for modeling of financial price dynamics, which is an extension of the recent empirical work of Financial Brownian Particle (FBP), and discretizes and solves the Langevin equation that is the continuum representation of a financial market. The framework enables us to simulate the limit order book of the USD/JPY exchange rates. The research yields results that are in good agreement with the published empirical results. Our framework of modelling financial prices is of multidisciplinary nature, and can bridge the fields of empirical studies of financial order books, particle dynamics simulation, and modelling of financial market.
A Simplified Model for the Acceleration of Cosmic Ray Particles
ERIC Educational Resources Information Center
Gron, Oyvind
2010-01-01
Two important questions concerning cosmic rays are: Why are electrons in the cosmic rays less efficiently accelerated than nuclei? How are particles accelerated to great energies in ultra-high energy cosmic rays? In order to answer these questions we construct a simple model of the acceleration of a charged particle in the cosmic ray. It is not…
Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Bian, Xin; Litvinov, Sergey; Qian, Rui; Ellero, Marco; Adams, Nikolaus A.
2012-01-01
We apply smoothed dissipative particle dynamics (SDPD) [Español and Revenga, Phys. Rev. E 67, 026705 (2003)] to model solid particles in suspension. SDPD is a thermodynamically consistent version of smoothed particle hydrodynamics (SPH) and can be interpreted as a multiscale particle framework linking the macroscopic SPH to the mesoscopic dissipative particle dynamics (DPD) method. Rigid structures of arbitrary shape embedded in the fluid are modeled by frozen particles on which artificial velocities are assigned in order to satisfy exactly the no-slip boundary condition on the solid-liquid interface. The dynamics of the rigid structures is decoupled from the solvent by solving extra equations for the rigid body translational/angular velocities derived from the total drag/torque exerted by the surrounding liquid. The correct scaling of the SDPD thermal fluctuations with the fluid-particle size allows us to describe the behavior of the particle suspension on spatial scales ranging continuously from the diffusion-dominated regime typical of sub-micron-sized objects towards the non-Brownian regime characterizing macro-continuum flow conditions. Extensive tests of the method are performed for the case of two/three dimensional bulk particle-system both in Brownian/ non-Brownian environment showing numerical convergence and excellent agreement with analytical theories. Finally, to illustrate the ability of the model to couple with external boundary geometries, the effect of confinement on the diffusional properties of a single sphere within a micro-channel is considered, and the dependence of the diffusion coefficient on the wall-separation distance is evaluated and compared with available analytical results.
Calibration of TSI model 3025 ultrafine condensation particle counter
Kesten, J.; Reineking, A.; Porstendoerfer, J. )
1991-01-01
The registration efficiency of the TSI model 3025 ultrafine condensation particle counter for Ag and NaCl particles of between 2 and 20 nm in diameter was determined. Taking into account the different shapes of the input aerosol size distributions entering the differential mobility analyzer (DMA) and the transfer function of the DMA, the counting efficiencies of condensation nucleus counters (CNC) for monodisperse Ag and NaCl particles were estimated. In addition, the dependence of the CNC registration efficiency on the particle concentration was investigated.
Microscopic positive-energy potential based on the Gogny interaction
NASA Astrophysics Data System (ADS)
Blanchon, G.; Dupuis, M.; Arellano, H. F.; Vinh Mau, N.
2015-01-01
We present a nucleon elastic scattering calculation based on Green's function formalism in the random-phase approximation. For the first time, the finite-range Gogny effective interaction is used consistently throughout the whole calculation to account for the complex, nonlocal, and energy-dependent optical potential. Effects of intermediate single-particle resonances are included and found to play a crucial role in the account for measured reaction cross sections. Double counting of the particle-hole second-order contribution is carefully addressed. The resulting integro-differential Schrödinger equation for the scattering process is solved without localization procedures. The method is applied to neutron and proton elastic scattering from 40Ca. A successful account for differential and integral cross sections, including analyzing powers, is obtained for incident energies up to 30 MeV. Discrepancies at higher energies are related to a much-too-high volume integral of the real potential for large partial waves. This work opens the way to simultaneously assess effective interactions suitable for both nuclear structure and reactions.
Optical modeling of volcanic ash particles using ellipsoids
NASA Astrophysics Data System (ADS)
Merikallio, Sini; Muñoz, Olga; Sundström, Anu-Maija; Virtanen, Timo H.; Horttanainen, Matti; de Leeuw, Gerrit; Nousiainen, Timo
2015-05-01
The single-scattering properties of volcanic ash particles are modeled here by using ellipsoidal shapes. Ellipsoids are expected to improve the accuracy of the retrieval of aerosol properties using remote sensing techniques, which are currently often based on oversimplified assumptions of spherical ash particles. Measurements of the single-scattering optical properties of ash particles from several volcanoes across the globe, including previously unpublished measurements from the Eyjafjallajökull and Puyehue volcanoes, are used to assess the performance of the ellipsoidal particle models. These comparisons between the measurements and the ellipsoidal particle model include consideration of the whole scattering matrix, as well as sensitivity studies on the point of view of the Advanced Along Track Scanning Radiometer (AATSR) instrument. AATSR, which flew on the ENVISAT satellite, offers two viewing directions but no information on polarization, so usually only the phase function is relevant for interpreting its measurements. As expected, ensembles of ellipsoids are able to reproduce the observed scattering matrix more faithfully than spheres. Performance of ellipsoid ensembles depends on the distribution of particle shapes, which we tried to optimize. No single specific shape distribution could be found that would perform superiorly in all situations, but all of the best-fit ellipsoidal distributions, as well as the additionally tested equiprobable distribution, improved greatly over the performance of spheres. We conclude that an equiprobable shape distribution of ellipsoidal model particles is a relatively good, yet enticingly simple, approach for modeling volcanic ash single-scattering optical properties.
Modeling rainfall-runoff processes using smoothed particle hydrodynamics with mass-varied particles
NASA Astrophysics Data System (ADS)
Chang, Tsang-Jung; Chang, Yu-Sheng; Chang, Kao-Hua
2016-12-01
In this study, a novel treatment of adopting mass-varied particles in smoothed particle hydrodynamics (SPH) is proposed to solve the shallow water equations (SWEs) and model the rainfall-runoff process. Since SWEs have depth-averaged or cross-section-averaged features, there is no sufficient dimension to add rainfall particles. Thus, SPH-SWE methods have focused on modeling discharge flows in open channels or floodplains without rainfall. With the proposed treatment, the application of SPH-SWEs can be extended to rainfall-runoff processes in watersheds. First, the numerical procedures associated with using mass-varied particles in SPH-SWEs are introduced and derived. Then, numerical validations are conducted for three benchmark problems, including uniform rainfall over a 1D flat sloping channel, nonuniform rain falling over a 1D three-slope channel with different rainfall durations, and uniform rainfall over a 2D plot with complex topography. The simulated results indicate that the proposed treatment can avoid the necessity of a source term function of mass variation, and no additional particles are needed for the increase of mass. Rainfall-runoff processes can be well captured in the presence of hydraulic jumps, dry/wet bed flows, and supercritical/subcritical/transcritical flows. The proposed treatment using mass-varied particles was proven robust and reliable for modeling rainfall-runoff processes. It can provide a new alternative for investigating practical hydrological problems.
NASA Astrophysics Data System (ADS)
Ataeefard, Maryam; Shadman, Alireza; Saeb, Mohammad Reza; Mohammadi, Yousef
2016-08-01
A mathematical modeling approach was proposed combining the capabilities of response surface methodology (RSM) and desirability function (DF) and implemented successfully in production of printing toner particles. Toner powders were systematically synthesized through suspension copolymerization process. Applying RSM, a series of experiments were designed and toner particles were prepared and the effects of monomer ratio, colorant and surfactant content on the particle size (PS), particle size distribution (PSD), thermal and colorimetric properties (∆ E) of the resulting toner were monitored and discussed. The second-order models corresponding to each target characteristic, i.e., PS, PSD, and ∆ E of different types of toner powders, were obtained by individual optimization to express variation of each property in terms of polymerization parameters. Applying statistical calculations, the best reduced models were identified to be fed in the second step of optimization. Since toners with appropriate PS, PSD, and CP were needed, we applied multi-objective optimization based on DF approach. The results show that exact tuning of toner properties is closely possible with the aid of hybrid mathematical model developed in this work. Noticeably, desirabilities are very close to 100 %.
Smoothed particle hydrodynamic model for viscoelastic fluids with thermal fluctuations.
Vázquez-Quesada, Adolfo; Ellero, Marco; Español, Pep
2009-05-01
We present a fluid-particle model for a polymer solution in nonisothermal situations. The state of the fluid particles is characterized by the thermodynamic variables and a configuration tensor that describes the underlying molecular orientation of the polymer molecules. The specification of very simple physical mechanisms inspired by the dynamics of single polymer molecules allows one, with the help of the general equation for nonequilibrium reversible-irreversible coupling (GENERIC) formalism, to derive the equations of motion for a set of fluid particles carrying polymer molecules in suspension. In the simplest case of Hookean dumbbells we recover a fluid-particle version of the Oldroyd-B model in which thermal fluctuations are included consistently. Generalization to more complex viscoelastic models, such as finitely extensible nonlinear elastic Peterlin (FENE-P) model, with the proper introduction of thermal fluctuations is straightforward.
Model independence of constraints on particle dark matter
Griest, K.; Sadoulet, B.
1989-03-01
The connection between the annihilation, elastic, and production cross sections is reviewed, showing how a general lower limit on the interaction rate in a detector is obtained from the requirement that a particle be the dark matter. High energy production experiments further constrain models, making very light dark matter particles unlikely. Special attention is paid to the uncertainties, loopholes and model dependencies that go into the arguments and several examples are given. 12 refs., 6 figs.
Emergent Dynamics of a Thermodynamically Consistent Particle Model
NASA Astrophysics Data System (ADS)
Ha, Seung-Yeal; Ruggeri, Tommaso
2017-03-01
We present a thermodynamically consistent particle (TCP) model motivated by the theory of multi-temperature mixture of fluids in the case of spatially homogeneous processes. The proposed model incorporates the Cucker-Smale (C-S) type flocking model as its isothermal approximation. However, it is more complex than the C-S model, because the mutual interactions are not only " mechanical" but are also affected by the "temperature effect" as individual particles may exhibit distinct internal energies. We develop a framework for asymptotic weak and strong flocking in the context of the proposed model.
Solar energetic particle events: Statistical modelling and prediction
NASA Technical Reports Server (NTRS)
Gabriel, S. B.; Feynman, J.; Spitale, G.
1996-01-01
Solar energetic particle events (SEPEs) can have a significant effect on the design and operation of earth orbiting and interplanetary spacecraft. In relation to this, the calculation of proton fluences and fluxes are considered, describing the current state of the art in statistical modeling. A statistical model that can be used for the estimation of integrated proton fluences for different mission durations of greater than one year is reviewed. The gaps in the modeling capabilities of the SEPE environment, such as a proton flux model, alpha particle and heavy ion models and solar cycle variations are described together with the prospects for the prediction of events using neural networks.
Elementary particles, dark matter candidate and new extended standard model
NASA Astrophysics Data System (ADS)
Hwang, Jaekwang
2017-01-01
Elementary particle decays and reactions are discussed in terms of the three-dimensional quantized space model beyond the standard model. Three generations of the leptons and quarks correspond to the lepton charges. Three heavy leptons and three heavy quarks are introduced. And the bastons (new particles) are proposed as the possible candidate of the dark matters. Dark matter force, weak force and strong force are explained consistently. Possible rest masses of the new particles are, tentatively, proposed for the experimental searches. For more details, see the conference paper at https://www.researchgate.net/publication/308723916.
A model for sound absorption by spheroidal particles.
Hipp, Alexander K
2009-06-01
This paper describes a mathematical model for the scattering of acoustic waves in dispersions of prolate or oblate non-spherical particles. Based on fundamental equations of change for mass, momentum, and energy, wave equations are derived and solved in spheroidal coordinates. The examination of the boundary-value problem of an aligned spheroidal particle in a continuous medium, excited by a plane wave, leads to a description of the viscoinertial, thermal, and diffractive phenomena. The model is analogous to the Epstein-Carhart-Allegra-Hawley theory for spherical particles, and suggests itself for studying non-sphericity in the acoustic analysis of industrial dispersions.
DSD - A Particle Simulation Code for Modeling Dusty Plasmas
NASA Astrophysics Data System (ADS)
Joyce, Glenn; Lampe, Martin; Ganguli, Gurudas
1999-11-01
The NRL Dynamically Shielded Dust code (DSD) is a particle simulation code developed to study the behavior of strongly coupled, dusty plasmas. The model includes the electrostatic wake effects of plasma ions flowing through plasma electrons, collisions of dust and plasma particles with each other and with neutrals. The simulation model contains the short-range strong forces of a shielded Coulomb system, and the long-range forces that are caused by the wake. It also includes other effects of a flowing plasma such as drag forces. In order to model strongly coupled dust in plasmas, we make use of the techniques of molecular dynamics simulation, PIC simulation, and the "particle-particle/particle-mesh" (P3M) technique of Hockney and Eastwood. We also make use of the dressed test particle representation of Rostoker and Rosenbluth. Many of the techniques we use in the model are common to all PIC plasma simulation codes. The unique properties of the code follow from the accurate representation of both the short-range aspects of the interaction between dust grains, and long-range forces mediated by the complete plasma dielectric response. If the streaming velocity is zero, the potential used in the model reduces to the Debye-Huckel potential, and the simulation is identical to molecular dynamics models of the Yukawa potential. The plasma appears only implicitly through the plasma dispersion function, so it is not necessary in the code to resolve the fast plasma time scales.
Mathematical modeling of HIV-like particle assembly in vitro.
Liu, Yuewu; Zou, Xiufen
2017-02-22
In vitro, the recombinant HIV-1 Gag protein can generate spherical particles with a diameter of 25-30 nm in a fully defined system. It has approximately 80 building blocks, and its intermediates for assembly are abundant in geometry. Accordingly, there are a large number of nonlinear equations in the classical model. Therefore, it is difficult to compute values of geometry parameters for intermediates and make the mathematical analysis using the model. In this work, we develop a new model of HIV-like particle assembly in vitro by using six-fold symmetry of HIV-like particle assembly to decrease the number of geometry parameters. This method will greatly reduce computational costs and facilitate the application of the model. Then, we prove the existence and uniqueness of the positive equilibrium solution for this model with 79 nonlinear equations. Based on this model, we derive the interesting result that concentrations of all intermediates at equilibrium are independent of three important parameters, including two microscopic on-rate constants and the size of nucleating structure. Before equilibrium, these three parameters influence the concentration variation rates of all intermediates. We also analyze the relationship between the initial concentration of building blocks and concentrations of all intermediates. Furthermore, the bounds of concentrations of free building blocks and HIV-like particles are estimated. These results will be helpful to guide HIV-like particle assembly experiments and improve our understanding of the assembly dynamics of HIV-like particles in vitro.
Electromagnetic sunscreen model: design of experiments on particle specifications.
Lécureux, Marie; Deumié, Carole; Enoch, Stefan; Sergent, Michelle
2015-10-01
We report a numerical study on sunscreen design and optimization. Thanks to the combined use of electromagnetic modeling and design of experiments, we are able to screen the most relevant parameters of mineral filters and to optimize sunscreens. Several electromagnetic modeling methods are used depending on the type of particles, density of particles, etc. Both the sun protection factor (SPF) and the UVB/UVA ratio are considered. We show that the design of experiments' model should include interactions between materials and other parameters. We conclude that the material of the particles is a key parameter for the SPF and the UVB/UVA ratio. Among the materials considered, none is optimal for both. The SPF is also highly dependent on the size of the particles.
Retention modeling of diesel exhaust particles in rats and humans.
Yu, C P; Yoon, K J
1991-05-01
The objective of this study was to predict the lung burden in rats and humans of diesel exhaust particles from automobile emissions by means of a mathematical model. We previously developed a model to predict the deposition of diesel exhaust particles in the lungs of these species. In this study, the clearance and retention of diesel exhaust particles deposited in the lung are examined. A diesel particle is composed of a carbonaceous core (soot) and adsorbed organics. These materials can be removed from the lung after deposition by two mechanisms: (1) mechanical clearance, provided by mucociliary transport in the ciliated airways as well as macrophage phagocytosis and migration in the nonciliated airways, and (2) clearance by dissolution. To study the clearance of diesel exhaust particles from the lung, we used a compartmental model consisting of four anatomical compartments: nasopharyngeal, tracheobronchial, alveolar, and the lung-associated lymph node compartments. We also assumed a particle model made up of material components according to the characteristics of clearance: (1) a carbonaceous core of about 80 percent of particle mass, (2) slowly cleared organics of about 10 percent of particle mass, and (3) fast-cleared organics accounting for the remaining 10 percent of particle mass. The kinetic equations of the retention model were first developed for Fischer-344 rats. The transport rates of each material component of diesel exhaust particles (soot, slowly cleared organics, and fast-cleared organics) were derived using available experimental data and several mathematical approximations. The lung burden results calculated from the model showed that although the organics were cleared at nearly constant rates, the alveolar clearance rate of diesel soot decreased with increasing lung burden. This is consistent with existing experimental observations. At low lung burdens, the alveolar clearance rate of diesel soot was a constant, equal to the normal clearance rate
Multiscale Modeling of Particles Embedded in High Speed Flows
NASA Astrophysics Data System (ADS)
Davis, Sean; Sen, Oishik; Jacobs, Gustaaf; Udaykumar, H. S.
2015-06-01
Problems involving propagation of shock waves through a cloud of particles are inherently multiscale. The system scale is governed by macro-scale conservation equations, which average over solid and fluid phases. The averaging process results in source terms that represent the unresolved momentum exchange between the solid phase and the fluid phase. Typically, such source terms are modeled using empirical correlations derived from physical experiments conducted in a limited parameter space. The focus of the current research is to advance the multiscale modeling of shocked particle-laden gas flows; particle- (i.e. meso-)scale computations are performed to resolve the dynamics of ensembles of particles and closure laws are obtained from the meso-scale for use in the macro-scale equations. Closure models are constructed from meso-scale simulations using the Dynamic Kriging method. The presentation will demonstrate the multiscale approach by connecting meso-scale simulations to an Eulerian-Lagrangian macro-scale model of particle laden flows. The technique is applied to study shock interactions with particle curtains in shock tubes and the results are compared with experimental data in such systems. We gratefully acknowledge the financial support by the Air Force Office of Scientific Research under Grant Number FA9550-12-1-0115 and the National Science Foundation under grant number DMS-115631.
The Modeling of Pickup Ion or Energetic Particle Mediated Plasmas
NASA Astrophysics Data System (ADS)
Zank, G. P.; Mostafavi, P.; Hunana, P.
2016-05-01
Suprathermal energetic particles, such as solar energetic particles (SEPs) in the inner heliosphere and pickup ions (PUIs) in the outer heliosphere and the very local interstellar medium, often form a thermodynamically dominant component in their various environments. In the supersonic solar wind beyond > 10 AU, in the inner heliosheath (IHS), and in the very local interstellar medium (VLISM), PUIs do not equilibrate collisionally with the background plasma. Similarly, SEPs do not equilibrate collisionally with the background solar wind in the inner heliosphere. In the absence of equilibration between plasma components, a separate coupled plasma description for the energetic particles is necessary. Using a collisionless Chapman-Enskog expansion, we derive a closed system of multi-component equations for a plasma comprised of thermal protons and electrons, and suprathermal particles (SEPs, PUIs). The energetic particles contribute an isotropic scalar pressure to leading order, a collisionless heat flux at the next order, and a collisionless stress tensor at the second-order. The collisionless heat conduction and viscosity in the multi-fluid description results from a nonisotropic energetic particle distribution. A simpler single-fluid MHD-like system of equations with distinct equations of state for both the background plasma and the suprathermal particles is derived. We note briefly potential pitfalls that can emerge in the numerical modeling of collisionless plasma flows that contain a dynamically important energetic particle component.
Dissipative particle dynamics model for colloid transport in porous media
Pan, W.; Tartakovsky, A. M.
2013-08-01
We present that the transport of colloidal particles in porous media can be effectively modeled with a new formulation of dissipative particle dynamics, which augments standard DPD with non-central dissipative shear forces between particles while preserving angular momentum. Our previous studies have demonstrated that the new formulation is able to capture accurately the drag forces as well as the drag torques on colloidal particles that result from the hydrodynamic retardation effect. In the present work, we use the new formulation to study the contact efficiency in colloid filtration in saturated porous media. Note that the present model include all transport mechanisms simultaneously, including gravitational sedimentation, interception and Brownian diffusion. Our results of contact efficiency show a good agreement with the predictions of the correlation equation proposed by Tufenkji and EliMelech, which also incorporate all transport mechanisms simultaneously without the additivity assumption.
Two component mie scattering models of sargasso sea particles.
Brown, O B; Gordon, H R
1973-10-01
The volume scattering function is calculated for particle suspensions consisting of two components systematically distributed in a manner consistent with Coulter Counter observations in the Sargasso Sea. The components are assigned refractive indices 1.01-0.01i and 1.15 to represent organic and inorganic particles, respectively. The only models found that reproduce observed scattering functions require a considerable fraction of the suspended particle volume to be organic in nature. This fraction, however, contributes less than 10% to the total scattering function. The model finally chosen indicates that the inorganic particles smaller than 2.5 micro do not occur in large enough concentrations to have a significant effect on the volume scattering function.
Space Charge Models for Particle Tracking on Long Time Scales
Holmes, Jeffrey A; Cousineau, Sarah M; Shishlo, Andrei P; Potts III, Robert E
2013-01-01
In order to efficiently track charged particles over long times, most tracking codes use either analytic charge distributions or particle-in-cell (PIC) methods based on fast Fourier transforms (FFTs). While useful for theoretical studies, analytic distribution models do not allow accurate simulation of real machines. PIC calculations can utilize realistic space charge distributions, but these methods suffer from the presence of discretization errors. We examine the situation for particle tracking with space charge over long times, and consider possible ideas to improve the accuracy of such calculations.
Magnetic field models from energetic particle data at Neptune
NASA Technical Reports Server (NTRS)
Selesnick, R. S.
1992-01-01
The locations of features in the Voyager 2 energetic particle data from Neptune are combined with uncertainties in the multipole expansion of the planetary magnetic field to derive new magnetic field models that are consistent both with various interpretations of the particle features and with the magnetic field data. While assumptions as to the origin of the features must be made, they do not provide sufficient constraints to obtain significant new information on any of the unknown multipole coefficients. However, the magnetic L shell positions of the particle features, which are interpreted primarily as absorption signatures of Neptune's satellites, can, in general, be brought into agreement with expected values.
Rong, Guan; Liu, Guang; Zhou, Chuang-bing
2013-01-01
Since rocks are aggregates of mineral particles, the effect of mineral microstructure on macroscopic mechanical behaviors of rocks is inneglectable. Rock samples of four different particle shapes are established in this study based on clumped particle model, and a sphericity index is used to quantify particle shape. Model parameters for simulation in PFC are obtained by triaxial compression test of quartz sandstone, and simulation of triaxial compression test is then conducted on four rock samples with different particle shapes. It is seen from the results that stress thresholds of rock samples such as crack initiation stress, crack damage stress, and peak stress decrease with the increasing of the sphericity index. The increase of sphericity leads to a drop of elastic modulus and a rise in Poisson ratio, while the decreasing sphericity usually results in the increase of cohesion and internal friction angle. Based on volume change of rock samples during simulation of triaxial compression test, variation of dilation angle with plastic strain is also studied. PMID:23997677
Modeling electrokinetic flow by Lagrangian particle-based method
NASA Astrophysics Data System (ADS)
Pan, Wenxiao; Kim, Kyungjoo; Perego, Mauro; Tartakovsky, Alexandre; Parks, Mike
2015-11-01
This work focuses on mathematical models and numerical schemes based on Lagrangian particle-based method that can effectively capture mesoscale multiphysics (hydrodynamics, electrostatics, and advection-diffusion) associated in applications of micro-/nano-transport and technology. The order of accuracy is significantly improved for particle-based method with the presented implicit consistent numerical scheme. Specifically, we show simulation results on electrokinetic flows and microfluidic mixing processes in micro-/nano-channel and through semi-permeable porous structures.
Particle production within the quark meson coupling model
Panda, P. K.; Menezes, D. P.; Providencia, C.
2009-07-15
Quark-meson coupling (QMC) models can be successfully applied to the description of compact star properties in nuclear astrophysics as well as to nuclear matter. In the regime of hot hadronic matter very few calculations exist using the QMC model, in particular when applied to particle yields in heavy ion collisions. In the present work, we identify the free energy of the bag with the effective mass of the baryons and we calculate the particle production yields on a Au+Au collision at the BNL Relativistic Heavy Ion Collider (RHIC) with the QMC model and compare them with results obtained previously with other relativistic models. A smaller temperature for the fireball, T=132 MeV, is obtained because of the smaller effective baryon masses predicted by QMC. QMC was also applied to the description of particle yields at the CERN Super Proton Synchrotron (SPS) in Pb+Pb collisions.
Modeling of Fine-Particle Formation in Turbulent Flames
NASA Astrophysics Data System (ADS)
Raman, Venkat; Fox, Rodney O.
2016-01-01
The generation of nanostructured particles in high-temperature flames is important both for the control of emissions from combustion devices and for the synthesis of high-value chemicals for a variety of applications. The physiochemical processes that lead to the production of fine particles in turbulent flames are highly sensitive to the flow physics and, in particular, the history of thermochemical compositions and turbulent features they encounter. Consequently, it is possible to change the characteristic size, structure, composition, and yield of the fine particles by altering the flow configuration. This review describes the complex multiscale interactions among turbulent fluid flow, gas-phase chemical reactions, and solid-phase particle evolution. The focus is on modeling the generation of soot particles, an unwanted pollutant from automobile and aircraft engines, as well as metal oxides, a class of high-value chemicals sought for specialized applications, including emissions control. Issues arising due to the numerical methods used to approximate the particle number density function, the modeling of turbulence-chemistry interactions, and model validation are also discussed.
Modeling Water Waves with Smoothed Particle Hydrodynamics
2013-09-30
criterion (Jeong & Hussain, 1995), which uses the symmetric and antisymmetric components of the velocity gradient tensor to identify regions of low...surf zone or as a first approximation to a tsunami . Wave data was obtain from the laboratory experiments of Ting (2006). In Figure 4, the measured...R., Hérault, A., & Bilotta, G. SPH modeling of mean velocity transmission in a rip current system, International Conference on Coastal Engineering
Modelling new particle formation events in the South African savannah
Gierens, Rosa; Laakso, Lauri; Mogensen, Ditte; Vakkari, Ville; Buekes, Johan P.; Van Zyl, Pieter; Hakola, H.; Guenther, Alex B.; Pienaar, J. J.; Boy, Michael
2014-05-28
Africa is one of the less studied continents with respect to atmospheric aerosols. Savannahs are complex dynamic systems sensitive to climate and land-use changes, but the interaction of these systems with the atmosphere is not well understood. Atmospheric particles, called aerosols, affect the climate on regional and global scales, and are an important factor in air quality. In this study, measurements from a relatively clean savannah environment in South Africa were used to model new particle formation and growth. There already are some combined long-term measurements of trace gas concentrations together with aerosol and meteorological variables available, but to our knowledge this is the first detailed simulation that includes all the main processes relevant to particle formation. The results show that both of the particle formation mechanisms investigated overestimated the dependency of the formation rates on sulphuric acid. From the two particle formation mechanisms tested in this work, the approach that included low volatile organic compounds to the particle formation process was more accurate in describing the nucleation events than the approach that did not. To obtain a reliable estimate of aerosol concentration in simulations for larger scales, nucleation mechanisms would need to include organic compounds, at least in southern Africa. This work is the first step in developing a more comprehensive new particle formation model applicable to the unique environment in southern Africa. Such a model will assist in better understanding and predicting new particle formation – knowledge which could ultimately be used to mitigate impacts of climate change and air quality.
Modeling transport and aggregation of volcanic ash particles
NASA Astrophysics Data System (ADS)
Costa, Antonio; Folch, Arnau; Macedonio, Giovanni; Durant, Adam
2010-05-01
A complete description of ash aggregation processes in volcanic clouds is an very arduous task and the full coupling of ash transport and ash aggregation models is still computationally prohibitive. A large fraction of fine ash injected in the atmosphere during explosive eruptions aggregate because of complex interactions of surface liquid layers, electrostatic forces, and differences in settling velocities. The formation of aggregates of size and density different from those of the primary particles dramatically changes the sedimentation dynamics and results in lower atmospheric residence times of ash particles and in the formation of secondary maxima of tephra deposit. Volcanic ash transport models should include a full aggregation model accounting for all particle class interaction. However this approach would require prohibitive computational times. Here we present a simplified model for wet aggregation that accounts for both atmospheric and volcanic water transport. The aggregation model assumes a fractal relationship for the number of primary particles in aggregates, average efficiencies factors, and collision frequency functions accounting for Brownian motion, laminar and turbulent fluid shear, and differential settling velocity. We implemented the aggregation model in the WRF+FALL3D coupled modelling system and applied it to different eruptions where aggregation has been recognized to play an important role, such as the August and September 1992 Crater Peak eruptions and the 1980 Mt St Helens eruption. Moreover, understanding aggregation processes in volcanic clouds will contribute to mitigate the risks related with volcanic ash transport and sedimentation.
Hybrid modeling method for a DEP based particle manipulation.
Miled, Mohamed Amine; Gagne, Antoine; Sawan, Mohamad
2013-01-30
In this paper, a new modeling approach for Dielectrophoresis (DEP) based particle manipulation is presented. The proposed method fulfills missing links in finite element modeling between the multiphysic simulation and the biological behavior. This technique is amongst the first steps to develop a more complex platform covering several types of manipulations such as magnetophoresis and optics. The modeling approach is based on a hybrid interface using both ANSYS and MATLAB to link the propagation of the electrical field in the micro-channel to the particle motion. ANSYS is used to simulate the electrical propagation while MATLAB interprets the results to calculate cell displacement and send the new information to ANSYS for another turn. The beta version of the proposed technique takes into account particle shape, weight and its electrical properties. First obtained results are coherent with experimental results.
IR decoys modeling method based on particle system
NASA Astrophysics Data System (ADS)
Liu, Jun-yu; Wu, Kai-feng; Dong, Yan-bing
2016-10-01
Due to the complexity in combustion processes of IR decoys, it is difficult to describe its infrared radiation characteristics by deterministic model. In this work, the IR decoys simulation based on particle system was found. The measured date of the IR decoy is used to analyze the typical characteristic of the IR decoy. A semi-empirical model of the IR decoy motion law has been set up based on friction factors and a IR decoys simulation model has been build up based on particle system. The infrared imaging characteristic and time varying characteristic of the IR decoy were simulated by making use of the particle feature such as lifetime, speed and color. The dynamic IR decoys simulation is realized with the VC++6.0 and OpenGL.
Cache Allocation in CDN: An Evolutionary Game Generalized Particle Model
NASA Astrophysics Data System (ADS)
Feng, Xiang; Lau, Francis C. M.; Gao, Daqi
Content distribution networks (CDNs) increasingly have been used to reduce the response times experienced by Internet users through placing surrogates close to the clients. This paper presents an object replacement approach based on an evolutionary game generalized particle model (G-GPM). We first propose a problem model for CDNs. The CDN model is then fit into a gravitational field. The origin servers and surrogates are regarded as two kinds of particles which are located in two force-fields. The cache allocation problem is thus transformed into the kinematics and dynamics of the particles in the annular and the round force-fields. The G-GPM approach is unique in four aspects: 1) direct viewing of individual and overall optimization; 2) parallel computing (lower time complexity); 3) multi-objective solution; and 4) being able to deal with some social interactions behaviors.
Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics
Lei, Huan; Mundy, Christopher J.; Schenter, Gregory K.; Voulgarakis, Nikolaos
2015-05-21
Thermal fluctuation and hydrophobicity are two hallmarks of fluid hydrodynamics on the nano-scale. It is a challenge to consistently couple the small length and time scale phenomena associated with molecular interaction with larger scale phenomena. The development of this consistency is the essence of mesoscale science. In this study, we develop a nanoscale fluid model based on smoothed dissipative particle dynamics that accounts for the phenomena of associated with density fluctuations and hydrophobicity. We show consistency in the fluctuation spectrum across scales. In doing so, it is necessary to account for finite fluid particle size. Furthermore, we demonstrate that the present model can capture of the void probability and solvation free energy of apolar particles of different sizes. The present fluid model is well suited for a understanding emergent phenomena in nano-scale fluid systems.
A point particle model of lightly bound skyrmions
NASA Astrophysics Data System (ADS)
Gillard, Mike; Harland, Derek; Kirk, Elliot; Maybee, Ben; Speight, Martin
2017-04-01
A simple model of the dynamics of lightly bound skyrmions is developed in which skyrmions are replaced by point particles, each carrying an internal orientation. The model accounts well for the static energy minimizers of baryon number 1 ≤ B ≤ 8 obtained by numerical simulation of the full field theory. For 9 ≤ B ≤ 23, a large number of static solutions of the point particle model are found, all closely resembling size B subsets of a face centred cubic lattice, with the particle orientations dictated by a simple colouring rule. Rigid body quantization of these solutions is performed, and the spin and isospin of the corresponding ground states extracted. As part of the quantization scheme, an algorithm to compute the symmetry group of an oriented point cloud, and to determine its corresponding Finkelstein-Rubinstein constraints, is devised.
Statistical modeling of preferential concentration of heavy particles in turbulence
NASA Astrophysics Data System (ADS)
Hartlep, T.; Cuzzi, J. N.
2014-12-01
Preferential concentration in turbulent flows is a process that causes heavy particles to cluster in regions of high strain (in-between high vorticity regions), with specifics depending on their stopping time or Stokes number. This process is thought to be of importance in various problems including cloud droplet formation, aerosol transport in the atmosphere, sprays, and the formation of asteroid and comets in protoplanetary nebulae. Here, we present the statistical determination of particle multiplier distributions from large numerical simulations of particle-laden isotopic turbulence, and a cascade model for modeling turbulent concentration at scales and Reynolds numbers not accessible by numerical simulations. We find that the multiplier distributions are scale dependent at scales within a decade or so of the inertial scale, and have properties that differ from widely used "beta-function" models.
Explosive particle soil surface dispersion model for detonated military munitions.
Hathaway, John E; Rishel, Jeremy P; Walsh, Marianne E; Walsh, Michael R; Taylor, Susan
2015-07-01
The accumulation of high explosive mass residue from the detonation of military munitions on training ranges is of environmental concern because of its potential to contaminate the soil, surface water, and groundwater. The US Department of Defense wants to quantify, understand, and remediate high explosive mass residue loadings that might be observed on active firing ranges. Previously, efforts using various sampling methods and techniques have resulted in limited success, due in part to the complicated dispersion pattern of the explosive particle residues upon detonation. In our efforts to simulate particle dispersal for high- and low-order explosions on hypothetical firing ranges, we use experimental particle data from detonations of munitions from a 155-mm howitzer, which are common military munitions. The mass loadings resulting from these simulations provide a previously unattained level of detail to quantify the explosive residue source-term for use in soil and water transport models. In addition, the resulting particle placements can be used to test, validate, and optimize particle sampling methods and statistical models as applied to firing ranges. Although the presented results are for a hypothetical 155-mm howitzer firing range, the method can be used for other munition types once the explosive particle characteristics are known.
Modeling oceanic multiphase flow by using Lagrangian particle tracking
NASA Astrophysics Data System (ADS)
Matsumura, Y.
2014-12-01
While the density of seawater is basically determined by its temperature, salinity and pressure, the effective density becomes higher when the water mass contains suspended sediment. On the other hands, effective density declines when water mass contains fine scale materials of lower density such as bubbles and ice crystals. Such density anomaly induced by small scale materials suspended in water masses sometimes plays important roles in the sub-mesoscale ocean physics. To simulate these small scale oceanic multiphase flow, a new modeling framework using an online Lagrangian particle tracking method is developed. A Lagrangian particle tracking method has substantial advantages such as an explicit treatment of buoyancy force acting on each individual particle, no numerical diffusion and dissipation, high dynamic range and an ability to track the history and each individual particle. However, its numerical cost causes difficulty when we try to simulate a large number of particles. In the present study we implement a numerically efficient particle tracking scheme using linked-list data structure, which is coupled with a nonhydrostatic dynamical core. This newly developed model successfully reproduces characteristics of some interesting small scale multiphase processes, for example hyperpycnal flow (a sediment-rich river water plume trapped at ocean floor) and grease ice cover (a slurry mixture of frazil ice crystals and seawater).
Modeling reactive transport with particle tracking and kernel estimators
NASA Astrophysics Data System (ADS)
Rahbaralam, Maryam; Fernandez-Garcia, Daniel; Sanchez-Vila, Xavier
2015-04-01
Groundwater reactive transport models are useful to assess and quantify the fate and transport of contaminants in subsurface media and are an essential tool for the analysis of coupled physical, chemical, and biological processes in Earth Systems. Particle Tracking Method (PTM) provides a computationally efficient and adaptable approach to solve the solute transport partial differential equation. On a molecular level, chemical reactions are the result of collisions, combinations, and/or decay of different species. For a well-mixed system, the chem- ical reactions are controlled by the classical thermodynamic rate coefficient. Each of these actions occurs with some probability that is a function of solute concentrations. PTM is based on considering that each particle actually represents a group of molecules. To properly simulate this system, an infinite number of particles is required, which is computationally unfeasible. On the other hand, a finite number of particles lead to a poor-mixed system which is limited by diffusion. Recent works have used this effect to actually model incomplete mix- ing in naturally occurring porous media. In this work, we demonstrate that this effect in most cases should be attributed to a defficient estimation of the concentrations and not to the occurrence of true incomplete mixing processes in porous media. To illustrate this, we show that a Kernel Density Estimation (KDE) of the concentrations can approach the well-mixed solution with a limited number of particles. KDEs provide weighting functions of each particle mass that expands its region of influence, hence providing a wider region for chemical reactions with time. Simulation results show that KDEs are powerful tools to improve state-of-the-art simulations of chemical reactions and indicates that incomplete mixing in diluted systems should be modeled based on alternative conceptual models and not on a limited number of particles.
Model Adaptation for Prognostics in a Particle Filtering Framework
NASA Technical Reports Server (NTRS)
Saha, Bhaskar; Goebel, Kai Frank
2011-01-01
One of the key motivating factors for using particle filters for prognostics is the ability to include model parameters as part of the state vector to be estimated. This performs model adaptation in conjunction with state tracking, and thus, produces a tuned model that can used for long term predictions. This feature of particle filters works in most part due to the fact that they are not subject to the "curse of dimensionality", i.e. the exponential growth of computational complexity with state dimension. However, in practice, this property holds for "well-designed" particle filters only as dimensionality increases. This paper explores the notion of wellness of design in the context of predicting remaining useful life for individual discharge cycles of Li-ion batteries. Prognostic metrics are used to analyze the tradeoff between different model designs and prediction performance. Results demonstrate how sensitivity analysis may be used to arrive at a well-designed prognostic model that can take advantage of the model adaptation properties of a particle filter.
Kinetic model of particle-inhibited grain growth
NASA Astrophysics Data System (ADS)
Thompson, Gary Scott
The effects of second phase particles on matrix grain growth kinetics were investigated using Al2O3-SiC as a model system. In particular, the validity of the conclusion drawn from a previous kinetic analysis that the kinetics of particle-inhibited grain growth in Al2 O3-SiC samples with an intermediate volume fraction of second phase could be well quantified by a modified-Zener model was investigated. A critical analysis of assumptions made during the previous kinetic analysis revealed oversimplifications which affect the validity of the conclusion. Specifically, the degree of interaction between particles and grain boundaries was assumed to be independent of the mean second phase particle size and size distribution. In contrast, current measurements indicate that the degree of interaction in Al2O3-SiC is dependent on these parameters. An improved kinetic model for particle-inhibited grain growth in Al 2O3-SiC was developed using a modified-Zener approach. The comparison of model predictions with experimental grain growth data indicated that significant discrepancies (as much as 4--5 orders of magnitude) existed. Based on this, it was concluded that particles had a much more significant effect on grain growth kinetics than that caused by a simple reduction of the boundary driving force due to the removal of boundary area. Consequently, it was also concluded that the conclusion drawn from the earlier kinetic analysis regarding the validity of a modified-Zener model was incorrect. Discrepancies between model and experiment were found to be the result of a significant decrease in experimental growth rate constant not predicted by the model. Possible physical mechanisms for such a decrease were investigated. The investigation of a small amount of SiO2 on grain growth in Al2O3 indicated that the decrease was not the result of a decrease in grain boundary mobility due to impurity contamination by particles. By process of elimination and based on previous observations
Investigation of self-oscillation using particle balance model
Bae, Inshik; Na, Byungkeun Chang, Hongyoung
2015-08-15
Self-oscillation obtained using a DC-only power supply under specific anode voltage conditions is investigated in a cylindrical system with thermal electrons using tungsten filaments. Analysis of the obtained oscillation profiles reveals that the experimental data are consistent with a model derived from the particle balance model. The self-oscillation period characteristics with respect to the pressure and gas species are also analyzed. As the physics and particle motion of self-oscillation near the plasma transition region are analyzed from different perspectives, this paper may advance the study of this phenomenon.
Theoretical model of HZE particle fragmentation by hydrogen targets
NASA Technical Reports Server (NTRS)
Townsend, L.W.; Cucinotta, F. A; Bagga, R.; Tripathi, R. K.
1996-01-01
The fragmenting of high energy, heavy ions (HZE particles) by hydrogen targets is an important, physical process in several areas of space radiation research. In this work quantum mechanical optical model methods for estimating cross sections for HZE particle fragmentation by hydrogen targets are presented. The cross sections are calculated using a modified abrasion-ablation collision formalism adapted from a nucleus-nucleus collision model. Elemental and isotopic production cross sections are estimated and compared with reported measurements for the breakup of neon, sulphur, and iron, nuclei at incident energies between 400 and 910 Mev/nucleon. Good agreement between theory and experiment is obtained.
Charged Particle Environment Definition for NGST: Model Development
NASA Technical Reports Server (NTRS)
Blackwell, William C.; Minow, Joseph I.; Evans, Steven W.; Hardage, Donna M.; Suggs, Robert M.
2000-01-01
NGST will operate in a halo orbit about the L2 point, 1.5 million km from the Earth, where the spacecraft will periodically travel through the magnetotail region. There are a number of tools available to calculate the high energy, ionizing radiation particle environment from galactic cosmic rays and from solar disturbances. However, space environment tools are not generally available to provide assessments of charged particle environment and its variations in the solar wind, magnetosheath, and magnetotail at L2 distances. An engineering-level phenomenology code (LRAD) was therefore developed to facilitate the definition of charged particle environments in the vicinity of the L2 point in support of the NGST program. LRAD contains models tied to satellite measurement data of the solar wind and magnetotail regions. The model provides particle flux and fluence calculations necessary to predict spacecraft charging conditions and the degradation of materials used in the construction of NGST. This paper describes the LRAD environment models for the deep magnetotail (XGSE < -100 Re) and solar wind, and presents predictions of the charged particle environment for NGST.
Generalized slave-particle method for extended Hubbard models
NASA Astrophysics Data System (ADS)
Georgescu, Alexandru B.; Ismail-Beigi, Sohrab
2015-12-01
We introduce a set of generalized slave-particle models for extended Hubbard models that treat localized electronic correlations using slave-boson decompositions. Our models automatically include two slave-particle methods of recent interest, the slave-rotor and slave-spin methods, as well as a ladder of new intermediate models where one can choose which of the electronic degrees of freedom (e.g., spin or orbital labels) are treated as correlated degrees of freedom by the slave bosons. In addition, our method removes the aberrant behavior of the slave-rotor model, where it systematically overestimates the importance of electronic correlation effects for weak interaction strength, by removing the contribution of unphysical states from the bosonic Hilbert space. The flexibility of our formalism permits one to separate and isolate the effect of correlations on the key degrees of freedom.
Modeling Correlation Effects in Nickelates with Slave Particles
NASA Astrophysics Data System (ADS)
Georgescu, Alexandru Bogdan; Ismail-Beigi, Sohrab
Nickelate interfaces display interesting electronic properties including orbital ordering similar to that of cuprate superconductors and thickness dependent metal-insulator transitions. One-particle band theory calculations do not include dynamic localized correlation effects on the nickel sites and thus often incorrectly predict metallic systems or incorrect ARPES spectra. Building on two previous successful slave-particle treatments of local correlations, we present a generalized slave-particle method that includes prior models and allows us to produce new intermediate models. The computational efficiency of these slave-boson methods means that one can readily study correlation effects in complex heterostructures. We show some predictions of these methods for the electronic structure of bulk and thin film nickelates. Work supported by NSF Grant MRSEC DMR-1119826.
Advances in Bayesian Model Based Clustering Using Particle Learning
Merl, D M
2009-11-19
Recent work by Carvalho, Johannes, Lopes and Polson and Carvalho, Lopes, Polson and Taddy introduced a sequential Monte Carlo (SMC) alternative to traditional iterative Monte Carlo strategies (e.g. MCMC and EM) for Bayesian inference for a large class of dynamic models. The basis of SMC techniques involves representing the underlying inference problem as one of state space estimation, thus giving way to inference via particle filtering. The key insight of Carvalho et al was to construct the sequence of filtering distributions so as to make use of the posterior predictive distribution of the observable, a distribution usually only accessible in certain Bayesian settings. Access to this distribution allows a reversal of the usual propagate and resample steps characteristic of many SMC methods, thereby alleviating to a large extent many problems associated with particle degeneration. Furthermore, Carvalho et al point out that for many conjugate models the posterior distribution of the static variables can be parametrized in terms of [recursively defined] sufficient statistics of the previously observed data. For models where such sufficient statistics exist, particle learning as it is being called, is especially well suited for the analysis of streaming data do to the relative invariance of its algorithmic complexity with the number of data observations. Through a particle learning approach, a statistical model can be fit to data as the data is arriving, allowing at any instant during the observation process direct quantification of uncertainty surrounding underlying model parameters. Here we describe the use of a particle learning approach for fitting a standard Bayesian semiparametric mixture model as described in Carvalho, Lopes, Polson and Taddy. In Section 2 we briefly review the previously presented particle learning algorithm for the case of a Dirichlet process mixture of multivariate normals. In Section 3 we describe several novel extensions to the original
Applying Dispersive Changes to Lagrangian Particles in Groundwater Transport Models
Konikow, L.F.
2010-01-01
Method-of-characteristics groundwater transport models require that changes in concentrations computed within an Eulerian framework to account for dispersion be transferred to moving particles used to simulate advective transport. A new algorithm was developed to accomplish this transfer between nodal values and advecting particles more precisely and realistically compared to currently used methods. The new method scales the changes and adjustments of particle concentrations relative to limiting bounds of concentration values determined from the population of adjacent nodal values. The method precludes unrealistic undershoot or overshoot for concentrations of individual particles. In the new method, if dispersion causes cell concentrations to decrease during a time step, those particles in the cell having the highest concentration will decrease the most, and those with the lowest concentration will decrease the least. The converse is true if dispersion is causing concentrations to increase. Furthermore, if the initial concentration on a particle is outside the range of the adjacent nodal values, it will automatically be adjusted in the direction of the acceptable range of values. The new method is inherently mass conservative. ?? US Government 2010.
Applying dispersive changes to Lagrangian particles in groundwater transport models
Konikow, Leonard F.
2010-01-01
Method-of-characteristics groundwater transport models require that changes in concentrations computed within an Eulerian framework to account for dispersion be transferred to moving particles used to simulate advective transport. A new algorithm was developed to accomplish this transfer between nodal values and advecting particles more precisely and realistically compared to currently used methods. The new method scales the changes and adjustments of particle concentrations relative to limiting bounds of concentration values determined from the population of adjacent nodal values. The method precludes unrealistic undershoot or overshoot for concentrations of individual particles. In the new method, if dispersion causes cell concentrations to decrease during a time step, those particles in the cell having the highest concentration will decrease the most, and those with the lowest concentration will decrease the least. The converse is true if dispersion is causing concentrations to increase. Furthermore, if the initial concentration on a particle is outside the range of the adjacent nodal values, it will automatically be adjusted in the direction of the acceptable range of values. The new method is inherently mass conservative.
Computational modeling of single particle scattering over large distances
NASA Astrophysics Data System (ADS)
Rapp, Rebecca; Plumley, Rajan; McCracken, Michael
2016-09-01
We present a Monte Carlo simulation of the propagation of a single particle through a large three-dimensional volume under the influence of individual scattering events. In such systems, short paths can be quickly and accurately simulated using random walks defined by individual scattering parameters, but the simulation time greatly increases as the size of the space grows. We present a method for reducing the overall simulation time by restricting the simulation to a cube of unit length; each `cell' is characterized by a set of parameters which dictate the distributions of allowable step lengths and polar scattering angles. We model propagation over large distances by constructing a lattice of cells with physical parameters that depend on position, such that the full set would represent a space within the entire volume available to the particle. With these, we propose the use of Markov chains to determine a probable path for the particle, thereby removing the need to simulate every step in the particle's path. For a single particle with constant velocity, we can use the step statistics to determine the travel time of the particle. We investigate the effect of scattering parameters such as average step distance and possible scattering angles on the probabilities of a cell.
Neural Networks for Modeling and Control of Particle Accelerators
Edelen, A. L.; Biedron, S. G.; Chase, B. E.; ...
2016-04-01
Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less
Neural Networks for Modeling and Control of Particle Accelerators
Edelen, A. L.; Biedron, S. G.; Chase, B. E.; Edstrom, D.; Milton, S. V.; Stabile, P.
2016-04-01
Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems, as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.
MODELING OF PARTICLE FORMATION AND DYNAMICS IN A FLAME INCINERATOR
A model has been developed to predict the formation and growth of metallic particles in a flame incinerator system. Flow fields and temperature profiles in a cylindrical laminar jet flame have been used to determine the position and physical conditions of the species along the fl...
Standard Model of Particle Physics--a health physics perspective.
Bevelacqua, J J
2010-11-01
The Standard Model of Particle Physics is reviewed with an emphasis on its relationship to the physics supporting the health physics profession. Concepts important to health physics are emphasized and specific applications are presented. The capability of the Standard Model to provide health physics relevant information is illustrated with application of conservation laws to neutron and muon decay and in the calculation of the neutron mean lifetime.
Fundamentals of chemistry modeling applicable to a vectorized particle simulation
NASA Technical Reports Server (NTRS)
Haas, Brian L.
1990-01-01
This paper describes the fundamentals of extending the vectorized particle simulation method derived by Baganoff and McDonald (1990), McDonald and Baganoff (1988), and McDonald (1989) for modeling chemically reacting flows. Details of reaction mechanics per reaction are presented, with particular attention given to the quantum nature of the vibrational mode. The models of reactive flows developed here were verified through a simulation of a superheated diatomic gas relaxing thermochemically to equilibrium in a reservoir.
Modeling the behavior of confined colloidal particles under shear flow.
Mackay, F E; Pastor, K; Karttunen, M; Denniston, C
2014-11-21
We investigate the behavior of colloidal suspensions with different volume fractions confined between parallel walls under a range of steady shears. We model the particles using molecular dynamics (MD) with full hydrodynamic interactions implemented through the use of a lattice-Boltzmann (LB) fluid. A quasi-2d ordering occurs in systems characterized by a coexistence of coupled layers with different densities, order, and granular temperature. We present a phase diagram in terms of shear and volume fraction for each layer, and demonstrate that particle exchange between layers is required for entering the disordered phase.
Cirrus cloud model parameterizations: Incorporating realistic ice particle generation
NASA Technical Reports Server (NTRS)
Sassen, Kenneth; Dodd, G. C.; Starr, David OC.
1990-01-01
Recent cirrus cloud modeling studies have involved the application of a time-dependent, two dimensional Eulerian model, with generalized cloud microphysical parameterizations drawn from experimental findings. For computing the ice versus vapor phase changes, the ice mass content is linked to the maintenance of a relative humidity with respect to ice (RHI) of 105 percent; ice growth occurs both with regard to the introduction of new particles and the growth of existing particles. In a simplified cloud model designed to investigate the basic role of various physical processes in the growth and maintenance of cirrus clouds, these parametric relations are justifiable. In comparison, the one dimensional cloud microphysical model recently applied to evaluating the nucleation and growth of ice crystals in cirrus clouds explicitly treated populations of haze and cloud droplets, and ice crystals. Although these two modeling approaches are clearly incompatible, the goal of the present numerical study is to develop a parametric treatment of new ice particle generation, on the basis of detailed microphysical model findings, for incorporation into improved cirrus growth models. For example, the relation between temperature and the relative humidity required to generate ice crystals from ammonium sulfate haze droplets, whose probability of freezing through the homogeneous nucleation mode are a combined function of time and droplet molality, volume, and temperature. As an example of this approach, the results of cloud microphysical simulations are presented showing the rather narrow domain in the temperature/humidity field where new ice crystals can be generated. The microphysical simulations point out the need for detailed CCN studies at cirrus altitudes and haze droplet measurements within cirrus clouds, but also suggest that a relatively simple treatment of ice particle generation, which includes cloud chemistry, can be incorporated into cirrus cloud growth.
An asymptotic model of particle deposition at an airway bifurcation
Zierenberg, Jennifer R.; Halpern, David; Filoche, Marcel; Sapoval, Bernard; Grotberg, James B.
2013-01-01
Particle transport and deposition associated with flow over a wedge is investigated as a model for particle transport and flow at the carina of an airway bifurcation during inspiration. Using matched asymptotics, a uniformly valid solution is obtained to represent the high Reynolds number flow over a wedge that considers the viscous boundary layer near the wedge and the outer inviscid region and is then used to solve the particle transport equations. Sometimes particle impaction on the wedge is prevented due to the boundary layer. We call this boundary layer shielding (BLS). This effect can be broken down into different types: rejection, trapping and deflection that are described by what happens to the particle’s initial negative velocity normal to the wall either changing sign, reaching zero, or remaining negative in the boundary layer region. The deposition efficiency depends on the critical Stokes number but exhibits a weak dependence on Reynolds number. Deposition efficiency for Sc in the range 0 < Sc < 0.4 yields the following relationship De ≈ (1.867 Sc1.78− 0.016) sin(βπ/2) at large Reynolds numbers, where βπ is the wedge angle. For a specific deposition efficiency, Sc decreases as βπ increases. The distribution of impacted particles was also computed and revealed that particles primarily impact within one airway diameter of the carina, consistent with computational fluid dynamics approaches. This work provides a new insight that the BLS inherent to the wedge component of the structure is the dominant reason for the particle distribution. This finding is important in linking aerosol deposition to the location of airway disease as well as target sites for therapeutic deposition. PMID:22378463
Determining Trajectory of Triboelectrically Charged Particles, Using Discrete Element Modeling
NASA Technical Reports Server (NTRS)
2008-01-01
The Kennedy Space Center (KSC) Electrostatics and Surface Physics Laboratory is participating in an Innovative Partnership Program (IPP) project with an industry partner to modify a commercial off-the-shelf simulation software product to treat the electrodynamics of particulate systems. Discrete element modeling (DEM) is a numerical technique that can track the dynamics of particle systems. This technique, which was introduced in 1979 for analysis of rock mechanics, was recently refined to include the contact force interaction of particles with arbitrary surfaces and moving machinery. In our work, we endeavor to incorporate electrostatic forces into the DEM calculations to enhance the fidelity of the software and its applicability to (1) particle processes, such as electrophotography, that are greatly affected by electrostatic forces, (2) grain and dust transport, and (3) the study of lunar and Martian regoliths.
Simulation of Cell Adhesion using a Particle Transport Model
NASA Astrophysics Data System (ADS)
Chesnutt, Jennifer
2005-11-01
An efficient computational method for simulation of cell adhesion through protein binding forces is discussed. In this method, the cells are represented by deformable elastic particles, and the protein binding is represented by a rate equation. The method is first developed for collision and adhesion of two similar cells impacting on each other from opposite directions. The computational method is then applied in a particle-transport model for a cloud of interacting and colliding cells, each of which are represented by particles of finite size. One application might include red blood cells adhering together to form rouleaux, which are chains of red blood cells that are found in different parts of the circulatory system. Other potential applications include adhesion of platelets to a blood vessel wall or mechanical heart valve, which is a precursor of thrombosis formation, or adhesion of cancer cells to organ walls in the lymphatic, circulatory, digestive or pulmonary systems.
Experiments and modeling of iron-particle-filled magnetorheological elastomers
NASA Astrophysics Data System (ADS)
Danas, K.; Kankanala, S. V.; Triantafyllidis, N.
2012-01-01
Magnetorheological elastomers (MREs) are ferromagnetic particle impregnated rubbers whose mechanical properties are altered by the application of external magnetic fields. Due to their coupled magnetoelastic response, MREs are finding an increasing number of engineering applications. In this work, we present a combined experimental and theoretical study of the macroscopic response of a particular MRE consisting of a rubber matrix phase with spherical carbonyl iron particles. The MRE specimens used in this work are cured in the presence of strong magnetic fields leading to the formation of particle chain structures and thus to an overall transversely isotropic composite. The MRE samples are tested experimentally under uniaxial stresses as well as under simple shear in the absence or in the presence of magnetic fields and for different initial orientations of their particle chains with respect to the mechanical and magnetic loading direction. Using the theoretical framework for finitely strained MREs introduced by Kankanala and Triantafyllidis (2004), we propose a transversely isotropic energy density function that is able to reproduce the experimentally measured magnetization, magnetostriction and simple shear curves under different prestresses, initial particle chain orientations and magnetic fields. Microscopic mechanisms are also proposed to explain (i) the counterintuitive effect of dilation under zero or compressive applied mechanical loads for the magnetostriction experiments and (ii) the importance of a finite strain constitutive formulation even at small magnetostrictive strains. The model gives an excellent agreement with experiments for relatively moderate magnetic fields but has also been satisfactorily extended to include magnetic fields near saturation.
Modelling New Particle Formation Events in the South African Savannah
Gierens, Rosa; Laakso, Lauri; Mogensen, Ditte; Vakkari, Ville; Beukes, J. P.; Van Zyl, Pieter; Hakola, H.; Guenther, Alex B.; Pienaar, J. J.; Boy, Michael
2014-01-01
Africa is one of the less studied continents with respect to atmospheric aerosols. Savannahs are complex dynamic systems sensitive to climate and land-use changes, but the interaction with the atmosphere is not well understood. Atmospheric particles, aka aerosols, affect the climate on regional and global scale, and are an important factor in air quality. In this study measurements from a relatively clean savannah environment in South Africa were used to model new particle formation and growth. There are already some combined long-term measurements of trace gas concentrations together with aerosol and meteorological variables available, but to our knowledge this is the first time detailed simulations, that include all the main processes relevant to particle formation, were done. The results show that both investigated particle formation mechanisms overestimated the formation rates dependency on sulphuric acid. The approach including low volatile organic compounds to the particle formation process was more accurate in describing the nucleation events. To get reliable estimation of aerosol concentration in simulations for larger scales, nucleation mechanisms would need to include organic compounds, at least in southern Africa.
Theory and modeling of particles with DNA-mediated interactions
NASA Astrophysics Data System (ADS)
Licata, Nicholas A.
2008-05-01
In recent years significant attention has been attracted to proposals which utilize DNA for nanotechnological applications. Potential applications of these ideas range from the programmable self-assembly of colloidal crystals, to biosensors and nanoparticle based drug delivery platforms. In Chapter I we introduce the system, which generically consists of colloidal particles functionalized with specially designed DNA markers. The sequence of bases on the DNA markers determines the particle type. Due to the hybridization between complementary single-stranded DNA, specific, type-dependent interactions can be introduced between particles by choosing the appropriate DNA marker sequences. In Chapter II we develop a statistical mechanical description of the aggregation and melting behavior of particles with DNA-mediated interactions. In Chapter III a model is proposed to describe the dynamical departure and diffusion of particles which form reversible key-lock connections. In Chapter IV we propose a method to self-assemble nanoparticle clusters using DNA scaffolds. A natural extension is discussed in Chapter V, the programmable self-assembly of nanoparticle clusters where the desired cluster geometry is encoded using DNA-mediated interactions. In Chapter VI we consider a nanoparticle based drug delivery platform for targeted, cell specific chemotherapy. In Chapter VII we present prospects for future research: the connection between DNA-mediated colloidal crystallization and jamming, and the inverse problem in self-assembly.
Internally electrodynamic particle model: Its experimental basis and its predictions
Zheng-Johansson, J. X.
2010-03-15
The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts: (a) electric charges present with all material particles, (b) an accelerated charge generates electromagnetic waves according to Maxwell's equations and Planck energy equation, and (c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schroedinger equation, mass, Einstein mass-energy relation, Newton's law of gravity, single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A conditioned solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.
Particle Swarm Based Collective Searching Model for Adaptive Environment
Cui, Xiaohui; Patton, Robert M; Potok, Thomas E; Treadwell, Jim N
2008-01-01
This report presents a pilot study of an integration of particle swarm algorithm, social knowledge adaptation and multi-agent approaches for modeling the collective search behavior of self-organized groups in an adaptive environment. The objective of this research is to apply the particle swarm metaphor as a model of social group adaptation for the dynamic environment and to provide insight and understanding of social group knowledge discovering and strategic searching. A new adaptive environment model, which dynamically reacts to the group collective searching behaviors, is proposed in this research. The simulations in the research indicate that effective communication between groups is not the necessary requirement for whole self-organized groups to achieve the efficient collective searching behavior in the adaptive environment.
Particle Swarm Based Collective Searching Model for Adaptive Environment
Cui, Xiaohui; Patton, Robert M; Potok, Thomas E; Treadwell, Jim N
2007-01-01
This report presents a pilot study of an integration of particle swarm algorithm, social knowledge adaptation and multi-agent approaches for modeling the collective search behavior of self-organized groups in an adaptive environment. The objective of this research is to apply the particle swarm metaphor as a model of social group adaptation for the dynamic environment and to provide insight and understanding of social group knowledge discovering and strategic searching. A new adaptive environment model, which dynamically reacts to the group collective searching behaviors, is proposed in this research. The simulations in the research indicate that effective communication between groups is not the necessary requirement for whole self-organized groups to achieve the efficient collective searching behavior in the adaptive environment.
Poiseuille flow to measure the viscosity of particle model fluids.
Backer, J A; Lowe, C P; Hoefsloot, H C J; Iedema, P D
2005-04-15
The most important property of a fluid is its viscosity, it determines the flow properties. If one simulates a fluid using a particle model, calculating the viscosity accurately is difficult because it is a collective property. In this article we describe a new method that has a better signal to noise ratio than existing methods. It is based on using periodic boundary conditions to simulate counter-flowing Poiseuille flows without the use of explicit boundaries. The viscosity is then related to the mean flow velocity of the two flows. We apply the method to two quite different systems. First, a simple generic fluid model, dissipative particle dynamics, for which accurate values of the viscosity are needed to characterize the model fluid. Second, the more realistic Lennard-Jones fluid. In both cases the values we calculated are consistent with previous work but, for a given simulation time, they are more accurate than those obtained with other methods.
Particle-hole duality, integrability, and Russian doll BCS model
NASA Astrophysics Data System (ADS)
Bork, L. V.; Pogosov, W. V.
2015-08-01
We address a generalized Richardson model (Russian doll BCS model), which is characterized by the breaking of time-reversal symmetry. This model is known to be exactly solvable and integrable. We point out that the Russian doll BCS model, on the level of Hamiltonian, is also particle-hole symmetric. This implies that the same state can be expressed both in the particle and hole representations with two different sets of Bethe roots. We then derive exact relations between Bethe roots in the two representations, which can hardly be obtained staying on the level of Bethe equations. In a quasi-classical limit, similar identities for usual Richardson model, known from literature, are recovered from our results. We also show that these relations for Richardson roots take a remarkably simple form at half-filling and for a symmetric with respect to the middle of the interaction band distribution of one-body energy levels, since, in this special case, the rapidities in the particle and hole representations up to the translation satisfy the same system of equations.
Thermochemistry Models Applicable to a Vectorized Particle Simulation
NASA Astrophysics Data System (ADS)
Haas, Brian Lee
1991-02-01
The finite rates of reactions and thermal excitation processes in a gas result in thermochemical non-equilibrium in the hypersonic rarefied flowfield associated with vehicles during atmospheric entry. The low-density nature of this flow is such that the familiar Navier-Stokes equations are not applicable. Alternatively, particle simulation methods circumvent the difficulties of rarefaction by modeling the gas as a collection of moving and colliding particles in accordance with the principles of kinetic theory and statistical mechanics. The Direct Simulation Monte Carlo (DSMC) method of Bird has been applied extensively but is limited by excessive computational expense. An alternative particle simulation, tailored specifically to the vector-processing architecture of modern supercomputers, has been developed by Baganoff and McDonald to optimize computational performance in modeling the three-dimensional non-reactive flow of general gas mixtures including simple models for rotational and vibrational relaxation. The objective of this thesis is to extend the vectorized simulation to treat chemically reactive flows and to enhance the models for vibrational relaxation. A collision selection rule has been developed to yield vibrational relaxation rates which match the experimental fits of Millikan and White. Selection rules for dissociation, atomic exchange, and recombination reactions were developed to yield reaction rates which match those dictated by the Arrhenius experimental fits over the temperature range of interest. The vibrational relaxation mechanics model of McDonald was modified for application to both the simple harmonic and anharmonic oscillator descriptions of the quantized vibrational mode. Reaction mechanics are modeled by proportional addition or removal of reaction energy from each contributing mode in a collision. All of these models retain computational simplicity while satisfying detailed balance and promoting equilibrium. An improved reaction model
Particle-based models for hydrologically triggered deep seated landslides
NASA Astrophysics Data System (ADS)
Martelloni, Gianluca; Bagnoli, Franco
2013-04-01
In this work we explore the integration between existing soil infiltration modeling and particle based methods in order to simulate two and three-dimensional schemes of triggered deep seated landslides. In literature, usually, the infiltration models are based on continuum scheme, i.e., Eulerian approach by means of which it is possible to define the field of the pore pressure within a soil (e.g., Iverson, 2000). Differently the particle based method follow a discrete Lagrangian scheme that allow to identify the trajectory of the particles and its dynamical properties. At present we test some infiltration models based on classical and generalized Richards equations that are adapted to the molecular dynamics approach according to the failure criterion of Mohr-Coulomb to simulate the triggering mechanism. In case of analytical infiltration model solution, the latter is discretized, differently a numerical one is achieved and the increasing pore pressure effect is simulated at soil particle level, i.e., we can simulate the rainfall in terms of water mass and, using the response function, we take into account the absorbed water in time and space at each thickness of our fictitious soil. The inter-particle interactions are through a force that, in the absence of suitable experimental data and due to the arbitrariness of the grain dimension, is modeled by means of a potential similar to the Lennard-Jones one. For the prediction of the particle positions, after and during a rainfall, we use a molecular dynamics approach that results very suitable to simulate this type of systems. The outcome of simulations are quite satisfactory and we can claim that this types of modeling can represent a new method to simulate landslides triggered by rainfall. Particularly, the results are consistent with the behavior of real landslides, e.g., it is possible to apply the method of the inverse surface displacement velocity for predicting the failure time (Fukuzono 1985). An interesting
A theoretical model for the Lorentz force particle analyzer
NASA Astrophysics Data System (ADS)
Moreau, René; Tao, Zhen; Wang, Xiaodong
2016-07-01
In a previous paper [X. Wang et al., J. Appl. Phys. 120, 014903 (2016)], several experimental devices have been presented, which demonstrate the efficiency of electromagnetic techniques for detecting and sizing electrically insulating particles entrained in the flow of a molten metal. In each case, a non-uniform magnetic field is applied across the flow of the electrically conducting liquid, thereby generating a braking Lorentz force on this moving medium and a reaction force on the magnet, which tends to be entrained in the flow direction. The purpose of this letter is to derive scaling laws for this Lorentz force from an elementary theoretical model. For simplicity, as in the experiments, the flowing liquid is modeled as a solid body moving with a uniform velocity U. The eddy currents in the moving domain are derived from the classic induction equation and Ohm's law, and expressions for the Lorentz force density j ×B and for its integral over the entire moving domain follow. The insulating particles that are eventually present and entrained with this body are then treated as small disturbances in a classic perturbation analysis, thereby leading to scaling laws for the pulses they generate in the Lorentz force. The purpose of this letter is both to illustrate the eddy currents without and with insulating particles in the electrically conducting liquid and to derive a key relation between the pulses in the Lorentz force and the main parameters (particle volume and dimensions of the region subjected to the magnetic field).
Model for particle balance in pumped divertors (pre-VORTEX)
Hogan, J.T.
1990-08-01
An internally consistent model for particle transport in an open divertor geometry has been developed. Embodied in a new code, pre-VORTEX, the model couples the particle balance in the plasma core, the scrape-off layer, the open divertor channels, and the vacuum'' regions. This mutual coupling is particularly important in determining the conditions required for high recycling in the divertor. The plasma core is considered to have a relatively quiescent core region and a less well confined edge-localized mode''(ELM) region. The scrape-off layer is modeled with one-dimensional parallel and perpendicular transport. A two-point divertor channel model is used; it is similar to previous models, but with the addition of new physical processes: hydrogen charge exchange, impurity thermal charge exchange, and flux-limited parallel transport. Wall recycling data are required to describe the differing recycling properties of the wall regions and the divertor plates. Given local plasma diffusivities and wall recycling properties, the model predicts the volume-averaged density and global particle confinement time. The input data are uncertain, and a major use for the model is to permit comparison with data. The final model, VORTEX, is intended for application to the analysis of divertor confinement experiments; it is coupled to a one-and-one-half--dimensional transport code and uses detailed geometric input from equilibrium fitting codes, experimentally measured core profiles, and such parameters as can be measured in the scrape-off layer. The pre-VORTEX model is compared as a stand-alone code with typical data from the DIII-D experiment and applied to the proposed DIII-D Advanced Divertor Project.
Dissipative-particle-dynamics model of biofilm growth
Xu, Zhijie; Meakin, Paul; Tartakovsky, Alexandre M.; Scheibe, Timothy D.
2011-06-13
A dissipative particle dynamics (DPD) model for the quantitative simulation of biofilm growth controlled by substrate (nutrient) consumption, advective and diffusive substrate transport, and hydrodynamic interactions with fluid flow (including fragmentation and reattachment) is described. The model was used to simulate biomass growth, decay, and spreading. It predicts how the biofilm morphology depends on flow conditions, biofilm growth kinetics, the rheomechanical properties of the biofilm and adhesion to solid surfaces. The morphology of the model biofilm depends strongly on its rigidity and the magnitude of the body force that drives the fluid over the biofilm.
Modelling of particle distribution in the melting layer
NASA Astrophysics Data System (ADS)
de Wolf, D. A.; Russchenberg, H. W. J.; Ligthart, L. P.
1990-12-01
The analysis of radiowave propagation through, and radar scattering from, the melting layer requires a model of the melting ice particles with appropriate statistics of shape, size, and orientation distributions. Previous studies have indicated that the melting layer can be modeled by a collection of wet snow spheroids in air, of which the effective permittivity and the volume fraction are the most important parameters. It is proposed that the distribution of spheroid shapes can be modeled by a flat probability density of depolarization parameter lambda (3) between a minimum and a maximum value. The location of the average lambda (3) is crucial; the width is less important.
Modeling Particle Rolling Behavior by the Modified Eccentric Circle Model of DEM
NASA Astrophysics Data System (ADS)
Chang, Yi-Long; Chen, Tsung-Hsien; Weng, Meng-Chia
2012-09-01
This study proposes a modified eccentric circle model to simulate the rolling resistance of circle particles through the distinct element method (DEM) simulation. The proposed model contains two major concepts: eccentric circle and local rotational damping. The mass center of a circular particle is first adjusted slightly for eccentricity to provide rotational stiffness. Local rotational damping is adopted to dissipate energy in the rotational direction. These associated material parameters can be obtained easily from the rolling behavior of one rod. This study verifies the proposed model with the repose angle tests of chalk rod assemblies, and the simulated results were satisfactory. Simulations using other existing models were also conducted for comparison, showing that the proposed model achieved better results. A landslide model test was further simulated, and this simulation agreed with both the failure pattern and the sliding process. In conclusion, particle rolling simulation using the proposed model appears to approach the actual particle trajectory, making it useful for various applications.
Modelling of microorganisms capture on magnetic carrier particles
NASA Astrophysics Data System (ADS)
Rotariu, O.; Strachan, N. J. C.; Bădescu, V.
2002-11-01
Immunomagnetic separation (IMS) is a technique used in the detection of pathogenic microorganisms from food and environmental samples. Current IMS methods are insensitive due to the small sample sizes analysed. A stochastic model is described which estimates the time of collision between a small number of pathogenic microorganisms and superparamagnetic carrier microparticles within an aqueous suspension. The IMS system parameters which are varied in the model include: the diameter of the carrier particles, their volume concentration in suspension, the fraction of magnetic phase within the composite material of the particles and the magnetic field intensity and gradient. The data obtained will be used to help design magnetic separation systems to capture pathogenic microorganisms from large volume samples (approx. 250 ml).
Speech enhancement based on nonlinear models using particle filters.
Mustière, Frédéric; Bolić, Miodrag; Bouchard, Martin
2009-12-01
Motivated by the reportedly strong performance of particle filters (PFs) for noise reduction on essentially linear speech production models, and the mounting evidence that the introduction of nonlinearities can lead to a refined speech model, this paper presents a study of PF solutions to the problem of speech enhancement in the context of nonlinear, neural-type speech models. Several variations of a global model are presented (single/multiple neurons; bias/no bias), and corresponding PF solutions are derived. Different importance functions are given when beneficial, Rao-Blackwellization is proposed when possible, and dual/nondual versions of each algorithms are presented. The method shown can handle both white and colored noise. Using a variety of speech and noise signals and different objective quality measures, the performance of these algorithms are evaluated against other PF solutions running on linear models, as well as some traditional enhancement algorithms. A certain hierarchy in performance is established between each algorithm in the paper. Depending on the experimental conditions, the best-performing algorithms are a classical Rao-Blackwellized particle filter (RBPF) running on a linear model, and a proposed PF employing a nondual, nonlinear model with multiple neurons and no biases. With consistence, the neural-network-based PF outperforms RBPF at low signal-to-noise ratio (SNR).
3D flare particle model for ShipIR/NTCS
NASA Astrophysics Data System (ADS)
Ramaswamy, Srinivasan; Vaitekunas, David A.
2016-05-01
A key component in any soft-kill response to an incoming guided missile is the flare /chaff decoy used to distract or seduce the seeker homing system away from the naval platform. This paper describes a new 3D flare particle model in the naval threat countermeasure simulator (NTCS) of the NATO-standard ship signature model (ShipIR), which provides independent control over the size and radial distribution of its signature. The 3D particles of each flare sub-munition are modelled stochastically and rendered using OpenGL z-buffering, 2D projection, and alpha-blending to produce a unique and time varying signature. A sensitivity analysis on each input parameter provides the data and methods needed to synthesize a model from an IR measurement of a decoy. The new model also eliminated artifacts and deficiencies in our previous model which prevented reliable tracks from the adaptive track gate algorithm already presented by Ramaswamy and Vaitekunas (2015). A sequence of scenarios are used to test and demonstrate the new flare model during a missile engagement.
NASA Astrophysics Data System (ADS)
Del Bello, E.; Taddeucci, J.; De'Michieli Vitturi, M.; Scarlato, P.; Andronico, D.; Scollo, S.; Kueppers, U.
2015-12-01
We present the first report of experimental measurements of the enhanced settling velocity of volcanic particles as function of particle volume fraction. In order to investigate the differences in the aerodynamic behavior of ash particles when settling individually or in mass, we performed systematic large-scale ash settling experiments using natural basaltic and phonolitic ash. By releasing ash particles at different, controlled volumetric flow rates, in an unconstrained open space and at minimal air movement, we measured their terminal velocity, size, and particle volume fraction with a high-speed camera at 2000 fps. Enhanced settling velocities of individual particles increase with increasing particle volume fraction. This suggests that particle clustering during fallout may be one reason explaining larger than theoretical depletion rates of fine particles from volcanic ash clouds. We provide a quantitative empirical model that allows to calculate, from a given particle size and density, the enhanced velocity resulting from a given particle volume fraction. The proposed model has the potential to serve as a simple tool for the prediction of the terminal velocity of ash of an hypothetical distribution of ash of known particle size and volume fraction. This is of particular importance for advection-diffusion transport model of ash where generally a one-way coupling is adopted, considering only the flow effects on particles. To better quantify the importance of the enhanced settling velocity in ash dispersal, we finally introduced the new formulation in a Lagrangian model calculating for realistic eruptive conditions the resulting ash concentration in the atmosphere and on the ground.
Modelling the dispersion of particle numbers in five European cities
NASA Astrophysics Data System (ADS)
Kukkonen, J.; Karl, M.; Keuken, M. P.; Denier van der Gon, H. A. C.; Denby, B. R.; Singh, V.; Douros, J.; Manders, A.; Samaras, Z.; Moussiopoulos, N.; Jonkers, S.; Aarnio, M.; Karppinen, A.; Kangas, L.; Lützenkirchen, S.; Petäjä, T.; Vouitsis, I.; Sokhi, R. S.
2016-02-01
We present an overview of the modelling of particle number concentrations (PNCs) in five major European cities, namely Helsinki, Oslo, London, Rotterdam, and Athens, in 2008. Novel emission inventories of particle numbers have been compiled both on urban and European scales. We used atmospheric dispersion modelling for PNCs in the five target cities and on a European scale, and evaluated the predicted results against available measured concentrations. In all the target cities, the concentrations of particle numbers (PNs) were mostly influenced by the emissions originating from local vehicular traffic. The influence of shipping and harbours was also significant for Helsinki, Oslo, Rotterdam, and Athens, but not for London. The influence of the aviation emissions in Athens was also notable. The regional background concentrations were clearly lower than the contributions originating from urban sources in Helsinki, Oslo, and Athens. The regional background was also lower than urban contributions in traffic environments in London, but higher or approximately equal to urban contributions in Rotterdam. It was numerically evaluated that the influence of coagulation and dry deposition on the predicted PNCs was substantial for the urban background in Oslo. The predicted and measured annual average PNCs in four cities agreed within approximately ≤ 26 % (measured as fractional biases), except for one traffic station in London. This study indicates that it is feasible to model PNCs in major cities within a reasonable accuracy, although major challenges remain in the evaluation of both the emissions and atmospheric transformation of PNCs.
Modelling of strongly coupled particle growth and aggregation
NASA Astrophysics Data System (ADS)
Gruy, F.; Touboul, E.
2013-02-01
The mathematical modelling of the dynamics of particle suspension is based on the population balance equation (PBE). PBE is an integro-differential equation for the population density that is a function of time t, space coordinates and internal parameters. Usually, the particle is characterized by a unique parameter, e.g. the matter volume v. PBE consists of several terms: for instance, the growth rate and the aggregation rate. So, the growth rate is a function of v and t. In classical modelling, the growth and the aggregation are independently considered, i.e. they are not coupled. However, current applications occur where the growth and the aggregation are coupled, i.e. the change of the particle volume with time is depending on its initial value v0, that in turn is related to an aggregation event. As a consequence, the dynamics of the suspension does not obey the classical Von Smoluchowski equation. This paper revisits this problem by proposing a new modelling by using a bivariate PBE (with two internal variables: v and v0) and by solving the PBE by means of a numerical method and Monte Carlo simulations. This is applied to a physicochemical system with a simple growth law and a constant aggregation kernel.
Alpha particle radioimmunotherapy: Animal models and clinical prospects
Macklis, R.M.; Kaplan, W.D.; Ferrara, J.L.; Atcher, R.W.; Hines, J.J.; Burakoff, S.J.; Coleman, C.N. )
1989-06-01
Short-lived isotopes that emit alpha particles have a number of physical characteristics which make them attractive candidates for radioimmunotherapy. Among these characteristics are high linear energy transfer and correspondingly high cytotoxicity; particle range limited to several cell diameters from the parent atom; low potential for repair of alpha-induced DNA damage; and low dependence on dose rate and oxygen enhancement effects. This report reviews the synthesis, testing and use in animal models of an alpha particle emitting radioimmunoconjugate constructed via the noncovalent chelation of Bismuth-212 to a monoclonal IgM antibody specific for the murine T cells/neuroectodermal surface antigen, Thy 1.2. These {sup 212}Bi-anti-Thy 1.2 immunoconjugates are capable of extraordinary cytotoxicity in vitro, requiring approximately three {sup 212}Bi-labeled conjugates per target cell to suppress {sup 3}H-thymidine incorporation to background levels. The antigen specificity afforded by the monoclonal antibody contributes a factor of approximately 40 to the radiotoxicity of the immunoconjugate. Animals inoculated with a Thy 1.2+ malignant ascites were cured of their tumor in an antigen-specific fashion by intraperitoneal doses of approximately 200 microCi per mouse. Alpha particle emitting radioimmunoconjugates show great potential for regional and intracavitary molecular radiotherapy.
Phase transitions and relaxation dynamics of Ising models exchanging particles
NASA Astrophysics Data System (ADS)
Goh, Segun; Fortin, Jean-Yves; Choi, M. Y.
2017-01-01
A variety of systems in nature and in society are open and subject to exchanging their constituents with other systems (e.g., environments). For instance, in biological systems, cells collect necessary energy and material by exchange of molecules or ions. Similarly, countries, cities or research institutes evolve as their constituents move in or out. To probe the corresponding particle exchange dynamics in such systems, we consider two Ising models exchanging particles and establish a master equation describing the equilibrium phases as well as the non-equilibrium dynamics of the system. It is found that an additional stable phase emerges as a consequence of the particle exchange process. Furthermore, we formulate the Ginzburg-Landau theory which allows to probe correlation effects. Accordingly, critical slowing down is manifested and the associated dynamic exponent is computed in the linear relaxation regime. In particular, this approach is relevant for investigating the grand canonical description of the system plus environment, with particle exchange and state transitions taken into account explicitly.
Current models of the intensely ionizing particle environment in space
NASA Technical Reports Server (NTRS)
Adams, James H., Jr.
1988-01-01
The Cosmic Ray Effects on MicroElectronics (CREME) model that is currently in use to estimate single event effect rates in spacecraft is described. The CREME model provides a description of the radiation environment in interplanetary space near the orbit of the earth that contains no major deficiencies. The accuracy of the galactic cosmic ray model is limited by the uncertainties in solar modulation. The model for solar energetic particles could be improved by making use of all the data that has been collected on solar energetic particle events. There remain major uncertainties about the environment within the earth's magnetosphere, because of the uncertainties over the charge states of the heavy ions in the anomalous component and solar flares, and because of trapped heavy ions. The present CREME model is valid only at 1 AU, but it could be extended to other parts of the heliosphere. There is considerable data on the radiation environment from 0.2 to 35 AU in the ecliptic plane. This data could be used to extend the CREME model.
Comparison of Particle Flow Code and Smoothed Particle Hydrodynamics Modelling of Landslide Run outs
NASA Astrophysics Data System (ADS)
Preh, A.; Poisel, R.; Hungr, O.
2009-04-01
In most continuum mechanics methods modelling the run out of landslides the moving mass is divided into a number of elements, the velocities of which can be established by numerical integration of Newtońs second law (Lagrangian solution). The methods are based on fluid mechanics modelling the movements of an equivalent fluid. In 2004, McDougall and Hungr presented a three-dimensional numerical model for rapid landslides, e.g. debris flows and rock avalanches, called DAN3D.The method is based on the previous work of Hungr (1995) and is using an integrated two-dimensional Lagrangian solution and meshless Smooth Particle Hydrodynamics (SPH) principle to maintain continuity. DAN3D has an open rheological kernel, allowing the use of frictional (with constant porepressure ratio) and Voellmy rheologies and gives the possibility to change material rheology along the path. Discontinuum (granular) mechanics methods model the run out mass as an assembly of particles moving down a surface. Each particle is followed exactly as it moves and interacts with the surface and with its neighbours. Every particle is checked on contacts with every other particle in every time step using a special cell-logic for contact detection in order to reduce the computational effort. The Discrete Element code PFC3D was adapted in order to make possible discontinuum mechanics models of run outs. Punta Thurwieser Rock Avalanche and Frank Slide were modelled by DAN as well as by PFC3D. The simulations showed correspondingly that the parameters necessary to get results coinciding with observations in nature are completely different. The maximum velocity distributions due to DAN3D reveal that areas of different maximum flow velocity are next to each other in Punta Thurwieser run out whereas the distribution of maximum flow velocity shows almost constant maximum flow velocity over the width of the run out regarding Frank Slide. Some 30 percent of total kinetic energy is rotational kinetic energy in
Modelling the internal structure of nascent soot particles
Totton, Tim S.; Sander, Markus; Kraft, Markus; Chakrabarti, Dwaipayan; Wales, David J.; Misquitta, Alston J.
2010-05-15
In this paper we present studies of clusters assembled from polycyclic aromatic hydrocarbon (PAH) molecules similar in size to small soot particles. The clusters studied were comprised of coronene (C{sub 24}H{sub 12}) or pyrene (C{sub 16}H{sub 10}) molecules and represent the types of soot precursor molecule typically found in flame environments. A stochastic 'basin-hopping' global optimisation scheme was used to locate low-lying local minima on the potential energy surface of the molecular clusters. TEM-style projections of the resulting geometries show similarities with those observed experimentally in TEM images of soot particles. The mass densities of these clusters have also been calculated and are lower than bulk values of the pure crystalline PAH structures. They are also significantly lower than the standard value of 1.8 g/cm{sup 3} used in our soot models. Consequently we have varied the mass density between 1.0 g/cm{sup 3} and 1.8 g/cm{sup 3} to examine the effects of varying soot density on our soot model and observed how the shape of the particle size distribution changes. Based on similarities between nascent soot particles and PAH clusters a more accurate soot density is likely to be significantly lower than 1.8 g/cm{sup 3}. As such, for modelling purposes, we recommend that the density of nascent soot should be taken to be the value obtained for our coronene cluster of 1.12 g/cm{sup 3}. (author)
Interactive data exploration and particle tracking for general circulation models
NASA Technical Reports Server (NTRS)
Rosenbaum, R. I.; Peskin, R. L.; Walther, S. S.; Zinn, H. P.
1995-01-01
The SCENE environment for interactive visualization of complex data sets is discussed. This environment is used to create tools for graphical exploration of atmospheric flow models. These tools may be extended by the user in a seamless manner, so that no programming is required. A module for accurately tracing field lines and particle trajectories in SCENE is presented. This is used to examine the flowfield qualitatively with streamlines and pathlines and to identify critical points in the velocity field. The paper also describes a visualization tool for general circulation models on which the primary features of the environment are demonstrated.
Force models for particle-dynamics simulations of granular materials
Walton, O.R.
1994-12-01
Engineering-mechanics contact models are utilized to describe the inelastic, frictional interparticle forces acting in dry granular systems. Simple analyses based on one-dimensional chains are utilized to illustrate wave propagation phenomena in dense and dilute discrete particulates. The variation of restitution coefficient with impact velocity is illustrated for a variety of viscous and hysteretic normal force models. The effects of interparticle friction on material strength in discrete-particle simulations are much closer to measured values than are theories that do not allow article rotations.
Particles with variable spin and a composite hadron model
Pletyukov, V.A.; Strazhev, V.I.
1986-01-01
The theory of relativistic wave equations (RWE) is examined as a possibility for construction of a gauge model without use of external coordinates, based on localization of nongeometric symmetry. The described approach ascribes to the quark a wave function the component of which obey RWE. It considers the quark as a particle with a variable spin of 1/2, 3/2. Without introducing the concept of color it is possible to solve the problem of the relationship between spin and statistics in the composite hadron model.
Modeling electrokinetic flows by consistent implicit incompressible smoothed particle hydrodynamics
NASA Astrophysics Data System (ADS)
Pan, Wenxiao; Kim, Kyungjoo; Perego, Mauro; Tartakovsky, Alexandre M.; Parks, Michael L.
2017-04-01
We present a consistent implicit incompressible smoothed particle hydrodynamics (I2SPH) discretization of Navier-Stokes, Poisson-Boltzmann, and advection-diffusion equations subject to Dirichlet or Robin boundary conditions. It is applied to model various two and three dimensional electrokinetic flows in simple or complex geometries. The accuracy and convergence of the consistent I2SPH are examined via comparison with analytical solutions, grid-based numerical solutions, or empirical models. The new method provides a framework to explore broader applications of SPH in microfluidics and complex fluids with charged objects, such as colloids and biomolecules, in arbitrary complex geometries.
Modeling electrokinetic flows by consistent implicit incompressible smoothed particle hydrodynamics
Pan, Wenxiao; Kim, Kyungjoo; Perego, Mauro; ...
2017-01-03
In this paper, we present a consistent implicit incompressible smoothed particle hydrodynamics (I2SPH) discretization of Navier–Stokes, Poisson–Boltzmann, and advection–diffusion equations subject to Dirichlet or Robin boundary conditions. It is applied to model various two and three dimensional electrokinetic flows in simple or complex geometries. The accuracy and convergence of the consistent I2SPH are examined via comparison with analytical solutions, grid-based numerical solutions, or empirical models. Lastly, the new method provides a framework to explore broader applications of SPH in microfluidics and complex fluids with charged objects, such as colloids and biomolecules, in arbitrary complex geometries.
Modelling of aircrew radiation exposure during solar particle events
NASA Astrophysics Data System (ADS)
Al Anid, Hani Khaled
show a very different response during anisotropic events, leading to variations in aircrew radiation doses that may be significant for dose assessment. To estimate the additional exposure due to solar flares, a model was developed using a Monte-Carlo radiation transport code, MCNPX. The model transports an extrapolated particle spectrum based on satellite measurements through the atmosphere using the MCNPX analysis. This code produces the estimated flux at a specific altitude where radiation dose conversion coefficients are applied to convert the particle flux into effective and ambient dose-equivalent rates. A cut-off rigidity model accounts for the shielding effects of the Earth's magnetic field. Comparisons were made between the model predictions and actual flight measurements taken with various types of instruments used to measure the mixed radiation field during Ground Level Enhancements 60 and 65. An anisotropy analysis that uses neutron monitor responses and the pitch angle distribution of energetic solar particles was used to identify particle anisotropy for a solar event in December 2006. In anticipation of future commercial use, a computer code has been developed to implement the radiation dose assessment model for routine analysis. Keywords: Radiation Dosimetry, Radiation Protection, Space Physics.
Entrainment of coarse grains using a discrete particle model
Valyrakis, Manousos; Arnold, Roger B. Jr.
2014-10-06
Conventional bedload transport models and incipient motion theories relying on a time-averaged boundary shear stress are incapable of accounting for the effects of fluctuating near-bed velocity in turbulent flow and are therefore prone to significant errors. Impulse, the product of an instantaneous force magnitude and its duration, has been recently proposed as an appropriate criterion for quantifying the effects of flow turbulence in removing coarse grains from the bed surface. Here, a discrete particle model (DPM) is used to examine the effects of impulse, representing a single idealized turbulent event, on particle entrainment. The results are classified according to the degree of grain movement into the following categories: motion prior to entrainment, initial dislodgement, and energetic displacement. The results indicate that in all three cases the degree of particle motion depends on both the force magnitude and the duration of its application and suggest that the effects of turbulence must be adequately accounted for in order to develop a more accurate method of determining incipient motion. DPM is capable of simulating the dynamics of grain entrainment and is an appropriate tool for further study of the fundamental mechanisms of sediment transport.
Smoothed dissipative particle dynamics model for polymer molecules in suspension
NASA Astrophysics Data System (ADS)
Litvinov, Sergey; Ellero, Marco; Hu, Xiangyu; Adams, Nikolaus A.
2008-06-01
We present a model for a polymer molecule in solution based on smoothed dissipative particle dynamics (SDPD) [Español and Revenga, Phys. Rev. E 67, 026705 (2003)]. This method is a thermodynamically consistent version of smoothed particle hydrodynamics able to discretize the Navier-Stokes equations and, at the same time, to incorporate thermal fluctuations according to the fluctuation-dissipation theorem. Within the framework of the method developed for mesoscopic multiphase flows by Hu and Adams [J. Comput. Phys. 213, 844 (2006)], we introduce additional finitely extendable nonlinear elastic interactions between particles that represent the beads of a polymer chain. In order to assess the accuracy of the technique, we analyze the static and dynamic conformational properties of the modeled polymer molecule in solution. Extensive tests of the method for the two-dimensional (2D) case are performed, showing good agreement with the analytical theory. Finally, the effect of confinement on the conformational properties of the polymer molecule is investigated by considering a 2D microchannel with gap H varying between 1 and 10μm , of the same order as the polymer gyration radius. Several SDPD simulations are performed for different chain lengths corresponding to N=20-100 beads, giving a universal behavior of the gyration radius RG and polymer stretch X as functions of the channel gap when normalized properly.
Models of filter-based particle light absorption measurements
NASA Astrophysics Data System (ADS)
Hamasha, Khadeejeh M.
Light absorption by aerosol is very important in the visible, near UN, and near I.R region of the electromagnetic spectrum. Aerosol particles in the atmosphere have a great influence on the flux of solar energy, and also impact health in a negative sense when they are breathed into lungs. Aerosol absorption measurements are usually performed by filter-based methods that are derived from the change in light transmission through a filter where particles have been deposited. These methods suffer from interference between light-absorbing and light-scattering aerosol components. The Aethalometer is the most commonly used filter-based instrument for aerosol light absorption measurement. This dissertation describes new understanding of aerosol light absorption obtained by the filter method. The theory uses a multiple scattering model for the combination of filter and particle optics. The theory is evaluated using Aethalometer data from laboratory and ambient measurements in comparison with photoacoustic measurements of aerosol light absorption. Two models were developed to calculate aerosol light absorption coefficients from the Aethalometer data, and were compared to the in-situ aerosol light absorption coefficients. The first is an approximate model and the second is a "full" model. In the approximate model two extreme cases of aerosol optics were used to develop a model-based calibration scheme for the 7-wavelength Aethalometer. These cases include those of very strong scattering aerosols (Ammonium sulfate sample) and very absorbing aerosols (kerosene soot sample). The exponential behavior of light absorption in the strong multiple scattering limit is shown to be the square root of the total absorption optical depth rather than linear with optical depth as is commonly assumed with Beer's law. 2-stream radiative transfer theory was used to develop the full model to calculate the aerosol light absorption coefficients from the Aethalometer data. This comprehensive model
A Refined Model for Solid Particle Rock Erosion
NASA Astrophysics Data System (ADS)
Momber, A. W.
2016-02-01
A procedure for the estimation of distribution parameters of a Weibull distribution model K 1 = f( K Ic 12/4 / σ C 23/4 ) for solid particle erosion, as recently suggested in Rock Mech Rock Eng, doi: 10.1007/s00603-014-0658-x, 2014, is derived. The procedure is based on examinations of elastic-plastically responding rocks (rhyolite, granite) and plastically responding rocks (limestone, schist). The types of response are quantified through SEM inspections of eroded surfaces. Quantitative numbers for the distribution parameter K 1 are calculated for 30 rock materials, which cover a wide range of mechanical properties. The ranking according to the parameter K 1 is related to qualitative rock classification schemes. A modified proposal for the erosion of schist due to solid particle impingement at normal incidence is introduced.
Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles
Kononova, Olga; Snijder, Joost; Kholodov, Yaroslav; Marx, Kenneth A.; Wuite, Gijs J. L.; Roos, Wouter H.; Barsegov, Valeri
2016-01-01
The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams) modeling the particle structure. The beams’ deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F)-deformation (X) spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young’s moduli for Hertzian and bending deformations, and the structural damage dependent beams’ survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications. PMID:26821264
Reduced quasilinear models for energetic particles interaction with Alfvenic eigenmodes
NASA Astrophysics Data System (ADS)
Ghantous, Katy
The Line Broadened Quasilinear (LBQ) and the 1.5D reduced models are able to predict the effect of Alfvenic eigenmodes' interaction with energetic particles in burning plasmas. This interaction can result in energetic-particle losses that can damage the first wall, deteriorate the plasma performance, and even prevent ignition. The 1.5D model assumes a broad spectrum of overlapping modes and, based on analytic expressions for the growth and damping rates, calculates the pressure profiles that the energetic particles relax to upon interacting with the modes. 1.5D is validated with DIII-D experiments and predicted neutron losses consistent with observation. The model is employed to predict alpha-particle fusion-product losses in a large-scale operational parameter-space for burning plasmas. The LBQ model captures the interaction both in the regime of isolated modes as well as in the conventional regime of overlapping modes. Rules were established that allow quasilinear equations to replicate the expected steady-state saturation levels of isolated modes. The fitting formula is improved and the model is benchmarked with a Vlasov code, BOT. The saturation levels are accurately predicted and the mode evolution is well-replicated in the case of steady-state evolution where the collisions are high enough that coherent structures do not form. When the collisionality is low, oscillatory behavior can occur. LBQ can also exhibit non-steady behavior, but the onset of oscillations occurs for much higher collisional rates in BOT than in LBQ. For certain parameters of low collisionality, hole-clump creation and frequency chirping can occur which are not captured by the LBQ model. Also, there are cases of non-steady evolution without chirping which is possible for LBQ to study. However the results are inconclusive since the periods and amplitudes of the oscillations in the mode evolution are not well-replicated. If multiple modes exist, they can grow to the point of overlap which
A particle based simulation model for glacier dynamics
NASA Astrophysics Data System (ADS)
Åström, J. A.; Riikilä, T. I.; Tallinen, T.; Zwinger, T.; Benn, D.; Moore, J. C.; Timonen, J.
2013-10-01
A particle-based computer simulation model was developed for investigating the dynamics of glaciers. In the model, large ice bodies are made of discrete elastic particles which are bound together by massless elastic beams. These beams can break, which induces brittle behaviour. At loads below fracture, beams may also break and reform with small probabilities to incorporate slowly deforming viscous behaviour in the model. This model has the advantage that it can simulate important physical processes such as ice calving and fracturing in a more realistic way than traditional continuum models. For benchmarking purposes the deformation of an ice block on a slip-free surface was compared to that of a similar block simulated with a Finite Element full-Stokes continuum model. Two simulations were performed: (1) calving of an ice block partially supported in water, similar to a grounded marine glacier terminus, and (2) fracturing of an ice block on an inclined plane of varying basal friction, which could represent transition to fast flow or surging. Despite several approximations, including restriction to two-dimensions and simplified water-ice interaction, the model was able to reproduce the size distributions of the debris observed in calving, which may be approximated by universal scaling laws. On a moderate slope, a large ice block was stable and quiescent as long as there was enough of friction against the substrate. For a critical length of frictional contact, global sliding began, and the model block disintegrated in a manner suggestive of a surging glacier. In this case the fragment size distribution produced was typical of a grinding process.
A particle based simulation model for glacier dynamics
NASA Astrophysics Data System (ADS)
Åström, J. A.; Riikilä, T. I.; Tallinen, T.; Zwinger, T.; Benn, D.; Moore, J. C.; Timonen, J.
2013-03-01
A particle-based computer simulation model was developed for investigating the dynamics of glaciers. In the current model, large ice bodies are made of discrete elastic particles which are bound together by massless and elastic beams. The beams can break which induces brittle behaviour. At loads below fracture, beams may also break and reform with small probabilities in order to incorporate slowly deforming viscous behaviour in the model. This model has the advantage that it can simulate important physical processes such as ice calving and fracturing in a more realistic way than traditional continuum models. Two simulations were performed: (1) calving of an ice block partially supported in water, which could represent a grounded marine glacier terminus, and (2) fracturing of an ice block on an inclined plane of varying basal friction, which could represent transition to fast flow or surging. For benchmarking purposes the deformation of an ice block on a slip-free surface was compared to that of a similar block simulated with a Finite Element full-Stokes continuum model. In spite of several simplifications, which include restriction to two-dimenions and simplified rheology for water, the model introduced was able to reproduce the size distributions of the icebergs and the debris observed in calving. The size distributions we produce may be approximated by universal scaling laws. On a moderate slope, a large ice block was stable as long as there was enough of friction against the substrate. This was a quiescent state. For a critical length of frictional contact global sliding began, and the model block disintegrated in a manner suggestive of a surging glacier. In this case the fragment size distribution produced was typical of a grinding process.
Modeling the Controlled Recrystallization of Particle-Containing Aluminum Alloys
NASA Astrophysics Data System (ADS)
Adam, Khaled; Root, Jameson M.; Long, Zhengdong; Field, David P.
2017-01-01
The recrystallized fraction for AA7050 during the solution heat treatment is highly dependent upon the history of deformation during thermomechanical processing. In this work, a state variable model was developed to predict the recrystallization volume fraction as a function of processing parameters. Particle stimulated nucleation (PSN) was observed as a dominant mechanism of recrystallization in AA7050. The mesoscale Monte Carlo Potts model was used to simulate the evolved microstructure during static recrystallization with the given recrystallization fraction determined already by the state variable model for AA7050 alloy. The spatial inhomogeneity of nucleation is obtained from the measurement of the actual second-phase particle distribution in the matrix identified using backscattered electron (BSE) imaging. The state variable model showed good fit with the experimental results, and the simulated microstructures were quantitatively comparable to the experimental results for the PSN recrystallized microstructure of 7050 aluminum alloy. It was also found that the volume fraction of recrystallization did not proceed as dictated by the Avrami equation in this alloy because of the presence of the growth inhibitors.
Modeling the Controlled Recrystallization of Particle-Containing Aluminum Alloys
NASA Astrophysics Data System (ADS)
Adam, Khaled; Root, Jameson M.; Long, Zhengdong; Field, David P.
2016-12-01
The recrystallized fraction for AA7050 during the solution heat treatment is highly dependent upon the history of deformation during thermomechanical processing. In this work, a state variable model was developed to predict the recrystallization volume fraction as a function of processing parameters. Particle stimulated nucleation (PSN) was observed as a dominant mechanism of recrystallization in AA7050. The mesoscale Monte Carlo Potts model was used to simulate the evolved microstructure during static recrystallization with the given recrystallization fraction determined already by the state variable model for AA7050 alloy. The spatial inhomogeneity of nucleation is obtained from the measurement of the actual second-phase particle distribution in the matrix identified using backscattered electron (BSE) imaging. The state variable model showed good fit with the experimental results, and the simulated microstructures were quantitatively comparable to the experimental results for the PSN recrystallized microstructure of 7050 aluminum alloy. It was also found that the volume fraction of recrystallization did not proceed as dictated by the Avrami equation in this alloy because of the presence of the growth inhibitors.
Kawano, Toshihiko; Talou, Patrick; Watanabe, Takehito; Chadwick, Mark
2010-01-01
Monte Carlo simulations for particle and {gamma}-ray emissions from an excited nucleus based on the Hauser-Feshbach statistical theory are performed to obtain correlated information between emitted particles and {gamma}-rays. We calculate neutron induced reactions on {sup 51}V to demonstrate unique advantages of the Monte Carlo method. which are the correlated {gamma}-rays in the neutron radiative capture reaction, the neutron and {gamma}-ray correlation, and the particle-particle correlations at higher energies. It is shown that properties in nuclear reactions that are difficult to study with a deterministic method can be obtained with the Monte Carlo simulations.
Self-assembly of model amphiphilic Janus particles.
Rosenthal, Gerald; Gubbins, Keith E; Klapp, Sabine H L
2012-05-07
We apply molecular dynamics simulations to investigate the structure formation of amphiphilic Janus particles in the bulk phase. The Janus particles are modeled as (soft) spheres composed of a hydrophilic and hydrophobic part. Their orientation is described by a vector representing an internal degree of freedom. Investigating energy fluctuations and cluster size distributions, we determine the aggregation line in a temperature-density-diagram, where the reduced temperature is an inverse measure for the anisotropic coupling. Below this aggregation line clusters of various sizes depending on density and reduced temperature are found. For low densities in the range ρ∗ ≤ 0.3, the cluster size distribution has a broad maximum, indicating simultaneous existence of various cluster sizes between 5 and 10. We find no hint of a condensation transition of these clustered systems. In the case of higher densities (ρ∗ = 0.5 and 0.6), the cluster size distribution shows an extremely narrow peak at clusters of size 13. In these icosahedrons, the particles are arranged in a closed-packed manner, thereby maximizing the number of bonds. Analyzing the translational mean-square displacement we also observe indications of hindered diffusion due to aggregation.
Evaluations of Particle Scattering Models for Falling Snow
NASA Astrophysics Data System (ADS)
Duffy, G.; Nesbitt, S. W.; McFarquhar, G. M.
2014-12-01
Several millimeter wavelength scattering models have been developed over the past decade that could potentially be more accurate than the standard "soft sphere" model, a model with is used in GPM algorithms to retrieve snowfall precipitation rates from dual frequency radar measurements. Results from the GCPEx mission, a GPM Ground Validation experiment that flew HVPS and CIP particle imaging probes through snowstorms within fields of Ku/Ka band reflectivity, provide the data necessary to evaluate simulations of non-Rayleigh reflectivity against measured values. This research uses T-Matrix spheroid, RGA spheroid, and Mie Sphere simulations, as well as variations on axial ratio and diameter-density relationships, to quantify the merits and errors of different forward simulation strategies.
Interactive computational models of particle dynamics using virtual reality
Canfield, T.; Diachin, D.; Freitag, L.; Heath, D.; Herzog, J.; Michels, W.
1996-12-31
An increasing number of industrial applications rely on computational models to reduce costs in product design, development, and testing cycles. Here, the authors discuss an interactive environment for the visualization, analysis, and modification of computational models used in industrial settings. In particular, they focus on interactively placing massless, massed, and evaporating particulate matter in computational fluid dynamics applications.they discuss the numerical model used to compute the particle pathlines in the fluid flow for display and analysis. They briefly describe the toolkits developed for vector and scalar field visualization, interactive particulate source placement, and a three-dimensional GUI interface. This system is currently used in two industrial applications, and they present the tools in the context of these applications. They summarize the current state of the project and offer directions for future research.
Emergent smectic order in simple active particle models
NASA Astrophysics Data System (ADS)
Romanczuk, Pawel; Chaté, Hugues; Chen, Leiming; Ngo, Sandrine; Toner, John
2016-06-01
Novel ‘smectic-P’ behavior, in which self-propelled particles form rows and move on average along them, occurs generically within the orientationally ordered phase of simple models that we simulate. Both apolar (head-tail symmetric) and polar (head-tail asymmetric) models with aligning and repulsive interactions exhibit slow algebraic decay of smectic order with system size up to some finite length scale, after which faster decay occurs. In the apolar case, this scale is that of an undulation instability of the rows. In the polar case, this instability is absent, but traveling fluctuations disrupt the rows in large systems and motion and smectic order may spontaneously globally rotate. These observations agree with a new hydrodynamic theory which we present here. Variants of our models also exhibit active smectic ‘A’ and ‘C’ order, with motion orthogonal and oblique to the layers respectively.
Modeling of mesoscopic electrokinetic phenomena using charged dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Deng, Mingge; Li, Zhen; Karniadakis, George
2015-11-01
In this work, we propose a charged dissipative particle dynamics (cDPD) model for investigation of mesoscopic electrokinetic phenomena. In particular, this particle-based method was designed to simulate micro- or nano- flows which governing by Poisson-Nernst-Planck (PNP) equation coupled with Navier-Stokes (NS) equation. For cDPD simulations of wall-bounded fluid systems, a methodology for imposing correct Dirichlet and Neumann boundary conditions for both PNP and NS equations is developed. To validate the present cDPD model and the corresponding boundary method, we perform cDPD simulations of electrostatic double layer (EDL) in the vicinity of a charged wall, and the results show good agreement with the mean-field theoretical solutions. The capacity density of a parallel plate capacitor in salt solution is also investigated with different salt concentration. Moreover, we utilize the proposed methodology to study the electroosmotic and electroosmotic/pressure-driven flow in a micro-channel. In the last, we simulate the dilute polyelectrolyte solution both in bulk and micro-channel, which show the flexibility and capability of this method in studying complex fluids. This work was sponsored by the Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4) supported by DOE.
How to model the interaction of charged Janus particles
NASA Astrophysics Data System (ADS)
Hieronimus, Reint; Raschke, Simon; Heuer, Andreas
2016-08-01
We analyze the interaction of charged Janus particles including screening effects. The explicit interaction is mapped via a least square method on a variable number n of systematically generated tensors that reflect the angular dependence of the potential. For n = 2 we show that the interaction is equivalent to a model previously described by Erdmann, Kröger, and Hess (EKH). Interestingly, this mapping is for n = 2 not able to capture the subtleties of the interaction for small screening lengths. Rather, a larger number of tensors has to be used. We find that the characteristics of the Janus type interaction plays an important role for the aggregation behavior. We obtained cluster structures up to the size of 13 particles for n = 2 and 36 and screening lengths κ-1 = 0.1 and 1.0 via Monte Carlo simulations. The influence of the screening length is analyzed and the structures are compared to results for an electrostatic-type potential and for the multipole-expanded Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. We find that a dipole-like potential (EKH or dipole DLVO approximation) is not able to sufficiently reproduce the anisotropy effects of the potential. Instead, a higher order expansion has to be used to obtain cluster structures that are compatible with experimental observations. The resulting minimum-energy clusters are compared to those of sticky hard sphere systems. Janus particles with a short-range screened interaction resemble sticky hard sphere clusters for all considered particle numbers, whereas for long-range screening even very small clusters are structurally different.
Modeling Particle Shape-Dependent Dynamics in Nanomedicine
Shah, Samar; Liu, Yaling; Hu, Walter; Gao, Jinming
2010-01-01
One of the major challenges in nanomedicine is to improve nanoparticle cell selectivity and adhesion efficiency through designing functionalized nanoparticles of controlled sizes, shapes, and material compositions. Recent data on cylindrically shaped filomicelles are beginning to show that non-spherical particles remarkably improved the biological properties over spherical counterpart. Despite these exciting advances, non-spherical particles have not been widely used in nanomedicine applications due to the lack of fundamental understanding of shape effect on targeting efficiency. This paper intends to investigate the shape-dependent adhesion kinetics of non-spherical nanoparticles through computational modeling. The ligand-receptor binding kinetics is coupled with Brownian dynamics to study the dynamic delivery process of nanorods under various vascular flow conditions. The influences of nanoparticle shape, ligand density, and shear rate on adhesion probability are studied. Nanorods are observed to contact and adhere to the wall much easier than their spherical counterparts under the same configuration due to their tumbling motion. The binding probability of a nanorod under a shear rate of 8 s−1 is found to be three times higher than that of a nanosphere with the same volume. The particle binding probability decreases with increased flow shear rate and channel height. The Brownian motion is found to largely enhance nanoparticle binding. Results from this study contribute to the fundamental understanding and knowledge on how particle shape affects the transport and targeting efficiency of nanocarriers, which will provide mechanistic insights on the design of shape-specific nanomedicine for targeted drug delivery applications. PMID:21399713
Particle Swarm Optimization with Watts-Strogatz Model
NASA Astrophysics Data System (ADS)
Zhu, Zhuanghua
Particle swarm optimization (PSO) is a popular swarm intelligent methodology by simulating the animal social behaviors. Recent study shows that this type of social behaviors is a complex system, however, for most variants of PSO, all individuals lie in a fixed topology, and conflict this natural phenomenon. Therefore, in this paper, a new variant of PSO combined with Watts-Strogatz small-world topology model, called WSPSO, is proposed. In WSPSO, the topology is changed according to Watts-Strogatz rules within the whole evolutionary process. Simulation results show the proposed algorithm is effective and efficient.
Monte Carlo modeling of radiative heat transfer in particle-laden flow
NASA Astrophysics Data System (ADS)
Farbar, Erin; Boyd, Iain D.; Esmaily-Moghadam, Mahdi
2016-11-01
Three-dimensional numerical simulations are applied to model radiative heat transfer in a dispersed particle phase exhibiting preferential concentration typical of a turbulent, particle-laden flow environment. The dispersed phase is composed of micron-sized nickel particles, and the carrier phase is non-participating. The simulations are performed for a snapshot of the particle field using the Monte Carlo Ray Tracing method, and the spectral dependence of the optical properties is considered. Interaction between the particles and radiation is modeled by projecting the particle locations onto an Eulerian mesh. Results show that the optically thin approximation results in errors in predicted particle heat transfer of up to 35% at some locations in the particle field. Oxidation is shown to change the absorption efficiency of the particles significantly, while consideration of non-spherical particle shapes results in relatively small changes in the predicted optical properties of the particles.
Event-based total suspended sediment particle size distribution model
NASA Astrophysics Data System (ADS)
Thompson, Jennifer; Sattar, Ahmed M. A.; Gharabaghi, Bahram; Warner, Richard C.
2016-05-01
One of the most challenging modelling tasks in hydrology is prediction of the total suspended sediment particle size distribution (TSS-PSD) in stormwater runoff generated from exposed soil surfaces at active construction sites and surface mining operations. The main objective of this study is to employ gene expression programming (GEP) and artificial neural networks (ANN) to develop a new model with the ability to more accurately predict the TSS-PSD by taking advantage of both event-specific and site-specific factors in the model. To compile the data for this study, laboratory scale experiments using rainfall simulators were conducted on fourteen different soils to obtain TSS-PSD. This data is supplemented with field data from three construction sites in Ontario over a period of two years to capture the effect of transport and deposition within the site. The combined data sets provide a wide range of key overlooked site-specific and storm event-specific factors. Both parent soil and TSS-PSD in runoff are quantified by fitting each to a lognormal distribution. Compared to existing regression models, the developed model more accurately predicted the TSS-PSD using a more comprehensive list of key model input parameters. Employment of the new model will increase the efficiency of deployment of required best management practices, designed based on TSS-PSD, to minimize potential adverse effects of construction site runoff on aquatic life in the receiving watercourses.
Modeling the dynamics of several particles behind a propagating shock wave
NASA Astrophysics Data System (ADS)
Bedarev, I. A.; Fedorov, A. V.
2017-01-01
The interaction of a shock wave in a gas phase with a system of particles moving in this gas has been numerically simulated. The wave pattern of the nonstationary interaction of the propagating shock wave with these particles is described in detail. The mathematical model and computational technology employed is compared with experimental data on the dynamics of particles behind the shock wave. It is established that the approximate model of separate particles used to calculate relaxation of their velocities unsatisfactorily operates in the presence of a mutual influence of particles, whereby one particle can occur in the aerodynamic shadow of an adjacent particle.
Accelerated simulation of stochastic particle removal processes in particle-resolved aerosol models
Curtis, J.H.; Michelotti, M.D.; Riemer, N.; Heath, M.T.; West, M.
2016-10-01
Stochastic particle-resolved methods have proven useful for simulating multi-dimensional systems such as composition-resolved aerosol size distributions. While particle-resolved methods have substantial benefits for highly detailed simulations, these techniques suffer from high computational cost, motivating efforts to improve their algorithmic efficiency. Here we formulate an algorithm for accelerating particle removal processes by aggregating particles of similar size into bins. We present the Binned Algorithm for particle removal processes and analyze its performance with application to the atmospherically relevant process of aerosol dry deposition. We show that the Binned Algorithm can dramatically improve the efficiency of particle removals, particularly for low removal rates, and that computational cost is reduced without introducing additional error. In simulations of aerosol particle removal by dry deposition in atmospherically relevant conditions, we demonstrate about 50-times increase in algorithm efficiency.
Stereoscopic system for measuring particle trajectories past an underwater model
NASA Astrophysics Data System (ADS)
Liu, H.-T.; Weissman, Michael A.; White, Gary B.; Miner, G. E.; Gustafson, William T.
1994-04-01
A stereoscopic system was developed that integrates hardware and software components for image acquisition, digitization, processing, display, and measurements. The model-induced trajectories of nearly neutrally buoyant fluorescent particles, illuminated with a 15-W pulsed copper vapor laser, are tracked in a towing tank by stereoscopic time-lapse photography using two 35-mm cameras positioned at a 90-degree angle from the top and the side. A C program, HI, drives two data I/O boards hosted in a PC to set up the run parameters, control the operations of the laser and camera shutters, and acquire the stereo images. The photographic records are digitized and processed to derive the centroids of reference marks and particle images. The centroids are then fed into a Windows-based program, Track/3D, to perform image correlation, correction for image distortion, stereo conversion, stereoscopic display, and measurements. The display module incorporates a graphics library that drives a stereoscopic display adapter attached to a monitor; the stereogram must be viewed with polarizing glasses. Functions are available for image translation, rotation, zooming, and on- screen measurements. The velocity and acceleration components of the 3-D flow field induced by the model are derived from the trajectories, serving as a basis for whole-field stereoscopic quantitative flow visualization.
Dissipative particle dynamics modeling of blood flow in arterial bifurcations
NASA Astrophysics Data System (ADS)
Li, Xuejin; Lykov, Kirill; Pivkin, Igor V.; Karniadakis, George Em
2013-11-01
The motion of a suspension of red blood cells (RBCs) flowing in bifurcations is investigated using both low-dimensional RBC (LD-RBC) and multiscale RBC (MS-RBC) models based on dissipative particle dynamics (DPD). The blood flow is first simulated in a symmetric geometry between the diverging and converging channels to satisfy the periodic flow assumption along the flow direction. The results show that the flowrate ratio of the daughter channels and the feed hematocrit level has considerable influence on blood-plasma separation. We also propose a new method to model the inflow and outflow boundaries for the blood flow simulations: the inflow at the inlet is duplicated from a fully developed flow generated by DPD fluid with periodic boundary conditions; the outflow in two adjacent regions near the outlet is controlled by adaptive forces to keep the flowrate and velocity gradient equal, while the particles leaving the microfluidic channel at the outlet at each time step are removed from the system. The simulation results of the developing flow match analytical solutions from continuum theory. Plasma skimming and the all-or-nothing phenomenon of RBCs in bifurcation have been investigated in the simulations. The simulation results are consistent with previous experimental results and theoretical predictions. This work is supported by the NIH Grant R01HL094270.
A particle dynamic model of red blood cell aggregation kinetics.
Fenech, Marianne; Garcia, Damien; Meiselman, Herbert J; Cloutier, Guy
2009-11-01
To elucidate the relationship between microscopic red blood cell (RBC) interactions and macroscopic rheological behavior, we propose a two-dimensional particle model capable of mimicking the main characteristics of RBC aggregation kinetics. The mechanical model of RBCs sheared in Couette flow is based on Newton law. We assumed a hydrodynamic force to move particles, a force to describe aggregation and an elasticity force. The role of molecular mass and concentration of neutral polymers on aggregation [Neu, B., and H. J. Meiselman. Biophys. J. 83:2482-2490, 2002] could be mimicked. Specifically, it was shown that for any shear rate (SR), the mean aggregate size (MAS) grew with time until it reached a constant value, which is consistent with in vitro experiments. It was also demonstrated that we could mimic the modal relationship between MAS and SR and the occurrence of maximum aggregation at about 0.1 s(-1). As anticipated, simulations indicated that an increase in aggregation force augmented MAS. Further, augmentation of the depletion layer thickness influenced MAS only for SR close to zero, which is a new finding. To conclude, our contribution reveals that the aggregation force intensity and SR influence the steady state MAS, and that the depletion and layer thickness affect the aggregation speed.
Particle Tracking Model and Abstraction of Transport Processes
B. Robinson
2004-10-21
The purpose of this report is to document the abstraction model being used in total system performance assessment (TSPA) model calculations for radionuclide transport in the unsaturated zone (UZ). The UZ transport abstraction model uses the particle-tracking method that is incorporated into the finite element heat and mass model (FEHM) computer code (Zyvoloski et al. 1997 [DIRS 100615]) to simulate radionuclide transport in the UZ. This report outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the UZ at Yucca Mountain. In addition, methods for determining and inputting transport parameters are outlined for use in the TSPA for license application (LA) analyses. Process-level transport model calculations are documented in another report for the UZ (BSC 2004 [DIRS 164500]). Three-dimensional, dual-permeability flow fields generated to characterize UZ flow (documented by BSC 2004 [DIRS 169861]; DTN: LB03023DSSCP9I.001 [DIRS 163044]) are converted to make them compatible with the FEHM code for use in this abstraction model. This report establishes the numerical method and demonstrates the use of the model that is intended to represent UZ transport in the TSPA-LA. Capability of the UZ barrier for retarding the transport is demonstrated in this report, and by the underlying process model (BSC 2004 [DIRS 164500]). The technical scope, content, and management of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Transport Model Report Integration'' (BSC 2004 [DIRS 171282]). Deviations from the technical work plan (TWP) are noted within the text of this report, as appropriate. The latest version of this document is being prepared principally to correct parameter values found to be in error due to transcription errors, changes in source data that were not captured in the report, calculation errors, and errors in interpretation of source data.
Explicit 3D continuum fracture modeling with smooth particle hydrodynamics
NASA Technical Reports Server (NTRS)
Benz, W.; Asphaug, E.
1993-01-01
Impact phenomena shaped our solar system. As usual for most solar system processes, the scales are far different than we can address directly in the laboratory. Impact velocities are often much higher than we can achieve, sizes are often vastly larger, and most impacts take place in an environment where the only gravitational force is the mutual pull of the impactors. The Smooth Particle Hydrodynamics (SPH) technique has been applied in the past to the simulations of giant impacts. In these simulations, the colliding objects were so massive (at least a sizeable fraction of the Earth's mass) that material strength was negligible compared to gravity. This assumption can no longer be made when the bodies are much smaller. To this end, we have developed a 3D SPH code that includes a strength model to which we have added a von Mises yielding relation for stresses beyond the Hugoniot Elastic Limit. At the lower stresses associated with brittle failure, we use a rate-dependent strength based on the nucleation of incipient flaws whose number density is given by a Weibull distribution. Following Grady and Kipp and Melosh et al., we introduce a state variable D ('damage'), 0 less than D less than 1, which expresses the local reduction in strength due to crack growth under tensile loading. Unfortunately for the hydrodynamics, Grady and Kipp's model predicts which fragments are the most probable ones and not the ones that are really formed. This means, for example, that if a given laboratory experiment is modeled, the fragment distribution obtained from the Grady-Kipp theory would be equivalent to a ensemble average over many realizations of the experiment. On the other hand, the hydrodynamics itself is explicit and evolves not an ensemble average but very specific fragments. Hence, there is a clear incompatibility with the deterministic nature of the hydrodynamics equations and the statistical approach of the Grady-Kipp dynamical fracture model. We remedy these shortcomings
Modeling of Particle Acceleration and Transport in Gradual SEP Events Using the PATH Model
NASA Astrophysics Data System (ADS)
Verkhoglyadova, O.; Li, G.; Zank, G.; Hu, Q.
2007-12-01
We discuss Particle Acceleration and Transport in the Heliosphere (PATH) numerical model developed at University of California at Riverside and present current progress on modeling of energetic particle acceleration at a traveling quasi-parallel CME-driven shock. We initiate the code by modeling a quiet-time solar wind background and then follow the propagation and evolution of an MHD shock from a distance of ~0.1 AU to the Earth's orbit. The model utilizes the solar wind parameters measured in situ by ACE. A semi-analytical approach is applied to simulate particle acceleration at the shock by injecting solar wind suprathermal ions locally. The diffusive shock acceleration mechanism due to the ion scattering by Alfvenic turbulence in the vicinity of the shock is adopted in the code. Monte-Carlo approach is used to follow transport of the energetic particles after they escape from the shock. The output of the PATH model includes time-dependent energetic particle fluxes, spectra and compositional ratios (Fe/O) for proton and heavy ions. We model specific SEP events and compare our modeling results with ACE measurements.
Fractality à la carte: a general particle aggregation model.
Nicolás-Carlock, J R; Carrillo-Estrada, J L; Dossetti, V
2016-01-19
In nature, fractal structures emerge in a wide variety of systems as a local optimization of entropic and energetic distributions. The fractality of these systems determines many of their physical, chemical and/or biological properties. Thus, to comprehend the mechanisms that originate and control the fractality is highly relevant in many areas of science and technology. In studying clusters grown by aggregation phenomena, simple models have contributed to unveil some of the basic elements that give origin to fractality, however, the specific contribution from each of these elements to fractality has remained hidden in the complex dynamics. Here, we propose a simple and versatile model of particle aggregation that is, on the one hand, able to reveal the specific entropic and energetic contributions to the clusters' fractality and morphology, and, on the other, capable to generate an ample assortment of rich natural-looking aggregates with any prescribed fractal dimension.
Using dissipative particle dynamics to model micromechanics of responsive hydrogels
NASA Astrophysics Data System (ADS)
Alexeev, Alexander; Nikolov, Svetoslav; Fernandez de Las Nieves, Alberto
2015-03-01
The ability of responsive hydrogels to undergo complex and reversible shape transformations in response to external stimuli such as temperature, magnetic/electric fields, pH levels, and light intensity has made them the material of choice for tissue scaffolding, drug delivery, bio-adhesive, bio-sensing, and micro-sorting applications. The complex micromechanics and kinetics of these responsive networks however, currently hinders developments in the aforementioned areas. In order to better understand the mechanical properties of these systems and how they change during the volume transition we have developed a dissipative particle dynamics (DPD) model for responsive polymer networks. We use this model to examine the impact of the Flory-Huggins parameter on the bulk and shear moduli. In this fashion we evaluate how environmental factors can affect the micromechanical properties of these networks. Support from NSF CAREER Award (DMR-1255288) is gratefully acknowledged.
Particle model for nonlocal heat transport in fusion plasmas.
Bufferand, H; Ciraolo, G; Ghendrih, Ph; Lepri, S; Livi, R
2013-02-01
We present a simple stochastic, one-dimensional model for heat transfer in weakly collisional media as fusion plasmas. Energies of plasma particles are treated as lattice random variables interacting with a rate inversely proportional to their energy schematizing a screened Coulomb interaction. We consider both the equilibrium (microcanonical) and nonequilibrium case in which the system is in contact with heat baths at different temperatures. The model exhibits a characteristic length of thermalization that can be associated with an interaction mean free path and one observes a transition from ballistic to diffusive regime depending on the average energy of the system. A mean-field expression for heat flux is deduced from system heat transport properties. Finally, it is shown that the nonequilibrium steady state is characterized by long-range correlations.
Fractality à la carte: a general particle aggregation model
Nicolás-Carlock, J. R.; Carrillo-Estrada, J. L.; Dossetti, V.
2016-01-01
In nature, fractal structures emerge in a wide variety of systems as a local optimization of entropic and energetic distributions. The fractality of these systems determines many of their physical, chemical and/or biological properties. Thus, to comprehend the mechanisms that originate and control the fractality is highly relevant in many areas of science and technology. In studying clusters grown by aggregation phenomena, simple models have contributed to unveil some of the basic elements that give origin to fractality, however, the specific contribution from each of these elements to fractality has remained hidden in the complex dynamics. Here, we propose a simple and versatile model of particle aggregation that is, on the one hand, able to reveal the specific entropic and energetic contributions to the clusters’ fractality and morphology, and, on the other, capable to generate an ample assortment of rich natural-looking aggregates with any prescribed fractal dimension. PMID:26781204
Fractality à la carte: a general particle aggregation model
NASA Astrophysics Data System (ADS)
Nicolás-Carlock, J. R.; Carrillo-Estrada, J. L.; Dossetti, V.
2016-01-01
In nature, fractal structures emerge in a wide variety of systems as a local optimization of entropic and energetic distributions. The fractality of these systems determines many of their physical, chemical and/or biological properties. Thus, to comprehend the mechanisms that originate and control the fractality is highly relevant in many areas of science and technology. In studying clusters grown by aggregation phenomena, simple models have contributed to unveil some of the basic elements that give origin to fractality, however, the specific contribution from each of these elements to fractality has remained hidden in the complex dynamics. Here, we propose a simple and versatile model of particle aggregation that is, on the one hand, able to reveal the specific entropic and energetic contributions to the clusters’ fractality and morphology, and, on the other, capable to generate an ample assortment of rich natural-looking aggregates with any prescribed fractal dimension.
Polycrystalline CVD diamond device level modeling for particle detection applications
NASA Astrophysics Data System (ADS)
Morozzi, A.; Passeri, D.; Kanxheri, K.; Servoli, L.; Lagomarsino, S.; Sciortino, S.
2016-12-01
Diamond is a promising material whose excellent physical properties foster its use for radiation detection applications, in particular in those hostile operating environments where the silicon-based detectors behavior is limited due to the high radiation fluence. Within this framework, the application of Technology Computer Aided Design (TCAD) simulation tools is highly envisaged for the study, the optimization and the predictive analysis of sensing devices. Since the novelty of using diamond in electronics, this material is not included in the library of commercial, state-of-the-art TCAD software tools. In this work, we propose the development, the application and the validation of numerical models to simulate the electrical behavior of polycrystalline (pc)CVD diamond conceived for diamond sensors for particle detection. The model focuses on the characterization of a physically-based pcCVD diamond bandgap taking into account deep-level defects acting as recombination centers and/or trap states. While a definite picture of the polycrystalline diamond band-gap is still debated, the effect of the main parameters (e.g. trap densities, capture cross-sections, etc.) can be deeply investigated thanks to the simulated approach. The charge collection efficiency due to β -particle irradiation of diamond materials provided by different vendors and with different electrode configurations has been selected as figure of merit for the model validation. The good agreement between measurements and simulation findings, keeping the traps density as the only one fitting parameter, assesses the suitability of the TCAD modeling approach as a predictive tool for the design and the optimization of diamond-based radiation detectors.
Seamless particle-based modeling of blood clotting
NASA Astrophysics Data System (ADS)
Yazdani, Alireza; Karniadakis, George
2016-11-01
We propose a new multiscale framework that seamlessly integrate four key components of blood clotting namely, blood rheology, cell mechanics, coagulation kinetics and transport of species and platelet adhesive dynamics. We use transport dissipative particle dynamics (tDPD) which is an extended form of original DPD as the base solver to model both blood flow and the reactive transport of chemical species in the coagulation cascade. Further, we use a coarse-grained representation of blood cell's membrane that accounts for its mechanics; both red blood cells and platelets are resolved at sub-cellular resolution, and stochastic bond formation/dissociation are included to account for platelet adhesive dynamics at the site of injury. Our results show good qualitative agreement with in vivo experiments. The numerical framework allows us to perform systematic analysis on different mechanisms of blood clotting. In addition, this new multiscale particle-based methodology can open new directions in addressing different biological processes from sub-cellular to macroscopic scales. NIH Grant No. U01HL116323.
Model for boiling and dryout in particle beds. [LMFBR
Lipinski, R. J.
1982-06-01
Over the last ten years experiments and modeling of dryout in particle beds have produced over fifty papers. Considering only volume-heated beds, over 250 dryout measurements have been made, and are listed in this work. In addition, fifteen models to predict dryout have been produced and are discussed. A model is developed in this report for one-dimensional boiling and dryout in a porous medium. It is based on conservation laws for mass, momentum, and energy. The initial coupled differential equations are reduced to a single first-order differential equation with an algebraic equation for the upper boundary condition. The model includes the effects of both laminar and turbulent flow, two-phase friction, and capillary force. The boundary condition at the bed bottom includes the possibility of inflowing liquid and either an adiabatic or a bottom-cooled support structure. The top of the bed may be either channeled or subcooled. In the first case the channel length and the saturation at the base of the channels are predicted. In the latter case, a criterion for penetration of the subcooled zone by channels is obtained.
Independent-particle models for light negative atomic ions
NASA Technical Reports Server (NTRS)
Ganas, P. S.; Talman, J. D.; Green, A. E. S.
1980-01-01
For the purposes of astrophysical, aeronomical, and laboratory application, a precise independent-particle model for electrons in negative atomic ions of the second and third period is discussed. The optimum-potential model (OPM) of Talman et al. (1979) is first used to generate numerical potentials for eight of these ions. Results for total energies and electron affinities are found to be very close to Hartree-Fock solutions. However, the OPM and HF electron affinities both depart significantly from experimental affinities. For this reason, two analytic potentials are developed whose inner energy levels are very close to the OPM and HF levels but whose last electron eigenvalues are adjusted precisely with the magnitudes of experimental affinities. These models are: (1) a four-parameter analytic characterization of the OPM potential and (2) a two-parameter potential model of the Green, Sellin, Zachor type. The system O(-) or e-O, which is important in upper atmospheric physics is examined in some detail.
Particle dispersion in homogeneous turbulence using the one-dimensional turbulence model
Sun, Guangyuan; Lignell, David O.; Hewson, John C.; Gin, Craig R.
2014-10-09
Lagrangian particle dispersion is studied using the one-dimensional turbulence (ODT) model in homogeneous decaying turbulence configurations. The ODT model has been widely and successfully applied to a number of reacting and nonreacting flow configurations, but only limited application has been made to multiphase flows. We present a version of the particle implementation and interaction with the stochastic and instantaneous ODT eddy events. The model is characterized by comparison to experimental data of particle dispersion for a range of intrinsic particle time scales and body forces. Particle dispersion, velocity, and integral time scale results are presented. Moreover, the particle implementation introduces a single model parameter β p , and sensitivity to this parameter and behavior of the model are discussed. Good agreement is found with experimental data and the ODT model is able to capture the particle inertial and trajectory crossing effects. Our results serve as a validation case of the multiphase implementations of ODT for extensions to other flow configurations.
Numerical modeling of the particle velocity and thermal relaxation behind passing shock waves
NASA Astrophysics Data System (ADS)
Bedarev, I. A.; Fedorov, A. V.
2016-10-01
The interaction of a shock wave with a system of particles moving in a gas is studied by numerical simulation. The wave pattern of the unsteady interaction of the passing shock wave with these particles is described in detail. The mathematical model and computational procedure are verified against experimental data on the particle dynamics behind the shock wave. It is shown that the approximate single-particle model for calculating the velocity relaxation is unsuitable in the case of mutual influence of particles, where one particle is in the wind shadow of another.
Validation of chemistry models employed in a particle simulation method
NASA Technical Reports Server (NTRS)
Haas, Brian L.; Mcdonald, Jeffrey D.
1991-01-01
The chemistry models employed in a statistical particle simulation method, as implemented in the Intel iPSC/860 multiprocessor computer, are validated and applied. Chemical relaxation of five-species air in these reservoirs involves 34 simultaneous dissociation, recombination, and atomic-exchange reactions. The reaction rates employed in the analytic solutions are obtained from Arrhenius experimental correlations as functions of temperature for adiabatic gas reservoirs in thermal equilibrium. Favorable agreement with the analytic solutions validates the simulation when applied to relaxation of O2 toward equilibrium in reservoirs dominated by dissociation and recombination, respectively, and when applied to relaxation of air in the temperature range 5000 to 30,000 K. A flow of O2 over a circular cylinder at high Mach number is simulated to demonstrate application of the method to multidimensional reactive flows.
Model-independent analyses of dark-matter particle interactions
Anand, Nikhil; Fitzpatrick, A. Liam; Haxton, W. C.
2015-03-24
A model-independent treatment of dark-matter particle elastic scattering has been developed, yielding the most general interaction for WIMP-nucleon low-energy scattering, and the resulting amplitude has been embedded into the nucleus, taking into account the selection rules imposed by parity and time-reversal. One finds that, in contrast to the usual spin-independent/spin-dependent (SI/SD) formulation, the resulting cross section contains six independent nuclear response functions, three of which are associated with possible velocity-dependent interactions. We find that current experiments are four orders of magnitude more sensitive to derivative couplings than is apparent in the standard SI/SD treatment, which necessarily associated such interactions with cross sections proportional to v^{2}_{T} ~ 10⁻⁶, where v_{T} is the WIMP velocity relative to the center of mass of the nuclear target.
Model-independent analyses of dark-matter particle interactions
Anand, Nikhil; Fitzpatrick, A. Liam; Haxton, W. C.
2015-03-24
A model-independent treatment of dark-matter particle elastic scattering has been developed, yielding the most general interaction for WIMP-nucleon low-energy scattering, and the resulting amplitude has been embedded into the nucleus, taking into account the selection rules imposed by parity and time-reversal. One finds that, in contrast to the usual spin-independent/spin-dependent (SI/SD) formulation, the resulting cross section contains six independent nuclear response functions, three of which are associated with possible velocity-dependent interactions. We find that current experiments are four orders of magnitude more sensitive to derivative couplings than is apparent in the standard SI/SD treatment, which necessarily associated such interactions withmore » cross sections proportional to v2T ~ 10⁻⁶, where vT is the WIMP velocity relative to the center of mass of the nuclear target.« less
A generalized Brownian motion model for turbulent relative particle dispersion
NASA Astrophysics Data System (ADS)
Shivamoggi, B. K.
2016-08-01
There is speculation that the difficulty in obtaining an extended range with Richardson-Obukhov scaling in both laboratory experiments and numerical simulations is due to the finiteness of the flow Reynolds number Re in these situations. In this paper, a generalized Brownian motion model has been applied to describe the relative particle dispersion problem in more realistic turbulent flows and to shed some light on this issue. The fluctuating pressure forces acting on a fluid particle are taken to be a colored noise and follow a stationary process and are described by the Uhlenbeck-Ornstein model while it appears plausible to take their correlation time to have a power-law dependence on Re, thus introducing a bridge between the Lagrangian quantities and the Eulerian parameters for this problem. This ansatz is in qualitative agreement with the possibility of a connection speculated earlier by Corrsin [26] between the white-noise representation for the fluctuating pressure forces and the large-Re assumption in the Kolmogorov [4] theory for the 3D fully developed turbulence (FDT) as well as a similar argument of Monin and Yaglom [23] and a similar result of Sawford [13] and Borgas and Sawford [24]. It also provides an insight into the result that the Richardson-Obukhov scaling holds only in the infinite-Re limit and disappears otherwise. This ansatz further provides a determination of the Richardson-Obukhov constant g as a function of Re, with an asymptotic constant value in the infinite-Re limit. It is shown to lead to full agreement, in the small-Re limit as well, with the Batchelor-Townsend [27] scaling for the rate of change of the mean square interparticle separation in 3D FDT, hence validating its soundness further.
Triviality of a model of particles with point interactions in the thermodynamic limit
NASA Astrophysics Data System (ADS)
Moser, Thomas; Seiringer, Robert
2016-11-01
We consider a model of fermions interacting via point interactions, defined via a certain weighted Dirichlet form. While for two particles the interaction corresponds to infinite scattering length, the presence of further particles effectively decreases the interaction strength. We show that the model becomes trivial in the thermodynamic limit, in the sense that the free energy density at any given particle density and temperature agrees with the corresponding expression for non-interacting particles.
A Simple Mathematical Model for Standard Model of Elementary Particles and Extension Thereof
NASA Astrophysics Data System (ADS)
Sinha, Ashok
2016-03-01
An algebraically (and geometrically) simple model representing the masses of the elementary particles in terms of the interaction (strong, weak, electromagnetic) constants is developed, including the Higgs bosons. The predicted Higgs boson mass is identical to that discovered by LHC experimental programs; while possibility of additional Higgs bosons (and their masses) is indicated. The model can be analyzed to explain and resolve many puzzles of particle physics and cosmology including the neutrino masses and mixing; origin of the proton mass and the mass-difference between the proton and the neutron; the big bang and cosmological Inflation; the Hubble expansion; etc. A novel interpretation of the model in terms of quaternion and rotation in the six-dimensional space of the elementary particle interaction-space - or, equivalently, in six-dimensional spacetime - is presented. Interrelations among particle masses are derived theoretically. A new approach for defining the interaction parameters leading to an elegant and symmetrical diagram is delineated. Generalization of the model to include supersymmetry is illustrated without recourse to complex mathematical formulation and free from any ambiguity. This Abstract represents some results of the Author's Independent Theoretical Research in Particle Physics, with possible connection to the Superstring Theory. However, only very elementary mathematics and physics is used in my presentation.
NASA Astrophysics Data System (ADS)
Beckett, F. M.; Witham, C. S.; Hort, M. C.; Stevenson, J. A.; Bonadonna, C.; Millington, S. C.
2015-11-01
This study examines the sensitivity of atmospheric dispersion model forecasts of volcanic ash clouds to the physical characteristics assigned to the particles. We show that the particle size distribution (PSD) used to initialise a dispersion model has a significant impact on the forecast of the mass loading of the ash particles in the atmosphere. This is because the modeled fall velocity of the particles is sensitive to the particle diameter. Forecasts of the long-range transport of the ash cloud consider particles with diameters between 0.1 μm and 100 μm. The fall velocity of particles with diameter 100 μm is over 5 orders of magnitude greater than a particle with diameter 0.1 μm, and 30 μm particles fall 88% slower and travel up to 5× further than a 100 μm particle. Identifying the PSD of the ash cloud at the source, which is required to initialise a model, is difficult. Further, aggregation processes are currently not explicitly modeled in operational dispersion models due to the high computational costs associated with aggregation schemes. We show that using a modified total grain size distribution (TGSD) that effectively accounts for aggregation processes improves the modeled PSD of the ash cloud and deposits from the eruption of Eyjafjallajökull in 2010. Knowledge of the TGSD of an eruption is therefore critical for reducing uncertainty in quantitative forecasts of ash cloud dispersion. The density and shape assigned to the model particles have a lesser but still significant impact on the calculated fall velocity. Accounting for the density distribution and sphericity of ash from the eruption of Eyjafjallajökull in 2010, modeled particles can travel up to 84% further than particles with default particle characteristics that assume the particles are spherical and have a fixed density.
A model for investigating the behaviour of non-spherical particles at interfaces.
Morris, G; Neethling, S J; Cilliers, J J
2011-02-01
This paper introduces a simple method for modelling non-spherical particles with a fixed contact angle at an interface whilst also providing a method to fix the particles orientation. It is shown how a wide variety of particle shapes (spherical, ellipsoidal, disc) can be created from a simple initial geometry containing only six vertices. The shapes are made from one continuous surface with edges and corners treated as smooth curves not discontinuities. As such, particles approaching cylindrical and orthorhombic shapes can be simulated but the contact angle crossing the edges will be fixed. Non-spherical particles, when attached to an interface can cause large distortions in the surface which affect the forces acting on the particle. The model presented is capable of resolving this distortion of the surface around the particle at the interface as well as allowing for the particle's orientation to be controlled. It is shown that, when considering orthorhombic particles with rounded edges, the flatter the particle the more energetically stable it is to sit flat at the interface. However, as the particle becomes more cube like, the effects of contact angle have a greater effect on the energetically stable orientations. Results for cylindrical particles with rounded edges are also discussed. The model presented allows the user to define the shape, dimensions, contact angle and orientation of the particle at the interface allowing more in-depth investigation of the complex phenomenon of 3D film distortion around an attached particle and the forces that arise due to it.
GRAVITATIONAL LENS MODELING WITH GENETIC ALGORITHMS AND PARTICLE SWARM OPTIMIZERS
Rogers, Adam; Fiege, Jason D.
2011-02-01
Strong gravitational lensing of an extended object is described by a mapping from source to image coordinates that is nonlinear and cannot generally be inverted analytically. Determining the structure of the source intensity distribution also requires a description of the blurring effect due to a point-spread function. This initial study uses an iterative gravitational lens modeling scheme based on the semilinear method to determine the linear parameters (source intensity profile) of a strongly lensed system. Our 'matrix-free' approach avoids construction of the lens and blurring operators while retaining the least-squares formulation of the problem. The parameters of an analytical lens model are found through nonlinear optimization by an advanced genetic algorithm (GA) and particle swarm optimizer (PSO). These global optimization routines are designed to explore the parameter space thoroughly, mapping model degeneracies in detail. We develop a novel method that determines the L-curve for each solution automatically, which represents the trade-off between the image {chi}{sup 2} and regularization effects, and allows an estimate of the optimally regularized solution for each lens parameter set. In the final step of the optimization procedure, the lens model with the lowest {chi}{sup 2} is used while the global optimizer solves for the source intensity distribution directly. This allows us to accurately determine the number of degrees of freedom in the problem to facilitate comparison between lens models and enforce positivity on the source profile. In practice, we find that the GA conducts a more thorough search of the parameter space than the PSO.
A cyclic model for particle motion in the pulmonary acinus
NASA Astrophysics Data System (ADS)
Haber, S.; Tsuda, A.
2006-11-01
A simplified model for the pulmonary alveolus that imitates the rhythmical expansion of the alveolus and the periodic shear flow in the adjacent airway is explored. The model consists of two eccentric cylinders and incompressible fluid that occupies the gap between them. The two cylinders undergo a simultaneous rhythmical expansion and contraction (mimicking the alveolus expansion) while the inner cylinder performs a periodic rotation about its axis (inducing shear flow mimicking airway ductal flow). An analytical solution is obtained for the creeping flow induced by the simultaneously expanding cylinders. It is shown that above a certain critical value of rotation to expansion velocity ratio, the flow exhibits characteristic features such as a saddle point and closed streamlines about a centre, similar to those existing inside a single alveolus during inhalation and exhalation. Poincaré maps of the trajectories of fluid particles demonstrate that, under various flow conditions, chaotic trajectories may exist, provided that expansion and rotation are slightly out of phase. This is similar to normal breathing conditions where the periodic expansion of the alveolus and the tidal flow (i.e. shear flow above the mouth of the alveolus) may be slightly out of phase. A novel definition of overall convective mixing efficiency is also suggested that inherently discounts reversible processes that do not contribute to mixing. It is demonstrated that two different convective mechanisms, related to the irreversibility of exhalation and inhalation and the onset of chaos, govern mixing efficiency in lung alveoli.
Modeling of hydrogen production methods: Single particle model and kinetics assessment
Miller, R.S.; Bellan, J.
1996-10-01
The investigation carried out by the Jet Propulsion Laboratory (JPL) is devoted to the modeling of biomass pyrolysis reactors producing an oil vapor (tar) which is a precursor to hydrogen. This is an informal collaboration with NREL whereby JPL uses the experimentally-generated NREL data both as initial and boundary conditions for the calculations, and as a benchmark for model validation. The goal of this investigation is to find drivers of biomass fast-pyrolysis in the low temperature regime. The rationale is that experimental observations produce sparse discrete conditions for model validation, and that numerical simulations produced with a validated model are an economic way to find control parameters and an optimal operation regime, thereby circumventing costly changes in hardware and tests. During this first year of the investigation, a detailed mathematical model has been formulated for the temporal and spatial accurate modeling of solid-fluid reactions in biomass particles. These are porous particles for which volumetric reaction rate data is known a priori and both the porosity and the permeability of the particle are large enough to allow for continuous gas phase flow. The methodology has been applied to the pyrolysis of spherically symmetric biomass particles by considering previously published kinetics schemes for both cellulose and wood. The results show that models which neglect the thermal and species boundary layers exterior to the particle will generally over predict both the pyrolysis rates and experimentally obtainable tar yields. An evaluation of the simulation results through comparisons with experimental data indicates that while the cellulose kinetics is reasonably accurate, the wood pyrolysis kinetics is not accurate; particularly at high reactor temperatures. Current effort in collaboration with NREL is aimed at finding accurate wood kinetics.
Coupled Particle Transport and Pattern Formation in a Nonlinear Leaky-Box Model
NASA Technical Reports Server (NTRS)
Barghouty, A. F.; El-Nemr, K. W.; Baird, J. K.
2009-01-01
Effects of particle-particle coupling on particle characteristics in nonlinear leaky-box type descriptions of the acceleration and transport of energetic particles in space plasmas are examined in the framework of a simple two-particle model based on the Fokker-Planck equation in momentum space. In this model, the two particles are assumed coupled via a common nonlinear source term. In analogy with a prototypical mathematical system of diffusion-driven instability, this work demonstrates that steady-state patterns with strong dependence on the magnetic turbulence but a rather weak one on the coupled particles attributes can emerge in solutions of a nonlinearly coupled leaky-box model. The insight gained from this simple model may be of wider use and significance to nonlinearly coupled leaky-box type descriptions in general.
NASA Astrophysics Data System (ADS)
Li, J. J.; Zhang, H.; Yang, H. R.; Wu, Y. X.; Lu, J. F.; Yue, G. X.
A hydrodynamic model with binary particle diameters was developed to better predict axial voidage profile in a CFB combustor. In the model, the CFB is regarded as a superposition of two sub-beds, a fast fluidized bed in the upper riser with a characteristic particle diameter of O.2mm and a bubbling fluidized bed or turbulent bed in the bottom riser with a characteristic particle diameter of 2mm. Furthermore, a variable critical particle diameter whose terminal velocity equals to the superficial gas velocity was employed to determine which flow regime the particle belongs to. The results show that binary particle diameter model has the advantages in describing wide particle diameter distribution while reducing the complexity of computation. The model was verified by the field data of voidage profile in a 300MW CFB boiler.
Joint tracking algorithm using particle filter and mean shift with target model updating
NASA Astrophysics Data System (ADS)
Zhang, Bo; Tian, Weifeng; Jin, Zhihua
2006-10-01
Roughly, visual tracking algorithms can be divided into two main classes: deterministic tracking and stochastic tracking. Mean shift and particle filter are their typical representatives, respectively. Recently, a hybrid tracker, seamlessly integrating the respective advantages of mean shift and particle filter (MSPF) has achieved impressive success in robust tracking. The pivot of MSPF is to sample fewer particles using particle filter and then those particles are shifted to their respective local maximum of target searching space by mean shift. MSPF not only can greatly reduce the number of particles that particle filter required, but can remedy the deficiency of mean shift. Unfortunately, due to its inherent principle, MSPF is restricted to those applications with little changes of the target model. To make MSPF more flexible and robust, an adaptive target model is extended to MSPF in this paper. Experimental results show that MSPF with target model updating can robustly track the target through the whole sequences regardless of the change of target model.
Critical examination of the colloidal particle model of globular proteins.
Sarangapani, Prasad S; Hudson, Steven D; Jones, Ronald L; Douglas, Jack F; Pathak, Jai A
2015-02-03
Recent studies of globular protein solutions have uniformly adopted a colloidal view of proteins as particles, a perspective that neglects the polymeric primary structure of these biological macromolecules, their intrinsic flexibility, and their ability to sample a large configurational space. While the colloidal perspective often serves as a useful idealization in many cases, the macromolecular identity of proteins must reveal itself under thermodynamic conditions in which the native state is no longer stable, such as denaturing solvents and high protein concentrations where macromolecules tend to have screened excluded volume, charge, and hydrodynamic interactions. Under extreme pH conditions, charge repulsion interactions within the protein chain can overcome the attractive hydrogen-bonding interactions, holding it in its native globular state. Conformational changes can therefore be expected to have great significance on the shear viscosity and other rheological properties of protein solutions. These changes are not envisioned in conventional colloidal protein models and we have initiated an investigation of the scattering and rheological properties of model proteins. We initiate this effort by considering bovine serum albumin because it is a globular protein whose solution properties have also been extensively investigated as a function of pH, temperature, ionic strength, and concentration. As we anticipated, near-ultraviolet circular dichroism measurements and intrinsic viscosity measurements clearly indicate that the bovine serum albumin tertiary structure changes as protein concentration and pH are varied. Our findings point to limited validity of the colloidal protein model and to the need for further consideration and quantification of the effects of conformational changes on protein solution viscosity, protein association, and the phase behavior. Small-angle Neutron Scattering measurements have allowed us to assess how these conformational changes
Critical Examination of the Colloidal Particle Model of Globular Proteins
Sarangapani, Prasad S.; Hudson, Steven D.; Jones, Ronald L.; Douglas, Jack F.; Pathak, Jai A.
2015-01-01
Recent studies of globular protein solutions have uniformly adopted a colloidal view of proteins as particles, a perspective that neglects the polymeric primary structure of these biological macromolecules, their intrinsic flexibility, and their ability to sample a large configurational space. While the colloidal perspective often serves as a useful idealization in many cases, the macromolecular identity of proteins must reveal itself under thermodynamic conditions in which the native state is no longer stable, such as denaturing solvents and high protein concentrations where macromolecules tend to have screened excluded volume, charge, and hydrodynamic interactions. Under extreme pH conditions, charge repulsion interactions within the protein chain can overcome the attractive hydrogen-bonding interactions, holding it in its native globular state. Conformational changes can therefore be expected to have great significance on the shear viscosity and other rheological properties of protein solutions. These changes are not envisioned in conventional colloidal protein models and we have initiated an investigation of the scattering and rheological properties of model proteins. We initiate this effort by considering bovine serum albumin because it is a globular protein whose solution properties have also been extensively investigated as a function of pH, temperature, ionic strength, and concentration. As we anticipated, near-ultraviolet circular dichroism measurements and intrinsic viscosity measurements clearly indicate that the bovine serum albumin tertiary structure changes as protein concentration and pH are varied. Our findings point to limited validity of the colloidal protein model and to the need for further consideration and quantification of the effects of conformational changes on protein solution viscosity, protein association, and the phase behavior. Small-angle Neutron Scattering measurements have allowed us to assess how these conformational changes
Microbial interactions lead to rapid micro-scale successions on model marine particles
Datta, Manoshi S.; Sliwerska, Elzbieta; Gore, Jeff; Polz, Martin F.; Cordero, Otto X.
2016-01-01
In the ocean, organic particles harbour diverse bacterial communities, which collectively digest and recycle essential nutrients. Traits like motility and exo-enzyme production allow individual taxa to colonize and exploit particle resources, but it remains unclear how community dynamics emerge from these individual traits. Here we track the taxon and trait dynamics of bacteria attached to model marine particles and demonstrate that particle-attached communities undergo rapid, reproducible successions driven by ecological interactions. Motile, particle-degrading taxa are selected for during early successional stages. However, this selective pressure is later relaxed when secondary consumers invade, which are unable to use the particle resource but, instead, rely on carbon from primary degraders. This creates a trophic chain that shifts community metabolism away from the particle substrate. These results suggest that primary successions may shape particle-attached bacterial communities in the ocean and that rapid community-wide metabolic shifts could limit rates of marine particle degradation. PMID:27311813
Microbial interactions lead to rapid micro-scale successions on model marine particles.
Datta, Manoshi S; Sliwerska, Elzbieta; Gore, Jeff; Polz, Martin F; Cordero, Otto X
2016-06-17
In the ocean, organic particles harbour diverse bacterial communities, which collectively digest and recycle essential nutrients. Traits like motility and exo-enzyme production allow individual taxa to colonize and exploit particle resources, but it remains unclear how community dynamics emerge from these individual traits. Here we track the taxon and trait dynamics of bacteria attached to model marine particles and demonstrate that particle-attached communities undergo rapid, reproducible successions driven by ecological interactions. Motile, particle-degrading taxa are selected for during early successional stages. However, this selective pressure is later relaxed when secondary consumers invade, which are unable to use the particle resource but, instead, rely on carbon from primary degraders. This creates a trophic chain that shifts community metabolism away from the particle substrate. These results suggest that primary successions may shape particle-attached bacterial communities in the ocean and that rapid community-wide metabolic shifts could limit rates of marine particle degradation.
Modelling the surface deposition of meteoric smoke particles
NASA Astrophysics Data System (ADS)
Brooke, James S. A.; Feng, Wuhu; Mann, Graham W.; Dhomse, Sandip S.; Bardeen, Charles G.; Plane, John M. C.
2016-04-01
The flux of meteoric smoke particles (MSPs) in Greenland and Antarctica has been measured using Ir and Pt observations in ice cores, by Gabrielli et al. [1,2]. They obtained MSP deposition fluxes of 1.5 ± 0.45 × 10-4 g m-2 yr-1 (209 ± 63 t d-1) in Greenland and 3.9 ± 1.4 × 10-5 g m-2 yr-1 (55 ± 19 t d-1) in Antarctica, where the values in parentheses are total atmospheric inputs, assuming a uniform global deposition rate. These results show reasonable agreement with those of Lanci et al. [3], who used ice core magnetisation measurements, resulting in MSP fluxes of 1.7 ± 0.23 × 10-4 g m-2 yr-1 (236 ± 50 t d-1) (Greenland) and 2.0 ± 0.52 × 10-5 g m-2 yr-1 (29 ± 5.0 t d-1) (Antarctica). Atmospheric modelling studies have been performed to assess the transport and deposition of MSPs, using WACCM (Whole Atmosphere Community Climate Model), and the CARMA (Community Aerosol and Radiation Model) aerosol microphysics package. An MSP input function totalling 44 t d-1 was added between about 80 and 105 km. Several model runs have been performed in which the aerosol scavenging by precipitation was varied. Wet deposition is expected (and calculated here) to be the main deposition process; however, rain and snow aerosol scavenging coefficients have uncertainties spanning up to two and three orders of magnitude, respectively [4]. The model experiments that we have carried out include simple adjustments of the scavenging coefficients, full inclusion of a parametrisation reported by Wang et al. [4], and a scheme based on aerosol removal where relative humidity > 100 %. The MSP fluxes obtained vary between 1.4 × 10-5 and 2.6 × 10-5 g m-2 yr-1 for Greenland, and 5.1 × 10-6 and 1.7 × 10-5 g m-2 yr-1 for Antarctica. These values are about an order of magnitude lower than the Greenland observations, but show reasonable agreement for Antarctica. The UM (Unified Model), UKCA (United Kingdom Chemistry and Aerosols Model), and GLOMAP (GLObal Model of Aerosol Processes) have
A Diffusion Limited Sorption Kinetics Model with a Mixture of Polydispersed Particles
NASA Astrophysics Data System (ADS)
Basagaoglu, H.; McCoy, B. J.; Ginn, T. R.; Loge, F. J.; Dietrich, J. P.
2002-12-01
A reactive radial pore diffusion model has been formulated for batch systems with a mixture of polydispersed particles of distinct shapes and sizes to determine temporal and spatial variations in intra particle sorbed and aqueous concentrations that undergo dynamic mass transfer with the extra particle bulk volume. The model accommodates film resistance at particle boundaries, intra particle reversible sorption kinetics, and first-order decays in intra and extra particle phases. The model also allows consideration of nonlinear site-limited intra particle reaction kinetics. A finite-difference formulation of the model identifies a novel term that carries important information on the interaction and competition of a mixture of particles with varying sizes and shapes for the uptake of contaminants from the extra particle aqueous volume. The spatial resolution employed in the finite-difference formulation has been found to be a critical factor that determines the magnitude of the mass balance error (MBE). We have shown that 5 to 20 radial divisions along the particle radius can lead to a MBE as high as 6-27%. Applications for several generic examples illustrate the general behavior. In addition, the model was used to represent experimental site-limited non-linear pore diffusion of iodine into particles in a wastewater secondary effluent.
Lower Bound on the Mean Square Displacement of Particles in the Hard Disk Model
NASA Astrophysics Data System (ADS)
Richthammer, Thomas
2016-08-01
The hard disk model is a 2D Gibbsian process of particles interacting via pure hard core repulsion. At high particle density the model is believed to show orientational order, however, it is known not to exhibit positional order. Here we investigate to what extent particle positions may fluctuate. We consider a finite volume version of the model in a box of dimensions 2 n × 2 n with arbitrary boundary configuration, and we show that the mean square displacement of particles near the center of the box is bounded from below by c log n. The result generalizes to a large class of models with fairly arbitrary interaction.
Reinterpretation of Students' Ideas When Reasoning about Particle Model Illustrations
ERIC Educational Resources Information Center
Langbeheim, Elon
2015-01-01
The article, "Using Animations in Identifying General Chemistry Students' Misconceptions and Evaluating Their Knowledge Transfer Relating to Particle Position in Physical Changes" (Smith and Villarreal, 2015), reports that a substantial proportion of undergraduate students expressed misconceived ideas regarding the motion of particles in…
Waste Slurry Particle Properties for Use in Slurry Flow Modeling
Jewett, J. R.; Conrads, T. J.; Julyk, L. J.; Reynolds, D. A.; Jensen, L.; Kirch, N. W.; Estey, S. D.; Bechtold, D. B.; Callaway III, W. S.; Cooke, G. A.; Herting, D. L.; Person, J. C.; Duncan, J. B.; Onishi, Y.; Tingey, J. M.
2003-02-26
Hanford's tank farm piping system must be substantially modified to deliver high-level wastes from the underground storage tanks to the Waste Treatment Plant now under construction. Improved knowledge of the physical properties of the solids was required to support the design of the modified system. To provide this additional knowledge, particle size distributions for composite samples from seven high-level waste feed tanks were measured using two different laser lightscattering particle size analyzers. These measurements were made under a variety of instrumental conditions, including various flow rates through the sample loop, various stirring rates in the sample reservoir, and before and after subjecting the particles to ultrasonic energy. A mean value over all the tanks of 4.2 {micro}m was obtained for the volume-based median particle size. Additional particle size information was obtained from sieving tests, settling tests and microscopic observations.
Tail plasma sheet models derived from Geotail particle data
NASA Astrophysics Data System (ADS)
Tsyganenko, N. A.; Mukai, T.
2003-03-01
Simple analytical models have been derived for the first time, describing the 2-D distribution (along and across the Earth's magnetotail) of the central plasma sheet (CPS) ion temperature, density, and pressure, as functions of the incoming solar wind and interplanetary magnetic field (IMF) parameters, at distances between 10 and 50 RE. The models are based on a large set of data of the Low-Energy Particle (LEP) and Magnetic Field (MGF) instruments, taken by Geotail spacecraft between 1994 and 1998, comprising 7234 1-min average values of the CPS temperature and density. Concurrent solar wind and IMF data were provided by the Wind and IMP 8 spacecraft. The accuracy of the models was gauged by the correlation coefficient (c.c.) R between the observed and predicted values of a parameter. The CPS ion density N is controlled mostly by the solar wind proton density and by the northward component of the IMF. Being the least stable characteristic of the CPS, it yielded the lowest c.c. RN = 0.57. The CPS temperature T, controlled mainly by the solar wind speed V and the IMF Bz, gave a higher c.c. RT = 0.71. The CPS ion pressure P was best controlled by the solar wind ram pressure Psw and by an IMF-related parameter F = B⟂?, where B⟂ is the perpendicular component of the IMF and θ is its clock angle. In a striking contrast with N and T, the model pressure P revealed a very high c.c. with the data, RP = 0.95, an apparent consequence of the force balance between the CPS and the tail lobe magnetic field. No significant dawn-dusk asymmetry of the CPS was found beyond the distance 10 RE, in line with the observed symmetry of the tail lobe magnetic field. The plasma density N is lowest at midnight and increases toward the tail's flanks. Larger (smaller) solar wind ion densities and northward (southward) IMF Bz result in larger (smaller) N in the CPS. In contrast to the density N, the temperature T peaks at the midnight meridian and falls off toward the dawn/dusk flanks
NASA Technical Reports Server (NTRS)
Chen, Y. S.; Farmer, R. C.
1992-01-01
A particulate two-phase flow CFD model was developed based on the FDNS code which is a pressure based predictor plus multi-corrector Navier-Stokes flow solver. Turbulence models with compressibility correction and the wall function models were employed as submodels. A finite-rate chemistry model was used for reacting flow simulation. For particulate two-phase flow simulations, a Eulerian-Lagrangian solution method using an efficient implicit particle trajectory integration scheme was developed in this study. Effects of particle-gas reaction and particle size change to agglomeration or fragmentation were not considered in this investigation. At the onset of the present study, a two-dimensional version of FDNS which had been modified to treat Lagrangian tracking of particles (FDNS-2DEL) had already been written and was operational. The FDNS-2DEL code was too slow for practical use, mainly because it had not been written in a form amenable to vectorization on the Cray, nor was the full three-dimensional form of FDNS utilized. The specific objective of this study was to reorder to calculations into long single arrays for automatic vectorization on the Cray and to implement the full three-dimensional version of FDNS to produce the FDNS-3DEL code. Since the FDNS-2DEL code was slow, a very limited number of test cases had been run with it. This study was also intended to increase the number of cases simulated to verify and improve, as necessary, the particle tracking methodology coded in FDNS.
Particle acceleration model for gas--solid suspensions at moderate Reynolds numbers
NASA Astrophysics Data System (ADS)
Tenneti, Sudheer; Garg, Rahul; Hrenya, Christine; Fox, Rodney; Subramaniam, Shankar
2009-11-01
Particle granular temperature plays an important role in the prediction of core annular structure in riser flows. The covariance of fluctuating particle acceleration and fluctuating particle velocity governs the evolution of the granular temperature in homogeneous suspensions undergoing elastic collisions. Koch and co--workers (Phys. Fluid. 1990, JFM 1999) showed that the granular temperature has a source term due to hydrodynamic interactions in gas--solid suspensions in the Stokes flow regime. We performed direct numerical simulations (DNS) of freely evolving suspensions at moderate Reynolds numbers using the immersed boundary method (IBM). We found that simple extension of a class of mean particle acceleration models to their instantaneous counterparts does not predict the correct fluctuating particle acceleration--fluctuating velocity covariance that is obtained from DNS. The fluctuating particle velocity autocorrelation function decay and the Lagrangian structure function obtained from DNS motivate the use of a Langevin model for the instantaneous particle acceleration.
NASA Astrophysics Data System (ADS)
Moreno, Nicolas; Nunes, Suzana P.; Calo, Victor M.
2015-11-01
We introduce a framework for model reduction of polymer chain models for dissipative particle dynamics (DPD) simulations, where the properties governing the phase equilibria such as the characteristic size of the chain, compressibility, density, and temperature are preserved. The proposed methodology reduces the number of degrees of freedom required in traditional DPD representations to model equilibrium properties of systems with complex molecules (e.g., linear polymers). Based on geometrical considerations we explicitly account for the correlation between beads in fine-grained DPD models and consistently represent the effect of these correlations in a reduced model, in a practical and simple fashion via power laws and the consistent scaling of the simulation parameters. In order to satisfy the geometrical constraints in the reduced model we introduce bond-angle potentials that account for the changes in the chain free energy after the model reduction. Following this coarse-graining process we represent high molecular weight DPD chains (i.e., ≥ 200 beads per chain) with a significant reduction in the number of particles required (i.e., ≥ 20 times the original system). We show that our methodology has potential applications modeling systems of high molecular weight molecules at large scales, such as diblock copolymer and DNA.
A-DROP: A predictive model for the formation of oil particle aggregates (OPAs)
Zhao, Lin; Boufadel, Michel C.; Geng, Xiaolong; Lee, Kenneth; King, Thomas; Robinson, Brian; Fitzpatrick, Faith A.
2016-01-01
Oil–particle interactions play a major role in removal of free oil from the water column. We present a new conceptual–numerical model, A-DROP, to predict oil amount trapped in oil–particle aggregates. A new conceptual formulation of oil–particle coagulation efficiency is introduced to account for the effects of oil stabilization by particles, particle hydrophobicity, and oil–particle size ratio on OPA formation. A-DROP was able to closely reproduce the oil trapping efficiency reported in experimental studies. The model was then used to simulate the OPA formation in a typical nearshore environment. Modeling results indicate that the increase of particle concentration in the swash zone would speed up the oil–particle interaction process; but the oil amount trapped in OPAs did not correspond to the increase of particle concentration. The developed A-DROP model could become an important tool in understanding the natural removal of oil and developing oil spill countermeasures by means of oil–particle aggregation.
Numerical Model for Ultra-fine Particles in the Absence and Presence of Gravity
NASA Astrophysics Data System (ADS)
Dutt, Meenakshi; Elliott, James A.
2009-06-01
Length scales of particles and their surrounding medium strongly determines the nature of their interactions with one another and their responses to external fields. We are interested in systems of ultra-fine particles (0.1-1.0 micron) such as volcanic ash, soot from forest fires, solid aerosols, or fine powders for pharmaceutical inhalation applications. We have a developed a numerical model which captures the dominant physical interactions which control the behavior of these systems. The adhesive interactions between the particles use the Derjaguin-Muller-Toporov (DMT) adhesion theory along with the van der Waals attraction. The elastic restoring forces are modeled by the Hertz's contact model, and require details of material properties such as the Young's modulus and Poisson ratio. Commencing with a three dimensional gas of ultra-fine particles, the absence of gravity does not produce any noticeable clustering. The presence of gravity initially generates a large population of clusters with small number of particles, as the particles settle. The initial population of small clusters or single particles which have settled decrease with time as more particles, or clusters, agglomerate with one another. Our final results show clusters containing 10 to 100 particles, with a larger population of small clusters. We present details of the model, and some preliminary results which demonstrate the influence of the particle surface properties on the clustering dynamics of these systems, in the absence and presence of gravity (M. Dutt, J. A. Elliott, et al. in press).
Conceptual Change Texts in Chemistry Teaching: A Study on the Particle Model of Matter
ERIC Educational Resources Information Center
Beerenwinkel, Anne; Parchmann, Ilka; Grasel, Cornelia
2011-01-01
This study explores the effect of a conceptual change text on students' awareness of common misconceptions on the particle model of matter. The conceptual change text was designed based on principles of text comprehensibility, of conceptual change instruction and of instructional approaches how to introduce the particle model. It was evaluated in…
A MODEL FOR FINE PARTICLE AGGLOMERATION IN CIRCULATING FLUIDIZED BED ABSORBERS
A model for fine particle agglomeration in circulating fluidized bed absorbers (CFBAS) has been developed. It can model the influence of different factors on agglomeration, such as the geometry of CFBAs, superficial gas velocity, initial particle size distribution, and type of ag...
Retrieval of particle size distribution in the dependent model using the moment method.
Sun, Xiaogang; Tang, Hong; Dai, Jingmin
2007-09-03
The problem of determining particle size distribution using the moment method in the spectral extinction technique is studied. The feasibility and reliability of the retrieval of spherical particle size distribution using the moment method are investigated. The single spherical particle extinction efficiency, which is derived theoretically using the Mie's solution to Maxwell's equation, is approximated with a higher order polynomial in order to apply the moment method. Simulation and experimental results indicate that a fairly reasonable representation of the particle size distribution can be obtained using the moment method in the dependent model algorithm. The method has advantages of simplicity, rapidity, and suitability for in-line particle size measurement.
Dispersion modelling of a tall stack plume in the spanish mediterranean coast by a particle model
NASA Astrophysics Data System (ADS)
Hernandez, J. F.; Cremades, L.; Baldasano, J. M.
A Lagrangian particle model has been used to simulate the dispersion of a tall stack plume of a power plant located in a complex coastal site at the Spanish Mediterranean coast, under summer meteorological conditions: land and sea breezes and thermal low effects. These are responsible for a particular behavior of plume (rotations greater than 90°). The model is based on the numerical solution of Langevin's equation (Sawford, 1984; Thomson, 1984, 1987; de Baas et al., 1986) by following the trajectories of many particles. The displacement of these particles is governed by meteorological parameters resulting from Eulerian wind data adjusted by an objective analysis model based on variational calculus. The adjusted values should satisfy continuity as a strong constraint (Sherman, 1978; Mathur and Peters, 1990). The model allows to simulate the atmospheric dispersion both in homogeneous and nonhomogeneous turbulence according to de Baas et al. (1986) and Zannetti (1990) schemes. The numerical results obtained by the dispersion model are compared with experimental data from a measurement campaign developed at the surroundings of Castellon power plant. The model is applied to the problem of predicting the ground level concentration (GLC) (3 m, above ground level) of the SO 2 emitted by the power plant. Model behavior was evaluated through several statistical indices: relative mean bias, normalized mean square error and the cumulative frequency distribution of the point-by-point ratio between observed and predicted concentrations. Both models were developed at the Instituto de Tecnología y Modelización Ambiental (ITEMA) of the Universidad Politécnica de Cataluña (UPC).
Application of stochastic weighted algorithms to a multidimensional silica particle model
NASA Astrophysics Data System (ADS)
Menz, William J.; Patterson, Robert I. A.; Wagner, Wolfgang; Kraft, Markus
2013-09-01
This paper presents a detailed study of the numerical behaviour of stochastic weighted algorithms (SWAs) using the transition regime coagulation kernel and a multidimensional silica particle model. The implementation in the SWAs of the transition regime coagulation kernel and associated majorant rates is described. The silica particle model of Shekar et al. [S. Shekar, A.J. Smith, W.J. Menz, M. Sander, M. Kraft, A multidimensional population balance model to describe the aerosol synthesis of silica nanoparticles, Journal of Aerosol Science 44 (2012) 83-98] was used in conjunction with this coagulation kernel to study the convergence properties of SWAs with a multidimensional particle model. High precision solutions were calculated with two SWAs and also with the established direct simulation algorithm. These solutions, which were generated using large number of computational particles, showed close agreement. It was thus demonstrated that SWAs can be successfully used with complex coagulation kernels and high dimensional particle models to simulate real-world systems.
Laser induced x-ray `RADAR' particle physics model
NASA Astrophysics Data System (ADS)
Lockley, D.; Deas, R.; Moss, R.; Wilson, L. A.; Rusby, D.; Neely, D.
2016-05-01
The technique of high-power laser-induced plasma acceleration can be used to generate a variety of diverse effects including the emission of X-rays, electrons, neutrons, protons and radio-frequency radiation. A compact variable source of this nature could support a wide range of potential applications including single-sided through-barrier imaging, cargo and vehicle screening, infrastructure inspection, oncology and structural failure analysis. This paper presents a verified particle physics simulation which replicates recent results from experiments conducted at the Central Laser Facility at Rutherford Appleton Laboratory (RAL), Didcot, UK. The RAL experiment demonstrated the generation of backscattered X-rays from test objects via the bremsstrahlung of an incident electron beam, the electron beam itself being produced by Laser Wakefield Acceleration. A key initial objective of the computer simulation was to inform the experimental planning phase on the predicted magnitude of the backscattered X-rays likely from the test objects. This objective was achieved and the computer simulation was used to show the viability of the proposed concept (Laser-induced X-ray `RADAR'). At the more advanced stages of the experimental planning phase, the simulation was used to gain critical knowledge of where it would be technically feasible to locate key diagnostic equipment within the experiment. The experiment successfully demonstrated the concept of X-ray `RADAR' imaging, achieved by using the accurate timing information of the backscattered X-rays relative to the ultra-short laser pulse used to generate the electron beam. By using fast response X-ray detectors it was possible to derive range information for the test objects being scanned. An X-ray radar `image' (equivalent to a RADAR B-scan slice) was produced by combining individual X-ray temporal profiles collected at different points along a horizontal distance line scan. The same image formation process was used to generate
A model for wet aggregation of ash particles in volcanic plumes and clouds: 2. Model application
NASA Astrophysics Data System (ADS)
Folch, A.; Costa, A.; Durant, A.; Macedonio, G.
2010-09-01
The occurrence of particle aggregation has a dramatic effect on the transport and sedimentation of volcanic ash. The aggregation process is complex and can occur under different conditions and in multiple regions of the plume and in the ash cloud. In the companion paper, Costa et al. develop an aggregation model based on a fractal relationship to describe the rate particles are incorporated into ash aggregates. The model includes the effects of both magmatic and atmospheric water present in the volcanic cloud and demonstrates that the rate of aggregation depends on the characteristics of the initial particle size distribution. The aggregation model includes two parameters, the fractal exponent Df, which describes the efficiency of the aggregation process, and the aggregate settling velocity correction factor ψe, which influences the distance at which distal mass deposition maxima form. Both parameters are adjusted using features of the observed deposits. Here this aggregation model is implemented in the FALL3D volcanic ash transport model and applied to the 18 May 1980 Mount St. Helens and the 17-18 September 1992 Crater Peak eruptions. For both eruptions, the optimized values for Df (2.96-3.00) and ψe (0.27-0.33) indicate that the ash aggregates had a bulk density of 700-800 kg m-3. The model provides a higher degree of agreement than previous fully empirical aggregation models and successfully reproduces the depositional characteristics of the deposits investigated over a large range of scales, including the position and thickness of the secondary maxima.
A New Multiphase Model for Simulating Energetically Driven Particles
Stevens, D E; Murphy, M J
2010-02-02
The proper representation of particulate phenomena is important for the simulation of many non-ideal particle loaded explosives. These explosives present severe numerical difficulties to simulate because numerical approaches for packed particle beds often behave poorly for the dilute regime and the reverse is often true for methods developed for the dilute regime. This paper presents a multiphase framework for the simulation of these non-ideal explosives that accurately accounts for the particulate behavior in both of these regimes. The capability of this framework is enhanced by the use of prescribed PDF methods for both particle size distributions and the representation of chemical processes. We have validated this framework using several experimental methods that accommodate the separation of momentum flux measurements in two-phase blast flows.
Beyond Standard Model Physics: At the Frontiers of Cosmology and Particle Physics
NASA Astrophysics Data System (ADS)
Lopez-Suarez, Alejandro O.
I begin to write this thesis at a time of great excitement in the field of cosmology and particle physics. The aim of this thesis is to study and search for beyond the standard model (BSM) physics in the cosmological and high energy particle fields. There are two main questions, which this thesis aims to address: 1) what can we learn about the inflationary epoch utilizing the pioneer gravitational wave detector Adv. LIGO?, and 2) what are the dark matter particle properties and interactions with the standard model particles?. This thesis will focus on advances in answering both questions.
Small-angle Coulomb collision model for particle-in-cell simulations
Lemons, Don S. Winske, Dan; Daughton, William; Albright, Brian
2009-03-20
We construct and investigate a set of stochastic differential equations that incorporate the physics of velocity-dependent small-angle Coulomb collisions among the plasma particles in a particle-in-cell simulation. Each particle is scattered stochastically from all the other particles in a simulation cell modeled as one or more Maxwellians. Total energy and momentum are conserved by linear transformation of the velocity increments. In two test simulations the proposed 'particle-moment' collision algorithm performs well with time steps as large as 10% of the relaxation time - far larger than a particle-pairing collision algorithm, in which pairs of particles are scattered from one another, requires to achieve the same accuracy.
Modeling and experimental study of a honeycomb beam filled with damping particles
NASA Astrophysics Data System (ADS)
Ahmad, Nazeer; Ranganath, R.; Ghosal, Ashitava
2017-03-01
Honeycomb sandwich laminates which are the basic structural element of spacecraft have inherently low damping. In this paper, we propose to improve the damping characteristics of such structures by adding damping particles in the cells of the honeycomb. This paper presents modeling of a cantilever beam constructed with honeycomb structure with the hexagonal honeycomb cells, filled with particles. The beam is subjected to external dynamic loads and the interactions of damping particles with the walls of the cells and its overall effect on the frequency response function (FRF) and the damping of the beam are obtained. The discrete-element-method (DEM) is used to model the dynamics of the particles in conjunction with the governing equations of motion of the beam and the cell-walls. The particle-particle and particle-wall impact is modeled using Hertz's non-linear dissipative contact model for normal component and Coulomb's laws of friction for tangential component. Contiguous block of cells near the tip of the cantilever beam were filled with the damping particles and the beam was excited with a random signal near the fixed end. The damping and transfer functions obtained experimentally are compared to those obtained from the mathematical model and they are found to match very well. Further the model was used to study the effect of fill fraction, mass ratio, and the level of excitation signal on transfer function. Depending on the mass ratio and fill fraction, significant reductions in vibration levels are observed.
Application of the implicit particle filter to a model of nearshore circulation
NASA Astrophysics Data System (ADS)
Miller, R. N.; Ehret, L. L.
2014-04-01
The implicit particle filter is applied to a stochastically forced shallow water model of nearshore flow, and found to produce reliable state estimates with tens of particles. The state vector of this model consists of a height anomaly and two horizontal velocity components at each point on a 128 × 98 regular rectangular grid, making for a state dimension O(104). The particle filter was applied to the model with two parameter choices representing two distinct dynamical regimes, and performed well in both. Demands on computing resources were manageable. Simulations with as many as a hundred particles ran overnight on a modestly configured workstation. In this case of observations defined by a linear function of the state vector, taken every time step of the numerical model, the implicit particle filter is equivalent to the optimal importance filter, i.e., at each step any given particle is drawn from the density of the system conditioned jointly upon observations and the state of that particle at the previous time. Even in this ideal case, the sample occasionally collapses to a single particle, and resampling is necessary. In those cases, the sample rapidly reinflates, and the analysis never loses track. In both dynamical regimes, the ensembles of particles deviated significantly from normality.
NASA Astrophysics Data System (ADS)
Körpinar, Talat; Ünlütürk, Yasin
2015-11-01
Anisotropic Bianchi type-I magnetized string cosmological models are obtained in decaying vacuum energy density proposed by Pradhan (Commun Theor Phys 55:931-941, 2011). In this study, we obtain some physical and geometrical properties of biharmonic particles of a new spacetime using Bianchi type-I (B-I) cosmological model. We use solution of the Einstein's field equations for biharmonic particles. Some important features of the model have been discussed. Established the existence of string cosmological models for biharmonic particles, unlike the earlier authors, in this theory and studied some physical and geometrical properties.
Physical Models for Particle Tracking Simulations in the RF Gap
Shishlo, Andrei P.; Holmes, Jeffrey A.
2015-06-01
This document describes the algorithms that are used in the PyORBIT code to track the particles accelerated in the Radio-Frequency cavities. It gives the mathematical description of the algorithms and the assumptions made in each case. The derived formulas have been implemented in the PyORBIT code. The necessary data for each algorithm are described in detail.
NASA Astrophysics Data System (ADS)
Holmes, N. S.; Morawska, L.
This paper provides the first review of the application of atmospheric models for particle dispersion. The different types of dispersion models available, from simple box type models to complex fluid dynamics models are outlined and the suitability of the different approaches to dispersion modelling within different environments, in regards to scale, complexity of the environment and concentration parameters is assessed. Finally, several major commercial and non-commercial particle dispersion packages are reviewed, detailing which processes are included and advantages and limitations of their use to modelling particle dispersion. The models reviewed included: Box models (AURORA, CPB and PBM), Gaussian models (CALINE4, HIWAY2, CAR-FMI, OSPM, CALPUFF, AEROPOL, AERMOD, UK-ADMS and SCREEN3), Lagrangian/Eulerian Models (GRAL, TAPM, ARIA Regional), CFD models (ARIA Local, MISKAM, MICRO-CALGRID) and models which include aerosol dynamics (GATOR, MONO32, UHMA, CIT, AERO, RPM, AEROFOR2, URM-1ATM, MADRID, CALGRID and UNI-AERO).
A model of coal particle drying in fluidized bed combustion reactor
Komatina, M.; Manovic, V.; Saljnikov, A.
2007-02-15
Experimental and theoretical investigation on drying of a single coal particle in fluidized bed combustor is presented. Coal particle drying was considered via the moist shrinking core mechanism. The results of the drying test runs of low-rank Serbian coals were used for experimental verification of the model. The temperature of the coal particle center was measured, assuming that drying was completed when the temperature equalled 100{sup o}C. The influence of different parameters (thermal conductivity and specific heat capacity of coal, fluidized bed temperature, moisture content and superheating of steam) on drying time and temperature profile within the coal particle was analyzed by a parametric analysis. The experimentally obtained results confirmed that the moist shrinking core mechanism can be applied for the mathematical description of a coal particle drying, while dependence between drying time and coal particle radius, a square law relationship, implicates heat transfer control of the process and confirms the validity of assumptions used in modeling.
Numerical modelling of particle-laden sonic CO2 jets with experimental validation
NASA Astrophysics Data System (ADS)
Wareing, C. J.; Fairweather, M.; Peakall, J.; Keevil, G.; Falle, S. A. E. G.; Woolley, R. M.
2013-10-01
The characteristics of the particle distribution, evolution and movement in a sonic jet release of carbon dioxide (CO2) from a high pressure reservoir are investigated. The motivation is to numerically model the sonic jet with particles, using the hitherto unknown initial particle distribution measured herein, and hence understand and numerically reproduce the experimentally observedparticle behaviour downstream of the Mach shock, including turbulence characteristics and level of agglomeration. We employ a Reynolds-averaged Navier-Stokes scheme with adaptive mesh refinement (AMR), combined with a Lagrangian particle tracker and particle distribution function. The model is seeded at the nozzle with the experimentally measured particle distribution and exploited to reproduce the observed characteristics of the jet. These releases are designed to be representative of a sonic CO2 release into the atmosphere and so provide data to help interpret how accidental or operational releases from the transport aspect of a carbon capture and storage chain might behave.
Collision model for fully resolved simulations of flows laden with finite-size particles.
Costa, Pedro; Boersma, Bendiks Jan; Westerweel, Jerry; Breugem, Wim-Paul
2015-11-01
We present a collision model for particle-particle and particle-wall interactions in interface-resolved simulations of particle-laden flows. Three types of interparticle interactions are taken into account: (1) long- and (2) short-range hydrodynamic interactions, and (3) solid-solid contact. Long-range interactions are incorporated through an efficient and second-order-accurate immersed boundary method (IBM). Short-range interactions are also partly reproduced by the IBM. However, since the IBM uses a fixed grid, a lubrication model is needed for an interparticle gap width smaller than the grid spacing. The lubrication model is based on asymptotic expansions of analytical solutions for canonical lubrication interactions between spheres in the Stokes regime. Roughness effects are incorporated by making the lubrication correction independent of the gap width for gap widths smaller than ∼1% of the particle radius. This correction is applied until the particles reach solid-solid contact. To model solid-solid contact we use a variant of a linear soft-sphere collision model capable of stretching the collision time. This choice is computationally attractive because it allows us to reduce the number of time steps required for integrating the collision force accurately and is physically realistic, provided that the prescribed collision time is much smaller than the characteristic time scale of particle motion. We verified the numerical implementation of our collision model and validated it against several benchmark cases for immersed head-on particle-wall and particle-particle collisions, and oblique particle-wall collisions. The results show good agreement with experimental data.
Modeling of the optical properties of a two-dimensional system of small conductive particles.
NASA Astrophysics Data System (ADS)
Kondikov, A. A.; Tonkaev, P. A.; Chaldyshev, V. V.; Vartanyan, T. A.
2016-08-01
Software was developed for quick numerical calculations and graphic display of the absorption, reflection and transmittance spectra of two-dimensional systems of small conductive particles. It allowed us to make instant comparison of calculation results and experimental data. A lattice model was used to simulate nearly distributed particles, and the coherent-potential approximation was applied to obtain a solution to the problem of interacting particles. The Delphi programming environment was used.
Many particle approximation of the Aw-Rascle-Zhang second order model for vehicular traffic.
Francesco, Marco Di; Fagioli, Simone; Rosini, Massimiliano D
2017-02-01
We consider the follow-the-leader approximation of the Aw-Rascle-Zhang (ARZ) model for traffic flow in a multi population formulation. We prove rigorous convergence to weak solutions of the ARZ system in the many particle limit in presence of vacuum. The result is based on uniform BV estimates on the discrete particle velocity. We complement our result with numerical simulations of the particle method compared with some exact solutions to the Riemann problem of the ARZ system.
Nonisothermal particle modeling of municipal solid waste combustion with heavy metal vaporization
Mazza, G.; Falcoz, Q.; Gauthier, D.; Flamant, G.; Soria, J.
2010-12-15
A particulate model was developed for municipal solid-waste incineration in a fluidized bed combining solid-waste-particle combustion and heavy metal vaporization from the burning particles. Based on a simpler, isothermal version presented previously, this model combines an asymptotic-combustion model for carbonaceous-solid combustion and a shrinking-core model to describe the heavy metal vaporization phenomenon, in which the particle is now considered nonisothermal. A parametric study is presented that shows the influence of temperature on the global metal-vaporization process. The simulation results are compared to experimental data obtained with a lab-scale fluid bed incinerator and to the results of the simpler isothermal model. It is shown that conduction in the particle strongly affects the variation of the vaporization rate with time and that the present version of the model well fits both the shape of the plots and the maximum heavy metal vaporization rates for all bed temperatures. (author)
NASA Astrophysics Data System (ADS)
Pahar, Gourabananda; Dhar, Anirban
2017-04-01
A coupled solenoidal Incompressible Smoothed Particle Hydrodynamics (ISPH) model is presented for simulation of sediment displacement in erodible bed. The coupled framework consists of two separate incompressible modules: (a) granular module, (b) fluid module. The granular module considers a friction based rheology model to calculate deviatoric stress components from pressure. The module is validated for Bagnold flow profile and two standardized test cases of sediment avalanching. The fluid module resolves fluid flow inside and outside porous domain. An interaction force pair containing fluid pressure, viscous term and drag force acts as a bridge between two different flow modules. The coupled model is validated against three dambreak flow cases with different initial conditions of movable bed. The simulated results are in good agreement with experimental data. A demonstrative case considering effect of granular column failure under full/partial submergence highlights the capability of the coupled model for application in generalized scenario.
Lattice Discrete Particle Model (LDPM) for Failure Behavior of Concrete. 1: Theory (PREPRINT)
2010-12-18
Lattice Discrete Particle Model (LDPM) for Failure Behavior of Concrete. I: Theory . By Gianluca Cusatis 1, Daniele Pelessone 2, Andrea Mencarelli 3...Lattice Discrete Particle Model (LDPM) For Failure Behavior Of Concrete. I: Theory 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...proposing new multiscale theories have flourished, especially for modeling nano-composite materials and atomistic and molecular systems [23]. The same kind
Emergence of particle clusters in a one-dimensional model: connection to condensation processes
NASA Astrophysics Data System (ADS)
Burman, Matthew; Carpenter, Daniel; Jack, Robert L.
2017-03-01
We discuss a simple model of particles hopping in one dimension with attractive interactions. Taking a hydrodynamic limit in which the interaction strength increases with the system size, we observe the formation of multiple clusters of particles, with large gaps between them. These clusters are correlated in space, and the system has a self-similar (fractal) structure. These results are related to condensation phenomena in mass transport models and to a recent mathematical analysis of the hydrodynamic limit in a related model.
Pecha, M. Brennan; Garcia-Perez, Manuel; Foust, Thomas D.; ...
2016-11-08
Here, direct numerical simulation of convective heat transfer from hot gas to isolated biomass particle models with realistic morphology and explicit microstructure was performed over a range of conditions with laminar flow of hot gas (500 degrees C). Steady-state results demonstrated that convective interfacial heat transfer is dependent on the wood species. The computed heat transfer coefficients were shown to vary between the pine and aspen models by nearly 20%. These differences are attributed to the species-specific variations in the exterior surface morphology of the biomass particles. We also quantify variations in heat transfer experienced by the particle when positionedmore » in different orientations with respect to the direction of fluid flow. These results are compared to previously reported heat transfer coefficient correlations in the range of 0.1 < Pr < 1.5 and 10 < Re < 500. Comparison of these simulation results to correlations commonly used in the literature (Gunn, Ranz-Marshall, and Bird-Stewart-Lightfoot) shows that the Ranz-Marshall (sphere) correlation gave the closest h values to our steady-state simulations for both wood species, though no existing correlation was within 20% of both species at all conditions studied. In general, this work exemplifies the fact that all biomass feedstocks are not created equal, and that their species-specific characteristics must be appreciated in order to facilitate accurate simulations of conversion processes.« less
Pecha, M. Brennan; Garcia-Perez, Manuel; Foust, Thomas D.; Ciesielski, Peter N.
2016-11-08
Here, direct numerical simulation of convective heat transfer from hot gas to isolated biomass particle models with realistic morphology and explicit microstructure was performed over a range of conditions with laminar flow of hot gas (500 degrees C). Steady-state results demonstrated that convective interfacial heat transfer is dependent on the wood species. The computed heat transfer coefficients were shown to vary between the pine and aspen models by nearly 20%. These differences are attributed to the species-specific variations in the exterior surface morphology of the biomass particles. We also quantify variations in heat transfer experienced by the particle when positioned in different orientations with respect to the direction of fluid flow. These results are compared to previously reported heat transfer coefficient correlations in the range of 0.1 < Pr < 1.5 and 10 < Re < 500. Comparison of these simulation results to correlations commonly used in the literature (Gunn, Ranz-Marshall, and Bird-Stewart-Lightfoot) shows that the Ranz-Marshall (sphere) correlation gave the closest h values to our steady-state simulations for both wood species, though no existing correlation was within 20% of both species at all conditions studied. In general, this work exemplifies the fact that all biomass feedstocks are not created equal, and that their species-specific characteristics must be appreciated in order to facilitate accurate simulations of conversion processes.
NASA Astrophysics Data System (ADS)
Lin, Kanhui; Latterman, Paul; Koch, Trystan; Hu, Vincent; Ho, Joyce; Mata, Matthew; Murisic, Nebojsa; Bertozzi, Andrea
2009-11-01
Different flow regimes observed in our experimental study of particle-laden thin film flows are characterized by differing particle concentration profiles. We develop a theoretical model for particle concentration in order to capture our experimental observations. Our model is based on equilibrium assumption and it incorporates all relevant physical mechanisms, including shear-induced particle migration and settling due to gravity. It leads to a coupled system of ordinary differential equations for particle volume fraction and shear, which are solved numerically for various parameter sets. We find excellent agreement between our numerical results and experimental data. Our model is not only successful in reproducing the experimentally observed regimes, but also in capturing the connection between these regimes and the experimental parameters.
Particle orbits in two-dimensional equilibrium models for the magnetotail
NASA Technical Reports Server (NTRS)
Karimabadi, H.; Pritchett, P. L.; Coroniti, F. V.
1990-01-01
Assuming that there exist an equilibrium state for the magnetotail, particle orbits are investigated in two-dimensional kinetic equilibrium models for the magnetotail. Particle orbits in the equilibrium field are compared with those calculated earlier with one-dimensional models, where the main component of the magnetic field (Bx) was approximated as either a hyperbolic tangent or a linear function of z with the normal field (Bz) assumed to be a constant. It was found that the particle orbits calculated with the two types of models are significantly different, mainly due to the neglect of the variation of Bx with x in the one-dimensional fields.
Mathematical model of reaction rate oscillations on a chain of nm-sized catalyst particles
NASA Astrophysics Data System (ADS)
Peskov, N. V.; Slinko, M. M.; Jaeger, N. I.
2003-05-01
The model of reaction rate oscillations over the surface of nanoparticles embedded into zeolite matrix is numerically investigated. The reaction rate oscillations on each particle are described by a lumped model. The reactions on separate particles interact via the gas diffusion through the pores, which is modeled in the frame of the Maxwell-Stefan approach. The reaction reveals a complex dynamical behavior if a nonhomogeneous distribution of reagent concentrations exists along the chain of particles with a sufficiently large gradient near the ends of the chain.
Particle-hole optical model and strength functions for high-energy giant resonances
Urin, M. H.
2010-08-15
A formulation of the particle-hole optical model is proposed for describing the contribution of the fragmentation effect to the formation of strength functions for high-energy giant resonances. The model is based on the Bethe-Goldstone equation for the energy-averaged particle-hole Green's function. In this equation, the particle-hole interaction that is induced by a virtual excitation of multiquasiparticle configurations and in which, upon averaging over energy, an imaginary part is contained is taken into account. An analogy with the single-quasiparticle optical model is discussed.
Jin, Chao; Ren, Carolyn L; Emelko, Monica B
2016-04-19
It is widely believed that media surface roughness enhances particle deposition-numerous, but inconsistent, examples of this effect have been reported. Here, a new mathematical framework describing the effects of hydrodynamics and interaction forces on particle deposition on rough spherical collectors in absence of an energy barrier was developed and validated. In addition to quantifying DLVO force, the model includes improved descriptions of flow field profiles and hydrodynamic retardation functions. This work demonstrates that hydrodynamic effects can significantly alter particle deposition relative to expectations when only the DLVO force is considered. Moreover, the combined effects of hydrodynamics and interaction forces on particle deposition on rough, spherical media are not additive, but synergistic. Notably, the developed model's particle deposition predictions are in closer agreement with experimental observations than those from current models, demonstrating the importance of inclusion of roughness impacts in particle deposition description/simulation. Consideration of hydrodynamic contributions to particle deposition may help to explain discrepancies between model-based expectations and experimental outcomes and improve descriptions of particle deposition during physicochemical filtration in systems with nonsmooth collector surfaces.
Lieb-Thirring inequality for a model of particles with point interactions
Frank, Rupert L.; Seiringer, Robert
2012-09-15
We consider a model of quantum-mechanical particles interacting via point interactions of infinite scattering length. In the case of fermions we prove a Lieb-Thirring inequality for the energy, i.e., we show that the energy is bounded from below by a constant times the integral of the particle density to the power (5/3).
NASA Astrophysics Data System (ADS)
Fedyaev, V. L.; Galimov, E. R.; Galimova, N. Ya; Takhaviev, M. S.; Siraev, A. R.
2017-01-01
The deposition of polymeric powder particles on a surface of a treated body and a layer of particles deposited previously is considered using mathematical modeling. Basic provisions of the impact theory are used. The relationships to evaluate the characteristic parameters of the processes under study are given, the results of their analysis and recommendations to improve the deposition efficiency are presented.
Modeled deposition of fine particles in human airway in Beijing, China
NASA Astrophysics Data System (ADS)
Li, Xiaoying; Yan, Caiqing; Patterson, Regan F.; Zhu, Yujiao; Yao, Xiaohong; Zhu, Yifang; Ma, Shexia; Qiu, Xinghua; Zhu, Tong; Zheng, Mei
2016-01-01
This study aims to simulate depositions of size-segregated particles in human airway in Beijing, China during seasons when fine particulate matter concentrations are high (December 2011 and April 2012). Particle size distributions (5.6-560 nm, electrical mobility diameter) near a major road in Beijing were measured by the TSI Fast Mobility Particle Sizer (FMPS). The information of size distributions provided by FMPS was applied in the Multiple-Path Particle Dosimetry model (MPPD) to quantify number and mass depositions of particles in human airway including extrathoracic (ET), tracheobronchial (TB), and pulmonary (PUL) regions of exposed Chinese in Beijing. Our results show that under ambient conditions, particle number concentration (NC) deposition in PUL is the highest in the three major regions of human airway. The total particle NC deposition in human airway in winter is higher than that in spring, especially for ultrafine particles (1.8 times higher) while particle mass concentration (MC) deposition is higher in spring. Although particle MC in clean days are much lower than that in heavily polluted days, total particle NC deposition in human airway in clean days is comparable to that in heavily polluted days. NC deposition for nucleation mode particles (10-20 nm, aerodynamic diameter) in clean days is higher than that in heavily polluted days. MC deposition for accumulation mode particles (100-641 nm, aerodynamic diameter) in heavily polluted days is much higher than that in clean days, while that of nucleation mode is negligible. The temporal variation shows that the arithmetic mean and the median values of particle NC and MC depositions in the evening are both the highest, followed by morning and noon, and it is most likely due to increased contribution from traffic emissions.
Particle dispersion in homogeneous turbulence using the one-dimensional turbulence model
Sun, Guangyuan; Lignell, David O.; Hewson, John C.; ...
2014-10-09
Lagrangian particle dispersion is studied using the one-dimensional turbulence (ODT) model in homogeneous decaying turbulence configurations. The ODT model has been widely and successfully applied to a number of reacting and nonreacting flow configurations, but only limited application has been made to multiphase flows. We present a version of the particle implementation and interaction with the stochastic and instantaneous ODT eddy events. The model is characterized by comparison to experimental data of particle dispersion for a range of intrinsic particle time scales and body forces. Particle dispersion, velocity, and integral time scale results are presented. Moreover, the particle implementation introducesmore » a single model parameter β p , and sensitivity to this parameter and behavior of the model are discussed. Good agreement is found with experimental data and the ODT model is able to capture the particle inertial and trajectory crossing effects. Our results serve as a validation case of the multiphase implementations of ODT for extensions to other flow configurations.« less
CFD modeling of turbulent flow and particle deposition in human lungs.
Radhakrishnan, H; Kassinos, S
2009-01-01
Understanding transport and deposition of inhaled particles in the human airways plays a crucial role in the targeted therapy of pulmonary diseases, and the administration of inhaled medicines. Numerous researchers have studied the inhalation of particles using experiments or computer models. Even though experiments have shown that the airflow in the trachea and the upper branches of the lung is turbulent, the flow is taken to be laminar in most computer models. Only few recently published papers have looked at the turbulent transport of air in the human airways. Even fewer results have been published on the effect of the upper airway structures on the turbulent airflow in the lungs or on the effect of the turbulence on particle deposition. The previously published turbulent models have also mainly used RANS methods to predict the flow. To study the unsteady flow and particle deposition in a human lung, an LES model with a dynamic Smagorinsky sub-grid scale model was used. The model equations were solved to study steady inspirational flow at different flow rates for different particle sizes. Results indicate that the upper airway geometry produces turbulence in the flow and the deposition of particles is mainly affected by the particle size and Stokes number.
NASA Astrophysics Data System (ADS)
Rai, Aakash C.; Lin, Chao-Hsin; Chen, Qingyan
2015-02-01
Ozone-terpene reactions are important sources of indoor ultrafine particles (UFPs), a potential health hazard for human beings. Humans themselves act as possible sites for ozone-initiated particle generation through reactions with squalene (a terpene) that is present in their skin, hair, and clothing. This investigation developed a numerical model to probe particle generation from ozone reactions with clothing worn by humans. The model was based on particle generation measured in an environmental chamber as well as physical formulations of particle nucleation, condensational growth, and deposition. In five out of the six test cases, the model was able to predict particle size distributions reasonably well. The failure in the remaining case demonstrated the fundamental limitations of nucleation models. The model that was developed was used to predict particle generation under various building and airliner cabin conditions. These predictions indicate that ozone reactions with human-worn clothing could be an important source of UFPs in densely occupied classrooms and airliner cabins. Those reactions could account for about 40% of the total UFPs measured on a Boeing 737-700 flight. The model predictions at this stage are indicative and should be improved further.
NASA Astrophysics Data System (ADS)
Noh, S. J.; Tachikawa, Y.; Shiiba, M.; Kim, S.
2011-04-01
Applications of data assimilation techniques have been widely used to improve hydrologic prediction. Among various data assimilation techniques, sequential Monte Carlo (SMC) methods, known as "particle filters", provide the capability to handle non-linear and non-Gaussian state-space models. In this paper, we propose an improved particle filtering approach to consider different response time of internal state variables in a hydrologic model. The proposed method adopts a lagged filtering approach to aggregate model response until uncertainty of each hydrologic process is propagated. The regularization with an additional move step based on Markov chain Monte Carlo (MCMC) is also implemented to preserve sample diversity under the lagged filtering approach. A distributed hydrologic model, WEP is implemented for the sequential data assimilation through the updating of state variables. Particle filtering is parallelized and implemented in the multi-core computing environment via open message passing interface (MPI). We compare performance results of particle filters in terms of model efficiency, predictive QQ plots and particle diversity. The improvement of model efficiency and the preservation of particle diversity are found in the lagged regularized particle filter.
Component-specific, cigarette particle deposition modeling in the human respiratory tract
Price, Owen T.; Yurteri, Caner U.; Dickens, Colin; McAughey, John
2014-01-01
Inhalation of cigarette smoke particles (CSP) leads to adverse health effects in smokers. Determination of the localized dose to the lung of the inhaled smoke aids in determining vulnerable sites, and identifying components of the smoke that may be responsible for the adverse effects; thus providing a roadmap for harm reduction of cigarette smoking. A particle deposition model specific to CSP was developed for the oral cavity and the lung by accounting for cigarette particle size growth by hygroscopicity, phase change and coagulation. In addition, since the cigarette puff enters the respiratory tract as a dense cloud, the cloud effect on particle drag and deposition was accounted for in the deposition model. Models of particle losses in the oral cavities were developed during puff drawing and subsequent mouth-hold. Cigarette particles were found to grow by hygroscopicity and coagulation, but to shrink as a result of nicotine evaporation. The particle size reached a plateau beyond which any disturbances in the environmental conditions caused the various mechanisms to balance each other out and the particle size remain stable. Predicted particle deposition considering the cloud effects was greater than when treated as a collection of non-interacting particles (i.e. no cloud effects). Accounting for cloud movement provided the necessary physical mechanism to explain the greater than expected, experimentally observed and particle deposition. The deposition model for CSP can provide the necessary input to determine the fate of inhaled CSP in the lung. The knowledge of deposition will be helpful for health assessment and identification and reduction of harmful components of CSP. PMID:24354791
Quench field sensitivity of two-particle correlation in a Hubbard model
Zhang, X. Z.; Lin, S.; Song, Z.
2016-01-01
Short-range interaction can give rise to particle pairing with a short-range correlation, which may be destroyed in the presence of an external field. We study the transition between correlated and uncorrelated particle states in the framework of one- dimensional Hubbard model driven by a field. We show that the long time-scale transfer rate from an initial correlated state to final uncorrelated particle states is sensitive to the quench field strength and exhibits a periodic behavior. This process involves an irreversible energy transfer from the field to particles, leading to a quantum electrothermal effect. PMID:27250080
Multi-particle interaction in a model of the hydrophobic interaction
NASA Astrophysics Data System (ADS)
Bedeaux, D.; Koper, G. J. M.; Ispolatov, S.; Widom, B.
2001-03-01
The multi-particle potential of mean force between interstitial solute molecules in Ben-Naim's one-dimensional, many-state lattice model is calculated. The solution is a direct extension of an earlier calculation of the two-particle interaction by Kolomeisky and Widom (Faraday Dis. 112 (1999) 81). It is found that the many-particle interaction potential is a sum of pair potentials between neighboring particles only. An exact equation of state, expressing the activity in the temperature and the pressure, is derived. The resulting solubility of a gaseous hydrophobe, which is defined osmotically, is calculated and found to increase considerably with the gas density.
Particle orbits in model current sheet with a nonzero B(y) component
NASA Technical Reports Server (NTRS)
Zhu, Zhongwei; Parks, George
1993-01-01
The problem of charged particle motions in magnetotaillike model current sheets is revisited with the inclusion of a nonzero dawn-dusk magnetic field component. Three cases are examined considering both trapped and escaped orbits. The results show that a nonzero B(y) component disturbs the particle orbits by destroying orbit symmetry in the phase space about the z = 0 plane. It also changes the bounce frequency of particle orbits. The presence of B(y) thus modifies the Speiser orbits, particularly near the ejection phase. The process of ejected particle such as ejection direction, ejection velocity, and pitch angles are shown to depend on the sign of the charge.
Pairwise Interaction Extended Point Particle (PIEP) Model for a Random Array of Spheres
NASA Astrophysics Data System (ADS)
Akiki, Georges; Jackson, Thomas; Balachandar, Sivaramakrishnan; CenterCompressible Multiphase Turbulence Team
2016-11-01
This study investigates a flow past random array of spherical particles. The understanding of the governing forces within these arrays is crucial for obtaining accurate models used in particle-laden simulations. These models have to faithfully reflect the sub-grid interactions between the particles and the continuous phase. The models being used today assumes an average force on all particles within the array based on the mean volume fraction and Reynolds number. Here, we develop a model which can compute the drag and lateral forces on each particle by accounting for the precise location of few surrounding neighbors. A pairwise interaction is assumed where the perturbation flow induced by each neighbor is considered separately, then the effect of all neighbors are linearly superposed to obtain the total perturbation. Faxén correction is used to quantify the force perturbation due to the presence of the neighbors. The single neighbor perturbations are mapped in the vicinity of a reference sphere and stored as libraries. We test the Pairwise Interaction Extended Point-Particle (PIEP) model for random arrays at two different volume fractions of ϕ = 0 . 1 and 0.21 and Reynolds number in the range 16 <= Re <= 170 . The PIEP model predictions are compared against drag and lift forces obtained from fully-resolved DNS performed using immersed boundary method. We observe the PIEP model prediction to correlate much better with the DNS results than the classical mean drag model prediction.
Particle-Resolved Modeling of Aerosol Mixing State in an Evolving Ship Plume
NASA Astrophysics Data System (ADS)
Riemer, N. S.; Tian, J.; Pfaffenberger, L.; Schlager, H.; Petzold, A.
2011-12-01
The aerosol mixing state is important since it impacts the particles' optical and CCN properties and thereby their climate impact. It evolves continuously during the particles' residence time in the atmosphere as a result of coagulation with other particles and condensation of secondary aerosol species. This evolution is challenging to represent in traditional aerosol models since they require the representation of a multi-dimensional particle distribution. While modal or sectional aerosol representations cannot practically resolve the aerosol mixing state for more than a few species, particle-resolved models store the composition of many individual aerosol particles directly. They thus sample the high-dimensional composition state space very efficiently and so can deal with tens of species, fully resolving the mixing state. Here we use the capabilities of the particle-resolved model PartMC-MOSAIC to simulate the evolution of particulate matter emitted from marine diesel engines and compare the results to aircraft measurements made in the English Channel in 2007 as part of the European campaign QUANTIFY. The model was initialized with values of gas concentrations and particle size distributions and compositions representing fresh ship emissions. These values were obtained from a test rig study in the European project HERCULES in 2006 using a serial four-stroke marine diesel engine operating on high-sulfur heavy fuel oil. The freshly emitted particles consisted of sulfate, black carbon, organic carbon and ash. We then tracked the particle population for several hours as it evolved undergoing coagulation, dilution with the background air, and chemical transformations in the aerosol and gas phase. This simulation was used to compute the evolution of CCN properties and optical properties of the plume on a per-particle basis. We compared our results to size-resolved data of aged ship plumes from the QUANTIFY Study in 2007 and showed that the model was able to reproduce
NASA Astrophysics Data System (ADS)
Menzel, Andreas M.
2015-11-01
Diffusion of colloidal particles in a complex environment such as polymer networks or biological cells is a topic of high complexity with significant biological and medical relevance. In such situations, the interaction between the surroundings and the particle motion has to be taken into account. We analyze a simplified diffusion model that includes some aspects of a complex environment in the framework of a nonlinear friction process: at low particle speeds, friction grows linearly with the particle velocity as for regular viscous friction; it grows more than linearly at higher particle speeds; finally, at a maximum of the possible particle speed, the friction diverges. In addition to bare diffusion, we study the influence of a constant drift force acting on the diffusing particle. While the corresponding stationary velocity distributions can be derived analytically, the displacement statistics generally must be determined numerically. However, as a benefit of our model, analytical progress can be made in one case of a special maximum particle speed. The effect of a drift force in this case is analytically determined by perturbation theory. It will be interesting in the future to compare our results to real experimental systems. One realization could be magnetic colloidal particles diffusing through a shear-thickening environment such as starch suspensions, possibly exposed to an external magnetic field gradient.
Computational model of particle deposition in the nasal cavity under steady and dynamic flow.
Karakosta, Paraskevi; Alexopoulos, Aleck H; Kiparissides, Costas
2015-01-01
A computational model for flow and particle deposition in a three-dimensional representation of the human nasal cavity is developed. Simulations of steady state and dynamic airflow during inhalation are performed at flow rates of 9-60 l/min. Depositions for particles of size 0.5-20 μm are determined and compared with experimental and simulation results from the literature in terms of deposition efficiencies. The nasal model is validated by comparison with experimental and simulation results from the literature for particle deposition under steady-state flow. The distribution of deposited particles in the nasal cavity is presented in terms of an axial deposition distribution as well as a bivariate axial deposition and particle size distribution. Simulations of dynamic airflow and particle deposition during an inhalation cycle are performed for different nasal cavity outlet pressure variations and different particle injections. The total particle deposition efficiency under dynamic flow is found to depend strongly on the dynamics of airflow as well as the type of particle injection.
Chaotic delocalization of two interacting particles in the classical Harper model
NASA Astrophysics Data System (ADS)
Shepelyansky, Dima L.
2016-06-01
We study the problem of two interacting particles in the classical Harper model in the regime when one-particle motion is absolutely bounded inside one cell of periodic potential. The interaction between particles breaks integrability of classical motion leading to emergence of Hamiltonian dynamical chaos. At moderate interactions and certain energies above the mobility edge this chaos leads to a chaotic propulsion of two particles with their diffusive spreading over the whole space both in one and two dimensions. At the same time the distance between particles remains bounded by one or two periodic cells demonstrating appearance of new composite quasi-particles called chaons. The effect of chaotic delocalization of chaons is shown to be rather general being present for Coulomb and short range interactions. It is argued that such delocalized chaons can be observed in experiments with cold atoms and ions in optical lattices.
NASA Astrophysics Data System (ADS)
Albella, P.; Moreno, F.; Saiz, J. M.; González, F.
2007-07-01
An interaction model developed in previous research [de la Peña JL, González F, Saiz JM, Moreno F, Valle PJ. Sizing particles on substrates. A general method for oblique incidence. J Appl Phys 1999; 85:432] is extended to the study of two-scaled systems consisting of particles located on larger structures. Far-field scattering patterns produced by these systems can be obtained by coherent addition of different electromagnetic contributions, each one obtained from an independent isolated particle calculation. Results are performed on a 2D scheme, where they can be easily compared with those given by an exact method. This analysis shows some features of the scattering patterns that can be obtained with high reliability. Research on this kind of systems can be applied to 3D situations like particle substrate contamination and particle particle contamination.
The effect of model fidelity on prediction of char burnout for single-particle coal combustion
McConnell, Josh; Sutherland, James C.
2016-07-09
In this study, practical simulation of industrial-scale coal combustion relies on the ability to accurately capture the dynamics of coal subprocesses while also ensuring the computational cost remains reasonable. The majority of the residence time occurs post-devolatilization, so it is of great importance that a balance between the computational efficiency and accuracy of char combustion models is carefully considered. In this work, we consider the importance of model fidelity during char combustion by comparing combinations of simple and complex gas and particle-phase chemistry models. Detailed kinetics based on the GRI 3.0 mechanism and infinitely-fast chemistry are considered in the gas-phase. The Char Conversion Kinetics model and nth-Order Langmuir–Hinshelwood model are considered for char consumption. For devolatilization, the Chemical Percolation and Devolatilization and Kobayashi-Sarofim models are employed. The relative importance of gasification versus oxidation reactions in air and oxyfuel environments is also examined for various coal types. Results are compared to previously published experimental data collected under laminar, single-particle conditions. Calculated particle temperature histories are strongly dependent on the choice of gas phase and char chemistry models, but only weakly dependent on the chosen devolatilization model. Particle mass calculations were found to be very sensitive to the choice of devolatilization model, but only somewhat sensitive to the choice of gas chemistry and char chemistry models. High-fidelity models for devolatilization generally resulted in particle temperature and mass calculations that were closer to experimentally observed values.
Source Term Model for Fine Particle Resuspension from Indoor Surfaces
2008-02-01
9 2.2.1 Resuspension Factor K and Resuspension Rate Λ 9 2.2.2 Empirical Models 9 2.2.3 Theoretical Models 11 2.3...17 3.3.1 Empirical Correlations 18 3.3.2 Physics-Based Model 27 3.3.3 Comparison...of Dimensionless Variables in Empirical Correlations and Physics- based Model 30 3.4 Testing of Models
Modeling particle number concentrations along Interstate 10 in El Paso, Texas
NASA Astrophysics Data System (ADS)
Olvera, Hector A.; Jimenez, Omar; Provencio-Vasquez, Elias
2014-12-01
Annual average daily particle number concentrations around a highway were estimated with an atmospheric dispersion model and a land use regression model. The dispersion model was used to estimate particle concentrations along Interstate 10 at 98 locations within El Paso, Texas. This model employed annual averaged wind speed and annual average daily traffic counts as inputs. A land use regression model with vehicle kilometers traveled as the predictor variable was used to estimate local background concentrations away from the highway to adjust the near-highway concentration estimates. Estimated particle number concentrations ranged between 9.8 × 103 particles/cc and 1.3 × 105 particles/cc, and averaged 2.5 × 104 particles/cc (SE 421.0). Estimates were compared against values measured at seven sites located along I10 throughout the region. The average fractional error was 6% and ranged between -1% and -13% across sites. The largest bias of -13% was observed at a semi-rural site where traffic was lowest. The average bias amongst urban sites was 5%. The accuracy of the estimates depended primarily on the emission factor and the adjustment to local background conditions. An emission factor of 1.63 × 1014 particles/veh-km was based on a value proposed in the literature and adjusted with local measurements. The integration of the two modeling techniques ensured that the particle number concentrations estimates captured the impact of traffic along both the highway and arterial roadways. The performance and economical aspects of the two modeling techniques used in this study shows that producing particle concentration surfaces along major roadways would be feasible in urban regions where traffic and meteorological data are readily available.
Modeling particle number concentrations along Interstate 10 in El Paso, Texas
Olvera, Hector A.; Jimenez, Omar; Provencio-Vasquez, Elias
2014-01-01
Annual average daily particle number concentrations around a highway were estimated with an atmospheric dispersion model and a land use regression model. The dispersion model was used to estimate particle concentrations along Interstate 10 at 98 locations within El Paso, Texas. This model employed annual averaged wind speed and annual average daily traffic counts as inputs. A land use regression model with vehicle kilometers traveled as the predictor variable was used to estimate local background concentrations away from the highway to adjust the near-highway concentration estimates. Estimated particle number concentrations ranged between 9.8 × 103 particles/cc and 1.3 × 105 particles/cc, and averaged 2.5 × 104 particles/cc (SE 421.0). Estimates were compared against values measured at seven sites located along I10 throughout the region. The average fractional error was 6% and ranged between -1% and -13% across sites. The largest bias of -13% was observed at a semi-rural site where traffic was lowest. The average bias amongst urban sites was 5%. The accuracy of the estimates depended primarily on the emission factor and the adjustment to local background conditions. An emission factor of 1.63 × 1014 particles/veh-km was based on a value proposed in the literature and adjusted with local measurements. The integration of the two modeling techniques ensured that the particle number concentrations estimates captured the impact of traffic along both the highway and arterial roadways. The performance and economical aspects of the two modeling techniques used in this study shows that producing particle concentration surfaces along major roadways would be feasible in urban regions where traffic and meteorological data are readily available. PMID:25313294
Modeling particle number concentrations along Interstate 10 in El Paso, Texas.
Olvera, Hector A; Jimenez, Omar; Provencio-Vasquez, Elias
2014-12-01
Annual average daily particle number concentrations around a highway were estimated with an atmospheric dispersion model and a land use regression model. The dispersion model was used to estimate particle concentrations along Interstate 10 at 98 locations within El Paso, Texas. This model employed annual averaged wind speed and annual average daily traffic counts as inputs. A land use regression model with vehicle kilometers traveled as the predictor variable was used to estimate local background concentrations away from the highway to adjust the near-highway concentration estimates. Estimated particle number concentrations ranged between 9.8 × 10(3) particles/cc and 1.3 × 10(5) particles/cc, and averaged 2.5 × 10(4) particles/cc (SE 421.0). Estimates were compared against values measured at seven sites located along I10 throughout the region. The average fractional error was 6% and ranged between -1% and -13% across sites. The largest bias of -13% was observed at a semi-rural site where traffic was lowest. The average bias amongst urban sites was 5%. The accuracy of the estimates depended primarily on the emission factor and the adjustment to local background conditions. An emission factor of 1.63 × 10(14) particles/veh-km was based on a value proposed in the literature and adjusted with local measurements. The integration of the two modeling techniques ensured that the particle number concentrations estimates captured the impact of traffic along both the highway and arterial roadways. The performance and economical aspects of the two modeling techniques used in this study shows that producing particle concentration surfaces along major roadways would be feasible in urban regions where traffic and meteorological data are readily available.
Modeling of composite latex particle morphology by off-lattice Monte Carlo simulation.
Duda, Yurko; Vázquez, Flavio
2005-02-01
Composite latex particles have shown a great range of applications such as paint resins, varnishes, water borne adhesives, impact modifiers, etc. The high-performance properties of this kind of materials may be explained in terms of a synergistical combination of two different polymers (usually a rubber and a thermoplastic). A great variety of composite latex particles with very different morphologies may be obtained by two-step emulsion polymerization processes. The formation of specific particle morphology depends on the chemical and physical nature of the monomers used during the synthesis, the process temperature, the reaction initiator, the surfactants, etc. Only a few models have been proposed to explain the appearance of the composite particle morphologies. These models have been based on the change of the interfacial energies during the synthesis. In this work, we present a new three-component model: Polymer blend (flexible and rigid chain particles) is dispersed in water by forming spherical cavities. Monte Carlo simulations of the model in two dimensions are used to determine the density distribution of chains and water molecules inside the suspended particle. This approach allows us to study the dependence of the morphology of the composite latex particles on the relative hydrophilicity and flexibility of the chain molecules as well as on their density and composition. It has been shown that our simple model is capable of reproducing the main features of the various morphologies observed in synthesis experiments.
A new coincidence model for single particle counters, Part II: Advances and applications.
Knapp, J Z; Lieberman, A; Abramson, L R
1994-01-01
Accuracy, acceptance limits and methods for U.S.P. (788) contaminating particle assays published in the XXII Revision are refined in U.S.P. XXIII. In both Revisions, although different numerical values and methods are employed, particle contamination limits remain constants for all S.V.I. container volumes. The effect of this quality standard is high particle concentration acceptance limits in the smallest S.V.I. container sizes. The effect of these high concentrations is to introduce both undercount errors and false counts into U.S.P. (788) SVI contaminating particle assays. There is general agreement that the count of high concentrations of particles by a single particle light extinction counter result in an increase of the average size of the distribution of particles reported and a decrease in their total number. The error mechanism is termed "signal coincidence." Understanding and control of both these problems is unified with the introduction of the count efficiency parameter. Part I of this paper makes available two core concepts with which evaluation and control of coincidence error in single particle counters can be accurately quantified. These two core concepts are the "Particle Triggered Poisson Model," a new more accurate statistical model of the particle counting process and a concentration measure that includes the effect of particle size on the counting capability of a detector. Use of these concepts make it possible to evaluate particle detector count efficiency capability from experimental data of the coincidence effect. This is an application paper. It combines the theory in the Part I paper with the replicability of particle counters into a simple test protocol. The test results can be used to calculate a contour of particle size and count within which both undercount errors and the introduction of false counts into U.S.P. (788) particle assays are controlled. From the data analyzed it can be seen that any single particle size test cannot
NASA Astrophysics Data System (ADS)
Jia, L. Y.
2016-06-01
The particle-hole symmetry (equivalence) of the full shell-model Hilbert space is straightforward and routinely used in practical calculations. In this work I show that this symmetry is preserved in the subspace truncated up to a certain generalized seniority and give the explicit transformation between the states in the two types (particle and hole) of representations. Based on the results, I study particle-hole symmetry in popular theories that could be regarded as further truncations on top of the generalized seniority, including the microscopic interacting boson (fermion) model, the nucleon-pair approximation, and other models.
A Core-Particle Model for Periodically Focused Ion Beams with Intense Space-Charge
Lund, S M; Barnard, J J; Bukh, B; Chawla, S R; Chilton, S H
2006-08-02
A core-particle model is derived to analyze transverse orbits of test particles evolving in the presence of a core ion beam described by the KV distribution. The core beam has uniform density within an elliptical cross-section and can be applied to model both quadrupole and solenoidal focused beams in periodic or aperiodic lattices. Efficient analytical descriptions of electrostatic space-charge fields external to the beam core are derived to simplify model equations. Image charge effects are analyzed for an elliptical beam centered in a round, conducting pipe to estimate model corrections resulting from image charge nonlinearities. Transformations are employed to remove coherent utter motion associated with oscillations of the ion beam core due to rapidly varying, linear applied focusing forces. Diagnostics for particle trajectories, Poincare phase-space projections, and single-particle emittances based on these transformations better illustrate the effects of nonlinear forces acting on particles evolving outside the core. A numerical code has been written based on this model. Example applications illustrate model characteristics. The core-particle model described has recently been applied to identify physical processes leading to space-charge transport limits for an rms matched beam in a periodic quadrupole focusing channel [Lund and Chawla, Nuc. Instr. and Meth. A 561, 203 (2006)]. Further characteristics of these processes are presented here.
Application of stochastic weighted algorithms to a multidimensional silica particle model
Menz, William J.; Patterson, Robert I.A.; Wagner, Wolfgang; Kraft, Markus
2013-09-01
Highlights: •Stochastic weighted algorithms (SWAs) are developed for a detailed silica model. •An implementation of SWAs with the transition kernel is presented. •The SWAs’ solutions converge to the direct simulation algorithm’s (DSA) solution. •The efficiency of SWAs is evaluated for this multidimensional particle model. •It is shown that SWAs can be used for coagulation problems in industrial systems. -- Abstract: This paper presents a detailed study of the numerical behaviour of stochastic weighted algorithms (SWAs) using the transition regime coagulation kernel and a multidimensional silica particle model. The implementation in the SWAs of the transition regime coagulation kernel and associated majorant rates is described. The silica particle model of Shekar et al. [S. Shekar, A.J. Smith, W.J. Menz, M. Sander, M. Kraft, A multidimensional population balance model to describe the aerosol synthesis of silica nanoparticles, Journal of Aerosol Science 44 (2012) 83–98] was used in conjunction with this coagulation kernel to study the convergence properties of SWAs with a multidimensional particle model. High precision solutions were calculated with two SWAs and also with the established direct simulation algorithm. These solutions, which were generated using large number of computational particles, showed close agreement. It was thus demonstrated that SWAs can be successfully used with complex coagulation kernels and high dimensional particle models to simulate real-world systems.
A detailed one-dimensional model of combustion of a woody biomass particle.
Haseli, Y; van Oijen, J A; de Goey, L P H
2011-10-01
A detailed one-dimensional model for combustion of a single biomass particle is presented. It accounts for particle heating up, pyrolysis, char gasification and oxidation and gas phase reactions within and in the vicinity of the particle. The biomass pyrolysis is assumed to take place through three competing reactions yielding char, light gas and tar. The model is validated using different sets of experiments reported in the literature. Special emphasis is placed on examination of the effects of pyrolysis kinetic constants and gas phase reactions on the combustion process which have not been thoroughly discussed in previous works. It is shown that depending on the process condition and reactor temperature, correct selection of the pyrolysis kinetic data is a necessary step for simulation of biomass particle conversion. The computer program developed for the purpose of this study enables one to get a deeper insight into the biomass particle combustion process.
This presentation, Particle-Resolved Simulations for Quantifying Black Carbon Climate Impact and Model Uncertainty, was given at the STAR Black Carbon 2016 Webinar Series: Changing Chemistry over Time held on Oct. 31, 2016.
Fokker–Planck kinetic modeling of suprathermal α-particles in a fusion plasma
Peigney, B.E.
2014-12-01
We present an ion kinetic model describing the transport of suprathermal α-particles in inertial fusion targets. The analysis of the underlying physical model enables us to develop efficient numerical methods to simulate the creation, transport and collisional relaxation of fusion reaction products (α-particles) at a kinetic level. The model assumes spherical symmetry in configuration space and axial symmetry in velocity space around the mean flow velocity. A two-energy-scale approach leads to a self-consistent modeling of the coupling between suprathermal α-particles and the thermal bulk of the imploding plasma. This method provides an accurate numerical treatment of energy deposition and transport processes involving suprathermal particles. The numerical tools presented here are then validated against known analytical results. This enables us to investigate the potential role of ion kinetic effects on the physics of ignition and thermonuclear burn in inertial confinement fusion schemes.
NASA Astrophysics Data System (ADS)
Innocenti, Alessio; Marchioli, Cristian; Chibbaro, Sergio
2016-11-01
The Eulerian-Lagrangian approach based on Large-Eddy Simulation (LES) is one of the most promising and viable numerical tools to study particle-laden turbulent flows, when the computational cost of Direct Numerical Simulation (DNS) becomes too expensive. The applicability of this approach is however limited if the effects of the Sub-Grid Scales (SGSs) of the flow on particle dynamics are neglected. In this paper, we propose to take these effects into account by means of a Lagrangian stochastic SGS model for the equations of particle motion. The model extends to particle-laden flows the velocity-filtered density function method originally developed for reactive flows. The underlying filtered density function is simulated through a Lagrangian Monte Carlo procedure that solves a set of Stochastic Differential Equations (SDEs) along individual particle trajectories. The resulting model is tested for the reference case of turbulent channel flow, using a hybrid algorithm in which the fluid velocity field is provided by LES and then used to advance the SDEs in time. The model consistency is assessed in the limit of particles with zero inertia, when "duplicate fields" are available from both the Eulerian LES and the Lagrangian tracking. Tests with inertial particles were performed to examine the capability of the model to capture the particle preferential concentration and near-wall segregation. Upon comparison with DNS-based statistics, our results show improved accuracy and considerably reduced errors with respect to the case in which no SGS model is used in the equations of particle motion.
Flow properties of particles in a model annular shear cell
NASA Astrophysics Data System (ADS)
Wang, X.; Zhu, H. P.; Yu, A. B.
2012-05-01
In order to quantitatively investigate the mechanical and rheological properties of solid flow in a shear cell under conditions relevant to those in an annular cell, we performed a series of discrete particle simulations of slightly polydispersed spheres from quasi-static to intermediate flow regimes. It is shown that the average values of stress tensor components are uniformly distributed in the cell space away from the stationary walls; however, some degree of inhomogeneity in their spatial distributions does exist. A linear relationship between the (internal/external) shear and normal stresses prevails in the shear cell and the internal and external friction coefficients can compare well with each other. It is confirmed that annular shear cells are reasonably effective as a method of measuring particle flow properties. The so-called I-rheology proposed by Jop et al. [Nature (London) 441, 727 (2006)] is rigorously tested in this cell system. The results unambiguously display that the I-rheology can effectively describe the intermediate flow regime with a high correlation coefficient. However, significant deviations take place when it is applied to the quasi-static regime, which corresponds to very small values of inertial number.
Nallamilli, Trivikram; Mani, Ethayaraja; Basavaraj, Madivala G
2014-08-12
Colloidal particles irreversibly adsorb at fluid-fluid interfaces stabilizing what are commonly called "Pickering" emulsions and foams. A simple geometrical model, the limited coalescence model, was earlier proposed to estimate droplet sizes in emulsions. This model assumes that all of the particles are effective in stabilization. The model predicts that the average emulsion drop size scales inversely with the total number of particles, confirmed qualitatively with experimental data on Pickering emulsions. In recent years, there has been an increasing interest in synthesizing emulsions with oppositely charged particles (OCPs). In our experimental study, we observed that the drop size varies nonmonotonically with the number ratio of oppositely charged colloids, even when a fixed total number concentration of colloids is used, showing a minimum. We develop a mathematical model to predict this dependence of drop size on number ratio in such a mixed particle system. The proposed model is based on the hypothesis that oppositely charged colloids form stable clusters due to the strong electrostatic attraction between them and that these clusters are the effective stabilizing agents. The proposed model is a two-parameter model, parameters being the ratio of effective charge of OCPs (denoted as k) and the size of the aggregate containing X particles formed due to aggregation of OCPs. Because the size of aggregates formed during emulsification is not directly measurable, we use suitable values of parameters k and X to best match the experimental observations. The model predictions are in qualitative agreement with experimentally observed nonmonotonic variation of droplet sizes. Using experiments and theory, we present a physical insight into the formation of OCP stabilized Pickering emulsions. Our model upgrades the existing Wiley's limited coalescence model as applied to emulsions containing a binary mixture of oppositely charged particles.
Towards a Revised Monte Carlo Neutral Particle Surface Interaction Model
D.P. Stotler
2005-06-09
The components of the neutral- and plasma-surface interaction model used in the Monte Carlo neutral transport code DEGAS 2 are reviewed. The idealized surfaces and processes handled by that model are inadequate for accurately simulating neutral transport behavior in present day and future fusion devices. We identify some of the physical processes missing from the model, such as mixed materials and implanted hydrogen, and make some suggestions for improving the model.
A SUNTANS-based unstructured grid local exact particle tracking model
NASA Astrophysics Data System (ADS)
Liu, Guangliang; Chua, Vivien P.
2016-07-01
A parallel particle tracking model, which employs the local exact integration method to achieve high accuracy, has been developed and embedded in an unstructured-grid coastal ocean model, Stanford Unstructured Nonhydrostatic Terrain-following Adaptive Navier-Stokes Simulator (SUNTANS). The particle tracking model is verified and compared with traditional numerical integration methods, such as Runge-Kutta fourth-order methods using several test cases. In two-dimensional linear steady rotating flow, the local exact particle tracking model is able to track particles along the circular streamline accurately, while Runge-Kutta fourth-order methods produce trajectories that deviate from the streamlines. In periodically varying double-gyre flow, the trajectories produced by local exact particle tracking model with time step of 1.0 × 10- 2 s are similar to those trajectories obtained from the numerical integration methods with reduced time steps of 1.0 × 10- 4 s. In three-dimensional steady Arnold-Beltrami-Childress (ABC) flow, the trajectories integrated with the local exact particle tracking model compares well with the approximated true path. The trajectories spiral upward and their projection on the x- y plane is a periodic ellipse. The trajectories derived with the Runge-Kutta fourth-order method deviate from the approximated true path, and their projections on the x- y plane are unclosed ellipses with growing long and short axes. The spatial temporal resolution needs to be carefully chosen before particle tracking models are applied. Our results show that the developed local exact particle tracking model is accurate and suitable for marine Lagrangian (trajectory-based)-related research.
NASA Astrophysics Data System (ADS)
Ogawa, Shizuka; Waide, Sayaka; Takasu, Masako; Miyakawa, Takeshi; Morikawa, Ryota; Sakai, Takamasa; Chung, Ung-il
We study the early process of gelation using our model of 5 particles and 9 particles in a monomer. We compare our models and obtain slower reaction for model of 9 particles. We also study the effect of random force and obtain slower reaction with random force but more extended structure.
Particle Swarm Social Adaptive Model for Multi-Agent Based Insurgency Warfare Simulation
Cui, Xiaohui; Potok, Thomas E
2009-12-01
To better understand insurgent activities and asymmetric warfare, a social adaptive model for modeling multiple insurgent groups attacking multiple military and civilian targets is proposed and investigated. This report presents a pilot study using the particle swarm modeling, a widely used non-linear optimal tool to model the emergence of insurgency campaign. The objective of this research is to apply the particle swarm metaphor as a model of insurgent social adaptation for the dynamically changing environment and to provide insight and understanding of insurgency warfare. Our results show that unified leadership, strategic planning, and effective communication between insurgent groups are not the necessary requirements for insurgents to efficiently attain their objective.
The application of single particle hydrodynamics in continuum models of multiphase flow
NASA Technical Reports Server (NTRS)
Decker, Rand
1988-01-01
A review of the application of single particle hydrodynamics in models for the exchange of interphase momentum in continuum models of multiphase flow is presented. Considered are the equations of motion for a laminar, mechanical two phase flow. Inherent to this theory is a model for the interphase exchange of momentum due to drag between the dispersed particulate and continuous fluid phases. In addition, applications of two phase flow theory to de-mixing flows require the modeling of interphase momentum exchange due to lift forces. The applications of single particle analysis in deriving models for drag and lift are examined.
Numerical modeling of pollutant transport using a Lagrangian marker particle technique
NASA Technical Reports Server (NTRS)
Spaulding, M.
1976-01-01
A derivation and code were developed for the three-dimensional mass transport equation, using a particle-in-cell solution technique, to solve coastal zone waste discharge problems where particles are a major component of the waste. Improvements in the particle movement techniques are suggested and typical examples illustrated. Preliminary model comparisons with analytic solutions for an instantaneous point release in a uniform flow show good results in resolving the waste motion. The findings to date indicate that this computational model will provide a useful technique to study the motion of sediment, dredged spoils, and other particulate waste commonly deposited in coastal waters.
Ferrimagnetism and single-particle excitations in a periodic Anderson model on the honeycomb lattice
NASA Astrophysics Data System (ADS)
Seki, Kazuhiro; Shirakawa, Tomonori; Zhang, Qinfang; Li, Tao; Yunoki, Seiji
2015-04-01
By using the variationalcluster approximation and cluster perturbation theory, we investigate the magnetism and single-particle excitations of a periodic Anderson model on the honeycomb lattice as an effective model for the single-side hydrogenated graphene, namely, graphone. We calculate the magnetic moment as a function of U (Coulomb interaction on impurity sites) with showing that the ground state is ferrimagneticfor any U > 0. We then calculate the single-particle excitations and show that the single-particle excitations are gapless and exhibit quadratic dispersion relation near the Fermi energy.
Including nonequilibrium interface kinetics in a continuum model for melting nanoscaled particles
NASA Astrophysics Data System (ADS)
Back, Julian M.; McCue, Scott W.; Moroney, Timothy J.
2014-11-01
The melting temperature of a nanoscaled particle is known to decrease as the curvature of the solid-melt interface increases. This relationship is most often modelled by a Gibbs-Thomson law, with the decrease in melting temperature proposed to be a product of the curvature of the solid-melt interface and the surface tension. Such a law must break down for sufficiently small particles, since the curvature becomes singular in the limit that the particle radius vanishes. Furthermore, the use of this law as a boundary condition for a Stefan-type continuum model is problematic because it leads to a physically unrealistic form of mathematical blow-up at a finite particle radius. By numerical simulation, we show that the inclusion of nonequilibrium interface kinetics in the Gibbs-Thomson law regularises the continuum model, so that the mathematical blow up is suppressed. As a result, the solution continues until complete melting, and the corresponding melting temperature remains finite for all time. The results of the adjusted model are consistent with experimental findings of abrupt melting of nanoscaled particles. This small-particle regime appears to be closely related to the problem of melting a superheated particle.
Including nonequilibrium interface kinetics in a continuum model for melting nanoscaled particles.
Back, Julian M; McCue, Scott W; Moroney, Timothy J
2014-11-17
The melting temperature of a nanoscaled particle is known to decrease as the curvature of the solid-melt interface increases. This relationship is most often modelled by a Gibbs-Thomson law, with the decrease in melting temperature proposed to be a product of the curvature of the solid-melt interface and the surface tension. Such a law must break down for sufficiently small particles, since the curvature becomes singular in the limit that the particle radius vanishes. Furthermore, the use of this law as a boundary condition for a Stefan-type continuum model is problematic because it leads to a physically unrealistic form of mathematical blow-up at a finite particle radius. By numerical simulation, we show that the inclusion of nonequilibrium interface kinetics in the Gibbs-Thomson law regularises the continuum model, so that the mathematical blow up is suppressed. As a result, the solution continues until complete melting, and the corresponding melting temperature remains finite for all time. The results of the adjusted model are consistent with experimental findings of abrupt melting of nanoscaled particles. This small-particle regime appears to be closely related to the problem of melting a superheated particle.
NASA Astrophysics Data System (ADS)
Pirjola, L.; Karl, M.; Rönkkö, T.; Arnold, F.
2015-02-01
High concentration of volatile nucleation mode particles (NUP) formed in the atmosphere during exhaust cools and dilutes have hazardous health effects and impair visibility in urban areas. Nucleation mechanisms in diesel exhaust are only poorly understood. We performed model studies using two sectional aerosol dynamics process models AEROFOR and MAFOR on the formation of particles in the exhaust of a diesel engine, equipped with an oxidative after-treatment system and running with low fuel sulphur content (FSC), under laboratory sampling conditions where the dilution system mimics real-world conditions. Different nucleation mechanisms were tested; based on the measured gaseous sulphuric acid (GSA) and non-volatile core and soot particle number concentrations of the raw exhaust, the model simulations showed that the best agreement between model predictions and measurements in terms of particle number size distribution was obtained by barrierless heteromolecular homogeneous nucleation between GSA and semi-volatile organic vapour (for example adipic acid) combined with the homogeneous nucleation of GSA alone. Major growth of the particles was predicted to occur by the same organic vapour at concentrations of (1-2) ×1012cm-3. The pre-existing core and soot mode concentrations had opposite trend on the NUP formation, and maximum NUP formation was predicted if a diesel particle filter (DPF) was used. On the other hand, NUP formation was ceased if the GSA concentration was less than 1010cm-3 which suggests, based on the measurements, the usage of biofuel to prevent volatile particles in diesel exhaust.
NASA Astrophysics Data System (ADS)
Mobley, Michael J.
2015-09-01
Hestenes has presented an integration of Schrödinger's zitterbewegung with the spin matrices of the Dirac equation, suggesting the electron can be modeled by a rapidly rotating dipole moment and a frequency related to the de Broglie frequency. He presents an elegant spacetime algebra that provides a reformulation of the Dirac equation that incorporates these real spin characteristics. A similar heuristic model for quantum particles has been derived by this author from a different, quasi-classical premise: That the most fundamental subcomponents of quantum particles all travel at a constant speed of light. Time is equated with the spatial displacement of these subcomponents - the speed of light is the speed of time. This approach suggests a means of integrating special relativity and quantum mechanics with the same concept of time. The relativistic transformation of spinning quantum particles create the appearance of additional, compactified spatial dimensions that can be correlated with the complex phase of the spin matrices as in the Dirac formalism. This paper further examines the convergence on such new models for quantum particles built on this rapid motion of particle subcomponents. The modeling leverages a string-like heuristic for particle subcomponents and a revised description for the wave-like properties of particles. This examination provides useful insights to the real spatial geometries and interactions of electrons and photons.
Simulating the Evolution of Soot Mixing State with a Particle-Resolved Aerosol Model
Riemer, Nicole; West, Matt; Zaveri, Rahul A.; Easter, Richard C.
2009-05-05
The mixing state of soot particles in the atmosphere is of crucial importance for assessing their climatic impact, since it governs their chemical reactivity, cloud condensation nuclei activity and radiative properties. To improve the mixing state representation in models, we present a new approach, the stochastic particle-resolved model PartMC-MOSAIC, which explicitly resolves the composition of individual particles in a given population of different types of aerosol particles. This approach accurately tracks the evolution of the mixing state of particles due to emission, dilution, condensation and coagulation. To make this direct stochastic particle-based method practical, we implemented a new multiscale stochastic coagulation method. With this method we achieved optimal efficiency for applications when the coagulation kernel is highly non-uniform, as is the case for many realistic applications. PartMC-MOSAIC was applied to an idealized urban plume case representative of a large urban area to simulate the evolution of carbonaceous aerosols of different types due to coagulation and condensation. For this urban plume scenario we quantified the individual processes that contribute to the aging of the aerosol distribution, illustrating the capabilities of our modeling approach. The results showed for the first time the multidimensional structure of particle composition, which is usually lost in internally-mixed sectional or modal aerosol models.
Modeling the impact of sea-spray on particle concentrations in a coastal city
Pryor, S C; Barthelmie, R J; Schoof, J T; Binkowski, F S; Monache, L D; Stull, R B
2006-04-19
An atmospheric chemistry-transport model is used to assess the impacts of sea-spray chemistry on the particle composition in and downwind of a coastal city--Vancouver, British Columbia. Reactions in/on sea-spray affect the entire particle ensemble and particularly the size distribution of particle nitrate. Urban air quality, and particularly airborne particles, is a major concern in terms of human health impacts. Sea-spray is known to be a major component of the particle ensemble at coastal sites yet relatively few air quality models include the interaction of gases with sea-spray and the fate of the particles produced. Sea-spray is not an inert addition to the particle ensemble because heterogeneous chemistry in/on sea-spray droplets changes the droplets composition and the particle size distribution, which impacts deposition and the ion balance in different particle size fractions. It is shown that the ISOPART model is capable of simulating gas and particle concentrations in the coastal metropolis of Vancouver and the surrounding valley. It is also demonstrated that to accurately simulate ambient concentrations of particles and reactive/soluble gases in a coastal valley it is absolutely critical to include heterogeneous chemistry in/on sea-spray. Partitioning of total particle-NO{sub 3}{sup -} between sea-spray and NH{sub 4}NO{sub 3} is highly sensitive to the amount of sea-spray present, and hence the initial vertical profile, sea-spray source functions [48] and the wind speed. When a fixed wind speed is used to initialize the sea-spray vertical profiles, as expected, the sea-spray concentration decays with distance inland, but the particle-NO{sub 3}{sup -} concentration decays more slowly because it is also a function of the uptake rate for HNO{sub 3}. The simulation results imply model analyses of air quality in coastal cities conducted without inclusion of sea-spray interactions may yield highly misleading results in terms of emission sensitivities of the PM
NASA Astrophysics Data System (ADS)
Porth, O.; Vorster, M. J.; Lyutikov, M.; Engelbrecht, N. E.
2016-08-01
We study the transport of high-energy particles in pulsar wind nebulae (PWN) using three-dimensional magnetohydrodynamic (MHD) and test-particle simulations, as well as a Fokker-Planck particle transport model. The latter includes radiative and adiabatic losses, diffusion, and advection on the background flow of the simulated MHD nebula. By combining the models, the spatial evolution of flux and photon index of the X-ray synchrotron emission is modelled for the three nebulae G21.5-0.9, the inner regions of Vela, and 3C 58, thereby allowing us to derive governing parameters: the magnetic field strength, average flow velocity, and spatial diffusion coefficient. For comparison, the nebulae are also modelled with the semi-analytic Kennel & Coroniti model but the Porth et al. model generally yields better fits to the observational data. We find that high velocity fluctuations in the turbulent nebula (downstream of the termination shock) give rise to efficient diffusive transport of particles, with average Péclet number close to unity, indicating that both advection and diffusion play an important role in particle transport. We find that the diffusive transport coefficient of the order of ˜ 2 × 1027(Ls/0.42 Ly) cm2 s- 1 (Ls is the size of the termination shock) is independent of energy up to extreme particle Lorentz factors of γp ˜ 1010.
A biomathematical model of particle clearance and retention in the lungs of coal miners.
Kuempel, E D; O'Flaherty, E J; Stayner, L T; Smith, R J; Green, F H; Vallyathan, V
2001-08-01
To understand better the factors influencing the relationships among airborne particle exposure, lung burden, and fibrotic lung disease, we developed a biologically based kinetic model to predict the long-term retention of particles in the lungs of coal miners. This model includes alveolar, interstitial, and hilar lymph node compartments. The 131 miners in this study had worked in the Beckley, West Virginia, area and died during the 1960s. The data used to develop this model include exposure to respirable coal mine dust by intensity and duration within each job, lung and lymph node dust burdens at autopsy, pathological classification of fibrotic lung disease, and smoking history. Initial parameter estimates for this model were based on both human and animal data of particle deposition and clearance and on the biological and physical factors influencing these processes. Parameter estimation and model fit to the data were determined using least squares. Results show that the end-of-life lung dust burdens in these coal miners were substantially higher than expected from first-order clearance kinetics, yet lower than expected from the overloading of alveolar clearance predicted from rodent studies. The best-fitting and most parsimonious model includes processes for first-order alveolar-macrophage-mediated clearance and transfer of particles to the lung interstitium. These results are consistent with the particle retention patterns observed previously in the lungs of primates. The findings indicate that rodent models extrapolated to humans, without adjustment for the kinetic differences in particle clearance and retention, would be inadequate for predicting lung dust burdens in humans. Also, this human lung kinetic model predicts greater retained lung dust burdens from occupational exposure than predicted from current human models based on lower exposure data. This model is useful for risk assessment of particle-induced lung diseases, by estimating equivalent internal
Euler-Lagrange Modeling of Vortex Interaction with a Particle-Laden Turbulent Boundary Layer
NASA Astrophysics Data System (ADS)
Morales, Fernando
Rotorcraft operation in austere environments can result in difficult operating conditions, particularly in the vicinity of sandy areas. The uplift of sediment by rotorcraft downwash, a phenomenon known as brownout, hinders pilot visual cues and may result in a potentially dangerous situation. Brownout is a complex multiphase flow problem that is not unique and depends on both the characteristics of the rotorcraft and the sediment. The lack of fundamental understanding constrains models and limits development of technologies that could mitigate the adverse effects of brownout. This provides the over-arching motivation of the current work focusing on models of particle-laden sediment beds. The particular focus of the current investigations is numerical modeling of near-surface fluid-particle interactions in turbulent boundary layers with and without coherent vortices superimposed on the background flow, that model rotorcraft downwash. The simulations are performed with two groups of particles having different densities both of which display strong vortex-particle interaction close to the source location. The simulations include cases with inter-particle collisions and gravitational settling. Particle effects on the fluid are ignored. The numerical simulations are performed using an Euler- Lagrange method in which a fractional-step approach is used for the fluid and with the particulate phase advanced using Discrete Particle Simulation. The objectives are to gain insight into the fluid-particle dynamics that influence transport near the bed by analyzing the competing effects of the vortices, inter-particle collisions, and gravity. Following the introduction of coherent vortices into the domain, the structures convect downstream, dissipate, and then recover to an equilibrium state with the boundary layer. The particle phase displays an analogous return to an equilibrium state as the vortices dissipate and the boundary layer recovers, though this recovery is slower than
Ciesielski, Peter N.; Crowley, Michael F.; Nimlos, Mark R.; Sanders, Aric W.; Wiggins, Gavin M.; Robichaud, David; Donohoe, Bryon S.; Foust, Thomas D.
2014-12-09
Biomass exhibits a complex microstructure of directional pores that impact how heat and mass are transferred within biomass particles during conversion processes. However, models of biomass particles used in simulations of conversion processes typically employ oversimplified geometries such as spheres and cylinders and neglect intraparticle microstructure. In this study, we develop 3D models of biomass particles with size, morphology, and microstructure based on parameters obtained from quantitative image analysis. We obtain measurements of particle size and morphology by analyzing large ensembles of particles that result from typical size reduction methods, and we delineate several representative size classes. Microstructural parameters, including cell wall thickness and cell lumen dimensions, are measured directly from micrographs of sectioned biomass. A general constructive solid geometry algorithm is presented that produces models of biomass particles based on these measurements. Next, we employ the parameters obtained from image analysis to construct models of three different particle size classes from two different feedstocks representing a hardwood poplar species (Populus tremuloides, quaking aspen) and a softwood pine (Pinus taeda, loblolly pine). Finally, we demonstrate the utility of the models and the effects explicit microstructure by performing finite-element simulations of intraparticle heat and mass transfer, and the results are compared to similar simulations using traditional simplified geometries. In conclusion, we show how the behavior of particle models with more realistic morphology and explicit microstructure departs from that of spherical models in simulations of transport phenomena and that species-dependent differences in microstructure impact simulation results in some cases.
Ciesielski, Peter N.; Crowley, Michael F.; Nimlos, Mark R.; ...
2014-12-09
Biomass exhibits a complex microstructure of directional pores that impact how heat and mass are transferred within biomass particles during conversion processes. However, models of biomass particles used in simulations of conversion processes typically employ oversimplified geometries such as spheres and cylinders and neglect intraparticle microstructure. In this study, we develop 3D models of biomass particles with size, morphology, and microstructure based on parameters obtained from quantitative image analysis. We obtain measurements of particle size and morphology by analyzing large ensembles of particles that result from typical size reduction methods, and we delineate several representative size classes. Microstructural parameters, includingmore » cell wall thickness and cell lumen dimensions, are measured directly from micrographs of sectioned biomass. A general constructive solid geometry algorithm is presented that produces models of biomass particles based on these measurements. Next, we employ the parameters obtained from image analysis to construct models of three different particle size classes from two different feedstocks representing a hardwood poplar species (Populus tremuloides, quaking aspen) and a softwood pine (Pinus taeda, loblolly pine). Finally, we demonstrate the utility of the models and the effects explicit microstructure by performing finite-element simulations of intraparticle heat and mass transfer, and the results are compared to similar simulations using traditional simplified geometries. In conclusion, we show how the behavior of particle models with more realistic morphology and explicit microstructure departs from that of spherical models in simulations of transport phenomena and that species-dependent differences in microstructure impact simulation results in some cases.« less
Modeling Single Particle Transport in Stochastic Magnetic Fields
NASA Astrophysics Data System (ADS)
Hudson, Ben; Fiksel, Gennady; Prager, Stewart
2001-10-01
Single particle transport in a stochastic magnetic field is simulated via code ION and RIO. Developed in collaboration with a group in Novosibirsk, Russia, they simulate both single ion and multiple ion trajectories in a stochastic magnetic field. A sharp decrease in the relative diffusion of ions to magnetic field lines is seen in two gyro-radii regimes. One is explainable from the unbroken flux surfaces near the edge of the plasma. The other is thought to be due to a "gyro-averaging" effect that occurs when the gyro-radius exceeds the radial correlation length of the field lines. The simulations indicate a decrease in expected transport, most strongly as a function of gyro-radius, which will be tested experimentally with the MST neutral beam injector.
Yu, C P; Xu, G B
1987-01-01
Mathematical and computer models of the respiratory tracts of human beings and of laboratory animals (rats, hamsters, guinea pigs) were used to estimate the deposition patterns of inhaled diesel exhaust particles from automobile emissions. The accuracy of these models was tested by comparing the calculated depositions in laboratory animals with actual laboratory data. Our goal was to be able to predict the relation between exposure to diesel exhaust particles and the deposition of these particles in the lungs of humans of various ages. Diesel exhaust particles are aggregates with a mass median aerodynamic diameter of approximately 0.2 micron. Their actual size depends on the conditions under which they are generated. Using an appropriate particle model, we derived mathematical expressions that describe the effects of diffusion, sedimentation, impaction, and interception on the deposition of these particles. Because of their small size, we found that most diesel exhaust particles deposited through diffusion, and that the role of the other mechanisms was minor. Anatomical models of the human lung from birth to adulthood, as well as models of the lungs of laboratory species were formulated mathematically using available morphometric data. We used these lung models, together with the corresponding ventilation conditions of each species, to calculate deposition of diesel exhaust particles in the lungs. Under normal breathing conditions, we calculated that 7 to 13 percent (depending on particle size) of inhaled diesel exhaust particles deposit in the alveolar region of the adult human lung. Although the breathing mode (nose or mouth breathing) did not appear to affect alveolar deposition, increasing the minute ventilation (the number of breaths per minute multiplied by the tidal volume) increased alveolar deposition significantly. The calculated deposition patterns for diesel exhaust particles in younger humans (under age 25) were similar. However, with the exception of
Modeling partially coupled objects with smooth particle hydrodynamics
Wingate, C.A.
1996-10-01
A very simple phenomenological model is presented to model objects that are partially coupled (i.e. welded or bonded) where usually the coupled interface is weaker than the bulk material. The model works by letting objects fully interact in compression and having the objects only partially interact in tension. A disconnect factor is provided to adjust the tensile interaction to simulate coupling strengths. Three cases of an example impact calculation are shown-no coupling, full coupling and partial coupling.
Modelling of Coalescence of PMMA Particles/Farz Factor
NASA Astrophysics Data System (ADS)
Farzaneh, S.; Tcharkhtchi, A.
2011-05-01
In this study we are interested by sintering phenomenon during rotational molding of PMMA. It is well known that sintering begins by coalescence of grains and follows by powder densification. First we have followed the coalescence of two grains; then the coalescence of several grains is studied in order to see the effect of other grains on this phenomenon. In the basis of the Bellehumeur's model, a new model has been proposed to consider this effect. This model was validated by the experiments.
Investigating motion and stability of particles in flows using numerical models
NASA Astrophysics Data System (ADS)
Khurana, Nidhi
The phenomenon of transport of particles in a fluid is ubiquitous in nature and a detailed understanding of its mechanism continues to remain a fundamental question for physicists. In this thesis, we use numerical methods to study the dynamics and stability of particles advected in flows. First, we investigate the dynamics of a single, motile particle advected in a two-dimensional chaotic flow. The particle can be either spherical or ellipsoidal. Particle activity is modeled as a constant intrinsic swimming velocity and stochastic fluctuations in both the translational and rotational motions are also taken into account. Our results indicate that interaction of swimming with flow structures causes a reduction in long-term transport at low speeds. Swimmers can get trapped at the transport barriers of the flow. We show that elongated swimmers respond more strongly to the dynamical structures of the flow field. At low speeds, their macroscopic transport is reduced even further than in the case of spherical swimmers. However, at high speeds these elongated swimmers tend to get attracted to the stable manifolds of hyperbolic fixed points, leading to increased transport. We then investigate the collective dynamics of a system of particles. The particles may interact both with each other and with the background flow. We focus on two different cases. In the fist case, we examine the stability of aggregation models in a turbulent-like flow. We use a simple aggregation model in which a point-like particle moves with a constant intrinsic speed while its velocity vector is reoriented according to the average direction of motion of its neighbors. We generate a strongly fluctuating, spatially correlated background flow using Kinematic Simulation, and show that flocks are highly sensitive to this background flow and break into smaller clusters. Our results indicate that such environmental perturbations must be taken into account for models which aim to capture the collective
Human lung morphology models for particle deposition studies.
Martonen, T B; Schroeter, J D; Hwang, D; Fleming, J S; Conway, J H
2000-01-01
Knowledge of human lung morphology is of paramount importance in calculating deposition patterns of inhaled particulate matter (PM) to be used in the definition of ambient air quality standards. Due to the inherently complex nature of the branching structure of the airway network, practical assumptions must be made for modeling purposes. The most commonly used mathematical models reported in the literature that describe PM deposition use Weibel's model A morphology. This assumes the airways of the lung to be a symmetric, dichotomously branching system. However, computer simulations of this model, when compared to scintigraphy images, have shown it to lack physiological realism (Martonen et al., 1994a). Therefore, a more physiologically realistic model of the lung is needed to improve the current PM dosimetry models. Herein, a morphological model is presented that is based on laboratory data from planar gamma camera and single-photon emission computed tomography (SPECT) images. Key elements of this model include: The parenchymal wall of the lung is defined in mathematical terms, the whole lung is divided into distinct left and right components, a set of branching angles is derived from experimental measurements, and the branching network is confined within the discrete left and right components (i.e., there is no overlapping of airways). In future work, this new, more physiologically realistic morphological model can be used to calculate PM deposition patterns for risk assessment protocols.
A direct comparison of fully resolved and point-particle models in particle-laden turbulent flow
NASA Astrophysics Data System (ADS)
Horwitz, Jeremy; Mehrabadi, Mohammad; Subramaniam, Shankar; Mani, Ali
2016-11-01
Point-particle methods have become a popular methodology to simulate viscous fluids laden with dispersed solid elements. Such methods may be contrasted with particle-resolved methods, whereby the boundary conditions between particles and fluid are treated exactly, while point-particle methods do not capture the boundary conditions exactly and couple the continuous and dispersed phase via point-forces. This allows point-particle methods to simulate particle-turbulence interaction at considerably lower resolution and computational cost than particle-resolved methods. However, lack of validation of point-particle methods begs the question of the predictive power of point-particle methods. In other words, can point-particle methods recover particle and fluid statistics compared with particle-resolved simulation of dynamically equivalent non-dimensional problems? We address this question in this work by examining decaying homogeneous isotropic turbulence laden with particles. For the same nominal conditions, we compare statistics predicted by a particle resolved method to those predicted by a point-particle method. We also examine the effect of the undisturbed velocity in the point-particle drag law by studying the same problem with a correction scheme. Supported by DOE and NSF.
Model solution for volume reflection of relativistic particles in a bent crystal
Bondarenco, M. V.
2010-10-15
For volume reflection process in a bent crystal, exact analytic expressions for positively- and negatively-charged particle trajectories are obtained within a model of parabolic continuous potential in each interplanar interval, with the neglect of incoherent multiple scattering. In the limit of the crystal bending radius greatly exceeding the critical value, asymptotic formulas are obtained for the particle mean deflection angle in units of Lindhard's critical angle, and for the final beam profile. Volume reflection of negatively charged particles is shown to contain effects of rainbow scattering and orbiting, whereas with positively charged particles none of these effects arise within the given model. The model predictions are compared with experimental results and numerical simulations. Estimates of the volume reflection mean angle and the final beam profile robustness under multiple scattering are performed.
Calcination of kaolinite clay particles for cement production: A modeling study
Teklay, Abraham; Yin, Chungen; Rosendahl, Lasse; Bøjer, Martin
2014-07-01
Kaolinite rich clay particles calcined under certain conditions can attain favorable pozzolanic properties and can be used to substitute part of the CO{sub 2} intensive clinker in cement production. To better guide calcination of a clay material, a transient one-dimensional single particle model is developed, which fully addresses the conversion process of raw kaolinite particles suspended in hot gas. Particles are discretized into a number of spherical cells, on each of which mass, momentum, energy and species conservation equations are numerically solved by using the finite volume method. Reactions considered in the model include dehydration, dehydroxylation and various phase transformations. Thermogravimetric analysis is used to determine reaction kinetic data required as inputs in the model and to validate the model. Finally, model-based sensitivity analysis is performed, from which quantitative guidelines for calcination condition optimization are derived. - Highlights: • A general 1D mathematical model for single clay particle calcination is developed. • The model fully addresses momentum, heat and mass transfer and all the reactions. • Experiments are performed to determine kinetic data of the key reactions. • The model is verified by different means, including experimental results. • Sensitivity study is done to address key assumptions and derive useful guidelines.
Modeling large RNAs and ribonucleoprotein particles using molecular mechanics techniques.
Malhotra, A; Tan, R K; Harvey, S C
1994-01-01
There is a growing body of low-resolution structural data that can be utilized to devise structural models for large RNAs and ribonucleoproteins. These models are routinely built manually. We introduce an automated refinement protocol to utilize such data for building low-resolution three-dimensional models using the tools of molecular mechanics. In addition to specifying the positions of each nucleotide, the protocol provides quantitative estimates of the uncertainties in those positions, i.e., the resolution of the model. In typical applications, the resolution of the models is about 10-20 A. Our method uses reduced representations and allows us to refine three-dimensional structures of systems as big as the 16S and 23S ribosomal RNAs, which are about one to two orders of magnitude larger than nucleic acids that can be examined by traditional all-atom modeling methods. Nonatomic resolution structural data--secondary structure, chemical cross-links, chemical and enzymatic footprinting patterns, protein positions, solvent accessibility, and so on--are combined with known motifs in RNA structure to predict low-resolution models of large RNAs. These structural constraints are imposed on the RNA chain using molecular mechanics-type potential functions with parameters based on the quality of experimental data. Surface potential functions are used to incorporate shape and positional data from electron microscopy image reconstruction experiments into our models. The structures are optimized using techniques of energy refinement to get RNA folding patterns. In addition to providing a consensus model, the method finds the range of models consistent with the data, which allows quantitative evaluation of the resolution of the model. The method also identifies conflicts in the experimental data. Although our protocol is aimed at much larger RNAs, we illustrate these techniques using the tRNA structure as an example and test-bed. Images FIGURE 7 FIGURE 8 PMID:7521223
Chen, Wei-Bo; Liu, Wen-Cheng; Kimura, Nobuaki; Hsu, Ming-Hsi
2010-09-01
A three-dimensional hydrodynamic model was created to study the Danshuei River estuarine system and adjacent coastal ocean in Taiwan. The model was verified using measurements of the time-series water surface elevation, tidal current, and salinity from 1999. We conclude that our model is consistent with these observations. Our particle-tracking model was also used to explore the transport of particles released from the Hsin-Hai Bridge, an area that is heavily polluted. The results suggest that it takes a much longer time for the estuary to be flushed out under low freshwater discharge conditions than with high freshwater discharge. We conclude that the northeast and southwest winds minimally impact particle dispersion in the estuary. The particles fail to settle to the bottom in the absence of density-induced circulation. Our model was also used to simulate the ocean outfall at the Bali. Our experimental results suggest that the tidal current dominates the particle trajectories and influences the transport properties in the absence of a wind stress condition. The particles tend to move northeast or southwest along the coast when northeast or southwest winds prevail. Our data suggest that wind-driven currents and tidal currents play important roles in water movement as linked with ocean outfall in the context of the Danshuei River.
A kinetic model for heterogeneous condensation of vapor on an insoluble spherical particle.
Luo, Xisheng; Fan, Yu; Qin, Fenghua; Gui, Huaqiao; Liu, Jianguo
2014-01-14
A kinetic model is developed to describe the heterogeneous condensation of vapor on an insoluble spherical particle. This new model considers two mechanisms of cluster growth: direct addition of water molecules from the vapor and surface diffusion of adsorbed water molecules on the particle. The effect of line tension is also included in the model. For the first time, the exact expression of evaporation coefficient is derived for heterogeneous condensation of vapor on an insoluble spherical particle by using the detailed balance. The obtained expression of evaporation coefficient is proved to be also correct in the homogeneous condensation and the heterogeneous condensation on a planar solid surface. The contributions of the two mechanisms to heterogeneous condensation including the effect of line tension are evaluated and analysed. It is found that the cluster growth via surface diffusion of adsorbed water molecules on the particle is more important than the direct addition from the vapor. As an example of our model applications, the growth rate of the cap shaped droplet on the insoluble spherical particle is derived. Our evaluation shows that the growth rate of droplet in heterogeneous condensation is larger than that in homogeneous condensation. These results indicate that an explicit kinetic model is benefit to the study of heterogeneous condensation on an insoluble spherical particle.
NASA Technical Reports Server (NTRS)
Parker, L. Neergaard; Zank, G. P.
2013-01-01
Successful forecasting of energetic particle events in space weather models require algorithms for correctly predicting the spectrum of ions accelerated from a background population of charged particles. We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box. We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (E(sub max)) appropriate for quasi-parallel and quasi-perpendicular shocks and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).
Flow field analysis in a compliant acinus replica model using particle image velocimetry (PIV).
Berg, Emily J; Weisman, Jessica L; Oldham, Michael J; Robinson, Risa J
2010-04-19
Inhaled particles reaching the alveolar walls have the potential to cross the blood-gas barrier and enter the blood stream. Experimental evidence of pulmonary dosimetry, however, cannot be explained by current whole lung dosimetry models. Numerical and experimental studies shed some light on the mechanisms of particle transport, but realistic geometries have not been investigated. In this study, a three dimensional expanding model including two generations of respiratory bronchioles and five terminal alveolar sacs was created from a replica human lung cast. Flow visualization techniques were employed to quantify the fluid flow while utilizing streamlines to evaluate recirculation. Pathlines were plotted to track the fluid motion and estimate penetration depth of inhaled air. This study provides evidence that the two generations immediately proximal to the terminal alveolar sacs do not have recirculating eddies, even for intense breathing. Results of Peclet number calculations indicate that substantial convective motion is present in vivo for the case of deep breathing, which significantly increases particle penetration into the alveoli. However, particle diffusion remains the dominant mechanism of particle transport over convection, even for intense breathing because inhaled particles do not reach the alveolar wall in a single breath by convection alone. Examination of the velocity fields revealed significant uneven ventilation of the alveoli during a single breath, likely due to variations in size and location. This flow field data, obtained from replica model geometry with realistic breathing conditions, provides information to better understand fluid and particle behavior in the acinus region of the lung.
Comparison of Solar Energetic Particle Flux Mapping Models
NASA Astrophysics Data System (ADS)
Young, S. L.; Roth, C. M.; Brodowski, C. M.; Kress, B. T.; Johnston, W. R.; Huston, S. L.; McCollough, J. P., II; Wilson, G.; Selesnick, R.
2015-12-01
Previous work using the Tsyganenko-Sitnov 2005 (TS05) magnetic field model combined withthe Dartmouth-CISM (DC) cutoff code to map GOES-7 SEM observations to CRRES locationshas demonstrated that, for reasonably static magnetospheric conditions, solar energetic particleobservations at GOES-7 can be mapped relatively accurately to locations inside of geosynchronouswhere L > 4.5. Also a good correlation with observations continues to approximately L = 3.5. Aprevious comparison of the TS05-DC combination with two other cutoff models found it to be themost accurate of the set when compared to SAMPEX observations in a LEO orbit. However, theTS05-DC combination requires significant computational resources compared to other models soit is important to quantify the difference in accuracy for operational purposes. In this study wecharacterize the Smart and Shea (SS) cutoff code and the Selesnick-Neal-Ogliore (SNO) model andcompare them to the TS05-DC cutoff model.
N-Body Model of High-Energy Collisions with Inter-Particle Cohesion
NASA Astrophysics Data System (ADS)
Walsh, Kevin J.; Michel, P.; Richardson, D. C.; Schwartz, S. R.
2009-09-01
We present a study of high-speed collisions with an N-body particle representation of targets and impactors. The targets are constructed of hard spherical particles where collisions between particles are modeled and energy dissipation during collisions is regulated by a coefficient of restitution. The targets also incorporate a simple model of cohesion based on a spring-like restoring force between adjacent particles. The "springs" are parameterized by the Young's modulus (which determines spring strength) and stress limit (maximum distension before breaking). Once a spring breaks, it remains broken and, in this work, each spring has identical parameters. To explore this model's behavior in high-energy impacts in the strength regime (negligible gravity), the primary simulations presented are designed to calibrate our model against the laboratory experiments of Nakamura and Fujiwara (1991) [Nakamura and Fujiwara, Icarus, 92, 132 (1991)] who characterized the velocity distribution of fragments following a 3.3 km/s collision of a 7 mm diameter nylon sphere into a 6 cm basalt sphere. The target bodies are constructed of 1000, 2000 or 5000 particles with each individual particle having 10 - 107 Pascal bonding with, on average, 10 nearby particles. Values of coefficient of restitution, target particle packing and impactor structure (single particle or rubble pile) are also explored. The simulations are compared to the results of the laboratory experiments in remnant size distribution and morphology. KJW is supported by the Henri Poincaré fellowship at the Observatoire de la Cote d'Azur, Nice, France. PM had the support of the French Programme National de Planetologie. DCR and SRS acknowledge support of the National Aeronautics and Space Administration under Grant No. NNX08AM39G issued through the Office of Space Science and by the National Science Foundation under Grant No. AST0708110. We acknowledge the use of the Mesocentre de Calcul-SIGAMM at the Observatoire de la
NASA Astrophysics Data System (ADS)
Drummond, Jen; Davies-Colley, Rob; Stott, Rebecca; Sukias, James; Nagels, John; Sharp, Alice; Packman, Aaron
2014-05-01
Transport dynamics of microbial cells and organic fine particles are important to stream ecology and biogeochemistry. Cells and particles continuously deposit and resuspend during downstream transport owing to a variety of processes including gravitational settling, interactions with in-stream structures or biofilms at the sediment-water interface, and hyporheic exchange and filtration within underlying sediments. Deposited cells and particles are also resuspended following increases in streamflow. Fine particle retention influences biogeochemical processing of substrates and nutrients (C, N, P), while remobilization of pathogenic microbes during flood events presents a hazard to downstream uses such as water supplies and recreation. We are conducting studies to gain insights into the dynamics of fine particles and microbes in streams, with a campaign of experiments and modeling. The results improve understanding of fine sediment transport, carbon cycling, nutrient spiraling, and microbial hazards in streams. We developed a stochastic model to describe the transport and retention of fine particles and microbes in rivers that accounts for hyporheic exchange and transport through porewaters, reversible filtration within the streambed, and microbial inactivation in the water column and subsurface. This model framework is an advance over previous work in that it incorporates detailed transport and retention processes that are amenable to measurement. Solute, particle, and microbial transport were observed both locally within sediment and at the whole-stream scale. A multi-tracer whole-stream injection experiment compared the transport and retention of a conservative solute, fluorescent fine particles, and the fecal indicator bacterium Escherichia coli. Retention occurred within both the underlying sediment bed and stands of submerged macrophytes. The results demonstrate that the combination of local measurements, whole-stream tracer experiments, and advanced modeling
Asian Dust at Mauna Loa Observatory: Analysis and Modeling of Individual Atmospheric Particles
NASA Astrophysics Data System (ADS)
Conny, J. M.; Willis, R. D.; Ortiz-Montalvo, D. L.
2015-12-01
Springtime Asian dust storms events, typically originating in the Gobi Desert or Taklamakan Desert, produce particles that can be carried aloft eastward for thousands of miles. As a result, the radiative properties of these particles can significantly affect global climate. Here, we determine the optical properties of particles identified as Asian dust at Mauna Loa Observatory, Hawaii, (MLO) based on the composition and actual shapes of individual particles. Samples of particulate material <10 μm in size were collected at MLO, between March 15 and April 26, 2011. Air mass back trajectories and satellite imagery showed that a subset of the aerosol sampled during this period likely originated from the Asian mainland while most of the aerosol probably did not. Samples were first analyzed by automated scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometry, whereby particles were sorted into compositionally-distinct particle types. Two particle types, identified as dolomite and calcite were determined to have originated from Asia. A third type, anhydrite, also aloft in the free troposphere, was not associated with Asian dust. Individual particles were analyzed compositionally and their shapes modeled spatially using focused ion-beam (FIB) SEM and FIB tomography. Particle 3-D representations were then input to the discrete dipole approximation method to determine their optical properties for 589 nm light. Calculations revealed that the single scattering albedo (SSA) for the Asian dust particles (0.79 to 0.94) straddled the critical SSA for cooling vs. warming (0.86), with the lowest SSA (0.79) attributed to a small amount of soot (1.7 % by volume) attached to a dolomite particle. SSA for the free troposphere anhydrite particles (0.90 to 0.93) was well above the critical SSA. For the three particle types, SSA for the actual-shaped particles was higher than equivalently-sized spheres, cubes, or tetrahedra. For the fraction of backscattered light from
NASA Astrophysics Data System (ADS)
Hieber, Simone E.; Koumoutsakos, Petros
2008-11-01
We present a novel Lagrangian particle method for the simulation of linear and nonlinear elastic models of soft tissue. Linear solids are represented by the Lagrangian formulation of the stress-strain relationship that is extended to nonlinear solids by using the Lagrangian evolution of the deformation gradient described in a moving framework. The present method introduces a level set description, along with the particles, to capture the body deformations and to enforce the boundary conditions. Furthermore, the accuracy of the method in cases of large deformations is ensured by implementing a particle remeshing procedure. The method is validated in several benchmark problems, in two and three dimensions and the results compare well with the results of respective finite elements simulations. In simulations of large solid deformation under plane strain compression, the finite element solver exhibits spurious structures that are not present in the Lagrangian particle simulations. The particle simulations are compared with experimental results in an aspiration test of liver tissue.
NASA Astrophysics Data System (ADS)
Fishler, Rami; Mulligan, Molly; Dubowski, Yael; Sznitman, Josue; Sznitman Lab-department of Biomedical Engineering Team; Dubowski Lab-faculty of Civil; Environmental Engineering Team
2014-11-01
In order to experimentally investigate particle deposition mechanisms in the deep alveolated regions of the lungs, we have developed a novel microfluidic device mimicking breathing acinar flow conditions directly at the physiological scale. The model features an anatomically-inspired acinar geometry with five dichotomously branching airway generations lined with periodically expanding and contracting alveoli. Deposition patterns of airborne polystyrene microspheres (spanning 0.1 μm to 2 μm in diameter) inside the airway tree network compare well with CFD simulations and reveal the roles of gravity and Brownian motion on particle deposition sites. Furthermore, measured trajectories of incense particles (0.1-1 μm) inside the breathing device show a critical role for Brownian diffusion in determining the fate of inhaled sub-micron particles by enabling particles to cross from the acinar ducts into alveolar cavities, especially during the short time lag between inhalation and exhalation phases.
Mathematical modeling of quartz particle melting process in plasma-chemical reactor
Volokitin, Oleg Volokitin, Gennady Skripnikova, Nelli Shekhovtsov, Valentin; Vlasov, Viktor
2016-01-15
Among silica-based materials vitreous silica has a special place. The paper presents the melting process of a quartz particle under conditions of low-temperature plasma. A mathematical model is designed for stages of melting in the experimental plasma-chemical reactor. As calculation data show, quartz particles having the radius of 0.21≤ r{sub p} ≤0.64 mm completely melt at W = 0.65 l/s particle feed rate depending on the Nusselt number, while 0.14≤ r{sub p} ≤0.44 mm particles melt at W = 1.4 l/s. Calculation data showed that 2 mm and 0.4 mm quartz particles completely melted during and 0.1 s respectively. Thus, phase transformations occurred in silicon dioxide play the important part in its heating up to the melting temperature.
NASA Astrophysics Data System (ADS)
Derevich, I. V.
2015-03-01
Based on the spectral expansion of Euler correlation of the carrier medium the authors have obtained a closed system of functional equations for the Lagrange spectra of heavy inertial particles and the velocity fluctuations of the carrier medium on the particle trajectory. To split the fourth moments the approximation of quasinormality and velocity fluctuations of particles is performed by a random Gaussian process. The approximate self-consistent method is proposed for solving the resulting system of functional equations. The spectrum of Euler correlations of medium velocity fluctuations is modeled by Saffman and Karman distributions. The influence of the spatial microstructure of turbulence, the particles inertia and velocity slip on the intensity of chaotic motion and the coefficient of turbulent diffusion of dispersed particles has been studied.
Low-Order Modeling of Internal Heat Transfer in Biomass Particle Pyrolysis
Wiggins, Gavin M.; Ciesielski, Peter N.; Daw, C. Stuart
2016-06-16
We present a computationally efficient, one-dimensional simulation methodology for biomass particle heating under conditions typical of fast pyrolysis. Our methodology is based on identifying the rate limiting geometric and structural factors for conductive heat transport in biomass particle models with realistic morphology to develop low-order approximations that behave appropriately. Comparisons of transient temperature trends predicted by our one-dimensional method with three-dimensional simulations of woody biomass particles reveal good agreement, if the appropriate equivalent spherical diameter and bulk thermal properties are used. We conclude that, for particle sizes and heating regimes typical of fast pyrolysis, it is possible to simulate biomass particle heating with reasonable accuracy and minimal computational overhead, even when variable size, aspherical shape, anisotropic conductivity, and complex, species-specific internal pore geometry are incorporated.
Low-order modeling of internal heat transfer in biomass particle pyrolysis
Wiggins, Gavin M.; Daw, C. Stuart; Ciesielski, Peter N.
2016-05-11
We present a computationally efficient, one-dimensional simulation methodology for biomass particle heating under conditions typical of fast pyrolysis. Our methodology is based on identifying the rate limiting geometric and structural factors for conductive heat transport in biomass particle models with realistic morphology to develop low-order approximations that behave appropriately. Comparisons of transient temperature trends predicted by our one-dimensional method with three-dimensional simulations of woody biomass particles reveal good agreement, if the appropriate equivalent spherical diameter and bulk thermal properties are used. Here, we conclude that, for particle sizes and heating regimes typical of fast pyrolysis, it is possible to simulate biomass particle heating with reasonable accuracy and minimal computational overhead, even when variable size, aspherical shape, anisotropic conductivity, and complex, species-specific internal pore geometry are incorporated.
Low-order modeling of internal heat transfer in biomass particle pyrolysis
Wiggins, Gavin M.; Daw, C. Stuart; Ciesielski, Peter N.
2016-05-11
We present a computationally efficient, one-dimensional simulation methodology for biomass particle heating under conditions typical of fast pyrolysis. Our methodology is based on identifying the rate limiting geometric and structural factors for conductive heat transport in biomass particle models with realistic morphology to develop low-order approximations that behave appropriately. Comparisons of transient temperature trends predicted by our one-dimensional method with three-dimensional simulations of woody biomass particles reveal good agreement, if the appropriate equivalent spherical diameter and bulk thermal properties are used. Here, we conclude that, for particle sizes and heating regimes typical of fast pyrolysis, it is possible to simulatemore » biomass particle heating with reasonable accuracy and minimal computational overhead, even when variable size, aspherical shape, anisotropic conductivity, and complex, species-specific internal pore geometry are incorporated.« less
Confronting AeroCom models with particle size distribution data from surface in situ stations
NASA Astrophysics Data System (ADS)
Platt, Stephen; Fiebig, Markus; Mann, Graham; Schulz, Michael
2016-04-01
The size distribution is the most important property for describing any interaction of an aerosol particle population with its surroundings. In first order, it determines both, the aerosol optical properties quantifying the direct aerosol climate effect, and the fraction of aerosol particles acting as cloud condensation nuclei quantifying the indirect aerosol climate effect. Aerosol schemes of modern climate models resolve the aerosol particle size distribution (APSD) explicitly. In improving the skill of climate models, it is therefore highly useful to confront these models with precision APSD data observed at surface stations. Corresponding previous work focussed on comparing size integrated, seasonal particle concentrations at selected sites with ensemble model averages to assess overall model skill. Building on this work, this project intends to refine the approach by comparing median particle size and integral concentration of fitted modal size distributions. It will also look at skill differences between models in order to find reasons for matches and discrepancies. The presentation will outline the project, and will elaborate on input requested from modelling groups to participate in the exercise.
Hydrophobic solvation of Gay-Berne particles in modified water models
NASA Astrophysics Data System (ADS)
Head-Gordon, Teresa; Lynden-Bell, Ruth M.
2008-03-01
The solvation of large hydrophobic solutes, modeled as repulsive and attractive Gay-Berne oblate ellipsoids, is characterized in several modified water liquids using the SPC/E model as the reference water fluid. We find that small amounts of attraction between the Gay-Berne particle and any model fluid result in wetting of the hydrophobic surface. However, significant differences are found among the modified and SPC/E water models and the critical distances in which they dewet the hydrophobic surfaces of pairs of repulsive Gay-Berne particles. We find that the dewetting trends for repulsive Gay-Berne particles in the various model liquids correlate directly with their surface tensions, the widths of the interfaces they form, and the openness of their network structure. The largest critical separations are found in liquids with the smallest surface tensions and the broadest interfaces as measured by the Egelstaff-Widom length.
Hydrophobic solvation of Gay-Berne particles in modified water models.
Head-Gordon, Teresa; Lynden-Bell, Ruth M
2008-03-14
The solvation of large hydrophobic solutes, modeled as repulsive and attractive Gay-Berne oblate ellipsoids, is characterized in several modified water liquids using the SPC/E model as the reference water fluid. We find that small amounts of attraction between the Gay-Berne particle and any model fluid result in wetting of the hydrophobic surface. However, significant differences are found among the modified and SPC/E water models and the critical distances in which they dewet the hydrophobic surfaces of pairs of repulsive Gay-Berne particles. We find that the dewetting trends for repulsive Gay-Berne particles in the various model liquids correlate directly with their surface tensions, the widths of the interfaces they form, and the openness of their network structure. The largest critical separations are found in liquids with the smallest surface tensions and the broadest interfaces as measured by the Egelstaff-Widom length.
Modeling of particles orientation in magnetic field in drying magnetic coatings
NASA Astrophysics Data System (ADS)
Potanin, Andrei A.; Reynolds, George; J. Hirko, Ronald
2000-03-01
Filament coating is studied as a model of magnetic tape manufacturing. Freshly coated filament is driven through a solenoid magnet which orients particles. After drying the coated filament, its squareness is measured as a function of the magnet position, field and the filament speed during coating. Production and model mixes are tested, which differ in dispersion quality and drying rate. A mean-field model is used to describe orientation of particles in the coating. The model fits experiments with two parameters: particles mobility and a mean-field interaction coefficient. Well dispersed kneaded mix has higher mobility and weaker interactions than non-kneaded mixes. The model well agrees with the data for squareness decay with magnet separation from the mix deposition point, thereby providing a theoretical tool for finding proper magnet position on the production coating lines.
Modelling of particle-laden flow inside nanomaterials
NASA Astrophysics Data System (ADS)
Chan, Yue; Wylie, Jonathan J.; Xia, Liang; Ren, Yong; Chen, Yung-Tsang
2016-08-01
In this paper, we demonstrate the usage of the Nernst-Planck equation in conjunction with mean-field theory to investigate particle-laden flow inside nanomaterials. Most theoretical studies in molecular encapsulation at the nanoscale do not take into account any macroscopic flow fields that are crucial in squeezing molecules into nanostructures. Here, a multi-scale idea is used to address this issue. The macroscopic transport of gas is described by the Nernst-Planck equation, whereas molecular interactions between gases and between the gas and the host material are described using a combination of molecular dynamics simulation and mean-field theory. In particular, we investigate flow-driven hydrogen storage inside doubly layered graphene sheets and graphene-oxide frameworks (GOFs). At room temperature and with slow velocity fields, we find that a single molecular layer is formed almost instantaneously on the inner surface of the graphene sheets, while molecular ligands between GOFs induce multi-layers. For higher velocities, multi-layers are also formed between graphene. For even larger velocities, the cavity of graphene is filled entirely with hydrogen, whereas for GOFs there exist two voids inside each periodic unit. The flow-driven hydrogen storage inside GOFs with various ligand densities is also investigated.
Particle-fluid two-phase flow modeling
Mortensen, G.A.; Trapp, J.A. |
1992-09-01
This paper describes a numerical scheme and computer program, DISCON, for the calculation of two-phase flows that does not require the use of flow regime maps. This model is intermediate between-thermal instantaneous and the averaged two-fluid model. It solves the Eulerian continuity, momentum, and energy equations for each liquid control volume, and the Lagrangian mass, momentum, energy, and position equations for each bubble. The bubbles are modeled individually using a large representative number of bubbles thus avoiding the numerical diffusion associated with Eulerian models. DISCON has been used to calculate the bubbling of air through a column of water and the subcooled boiling of water in a flow channel. The results of these calculations are presented.
Particle-fluid two-phase flow modeling
Mortensen, G.A. ); Trapp, J.A. Idaho National Engineering Lab., Idaho Falls, ID )
1992-01-01
This paper describes a numerical scheme and computer program, DISCON, for the calculation of two-phase flows that does not require the use of flow regime maps. This model is intermediate between-thermal instantaneous and the averaged two-fluid model. It solves the Eulerian continuity, momentum, and energy equations for each liquid control volume, and the Lagrangian mass, momentum, energy, and position equations for each bubble. The bubbles are modeled individually using a large representative number of bubbles thus avoiding the numerical diffusion associated with Eulerian models. DISCON has been used to calculate the bubbling of air through a column of water and the subcooled boiling of water in a flow channel. The results of these calculations are presented.
NASA Astrophysics Data System (ADS)
Engler, Christa; Heinold, Bernd; Tegen, Ina
2014-05-01
The atmospheric Chemistry Transport Model system COSMO-MUSCAT was used to determine the particle mass concentrations of dust and anthropogenically emitted aerosol particles over Europe. The model system consists of the online coupled code of the operational forecast model COSMO (Schättler et al., 2009) and the chemistry-transport model MUSCAT (Wolke et al., 2012). For a four-months-period in 2008 (May to August), the dust and anthropogenic aerosol mass concentrations for six different species (sulfate, nitrate, ammonium, organic and elemental carbon and sea salt) were simulated. For the dust, five different size bins were used and a representative particle size and density were assumed for each size bin. Afterwards, the number concentration was calculated. For the anthropogenic aerosol, lognormal modes were assumed with a representative mode diameter, sigma and density for each component. These parameters were then used to convert the simulated mass concentrations to number concentrations and number size distributions for each component. Those individual size distributions can then be summed up to a total particle number size distribution. A first comparison with measurement data from the Cape Verde Islands showed a good agreement between observed and simulated dust particle size distributions. Both, the shape of the number size distributions and the order of magnitude of the particle number concentrations compared well. Only for the smallest size bin, observed numbers were occasionally higher, which can be explained by anthropogenic or biomass burning aerosol, which is included in the measurements of the total particle size distributions but was not included in the model runs. Comparisons of measured and simulated size distributions of the anthropogenic aerosol will be available soon. In case the data are available, we will also present an estimation of the particle number concentrations with the aerosol microphysical aerosol module ext-M7 for the duration of a
Fluid particle diffusion in a semidilute suspension of model micro-organisms.
Ishikawa, Takuji; Locsei, J T; Pedley, T J
2010-08-01
We calculate non-Brownian fluid particle diffusion in a semidilute suspension of swimming micro-organisms. Each micro-organism is modeled as a spherical squirmer, and their motions in an infinite suspension otherwise at rest are computed by the Stokesian-dynamics method. In calculating the fluid particle motions, we propose a numerical method based on a combination of the boundary element technique and Stokesian dynamics. We present details of the numerical method and examine its accuracy. The limitation of semidiluteness is required to ensure accuracy of the fluid particle velocity calculation. In the case of a suspension of non-bottom-heavy squirmers the spreading of fluid particles becomes diffusive in a shorter time than that of the squirmers, and the diffusivity of fluid particles is smaller than that of squirmers. It is confirmed that the probability density distribution of fluid particles also shows diffusive properties. The effect of tracer particle size is investigated by inserting some inert spheres of the same radius as the squirmers, instead of fluid particles, into the suspension. The diffusivity for inert spheres is not less than one tenth of that for fluid particles, even though the particle size is totally different. Scaling analysis indicates that the diffusivity of fluid particles and inert spheres becomes proportional to the volume fraction of squirmers in the semidilute regime provided that there is no more than a small recirculation region around a squirmer, which is confirmed numerically. In the case of a suspension of bottom-heavy squirmers, horizontal diffusivity decreases considerably even with small values of the bottom heaviness, which indicates the importance of bottom heaviness in the diffusion phenomena. We believe that these fundamental findings will enhance our understanding of the basic mechanics of a suspension of swimming micro-organisms.
Fluid particle diffusion in a semidilute suspension of model micro-organisms
NASA Astrophysics Data System (ADS)
Ishikawa, Takuji; Locsei, J. T.; Pedley, T. J.
2010-08-01
We calculate non-Brownian fluid particle diffusion in a semidilute suspension of swimming micro-organisms. Each micro-organism is modeled as a spherical squirmer, and their motions in an infinite suspension otherwise at rest are computed by the Stokesian-dynamics method. In calculating the fluid particle motions, we propose a numerical method based on a combination of the boundary element technique and Stokesian dynamics. We present details of the numerical method and examine its accuracy. The limitation of semidiluteness is required to ensure accuracy of the fluid particle velocity calculation. In the case of a suspension of non-bottom-heavy squirmers the spreading of fluid particles becomes diffusive in a shorter time than that of the squirmers, and the diffusivity of fluid particles is smaller than that of squirmers. It is confirmed that the probability density distribution of fluid particles also shows diffusive properties. The effect of tracer particle size is investigated by inserting some inert spheres of the same radius as the squirmers, instead of fluid particles, into the suspension. The diffusivity for inert spheres is not less than one tenth of that for fluid particles, even though the particle size is totally different. Scaling analysis indicates that the diffusivity of fluid particles and inert spheres becomes proportional to the volume fraction of squirmers in the semidilute regime provided that there is no more than a small recirculation region around a squirmer, which is confirmed numerically. In the case of a suspension of bottom-heavy squirmers, horizontal diffusivity decreases considerably even with small values of the bottom heaviness, which indicates the importance of bottom heaviness in the diffusion phenomena. We believe that these fundamental findings will enhance our understanding of the basic mechanics of a suspension of swimming micro-organisms.
Development of an ash particle deposition model considering build-up and removal mechanisms
Kjell Strandstroem; Christian Muellera; Mikko Hupa
2007-12-15
Slagging and fouling on heat exchanger surfaces in power boilers fired with fossil fuels and fuel mixtures has a significant influence on boiler efficiency and availability. Mathematical modelling has long been considered a suitable method to assist boiler operators to determine optimized operating conditions for an existing furnace. The ultimate goal in ash deposition prediction is hereby the determination of the total amount of material deposited and hence the determination of the total reduction in efficiency. Depending on the fuels fired the total deposited mass is a combination of ash particle deposition and ash particle erosion due to non-sticky particles. The novel ash particle deposition model presented in this work considers deposition of sticky ash particles, cleansing of deposit by non-sticky sand particles and sticking of sand due to contact with sticky ash. The steady-state modelling results for the total amount of ash deposited on the deposition probe of an entrained flow reactor presented in this work agree well with the experimental data. Only at very high fractions of sand added as non-sticky material, a significant influence of the sand on the overall mass deposited was found. Since the model considers sticking of non-sticking sand due to contact with sticky ash, the fraction of sand deposited on the probe was especially studied. Using a correction factor to consider the influence of operating time on the steady-state simulations led to good agreement between simulations and experimental data. 12 refs., 10 figs.
NASA Astrophysics Data System (ADS)
Albano, Raffaele; Sole, Aurelia; Mirauda, Domenica; Adamowski, Jan
2016-10-01
Large debris, including vehicles parked along floodplains, can cause severe damage and significant loss of life during urban area flash-floods. In this study, the authors validated and applied the Smoothed Particle Hydrodynamics (SPH) model, developed in Amicarelli et al. (2015), which reproduces in 3D the dynamics of rigid bodies driven by free surface flows, to the design of flood mitigation measures. To validate the model, the authors compared the model's predictions to the results of an experimental setup, involving a dam breach that strikes two fixed obstacles and three transportable floating bodies. Given the accuracy of the results, in terms of water depth over time and the time history of the bodies' movements, the SPH model explored in this study was used to analyse the mitigation efficiency of a proposed structural intervention - the use of small barriers (groynes) to prevent the transport of floating bodies. Different groynes configurations were examined to identify the most appropriate design and layout for urban area flash-flood damage mitigation. The authors found that groynes positioned upstream and downstream of each floating body can be effective as a risk mitigation measure for damage resulting from their movement.
Krick, Julian; Ackerman, Josef Daniel
2015-03-07
The particle capture efficiency, η, of systems that remove suspended particles from ambient flow (e.g. suspension feeding, abiotic pollination) has been studied using static collectors in steady flows. Particle deposition on collectors moving due to fluid flow remains largely unknown, despite its ecological relevance. We used numerical modeling to simulate particle deposition on a 2D circular cylinder subject to flow-induced oscillation in a cross flow. Using parameter values relevant to wind pollination and other natural biological systems, we examined the influence of the direction, amplitude and frequency of the oscillation, the Stokes number (Stk=0.01-5, characterizing particle behavior), as well as the Reynolds number (Re=662 and 3309, characterizing flow regime) in steady and unsteady flow, on η. The numerical model was validated with empirical results for parts of the parameter space. Particle capture occurred via "inertial impaction", "direct interception" and "leeward deposition", as well as via a new mechanism, "collector chasing" for moving collectors. The η of an oscillating cylinder varied significantly relative to a static cylinder, depending on the parameters used, and on the magnitude of a numerical error that caused loss of particles. This variance of η was due to a change in relative momentum between the particle and the moving collector, which depends on Re, Stk and the oscillation parameters. Collector oscillation transverse to oncoming flow direction strongly increased η, whereas collector motion parallel to flow had little effect on capture efficiency. The oscillation also changed leeward capture significantly in some cases. For most conditions, however, leeward deposition was small. Results suggest that collector motion could have significant influence on the particle capture efficiency of natural systems, which indicates the need to incorporate these ecologically more relevant findings into current models. Empirical studies, however
NASA Astrophysics Data System (ADS)
Wong, H.-W.; Miake-Lye, R. C.
2010-04-01
Condensation trails (contrails) formed from water vapor emissions behind aircraft engines are the most uncertain components of the aviation impacts on climate change. To gain improved knowledge of contrail and contrail-induced cirrus cloud formation, understanding of contrail ice particle formation immediately after aircraft engines is needed. Despite many efforts spent in modeling the microphysics of ice crystal formation in jet regime (with a plume age <5 s), systematic understanding of parametric effects of variables affecting contrail ice particle formation is still limited. In this work, we apply a microphysical parcel modeling approach to study contrail ice particle formation in near-field aircraft plumes up to 1000 m downstream of an aircraft engine in the soot-rich regime (soot number emission index >1×1015 (kg-fuel)-1) at cruise. The effects of dilution history, ion-mediated nucleation, ambient relative humidity, fuel sulfur contents, and initial soot emissions were investigated. Our simulation results suggest that ice particles are mainly formed by water condensation on emitted soot particles. The growth of ice coated soot particles is driven by water vapor emissions in the first 1000 m and by ambient relative humidity afterwards. The presence of chemi-ions does not significantly contribute to the formation of ice particles in the soot-rich regime, and the effect of fuel sulfur contents is small over the range typical of standard jet fuels. The initial properties of soot emissions play the most critical role, and our calculations suggest that higher number concentration and smaller size of contrail particle nuclei may be able to effectively suppress the formation of contrail ice particles. Further modeling and experimental studies are needed to verify if our findings can provide a possible approach for contrail mitigation.
Ibergay, Cyrille; Malfreyt, Patrice; Tildesley, Dominic J
2009-12-08
We report mesoscopic simulations of bulk electrolytes and polyelectrolyte brushes using the dissipative particle dynamics (DPD) method. The calculation of the electrostatic interactions is carried out using both the Ewald summation method and the particle-particle particle-mesh technique with charges distributed over the particles. The local components of the pressure tensor are calculated using the Irving and Kirkwood, and the method of planes and mechanical equilibrium is demonstrated. The profiles of the normal component of the pressure tensor are shown to be similar for both the Ewald and particle-particle particle-mesh methods for a single polyelectrolyte brush. We show that the PPPM method with the MOP technique is the appropriate choice for simulations of this type. The mesoscale modeling of a strongly stretched polylectrolyte brush formed by strong charged polymer chains at a high grafting density shows that the polyelectrolyte follows the nonlinear osmotic regime, as expected from the calculation of the Gouy-Chapman length and the dimensionless Manning ratio.
Hermann, D.M.
1988-01-01
Weekly airborne particle samples were collected at Mauna Loa Observatory (MLO), Hawaii from February 1979 through May 1985. Receptor models were used to identify sources of airborne particles at MLO, determine compositions of particles from these sources, and assess the relative impacts of them. Major sources of ambient particles at MLO include Asian continental material, oceanic biological production of Se and SO{sub 4} species, marine particles, Asian anthropogenic material, local volcanic emissions, and basalt. Source composition profiles were developed for each component. The Asian continental component represents particles transported from Eastern Asia to the North Pacific, and the component consists of crustal material contaminated by anthropogenic emissions. To account for variations in the relative strengths of anthropogenic and crustal sources, a separate Asian anthropogenic component was also developed. During the dust season, Asian continental material accounts for 80% of total suspended particulate material (TSP) at MLO, oceanic productions of Se and SO{sub 4} 11%, marine particles 2.8%, basalt 1.9%, volcanic emissions 1.7%, and Asian anthropogenic material in excess of Asian continental material 3.2%. During the clean season, the oceanic biological production of Se and SO{sub 4} contributes 62% of TSP at MLO. Continental material contributes 22%, marine particles 6.4%, basalt 2.7%, volcanic emissions 2.4%, and anthropogenic materials in excess of continental material 4.3%.
Model predictions and visualization of the particle flux on the surface of Mars.
Cucinotta, Francis A; Saganti, Premkumar B; Wilson, John W; Simonsen, Lisa C
2002-12-01
Model calculations of the particle flux on the surface of Mars due to the Galactic Cosmic Rays (GCR) can provide guidance on radiobiological research and shielding design studies in support of Mars exploration science objectives. Particle flux calculations for protons, helium ions, and heavy ions are reported for solar minimum and solar maximum conditions. These flux calculations include a description of the altitude variations on the Martian surface using the data obtained by the Mars Global Surveyor (MGS) mission with its Mars Orbiter Laser Altimeter (MOLA) instrument. These particle flux calculations are then used to estimate the average particle hits per cell at various organ depths of a human body in a conceptual shelter vehicle. The estimated particle hits by protons for an average location at skin depth on the Martian surface are about 10 to 100 particle-hits/cell/year and the particle hits by heavy ions are estimated to be 0.001 to 0.01 particle-hits/cell/year.
Modeling Soft Tissue Damage and Failure Using a Combined Particle/Continuum Approach.
Rausch, M K; Karniadakis, G E; Humphrey, J D
2017-02-01
Biological soft tissues experience damage and failure as a result of injury, disease, or simply age; examples include torn ligaments and arterial dissections. Given the complexity of tissue geometry and material behavior, computational models are often essential for studying both damage and failure. Yet, because of the need to account for discontinuous phenomena such as crazing, tearing, and rupturing, continuum methods are limited. Therefore, we model soft tissue damage and failure using a particle/continuum approach. Specifically, we combine continuum damage theory with Smoothed Particle Hydrodynamics (SPH). Because SPH is a meshless particle method, and particle connectivity is determined solely through a neighbor list, discontinuities can be readily modeled by modifying this list. We show, for the first time, that an anisotropic hyperelastic constitutive model commonly employed for modeling soft tissue can be conveniently implemented within a SPH framework and that SPH results show excellent agreement with analytical solutions for uniaxial and biaxial extension as well as finite element solutions for clamped uniaxial extension in 2D and 3D. We further develop a simple algorithm that automatically detects damaged particles and disconnects the spatial domain along rupture lines in 2D and rupture surfaces in 3D. We demonstrate the utility of this approach by simulating damage and failure under clamped uniaxial extension and in a peeling experiment of virtual soft tissue samples. In conclusion, SPH in combination with continuum damage theory may provide an accurate and efficient framework for modeling damage and failure in soft tissues.
PAM: Particle automata model in simulation of Fusarium graminearum pathogen expansion.
Wcisło, Rafał; Miller, S Shea; Dzwinel, Witold
2016-01-21
The multi-scale nature and inherent complexity of biological systems are a great challenge for computer modeling and classical modeling paradigms. We present a novel particle automata modeling metaphor in the context of developing a 3D model of Fusarium graminearum infection in wheat. The system consisting of the host plant and Fusarium pathogen cells can be represented by an ensemble of discrete particles defined by a set of attributes. The cells-particles can interact with each other mimicking mechanical resistance of the cell walls and cell coalescence. The particles can move, while some of their attributes can be changed according to prescribed rules. The rules can represent cellular scales of a complex system, while the integrated particle automata model (PAM) simulates its overall multi-scale behavior. We show that due to the ability of mimicking mechanical interactions of Fusarium tip cells with the host tissue, the model is able to simulate realistic penetration properties of the colonization process reproducing both vertical and lateral Fusarium invasion scenarios. The comparison of simulation results with micrographs from laboratory experiments shows encouraging qualitative agreement between the two.
Pothapragada, Seetha; Zhang, Peng; Sheriff, Jawaad; Livelli, Mark; Slepian, Marvin J; Deng, Yuefan; Bluestein, Danny
2015-03-01
We developed a phenomenological three-dimensional platelet model to characterize the filopodia formation observed during early stage platelet activation. Departing from continuum mechanics based approaches, this coarse-grained molecular dynamics (CGMD) particle-based model can deform to emulate the complex shape change and filopodia formation that platelets undergo during activation. The platelet peripheral zone is modeled with a two-layer homogeneous elastic structure represented by spring-connected particles. The structural zone is represented by a cytoskeletal assembly comprising of a filamentous core and filament bundles supporting the platelet's discoid shape, also modeled by spring-connected particles. The interior organelle zone is modeled by homogeneous cytoplasm particles that facilitate the platelet deformation. Nonbonded interactions among the discrete particles of the membrane, the cytoskeletal assembly, and the cytoplasm are described using the Lennard-Jones potential with empirical constants. By exploring the parameter space of this CGMD model, we have successfully simulated the dynamics of varied filopodia formations. Comparative analyses of length and thickness of filopodia show that our numerical simulations are in agreement with experimental measurements of flow-induced activated platelets. Copyright © 2015 John Wiley & Sons, Ltd.
Particles deposition induced by the magnetic field in the coronary bypass graft model
NASA Astrophysics Data System (ADS)
Bernad, Sandor I.; Totorean, Alin F.; Vekas, Ladislau
2016-03-01
Bypass graft failures is a complex process starting with intimal hyperplasia development which involve many hemodynamic and biological factors. This work presents experimental results regarding the possibility to use magnetic drug delivery to prevent the development of the intimal hyperplasia using a simplified but intuitive model. The primary goal is to understand the magnetic particle deposition in the anastomosis region of the bypass graft taking into account the complex flow field created in this area which involves recirculation region, flow mixing and presence of particles with high residence time. The three-dimensional geometry model was used to simulate the motion and accumulation of the particles under the magnetic field influence in anastomotic region of the coronary bypass graft. The flow patterns are evaluated both numerically and experimentally and show a good correlation in term of flow parameters like vortex length and flow stagnation point positions. Particle depositions are strongly dependent on the magnet position and consequently of the magnetic field intensity and field gradient. Increased magnetic field controlled by the magnet position induces increased particle depositions in the bypass graft anastomosis. The result shows that particle depositions depend on the bypass graft angle, and the deposition shape and particle accumulation respectively, depend by the flow pattern in the anastomosis region.
Sühring, Roxana; Wolschke, Hendrik; Diamond, Miriam L; Jantunen, Liisa M; Scheringer, Martin
2016-07-05
Gas-particle partitioning is one of the key factors that affect the environmental fate of semivolatile organic chemicals. Many organophosphate esters (OPEs) have been reported to primarily partition to particles in the atmosphere. However, because of the wide range of their physicochemical properties, it is unlikely that OPEs are mainly in the particle phase "as a class". We compared gas-particle partitioning predictions for 32 OPEs made by the commonly used OECD POV and LRTP Screening Tool ("the Tool") with the partitioning models of Junge-Pankow (J-P) and Harner-Bidleman (H-B), as well as recently measured data on OPE gas-particle partitioning. The results indicate that half of the tested OPEs partition into the gas phase. Partitioning into the gas phase seems to be determined by an octanol-air partition coefficient (log KOA) < 10 and a subcooled liquid vapor pressure (log PL) > -5 (PL in Pa), as well as the total suspended particle concentration (TSP) in the sampling area. The uncertainty of the physicochemical property data of the OPEs did not change this estimate. Furthermore, the predictions by the Tool, J-P- and H-B-models agreed with recently measured OPE gas-particle partitioning.
Semi-transparent shock model for major solar energetic particle events
NASA Astrophysics Data System (ADS)
Kocharov, Leon
2014-05-01
Production of solar energetic particles in major events typically comprises two stages: (i) the initial stage associated with shocks and magnetic reconnection in solar corona and (ii) the main stage associated with the CME-bow shock in solar wind. The coronal emission of energetic particles from behind the interplanetary shock wave continues for about one hour , being not shielded by the CME shock in solar wind and having the prompt access to particle detectors at 1 AU. On occasion of two well-separated solar eruptions from the same active region, the newly accelerated solar particles may be emitted well behind the previous CME, and those solar particles may penetrate through the interplanetary shock of the previous CME to arrive at the Earth's orbit without significant delay, which is another evidence that high-energy particles from the solar corona can penetrate through travelling interplanetary shocks. Diffusive shock acceleration is fast only if the particle mean free path near the shock is small. The small mean free path (high turbulence level), however, implies that energetic particles from coronal sources could not penetrate through the interplanetary shock, and even the particles accelerated by the interplanetary shock itself could not escape to its far upstream region. If so, they could not be promptly observed at 1 AU. However, high-energy particles in major solar events are detected well before the shock arrival at 1 AU. The theoretical difficulty can be obviated in the framework of the proposed model of a "semitransparent" shock. As in situ plasma observations indicate, the turbulence energy levels in neighboring magnetic tubes of solar wind may differ from each other by more than one order of magnitude. Such an intermittence of coronal and solar wind plasmas can affect energetic particle acceleration in coronal and interplanetary shocks. The new modeling incorporates particle acceleration in the shock front and the particle transport both in parallel
Dissipative Particle Dynamics modeling of nanorod-polymer composites
NASA Astrophysics Data System (ADS)
Khani, Shaghayegh; Maia, Joao
2014-11-01
Recent years have seen a plethora of experimental methods for fabricating nanorod-polymer composites with enhanced physical and mechanical properties. The macroscopic properties of the composites are directly related to the dispersion and organization of the nanoparticles in the matrix. For instance, a significant improvement in the properties of the nanorod-polymer composites is observed upon formation of a percolating network. Thus, controlling the structure of the nanoparticles in the matrix will advance the technology in the field. One way of doing this is by adjusting the chemical interactions which is done through grafting polymer chains on the surface of the rods. Although the enthalpic interactions play the major role in such systems other entropic variables such as the dimension of the rods, density of grafting and etc. may influence the final morphology of the system. The recent developments in the computational techniques have paved the road for further understanding of the controlled assembly of nanorods in polymer matrices. In this study, Dissipative Particle Dynamics (DPD) is employed in order to investigate the effect of enthalpic and entopic variables on the phase behavior of the nanorod-polymer composites. DPD is a coarse-grained mesoscale method which has been found very promising in simulating multi component systems. The interaction parameter between the components of the systems can be mapped onto the Flory-Huggins χ-parameter via well-known Groot-Warren expression. The main goal of this work is to provide a phase diagram that can be used to guide the experiments in designing new materials.
Modeling of particle radiative properties in coal combustion depending on burnout
NASA Astrophysics Data System (ADS)
Gronarz, Tim; Habermehl, Martin; Kneer, Reinhold
2016-08-01
In the present study, absorption and scattering efficiencies as well as the scattering phase function of a cloud of coal particles are described as function of the particle combustion progress. Mie theory for coated particles is applied as mathematical model. The scattering and absorption properties are determined by several parameters: size distribution, spectral distribution of incident radiation and spectral index of refraction of the particles. A study to determine the influence of each parameter is performed, finding that the largest effect is due to the refractive index, followed by the effect of size distribution. The influence of the incident radiation profile is negligible. As a part of this study, the possibility of applying a constant index of refraction is investigated. Finally, scattering and absorption efficiencies as well as the phase function are presented as a function of burnout with the presented model and the results are discussed.
Delocalization of two interacting particles in the 2D Harper model
NASA Astrophysics Data System (ADS)
Frahm, Klaus M.; Shepelyansky, Dima L.
2016-01-01
We study the problem of two interacting particles in a two-dimensional quasiperiodic potential of the Harper model. We consider an amplitude of the quasiperiodic potential such that in absence of interactions all eigenstates are exponentially localized while the two interacting particles are delocalized showing anomalous subdiffusive spreading over the lattice with the spreading exponent b ≈ 0.5 instead of a usual diffusion with b = 1. This spreading is stronger than in the case of a correlated disorder potential with a one particle localization length as for the quasiperiodic potential. At the same time we do not find signatures of ballistic pairs existing for two interacting particles in the localized phase of the one-dimensional Harper model.
NASA Astrophysics Data System (ADS)
Kashani, Alireza; Provis, John L.; van Deventer, Jannie S. J.
2013-06-01
Ground granulated blast furnace slag is widely combined with Portland cement as a supplementary material, and is also used in alkali-activated binders (geopolymers) and in supersulfated cements, which are potential replacements for Portland cement with significantly reduced carbon dioxide emissions. The rheology of a cementitious material is important in terms of its influence on workability, especially in self leveling concretes. The current research investigates the effects of different particle size distributions of slag particles on paste rheology. Rheological measurements results show a direct relationship between the modal particle size and the yield stress of the paste. An empirical model is introduced to calculate the yield stress value of each paste based on the particle size distribution, and applied to a range of systems at single water to solids ratio. The model gives a very good match with the experimental data.
Use of mucolytics to enhance magnetic particle retention at a model airway surface
NASA Astrophysics Data System (ADS)
Ally, Javed; Roa, Wilson; Amirfazli, A.
A previous study has shown that retention of magnetic particles at a model airway surface requires prohibitively strong magnetic fields. As mucus viscoelasticity is the most significant factor contributing to clearance of magnetic particles from the airway surface, mucolytics are considered in this study to reduce mucus viscoelasticity and enable particle retention with moderate strength magnetic fields. The excised frog palate model was used to simulate the airway surface. Two mucolytics, N-acetylcysteine (NAC) and dextran sulfate (DS) were tested. NAC was found to enable retention at moderate field values (148 mT with a gradient of 10.2 T/m), whereas DS was found to be effective only for sufficiently large particle concentrations at the airway surface. The possible mechanisms for the observed behavior with different mucolytics are also discussed based on aggregate formation and the loading of cilia.
Sticking transition in a minimal model for the collisions of active particles in quantum fluids
NASA Astrophysics Data System (ADS)
Shukla, Vishwanath; Brachet, Marc; Pandit, Rahul
2016-10-01
Particles of low velocity, traveling without dissipation in a superfluid, can interact and emit sound when they collide. We propose a minimal model in which the equations of motion of the particles, including a short-range repulsive force, are self-consistently coupled with the Gross-Pitaevskii equation. We show that this model generates naturally an effective superfluid-mediated attractive interaction between the particles; and we study numerically the collisional dynamics of particles as a function of their incident kinetic energy and the length scale of the repulsive force. We find a transition from almost elastic to completely inelastic (sticking) collisions as the parameters are tuned. We find that aggregation and clustering result from this sticking transition in multiparticle systems.
Characterization of particle deposition in a lung model using an individual path
NASA Astrophysics Data System (ADS)
Tena, A. M.; Casan, P.; Fernández, J.; Ferrera, C.; Marcos, A.
2013-04-01
Suspended particles can cause a wide range of chronic respiratory illnesses such as asthma and chronic obstructive pulmonary diseases, as well as worsening heart conditions and other conditions. To know the particle depositions in realistic models of the human respiratory system is fundamental to prevent these diseases. The main objective of this work is to study the lung deposition of inhaled particles through a numerical model using UDF (User Defined Function) to impose the boundary conditions in the truncated airways. For each generation, this UDF puts the values of velocity profile of the flow path to symmetrical truncated outlet. The flow rates tested were 10, 30 and 60 ℓ/min, with a range of particles between 0.1 µm and 20 µm.
A single particle model to simulate the dynamics of entangled polymer melts
NASA Astrophysics Data System (ADS)
Kindt, P.; Briels, W. J.
2007-10-01
We present a computer simulation model of polymer melts representing each chain as one single particle. Besides the position coordinate of each particle, we introduce a parameter nij for each pair of particles i and j within a specified distance from each other. These numbers, called entanglement numbers, describe the deviation of the system of ignored coordinates from its equilibrium state for the given configuration of the centers of mass of the polymers. The deviations of the entanglement numbers from their equilibrium values give rise to transient forces, which, together with the conservative forces derived from the potential of mean force, govern the displacements of the particles. We have applied our model to a melt of C800H1602 chains at 450K and have found good agreement with experiments and more detailed simulations. Properties addressed in this paper are radial distribution functions, dynamic structure factors, and linear as well as nonlinear rheological properties.
NASA Technical Reports Server (NTRS)
Krizmanic, John F.
2013-01-01
We have been assessing the effects of background radiation in low-Earth orbit for the next generation of X-ray and Cosmic-ray experiments, in particular for International Space Station orbit. Outside the areas of high fluxes of trapped radiation, we have been using parameterizations developed by the Fermi team to quantify the high-energy induced background. For the low-energy background, we have been using the AE8 and AP8 SPENVIS models to determine the orbit fractions where the fluxes of trapped particles are too high to allow for useful operation of the experiment. One area we are investigating is how the fluxes of SPENVIS predictions at higher energies match the fluxes at the low-energy end of our parameterizations. I will summarize our methodology for background determination from the various sources of cosmogenic and terrestrial radiation and how these compare to SPENVIS predictions in overlapping energy ranges.
Particle-particle response function as a probe for electronic correlations in the p-d Hubbard model
Ugenti, S.; Cini, M.; Perfetto, E.; Stefanucci, G.; Seibold, G.; Lorenzana, J.
2010-08-15
We discuss and compare different approximations to the particle-particle response function in the p-d (three-band) Hubbard model for the CuO{sub 2} plane of superconducting cuprates. Besides the relevance for understanding the role of correlations in high-T{sub c} superconductors, the interest in the CuO{sub 2} plane is due to the presence of three incompletely filled valence bands. The bare ladder approximation (BLA) was employed long ago in the context of Auger core-valence-valence spectroscopy of late transition metals while the time-dependent (TD) Gutzwiller approximation (GA) is a much more sophisticated and recent development. The validity of both is assessed by comparing with exact-diagonalization results from a finite six-site cluster. We find that for standard parameter sets TDGA and BLA yield two-hole spectra in excellent agreement with the exact ones. Although the interaction is comparable to the kinetic energy, the system is far from the extreme Mott limit often assumed in cuprates, where the Mott insulating character is completely local. In order to identify possible fingerprints of the extreme Mott regime we artificially reduce the bandwidth. We find that the BLA breaks down while the TDGA keeps near the exact results. Our findings provide a simple criterion to identify doped and undoped extreme Mott insulators.
Lei, Huan; Baker, Nathan A.; Wu, Lei; Schenter, Gregory K.; Mundy, Christopher J.; Tartakovsky, Alexandre M.
2016-08-05
Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly nonlinear hydrodynamics in multiphase flows. In this work, we develop a novel multiphase smoothed dissipative particle dynamics model. This model accounts for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface tension is modeled by imposing a pairwise force between SDPD particles. We show that the relationship between the model parameters and surface tension, previously derived under the assumption of zero thermal fluctuation, is accurate for fluid systems at low temperature but overestimates the surface tension for intermediate and large thermal fluctuations. To analyze the effect of thermal fluctuations on surface tension, we construct a coarse-grained Euler lattice model based on the mean field theory and derive a semi-analytical formula to directly relate the surface tension to model parameters for a wide range of temperatures and model resolutions. We demonstrate that the present method correctly models the dynamic processes, such as bubble coalescence and capillary spectra across the interface.
NASA Technical Reports Server (NTRS)
Long, Jason M.; Lane, John E.; Metzger, Philip T.
2008-01-01
A previously developed mathematical model is amended to more accurately incorporate the effects of lift and drag on single dust particles in order to predict their behavior in the wake of high velocity gas flow. The model utilizes output from a CFD or DSMC simulation of exhaust from a rocket nozzle hot gas jet. An extension of the Saffman equation for lift based on the research of McLaughlin (1991) and Mei (1992) is used, while an equation for the Magnus force modeled after the work of Oesterle (1994) and Tsuji et al (1985) is applied. A relationship for drag utilizing a particle shape factor (phi = 0.8) is taken from the work of Haider and Levenspiel (1989) for application to non-spherical particle dynamics. The drag equation is further adjusted to account for rarefaction and compressibility effects in rarefied and high Mach number flows according to the work of Davies (1945) and Loth (2007) respectively. Simulations using a more accurate model with the correction factor (Epsilon = 0.8 in a 20% particle concentration gas flow) given by Richardson and Zaki (1954) and Rowe (1961) show that particles have lower ejection angles than those that were previously calculated. This is more prevalent in smaller particles, which are shown through velocity and trajectory comparison to be more influenced by the flow of the surrounding gas. It is shown that particles are more affected by minor changes to drag forces than larger adjustments to lift forces, demanding a closer analysis of the shape and behavior of lunar dust particles and the composition of the surrounding gas flow.
Sterile particles from the flavor gauge model of masses
NASA Astrophysics Data System (ADS)
Smetana, Adam
2013-04-01
Our motivation is to study a dynamics which has the ambition to underlie models of the electroweak symmetry breaking via the condensation of known fermions. The right-handed neutrinos and the seesaw mechanism are necessary ingredients for viability of this scenario. The existence of right-handed neutrinos follows from theoretical consistence of a model based on dynamical flavor gauge symmetry breaking. The model is defined by a particular flavor representation setting of electroweakly charged fermions. Only finite number of versions of the model exists. They differ by the number and the flavor structure of the right-handed neutrino sector. We choose for inspection one of them, the non-minimal version with right-handed neutrinos in one sextet and four anti-triplet flavor representations. We show that a Majorana pairing of the sextet right-handed neutrinos is responsible for the flavor symmetry breaking and for the seesaw pattern of the neutrino mass matrix. The dynamically generated neutrino mass matrix spontaneously breaks the lepton number and the chiral sterility symmetry of the right-handed neutrino sector. As a result, a spectrum of majorons, neutrino composites, manifests. We study main characteristics of both massive sterile neutrinos and majorons.
Physical Scalar Mass Particles in the 331 Model
Ravinez, O.; Diaz, H.; Romero, D.
2007-10-26
We get to diagonalize the mass matrix considering all terms in the scalar lagrangian sector, given in the SU(3)xSU(3)xU(1) model cited below. This will let us in the future realize the phenomenological consequences.
NASA Astrophysics Data System (ADS)
Ivosevic, Milan
This thesis develops and presents a model for predicting the three-dimensional splat formation process for polymer particles under High Velocity Oxy-Fuel (HVOF) combustion spray process conditions. During HVOF spray deposition, jets of high temperature, high velocity gases are used to heat, melt and accelerate particulate materials injected into the jet and propel them towards a surface to be coated. Upon impact at the surface, multiple hot particles impact and form splats that overlap, cool and consolidate to form a coating. These splats are the building blocks of an HVOF coating and coating characteristics such as porosity, roughness, adhesive and cohesive strengths depend on the morphology of these splats and how they bond to the substrate and to each other. Fully coupled transport models of particle acceleration and heating in an HVOF jet were simultaneously integrated within a FORTRAN code to predict particle velocity and particle temperature profiles at impact. Then, a volume-of-fluid computational fluid mechanics package, Flow-3DRTM, was used to predict particle deformation and splat shapes using results from the acceleration and heating models as the initial conditions. Fluid flow of spreading polymer droplets was modeled as a generalized Newtonian fluid with temperature and shear rate dependent viscosity. While shear thinning primarily affected the droplet spreading ratio, the internal temperature distribution had the largest effect on the final splat shape, particularly when particles were partially melted. The predicted shapes of deformed particles exhibited good qualitative agreement with experimentally observed splats. Most of the larger experimentally observed (> 70 mum) Nylon-11 splats sprayed onto room temperature flat or rough substrates exhibited a characteristic "fried-egg" shape with a large, nearly-hemispherical, core in the center of a thin disk. This shape was formed from polymer particles having a low temperature, high viscosity core and a
NASA Astrophysics Data System (ADS)
Jiang, Yunpeng
2016-10-01
In this work, a simple micromechanics-based model was developed to describe the overall stress-strain relations of particulate reinforced composites (PRCs), taking into account both particle debonding and matrix cracking damage. Based on the secant homogenization frame, the effective compliance tensor could be firstly given for the perfect composites without any damage. The progressive interface debonding damage is controlled by a Weibull probability function, and then the volume fraction of detached particles is involved in the equivalent compliance tensor to account for the impact of particle debonding. The matrix cracking was introduced in the present model to embody the stress softening stage in the deformation of PRCs. The analytical model was firstly verified by comparing with the corresponding experiment, and then parameter analyses were conducted. This modeling will shed some light on optimizing the microstructures in effectively improving the mechanical behaviors of PRCs.
Krabicka, J.; Yan, Y.
2009-08-15
Electrostatic sensors are used in certain industries for the flow measurement of pneumatically conveyed solids. However, despite various advances that have been made in recent years, relatively little information is known about the exact nature of the electrostatic charge induced onto the sensor electrode due to moving particles, which is dependent on electrode geometry, particle distribution, and particle velocity. This paper presents a novel approach to the study of the charge induced onto electrostatic sensors based on fitting a Lorentzian curve to the results of a finite-element model of the electrostatic sensor and pipeline. The modeling method is validated by comparing the modeling results of a nonintrusive circular electrode with an established analytical solution. The modeling results are used for in-depth analysis and informed design of a particular sensor configuration.
Empirical model of long-time variations of galactic cosmic ray particle fluxes
NASA Astrophysics Data System (ADS)
Kuznetsov, N. V.; Popova, H.; Panasyuk, M. I.
2017-02-01
The galactic cosmic ray (GCR) particle flux model has been developed by using the experimental data obtained during the solar cycles 21-24. The model calculates fluxes of GCR particles (with charge z from 1 to 28 and energy E from 80 up to 105 MeV/nucleon) in the interplanetary space (ecliptic plane) as a function of solar activity (sunspot number) and the heliocentric distance. GCR proton fluxes computed by the model for the case of a possible decrease in solar activity during solar cycles 25 and 26 are discussed.
Dudásová, Dorota; Rune Flåten, Geir; Sjöblom, Johan; Øye, Gisle
2009-09-15
The transmission profiles of one- to three-component particle suspension mixtures were analyzed by multivariate methods such as principal component analysis (PCA) and partial least-squares regression (PLS). The particles mimic the solids present in oil-field-produced water. Kaolin and silica represent solids of reservoir origin, whereas FeS is the product of bacterial metabolic activities, and Fe(3)O(4) corrosion product (e.g., from pipelines). All particles were coated with crude oil surface active components to imitate particles in real systems. The effects of different variables (concentration, temperature, and coating) on the suspension stability were studied with Turbiscan LAb(Expert). The transmission profiles over 75 min represent the overall water quality, while the transmission during the first 15.5 min gives information for suspension behavior during a representative time period for the hold time in the separator. The behavior of the mixed particle suspensions was compared to that of the single particle suspensions and models describing the systems were built. The findings are summarized as follows: silica seems to dominate the mixture properties in the binary suspensions toward enhanced separation. For 75 min, temperature and concentration are the most significant, while for 15.5 min, concentration is the only significant variable. Models for prediction of transmission spectra from run parameters as well as particle type from transmission profiles (inverse calibration) give a reasonable description of the relationships. In ternary particle mixtures, silica is not dominant and for 75 min, the significant variables for mixture (temperature and coating) are more similar to single kaolin and FeS/Fe(3)O(4). On the other hand, for 15.5 min, the coating is the most significant and this is similar to one for silica (at 15.5 min). The model for prediction of transmission spectra from run parameters gives good estimates of the transmission profiles. Although the
NASA Astrophysics Data System (ADS)
Derby, Jeffrey J.; Tao, Yutao; Reimann, Christian; Friedrich, Jochen; Jauß, Thomas; Sorgenfrei, Tina; Cröll, Arne
2017-04-01
We present rigorous numerical modeling and analytical arguments to describe data on the engulfment of silicon carbide particles during silicon crystal growth obtained via advanced terrestrial and microgravity experiments. For the first time in over a decade of research on SiC inclusions in silicon, our model is able to provide a quantitative correlation with experimental results, and we are able to unambiguously identify the underlying physical mechanisms that give rise to the observed behavior of this system. In particular, we identify a significant and previously unascertained interaction between particle-induced interface deflection (originating from the thermal conductivity of the SiC particle being larger than that of the surrounding silicon liquid) and curvature-induced changes in melting temperature arising from the Gibbs-Thomson effect. For a particular range of particle sizes, the Gibbs-Thomson effect flattens the deflected solidification interface, thereby reducing drag on the particle and increasing its critical velocity for engulfment. We show via numerical calculations and analytical reasoning that these effects give rise to a new scaling of the critical velocity to particle size as vc ∼R - 5 / 3 , whereas all prior models have predicted either vc ∼R-1 or vc ∼R - 4 / 3 . This new scaling is needed to quantitatively describe the experimental observations for this system.
Zimmermann, Eva; Seifert, Udo
2015-02-01
Many single-molecule experiments for molecular motors comprise not only the motor but also large probe particles coupled to it. The theoretical analysis of these assays, however, often takes into account only the degrees of freedom representing the motor. We present a coarse-graining method that maps a model comprising two coupled degrees of freedom which represent motor and probe particle to such an effective one-particle model by eliminating the dynamics of the probe particle in a thermodynamically and dynamically consistent way. The coarse-grained rates obey a local detailed balance condition and reproduce the net currents. Moreover, the average entropy production as well as the thermodynamic efficiency is invariant under this coarse-graining procedure. Our analysis reveals that only by assuming unrealistically fast probe particles, the coarse-grained transition rates coincide with the transition rates of the traditionally used one-particle motor models. Additionally, we find that for multicyclic motors the stall force can depend on the probe size. We apply this coarse-graining method to specific case studies of the F(1)-ATPase and the kinesin motor.
Particle Acceleration at Oblique CME-driven Shock Using Improved PATH Model
NASA Astrophysics Data System (ADS)
Hu, J.; Li, G.; Parker, L. N.; Zank, G. P.
2015-12-01
.Gradual solar energetic particle (SEP) events are generally accepted to be caused by particle acceleration at coronal mass ejection(CME)-driven shocks. In this work we improved the PATH(Particle Acceleration and Transport in the Heliosphere) model by initiating a 2D CME-driven shock to investigate particle acceleration at different locations of an oblique CME-drive shock, where the shock has different obliquity angle(θBN). Thus we can study problems like whether quasi-perpendicular or quasi-parallel shock is more efficient in particle acceleration.The PATH model is based on the diffusive shock acceleration mechanism. The core of the model consists of a 3D Zeus module, which computes numerically the background solar wind and the CME-drive shock as inputs; and a shell module where the convection and diffusion of accelerated particles within the shock complex are followed. The 2D CME-driven shock is generated by perturbing the boundary condition of a steady background solar wind in certain patterns.
NASA Astrophysics Data System (ADS)
Bielefeldt, Brent R.; Benzerga, A. Amine; Hartl, Darren J.
2016-04-01
The ability to monitor and predict the structural health of an aircraft is of growing importance to the aerospace industry. Currently, structural inspections and maintenance are based upon experiences with similar aircraft operating in similar conditions. While effective, these methods are time-intensive and unnecessary if the aircraft is not in danger of structural failure. It is imagined that future aircraft will utilize non-destructive evaluation methods, allowing for the near real-time monitoring of structural health. A particularly interesting method involves utilizing the unique transformation response of shape memory alloy (SMA) particles embedded in an aircraft structure. By detecting changes in the mechanical and/or electromagnetic responses of embedded particles, operators could detect the formation or propagation of fatigue cracks in the vicinity of these particles. This work focuses on a finite element model of SMA particles embedded in an aircraft wing using a substructure modeling approach in which degrees of freedom are retained only at specified points of connection to other parts or the application of boundary conditions, greatly reducing computational cost. Previous work evaluated isolated particle response to a static crack to numerically demonstrate and validate this damage detection method. This paper presents the implementation of a damage model to account for crack propagation and examine for the first time the effect of particle configuration and/or relative placement with respect to the ability to detect damage.
Rain water transport and storage in a model sandy soil with hydrogel particle additives.
Wei, Y; Durian, D J
2014-10-01
We study rain water infiltration and drainage in a dry model sandy soil with superabsorbent hydrogel particle additives by measuring the mass of retained water for non-ponding rainfall using a self-built 3D laboratory set-up. In the pure model sandy soil, the retained water curve measurements indicate that instead of a stable horizontal wetting front that grows downward uniformly, a narrow fingered flow forms under the top layer of water-saturated soil. This rain water channelization phenomenon not only further reduces the available rain water in the plant root zone, but also affects the efficiency of soil additives, such as superabsorbent hydrogel particles. Our studies show that the shape of the retained water curve for a soil packing with hydrogel particle additives strongly depends on the location and the concentration of the hydrogel particles in the model sandy soil. By carefully choosing the particle size and distribution methods, we may use the swollen hydrogel particles to modify the soil pore structure, to clog or extend the water channels in sandy soils, or to build water reservoirs in the plant root zone.
Mathematical Modeling of Particle Segregation During Centrifugal Casting of Metal Matrix Composites
NASA Astrophysics Data System (ADS)
Balout, B.; Litwin, J.
2012-04-01
When a metal matrix composite undergoes centrifugal casting, the velocity, deceleration, displacement, and segregation of its particles are modeled according to changes in the centrifugal radius, as well as by variations in the molten metal viscosity as the temperature decreases during the cooling process. A cast aluminum alloy A356 reinforced by 10 V% of silicon carbide particles (SiC), with a median diameter of 12 μm, was used to conduct the experiments, and a mathematical modeling showed that the particles' volume fraction on the outer casting face varied according to whether the viscosity of the liquid metal used was constant or variable. If variations in viscosity during the cooling process are taken into account, then the volume fraction of the particles for a given time of centrifugation changes on the outer casting face, while it increases if the viscosity was constant. Modeling the particle segregation with variable viscosity produces results that are closer to those obtained with experiments than is the case when a constant viscosity is used. In fact, the higher the initial pouring and mold temperatures, the higher the effect of the viscosity variation on particle segregation.
CFD modelling of flow field and particle tracking in a hydrodynamic stormwater separator.
Lee, J H; Bang, K W; Choi, C S; Lim, H S
2010-01-01
The best management practices (BMPs) for control of urban stormwater pollution are evaluated to remove solid particles containing various pollutants. Currently, most storm runoff treatment devices using primary pollutant removal mechanism are applied to storm water since most pollutants in runoff are associated with the solid particulates. A hydrodynamic separator is a storm water treatment device using centrifugal motion which separates solids pollution from runoff. In this study, the velocity flow field and particle tracking of hydrodynamic separator were investigated using anthracite as a computational fluid dynamics (CFD) model particle. The Fluent 6.3.26 CFD program was used to predict the solid particles removal efficiency for various parameters such as particle size, surface loading rate, and the ratio of underflow to overflow. The velocity flow field in a hydrodynamic stormwater separator (HDS) has been simulated using CFD RNG κ-ε model. Modeling results for the removal efficiency of HDS were similar with the results obtained from experimental measurements of laboratory scale HDS. These results showed that the simulated velocity field was useful to interpret the behavior of flow in the hydrodynamic separator. The results obtained from particle tracking can be applied to predict the separation efficiency.
Numerical Modeling of an RF Argon-Silane Plasma with Dust Particle Nucleation and Growth
NASA Astrophysics Data System (ADS)
Girshick, Steven; Agarwal, Pulkit
2012-10-01
We have developed a 1-D numerical model of an RF argon-silane plasma in which dust particles nucleate and grow. This model self-consistently couples a plasma module, a chemistry module and an aerosol module. The plasma module solves population balance equations for electrons and ions, the electron energy equation under the assumption of a Maxwellian velocity distribution, and Poisson's equation for the electric field. The chemistry module treats silane dissociation and reactions of silicon hydrides containing up to two silicon atoms. The aerosol module uses a sectional method to model particle size and charge distributions. The nucleation rate is equated to the rates of formation of anions containing two Si atoms, and a heterogeneous reaction model is used to model particle surface growth. Aerosol effects considered include particle charging, coagulation, and particle transport by neutral drag, ion drag, electric force, gravity and Brownian diffusion. Simulation results are shown for the case of a 13.56 MHz plasma at a pressure of 13 Pa and applied RF voltage of 100 V (amplitude), with flow through a showerhead electrode. These results show the strong coupling between the plasma and the spatiotemporal evolution of the nanoparticle cloud.
Preservice teachers' pedagogical content knowledge of using particle models in teaching chemistry
NASA Astrophysics Data System (ADS)
de Jong, Onno; van Driel, Jan H.; Verloop, Nico
2005-10-01
In this article, we describe the results of a study of the pedagogical content knowledge (PCK) of preservice chemistry teachers in the context of a postgraduate teacher education program. A group of preservice teachers (n = 12) took part in an experimental introductory course module about the use of particle models to help secondary school students understand the relationship between phenomena (e.g., properties of substances, physical and chemical processes) and corpuscular entities (e.g., atoms, molecules, ions). The module emphasized learning from teaching by connecting authentic teaching experiences with institutional workshops. Research data were obtained from answers to written assignments, transcripts of workshop discussions, and reflective lesson reports, written by the participants. The outcomes of the study revealed that, initially, all participants were able to describe specific learning difficulties, such as problems secondary school students have in relating the properties of substances to characteristics of the constituent particles. Also, at this stage, all preservice teachers acknowledged the potential importance of using models of molecules and atoms to promote secondary school students' understanding of the relationship between phenomena and corpuscular entities. After teaching, all preservice teachers demonstrated a deeper understanding of their students' problems with the use of particle models. In addition, about half of the participants had become more aware of the possibilities and limitations of using particle models in specific teaching situations. Through learning from teaching, the preservice teachers further developed their PCK of using particle models, although this development varied among preservice teachers studied.
Fast Simulation of Membrane Filtration by Combining Particle Retention Mechanisms and Network Models
NASA Astrophysics Data System (ADS)
Krupp, Armin; Griffiths, Ian; Please, Colin
2016-11-01
Porous membranes are used for their particle retention capabilities in a wide range of industrial filtration processes. The underlying mechanisms for particle retention are complex and often change during the filtration process, making it hard to predict the change in permeability of the membrane during the process. Recently, stochastic network models have been shown to predict the change in permeability based on retention mechanisms, but remain computationally intensive. We show that the averaged behaviour of such a stochastic network model can efficiently be computed using a simple partial differential equation. Moreover, we also show that the geometric structure of the underlying membrane and particle-size distribution can be represented in our model, making it suitable for modelling particle retention in interconnected membranes as well. We conclude by demonstrating the particular application to microfluidic filtration, where the model can be used to efficiently compute a probability density for flux measurements based on the geometry of the pores and particles. A. U. K. is grateful for funding from Pall Corporation and the Mathematical Institute, University of Oxford. I.M.G. gratefully acknowledges support from the Royal Society through a University Research Fellowship.
METHODS FOR MODELING PARTICLE DEPOSITION AS A FUNCTION OF AGE. (R827352C004)
The purpose of this paper is to review the application of mathematical models of inhaled particle deposition to people of various ages. The basic considerations of aerosol physics, biological characteristics and model structure are presented along with limitations inherent in ...
MATHEMATICAL MODEL FOR GAS/PARTICLE PARTITIONING OF SECONDARY ORGANIC AEROSOLS. (R824970)
A dynamic model is developed for gas-particle absorptive partitioning of semi-volatile organic aerosols. The model is applied to simulate a pair of m-xylene/NO_{x} outdoor smog chamber experiments. In the presence of an inorganic seed aerosol a threshold ...
A Bullet-Shaped Tray To Demonstrate the Particle Model of Matter.
ERIC Educational Resources Information Center
Douma, Sander
1999-01-01
Describes a model that (1) convincingly demonstrates a particle model of gas behavior, (2) can be used by students, (3) can be mass produced, and (4) illustrates other properties of matter such as simple crystal structures and states of matter. (WRM)
Particle Tracking Model Transport Process Verification: Diffusion Algorithm
2015-07-01
requires the input of hydrodynamics (i.e., water surface elevation and velocities), defined upon a bathymetry grid that is provided through an external...without the computational overhead of regenerating flow conditions for each hydrodynamic run. PTM operates within the Surface- water Modeling System (SMS...particle’s vertical position in the water column (m). It is seen that the vertical eddy diffusivity has a parabolic dependence upon the vertical
Estrada, Paul R.; Cuzzi, Jeffrey N.; Morgan, Demitri A.
2016-02-20
We model particle growth in a turbulent, viscously evolving protoplanetary nebula, incorporating sticking, bouncing, fragmentation, and mass transfer at high speeds. We treat small particles using a moments method and large particles using a traditional histogram binning, including a probability distribution function of collisional velocities. The fragmentation strength of the particles depends on their composition (icy aggregates are stronger than silicate aggregates). The particle opacity, which controls the nebula thermal structure, evolves as particles grow and mass redistributes. While growing, particles drift radially due to nebula headwind drag. Particles of different compositions evaporate at “evaporation fronts” (EFs) where the midplane temperature exceeds their respective evaporation temperatures. We track the vapor and solid phases of each component, accounting for advection and radial and vertical diffusion. We present characteristic results in evolutions lasting 2 × 10{sup 5} years. In general, (1) mass is transferred from the outer to the inner nebula in significant amounts, creating radial concentrations of solids at EFs; (2) particle sizes are limited by a combination of fragmentation, bouncing, and drift; (3) “lucky” large particles never represent a significant amount of mass; and (4) restricted radial zones just outside each EF become compositionally enriched in the associated volatiles. We point out implications for millimeter to submillimeter SEDs and the inference of nebula mass, radial banding, the role of opacity on new mechanisms for generating turbulence, the enrichment of meteorites in heavy oxygen isotopes, variable and nonsolar redox conditions, the primary accretion of silicate and icy planetesimals, and the makeup of Jupiter’s core.
NASA Astrophysics Data System (ADS)
Estrada, Paul R.; Cuzzi, Jeffrey N.; Morgan, Demitri A.
2016-02-01
We model particle growth in a turbulent, viscously evolving protoplanetary nebula, incorporating sticking, bouncing, fragmentation, and mass transfer at high speeds. We treat small particles using a moments method and large particles using a traditional histogram binning, including a probability distribution function of collisional velocities. The fragmentation strength of the particles depends on their composition (icy aggregates are stronger than silicate aggregates). The particle opacity, which controls the nebula thermal structure, evolves as particles grow and mass redistributes. While growing, particles drift radially due to nebula headwind drag. Particles of different compositions evaporate at “evaporation fronts” (EFs) where the midplane temperature exceeds their respective evaporation temperatures. We track the vapor and solid phases of each component, accounting for advection and radial and vertical diffusion. We present characteristic results in evolutions lasting 2 × 105 years. In general, (1) mass is transferred from the outer to the inner nebula in significant amounts, creating radial concentrations of solids at EFs; (2) particle sizes are limited by a combination of fragmentation, bouncing, and drift; (3) “lucky” large particles never represent a significant amount of mass; and (4) restricted radial zones just outside each EF become compositionally enriched in the associated volatiles. We point out implications for millimeter to submillimeter SEDs and the inference of nebula mass, radial banding, the role of opacity on new mechanisms for generating turbulence, the enrichment of meteorites in heavy oxygen isotopes, variable and nonsolar redox conditions, the primary accretion of silicate and icy planetesimals, and the makeup of Jupiter’s core.
Ice formation on nitric acid coated dust particles: Laboratory and modeling studies
Kulkarni, Gourihar R.; Zhang, Kai; Zhao, Chun; Nandasiri, Manjula I.; Shutthanandan, V.; Liu, Xiaohong; Fast, Jerome D.; Berg, Larry K.
2015-08-16
Changes in the ice nucleation characteristics of atmospherically relevant mineral dust particles due to nitric acid coating are not well understood. Further, the atmospheric implications of dust coating on ice-cloud properties under different assumptions of primary ice nucleation mechanisms are unknown. We investigated ice nucleation ability of Arizona test dust, illite, K-feldspar and quartz as a function of temperature (-25 to -30°C) and relative humidity with respect to water (75 to 110%). Particles were size selected at 250 nm and transported (bare or coated) to the ice nucleation chamber to determine the fraction of particles nucleating ice at various temperature and water saturation conditions. All dust nucleated ice at water-subsaturated conditions, but the coated particles showed a reduction in their ice nucleation ability compared to bare particles. However, at water-supersaturated conditions, we observed that bare and coated particles had nearly similar ice nucleation characteristics. X-ray diffraction patterns indicated that structural properties of bare dust particles modified after acid treatment. We found that lattice parameters were slightly different, but crystallite sizes of the coated particles were reduced compared to bare particles. Next, single-column model results show that simulated ice crystal number concentrations mostly depends upon fraction of particles that are coated, primary ice nucleation mechanisms, and the competition between ice nucleation mechanisms to nucleate ice. In general, we observed that coating modify the ice-cloud properties and the picture of ice and mixed-phase cloud evolution is complex when different primary ice nucleation mechanisms are competing for fixed water vapor mass.
1-D Modeling of Massive Particle Injection (MPI) in Tokamaks
NASA Astrophysics Data System (ADS)
Wu, W.; Parks, P. B.; Izzo, V. A.
2008-11-01
A 1-D Fast Current Quench (FCQ) model is developed to study current evolution and runaway electron suppression under massive density increase. The model consists of coupled toroidal electric field and energy equations, and it is solved numerically for DIII-D and ITER operating conditions. Simulation results suggest that fast shutdown by D2 liquid jet/pellet injection is in principle achievable for the desired plasma cooling time (˜15 ms for DIII-D and ˜50 ms for ITER) under ˜150x or higher densification. The current density and pressure profile are practically unaltered during the initial phase of jet propagation when dilution cooling dominates. With subsequent radiation cooling, the densified discharge enters the strongly collisional regime where Pfirsch-Schluter thermal diffusion can inhibit current contraction on the magnetic axis. Often the 1/1 kink instability, addressed by Kadomtsev's magnetic reconnection model, can be prevented. Our results are compared with NIMROD simulations in which the plasma is suddenly densified by ˜100x and experiences instantaneous dilution cooling, allowing for use of actual (lower) Lundquist numbers.
The effect of model fidelity on prediction of char burnout for single-particle coal combustion
McConnell, Josh; Sutherland, James C.
2016-07-09
In this study, practical simulation of industrial-scale coal combustion relies on the ability to accurately capture the dynamics of coal subprocesses while also ensuring the computational cost remains reasonable. The majority of the residence time occurs post-devolatilization, so it is of great importance that a balance between the computational efficiency and accuracy of char combustion models is carefully considered. In this work, we consider the importance of model fidelity during char combustion by comparing combinations of simple and complex gas and particle-phase chemistry models. Detailed kinetics based on the GRI 3.0 mechanism and infinitely-fast chemistry are considered in the gas-phase.more » The Char Conversion Kinetics model and nth-Order Langmuir–Hinshelwood model are considered for char consumption. For devolatilization, the Chemical Percolation and Devolatilization and Kobayashi-Sarofim models are employed. The relative importance of gasification versus oxidation reactions in air and oxyfuel environments is also examined for various coal types. Results are compared to previously published experimental data collected under laminar, single-particle conditions. Calculated particle temperature histories are strongly dependent on the choice of gas phase and char chemistry models, but only weakly dependent on the chosen devolatilization model. Particle mass calculations were found to be very sensitive to the choice of devolatilization model, but only somewhat sensitive to the choice of gas chemistry and char chemistry models. High-fidelity models for devolatilization generally resulted in particle temperature and mass calculations that were closer to experimentally observed values.« less
Fitting complex population models by combining particle filters with Markov chain Monte Carlo.
Knape, Jonas; de Valpine, Perry
2012-02-01
We show how a recent framework combining Markov chain Monte Carlo (MCMC) with particle filters (PFMCMC) may be used to estimate population state-space models. With the purpose of utilizing the strengths of each method, PFMCMC explores hidden states by particle filters, while process and observation parameters are estimated using an MCMC algorithm. PFMCMC is exemplified by analyzing time series data on a red kangaroo (Macropus rufus) population in New South Wales, Australia, using MCMC over model parameters based on an adaptive Metropolis-Hastings algorithm. We fit three population models to these data; a density-dependent logistic diffusion model with environmental variance, an unregulated stochastic exponential growth model, and a random-walk model. Bayes factors and posterior model probabilities show that there is little support for density dependence and that the random-walk model is the most parsimonious model. The particle filter Metropolis-Hastings algorithm is a brute-force method that may be used to fit a range of complex population models. Implementation is straightforward and less involved than standard MCMC for many models, and marginal densities for model selection can be obtained with little additional effort. The cost is mainly computational, resulting in long running times that may be improved by parallelizing the algorithm.
NASA Astrophysics Data System (ADS)
Eslami, Ghiyam; Esmaeilzadeh, Esmaeil; Pérez, Alberto T.
2016-10-01
Up and down motion of a spherical conductive particle in dielectric viscous fluid driven by a DC electric field between two parallel electrodes was investigated. A nonlinear differential equation, governing the particle dynamics, was derived, based on Newton's second law of mechanics, and solved numerically. All the pertaining dimensionless groups were extracted. In contrast to similar previous works, hydrodynamic interaction between the particle and the electrodes, as well as image electric forces, has been taken into account. Furthermore, the influence of the microdischarge produced between the electrodes and the approaching particle on the particle dynamics has been included in the model. The model results were compared with experimental data available in the literature, as well as with some additional experimental data obtained through the present study showing very good agreement. The results indicate that the wall hydrodynamic effect and the dielectric liquid ionic conductivity are very dominant factors determining the particle trajectory. A lower bound is derived for the charge transferred to the particle while rebounding from an electrode. It is found that the time and length scales of the post-microdischarge motion of the particle can be as small as microsecond and micrometer, respectively. The model is able to predict the so called settling/dwelling time phenomenon for the first time.
Investigating evaporation of melting ice particles within a bin melting layer model
NASA Astrophysics Data System (ADS)
Neumann, Andrea J.
Single column models have been used to help develop algorithms for remote sensing retrievals. Assumptions in the single-column models may affect the assumptions of the remote sensing retrievals. Studies of the melting layer that use single column models often assume environments that are near or at water saturation. This study investigates the effects of evaporation upon melting particles to determine whether the assumption of negligible mass loss still holds within subsaturated melting layers. A single column, melting layer model is modified to include the effects of sublimation and evaporation upon the particles. Other changes to the model include switching the order in which the model loops over particle sizes and model layers; including a particle sedimentation scheme; adding aggregation, accretion, and collision and coalescence processes; allowing environmental variables such as the water vapor diffusivity and the Schmidt number to vary with the changes in the environment; adding explicitly calculated particle temperature, changing the particle terminal velocity parameterization; and using a newly-derived effective density-dimensional relationship for use in particle mass calculations. Simulations of idealized melting layer environments show that significant mass loss due to evaporation during melting is possible within subsaturated environments. Short melting distances, accelerating particle fall speeds, and short melting times help constrain the amount of mass lost due to evaporation while melting is occurring, even in subsaturated profiles. Sublimation prior to melting can also be a significant source of mass loss. The trends shown on the particle scale also appear in the bulk distribution parameters such as rainfall rate and ice water content. Simulations incorporating observed melting layer environments show that significant mass loss due to evaporation during the melting process is possible under certain environmental conditions. A profile such as the
Shear-driven particle size segregation: Models, analysis, numerical solutions, and experiments
NASA Astrophysics Data System (ADS)
May, Lindsay Bard Hilbert
Granular materials segregate by particle size when subject to shear, as in avalanches. Particles roll and slide across one another, and other particles fall into the voids that form, with smaller particles more likely to fit than larger particles. Small particles segregate to the bottom of the sample, and larger particles are levered upward. These processes are known as kinetic sieving and squeeze expulsion. The evolution of the volume fraction of small particles (ratio of the volume of small particles to the total volume of the system) corresponds to the evolution of segregation in a binary mixture of particles and can be modeled by a nonlinear first order partial differential equation, provided the velocity or shear is a known function of position. In an avalanche, shear is approximately uniform in depth, however, in boundary driven shear, the velocity is nonlinear and a shear band forms adjacent to the boundary. We explore size segregation with a laboratory experiment and by analyzing a model. We classify solutions to a fundamental initial boundary value problem for avalanche flow in two space dimensions akin to a two dimensional Riemann problem. We describe three solution types; the initial condition determines which solution occurs. We also modify the partial differential equation to model segregation in a system experiencing nonuniform shear. We experimentally investigate size segregation using an annular Couette cell, which is constructed of concentric cylinders and has a moving lower boundary that imparts shear to the system and an upper confining boundary that is free to move vertically to accommodate changes in the volume of the system. Initially, the Couette cell contains a layer of large particles below a layer of small particles. The system dilates as shear begins, then contracts as the sample mixes, and again expands as the sample resegregates; the height of the system is prescribed by the amount of mixing or segregation. At the end of the experiment
Trujillo, Francisco J; Eberhardt, Sebastian; Möller, Dirk; Dual, Jurg; Knoerzer, Kai
2013-03-01
A model was developed to determine the local changes of concentration of particles and the formations of bands induced by a standing acoustic wave field subjected to a sawtooth frequency ramping pattern. The mass transport equation was modified to incorporate the effect of acoustic forces on the concentration of particles. This was achieved by balancing the forces acting on particles. The frequency ramping was implemented as a parametric sweep for the time harmonic frequency response in time steps of 0.1s. The physics phenomena of piezoelectricity, acoustic fields and diffusion of particles were coupled and solved in COMSOL Multiphysics™ (COMSOL AB, Stockholm, Sweden) following a three step approach. The first step solves the governing partial differential equations describing the acoustic field by assuming that the pressure field achieves a pseudo steady state. In the second step, the acoustic radiation force is calculated from the pressure field. The final step allows calculating the locally changing concentration of particles as a function of time by solving the modified equation of particle transport. The diffusivity was calculated as function of concentration following the Garg and Ruthven equation which describes the steep increase of diffusivity when the concentration approaches saturation. However, it was found that this steep increase creates numerical instabilities at high voltages (in the piezoelectricity equations) and high initial particle concentration. The model was simplified to a pseudo one-dimensional case due to computation power limitations. The predicted particle distribution calculated with the model is in good agreement with the experimental data as it follows accurately the movement of the bands in the centre of the chamber.
Fine particle receptor modeling in the atmosphere of Mexico City.
Vega, Elizabeth; Lowenthal, Douglas; Ruiz, Hugo; Reyes, Elizabeth; Watson, John G; Chow, Judith C; Viana, Mar; Querol, Xavier; Alastuey, Andrés
2009-12-01
Source apportionment analyses were carried out by means of receptor modeling techniques to determine the contribution of major fine particulate matter (PM2.5) sources found at six sites in Mexico City. Thirty-six source profiles were determined within Mexico City to establish the fingerprints of particulate matter sources. Additionally, the profiles under the same source category were averaged using cluster analysis and the fingerprints of 10 sources were included. Before application of the chemical mass balance (CMB), several tests were carried out to determine the best combination of source profiles and species used for the fitting. CMB results showed significant spatial variations in source contributions among the six sites that are influenced by local soil types and land use. On average, 24-hr PM2.5 concentrations were dominated by mobile source emissions (45%), followed by secondary inorganic aerosols (16%) and geological material (17%). Industrial emissions representing oil combustion and incineration contributed less than 5%, and their contribution was higher at the industrial areas of Tlalnepantla (11%) and Xalostoc (8%). Other sources such as cooking, biomass burning, and oil fuel combustion were identified at lower levels. A second receptor model (principal component analysis, [PCA]) was subsequently applied to three of the monitoring sites for comparison purposes. Although differences were obtained between source contributions, results evidence the advantages of the combined use of different receptor modeling techniques for source apportionment, given the complementary nature of their results. Further research is needed in this direction to reach a better agreement between the estimated source contributions to the particulate matter mass.
Discrete Element Modeling (DEM) of Triboelectrically Charged Particles: Revised Experiments
NASA Technical Reports Server (NTRS)
Hogue, Michael D.; Calle, Carlos I.; Curry, D. R.; Weitzman, P. S.
2008-01-01
In a previous work, the addition of basic screened Coulombic electrostatic forces to an existing commercial discrete element modeling (DEM) software was reported. Triboelectric experiments were performed to charge glass spheres rolling on inclined planes of various materials. Charge generation constants and the Q/m ratios for the test materials were calculated from the experimental data and compared to the simulation output of the DEM software. In this paper, we will discuss new values of the charge generation constants calculated from improved experimental procedures and data. Also, planned work to include dielectrophoretic, Van der Waals forces, and advanced mechanical forces into the software will be discussed.
Modeling and Simulation of Cardiogenic Embolic Particle Transport to the Brain
NASA Astrophysics Data System (ADS)
Mukherjee, Debanjan; Jani, Neel; Shadden, Shawn C.
2015-11-01
Emboli are aggregates of cells, proteins, or fatty material, which travel along arteries distal to the point of their origin, and can potentially block blood flow to the brain, causing stroke. This is a prominent mechanism of stroke, accounting for about a third of all cases, with the heart being a prominent source of these emboli. This work presents our investigations towards developing numerical simulation frameworks for modeling the transport of embolic particles originating from the heart along the major arteries supplying the brain. The simulations are based on combining discrete particle method with image based computational fluid dynamics. Simulations of unsteady, pulsatile hemodynamics, and embolic particle transport within patient-specific geometries, with physiological boundary conditions, are presented. The analysis is focused on elucidating the distribution of particles, transport of particles in the head across the major cerebral arteries connected at the Circle of Willis, the role of hemodynamic variables on the particle trajectories, and the effect of considering one-way vs. two-way coupling methods for the particle-fluid momentum exchange. These investigations are aimed at advancing our understanding of embolic stroke using computational fluid dynamics techniques. This research was supported by the American Heart Association grant titled ``Embolic Stroke: Anatomic and Physiologic Insights from Image-Based CFD.''
Nye, Ben; Kulchitsky, Anton V; Johnson, Jerome B
2014-01-01
This paper describes a new method for representing concave polyhedral particles in a discrete element method as unions of convex dilated polyhedra. This method offers an efficient way to simulate systems with a large number of (generally concave) polyhedral particles. The method also allows spheres, capsules, and dilated triangles to be combined with polyhedra using the same approach. The computational efficiency of the method is tested in two different simulation setups using different efficiency metrics for seven particle types: spheres, clusters of three spheres, clusters of four spheres, tetrahedra, cubes, unions of two octahedra (concave), and a model of a computer tomography scan of a lunar simulant GRC-3 particle. It is shown that the computational efficiency of the simulations degrades much slower than the increase in complexity of the particles in the system. The efficiency of the method is based on the time coherence of the system, and an efficient and robust distance computation method between polyhedra as particles never intersect for dilated particles. PMID:26300584
Nye, Ben; Kulchitsky, Anton V; Johnson, Jerome B
2014-06-25
This paper describes a new method for representing concave polyhedral particles in a discrete element method as unions of convex dilated polyhedra. This method offers an efficient way to simulate systems with a large number of (generally concave) polyhedral particles. The method also allows spheres, capsules, and dilated triangles to be combined with polyhedra using the same approach. The computational efficiency of the method is tested in two different simulation setups using different efficiency metrics for seven particle types: spheres, clusters of three spheres, clusters of four spheres, tetrahedra, cubes, unions of two octahedra (concave), and a model of a computer tomography scan of a lunar simulant GRC-3 particle. It is shown that the computational efficiency of the simulations degrades much slower than the increase in complexity of the particles in the system. The efficiency of the method is based on the time coherence of the system, and an efficient and robust distance computation method between polyhedra as particles never intersect for dilated particles.
A novel method for modeling of complex wall geometries in smoothed particle hydrodynamics
NASA Astrophysics Data System (ADS)
Eitzlmayr, Andreas; Koscher, Gerold; Khinast, Johannes
2014-10-01
Smoothed particle hydrodynamics (SPH) has become increasingly important during recent decades. Its meshless nature, inherent representation of convective transport and ability to simulate free surface flows make SPH particularly promising with regard to simulations of industrial mixing devices for high-viscous fluids, which often have complex rotating geometries and partially filled regions (e.g., twin-screw extruders). However, incorporating the required geometries remains a challenge in SPH since the most obvious and most common ways to model solid walls are based on particles (i.e., boundary particles and ghost particles), which leads to complications with arbitrarily-curved wall surfaces. To overcome this problem, we developed a systematic method for determining an adequate interaction between SPH particles and a continuous wall surface based on the underlying SPH equations. We tested our new approach by using the open-source particle simulator "LIGGGHTS" and comparing the velocity profiles to analytical solutions and SPH simulations with boundary particles. Finally, we followed the evolution of a tracer in a twin-cam mixer during the rotation, which was experimentally and numerically studied by several other authors, and ascertained good agreement with our results. This supports the validity of our newly-developed wall interaction method, which constitutes a step forward in SPH simulations of complex geometries.
Why Do We Believe that an Atom Is Colourless? Reflections about the Teaching of the Particle Model.
ERIC Educational Resources Information Center
Albanese, Alessandro; Vicentini, Matilde
1997-01-01
Highlights students' ideas about the particle model of matter and its use. Discusses the atomic model in teaching and the rules of the particle modeling game. Demonstrates how a complete understanding of the rules of the model construction yields guidelines for didactic practice. Focuses on problems connected with visual communication through…
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Cucinotta, Francis A.; Zeitlin, Cary; Hassler, Donald M.; Ehresmann, Bent; Rafkin, Scot C. R.; Wimmer-Schweingruber, Robert F.; Boettcher, Stephan; Boehm, Eckart; Guo, Jingnan; Koehler, Jan; Martin, Cesar; Reitz, Guenther; Posner, Arik
2014-01-01
Detailed measurements of the energetic particle radiation environment on the surface of Mars have been made by the Radiation Assessment Detector (RAD) on the Curiosity rover since August 2012. RAD is a particle detector that measures the energy spectrum of charged particles (10 to approx. 200 MeV/u) and high energy neutrons (approx 8 to 200 MeV). The data obtained on the surface of Mars for 300 sols are compared to the simulation results using the Badhwar-O'Neill galactic cosmic ray (GCR) environment model and the high-charge and energy transport (HZETRN) code. For the nuclear interactions of primary GCR through Mars atmosphere and Curiosity rover, the quantum multiple scattering theory of nuclear fragmentation (QMSFRG) is used. For describing the daily column depth of atmosphere, daily atmospheric pressure measurements at Gale Crater by the MSL Rover Environmental Monitoring Station (REMS) are implemented into transport calculations. Particle flux at RAD after traversing varying depths of atmosphere depends on the slant angles, and the model accounts for shielding of the RAD "E" dosimetry detector by the rest of the instrument. Detailed comparisons between model predictions and spectral data of various particle types provide the validation of radiation transport models, and suggest that future radiation environments on Mars can be predicted accurately. These contributions lend support to the understanding of radiation health risks to astronauts for the planning of various mission scenarios
Model simulations of particle aggregation effect on colloid exchange between streams and streambeds.
Areepitak, Trachu; Ren, Jianhong
2011-07-01
Colloids found in natural streams have large reactive surface areas, which makes them significant absorbents and carriers for pollutants. Stream-subsurface exchange plays a critical role in regulating the transport of colloids and contaminants in natural streams. Previous process-based multiphase exchange models were developed without consideration of colloid-colloid interaction. However, many studies have indicated that aggregation is a significant process and needs to be considered in stream process analysis. Herein, a new colloid exchange model was developed by including particle aggregation in addition to colloid settling and filtration. Self-preserving size distribution concepts and classical aggregation theory were employed to model the aggregation process. Model simulations indicate that under conditions of low filtration and high degree of particle-particle interaction, aggregation could either decrease or increase the amount of colloids retained in streambeds, depending on the initial particle size. Thus, two possible cases may occur including enhanced colloid deposition and facilitated colloid transport. Also, when the aggregation rate is high and filtration increases, more particles are retained by bed sediments due to filtration, and fewer are aggregated, which reduces the extent of aggregation effect on colloid deposition. The work presented here will contribute to a better understanding and prediction of colloid transport phenomena in natural streams.
A new approach for fluid dynamics simulation: The Short-lived Water Cuboid Particle model
NASA Astrophysics Data System (ADS)
Qiao, Changjian; Li, Jiansong; Tian, Zongshun
2016-09-01
There are many researches to simulate the fluid which adopt the traditional particle-based approach and the grid-based approach. However, it needs massive storage in the traditional particle-based approach and it is very complicated to design the grid-based approach with the Navier-Stokes Equations or the Shallow Water Equations (SWEs) because of the difficulty of solving equations. This paper presents a new model called the Short-lived Water Cuboid Particle model. It updates the fluid properties (mass and momentum) recorded in the fixed Cartesian grids by computing the weighted sum of the water cuboid particles with a time step life. Thus it is a two-type-based approach essentially, which not only owns efficient computation and manageable memory like the grid-based approach, but also deals with the discontinuous water surface (wet/dry fronts, boundary conditions, etc.) with high accuracy as well as the particle-based approach. The proposed model has been found capable to simulate the fluid excellently for three laboratory experimental cases and for the field case study of the Malpasset dam-break event occurred in France in 1959. The obtained results show that the model is proved to be an alternative approach to simulate the fluid dynamics with a fair accuracy.
A Simple Model of Bose-Einstein Condensation of Interacting Particles
NASA Astrophysics Data System (ADS)
Poluektov, Yu. M.
2017-03-01
A simple model of Bose-Einstein condensation of interacting particles is proposed. It is shown that in the condensate state the dependence of thermodynamic quantities on the interaction constant does not allow an expansion in powers of the coupling constant. Therefore, it is impossible to pass to the Einstein model of condensation in an ideal Bose gas by means of a limiting passage, setting the interaction constant to zero. The account for the interaction between particles eliminates difficulties in the description of condensation available in the model of an ideal gas, which are connected with the fulfillment of thermodynamic relations and an infinite value of the particle number fluctuation in the condensate phase.
NASA Astrophysics Data System (ADS)
Dellino, Pierfrancesco; Büttner, Ralf; Dioguardi, Fabio; Doronzo, Domenico Maria; La Volpe, Luigi; Mele, Daniela; Sonder, Ingo; Sulpizio, Roberto; Zimanowski, Bernd
2010-05-01
Pyroclastic flows are ground hugging, hot, gas-particle flows. They represent the most hazardous events of explosive volcanism, one striking example being the famous historical eruption of Pompeii (AD 79) at Vesuvius. Much of our knowledge on the mechanics of pyroclastic flows comes from theoretical models and numerical simulations. Valuable data are also stored in the geological record of past eruptions, i.e. the particles contained in pyroclastic deposits, but they are rarely used for quantifying the destructive potential of pyroclastic flows. In this paper, by means of experiments, we validate a model that is based on data from pyroclastic deposits. It allows the reconstruction of the current's fluid-dynamic behaviour. We show that our model results in likely values of dynamic pressure and particle volumetric concentration, and allows quantifying the hazard potential of pyroclastic flows.
Smoothed particle hydrodynamics model for phase separating fluid mixtures. I. General equations.
Thieulot, Cedric; Janssen, L P B M; Español, Pep
2005-07-01
We present a thermodynamically consistent discrete fluid particle model for the simulation of a recently proposed set of hydrodynamic equations for a phase separating van der Waals fluid mixture [P. Español and C.A.P. Thieulot, J. Chem. Phys. 118, 9109 (2003)]. The discrete model is formulated by following a discretization procedure given by the smoothed particle hydrodynamics (SPH) method within the thermodynamically consistent general equation for the nonequilibrium reversible-irreversible coupling (GENERIC) framework. Each fluid particle carries information on the mass, momentum, energy, and the mass fraction of the different components. The discrete model allows one to simulate nonisothermal dynamic evolution of phase separating fluids with surface tension effects while respecting the first and second laws of thermodynamics exactly.
Smoothed particle hydrodynamics model for phase separating fluid mixtures. I. General equations
NASA Astrophysics Data System (ADS)
Thieulot, Cedric; Janssen, L. P. B. M.; Español, Pep
2005-07-01
We present a thermodynamically consistent discrete fluid particle model for the simulation of a recently proposed set of hydrodynamic equations for a phase separating van der Waals fluid mixture [P. Español and C.A.P. Thieulot, J. Chem. Phys. 118, 9109 (2003)]. The discrete model is formulated by following a discretization procedure given by the smoothed particle hydrodynamics (SPH) method within the thermodynamically consistent general equation for the nonequilibrium reversible-irreversible coupling (GENERIC) framework. Each fluid particle carries information on the mass, momentum, energy, and the mass fraction of the different components. The discrete model allows one to simulate nonisothermal dynamic evolution of phase separating fluids with surface tension effects while respecting the first and second laws of thermodynamics exactly.
Implications of the GSFC Q3 model for trapped particle motion
NASA Technical Reports Server (NTRS)
Acuna, M. H.; Connerney, J. E. P.; Ness, N. F.
1988-01-01
The Uranus magnetic field model of Connerney et al. (1987), designated GSFC Q3, is used to compute field geometric invariant parameters that determine the adiabatic motion of energetic charged particles trapped in the Uranian magnetosphere, performing computations only for points located along the Voyager 2 flyby trajectory. The L-shell values computed along the Voyager-2 trajectory were compared with L shell values corresponding to the orbital positions for the Uranian satellites Ariel, Umbriel, Miranda, and Titania for a time period centered on the time of the Voyager 2 closest approach to the planet. Bimodal distributions of L minima asociated with the orbital motion of the moons are obtained, thus complicating the model predictions and correlations with charged particle data. The location of charged particle absorption signatures associated with the sweeping effects of the Uranian satellites is reasonably predicted, but significant discrepancies remain which cannot be explained by Q3 model uncertainties.
Implications of the GSFC Q3 model for trapped particle motion
NASA Astrophysics Data System (ADS)
Acuna, M. H.; Connerney, J. E. P.; Ness, N. F.
1988-06-01
The Uranus magnetic field model of Connerney et al. (1987), designated GSFC Q3, is used to compute field geometric invariant parameters that determine the adiabatic motion of energetic charged particles trapped in the Uranian magnetosphere, performing computations only for points located along the Voyager 2 flyby trajectory. The L-shell values computed along the Voyager-2 trajectory were compared with L shell values corresponding to the orbital positions for the Uranian satellites Ariel, Umbriel, Miranda, and Titania for a time period centered on the time of the Voyager 2 closest approach to the planet. Bimodal distributions of L minima asociated with the orbital motion of the moons are obtained, thus complicating the model predictions and correlations with charged particle data. The location of charged particle absorption signatures associated with the sweeping effects of the Uranian satellites is reasonably predicted, but significant discrepancies remain which cannot be explained by Q3 model uncertainties.
A phenomenological cost model for high energy particle accelerators
NASA Astrophysics Data System (ADS)
Shiltsev, V.
2014-07-01
Accelerator-based facilities have enabled forefront research in high-energy physics for more than half a century. The accelerator technology of colliders has progressed immensely, while beam energy, luminosity, facility size, and cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. In this paper we derive a simple scaling model for the cost of large accelerators and colliding beam facilities based on costs of 17 big facilities which have been either built or carefully estimated. Although this approach cannot replace an actual cost estimate based on an engineering design, this parameterization is to indicate a somewhat realistic cost range for consideration of what future frontier accelerator facilities might be fiscally realizable.
Modeling of combustion processes in a solid fuel particle
Howard, D.W.
1990-01-01
During the production of granules of uranium oxide, granules of ion exchange resin, loaded with uranium ions, are burned to remove the resin matrix and leave a uranium oxide ash''. Under some conditions of combustion, the oxide granules are produced in a highly fractured, porous state, while other conditions result in hard, dense, solid granules. ABAQUS, a commercial finite-element code, run on an IBM 3090, was used to model the physical processes occurring during combustion: heat transfer with a very nonlinear temperature-dependent rate of heat generation, diffusion of reactants and products, and stress/strain resulting from the differential temperatures and from the phase changes during the combustion. The ABAQUS simulation successfully explained the differences in morphology of the granules under different conditions, and lead to control strategies to produce the desired morphology. 10 figs.
User guide for MODPATH version 6 - A particle-tracking model for MODFLOW
Pollock, David W.
2012-01-01
MODPATH is a particle-tracking post-processing model that computes three-dimensional flow paths using output from groundwater flow simulations based on MODFLOW, the U.S. Geological Survey (USGS) finite-difference groundwater flow model. This report documents MODPATH version 6. Previous versions were documented in USGS Open-File Reports 89-381 and 94-464. The program uses a semianalytical particle-tracking scheme that allows an analytical expression of a particle's flow path to be obtained within each finite-difference grid cell. A particle's path is computed by tracking the particle from one cell to the next until it reaches a boundary, an internal sink/source, or satisfies another termination criterion. Data input to MODPATH consists of a combination of MODFLOW input data files, MODFLOW head and flow output files, and other input files specific to MODPATH. Output from MODPATH consists of several output files, including a number of particle coordinate output files intended to serve as input data for other programs that process, analyze, and display the results in various ways. MODPATH is written in FORTRAN and can be compiled by any FORTRAN compiler that fully supports FORTRAN-2003 or by most commercially available FORTRAN-95 compilers that support the major FORTRAN-2003 language extensions.
July 29, 2977 magnetic storm: observations and modeling of energetic particles at synchronous orbit
Baker, D.N.; Fritz, T.A.; Wilken, B.
1981-01-01
A brief description of the energetic particle studies carried out by Subgroup 6 of CDAW-2 is presented. Instrumentation onboard six spacecraft at (or near) geostationary orbit was used in the analysis. Timing of particle injection during the last, and largest, substorm on July 29, 1977 (approx. 1200 UT) was investigated, as was the particle phase space density variation associated with this event. Energetic proton gradient anisotropies were also used to examine large-scale magnetospheric boundary motions. Finally, adiabatic modeling calculations were performed for the substorm event period, including effects of injection, convection, corotation, and particle drifts. We find substantial evidence to suggest storage of solar wind-derived energy in the magnetotail prior to the substorm and we find this stored energy to be suddenly released at substorm expansion onset. We also find particles at geostationary orbit to be newly accelerated during the substorm to energies greater than or equal to 1 MeV (..mu.. greater than or equal to 100 MeV/G) and modeling shows that these particles could have been convected (and injected) from beyond 10 R/sub E/ in the nightside magnetosphere.
Modeling the inherent optical properties of aquatic particles using an irregular hexahedral ensemble
NASA Astrophysics Data System (ADS)
Xu, Guanglang; Sun, Bingqiang; Brooks, Sarah D.; Yang, Ping; Kattawar, George W.; Zhang, Xiaodong
2017-04-01
A statistical approach in defining particle morphology in terms of an ensemble of hexahedra of distorted shapes is employed for modeling the Inherent Optical Properties (IOPs) of aquatic particles. The approach is inspired by the rich variability in shapes of real aquatic particles that cannot be represented by one particular shape. Two methods, the Invariant Imbedding T-matrix (II-TM) and Physical Geometric Optics Hybrid (PGOH) method, are combined to simulate the IOPs for aquatic particles of sizes ranging from the Rayleigh scattering to geometric optics regimes. Nonspherical effects on the IOPs are examined by comparing the results with predictions based on the Lorenz-Mie theory to explore the limitations of assuming the particles to be spherical. We pay special attention to backscattering-related and polarimetric scattering properties, particularly the backscattering ratio, Gordon parameter, backscattering volume scattering function and the degree of linear polarization. The simulated IOPs are compared with the in-situ measurements to assess the feasibility of using a hexahedral ensemble in modeling the IOPs of the aquatic particles.
Walters, D Keith; Luke, William H
2011-01-01
Computational fluid dynamics (CFD) has emerged as a useful tool for the prediction of airflow and particle transport within the human lung airway. Several published studies have demonstrated the use of Eulerian finite-volume CFD simulations coupled with Lagrangian particle tracking methods to determine local and regional particle deposition rates in small subsections of the bronchopulmonary tree. However, the simulation of particle transport and deposition in large-scale models encompassing more than a few generations is less common, due in part to the sheer size and complexity of the human lung airway. Highly resolved, fully coupled flowfield solution and particle tracking in the entire lung, for example, is currently an intractable problem and will remain so for the foreseeable future. This paper adopts a previously reported methodology for simulating large-scale regions of the lung airway (Walters, D. K., and Luke, W. H., 2010, "A Method for Three-Dimensional Navier-Stokes Simulations of Large-Scale Regions of the Human Lung Airway," ASME J. Fluids Eng., 132(5), p. 051101), which was shown to produce results similar to fully resolved geometries using approximate, reduced geometry models. The methodology is extended here to particle transport and deposition simulations. Lagrangian particle tracking simulations are performed in combination with Eulerian simulations of the airflow in an idealized representation of the human lung airway tree. Results using the reduced models are compared with those using the fully resolved models for an eight-generation region of the conducting zone. The agreement between fully resolved and reduced geometry simulations indicates that the new method can provide an accurate alternative for large-scale CFD simulations while potentially reducing the computational cost of these simulations by several orders of magnitude.
Modeling Gas-Particle Partitioning of SOA: Effects of Aerosol Physical State and RH
NASA Astrophysics Data System (ADS)
Zuend, A.; Seinfeld, J.
2011-12-01
Aged tropospheric aerosol particles contain mixtures of inorganic salts, acids, water, and a large variety of organic compounds. In liquid aerosol particles non-ideal mixing of all species determines whether the condensed phase undergoes liquid-liquid phase separation or whether it is stable in a single mixed phase, and whether it contains solid salts in equilibrium with their saturated solution. The extended thermodynamic model AIOMFAC is able to predict such phase states by representing the variety of organic components using functional groups within a group-contribution concept. The number and composition of different condensed phases impacts the diversity of reaction media for multiphase chemistry and the gas-particle partitioning of semivolatile species. Recent studies show that under certain conditions biogenic and other organic-rich particles can be present in a highly viscous, semisolid or amorphous solid physical state, with consequences regarding reaction kinetics and mass transfer limitations. We present results of new gas-particle partitioning computations for aerosol chamber data using a model based on AIOMFAC activity coefficients and state-of-the-art vapor pressure estimation methods. Different environmental conditions in terms of temperature, relative humidity (RH), salt content, amount of precursor VOCs, and physical state of the particles are considered. We show how modifications of absorptive and adsorptive gas-particle mass transfer affects the total aerosol mass in the calculations and how the results of these modeling approaches compare to data of aerosol chamber experiments, such as alpha-pinene oxidation SOA. For a condensed phase in a mixed liquid state containing ammonium sulfate, the model predicts liquid-liquid phase separation up to high RH in case of, on average, moderately hydrophilic organic compounds, such as first generation oxidation products of alpha-pinene. The computations also reveal that treating liquid phases as ideal
NASA Astrophysics Data System (ADS)
Hong, Sungwook E.; Park, Changbom; Kim, Juhan
2016-06-01
We develop a galaxy assignment scheme that populates dark matter halos with galaxies by tracing the most bound member particles (MBPs) of simulated halos. Several merger timescale models based on analytic calculations and numerical simulations are adopted as the survival times of mock satellite galaxies. We build mock galaxy samples from halo merger data of the Horizon Run 4 N-body simulation from z = 12-0. We compare group properties and two-point correlation functions (2pCFs) of mock galaxies with those of volume-limited SDSS galaxies, with r-band absolute magnitudes of {{ M }}r-5{log}h\\lt -21 and -20 at z = 0. It is found that the MBP-galaxy correspondence scheme reproduces the observed population of SDSS galaxies in massive galaxy groups (M\\gt {10}14 {h}-1 {M}⊙ ) and the small-scale 2pCF ({r}{{p}}\\lt 10 {h}-1 {Mpc}) quite well for the majority of the merger timescale models adopted. The new scheme outperforms the previous subhalo-galaxy correspondence scheme by more than 2σ.
Exact hybrid particle/population simulation of rule-based models of biochemical systems.
Hogg, Justin S; Harris, Leonard A; Stover, Lori J; Nair, Niketh S; Faeder, James R
2014-04-01
Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings
Barclay, Thomas G; Rajapaksha, Harinda; Thilagam, Alagu; Qian, Gujie; Ginic-Markovic, Milena; Cooper, Peter D; Gerson, Andrea; Petrovsky, Nikolai
2016-06-05
This study combined physical data from synchrotron SAXS, FTIR and microscopy with in-silico molecular structure predictions and mathematical modeling to examine inulin adjuvant particle formation and structure. The results show that inulin polymer chains adopt swollen random coil in solution. As precipitation occurs from solution, interactions between the glucose end group of one chain and a fructose group of an adjacent chain help drive organized assembly, initially forming inulin ribbons with helical organization of the chains orthogonal to the long-axis of the ribbon. Subsequent aggregation of the ribbons results in the layered semicrystalline particles previously shown to act as potent vaccine adjuvants. γ-Inulin adjuvant particles consist of crystalline layers 8.5 nm thick comprising helically organized inulin chains orthogonal to the plane of the layer. These crystalline layers alternate with amorphous layers 2.4 nm thick, to give overall particle crystallinity of 78%.
Particle filtering with path sampling and an application to a bimodal ocean current model
Weare, Jonathan
2009-07-01
This paper introduces a recursive particle filtering algorithm designed to filter high dimensional systems with complicated non-linear and non-Gaussian effects. The method incorporates a parallel marginalization (PMMC) step in conjunction with the hybrid Monte Carlo (HMC) scheme to improve samples generated by standard particle filters. Parallel marginalization is an efficient Markov chain Monte Carlo (MCMC) strategy that uses lower dimensional approximate marginal distributions of the target distribution to accelerate equilibration. As a validation the algorithm is tested on a 2516 dimensional, bimodal, stochastic model motivated by the Kuroshio current that runs along the Japanese coast. The results of this test indicate that the method is an attractive alternative for problems that require the generality of a particle filter but have been inaccessible due to the limitations of standard particle filtering strategies.
Fienen, Michael N.; Selbig, William R.
2012-01-01
A new sample collection system was developed to improve the representation of sediment entrained in urban storm water by integrating water quality samples from the entire water column. The depth-integrated sampler arm (DISA) was able to mitigate sediment stratification bias in storm water, thereby improving the characterization of suspended-sediment concentration and particle size distribution at three independent study locations. Use of the DISA decreased variability, which improved statistical regression to predict particle size distribution using surrogate environmental parameters, such as precipitation depth and intensity. The performance of this statistical modeling technique was compared to results using traditional fixed-point sampling methods and was found to perform better. When environmental parameters can be used to predict particle size distributions, environmental managers have more options when characterizing concentrations, loads, and particle size distributions in urban runoff.
Hydrodynamic modeling of targeted magnetic-particle delivery in a blood vessel.
Weng, Huei Chu
2013-03-01
Since the flow of a magnetic fluid could easily be influenced by an external magnetic field, its hydrodynamic modeling promises to be useful for magnetically controllable delivery systems. It is desirable to understand the flow fields and characteristics before targeted magnetic particles arrive at their destination. In this study, we perform an analysis for the effects of particles and a magnetic field on biomedical magnetic fluid flow to study the targeted magnetic-particle delivery in a blood vessel. The fully developed solutions of velocity, flow rate, and flow drag are derived analytically and presented for blood with magnetite nanoparticles at body temperature. Results reveal that in the presence of magnetic nanoparticles, a minimum magnetic field gradient (yield gradient) is required to initiate the delivery. A magnetic driving force leads to the increase in velocity and has enhancing effects on flow rate and flow drag. Such a magnetic driving effect can be magnified by increasing the particle volume fraction.
Multiscale modeling of the thixotropic behavior of aggregating soft colloidal particle suspensions
NASA Astrophysics Data System (ADS)
Mwasame, Paul; Wagner, Norman; Beris, Antony
A multiscale model is presented that incorporates microscopic information at the soft, aggregating, colloidal particle level to a macroscopic description of a thixotropic suspension with a yield stress. This is accomplished by incorporating the relevant physics describing aggregation and breakage at the particle level into a population balance microscopic framework. A moment approach is followed to allow for model coarsening and its incorporation into a macroscopic description. Furthermore, to describe the aggregate dynamics under flow, it is necessary to include an additional description of the aggregate deformation. The yielding behavior of gel networks observed in thixotropic suspensions is modeled by adapting micromechanical models of emulsions and pastes to describe aggregate deformation under flow. A key outcome of this work is the recognition of the important role of competition between orthokinetic and perikinetic aggregation on polydispersity and dynamical behavior. Comparison to rheological experiments on a model thixotropic suspension will also be presented to validate the model developed. NSF CBET 312146.
Radioactive Pollution Estimate for Fukushima Nuclear Power Plant by a Particle Model
NASA Astrophysics Data System (ADS)
Saito, Keisuke; Ogawa, Susumu
2016-06-01
On Mar 12, 2011, very wide radioactive pollution occurred by a hydrogen explosion in Fukushima Nuclear Power Plant. A large amount of radioisotopes started with four times of explosions. With traditional atmospheric diffusion models could not reconstruct radioactive pollution in Fukushima. Then, with a particle model, this accident was reconstructed from meteorological archive and Radar- AMeDAS. Calculations with the particle model were carried out for Mar 12, 15, 18 and 20 when east southeast winds blew for five hours continuously. Meteorological archive is expressed by wind speeds and directions in five-km grid every hour with eight classes of height till 3000 m. Radar- AMeDAS is precipitation data in one-km grid every thirty minutes. Particles are ten scales of 0.01 to 0.1 mm in diameter with specific weight of 2.65 and vertical speeds given by Stokes equation. But, on Mar 15, it rained from 16:30 and then the particles fell down at a moment as wet deposit in calculation. On the other hand, the altitudes on the ground were given by DEM with 1 km-grid. The spatial dose by emitted radioisotopes was referred to the observation data at monitoring posts of Tokyo Electric Power Company. The falling points of radioisotopes were expressed on the map using the particle model. As a result, the same distributions were obtained as the surface spatial dose of radioisotopes in aero-monitoring by Ministry of Education, Culture, Sports, Science and Technology. Especially, on Mar 15, the simulated pollution fitted to the observation, which extended to the northwest of Fukushima Daiichi Nuclear Power Plant and caused mainly sever pollution. By the particle model, the falling positions on the ground were estimated each particle size. Particles with more than 0.05 mm of size were affected by the topography and blocked by the mountains with the altitudes of more than 700 m. The particle model does not include the atmospheric stability, the source height, and deposit speeds. The
Modeling and experiments of the adhesion force distribution between particles and a surface.
You, Siming; Wan, Man Pun
2014-06-17
Due to the existence of surface roughness in real surfaces, the adhesion force between particles and the surface where the particles are deposited exhibits certain statistical distributions. Despite the importance of adhesion force distribution in a variety of applications, the current understanding of modeling adhesion force distribution is still limited. In this work, an adhesion force distribution model based on integrating the root-mean-square (RMS) roughness distribution (i.e., the variation of RMS roughness on the surface in terms of location) into recently proposed mean adhesion force models was proposed. The integration was accomplished by statistical analysis and Monte Carlo simulation. A series of centrifuge experiments were conducted to measure the adhesion force distributions between polystyrene particles (146.1 ± 1.99 μm) and various substrates (stainless steel, aluminum and plastic, respectively). The proposed model was validated against the measured adhesion force distributions from this work and another previous study. Based on the proposed model, the effect of RMS roughness distribution on the adhesion force distribution of particles on a rough surface was explored, showing that both the median and standard deviation of adhesion force distribution could be affected by the RMS roughness distribution. The proposed model could predict both van der Waals force and capillary force distributions and consider the multiscale roughness feature, greatly extending the current capability of adhesion force distribution prediction.
Jin, C.; Potts, I.; Reeks, M. W.
2015-05-15
We present a simple stochastic quadrant model for calculating the transport and deposition of heavy particles in a fully developed turbulent boundary layer based on the statistics of wall-normal fluid velocity fluctuations obtained from a fully developed channel flow. Individual particles are tracked through the boundary layer via their interactions with a succession of random eddies found in each of the quadrants of the fluid Reynolds shear stress domain in a homogeneous Markov chain process. In this way, we are able to account directly for the influence of ejection and sweeping events as others have done but without resorting to the use of adjustable parameters. Deposition rate predictions for a wide range of heavy particles predicted by the model compare well with benchmark experimental measurements. In addition, deposition rates are compared with those obtained from continuous random walk models and Langevin equation based ejection and sweep models which noticeably give significantly lower deposition rates. Various statistics related to the particle near wall behavior are also presented. Finally, we consider the model limitations in using the model to calculate deposition in more complex flows where the near wall turbulence may be significantly different.
Modeling Bimolecular Reactions and Transport in Porous Media Via Particle Tracking
Dong Ding; David Benson; Amir Paster; Diogo Bolster
2012-01-01
We use a particle-tracking method to simulate several one-dimensional bimolecular reactive transport experiments. In this numerical method, the reactants are represented by particles: advection and dispersion dominate the flow, and molecular diffusion dictates, in large part, the reactions. The particle/particle reactions are determined by a combination of two probabilities dictated by the physics of transport and energetics of reaction. The first is that reactant particles occupy the same volume over a short time interval. The second is the conditional probability that two collocated particles favorably transform into a reaction. The first probability is a direct physical representation of the degree of mixing in an advancing displacement front, and as such lacks empirical parameters except for the user-defined number of particles. This number can be determined analytically from concentration autocovariance, if this type of data is available. The simulations compare favorably to two physical experiments. In one, the concentration of product, 1,2-naphthoquinoe-4-aminobenzene (NQAB) from reaction between 1,2-naphthoquinone-4-sulfonic acid (NQS) and aniline (AN), was measured at the outflow of a column filled with glass beads at different times. In the other, the concentration distribution of reactants (CuSO_4 and EDTA^{4-}) and products (CuEDTA^{4-}) were quantified by snapshots of transmitted light through a column packed with cryloite sand. The thermodynamic rate coefficient in the latter experiment was 10^7 times greater than the former experiment, making it essentially instantaneous. When compared to the solution of the advection-dispersion-reaction equation (ADRE) with the well-mixed reaction coefficient, the experiments and the particle-tracking simulations showed on the order of 20% to 40% less overall product, which is attributed to poor mixing. The poor mixing also leads to higher product concentrations on the edges of the mixing zones, which the particle
Particle Swarm Social Model for Group Social Learning in Adaptive Environment
Cui, Xiaohui; Potok, Thomas E; Treadwell, Jim N; Patton, Robert M; Pullum, Laura L
2008-01-01
This report presents a study of integrating particle swarm algorithm, social knowledge adaptation and multi-agent approaches for modeling the social learning of self-organized groups and their collective searching behavior in an adaptive environment. The objective of this research is to apply the particle swarm metaphor as a model of social learning for a dynamic environment. The research provides a platform for understanding and insights into knowledge discovery and strategic search in human self-organized social groups, such as insurgents or online communities.
MODELING OF FRICTION STIR WELDING (FSW) PROCESS USING SMOOTH PARTICLE HYDRODYNAMICS (SPH)
Tartakovsky, Alexandre M.; Grant, Glenn J.; Sun, Xin; Khaleel, Mohammad A.
2006-06-14
We present a novel modeling approach to simulate FSW process that may have significant advantages over current traditional finite element or finite difference based methods. The proposed model is based on Smoothed Particle Hydrodynamics (SPH) method, a fully Lagrangian particle method that can simulate the dynamics of interfaces, large material deformations, void formations and material's strain and temperature history without employing complex tracking schemes. Two- and three-dimensional simulations for different tool designs are presented. Preliminary numerical results are in good qualitative agreement with experimental observations.
3D Air Filtration Modeling for Nanofiber Based Filters in the Ultrafine Particle Size Range
NASA Astrophysics Data System (ADS)
Sambaer, Wannes; Zatloukal, Martin; Kimmer, Dusan
2011-07-01
In this work, novel 3D filtration model for nanofiber based filters has been proposed and tested. For the model validation purposes, filtration efficiency characteristics of two different polyurethane nanofiber based structures (prepared by the electrospinning process) were determined experimentally in the ultrafine particle size range (20-400 nm). It has been found that the proposed model is able to reasonably predict the measured filtration efficiency curves for both tested samples.
Thieulot, Cedric; Janssen, L P B M; Español, Pep
2005-07-01
A previously formulated smoothed particle hydrodynamics model for a phase separating mixture is tested for the case when viscous processes are negligible and only mass and energy diffusive processes take place. We restrict ourselves to the case of a binary mixture that can exhibit liquid-liquid phase separation. The thermodynamic consistency of the model is assessed and the potential of the model to study complex pattern formation in the presence of various thermal boundaries is illustrated.
Schutyser, M A I; Briels, W J; Boom, R M; Rinzema, A
2004-05-20
The development of mathematical models facilitates industrial (large-scale) application of solid-state fermentation (SSF). In this study, a two-phase model of a drum fermentor is developed that consists of a discrete particle model (solid phase) and a continuum model (gas phase). The continuum model describes the distribution of air in the bed injected via an aeration pipe. The discrete particle model describes the solid phase. In previous work, mixing during SSF was predicted with the discrete particle model, although mixing simulations were not carried out in the current work. Heat and mass transfer between the two phases and biomass growth were implemented in the two-phase model. Validation experiments were conducted in a 28-dm3 drum fermentor. In this fermentor, sufficient aeration was provided to control the temperatures near the optimum value for growth during the first 45-50 hours. Several simulations were also conducted for different fermentor scales. Forced aeration via a single pipe in the drum fermentors did not provide homogeneous cooling in the substrate bed. Due to large temperature gradients, biomass yield decreased severely with increasing size of the fermentor. Improvement of air distribution would be required to avoid the need for frequent mixing events, during which growth is hampered. From these results, it was concluded that the two-phase model developed is a powerful tool to investigate design and scale-up of aerated (mixed) SSF fermentors.
Guha, R A; Shear, N H; Papini, M
2010-10-01
The impact and penetration of high speed particles with the human skin is of interest for targeted drug delivery by transdermal powder injection. However, it is often difficult to perform penetration experiments on dermal tissue using micron scale particles. To address this, a finite element model of the impact and penetration of a 2 μm gold particle into the human dermis was developed and calibrated using experiments found in the literature. Using dimensional analysis, the model was linked to a larger scale steel ball-gelatin system in order to extract key material parameters for both systems and perform impact studies. In this manner, an elastic modulus of 2.25 MPa was found for skin, in good agreement with reported values from the literature. Further gelatin experiments were performed with steel, polymethyl methacrylate, titanium, and tungsten carbide balls in order to determine the effects of particle size and density on penetration depth. Both the finite element model and the steel-gelatin experiments were able to predict the penetration behavior that was found by other investigators in the study of the impact of typical particles used for vaccine delivery into the human dermis. It can therefore be concluded that scaled up systems utilizing ballistic gelatins can be used to investigate the performance of transdermal powder injection technology.
Modeling the impact of sea-spray on particle concentrations in a coastal city.
Pryor, S C; Barthelmie, R J; Schoof, J T; Binkowski, F S; Delle Monache, L; Stull, R
2008-02-25
With the worlds population becoming increasingly focused on coastal locations there is a need to better understand the interactions between anthropogenic emissions and marine atmospheres. Herein an atmospheric chemistry-transport model is used to assess the impacts of sea-spray chemistry on the particle composition in and downwind of a coastal city--Vancouver, British Columbia. It is shown that the model can reasonably represent the average features of the gas phase and particle climate relative to in situ measurements. It is further demonstrated that reactions in/on sea-spray affect the entire particle ensemble and particularly the size distribution of particle nitrate, but that the importance of these heterogeneous reactions is critically dependent on both the initial vertical profile of sea spray and the sea-spray source functions. The results emphasize the need for improved understanding of sea spray production and dispersion and further that model analyses of air quality in coastal cities conducted without inclusion of sea-spray interactions may yield mis-leading results in terms of emission sensitivities of particle composition and concentrations.
Modeling Plasma-Particle Interaction in Multi-Arc Plasma Spraying
NASA Astrophysics Data System (ADS)
Bobzin, K.; Öte, M.
2017-02-01
The properties of plasma-sprayed coatings are controlled by the heat, momentum, and mass transfer between individual particles and the plasma jet. The particle behavior in conventional single-arc plasma spraying has been the subject of intensive numerical research, whereas multi-arc plasma spraying has not yet received the same attention. We propose herein a numerical model to serve as a scientific tool to investigate particle behavior in multi-arc plasma spraying. In the Lagrangian description of particles in the model, the mathematical formulations describing the heat, momentum, and mass transfer are of great importance for good predictive power, so such formulations proposed by different authors were compared critically, revealing that different mathematical formulations lead to significantly different results. The accuracy of the different formulations was evaluated based on theoretical considerations, and those found to be more accurate were implemented in the final model. Furthermore, a mathematical formulation is proposed to enable simplified calculation of partial particle melting and resolidification.
Modeling Plasma-Particle Interaction in Multi-Arc Plasma Spraying
NASA Astrophysics Data System (ADS)
Bobzin, K.; Öte, M.
2017-01-01
The properties of plasma-sprayed coatings are controlled by the heat, momentum, and mass transfer between individual particles and the plasma jet. The particle behavior in conventional single-arc plasma spraying has been the subject of intensive numerical research, whereas multi-arc plasma spraying has not yet received the same attention. We propose herein a numerical model to serve as a scientific tool to investigate particle behavior in multi-arc plasma spraying. In the Lagrangian description of particles in the model, the mathematical formulations describing the heat, momentum, and mass transfer are of great importance for good predictive power, so such formulations proposed by different authors were compared critically, revealing that different mathematical formulations lead to significantly different results. The accuracy of the different formulations was evaluated based on theoretical considerations, and those found to be more accurate were implemented in the final model. Furthermore, a mathematical formulation is proposed to enable simplified calculation of partial particle melting and resolidification.
NASA Astrophysics Data System (ADS)
Pirjola, L.; Karl, M.; Rönkkö, T.; Arnold, F.
2015-09-01
A high concentration of volatile nucleation mode particles (NUP) formed in the atmosphere when the exhaust cools and dilutes has hazardous health effects and it impairs the visibility in urban areas. Nucleation mechanisms in diesel exhaust are only poorly understood. We performed model studies using two sectional aerosol dynamics process models AEROFOR and MAFOR on the formation of particles in the exhaust of a diesel engine, equipped with an oxidative after-treatment system and running with low fuel sulfur content (FSC) fuel, under laboratory sampling conditions where the dilution system mimics real-world conditions. Different nucleation mechanisms were tested. Based on the measured gaseous sulfuric acid (GSA) and non-volatile core and soot particle number concentrations of the raw exhaust, the model simulations showed that the best agreement between model predictions and measurements in terms of particle number size distribution was obtained by barrier-free heteromolecular homogeneous nucleation between the GSA and a semi-volatile organic vapour combined with the homogeneous nucleation of GSA alone. Major growth of the particles was predicted to occur due to the similar organic vapour at concentrations of (1-2) × 1012 cm-3. The pre-existing core and soot mode concentrations had an opposite trend on the NUP formation, and the maximum NUP formation was predicted if a diesel particle filter (DPF) was used. On the other hand, the model predicted that the NUP formation ceased if the GSA concentration in the raw exhaust was less than 1010 cm-3, which was the case when biofuel was used.
NASA Astrophysics Data System (ADS)
Huang, L.; Gong, S. L.; Gordon, M.; Liggio, J.; Staebler, R. M.; Stroud, C. A.; Lu, G.; Mihele, C.; Brook, J. R.; Jia, C. Q.
2014-05-01
Many studies have shown that on-road vehicle emissions are the dominant source of ultrafine particles (UFP; diameter < 100 nm) in urban areas and near-roadway environments. In order to advance our knowledge on the complex interactions and competition among atmospheric dilution, dispersion and dynamics of UFPs, an aerosol dynamics-CFD coupled model is developed and validated against field measurements. A unique approach of applying periodic boundary conditions is proposed to model pollutant dispersion and dynamics in one unified domain from the tailpipe level to the ambient near-road environment. This approach significantly reduces the size of the computational domain, and therefore, allows fast simulation of multiple scenarios. The model is validated against measured turbulent kinetic energy (TKE) and pollution gradients near a major highway. Through a model sensitivity analysis, the relative importance of individual aerosol dynamical processes on the total particle number concentration (N) and particle number-size distribution (PSD) near a highway is investigated. The results demonstrate that (1) coagulation has a negligible effect on N and particle growth, (2) binary homogeneous nucleation (BHN) of H2SO4-H2O is likely responsible for elevated N closest to the road, (3) N and particle growth are very sensitive to the condensation of semi-volatile organics (SVOCs), particle dry deposition, and the interaction between these processes. The results also indicate that, without the proper treatment of atmospheric boundary layer (i.e. its wind profile and turbulence quantities), the nucleation rate would be underestimated by a factor of 5 in the vehicle wake region due to overestimated mixing. Therefore, introducing ABL conditions to activity-based emission models may potentially improve their performance in estimating UFP traffic emissions.
A MODEL FOR THE ESCAPE OF SOLAR-FLARE-ACCELERATED PARTICLES
Masson, S.; Antiochos, S. K.; DeVore, C. R.
2013-07-10
We address the problem of how particles are accelerated by solar flares can escape into the heliosphere on timescales of an hour or less. Impulsive solar energetic particle (SEP) bursts are generally observed in association with so-called eruptive flares consisting of a coronal mass ejection (CME) and a flare. These fast SEPs are believed to be accelerated directly by the flare, rather than by the CME shock. However, the precise mechanism by which the particles are accelerated remains controversial. Regardless of the origin of the acceleration, the particles should remain trapped in the closed magnetic fields of the coronal flare loops and the ejected flux rope, given the magnetic geometry of the standard eruptive-flare model. In this case, the particles would reach the Earth only after a delay of many hours to a few days (coincident with the bulk ejecta arriving at Earth). We propose that the external magnetic reconnection intrinsic to the breakout model for CME initiation can naturally account for the prompt escape of flare-accelerated energetic particles onto open interplanetary magnetic flux tubes. We present detailed 2.5-dimensional magnetohydrodynamic simulations of a breakout CME/flare event with a background isothermal solar wind. Our calculations demonstrate that if the event occurs sufficiently near a coronal-hole boundary, interchange reconnection between open and closed fields can occur. This process allows particles from deep inside the ejected flux rope to access solar wind field lines soon after eruption. We compare these results to standard observations of impulsive SEPs and discuss the implications of the model on further observations and calculations.
NASA Astrophysics Data System (ADS)
Ling, Hong; Lung, Shih-Chun Candice; Uhrner, Ulrich
2016-04-01
Rapidly increasing urban pollution poses severe health risks.Especially fine particles pollution is considered to be closely related to respiratory and cardiovascular disease. In this work, ambient fine particles are studied in street canyons of a typical Asian residential community using a computational fluid dynamics (CFD) dispersion modelling approach. The community is characterised by an artery road with a busy traffic flow of about 4000 light vehicles (mainly cars and motorcycles) per hour at rush hours, three streets with hundreds light vehicles per hour at rush hours and several small lanes with less traffic. The objective is to study the spatial distribution of the ambient fine particle concentrations within micro-environments, in order to assess fine particle exposure of the people living in the community. The GRAL modelling system is used to simulate and assess the emission and dispersion of the traffic-related fine particles within the community. Traffic emission factors and traffic situation is assigned using both field observation and local emissions inventory data. High resolution digital elevation data (DEM) and building height data are used to resolve the topographical features. Air quality monitoring and mobile monitoring within the community is used to validate the simulation results. By using this modelling approach, the dispersion of fine particles in street canyons is simulated; the impact of wind condition and street orientation are investigated; the contributions of car and motorcycle emissions are quantified respectively; the residents' exposure level of fine particles is assessed. The study is funded by "Taiwan Megacity Environmental Research (II)-chemistry and environmental impacts of boundary layer aerosols (Year 2-3) (103-2111-M-001-001-); Spatial variability and organic markers of aerosols (Year 3)(104-2111-M-001 -005 -)"
Setyawan, Heru; Shimada, Manabu; Hayashi, Yutaka; Okuyama, Kikuo; Winardi, Sugeng
2005-02-15
The equilibrium and trapping of dust particles in a plasma sheath are investigated, both experimentally and theoretically. A self-consistent sheath model including input power as one of the model parameters is proposed, to predict the equilibrium position of particle trap. The electron temperature and density are estimated from the observed current and power (I-P) characteristics using the sheath model developed. Direct comparisons are made between the measured equilibrium position and the predicted equilibrium position. The equilibrium position moves closer to the electrode with increasing rf power and particle size. The position is apparently related to the sheath thickness, which decreases with increasing rf power. The model can correctly predict the experimentally observed trend in the equilibrium position of particle trap. It is found that the particle charge becomes positive when the particle gets closer to the electrode, due to the dominant influence of ion currents to the particle surface.
Dietrich, Joseph P; Loge, Frank J; Ginn, Timothy R; Başağaoğlu, Hakan
2007-05-01
Occlusion of microorganisms in wastewater particles often governs the overall performance of a disinfection system, and the associated health risks of post-disinfected effluents. Little is currently known on the penetration of chemical oxidants into particles developed in wastewater treatment. In this work, a reactive transport model that incorporates intra- and extra-particle chemical decay, radial intra-particle diffusion, mass transfer resistance at particle surfaces, and non-linear reaction kinetics within a competitive multi-particle size aqueous environment, was used to analyze the penetration of ozone and chlorine into wastewater particles. Individual characteristics from two secondary wastewater treatment facilities were used in model calibration. Simulations revealed that significant ozone transport within particles greater than 6 microm required large initial concentrations to exhaust the preferential reaction with aqueous soluble matter. Chlorinated samples exhibited apparently slower reactions and thus deeper penetration (22-40 microm). Chlorine penetration was less sensitive to variations in the extra-particle reaction and disinfectant concentration than ozone. Model simulations that considered elevated initial concentrations of chemical disinfectants revealed that complete inactivation of all particle size domains was not possible with current disinfection practices (e.g., contact times). Reduction in the health risks associated with wastewater particles requires treatment that efficiently balances particle removal (filtration) and particle inactivation (disinfection).
SEPEM: A tool for statistical modeling the solar energetic particle environment
NASA Astrophysics Data System (ADS)
Crosby, Norma; Heynderickx, Daniel; Jiggens, Piers; Aran, Angels; Sanahuja, Blai; Truscott, Pete; Lei, Fan; Jacobs, Carla; Poedts, Stefaan; Gabriel, Stephen; Sandberg, Ingmar; Glover, Alexi; Hilgers, Alain
2015-07-01
Solar energetic particle (SEP) events are a serious radiation hazard for spacecraft as well as a severe health risk to humans traveling in space. Indeed, accurate modeling of the SEP environment constitutes a priority requirement for astrophysics and solar system missions and for human exploration in space. The European Space Agency's Solar Energetic Particle Environment Modelling (SEPEM) application server is a World Wide Web interface to a complete set of cross-calibrated data ranging from 1973 to 2013 as well as new SEP engineering models and tools. Both statistical and physical modeling techniques have been included, in order to cover the environment not only at 1 AU but also in the inner heliosphere ranging from 0.2 AU to 1.6 AU using a newly developed physics-based shock-and-particle model to simulate particle flux profiles of gradual SEP events. With SEPEM, SEP peak flux and integrated fluence statistics can be studied, as well as durations of high SEP flux periods. Furthermore, effects tools are also included to allow calculation of single event upset rate and radiation doses for a variety of engineering scenarios.
A two-fluid model for black-hole accretion flows: particle acceleration and disc structure
NASA Astrophysics Data System (ADS)
Lee, Jason P.; Becker, Peter A.
2017-02-01
Hot, tenuous advection-dominated accretion flows around black holes are ideal sites for the Fermi acceleration of relativistic particles at standing shock waves in the accretion disc. Previous work has demonstrated that the shock-acceleration process can be efficient enough to power the observed, strong outflows in radio-loud active galaxies such as M87. However, the dynamical effect (back-reaction) on the flow, exerted by the pressure of the relativistic particles, has not been previously considered, and this effect can have a significant influence on the disc structure. We reexamine the problem by developing a new, two-fluid model for the structure of the accretion disc that includes the dynamical effect of the relativistic particle pressure, combined with the pressure of the background (thermal) gas. The new model is analogous to the two-fluid model of cosmic ray acceleration in supernova-driven shock waves. As part of the model, we also develop a new set of shock jump conditions, which are solved along with the hydrodynamic conservation equations to determine the structure of the accretion disc. The solutions include the formation of a mildly relativistic outflow (jet) at the shock radius, driven by the relativistic particles accelerated in the disc. One of our main conclusions is that in the context of the new two-fluid accretion model, global smooth (shock-free) solutions do not exist, and the disc must always contain a standing shock wave, at least in the inviscid case considered here.
Improving the LPJ-GUESS modelled carbon balance with a particle filter data assimilation technique
NASA Astrophysics Data System (ADS)
McRobert, Andrew; Scholze, Marko; Kemp, Sarah; Smith, Ben
2015-04-01
The recent increases in anthropogenic carbon dioxide (CO_2) emissions have disrupted the equilibrium in the global carbon cycle pools with the ocean and terrestrial pools increasing their respective storages to accommodate roughly half of the anthropogenic increase. Dynamic global vegetation models (DGVM) have been developed to quantify the modern carbon cycle changes. In this study, a particle filter data assimilation technique has been used to calibrate the process parameters in the DGVM LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator). LPJ-GUESS simulates individual plant function types (pft) as a competitive balance within high resolution forest patches. Thirty process parameters have been optimized twice, using both a sequential and iterative method of particle filter. The iterative method runs the model for the full time period of thirteen years and then evaluates the cost function from the mismatch of observations and model results before adjusting the parameters and repeating the full time period. The sequential method runs the model and particle filter for each year of the time series in order, adjusting the parameters between each year, then loops back to beginning of the series to repeat. For each particle, the model output of NEP (Net Ecosystem Productivity) is compared to eddy flux measurements from ICOS flux towers to minimize the cost function. A high-resolution regional carbon balance has been simulated for central Sweden using a network of several ICOS flux towers.
A mesh-free particle model for simulation of mobile-bed dam break
NASA Astrophysics Data System (ADS)
Shakibaeinia, Ahmad; Jin, Yee-Chung
2011-06-01
Mesh-free particle (Lagrangian) methods such as Moving Particle Semi-Implicit (MPS) and Smoothed Particle Hydrodynamics (SPH) are the latest generation of methods in the field of computational fluid dynamics that attracts lots of attention in modeling applications where large interfacial deformations and fragmentations exist. Due to their mesh-free nature, these methods are capable of simulating any kind of boundary/interface deformation and fragmentations. This study aims to develop a new mesh-free particle model based on the weakly compressible MPS (WC-MPS) formulation for modeling of a dam break over a mobile bed, which is a highly erosive and transient flow problem. A multiphase model, capable of handling the density and viscosity discontinuity and in which the solid (sediment) phase is treated as a non-Newtonian fluid, is introduced. The resulting model is first validated using a two-phase dam break problem and is then applied to the mobile-bed dam break problem with different conditions, comparing the results to those obtained from some experimental works.
NASA Astrophysics Data System (ADS)
Kocharov, L.; Kovaltsov, G. A.; Torsti, J.; Anttila, A.; Sahla, T.
2003-11-01
We present the first modeling of solar energetic particle (SEP) events inside corotating compression regions. We consider gradual compressions in the interplanetary magnetic field brought on by interaction of the solar wind streams of different speed. The compression model is similar to that previously suggested for the acceleration of low-energy particles associated with corotating interaction regions (CIRs). In the framework of focused transport, we perform Monte Carlo simulations of the SEP propagation, adiabatic deceleration and reacceleration. A trap-like structure of the interplanetary magnetic field modifies the SEP intensity-time profiles, energy spectra, and anisotropy. Particle diffusion and adiabatic deceleration are typically reduced. For this reason, at a corotating vantage point the SEP event development after the intensity maximum is slower than would be expected based on the modeling in the standard, Archimedean spiral field. At the noncorotating spacecraft the magnetic tube convection past the observer becomes more important. The numerical model forms a basis on which to interpret SEP observations made by present and future spacecrafts at the longitude-dependent speed of solar wind. In particular, the modeling results are similar to the patterns observed with the ERNE particle telescope on board SOHO in August 1996. In the proton anisotropy data, we find a signature of the magnetic mirror associated with the CIR. A relation is established between the spectra observed at 1 AU and the SEP injection spectrum near the Sun.
Simulation of River Bluffs and Slip-Off Slopes With a Discrete Particle-Based Model
NASA Astrophysics Data System (ADS)
Lancaster, S. T.; Zunka, J. P.; Tucker, G. E.
2013-12-01
A discrete particle-based model simulates evolution of two-dimensional valley cross sections similar to those produced by bedrock meandering rivers and thereby suggests that characteristic features such as overhanging cliffs and talus slopes are dependent on specific relationships among process rates. Discrete coordinates on a gridded cross-section define locations of particles of intact bedrock, sediment (loose material with half the bulk density of bedrock), water, or air on that grid, and each particle of rock or sediment has a unique (or zero) concentration of terrestrial cosmogenic nuclides (TCNs). Stochastic processes determine both the possible locations of process actions and the results of those actions. Stochastic discharges generate boundary shear stresses, calculated by an approximation to the ray-isovel model, that determine removal probabilities for candidate particles of bedrock or sediment from the boundary of a self-formed channel. An asymmetric probability distribution governs the selection of candidate particles on the wetted perimeter and drives asymmetric fluvial erosion and transport that can undermine adjacent slopes, so that the channel migrates laterally. Sediment is produced from intact bedrock by weathering and rock fall. The latter acts only on candidate bedrock particles that are undermined and exposed at the surface. Weathering produces two sediment particles from one of bedrock, and thereby inflates the surface, when slope-normal random walks from candidate sites on the surface end at bedrock particles, so that the sediment-bedrock interface is irregular and discontinuous. Diffusive transport moves candidate particles on random walks in random directions along the surface, where transition probabilities depend on local topography. TCNs are produced when the randomly situated and oriented random walks of cosmic rays end at bedrock or sediment, and not water, particles. The model produces asymmetric channels and valley cross sections
Elhadj, S.; Qiu, S. R.; Stolz, C. J.; Monterrosa, A. M.
2012-05-01
The heating dynamics of CO{sub 2}-laser heated micron-sized particles were determined for temperatures <3500 K measured using infrared imaging. A coupled mass and energy conservation model is derived to predict single particle temperatures and sizes, which were compared with data from particles deposited on non-absorbing substrates to assess the relevant heat transfer processes. Analysis reveals substrate conduction dominates all other heat losses, while laser absorption determined from Mie theory is strongly modulated by particle evaporative shrinking. This study provides insights into the light coupling and heating of particle arrays where the material optical properties are temperature-dependent and particle size changes are significant.
Nguyen, Jennifer; Hayakawa, Carole K; Mourant, Judith R; Venugopalan, Vasan; Spanier, Jerome
2016-05-01
We present a polarization-sensitive, transport-rigorous perturbation Monte Carlo (pMC) method to model the impact of optical property changes on reflectance measurements within a discrete particle scattering model. The model consists of three log-normally distributed populations of Mie scatterers that approximate biologically relevant cervical tissue properties. Our method provides reflectance estimates for perturbations across wavelength and/or scattering model parameters. We test our pMC model performance by perturbing across number densities and mean particle radii, and compare pMC reflectance estimates with those obtained from conventional Monte Carlo simulations. These tests allow us to explore different factors that control pMC performance and to evaluate the gains in computational efficiency that our pMC method provides.
A Novel Method for Modeling Neumann and Robin Boundary Conditions in Smoothed Particle Hydrodynamics
Ryan, Emily M.; Tartakovsky, Alexandre M.; Amon, Cristina
2010-08-26
In this paper we present an improved method for handling Neumann or Robin boundary conditions in smoothed particle hydrodynamics. The Neumann and Robin boundary conditions are common to many physical problems (such as heat/mass transfer), and can prove challenging to model in volumetric modeling techniques such as smoothed particle hydrodynamics (SPH). A new SPH method for diffusion type equations subject to Neumann or Robin boundary conditions is proposed. The new method is based on the continuum surface force model [1] and allows an efficient implementation of the Neumann and Robin boundary conditions in the SPH method for geometrically complex boundaries. The paper discusses the details of the method and the criteria needed to apply the model. The model is used to simulate diffusion and surface reactions and its accuracy is demonstrated through test cases for boundary conditions describing different surface reactions.
Nguyen, Jennifer; Hayakawa, Carole K.; Mourant, Judith R.; Venugopalan, Vasan; Spanier, Jerome
2016-01-01
We present a polarization-sensitive, transport-rigorous perturbation Monte Carlo (pMC) method to model the impact of optical property changes on reflectance measurements within a discrete particle scattering model. The model consists of three log-normally distributed populations of Mie scatterers that approximate biologically relevant cervical tissue properties. Our method provides reflectance estimates for perturbations across wavelength and/or scattering model parameters. We test our pMC model performance by perturbing across number densities and mean particle radii, and compare pMC reflectance estimates with those obtained from conventional Monte Carlo simulations. These tests allow us to explore different factors that control pMC performance and to evaluate the gains in computational efficiency that our pMC method provides. PMID:27231642
Hsieh, Paul A.
2001-01-01
This report serves as a user?s guide for two computer models: TopoDrive and ParticleFlow. These two-dimensional models are designed to simulate two ground-water processes: topography-driven flow and advective transport of fluid particles. To simulate topography-driven flow, the user may specify the shape of the water table, which bounds the top of the vertical flow section. To simulate transport of fluid particles, the model domain is a rectangle with overall flow from left to right. In both cases, the flow is under steady state, and the distribution of hydraulic conductivity may be specified by the user. The models compute hydraulic head, ground-water flow paths, and the movement of fluid particles. An interactive visual interface enables the user to easily and quickly explore model behavior, and thereby better understand ground-water flow processes. In this regard, TopoDrive and ParticleFlow are not intended to be comprehensive modeling tools, but are designed for modeling at the exploratory or conceptual level, for visual demonstration, and for educational purposes.
Analysis and Optimization of a Lagrangian Volcanic Ash Particle Tracking Model called Puff
NASA Astrophysics Data System (ADS)
Peterson, R.; Dean, K.
2002-12-01
Volcanic ash tracking models are important for airborne and ground hazard mitigation. Volcanic ash can have devastating effects on aircraft during flight, and ground sedimentation is potentially hazardous in populated areas. Because ash dispersion is controlled primarily by atmospheric winds, analytic solutions are impractical and must be numerically solved. Two distinct modeling techniques, Lagrangian and Eulerian, are currently used for both regional and global tracking models. Recently, the Lagrangian technique has appeared to be more accurate and efficient for tracking volcanic ash plumes, particularly for small eruptions and at early times during the eruption. Modeling ash plume dispersion is complicated by several factors including particle sedimentation and aggregation, and varying wind-field dynamics from the near surface to upper atmosphere. Furthermore, there exists a very limited data set pertaining to past eruptions with which tracking models can be tested and validated. Due primarily to this dearth of data on past eruptions, tracking models have erred on the side of excess when including potentially important factors in describing particle dynamics. The most recent version of Puff includes eleven distinct, adjustable parameters that are intended to describe various processes that effect airborne particle dynamics. The analysis described here was undertaken to better understand the sensitivity of the model to each of the eleven parameters independently. As a result, an improved understanding of how best to parameterize the model has been gained, as well as several methods to optimize performance and the predictive capability has been discovered. Since Puff includes random perturbations in the ash particle trajectories using a Monte Carlo-type technique, large numbers of successive simulations were performed in the analysis, and the averaged overall behavior was analyzed. Model run groups of 100, 500, and 5000 simulations were performed. The eleven
Pandian, M.D. )
1988-01-01
Exposure to suspended particulate mater in the home or workplace can produce adverse human health effects. Sources of suspended particulate matter include cigarette smoke, consumer spray products, and dust from cement manufacture, metal processing, and coal-fired power generation. The particle concentrations in these indoor environments can be determined from experimental studies or modeling techniques. Many experimental studies have been conducted to determine the mass concentration of total suspended particulate matter, usually expressed in {mu}g/m{sup 3}, and the elemental composition of particulate matter in these environments. However, there is not much reported data on particle size distributions in indoor environments. One of the early indoor modeling efforts was undertaken by Shair and Heitner, who conducted a theoretical analysis for relating indoor pollutant concentrations to those outdoors. The author describes the theoretical analysis and compared it to results obtained from experiments on conditioned cigarette smoke particle concentrations in a room at 20{degrees}C and 60 {percent}.
Dynamic subgrid-scale modeling for LES of particle-laden turbulent flows
NASA Astrophysics Data System (ADS)
Bassenne, Maxime; Ilhwan Park, George; Urzay, Javier; Moin, Parviz
2016-11-01
A new dynamic model is proposed for large-eddy simulations of small inertial particles in turbulent flows. The model is simple, involves no significant computational overhead, and is flexible enough to be deployed in any type of flow solvers and grids, including unstructured setups. The approach does not require any tunable parameters and is based on the use of elliptic differential filters. Particle laden isotropic turbulence and turbulent channel flow are considered. Improved agreement with direct numerical simulation results are observed in the dispersed-phase statistics. The comparisons include analyses of particle acceleration, local carrier-phase velocity, turbophoresis, and preferential-concentration metrics. PSAAP-II Center at Stanford (DoE Grant #107908).
Effect of sensory blind zones on milling behavior in a dynamic self-propelled particle model.
Newman, Jonathan P; Sayama, Hiroki
2008-07-01
Emergent pattern formation in self-propelled particle (SPP) systems is extensively studied because it addresses a range of swarming phenomena that occur without leadership. Here we present a dynamic SPP model in which a sensory blind zone is introduced into each particle's zone of interaction. Using numerical si