Quantum cosmological Friedman models with a Yang-Mills field and positive energy levels
NASA Astrophysics Data System (ADS)
Gerhardt, Claus
2010-02-01
We prove the existence of a spectral resolution of the Wheeler-DeWitt equation when the matter field is provided by a Yang-Mills field, with or without mass term, if the spatial geometry of the underlying spacetime is homothetic to {\\bb R}^{3} . The energy levels of the resulting quantum model, i.e. the eigenvalues of the corresponding self-adjoint Hamiltonian with a pure point spectrum, are strictly positive. This work has been supported by the DFG.
Zhang, Boning; Herbold, Eric B.; Homel, Michael A.; Regueiro, Richard A.
2015-12-01
An adaptive particle fracture model in poly-ellipsoidal Discrete Element Method is developed. The poly-ellipsoidal particle will break into several sub-poly-ellipsoids by Hoek-Brown fracture criterion based on continuum stress and the maximum tensile stress in contacts. Also Weibull theory is introduced to consider the statistics and size effects on particle strength. Finally, high strain-rate split Hopkinson pressure bar experiment of silica sand is simulated using this newly developed model. Comparisons with experiments show that our particle fracture model can capture the mechanical behavior of this experiment very well, both in stress-strain response and particle size redistribution. The effects of density and packings o the samples are also studied in numerical examples.
NASA Technical Reports Server (NTRS)
Sapyta, Joe; Reid, Hank; Walton, Lew
1993-01-01
The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.
Gyrokinetic particle simulation model
Lee, W.W.
1986-07-01
A new type of particle simulation model based on the gyrophase-averaged Vlasov and Poisson equations is presented. The reduced system, in which particle gyrations are removed from the equations of motion while the finite Larmor radius effects are still preserved, is most suitable for studying low frequency microinstabilities in magnetized plasmas. It is feasible to simulate an elongated system (L/sub parallel/ >> L/sub perpendicular/) with a three-dimensional grid using the present model without resorting to the usual mode expansion technique, since there is essentially no restriction on the size of ..delta..x/sub parallel/ in a gyrokinetic plasma. The new approach also enables us to further separate the time and spatial scales of the simulation from those associated with global transport through the use of multiple spatial scale expansion. Thus, the model can be a very efficient tool for studying anomalous transport problems related to steady-state drift-wave turbulence in magnetic confinement devices. It can also be applied to other areas of plasma physics.
MODELING DEPOSITION OF INHALED PARTICLES
Modeling Deposition of Inhaled Particles: ABSTRACT
The mathematical modeling of the deposition and distribution of inhaled aerosols within human lungs is an invaluable tool in predicting both the health risks associated with inhaled environmental aerosols and the therapeut...
CORSAIR Solar Energetic Particle Model
NASA Astrophysics Data System (ADS)
Sandroos, A.
2013-05-01
Acceleration of particles in coronal mass ejection (CME) driven shock waves is the most commonly accepted and best developed theory of the genesis of gradual solar energetic particle (SEP) events. The underlying acceleration mechanism is the diffusive shock acceleration (DSA). According to DSA, particles scatter from fluctuations present in the ambient magnetic field, which causes some particles to encounter the shock front repeatedly and to gain energy during each crossing. Currently STEREO and near-Earth spacecraft are providing valuable multi-point information on how SEP properties, such as composition and energy spectra, vary in longitude. Initial results have shown that longitude distributions of large CME-associated SEP events are much wider than reported in earlier studies. These findings have important consequences on SEP modeling. It is important to extend the present models into two or three spatial coordinates to properly take into account the effects of coronal and interplanetary (IP) magnetic geometry, and evolution of the CME and the associated shock, on the acceleration and transport of SEPs. We give a status update on CORSAIR project, which is an effort to develop a new self-consistent (total energy conserving) DSA acceleration model that is capable of modeling energetic particle acceleration and transport in IP space in two or three spatial dimensions. In the new model particles are propagated using guiding center approximation. Waves are modeled as (Lagrangian) wave packets propagating (anti)parallel to ambient magnetic field. Diffusion coefficients related to scattering from the waves are calculated using quasilinear theory. State of ambient plasma is obtained from an MHD simulation or by using idealized analytic models. CORSAIR is an extension to our earlier efforts to model the effects of magnetic geometry on SEP acceleration (Sandroos & Vainio, 2007,2009).
Patchy Particle Model for Vitrimers
NASA Astrophysics Data System (ADS)
Smallenburg, Frank; Leibler, Ludwik; Sciortino, Francesco
2013-11-01
Vitrimers—a recently invented new class of polymers—consist of covalent networks that can rearrange their topology via a bond shuffling mechanism, preserving the total number of network links. We introduce a patchy particle model whose dynamics directly mimic the bond exchange mechanism and reproduce the observed glass-forming ability. We calculate the free energy of this model in the limit of strong (chemical) bonds between the particles, both via the Wertheim thermodynamic perturbation theory and using computer simulations. The system exhibits an entropy-driven phase separation between a network phase and a dilute cluster gas, bringing new insight into the swelling behavior of vitrimers in solvents.
Dänicke, Sven; Meyer, Ulrich; Winkler, Janine; Schulz, Kirsten; Ulrich, Sebastian; Frahm, Jana; Kersten, Susanne; Rehage, Jürgen; Breves, Gerhard; Häussler, Susanne; Sauerwein, Helga; Locher, Lena
2014-12-01
Physiological consequences of adaptation to and continued feeding of a high-energetic diet were studied in eight non-pregnant, non-lactating dairy Holstein cows over a period of 16 weeks. The first six weeks served as an adaptation period from the low energetic straw-based diet (3.8 MJ NEL/kg DM) to the high-energetic ration (7.5 MJ NEL/kg DM). Intake of dry matter (DM) increased with dietary energy concentration from 9 to 20 kg/d up to week 9 to 12 and decreased thereafter. The initial live weight (LW) of 550 ± 60 kg was increased linearly and corresponded to an average daily LW gain of 2.3 ± 0.3 kg. Energy balance increased approximately nine-fold to a maximum of 114 MJ NEL/d in week 10. Ruminal fermentation pattern was completely changed from an acetate dominating profile to a propionate based one, which was paralleled by a marked increase in the rumen fluid endotoxin concentration. Unlike blood glucose concentration, which increased continuously, that of cholesterol and triglycerides started to increase after an initial stagnation. In conclusion, both ruminal adaptation to a high-energetic diet and the continued feeding of such a diet induced digestive and metabolic adaptations in non-pregnant, non-lactating cows characterised by a progressing positive energy balance.
Solvable Models of Correlated Particles
NASA Astrophysics Data System (ADS)
Ha, Zachary Nyong-Chol
The Heisenberg spin chain with inverse-square exchange (ISE) has recently been introduced and has elevated general interest in the models with ISE. It has been known for a long time that the model is directly related to the random matrix theory. Recently, the matrix model in two -dimensional quantum gravity has also been shown to be related to the ISE model. In this thesis we show that the Bethe -ansatz-solvable, nearest-neighbor-exchange (NNE) models and the ISE model share a striking structure called the "string". Chapter 1 is a review of the Bethe ansatz, the "strings", and the ISE models. In Chapter 2 the "string" structure of one-dimensional Hubbard model eigenstates is studied numerically and is used to show the validity of thermodynamic Bethe ansatz equations (TBAE). We, furthermore, solve TBAE in a strong coupling expansion series form and obtain the thermodynamic potential which agrees with the known high temperature expansion series. We also calculate various thermodynamic quantities using our solution and provide some new features of the strongly correlated one -dimensional Hubbard model. In Chapter 3 a one-dimensional quantum N-body system of either fermions or bosons with SU(n) "spins" (or colors in particle physics language) interacting via inverse-square exchange is presented. A class of eigenstates of both the continuum and lattice version of the model Hamiltonians is constructed in terms of the Jastrow-product wave function. The class of states we construct corresponds to the ground state and the low-energy excitations of the model that can be described by the effective harmonic fluid Hamiltonian. By expanding the energy about the ground state, we find the harmonic fluid parameters (i.e., the charge, spin velocities, etc.) explicitly. The correlation exponent and the compressibility are also found. As expected, the general harmonic relation (i.e., v_ {S} = (v_{N}v_{J })^{1/2) is satisfied among the charge and the spin velocities. In Chapter 4, an
Modeling particle loss in ventilation ducts
Sippola, Mark R.; Nazaroff, William W.
2003-04-01
Empirical equations were developed and applied to predict losses of 0.01-100 {micro}m airborne particles making a single pass through 120 different ventilation duct runs typical of those found in mid-sized office buildings. For all duct runs, losses were negligible for submicron particles and nearly complete for particles larger than 50 {micro}m. The 50th percentile cut-point diameters were 15 {micro}m in supply runs and 25 {micro}m in return runs. Losses in supply duct runs were higher than in return duct runs, mostly because internal insulation was present in portions of supply duct runs, but absent from return duct runs. Single-pass equations for particle loss in duct runs were combined with models for predicting ventilation system filtration efficiency and particle deposition to indoor surfaces to evaluate the fates of particles of indoor and outdoor origin in an archetypal mechanically ventilated building. Results suggest that duct losses are a minor influence for determining indoor concentrations for most particle sizes. Losses in ducts were of a comparable magnitude to indoor surface losses for most particle sizes. For outdoor air drawn into an unfiltered ventilation system, most particles smaller than 1 {micro}m are exhausted from the building. Large particles deposit within the building, mostly in supply ducts or on indoor surfaces. When filters are present, most particles are either filtered or exhausted. The fates of particles generated indoors follow similar trends as outdoor particles drawn into the building.
Discrete Element Modeling of Triboelectrically Charged Particles
NASA Technical Reports Server (NTRS)
Hogue, Michael D.; Calle, Carlos I.; Weitzman, Peter S.; Curry, David R.
2008-01-01
Tribocharging of particles is common in many processes including fine powder handling and mixing, printer toner transport and dust extraction. In a lunar environment with its high vacuum and lack of water, electrostatic forces are an important factor to consider when designing and operating equipment. Dust mitigation and management is critical to safe and predictable performance of people and equipment. The extreme nature of lunar conditions makes it difficult and costly to carry out experiments on earth which are necessary to better understand how particles gather and transfer charge between each other and with equipment surfaces. DEM (Discrete Element Modeling) provides an excellent virtual laboratory for studying tribocharging of particles as well as for design of devices for dust mitigation and for other purposes related to handling and processing of lunar regolith. Theoretical and experimental work has been performed pursuant to incorporating screened Coulombic electrostatic forces into EDEM, a commercial DEM software package. The DEM software is used to model the trajectories of large numbers of particles for industrial particulate handling and processing applications and can be coupled with other solvers and numerical models to calculate particle interaction with surrounding media and force fields. While simple Coulombic force between two particles is well understood, its operation in an ensemble of particles is more complex. When the tribocharging of particles and surfaces due to frictional contact is also considered, it is necessary to consider longer range of interaction of particles in response to electrostatic charging. The standard DEM algorithm accounts for particle mechanical properties and inertia as a function of particle shape and mass. If fluid drag is neglected, then particle dynamics are governed by contact between particles, between particles and equipment surfaces and gravity forces. Consideration of particle charge and any tribocharging and
Exploring the Standard Model of Particles
ERIC Educational Resources Information Center
Johansson, K. E.; Watkins, P. M.
2013-01-01
With the recent discovery of a new particle at the CERN Large Hadron Collider (LHC) the Higgs boson could be about to be discovered. This paper provides a brief summary of the standard model of particle physics and the importance of the Higgs boson and field in that model for non-specialists. The role of Feynman diagrams in making predictions for…
Modeling and simulation of bubbles and particles
NASA Astrophysics Data System (ADS)
Dorgan, Andrew James
The interaction of particles, drops, and bubbles with a fluid (gas or liquid) is important in a number of engineering problems. The present works seeks to extend the understanding of these interactions through numerical simulation. To model many of these relevant flows, it is often important to consider finite Reynolds number effects on drag, lift, torque and history force. Thus, the present work develops an equation of motion for spherical particles with a no-slip surface based on theoretical analysis, experimental data and surface-resolved simulations which is appropriate for dispersed multiphase flows. The equation of motion is then extended to account for finite particle size. This extension is critical for particles which will have a size significantly larger than the grid cell size, particularly important for bubbles and low-density particles. The extension to finite particle size is accomplished through spatial-averaging (both volume-based and surface-based) of the continuous flow properties. This averaging is consistent with the Faxen limit for solid spheres at small Reynolds numbers and added mass and fluid stress forces at inviscid limits. Further work is needed for more quantitative assessment of the truncation terms in complex flows. The new equation of motion is then used to assess the relative importance of each force in the context of two low-density particles (an air bubble and a sand particle) in a boundary layer of water. This relative importance is measured by considering effects on particle concentration, visualization of particle-fluid interactions, diffusion rates, and Lagrangian statistics collected along the particle trajectory. Strong added mass and stress gradient effects are observed for the bubble but these were found to have little effect on a sand particle of equal diameter. Lift was shown to be important for both conditions provided the terminal velocity was aligned with the flow direction. The influence of lift was found to be
Observations and Modeling of Geospace Energetic Particles
NASA Astrophysics Data System (ADS)
Li, Xinlin
2016-07-01
Comprehensive measurements of energetic particles and electric and magnetic fields from state-of-art instruments onboard Van Allen Probes, in a geo-transfer-like orbit, revealed new features of the energetic particles and the fields in the inner magnetosphere and impose new challenges to any quantitative modeling of the physical processes responsible for these observations. Concurrent measurements of energetic particles by satellites in highly inclined low Earth orbits and plasma and fields by satellites in farther distances in the magnetospheres and in the up stream solar wind are the critically needed information for quantitative modeling and for leading to eventual accurate forecast of the variations of the energetic particles in the magnetosphere. In this presentation, emphasis will be on the most recent advance in our understanding of the energetic particles in the magnetosphere and the missing links for significantly advance in our modeling and forecasting capabilities.
Polarizable water model for Dissipative Particle Dynamics
NASA Astrophysics Data System (ADS)
Pivkin, Igor; Peter, Emanuel
2015-11-01
Dissipative Particle Dynamics (DPD) is an efficient particle-based method for modeling mesoscopic behavior of fluid systems. DPD forces conserve the momentum resulting in a correct description of hydrodynamic interactions. Polarizability has been introduced into some coarse-grained particle-based simulation methods; however it has not been done with DPD before. We developed a new polarizable coarse-grained water model for DPD, which employs long-range electrostatics and Drude oscillators. In this talk, we will present the model and its applications in simulations of membrane systems, where polarization effects play an essential role.
Modeling of particle agglomeration in nanofluids
Krishna, K. Hari; Neti, S.; Oztekin, A.; Mohapatra, S.
2015-03-07
Agglomeration strongly influences the stability or shelf life of nanofluid. The present computational and experimental study investigates the rate of agglomeration quantitatively. Agglomeration in nanofluids is attributed to the net effect of various inter-particle interaction forces. For the nanofluid considered here, a net inter-particle force depends on the particle size, volume fraction, pH, and electrolyte concentration. A solution of the discretized and coupled population balance equations can yield particle sizes as a function of time. Nanofluid prepared here consists of alumina nanoparticles with the average particle size of 150 nm dispersed in de-ionized water. As the pH of the colloid was moved towards the isoelectric point of alumina nanofluids, the rate of increase of average particle size increased with time due to lower net positive charge on particles. The rate at which the average particle size is increased is predicted and measured for different electrolyte concentration and volume fraction. The higher rate of agglomeration is attributed to the decrease in the electrostatic double layer repulsion forces. The rate of agglomeration decreases due to increase in the size of nano-particle clusters thus approaching zero rate of agglomeration when all the clusters are nearly uniform in size. Predicted rates of agglomeration agree adequate enough with the measured values; validating the mathematical model and numerical approach is employed.
Modeling Deposition of Inhaled Particles
The mathematical modeling of the deposition and distribution of inhaled aerosols within human lungs is an invaluable tool in predicting both the health risks associated with inhaled environmental aerosols and the therapeutic dose delivered by inhaled pharmacological drugs. Howeve...
Probabilistic Solar Energetic Particle Models
NASA Technical Reports Server (NTRS)
Adams, James H., Jr.; Dietrich, William F.; Xapsos, Michael A.
2011-01-01
To plan and design safe and reliable space missions, it is necessary to take into account the effects of the space radiation environment. This is done by setting the goal of achieving safety and reliability with some desired level of confidence. To achieve this goal, a worst-case space radiation environment at the required confidence level must be obtained. Planning and designing then proceeds, taking into account the effects of this worst-case environment. The result will be a mission that is reliable against the effects of the space radiation environment at the desired confidence level. In this paper we will describe progress toward developing a model that provides worst-case space radiation environments at user-specified confidence levels. We will present a model for worst-case event-integrated solar proton environments that provide the worst-case differential proton spectrum. This model is based on data from IMP-8 and GOES spacecraft that provide a data base extending from 1974 to the present. We will discuss extending this work to create worst-case models for peak flux and mission-integrated fluence for protons. We will also describe plans for similar models for helium and heavier ions.
Polarizable protein model for Dissipative Particle Dynamics
NASA Astrophysics Data System (ADS)
Peter, Emanuel; Lykov, Kirill; Pivkin, Igor
2015-11-01
In this talk, we present a novel polarizable protein model for the Dissipative Particle Dynamics (DPD) simulation technique, a coarse-grained particle-based method widely used in modeling of fluid systems at the mesoscale. We employ long-range electrostatics and Drude oscillators in combination with a newly developed polarizable water model. The protein in our model is resembled by a polarizable backbone and a simplified representation of the sidechains. We define the model parameters using the experimental structures of 2 proteins: TrpZip2 and TrpCage. We validate the model on folding of five other proteins and demonstrate that it successfully predicts folding of these proteins into their native conformations. As a perspective of this model, we will give a short outlook on simulations of protein aggregation in the bulk and near a model membrane, a relevant process in several Amyloid diseases, e.g. Alzheimer's and Diabetes II.
Model of resonance scattering of composite particles
Kuperin, Yu.A.; Makarov, K.A.; Pavlov, B.S.
1987-04-01
A model of binary reactions in a system of particles having a nontrivial internal structure is constructed by the theory of extensions of a nonrelativistic Hamiltonian with the addition of a space of internal degrees of freedom. The model is used to describe hadron-hadron scattering at low and intermediate energies.
Interspecies modeling of inhaled particle deposition patterns
Martonen, T.B.; Zhang, Z.; Yang, Y.
1992-01-01
To evaluate the potential toxic effects of ambient contaminants or therapeutic effects of airborne drugs, inhalation exposure experiments can be performed with surrogate laboratory animals. Herein, an interspecies particle deposition theory is presented for physiologically based pharmacokinetic modeling. It is derived to improve animal testing protocols. The computer code describes the behavior and fate of particles in the lungs of human subjects and a selected surrogate, the laboratory rat. In the simulations CO2 is integrated with exposure chamber atmospheres, and its concentrations regulated to produce rat breathing profiles corresponding to selected levels of human physical activity. The dosimetric model is used to calculate total, compartmental (i.e., tracheobronchial and pulmonary), and localized distribution patterns of inhaled particles in rats and humans for comparable ventilatory conditions. It is demonstrated that the model can be used to predetermine the exposure conditions necessary to produce deposition patterns in rats that are equivalent to those in humans at prescribed physical activities.
Modeling pollutant transport using a meshless-lagrangian particle model
Carrington, D. B.; Pepper, D. W.
2002-01-01
A combined meshless-Lagrangian particle transport model is used to predict pollutant transport over irregular terrain. The numerical model for initializing the velocity field is based on a meshless approach utilizing multiquadrics established by Kansa. The Lagrangian particle transport technique uses a random walk procedure to depict the advection and dispersion of pollutants over any type of surface, including street and city canyons
Model of Image Artifacts from Dust Particles
NASA Technical Reports Server (NTRS)
Willson, Reg
2008-01-01
A mathematical model of image artifacts produced by dust particles on lenses has been derived. Machine-vision systems often have to work with camera lenses that become dusty during use. Dust particles on the front surface of a lens produce image artifacts that can potentially affect the performance of a machine-vision algorithm. The present model satisfies a need for a means of synthesizing dust image artifacts for testing machine-vision algorithms for robustness (or the lack thereof) in the presence of dust on lenses. A dust particle can absorb light or scatter light out of some pixels, thereby giving rise to a dark dust artifact. It can also scatter light into other pixels, thereby giving rise to a bright dust artifact. For the sake of simplicity, this model deals only with dark dust artifacts. The model effectively represents dark dust artifacts as an attenuation image consisting of an array of diffuse darkened spots centered at image locations corresponding to the locations of dust particles. The dust artifacts are computationally incorporated into a given test image by simply multiplying the brightness value of each pixel by a transmission factor that incorporates the factor of attenuation, by dust particles, of the light incident on that pixel. With respect to computation of the attenuation and transmission factors, the model is based on a first-order geometric (ray)-optics treatment of the shadows cast by dust particles on the image detector. In this model, the light collected by a pixel is deemed to be confined to a pair of cones defined by the location of the pixel s image in object space, the entrance pupil of the lens, and the location of the pixel in the image plane (see Figure 1). For simplicity, it is assumed that the size of a dust particle is somewhat less than the diameter, at the front surface of the lens, of any collection cone containing all or part of that dust particle. Under this assumption, the shape of any individual dust particle artifact
Computer Models Simulate Fine Particle Dispersion
NASA Technical Reports Server (NTRS)
2010-01-01
Through a NASA Seed Fund partnership with DEM Solutions Inc., of Lebanon, New Hampshire, scientists at Kennedy Space Center refined existing software to study the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces. The software, EDEM, allows users to import particles and obtain accurate representations of their shapes for modeling purposes, such as simulating bulk solids behavior, and was enhanced to be able to more accurately model fine, abrasive, cohesive particles. These new EDEM capabilities can be applied in many industries unrelated to space exploration and have been adopted by several prominent U.S. companies, including John Deere, Pfizer, and Procter & Gamble.
Particle production beyond the thermal model
NASA Astrophysics Data System (ADS)
Wolschin, Georg
2016-07-01
The sources of particle production in relativistic heavy-ion collisions are investigated from RHIC to LHC energies. Whereas charged-hadron production in the fragmentation sources follows a ln(sNN/s0) law, particle production in the mid-rapidity low-x gluon-gluon source exhibits a much stronger dependence ∝ ln3(sNN/s0), and becomes dominant between RHIC and LHC energies. The equilibration of the three sources is investigated in a relativistic diffusion model (RDM). It agrees with the thermal model only for t → ∞.
Lagrangian Trajectory Modeling of Lunar Dust Particles
NASA Technical Reports Server (NTRS)
Lane, John E.; Metzger, Philip T.; Immer, Christopher D.
2008-01-01
Apollo landing videos shot from inside the right LEM window, provide a quantitative measure of the characteristics and dynamics of the ejecta spray of lunar regolith particles beneath the Lander during the final 10 [m] or so of descent. Photogrammetry analysis gives an estimate of the thickness of the dust layer and angle of trajectory. In addition, Apollo landing video analysis divulges valuable information on the regolith ejecta interactions with lunar surface topography. For example, dense dust streaks are seen to originate at the outer rims of craters within a critical radius of the Lander during descent. The primary intent of this work was to develop a mathematical model and software implementation for the trajectory simulation of lunar dust particles acted on by gas jets originating from the nozzle of a lunar Lander, where the particle sizes typically range from 10 micron to 500 micron. The high temperature, supersonic jet of gas that is exhausted from a rocket engine can propel dust, soil, gravel, as well as small rocks to high velocities. The lunar vacuum allows ejected particles to travel great distances unimpeded, and in the case of smaller particles, escape velocities may be reached. The particle size distributions and kinetic energies of ejected particles can lead to damage to the landing spacecraft or to other hardware that has previously been deployed in the vicinity. Thus the primary motivation behind this work is to seek a better understanding for the purpose of modeling and predicting the behavior of regolith dust particle trajectories during powered rocket descent and ascent.
Modeling light scattering from diesel soot particles
Hull, Patricia; Shepherd, Ian; Hunt, Arlon
2002-07-16
The Mie model is widely used to analyze light scattering from particulate aerosols. The Diesel Particle Scatterometer (DPS), for example, determines the size and optical properties of diesel exhaust particles that are characterized by measuring three angle-dependent elements of the Mueller scattering matrix. These elements are then fitted using Mie calculations with a Levenburg-Marquardt optimization program. This approach has achieved good fits for most experimental data. However, in many cases, the predicted real and imaginary parts of the index of refraction were less than that for solid carbon. To understand this result and explain the experimental data, we present an assessment of the Mie model by use of a light scattering model based on the coupled dipole approximation. The results indicate that the Mie calculation can be used to determine the largest dimension of irregularly shaped particles at sizes characteristic of Diesel soot and, for particles of known refractive index, tables can be constructed to determine the average porosity of the particles from the predicted index of refraction.
Parallelization of the Lagrangian Particle Dispersion Model
Buckley, R.L.; O`Steen, B.L.
1997-08-01
An advanced stochastic Lagrangian Particle Dispersion Model (LPDM) is used by the Atmospheric Technologies Group (ATG) to simulate contaminant transport. The model uses time-dependent three-dimensional fields of wind and turbulence to determine the location of individual particles released into the atmosphere. This report describes modifications to LPDM using the Message Passing Interface (MPI) which allows for execution in a parallel configuration on the Cray Supercomputer facility at the SRS. Use of a parallel version allows for many more particles to be released in a given simulation, with little or no increase in computational time. This significantly lowers (greater than an order of magnitude) the minimum resolvable concentration levels without ad hoc averaging schemes and/or without reducing spatial resolution. The general changes made to LPDM are discussed and a series of tests are performed comparing the serial (single processor) and parallel versions of the code.
Impact modeling with Smooth Particle Hydrodynamics
Stellingwerf, R.F.; Wingate, C.A.
1993-07-01
Smooth Particle Hydrodynamics (SPH) can be used to model hypervelocity impact phenomena via the addition of a strength of materials treatment. SPH is the only technique that can model such problems efficiently due to the combination of 3-dimensional geometry, large translations of material, large deformations, and large void fractions for most problems of interest. This makes SPH an ideal candidate for modeling of asteroid impact, spacecraft shield modeling, and planetary accretion. In this paper we describe the derivation of the strength equations in SPH, show several basic code tests, and present several impact test cases with experimental comparisons.
Beyond the standard model of particle physics.
Virdee, T S
2016-08-28
The Large Hadron Collider (LHC) at CERN and its experiments were conceived to tackle open questions in particle physics. The mechanism of the generation of mass of fundamental particles has been elucidated with the discovery of the Higgs boson. It is clear that the standard model is not the final theory. The open questions still awaiting clues or answers, from the LHC and other experiments, include: What is the composition of dark matter and of dark energy? Why is there more matter than anti-matter? Are there more space dimensions than the familiar three? What is the path to the unification of all the fundamental forces? This talk will discuss the status of, and prospects for, the search for new particles, symmetries and forces in order to address the open questions.This article is part of the themed issue 'Unifying physics and technology in light of Maxwell's equations'. PMID:27458261
Beyond the standard model of particle physics.
Virdee, T S
2016-08-28
The Large Hadron Collider (LHC) at CERN and its experiments were conceived to tackle open questions in particle physics. The mechanism of the generation of mass of fundamental particles has been elucidated with the discovery of the Higgs boson. It is clear that the standard model is not the final theory. The open questions still awaiting clues or answers, from the LHC and other experiments, include: What is the composition of dark matter and of dark energy? Why is there more matter than anti-matter? Are there more space dimensions than the familiar three? What is the path to the unification of all the fundamental forces? This talk will discuss the status of, and prospects for, the search for new particles, symmetries and forces in order to address the open questions.This article is part of the themed issue 'Unifying physics and technology in light of Maxwell's equations'.
Probabilistic Models for Solar Particle Events
NASA Technical Reports Server (NTRS)
Adams, James H., Jr.; Dietrich, W. F.; Xapsos, M. A.; Welton, A. M.
2009-01-01
Probabilistic Models of Solar Particle Events (SPEs) are used in space mission design studies to provide a description of the worst-case radiation environment that the mission must be designed to tolerate.The models determine the worst-case environment using a description of the mission and a user-specified confidence level that the provided environment will not be exceeded. This poster will focus on completing the existing suite of models by developing models for peak flux and event-integrated fluence elemental spectra for the Z>2 elements. It will also discuss methods to take into account uncertainties in the data base and the uncertainties resulting from the limited number of solar particle events in the database. These new probabilistic models are based on an extensive survey of SPE measurements of peak and event-integrated elemental differential energy spectra. Attempts are made to fit the measured spectra with eight different published models. The model giving the best fit to each spectrum is chosen and used to represent that spectrum for any energy in the energy range covered by the measurements. The set of all such spectral representations for each element is then used to determine the worst case spectrum as a function of confidence level. The spectral representation that best fits these worst case spectra is found and its dependence on confidence level is parameterized. This procedure creates probabilistic models for the peak and event-integrated spectra.
Modelling the motion of particles around choanoflagellates
NASA Astrophysics Data System (ADS)
Orme, Belinda; Pettitt, Michala; Otto, Steve; Blake, John
2001-11-01
The three-dimensional particle paths due to a helical beat pattern of the flagellum of a sessile choanoflagellate, Salpingoeca Amphoridium (SA), are modelled and compared against experimental observations. The organism's main components are a flagellum and cell body which are situated above a substrate such that the interaction between these entities is crucial in determining the fluid flow around the choanoflagellate. The flow of fluid in the organism's environment can be characterised as Stokes flow and a flow field analogous to one created by the flagellum is generated by a distribution of stokeslets and dipoles along a helical curve. The model describing the flow considers interactions between a slender flagellum, an infinite flat plane (modelling the substrate) and a sphere (modelling the cell body). The use of image systems appropriate to Green's functions for a sphere and plane boundary are described. The computations depict particle paths representing passive tracers from experiments and their motion illustrates overall flow patterns. Figures are presented comparing recorded experimental data with numerically generated results for a number of particle paths. The principal results show good agreement between the experiments and theory.
Discrete mathematical physics and particle modeling
NASA Astrophysics Data System (ADS)
Greenspan, D.
The theory and application of the arithmetic approach to the foundations of both Newtonian and special relativistic mechanics are explored. Using only arithmetic, a reformulation of the Newtonian approach is given for: gravity; particle modeling of solids, liquids, and gases; conservative modeling of laminar and turbulent fluid flow, heat conduction, and elastic vibration; and nonconservative modeling of heat convection, shock-wave generation, the liquid drop problem, porous flow, the interface motion of a melting solid, soap films, string vibrations, and solitons. An arithmetic reformulation of special relativistic mechanics is given for theory in one space dimension, relativistic harmonic oscillation, and theory in three space dimensions. A speculative quantum mechanical model of vibrations in the water molecule is also discussed.
Particle-based model for skiing traffic
NASA Astrophysics Data System (ADS)
Holleczek, Thomas; Tröster, Gerhard
2012-05-01
We develop and investigate a particle-based model for ski slope traffic. Skiers are modeled as particles with a mass that are exposed to social and physical forces, which define the riding behavior of skiers during their descents on ski slopes. We also report position and speed data of 21 skiers recorded with GPS-equipped cell phones on two ski slopes. A comparison of these data with the trajectories resulting from computer simulations of our model shows a good correspondence. A study of the relationship among the density, speed, and flow of skiers reveals that congestion does not occur even with arrival rates of skiers exceeding the maximum ski lift capacity. In a sensitivity analysis, we identify the kinetic friction coefficient of skis on snow, the skier mass, the range of repelling social forces, and the arrival rate of skiers as the crucial parameters influencing the simulation results. Our model allows for the prediction of speed zones and skier densities on ski slopes, which is important in the prevention of skiing accidents.
Abnormal behaviors detection using particle motion model
NASA Astrophysics Data System (ADS)
Chen, Yutao; Zhang, Hong; Cheng, Feiyang; Yuan, Ding; You, Yuhu
2015-03-01
Human abnormal behaviors detection is one of the most challenging tasks in the video surveillance for the public security control. Interaction Energy Potential model is an effective and competitive method published recently to detect abnormal behaviors, but their model of abnormal behaviors is not accurate enough, so it has some limitations. In order to solve this problem, we propose a novel Particle Motion model. Firstly, we extract the foreground to improve the accuracy of interest points detection since the complex background usually degrade the effectiveness of interest points detection largely. Secondly, we detect the interest points using the graphics features. Here, the movement of each human target can be represented by the movements of detected interest points of the target. Then, we track these interest points in videos to record their positions and velocities. In this way, the velocity angles, position angles and distance between each two points can be calculated. Finally, we proposed a Particle Motion model to calculate the eigenvalue of each frame. An adaptive threshold method is proposed to detect abnormal behaviors. Experimental results on the BEHAVE dataset and online videos show that our method could detect fight and robbery events effectively and has a promising performance.
Particle-Surface Interaction Model and Method of Determining Particle-Surface Interactions
NASA Technical Reports Server (NTRS)
Hughes, David W. (Inventor)
2012-01-01
A method and model of predicting particle-surface interactions with a surface, such as the surface of a spacecraft. The method includes the steps of: determining a trajectory path of a plurality of moving particles; predicting whether any of the moving particles will intersect a surface; predicting whether any of the particles will be captured by the surface and/or; predicting a reflected trajectory and velocity of particles reflected from the surface.
Modelling the motion of particles around choanoflagellates
NASA Astrophysics Data System (ADS)
Orme, B. A. A.; Blake, J. R.; Otto, S. R.
2003-01-01
The three-dimensional particle paths due to a helical beat pattern of the flagellum of a sessile choanoflagellate, Salpingoeca Amphoridium (SA), are modelled and compared to the experimental observations of Pettitt (2001). The organism’s main components are a flagellum and a cell body which are situated above a substrate such that the interaction between these entities is crucial in determining the fluid flow around the choanoflagellate. This flow of fluid can be characterized as Stokes flow and a flow field analogous to one created by the flagellum is generated by a distribution of stokeslets and dipoles along a helical curve.
Model-independent particle accelerator tuning
Scheinker, Alexander; Pang, Xiaoying; Rybarcyk, Larry
2013-10-21
We present a new model-independent dynamic feedback technique, rotation rate tuning, for automatically and simultaneously tuning coupled components of uncertain, complex systems. The main advantages of the method are: 1) It has the ability to handle unknown, time-varying systems, 2) It gives known bounds on parameter update rates, 3) We give an analytic proof of its convergence and its stability, and 4) It has a simple digital implementation through a control system such as the Experimental Physics and Industrial Control System (EPICS). Because this technique is model independent it may be useful as a real-time, in-hardware, feedback-based optimization scheme for uncertain and time-varying systems. In particular, it is robust enough to handle uncertainty due to coupling, thermal cycling, misalignments, and manufacturing imperfections. As a result, it may be used as a fine-tuning supplement for existing accelerator tuning/control schemes. We present multi-particle simulation results demonstrating the scheme’s ability to simultaneously adaptively adjust the set points of twenty two quadrupole magnets and two RF buncher cavities in the Los Alamos Neutron Science Center Linear Accelerator’s transport region, while the beam properties and RF phase shift are continuously varying. The tuning is based only on beam current readings, without knowledge of particle dynamics. We also present an outline of how to implement this general scheme in software for optimization, and in hardware for feedback-based control/tuning, for a wide range of systems.
Toward a descriptive model of solar particles in the heliosphere
NASA Technical Reports Server (NTRS)
Shea, M. A.; Smart, D. F.; Adams, James H., Jr.; Chenette, D.; Feynman, Joan; Hamilton, Douglas C.; Heckman, G. R.; Konradi, A.; Lee, Martin A.; Nachtwey, D. S.
1988-01-01
During a workshop on the interplanetary charged particle environment held in 1987, a descriptive model of solar particles in the heliosphere was assembled. This model includes the fluence, composition, energy spectra, and spatial and temporal variations of solar particles both within and beyong 1 AU. The ability to predict solar particle fluences was also discussed. Suggestions for specific studies designed to improve the basic model were also made.
Model-independent particle accelerator tuning
Scheinker, Alexander; Pang, Xiaoying; Rybarcyk, Larry
2013-10-21
We present a new model-independent dynamic feedback technique, rotation rate tuning, for automatically and simultaneously tuning coupled components of uncertain, complex systems. The main advantages of the method are: 1) It has the ability to handle unknown, time-varying systems, 2) It gives known bounds on parameter update rates, 3) We give an analytic proof of its convergence and its stability, and 4) It has a simple digital implementation through a control system such as the Experimental Physics and Industrial Control System (EPICS). Because this technique is model independent it may be useful as a real-time, in-hardware, feedback-based optimization scheme formore » uncertain and time-varying systems. In particular, it is robust enough to handle uncertainty due to coupling, thermal cycling, misalignments, and manufacturing imperfections. As a result, it may be used as a fine-tuning supplement for existing accelerator tuning/control schemes. We present multi-particle simulation results demonstrating the scheme’s ability to simultaneously adaptively adjust the set points of twenty two quadrupole magnets and two RF buncher cavities in the Los Alamos Neutron Science Center Linear Accelerator’s transport region, while the beam properties and RF phase shift are continuously varying. The tuning is based only on beam current readings, without knowledge of particle dynamics. We also present an outline of how to implement this general scheme in software for optimization, and in hardware for feedback-based control/tuning, for a wide range of systems.« less
Evaluation of Drying Rates of Lignite Particles in Superheated Steam Using Single-Particle Model
NASA Astrophysics Data System (ADS)
Kiriyama, Tsuyoshi; Sasaki, Hideaki; Hashimoto, Akira; Kaneko, Shozo; Maeda, Masafumi
2016-08-01
Drying rates of lignite particle groups in superheated steam are evaluated using a single-particle model developed for Australian lignite. Size distributions of the particles are assumed to obey the Rosin-Rammler equation with the maximum particle diameters defined as 100, 50, and 6 mm. The results show the drying rate of a lignite group depends strongly on the maximum particle size, and removal of large particles prior to drying is shown to be effective to reduce the drying time. The calculation model is available for simulations of drying behaviors of lignite in various dryers when an appropriate heat transfer coefficient is given. This study simulates the drying of particles smaller than 6 mm using a heat transfer coefficient in a fluidized bed dryer reported elsewhere. The required drying time estimated from the calculation is comparable to the processing time reported in an actual fluidized bed dryer, supporting the validity of the calculation model.
Multiscale modelling of nucleosome core particle aggregation
NASA Astrophysics Data System (ADS)
Lyubartsev, Alexander P.; Korolev, Nikolay; Fan, Yanping; Nordenskiöld, Lars
2015-02-01
The nucleosome core particle (NCP) is the basic building block of chromatin. Under the influence of multivalent cations, isolated mononucleosomes exhibit a rich phase behaviour forming various columnar phases with characteristic NCP-NCP stacking. NCP stacking is also a regular element of chromatin structure in vivo. Understanding the mechanism of nucleosome stacking and the conditions leading to self-assembly of NCPs is still incomplete. Due to the complexity of the system and the need to describe electrostatics properly by including the explicit mobile ions, novel modelling approaches based on coarse-grained (CG) methods at the multiscale level becomes a necessity. In this work we present a multiscale CG computer simulation approach to modelling interactions and self-assembly of solutions of NCPs induced by the presence of multivalent cations. Starting from continuum simulations including explicit three-valent cobalt(III)hexammine (CoHex3+) counterions and 20 NCPs, based on a previously developed advanced CG NCP model with one bead per amino acid and five beads per two DNA base pair unit (Fan et al 2013 PLoS One 8 e54228), we use the inverse Monte Carlo method to calculate effective interaction potentials for a ‘super-CG’ NCP model consisting of seven beads for each NCP. These interaction potentials are used in large-scale simulations of up to 5000 NCPs, modelling self-assembly induced by CoHex3+. The systems of ‘super-CG’ NCPs form a single large cluster of stacked NCPs without long-range order in agreement with experimental data for NCPs precipitated by the three-valent polyamine, spermidine3+.
Multiscale modelling of nucleosome core particle aggregation.
Lyubartsev, Alexander P; Korolev, Nikolay; Fan, Yanping; Nordenskiöld, Lars
2015-02-18
The nucleosome core particle (NCP) is the basic building block of chromatin. Under the influence of multivalent cations, isolated mononucleosomes exhibit a rich phase behaviour forming various columnar phases with characteristic NCP-NCP stacking. NCP stacking is also a regular element of chromatin structure in vivo. Understanding the mechanism of nucleosome stacking and the conditions leading to self-assembly of NCPs is still incomplete. Due to the complexity of the system and the need to describe electrostatics properly by including the explicit mobile ions, novel modelling approaches based on coarse-grained (CG) methods at the multiscale level becomes a necessity. In this work we present a multiscale CG computer simulation approach to modelling interactions and self-assembly of solutions of NCPs induced by the presence of multivalent cations. Starting from continuum simulations including explicit three-valent cobalt(III)hexammine (CoHex(3+)) counterions and 20 NCPs, based on a previously developed advanced CG NCP model with one bead per amino acid and five beads per two DNA base pair unit (Fan et al 2013 PLoS One 8 e54228), we use the inverse Monte Carlo method to calculate effective interaction potentials for a 'super-CG' NCP model consisting of seven beads for each NCP. These interaction potentials are used in large-scale simulations of up to 5000 NCPs, modelling self-assembly induced by CoHex(3+). The systems of 'super-CG' NCPs form a single large cluster of stacked NCPs without long-range order in agreement with experimental data for NCPs precipitated by the three-valent polyamine, spermidine(3+).
Modeling Particle Exposure in US Trucking Terminals
Davis, ME; Smith, TJ; Laden, F; Hart, JE; Ryan, LM; Garshick, E
2007-01-01
Multi-tiered sampling approaches are common in environmental and occupational exposure assessment, where exposures for a given individual are often modeled based on simultaneous measurements taken at multiple indoor and outdoor sites. The monitoring data from such studies is hierarchical by design, imposing a complex covariance structure that must be accounted for in order to obtain unbiased estimates of exposure. Statistical methods such as structural equation modeling (SEM) represent a useful alternative to simple linear regression in these cases, providing simultaneous and unbiased predictions of each level of exposure based on a set of covariates specific to the exposure setting. We test the SEM approach using data from a large exposure assessment of diesel and combustion particles in the US trucking industry. The exposure assessment includes data from 36 different trucking terminals across the United States sampled between 2001 and 2005, measuring PM2.5 and its elemental carbon (EC), organic carbon (OC) components, by personal monitoring, and sampling at two indoor work locations and an outdoor “background” location. Using the SEM method, we predict: 1) personal exposures as a function of work related exposure and smoking status; 2) work related exposure as a function of terminal characteristics, indoor ventilation, job location, and background exposure conditions; and 3) background exposure conditions as a function of weather, nearby source pollution, and other regional differences across terminal sites. The primary advantage of SEMs in this setting is the ability to simultaneously predict exposures at each of the sampling locations, while accounting for the complex covariance structure among the measurements and descriptive variables. The statistically significant results and high R2 values observed from the trucking industry application supports the broader use of this approach in exposure assessment modeling. PMID:16856739
Multiscale Modeling of Metallic Materials Containing Embedded Particles
NASA Technical Reports Server (NTRS)
Phillips, Dawn R.; Iesulauro, Erin; Glaessgen, Edward H.
2004-01-01
Multiscale modeling at small length scales (10(exp -9) to 10(exp -3) m) is discussed for aluminum matrices with embedded particles. A configuration containing one particle surrounded by about 50 grains and subjected to uniform tension and lateral constraint is considered. The analyses are performed to better understand the effects of material configuration on the initiation and progression of debonding of the particles from the surrounding aluminum matrix. Configurational parameters considered include particle aspect ratio and orientation within the surrounding matrix. Both configurational parameters are shown to have a significant effect on the behavior of the materials as a whole. For elliptical particles with the major axis perpendicular to the direction of loading, a particle with a 1:1 aspect ratio completely debonds from the surrounding matrix at higher loads than particles with higher aspect ratios. As the particle major axis is aligned with the direction of the applied load, increasing amounts of load are required to completely debond the particles.
Disc galaxy modelling with a particle-by-particle made-to-measure method
NASA Astrophysics Data System (ADS)
Hunt, Jason A. S.; Kawata, Daisuke
2013-04-01
We have developed the initial version of a new particle-by-particle adaptation of the made-to-measure (M2M) method, aiming to model the Galactic disc from upcoming Galactic stellar survey data. In our new particle-by-particle M2M, the observables of the target system are compared with those of the model galaxy at the position of the target stars (i.e. particles). The weights of the model particles are changed to reproduce the observables of the target system, and the gravitational potential is automatically adjusted by the changing weights of the particles. This paper demonstrates, as the initial work, that the particle-by-particle M2M can recreate a target disc system created by an N-body simulation in a known dark matter potential, with no error in the observables. The radial profiles of the surface density, velocity dispersion in the radial and perpendicular directions, and the rotational velocity of the target disc are all well reproduced from the initial disc model, whose scalelength is different from that of the target disc. We also demonstrate that our M2M can be applied to an incomplete data set and recreate the target disc reasonably well when the observables are restricted to a part of the disc. We discuss our calibration of the model parameters and the importance of regularization.
Ley, Mikkel W H; Bruus, Henrik
2016-04-01
A continuum model is established for numerical studies of hydrodynamic particle-particle interactions in microfluidic high-concentration suspensions. A suspension of microparticles placed in a microfluidic channel and influenced by an external force, is described by a continuous particle-concentration field coupled to the continuity and Navier-Stokes equation for the solution. The hydrodynamic interactions are accounted for through the concentration dependence of the suspension viscosity, of the single-particle mobility, and of the momentum transfer from the particles to the suspension. The model is applied on a magnetophoretic and an acoustophoretic system, respectively, and based on the results, we illustrate three main points: (1) for relative particle-to-fluid volume fractions greater than 0.01, the hydrodynamic interaction effects become important through a decreased particle mobility and an increased suspension viscosity. (2) At these high particle concentrations, particle-induced flow rolls occur, which can lead to significant deviations of the advective particle transport relative to that of dilute suspensions. (3) Which interaction mechanism that dominates, depends on the specific flow geometry and the specific external force acting on the particles. PMID:26948344
A phase-field point-particle model for particle-laden interfaces
NASA Astrophysics Data System (ADS)
Gu, Chuan; Botto, Lorenzo
2014-11-01
The irreversible attachment of solid particles to fluid interfaces is exploited in a variety of applications, such as froth flotation and Pickering emulsions. Critical in these applications is to predict particle transport in and near the interface, and the two-way coupling between the particles and the interface. While it is now possible to carry out particle-resolved simulations of these systems, simulating relatively large systems with many particles remains challenging. We present validation studies and preliminary results for a hybrid Eulerian-Lagrangian simulation method, in which the dynamics of the interface is fully-resolved by a phase-field approach, while the particles are treated in the ``point-particle'' approximation. With this method, which represents a compromise between the competing needs of resolving particle and interface scale phenomena, we are able to simulate the adsorption of a large number of particles in the interface of drops, and particle-interface interactions during the spinodal coarsening of a multiphase system. While this method models the adsorption phenomenon efficiently and with reasonable accuracy, it still requires understanding subtle issues related to the modelling of hydrodynamic and capillary forces for particles in contact with interface.
Ley, Mikkel W H; Bruus, Henrik
2016-04-01
A continuum model is established for numerical studies of hydrodynamic particle-particle interactions in microfluidic high-concentration suspensions. A suspension of microparticles placed in a microfluidic channel and influenced by an external force, is described by a continuous particle-concentration field coupled to the continuity and Navier-Stokes equation for the solution. The hydrodynamic interactions are accounted for through the concentration dependence of the suspension viscosity, of the single-particle mobility, and of the momentum transfer from the particles to the suspension. The model is applied on a magnetophoretic and an acoustophoretic system, respectively, and based on the results, we illustrate three main points: (1) for relative particle-to-fluid volume fractions greater than 0.01, the hydrodynamic interaction effects become important through a decreased particle mobility and an increased suspension viscosity. (2) At these high particle concentrations, particle-induced flow rolls occur, which can lead to significant deviations of the advective particle transport relative to that of dilute suspensions. (3) Which interaction mechanism that dominates, depends on the specific flow geometry and the specific external force acting on the particles.
Cluster kinetics model of particle separation in vibrated granular media
NASA Astrophysics Data System (ADS)
McCoy, Benjamin J.; Madras, Giridhar
2006-01-01
We model the Brazil-nut effect (BNE) by hypothesizing that granules form clusters that fragment and aggregate. This provides a heterogeneous medium in which the immersed intruder particle rises (BNE) or sinks (reverse BNE) according to relative convection currents and buoyant and drag forces. A simple relationship proposed for viscous drag in terms of the vibrational intensity and the particle to grain density ratio allows simulation of published experimental data for rise and sink times as functions of particle radius, initial depth of the particle, and particle-grain density ratio. The proposed model correctly describes the experimentally observed maximum in risetime.
Saturn's rings - Particle size distributions for thin layer model
NASA Technical Reports Server (NTRS)
Zebker, H. A.; Marouf, E. A.; Tyler, G. L.
1985-01-01
A model incorporating limited interaction between the incident energy and particles in the ring is considered which appears to be consistent with the multiple scattering process in Saturn's rings. The model allows for the small physical thickness of the rings and can be used to relate Voyager 1 observations of 3.6- and 13-cm wavelength microwave scatter from the rings to the ring particle size distribution function for particles with radii ranging from 0.001 to 20 m. This limited-scatter model yields solutions for particle size distribution functions for eight regions in the rings, which exhibit approximately inverse-cubic power-law behavior.
Particle hopping vs. fluid-dynamical models for traffic flow
Nagel, K.
1995-12-31
Although particle hopping models have been introduced into traffic science in the 19509, their systematic use has only started recently. Two reasons for this are, that they are advantageous on modem computers, and that recent theoretical developments allow analytical understanding of their properties and therefore more confidence for their use. In principle, particle hopping models fit between microscopic models for driving and fluiddynamical models for traffic flow. In this sense, they also help closing the conceptual gap between these two. This paper shows connections between particle hopping models and traffic flow theory. It shows that the hydrodynamical limits of certain particle hopping models correspond to the Lighthill-Whitham theory for traffic flow, and that only slightly more complex particle hopping models produce already the correct traffic jam dynamics, consistent with recent fluid-dynamical models for traffic flow. By doing so, this paper establishes that, on the macroscopic level, particle hopping models are at least as good as fluid-dynamical models. Yet, particle hopping models have at least two advantages over fluid-dynamical models: they straightforwardly allow microscopic simulations, and they include stochasticity.
An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows
Snider, D.M.; O`Rourke, P.J.; Andrews, M.J.
1997-06-01
A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.
Modeling photoacoustic spectral features of micron-sized particles.
Strohm, Eric M; Gorelikov, Ivan; Matsuura, Naomi; Kolios, Michael C
2014-10-01
The photoacoustic signal generated from particles when irradiated by light is determined by attributes of the particle such as the size, speed of sound, morphology and the optical absorption coefficient. Unique features such as periodically varying minima and maxima are observed throughout the photoacoustic signal power spectrum, where the periodicity depends on these physical attributes. The frequency content of the photoacoustic signals can be used to obtain the physical attributes of unknown particles by comparison to analytical solutions of homogeneous symmetric geometric structures, such as spheres. However, analytical solutions do not exist for irregularly shaped particles, inhomogeneous particles or particles near structures. A finite element model (FEM) was used to simulate photoacoustic wave propagation from four different particle configurations: a homogeneous particle suspended in water, a homogeneous particle on a reflecting boundary, an inhomogeneous particle with an absorbing shell and non-absorbing core, and an irregularly shaped particle such as a red blood cell. Biocompatible perfluorocarbon droplets, 3-5 μm in diameter containing optically absorbing nanoparticles were used as the representative ideal particles, as they are spherical, homogeneous, optically translucent, and have known physical properties. The photoacoustic spectrum of micron-sized single droplets in suspension and on a reflecting boundary were measured over the frequency range of 100-500 MHz and compared directly to analytical models and the FEM. Good agreement between the analytical model, FEM and measured values were observed for a droplet in suspension, where the spectral minima agreed to within a 3.3 MHz standard deviation. For a droplet on a reflecting boundary, spectral features were correctly reproduced using the FEM but not the analytical model. The photoacoustic spectra from other common particle configurations such as particle with an absorbing shell and a
White dwarfs constraints on dark sector models with light particles
Ubaldi, Lorenzo
2014-06-24
The white dwarf luminosity function is well understood in terms of standard model physics and leaves little room for exotic cooling mechanisms related to the possible existence of new weakly interacting light particles. This puts significant constraints on the parameter space of models that contain a massive dark photon and light dark sector particles.
NASA Astrophysics Data System (ADS)
Mai-Duy, N.; Phan-Thien, N.; Khoo, B. C.
2015-04-01
In the Dissipative Particle Dynamics (DPD) simulation of suspension, the fluid (solvent) and colloidal particles are replaced by a set of DPD particles and therefore their relative sizes (as measured by their exclusion zones) can affect the maximal packing fraction of the colloidal particles. In this study, we investigate roles of the conservative, dissipative and random forces in this relative size ratio (colloidal/solvent). We propose a mechanism of adjusting the DPD parameters to properly model the solvent phase (the solvent here is supposed to have the same isothermal compressibility to that of water).
Particle Physics Primer: Explaining the Standard Model of Matter.
ERIC Educational Resources Information Center
Vondracek, Mark
2002-01-01
Describes the Standard Model, a basic model of the universe that describes electromagnetic force, weak nuclear force radioactivity, and the strong nuclear force responsible for holding particles within the nucleus together. (YDS)
FAST TRACK COMMUNICATION: Positive energy of topologically massive gravity
NASA Astrophysics Data System (ADS)
Deser, S.
2009-10-01
I review how 'classical SUGRA' embeddability establishes positive energy for D = 3 topologically massive gravity, with or without a cosmological term, by a procedure familiar from D = 4 Einstein gravity (GR). This method also provides explicit energy expressions. In contrast to GR, it is not manifestly positive here, due to this theory's peculiar two-term nature.
Predictive modeling of particle-laden turbulent flows. Final report
Shaffer, F.; Bolio, E.J.; Hrenya, C.M.
1993-12-31
Earlier work of Sinclair and Jackson which treats the laminar flow of gas-solid suspensions is extended to model dilute turbulent flow. The random particle motion, often exceeding the turbulent fluctuations in the gas, is obtained using a model based on kinetic theory of granular materials. A two-equation low Reynolds number turbulence model is, modified to account for the presence of the dilute particle phase. Comparisons of the model predictions with available experimental data for the mean and fluctuating velocity profiles for both phases indicate that the resulting theory captures many of the flow features observed in the pneumatic transport of large particles. The model predictions did not manifest an extreme sensitivity to the degree of inelasticity in the particle-particle collisions for the range of solid loading ratios investigated.
NASA Technical Reports Server (NTRS)
Adeniji-Fashola, A. A.
1988-01-01
A multiple-realization particle trajectory scheme has been developed and applied to the numerical prediction of confined turbulent fluid-particle flows. The example flows investigated include the vertical pipe upflow experimental data of Tsuji et al. and the experimental data of Leavitt for a coaxial jet flow, comprising a particle-laden central jet and a clean annular jet, into a large recirculation chamber. The results obtained from the numerical scheme agree well with the experimental data, lending confidence to the modeling approach. The multiple-realization particle trajectory turbulent flow modeling scheme is believed to be a more elegant and accurate approach to the extension of single-particle hydrodynamics to dilute multi-particle systems than the more commonly employed two-fluid modeling approach. It is also better able to incorporate additional force items such as lift, virtual mass and Bassett history terms directly into the particle equation of motion as appropriate. This makes it a suitable candidate for particle migration studies and an extension to situations involving liquid particulate phases with possible propulsion applications, such as in spray combustion, follows naturally.
Merging for Particle-Mesh Complex Particle Kinetic Modeling of the Multiple Plasma Beams
NASA Technical Reports Server (NTRS)
Lipatov, Alexander S.
2011-01-01
We suggest a merging procedure for the Particle-Mesh Complex Particle Kinetic (PMCPK) method in case of inter-penetrating flow (multiple plasma beams). We examine the standard particle-in-cell (PIC) and the PMCPK methods in the case of particle acceleration by shock surfing for a wide range of the control numerical parameters. The plasma dynamics is described by a hybrid (particle-ion-fluid-electron) model. Note that one may need a mesh if modeling with the computation of an electromagnetic field. Our calculations use specified, time-independent electromagnetic fields for the shock, rather than self-consistently generated fields. While a particle-mesh method is a well-verified approach, the CPK method seems to be a good approach for multiscale modeling that includes multiple regions with various particle/fluid plasma behavior. However, the CPK method is still in need of a verification for studying the basic plasma phenomena: particle heating and acceleration by collisionless shocks, magnetic field reconnection, beam dynamics, etc.
Hydrodynamic model for particle size segregation in granular media
NASA Astrophysics Data System (ADS)
Trujillo, Leonardo; Herrmann, Hans J.
2003-12-01
We present a hydrodynamic theoretical model for “Brazil nut” size segregation in granular materials. We give analytical solutions for the rise velocity of a large intruder particle immersed in a medium of monodisperse fluidized small particles. We propose a new mechanism for this particle size-segregation due to buoyant forces caused by density variations which come from differences in the local “granular temperature”. The mobility of the particles is modified by the energy dissipation due to inelastic collisions and this leads to a different behavior from what one would expect for an elastic system. Using our model we can explain the size ratio dependence of the upward velocity.
Molecular Dynamics Models of Shaped Particles Using Filling Solutions
NASA Astrophysics Data System (ADS)
Phillips, Carolyn L.; Anderson, Joshua A.; Glotzer, Sharon C.
Algorithms such as molecular dynamics are useful computational methods for generating trajectories for studying kinetics and nonequilibrium, as well as equilibrium, problems involving ensembles of nano- and colloidal particles. Highly coarse-grained representations of complex particles can be created by rigidly connecting beads into a compos- ite particle. Here we show that by permitting the beads to vary in radii and to overlap, particles can be modeled with more complicated shapes, approaching perfect polygons and polyhedra in two and three dimensions, respectively. The positions and radii of the beads correspond to afilling solution of the very short-range repulsive shape of the modeled nanoparticle.
NASA Astrophysics Data System (ADS)
Graeser, M.; Bente, K.; Buzug, T. M.
2015-06-01
The dynamical behaviour of superparamagnetic iron oxide nanoparticles (SPIONs) is not yet fully understood. In magnetic particle imaging (MPI) SPIONs are used to determine quantitative real-time medical images of a tracer material distribution. For reaching spatial resolution in the sub-millimetre range, MPI requires a well engineered instrumentation providing a magnetic field gradient exceeding 2 T m{}-{1} . However, as the particle performance strongly affects the sensitivity of the imaging process, optimization of the particle parameters is a crucial factor, which is not easy to address. Today most simulations of MPI use the Langevin model to describe the particle behaviour. In equilibrium, the model matches the measured data. If alternating fields in the mid kHz frequency range are applied, the dynamic behaviour of the particles differs from the Langevin theory due to anisotropy effects, particle-particle-interactions and/or exchange interaction in case of multi-core particles. In this paper a model based on previous work is introduced, which was adopted to include crystal and shape anisotropy of immobilised mono-domain single-core particles. The model is applied to typical MPI frequencies and field strengths with different possible superposition of the anisotropy effects, leading to differences in the particle response. It is shown that, despite comparatively high anisotropy constants, the magnetocrystalline anisotropy energy does not quench the signal response for MPI. The constructive superposition of shape and crystal anisotropy leads to the best performance in terms of sensitivity and resolution of the associated imaging modality and slightly reduces the energy barriers compared to a sole-shape anisotropy.
A Particle-based model for water simulation
Max, N., LLNL
1998-01-01
The Smooth-Particle Applied Mechanics (SPAM) model is a relatively recent physical modeling technique It can model both fluids and solids using free-moving particles An implemented SPAM model is described that solved the compressible Navier-Stokes equations to produce animations of splashing and pooling water Because the particle positions are known explicitly each timestep, the SPAM technique produces data amenable to visualization A ray-tracing renderer is also described It samples the underwater light-field distribution and stores tbe information into a Light Accumulation Lattice which is used for scattered light calculations and caustics.
NASA Astrophysics Data System (ADS)
Giannini, Judith
2016-03-01
The object of this work was to study the feasibility of identifying a minimum set of fundamental particles that could be used to build up composite fermions and bosons that exhibit the same properties and behavior as the Standard Model (SM) fundamental particles. The spontaneous decay of most of the SM fermions suggests the possibility that they are composite in nature. The results of this arithmetically-based conceptual model identify a minimum set of only two fundamental particles (with equal and opposite mass) that combine in fractal-like configurations to form Intermediate Building Blocks (IMB). The IMBs then combine to form all of the SM fundamental particles and their anti-counterparts. These composite (bright universe) particles agree with the SM particles in mass, spin, electric charge, decay products and maximum classical radius (indicated by the scattering cross-section). Further, FRACEP identifies an equal set of dark universe particles, based primarily on its negative fundamental particle, which could represent the dark matter and energy understood to be the cause of the expansion of our (bright) universe.
Using Lagrangian particle saltation observations for bedload sediment transport modelling
NASA Astrophysics Data System (ADS)
Niño, Yarko; García, Marcelo
1998-06-01
A Lagrangian model for the saltation of sand in water is proposed. Simulated saltation trajectories neglecting particle rotation and turbulence effects compare fairly well with experimental observations. The model for particle motion is coupled with a stochastic model for particle collision with the bed, such that a number of realizations of the saltation process can be simulated numerically. Model predictions of mean values and standard deviations of saltation height, length and streamwise particle velocity agree fairly well with experimental observations. Model predictions of the dynamic friction coefficient are also in good agreement with experimental observations, but they underestimate the value of 0·63 proposed by Bagnold for this coefficient. The saltation model is applied to the estimation of bedload transport rates of sand using a Bagnoldean formulation. Modelled values of the bedload transport rates overestimate those predicted by commonly used bedload formulae, which appears to be a consequence of problems in the definition of the dynamic friction coefficient. These results seem to indicate a few problems with the Bagnoldean formulation, particularly regarding the continuum assumption for the bedload layer, which would be valid only for very high particle concentrations and small particle diameters, and also regarding the evaluation of the shear stress exerted on the bed by the saltating particles.
Conduction Modelling Using Smoothed Particle Hydrodynamics
NASA Astrophysics Data System (ADS)
Cleary, Paul W.; Monaghan, Joseph J.
1999-01-01
Heat transfer is very important in many industrial and geophysical problems. Because these problems often have complicated fluid dynamics, there are advantages in solving them using Lagrangian methods like smoothed particle hydrodynamics (SPH). Since SPH particles become disordered, the second derivative terms may be estimated poorly, especially when materials with different properties are adjacent. In this paper we show how a simple alteration to the standard SPH formulation ensures continuity of heat flux across discontinuities in material properties. A set of rules is formulated for the construction of isothermal boundaries leading to accurate conduction solutions. A method for accurate prediction of heat fluxes through isothermal boundaries is also given. The accuracy of the SPH conduction solutions is demonstrated through a sequence of test problems of increasing complexity.
An improved collision efficiency model for particle aggregation
NASA Astrophysics Data System (ADS)
Olsen, Aaron; Franks, George; Biggs, Simon; Jameson, Graeme J.
2006-11-01
A generalized geometric model is presented which describes the collision efficiency factor of aggregation (the probability of a binary particle or aggregate collision resulting in adhesion) for systems comprised of two oppositely charged species. Application of the general model to specific systems requires calculation of the area of each species available for collision with a second species. This is in contrast to previous models developed for polymer-particle flocculation that are based on the fractional surface coverage of adsorbed polymer. The difference between these approaches is suggested as an explanation for previously observed discrepancies between theory and observation. In the current work the specific case of oppositely charged nondeformable spherical particles (heteroaggregation) is quantitatively addressed. The optimum concentration of oppositely charged particles for rapid aggregation (maximum collision efficiency) as a function of relative particle size is calculated and an excellent correlation is found with data taken from literature.
An improved collision efficiency model for particle aggregation.
Olsen, Aaron; Franks, George; Biggs, Simon; Jameson, Graeme J
2006-11-14
A generalized geometric model is presented which describes the collision efficiency factor of aggregation (the probability of a binary particle or aggregate collision resulting in adhesion) for systems comprised of two oppositely charged species. Application of the general model to specific systems requires calculation of the area of each species available for collision with a second species. This is in contrast to previous models developed for polymer-particle flocculation that are based on the fractional surface coverage of adsorbed polymer. The difference between these approaches is suggested as an explanation for previously observed discrepancies between theory and observation. In the current work the specific case of oppositely charged nondeformable spherical particles (heteroaggregation) is quantitatively addressed. The optimum concentration of oppositely charged particles for rapid aggregation (maximum collision efficiency) as a function of relative particle size is calculated and an excellent correlation is found with data taken from literature. PMID:17115794
NASA Astrophysics Data System (ADS)
Cassiani, Massimo
2013-02-01
A new approach is proposed to predict concentration fluctuations in the framework of one-particle Lagrangian stochastic models. The approach is innovative since it allows the computation of concentration fluctuations in dispersing plumes using a Lagrangian one-particle model with micromixing but with no need for the simulating of background particles. The extension of the model for the treatment of chemically reactive plumes is also accomplished and allows the computation of plume-related chemical reactions in a Lagrangian one-particle framework separately from the background chemical reactions, accounting for the effect of concentration fluctuations on chemical reactions in a general, albeit approximate, manner. These characteristics should make the proposed approach an ideal tool for plume-in-grid calculations in chemistry transport models. The results are compared to the wind-tunnel experiments of Fackrell and Robins (J Fluid Mech, 117:1-26, 1982) for plume dispersion in a neutral boundary layer and to the measurements of Legg et al. (Boundary-Layer Meteorol, 35:277-302, 1986) for line source dispersion in and above a model canopy. Preliminary reacting plume simulations are also shown comparing the model with the experimental results of Brown and Bilger (J Fluid Mech, 312:373-407, 1996; Atmos Environ, 32:611-628, 1998) to demonstrate the feasibility of computing chemical reactions in the proposed framework.
Acceleration and Radiation Model of Particles in Solar Active Regions
NASA Astrophysics Data System (ADS)
Anastasiadis, Anastasios; Dauphin, Cyril; Vilmer, Nicole
2006-08-01
Cellular Automata (CA) models have successfully reproduced several statistical properties of solar flares such as the peak flux or the total flux distribution. We are using a CA model based on the concept of self organized criticality (SOC) to model the evolution of the magnetic energy released in a solar flare. Each burst of magnetic energy released is assumed to be the consequence of a magnetic reconnection process, where the particles are accelerated by a direct electric field. We relate the difference of energy gain of particles (alpha particles, protons and electrons) to the magnetic energy released and we calculate the resulting kinetic energy distributions and the emitted radiation.
A stochastic model for particle impingements on orbiting spacecraft
NASA Technical Reports Server (NTRS)
Howell, L. W., Jr.
1986-01-01
A general methodology for simulating particle impingements on orbiting spacecraft is developed. Major steps in the modeling process are presented as (1) modeling objective, (2) construction of the spacecraft geometrical model, (3) simulation of the particles in the space environment, (4) particle impact and subsequent events of interest, and (5) results of the simulation. A simulation of the expected meteoroid impingements on the Hubble Space Telescope and the resulting angular momentum transfers which can cause telescope pointing disturbances is given to illustrate these methods.
A New Analytical Model for Trans-Relativistic Particle Acceleration
NASA Astrophysics Data System (ADS)
Becker, Peter A.
2011-01-01
Most existing analytical models describing the second-order Fermi acceleration of relativistic particles due to collisions with MHD waves assume that the injected seed particles are already highly relativistic, despite the fact that the most prevalent source of particles is usually the local thermal background, which is typically a non-relativistic gas. This presents a problem because the momentum dependence of the momentum diffusion coefficient describing the interaction between the particles and the MHD waves is qualitatively different in the non-relativistic and highly relativistic limits. Since the existing analytical models are not able to address this situation, workers have had to rely on numerical simulations to obtain particle spectra describing the trans-relativistic case. In this work we present the first analytical solution to the global, trans-relativistic problem, obtained by using a hybrid form for the momentum diffusion coefficient, given by the sum of the two asymptotic forms. The model also incorporates the appropriate momentum dependence for the particle escape timescale, and the effect of synchrotron and inverse-Compton losses, which are critical for establishing the location of the high-energy cutoff in the particle spectrum. The results can be used to model the acceleration of particles in AGN and solar environments, and can also be used to compute the spectra of the associated synchrotron and inverse-Compton emission. Applications of both types are discussed.
A Simplified Model for the Acceleration of Cosmic Ray Particles
ERIC Educational Resources Information Center
Gron, Oyvind
2010-01-01
Two important questions concerning cosmic rays are: Why are electrons in the cosmic rays less efficiently accelerated than nuclei? How are particles accelerated to great energies in ultra-high energy cosmic rays? In order to answer these questions we construct a simple model of the acceleration of a charged particle in the cosmic ray. It is not…
Optical properties of soot particles: measurement - model comparison
NASA Astrophysics Data System (ADS)
Forestieri, S.; Lambe, A. T.; Lack, D.; Massoli, P.; Cross, E. S.; Dubey, M.; Mazzoleni, C.; Olfert, J.; Freedman, A.; Davidovits, P.; Onasch, T. B.; Cappa, C. D.
2013-12-01
Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In order to accurately model the direct radiative impact of black carbon (BC), the refractive index and shape dependent scattering and absorption characteristics must be known. At present, the assumed shape remains highly uncertain because BC particles are fractal-like, being agglomerates of smaller (20-40 nm) spherules, yet traditional optical models such as Mie theory typically assume a spherical particle morphology. To investigate the ability of various optical models to reproduce observed BC optical properties, we measured light absorption and extinction coefficients of methane and ethylene flame soot particles. Optical properties were measured by multiple instruments: absorption by a dual cavity ringdown photoacoustic spectrometer (CRD-PAS), absorption and scattering by a 3-wavelength photoacoustic/nephelometer spectrometer (PASS-3) and extinction and scattering by a cavity attenuated phase shift spectrometer (CAPS). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA) and mobility size was measured with a scanning mobility particle sizer (SMPS). Measurements were made for nascent soot particles and for collapsed soot particles following coating with dioctyl sebacate or sulfuric acid and thermal denuding to remove the coating. Wavelength-dependent refractive indices for the sampled particles were derived by fitting the observed absorption and extinction cross-sections to spherical particle Mie theory and Rayleigh-Debye-Gans theory. The Rayleigh-Debye-Gans approximation assumes that the absorption properties of soot are dictated by the individual spherules and neglects interaction between them. In general, Mie theory reproduces the observed absorption and extinction cross-sections for particles with volume equivalent diameters (VED) < ~160 nm, but systematically predicts lower
Calibration of TSI model 3025 ultrafine condensation particle counter
Kesten, J.; Reineking, A.; Porstendoerfer, J. )
1991-01-01
The registration efficiency of the TSI model 3025 ultrafine condensation particle counter for Ag and NaCl particles of between 2 and 20 nm in diameter was determined. Taking into account the different shapes of the input aerosol size distributions entering the differential mobility analyzer (DMA) and the transfer function of the DMA, the counting efficiencies of condensation nucleus counters (CNC) for monodisperse Ag and NaCl particles were estimated. In addition, the dependence of the CNC registration efficiency on the particle concentration was investigated.
Solar energetic particle events: Statistical modelling and prediction
NASA Technical Reports Server (NTRS)
Gabriel, S. B.; Feynman, J.; Spitale, G.
1996-01-01
Solar energetic particle events (SEPEs) can have a significant effect on the design and operation of earth orbiting and interplanetary spacecraft. In relation to this, the calculation of proton fluences and fluxes are considered, describing the current state of the art in statistical modeling. A statistical model that can be used for the estimation of integrated proton fluences for different mission durations of greater than one year is reviewed. The gaps in the modeling capabilities of the SEPE environment, such as a proton flux model, alpha particle and heavy ion models and solar cycle variations are described together with the prospects for the prediction of events using neural networks.
Model independence of constraints on particle dark matter
Griest, K.; Sadoulet, B.
1989-03-01
The connection between the annihilation, elastic, and production cross sections is reviewed, showing how a general lower limit on the interaction rate in a detector is obtained from the requirement that a particle be the dark matter. High energy production experiments further constrain models, making very light dark matter particles unlikely. Special attention is paid to the uncertainties, loopholes and model dependencies that go into the arguments and several examples are given. 12 refs., 6 figs.
Modelling of externally mixed particles in the atmosphere
NASA Astrophysics Data System (ADS)
ZHU, Shupeng; Sartelet, Karine; Seigneur, Christian
2014-05-01
Particles present in the atmosphere have significant impacts on climate as well as on human health. Thus, it is important to accurately simulate and forecast their concentrations. Most commonly used air quality models assume that particles are internally mixed, largely for computational reasons. However, this assumption is disproved by measurements, especially close to sources. In fact, the externally-mixed properties of particles are important for aerosol source identification, radiative effects and particle evolution. In this study, a new size-composition resolved aerosol model is developed. It can solve the aerosol dynamic evolution for external mixtures taking into account the processes of coagulation, condensation and nucleation. Both the size of particles and the mass fraction of each chemical compound are discretized. For a given particle size, particles of different chemical composition may co-exist. Aerosol dynamics is solved in each grid cell by splitting coagulation and condensation/evaporation-nucleation processes. For the condensation/evaporation, surface equilibrium between gas and aerosol is calculated based on ISORROPIA and the newly developed H2O (Hydrophilic/Hydrophobic Organic) Model. Because size and chemical composition sections evolve during condensation/evaporation, concentrations need to be redistributed on fixed sections after condensation/evaporation to be able to use the model in 3 dimensions. This is done based on the numerical scheme HEMEN, which was initially developed for size redistribution. Chemical components can be grouped into several aggregates to reduce computational cost. The 0D model is validated by comparison to results obtained for internally mixed particles and the effect of mixing is investigated for up to 31 species and 4 aggregates. The model will be integrated into the air quality modeling platform POLYPHEMUS to investigate its performance in modeling air quality by comparing with observations during the MEGAPOLI
NASA Astrophysics Data System (ADS)
Ataeefard, Maryam; Shadman, Alireza; Saeb, Mohammad Reza; Mohammadi, Yousef
2016-08-01
A mathematical modeling approach was proposed combining the capabilities of response surface methodology (RSM) and desirability function (DF) and implemented successfully in production of printing toner particles. Toner powders were systematically synthesized through suspension copolymerization process. Applying RSM, a series of experiments were designed and toner particles were prepared and the effects of monomer ratio, colorant and surfactant content on the particle size (PS), particle size distribution (PSD), thermal and colorimetric properties (∆ E) of the resulting toner were monitored and discussed. The second-order models corresponding to each target characteristic, i.e., PS, PSD, and ∆ E of different types of toner powders, were obtained by individual optimization to express variation of each property in terms of polymerization parameters. Applying statistical calculations, the best reduced models were identified to be fed in the second step of optimization. Since toners with appropriate PS, PSD, and CP were needed, we applied multi-objective optimization based on DF approach. The results show that exact tuning of toner properties is closely possible with the aid of hybrid mathematical model developed in this work. Noticeably, desirabilities are very close to 100 %.
Relativistic models in nuclear and particle physics
Coester, F.
1988-01-01
A comparative overview is presented of different approaches to the construction of phenomenological dynamical models that respect basic principles of quantum theory and relativity. Wave functions defined as matrix elements of products of field operators on one hand and wave functions that are defined as representatives of state vectors in model Hilbert spaces are related differently to observables and dynamical models for these wave functions have each distinct advantages and disadvantages 34 refs.
Modeling light scattering by mineral dust particles using spheroids
NASA Astrophysics Data System (ADS)
Merikallio, Sini; Nousiainen, Timo
Suspended dust particles have a considerable influence on light scattering in both terrestrial and planetary atmospheres and can therefore have a large effect on the interpretation of remote sensing measurements. Assuming dust particles to be spherical is known to produce inaccurate results when modeling optical properties of real mineral dust particles. Yet this approximation is widely used for its simplicity. Here, we simulate light scattering by mineral dust particles using a distribution of model spheroids. This is done by comparing scattering matrices calculated from a dust optical database of Dubovik et al. [2006] with those measured in the laboratory by Volten et al. [2001]. Wavelengths of 441,6 nm and 632,8 nm and refractive indexes of Re = 1.55 -1.7 and Im = 0.001i -0.01i were adopted in this study. Overall, spheroids are found to fit the measurements significantly better than Mie spheres. Further, we confirm that the shape distribution parametrization developed in Nousiainen et al. (2006) significantly improves the accuracy of simulated single-scattering for small mineral dust particles. The spheroid scheme should therefore yield more reliable interpretations of remote sensing data from dusty planetary atmospheres. While the spheroidal scheme is superior to spheres in remote sensing applications, its performance is far from perfect especially for samples with large particles. Thus, additional advances are clearly possible. Further studies of the Martian atmosphere are currently under way. Dubovik et al. (2006) Application of spheroid models to account for aerosol particle nonspheric-ity in remote sensing of desert dust, JGR, Vol. 111, D11208 Volten et al. (2001) Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm, JGR, Vol. 106, No. D15, pp. 17375-17401 Nousiainen et al. (2006) Light scattering modeling of small feldspar aerosol particles using polyhedral prisms and spheroids, JQSRT 101, pp. 471-487
Utilitarian supersymmetric gauge model of particle interactions
NASA Astrophysics Data System (ADS)
Ma, Ernest
2010-05-01
A remarkabale U(1) gauge extension of the supersymmetric standard model was proposed 8 years ago. It is anomaly free, has no μ term, and conserves baryon and lepton numbers automatically. The phenomenology of a specific version of this model is discussed. In particular, leptoquarks are predicted, with couplings to the heavy singlet neutrinos, the scalar partners of which may be components of dark matter. The Majorana neutrino mass matrix itself may have two zero subdeterminants.
A phenomenological model for particle retention in single, saturated fractures.
Rodrigues, Sandrina; Dickson, Sarah
2014-01-01
Fractured aquifers are some of the most poorly characterized subsurface environments despite posing one of the highest risks to the protection of potable groundwater. This research was designed to improve the understanding of the factors affecting particle transport through fractures by developing a phenomenological model based on laboratory-scale transport data. The model presented in this research employed data from over 70 particle tracer tests conducted in single, saturated, variable-aperture fractures that were obtained from the natural environment and fractured in the laboratory or cast from epoxy in the laboratory. The particles employed were Escherichia coli RS2-GFP and microspheres. The tracer experiments were conducted in natural (dolomitic limestone and granite) as well as epoxy replicas of the natural fractures. The multiple linear regression analysis revealed that the most important factors influencing particle retention in fractures are the ratio of the ionic strength of solution to collector charge, the ratio of particle to collector charge, and the ratio of advective to diffusive forces as described by the Peclet number. The model was able to reasonably (R(2) = 0.64) predict the fraction of particles retained; however, it is evident that some factors not accounted for in the model also contributed to retention. This research presents a novel approach to understanding particle transport in fractures, and illustrates the relative importance of various factors affecting the transport mechanisms. The utility of this model lies in the increased understanding of particle transport in fractures, which is extremely useful for directing future research. PMID:23647360
A phenomenological model for particle retention in single, saturated fractures.
Rodrigues, Sandrina; Dickson, Sarah
2014-01-01
Fractured aquifers are some of the most poorly characterized subsurface environments despite posing one of the highest risks to the protection of potable groundwater. This research was designed to improve the understanding of the factors affecting particle transport through fractures by developing a phenomenological model based on laboratory-scale transport data. The model presented in this research employed data from over 70 particle tracer tests conducted in single, saturated, variable-aperture fractures that were obtained from the natural environment and fractured in the laboratory or cast from epoxy in the laboratory. The particles employed were Escherichia coli RS2-GFP and microspheres. The tracer experiments were conducted in natural (dolomitic limestone and granite) as well as epoxy replicas of the natural fractures. The multiple linear regression analysis revealed that the most important factors influencing particle retention in fractures are the ratio of the ionic strength of solution to collector charge, the ratio of particle to collector charge, and the ratio of advective to diffusive forces as described by the Peclet number. The model was able to reasonably (R(2) = 0.64) predict the fraction of particles retained; however, it is evident that some factors not accounted for in the model also contributed to retention. This research presents a novel approach to understanding particle transport in fractures, and illustrates the relative importance of various factors affecting the transport mechanisms. The utility of this model lies in the increased understanding of particle transport in fractures, which is extremely useful for directing future research.
Multiscale Modeling of Particles Embedded in High Speed Flows
NASA Astrophysics Data System (ADS)
Davis, Sean; Sen, Oishik; Jacobs, Gustaaf; Udaykumar, H. S.
2015-06-01
Problems involving propagation of shock waves through a cloud of particles are inherently multiscale. The system scale is governed by macro-scale conservation equations, which average over solid and fluid phases. The averaging process results in source terms that represent the unresolved momentum exchange between the solid phase and the fluid phase. Typically, such source terms are modeled using empirical correlations derived from physical experiments conducted in a limited parameter space. The focus of the current research is to advance the multiscale modeling of shocked particle-laden gas flows; particle- (i.e. meso-)scale computations are performed to resolve the dynamics of ensembles of particles and closure laws are obtained from the meso-scale for use in the macro-scale equations. Closure models are constructed from meso-scale simulations using the Dynamic Kriging method. The presentation will demonstrate the multiscale approach by connecting meso-scale simulations to an Eulerian-Lagrangian macro-scale model of particle laden flows. The technique is applied to study shock interactions with particle curtains in shock tubes and the results are compared with experimental data in such systems. We gratefully acknowledge the financial support by the Air Force Office of Scientific Research under Grant Number FA9550-12-1-0115 and the National Science Foundation under grant number DMS-115631.
Inhomogeneous particle model for light-scattering by cometary dust
NASA Astrophysics Data System (ADS)
Markkanen, Johannes; Penttilä, Antti; Peltoniemi, Jouni; Muinonen, Karri
2015-12-01
We introduce an inhomogeneous irregular-particle model for reproducing the typical light-scattering features of cometary dust such as the negative polarization near the backscattering direction, and the weak increase of the backscattering intensity. The model is based on the hierarchical Voronoi-partitioning and the algorithm provides fast generation of irregular particles with a flexible control of inhomogeneity. The input parameters of the model are refractive indices, their volumetric abundances, and the number of constituents on each level. The light-scattering properties of these particles with parameters relevant to cometary dust are solved by the volume-integral-equation method. The light-scattering features of inhomogeneous particles are compared with the mixtures of homogeneous particles, and particles with the refractive index obtained by the effective-medium approximation. We show that with the inhomogeneity size of order 0.2 μm, the different models produce qualitatively similar scattering features while some quantitative differences are observed which have an effect on the retrieved material composition of dust.
Standard model bosons as composite particles
Kahana, D.E. . Continuous Electron Beam Accelerator Facility); Kahana, S.H. )
1990-01-01
The Standard model of electro-weak interactions is derived from a Nambu, Jona-Lasinio type four-fermion interaction, which is assumed to result from a more basic theory valid above a very high scale {Lambda}. The masses of the gauge bosons and the Higgs are then produced by dynamical symmetry breaking of the Nambu model at an intermediate scale {mu}, and are evolved back to experimental energies via the renormalisation group equations of the Standard model. The weak angle sin{sup 2} ({theta}{sub W}) is predicted to be 3/8 at the scale {mu}, as in grand unified theories, and is evolved back to the experimental value at scale M{sub W}, thus determining {mu} {approximately}10{sup 13}GeV. Predictions for the ratios of the masses of the gauge and the Higgs bosons to the top quark mass, at experimental energies, are also obtained.
ANFIS modeling for prediction of particle motions in fluid flows
NASA Astrophysics Data System (ADS)
Safdari, Arman; Kim, Kyung Chun
2015-11-01
Accurate dynamic analysis of parcel of solid particles driven in fluid flow system is of interest for many natural and industrial applications such as sedimentation process, study of cloud particles in atmosphere, etc. In this paper, numerical modeling of solid particles in incompressible flow using Eulerian-Lagrangian approach is carried out to investigate the dynamic behavior of particles in different flow conditions; channel and cavity flow. Although modern computers have been well developed, the high computational time and costs for this kind of problems are still demanded. The Lattice Boltzmann Method (LBM) is used to simulate fluid flows and combined with the Lagrangian approach to predict the motion of particles in the range of masses. Some particles are selected, and subjected to Adaptive-network-based fuzzy inference system (ANFIS) to predict the trajectory of moving solid particles. Using a hybrid learning procedure from computational particle movement, the ANFIS can construct an input-output mapping based on fuzzy if-then rules and stipulated computational fluid dynamics prediction pairs. The obtained results from ANFIS algorithm is validated and compared with the set of benchmark data provided based on point-like approach coupled with the LBM method.
Integrating High Temporal Resolution Single Particle Data with Atmospheric Models
NASA Astrophysics Data System (ADS)
Prather, K. A.; Guazzotti, S.; Sodeman, D.; Holecek, J.; Carmichael, G. R.; Tang, Y.
2003-12-01
Single particle analysis can provide direct insight into the evolution of the mixing state of atmospheric particles. Information at this level can be used to gain insights into particle sources as well as atmospheric processing. There are a number of instruments which have been developed in the past decade which allow one to measure the size and chemical composition of individual particles in real time. This presentation will focus on aerosol time-of-flight mass spectrometry (ATOFMS) measurements made during ACE-Asia and other locations in the United States, focusing on the size-resolved chemical information that can be acquired with single particle mass spectrometers. The ability to use single particle signatures to distinguish between elemental carbon (EC), organic carbon (OC), and various mixtures will be demonstrated. Results will be presented showing how unique mass spectral markers can be used to discriminate between dust, sea salt, fossil fuel, and biomass particles, monitoring their relative contributions and changes in chemistry on short timescales. A discussion of how single particle measurements might be used to refine current atmospheric models by adding unique information will be presented.
One-dimensional particle models for heat transfer analysis
NASA Astrophysics Data System (ADS)
Bufferand, H.; Ciraolo, G.; Ghendrih, Ph; Tamain, P.; Bagnoli, F.; Lepri, S.; Livi, R.
2010-11-01
For a better understanding of Spitzer-Härm closure restrictions and for estimating the relevancy of this expression when collisionnality decreases, an effort is done in developing simple models that aim at catching the physics of the transition from conductive to free-streaming heat flux. In that perspective, one-dimensional particle models are developed to study heat transfer properties in the direction parallel to the magnetic field in tokamaks. These models are based on particles that carry energy at a specific velocity and that can interact with each other or with heat sources. By adjusting the particle dynamics and particle interaction properties, it is possible to generate a broad range of models of growing complexity. The simplest models can be solved analytically and are used to link particle behavior to general macroscopic heat transfer properties. In particular, some configurations recover Fourier's law and make possible to investigate the dependance of thermal conductivity on temperature. Besides, some configurations where local balance is lost require defining non local expression for heat flux. These different classes of models could then be linked to different plasma configurations and used to study transition from collisional to non-collisional plasma.
Multi-particle FEM modeling on microscopic behavior of 2D particle compaction
NASA Astrophysics Data System (ADS)
Zhang, Y. X.; An, X. Z.; Zhang, Y. L.
2015-03-01
In this paper, the discrete random packing and various ordered packings such as tetragonal and hexagonal close packed structures generated by discrete element method and honeycomb, which is manually generated were input as the initial packing structures into the multi-particle finite element model (FEM) to study their densification during compaction, where each particle is discretized as a FEM mesh. The macro-property such as relative density and micro-properties such as local morphology, stress, coordination number and densification mechanism obtained from various initial packings are characterized and analyzed. The results show that the coupling of discrete feature in particle scale with the continuous FEM in macro-scale can effectively conquer the difficulties in traditional FEM modeling, which provides a reasonable way to reproduce the compaction process and identify the densification mechanism more accurately and realistically.
Two component mie scattering models of sargasso sea particles.
Brown, O B; Gordon, H R
1973-10-01
The volume scattering function is calculated for particle suspensions consisting of two components systematically distributed in a manner consistent with Coulter Counter observations in the Sargasso Sea. The components are assigned refractive indices 1.01-0.01i and 1.15 to represent organic and inorganic particles, respectively. The only models found that reproduce observed scattering functions require a considerable fraction of the suspended particle volume to be organic in nature. This fraction, however, contributes less than 10% to the total scattering function. The model finally chosen indicates that the inorganic particles smaller than 2.5 micro do not occur in large enough concentrations to have a significant effect on the volume scattering function.
Dissipative particle dynamics model for colloid transport in porous media
Pan, W.; Tartakovsky, A. M.
2013-08-01
We present that the transport of colloidal particles in porous media can be effectively modeled with a new formulation of dissipative particle dynamics, which augments standard DPD with non-central dissipative shear forces between particles while preserving angular momentum. Our previous studies have demonstrated that the new formulation is able to capture accurately the drag forces as well as the drag torques on colloidal particles that result from the hydrodynamic retardation effect. In the present work, we use the new formulation to study the contact efficiency in colloid filtration in saturated porous media. Note that the present model include all transport mechanisms simultaneously, including gravitational sedimentation, interception and Brownian diffusion. Our results of contact efficiency show a good agreement with the predictions of the correlation equation proposed by Tufenkji and EliMelech, which also incorporate all transport mechanisms simultaneously without the additivity assumption.
Smoothed Particle Hydrodynamics Model for Reactive Transport and Mineral Precipitation
Tartakovsky, Alexandre M.; Scheibe, Timothy D.; Redden, George; Meakin, Paul; Fang, Yilin
2006-06-30
A new Lagrangian particle model based on smoothed particle hydrodynamics was used to simulate pore scale precipitation reactions. The side-by-side injection of reacting solutions into two halves of a two-dimensional granular porous medium was simulated. Precipitation on grain surfaces occurred along a narrow zone in the middle of the domain, where the reacting solutes mixed to generate a supersaturated reaction product. The numerical simulations qualitatively reproduced the behavior observed in related laboratory experiments.
Rong, Guan; Liu, Guang; Zhou, Chuang-bing
2013-01-01
Since rocks are aggregates of mineral particles, the effect of mineral microstructure on macroscopic mechanical behaviors of rocks is inneglectable. Rock samples of four different particle shapes are established in this study based on clumped particle model, and a sphericity index is used to quantify particle shape. Model parameters for simulation in PFC are obtained by triaxial compression test of quartz sandstone, and simulation of triaxial compression test is then conducted on four rock samples with different particle shapes. It is seen from the results that stress thresholds of rock samples such as crack initiation stress, crack damage stress, and peak stress decrease with the increasing of the sphericity index. The increase of sphericity leads to a drop of elastic modulus and a rise in Poisson ratio, while the decreasing sphericity usually results in the increase of cohesion and internal friction angle. Based on volume change of rock samples during simulation of triaxial compression test, variation of dilation angle with plastic strain is also studied. PMID:23997677
Modeling of Fine-Particle Formation in Turbulent Flames
NASA Astrophysics Data System (ADS)
Raman, Venkat; Fox, Rodney O.
2016-01-01
The generation of nanostructured particles in high-temperature flames is important both for the control of emissions from combustion devices and for the synthesis of high-value chemicals for a variety of applications. The physiochemical processes that lead to the production of fine particles in turbulent flames are highly sensitive to the flow physics and, in particular, the history of thermochemical compositions and turbulent features they encounter. Consequently, it is possible to change the characteristic size, structure, composition, and yield of the fine particles by altering the flow configuration. This review describes the complex multiscale interactions among turbulent fluid flow, gas-phase chemical reactions, and solid-phase particle evolution. The focus is on modeling the generation of soot particles, an unwanted pollutant from automobile and aircraft engines, as well as metal oxides, a class of high-value chemicals sought for specialized applications, including emissions control. Issues arising due to the numerical methods used to approximate the particle number density function, the modeling of turbulence-chemistry interactions, and model validation are also discussed.
Sticky Particles: Modeling Rigid Aggregates in Dense Planetary Rings
NASA Astrophysics Data System (ADS)
Perrine, Randall P.; Richardson, D. C.; Scheeres, D. J.
2008-09-01
We present progress on our study of planetary ring dynamics. We use local N-body simulations to examine small patches of dense rings in which self-gravity and mutual collisions dominate the dynamics of the ring material. We use the numerical code pkdgrav to model the motions of 105-7 ring particles, using a sliding patch model with modified periodic boundary conditions. The exact nature of planetary ring particles is not well understood. If covered in a frost-like layer, such irregular surfaces may allow for weak cohesion between colliding particles. Thus we have recently added new functionality to our model, allowing "sticky particles” to lock into rigid aggregates while in a rotating reference frame. This capability allows particles to adhere to one another, forming irregularly shaped aggregates that move as rigid bodies. (The bonds between particles can subsequently break, given sufficient stress.) These aggregates have greater strength than gravitationally bound "rubble piles,” and are thus able to grow larger and survive longer under similar stresses. This new functionality allows us to explore planetary ring properties and dynamics in a new way, by self-consistently forming (and destroying) non-spherical aggregates and moonlets via cohesive forces, while in a rotating frame, subjected to planetary tides. (We are not aware of any similar implementations in other existing models.) These improvements allow us to study the many effects that particle aggregation may have on the rings, such as overall ring structure; wake formation; equilibrium properties of non-spherical particles, like pitch angle, orientation, shape, size distribution, and spin; and the surface properties of the ring material. We present test cases and the latest results from this new model. This work is supported by a NASA Earth and Space Science Fellowship.
Modelling new particle formation events in the South African savannah
Gierens, Rosa; Laakso, Lauri; Mogensen, Ditte; Vakkari, Ville; Buekes, Johan P.; Van Zyl, Pieter; Hakola, H.; Guenther, Alex B.; Pienaar, J. J.; Boy, Michael
2014-05-28
Africa is one of the less studied continents with respect to atmospheric aerosols. Savannahs are complex dynamic systems sensitive to climate and land-use changes, but the interaction of these systems with the atmosphere is not well understood. Atmospheric particles, called aerosols, affect the climate on regional and global scales, and are an important factor in air quality. In this study, measurements from a relatively clean savannah environment in South Africa were used to model new particle formation and growth. There already are some combined long-term measurements of trace gas concentrations together with aerosol and meteorological variables available, but to our knowledge this is the first detailed simulation that includes all the main processes relevant to particle formation. The results show that both of the particle formation mechanisms investigated overestimated the dependency of the formation rates on sulphuric acid. From the two particle formation mechanisms tested in this work, the approach that included low volatile organic compounds to the particle formation process was more accurate in describing the nucleation events than the approach that did not. To obtain a reliable estimate of aerosol concentration in simulations for larger scales, nucleation mechanisms would need to include organic compounds, at least in southern Africa. This work is the first step in developing a more comprehensive new particle formation model applicable to the unique environment in southern Africa. Such a model will assist in better understanding and predicting new particle formation – knowledge which could ultimately be used to mitigate impacts of climate change and air quality.
Modeling of particle trajectories in an electrostatically charged channel
NASA Astrophysics Data System (ADS)
Wu, Mengbai; Kuznetsov, Andrey V.; Jasper, Warren J.
2010-04-01
Modeling and analyses of filtration efficiency in electrostatically charged monolith filters are important for evaluating and designing this class of filters. Unlike traditional fibrous filters which comprise external flow around a fiber, monolith filters are modeled as internal flow through small channels. Analogous to single fiber theory for external flows, single channel theory is used to analyze basic fluid mechanics in monolith filters and predict filtration efficiencies. The model incorporates three forces: hydrodynamic forces, electrostatic forces, and Brownian motion. Fluid velocity within the channels is calculated by using an analytical solution for circular channel flow, within which the slip boundary condition is considered because of small length scales. This velocity field is then used to evaluate the drag force on the particle according to Stokes's law. For this model, a one-way coupling between the fluid flow and the particle motion is assumed due to the fact that the relaxation time for the particles simulated in this paper is very small compared to the time the particles spend in the channel. The electrostatic field is computed assuming a uniform charge distribution on the inner surface of a cylindrical channel of finite length. Using a Monte Carlo simulation, particles are randomly injected into a single channel to determine the filtration efficiency.
Improved Boundary Model for Particle Simulation of Collisionless Driven Reconnection
NASA Astrophysics Data System (ADS)
Ohtani, H.; Horiuchi, R.
2006-10-01
To clarify the relationship between particle kinetic effects and anomalous resistivity due to plasma instabilities in collisionless driven reconnection, we develop a three-dimensional Particle Simulation code for Magnetic reconnection in an Open system (PASMO). Recently, we have improved a model of upstream boundary to satisfy sufficiently the frozen-in condition both for ions and electrons. From the condition, plasma inflow is driven by ExB drift due to a driving electric field. In the previous model, particles are supplied into the system each time step, based on the particle flux through upstream boundary. The number density changes in proportion to magnetic field. In the improved model, particles in a cell near upstream boundary are newly loaded so as to satisfy shifted Maxwellian rigorously every time step. Using this model, the frozen-in condition is satisfied near the boundary both for electrons and ions. We will discuss the relationship between excitation of instability and mechanism of magnetic reconnection in the meeting.
Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Lei, Huan; Mundy, Christopher J.; Schenter, Gregory K.; Voulgarakis, Nikolaos K.
2015-05-01
Thermal fluctuation and hydrophobicity are two hallmarks of fluid hydrodynamics on the nano-scale. It is a challenge to consistently couple the small length and time scale phenomena associated with molecular interaction with larger scale phenomena. The development of this consistency is the essence of mesoscale science. In this study, we use a nanoscale fluid model based on smoothed dissipative particle dynamics that accounts for the phenomena associated with density fluctuations and hydrophobicity. We show consistency in the fluctuation spectrum across scales. In doing so, it is necessary to account for finite fluid particle size. Furthermore, we demonstrate that the present model can capture the void probability and solvation free energy of nonpolar hard particles of different sizes. The present fluid model is well suited for an understanding of emergent phenomena in nano-scale fluid systems.
Cache Allocation in CDN: An Evolutionary Game Generalized Particle Model
NASA Astrophysics Data System (ADS)
Feng, Xiang; Lau, Francis C. M.; Gao, Daqi
Content distribution networks (CDNs) increasingly have been used to reduce the response times experienced by Internet users through placing surrogates close to the clients. This paper presents an object replacement approach based on an evolutionary game generalized particle model (G-GPM). We first propose a problem model for CDNs. The CDN model is then fit into a gravitational field. The origin servers and surrogates are regarded as two kinds of particles which are located in two force-fields. The cache allocation problem is thus transformed into the kinematics and dynamics of the particles in the annular and the round force-fields. The G-GPM approach is unique in four aspects: 1) direct viewing of individual and overall optimization; 2) parallel computing (lower time complexity); 3) multi-objective solution; and 4) being able to deal with some social interactions behaviors.
Hybrid Modeling Method for a DEP Based Particle Manipulation
Miled, Mohamed Amine; Gagne, Antoine; Sawan, Mohamad
2013-01-01
In this paper, a new modeling approach for Dielectrophoresis (DEP) based particle manipulation is presented. The proposed method fulfills missing links in finite element modeling between the multiphysic simulation and the biological behavior. This technique is amongst the first steps to develop a more complex platform covering several types of manipulations such as magnetophoresis and optics. The modeling approach is based on a hybrid interface using both ANSYS and MATLAB to link the propagation of the electrical field in the micro-channel to the particle motion. ANSYS is used to simulate the electrical propagation while MATLAB interprets the results to calculate cell displacement and send the new information to ANSYS for another turn. The beta version of the proposed technique takes into account particle shape, weight and its electrical properties. First obtained results are coherent with experimental results. PMID:23364197
Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics
Lei, Huan; Mundy, Christopher J.; Schenter, Gregory K.; Voulgarakis, Nikolaos
2015-05-21
Thermal fluctuation and hydrophobicity are two hallmarks of fluid hydrodynamics on the nano-scale. It is a challenge to consistently couple the small length and time scale phenomena associated with molecular interaction with larger scale phenomena. The development of this consistency is the essence of mesoscale science. In this study, we develop a nanoscale fluid model based on smoothed dissipative particle dynamics that accounts for the phenomena of associated with density fluctuations and hydrophobicity. We show consistency in the fluctuation spectrum across scales. In doing so, it is necessary to account for finite fluid particle size. Furthermore, we demonstrate that the present model can capture of the void probability and solvation free energy of apolar particles of different sizes. The present fluid model is well suited for a understanding emergent phenomena in nano-scale fluid systems.
Modeling reactive transport with particle tracking and kernel estimators
NASA Astrophysics Data System (ADS)
Rahbaralam, Maryam; Fernandez-Garcia, Daniel; Sanchez-Vila, Xavier
2015-04-01
Groundwater reactive transport models are useful to assess and quantify the fate and transport of contaminants in subsurface media and are an essential tool for the analysis of coupled physical, chemical, and biological processes in Earth Systems. Particle Tracking Method (PTM) provides a computationally efficient and adaptable approach to solve the solute transport partial differential equation. On a molecular level, chemical reactions are the result of collisions, combinations, and/or decay of different species. For a well-mixed system, the chem- ical reactions are controlled by the classical thermodynamic rate coefficient. Each of these actions occurs with some probability that is a function of solute concentrations. PTM is based on considering that each particle actually represents a group of molecules. To properly simulate this system, an infinite number of particles is required, which is computationally unfeasible. On the other hand, a finite number of particles lead to a poor-mixed system which is limited by diffusion. Recent works have used this effect to actually model incomplete mix- ing in naturally occurring porous media. In this work, we demonstrate that this effect in most cases should be attributed to a defficient estimation of the concentrations and not to the occurrence of true incomplete mixing processes in porous media. To illustrate this, we show that a Kernel Density Estimation (KDE) of the concentrations can approach the well-mixed solution with a limited number of particles. KDEs provide weighting functions of each particle mass that expands its region of influence, hence providing a wider region for chemical reactions with time. Simulation results show that KDEs are powerful tools to improve state-of-the-art simulations of chemical reactions and indicates that incomplete mixing in diluted systems should be modeled based on alternative conceptual models and not on a limited number of particles.
Explosive particle soil surface dispersion model for detonated military munitions.
Hathaway, John E; Rishel, Jeremy P; Walsh, Marianne E; Walsh, Michael R; Taylor, Susan
2015-07-01
The accumulation of high explosive mass residue from the detonation of military munitions on training ranges is of environmental concern because of its potential to contaminate the soil, surface water, and groundwater. The US Department of Defense wants to quantify, understand, and remediate high explosive mass residue loadings that might be observed on active firing ranges. Previously, efforts using various sampling methods and techniques have resulted in limited success, due in part to the complicated dispersion pattern of the explosive particle residues upon detonation. In our efforts to simulate particle dispersal for high- and low-order explosions on hypothetical firing ranges, we use experimental particle data from detonations of munitions from a 155-mm howitzer, which are common military munitions. The mass loadings resulting from these simulations provide a previously unattained level of detail to quantify the explosive residue source-term for use in soil and water transport models. In addition, the resulting particle placements can be used to test, validate, and optimize particle sampling methods and statistical models as applied to firing ranges. Although the presented results are for a hypothetical 155-mm howitzer firing range, the method can be used for other munition types once the explosive particle characteristics are known.
Modeling oceanic multiphase flow by using Lagrangian particle tracking
NASA Astrophysics Data System (ADS)
Matsumura, Y.
2014-12-01
While the density of seawater is basically determined by its temperature, salinity and pressure, the effective density becomes higher when the water mass contains suspended sediment. On the other hands, effective density declines when water mass contains fine scale materials of lower density such as bubbles and ice crystals. Such density anomaly induced by small scale materials suspended in water masses sometimes plays important roles in the sub-mesoscale ocean physics. To simulate these small scale oceanic multiphase flow, a new modeling framework using an online Lagrangian particle tracking method is developed. A Lagrangian particle tracking method has substantial advantages such as an explicit treatment of buoyancy force acting on each individual particle, no numerical diffusion and dissipation, high dynamic range and an ability to track the history and each individual particle. However, its numerical cost causes difficulty when we try to simulate a large number of particles. In the present study we implement a numerically efficient particle tracking scheme using linked-list data structure, which is coupled with a nonhydrostatic dynamical core. This newly developed model successfully reproduces characteristics of some interesting small scale multiphase processes, for example hyperpycnal flow (a sediment-rich river water plume trapped at ocean floor) and grease ice cover (a slurry mixture of frazil ice crystals and seawater).
Lagrangian Particle Method for Local Scale Dispersion Modeling
NASA Astrophysics Data System (ADS)
Sunarko; ZakiSu'ud
2016-08-01
A deterministic model is developed for radioactive dispersion analysis based on random-walk Lagrangian Particle Dispersion Method (LPDM). A diagnostic 3dimensional mass-consistent wind-field with a capability to handle complex topography can be used to provide input for particle advection. Turbulent diffusion process of particles is determined based on empirical lateral and linear vertical relationships. Surface-level concentration is calculated for constant unit release from elevated point source. A series of 60-second segmented groups of particles are released in 3600 seconds total duration. Averaged surface-level concentration within a 5 meter surface layer is obtained and compared with available analytical solution. Results from LPDM shows good agreement with the analytical result for vertically constant and varying wind field with the same atmospheric stability.
Model Adaptation for Prognostics in a Particle Filtering Framework
NASA Technical Reports Server (NTRS)
Saha, Bhaskar; Goebel, Kai Frank
2011-01-01
One of the key motivating factors for using particle filters for prognostics is the ability to include model parameters as part of the state vector to be estimated. This performs model adaptation in conjunction with state tracking, and thus, produces a tuned model that can used for long term predictions. This feature of particle filters works in most part due to the fact that they are not subject to the "curse of dimensionality", i.e. the exponential growth of computational complexity with state dimension. However, in practice, this property holds for "well-designed" particle filters only as dimensionality increases. This paper explores the notion of wellness of design in the context of predicting remaining useful life for individual discharge cycles of Li-ion batteries. Prognostic metrics are used to analyze the tradeoff between different model designs and prediction performance. Results demonstrate how sensitivity analysis may be used to arrive at a well-designed prognostic model that can take advantage of the model adaptation properties of a particle filter.
Resiliency and medicine: how to create a positive energy balance.
Kelly, John D
2011-01-01
A career in orthopaedics is a race-a marathon. Many outside forces converge to increase stressors to high levels. Resiliency, or the ability to bounce back from difficulty, can be learned and nurtured. The management of energy, rather than time, holds the key to avoiding burnout. Orthopaedic surgeons must minimize "energy drain" by first recognizing their ability to become proactive and control their lives. Surgeons must learn how to say "no" and delegate work and responsibilities. A positive energy balance can be attained when relationships, not things, are given priority. A focus on passions and inspiration helps to maintain energy, while a connection to a "source" and living a morally just, service-oriented life will yield endless energy.
Investigation of Self-Oscillation using Particle Balance Model
NASA Astrophysics Data System (ADS)
Bae, Inshik; Na, Byungkeun; Chang, Hongyoung
2015-09-01
Self-oscillation, which is obtained by using a DC-only power supply with specific anode voltage conditions, is investigated in a cylindrical system with thermal electrons using tungsten filaments. From analysis of the obtained oscillation profiles, the experimental data is consistent with the model derived from the particle balance model. The self-oscillation period characteristics with respect to the pressure and gas species are also analyzed. As the physics and particle motion of self-oscillation near the electron avalanche is analyzed in different perspective, this study may advance the understanding of this phenomenon. This research was supported by the Ministry of Knowledge Economy (MKE) of Korea (Grant No. 10041681).
Investigation of self-oscillation using particle balance model
Bae, Inshik; Na, Byungkeun Chang, Hongyoung
2015-08-15
Self-oscillation obtained using a DC-only power supply under specific anode voltage conditions is investigated in a cylindrical system with thermal electrons using tungsten filaments. Analysis of the obtained oscillation profiles reveals that the experimental data are consistent with a model derived from the particle balance model. The self-oscillation period characteristics with respect to the pressure and gas species are also analyzed. As the physics and particle motion of self-oscillation near the plasma transition region are analyzed from different perspectives, this paper may advance the study of this phenomenon.
Charged Particle Environment Definition for NGST: Model Development
NASA Technical Reports Server (NTRS)
Blackwell, William C.; Minow, Joseph I.; Evans, Steven W.; Hardage, Donna M.; Suggs, Robert M.
2000-01-01
NGST will operate in a halo orbit about the L2 point, 1.5 million km from the Earth, where the spacecraft will periodically travel through the magnetotail region. There are a number of tools available to calculate the high energy, ionizing radiation particle environment from galactic cosmic rays and from solar disturbances. However, space environment tools are not generally available to provide assessments of charged particle environment and its variations in the solar wind, magnetosheath, and magnetotail at L2 distances. An engineering-level phenomenology code (LRAD) was therefore developed to facilitate the definition of charged particle environments in the vicinity of the L2 point in support of the NGST program. LRAD contains models tied to satellite measurement data of the solar wind and magnetotail regions. The model provides particle flux and fluence calculations necessary to predict spacecraft charging conditions and the degradation of materials used in the construction of NGST. This paper describes the LRAD environment models for the deep magnetotail (XGSE < -100 Re) and solar wind, and presents predictions of the charged particle environment for NGST.
NIMROD Modeling of Sawtooth Modes Using Hot-Particle Closures
NASA Astrophysics Data System (ADS)
Kruger, Scott; Jenkins, T. G.; Held, E. D.; King, J. R.
2015-11-01
In DIII-D shot 96043, RF heating gives rise to an energetic ion population that alters the sawtooth stability boundary, replacing conventional sawtooth cycles by longer-period, larger-amplitude `giant sawtooth' oscillations. We explore the use of particle-in-cell closures within the NIMROD code to numerically represent the RF-induced hot-particle distribution, and investigate the role of this distribution in determining the altered mode onset threshold and subsequent nonlinear evolution. Equilibrium reconstructions from the experimental data are used to enable these detailed validation studies. Effects of other parameters on the sawtooth behavior, such as the plasma Lundquist number and hot-particle beta-fraction, are also considered. The fast energetic particles present many challenges for the PIC closure. We review new algorithm and performance improvements to address these challenges, and provide a preliminary assessment of the efficacy of the PIC closure versus a continuum model for energetic particle modeling. We also compare our results with those of, and discuss plans for a more complete validation campaign for this discharge. Supported by US Department of Energy via the SciDAC Center for Extended MHD Modeling (CEMM).
NMR relaxation induced by iron oxide particles: testing theoretical models
NASA Astrophysics Data System (ADS)
Gossuin, Y.; Orlando, T.; Basini, M.; Henrard, D.; Lascialfari, A.; Mattea, C.; Stapf, S.; Vuong, Q. L.
2016-04-01
Superparamagnetic iron oxide particles find their main application as contrast agents for cellular and molecular magnetic resonance imaging. The contrast they bring is due to the shortening of the transverse relaxation time T 2 of water protons. In order to understand their influence on proton relaxation, different theoretical relaxation models have been developed, each of them presenting a certain validity domain, which depends on the particle characteristics and proton dynamics. The validation of these models is crucial since they allow for predicting the ideal particle characteristics for obtaining the best contrast but also because the fitting of T 1 experimental data by the theory constitutes an interesting tool for the characterization of the nanoparticles. In this work, T 2 of suspensions of iron oxide particles in different solvents and at different temperatures, corresponding to different proton diffusion properties, were measured and were compared to the three main theoretical models (the motional averaging regime, the static dephasing regime, and the partial refocusing model) with good qualitative agreement. However, a real quantitative agreement was not observed, probably because of the complexity of these nanoparticulate systems. The Roch theory, developed in the motional averaging regime (MAR), was also successfully used to fit T 1 nuclear magnetic relaxation dispersion (NMRD) profiles, even outside the MAR validity range, and provided a good estimate of the particle size. On the other hand, the simultaneous fitting of T 1 and T 2 NMRD profiles by the theory was impossible, and this occurrence constitutes a clear limitation of the Roch model. Finally, the theory was shown to satisfactorily fit the deuterium T 1 NMRD profile of superparamagnetic particle suspensions in heavy water.
NMR relaxation induced by iron oxide particles: testing theoretical models.
Gossuin, Y; Orlando, T; Basini, M; Henrard, D; Lascialfari, A; Mattea, C; Stapf, S; Vuong, Q L
2016-04-15
Superparamagnetic iron oxide particles find their main application as contrast agents for cellular and molecular magnetic resonance imaging. The contrast they bring is due to the shortening of the transverse relaxation time T 2 of water protons. In order to understand their influence on proton relaxation, different theoretical relaxation models have been developed, each of them presenting a certain validity domain, which depends on the particle characteristics and proton dynamics. The validation of these models is crucial since they allow for predicting the ideal particle characteristics for obtaining the best contrast but also because the fitting of T 1 experimental data by the theory constitutes an interesting tool for the characterization of the nanoparticles. In this work, T 2 of suspensions of iron oxide particles in different solvents and at different temperatures, corresponding to different proton diffusion properties, were measured and were compared to the three main theoretical models (the motional averaging regime, the static dephasing regime, and the partial refocusing model) with good qualitative agreement. However, a real quantitative agreement was not observed, probably because of the complexity of these nanoparticulate systems. The Roch theory, developed in the motional averaging regime (MAR), was also successfully used to fit T 1 nuclear magnetic relaxation dispersion (NMRD) profiles, even outside the MAR validity range, and provided a good estimate of the particle size. On the other hand, the simultaneous fitting of T 1 and T 2 NMRD profiles by the theory was impossible, and this occurrence constitutes a clear limitation of the Roch model. Finally, the theory was shown to satisfactorily fit the deuterium T 1 NMRD profile of superparamagnetic particle suspensions in heavy water.
NMR relaxation induced by iron oxide particles: testing theoretical models.
Gossuin, Y; Orlando, T; Basini, M; Henrard, D; Lascialfari, A; Mattea, C; Stapf, S; Vuong, Q L
2016-04-15
Superparamagnetic iron oxide particles find their main application as contrast agents for cellular and molecular magnetic resonance imaging. The contrast they bring is due to the shortening of the transverse relaxation time T 2 of water protons. In order to understand their influence on proton relaxation, different theoretical relaxation models have been developed, each of them presenting a certain validity domain, which depends on the particle characteristics and proton dynamics. The validation of these models is crucial since they allow for predicting the ideal particle characteristics for obtaining the best contrast but also because the fitting of T 1 experimental data by the theory constitutes an interesting tool for the characterization of the nanoparticles. In this work, T 2 of suspensions of iron oxide particles in different solvents and at different temperatures, corresponding to different proton diffusion properties, were measured and were compared to the three main theoretical models (the motional averaging regime, the static dephasing regime, and the partial refocusing model) with good qualitative agreement. However, a real quantitative agreement was not observed, probably because of the complexity of these nanoparticulate systems. The Roch theory, developed in the motional averaging regime (MAR), was also successfully used to fit T 1 nuclear magnetic relaxation dispersion (NMRD) profiles, even outside the MAR validity range, and provided a good estimate of the particle size. On the other hand, the simultaneous fitting of T 1 and T 2 NMRD profiles by the theory was impossible, and this occurrence constitutes a clear limitation of the Roch model. Finally, the theory was shown to satisfactorily fit the deuterium T 1 NMRD profile of superparamagnetic particle suspensions in heavy water. PMID:26933908
Generalized slave-particle method for extended Hubbard models
NASA Astrophysics Data System (ADS)
Georgescu, Alexandru B.; Ismail-Beigi, Sohrab
2015-12-01
We introduce a set of generalized slave-particle models for extended Hubbard models that treat localized electronic correlations using slave-boson decompositions. Our models automatically include two slave-particle methods of recent interest, the slave-rotor and slave-spin methods, as well as a ladder of new intermediate models where one can choose which of the electronic degrees of freedom (e.g., spin or orbital labels) are treated as correlated degrees of freedom by the slave bosons. In addition, our method removes the aberrant behavior of the slave-rotor model, where it systematically overestimates the importance of electronic correlation effects for weak interaction strength, by removing the contribution of unphysical states from the bosonic Hilbert space. The flexibility of our formalism permits one to separate and isolate the effect of correlations on the key degrees of freedom.
Modeling of long range frequency sweeping for energetic particle modes
Nyqvist, R. M.; Breizman, B. N.
2013-04-15
Long range frequency sweeping events are simulated numerically within a one-dimensional, electrostatic bump-on-tail model with fast particle sources and collisions. The numerical solution accounts for fast particle trapping and detrapping in an evolving wave field with a fixed wavelength, and it includes three distinct collisions operators: Drag (dynamical friction on the background electrons), Krook-type collisions, and velocity space diffusion. The effects of particle trapping and diffusion on the evolution of holes and clumps are investigated, and the occurrence of non-monotonic (hooked) frequency sweeping and asymptotically steady holes is discussed. The presented solution constitutes a step towards predictive modeling of frequency sweeping events in more realistic geometries.
A description of rotations for DEM models of particle systems
NASA Astrophysics Data System (ADS)
Campello, Eduardo M. B.
2015-06-01
In this work, we show how a vector parameterization of rotations can be adopted to describe the rotational motion of particles within the framework of the discrete element method (DEM). It is based on the use of a special rotation vector, called Rodrigues rotation vector, and accounts for finite rotations in a fully exact manner. The use of fictitious entities such as quaternions or complicated structures such as Euler angles is thereby circumvented. As an additional advantage, stick-slip friction models with inter-particle rolling motion are made possible in a consistent and elegant way. A few examples are provided to illustrate the applicability of the scheme. We believe that simple vector descriptions of rotations are very useful for DEM models of particle systems.
Modeling Correlation Effects in Nickelates with Slave Particles
NASA Astrophysics Data System (ADS)
Georgescu, Alexandru Bogdan; Ismail-Beigi, Sohrab
Nickelate interfaces display interesting electronic properties including orbital ordering similar to that of cuprate superconductors and thickness dependent metal-insulator transitions. One-particle band theory calculations do not include dynamic localized correlation effects on the nickel sites and thus often incorrectly predict metallic systems or incorrect ARPES spectra. Building on two previous successful slave-particle treatments of local correlations, we present a generalized slave-particle method that includes prior models and allows us to produce new intermediate models. The computational efficiency of these slave-boson methods means that one can readily study correlation effects in complex heterostructures. We show some predictions of these methods for the electronic structure of bulk and thin film nickelates. Work supported by NSF Grant MRSEC DMR-1119826.
Advances in Bayesian Model Based Clustering Using Particle Learning
Merl, D M
2009-11-19
Recent work by Carvalho, Johannes, Lopes and Polson and Carvalho, Lopes, Polson and Taddy introduced a sequential Monte Carlo (SMC) alternative to traditional iterative Monte Carlo strategies (e.g. MCMC and EM) for Bayesian inference for a large class of dynamic models. The basis of SMC techniques involves representing the underlying inference problem as one of state space estimation, thus giving way to inference via particle filtering. The key insight of Carvalho et al was to construct the sequence of filtering distributions so as to make use of the posterior predictive distribution of the observable, a distribution usually only accessible in certain Bayesian settings. Access to this distribution allows a reversal of the usual propagate and resample steps characteristic of many SMC methods, thereby alleviating to a large extent many problems associated with particle degeneration. Furthermore, Carvalho et al point out that for many conjugate models the posterior distribution of the static variables can be parametrized in terms of [recursively defined] sufficient statistics of the previously observed data. For models where such sufficient statistics exist, particle learning as it is being called, is especially well suited for the analysis of streaming data do to the relative invariance of its algorithmic complexity with the number of data observations. Through a particle learning approach, a statistical model can be fit to data as the data is arriving, allowing at any instant during the observation process direct quantification of uncertainty surrounding underlying model parameters. Here we describe the use of a particle learning approach for fitting a standard Bayesian semiparametric mixture model as described in Carvalho, Lopes, Polson and Taddy. In Section 2 we briefly review the previously presented particle learning algorithm for the case of a Dirichlet process mixture of multivariate normals. In Section 3 we describe several novel extensions to the original
Applying Dispersive Changes to Lagrangian Particles in Groundwater Transport Models
Konikow, L.F.
2010-01-01
Method-of-characteristics groundwater transport models require that changes in concentrations computed within an Eulerian framework to account for dispersion be transferred to moving particles used to simulate advective transport. A new algorithm was developed to accomplish this transfer between nodal values and advecting particles more precisely and realistically compared to currently used methods. The new method scales the changes and adjustments of particle concentrations relative to limiting bounds of concentration values determined from the population of adjacent nodal values. The method precludes unrealistic undershoot or overshoot for concentrations of individual particles. In the new method, if dispersion causes cell concentrations to decrease during a time step, those particles in the cell having the highest concentration will decrease the most, and those with the lowest concentration will decrease the least. The converse is true if dispersion is causing concentrations to increase. Furthermore, if the initial concentration on a particle is outside the range of the adjacent nodal values, it will automatically be adjusted in the direction of the acceptable range of values. The new method is inherently mass conservative. ?? US Government 2010.
Applying dispersive changes to Lagrangian particles in groundwater transport models
Konikow, Leonard F.
2010-01-01
Method-of-characteristics groundwater transport models require that changes in concentrations computed within an Eulerian framework to account for dispersion be transferred to moving particles used to simulate advective transport. A new algorithm was developed to accomplish this transfer between nodal values and advecting particles more precisely and realistically compared to currently used methods. The new method scales the changes and adjustments of particle concentrations relative to limiting bounds of concentration values determined from the population of adjacent nodal values. The method precludes unrealistic undershoot or overshoot for concentrations of individual particles. In the new method, if dispersion causes cell concentrations to decrease during a time step, those particles in the cell having the highest concentration will decrease the most, and those with the lowest concentration will decrease the least. The converse is true if dispersion is causing concentrations to increase. Furthermore, if the initial concentration on a particle is outside the range of the adjacent nodal values, it will automatically be adjusted in the direction of the acceptable range of values. The new method is inherently mass conservative.
Neural Networks for Modeling and Control of Particle Accelerators
Edelen, A. L.; Biedron, S. G.; Chase, B. E.; Edstrom, D.; Milton, S. V.; Stabile, P.
2016-04-01
Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less
Thermodynamic model for bouncing charged particles inside a capacitor
NASA Astrophysics Data System (ADS)
Rezaeizadeh, Amin; Mameghani, Pooya
2013-08-01
We introduce an equation of state for a conducting particle inside a charged parallel-plate capacitor and show that it is similar to the equation of state for an ideal gas undergoing an adiabatic process. We describe a simple experiment that shows reasonable agreement with the theoretical model.
A note on the multispecies model for identical particles
Yu, M. Y.; Luo Huaqiang
2008-02-15
It is pointed out that the multispecies model for identical particles is in general not suitable for considering quasistationary nonlinear plasma structures. For phenomena on long time scales, the a priori partitioning of electrons into hot and cold species is often unrealistic unless the latter are actually separated in the phase space by external or self-consistent fields.
MODELING OF PARTICLE FORMATION AND DYNAMICS IN A FLAME INCINERATOR
A model has been developed to predict the formation and growth of metallic particles in a flame incinerator system. Flow fields and temperature profiles in a cylindrical laminar jet flame have been used to determine the position and physical conditions of the species along the fl...
Smoothed particle hydrodynamics modelling for failure in metals
NASA Astrophysics Data System (ADS)
Strand, Russell K.
It is generally regarded to be a difficult task to model multiple fractures leading to fragmentation in metals subjected to high strain rates using numerical methods. Meshless methods such as Smoothed Particle Hydrodynamics (SPH) are well suited to the application of fracture mechanics, since they are not prone to the problems associated with mesh tangling. This research demonstrates and validates a numerical inter-particle fracture model for the initiation, growth and subsequent failure in metals at high strain rate, applicable within a Total Lagrangian SPH scheme. Total Lagrangian SPH performs calculations in the reference state of a material and therefore the neighbourhoods remain fixed throughout the computation; this allows the inter-particle bonds to be stored and tracked as material history parameters. Swegle (2000) showed that the SPH momentum equation can be rearranged in terms of a particle-particle interaction area. By reducing this area to zero via an inter-particle damage parameter, the principles of continuum damage mechanics can be observed without the need for an effective stress term, held at the individual particles.. This research makes use of the Cochran-Banner damage growth model which has been updated for 3D damage and makes the appropriate modifications for inter-particle damage growth. The fracture model was tested on simulations of a 1D flyer plate impact test and the results were compared to experimental data. Some limited modelling was also conducted in 2 and 3 dimensions and promising results were observed. Research was also performed into the mesh sensitivity of the explosively driven Mock- Holt experiment. 3D simulations using the Eulerian SPH formulation were conducted and the best results were observed with a radial packing arrangement. An in-depth assessment of the Monaghan repulsive force correction was also conducted in attempt to eliminate the presence of the SPH tensile instability and stabilise the available Eulerian SPH code
Model Estimated GCR Particle Flux Variation - Assessment with CRIS Data
NASA Astrophysics Data System (ADS)
Saganti, Premkumar
We present model calculated particle flux as a function of time during the current solar cycle along with the comparisons from the ACE/CRIS data and the Mars/MARIE data. In our model calculations we make use of the NASA's HZETRN (High Z and Energy Transport) code along with the nuclear fragmentation cross sections that are described by the quantum multiple scattering (QMSFRG) model. The time dependant variation of the GCR environment is derived making use of the solar modulation potential, phi. For the past ten years, Advanced Composition Explorer (ACE) has been in orbit at the Sun- Earth libration point (L1). Data from the Cosmic Ray Isotope Spectrometer (CRIS) instrument onboard the ACE spacecraft has been available from 1997 through the present time. Our model calculated particle flux showed high degree of correlation during the earlier phase of the current solar cycle (2003) in the lower Z region within 15
Constants of motion of the four-particle Calogero model
Saghatelian, A.
2012-10-15
We present the explicit expressions of the complete set of constants of motion of four-particle Calogero model with excluded center of mass, i.e. of the A{sub 3} rational Calogero model. Then we find the constants of motion of its spherical part, defining two-dimensional 12-center spherical oscillator, with the force centers located at the vertexes of cuboctahedron.
Standard Model of Particle Physics--a health physics perspective.
Bevelacqua, J J
2010-11-01
The Standard Model of Particle Physics is reviewed with an emphasis on its relationship to the physics supporting the health physics profession. Concepts important to health physics are emphasized and specific applications are presented. The capability of the Standard Model to provide health physics relevant information is illustrated with application of conservation laws to neutron and muon decay and in the calculation of the neutron mean lifetime.
Lifshitz tail in a model of interacting particles
NASA Astrophysics Data System (ADS)
Forgacs, G.; Kotov, V.
1995-05-01
The density of states of noninteracting disordered particle systems shows a characteristic behavior deep in the band, known as the Lifshitz tail. In the present work the Lifshitz problem is reconsidered in a model one-dimensional disordered system with ``minimal'' interactions. The interaction has a form which allows the calculations to be performed asymptotically exactly in the tail, using nonperturbative techniques. Correlation between the particles leads to a considerable decrease of the density of states. These findings indicate that interactions may favor delocalization, a result obtained earlier, using phenomenological approaches, perturbative analysis, and the renormalization-group method.
The 5th Generation model of Particle Physics
NASA Astrophysics Data System (ADS)
Lach, Theodore
2009-05-01
The Standard model of Particle Physics is able to account for all known HEP phenomenon, yet it is not able to predict the masses of the quarks or leptons nor can it explain why they have their respective values. The Checker Board Model (CBM) predicts that there are 5 generation of quarks and leptons and shows a pattern to those masses, namely each three quarks or leptons (within adjacent generations or within a generation) are related to each other by a geometric mean relationship. A 2D structure of the nucleus can be imaged as 2D plate spinning on its axis, it would for all practical circumstances appear to be a 3D object. The masses of the hypothesized ``up'' and ``dn'' quarks determined by the CBM are 237.31 MeV and 42.392 MeV respectively. These new quarks in addition to a lepton of 7.4 MeV make up one of the missing generations. The details of this new particle physics model can be found at the web site: checkerboard.dnsalias.net. The only areas were this theory conflicts with existing dogma is in the value of the mass of the Top quark. The particle found at Fermi Lab must be some sort of composite particle containing Top quarks.
Cirrus cloud model parameterizations: Incorporating realistic ice particle generation
NASA Technical Reports Server (NTRS)
Sassen, Kenneth; Dodd, G. C.; Starr, David OC.
1990-01-01
Recent cirrus cloud modeling studies have involved the application of a time-dependent, two dimensional Eulerian model, with generalized cloud microphysical parameterizations drawn from experimental findings. For computing the ice versus vapor phase changes, the ice mass content is linked to the maintenance of a relative humidity with respect to ice (RHI) of 105 percent; ice growth occurs both with regard to the introduction of new particles and the growth of existing particles. In a simplified cloud model designed to investigate the basic role of various physical processes in the growth and maintenance of cirrus clouds, these parametric relations are justifiable. In comparison, the one dimensional cloud microphysical model recently applied to evaluating the nucleation and growth of ice crystals in cirrus clouds explicitly treated populations of haze and cloud droplets, and ice crystals. Although these two modeling approaches are clearly incompatible, the goal of the present numerical study is to develop a parametric treatment of new ice particle generation, on the basis of detailed microphysical model findings, for incorporation into improved cirrus growth models. For example, the relation between temperature and the relative humidity required to generate ice crystals from ammonium sulfate haze droplets, whose probability of freezing through the homogeneous nucleation mode are a combined function of time and droplet molality, volume, and temperature. As an example of this approach, the results of cloud microphysical simulations are presented showing the rather narrow domain in the temperature/humidity field where new ice crystals can be generated. The microphysical simulations point out the need for detailed CCN studies at cirrus altitudes and haze droplet measurements within cirrus clouds, but also suggest that a relatively simple treatment of ice particle generation, which includes cloud chemistry, can be incorporated into cirrus cloud growth.
Noise, Bifurcations, and Modeling of Interacting Particle Systems
Mier-y-Teran-Romero, Luis; Forgoston, Eric; Schwartz, Ira B.
2011-01-01
We consider the stochastic patterns of a system of communicating, or coupled, self-propelled particles in the presence of noise and communication time delay. For sufficiently large environmental noise, there exists a transition between a translating state and a rotating state with stationary center of mass. Time delayed communication creates a bifurcation pattern dependent on the coupling amplitude between particles. Using a mean field model in the large number limit, we show how the complete bifurcation unfolds in the presence of communication delay and coupling amplitude. Relative to the center of mass, the patterns can then be described as transitions between translation, rotation about a stationary point, or a rotating swarm, where the center of mass undergoes a Hopf bifurcation from steady state to a limit cycle. Examples of some of the stochastic patterns will be given for large numbers of particles. PMID:22124204
Simulation of Cell Adhesion using a Particle Transport Model
NASA Astrophysics Data System (ADS)
Chesnutt, Jennifer
2005-11-01
An efficient computational method for simulation of cell adhesion through protein binding forces is discussed. In this method, the cells are represented by deformable elastic particles, and the protein binding is represented by a rate equation. The method is first developed for collision and adhesion of two similar cells impacting on each other from opposite directions. The computational method is then applied in a particle-transport model for a cloud of interacting and colliding cells, each of which are represented by particles of finite size. One application might include red blood cells adhering together to form rouleaux, which are chains of red blood cells that are found in different parts of the circulatory system. Other potential applications include adhesion of platelets to a blood vessel wall or mechanical heart valve, which is a precursor of thrombosis formation, or adhesion of cancer cells to organ walls in the lymphatic, circulatory, digestive or pulmonary systems.
Determining Trajectory of Triboelectrically Charged Particles, Using Discrete Element Modeling
NASA Technical Reports Server (NTRS)
2008-01-01
The Kennedy Space Center (KSC) Electrostatics and Surface Physics Laboratory is participating in an Innovative Partnership Program (IPP) project with an industry partner to modify a commercial off-the-shelf simulation software product to treat the electrodynamics of particulate systems. Discrete element modeling (DEM) is a numerical technique that can track the dynamics of particle systems. This technique, which was introduced in 1979 for analysis of rock mechanics, was recently refined to include the contact force interaction of particles with arbitrary surfaces and moving machinery. In our work, we endeavor to incorporate electrostatic forces into the DEM calculations to enhance the fidelity of the software and its applicability to (1) particle processes, such as electrophotography, that are greatly affected by electrostatic forces, (2) grain and dust transport, and (3) the study of lunar and Martian regoliths.
Particle Swarm Based Collective Searching Model for Adaptive Environment
Cui, Xiaohui; Patton, Robert M; Potok, Thomas E; Treadwell, Jim N
2008-01-01
This report presents a pilot study of an integration of particle swarm algorithm, social knowledge adaptation and multi-agent approaches for modeling the collective search behavior of self-organized groups in an adaptive environment. The objective of this research is to apply the particle swarm metaphor as a model of social group adaptation for the dynamic environment and to provide insight and understanding of social group knowledge discovering and strategic searching. A new adaptive environment model, which dynamically reacts to the group collective searching behaviors, is proposed in this research. The simulations in the research indicate that effective communication between groups is not the necessary requirement for whole self-organized groups to achieve the efficient collective searching behavior in the adaptive environment.
Particle Swarm Based Collective Searching Model for Adaptive Environment
Cui, Xiaohui; Patton, Robert M; Potok, Thomas E; Treadwell, Jim N
2007-01-01
This report presents a pilot study of an integration of particle swarm algorithm, social knowledge adaptation and multi-agent approaches for modeling the collective search behavior of self-organized groups in an adaptive environment. The objective of this research is to apply the particle swarm metaphor as a model of social group adaptation for the dynamic environment and to provide insight and understanding of social group knowledge discovering and strategic searching. A new adaptive environment model, which dynamically reacts to the group collective searching behaviors, is proposed in this research. The simulations in the research indicate that effective communication between groups is not the necessary requirement for whole self-organized groups to achieve the efficient collective searching behavior in the adaptive environment.
Modelling New Particle Formation Events in the South African Savannah
Gierens, Rosa; Laakso, Lauri; Mogensen, Ditte; Vakkari, Ville; Beukes, J. P.; Van Zyl, Pieter; Hakola, H.; Guenther, Alex B.; Pienaar, J. J.; Boy, Michael
2014-01-01
Africa is one of the less studied continents with respect to atmospheric aerosols. Savannahs are complex dynamic systems sensitive to climate and land-use changes, but the interaction with the atmosphere is not well understood. Atmospheric particles, aka aerosols, affect the climate on regional and global scale, and are an important factor in air quality. In this study measurements from a relatively clean savannah environment in South Africa were used to model new particle formation and growth. There are already some combined long-term measurements of trace gas concentrations together with aerosol and meteorological variables available, but to our knowledge this is the first time detailed simulations, that include all the main processes relevant to particle formation, were done. The results show that both investigated particle formation mechanisms overestimated the formation rates dependency on sulphuric acid. The approach including low volatile organic compounds to the particle formation process was more accurate in describing the nucleation events. To get reliable estimation of aerosol concentration in simulations for larger scales, nucleation mechanisms would need to include organic compounds, at least in southern Africa.
Internally electrodynamic particle model: Its experimental basis and its predictions
NASA Astrophysics Data System (ADS)
Zheng-Johansson, J. X.
2010-03-01
The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts: (a) electric charges present with all material particles, (b) an accelerated charge generates electromagnetic waves according to Maxwell’s equations and Planck energy equation, and (c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schrödinger equation, mass, Einstein mass-energy relation, Newton’s law of gravity, single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A conditioned solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.
Internally electrodynamic particle model: Its experimental basis and its predictions
Zheng-Johansson, J. X.
2010-03-15
The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts: (a) electric charges present with all material particles, (b) an accelerated charge generates electromagnetic waves according to Maxwell's equations and Planck energy equation, and (c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schroedinger equation, mass, Einstein mass-energy relation, Newton's law of gravity, single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A conditioned solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.
Theory and modeling of particles with DNA-mediated interactions
NASA Astrophysics Data System (ADS)
Licata, Nicholas A.
2008-05-01
In recent years significant attention has been attracted to proposals which utilize DNA for nanotechnological applications. Potential applications of these ideas range from the programmable self-assembly of colloidal crystals, to biosensors and nanoparticle based drug delivery platforms. In Chapter I we introduce the system, which generically consists of colloidal particles functionalized with specially designed DNA markers. The sequence of bases on the DNA markers determines the particle type. Due to the hybridization between complementary single-stranded DNA, specific, type-dependent interactions can be introduced between particles by choosing the appropriate DNA marker sequences. In Chapter II we develop a statistical mechanical description of the aggregation and melting behavior of particles with DNA-mediated interactions. In Chapter III a model is proposed to describe the dynamical departure and diffusion of particles which form reversible key-lock connections. In Chapter IV we propose a method to self-assemble nanoparticle clusters using DNA scaffolds. A natural extension is discussed in Chapter V, the programmable self-assembly of nanoparticle clusters where the desired cluster geometry is encoded using DNA-mediated interactions. In Chapter VI we consider a nanoparticle based drug delivery platform for targeted, cell specific chemotherapy. In Chapter VII we present prospects for future research: the connection between DNA-mediated colloidal crystallization and jamming, and the inverse problem in self-assembly.
Particle-hole duality, integrability, and Russian doll BCS model
NASA Astrophysics Data System (ADS)
Bork, L. V.; Pogosov, W. V.
2015-08-01
We address a generalized Richardson model (Russian doll BCS model), which is characterized by the breaking of time-reversal symmetry. This model is known to be exactly solvable and integrable. We point out that the Russian doll BCS model, on the level of Hamiltonian, is also particle-hole symmetric. This implies that the same state can be expressed both in the particle and hole representations with two different sets of Bethe roots. We then derive exact relations between Bethe roots in the two representations, which can hardly be obtained staying on the level of Bethe equations. In a quasi-classical limit, similar identities for usual Richardson model, known from literature, are recovered from our results. We also show that these relations for Richardson roots take a remarkably simple form at half-filling and for a symmetric with respect to the middle of the interaction band distribution of one-body energy levels, since, in this special case, the rapidities in the particle and hole representations up to the translation satisfy the same system of equations.
Particle-based ablation model for faint meteors
NASA Astrophysics Data System (ADS)
Stokan, E.; Campbell-Brown, M.
2014-07-01
Modeling the ablation of meteoroids as they enter the atmosphere is a way of determining their physical structure and elemental composition. This can provide insight into the structure of parent bodies when combined with an orbit computed from observations. The Canadian Automated Meteor Observatory (CAMO) is a source of new, high-resolution observations of faint meteors [1]. These faint objects tend to have pre-atmospheric masses around 10^{-5} kg, corresponding to a radius of 1 mm. A wide-field camera with a 28° field of view provides guidance to a high-resolution camera that tracks meteors in flight with 1.5° field of view. Meteors are recorded with a scale of 4 m per pixel at a range of 135 km, at 110 frames per second, allowing us to investigate detailed meteor morphology. This serves as an important new constraint for ablation models, in addition to meteor brightness (lightcurves) and meteoroid deceleration. High-resolution observations of faint meteors have revealed that contemporary ablation models are not able to predict meteor morphology, even while matching the observed lightcurve and meteoroid deceleration [2]. This implies that other physical processes, in addition to fragmentation, must be considered for faint meteor ablation. We present a new, particle-based approach to modeling the ablation of small meteoroids. In this model, we simulate the collisions between atmospheric particles and the meteoroid to determine the rate of evaporation and deceleration. Subsequent collisions simulated between evaporated meteoroid particles and ambient atmospheric particles then produce light that would be observed by high-resolution cameras. Preliminary results show simultaneous agreement with meteor morphology, lightcurves, and decelerations recorded with CAMO. A sample comparison of simulated and observed meteor morphology is given in the attached figure. Several meteoroids are well-represented as solid, stony bodies, but some require modeling as a dustball [3
A theoretical model for the Lorentz force particle analyzer
NASA Astrophysics Data System (ADS)
Moreau, René; Tao, Zhen; Wang, Xiaodong
2016-07-01
In a previous paper [X. Wang et al., J. Appl. Phys. 120, 014903 (2016)], several experimental devices have been presented, which demonstrate the efficiency of electromagnetic techniques for detecting and sizing electrically insulating particles entrained in the flow of a molten metal. In each case, a non-uniform magnetic field is applied across the flow of the electrically conducting liquid, thereby generating a braking Lorentz force on this moving medium and a reaction force on the magnet, which tends to be entrained in the flow direction. The purpose of this letter is to derive scaling laws for this Lorentz force from an elementary theoretical model. For simplicity, as in the experiments, the flowing liquid is modeled as a solid body moving with a uniform velocity U. The eddy currents in the moving domain are derived from the classic induction equation and Ohm's law, and expressions for the Lorentz force density j ×B and for its integral over the entire moving domain follow. The insulating particles that are eventually present and entrained with this body are then treated as small disturbances in a classic perturbation analysis, thereby leading to scaling laws for the pulses they generate in the Lorentz force. The purpose of this letter is both to illustrate the eddy currents without and with insulating particles in the electrically conducting liquid and to derive a key relation between the pulses in the Lorentz force and the main parameters (particle volume and dimensions of the region subjected to the magnetic field).
Dissipative-particle-dynamics model of biofilm growth
Xu, Zhijie; Meakin, Paul; Tartakovsky, Alexandre M.; Scheibe, Timothy D.
2011-06-13
A dissipative particle dynamics (DPD) model for the quantitative simulation of biofilm growth controlled by substrate (nutrient) consumption, advective and diffusive substrate transport, and hydrodynamic interactions with fluid flow (including fragmentation and reattachment) is described. The model was used to simulate biomass growth, decay, and spreading. It predicts how the biofilm morphology depends on flow conditions, biofilm growth kinetics, the rheomechanical properties of the biofilm and adhesion to solid surfaces. The morphology of the model biofilm depends strongly on its rigidity and the magnitude of the body force that drives the fluid over the biofilm.
3D flare particle model for ShipIR/NTCS
NASA Astrophysics Data System (ADS)
Ramaswamy, Srinivasan; Vaitekunas, David A.
2016-05-01
A key component in any soft-kill response to an incoming guided missile is the flare /chaff decoy used to distract or seduce the seeker homing system away from the naval platform. This paper describes a new 3D flare particle model in the naval threat countermeasure simulator (NTCS) of the NATO-standard ship signature model (ShipIR), which provides independent control over the size and radial distribution of its signature. The 3D particles of each flare sub-munition are modelled stochastically and rendered using OpenGL z-buffering, 2D projection, and alpha-blending to produce a unique and time varying signature. A sensitivity analysis on each input parameter provides the data and methods needed to synthesize a model from an IR measurement of a decoy. The new model also eliminated artifacts and deficiencies in our previous model which prevented reliable tracks from the adaptive track gate algorithm already presented by Ramaswamy and Vaitekunas (2015). A sequence of scenarios are used to test and demonstrate the new flare model during a missile engagement.
An Introduction to the Standard Model of Particle Physics
NASA Astrophysics Data System (ADS)
Cottingham, W. Noel; Greenwood, Derek A.
1999-01-01
This graduate textbook provides a concise, accessible introduction to the Standard Model of particle physics. Theoretical concepts are developed clearly and carefully throughout the book--from the electromagnetic and weak interactions of leptons and quarks to the strong interactions of quarks. Chapters developing the theory are interspersed with chapters describing some of the wealth of experimental data supporting the model. The book assumes only the standard mathematics taught in an undergraduate physics course; more sophisticated mathematical ideas are developed in the text and in appendices. For graduate students in particle physics and physicists working in other fields who are interested in the current understanding of the ultimate constituents of matter, this textbook provides a lucid and up-to-date introduction.
Modeling and simulation of dielectrophoretic particle-particle interactions and assembly.
Hossan, Mohammad Robiul; Dillon, Robert; Roy, Ajit K; Dutta, Prashanta
2013-03-15
Electric field induced particle-particle interactions and assembly are of great interest due to their useful applications in micro devices. The behavior of particles becomes more complex if multiple particles interact with each other at the same time. In this paper, we present a numerical study of two dimensional DC dielectrophoresis based particle-particle interactions and assembly for multiple particles using a hybrid immersed interface-immersed boundary method. The immersed interface method is employed to capture the physics of electrostatics in a fluid media with suspended particles. Particle interaction based dielectrophoretic forces are obtained using Maxwell's stress tensor without any boundary or volume integration. This electrostatic force distribution mimics the actual physics of the immersed particles in a fluid media. The corresponding particle response and hydrodynamic interactions are captured through the immersed boundary method by solving the transient Navier-Stokes equations. The interaction and assembly of multiple electrically similar and dissimilar particles are studied for various initial positions and orientations. Numerical results show that in a fluid media, similar particles form a chain parallel to the applied electric field, whereas dissimilar particles form a chain perpendicular to the applied electric field. Irrespective of initial position and orientation, particles first align themselves parallel or perpendicular to the electric field depending on the similarity or dissimilarity of particles. The acceleration and deceleration of particles are also observed and analyzed at different phases of the assembly process. This comprehensive study can be used to explain the multiple particle interaction and assembly phenomena observed in experiments.
Semi-classical approximation to the liquid-particle model
NASA Astrophysics Data System (ADS)
Magner, A. G.; Strutinsky, V. M.
1985-12-01
Equation for the gas component of the density matrix, as defined for the nuclear volume in the Liquid-Particle Model, is related to Landau's zero-sound equation for a distribution function. Boundary conditions which determine the physical solution are deduced which are set at a certain effective sharp surface and couple the volume density vibrations to dynamics of diffused surface layer of the density.
Modelling the dispersion of particle numbers in five European cities
NASA Astrophysics Data System (ADS)
Kukkonen, J.; Karl, M.; Keuken, M. P.; Denier van der Gon, H. A. C.; Denby, B. R.; Singh, V.; Douros, J.; Manders, A.; Samaras, Z.; Moussiopoulos, N.; Jonkers, S.; Aarnio, M.; Karppinen, A.; Kangas, L.; Lützenkirchen, S.; Petäjä, T.; Vouitsis, I.; Sokhi, R. S.
2016-02-01
We present an overview of the modelling of particle number concentrations (PNCs) in five major European cities, namely Helsinki, Oslo, London, Rotterdam, and Athens, in 2008. Novel emission inventories of particle numbers have been compiled both on urban and European scales. We used atmospheric dispersion modelling for PNCs in the five target cities and on a European scale, and evaluated the predicted results against available measured concentrations. In all the target cities, the concentrations of particle numbers (PNs) were mostly influenced by the emissions originating from local vehicular traffic. The influence of shipping and harbours was also significant for Helsinki, Oslo, Rotterdam, and Athens, but not for London. The influence of the aviation emissions in Athens was also notable. The regional background concentrations were clearly lower than the contributions originating from urban sources in Helsinki, Oslo, and Athens. The regional background was also lower than urban contributions in traffic environments in London, but higher or approximately equal to urban contributions in Rotterdam. It was numerically evaluated that the influence of coagulation and dry deposition on the predicted PNCs was substantial for the urban background in Oslo. The predicted and measured annual average PNCs in four cities agreed within approximately ≤ 26 % (measured as fractional biases), except for one traffic station in London. This study indicates that it is feasible to model PNCs in major cities within a reasonable accuracy, although major challenges remain in the evaluation of both the emissions and atmospheric transformation of PNCs.
Modelling of strongly coupled particle growth and aggregation
NASA Astrophysics Data System (ADS)
Gruy, F.; Touboul, E.
2013-02-01
The mathematical modelling of the dynamics of particle suspension is based on the population balance equation (PBE). PBE is an integro-differential equation for the population density that is a function of time t, space coordinates and internal parameters. Usually, the particle is characterized by a unique parameter, e.g. the matter volume v. PBE consists of several terms: for instance, the growth rate and the aggregation rate. So, the growth rate is a function of v and t. In classical modelling, the growth and the aggregation are independently considered, i.e. they are not coupled. However, current applications occur where the growth and the aggregation are coupled, i.e. the change of the particle volume with time is depending on its initial value v0, that in turn is related to an aggregation event. As a consequence, the dynamics of the suspension does not obey the classical Von Smoluchowski equation. This paper revisits this problem by proposing a new modelling by using a bivariate PBE (with two internal variables: v and v0) and by solving the PBE by means of a numerical method and Monte Carlo simulations. This is applied to a physicochemical system with a simple growth law and a constant aggregation kernel.
Generation of Random Particle Packings for Discrete Element Models
NASA Astrophysics Data System (ADS)
Abe, S.; Weatherley, D.; Ayton, T.
2012-04-01
An important step in the setup process of Discrete Element Model (DEM) simulations is the generation of a suitable particle packing. There are quite a number of properties such a granular material specimen should ideally have, such as high coordination number, isotropy, the ability to fill arbitrary bounding volumes and the absence of locked-in stresses. An algorithm which is able to produce specimens fulfilling these requirements is the insertion based sphere packing algorithm originally proposed by Place and Mora, 2001 [2] and extended in this work. The algorithm works in two stages. First a number of "seed" spheres are inserted into the bounding volume. In the second stage the gaps between the "seed" spheres are filled by inserting new spheres in a way so they have D+1 (i.e. 3 in 2D, 4 in 3D) touching contacts with either other spheres or the boundaries of the enclosing volume. Here we present an implementation of the algorithm and a systematic statistical analysis of the generated sphere packings. The analysis of the particle radius distribution shows that they follow a power-law with an exponent ≈ D (i.e. ≈3 for a 3D packing and ≈2 for 2D). Although the algorithm intrinsically guarantees coordination numbers of at least 4 in 3D and 3 in 2D, the coordination numbers realized in the generated packings can be significantly higher, reaching beyond 50 if the range of particle radii is sufficiently large. Even for relatively small ranges of particle sizes (e.g. Rmin = 0.5Rmax) the maximum coordination number may exceed 10. The degree of isotropy of the generated sphere packing is also analysed in both 2D and 3D, by measuring the distribution of orientations of vectors joining the centres of adjacent particles. If the range of particle sizes is small, the packing algorithm yields moderate anisotropy approaching that expected for a face-centred cubic packing of equal-sized particles. However, once Rmin < 0.3Rmax a very high degree of isotropy is demonstrated in
Receptor modeling application framework for particle source apportionment.
Watson, John G; Zhu, Tan; Chow, Judith C; Engelbrecht, Johann; Fujita, Eric M; Wilson, William E
2002-12-01
Receptor models infer contributions from particulate matter (PM) source types using multivariate measurements of particle chemical and physical properties. Receptor models complement source models that estimate concentrations from emissions inventories and transport meteorology. Enrichment factor, chemical mass balance, multiple linear regression, eigenvector. edge detection, neural network, aerosol evolution, and aerosol equilibrium models have all been used to solve particulate air quality problems, and more than 500 citations of their theory and application document these uses. While elements, ions, and carbons were often used to apportion TSP, PM10, and PM2.5 among many source types, many of these components have been reduced in source emissions such that more complex measurements of carbon fractions, specific organic compounds, single particle characteristics, and isotopic abundances now need to be measured in source and receptor samples. Compliance monitoring networks are not usually designed to obtain data for the observables, locations, and time periods that allow receptor models to be applied. Measurements from existing networks can be used to form conceptual models that allow the needed monitoring network to be optimized. The framework for using receptor models to solve air quality problems consists of: (1) formulating a conceptual model; (2) identifying potential sources; (3) characterizing source emissions; (4) obtaining and analyzing ambient PM samples for major components and source markers; (5) confirming source types with multivariate receptor models; (6) quantifying source contributions with the chemical mass balance; (7) estimating profile changes and the limiting precursor gases for secondary aerosols; and (8) reconciling receptor modeling results with source models, emissions inventories, and receptor data analyses.
NASA Astrophysics Data System (ADS)
Del Bello, E.; Taddeucci, J.; De'Michieli Vitturi, M.; Scarlato, P.; Andronico, D.; Scollo, S.; Kueppers, U.
2015-12-01
We present the first report of experimental measurements of the enhanced settling velocity of volcanic particles as function of particle volume fraction. In order to investigate the differences in the aerodynamic behavior of ash particles when settling individually or in mass, we performed systematic large-scale ash settling experiments using natural basaltic and phonolitic ash. By releasing ash particles at different, controlled volumetric flow rates, in an unconstrained open space and at minimal air movement, we measured their terminal velocity, size, and particle volume fraction with a high-speed camera at 2000 fps. Enhanced settling velocities of individual particles increase with increasing particle volume fraction. This suggests that particle clustering during fallout may be one reason explaining larger than theoretical depletion rates of fine particles from volcanic ash clouds. We provide a quantitative empirical model that allows to calculate, from a given particle size and density, the enhanced velocity resulting from a given particle volume fraction. The proposed model has the potential to serve as a simple tool for the prediction of the terminal velocity of ash of an hypothetical distribution of ash of known particle size and volume fraction. This is of particular importance for advection-diffusion transport model of ash where generally a one-way coupling is adopted, considering only the flow effects on particles. To better quantify the importance of the enhanced settling velocity in ash dispersal, we finally introduced the new formulation in a Lagrangian model calculating for realistic eruptive conditions the resulting ash concentration in the atmosphere and on the ground.
Current models of the intensely ionizing particle environment in space
NASA Technical Reports Server (NTRS)
Adams, James H., Jr.
1988-01-01
The Cosmic Ray Effects on MicroElectronics (CREME) model that is currently in use to estimate single event effect rates in spacecraft is described. The CREME model provides a description of the radiation environment in interplanetary space near the orbit of the earth that contains no major deficiencies. The accuracy of the galactic cosmic ray model is limited by the uncertainties in solar modulation. The model for solar energetic particles could be improved by making use of all the data that has been collected on solar energetic particle events. There remain major uncertainties about the environment within the earth's magnetosphere, because of the uncertainties over the charge states of the heavy ions in the anomalous component and solar flares, and because of trapped heavy ions. The present CREME model is valid only at 1 AU, but it could be extended to other parts of the heliosphere. There is considerable data on the radiation environment from 0.2 to 35 AU in the ecliptic plane. This data could be used to extend the CREME model.
Modelling the internal structure of nascent soot particles
Totton, Tim S.; Sander, Markus; Kraft, Markus; Chakrabarti, Dwaipayan; Wales, David J.; Misquitta, Alston J.
2010-05-15
In this paper we present studies of clusters assembled from polycyclic aromatic hydrocarbon (PAH) molecules similar in size to small soot particles. The clusters studied were comprised of coronene (C{sub 24}H{sub 12}) or pyrene (C{sub 16}H{sub 10}) molecules and represent the types of soot precursor molecule typically found in flame environments. A stochastic 'basin-hopping' global optimisation scheme was used to locate low-lying local minima on the potential energy surface of the molecular clusters. TEM-style projections of the resulting geometries show similarities with those observed experimentally in TEM images of soot particles. The mass densities of these clusters have also been calculated and are lower than bulk values of the pure crystalline PAH structures. They are also significantly lower than the standard value of 1.8 g/cm{sup 3} used in our soot models. Consequently we have varied the mass density between 1.0 g/cm{sup 3} and 1.8 g/cm{sup 3} to examine the effects of varying soot density on our soot model and observed how the shape of the particle size distribution changes. Based on similarities between nascent soot particles and PAH clusters a more accurate soot density is likely to be significantly lower than 1.8 g/cm{sup 3}. As such, for modelling purposes, we recommend that the density of nascent soot should be taken to be the value obtained for our coronene cluster of 1.12 g/cm{sup 3}. (author)
Theory and modeling of particles with DNA-mediated interactions
NASA Astrophysics Data System (ADS)
Licata, Nicholas A.
In recent years significant attention has been attracted to proposals which utilize DNA for nanotechnological applications. Potential applications of these ideas range from the programmable self-assembly of colloidal crystals, to biosensors and nanoparticle based drug delivery platforms. In Chapter I we introduce the system, which generically consists of colloidal particles functionalized with specially designed DNA markers. The sequence of bases on the DNA markers determines the particle type. Due to the hybridization between complementary single-stranded DNA, specific, type-dependent interactions can be introduced between particles by choosing the appropriate DNA marker sequences. In Chapter II we develop a statistical mechanical description of the aggregation and melting behavior of particles with DNA-mediated interactions. A quantitative comparison between the theory and experiments is made by calculating the experimentally observed melting profile. In Chapter III a model is proposed to describe the dynamical departure and diffusion of particles which form reversible key-lock connections. The model predicts a crossover from localized to diffusive behavior. The random walk statistics for the particles' in plane diffusion is discussed. The lateral motion is analogous to dispersive transport in disordered semiconductors, ranging from standard diffusion with a renormalized diffusion coefficient to anomalous, subdiffusive behavior. In Chapter IV we propose a method to self-assemble nanoparticle clusters using DNA scaffolds. An optimal concentration ratio is determined for the experimental implementation of our self-assembly proposal. A natural extension is discussed in Chapter V, the programmable self-assembly of nanoparticle clusters where the desired cluster geometry is encoded using DNA-mediated interactions. We determine the probability that the system self-assembles the desired cluster geometry, and discuss the connections to jamming in granular and colloidal
Force models for particle-dynamics simulations of granular materials
Walton, O.R.
1994-12-01
Engineering-mechanics contact models are utilized to describe the inelastic, frictional interparticle forces acting in dry granular systems. Simple analyses based on one-dimensional chains are utilized to illustrate wave propagation phenomena in dense and dilute discrete particulates. The variation of restitution coefficient with impact velocity is illustrated for a variety of viscous and hysteretic normal force models. The effects of interparticle friction on material strength in discrete-particle simulations are much closer to measured values than are theories that do not allow article rotations.
Modeling of Endothelial Glyccalyx via Dissipative Particle Dynamics
NASA Astrophysics Data System (ADS)
Deng, Mingge; Liang, Haojun; Karniadakis, George
2011-03-01
We employ Dissipative Particle Dynamics (DPD) to simulate flow in small vessels with the endothelial glycocalyx attached to the wall. Of particular interest is the quantification of the slip velocity at the edge of glycocalyx and of the increased pressure drop at different crafting densities, stiffness and height of the glycocalyx. Results will be presented for capillaries and small arterioles, and interactions with discrete red blood cells will be included in the modeling. In addition to the physical insight gain for this important but relatively unexplored bioflow, simple models for the slip velocity will be proposed that can be used in continuum simulations of blood flow in micro-vessels.
Modelling of aircrew radiation exposure during solar particle events
NASA Astrophysics Data System (ADS)
Al Anid, Hani Khaled
show a very different response during anisotropic events, leading to variations in aircrew radiation doses that may be significant for dose assessment. To estimate the additional exposure due to solar flares, a model was developed using a Monte-Carlo radiation transport code, MCNPX. The model transports an extrapolated particle spectrum based on satellite measurements through the atmosphere using the MCNPX analysis. This code produces the estimated flux at a specific altitude where radiation dose conversion coefficients are applied to convert the particle flux into effective and ambient dose-equivalent rates. A cut-off rigidity model accounts for the shielding effects of the Earth's magnetic field. Comparisons were made between the model predictions and actual flight measurements taken with various types of instruments used to measure the mixed radiation field during Ground Level Enhancements 60 and 65. An anisotropy analysis that uses neutron monitor responses and the pitch angle distribution of energetic solar particles was used to identify particle anisotropy for a solar event in December 2006. In anticipation of future commercial use, a computer code has been developed to implement the radiation dose assessment model for routine analysis. Keywords: Radiation Dosimetry, Radiation Protection, Space Physics.
Modeling film formation of polymer-clay nanocomposite particles.
Patel, Milan J; Gundabala, Venkata R; Routh, Alexander F
2010-03-16
Polymer films may be formed by drying aqueous suspensions of colloidal polymer particles (latexes) on a substrate. Higher-performance films may be obtained by using nanocomposite particles in the latexes. In particular, polymer-clay nanocomposites show good potential in producing stiff, optically transparent, scratch-resistant coatings. The final film must be continuous (i.e., crack-free). This work predicts the minimum temperature, relative to the glass-transition temperature, at which a given suspension forms a crack-free nanocomposite film. The model extends a previous model for film formation with inclusion-free latexes (Routh, A. F.; Russel, W. B. Langmuir 1999, 15, 7762-7773). The inclusions are modeled as rigid cylinders, and the polymer is modeled as linearly viscoelastic. The major term arising in the extended model is the interfacial shear stress between the polymer and the inclusions. Film formation slows as the shear stress increases, and this effect is proportional to the magnitude of the stress, the inclusion volume fraction, and the inclusion aspect ratio.
Entrainment of coarse grains using a discrete particle model
Valyrakis, Manousos; Arnold, Roger B. Jr.
2014-10-06
Conventional bedload transport models and incipient motion theories relying on a time-averaged boundary shear stress are incapable of accounting for the effects of fluctuating near-bed velocity in turbulent flow and are therefore prone to significant errors. Impulse, the product of an instantaneous force magnitude and its duration, has been recently proposed as an appropriate criterion for quantifying the effects of flow turbulence in removing coarse grains from the bed surface. Here, a discrete particle model (DPM) is used to examine the effects of impulse, representing a single idealized turbulent event, on particle entrainment. The results are classified according to the degree of grain movement into the following categories: motion prior to entrainment, initial dislodgement, and energetic displacement. The results indicate that in all three cases the degree of particle motion depends on both the force magnitude and the duration of its application and suggest that the effects of turbulence must be adequately accounted for in order to develop a more accurate method of determining incipient motion. DPM is capable of simulating the dynamics of grain entrainment and is an appropriate tool for further study of the fundamental mechanisms of sediment transport.
A Refined Model for Solid Particle Rock Erosion
NASA Astrophysics Data System (ADS)
Momber, A. W.
2016-02-01
A procedure for the estimation of distribution parameters of a Weibull distribution model K 1 = f( K Ic 12/4 / σ C 23/4 ) for solid particle erosion, as recently suggested in Rock Mech Rock Eng, doi: 10.1007/s00603-014-0658-x, 2014, is derived. The procedure is based on examinations of elastic-plastically responding rocks (rhyolite, granite) and plastically responding rocks (limestone, schist). The types of response are quantified through SEM inspections of eroded surfaces. Quantitative numbers for the distribution parameter K 1 are calculated for 30 rock materials, which cover a wide range of mechanical properties. The ranking according to the parameter K 1 is related to qualitative rock classification schemes. A modified proposal for the erosion of schist due to solid particle impingement at normal incidence is introduced.
Comprehensive computer model for magnetron sputtering. II. Charged particle transport
Jimenez, Francisco J. Dew, Steven K.; Field, David J.
2014-11-01
Discharges for magnetron sputter thin film deposition systems involve complex plasmas that are sensitively dependent on magnetic field configuration and strength, working gas species and pressure, chamber geometry, and discharge power. The authors present a numerical formulation for the general solution of these plasmas as a component of a comprehensive simulation capability for planar magnetron sputtering. This is an extensible, fully three-dimensional model supporting realistic magnetic fields and is self-consistently solvable on a desktop computer. The plasma model features a hybrid approach involving a Monte Carlo treatment of energetic electrons and ions, along with a coupled fluid model for thermalized particles. Validation against a well-known one-dimensional system is presented. Various strategies for improving numerical stability are investigated as is the sensitivity of the solution to various model and process parameters. In particular, the effect of magnetic field, argon gas pressure, and discharge power are studied.
Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles.
Kononova, Olga; Snijder, Joost; Kholodov, Yaroslav; Marx, Kenneth A; Wuite, Gijs J L; Roos, Wouter H; Barsegov, Valeri
2016-01-01
The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams) modeling the particle structure. The beams' deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F)-deformation (X) spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young's moduli for Hertzian and bending deformations, and the structural damage dependent beams' survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications. PMID:26821264
Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles.
Kononova, Olga; Snijder, Joost; Kholodov, Yaroslav; Marx, Kenneth A; Wuite, Gijs J L; Roos, Wouter H; Barsegov, Valeri
2016-01-01
The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams) modeling the particle structure. The beams' deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F)-deformation (X) spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young's moduli for Hertzian and bending deformations, and the structural damage dependent beams' survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications.
Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles
Kononova, Olga; Snijder, Joost; Kholodov, Yaroslav; Marx, Kenneth A.; Wuite, Gijs J. L.; Roos, Wouter H.; Barsegov, Valeri
2016-01-01
The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams) modeling the particle structure. The beams’ deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F)-deformation (X) spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young’s moduli for Hertzian and bending deformations, and the structural damage dependent beams’ survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications. PMID:26821264
Kawano, Toshihiko; Talou, Patrick; Watanabe, Takehito; Chadwick, Mark
2010-01-01
Monte Carlo simulations for particle and {gamma}-ray emissions from an excited nucleus based on the Hauser-Feshbach statistical theory are performed to obtain correlated information between emitted particles and {gamma}-rays. We calculate neutron induced reactions on {sup 51}V to demonstrate unique advantages of the Monte Carlo method. which are the correlated {gamma}-rays in the neutron radiative capture reaction, the neutron and {gamma}-ray correlation, and the particle-particle correlations at higher energies. It is shown that properties in nuclear reactions that are difficult to study with a deterministic method can be obtained with the Monte Carlo simulations.
Evaluations of Particle Scattering Models for Falling Snow
NASA Astrophysics Data System (ADS)
Duffy, G.; Nesbitt, S. W.; McFarquhar, G. M.
2014-12-01
Several millimeter wavelength scattering models have been developed over the past decade that could potentially be more accurate than the standard "soft sphere" model, a model with is used in GPM algorithms to retrieve snowfall precipitation rates from dual frequency radar measurements. Results from the GCPEx mission, a GPM Ground Validation experiment that flew HVPS and CIP particle imaging probes through snowstorms within fields of Ku/Ka band reflectivity, provide the data necessary to evaluate simulations of non-Rayleigh reflectivity against measured values. This research uses T-Matrix spheroid, RGA spheroid, and Mie Sphere simulations, as well as variations on axial ratio and diameter-density relationships, to quantify the merits and errors of different forward simulation strategies.
A particle based computational model for eukaryotic flagella
NASA Astrophysics Data System (ADS)
Chelakkot, Raghunath; Hagan, Michael
2012-02-01
The structure of the eukaryotic flagella is very complex and the exact mechanisms responsible for flagellar beating are not clearly understood. Here we present a minimal model to study flagellar beating in two dimensions, which demonstrates that regular beating with a well defined characteristic frequency can arise spontaneously in the absence of external control. In this model, the flagella is represented by two stiff filaments clamped on a surface, on which model ``molecular motors'' take directed steps on one of the filaments and thereby apply a local force. The fluid medium is simulated using Multiparticle Collision dynamics (MPC), which is a particle based method for hydrodynamic simulations. Within a certain range of motor concentrations, large amplitude periodic oscillations with a well defined frequency are observed; other qualitatively different beating patterns arise outside of this range. We present a phase diagram that characterizes the beating behaviour as a function of relevant parameters such as filament length, motor density on the filament and motor velocity.
Modeling crowd turbulence by many-particle simulations
NASA Astrophysics Data System (ADS)
Yu, Wenjian; Johansson, Anders
2007-10-01
A recent study [D. Helbing, A. Johansson, and H. Z. Al-Abideen, Phys. Rev. E 75, 046109 (2007)] has revealed a “turbulent” state of pedestrian flows, which is characterized by sudden displacements and causes the falling and trampling of people. However, turbulent crowd motion is not reproduced well by current many-particle models due to their insufficient representation of the local interactions in areas of extreme densities. In this contribution, we extend the repulsive force term of the social force model to reproduce crowd turbulence. We perform numerical simulations of pedestrians moving through a bottleneck area with this model. The transitions from laminar to stop-and-go and turbulent flows are observed. The empirical features characterizing crowd turbulence, such as the structure function and the probability density function of velocity increments, are reproduced well; i.e., they are well compatible with an analysis of video data during the annual Muslim pilgrimage.
Emergent smectic order in simple active particle models
NASA Astrophysics Data System (ADS)
Romanczuk, Pawel; Chaté, Hugues; Chen, Leiming; Ngo, Sandrine; Toner, John
2016-06-01
Novel ‘smectic-P’ behavior, in which self-propelled particles form rows and move on average along them, occurs generically within the orientationally ordered phase of simple models that we simulate. Both apolar (head-tail symmetric) and polar (head-tail asymmetric) models with aligning and repulsive interactions exhibit slow algebraic decay of smectic order with system size up to some finite length scale, after which faster decay occurs. In the apolar case, this scale is that of an undulation instability of the rows. In the polar case, this instability is absent, but traveling fluctuations disrupt the rows in large systems and motion and smectic order may spontaneously globally rotate. These observations agree with a new hydrodynamic theory which we present here. Variants of our models also exhibit active smectic ‘A’ and ‘C’ order, with motion orthogonal and oblique to the layers respectively.
Unsteady Free-Wake Vortex Particle Model for HAWT
NASA Astrophysics Data System (ADS)
Bogateanu, R.; Frunzulicǎ, F.; Cardos, V.
2010-09-01
In the design of horizontal axis wind turbines (HAWT) one problem is to determine the aeroelastic behaviour of the rotor blades for the various wind inflow conditions. A step in this process is to predict with accuracy the aerodynamic loads on the blades. The Vortex Lattice Method (VLM) provides a transparent investigation concerning the role of various physical parameters which influence the aerodynamic problem. In this paper we present a method for the calculation of the non-uniform induced downwash of a HAWT rotor using the vortex ring model for the lifting surface coupled with an unsteady free-wake vortex particle model. Comparative studies between results obtained with different models of wake for a generic HAWT are presented.
Modeling crowd turbulence by many-particle simulations.
Yu, Wenjian; Johansson, Anders
2007-10-01
A recent study [D. Helbing, A. Johansson, and H. Z. Al-Abideen, Phys. Rev. E 75, 046109 (2007)] has revealed a "turbulent" state of pedestrian flows, which is characterized by sudden displacements and causes the falling and trampling of people. However, turbulent crowd motion is not reproduced well by current many-particle models due to their insufficient representation of the local interactions in areas of extreme densities. In this contribution, we extend the repulsive force term of the social force model to reproduce crowd turbulence. We perform numerical simulations of pedestrians moving through a bottleneck area with this model. The transitions from laminar to stop-and-go and turbulent flows are observed. The empirical features characterizing crowd turbulence, such as the structure function and the probability density function of velocity increments, are reproduced well; i.e., they are well compatible with an analysis of video data during the annual Muslim pilgrimage.
Modeling of mesoscopic electrokinetic phenomena using charged dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Deng, Mingge; Li, Zhen; Karniadakis, George
2015-11-01
In this work, we propose a charged dissipative particle dynamics (cDPD) model for investigation of mesoscopic electrokinetic phenomena. In particular, this particle-based method was designed to simulate micro- or nano- flows which governing by Poisson-Nernst-Planck (PNP) equation coupled with Navier-Stokes (NS) equation. For cDPD simulations of wall-bounded fluid systems, a methodology for imposing correct Dirichlet and Neumann boundary conditions for both PNP and NS equations is developed. To validate the present cDPD model and the corresponding boundary method, we perform cDPD simulations of electrostatic double layer (EDL) in the vicinity of a charged wall, and the results show good agreement with the mean-field theoretical solutions. The capacity density of a parallel plate capacitor in salt solution is also investigated with different salt concentration. Moreover, we utilize the proposed methodology to study the electroosmotic and electroosmotic/pressure-driven flow in a micro-channel. In the last, we simulate the dilute polyelectrolyte solution both in bulk and micro-channel, which show the flexibility and capability of this method in studying complex fluids. This work was sponsored by the Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4) supported by DOE.
Quantifying the sensitivity of black carbon absorption to model representations of particle mixing
NASA Astrophysics Data System (ADS)
Fierce, L.
2015-12-01
Atmospheric black carbon is distributed across diverse aerosol populations, with individual particles exhibiting tremendous variation in their chemical composition and internal morphology. Absorption by an individual particle depends on both its constituent aerosol species and the arrangement of those species within the particle, but this particle-scale complexity cannot be tracked in global-scale simulations. Instead, large-scale aerosol models assume simple representations of particle composition, referred to here as inter-particle mixing, and simple representations of particle's internal morphology, referred to here as intra-particle mixing. This study quantifies the sensitivity of absorption by black carbon to these model approximations of particle mixing. A particle-resolved model was used to simulate the evolution of diverse aerosol populations and, as the simulations proceeded, absorption by black carbon was modeled using different representations of inter-particle mixing and intra-particle mixing. Although absorption by black carbon at the particle level is sensitive to the treatment of particles' internal morphology, at the population level absorption is only weakly sensitive to the treatment of intra-particle but depends strongly on model representations of inter-particle mixing.
How to model the interaction of charged Janus particles
NASA Astrophysics Data System (ADS)
Hieronimus, Reint; Raschke, Simon; Heuer, Andreas
2016-08-01
We analyze the interaction of charged Janus particles including screening effects. The explicit interaction is mapped via a least square method on a variable number n of systematically generated tensors that reflect the angular dependence of the potential. For n = 2 we show that the interaction is equivalent to a model previously described by Erdmann, Kröger, and Hess (EKH). Interestingly, this mapping is for n = 2 not able to capture the subtleties of the interaction for small screening lengths. Rather, a larger number of tensors has to be used. We find that the characteristics of the Janus type interaction plays an important role for the aggregation behavior. We obtained cluster structures up to the size of 13 particles for n = 2 and 36 and screening lengths κ-1 = 0.1 and 1.0 via Monte Carlo simulations. The influence of the screening length is analyzed and the structures are compared to results for an electrostatic-type potential and for the multipole-expanded Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. We find that a dipole-like potential (EKH or dipole DLVO approximation) is not able to sufficiently reproduce the anisotropy effects of the potential. Instead, a higher order expansion has to be used to obtain cluster structures that are compatible with experimental observations. The resulting minimum-energy clusters are compared to those of sticky hard sphere systems. Janus particles with a short-range screened interaction resemble sticky hard sphere clusters for all considered particle numbers, whereas for long-range screening even very small clusters are structurally different.
Event-based total suspended sediment particle size distribution model
NASA Astrophysics Data System (ADS)
Thompson, Jennifer; Sattar, Ahmed M. A.; Gharabaghi, Bahram; Warner, Richard C.
2016-05-01
One of the most challenging modelling tasks in hydrology is prediction of the total suspended sediment particle size distribution (TSS-PSD) in stormwater runoff generated from exposed soil surfaces at active construction sites and surface mining operations. The main objective of this study is to employ gene expression programming (GEP) and artificial neural networks (ANN) to develop a new model with the ability to more accurately predict the TSS-PSD by taking advantage of both event-specific and site-specific factors in the model. To compile the data for this study, laboratory scale experiments using rainfall simulators were conducted on fourteen different soils to obtain TSS-PSD. This data is supplemented with field data from three construction sites in Ontario over a period of two years to capture the effect of transport and deposition within the site. The combined data sets provide a wide range of key overlooked site-specific and storm event-specific factors. Both parent soil and TSS-PSD in runoff are quantified by fitting each to a lognormal distribution. Compared to existing regression models, the developed model more accurately predicted the TSS-PSD using a more comprehensive list of key model input parameters. Employment of the new model will increase the efficiency of deployment of required best management practices, designed based on TSS-PSD, to minimize potential adverse effects of construction site runoff on aquatic life in the receiving watercourses.
Monte Carlo modeling of radiative heat transfer in particle-laden flow
NASA Astrophysics Data System (ADS)
Farbar, Erin; Boyd, Iain D.; Esmaily-Moghadam, Mahdi
2016-11-01
Three-dimensional numerical simulations are applied to model radiative heat transfer in a dispersed particle phase exhibiting preferential concentration typical of a turbulent, particle-laden flow environment. The dispersed phase is composed of micron-sized nickel particles, and the carrier phase is non-participating. The simulations are performed for a snapshot of the particle field using the Monte Carlo Ray Tracing method, and the spectral dependence of the optical properties is considered. Interaction between the particles and radiation is modeled by projecting the particle locations onto an Eulerian mesh. Results show that the optically thin approximation results in errors in predicted particle heat transfer of up to 35% at some locations in the particle field. Oxidation is shown to change the absorption efficiency of the particles significantly, while consideration of non-spherical particle shapes results in relatively small changes in the predicted optical properties of the particles.
Accelerated simulation of stochastic particle removal processes in particle-resolved aerosol models
NASA Astrophysics Data System (ADS)
Curtis, J. H.; Michelotti, M. D.; Riemer, N.; Heath, M. T.; West, M.
2016-10-01
Stochastic particle-resolved methods have proven useful for simulating multi-dimensional systems such as composition-resolved aerosol size distributions. While particle-resolved methods have substantial benefits for highly detailed simulations, these techniques suffer from high computational cost, motivating efforts to improve their algorithmic efficiency. Here we formulate an algorithm for accelerating particle removal processes by aggregating particles of similar size into bins. We present the Binned Algorithm for particle removal processes and analyze its performance with application to the atmospherically relevant process of aerosol dry deposition. We show that the Binned Algorithm can dramatically improve the efficiency of particle removals, particularly for low removal rates, and that computational cost is reduced without introducing additional error. In simulations of aerosol particle removal by dry deposition in atmospherically relevant conditions, we demonstrate about 50-times increase in algorithm efficiency.
Fractality à la carte: a general particle aggregation model
Nicolás-Carlock, J. R.; Carrillo-Estrada, J. L.; Dossetti, V.
2016-01-01
In nature, fractal structures emerge in a wide variety of systems as a local optimization of entropic and energetic distributions. The fractality of these systems determines many of their physical, chemical and/or biological properties. Thus, to comprehend the mechanisms that originate and control the fractality is highly relevant in many areas of science and technology. In studying clusters grown by aggregation phenomena, simple models have contributed to unveil some of the basic elements that give origin to fractality, however, the specific contribution from each of these elements to fractality has remained hidden in the complex dynamics. Here, we propose a simple and versatile model of particle aggregation that is, on the one hand, able to reveal the specific entropic and energetic contributions to the clusters’ fractality and morphology, and, on the other, capable to generate an ample assortment of rich natural-looking aggregates with any prescribed fractal dimension. PMID:26781204
Fractality à la carte: a general particle aggregation model.
Nicolás-Carlock, J R; Carrillo-Estrada, J L; Dossetti, V
2016-01-19
In nature, fractal structures emerge in a wide variety of systems as a local optimization of entropic and energetic distributions. The fractality of these systems determines many of their physical, chemical and/or biological properties. Thus, to comprehend the mechanisms that originate and control the fractality is highly relevant in many areas of science and technology. In studying clusters grown by aggregation phenomena, simple models have contributed to unveil some of the basic elements that give origin to fractality, however, the specific contribution from each of these elements to fractality has remained hidden in the complex dynamics. Here, we propose a simple and versatile model of particle aggregation that is, on the one hand, able to reveal the specific entropic and energetic contributions to the clusters' fractality and morphology, and, on the other, capable to generate an ample assortment of rich natural-looking aggregates with any prescribed fractal dimension.
Fractality à la carte: a general particle aggregation model
NASA Astrophysics Data System (ADS)
Nicolás-Carlock, J. R.; Carrillo-Estrada, J. L.; Dossetti, V.
2016-01-01
In nature, fractal structures emerge in a wide variety of systems as a local optimization of entropic and energetic distributions. The fractality of these systems determines many of their physical, chemical and/or biological properties. Thus, to comprehend the mechanisms that originate and control the fractality is highly relevant in many areas of science and technology. In studying clusters grown by aggregation phenomena, simple models have contributed to unveil some of the basic elements that give origin to fractality, however, the specific contribution from each of these elements to fractality has remained hidden in the complex dynamics. Here, we propose a simple and versatile model of particle aggregation that is, on the one hand, able to reveal the specific entropic and energetic contributions to the clusters’ fractality and morphology, and, on the other, capable to generate an ample assortment of rich natural-looking aggregates with any prescribed fractal dimension.
Fractality à la carte: a general particle aggregation model.
Nicolás-Carlock, J R; Carrillo-Estrada, J L; Dossetti, V
2016-01-01
In nature, fractal structures emerge in a wide variety of systems as a local optimization of entropic and energetic distributions. The fractality of these systems determines many of their physical, chemical and/or biological properties. Thus, to comprehend the mechanisms that originate and control the fractality is highly relevant in many areas of science and technology. In studying clusters grown by aggregation phenomena, simple models have contributed to unveil some of the basic elements that give origin to fractality, however, the specific contribution from each of these elements to fractality has remained hidden in the complex dynamics. Here, we propose a simple and versatile model of particle aggregation that is, on the one hand, able to reveal the specific entropic and energetic contributions to the clusters' fractality and morphology, and, on the other, capable to generate an ample assortment of rich natural-looking aggregates with any prescribed fractal dimension. PMID:26781204
Particle model for nonlocal heat transport in fusion plasmas.
Bufferand, H; Ciraolo, G; Ghendrih, Ph; Lepri, S; Livi, R
2013-02-01
We present a simple stochastic, one-dimensional model for heat transfer in weakly collisional media as fusion plasmas. Energies of plasma particles are treated as lattice random variables interacting with a rate inversely proportional to their energy schematizing a screened Coulomb interaction. We consider both the equilibrium (microcanonical) and nonequilibrium case in which the system is in contact with heat baths at different temperatures. The model exhibits a characteristic length of thermalization that can be associated with an interaction mean free path and one observes a transition from ballistic to diffusive regime depending on the average energy of the system. A mean-field expression for heat flux is deduced from system heat transport properties. Finally, it is shown that the nonequilibrium steady state is characterized by long-range correlations.
Using dissipative particle dynamics to model micromechanics of responsive hydrogels
NASA Astrophysics Data System (ADS)
Alexeev, Alexander; Nikolov, Svetoslav; Fernandez de Las Nieves, Alberto
2015-03-01
The ability of responsive hydrogels to undergo complex and reversible shape transformations in response to external stimuli such as temperature, magnetic/electric fields, pH levels, and light intensity has made them the material of choice for tissue scaffolding, drug delivery, bio-adhesive, bio-sensing, and micro-sorting applications. The complex micromechanics and kinetics of these responsive networks however, currently hinders developments in the aforementioned areas. In order to better understand the mechanical properties of these systems and how they change during the volume transition we have developed a dissipative particle dynamics (DPD) model for responsive polymer networks. We use this model to examine the impact of the Flory-Huggins parameter on the bulk and shear moduli. In this fashion we evaluate how environmental factors can affect the micromechanical properties of these networks. Support from NSF CAREER Award (DMR-1255288) is gratefully acknowledged.
Model of cosmology and particle physics at an intermediate scale
Bastero-Gil, M.; Di Clemente, V.; King, S. F.
2005-05-15
We propose a model of cosmology and particle physics in which all relevant scales arise in a natural way from an intermediate string scale. We are led to assign the string scale to the intermediate scale M{sub *}{approx}10{sup 13} GeV by four independent pieces of physics: electroweak symmetry breaking; the {mu} parameter; the axion scale; and the neutrino mass scale. The model involves hybrid inflation with the waterfall field N being responsible for generating the {mu} term, the right-handed neutrino mass scale, and the Peccei-Quinn symmetry breaking scale. The large scale structure of the Universe is generated by the lightest right-handed sneutrino playing the role of a coupled curvaton. We show that the correct curvature perturbations may be successfully generated providing the lightest right-handed neutrino is weakly coupled in the seesaw mechanism, consistent with sequential dominance.
NASA Astrophysics Data System (ADS)
Palachanis, Dimitrios; Szabó, András; Merks, Roeland M. H.
2015-12-01
Computational modeling is helpful for elucidating the cellular mechanisms driving biological morphogenesis. Previous simulation studies of blood vessel growth based on the cellular Potts model proposed that elongated, adhesive or mutually attractive endothelial cells suffice for the formation of blood vessel sprouts and vascular networks. Because each mathematical representation of a model introduces potential artifacts, it is important that model results are reproduced using alternative modeling paradigms. Here, we present a lattice-free, particle-based simulation of the cell elongation model of vasculogenesis. The new, particle-based simulations confirm the results obtained from the previous cellular Potts simulations. Furthermore, our current findings suggest that the emergence of order is possible with the application of a high enough attractive force or, alternatively, a longer attraction radius. The methodology will be applicable to a range of problems in morphogenesis and noisy particle aggregation in which cell shape is a key determining factor.
Virtual Mie particle model of laser damage to optical elements
NASA Astrophysics Data System (ADS)
Hirata, Kazuya; Haraguchi, Koshi
2011-12-01
In recent years, devices being developed for application systems have used laser beams that have high average power, high peak power, short pulse width, and short wavelength. Therefore, optical elements using such application systems require a high laser damage threshold. The laser damage threshold is provided by International Organization for Standardization 11254 (ISO11254). One of the measurement methods of the laser damage threshold provided by ISO11254 is an online method to measure the intensity of light scattering due to a laser damage trace. In this paper, we propose a measurement method for the laser damage threshold that realizes high sensitivity and high accuracy by using polarized light and lock-in detection. Since the scattering light with laser damage is modeled on the asperity of the optical element-surface as Mie particles (virtual Mie particles), we consider the intensity change of scattering light as a change in the radius of a virtual Mie particle. To evaluate this model, the laser damage trace on the optical element-surface was observed by an atomic force microscopy (AFM). Based on the observed AFM image, we analyzed the frequency domain by the Fourier transform, and estimated the dominant virtual Mie particle radius in the AFM measurement area. In addition, we measured the laser damage threshold. The light source was the fifth generation of a Nd:YAG laser (λ =213nm). The specifications of the laser were: repetition frequency 10Hz, pulse width 4ns, linear type polarization, laser pulse energy 4mJ, and laser transverse mode TEM00. The laser specifications were a repetition frequency, pulse width, pulse energy and beam diameter of 10Hz, 4ns, 4mJ and 13mm, respectively. The laser damage thresholds of an aluminum coated mirror and a dielectric multi-layer mirror designed at a wavelength of 213nm as measured by this method were 0.684 J/cm2 and 0.998J/cm2, respectively. These laser damage thresholds were 1/4 the laser damage thresholds measured based
Aspects of Cosmology from particle physics beyond the Standard Model
NASA Astrophysics Data System (ADS)
Shuhmaher, Natalia
The interface of Cosmology and High Energy physics is a forefront area of research which is constantly undergoing development. This thesis makes various contributions to this endeavor. String-inspired cosmology is the subject of the first part of the thesis, where we propose both a new inflationary and a new alternative cosmological model. The second part of the thesis concentrates on the problems of integrating cosmology with particle physics beyond the Standard Model. Inspired by new opportunities due to stringy degrees of freedom, we propose a non-inflationary resolution of the entropy and horizon problems. In this string-inspired scenario, 'our' dimensions expand while the extra dimensions first expand and then contract, before eventually stabilizing. The equation of state of the bulk matter (which consists of branes) is negative. Hence, there is a net gain in the total energy of the universe during the pre-stabilization phase. At the end of this phase, the energy stored in the branes is converted into radiation. The result is a large and dense 3-dimensional universe. Making use of similar ideas, we propose a not-fine-tuned model of brane inflation. In this scenario the brane separation, playing the role of the inflaton, is the same as the overall volume modulus. The bulk matter provides an initial expansion phase which drives the inflaton up its potential, so that the conditions for inflation are realized. The specific choice of the inflationary potential nicely fits the cosmological observations. Another aspect of this research concentrates on the cosmological moduli problem: namely, the existence of weakly coupled particles those decay is late enough to interfere with Big Bang Nucleosynthesis. As a solution, we suggest parametric and tachyonic resonances to shorten the decay time. Even heavy moduli are dangerous for cosmology if they cause the overproduction of gravitinos. We find that tachyonic decay channels help to transfer most of the energy of these
Predictive modeling of particle-laden, turbulent flows
Sinclair, J.L.
1992-01-01
The successful prediction of particle-laden, turbulent flows relies heavily on the representation of turbulence in the gas phase. Several types of turbulence models for single-phase gas flow have been developed which compare reasonably well with experimental data. In the present work, a low-Reynolds'' k-[epsilon], closure model is chosen to describe the Reynolds stresses associated with gas-phase turbulence. This closure scheme, which involves transport equations for the turbulent kinetic energy and its dissipation rate, is valid in the turbulent core as well as the viscous sublayer. Several versions of the low-Reynolds k-[epsilon] closure are documented in the literature. However, even those models which are similar in theory often differ considerably in their quantitative and qualitative predictions, making the selection of such a model a difficult task. The purpose of this progress report is to document our findings on the performance of ten different versions of the low-Reynolds k-[epsilon] model on predicting fully developed pipe flow. The predictions are compared with the experimental data of Schildknecht, et al. (1979). With the exception of the model put forth by Hoffman (1975), the predictions of all the closures show reasonable agreement for the mean velocity profile. However, important quantitative differences exist for the turbulent kinetic energy profile. In addition, the predicted eddy viscosity profile and the wall-region profile of the turbulent kinetic energy dissipation rate exhibit both quantitative and qualitative differences. An effort to extend the present comparisons to include experimental measurements of other researchers is recommended in order to further evaluate the performance of the models.
Modeling Proton Dissociation and Transfer Using Dissipative Particle Dynamics Simulation.
Lee, Ming-Tsung; Vishnyakov, Aleksey; Neimark, Alexander V
2015-09-01
We suggest a coarse-grained model for dissipative particle dynamics (DPD) simulations of solutions with dissociated protons. The model uses standard short-range soft repulsion and smeared charge electrostatic potentials between the beads, representing solution components. The proton is introduced as a separate charged bead that forms dissociable bonds with proton receptor base beads, such as water or deprotonated acid anions. The proton-base bonds are described by Morse potentials. When the proton establishes the Morse bonds with two bases, they form an intermediate complex, and the proton is able to "hop" between the bases artificially mimicking the Grotthuss diffusion mechanism. By adjusting the Morse potential parameters, one can regulate the potential barrier associated with intermediate complex formation and breakup and control the hopping frequency. This makes the proposed model applicable to simulations of proton mobility and reaction equilibria between protonated and deprotonated acid forms in aqueous solutions. The proposed model provides quantitative agreement with experiments for the proton self-diffusion coefficient and hopping frequency, as well as for the degree of dissociation of benzenesulfonic acid. PMID:26575931
Independent-particle models for light negative atomic ions
NASA Technical Reports Server (NTRS)
Ganas, P. S.; Talman, J. D.; Green, A. E. S.
1980-01-01
For the purposes of astrophysical, aeronomical, and laboratory application, a precise independent-particle model for electrons in negative atomic ions of the second and third period is discussed. The optimum-potential model (OPM) of Talman et al. (1979) is first used to generate numerical potentials for eight of these ions. Results for total energies and electron affinities are found to be very close to Hartree-Fock solutions. However, the OPM and HF electron affinities both depart significantly from experimental affinities. For this reason, two analytic potentials are developed whose inner energy levels are very close to the OPM and HF levels but whose last electron eigenvalues are adjusted precisely with the magnitudes of experimental affinities. These models are: (1) a four-parameter analytic characterization of the OPM potential and (2) a two-parameter potential model of the Green, Sellin, Zachor type. The system O(-) or e-O, which is important in upper atmospheric physics is examined in some detail.
Model for boiling and dryout in particle beds. [LMFBR
Lipinski, R. J.
1982-06-01
Over the last ten years experiments and modeling of dryout in particle beds have produced over fifty papers. Considering only volume-heated beds, over 250 dryout measurements have been made, and are listed in this work. In addition, fifteen models to predict dryout have been produced and are discussed. A model is developed in this report for one-dimensional boiling and dryout in a porous medium. It is based on conservation laws for mass, momentum, and energy. The initial coupled differential equations are reduced to a single first-order differential equation with an algebraic equation for the upper boundary condition. The model includes the effects of both laminar and turbulent flow, two-phase friction, and capillary force. The boundary condition at the bed bottom includes the possibility of inflowing liquid and either an adiabatic or a bottom-cooled support structure. The top of the bed may be either channeled or subcooled. In the first case the channel length and the saturation at the base of the channels are predicted. In the latter case, a criterion for penetration of the subcooled zone by channels is obtained.
Model-independent analyses of dark-matter particle interactions
Anand, Nikhil; Fitzpatrick, A. Liam; Haxton, W. C.
2015-03-24
A model-independent treatment of dark-matter particle elastic scattering has been developed, yielding the most general interaction for WIMP-nucleon low-energy scattering, and the resulting amplitude has been embedded into the nucleus, taking into account the selection rules imposed by parity and time-reversal. One finds that, in contrast to the usual spin-independent/spin-dependent (SI/SD) formulation, the resulting cross section contains six independent nuclear response functions, three of which are associated with possible velocity-dependent interactions. We find that current experiments are four orders of magnitude more sensitive to derivative couplings than is apparent in the standard SI/SD treatment, which necessarily associated such interactions withmore » cross sections proportional to v2T ~ 10⁻⁶, where vT is the WIMP velocity relative to the center of mass of the nuclear target.« less
Test particle model of pickup ions at comet Halley
Luhmann, J.G.; Fedder, J.A.; Winske, D.
1988-07-01
A test particle treatment is used to investigate some of the details of the pickup cometary ions observed at comet Halley. The effects of the large-scale magnetic and motional electric fields, as described by an MHD model of the comet, produce the characteristic V shape seen in Giotto observations in simulated energy-time spectrograms. It is demonstrated that scattering produced by the addition of magnetic field fluctuations can obscure the tendency of the large-scale field to deflect energetic ions picked up in the outer coma from the tail axis. The fact that the V is so clearly observed in the Giotto spectrogram thus suggests that although scattering must be invoked to explain the isotropic pitch angle distributions and highest energy ions, it does not have a major effect on the overall pickup ion spectrum. copyright American Geophysical Union 1988
Nonlinear electromagnetic gyrokinetic particle simulations with the electron hybrid model
NASA Astrophysics Data System (ADS)
Nishimura, Y.; Lin, Z.; Chen, L.; Hahm, T.; Wang, W.; Lee, W.
2006-10-01
The electromagnetic model with fluid electrons is successfully implemented into the global gyrokinetic code GTC. In the ideal MHD limit, shear Alfven wave oscillation and continuum damping is demonstrated. Nonlinear electromagnetic simulation is further pursued in the presence of finite ηi. Turbulence transport in the AITG unstable β regime is studied. This work is supported by Department of Energy (DOE) Grant DE-FG02-03ER54724, Cooperative Agreement No. DE-FC02-04ER54796 (UCI), DOE Contract No. DE-AC02-76CH03073 (PPPL), and in part by SciDAC Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas. Z. Lin, et al., Science 281, 1835 (1998). F. Zonca and L. Chen, Plasma Phys. Controlled Fusion 30, 2240 (1998); G. Zhao and L. Chen, Phys. Plasmas 9, 861 (2002).
Modeling of cast systems using smoothed-particle hydrodynamics
NASA Astrophysics Data System (ADS)
Cleary, Paul; Prakash, Mahesh; Ha, Joseph; Sinnott, Matthew; Nguyen, Thang; Grandfield, John
2004-03-01
To understand and control the filling process for metals in high-pressure die casting and ingot casting, researchers have used new flow-simulation software for the modeling of mold filling. Smoothed-particle hydrodynamics (SPH) is a non-conventional computational fluid dynamics method that has been successfully applied to these problems. Due to its mesh-free nature, it can handle complex splashing free surface flows and the differential motion of multiple solid-casting equipment components relatively easily. The ability of SPH to predict the detailed filling patterns of real large-scale automotive die castings is demonstrated in this study, and the use of SPH simulation for wheel shape optimization in ingot casting based on minimizing oxide generation while increasing the throughput is also presented.
Model-independent analyses of dark-matter particle interactions
Anand, Nikhil; Fitzpatrick, A. Liam; Haxton, W. C.
2015-03-24
A model-independent treatment of dark-matter particle elastic scattering has been developed, yielding the most general interaction for WIMP-nucleon low-energy scattering, and the resulting amplitude has been embedded into the nucleus, taking into account the selection rules imposed by parity and time-reversal. One finds that, in contrast to the usual spin-independent/spin-dependent (SI/SD) formulation, the resulting cross section contains six independent nuclear response functions, three of which are associated with possible velocity-dependent interactions. We find that current experiments are four orders of magnitude more sensitive to derivative couplings than is apparent in the standard SI/SD treatment, which necessarily associated such interactions with cross sections proportional to v^{2}_{T} ~ 10⁻⁶, where v_{T} is the WIMP velocity relative to the center of mass of the nuclear target.
Particle dispersion in homogeneous turbulence using the one-dimensional turbulence model
Sun, Guangyuan Lignell, David O.; Hewson, John C.; Gin, Craig R.
2014-10-15
Lagrangian particle dispersion is studied using the one-dimensional turbulence (ODT) model in homogeneous decaying turbulence configurations. The ODT model has been widely and successfully applied to a number of reacting and nonreacting flow configurations, but only limited application has been made to multiphase flows. Here, we present a version of the particle implementation and interaction with the stochastic and instantaneous ODT eddy events. The model is characterized by comparison to experimental data of particle dispersion for a range of intrinsic particle time scales and body forces. Particle dispersion, velocity, and integral time scale results are presented. The particle implementation introduces a single model parameter β{sub p}, and sensitivity to this parameter and behavior of the model are discussed. Good agreement is found with experimental data and the ODT model is able to capture the particle inertial and trajectory crossing effects. These results serve as a validation case of the multiphase implementations of ODT for extensions to other flow configurations.
Particle dispersion in homogeneous turbulence using the one-dimensional turbulence model
Sun, Guangyuan; Lignell, David O.; Hewson, John C.; Gin, Craig R.
2014-10-09
Lagrangian particle dispersion is studied using the one-dimensional turbulence (ODT) model in homogeneous decaying turbulence configurations. The ODT model has been widely and successfully applied to a number of reacting and nonreacting flow configurations, but only limited application has been made to multiphase flows. We present a version of the particle implementation and interaction with the stochastic and instantaneous ODT eddy events. The model is characterized by comparison to experimental data of particle dispersion for a range of intrinsic particle time scales and body forces. Particle dispersion, velocity, and integral time scale results are presented. Moreover, the particle implementation introduces a single model parameter β p , and sensitivity to this parameter and behavior of the model are discussed. Good agreement is found with experimental data and the ODT model is able to capture the particle inertial and trajectory crossing effects. Our results serve as a validation case of the multiphase implementations of ODT for extensions to other flow configurations.
A Simple Mathematical Model for Standard Model of Elementary Particles and Extension Thereof
NASA Astrophysics Data System (ADS)
Sinha, Ashok
2016-03-01
An algebraically (and geometrically) simple model representing the masses of the elementary particles in terms of the interaction (strong, weak, electromagnetic) constants is developed, including the Higgs bosons. The predicted Higgs boson mass is identical to that discovered by LHC experimental programs; while possibility of additional Higgs bosons (and their masses) is indicated. The model can be analyzed to explain and resolve many puzzles of particle physics and cosmology including the neutrino masses and mixing; origin of the proton mass and the mass-difference between the proton and the neutron; the big bang and cosmological Inflation; the Hubble expansion; etc. A novel interpretation of the model in terms of quaternion and rotation in the six-dimensional space of the elementary particle interaction-space - or, equivalently, in six-dimensional spacetime - is presented. Interrelations among particle masses are derived theoretically. A new approach for defining the interaction parameters leading to an elegant and symmetrical diagram is delineated. Generalization of the model to include supersymmetry is illustrated without recourse to complex mathematical formulation and free from any ambiguity. This Abstract represents some results of the Author's Independent Theoretical Research in Particle Physics, with possible connection to the Superstring Theory. However, only very elementary mathematics and physics is used in my presentation.
A generalized Brownian motion model for turbulent relative particle dispersion
NASA Astrophysics Data System (ADS)
Shivamoggi, B. K.
2016-08-01
There is speculation that the difficulty in obtaining an extended range with Richardson-Obukhov scaling in both laboratory experiments and numerical simulations is due to the finiteness of the flow Reynolds number Re in these situations. In this paper, a generalized Brownian motion model has been applied to describe the relative particle dispersion problem in more realistic turbulent flows and to shed some light on this issue. The fluctuating pressure forces acting on a fluid particle are taken to be a colored noise and follow a stationary process and are described by the Uhlenbeck-Ornstein model while it appears plausible to take their correlation time to have a power-law dependence on Re, thus introducing a bridge between the Lagrangian quantities and the Eulerian parameters for this problem. This ansatz is in qualitative agreement with the possibility of a connection speculated earlier by Corrsin [26] between the white-noise representation for the fluctuating pressure forces and the large-Re assumption in the Kolmogorov [4] theory for the 3D fully developed turbulence (FDT) as well as a similar argument of Monin and Yaglom [23] and a similar result of Sawford [13] and Borgas and Sawford [24]. It also provides an insight into the result that the Richardson-Obukhov scaling holds only in the infinite-Re limit and disappears otherwise. This ansatz further provides a determination of the Richardson-Obukhov constant g as a function of Re, with an asymptotic constant value in the infinite-Re limit. It is shown to lead to full agreement, in the small-Re limit as well, with the Batchelor-Townsend [27] scaling for the rate of change of the mean square interparticle separation in 3D FDT, hence validating its soundness further.
Particle acceleration in a complex solar active region modelled by a Cellular automata model
NASA Astrophysics Data System (ADS)
Dauphin, C.; Vilmer, N.; Anastasiadis, A.
2004-12-01
The models of cellular automat allowed to reproduce successfully several statistical properties of the solar flares. We use a cellular automat model based on the concept of self-organised critical system to model the evolution of the magnetic energy released in an eruptive active area. Each burst of magnetic energy released is assimilated to a process of magnetic reconnection. We will thus generate several current layers (RCS) where the particles are accelerated by a direct electric field. We calculate the energy gain of the particles (ions and electrons) for various types of magnetic configuration. We calculate the distribution function of the kinetic energy of the particles after their interactions with a given number of RCS for each type of configurations. We show that the relative efficiency of the acceleration of the electrons and the ions depends on the selected configuration.
Vergeynst, L; Vallet, B; Vanrolleghem, P A
2012-01-01
Stormwater is polluted by various contaminants affecting the quality of receiving water bodies. Pathogens are one of these contaminants, which have a critical effect on water use in rivers. Increasing the retention time of water in stormwater basins can lead to reduced loads of pathogens released to the rivers. In this paper a model describing the behaviour of pathogens in stormwater basins is presented including different fate processes such as decay, adsorption/desorption, settling and solar disinfection. By considering the settling velocity distribution of particles and a layered approach, this model is able to create a light intensity, and particle and pathogen concentration profile along the water depth in the basin. A strong effect of solar disinfection is discerned. The model has been used to evaluate pathogen removal efficiencies in stormwater basins. It includes a population of particle classes characterized by a distribution of settling velocities in order to be able to reproduce stormwater quality and treatment in a realistic way.
GRAVITATIONAL LENS MODELING WITH GENETIC ALGORITHMS AND PARTICLE SWARM OPTIMIZERS
Rogers, Adam; Fiege, Jason D.
2011-02-01
Strong gravitational lensing of an extended object is described by a mapping from source to image coordinates that is nonlinear and cannot generally be inverted analytically. Determining the structure of the source intensity distribution also requires a description of the blurring effect due to a point-spread function. This initial study uses an iterative gravitational lens modeling scheme based on the semilinear method to determine the linear parameters (source intensity profile) of a strongly lensed system. Our 'matrix-free' approach avoids construction of the lens and blurring operators while retaining the least-squares formulation of the problem. The parameters of an analytical lens model are found through nonlinear optimization by an advanced genetic algorithm (GA) and particle swarm optimizer (PSO). These global optimization routines are designed to explore the parameter space thoroughly, mapping model degeneracies in detail. We develop a novel method that determines the L-curve for each solution automatically, which represents the trade-off between the image {chi}{sup 2} and regularization effects, and allows an estimate of the optimally regularized solution for each lens parameter set. In the final step of the optimization procedure, the lens model with the lowest {chi}{sup 2} is used while the global optimizer solves for the source intensity distribution directly. This allows us to accurately determine the number of degrees of freedom in the problem to facilitate comparison between lens models and enforce positivity on the source profile. In practice, we find that the GA conducts a more thorough search of the parameter space than the PSO.
Aspects of Particle Physics Beyond the Standard Model
NASA Astrophysics Data System (ADS)
Lu, Xiaochuan
This dissertation describes a few aspects of particles beyond the Standard Model, with a focus on the remaining questions after the discovery of a Standard Model-like Higgs boson. In specific, three topics are discussed in sequence: neutrino mass and baryon asymmetry, naturalness problem of Higgs mass, and placing constraints on theoretical models from precision measurements. First, the consequence of the neutrino mass anarchy on cosmology is studied. Attentions are paid in particular to the total mass of neutrinos and baryon asymmetry through leptogenesis. With the assumption of independence among mass matrix entries in addition to the basis independence, Gaussian measure is the only choice. On top of Gaussian measure, a simple approximate U(1) flavor symmetry makes leptogenesis highly successful. Correlations between the baryon asymmetry and the light-neutrino quantities are investigated. Also discussed are possible implications of recently suggested large total mass of neutrinos by the SDSS/BOSS data. Second, the Higgs mass implies fine-tuning for minimal theories of weak-scale supersymmetry (SUSY). Non-decoupling effects can boost the Higgs mass when new states interact with the Higgs, but new sources of SUSY breaking that accompany such extensions threaten naturalness. I will show that two singlets with a Dirac mass can increase the Higgs mass while maintaining naturalness in the presence of large SUSY breaking in the singlet sector. The modified Higgs phenomenology of this scenario, termed "Dirac NMSSM", is also studied. Finally, the sensitivities of future precision measurements in probing physics beyond the Standard Model are studied. A practical three-step procedure is presented for using the Standard Model effective field theory (SM EFT) to connect ultraviolet (UV) models of new physics with weak scale precision observables. With this procedure, one can interpret precision measurements as constraints on the UV model concerned. A detailed explanation is
NASA Astrophysics Data System (ADS)
Beckett, F. M.; Witham, C. S.; Hort, M. C.; Stevenson, J. A.; Bonadonna, C.; Millington, S. C.
2015-11-01
This study examines the sensitivity of atmospheric dispersion model forecasts of volcanic ash clouds to the physical characteristics assigned to the particles. We show that the particle size distribution (PSD) used to initialise a dispersion model has a significant impact on the forecast of the mass loading of the ash particles in the atmosphere. This is because the modeled fall velocity of the particles is sensitive to the particle diameter. Forecasts of the long-range transport of the ash cloud consider particles with diameters between 0.1 μm and 100 μm. The fall velocity of particles with diameter 100 μm is over 5 orders of magnitude greater than a particle with diameter 0.1 μm, and 30 μm particles fall 88% slower and travel up to 5× further than a 100 μm particle. Identifying the PSD of the ash cloud at the source, which is required to initialise a model, is difficult. Further, aggregation processes are currently not explicitly modeled in operational dispersion models due to the high computational costs associated with aggregation schemes. We show that using a modified total grain size distribution (TGSD) that effectively accounts for aggregation processes improves the modeled PSD of the ash cloud and deposits from the eruption of Eyjafjallajökull in 2010. Knowledge of the TGSD of an eruption is therefore critical for reducing uncertainty in quantitative forecasts of ash cloud dispersion. The density and shape assigned to the model particles have a lesser but still significant impact on the calculated fall velocity. Accounting for the density distribution and sphericity of ash from the eruption of Eyjafjallajökull in 2010, modeled particles can travel up to 84% further than particles with default particle characteristics that assume the particles are spherical and have a fixed density.
Modeling of hydrogen production methods: Single particle model and kinetics assessment
Miller, R.S.; Bellan, J.
1996-10-01
The investigation carried out by the Jet Propulsion Laboratory (JPL) is devoted to the modeling of biomass pyrolysis reactors producing an oil vapor (tar) which is a precursor to hydrogen. This is an informal collaboration with NREL whereby JPL uses the experimentally-generated NREL data both as initial and boundary conditions for the calculations, and as a benchmark for model validation. The goal of this investigation is to find drivers of biomass fast-pyrolysis in the low temperature regime. The rationale is that experimental observations produce sparse discrete conditions for model validation, and that numerical simulations produced with a validated model are an economic way to find control parameters and an optimal operation regime, thereby circumventing costly changes in hardware and tests. During this first year of the investigation, a detailed mathematical model has been formulated for the temporal and spatial accurate modeling of solid-fluid reactions in biomass particles. These are porous particles for which volumetric reaction rate data is known a priori and both the porosity and the permeability of the particle are large enough to allow for continuous gas phase flow. The methodology has been applied to the pyrolysis of spherically symmetric biomass particles by considering previously published kinetics schemes for both cellulose and wood. The results show that models which neglect the thermal and species boundary layers exterior to the particle will generally over predict both the pyrolysis rates and experimentally obtainable tar yields. An evaluation of the simulation results through comparisons with experimental data indicates that while the cellulose kinetics is reasonably accurate, the wood pyrolysis kinetics is not accurate; particularly at high reactor temperatures. Current effort in collaboration with NREL is aimed at finding accurate wood kinetics.
Treating asphericity in fuel particle pressure vessel modeling
NASA Astrophysics Data System (ADS)
Miller, Gregory K.; Wadsworth, Derek C.
1994-07-01
The prototypical nuclear fuel of the New Production Modular High Temperature Gas-Cooled Reactor (NP-MHTGR) consists of spherical TRISO-coated particles suspended in graphite cylinders. The coating layers surrounding the fuel kernels in these particles consist of pyrolytic carbon layers and a silicon carbide layer. These coating layers act as a pressure vessel which retains fission product gases. In the operating conditions of the NP-MHTGR, a small percentage of these particles (pressure vessels) are expected to fail due to the pressure loading. The fuel particles of the NP-MHTGR deviate to some degree from a true spherical shape, which may have some effect on the failure percentages. A method is presented that treats the asphericity of the particles in predicting failure probabilities for particle samples. It utilizes a combination of finite element analysis and Monte Carlo sampling and is based on the Weibull statistical theory. The method is used here to assess the effects of asphericity in particles of two common geometric shapes, i.e. faceted particles and ellipsoidal particles. The method presented could be used to treat particle anomalies other than asphericity.
NASA Astrophysics Data System (ADS)
Tsai, Christina; Hung, Serena
2016-04-01
To more precisely describe particle movement in surface water, both the random particle arrival process at the receiving water and the stochastic particle movement in the receiving water should be carefully considered in sediment transport modeling. In this study, a stochastic framework is developed for a probabilistic description of discrete particle transport through a probability density function of sediment concentrations and transport rates. In order to more realistically describe the particle arrivals into receiving waters at random times and with a probabilistic particle number in each arrival, the continuous-time batch Markovian arrival process is introduced. The particle tracking model (PTM) composed of physically based stochastic differential equations (SDEs) for particle trajectory is then used to depict the random movement of particles in the receiving water. Particle deposition and entrainment processes are considered in the model. It is expected that the particle concentrations in the receiving water and particle transport rates can be mathematically expressed as a stochastic process. Compared with deterministic modeling, the proposed approach has the advantage of capturing any randomly selected scenarios (or realizations) of flow and sediment properties. Availability of a more sophisticated stochastic process for random particle arrival processes can assist in quantifying the probabilistic characteristics of sediment transport rates and concentrations. In addition, for a given turbidity threshold, the risk of exceeding a pre-established water quality standard can be quantified as needed.
Coupled Particle Transport and Pattern Formation in a Nonlinear Leaky-Box Model
NASA Technical Reports Server (NTRS)
Barghouty, A. F.; El-Nemr, K. W.; Baird, J. K.
2009-01-01
Effects of particle-particle coupling on particle characteristics in nonlinear leaky-box type descriptions of the acceleration and transport of energetic particles in space plasmas are examined in the framework of a simple two-particle model based on the Fokker-Planck equation in momentum space. In this model, the two particles are assumed coupled via a common nonlinear source term. In analogy with a prototypical mathematical system of diffusion-driven instability, this work demonstrates that steady-state patterns with strong dependence on the magnetic turbulence but a rather weak one on the coupled particles attributes can emerge in solutions of a nonlinearly coupled leaky-box model. The insight gained from this simple model may be of wider use and significance to nonlinearly coupled leaky-box type descriptions in general.
Particle models for discrete element modeling of bulk grain properties of wheat kernels
Technology Transfer Automated Retrieval System (TEKTRAN)
Recent research has shown the potential of discrete element method (DEM) in simulating grain flow in bulk handling systems. Research has also revealed that simulation of grain flow with DEM requires establishment of appropriate particle models for each grain type. This research completes the three-p...
Blow-up of the solution of a nonlinear system of equations with positive energy
NASA Astrophysics Data System (ADS)
Korpusov, M. O.
2012-06-01
We consider the Dirichlet problem for a nonlinear system of equations, continuing our study of nonlinear hyperbolic equations and systems of equations with an arbitrarily large positive energy. We use a modified Levine method to prove the blow-up.
Modelling the surface deposition of meteoric smoke particles
NASA Astrophysics Data System (ADS)
Brooke, James S. A.; Feng, Wuhu; Mann, Graham W.; Dhomse, Sandip S.; Bardeen, Charles G.; Plane, John M. C.
2016-04-01
The flux of meteoric smoke particles (MSPs) in Greenland and Antarctica has been measured using Ir and Pt observations in ice cores, by Gabrielli et al. [1,2]. They obtained MSP deposition fluxes of 1.5 ± 0.45 × 10-4 g m-2 yr-1 (209 ± 63 t d-1) in Greenland and 3.9 ± 1.4 × 10-5 g m-2 yr-1 (55 ± 19 t d-1) in Antarctica, where the values in parentheses are total atmospheric inputs, assuming a uniform global deposition rate. These results show reasonable agreement with those of Lanci et al. [3], who used ice core magnetisation measurements, resulting in MSP fluxes of 1.7 ± 0.23 × 10-4 g m-2 yr-1 (236 ± 50 t d-1) (Greenland) and 2.0 ± 0.52 × 10-5 g m-2 yr-1 (29 ± 5.0 t d-1) (Antarctica). Atmospheric modelling studies have been performed to assess the transport and deposition of MSPs, using WACCM (Whole Atmosphere Community Climate Model), and the CARMA (Community Aerosol and Radiation Model) aerosol microphysics package. An MSP input function totalling 44 t d-1 was added between about 80 and 105 km. Several model runs have been performed in which the aerosol scavenging by precipitation was varied. Wet deposition is expected (and calculated here) to be the main deposition process; however, rain and snow aerosol scavenging coefficients have uncertainties spanning up to two and three orders of magnitude, respectively [4]. The model experiments that we have carried out include simple adjustments of the scavenging coefficients, full inclusion of a parametrisation reported by Wang et al. [4], and a scheme based on aerosol removal where relative humidity > 100 %. The MSP fluxes obtained vary between 1.4 × 10-5 and 2.6 × 10-5 g m-2 yr-1 for Greenland, and 5.1 × 10-6 and 1.7 × 10-5 g m-2 yr-1 for Antarctica. These values are about an order of magnitude lower than the Greenland observations, but show reasonable agreement for Antarctica. The UM (Unified Model), UKCA (United Kingdom Chemistry and Aerosols Model), and GLOMAP (GLObal Model of Aerosol Processes) have
Modeling lithium intercalation of a single spinel particle under potentiodynamic control
Zhang, D.; Popov, B.N.; White, R.E.
2000-03-01
A mathematical model is presented for the lithium intercalation of a single spinel particle as a microelectrode under the stimulus of a cyclic linear potential sweep. The model includes both lithium diffusion within the particle and kinetics at the particle-electrolyte interface. The model is used to predict that peak current densities depend linearly on the scan rate to a certain power with a constant term, which is different from the predicted peak current density for a conventional redox system.
Microbial interactions lead to rapid micro-scale successions on model marine particles
Datta, Manoshi S.; Sliwerska, Elzbieta; Gore, Jeff; Polz, Martin F.; Cordero, Otto X.
2016-01-01
In the ocean, organic particles harbour diverse bacterial communities, which collectively digest and recycle essential nutrients. Traits like motility and exo-enzyme production allow individual taxa to colonize and exploit particle resources, but it remains unclear how community dynamics emerge from these individual traits. Here we track the taxon and trait dynamics of bacteria attached to model marine particles and demonstrate that particle-attached communities undergo rapid, reproducible successions driven by ecological interactions. Motile, particle-degrading taxa are selected for during early successional stages. However, this selective pressure is later relaxed when secondary consumers invade, which are unable to use the particle resource but, instead, rely on carbon from primary degraders. This creates a trophic chain that shifts community metabolism away from the particle substrate. These results suggest that primary successions may shape particle-attached bacterial communities in the ocean and that rapid community-wide metabolic shifts could limit rates of marine particle degradation. PMID:27311813
BDO-RFQ Program Complex of Modelling and Optimization of Charged Particle Dynamics
NASA Astrophysics Data System (ADS)
Ovsyannikov, D. A.; Ovsyannikov, A. D.; Antropov, I. V.; Kozynchenko, V. A.
2016-09-01
The article is dedicated to BDO Code program complex used for modelling and optimization of charged particle dynamics with consideration of interaction in RFQ accelerating structures. The structure of the program complex and its functionality are described; mathematical models of charged particle dynamics, interaction models and methods of optimization are given.
Particle methods to solve modelling problems in wound healing and tumor growth
NASA Astrophysics Data System (ADS)
Vermolen, F. J.
2015-12-01
The paper deals with a compilation of several of our modelling studies on particle methods used for simulation of wound healing and tumor growth processes. The paper serves as an introduction of our modelling approaches to researchers with interest in biological cell-based models that use particle-based modelling approaches. The particles that we consider in the present models mimic either cells or points on cell boundaries that are allowed to migrate as a result of several chemical and mechanical factors. A distinct feature of our modelling frameworks with respect to conventional particle models, is that cells, mimicked by particles, are allowed to divide, differentiate and to die as a result of apoptosis or any causes for cell death. The paper is merely descriptive, rather than written in full mathematical rigor, and will show some of the potentials of the applied modelling.
Lower Bound on the Mean Square Displacement of Particles in the Hard Disk Model
NASA Astrophysics Data System (ADS)
Richthammer, Thomas
2016-08-01
The hard disk model is a 2D Gibbsian process of particles interacting via pure hard core repulsion. At high particle density the model is believed to show orientational order, however, it is known not to exhibit positional order. Here we investigate to what extent particle positions may fluctuate. We consider a finite volume version of the model in a box of dimensions 2 n × 2 n with arbitrary boundary configuration, and we show that the mean square displacement of particles near the center of the box is bounded from below by c log n. The result generalizes to a large class of models with fairly arbitrary interaction.
Reinterpretation of Students' Ideas When Reasoning about Particle Model Illustrations
ERIC Educational Resources Information Center
Langbeheim, Elon
2015-01-01
The article, "Using Animations in Identifying General Chemistry Students' Misconceptions and Evaluating Their Knowledge Transfer Relating to Particle Position in Physical Changes" (Smith and Villarreal, 2015), reports that a substantial proportion of undergraduate students expressed misconceived ideas regarding the motion of particles in…
Waste Slurry Particle Properties for Use in Slurry Flow Modeling
Jewett, J. R.; Conrads, T. J.; Julyk, L. J.; Reynolds, D. A.; Jensen, L.; Kirch, N. W.; Estey, S. D.; Bechtold, D. B.; Callaway III, W. S.; Cooke, G. A.; Herting, D. L.; Person, J. C.; Duncan, J. B.; Onishi, Y.; Tingey, J. M.
2003-02-26
Hanford's tank farm piping system must be substantially modified to deliver high-level wastes from the underground storage tanks to the Waste Treatment Plant now under construction. Improved knowledge of the physical properties of the solids was required to support the design of the modified system. To provide this additional knowledge, particle size distributions for composite samples from seven high-level waste feed tanks were measured using two different laser lightscattering particle size analyzers. These measurements were made under a variety of instrumental conditions, including various flow rates through the sample loop, various stirring rates in the sample reservoir, and before and after subjecting the particles to ultrasonic energy. A mean value over all the tanks of 4.2 {micro}m was obtained for the volume-based median particle size. Additional particle size information was obtained from sieving tests, settling tests and microscopic observations.
Diffuse interface field approach to modeling arbitrarily-shaped particles at fluid-fluid interfaces
Paul C. Millett; Yu. U. Wang
2011-01-01
We present a novel mesoscale simulation approach to modeling the evolution of solid particles segregated at fluid-fluid interfaces. The approach involves a diffuse- interface field description of each fluid phase in addition to the set of solid particles. The unique strength of the model is its generality to include particles of arbitrary shapes and orientations, as well as the ability to incorporate electrostatic particle interactions and external forces via a previous work [Millett PC, Wang YU, Acta Mater 2009;57:3101]. In this work, we verify that the model produces the correct capillary forces and contact angles by comparing with a well-defined analytical solution. In addition, simulation results of rotations of various-shaped particles at fluid-fluid interfaces, external force- induced capillary attraction/repulsion between particles, and spinodal decomposition arrest due to colloidal particle jamming at the interfaces are presented.
Modelling self-assembling of colloid particles in multilayered structures
NASA Astrophysics Data System (ADS)
Adamczyk, Zbigniew; Weroński, Paweł; Barbasz, Jakub; Kolasińska, Marta
2007-04-01
Simulations of particle multilayer build-up in the layer by layer (LbL) self-assembling processes have been performed according to the generalized random sequential adsorption (RSA) scheme. The first (precursor) layer having an arbitrary coverage of adsorption centers was generated using the standard RSA scheme pertinent to homogeneous surface. Formation of the consecutive layers (up to 20) was simulated by assuming short-range interaction potentials for two kinds of particles of equal size. Interaction of two particles of different kind resulted in irreversible and localized adsorption upon their contact, whereas particles of the same kind were assumed to interact via the hard potential (no adsorption possible). Using this algorithm theoretical simulations were performed aimed at determining the particle volume fraction as a function of the distance from the interface, as well as the multilayer film roughness and thickness as a function of the number of layers. The simulations revealed that particle concentration distribution in the film was more uniform for low precursor layer density than for higher density, where well-defined layers of closely packed particles appeared. On the other hand, the roughness of the film was the lowest at the highest precursor layer density. It was also predicted theoretically that for low precursor layer density the film thickness increased with the number of layers in a non-linear way. However, for high precursor layer density, the film thickness increased linearly with the number of layers and the average layer thickness was equal to 1.58 of the particle radius, which is close to the closely packed hexagonal layer thickness equal to 1.73. It was concluded by analysing the existing data for colloid particles and polyelectrolytes that the theoretical results can be effectively exploited for interpretation of the LbL processes involving colloid particles and molecular species like polymers or proteins.
Missing experimental challenges to the Standard Model of particle physics
NASA Astrophysics Data System (ADS)
Perovic, Slobodan
The success of particle detection in high energy physics colliders critically depends on the criteria for selecting a small number of interactions from an overwhelming number that occur in the detector. It also depends on the selection of the exact data to be analyzed and the techniques of analysis. The introduction of automation into the detection process has traded the direct involvement of the physicist at each stage of selection and analysis for the efficient handling of vast amounts of data. This tradeoff, in combination with the organizational changes in laboratories of increasing size and complexity, has resulted in automated and semi-automated systems of detection. Various aspects of the semi-automated regime were greatly diminished in more generic automated systems, but turned out to be essential to a number of surprising discoveries of anomalous processes that led to theoretical breakthroughs, notably the establishment of the Standard Model of particle physics. The automated systems are much more efficient in confirming specific hypothesis in narrow energy domains than in performing broad exploratory searches. Thus, in the main, detection processes relying excessively on automation are more likely to miss potential anomalies and impede potential theoretical advances. I suggest that putting substantially more effort into the study of electron-positron colliders and increasing its funding could minimize the likelihood of missing potential anomalies, because detection in such an environment can be handled by the semi-automated regime-unlike detection in hadron colliders. Despite virtually unavoidable excessive reliance on automated detection in hadron colliders, their development has been deemed a priority because they can operate at currently highest energy levels. I suggest, however, that a focus on collisions at the highest achievable energy levels diverts funds from searches for potential anomalies overlooked due to tradeoffs at the previous energy
NASA Astrophysics Data System (ADS)
Moreno, Nicolas; Nunes, Suzana P.; Calo, Victor M.
2015-11-01
We introduce a framework for model reduction of polymer chain models for dissipative particle dynamics (DPD) simulations, where the properties governing the phase equilibria such as the characteristic size of the chain, compressibility, density, and temperature are preserved. The proposed methodology reduces the number of degrees of freedom required in traditional DPD representations to model equilibrium properties of systems with complex molecules (e.g., linear polymers). Based on geometrical considerations we explicitly account for the correlation between beads in fine-grained DPD models and consistently represent the effect of these correlations in a reduced model, in a practical and simple fashion via power laws and the consistent scaling of the simulation parameters. In order to satisfy the geometrical constraints in the reduced model we introduce bond-angle potentials that account for the changes in the chain free energy after the model reduction. Following this coarse-graining process we represent high molecular weight DPD chains (i.e., ≥ 200 beads per chain) with a significant reduction in the number of particles required (i.e., ≥ 20 times the original system). We show that our methodology has potential applications modeling systems of high molecular weight molecules at large scales, such as diblock copolymer and DNA.
Particle tracks and the mechanism of decoherence in a model bubble chamber
NASA Astrophysics Data System (ADS)
Blasi, Raffaella; Pascazio, Saverio; Takagi, Shin
1998-12-01
We put forward a toy model for a “bubble chamber” and study its interaction with an incoming object particle. We discuss the notion of particle “tracks” inside the bubble chamber and analyze the mechanisms that provoke a loss of quantum mechanical coherence (decoherence). The model is solvable and provides interesting insights into some of the most salient features of the interaction between a microscopic particle and a macroscopic device.
Distributed soft-data-constrained multi-model particle filter.
Seifzadeh, Sepideh; Khaleghi, Bahador; Karray, Fakhri
2015-03-01
A distributed nonlinear estimation method based on soft-data-constrained multimodel particle filtering and applicable to a number of distributed state estimation problems is proposed. This method needs only local data exchange among neighboring sensor nodes and thus provides enhanced reliability, scalability, and ease of deployment. To make the multimodel particle filtering work in a distributed manner, a Gaussian approximation of the particle cloud obtained at each sensor node and a consensus propagation-based distributed data aggregation scheme are used to dynamically reweight the particles' weights. The proposed method can recover from failure situations and is robust to noise, since it keeps the same population of particles and uses the aggregated global Gaussian to infer constraints. The constraints are enforced by adjusting particles' weights and assigning a higher mass to those closer to the global estimate represented by the nodes in the entire sensor network after each communication step. Each sensor node experiences gradual change; i.e., if a noise occurs in the system, the node, its neighbors, and consequently the overall network are less affected than with other approaches, and thus recover faster. The efficiency of the proposed method is verified through extensive simulations for a target tracking system which can process both soft and hard data in sensor networks. PMID:24956539
Distributed soft-data-constrained multi-model particle filter.
Seifzadeh, Sepideh; Khaleghi, Bahador; Karray, Fakhri
2015-03-01
A distributed nonlinear estimation method based on soft-data-constrained multimodel particle filtering and applicable to a number of distributed state estimation problems is proposed. This method needs only local data exchange among neighboring sensor nodes and thus provides enhanced reliability, scalability, and ease of deployment. To make the multimodel particle filtering work in a distributed manner, a Gaussian approximation of the particle cloud obtained at each sensor node and a consensus propagation-based distributed data aggregation scheme are used to dynamically reweight the particles' weights. The proposed method can recover from failure situations and is robust to noise, since it keeps the same population of particles and uses the aggregated global Gaussian to infer constraints. The constraints are enforced by adjusting particles' weights and assigning a higher mass to those closer to the global estimate represented by the nodes in the entire sensor network after each communication step. Each sensor node experiences gradual change; i.e., if a noise occurs in the system, the node, its neighbors, and consequently the overall network are less affected than with other approaches, and thus recover faster. The efficiency of the proposed method is verified through extensive simulations for a target tracking system which can process both soft and hard data in sensor networks.
Nuclear chaotic behavior in particles-rotor model and cranking model
NASA Astrophysics Data System (ADS)
Zhou, Xian Rong; Guo, Lu; Meng, Jie; Zhao, En Guang
2001-11-01
The chaotic properties for six particles interacting by delta force in a two-j model coupled with a deformed core are studied by replacing the scalar rotation energy of particles-rotor model by a one-body cranking term. The nearest-neighbor distribution of energy levels and spectral rigidity are studied as the function of the spin or cranking frequency, respectively. The results of single-j shell are compared with those in two-j case. The system becomes more regular when single-j (i13/2) space is replaced by two-j (g7/2+d5/2) shell although the basis size of the configuration space is unchanged. However, the degree of chaoticity of the system changes slightly when configuration space is enlarged by extending single-j (i13/2) shell to two-j (i13/2+g9/2) shell.
Conceptual Change Texts in Chemistry Teaching: A Study on the Particle Model of Matter
ERIC Educational Resources Information Center
Beerenwinkel, Anne; Parchmann, Ilka; Grasel, Cornelia
2011-01-01
This study explores the effect of a conceptual change text on students' awareness of common misconceptions on the particle model of matter. The conceptual change text was designed based on principles of text comprehensibility, of conceptual change instruction and of instructional approaches how to introduce the particle model. It was evaluated in…
A MODEL FOR FINE PARTICLE AGGLOMERATION IN CIRCULATING FLUIDIZED BED ABSORBERS
A model for fine particle agglomeration in circulating fluidized bed absorbers (CFBAS) has been developed. It can model the influence of different factors on agglomeration, such as the geometry of CFBAs, superficial gas velocity, initial particle size distribution, and type of ag...
Preece, D.S. Perkins, E.D.
1999-02-10
Techniques for modeling oil well sand production have been developed using the formulations for superquadric discrete elements and Darcy fluid flow. Discrete element models are generated using the new technique of particle cloning. Discrete element sources and sinks allow simulation of sand production from the initial state through the transition to an equilibrium state where particles are created and removed at the same rate.
Zhang, Peng; Gao, Chao; Zhang, Na; Slepian, Marvin J.; Deng, Yuefan; Bluestein, Danny
2014-01-01
We developed a multiscale particle-based model of platelets, to study the transport dynamics of shear stresses between the surrounding fluid and the platelet membrane. This model facilitates a more accurate prediction of the activation potential of platelets by viscous shear stresses - one of the major mechanisms leading to thrombus formation in cardiovascular diseases and in prosthetic cardiovascular devices. The interface of the model couples coarse-grained molecular dynamics (CGMD) with dissipative particle dynamics (DPD). The CGMD handles individual platelets while the DPD models the macroscopic transport of blood plasma in vessels. A hybrid force field is formulated for establishing a functional interface between the platelet membrane and the surrounding fluid, in which the microstructural changes of platelets may respond to the extracellular viscous shear stresses transferred to them. The interaction between the two systems preserves dynamic properties of the flowing platelets, such as the flipping motion. Using this multiscale particle-based approach, we have further studied the effects of the platelet elastic modulus by comparing the action of the flow-induced shear stresses on rigid and deformable platelet models. The results indicate that neglecting the platelet deformability may overestimate the stress on the platelet membrane, which in turn may lead to erroneous predictions of the platelet activation under viscous shear flow conditions. This particle-based fluid-structure interaction multiscale model offers for the first time a computationally feasible approach for simulating deformable platelets interacting with viscous blood flow, aimed at predicting flow induced platelet activation by using a highly resolved mapping of the stress distribution on the platelet membrane under dynamic flow conditions. PMID:25530818
A-DROP: A predictive model for the formation of oil particle aggregates (OPAs)
Zhao, Lin; Boufadel, Michel C.; Geng, Xiaolong; Lee, Kenneth; King, Thomas; Robinson, Brian; Fitzpatrick, Faith A.
2016-01-01
Oil–particle interactions play a major role in removal of free oil from the water column. We present a new conceptual–numerical model, A-DROP, to predict oil amount trapped in oil–particle aggregates. A new conceptual formulation of oil–particle coagulation efficiency is introduced to account for the effects of oil stabilization by particles, particle hydrophobicity, and oil–particle size ratio on OPA formation. A-DROP was able to closely reproduce the oil trapping efficiency reported in experimental studies. The model was then used to simulate the OPA formation in a typical nearshore environment. Modeling results indicate that the increase of particle concentration in the swash zone would speed up the oil–particle interaction process; but the oil amount trapped in OPAs did not correspond to the increase of particle concentration. The developed A-DROP model could become an important tool in understanding the natural removal of oil and developing oil spill countermeasures by means of oil–particle aggregation.
A-DROP: A predictive model for the formation of oil particle aggregates (OPAs).
Zhao, Lin; Boufadel, Michel C; Geng, Xiaolong; Lee, Kenneth; King, Thomas; Robinson, Brian; Fitzpatrick, Faith
2016-05-15
Oil-particle interactions play a major role in removal of free oil from the water column. We present a new conceptual-numerical model, A-DROP, to predict oil amount trapped in oil-particle aggregates. A new conceptual formulation of oil-particle coagulation efficiency is introduced to account for the effects of oil stabilization by particles, particle hydrophobicity, and oil-particle size ratio on OPA formation. A-DROP was able to closely reproduce the oil trapping efficiency reported in experimental studies. The model was then used to simulate the OPA formation in a typical nearshore environment. Modeling results indicate that the increase of particle concentration in the swash zone would speed up the oil-particle interaction process; but the oil amount trapped in OPAs did not correspond to the increase of particle concentration. The developed A-DROP model could become an important tool in understanding the natural removal of oil and developing oil spill countermeasures by means of oil-particle aggregation.
A-DROP: A predictive model for the formation of oil particle aggregates (OPAs).
Zhao, Lin; Boufadel, Michel C; Geng, Xiaolong; Lee, Kenneth; King, Thomas; Robinson, Brian; Fitzpatrick, Faith
2016-05-15
Oil-particle interactions play a major role in removal of free oil from the water column. We present a new conceptual-numerical model, A-DROP, to predict oil amount trapped in oil-particle aggregates. A new conceptual formulation of oil-particle coagulation efficiency is introduced to account for the effects of oil stabilization by particles, particle hydrophobicity, and oil-particle size ratio on OPA formation. A-DROP was able to closely reproduce the oil trapping efficiency reported in experimental studies. The model was then used to simulate the OPA formation in a typical nearshore environment. Modeling results indicate that the increase of particle concentration in the swash zone would speed up the oil-particle interaction process; but the oil amount trapped in OPAs did not correspond to the increase of particle concentration. The developed A-DROP model could become an important tool in understanding the natural removal of oil and developing oil spill countermeasures by means of oil-particle aggregation. PMID:26992749
Single fiber model of particle retention in an acoustically driven porous mesh.
Grossner, Michael T; Penrod, Alan E; Belovich, Joanne M; Feke, Donald L
2003-03-01
A method for the capture of small particles (tens of microns in diameter) from a continuously flowing suspension has recently been reported. This technique relies on a standing acoustic wave resonating in a rectangular chamber filled with a high-porosity mesh. Particles are retained in this chamber via a complex interaction between the acoustic field and the porous mesh. Although the mesh has a pore size two orders of magnitude larger than the particle diameter, collection efficiencies of 90% have been measured. A mathematical model has been developed to understand the experimentally observed phenomena and to be able to predict filtration performance. By examining a small region (a single fiber) of the porous mesh, the model has duplicated several experimental events such as the focusing of particles near an element of the mesh and the levitation of particles within pores. The single-fiber analysis forms the basis of modeling the overall performance of the particle filtration system. PMID:12565069
Laser induced x-ray `RADAR' particle physics model
NASA Astrophysics Data System (ADS)
Lockley, D.; Deas, R.; Moss, R.; Wilson, L. A.; Rusby, D.; Neely, D.
2016-05-01
The technique of high-power laser-induced plasma acceleration can be used to generate a variety of diverse effects including the emission of X-rays, electrons, neutrons, protons and radio-frequency radiation. A compact variable source of this nature could support a wide range of potential applications including single-sided through-barrier imaging, cargo and vehicle screening, infrastructure inspection, oncology and structural failure analysis. This paper presents a verified particle physics simulation which replicates recent results from experiments conducted at the Central Laser Facility at Rutherford Appleton Laboratory (RAL), Didcot, UK. The RAL experiment demonstrated the generation of backscattered X-rays from test objects via the bremsstrahlung of an incident electron beam, the electron beam itself being produced by Laser Wakefield Acceleration. A key initial objective of the computer simulation was to inform the experimental planning phase on the predicted magnitude of the backscattered X-rays likely from the test objects. This objective was achieved and the computer simulation was used to show the viability of the proposed concept (Laser-induced X-ray `RADAR'). At the more advanced stages of the experimental planning phase, the simulation was used to gain critical knowledge of where it would be technically feasible to locate key diagnostic equipment within the experiment. The experiment successfully demonstrated the concept of X-ray `RADAR' imaging, achieved by using the accurate timing information of the backscattered X-rays relative to the ultra-short laser pulse used to generate the electron beam. By using fast response X-ray detectors it was possible to derive range information for the test objects being scanned. An X-ray radar `image' (equivalent to a RADAR B-scan slice) was produced by combining individual X-ray temporal profiles collected at different points along a horizontal distance line scan. The same image formation process was used to generate
A stochastic particle system modeling the Carleman equation
Caprino, S.; De Masi, A.; Presutti, E.; Pulvirenti, M. )
1989-05-01
Two species of Brownian particles on the unit circle are considered; both have diffusion coefficient {sigma} > 0 but different velocities (drift), 1 for one species and {minus}1 for the other. During the evolution the particles randomly change their velocity: if two particles have the same velocity and are at distance {<=} {var epsilon} ({var epsilon} being a positive parameter), they both may simultaneously flip their velocity according to a poisson process of a given intensity. The analogue of the Boltzmann-Grad limit is studied when {var epsilon} goes to zero and the total number of particles increases like {var epsilon}{sup {minus}1}. In such a limit propagation of chaos and convergence to a limiting kinetic equation are proven globally in time, under suitable assumptions on the initial state. If, furthermore, {sigma} depends on {var epsilon} and suitably vanishes when {var epsilon} goes to zero, then the limiting kinetic equation (for the density of the two species of particles) is the Carleman equation.
A New Multiphase Model for Simulating Energetically Driven Particles
Stevens, D E; Murphy, M J
2010-02-02
The proper representation of particulate phenomena is important for the simulation of many non-ideal particle loaded explosives. These explosives present severe numerical difficulties to simulate because numerical approaches for packed particle beds often behave poorly for the dilute regime and the reverse is often true for methods developed for the dilute regime. This paper presents a multiphase framework for the simulation of these non-ideal explosives that accurately accounts for the particulate behavior in both of these regimes. The capability of this framework is enhanced by the use of prescribed PDF methods for both particle size distributions and the representation of chemical processes. We have validated this framework using several experimental methods that accommodate the separation of momentum flux measurements in two-phase blast flows.
Theoretical model of a soft particle with charged core
NASA Astrophysics Data System (ADS)
Tracy, Dustin; Phan, Anh
2014-03-01
The numerical and analytical solutions of the electrostatic potentials of soft particles with an ion-permeable charged outer layer and a non-permeable charged core with constant charge densities are found using the Poisson-Boltzmann equations. The charged core is found to significantly alter the local potential within the soft particle, yet it has little effect on the potential outside its particle's boundaries. Previous experimental research into the electrical properties of the MS2 virus agree with these findings. Our results also suggest that there is only a slight change in the potential as the temperature is increased from 290 K to 310 K. The potential profile is found to be significantly affected by the ionic strength in the 1-600 mM range.
Beyond Standard Model Physics: At the Frontiers of Cosmology and Particle Physics
NASA Astrophysics Data System (ADS)
Lopez-Suarez, Alejandro O.
I begin to write this thesis at a time of great excitement in the field of cosmology and particle physics. The aim of this thesis is to study and search for beyond the standard model (BSM) physics in the cosmological and high energy particle fields. There are two main questions, which this thesis aims to address: 1) what can we learn about the inflationary epoch utilizing the pioneer gravitational wave detector Adv. LIGO?, and 2) what are the dark matter particle properties and interactions with the standard model particles?. This thesis will focus on advances in answering both questions.
Preliminary discrete element modeling of a falling particle curtain for CSP central tower receivers
NASA Astrophysics Data System (ADS)
Zanino, R.; Ho, C. K.; Romano, D.; Savoldi, L.
2016-05-01
Current methods used to simulate the curtain thickness in a falling particle receiver lead to a poor agreement with the experiments. Here the Discrete Element Method (DEM) is proposed to address the problem, including both the top hopper and the interactions between particles in the model. Some first promising results are presented, showing an acceptable agreement between simulation and experiment for an ad-hoc set of input parameters. A sensitivity study provides a first assessment of the effects of the main input parameters of the model (boundary conditions at the release, particle Young's modulus, restitution coefficients and effective particle diameter) on the predicted curtain thickness.
Particle characterization using multiple scattering decorrelation methods: Hard-sphere model system
NASA Astrophysics Data System (ADS)
Heymann, Andreas; Sinn, Christian; Palberg, Thomas
2000-07-01
Applying static light scattering experiments, we characterize colloidal particles that are used as model hard-sphere systems in experiments investigating their crystallization kinetics. The particles comprise of a compact core of poly(methyl methacrylate) and short polymer hairs grafted onto the surface. We use a contrast variation procedure to determine the refractive index variation within the particles and observe that one component of the binary mixture used as a solvent penetrates the particles and masks completely the small polymer hairs. Making use of the determined refractive index variation, we obtain the average particle radius and its polydispersity from measurements of the particle form factor close to its minimae. The scattered intensity has been corrected carefully for multiple scattering contributions applying dynamic light scattering measurements with multiple scattering decorrelation. We obtain a mean particle radius of R¯=435+/-4 nm and a polydispersity of σ=2.5%, a resolution that has not been achieved with light scattering experiments before.
Physical Models for Particle Tracking Simulations in the RF Gap
Shishlo, Andrei P.; Holmes, Jeffrey A.
2015-06-01
This document describes the algorithms that are used in the PyORBIT code to track the particles accelerated in the Radio-Frequency cavities. It gives the mathematical description of the algorithms and the assumptions made in each case. The derived formulas have been implemented in the PyORBIT code. The necessary data for each algorithm are described in detail.
A model of coal particle drying in fluidized bed combustion reactor
Komatina, M.; Manovic, V.; Saljnikov, A.
2007-02-15
Experimental and theoretical investigation on drying of a single coal particle in fluidized bed combustor is presented. Coal particle drying was considered via the moist shrinking core mechanism. The results of the drying test runs of low-rank Serbian coals were used for experimental verification of the model. The temperature of the coal particle center was measured, assuming that drying was completed when the temperature equalled 100{sup o}C. The influence of different parameters (thermal conductivity and specific heat capacity of coal, fluidized bed temperature, moisture content and superheating of steam) on drying time and temperature profile within the coal particle was analyzed by a parametric analysis. The experimentally obtained results confirmed that the moist shrinking core mechanism can be applied for the mathematical description of a coal particle drying, while dependence between drying time and coal particle radius, a square law relationship, implicates heat transfer control of the process and confirms the validity of assumptions used in modeling.
Nonisothermal particle modeling of municipal solid waste combustion with heavy metal vaporization
Mazza, G.; Falcoz, Q.; Gauthier, D.; Flamant, G.; Soria, J.
2010-12-15
A particulate model was developed for municipal solid-waste incineration in a fluidized bed combining solid-waste-particle combustion and heavy metal vaporization from the burning particles. Based on a simpler, isothermal version presented previously, this model combines an asymptotic-combustion model for carbonaceous-solid combustion and a shrinking-core model to describe the heavy metal vaporization phenomenon, in which the particle is now considered nonisothermal. A parametric study is presented that shows the influence of temperature on the global metal-vaporization process. The simulation results are compared to experimental data obtained with a lab-scale fluid bed incinerator and to the results of the simpler isothermal model. It is shown that conduction in the particle strongly affects the variation of the vaporization rate with time and that the present version of the model well fits both the shape of the plots and the maximum heavy metal vaporization rates for all bed temperatures. (author)
Modeling of the optical properties of a two-dimensional system of small conductive particles.
NASA Astrophysics Data System (ADS)
Kondikov, A. A.; Tonkaev, P. A.; Chaldyshev, V. V.; Vartanyan, T. A.
2016-08-01
Software was developed for quick numerical calculations and graphic display of the absorption, reflection and transmittance spectra of two-dimensional systems of small conductive particles. It allowed us to make instant comparison of calculation results and experimental data. A lattice model was used to simulate nearly distributed particles, and the coherent-potential approximation was applied to obtain a solution to the problem of interacting particles. The Delphi programming environment was used.
Daniel J. Maloney; Esmail R. Monazam; Kent H. Casleton; Christopher R. Shaddix
2008-08-01
Char samples representing a range of combustion conditions and extents of burnout were obtained from a well-characterized laminar flow combustion experiment. Individual particles from the parent coal and char samples were characterized to determine distributions in particle volume, mass, and density at different extent of burnout. The data were then compared with predictions from a comprehensive char combustion model referred to as the char burnout kinetics model (CBK). The data clearly reflect the particle- to-particle heterogeneity of the parent coal and show a significant broadening in the size and density distributions of the chars resulting from both devolatilization and combustion. Data for chars prepared in a lower oxygen content environment (6% oxygen by vol.) are consistent with zone II type combustion behavior where most of the combustion is occurring near the particle surface. At higher oxygen contents (12% by vol.), the data show indications of more burning occurring in the particle interior. The CBK model does a good job of predicting the general nature of the development of size and density distributions during burning but the input distribution of particle size and density is critical to obtaining good predictions. A significant reduction in particle size was observed to occur as a result of devolatilization. For comprehensive combustion models to provide accurate predictions, this size reduction phenomenon needs to be included in devolatilization models so that representative char distributions are carried through the calculations.
Compositional Fragmentation Model for the Oxidation of Sulfide Particles in a Flash Reactor
NASA Astrophysics Data System (ADS)
Parra-Sánchez, Víctor Roberto; Pérez-Tello, Manuel; Duarte-Ruiz, Cirilo Andrés; Sohn, Hong Yong
2014-04-01
A mathematical model to predict the size distribution and chemical composition of a cloud of sulfide particles during high-temperature oxidation in a flash reactor is presented. The model incorporates the expansion and further fragmentation of the reacting particles along their trajectories throughout the reaction chamber. A relevant feature of the present formulation is its flexibility to treat a variety of flash reacting systems, such as the flash smelting and flash converting processes. This is accomplished by computing the chemical composition of individual particles and the size distribution and overall composition of the particle cloud in separate modules, which are coupled through a database of particle properties previously stored on disk. The flash converting of solid copper mattes is considered as an example. The model predictions showed good agreement with the experimental data collected in a large laboratory reactor in terms of particle size distribution and sulfur remaining in the population of particles. The cumulative contribution and distribution coefficients are introduced to quantify the relationship between specific particle sizes in the feed and those in the reacted products upon oxidation, the latter of which has practical implications on the amount and chemical composition of dust particles produced during the industrial operation.
Modelling Ekman flow during the ACRT process with marked particles
NASA Astrophysics Data System (ADS)
Juncheng, Liu; Wanqi, Jie
1998-01-01
The numerical method SOLA-VOF has been applied to the calculation of convection during the ACRT process. The Ekman flow is tracked with marked particles. The movement of the fluid adjacent to the crucible base induced by Ekman flow is shown clearly. The effects of crucible acceleration, maximum rotation rate and crucible diameter on the Ekman flow was studied. The numerical results are compared with those from siumlation experiments.
Micromechanics-based elastic model for functionally graded materials with particle interactions
Yin, H.M.; Sun, L.Z.; Paulino, G.H
2004-07-12
A micromechanics-based elastic model is developed for two-phase functionally graded materials with locally pair-wise interactions between particles. While the effective material properties change gradually along the gradation direction, there exist two microstructurally distinct zones: particle-matrix zone and transition zone. In the particle-matrix zone, pair-wise interactions between particles are employed using a modified Green's function method. By integrating the interactions from all other particles over the representative volume element, the homogenized elastic fields are obtained. The effective stiffness distribution over the gradation direction is further derived. In the transition zone, a transition function is constructed to make the homogenized elastic fields continuous and differentiable in the gradation direction. The model prediction is compared with other models and experimental data to demonstrate the capability of the proposed method.
NASA Astrophysics Data System (ADS)
Simons, Rachel D.; Siegel, David A.; Brown, Kevin S.
2013-06-01
Many marine organisms spend their early lives as planktonic larvae dispersed by ocean currents. Predictions of larval transport are important for a wide range of applications including the interpretation of population genetics, fisheries management, and the planning of no-take marine protected areas. A popular method for predicting larval transport is through the use of coupled ocean circulation and particle tracking models, termed "biophysical" models. Although much research has been done on the sensitivity and uncertainty of ocean circulation models, the sensitivity of particle tracking models for the assessment of larval transport has been largely overlooked. This study investigates the sensitivity of larval transport predictions to three input parameters universally required for particle tracking in biophysical models; namely the number of particles released, the particle release depth, and the particle tracking time. Using a three-dimensional biophysical model of the Southern California Bight, estimates of larval transport are quantified using a two-dimensional vertically-integrated particle density distribution (PDD) and the difference between PDDs is assessed using the fraction of unexplained variance (FUV). Overall, our study shows that larval transport predictions are sensitive to changes in all three input parameters and that the sensitivity is affected by the strength of mixing in the system. For the number of particles released, the FUV falls off rapidly as the number of particles increases. A minimum number of particles is identified that guarantees robustness of model predictions; this number increases as the complexity of the circulation patterns increases. For the particle release depth, the FUV between PDDs grew linearly as particles are released farther apart. The FUV is also inversely proportional to the strength of vertical mixing as the FUV is smaller in the winter when a deep mixed layer and weak stratification are present and larger in the
Particle orbits in two-dimensional equilibrium models for the magnetotail
NASA Technical Reports Server (NTRS)
Karimabadi, H.; Pritchett, P. L.; Coroniti, F. V.
1990-01-01
Assuming that there exist an equilibrium state for the magnetotail, particle orbits are investigated in two-dimensional kinetic equilibrium models for the magnetotail. Particle orbits in the equilibrium field are compared with those calculated earlier with one-dimensional models, where the main component of the magnetic field (Bx) was approximated as either a hyperbolic tangent or a linear function of z with the normal field (Bz) assumed to be a constant. It was found that the particle orbits calculated with the two types of models are significantly different, mainly due to the neglect of the variation of Bx with x in the one-dimensional fields.
Modelling migration and dissolution of mineral particles in saturated porous media
NASA Astrophysics Data System (ADS)
Brovelli, A.; Lacroix, E.; Holliger, C.; Barry, D. A.
2012-04-01
Understanding and predicting the fate in soils and other porous media of solid mineral particles with grain diameters in the micrometer range is important in a number of environmental and civil engineering applications, including subsurface hydrology, wastewater treatment and oil/gas production. In this context, deep-bed filtration theory is commonly applied to model particle detachment and deposition. Most existing models however neglect some processes that can modify groundwater flow patterns, particle concentration and attachment/detachment coefficients. The aim of this work was to develop a mechanistic model to study the transport and mobilization/immobilization of mineral particles in saturated porous media. The model accounts for particle advection and dispersion, deep-bed filtration, porosity and hydraulic conductivity changes associated with deposition and mobilization, and for particle dissolution. In addition, the deep-bed filtration coefficients vary with the characteristics and composition of the pore-solution, ionic strength and pH in particular. The groundwater flow and reactive transport simulator PHAST was used to implement the model. Measurements from a variety of deep-bed filtration and mineral dissolution experiments were used to calibrate and validate the model. A satisfactory comparison was found in most situations. A sensitivity analysis was subsequently performed to identify the conditions in which some of the processes (such as hydraulic conductivity changes and particle dissolution) can be neglected and therefore less sophisticated numerical tools can be used.
NASA Astrophysics Data System (ADS)
Rai, Aakash C.; Lin, Chao-Hsin; Chen, Qingyan
2015-02-01
Ozone-terpene reactions are important sources of indoor ultrafine particles (UFPs), a potential health hazard for human beings. Humans themselves act as possible sites for ozone-initiated particle generation through reactions with squalene (a terpene) that is present in their skin, hair, and clothing. This investigation developed a numerical model to probe particle generation from ozone reactions with clothing worn by humans. The model was based on particle generation measured in an environmental chamber as well as physical formulations of particle nucleation, condensational growth, and deposition. In five out of the six test cases, the model was able to predict particle size distributions reasonably well. The failure in the remaining case demonstrated the fundamental limitations of nucleation models. The model that was developed was used to predict particle generation under various building and airliner cabin conditions. These predictions indicate that ozone reactions with human-worn clothing could be an important source of UFPs in densely occupied classrooms and airliner cabins. Those reactions could account for about 40% of the total UFPs measured on a Boeing 737-700 flight. The model predictions at this stage are indicative and should be improved further.
Particle dispersion in homogeneous turbulence using the one-dimensional turbulence model
Sun, Guangyuan; Lignell, David O.; Hewson, John C.; Gin, Craig R.
2014-10-09
Lagrangian particle dispersion is studied using the one-dimensional turbulence (ODT) model in homogeneous decaying turbulence configurations. The ODT model has been widely and successfully applied to a number of reacting and nonreacting flow configurations, but only limited application has been made to multiphase flows. We present a version of the particle implementation and interaction with the stochastic and instantaneous ODT eddy events. The model is characterized by comparison to experimental data of particle dispersion for a range of intrinsic particle time scales and body forces. Particle dispersion, velocity, and integral time scale results are presented. Moreover, the particle implementation introducesmore » a single model parameter β p , and sensitivity to this parameter and behavior of the model are discussed. Good agreement is found with experimental data and the ODT model is able to capture the particle inertial and trajectory crossing effects. Our results serve as a validation case of the multiphase implementations of ODT for extensions to other flow configurations.« less
NASA Astrophysics Data System (ADS)
Majdalani, Samer; Michel, Eric; di Pietro, Liliana; Angulo-Jaramillo, Rafael; Rousseau, Marine
2007-05-01
Understanding particle movement in soils is a major concern for both geotechnics and soil physics with regard to environmental protection and water resources management. This paper describes a model for mobilization and preferential transport of soil particles through structured soils. The approach combines a kinematic-dispersive wave model for preferential water flow with a convective-dispersive equation subject to a source/sink term for particle transport and mobilization. Particle detachment from macropore walls is considered during both the steady and transient water flow regimes. It is assumed to follow first-order kinetics with a varying detachment efficiency, which depends on the history of the detachment process. Estimates of model parameters are obtained by comparing simulations with experimental particle breakthrough curves obtained during infiltrations through undisturbed soil columns. Both water flux and particle concentrations are satisfactorily simulated by the model. Particle mobilization parameters favoring both attachment and detachment of particles are related to the incoming solution ionic strength by a Fermi-type function.
Lieb-Thirring inequality for a model of particles with point interactions
Frank, Rupert L.; Seiringer, Robert
2012-09-15
We consider a model of quantum-mechanical particles interacting via point interactions of infinite scattering length. In the case of fermions we prove a Lieb-Thirring inequality for the energy, i.e., we show that the energy is bounded from below by a constant times the integral of the particle density to the power (5/3).
Modeled deposition of fine particles in human airway in Beijing, China
NASA Astrophysics Data System (ADS)
Li, Xiaoying; Yan, Caiqing; Patterson, Regan F.; Zhu, Yujiao; Yao, Xiaohong; Zhu, Yifang; Ma, Shexia; Qiu, Xinghua; Zhu, Tong; Zheng, Mei
2016-01-01
This study aims to simulate depositions of size-segregated particles in human airway in Beijing, China during seasons when fine particulate matter concentrations are high (December 2011 and April 2012). Particle size distributions (5.6-560 nm, electrical mobility diameter) near a major road in Beijing were measured by the TSI Fast Mobility Particle Sizer (FMPS). The information of size distributions provided by FMPS was applied in the Multiple-Path Particle Dosimetry model (MPPD) to quantify number and mass depositions of particles in human airway including extrathoracic (ET), tracheobronchial (TB), and pulmonary (PUL) regions of exposed Chinese in Beijing. Our results show that under ambient conditions, particle number concentration (NC) deposition in PUL is the highest in the three major regions of human airway. The total particle NC deposition in human airway in winter is higher than that in spring, especially for ultrafine particles (1.8 times higher) while particle mass concentration (MC) deposition is higher in spring. Although particle MC in clean days are much lower than that in heavily polluted days, total particle NC deposition in human airway in clean days is comparable to that in heavily polluted days. NC deposition for nucleation mode particles (10-20 nm, aerodynamic diameter) in clean days is higher than that in heavily polluted days. MC deposition for accumulation mode particles (100-641 nm, aerodynamic diameter) in heavily polluted days is much higher than that in clean days, while that of nucleation mode is negligible. The temporal variation shows that the arithmetic mean and the median values of particle NC and MC depositions in the evening are both the highest, followed by morning and noon, and it is most likely due to increased contribution from traffic emissions.
Component-specific, cigarette particle deposition modeling in the human respiratory tract.
Asgharian, Bahman; Price, Owen T; Yurteri, Caner U; Dickens, Colin; McAughey, John
2014-01-01
Inhalation of cigarette smoke particles (CSP) leads to adverse health effects in smokers. Determination of the localized dose to the lung of the inhaled smoke aids in determining vulnerable sites, and identifying components of the smoke that may be responsible for the adverse effects; thus providing a roadmap for harm reduction of cigarette smoking. A particle deposition model specific to CSP was developed for the oral cavity and the lung by accounting for cigarette particle size growth by hygroscopicity, phase change and coagulation. In addition, since the cigarette puff enters the respiratory tract as a dense cloud, the cloud effect on particle drag and deposition was accounted for in the deposition model. Models of particle losses in the oral cavities were developed during puff drawing and subsequent mouth-hold. Cigarette particles were found to grow by hygroscopicity and coagulation, but to shrink as a result of nicotine evaporation. The particle size reached a plateau beyond which any disturbances in the environmental conditions caused the various mechanisms to balance each other out and the particle size remain stable. Predicted particle deposition considering the cloud effects was greater than when treated as a collection of non-interacting particles (i.e. no cloud effects). Accounting for cloud movement provided the necessary physical mechanism to explain the greater than expected, experimentally observed and particle deposition. The deposition model for CSP can provide the necessary input to determine the fate of inhaled CSP in the lung. The knowledge of deposition will be helpful for health assessment and identification and reduction of harmful components of CSP. PMID:24354791
Component-specific, cigarette particle deposition modeling in the human respiratory tract
Price, Owen T.; Yurteri, Caner U.; Dickens, Colin; McAughey, John
2014-01-01
Inhalation of cigarette smoke particles (CSP) leads to adverse health effects in smokers. Determination of the localized dose to the lung of the inhaled smoke aids in determining vulnerable sites, and identifying components of the smoke that may be responsible for the adverse effects; thus providing a roadmap for harm reduction of cigarette smoking. A particle deposition model specific to CSP was developed for the oral cavity and the lung by accounting for cigarette particle size growth by hygroscopicity, phase change and coagulation. In addition, since the cigarette puff enters the respiratory tract as a dense cloud, the cloud effect on particle drag and deposition was accounted for in the deposition model. Models of particle losses in the oral cavities were developed during puff drawing and subsequent mouth-hold. Cigarette particles were found to grow by hygroscopicity and coagulation, but to shrink as a result of nicotine evaporation. The particle size reached a plateau beyond which any disturbances in the environmental conditions caused the various mechanisms to balance each other out and the particle size remain stable. Predicted particle deposition considering the cloud effects was greater than when treated as a collection of non-interacting particles (i.e. no cloud effects). Accounting for cloud movement provided the necessary physical mechanism to explain the greater than expected, experimentally observed and particle deposition. The deposition model for CSP can provide the necessary input to determine the fate of inhaled CSP in the lung. The knowledge of deposition will be helpful for health assessment and identification and reduction of harmful components of CSP. PMID:24354791
Asgharian, B.; Price, O.T.; Oldham, M.; Chen, L.C.; Saunders, E.L.; Gordon, T.; Mikheev, V.B.; Minard, K.R.; Teeguarden, J. G.
2015-01-01
Comparing effects of inhaled particles across rodent test systems and between rodent test systems and humans is a key obstacle to the interpretation of common toxicological test systems for human risk assessment. These comparisons, correlation with effects and prediction of effects, are best conducted using measures of tissue dose in the respiratory tract. Differences in lung geometry, physiology and the characteristics of ventilation can give rise to differences in the regional deposition of particles in the lung in these species. Differences in regional lung tissue doses cannot currently be measured experimentally. Regional lung tissue dosimetry can however be predicted using models developed for rats, monkeys, and humans. A computational model of particle respiratory tract deposition and clearance was developed for BALB/c and B6C3F1 mice, creating a cross species suite of available models for particle dosimetry in the lung. Airflow and particle transport equations were solved throughout the respiratory tract of these mice strains to obtain temporal and spatial concentration of inhaled particles from which deposition fractions were determined. Particle inhalability (Inhalable fraction, IF) and upper respiratory tract (URT) deposition were directly related to particle diffusive and inertial properties. Measurements of the retained mass at several post-exposure times following exposure to iron oxide nanoparticles, micro and nanoscale C60 fullerene, and nanoscale silver particles were used to calibrate and verify model predictions of total lung dose. Interstrain (mice) and interspecies (mouse, rat, human) differences in particle inhalability, fractional deposition and tissue dosimetry are described for ultrafine, fine and coarse particles. PMID:25373829
Quench field sensitivity of two-particle correlation in a Hubbard model
Zhang, X. Z.; Lin, S.; Song, Z.
2016-01-01
Short-range interaction can give rise to particle pairing with a short-range correlation, which may be destroyed in the presence of an external field. We study the transition between correlated and uncorrelated particle states in the framework of one- dimensional Hubbard model driven by a field. We show that the long time-scale transfer rate from an initial correlated state to final uncorrelated particle states is sensitive to the quench field strength and exhibits a periodic behavior. This process involves an irreversible energy transfer from the field to particles, leading to a quantum electrothermal effect. PMID:27250080
Particle-Resolved Modeling of Aerosol Mixing State in an Evolving Ship Plume
NASA Astrophysics Data System (ADS)
Riemer, N. S.; Tian, J.; Pfaffenberger, L.; Schlager, H.; Petzold, A.
2011-12-01
The aerosol mixing state is important since it impacts the particles' optical and CCN properties and thereby their climate impact. It evolves continuously during the particles' residence time in the atmosphere as a result of coagulation with other particles and condensation of secondary aerosol species. This evolution is challenging to represent in traditional aerosol models since they require the representation of a multi-dimensional particle distribution. While modal or sectional aerosol representations cannot practically resolve the aerosol mixing state for more than a few species, particle-resolved models store the composition of many individual aerosol particles directly. They thus sample the high-dimensional composition state space very efficiently and so can deal with tens of species, fully resolving the mixing state. Here we use the capabilities of the particle-resolved model PartMC-MOSAIC to simulate the evolution of particulate matter emitted from marine diesel engines and compare the results to aircraft measurements made in the English Channel in 2007 as part of the European campaign QUANTIFY. The model was initialized with values of gas concentrations and particle size distributions and compositions representing fresh ship emissions. These values were obtained from a test rig study in the European project HERCULES in 2006 using a serial four-stroke marine diesel engine operating on high-sulfur heavy fuel oil. The freshly emitted particles consisted of sulfate, black carbon, organic carbon and ash. We then tracked the particle population for several hours as it evolved undergoing coagulation, dilution with the background air, and chemical transformations in the aerosol and gas phase. This simulation was used to compute the evolution of CCN properties and optical properties of the plume on a per-particle basis. We compared our results to size-resolved data of aged ship plumes from the QUANTIFY Study in 2007 and showed that the model was able to reproduce
NASA Astrophysics Data System (ADS)
Menzel, Andreas M.
2015-11-01
Diffusion of colloidal particles in a complex environment such as polymer networks or biological cells is a topic of high complexity with significant biological and medical relevance. In such situations, the interaction between the surroundings and the particle motion has to be taken into account. We analyze a simplified diffusion model that includes some aspects of a complex environment in the framework of a nonlinear friction process: at low particle speeds, friction grows linearly with the particle velocity as for regular viscous friction; it grows more than linearly at higher particle speeds; finally, at a maximum of the possible particle speed, the friction diverges. In addition to bare diffusion, we study the influence of a constant drift force acting on the diffusing particle. While the corresponding stationary velocity distributions can be derived analytically, the displacement statistics generally must be determined numerically. However, as a benefit of our model, analytical progress can be made in one case of a special maximum particle speed. The effect of a drift force in this case is analytically determined by perturbation theory. It will be interesting in the future to compare our results to real experimental systems. One realization could be magnetic colloidal particles diffusing through a shear-thickening environment such as starch suspensions, possibly exposed to an external magnetic field gradient.
Computational model of particle deposition in the nasal cavity under steady and dynamic flow.
Karakosta, Paraskevi; Alexopoulos, Aleck H; Kiparissides, Costas
2015-01-01
A computational model for flow and particle deposition in a three-dimensional representation of the human nasal cavity is developed. Simulations of steady state and dynamic airflow during inhalation are performed at flow rates of 9-60 l/min. Depositions for particles of size 0.5-20 μm are determined and compared with experimental and simulation results from the literature in terms of deposition efficiencies. The nasal model is validated by comparison with experimental and simulation results from the literature for particle deposition under steady-state flow. The distribution of deposited particles in the nasal cavity is presented in terms of an axial deposition distribution as well as a bivariate axial deposition and particle size distribution. Simulations of dynamic airflow and particle deposition during an inhalation cycle are performed for different nasal cavity outlet pressure variations and different particle injections. The total particle deposition efficiency under dynamic flow is found to depend strongly on the dynamics of airflow as well as the type of particle injection.
Chaotic delocalization of two interacting particles in the classical Harper model
NASA Astrophysics Data System (ADS)
Shepelyansky, Dima L.
2016-06-01
We study the problem of two interacting particles in the classical Harper model in the regime when one-particle motion is absolutely bounded inside one cell of periodic potential. The interaction between particles breaks integrability of classical motion leading to emergence of Hamiltonian dynamical chaos. At moderate interactions and certain energies above the mobility edge this chaos leads to a chaotic propulsion of two particles with their diffusive spreading over the whole space both in one and two dimensions. At the same time the distance between particles remains bounded by one or two periodic cells demonstrating appearance of new composite quasi-particles called chaons. The effect of chaotic delocalization of chaons is shown to be rather general being present for Coulomb and short range interactions. It is argued that such delocalized chaons can be observed in experiments with cold atoms and ions in optical lattices.
CFD modeling of PEPT results of particle motion trajectories in a pipe over an obstacle
NASA Astrophysics Data System (ADS)
Ghaffari, Maryam; Chang, Yu-Fen; Balakin, Boris; Hoffmann, Alex C.
2012-09-01
This paper aims to study the flow of a solid particle over a deposit in transport and processing equipment. Tracking particles and fluid elements moving through single- and multi-phase systems is very useful for studying numerous flow processes and identifying anomalies happening in the processes. Using Positron emission tomography (PET) and positron emission particle tracking (PEPT), that are relatively new techniques, it has become possible to visualize the movement of single particles in process equipment. The results from PEPT are here compared with particle-coupled Large Eddy Simulation numerical results. In the initial stages of the numerical modelling, results were validated using the PEPT experimental data in terms of its ability to correctly predict the flow and deposition of particles in a fluid flowing at a moderately low Reynolds number.
Modeling particle number concentrations along Interstate 10 in El Paso, Texas
NASA Astrophysics Data System (ADS)
Olvera, Hector A.; Jimenez, Omar; Provencio-Vasquez, Elias
2014-12-01
Annual average daily particle number concentrations around a highway were estimated with an atmospheric dispersion model and a land use regression model. The dispersion model was used to estimate particle concentrations along Interstate 10 at 98 locations within El Paso, Texas. This model employed annual averaged wind speed and annual average daily traffic counts as inputs. A land use regression model with vehicle kilometers traveled as the predictor variable was used to estimate local background concentrations away from the highway to adjust the near-highway concentration estimates. Estimated particle number concentrations ranged between 9.8 × 103 particles/cc and 1.3 × 105 particles/cc, and averaged 2.5 × 104 particles/cc (SE 421.0). Estimates were compared against values measured at seven sites located along I10 throughout the region. The average fractional error was 6% and ranged between -1% and -13% across sites. The largest bias of -13% was observed at a semi-rural site where traffic was lowest. The average bias amongst urban sites was 5%. The accuracy of the estimates depended primarily on the emission factor and the adjustment to local background conditions. An emission factor of 1.63 × 1014 particles/veh-km was based on a value proposed in the literature and adjusted with local measurements. The integration of the two modeling techniques ensured that the particle number concentrations estimates captured the impact of traffic along both the highway and arterial roadways. The performance and economical aspects of the two modeling techniques used in this study shows that producing particle concentration surfaces along major roadways would be feasible in urban regions where traffic and meteorological data are readily available.
Modeling particle number concentrations along Interstate 10 in El Paso, Texas
Olvera, Hector A.; Jimenez, Omar; Provencio-Vasquez, Elias
2014-01-01
Annual average daily particle number concentrations around a highway were estimated with an atmospheric dispersion model and a land use regression model. The dispersion model was used to estimate particle concentrations along Interstate 10 at 98 locations within El Paso, Texas. This model employed annual averaged wind speed and annual average daily traffic counts as inputs. A land use regression model with vehicle kilometers traveled as the predictor variable was used to estimate local background concentrations away from the highway to adjust the near-highway concentration estimates. Estimated particle number concentrations ranged between 9.8 × 103 particles/cc and 1.3 × 105 particles/cc, and averaged 2.5 × 104 particles/cc (SE 421.0). Estimates were compared against values measured at seven sites located along I10 throughout the region. The average fractional error was 6% and ranged between -1% and -13% across sites. The largest bias of -13% was observed at a semi-rural site where traffic was lowest. The average bias amongst urban sites was 5%. The accuracy of the estimates depended primarily on the emission factor and the adjustment to local background conditions. An emission factor of 1.63 × 1014 particles/veh-km was based on a value proposed in the literature and adjusted with local measurements. The integration of the two modeling techniques ensured that the particle number concentrations estimates captured the impact of traffic along both the highway and arterial roadways. The performance and economical aspects of the two modeling techniques used in this study shows that producing particle concentration surfaces along major roadways would be feasible in urban regions where traffic and meteorological data are readily available. PMID:25313294
Modeling of composite latex particle morphology by off-lattice Monte Carlo simulation.
Duda, Yurko; Vázquez, Flavio
2005-02-01
Composite latex particles have shown a great range of applications such as paint resins, varnishes, water borne adhesives, impact modifiers, etc. The high-performance properties of this kind of materials may be explained in terms of a synergistical combination of two different polymers (usually a rubber and a thermoplastic). A great variety of composite latex particles with very different morphologies may be obtained by two-step emulsion polymerization processes. The formation of specific particle morphology depends on the chemical and physical nature of the monomers used during the synthesis, the process temperature, the reaction initiator, the surfactants, etc. Only a few models have been proposed to explain the appearance of the composite particle morphologies. These models have been based on the change of the interfacial energies during the synthesis. In this work, we present a new three-component model: Polymer blend (flexible and rigid chain particles) is dispersed in water by forming spherical cavities. Monte Carlo simulations of the model in two dimensions are used to determine the density distribution of chains and water molecules inside the suspended particle. This approach allows us to study the dependence of the morphology of the composite latex particles on the relative hydrophilicity and flexibility of the chain molecules as well as on their density and composition. It has been shown that our simple model is capable of reproducing the main features of the various morphologies observed in synthesis experiments.
Piorkowski, Gregory; Jamieson, Rob; Bezanson, Greg; Hansen, Lisbeth Truelstrup; Yost, Chris
2013-11-01
Modeling surface water Escherichia coli fate and transport requires partitioning E. coli into particle-attached and unattached fractions. Attachment is often assumed to be a constant fraction or is estimated using simple linear models. The objectives of this study were to: (i) develop statistical models for predicting E. coli attachment and virulence marker presence in fluvial systems, and (ii) relate E. coli attachment to a variety of environmental parameters. Stream water samples (n = 60) were collected at four locations in a rural, mixed-use watershed between June and October 2012, with four storm events (>20 mm rainfall) being captured. The percentage of E. coli attached to particles (>5 μm) and the occurrences of virulence markers were modeled using water quality, particle concentration, particle size distribution, hydrology and land use factors as explanatory variables. Three types of statistical models appropriate for highly collinear, multidimensional data were compared: least angle shrinkage and selection operator (LASSO), classification and regression trees using the general, unbiased, interaction detection and estimation (GUIDE) algorithm, and multivariate adaptive regression splines (MARS). All models showed that E. coli particle attachment and the presence of E. coli virulence markers in the attached and unattached states were influenced by a combination of water quality, hydrology, land-use and particle properties. Model performance statistics indicate that MARS models outperform LASSO and GUIDE models for predicting E. coli particle attachment and virulence marker occurrence. Validating the MARS modeling approach in multiple watersheds may allow for the development of a parameterizing model to be included in watershed simulation models. PMID:24075474
Release of clay particles from an unconsolidated clay-sand core: experiments and modelling
NASA Astrophysics Data System (ADS)
Fauré, Marie-Hélène; Sardin, Michel; Vitorge, Pierre
1997-04-01
This work identifies the main phenomena that control the peptisation and transport of clay particles in a sand core. Clay can be dispersed into small particles in an aqueous solution of low ionic strength. This property is used to generate clay particles with NaCl concentration varying from 0.5 M to 0.015 M. For this purpose, a chromatographic column is initially packed with a 5% clay-sand mixture. The monitored decrease of the NaCl concentration of the feed solution allows the control of transport of the particles without plugging the porous medium. In this condition it is shown that in a column of a given length, the amount of clay particles released into solution and available to transport, depend only on NaCl concentration. Some clay particles are available to migration when the NaCl concentration of the feed concentration is between 0.16 M and 0.05 M (first domain) or between 0.035 M and 0.019 M (second domain). An empirical function, Pd([NaCl]), accounts for this particle generation. Transport is mainly dependent on the hydrodynamic characteristics of the porous medium that vary during the elution, probably owing to the particle motion inside the column. A phenomenological modelling is derived from these results, coupling the particle generation term, Pd([NaCl]), with an adapted nonequilibrium transport solute model. Similarly to the solute, particles were attributed a characteristic time of mass transfer between mobile and immobile water zones. This is sufficient to take into account the kinetic limitations of particles transport. The values of the parameters are determined by independent experiments. Finally, breakthrough curves of clay particles are predicted when a column of a given length, is flushed by a salinity gradient of NaCl in various conditions.
NASA Astrophysics Data System (ADS)
Vu, H. X.; Bezzerides, B.; Dubois, D. F.
1998-11-01
A fully kinetic, reduced-description particle-in-cell (RPIC) model is presented in which deviations from quasineutrality, electron and ion kinetic effects, and nonlinear interactions between low-frequency and high-frequency parametric instabilities are modeled correctly. The model is based on a reduced description where the electromagnetic field is represented by three separate temporal WKB envelopes in order to model low-frequency and high-frequency parametric instabilities. Because temporal WKB approximations are invoked, the simulation can be performed on the electron time scale instead of the time scale of the light waves. The electrons and ions are represented by discrete finite-size particles, permitting electron and ion kinetic effects to be modeled properly. The Poisson equation is utilized to ensure that space-charge effects are included. Although RPIC is fully three dimensional, it has been implemented in only two dimensions on a CRAY-T3D with 512 processors and on the Accelerated Strategic Computing Initiative (ASCI) parallel computer at Los Alamos National Laboratory, and the resulting simulation code has been named ASPEN. Given the current computers available to the authors, one and two dimensional simulations are feasible to, and have been, performed. Three dimensional simulations are much more expensive, and are not feasible at this time. However, with rapidly advancing computer technologies, three dimensional simulations may be feasible in the near future. We believe this code is the first PIC code capable of simulating the interaction between low-frequency and high-frequency parametric instabilites in multiple dimensions. Test simulations of stimulated Raman scattering (SRS), stimulated Brillouin scattering (SBS), and Langmuir decay instability (LDI), are presented.
Application of stochastic weighted algorithms to a multidimensional silica particle model
Menz, William J.; Patterson, Robert I.A.; Wagner, Wolfgang; Kraft, Markus
2013-09-01
Highlights: •Stochastic weighted algorithms (SWAs) are developed for a detailed silica model. •An implementation of SWAs with the transition kernel is presented. •The SWAs’ solutions converge to the direct simulation algorithm’s (DSA) solution. •The efficiency of SWAs is evaluated for this multidimensional particle model. •It is shown that SWAs can be used for coagulation problems in industrial systems. -- Abstract: This paper presents a detailed study of the numerical behaviour of stochastic weighted algorithms (SWAs) using the transition regime coagulation kernel and a multidimensional silica particle model. The implementation in the SWAs of the transition regime coagulation kernel and associated majorant rates is described. The silica particle model of Shekar et al. [S. Shekar, A.J. Smith, W.J. Menz, M. Sander, M. Kraft, A multidimensional population balance model to describe the aerosol synthesis of silica nanoparticles, Journal of Aerosol Science 44 (2012) 83–98] was used in conjunction with this coagulation kernel to study the convergence properties of SWAs with a multidimensional particle model. High precision solutions were calculated with two SWAs and also with the established direct simulation algorithm. These solutions, which were generated using large number of computational particles, showed close agreement. It was thus demonstrated that SWAs can be successfully used with complex coagulation kernels and high dimensional particle models to simulate real-world systems.
A Core-Particle Model for Periodically Focused Ion Beams with Intense Space-Charge
Lund, S M; Barnard, J J; Bukh, B; Chawla, S R; Chilton, S H
2006-08-02
A core-particle model is derived to analyze transverse orbits of test particles evolving in the presence of a core ion beam described by the KV distribution. The core beam has uniform density within an elliptical cross-section and can be applied to model both quadrupole and solenoidal focused beams in periodic or aperiodic lattices. Efficient analytical descriptions of electrostatic space-charge fields external to the beam core are derived to simplify model equations. Image charge effects are analyzed for an elliptical beam centered in a round, conducting pipe to estimate model corrections resulting from image charge nonlinearities. Transformations are employed to remove coherent utter motion associated with oscillations of the ion beam core due to rapidly varying, linear applied focusing forces. Diagnostics for particle trajectories, Poincare phase-space projections, and single-particle emittances based on these transformations better illustrate the effects of nonlinear forces acting on particles evolving outside the core. A numerical code has been written based on this model. Example applications illustrate model characteristics. The core-particle model described has recently been applied to identify physical processes leading to space-charge transport limits for an rms matched beam in a periodic quadrupole focusing channel [Lund and Chawla, Nuc. Instr. and Meth. A 561, 203 (2006)]. Further characteristics of these processes are presented here.
Fokker–Planck kinetic modeling of suprathermal α-particles in a fusion plasma
Peigney, B.E.
2014-12-01
We present an ion kinetic model describing the transport of suprathermal α-particles in inertial fusion targets. The analysis of the underlying physical model enables us to develop efficient numerical methods to simulate the creation, transport and collisional relaxation of fusion reaction products (α-particles) at a kinetic level. The model assumes spherical symmetry in configuration space and axial symmetry in velocity space around the mean flow velocity. A two-energy-scale approach leads to a self-consistent modeling of the coupling between suprathermal α-particles and the thermal bulk of the imploding plasma. This method provides an accurate numerical treatment of energy deposition and transport processes involving suprathermal particles. The numerical tools presented here are then validated against known analytical results. This enables us to investigate the potential role of ion kinetic effects on the physics of ignition and thermonuclear burn in inertial confinement fusion schemes.
Ramesh, Nisha; Tasdizen, Tolga
2016-01-01
Bayesian frameworks are commonly used in tracking algorithms. An important example is the particle filter, where a stochastic motion model describes the evolution of the state, and the observation model relates the noisy measurements to the state. Particle filters have been used to track the lineage of cells. Propagating the shape model of the cell through the particle filter is beneficial for tracking. We approximate arbitrary shapes of cells with a novel implicit convex function. The importance sampling step of the particle filter is defined using the cost associated with fitting our implicit convex shape model to the observations. Our technique is capable of tracking the lineage of cells for nonmitotic stages. We validate our algorithm by tracking the lineage of retinal and lens cells in zebrafish embryos. PMID:27403085
Towards a Revised Monte Carlo Neutral Particle Surface Interaction Model
D.P. Stotler
2005-06-09
The components of the neutral- and plasma-surface interaction model used in the Monte Carlo neutral transport code DEGAS 2 are reviewed. The idealized surfaces and processes handled by that model are inadequate for accurately simulating neutral transport behavior in present day and future fusion devices. We identify some of the physical processes missing from the model, such as mixed materials and implanted hydrogen, and make some suggestions for improving the model.
Finite Element Modeling of Suspended Particle Migration in Non-Newtonian Fluids
Altobelli, S.; Baer, T.; Mondy, L.; Rao, R.; Stephens, T.
1999-03-04
Shear-induced migration of particles is studied during the slow flow of suspensions of spheres (particle volume fraction {phi} = 0.50) in an inelastic but shear-thinning, suspending fluid in flow between counterrotating concentric cylinders, The conditions are such that nonhydrodynamic effects are negligible. The movement of particles away from the high shear rate region is more pronounced than in a Newtonian suspending liquid. We test a continuum constitutive model for the evolution of particle concentration in a flowing suspension proposed by Phillips et al. (1992) by using shear-thinning, suspending fluids. The fluid constitutive equation is Carreau-like in its shear-thinning behavior but also varies with the local particle concentration. The model is compared with the experimental data gathered with nuclear magnetic resonance (NMR) imaging.
Developing an Empirical Model for Predicting Solar Energetic Particle Events
NASA Astrophysics Data System (ADS)
Quinn, R. A.; Winter, L. M.; Ledbetter, K.; Ashley, S. F.
2014-12-01
Solar energetic particle (SEP) events are powerful enhancements in the particle flux received at Earth. These events, often related to coronal mass ejections, can be disruptive to ionospheric communications, destructive to satellites, and pose a health risk to astronauts. To develop a useful forecast for the onset time and peak flux of SEP events, we are examining the radio burst, proton, and electron properties associated with the SEPs of the current solar cycle. Using the Wind/WAVES radio observations from 2010-2013, we analyzed the 123 decametric-hectometric type II solar radio burst properties, the associated type III burst properties, and their correlation with SEP properties determined from analysis of the Geostationary Operational Environmental Satellite (GOES) observations. Through a principal component and logistic regression analyses, we find that the radio properties alone can be used to predict the occurrence of an SEP event with a false alarm rate of 17%, a probability of detection of 65%, and with 88% of the classifications correct. We also explore the use of the > 2 MeV electron flux to forecast proton peak flux and event onset time, with preliminary results suggesting a correlation between the peak electron and proton flux.
Nallamilli, Trivikram; Mani, Ethayaraja; Basavaraj, Madivala G
2014-08-12
Colloidal particles irreversibly adsorb at fluid-fluid interfaces stabilizing what are commonly called "Pickering" emulsions and foams. A simple geometrical model, the limited coalescence model, was earlier proposed to estimate droplet sizes in emulsions. This model assumes that all of the particles are effective in stabilization. The model predicts that the average emulsion drop size scales inversely with the total number of particles, confirmed qualitatively with experimental data on Pickering emulsions. In recent years, there has been an increasing interest in synthesizing emulsions with oppositely charged particles (OCPs). In our experimental study, we observed that the drop size varies nonmonotonically with the number ratio of oppositely charged colloids, even when a fixed total number concentration of colloids is used, showing a minimum. We develop a mathematical model to predict this dependence of drop size on number ratio in such a mixed particle system. The proposed model is based on the hypothesis that oppositely charged colloids form stable clusters due to the strong electrostatic attraction between them and that these clusters are the effective stabilizing agents. The proposed model is a two-parameter model, parameters being the ratio of effective charge of OCPs (denoted as k) and the size of the aggregate containing X particles formed due to aggregation of OCPs. Because the size of aggregates formed during emulsification is not directly measurable, we use suitable values of parameters k and X to best match the experimental observations. The model predictions are in qualitative agreement with experimentally observed nonmonotonic variation of droplet sizes. Using experiments and theory, we present a physical insight into the formation of OCP stabilized Pickering emulsions. Our model upgrades the existing Wiley's limited coalescence model as applied to emulsions containing a binary mixture of oppositely charged particles.
The application of single particle hydrodynamics in continuum models of multiphase flow
NASA Technical Reports Server (NTRS)
Decker, Rand
1988-01-01
A review of the application of single particle hydrodynamics in models for the exchange of interphase momentum in continuum models of multiphase flow is presented. Considered are the equations of motion for a laminar, mechanical two phase flow. Inherent to this theory is a model for the interphase exchange of momentum due to drag between the dispersed particulate and continuous fluid phases. In addition, applications of two phase flow theory to de-mixing flows require the modeling of interphase momentum exchange due to lift forces. The applications of single particle analysis in deriving models for drag and lift are examined.
Particle Swarm Social Adaptive Model for Multi-Agent Based Insurgency Warfare Simulation
Cui, Xiaohui; Potok, Thomas E
2009-12-01
To better understand insurgent activities and asymmetric warfare, a social adaptive model for modeling multiple insurgent groups attacking multiple military and civilian targets is proposed and investigated. This report presents a pilot study using the particle swarm modeling, a widely used non-linear optimal tool to model the emergence of insurgency campaign. The objective of this research is to apply the particle swarm metaphor as a model of insurgent social adaptation for the dynamically changing environment and to provide insight and understanding of insurgency warfare. Our results show that unified leadership, strategic planning, and effective communication between insurgent groups are not the necessary requirements for insurgents to efficiently attain their objective.
A SUNTANS-based unstructured grid local exact particle tracking model
NASA Astrophysics Data System (ADS)
Liu, Guangliang; Chua, Vivien P.
2016-07-01
A parallel particle tracking model, which employs the local exact integration method to achieve high accuracy, has been developed and embedded in an unstructured-grid coastal ocean model, Stanford Unstructured Nonhydrostatic Terrain-following Adaptive Navier-Stokes Simulator (SUNTANS). The particle tracking model is verified and compared with traditional numerical integration methods, such as Runge-Kutta fourth-order methods using several test cases. In two-dimensional linear steady rotating flow, the local exact particle tracking model is able to track particles along the circular streamline accurately, while Runge-Kutta fourth-order methods produce trajectories that deviate from the streamlines. In periodically varying double-gyre flow, the trajectories produced by local exact particle tracking model with time step of 1.0 × 10- 2 s are similar to those trajectories obtained from the numerical integration methods with reduced time steps of 1.0 × 10- 4 s. In three-dimensional steady Arnold-Beltrami-Childress (ABC) flow, the trajectories integrated with the local exact particle tracking model compares well with the approximated true path. The trajectories spiral upward and their projection on the x- y plane is a periodic ellipse. The trajectories derived with the Runge-Kutta fourth-order method deviate from the approximated true path, and their projections on the x- y plane are unclosed ellipses with growing long and short axes. The spatial temporal resolution needs to be carefully chosen before particle tracking models are applied. Our results show that the developed local exact particle tracking model is accurate and suitable for marine Lagrangian (trajectory-based)-related research.
Atomic-scale modeling of particle size effects for the oxygen reduction reaction on Pt.
Tritsaris, G. A.; Greeley, J.; Rossmeisl, J.; Norskov, J. K.
2011-07-01
We estimate the activity of the oxygen reduction reaction on platinum nanoparticles of sizes of practical importance. The proposed model explicitly accounts for surface irregularities and their effect on the activity of neighboring sites. The model reproduces the experimentally observed trends in both the specific and mass activities for particle sizes in the range between 2 and 30 nm. The mass activity is calculated to be maximized for particles of a diameter between 2 and 4 nm. Our study demonstrates how an atomic-scale description of the surface microstructure is a key component in understanding particle size effects on the activity of catalytic nanoparticles.
Numerical modeling of pollutant transport using a Lagrangian marker particle technique
NASA Technical Reports Server (NTRS)
Spaulding, M.
1976-01-01
A derivation and code were developed for the three-dimensional mass transport equation, using a particle-in-cell solution technique, to solve coastal zone waste discharge problems where particles are a major component of the waste. Improvements in the particle movement techniques are suggested and typical examples illustrated. Preliminary model comparisons with analytic solutions for an instantaneous point release in a uniform flow show good results in resolving the waste motion. The findings to date indicate that this computational model will provide a useful technique to study the motion of sediment, dredged spoils, and other particulate waste commonly deposited in coastal waters.
Ferrimagnetism and single-particle excitations in a periodic Anderson model on the honeycomb lattice
NASA Astrophysics Data System (ADS)
Seki, Kazuhiro; Shirakawa, Tomonori; Zhang, Qinfang; Li, Tao; Yunoki, Seiji
2015-04-01
By using the variationalcluster approximation and cluster perturbation theory, we investigate the magnetism and single-particle excitations of a periodic Anderson model on the honeycomb lattice as an effective model for the single-side hydrogenated graphene, namely, graphone. We calculate the magnetic moment as a function of U (Coulomb interaction on impurity sites) with showing that the ground state is ferrimagneticfor any U > 0. We then calculate the single-particle excitations and show that the single-particle excitations are gapless and exhibit quadratic dispersion relation near the Fermi energy.
Simulating the Evolution of Soot Mixing State with a Particle-Resolved Aerosol Model
Riemer, Nicole; West, Matt; Zaveri, Rahul A.; Easter, Richard C.
2009-05-05
The mixing state of soot particles in the atmosphere is of crucial importance for assessing their climatic impact, since it governs their chemical reactivity, cloud condensation nuclei activity and radiative properties. To improve the mixing state representation in models, we present a new approach, the stochastic particle-resolved model PartMC-MOSAIC, which explicitly resolves the composition of individual particles in a given population of different types of aerosol particles. This approach accurately tracks the evolution of the mixing state of particles due to emission, dilution, condensation and coagulation. To make this direct stochastic particle-based method practical, we implemented a new multiscale stochastic coagulation method. With this method we achieved optimal efficiency for applications when the coagulation kernel is highly non-uniform, as is the case for many realistic applications. PartMC-MOSAIC was applied to an idealized urban plume case representative of a large urban area to simulate the evolution of carbonaceous aerosols of different types due to coagulation and condensation. For this urban plume scenario we quantified the individual processes that contribute to the aging of the aerosol distribution, illustrating the capabilities of our modeling approach. The results showed for the first time the multidimensional structure of particle composition, which is usually lost in internally-mixed sectional or modal aerosol models.
NASA Astrophysics Data System (ADS)
Pirjola, L.; Karl, M.; Rönkkö, T.; Arnold, F.
2015-02-01
High concentration of volatile nucleation mode particles (NUP) formed in the atmosphere during exhaust cools and dilutes have hazardous health effects and impair visibility in urban areas. Nucleation mechanisms in diesel exhaust are only poorly understood. We performed model studies using two sectional aerosol dynamics process models AEROFOR and MAFOR on the formation of particles in the exhaust of a diesel engine, equipped with an oxidative after-treatment system and running with low fuel sulphur content (FSC), under laboratory sampling conditions where the dilution system mimics real-world conditions. Different nucleation mechanisms were tested; based on the measured gaseous sulphuric acid (GSA) and non-volatile core and soot particle number concentrations of the raw exhaust, the model simulations showed that the best agreement between model predictions and measurements in terms of particle number size distribution was obtained by barrierless heteromolecular homogeneous nucleation between GSA and semi-volatile organic vapour (for example adipic acid) combined with the homogeneous nucleation of GSA alone. Major growth of the particles was predicted to occur by the same organic vapour at concentrations of (1-2) ×1012cm-3. The pre-existing core and soot mode concentrations had opposite trend on the NUP formation, and maximum NUP formation was predicted if a diesel particle filter (DPF) was used. On the other hand, NUP formation was ceased if the GSA concentration was less than 1010cm-3 which suggests, based on the measurements, the usage of biofuel to prevent volatile particles in diesel exhaust.
Including nonequilibrium interface kinetics in a continuum model for melting nanoscaled particles
Back, Julian M.; McCue, Scott W.; Moroney, Timothy J.
2014-01-01
The melting temperature of a nanoscaled particle is known to decrease as the curvature of the solid-melt interface increases. This relationship is most often modelled by a Gibbs–Thomson law, with the decrease in melting temperature proposed to be a product of the curvature of the solid-melt interface and the surface tension. Such a law must break down for sufficiently small particles, since the curvature becomes singular in the limit that the particle radius vanishes. Furthermore, the use of this law as a boundary condition for a Stefan-type continuum model is problematic because it leads to a physically unrealistic form of mathematical blow-up at a finite particle radius. By numerical simulation, we show that the inclusion of nonequilibrium interface kinetics in the Gibbs–Thomson law regularises the continuum model, so that the mathematical blow up is suppressed. As a result, the solution continues until complete melting, and the corresponding melting temperature remains finite for all time. The results of the adjusted model are consistent with experimental findings of abrupt melting of nanoscaled particles. This small-particle regime appears to be closely related to the problem of melting a superheated particle. PMID:25399918
Stochastic modeling of fine particle deposition, resuspension, and hyporheic exchange in rivers
NASA Astrophysics Data System (ADS)
Packman, Aaron; Drummond, Jennifer; Aubeneau, Antoine
2013-04-01
Fine suspended particles are responsible for substantial flux of organic matter and contaminants in rivers. Further, microorganisms delivered from the terrestrial system or resuspended from benthic and hyporheic biofilms also propagate downstream in rivers, providing connectivity in the river microbial community. Because fine particle concentrations are often similar along the length of rivers, there has been a tendency to think that their dynamics are simple. Historically, fine suspended particles have been considered to show little interaction with streambed sediments. This is a fallacy. Recent observations have demonstrated that fine particles show complex dynamics in rivers, including ongoing deposition and resuspension. This provides substantial opportunity for interaction with benthic and hyporheic sediments and biofilms, which can lead to enhanced processing of fine particulate organic carbon, accumulation of pathogens in riverbeds, and mixing of particle-bound contaminants into bed sediments. Here I will briefly review current understanding of fine particle deposition, resuspension, and hyporheic exchange processes, develop a conceptual model for fine particle dynamics in rivers, and present a stochastic modeling framework that can represent most of these processes. I will close by discussing the limits of current modeling capability and prospects for future development of more general models.
Modeling the impact of sea-spray on particle concentrations in a coastal city
Pryor, S C; Barthelmie, R J; Schoof, J T; Binkowski, F S; Monache, L D; Stull, R B
2006-04-19
An atmospheric chemistry-transport model is used to assess the impacts of sea-spray chemistry on the particle composition in and downwind of a coastal city--Vancouver, British Columbia. Reactions in/on sea-spray affect the entire particle ensemble and particularly the size distribution of particle nitrate. Urban air quality, and particularly airborne particles, is a major concern in terms of human health impacts. Sea-spray is known to be a major component of the particle ensemble at coastal sites yet relatively few air quality models include the interaction of gases with sea-spray and the fate of the particles produced. Sea-spray is not an inert addition to the particle ensemble because heterogeneous chemistry in/on sea-spray droplets changes the droplets composition and the particle size distribution, which impacts deposition and the ion balance in different particle size fractions. It is shown that the ISOPART model is capable of simulating gas and particle concentrations in the coastal metropolis of Vancouver and the surrounding valley. It is also demonstrated that to accurately simulate ambient concentrations of particles and reactive/soluble gases in a coastal valley it is absolutely critical to include heterogeneous chemistry in/on sea-spray. Partitioning of total particle-NO{sub 3}{sup -} between sea-spray and NH{sub 4}NO{sub 3} is highly sensitive to the amount of sea-spray present, and hence the initial vertical profile, sea-spray source functions [48] and the wind speed. When a fixed wind speed is used to initialize the sea-spray vertical profiles, as expected, the sea-spray concentration decays with distance inland, but the particle-NO{sub 3}{sup -} concentration decays more slowly because it is also a function of the uptake rate for HNO{sub 3}. The simulation results imply model analyses of air quality in coastal cities conducted without inclusion of sea-spray interactions may yield highly misleading results in terms of emission sensitivities of the PM
NASA Astrophysics Data System (ADS)
Porth, O.; Vorster, M. J.; Lyutikov, M.; Engelbrecht, N. E.
2016-08-01
We study the transport of high-energy particles in pulsar wind nebulae (PWN) using three-dimensional magnetohydrodynamic (MHD) and test-particle simulations, as well as a Fokker-Planck particle transport model. The latter includes radiative and adiabatic losses, diffusion, and advection on the background flow of the simulated MHD nebula. By combining the models, the spatial evolution of flux and photon index of the X-ray synchrotron emission is modelled for the three nebulae G21.5-0.9, the inner regions of Vela, and 3C 58, thereby allowing us to derive governing parameters: the magnetic field strength, average flow velocity, and spatial diffusion coefficient. For comparison, the nebulae are also modelled with the semi-analytic Kennel & Coroniti model but the Porth et al. model generally yields better fits to the observational data. We find that high velocity fluctuations in the turbulent nebula (downstream of the termination shock) give rise to efficient diffusive transport of particles, with average Péclet number close to unity, indicating that both advection and diffusion play an important role in particle transport. We find that the diffusive transport coefficient of the order of ˜ 2 × 1027(Ls/0.42 Ly) cm2 s- 1 (Ls is the size of the termination shock) is independent of energy up to extreme particle Lorentz factors of γp ˜ 1010.
Steady-state and dynamic models for particle engulfment during solidification
NASA Astrophysics Data System (ADS)
Tao, Yutao; Yeckel, Andrew; Derby, Jeffrey J.
2016-06-01
Steady-state and dynamic models are developed to study the physical mechanisms that determine the pushing or engulfment of a solid particle at a moving solid-liquid interface. The mathematical model formulation rigorously accounts for energy and momentum conservation, while faithfully representing the interfacial phenomena affecting solidification phase change and particle motion. A numerical solution approach is developed using the Galerkin finite element method and elliptic mesh generation in an arbitrary Lagrangian-Eulerian implementation, thus allowing for a rigorous representation of forces and dynamics previously inaccessible by approaches using analytical approximations. We demonstrate that this model accurately computes the solidification interface shape while simultaneously resolving thin fluid layers around the particle that arise from premelting during particle engulfment. We reinterpret the significance of premelting via the definition an unambiguous critical velocity for engulfment from steady-state analysis and bifurcation theory. We also explore the complicated transient behaviors that underlie the steady states of this system and posit the significance of dynamical behavior on engulfment events for many systems. We critically examine the onset of engulfment by comparing our computational predictions to those obtained using the analytical model of Rempel and Worster [29]. We assert that, while the accurate calculation of van der Waals repulsive forces remains an open issue, the computational model developed here provides a clear benefit over prior models for computing particle drag forces and other phenomena needed for the faithful simulation of particle engulfment.
Modelling of Coalescence of PMMA Particles/Farz Factor
NASA Astrophysics Data System (ADS)
Farzaneh, S.; Tcharkhtchi, A.
2011-05-01
In this study we are interested by sintering phenomenon during rotational molding of PMMA. It is well known that sintering begins by coalescence of grains and follows by powder densification. First we have followed the coalescence of two grains; then the coalescence of several grains is studied in order to see the effect of other grains on this phenomenon. In the basis of the Bellehumeur's model, a new model has been proposed to consider this effect. This model was validated by the experiments.
Modeling partially coupled objects with smooth particle hydrodynamics
Wingate, C.A.
1996-10-01
A very simple phenomenological model is presented to model objects that are partially coupled (i.e. welded or bonded) where usually the coupled interface is weaker than the bulk material. The model works by letting objects fully interact in compression and having the objects only partially interact in tension. A disconnect factor is provided to adjust the tensile interaction to simulate coupling strengths. Three cases of an example impact calculation are shown-no coupling, full coupling and partial coupling.
Ciesielski, Peter N.; Crowley, Michael F.; Nimlos, Mark R.; Sanders, Aric W.; Wiggins, Gavin M.; Robichaud, David; Donohoe, Bryon S.; Foust, Thomas D.
2014-12-09
Biomass exhibits a complex microstructure of directional pores that impact how heat and mass are transferred within biomass particles during conversion processes. However, models of biomass particles used in simulations of conversion processes typically employ oversimplified geometries such as spheres and cylinders and neglect intraparticle microstructure. In this study, we develop 3D models of biomass particles with size, morphology, and microstructure based on parameters obtained from quantitative image analysis. We obtain measurements of particle size and morphology by analyzing large ensembles of particles that result from typical size reduction methods, and we delineate several representative size classes. Microstructural parameters, including cell wall thickness and cell lumen dimensions, are measured directly from micrographs of sectioned biomass. A general constructive solid geometry algorithm is presented that produces models of biomass particles based on these measurements. Next, we employ the parameters obtained from image analysis to construct models of three different particle size classes from two different feedstocks representing a hardwood poplar species (Populus tremuloides, quaking aspen) and a softwood pine (Pinus taeda, loblolly pine). Finally, we demonstrate the utility of the models and the effects explicit microstructure by performing finite-element simulations of intraparticle heat and mass transfer, and the results are compared to similar simulations using traditional simplified geometries. In conclusion, we show how the behavior of particle models with more realistic morphology and explicit microstructure departs from that of spherical models in simulations of transport phenomena and that species-dependent differences in microstructure impact simulation results in some cases.
Ciesielski, Peter N.; Crowley, Michael F.; Nimlos, Mark R.; Sanders, Aric W.; Wiggins, Gavin M.; Robichaud, David; Donohoe, Bryon S.; Foust, Thomas D.
2014-12-09
Biomass exhibits a complex microstructure of directional pores that impact how heat and mass are transferred within biomass particles during conversion processes. However, models of biomass particles used in simulations of conversion processes typically employ oversimplified geometries such as spheres and cylinders and neglect intraparticle microstructure. In this study, we develop 3D models of biomass particles with size, morphology, and microstructure based on parameters obtained from quantitative image analysis. We obtain measurements of particle size and morphology by analyzing large ensembles of particles that result from typical size reduction methods, and we delineate several representative size classes. Microstructural parameters, includingmore » cell wall thickness and cell lumen dimensions, are measured directly from micrographs of sectioned biomass. A general constructive solid geometry algorithm is presented that produces models of biomass particles based on these measurements. Next, we employ the parameters obtained from image analysis to construct models of three different particle size classes from two different feedstocks representing a hardwood poplar species (Populus tremuloides, quaking aspen) and a softwood pine (Pinus taeda, loblolly pine). Finally, we demonstrate the utility of the models and the effects explicit microstructure by performing finite-element simulations of intraparticle heat and mass transfer, and the results are compared to similar simulations using traditional simplified geometries. In conclusion, we show how the behavior of particle models with more realistic morphology and explicit microstructure departs from that of spherical models in simulations of transport phenomena and that species-dependent differences in microstructure impact simulation results in some cases.« less
Development of an Integrated Performance Model for TRISO-Coated Gas Reactor Particle Fuel
Petti, David Andrew; Miller, Gregory Kent; Martin, David George; Maki, John Thomas
2005-05-01
The success of gas reactors depends upon the safety and quality of the coated particle fuel. The understanding and evaluation of this fuel requires development of an integrated mechanistic fuel performance model that fully describes the mechanical and physico-chemical behavior of the fuel particle under irradiation. Such a model, called PARFUME (PARticle Fuel ModEl), is being developed at the Idaho National Engineering and Environmental Laboratory. PARFUME is based on multi-dimensional finite element modeling of TRISO-coated gas reactor fuel. The goal is to represent all potential failure mechanisms and to incorporate the statistical nature of the fuel. The model is currently focused on carbide, oxide nd oxycarbide uranium fuel kernels, while the coating layers are the classical IPyC/SiC/OPyC. This paper reviews the current status of the mechanical aspects of the model and presents results of calculations for irradiations from the New Production Modular High Temperature Gas Reactor program.
Particle dynamics and deposition in true-scale pulmonary acinar models
Fishler, Rami; Hofemeier, Philipp; Etzion, Yael; Dubowski, Yael; Sznitman, Josué
2015-01-01
Particle transport phenomena in the deep alveolated airways of the lungs (i.e. pulmonary acinus) govern deposition outcomes following inhalation of hazardous or pharmaceutical aerosols. Yet, there is still a dearth of experimental tools for resolving acinar particle dynamics and validating numerical simulations. Here, we present a true-scale experimental model of acinar structures consisting of bifurcating alveolated ducts that capture breathing-like wall motion and ensuing respiratory acinar flows. We study experimentally captured trajectories of inhaled polydispersed smoke particles (0.2 to 1 μm in diameter), demonstrating how intrinsic particle motion, i.e. gravity and diffusion, is crucial in determining dispersion and deposition of aerosols through a streamline crossing mechanism, a phenomenon paramount during flow reversal and locally within alveolar cavities. A simple conceptual framework is constructed for predicting the fate of inhaled particles near an alveolus by identifying capture and escape zones and considering how streamline crossing may shift particles between them. In addition, we examine the effect of particle size on detailed deposition patterns of monodispersed microspheres between 0.1–2 μm. Our experiments underline local modifications in the deposition patterns due to gravity for particles ≥0.5 μm compared to smaller particles, and show good agreement with corresponding numerical simulations. PMID:26358580
Mathematical model for the continuous combustion of char particles in a fluidized bed
Saxena, S.C.; Rehmat, A.
1980-12-01
Recently, we have developed the direct oxidation model for the combustion of a batch of char in a fluidized bed. This analysis is extended for the continuous combustion of char, and a system of general equations has been derived to relate the feed rate of char to the amount of char particles present in the fluidized bed and in the overflow stream. The size distribution of char particles and their number in the bed are also predicted. The analysis indicates that the amount of carbon present in the bed is independent of the feed particle size at fixed values of the char feed rate and fluidizing-gas velocity although the number of char bed particles depends upon the feed particle size. Further, the carbon content of the bed and the number of char particles in the bed are found to depend heavily on the char feed rate and the fluidizing-gas velocity. A discrete cut method is described whereby the particle size distribution and the number of particles present in the bed are calculated. The method provides a simplified trial-and-error procedure for those cases in which the rate of change in particle size is a complex nonintegrable function of the particle size. The discrete cut method is found to yield results which are in good agreement with the exact solutions of the integrals defining the number of particles and their size distribution. The model provides a simple base for the scale-up and design work related to fluidized-bed coal combustors.
Modeling of a-particle redistribution by sawteeth in TFTR using FPPT code
Gorelenkov, N.N.; Budny, R.V.; Duong, H.H.
1996-06-01
Results from recent DT experiments on TFTR to measure the radial density profiles of fast confined well trapped {alpha}-particles using the Pellet Charge eXchange (PCX) diagnostic [PETROV M. P., et. al. Nucl. Fusion, 35 (1995) 1437] indicate that sawtooth oscillations produce a significant broadening of the trapped alpha radial density profiles. ` Conventional models consistent with measured sawtooth effects on passing particles do not provide satisfactory simulations of the trapped particle mixing measured by PCX diagnostic. We propose a different mechanism for fast particle mixing during the sawtooth crash to explain the trapped {alpha}-particle density profile broadening after the crash. The model is based on the fast particle orbit averaged toroidal drift in a perturbed helical electric field with an adjustable absolute value. Such a drift of the fast particles results in a change of their energy and a redistribution in phase space. The energy redistribution is shown to obey the diffusion equation, while the redistribution in toroidal momentum P{var_phi} (or in minor radius) is assumed stochastic with large diffusion coefficient and was taken flat. The distribution function in a pre- sawtooth plasma and its evolution in a post-sawtooth crash plasma is simulated using the Fokker-Planck Post-TRANSP (FPPT) processor code. It is shown that FPPT calculated {alpha}-particle distributions are consistent with TRANSP Monte-Carlo calculations. Comparison of FPPT results with Pellet Char eXchange (PCX) measurements shows good agreement for 9 both sawtooth free and sawtoothing plasmas.
Calcination of kaolinite clay particles for cement production: A modeling study
Teklay, Abraham; Yin, Chungen; Rosendahl, Lasse; Bøjer, Martin
2014-07-01
Kaolinite rich clay particles calcined under certain conditions can attain favorable pozzolanic properties and can be used to substitute part of the CO{sub 2} intensive clinker in cement production. To better guide calcination of a clay material, a transient one-dimensional single particle model is developed, which fully addresses the conversion process of raw kaolinite particles suspended in hot gas. Particles are discretized into a number of spherical cells, on each of which mass, momentum, energy and species conservation equations are numerically solved by using the finite volume method. Reactions considered in the model include dehydration, dehydroxylation and various phase transformations. Thermogravimetric analysis is used to determine reaction kinetic data required as inputs in the model and to validate the model. Finally, model-based sensitivity analysis is performed, from which quantitative guidelines for calcination condition optimization are derived. - Highlights: • A general 1D mathematical model for single clay particle calcination is developed. • The model fully addresses momentum, heat and mass transfer and all the reactions. • Experiments are performed to determine kinetic data of the key reactions. • The model is verified by different means, including experimental results. • Sensitivity study is done to address key assumptions and derive useful guidelines.
Investigating motion and stability of particles in flows using numerical models
NASA Astrophysics Data System (ADS)
Khurana, Nidhi
The phenomenon of transport of particles in a fluid is ubiquitous in nature and a detailed understanding of its mechanism continues to remain a fundamental question for physicists. In this thesis, we use numerical methods to study the dynamics and stability of particles advected in flows. First, we investigate the dynamics of a single, motile particle advected in a two-dimensional chaotic flow. The particle can be either spherical or ellipsoidal. Particle activity is modeled as a constant intrinsic swimming velocity and stochastic fluctuations in both the translational and rotational motions are also taken into account. Our results indicate that interaction of swimming with flow structures causes a reduction in long-term transport at low speeds. Swimmers can get trapped at the transport barriers of the flow. We show that elongated swimmers respond more strongly to the dynamical structures of the flow field. At low speeds, their macroscopic transport is reduced even further than in the case of spherical swimmers. However, at high speeds these elongated swimmers tend to get attracted to the stable manifolds of hyperbolic fixed points, leading to increased transport. We then investigate the collective dynamics of a system of particles. The particles may interact both with each other and with the background flow. We focus on two different cases. In the fist case, we examine the stability of aggregation models in a turbulent-like flow. We use a simple aggregation model in which a point-like particle moves with a constant intrinsic speed while its velocity vector is reoriented according to the average direction of motion of its neighbors. We generate a strongly fluctuating, spatially correlated background flow using Kinematic Simulation, and show that flocks are highly sensitive to this background flow and break into smaller clusters. Our results indicate that such environmental perturbations must be taken into account for models which aim to capture the collective
Model solution for volume reflection of relativistic particles in a bent crystal
Bondarenco, M. V.
2010-10-15
For volume reflection process in a bent crystal, exact analytic expressions for positively- and negatively-charged particle trajectories are obtained within a model of parabolic continuous potential in each interplanar interval, with the neglect of incoherent multiple scattering. In the limit of the crystal bending radius greatly exceeding the critical value, asymptotic formulas are obtained for the particle mean deflection angle in units of Lindhard's critical angle, and for the final beam profile. Volume reflection of negatively charged particles is shown to contain effects of rainbow scattering and orbiting, whereas with positively charged particles none of these effects arise within the given model. The model predictions are compared with experimental results and numerical simulations. Estimates of the volume reflection mean angle and the final beam profile robustness under multiple scattering are performed.
A distribution model for the aerial application of granular agricultural particles
NASA Technical Reports Server (NTRS)
Fernandes, S. T.; Ormsbee, A. I.
1978-01-01
A model is developed to predict the shape of the distribution of granular agricultural particles applied by aircraft. The particle is assumed to have a random size and shape and the model includes the effect of air resistance, distributor geometry and aircraft wake. General requirements for the maintenance of similarity of the distribution for scale model tests are derived and are addressed to the problem of a nongeneral drag law. It is shown that if the mean and variance of the particle diameter and density are scaled according to the scaling laws governing the system, the shape of the distribution will be preserved. Distributions are calculated numerically and show the effect of a random initial lateral position, particle size and drag coefficient. A listing of the computer code is included.
NASA Astrophysics Data System (ADS)
Catalina, Adrian Vasile
When a moving solidification front intercepts an insoluble particle, three distinct interaction phenomena can occur: instantaneous engulfment, continuous pushing of the particle, or particle pushing followed by engulfment. Various mathematical models, aiming to predict the critical solidification velocity for the pushing/engulfment transition, have been published in the literature. However, their predictions were not confirmed by the recent experimental measurements performed in microgravity conditions. The aim of this dissertation is to further continue the study of the interaction particle/solidifying interface through mathematical modeling. In this respect, two new analytical models were developed. In addition, a finite difference numerical approach is proposed. The first analytical model, the Equilibrium Breakdown Model, reveals the fact that the particle/solidifying interface interaction is not a steady state process, as assumed in the previously published models. Its simple formulation makes it attractive for practical purposes such as manufacturing of composite materials. The second model, i.e., the Dynamic Model, is more complex and, for the first time, it is able to capture and explain interesting phenomena that escaped the steady state analyses of previously published models. It shows that steady state interaction is only a particular case that can occur only at sub-critical solidification velocity. In this work, both analytical models were successfully validated against experimental data produced under microgravity conditions. The numerical approach, based on an interface tracking procedure, consists in the development of two distinct models, i.e., a solidification model and a fluid flow model. These two models together can give a more comprehensive picture of the particle/interface interaction. The solidification model has the capability to accommodate changes of the solid/liquid interface temperature because of capillarity and solute redistribution. It
CPM: a deformable model for shape recovery and segmentation based on charged particles.
Jalba, Andrei C; Wilkinson, Michael H F; Roerdink, Jos B T M
2004-10-01
A novel, physically motivated deformable model for shape recovery and segmentation is presented. The model, referred to as the charged-particle model (CPM), is inspired by classical electrodynamics and is based on a simulation of charged particles moving in an electrostatic field. The charges are attracted towards the contours of the objects of interest by an electrostatic field, whose sources are computed based on the gradient-magnitude image. The electric field plays the same role as the potential forces in the snake model, while internal interactions are modeled by repulsive Coulomb forces. We demonstrate the flexibility and potential of the model in a wide variety of settings: shape recovery using manual initialization, automatic segmentation, and skeleton computation. We perform a comparative analysis of the proposed model with the active contour model and show that specific problems of the latter are surmounted by our model. The model is easily extendable to 3D and copes well with noisy images.
A kinetic model for heterogeneous condensation of vapor on an insoluble spherical particle.
Luo, Xisheng; Fan, Yu; Qin, Fenghua; Gui, Huaqiao; Liu, Jianguo
2014-01-14
A kinetic model is developed to describe the heterogeneous condensation of vapor on an insoluble spherical particle. This new model considers two mechanisms of cluster growth: direct addition of water molecules from the vapor and surface diffusion of adsorbed water molecules on the particle. The effect of line tension is also included in the model. For the first time, the exact expression of evaporation coefficient is derived for heterogeneous condensation of vapor on an insoluble spherical particle by using the detailed balance. The obtained expression of evaporation coefficient is proved to be also correct in the homogeneous condensation and the heterogeneous condensation on a planar solid surface. The contributions of the two mechanisms to heterogeneous condensation including the effect of line tension are evaluated and analysed. It is found that the cluster growth via surface diffusion of adsorbed water molecules on the particle is more important than the direct addition from the vapor. As an example of our model applications, the growth rate of the cap shaped droplet on the insoluble spherical particle is derived. Our evaluation shows that the growth rate of droplet in heterogeneous condensation is larger than that in homogeneous condensation. These results indicate that an explicit kinetic model is benefit to the study of heterogeneous condensation on an insoluble spherical particle.
NASA Astrophysics Data System (ADS)
Plowman, Elizabeth; Hovorka, Ondrej; Friedman, Gennady
2014-03-01
Determining nanoparticle dipolar interactions from experimental measurement of magnetic moments is a classical inverse problem in magnetism. It is important in a variety of applications including magnetic information storage and Magnetic Particle Imaging (MPI). Historically, magnetic moment relaxation has been used to characterize system parameters including dipolar interactions. However, the results are sensitive to particle size distribution. We demonstrate that dipolar coupling strength in a nanoparticle-pair can be determined from transverse magnetic susceptibility, a readily measured parameter. Moreover, we demonstrate that this method is insensitive to particle size, rendering it more robust for real-world experiments. We present both analytical and numerical models for transient and steady-state transverse magnetic susceptibility and resulting interaction strength of our two-particle system. In the analytical model master equation is employed. The particles are assumed to be immobile and the set of possible states is discrete. In the numerical models both master equation and Landau-Lifshitz-Gilbert dynamics are employed. In these models random particle anisotropy directions are taken into account. The results of each model are compared. National Science Foundation GRFP.
NASA Astrophysics Data System (ADS)
Cuzzi, Jeffrey N.; Estrada, Paul R.; Davis, Sanford S.
2014-02-01
As small solid grains grow into larger ones in protoplanetary nebulae, or in the cloudy atmospheres of exoplanets, they generally form porous aggregates rather than solid spheres. A number of previous studies have used highly sophisticated schemes to calculate opacity models for irregular, porous particles with sizes much smaller than a wavelength. However, mere growth itself can affect the opacity of the medium in far more significant ways than the detailed compositional and/or structural differences between grain constituents once aggregate particle sizes exceed the relevant wavelengths. This physics is not new; our goal here is to provide a model that provides physical insight and is simple to use in the increasing number of protoplanetary nebula evolution and exoplanet atmosphere models appearing in recent years, yet quantitatively captures the main radiative properties of mixtures of particles of arbitrary size, porosity, and composition. The model is a simple combination of effective medium theory with small-particle closed-form expressions, combined with suitably chosen transitions to geometric optics behavior. Calculations of wavelength-dependent emission and Rosseland mean opacity are shown and compared with Mie theory. The model's fidelity is very good in all comparisons we have made except in cases involving pure metal particles or monochromatic opacities for solid particles with sizes comparable to the wavelength.
Empirical modeling of the fine particle fraction for carrier-based pulmonary delivery formulations.
Pacławski, Adam; Szlęk, Jakub; Lau, Raymond; Jachowicz, Renata; Mendyk, Aleksander
2015-01-01
In vitro study of the deposition of drug particles is commonly used during development of formulations for pulmonary delivery. The assay is demanding, complex, and depends on: properties of the drug and carrier particles, including size, surface characteristics, and shape; interactions between the drug and carrier particles and assay conditions, including flow rate, type of inhaler, and impactor. The aerodynamic properties of an aerosol are measured in vitro using impactors and in most cases are presented as the fine particle fraction, which is a mass percentage of drug particles with an aerodynamic diameter below 5 μm. In the present study, a model in the form of a mathematical equation was developed for prediction of the fine particle fraction. The feature selection was performed using the R-environment package "fscaret". The input vector was reduced from a total of 135 independent variables to 28. During the modeling stage, techniques like artificial neural networks, genetic programming, rule-based systems, and fuzzy logic systems were used. The 10-fold cross-validation technique was used to assess the generalization ability of the models created. The model obtained had good predictive ability, which was confirmed by a root-mean-square error and normalized root-mean-square error of 4.9 and 11%, respectively. Moreover, validation of the model using external experimental data was performed, and resulted in a root-mean-square error and normalized root-mean-square error of 3.8 and 8.6%, respectively.
NASA Technical Reports Server (NTRS)
Parker, L. Neergaard; Zank, G. P.
2013-01-01
Successful forecasting of energetic particle events in space weather models require algorithms for correctly predicting the spectrum of ions accelerated from a background population of charged particles. We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box. We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (E(sub max)) appropriate for quasi-parallel and quasi-perpendicular shocks and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).
NASA Astrophysics Data System (ADS)
Parker, L. N.; Zank, G. P.
2013-12-01
Successful forecasting of energetic particle events in space weather models require algorithms for correctly predicting the spectrum of ions accelerated from a background population of charged particles. We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al., 1999) in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box (Melrose and Pope, 1993; Zank et al., 2000). We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (Emax) appropriate for quasi-parallel and quasi-perpendicular shocks (Zank et al., 2000, 2006; Dosch and Shalchi, 2010) and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).
Properties of the Higgs particle in a model involving a single unified fermion generation
Libanov, M. V. Nugaev, E. Ya.
2007-05-15
The properties of the Higgs boson are studied within a model where three generations of Standard Model fermions emerge from one generation in a theory featuring two extra spatial dimensions. It is shown that, despite a nontrivial external field forming a brane, the interactions of the Higgs particle in the effective four-dimensional theory are virtually identical to the interactions of this particle in the Standard Model. Arguments in favor of the statement that the Higgs boson must be rather light in the model being considered are also presented.
N-Body Model of High-Energy Collisions with Inter-Particle Cohesion
NASA Astrophysics Data System (ADS)
Walsh, Kevin J.; Michel, P.; Richardson, D. C.; Schwartz, S. R.
2009-09-01
We present a study of high-speed collisions with an N-body particle representation of targets and impactors. The targets are constructed of hard spherical particles where collisions between particles are modeled and energy dissipation during collisions is regulated by a coefficient of restitution. The targets also incorporate a simple model of cohesion based on a spring-like restoring force between adjacent particles. The "springs" are parameterized by the Young's modulus (which determines spring strength) and stress limit (maximum distension before breaking). Once a spring breaks, it remains broken and, in this work, each spring has identical parameters. To explore this model's behavior in high-energy impacts in the strength regime (negligible gravity), the primary simulations presented are designed to calibrate our model against the laboratory experiments of Nakamura and Fujiwara (1991) [Nakamura and Fujiwara, Icarus, 92, 132 (1991)] who characterized the velocity distribution of fragments following a 3.3 km/s collision of a 7 mm diameter nylon sphere into a 6 cm basalt sphere. The target bodies are constructed of 1000, 2000 or 5000 particles with each individual particle having 10 - 107 Pascal bonding with, on average, 10 nearby particles. Values of coefficient of restitution, target particle packing and impactor structure (single particle or rubble pile) are also explored. The simulations are compared to the results of the laboratory experiments in remnant size distribution and morphology. KJW is supported by the Henri Poincaré fellowship at the Observatoire de la Cote d'Azur, Nice, France. PM had the support of the French Programme National de Planetologie. DCR and SRS acknowledge support of the National Aeronautics and Space Administration under Grant No. NNX08AM39G issued through the Office of Space Science and by the National Science Foundation under Grant No. AST0708110. We acknowledge the use of the Mesocentre de Calcul-SIGAMM at the Observatoire de la
NASA Astrophysics Data System (ADS)
Kerwin, R.; Fauria, K.; Nover, D.; Schladow, G.
2014-12-01
Vegetated floodplains and wetlands can trap and remove particles from suspension thereby affecting water quality, land accretion, and wetland functioning. However, the rate of particle removal by vegetation remains poorly characterized, especially for fine particles. In this study, we monitored particle concentration and size distribution (1.25 - 250 µm diameter suspended road dust) in a laboratory flume as flow velocity, plant stem density, initial particle concentration, and the presence of biofilm on vegetation were varied. We characterized change in particle concentration through time by calculating decay constants, termed capture rates. Based on our experiments, we found that suspended particle concentration decayed more rapidly in the presence, rather than in the absence, of vegetation. Additionally, particle capture rates increased with stem density, particle size, and the presence of biofilm, while decreasing with flow velocity. These results demonstrate that low flow velocities and the presence of biofilm optimize particle capture by vegetation. Our results are relevant to floodplain and wetland restoration efforts.
Lakghomi, B; Lawryshyn, Y; Hofmann, R
2015-01-01
An analytical model and a computational fluid dynamic model of particle removal in dissolved air flotation were developed that included the effects of stratified flow and bubble-particle clustering. The models were applied to study the effect of operating conditions and formation of stratified flow on particle removal. Both modeling approaches demonstrated that the presence of stratified flow enhanced particle removal in the tank. A higher air fraction was shown to be needed at higher loading rates to achieve the same removal efficiency. The model predictions showed that an optimum bubble size was present that increased with an increase in particle size.
Confronting AeroCom models with particle size distribution data from surface in situ stations
NASA Astrophysics Data System (ADS)
Platt, Stephen; Fiebig, Markus; Mann, Graham; Schulz, Michael
2016-04-01
The size distribution is the most important property for describing any interaction of an aerosol particle population with its surroundings. In first order, it determines both, the aerosol optical properties quantifying the direct aerosol climate effect, and the fraction of aerosol particles acting as cloud condensation nuclei quantifying the indirect aerosol climate effect. Aerosol schemes of modern climate models resolve the aerosol particle size distribution (APSD) explicitly. In improving the skill of climate models, it is therefore highly useful to confront these models with precision APSD data observed at surface stations. Corresponding previous work focussed on comparing size integrated, seasonal particle concentrations at selected sites with ensemble model averages to assess overall model skill. Building on this work, this project intends to refine the approach by comparing median particle size and integral concentration of fitted modal size distributions. It will also look at skill differences between models in order to find reasons for matches and discrepancies. The presentation will outline the project, and will elaborate on input requested from modelling groups to participate in the exercise.
Geometrical Standard Model Enhancements to the Standard Model of Particle Physics
NASA Astrophysics Data System (ADS)
Strickland, Ken; Duvernois, Michael
2011-10-01
The Standard Model (SM) is the triumph of our age. As experimentation at the LHC tracks particles for the Higgs phenomena, theoreticians and experimentalist struggle to close in on a cohesive theory. Both suffer greatly as expectation waivers those who seek to move beyond the SM and those who cannot do without. When it seems like there are no more good ideas enter Rate Change Graph Technology (RCGT). From the science of the rate change graph, a Geometrical Standard Model (GSM) is available for comprehensive modeling, giving rich new sources of data and pathways to those ultimate answers we punish ourselves to achieve. As a new addition to science, GSM is a tool that provides a structured discovery and analysis environment. By eliminating value and size, RCGT operates with the rules of RCGT mechanics creating solutions derived from geometry. The GSM rate change graph could be the ultimate validation of the Standard Model yet. In its own right, GSM is created from geometrical intersections and comes with RCGT mechanics, yet parallels the SM to offer critical enhancements. The Higgs Objects along with a host of new objects are introduced to the SM and their positions revealed in this proposed modification to the SM.
Multiscale modeling of interfacial physics in particle-solidification front dynamics
NASA Astrophysics Data System (ADS)
Garvin, Justin Wayne
Depending on thermosolutal conditions, the interaction of solidification fronts with embedded particles can result in pushing or engulfment of the particles by the front. Such interactions are important in several applications, including metal matrix composite manufacture, frost heaving, and cryobiology. The development of the solidified microstructure in such systems depends on interactions between non-planar solidification fronts and multiple particles. The interaction between an advancing solidification front and a micron-size particle is an inherently multiscale heat and mass transport problem. Transport at the micro-scale (i.e. the scale of the particle dimension) couples with intermolecular interactions and lubrication forces in a thin layer of melt between the particle and the front to determine the overall dynamics of the interaction. A multiscale model is developed to simulate such front-particle interactions. Lubrication equations are employed to quantify the fluid flow (pressure field) and thermal transport (temperature field) in the thin gap region ("inner region") between the particle and front. The lubrication equations include disjoining pressure effects due to intermolecular forces that are important at the nano-meter length scale. The solution to the lubrication equations in the melt layer ("inner region") is coupled to the solution of the Navier-Stokes equations for the overall particle-front system ("outer region''). Techniques are developed for coupling the dynamics at the two disparate scales ("inner" and "outer") at a common "matching region". All interfaces are represented and tracked using the level-set approach. A sharp-interface technique is employed for solution of the governing equations in the resulting moving boundary problem. Validation of the coupling strategy and results for the particle-front interaction phenomenon with the multiscale approach are presented. Results show that particle pushing can only occur when the thermal
Asian Dust at Mauna Loa Observatory: Analysis and Modeling of Individual Atmospheric Particles
NASA Astrophysics Data System (ADS)
Conny, J. M.; Willis, R. D.; Ortiz-Montalvo, D. L.
2015-12-01
Springtime Asian dust storms events, typically originating in the Gobi Desert or Taklamakan Desert, produce particles that can be carried aloft eastward for thousands of miles. As a result, the radiative properties of these particles can significantly affect global climate. Here, we determine the optical properties of particles identified as Asian dust at Mauna Loa Observatory, Hawaii, (MLO) based on the composition and actual shapes of individual particles. Samples of particulate material <10 μm in size were collected at MLO, between March 15 and April 26, 2011. Air mass back trajectories and satellite imagery showed that a subset of the aerosol sampled during this period likely originated from the Asian mainland while most of the aerosol probably did not. Samples were first analyzed by automated scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometry, whereby particles were sorted into compositionally-distinct particle types. Two particle types, identified as dolomite and calcite were determined to have originated from Asia. A third type, anhydrite, also aloft in the free troposphere, was not associated with Asian dust. Individual particles were analyzed compositionally and their shapes modeled spatially using focused ion-beam (FIB) SEM and FIB tomography. Particle 3-D representations were then input to the discrete dipole approximation method to determine their optical properties for 589 nm light. Calculations revealed that the single scattering albedo (SSA) for the Asian dust particles (0.79 to 0.94) straddled the critical SSA for cooling vs. warming (0.86), with the lowest SSA (0.79) attributed to a small amount of soot (1.7 % by volume) attached to a dolomite particle. SSA for the free troposphere anhydrite particles (0.90 to 0.93) was well above the critical SSA. For the three particle types, SSA for the actual-shaped particles was higher than equivalently-sized spheres, cubes, or tetrahedra. For the fraction of backscattered light from
Low-order modeling of internal heat transfer in biomass particle pyrolysis
Wiggins, Gavin M.; Daw, C. Stuart; Ciesielski, Peter N.
2016-05-11
We present a computationally efficient, one-dimensional simulation methodology for biomass particle heating under conditions typical of fast pyrolysis. Our methodology is based on identifying the rate limiting geometric and structural factors for conductive heat transport in biomass particle models with realistic morphology to develop low-order approximations that behave appropriately. Comparisons of transient temperature trends predicted by our one-dimensional method with three-dimensional simulations of woody biomass particles reveal good agreement, if the appropriate equivalent spherical diameter and bulk thermal properties are used. Here, we conclude that, for particle sizes and heating regimes typical of fast pyrolysis, it is possible to simulatemore » biomass particle heating with reasonable accuracy and minimal computational overhead, even when variable size, aspherical shape, anisotropic conductivity, and complex, species-specific internal pore geometry are incorporated.« less
2D MHD test-particle simulations in modeling geomagnetic storms
NASA Astrophysics Data System (ADS)
Li, Z.; Elkington, S. R.; Hudson, M. K.; Murphy, J. J.; Schmitt, P.; Wiltberger, M. J.
2012-12-01
The effects of magnetic storms on the evolution of the electron radiation belts are studied using MHD test-particle simulations. The 2D guiding center code developed by Elkington et al. (2002) has been used to simulate particle motion in the Solar Magnetic equatorial plane in the MHD fields calculated from the Lyon-Fedder-Mobarry global MHD code. However, our study shows that the B-minimum plane is well off the SM equatorial plane during solstice events. Since 3D test-particle simulation is computationally expensive, we improve the 2D model by pushing particles in the B-minimum surface instead of the SM equatorial plane. Paraview software is used to visualize the LFM data file and to find the B-minimum surface. Magnetic and electric fields on B-minimum surface are projected to the equatorial plane for particle pushing.
NASA Astrophysics Data System (ADS)
Fishler, Rami; Mulligan, Molly; Dubowski, Yael; Sznitman, Josue; Sznitman Lab-department of Biomedical Engineering Team; Dubowski Lab-faculty of Civil; Environmental Engineering Team
2014-11-01
In order to experimentally investigate particle deposition mechanisms in the deep alveolated regions of the lungs, we have developed a novel microfluidic device mimicking breathing acinar flow conditions directly at the physiological scale. The model features an anatomically-inspired acinar geometry with five dichotomously branching airway generations lined with periodically expanding and contracting alveoli. Deposition patterns of airborne polystyrene microspheres (spanning 0.1 μm to 2 μm in diameter) inside the airway tree network compare well with CFD simulations and reveal the roles of gravity and Brownian motion on particle deposition sites. Furthermore, measured trajectories of incense particles (0.1-1 μm) inside the breathing device show a critical role for Brownian diffusion in determining the fate of inhaled sub-micron particles by enabling particles to cross from the acinar ducts into alveolar cavities, especially during the short time lag between inhalation and exhalation phases.
Modelling of particle-laden flow inside nanomaterials
NASA Astrophysics Data System (ADS)
Chan, Yue; Wylie, Jonathan J.; Xia, Liang; Ren, Yong; Chen, Yung-Tsang
2016-08-01
In this paper, we demonstrate the usage of the Nernst-Planck equation in conjunction with mean-field theory to investigate particle-laden flow inside nanomaterials. Most theoretical studies in molecular encapsulation at the nanoscale do not take into account any macroscopic flow fields that are crucial in squeezing molecules into nanostructures. Here, a multi-scale idea is used to address this issue. The macroscopic transport of gas is described by the Nernst-Planck equation, whereas molecular interactions between gases and between the gas and the host material are described using a combination of molecular dynamics simulation and mean-field theory. In particular, we investigate flow-driven hydrogen storage inside doubly layered graphene sheets and graphene-oxide frameworks (GOFs). At room temperature and with slow velocity fields, we find that a single molecular layer is formed almost instantaneously on the inner surface of the graphene sheets, while molecular ligands between GOFs induce multi-layers. For higher velocities, multi-layers are also formed between graphene. For even larger velocities, the cavity of graphene is filled entirely with hydrogen, whereas for GOFs there exist two voids inside each periodic unit. The flow-driven hydrogen storage inside GOFs with various ligand densities is also investigated.
Modeling of soft interfacial volume fraction in composite materials with complex convex particles.
Xu, Wenxiang; Chen, Wen; Chen, Huisu
2014-01-21
The influence of the soft interfacial volume fraction on physical properties of composite materials has been found to be significant. However, the soft interfacial volume fraction is difficultly determined by traditional experimental methods and simple models proposed so far. This article addresses the problem by means of theoretical and numerical approaches that start at a microscopic scale of composite materials, which are regarded as a three-phase composite structure with polydisperse convex particles, soft interfaces, and a matrix. A theoretical scheme for the soft interfacial volume fraction is proposed by a theory of the nearest-surface distribution functions and geometrical configurations of polydisperse convex particles. The theoretical scheme represents a generalized model for the soft interfacial volume fraction in that it cannot only determine the interfacial volume fraction around convex polyhedral particles but also to derive that around ellipsoidal and spherical particles. In order to test the theoretical scheme, a numerical model that adopts the three-phase composite structure and a numerical Monte Carlo integration scheme is presented. Also, theoretical and numerical results of the soft interfacial volume fraction around ellipsoidal and spherical particles in the literature are further compared. By way of application, it is shown that the developed model provides a quantitative means to evaluate the dependence of the soft interfacial volume fraction on various factors, such as geometrical configurations of particles and the interfacial thickness.
Fluid particle diffusion in a semidilute suspension of model micro-organisms
NASA Astrophysics Data System (ADS)
Ishikawa, Takuji; Locsei, J. T.; Pedley, T. J.
2010-08-01
We calculate non-Brownian fluid particle diffusion in a semidilute suspension of swimming micro-organisms. Each micro-organism is modeled as a spherical squirmer, and their motions in an infinite suspension otherwise at rest are computed by the Stokesian-dynamics method. In calculating the fluid particle motions, we propose a numerical method based on a combination of the boundary element technique and Stokesian dynamics. We present details of the numerical method and examine its accuracy. The limitation of semidiluteness is required to ensure accuracy of the fluid particle velocity calculation. In the case of a suspension of non-bottom-heavy squirmers the spreading of fluid particles becomes diffusive in a shorter time than that of the squirmers, and the diffusivity of fluid particles is smaller than that of squirmers. It is confirmed that the probability density distribution of fluid particles also shows diffusive properties. The effect of tracer particle size is investigated by inserting some inert spheres of the same radius as the squirmers, instead of fluid particles, into the suspension. The diffusivity for inert spheres is not less than one tenth of that for fluid particles, even though the particle size is totally different. Scaling analysis indicates that the diffusivity of fluid particles and inert spheres becomes proportional to the volume fraction of squirmers in the semidilute regime provided that there is no more than a small recirculation region around a squirmer, which is confirmed numerically. In the case of a suspension of bottom-heavy squirmers, horizontal diffusivity decreases considerably even with small values of the bottom heaviness, which indicates the importance of bottom heaviness in the diffusion phenomena. We believe that these fundamental findings will enhance our understanding of the basic mechanics of a suspension of swimming micro-organisms.
Fluid particle diffusion in a semidilute suspension of model micro-organisms.
Ishikawa, Takuji; Locsei, J T; Pedley, T J
2010-08-01
We calculate non-Brownian fluid particle diffusion in a semidilute suspension of swimming micro-organisms. Each micro-organism is modeled as a spherical squirmer, and their motions in an infinite suspension otherwise at rest are computed by the Stokesian-dynamics method. In calculating the fluid particle motions, we propose a numerical method based on a combination of the boundary element technique and Stokesian dynamics. We present details of the numerical method and examine its accuracy. The limitation of semidiluteness is required to ensure accuracy of the fluid particle velocity calculation. In the case of a suspension of non-bottom-heavy squirmers the spreading of fluid particles becomes diffusive in a shorter time than that of the squirmers, and the diffusivity of fluid particles is smaller than that of squirmers. It is confirmed that the probability density distribution of fluid particles also shows diffusive properties. The effect of tracer particle size is investigated by inserting some inert spheres of the same radius as the squirmers, instead of fluid particles, into the suspension. The diffusivity for inert spheres is not less than one tenth of that for fluid particles, even though the particle size is totally different. Scaling analysis indicates that the diffusivity of fluid particles and inert spheres becomes proportional to the volume fraction of squirmers in the semidilute regime provided that there is no more than a small recirculation region around a squirmer, which is confirmed numerically. In the case of a suspension of bottom-heavy squirmers, horizontal diffusivity decreases considerably even with small values of the bottom heaviness, which indicates the importance of bottom heaviness in the diffusion phenomena. We believe that these fundamental findings will enhance our understanding of the basic mechanics of a suspension of swimming micro-organisms.
NASA Technical Reports Server (NTRS)
Krizmanic, John F.
2013-01-01
We have been assessing the effects of background radiation in low-Earth orbit for the next generation of X-ray and Cosmic-ray experiments, in particular for International Space Station orbit. Outside the areas of high fluxes of trapped radiation, we have been using parameterizations developed by the Fermi team to quantify the high-energy induced background. For the low-energy background, we have been using the AE8 and AP8 SPENVIS models to determine the orbit fractions where the fluxes of trapped particles are too high to allow for useful operation of the experiment. One area we are investigating is how the fluxes of SPENVIS predictions at higher energies match the fluxes at the low-energy end of our parameterizations. I will summarize our methodology for background determination from the various sources of cosmogenic and terrestrial radiation and how these compare to SPENVIS predictions in overlapping energy ranges.
Krick, Julian; Ackerman, Josef Daniel
2015-03-01
The particle capture efficiency, η, of systems that remove suspended particles from ambient flow (e.g. suspension feeding, abiotic pollination) has been studied using static collectors in steady flows. Particle deposition on collectors moving due to fluid flow remains largely unknown, despite its ecological relevance. We used numerical modeling to simulate particle deposition on a 2D circular cylinder subject to flow-induced oscillation in a cross flow. Using parameter values relevant to wind pollination and other natural biological systems, we examined the influence of the direction, amplitude and frequency of the oscillation, the Stokes number (Stk=0.01-5, characterizing particle behavior), as well as the Reynolds number (Re=662 and 3309, characterizing flow regime) in steady and unsteady flow, on η. The numerical model was validated with empirical results for parts of the parameter space. Particle capture occurred via "inertial impaction", "direct interception" and "leeward deposition", as well as via a new mechanism, "collector chasing" for moving collectors. The η of an oscillating cylinder varied significantly relative to a static cylinder, depending on the parameters used, and on the magnitude of a numerical error that caused loss of particles. This variance of η was due to a change in relative momentum between the particle and the moving collector, which depends on Re, Stk and the oscillation parameters. Collector oscillation transverse to oncoming flow direction strongly increased η, whereas collector motion parallel to flow had little effect on capture efficiency. The oscillation also changed leeward capture significantly in some cases. For most conditions, however, leeward deposition was small. Results suggest that collector motion could have significant influence on the particle capture efficiency of natural systems, which indicates the need to incorporate these ecologically more relevant findings into current models. Empirical studies, however
Krick, Julian; Ackerman, Josef Daniel
2015-03-01
The particle capture efficiency, η, of systems that remove suspended particles from ambient flow (e.g. suspension feeding, abiotic pollination) has been studied using static collectors in steady flows. Particle deposition on collectors moving due to fluid flow remains largely unknown, despite its ecological relevance. We used numerical modeling to simulate particle deposition on a 2D circular cylinder subject to flow-induced oscillation in a cross flow. Using parameter values relevant to wind pollination and other natural biological systems, we examined the influence of the direction, amplitude and frequency of the oscillation, the Stokes number (Stk=0.01-5, characterizing particle behavior), as well as the Reynolds number (Re=662 and 3309, characterizing flow regime) in steady and unsteady flow, on η. The numerical model was validated with empirical results for parts of the parameter space. Particle capture occurred via "inertial impaction", "direct interception" and "leeward deposition", as well as via a new mechanism, "collector chasing" for moving collectors. The η of an oscillating cylinder varied significantly relative to a static cylinder, depending on the parameters used, and on the magnitude of a numerical error that caused loss of particles. This variance of η was due to a change in relative momentum between the particle and the moving collector, which depends on Re, Stk and the oscillation parameters. Collector oscillation transverse to oncoming flow direction strongly increased η, whereas collector motion parallel to flow had little effect on capture efficiency. The oscillation also changed leeward capture significantly in some cases. For most conditions, however, leeward deposition was small. Results suggest that collector motion could have significant influence on the particle capture efficiency of natural systems, which indicates the need to incorporate these ecologically more relevant findings into current models. Empirical studies, however
Dissipative Particle Dynamics modeling of nanorod-polymer composites
NASA Astrophysics Data System (ADS)
Khani, Shaghayegh; Maia, Joao
2014-11-01
Recent years have seen a plethora of experimental methods for fabricating nanorod-polymer composites with enhanced physical and mechanical properties. The macroscopic properties of the composites are directly related to the dispersion and organization of the nanoparticles in the matrix. For instance, a significant improvement in the properties of the nanorod-polymer composites is observed upon formation of a percolating network. Thus, controlling the structure of the nanoparticles in the matrix will advance the technology in the field. One way of doing this is by adjusting the chemical interactions which is done through grafting polymer chains on the surface of the rods. Although the enthalpic interactions play the major role in such systems other entropic variables such as the dimension of the rods, density of grafting and etc. may influence the final morphology of the system. The recent developments in the computational techniques have paved the road for further understanding of the controlled assembly of nanorods in polymer matrices. In this study, Dissipative Particle Dynamics (DPD) is employed in order to investigate the effect of enthalpic and entopic variables on the phase behavior of the nanorod-polymer composites. DPD is a coarse-grained mesoscale method which has been found very promising in simulating multi component systems. The interaction parameter between the components of the systems can be mapped onto the Flory-Huggins χ-parameter via well-known Groot-Warren expression. The main goal of this work is to provide a phase diagram that can be used to guide the experiments in designing new materials.
Kurai, Jun; Watanabe, Masanari; Tomita, Katsuyuki; Yamasaki, Hiroyuki Sano Akira; Shimizu, Eiji
2014-01-01
Objective An Asian dust storm (ADS) contains airborne particles that affect conditions such as asthma, but the mechanism of exacerbation is unclear. The objective of this study was to compare immune adjuvant effects and airway inflammation induced by airborne particles collected on ADS days and the original ADS soil (CJ-1 soil) in asthma model mice. Methods Airborne particles were collected on ADS days in western Japan. NC/Nga mice were co-sensitized by intranasal instillation with ADS airborne particles and/or Dermatophagoides farinae (Df), and with CJ-1 soil and/or Df for 5 consecutive days. Df-sensitized mice were stimulated with Df challenge intranasally at 7 days after the last Df sensitization. At 24 hours after challenge, serum allergen specific antibody, differential leukocyte count and inflammatory cytokines in bronchoalveolar lavage fluid (BALF) were measured, and airway inflammation was examined histopathologically. Results Co-sensitization with ADS airborne particles and Df increased the neutrophil and eosinophil counts in BALF. Augmentation of airway inflammation was also observed in peribronchiolar and perivascular lung areas. Df-specific serum IgE was significantly elevated by ADS airborne particles, but not by CJ-1 soil. Levels of interleukin (IL)-5, IL-13, IL-6, and macrophage inflammatory protein-2 were higher in BALF in mice treated with ADS airborne particles. Conclusion These results suggest that substances attached to ADS airborne particles that are not in the original ADS soil may play important roles in immune adjuvant effects and airway inflammation. PMID:25386753
Model predictions and visualization of the particle flux on the surface of Mars.
Cucinotta, Francis A; Saganti, Premkumar B; Wilson, John W; Simonsen, Lisa C
2002-12-01
Model calculations of the particle flux on the surface of Mars due to the Galactic Cosmic Rays (GCR) can provide guidance on radiobiological research and shielding design studies in support of Mars exploration science objectives. Particle flux calculations for protons, helium ions, and heavy ions are reported for solar minimum and solar maximum conditions. These flux calculations include a description of the altitude variations on the Martian surface using the data obtained by the Mars Global Surveyor (MGS) mission with its Mars Orbiter Laser Altimeter (MOLA) instrument. These particle flux calculations are then used to estimate the average particle hits per cell at various organ depths of a human body in a conceptual shelter vehicle. The estimated particle hits by protons for an average location at skin depth on the Martian surface are about 10 to 100 particle-hits/cell/year and the particle hits by heavy ions are estimated to be 0.001 to 0.01 particle-hits/cell/year. PMID:12793727
A land use regression model for ultrafine particles in Vancouver, Canada.
Abernethy, Rebecca C; Allen, Ryan W; McKendry, Ian G; Brauer, Michael
2013-05-21
Methods to characterize chronic exposure to ultrafine particles (UFP) can help to clarify potential health effects. Since UFP are not routinely monitored in North America, spatiotemporal models are one potential exposure assessment methodology. Portable condensation particle counters were used to measure particle number concentrations (PNC) to develop a land use regression (LUR) model. PNC, wind speed and direction were measured for sixty minutes at eighty locations during a two-week sampling campaign. We conducted continuous monitoring at four additional locations to assess temporal variation. LUR modeling utilized 135 potential geographic predictors including: road length, vehicle density, restaurant density, population density, land use and others. A novel approach incorporated meteorological data through wind roses as alternates to traditional circular buffers. The range of measured (sixty-minute median) PNC across locations varied seventy-fold (1500-105000 particles/cm(3), mean [SD] = 18200 [15900] particles/cm(3)). Correlations between PNC and concurrently measured two-week average NOX concentrations were 0.6-0.7. A PNC LUR model (R(2) = 0.48, leave-one-out cross validation R(2) = 0.32) including truck route length within 50 m, restaurant density within 200 m, and ln-distance to the port represents the first UFP LUR model in North America. Models incorporating wind roses did not explain more variability in measured PNC.
Initial conditions for radiation analysis: models of galactic cosmic rays and solar particle events
NASA Astrophysics Data System (ADS)
Nymmik, R. A.
During interplanetary missions the radiation conditions are determined by fluxes of Galactic Cosmic Ray (GCR) particles and Solar Energetic Particles (SEP). The particle fluxes of these two high-energy radiation components differ fundamentally in energy spectra and have the opposite dependence on solar activity level. One of the key issues, associated with estimating flight conditions for missions to the Moon, various asteroids and Mars, is the relative balance between GCR and SCR, depending on the level of solar activity and the distance to the Sun for both open space conditions and conditions inside the spacecraft. This task can be solved with sufficient accuracy only when using such particle flux models (of the above mentioned radiation sources), which are based on unified parameters, describing the current solar activity level. Such models, employing smoothed Wolf numbers as the initial parameter, were developed at SINP MSU. These models are - the semi-empirical model of GCR fluxes, which has currently been approved as an international standard (ISO 15390), and the probabilistic model of SEP particle fluxes, which is currently under discussion as a draft international standard (ISO DRAFT 15391). The report presents a survey of experimental data on GCR and SEP fluxes in interplanetary space at various solar activity levels, and an analysis of the reliability and completeness of data on these fluxes, provided by various calculation models.
PAM: Particle automata model in simulation of Fusarium graminearum pathogen expansion.
Wcisło, Rafał; Miller, S Shea; Dzwinel, Witold
2016-01-21
The multi-scale nature and inherent complexity of biological systems are a great challenge for computer modeling and classical modeling paradigms. We present a novel particle automata modeling metaphor in the context of developing a 3D model of Fusarium graminearum infection in wheat. The system consisting of the host plant and Fusarium pathogen cells can be represented by an ensemble of discrete particles defined by a set of attributes. The cells-particles can interact with each other mimicking mechanical resistance of the cell walls and cell coalescence. The particles can move, while some of their attributes can be changed according to prescribed rules. The rules can represent cellular scales of a complex system, while the integrated particle automata model (PAM) simulates its overall multi-scale behavior. We show that due to the ability of mimicking mechanical interactions of Fusarium tip cells with the host tissue, the model is able to simulate realistic penetration properties of the colonization process reproducing both vertical and lateral Fusarium invasion scenarios. The comparison of simulation results with micrographs from laboratory experiments shows encouraging qualitative agreement between the two. PMID:26549468
Self-similarity in Hall plasma discharges: Applications to particle models
Taccogna, Francesco; Longo, Savino; Capitelli, Mario; Schneider, Ralf
2005-05-15
Electron transport is a key process in the physics of Hall thruster discharges. Therefore, a kinetic description of the heavy particles (Xe) as well as electrons is required. The ideal numerical model would be a particle model for all the species. Nowadays, such a model is unpractical because it would need too large an amount of computation time due to the very different time scales of electrons and heavy particles dynamics. For this purpose two scalings to speed-up the execution time of a two-dimensional fully kinetic Particle-in-Cell/Monte Carlo Collision simulation of the Hall thruster SPT-100 are proposed. These two different scaling schemes generate self-similar systems of the acceleration channel including the process of secondary electron emission from the dielectric walls. Instead of using the common approach of a smaller neutral and ion mass or a larger vacuum permittivity the channel dimensions are reduced keeping the main dimensionless physics parameters constant. This leads to scaling laws for the input (magnetic field, mass flow rate, current and voltage discharge, etc.) and output parameters obeying self-similarity. This scaling methodology makes the simulation faster and allows improved modeling of electron interactions and fundamental processes. This model has demonstrated its outstanding capability in improving the physics insight into the processes in SPT-100 under the scaling constraints for the geometrical reduction. The application to particle models of different plasma based devices is suggested for such systems where a linearization of the Boltzmann equation is possible.
Modeling of light depolarization by cubic and hexagonal particles in noctilucent clouds
NASA Astrophysics Data System (ADS)
Kokhanovsky, Alexander A.
2006-02-01
Noctilucent clouds (NLCs) play an important indicative role in the physics of the summer polar mesopause. They consist of tiny ice crystals with characteristic dimensions generally smaller than 200 nm. However, the predominant shape of particles is not known. Therefore, biases in the size of crystals obtained from ground and space by light scattering and polarimetric techniques in the assumption of spherical scatterers can be considerable. This is due to the influence of shape effects on the scattering characteristics of particles. We test the assumption of the hexagonal and cubical particles as candidates for the predominant shapes of particles in NLCs using Maxwell electromagnetic theory to calculate the linear depolarization ratio (LDR). We compare results of recent measurements of LDRs with our calculations. Generally, theory and experiments agree very well at the NLC peak. The shape of crystals close to the cloud top cannot be explained by the model of compact particles. Relatively high light depolarization ratios detected from the upper part of the NLC are in agreement with models of elongated needle-like particles or particles having dimensions much larger than those usually attributed to NLC events.
Sühring, Roxana; Wolschke, Hendrik; Diamond, Miriam L; Jantunen, Liisa M; Scheringer, Martin
2016-07-01
Gas-particle partitioning is one of the key factors that affect the environmental fate of semivolatile organic chemicals. Many organophosphate esters (OPEs) have been reported to primarily partition to particles in the atmosphere. However, because of the wide range of their physicochemical properties, it is unlikely that OPEs are mainly in the particle phase "as a class". We compared gas-particle partitioning predictions for 32 OPEs made by the commonly used OECD POV and LRTP Screening Tool ("the Tool") with the partitioning models of Junge-Pankow (J-P) and Harner-Bidleman (H-B), as well as recently measured data on OPE gas-particle partitioning. The results indicate that half of the tested OPEs partition into the gas phase. Partitioning into the gas phase seems to be determined by an octanol-air partition coefficient (log KOA) < 10 and a subcooled liquid vapor pressure (log PL) > -5 (PL in Pa), as well as the total suspended particle concentration (TSP) in the sampling area. The uncertainty of the physicochemical property data of the OPEs did not change this estimate. Furthermore, the predictions by the Tool, J-P- and H-B-models agreed with recently measured OPE gas-particle partitioning. PMID:27144674
Particles deposition induced by the magnetic field in the coronary bypass graft model
NASA Astrophysics Data System (ADS)
Bernad, Sandor I.; Totorean, Alin F.; Vekas, Ladislau
2016-03-01
Bypass graft failures is a complex process starting with intimal hyperplasia development which involve many hemodynamic and biological factors. This work presents experimental results regarding the possibility to use magnetic drug delivery to prevent the development of the intimal hyperplasia using a simplified but intuitive model. The primary goal is to understand the magnetic particle deposition in the anastomosis region of the bypass graft taking into account the complex flow field created in this area which involves recirculation region, flow mixing and presence of particles with high residence time. The three-dimensional geometry model was used to simulate the motion and accumulation of the particles under the magnetic field influence in anastomotic region of the coronary bypass graft. The flow patterns are evaluated both numerically and experimentally and show a good correlation in term of flow parameters like vortex length and flow stagnation point positions. Particle depositions are strongly dependent on the magnet position and consequently of the magnetic field intensity and field gradient. Increased magnetic field controlled by the magnet position induces increased particle depositions in the bypass graft anastomosis. The result shows that particle depositions depend on the bypass graft angle, and the deposition shape and particle accumulation respectively, depend by the flow pattern in the anastomosis region.
Dorn, Martin; Hekmat, Dariusch
2016-03-01
Preparative packed-bed chromatography using polymer-based, compressible, porous resins is a powerful method for purification of macromolecular bioproducts. During operation, a complex, hysteretic, thus, history-dependent packed bed behavior is often observed but theoretical understanding of the causes is limited. Therefore, a rigorous modeling approach of the chromatography column on the particle scale has been made which takes into account interparticle micromechanics and fluid-particle interactions for the first time. A three-dimensional deterministic model was created by applying Computational Fluid Dynamics (CFD) coupled with the Discrete Element Method (DEM). The column packing behavior during either flow or mechanical compression was investigated in-silico and in laboratory experiments. A pronounced axial compression-relaxation profile was identified that differed for both compression strategies. Void spaces were clearly visible in the packed bed after compression. It was assumed that the observed bed inhomogeneity was because of a force-chain network at the particle scale. The simulation satisfactorily reproduced the measured behavior regarding packing compression as well as pressure-flow dependency. Furthermore, the particle Young's modulus and particle-wall friction as well as interparticle friction were identified as crucial parameters affecting packing dynamics. It was concluded that compaction of the chromatographic bed is rather because of particle rearrangement than particle deformation. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:363-371, 2016.
A single particle model to simulate the dynamics of entangled polymer melts
NASA Astrophysics Data System (ADS)
Kindt, P.; Briels, W. J.
2007-10-01
We present a computer simulation model of polymer melts representing each chain as one single particle. Besides the position coordinate of each particle, we introduce a parameter nij for each pair of particles i and j within a specified distance from each other. These numbers, called entanglement numbers, describe the deviation of the system of ignored coordinates from its equilibrium state for the given configuration of the centers of mass of the polymers. The deviations of the entanglement numbers from their equilibrium values give rise to transient forces, which, together with the conservative forces derived from the potential of mean force, govern the displacements of the particles. We have applied our model to a melt of C800H1602 chains at 450K and have found good agreement with experiments and more detailed simulations. Properties addressed in this paper are radial distribution functions, dynamic structure factors, and linear as well as nonlinear rheological properties.
Characterization of particle deposition in a lung model using an individual path
NASA Astrophysics Data System (ADS)
Tena, A. M.; Casan, P.; Fernández, J.; Ferrera, C.; Marcos, A.
2013-04-01
Suspended particles can cause a wide range of chronic respiratory illnesses such as asthma and chronic obstructive pulmonary diseases, as well as worsening heart conditions and other conditions. To know the particle depositions in realistic models of the human respiratory system is fundamental to prevent these diseases. The main objective of this work is to study the lung deposition of inhaled particles through a numerical model using UDF (User Defined Function) to impose the boundary conditions in the truncated airways. For each generation, this UDF puts the values of velocity profile of the flow path to symmetrical truncated outlet. The flow rates tested were 10, 30 and 60 ℓ/min, with a range of particles between 0.1 µm and 20 µm.
Delocalization of two interacting particles in the 2D Harper model
NASA Astrophysics Data System (ADS)
Frahm, Klaus M.; Shepelyansky, Dima L.
2016-01-01
We study the problem of two interacting particles in a two-dimensional quasiperiodic potential of the Harper model. We consider an amplitude of the quasiperiodic potential such that in absence of interactions all eigenstates are exponentially localized while the two interacting particles are delocalized showing anomalous subdiffusive spreading over the lattice with the spreading exponent b ≈ 0.5 instead of a usual diffusion with b = 1. This spreading is stronger than in the case of a correlated disorder potential with a one particle localization length as for the quasiperiodic potential. At the same time we do not find signatures of ballistic pairs existing for two interacting particles in the localized phase of the one-dimensional Harper model.
Modeling of particle radiative properties in coal combustion depending on burnout
NASA Astrophysics Data System (ADS)
Gronarz, Tim; Habermehl, Martin; Kneer, Reinhold
2016-08-01
In the present study, absorption and scattering efficiencies as well as the scattering phase function of a cloud of coal particles are described as function of the particle combustion progress. Mie theory for coated particles is applied as mathematical model. The scattering and absorption properties are determined by several parameters: size distribution, spectral distribution of incident radiation and spectral index of refraction of the particles. A study to determine the influence of each parameter is performed, finding that the largest effect is due to the refractive index, followed by the effect of size distribution. The influence of the incident radiation profile is negligible. As a part of this study, the possibility of applying a constant index of refraction is investigated. Finally, scattering and absorption efficiencies as well as the phase function are presented as a function of burnout with the presented model and the results are discussed.
Use of mucolytics to enhance magnetic particle retention at a model airway surface
NASA Astrophysics Data System (ADS)
Ally, Javed; Roa, Wilson; Amirfazli, A.
A previous study has shown that retention of magnetic particles at a model airway surface requires prohibitively strong magnetic fields. As mucus viscoelasticity is the most significant factor contributing to clearance of magnetic particles from the airway surface, mucolytics are considered in this study to reduce mucus viscoelasticity and enable particle retention with moderate strength magnetic fields. The excised frog palate model was used to simulate the airway surface. Two mucolytics, N-acetylcysteine (NAC) and dextran sulfate (DS) were tested. NAC was found to enable retention at moderate field values (148 mT with a gradient of 10.2 T/m), whereas DS was found to be effective only for sufficiently large particle concentrations at the airway surface. The possible mechanisms for the observed behavior with different mucolytics are also discussed based on aggregate formation and the loading of cilia.
NASA Astrophysics Data System (ADS)
Moulin, F.; Picaud, S.; Hoang, P. N. M.; Jedlovszky, P.
2007-10-01
The grand canonical Monte Carlo method is used to simulate the adsorption isotherms of water molecules on different types of model soot particles. The soot particles are modeled by graphite-type layers arranged in an onionlike structure that contains randomly distributed hydrophilic sites, such as OH and COOH groups. The calculated water adsorption isotherm at 298K exhibits different characteristic shapes depending both on the type and the location of the hydrophilic sites and also on the size of the pores inside the soot particle. The different shapes of the adsorption isotherms result from different ways of water aggregation in or/and around the soot particle. The present results show the very weak influence of the OH sites on the water adsorption process when compared to the COOH sites. The results of these simulations can help in interpreting the experimental isotherms of water adsorbed on aircraft soot.
Physical Scalar Mass Particles in the 331 Model
Ravinez, O.; Diaz, H.; Romero, D.
2007-10-26
We get to diagonalize the mass matrix considering all terms in the scalar lagrangian sector, given in the SU(3)xSU(3)xU(1) model cited below. This will let us in the future realize the phenomenological consequences.
Core-shell particle model for optical transparency in glass ceramics
NASA Astrophysics Data System (ADS)
Edgar, Andrew
2006-07-01
The light scattering from particles in a glass ceramic is calculated for a particle model comprising a crystalline core and a surrounding shell, created by nucleation and diffusive processes from the original homogeneous glass, with diffusing atoms limited to the core-shell volume. The scatterings from core and shell are found to cancel in first order for small particles within the approximations of the Rayleigh-Debye theory. The residual scattering varies as the inverse eighth power of wavelength and is most pronounced in the backscatter geometry.
Modeling of liquid-vapor phase change using smoothed particle hydrodynamics
NASA Astrophysics Data System (ADS)
Das, A. K.; Das, P. K.
2015-12-01
A model has been proposed based on smoothed particle hydrodynamics to describe gas liquid phase change. Pseudo particles of zero mass are initially placed to locate the interface. Mass generated due to phase change is assigned to the pseudo particles and their positions are updated at intervals to track the mobility of the interface. The developed algorithm has been used to simulate vapor formation around solid spheres both in the absence of gravity and in the normal gravitational field. Finally, bubble growth over a hot horizontal surface due to boiling has been simulated. Simulated results showed good matching with the reported literature.
NASA Astrophysics Data System (ADS)
Lei, Huan; Baker, Nathan A.; Wu, Lei; Schenter, Gregory K.; Mundy, Christopher J.; Tartakovsky, Alexandre M.
2016-08-01
Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly nonlinear hydrodynamics in multiphase flows. In this work, we develop a multiphase smoothed dissipative particle dynamics (SDPD) model. This model accounts for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface tension is modeled by imposing a pairwise force between SDPD particles. We show that the relationship between the model parameters and surface tension, previously derived under the assumption of zero thermal fluctuation, is accurate for fluid systems at low temperature but overestimates the surface tension for intermediate and large thermal fluctuations. To analyze the effect of thermal fluctuations on surface tension, we construct a coarse-grained Euler lattice model based on the mean field theory and derive a semianalytical formula to directly relate the surface tension to model parameters for a wide range of temperatures and model resolutions. We demonstrate that the present method correctly models dynamic processes, such as bubble coalescence and capillary spectra across the interface.
Lei, Huan; Baker, Nathan A; Wu, Lei; Schenter, Gregory K; Mundy, Christopher J; Tartakovsky, Alexandre M
2016-08-01
Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly nonlinear hydrodynamics in multiphase flows. In this work, we develop a multiphase smoothed dissipative particle dynamics (SDPD) model. This model accounts for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface tension is modeled by imposing a pairwise force between SDPD particles. We show that the relationship between the model parameters and surface tension, previously derived under the assumption of zero thermal fluctuation, is accurate for fluid systems at low temperature but overestimates the surface tension for intermediate and large thermal fluctuations. To analyze the effect of thermal fluctuations on surface tension, we construct a coarse-grained Euler lattice model based on the mean field theory and derive a semianalytical formula to directly relate the surface tension to model parameters for a wide range of temperatures and model resolutions. We demonstrate that the present method correctly models dynamic processes, such as bubble coalescence and capillary spectra across the interface. PMID:27627409
Xu, Zhijie; Meakin, Paul
2009-06-21
Dissipative particle dynamics (DPD) is an effective mesoscopic particle model with a lower computational cost than molecular dynamics because of the soft potentials that it employs. However, the soft potential is not strong enough to prevent the DPD particles that are used to represent the fluid from penetrating solid boundaries represented by stationary DPD particles. A phase-field variable, phi(x,t), is used to indicate the phase at point x and time t, with a smooth transition from -1 (phase 1) to +1 (phase 2) across the interface. We describe an efficient implementation of no-slip boundary conditions in DPD models that combines solid-liquid particle-particle interactions with reflection at a sharp boundary located with subgrid scale accuracy using the phase field. This approach can be used for arbitrarily complex flow geometries and other similar particle models (such as smoothed particle hydrodynamics), and the validity of the model is demonstrated by DPD simulations of flow in confined systems with various geometries.
NASA Technical Reports Server (NTRS)
Long, Jason M.; Lane, John E.; Metzger, Philip T.
2008-01-01
A previously developed mathematical model is amended to more accurately incorporate the effects of lift and drag on single dust particles in order to predict their behavior in the wake of high velocity gas flow. The model utilizes output from a CFD or DSMC simulation of exhaust from a rocket nozzle hot gas jet. An extension of the Saffman equation for lift based on the research of McLaughlin (1991) and Mei (1992) is used, while an equation for the Magnus force modeled after the work of Oesterle (1994) and Tsuji et al (1985) is applied. A relationship for drag utilizing a particle shape factor (phi = 0.8) is taken from the work of Haider and Levenspiel (1989) for application to non-spherical particle dynamics. The drag equation is further adjusted to account for rarefaction and compressibility effects in rarefied and high Mach number flows according to the work of Davies (1945) and Loth (2007) respectively. Simulations using a more accurate model with the correction factor (Epsilon = 0.8 in a 20% particle concentration gas flow) given by Richardson and Zaki (1954) and Rowe (1961) show that particles have lower ejection angles than those that were previously calculated. This is more prevalent in smaller particles, which are shown through velocity and trajectory comparison to be more influenced by the flow of the surrounding gas. It is shown that particles are more affected by minor changes to drag forces than larger adjustments to lift forces, demanding a closer analysis of the shape and behavior of lunar dust particles and the composition of the surrounding gas flow.
Krabicka, J.; Yan, Y.
2009-08-15
Electrostatic sensors are used in certain industries for the flow measurement of pneumatically conveyed solids. However, despite various advances that have been made in recent years, relatively little information is known about the exact nature of the electrostatic charge induced onto the sensor electrode due to moving particles, which is dependent on electrode geometry, particle distribution, and particle velocity. This paper presents a novel approach to the study of the charge induced onto electrostatic sensors based on fitting a Lorentzian curve to the results of a finite-element model of the electrostatic sensor and pipeline. The modeling method is validated by comparing the modeling results of a nonintrusive circular electrode with an established analytical solution. The modeling results are used for in-depth analysis and informed design of a particular sensor configuration.
Validation of modelling the radiation exposure due to solar particle events at aircraft altitudes.
Beck, P; Bartlett, D T; Bilski, P; Dyer, C; Flückiger, E; Fuller, N; Lantos, P; Reitz, G; Rühm, W; Spurny, F; Taylor, G; Trompier, F; Wissmann, F
2008-01-01
Dose assessment procedures for cosmic radiation exposure of aircraft crew have been introduced in most European countries in accordance with the corresponding European directive and national regulations. However, the radiation exposure due to solar particle events is still a matter of scientific research. Here we describe the European research project CONRAD, WP6, Subgroup-B, about the current status of available solar storm measurements and existing models for dose estimation at flight altitudes during solar particle events leading to ground level enhancement (GLE). Three models for the numerical dose estimation during GLEs are discussed. Some of the models agree with limited experimental data reasonably well. Analysis of GLEs during geomagnetically disturbed conditions is still complex and time consuming. Currently available solar particle event models can disagree with each other by an order of magnitude. Further research and verification by on-board measurements is still needed.
NASA Astrophysics Data System (ADS)
Chatterjee, Avik P.
2008-03-01
A model is developed for the elastic moduli of networks composed of transversely isotropic elongated particles characterized by aspect ratio polydispersity. An effective medium approach is employed to integrate our treatment of elastic fiber networks with results from (i) the Mori-Tanaka model for dispersions of transversely isotropic inclusions and from (ii) percolation theory, and to describe fiber-reinforced nanocomposites. Model calculations are presented for the dependences of composite moduli on particle aspect ratios, volume fractions, and polydispersities, and on anisotropy in the fiber stiffness tensor.
Particle-particle response function as a probe for electronic correlations in the p-d Hubbard model
Ugenti, S.; Cini, M.; Perfetto, E.; Stefanucci, G.; Seibold, G.; Lorenzana, J.
2010-08-15
We discuss and compare different approximations to the particle-particle response function in the p-d (three-band) Hubbard model for the CuO{sub 2} plane of superconducting cuprates. Besides the relevance for understanding the role of correlations in high-T{sub c} superconductors, the interest in the CuO{sub 2} plane is due to the presence of three incompletely filled valence bands. The bare ladder approximation (BLA) was employed long ago in the context of Auger core-valence-valence spectroscopy of late transition metals while the time-dependent (TD) Gutzwiller approximation (GA) is a much more sophisticated and recent development. The validity of both is assessed by comparing with exact-diagonalization results from a finite six-site cluster. We find that for standard parameter sets TDGA and BLA yield two-hole spectra in excellent agreement with the exact ones. Although the interaction is comparable to the kinetic energy, the system is far from the extreme Mott limit often assumed in cuprates, where the Mott insulating character is completely local. In order to identify possible fingerprints of the extreme Mott regime we artificially reduce the bandwidth. We find that the BLA breaks down while the TDGA keeps near the exact results. Our findings provide a simple criterion to identify doped and undoped extreme Mott insulators.
Rain water transport and storage in a model sandy soil with hydrogel particle additives.
Wei, Y; Durian, D J
2014-10-01
We study rain water infiltration and drainage in a dry model sandy soil with superabsorbent hydrogel particle additives by measuring the mass of retained water for non-ponding rainfall using a self-built 3D laboratory set-up. In the pure model sandy soil, the retained water curve measurements indicate that instead of a stable horizontal wetting front that grows downward uniformly, a narrow fingered flow forms under the top layer of water-saturated soil. This rain water channelization phenomenon not only further reduces the available rain water in the plant root zone, but also affects the efficiency of soil additives, such as superabsorbent hydrogel particles. Our studies show that the shape of the retained water curve for a soil packing with hydrogel particle additives strongly depends on the location and the concentration of the hydrogel particles in the model sandy soil. By carefully choosing the particle size and distribution methods, we may use the swollen hydrogel particles to modify the soil pore structure, to clog or extend the water channels in sandy soils, or to build water reservoirs in the plant root zone.
NASA Astrophysics Data System (ADS)
Bielefeldt, Brent R.; Benzerga, A. Amine; Hartl, Darren J.
2016-04-01
The ability to monitor and predict the structural health of an aircraft is of growing importance to the aerospace industry. Currently, structural inspections and maintenance are based upon experiences with similar aircraft operating in similar conditions. While effective, these methods are time-intensive and unnecessary if the aircraft is not in danger of structural failure. It is imagined that future aircraft will utilize non-destructive evaluation methods, allowing for the near real-time monitoring of structural health. A particularly interesting method involves utilizing the unique transformation response of shape memory alloy (SMA) particles embedded in an aircraft structure. By detecting changes in the mechanical and/or electromagnetic responses of embedded particles, operators could detect the formation or propagation of fatigue cracks in the vicinity of these particles. This work focuses on a finite element model of SMA particles embedded in an aircraft wing using a substructure modeling approach in which degrees of freedom are retained only at specified points of connection to other parts or the application of boundary conditions, greatly reducing computational cost. Previous work evaluated isolated particle response to a static crack to numerically demonstrate and validate this damage detection method. This paper presents the implementation of a damage model to account for crack propagation and examine for the first time the effect of particle configuration and/or relative placement with respect to the ability to detect damage.
Particle Acceleration at Oblique CME-driven Shock Using Improved PATH Model
NASA Astrophysics Data System (ADS)
Hu, J.; Li, G.; Parker, L. N.; Zank, G. P.
2015-12-01
.Gradual solar energetic particle (SEP) events are generally accepted to be caused by particle acceleration at coronal mass ejection(CME)-driven shocks. In this work we improved the PATH(Particle Acceleration and Transport in the Heliosphere) model by initiating a 2D CME-driven shock to investigate particle acceleration at different locations of an oblique CME-drive shock, where the shock has different obliquity angle(θBN). Thus we can study problems like whether quasi-perpendicular or quasi-parallel shock is more efficient in particle acceleration.The PATH model is based on the diffusive shock acceleration mechanism. The core of the model consists of a 3D Zeus module, which computes numerically the background solar wind and the CME-drive shock as inputs; and a shell module where the convection and diffusion of accelerated particles within the shock complex are followed. The 2D CME-driven shock is generated by perturbing the boundary condition of a steady background solar wind in certain patterns.
METHODS FOR MODELING PARTICLE DEPOSITION AS A FUNCTION OF AGE. (R827352C004)
The purpose of this paper is to review the application of mathematical models of inhaled particle deposition to people of various ages. The basic considerations of aerosol physics, biological characteristics and model structure are presented along with limitations inherent in ...
Numerical Modeling of an RF Argon-Silane Plasma with Dust Particle Nucleation and Growth
NASA Astrophysics Data System (ADS)
Girshick, Steven; Agarwal, Pulkit
2012-10-01
We have developed a 1-D numerical model of an RF argon-silane plasma in which dust particles nucleate and grow. This model self-consistently couples a plasma module, a chemistry module and an aerosol module. The plasma module solves population balance equations for electrons and ions, the electron energy equation under the assumption of a Maxwellian velocity distribution, and Poisson's equation for the electric field. The chemistry module treats silane dissociation and reactions of silicon hydrides containing up to two silicon atoms. The aerosol module uses a sectional method to model particle size and charge distributions. The nucleation rate is equated to the rates of formation of anions containing two Si atoms, and a heterogeneous reaction model is used to model particle surface growth. Aerosol effects considered include particle charging, coagulation, and particle transport by neutral drag, ion drag, electric force, gravity and Brownian diffusion. Simulation results are shown for the case of a 13.56 MHz plasma at a pressure of 13 Pa and applied RF voltage of 100 V (amplitude), with flow through a showerhead electrode. These results show the strong coupling between the plasma and the spatiotemporal evolution of the nanoparticle cloud.
Particle oxidation model of synthetic FeS and sediment acid-volatile sulfide
Toro, D.M. di |; Mahony, J.D.; Gonzalez, A.M.
1996-12-01
A model is proposed for the kinetics of the oxidation of acid-volatile sulfide (AVS). It is based on a surface oxidation reaction that erodes the particle surface until the particle disappears. A monodisperse particle size distribution is assumed with a reaction rate that is proportional to the surface area remaining and a dimensional exponent that related the surface area to the particle volume. The model is fit to time course data from a number of experiments conducted using synthetic FeS at various pHs, oxygen concentrations, and ionic strengths. The reaction rate constants are modeled using a surface complexation model. It is based upon the formation of two activated surface complexes with molecular oxygen, one of which is charged. The complexation model provides a good fit to the variation of the reaction rate constant with respect to O{sub 2}, pH, temperature, and ionic strength. The dimensional exponent {nu} increases with pH from values characteristic of plates and needles to values reflecting more spherical particles, presumably due to coagulation. However the increase in {nu} with respect to O{sub 2} at high concentrations is unexplained.
Fitting complex population models by combining particle filters with Markov chain Monte Carlo.
Knape, Jonas; de Valpine, Perry
2012-02-01
We show how a recent framework combining Markov chain Monte Carlo (MCMC) with particle filters (PFMCMC) may be used to estimate population state-space models. With the purpose of utilizing the strengths of each method, PFMCMC explores hidden states by particle filters, while process and observation parameters are estimated using an MCMC algorithm. PFMCMC is exemplified by analyzing time series data on a red kangaroo (Macropus rufus) population in New South Wales, Australia, using MCMC over model parameters based on an adaptive Metropolis-Hastings algorithm. We fit three population models to these data; a density-dependent logistic diffusion model with environmental variance, an unregulated stochastic exponential growth model, and a random-walk model. Bayes factors and posterior model probabilities show that there is little support for density dependence and that the random-walk model is the most parsimonious model. The particle filter Metropolis-Hastings algorithm is a brute-force method that may be used to fit a range of complex population models. Implementation is straightforward and less involved than standard MCMC for many models, and marginal densities for model selection can be obtained with little additional effort. The cost is mainly computational, resulting in long running times that may be improved by parallelizing the algorithm.
Fitting complex population models by combining particle filters with Markov chain Monte Carlo.
Knape, Jonas; de Valpine, Perry
2012-02-01
We show how a recent framework combining Markov chain Monte Carlo (MCMC) with particle filters (PFMCMC) may be used to estimate population state-space models. With the purpose of utilizing the strengths of each method, PFMCMC explores hidden states by particle filters, while process and observation parameters are estimated using an MCMC algorithm. PFMCMC is exemplified by analyzing time series data on a red kangaroo (Macropus rufus) population in New South Wales, Australia, using MCMC over model parameters based on an adaptive Metropolis-Hastings algorithm. We fit three population models to these data; a density-dependent logistic diffusion model with environmental variance, an unregulated stochastic exponential growth model, and a random-walk model. Bayes factors and posterior model probabilities show that there is little support for density dependence and that the random-walk model is the most parsimonious model. The particle filter Metropolis-Hastings algorithm is a brute-force method that may be used to fit a range of complex population models. Implementation is straightforward and less involved than standard MCMC for many models, and marginal densities for model selection can be obtained with little additional effort. The cost is mainly computational, resulting in long running times that may be improved by parallelizing the algorithm. PMID:22624307
The effect of model fidelity on prediction of char burnout for single-particle coal combustion
McConnell, Josh; Sutherland, James C.
2016-07-09
In this study, practical simulation of industrial-scale coal combustion relies on the ability to accurately capture the dynamics of coal subprocesses while also ensuring the computational cost remains reasonable. The majority of the residence time occurs post-devolatilization, so it is of great importance that a balance between the computational efficiency and accuracy of char combustion models is carefully considered. In this work, we consider the importance of model fidelity during char combustion by comparing combinations of simple and complex gas and particle-phase chemistry models. Detailed kinetics based on the GRI 3.0 mechanism and infinitely-fast chemistry are considered in the gas-phase.more » The Char Conversion Kinetics model and nth-Order Langmuir–Hinshelwood model are considered for char consumption. For devolatilization, the Chemical Percolation and Devolatilization and Kobayashi-Sarofim models are employed. The relative importance of gasification versus oxidation reactions in air and oxyfuel environments is also examined for various coal types. Results are compared to previously published experimental data collected under laminar, single-particle conditions. Calculated particle temperature histories are strongly dependent on the choice of gas phase and char chemistry models, but only weakly dependent on the chosen devolatilization model. Particle mass calculations were found to be very sensitive to the choice of devolatilization model, but only somewhat sensitive to the choice of gas chemistry and char chemistry models. High-fidelity models for devolatilization generally resulted in particle temperature and mass calculations that were closer to experimentally observed values.« less
NASA Astrophysics Data System (ADS)
Estrada, Paul R.; Cuzzi, Jeffrey N.; Morgan, Demitri A.
2016-02-01
We model particle growth in a turbulent, viscously evolving protoplanetary nebula, incorporating sticking, bouncing, fragmentation, and mass transfer at high speeds. We treat small particles using a moments method and large particles using a traditional histogram binning, including a probability distribution function of collisional velocities. The fragmentation strength of the particles depends on their composition (icy aggregates are stronger than silicate aggregates). The particle opacity, which controls the nebula thermal structure, evolves as particles grow and mass redistributes. While growing, particles drift radially due to nebula headwind drag. Particles of different compositions evaporate at “evaporation fronts” (EFs) where the midplane temperature exceeds their respective evaporation temperatures. We track the vapor and solid phases of each component, accounting for advection and radial and vertical diffusion. We present characteristic results in evolutions lasting 2 × 105 years. In general, (1) mass is transferred from the outer to the inner nebula in significant amounts, creating radial concentrations of solids at EFs; (2) particle sizes are limited by a combination of fragmentation, bouncing, and drift; (3) “lucky” large particles never represent a significant amount of mass; and (4) restricted radial zones just outside each EF become compositionally enriched in the associated volatiles. We point out implications for millimeter to submillimeter SEDs and the inference of nebula mass, radial banding, the role of opacity on new mechanisms for generating turbulence, the enrichment of meteorites in heavy oxygen isotopes, variable and nonsolar redox conditions, the primary accretion of silicate and icy planetesimals, and the makeup of Jupiter’s core.
Ice formation on nitric acid coated dust particles: Laboratory and modeling studies
Kulkarni, Gourihar R.; Zhang, Kai; Zhao, Chun; Nandasiri, Manjula I.; Shutthanandan, V.; Liu, Xiaohong; Fast, Jerome D.; Berg, Larry K.
2015-08-16
Changes in the ice nucleation characteristics of atmospherically relevant mineral dust particles due to nitric acid coating are not well understood. Further, the atmospheric implications of dust coating on ice-cloud properties under different assumptions of primary ice nucleation mechanisms are unknown. We investigated ice nucleation ability of Arizona test dust, illite, K-feldspar and quartz as a function of temperature (-25 to -30°C) and relative humidity with respect to water (75 to 110%). Particles were size selected at 250 nm and transported (bare or coated) to the ice nucleation chamber to determine the fraction of particles nucleating ice at various temperature and water saturation conditions. All dust nucleated ice at water-subsaturated conditions, but the coated particles showed a reduction in their ice nucleation ability compared to bare particles. However, at water-supersaturated conditions, we observed that bare and coated particles had nearly similar ice nucleation characteristics. X-ray diffraction patterns indicated that structural properties of bare dust particles modified after acid treatment. We found that lattice parameters were slightly different, but crystallite sizes of the coated particles were reduced compared to bare particles. Next, single-column model results show that simulated ice crystal number concentrations mostly depends upon fraction of particles that are coated, primary ice nucleation mechanisms, and the competition between ice nucleation mechanisms to nucleate ice. In general, we observed that coating modify the ice-cloud properties and the picture of ice and mixed-phase cloud evolution is complex when different primary ice nucleation mechanisms are competing for fixed water vapor mass.
Conceptual Foundations of Soliton Versus Particle Dualities Toward a Topological Model for Matter
NASA Astrophysics Data System (ADS)
Kouneiher, Joseph
2016-06-01
The idea that fermions could be solitons was actually confirmed in theoretical models in 1975 in the case when the space-time is two-dimensional and with the sine-Gordon model. More precisely S. Coleman showed that two different classical models end up describing the same fermions particle, when the quantum theory is constructed. But in one model the fermion is a quantum excitation of the field and in the other model the particle is a soliton. Hence both points of view can be reconciliated.The principal aim in this paper is to exhibit a solutions of topological type for the fermions in the wave zone, where the equations of motion are non-linear field equations, i.e. using a model generalizing sine- Gordon model to four dimensions, and describe the solutions for linear and circular polarized waves. In other words, the paper treat fermions as topological excitations of a bosonic field.
Modeling nitrogen transport and transformation in aquifers using a particle-tracking approach
NASA Astrophysics Data System (ADS)
Cui, Zhengtao; Welty, Claire; Maxwell, Reed M.
2014-09-01
We have integrated multispecies biodegradation and geochemical reactions into an existing particle-tracking code to simulate reactive transport in three-dimensional variably saturated media, with a focus on nitrification and denitrification processes. This new numerical model includes reactive air-phase transport so that gases such as N2 and CO2 can be tracked. Although nitrogen biodegradation is the primary problem addressed here, the method presented is also applicable to other reactive multispecies transport problems. We verified the model by comparison with (1) analytical solutions for saturated one- and two-dimensional cases; (2) a finite element model for a one-dimensional unsaturated case; and (3) laboratory observations for a one-dimensional saturated case. Good agreement between the new code and the verification problems is demonstrated. The new model can simulate nitrogen transport and transformation in a heterogeneous permeability field where sharp concentration gradients are present. An example application to nitrogen species biodegradation and transport of a plume emanating from a leaking sewer in a heterogeneous, variably saturated aquifer is presented to illustrate this capability. This example is a novel application of coupling unsaturated/saturated zone transport with nitrogen species biodegradation. The code has the computational advantages of particle-tracking algorithms, including local and global mass conservation and minimal numerical dispersion. We also present new methods for improving particle code efficiency by implementing the concept of tracking surplus/deficit particles and particle recycling in order to control the growth of particle numbers. The new model retains the advantages of the particle tracking approach such as allowing relatively low spatial and temporal resolutions to be used, while incorporating the robustness of grid-based Monod kinetics to simulate biogeochemical reactions.
Fine particle receptor modeling in the atmosphere of Mexico City.
Vega, Elizabeth; Lowenthal, Douglas; Ruiz, Hugo; Reyes, Elizabeth; Watson, John G; Chow, Judith C; Viana, Mar; Querol, Xavier; Alastuey, Andrés
2009-12-01
Source apportionment analyses were carried out by means of receptor modeling techniques to determine the contribution of major fine particulate matter (PM2.5) sources found at six sites in Mexico City. Thirty-six source profiles were determined within Mexico City to establish the fingerprints of particulate matter sources. Additionally, the profiles under the same source category were averaged using cluster analysis and the fingerprints of 10 sources were included. Before application of the chemical mass balance (CMB), several tests were carried out to determine the best combination of source profiles and species used for the fitting. CMB results showed significant spatial variations in source contributions among the six sites that are influenced by local soil types and land use. On average, 24-hr PM2.5 concentrations were dominated by mobile source emissions (45%), followed by secondary inorganic aerosols (16%) and geological material (17%). Industrial emissions representing oil combustion and incineration contributed less than 5%, and their contribution was higher at the industrial areas of Tlalnepantla (11%) and Xalostoc (8%). Other sources such as cooking, biomass burning, and oil fuel combustion were identified at lower levels. A second receptor model (principal component analysis, [PCA]) was subsequently applied to three of the monitoring sites for comparison purposes. Although differences were obtained between source contributions, results evidence the advantages of the combined use of different receptor modeling techniques for source apportionment, given the complementary nature of their results. Further research is needed in this direction to reach a better agreement between the estimated source contributions to the particulate matter mass.
Discrete Element Modeling (DEM) of Triboelectrically Charged Particles: Revised Experiments
NASA Technical Reports Server (NTRS)
Hogue, Michael D.; Calle, Carlos I.; Curry, D. R.; Weitzman, P. S.
2008-01-01
In a previous work, the addition of basic screened Coulombic electrostatic forces to an existing commercial discrete element modeling (DEM) software was reported. Triboelectric experiments were performed to charge glass spheres rolling on inclined planes of various materials. Charge generation constants and the Q/m ratios for the test materials were calculated from the experimental data and compared to the simulation output of the DEM software. In this paper, we will discuss new values of the charge generation constants calculated from improved experimental procedures and data. Also, planned work to include dielectrophoretic, Van der Waals forces, and advanced mechanical forces into the software will be discussed.
Shear-driven particle size segregation: Models, analysis, numerical solutions, and experiments
NASA Astrophysics Data System (ADS)
May, Lindsay Bard Hilbert
Granular materials segregate by particle size when subject to shear, as in avalanches. Particles roll and slide across one another, and other particles fall into the voids that form, with smaller particles more likely to fit than larger particles. Small particles segregate to the bottom of the sample, and larger particles are levered upward. These processes are known as kinetic sieving and squeeze expulsion. The evolution of the volume fraction of small particles (ratio of the volume of small particles to the total volume of the system) corresponds to the evolution of segregation in a binary mixture of particles and can be modeled by a nonlinear first order partial differential equation, provided the velocity or shear is a known function of position. In an avalanche, shear is approximately uniform in depth, however, in boundary driven shear, the velocity is nonlinear and a shear band forms adjacent to the boundary. We explore size segregation with a laboratory experiment and by analyzing a model. We classify solutions to a fundamental initial boundary value problem for avalanche flow in two space dimensions akin to a two dimensional Riemann problem. We describe three solution types; the initial condition determines which solution occurs. We also modify the partial differential equation to model segregation in a system experiencing nonuniform shear. We experimentally investigate size segregation using an annular Couette cell, which is constructed of concentric cylinders and has a moving lower boundary that imparts shear to the system and an upper confining boundary that is free to move vertically to accommodate changes in the volume of the system. Initially, the Couette cell contains a layer of large particles below a layer of small particles. The system dilates as shear begins, then contracts as the sample mixes, and again expands as the sample resegregates; the height of the system is prescribed by the amount of mixing or segregation. At the end of the experiment
NASA Astrophysics Data System (ADS)
Eslami, Ghiyam; Esmaeilzadeh, Esmaeil; Pérez, Alberto T.
2016-10-01
Up and down motion of a spherical conductive particle in dielectric viscous fluid driven by a DC electric field between two parallel electrodes was investigated. A nonlinear differential equation, governing the particle dynamics, was derived, based on Newton's second law of mechanics, and solved numerically. All the pertaining dimensionless groups were extracted. In contrast to similar previous works, hydrodynamic interaction between the particle and the electrodes, as well as image electric forces, has been taken into account. Furthermore, the influence of the microdischarge produced between the electrodes and the approaching particle on the particle dynamics has been included in the model. The model results were compared with experimental data available in the literature, as well as with some additional experimental data obtained through the present study showing very good agreement. The results indicate that the wall hydrodynamic effect and the dielectric liquid ionic conductivity are very dominant factors determining the particle trajectory. A lower bound is derived for the charge transferred to the particle while rebounding from an electrode. It is found that the time and length scales of the post-microdischarge motion of the particle can be as small as microsecond and micrometer, respectively. The model is able to predict the so called settling/dwelling time phenomenon for the first time.
Multi-Tethered Space-Based Interferometers: Particle System Model
NASA Technical Reports Server (NTRS)
Gates, Stephen S.
2001-01-01
Dynamics models are presented for a class of space-based interferometers comprised of multiple component bodies, interconnected in various arrangements, by low-mass flexible tethers of variable length. The tethered constellations are to perform coordinated rotational scanning accompanied by baseline dimensional changes, as well as spin axis realignments and spin-up/spin-down maneuvers. The mechanical idealization is a system of N point masses interconnected by massless tethers of variable length. Both extensible and inextensible tethers are considered. Expressions for system angular and linear momenta are developed. The unrestricted nonlinear motion equations are derived via Lagranges equations. Rheonomic constraints are introduced to allow prescribed motion of any degrees of freedom, and the associated physical forces are determined. The linearized equations of motion are obtained for the steady rotation of a system with extensible tethers of constant unstrained length.
Why Do We Believe that an Atom Is Colourless? Reflections about the Teaching of the Particle Model.
ERIC Educational Resources Information Center
Albanese, Alessandro; Vicentini, Matilde
1997-01-01
Highlights students' ideas about the particle model of matter and its use. Discusses the atomic model in teaching and the rules of the particle modeling game. Demonstrates how a complete understanding of the rules of the model construction yields guidelines for didactic practice. Focuses on problems connected with visual communication through…
New Particle Formation in the High Arctic: Observations and Model Simulations
NASA Astrophysics Data System (ADS)
Karl, Matthias; Gross, Allan; Pirjola, Liisa; Leck, Caroline
2010-05-01
The central Arctic Ocean is an oceanic region far away from sources of anthropogenic sulphur gases. In summer, the region is nearly free from influences of continental or anthropogenic sources. It is generally accepted that the most likely nucleating species under tropospheric conditions are sulphuric acid (H2SO4), water (H2O), and ammonia (NH3). The formation of sulphate particles often takes place in environments where the available aerosol surface area is low and the condensational loss of nucleating vapours is not favoured. New sulphate particles may also be formed in plumes originating from point sources such as power plants or smelters. The classical homogeneous binary H2SO4-H2O nucleation mechanism could be operational in plumes containing high concentrations of sulphur dioxide (SO2). Marine particles are probably formed via a different nucleation route than the pollution-associated particles. There have been earlier model studies on the fate of sulphur-containing gas phase and particle compounds during the advection of air from the open sea over the pack ice area of the central Arctic Ocean. However, no previous attempts have been made to simulate observed new particle formation. Comprehensive observation data on gas phase compounds and on chemical composition and size distribution of particles used in this study were obtained during the Arctic Ocean Expedition (AOE-96) to the central Arctic Ocean from beginning of July until end-August of 1996. A sectional aerosol dynamics model, MAFOR, is developed in the frame of this study to predict nucleation in the marine boundary layer. MAFOR includes gas phase chemistry and aerosol dynamics and calculates number and composition distributions of particles as functions of time. Comparison with a well-documented existing aerosol box model (MONO32) and with observational data is used to evaluate the model. Several nucleation mechanisms are implemented in the model. Among the nucleation schemes are the commonly used
Nye, Ben; Kulchitsky, Anton V; Johnson, Jerome B
2014-01-01
This paper describes a new method for representing concave polyhedral particles in a discrete element method as unions of convex dilated polyhedra. This method offers an efficient way to simulate systems with a large number of (generally concave) polyhedral particles. The method also allows spheres, capsules, and dilated triangles to be combined with polyhedra using the same approach. The computational efficiency of the method is tested in two different simulation setups using different efficiency metrics for seven particle types: spheres, clusters of three spheres, clusters of four spheres, tetrahedra, cubes, unions of two octahedra (concave), and a model of a computer tomography scan of a lunar simulant GRC-3 particle. It is shown that the computational efficiency of the simulations degrades much slower than the increase in complexity of the particles in the system. The efficiency of the method is based on the time coherence of the system, and an efficient and robust distance computation method between polyhedra as particles never intersect for dilated particles. PMID:26300584
Modeling and Simulation of Cardiogenic Embolic Particle Transport to the Brain
NASA Astrophysics Data System (ADS)
Mukherjee, Debanjan; Jani, Neel; Shadden, Shawn C.
2015-11-01
Emboli are aggregates of cells, proteins, or fatty material, which travel along arteries distal to the point of their origin, and can potentially block blood flow to the brain, causing stroke. This is a prominent mechanism of stroke, accounting for about a third of all cases, with the heart being a prominent source of these emboli. This work presents our investigations towards developing numerical simulation frameworks for modeling the transport of embolic particles originating from the heart along the major arteries supplying the brain. The simulations are based on combining discrete particle method with image based computational fluid dynamics. Simulations of unsteady, pulsatile hemodynamics, and embolic particle transport within patient-specific geometries, with physiological boundary conditions, are presented. The analysis is focused on elucidating the distribution of particles, transport of particles in the head across the major cerebral arteries connected at the Circle of Willis, the role of hemodynamic variables on the particle trajectories, and the effect of considering one-way vs. two-way coupling methods for the particle-fluid momentum exchange. These investigations are aimed at advancing our understanding of embolic stroke using computational fluid dynamics techniques. This research was supported by the American Heart Association grant titled ``Embolic Stroke: Anatomic and Physiologic Insights from Image-Based CFD.''
A new approach for fluid dynamics simulation: The Short-lived Water Cuboid Particle model
NASA Astrophysics Data System (ADS)
Qiao, Changjian; Li, Jiansong; Tian, Zongshun
2016-09-01
There are many researches to simulate the fluid which adopt the traditional particle-based approach and the grid-based approach. However, it needs massive storage in the traditional particle-based approach and it is very complicated to design the grid-based approach with the Navier-Stokes Equations or the Shallow Water Equations (SWEs) because of the difficulty of solving equations. This paper presents a new model called the Short-lived Water Cuboid Particle model. It updates the fluid properties (mass and momentum) recorded in the fixed Cartesian grids by computing the weighted sum of the water cuboid particles with a time step life. Thus it is a two-type-based approach essentially, which not only owns efficient computation and manageable memory like the grid-based approach, but also deals with the discontinuous water surface (wet/dry fronts, boundary conditions, etc.) with high accuracy as well as the particle-based approach. The proposed model has been found capable to simulate the fluid excellently for three laboratory experimental cases and for the field case study of the Malpasset dam-break event occurred in France in 1959. The obtained results show that the model is proved to be an alternative approach to simulate the fluid dynamics with a fair accuracy.
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Cucinotta, Francis A.; Zeitlin, Cary; Hassler, Donald M.; Ehresmann, Bent; Rafkin, Scot C. R.; Wimmer-Schweingruber, Robert F.; Boettcher, Stephan; Boehm, Eckart; Guo, Jingnan; Koehler, Jan; Martin, Cesar; Reitz, Guenther; Posner, Arik
2014-01-01
Detailed measurements of the energetic particle radiation environment on the surface of Mars have been made by the Radiation Assessment Detector (RAD) on the Curiosity rover since August 2012. RAD is a particle detector that measures the energy spectrum of charged particles (10 to approx. 200 MeV/u) and high energy neutrons (approx 8 to 200 MeV). The data obtained on the surface of Mars for 300 sols are compared to the simulation results using the Badhwar-O'Neill galactic cosmic ray (GCR) environment model and the high-charge and energy transport (HZETRN) code. For the nuclear interactions of primary GCR through Mars atmosphere and Curiosity rover, the quantum multiple scattering theory of nuclear fragmentation (QMSFRG) is used. For describing the daily column depth of atmosphere, daily atmospheric pressure measurements at Gale Crater by the MSL Rover Environmental Monitoring Station (REMS) are implemented into transport calculations. Particle flux at RAD after traversing varying depths of atmosphere depends on the slant angles, and the model accounts for shielding of the RAD "E" dosimetry detector by the rest of the instrument. Detailed comparisons between model predictions and spectral data of various particle types provide the validation of radiation transport models, and suggest that future radiation environments on Mars can be predicted accurately. These contributions lend support to the understanding of radiation health risks to astronauts for the planning of various mission scenarios
Model simulations of particle aggregation effect on colloid exchange between streams and streambeds.
Areepitak, Trachu; Ren, Jianhong
2011-07-01
Colloids found in natural streams have large reactive surface areas, which makes them significant absorbents and carriers for pollutants. Stream-subsurface exchange plays a critical role in regulating the transport of colloids and contaminants in natural streams. Previous process-based multiphase exchange models were developed without consideration of colloid-colloid interaction. However, many studies have indicated that aggregation is a significant process and needs to be considered in stream process analysis. Herein, a new colloid exchange model was developed by including particle aggregation in addition to colloid settling and filtration. Self-preserving size distribution concepts and classical aggregation theory were employed to model the aggregation process. Model simulations indicate that under conditions of low filtration and high degree of particle-particle interaction, aggregation could either decrease or increase the amount of colloids retained in streambeds, depending on the initial particle size. Thus, two possible cases may occur including enhanced colloid deposition and facilitated colloid transport. Also, when the aggregation rate is high and filtration increases, more particles are retained by bed sediments due to filtration, and fewer are aggregated, which reduces the extent of aggregation effect on colloid deposition. The work presented here will contribute to a better understanding and prediction of colloid transport phenomena in natural streams.
An in vitro model of mesenchymal stem cell targeting using magnetic particle labelling.
El Haj, Alicia J; Glossop, John R; Sura, Harpal S; Lees, Martin R; Hu, Bin; Wolbank, Susanne; van Griensven, Martijn; Redl, Heinz; Dobson, Jon
2015-06-01
The specific targeting of cells to sites of tissue damage in vivo is a major challenge precluding the success of stem cell-based therapies. Magnetic particle-based targeting may provide a solution. Our aim was to provide a model system to study the trapping and potential targeting of human mesenchymal stem cells (MSCs) during in vitro fluid flow, which ultimately will inform cell targeting in vivo. In this system magnet arrays were used to trap superparamagnetic iron oxide particle-doped MSCs. The in vitro experiments demonstrated successful cell trapping, where the volume of cells trapped increased with magnetic particle concentration and decreased with increasing flow rate. Analysis of gene expression revealed significant increases in COL1A2 and SOX9. Using principles established in vitro, a proof-of-concept in vivo experiment demonstrated that magnetic particle-doped, luciferase-expressing MSCs were trapped by an implanted magnet in a subcutaneous wound model in nude mice. Our results demonstrate the effectiveness of using an in vitro model for testing superparamagnetic iron oxide particles to develop successful MSC targeting strategies during fluid flow, which ultimately can be translated to in vivo targeted delivery of cells via the circulation in a variety of tissue-repair models.
An accurate and efficient Lagrangian sub-grid model for multi-particle dispersion
NASA Astrophysics Data System (ADS)
Toschi, Federico; Mazzitelli, Irene; Lanotte, Alessandra S.
2014-11-01
Many natural and industrial processes involve the dispersion of particle in turbulent flows. Despite recent theoretical progresses in the understanding of particle dynamics in simple turbulent flows, complex geometries often call for numerical approaches based on eulerian Large Eddy Simulation (LES). One important issue related to the Lagrangian integration of tracers in under-resolved velocity fields is connected to the lack of spatial correlations at unresolved scales. Here we propose a computationally efficient Lagrangian model for the sub-grid velocity of tracers dispersed in statistically homogeneous and isotropic turbulent flows. The model incorporates the multi-scale nature of turbulent temporal and spatial correlations that are essential to correctly reproduce the dynamics of multi-particle dispersion. The new model is able to describe the Lagrangian temporal and spatial correlations in clouds of particles. In particular we show that pairs and tetrads dispersion compare well with results from Direct Numerical Simulations of statistically isotropic and homogeneous 3d turbulence. This model may offer an accurate and efficient way to describe multi-particle dispersion in under resolved turbulent velocity fields such as the one employed in eulerian LES. This work is part of the research programmes FP112 of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO). We acknowledge support from the EU COST Action MP0806.
Model simulations of particle aggregation effect on colloid exchange between streams and streambeds.
Areepitak, Trachu; Ren, Jianhong
2011-07-01
Colloids found in natural streams have large reactive surface areas, which makes them significant absorbents and carriers for pollutants. Stream-subsurface exchange plays a critical role in regulating the transport of colloids and contaminants in natural streams. Previous process-based multiphase exchange models were developed without consideration of colloid-colloid interaction. However, many studies have indicated that aggregation is a significant process and needs to be considered in stream process analysis. Herein, a new colloid exchange model was developed by including particle aggregation in addition to colloid settling and filtration. Self-preserving size distribution concepts and classical aggregation theory were employed to model the aggregation process. Model simulations indicate that under conditions of low filtration and high degree of particle-particle interaction, aggregation could either decrease or increase the amount of colloids retained in streambeds, depending on the initial particle size. Thus, two possible cases may occur including enhanced colloid deposition and facilitated colloid transport. Also, when the aggregation rate is high and filtration increases, more particles are retained by bed sediments due to filtration, and fewer are aggregated, which reduces the extent of aggregation effect on colloid deposition. The work presented here will contribute to a better understanding and prediction of colloid transport phenomena in natural streams. PMID:21627165
NASA Astrophysics Data System (ADS)
Dellino, Pierfrancesco; Büttner, Ralf; Dioguardi, Fabio; Doronzo, Domenico Maria; La Volpe, Luigi; Mele, Daniela; Sonder, Ingo; Sulpizio, Roberto; Zimanowski, Bernd
2010-05-01
Pyroclastic flows are ground hugging, hot, gas-particle flows. They represent the most hazardous events of explosive volcanism, one striking example being the famous historical eruption of Pompeii (AD 79) at Vesuvius. Much of our knowledge on the mechanics of pyroclastic flows comes from theoretical models and numerical simulations. Valuable data are also stored in the geological record of past eruptions, i.e. the particles contained in pyroclastic deposits, but they are rarely used for quantifying the destructive potential of pyroclastic flows. In this paper, by means of experiments, we validate a model that is based on data from pyroclastic deposits. It allows the reconstruction of the current's fluid-dynamic behaviour. We show that our model results in likely values of dynamic pressure and particle volumetric concentration, and allows quantifying the hazard potential of pyroclastic flows.
NASA Astrophysics Data System (ADS)
Mauk, Barry H.; Cohen, Ian J.; Westlake, Joseph H.; Anderson, Brian J.
2016-05-01
A longstanding puzzle is that the escape of magnetospheric energetic particles (greater than tens of keV) across Earth's magnetopause into the magnetosheath is common irrespective of conditions thought to engender magnetic reconnection and boundary normal magnetic fields. Multiple causes for escape have been invoked, including interactions with strong gradients, wave scattering, boundary dynamics, and boundary normal fields. Here we tackle only part of the problem by developing a relatively simple kinetic model including critical features not utilized in previous models. We find that particles can often completely escape without invoking waves or unmodeled magnetosheath structures for both northwardly and southwardly magnetosheath fields. Because multiple means of escape are found to be available, the particles are hard to completely contain, consistent with observations. The model also predicts specific pitch angle evolution signatures that uniquely identify boundary normal field-enabled escape, now reported in a companion paper as observed by the Magnetospheric Multiscale (MMS) mission.
Friction Process in the Presence of Hard Abrasive Particles — Cooperation Model
NASA Astrophysics Data System (ADS)
Oleksowicz, Selim; Mruk, Andrzej
The paper presents the results of the investigation performed on a stand for model testing of the friction pair like a car disc brake. The tests were performed for the mating operation of a frictional node with the dosage of hard abrasive particles into the friction zone. Based on the observation of the phenomena in the friction zone and the analysis of the parameters describing operating conditions of a frictional node, physical models of the frictional node cooperation in the presence of hard abrasive particles have been proposed. During the tests, using the transparent material of a friction cover plate and a fast recording camera, a visual analysis of the material transfer in the friction zone was done. It allowed to positively verifying the proposed physical models of the frictional node cooperation in the presence of hard abrasive particles.
Diphoton excess at 750 GeV and LHC constraints in models with vectorlike particles
NASA Astrophysics Data System (ADS)
Kawamura, Junichiro; Omura, Yuji
2016-06-01
Recently, the ATLAS and CMS collaborations report excesses around 750 GeV in the diphoton channels. This might be the evidence which reveals new physics beyond the Standard Model. In this paper, we consider models with a 750 GeV scalar and vectorlike particles, which couple each other through Yukawa couplings. The decay of the scalar to diphoton is given by the loop diagrams involving the extra colored particles. We investigate not only the setup required by the excesses, but also the LHC constraints, especially concerned with the vectorlike particles. In our scenario, the extra colored particles decay to quarks and a dark matter (DM) via Yukawa couplings. Then, the signals from the vectorlike particles are dijet, b b ¯ and/or t t ¯ with large missing energy. We discuss two possibilities for the setups: One is a model with vectorlike fermions and a scalar DM, and the other is a model with vectorlike scalars and a fermionic DM. We suggest the parameter region favored by the excess in each case, and study the constraints based on the latest LHC results at √{s }=8 TeV and 13 TeV. We conclude that the favored region is almost excluded by the LHC bounds, especially when the 750 GeV scalar dominantly decays to DMs. The mass differences between the vectorlike particles and the DM should be less than O (100 ) GeV [O (10 ) GeV ] to realize the large diphoton signal and the large decay width, if the extra colored particle only decays to a top (bottom) quark and a dark matter. Otherwise, these scenarios are already excluded by the latest LHC results.
Modeling Gas-Particle Partitioning of SOA: Effects of Aerosol Physical State and RH
NASA Astrophysics Data System (ADS)
Zuend, A.; Seinfeld, J.
2011-12-01
Aged tropospheric aerosol particles contain mixtures of inorganic salts, acids, water, and a large variety of organic compounds. In liquid aerosol particles non-ideal mixing of all species determines whether the condensed phase undergoes liquid-liquid phase separation or whether it is stable in a single mixed phase, and whether it contains solid salts in equilibrium with their saturated solution. The extended thermodynamic model AIOMFAC is able to predict such phase states by representing the variety of organic components using functional groups within a group-contribution concept. The number and composition of different condensed phases impacts the diversity of reaction media for multiphase chemistry and the gas-particle partitioning of semivolatile species. Recent studies show that under certain conditions biogenic and other organic-rich particles can be present in a highly viscous, semisolid or amorphous solid physical state, with consequences regarding reaction kinetics and mass transfer limitations. We present results of new gas-particle partitioning computations for aerosol chamber data using a model based on AIOMFAC activity coefficients and state-of-the-art vapor pressure estimation methods. Different environmental conditions in terms of temperature, relative humidity (RH), salt content, amount of precursor VOCs, and physical state of the particles are considered. We show how modifications of absorptive and adsorptive gas-particle mass transfer affects the total aerosol mass in the calculations and how the results of these modeling approaches compare to data of aerosol chamber experiments, such as alpha-pinene oxidation SOA. For a condensed phase in a mixed liquid state containing ammonium sulfate, the model predicts liquid-liquid phase separation up to high RH in case of, on average, moderately hydrophilic organic compounds, such as first generation oxidation products of alpha-pinene. The computations also reveal that treating liquid phases as ideal
Exact hybrid particle/population simulation of rule-based models of biochemical systems.
Hogg, Justin S; Harris, Leonard A; Stover, Lori J; Nair, Niketh S; Faeder, James R
2014-04-01
Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings
User guide for MODPATH version 6 - A particle-tracking model for MODFLOW
Pollock, David W.
2012-01-01
MODPATH is a particle-tracking post-processing model that computes three-dimensional flow paths using output from groundwater flow simulations based on MODFLOW, the U.S. Geological Survey (USGS) finite-difference groundwater flow model. This report documents MODPATH version 6. Previous versions were documented in USGS Open-File Reports 89-381 and 94-464. The program uses a semianalytical particle-tracking scheme that allows an analytical expression of a particle's flow path to be obtained within each finite-difference grid cell. A particle's path is computed by tracking the particle from one cell to the next until it reaches a boundary, an internal sink/source, or satisfies another termination criterion. Data input to MODPATH consists of a combination of MODFLOW input data files, MODFLOW head and flow output files, and other input files specific to MODPATH. Output from MODPATH consists of several output files, including a number of particle coordinate output files intended to serve as input data for other programs that process, analyze, and display the results in various ways. MODPATH is written in FORTRAN and can be compiled by any FORTRAN compiler that fully supports FORTRAN-2003 or by most commercially available FORTRAN-95 compilers that support the major FORTRAN-2003 language extensions.
NASA Astrophysics Data System (ADS)
Cheung, C. S.; Cao, Y. H.; Yan, Z. D.
2005-05-01
A simulation model for electret filter made of split type fibers has been developed to study the filtration efficiency as well as the particle loading process. The filter was assumed to be composed of rectangular fibers arranged in staggered array in which the flow field, the electrostatic field and the collection mechanisms were determined by numerical simulation. Single fiber efficiencies under various filtration conditions were calculated and compared with results obtained from semi-empirical expressions derived from experimental results. Influences of particle charge, fiber charge and orientation of fiber on the collection efficiency were evaluated. Finally the particle loading process was studied using the present model. Dendrite growth of particles in equilibrium charge state was simulated. The mechanical efficiency compensation effect was studied by a series of simulations. It is found that the loading of 1.5 μm or larger particles has a significant mechanical collection compensation to the loss in electrostatic efficiency; while for 0.4 μm particles such compensation is slow and insignificant.
Fabbri, Dario; Long, Quan; Das, Saroj; Pinelli, Michele
2014-04-01
Ischaemic stroke is responsible for up to 80% of stroke cases. Prevention of the reoccurrence of ischaemic attack or stroke for patients who survived the first symptoms is the major treatment target. Accurate diagnosis of the emboli source for a specific infarction lesion is very important for a better treatment for the patient. However, due to the complex blood flow patterns in the cerebral arterial network, little is known so far of the embolic particle flow trajectory and its behaviour in such a complex flow field. The present study aims to study the trajectories of embolic particles released from carotid arteries and basilar artery in a cerebral arterial network and the influence of particle size, mass and release location to the particle distributions, by computational modelling. The cerebral arterial network model, which includes major arteries in the circle of Willis and several generations of branches from them, was generated from MRI images. Particles with diameters of 200, 500 and 800 μm and densities of 800, 1,030 and 1,300 kg/m(3) were released in the vessel's central and near-wall regions. A fully coupled scheme of particle and blood flow in a computational fluid dynamics software ANASYS CFX 13 was used in the simulations. The results show that heavy particles (density large than blood or a diameter larger than 500 μm) normally have small travel speeds in arteries; larger or lighter embolic particles are more likely to travel to large branches in cerebral arteries. In certain cases, all large particles go to the middle cerebral arteries; large particles with higher travel speeds in large arteries are likely to travel at more complex and tortuous trajectories; emboli raised from the basilar artery will only exit the model from branches of basilar artery and posterior cerebral arteries. A modified Circle of Willis configuration can have significant influence on particle distributions. The local branch patterns of internal carotid artery to middle
Modeling Extreme Solar Energetic Particle Acceleration with Self-Consistent Wave Generation
NASA Astrophysics Data System (ADS)
Arthur, A. D.; le Roux, J. A.
2015-12-01
Observations of extreme solar energetic particle (SEP) events associated with coronal mass ejection driven shocks have detected particle energies up to a few GeV at 1 AU within the first ~10 minutes to 1 hour of shock acceleration. Whether or not acceleration by a single shock is sufficient in these events or if some combination of multiple shocks or solar flares is required is currently not well understood. Furthermore, the observed onset times of the extreme SEP events place the shock in the corona when the particles escape upstream. We have updated our focused transport theory model that has successfully been applied to the termination shock and traveling interplanetary shocks in the past to investigate extreme SEP acceleration in the solar corona. This model solves the time-dependent Focused Transport Equation including particle preheating due to the cross shock electric field and the divergence, adiabatic compression, and acceleration of the solar wind flow. Diffusive shock acceleration of SEPs is included via the first-order Fermi mechanism for parallel shocks. To investigate the effects of the solar corona on the acceleration of SEPs, we have included an empirical model for the plasma number density, temperature, and velocity. The shock acceleration process becomes highly time-dependent due to the rapid variation of these coronal properties with heliocentric distance. Additionally, particle interaction with MHD wave turbulence is modeled in terms of gyroresonant interactions with parallel propagating Alfven waves. However, previous modeling efforts suggest that the background amplitude of the solar wind turbulence is not sufficient to accelerate SEPs to extreme energies over the short time scales observed. To account for this, we have included the transport and self-consistent amplification of MHD waves by the SEPs through wave-particle gyroresonance. We will present the results of this extended model for a single fast quasi-parallel CME driven shock in the
Barclay, Thomas G; Rajapaksha, Harinda; Thilagam, Alagu; Qian, Gujie; Ginic-Markovic, Milena; Cooper, Peter D; Gerson, Andrea; Petrovsky, Nikolai
2016-06-01
This study combined physical data from synchrotron SAXS, FTIR and microscopy with in-silico molecular structure predictions and mathematical modeling to examine inulin adjuvant particle formation and structure. The results show that inulin polymer chains adopt swollen random coil in solution. As precipitation occurs from solution, interactions between the glucose end group of one chain and a fructose group of an adjacent chain help drive organized assembly, initially forming inulin ribbons with helical organization of the chains orthogonal to the long-axis of the ribbon. Subsequent aggregation of the ribbons results in the layered semicrystalline particles previously shown to act as potent vaccine adjuvants. γ-Inulin adjuvant particles consist of crystalline layers 8.5 nm thick comprising helically organized inulin chains orthogonal to the plane of the layer. These crystalline layers alternate with amorphous layers 2.4 nm thick, to give overall particle crystallinity of 78%. PMID:27083349
Barclay, Thomas G; Rajapaksha, Harinda; Thilagam, Alagu; Qian, Gujie; Ginic-Markovic, Milena; Cooper, Peter D; Gerson, Andrea; Petrovsky, Nikolai
2016-06-01
This study combined physical data from synchrotron SAXS, FTIR and microscopy with in-silico molecular structure predictions and mathematical modeling to examine inulin adjuvant particle formation and structure. The results show that inulin polymer chains adopt swollen random coil in solution. As precipitation occurs from solution, interactions between the glucose end group of one chain and a fructose group of an adjacent chain help drive organized assembly, initially forming inulin ribbons with helical organization of the chains orthogonal to the long-axis of the ribbon. Subsequent aggregation of the ribbons results in the layered semicrystalline particles previously shown to act as potent vaccine adjuvants. γ-Inulin adjuvant particles consist of crystalline layers 8.5 nm thick comprising helically organized inulin chains orthogonal to the plane of the layer. These crystalline layers alternate with amorphous layers 2.4 nm thick, to give overall particle crystallinity of 78%.
Particle filtering with path sampling and an application to a bimodal ocean current model
Weare, Jonathan
2009-07-01
This paper introduces a recursive particle filtering algorithm designed to filter high dimensional systems with complicated non-linear and non-Gaussian effects. The method incorporates a parallel marginalization (PMMC) step in conjunction with the hybrid Monte Carlo (HMC) scheme to improve samples generated by standard particle filters. Parallel marginalization is an efficient Markov chain Monte Carlo (MCMC) strategy that uses lower dimensional approximate marginal distributions of the target distribution to accelerate equilibration. As a validation the algorithm is tested on a 2516 dimensional, bimodal, stochastic model motivated by the Kuroshio current that runs along the Japanese coast. The results of this test indicate that the method is an attractive alternative for problems that require the generality of a particle filter but have been inaccessible due to the limitations of standard particle filtering strategies.
Ion-acoustic shocks with reflected ions: modelling and particle-in-cell simulations
NASA Astrophysics Data System (ADS)
Liseykina, T. V.; Dudnikova, G. I.; Vshivkov, V. A.; Malkov, M. A.
2015-10-01
> Non-relativistic collisionless shock waves are widespread in space and astrophysical plasmas and are known as efficient particle accelerators. However, our understanding of collisionless shocks, including their structure and the mechanisms whereby they accelerate particles, remains incomplete. We present here the results of numerical modelling of an ion-acoustic collisionless shock based on the one-dimensional kinetic approximation for both electrons and ions with a real mass ratio. Special emphasis is paid to the shock-reflected ions as the main driver of shock dissipation. The reflection efficiency, the velocity distribution of reflected particles and the shock electrostatic structure are studied in terms of the shock parameters. Applications to particle acceleration in geophysical and astrophysical shocks are discussed.
Fienen, Michael N.; Selbig, William R.
2012-01-01
A new sample collection system was developed to improve the representation of sediment entrained in urban storm water by integrating water quality samples from the entire water column. The depth-integrated sampler arm (DISA) was able to mitigate sediment stratification bias in storm water, thereby improving the characterization of suspended-sediment concentration and particle size distribution at three independent study locations. Use of the DISA decreased variability, which improved statistical regression to predict particle size distribution using surrogate environmental parameters, such as precipitation depth and intensity. The performance of this statistical modeling technique was compared to results using traditional fixed-point sampling methods and was found to perform better. When environmental parameters can be used to predict particle size distributions, environmental managers have more options when characterizing concentrations, loads, and particle size distributions in urban runoff.
Hydrodynamic modeling of targeted magnetic-particle delivery in a blood vessel.
Weng, Huei Chu
2013-03-01
Since the flow of a magnetic fluid could easily be influenced by an external magnetic field, its hydrodynamic modeling promises to be useful for magnetically controllable delivery systems. It is desirable to understand the flow fields and characteristics before targeted magnetic particles arrive at their destination. In this study, we perform an analysis for the effects of particles and a magnetic field on biomedical magnetic fluid flow to study the targeted magnetic-particle delivery in a blood vessel. The fully developed solutions of velocity, flow rate, and flow drag are derived analytically and presented for blood with magnetite nanoparticles at body temperature. Results reveal that in the presence of magnetic nanoparticles, a minimum magnetic field gradient (yield gradient) is required to initiate the delivery. A magnetic driving force leads to the increase in velocity and has enhancing effects on flow rate and flow drag. Such a magnetic driving effect can be magnified by increasing the particle volume fraction.
Radioactive Pollution Estimate for Fukushima Nuclear Power Plant by a Particle Model
NASA Astrophysics Data System (ADS)
Saito, Keisuke; Ogawa, Susumu
2016-06-01
On Mar 12, 2011, very wide radioactive pollution occurred by a hydrogen explosion in Fukushima Nuclear Power Plant. A large amount of radioisotopes started with four times of explosions. With traditional atmospheric diffusion models could not reconstruct radioactive pollution in Fukushima. Then, with a particle model, this accident was reconstructed from meteorological archive and Radar- AMeDAS. Calculations with the particle model were carried out for Mar 12, 15, 18 and 20 when east southeast winds blew for five hours continuously. Meteorological archive is expressed by wind speeds and directions in five-km grid every hour with eight classes of height till 3000 m. Radar- AMeDAS is precipitation data in one-km grid every thirty minutes. Particles are ten scales of 0.01 to 0.1 mm in diameter with specific weight of 2.65 and vertical speeds given by Stokes equation. But, on Mar 15, it rained from 16:30 and then the particles fell down at a moment as wet deposit in calculation. On the other hand, the altitudes on the ground were given by DEM with 1 km-grid. The spatial dose by emitted radioisotopes was referred to the observation data at monitoring posts of Tokyo Electric Power Company. The falling points of radioisotopes were expressed on the map using the particle model. As a result, the same distributions were obtained as the surface spatial dose of radioisotopes in aero-monitoring by Ministry of Education, Culture, Sports, Science and Technology. Especially, on Mar 15, the simulated pollution fitted to the observation, which extended to the northwest of Fukushima Daiichi Nuclear Power Plant and caused mainly sever pollution. By the particle model, the falling positions on the ground were estimated each particle size. Particles with more than 0.05 mm of size were affected by the topography and blocked by the mountains with the altitudes of more than 700 m. The particle model does not include the atmospheric stability, the source height, and deposit speeds. The
Jin, C.; Potts, I.; Reeks, M. W.
2015-05-15
We present a simple stochastic quadrant model for calculating the transport and deposition of heavy particles in a fully developed turbulent boundary layer based on the statistics of wall-normal fluid velocity fluctuations obtained from a fully developed channel flow. Individual particles are tracked through the boundary layer via their interactions with a succession of random eddies found in each of the quadrants of the fluid Reynolds shear stress domain in a homogeneous Markov chain process. In this way, we are able to account directly for the influence of ejection and sweeping events as others have done but without resorting to the use of adjustable parameters. Deposition rate predictions for a wide range of heavy particles predicted by the model compare well with benchmark experimental measurements. In addition, deposition rates are compared with those obtained from continuous random walk models and Langevin equation based ejection and sweep models which noticeably give significantly lower deposition rates. Various statistics related to the particle near wall behavior are also presented. Finally, we consider the model limitations in using the model to calculate deposition in more complex flows where the near wall turbulence may be significantly different.
Particle Swarm Social Model for Group Social Learning in Adaptive Environment
Cui, Xiaohui; Potok, Thomas E; Treadwell, Jim N; Patton, Robert M; Pullum, Laura L
2008-01-01
This report presents a study of integrating particle swarm algorithm, social knowledge adaptation and multi-agent approaches for modeling the social learning of self-organized groups and their collective searching behavior in an adaptive environment. The objective of this research is to apply the particle swarm metaphor as a model of social learning for a dynamic environment. The research provides a platform for understanding and insights into knowledge discovery and strategic search in human self-organized social groups, such as insurgents or online communities.
Bolch, W E; Farfán, E B; Huh, C; Huston, T E; Bolch, W E
2001-10-01
Risk assessment associated with the inhalation of radioactive aerosols requires as an initial step the determination of particle deposition within the various anatomic regions of the respiratory tract. The model outlined in ICRP Publication 66 represents to date one of the most complete overall descriptions of not only particle deposition, but of particle clearance and local radiation dosimetry of lung tissues. In this study, a systematic review of the deposition component within the ICRP 66 respiratory tract model was conducted in which probability density functions were assigned to all input parameters. These distributions were subsequently incorporated within a computer code LUDUC (LUng Dose Uncertainty Code) in which Latin hypercube sampling techniques are used to generate multiple (e.g., 1,000) sets of input vectors (i.e., trials) for all of the model parameters needed to assess particle deposition within the extrathoracic (anterior and posterior), bronchial, bronchiolar, and alveolar-interstitial regions of the ICRP 66 respiratory tract model. Particle deposition values for the various trial simulations were shown to be well described by lognormal probability distributions. Geometric mean deposition fractions from LUDUC were found to be within approximately +/- 10% of the single-value estimates from the LUDEP computer code for each anatomic region and for particle diameters ranging from 0.001 to 50 microm. In all regions of the respiratory tract, LUDUC simulations for an adult male at light exertion show that uncertainties in particle deposition fractions are distributed only over a range of about a factor of approximately 2-4 for particle sizes between 0.005 to 0.2 microm. Below 0.005 microm, uncertainties increase only for deposition within the alveolar region. At particle sizes exceeding 1 microm, uncertainties in the deposition fraction within the extrathoracic regions are relatively small, but approach a factor of 20 for deposition in the bronchial
Modeling Bimolecular Reactions and Transport in Porous Media Via Particle Tracking
Dong Ding; David Benson; Amir Paster; Diogo Bolster
2012-01-01
We use a particle-tracking method to simulate several one-dimensional bimolecular reactive transport experiments. In this numerical method, the reactants are represented by particles: advection and dispersion dominate the flow, and molecular diffusion dictates, in large part, the reactions. The particle/particle reactions are determined by a combination of two probabilities dictated by the physics of transport and energetics of reaction. The first is that reactant particles occupy the same volume over a short time interval. The second is the conditional probability that two collocated particles favorably transform into a reaction. The first probability is a direct physical representation of the degree of mixing in an advancing displacement front, and as such lacks empirical parameters except for the user-defined number of particles. This number can be determined analytically from concentration autocovariance, if this type of data is available. The simulations compare favorably to two physical experiments. In one, the concentration of product, 1,2-naphthoquinoe-4-aminobenzene (NQAB) from reaction between 1,2-naphthoquinone-4-sulfonic acid (NQS) and aniline (AN), was measured at the outflow of a column filled with glass beads at different times. In the other, the concentration distribution of reactants (CuSO_4 and EDTA^{4-}) and products (CuEDTA^{4-}) were quantified by snapshots of transmitted light through a column packed with cryloite sand. The thermodynamic rate coefficient in the latter experiment was 10^7 times greater than the former experiment, making it essentially instantaneous. When compared to the solution of the advection-dispersion-reaction equation (ADRE) with the well-mixed reaction coefficient, the experiments and the particle-tracking simulations showed on the order of 20% to 40% less overall product, which is attributed to poor mixing. The poor mixing also leads to higher product concentrations on the edges of the mixing zones, which the particle
Probabilistic settling in the Local Exchange Model of turbulent particle transport.
McNair, James N
2006-07-21
The Local Exchange Model (LEM) is a stochastic diffusion model of particle transport in turbulent flowing water. It was developed mainly for application to particles of near-neutral buoyancy that are strongly influenced by turbulent eddies. Turbulence can rapidly transfer such particles to the bed, where settlement can then occur by, for example, sticking to biofilms (e.g., fine particulate organic matter, or FPOM) or attaching to the substrate behaviorally (e.g., benthic invertebrates). Previous papers on the LEM have addressed the problems of how long (time) and far (distance) a suspended particle will be transported before hitting the bed for the first time. These are the hitting-time and hitting-distance problems, respectively. Hitting distances predicted by the LEM for FPOM in natural streams tend to be much shorter than the distances at which most particles actually settle, suggesting that particles usually do not settle the first time they hit the bed. The present paper extends the LEM so it can address probabilistic settling, where a particle encountering the bed can either remain there for a positive length of time (i.e., settle) or immediately reflect back into the water column, each with positive probability. Previous results for the LEM are generalized by deducing a single set of equations governing the probability distribution and moments of a broad class of quantities that accumulate during particle trajectories terminated by hitting or settling on the bed (e.g., transport time, transport distance, cumulative energy expenditure during transport). Key properties of the settling-time and settling-distance distributions are studied numerically and compared with the observed FPOM settling-distance distribution for a natural stream. Some remaining limitations of the LEM and possible means of overcoming them are discussed.
Cao, J; Rittgers, S E
1998-01-01
Asymmetric 75% and 95% area reduction, transparent Sylgard stenotic models were operated under internal carotid artery (ICA) [Womersley parameter, alpha=5.36, Re(mean) =213 and 180, respectively, and Re(peak)=734 and 410, respectively] and left anterior descending coronary artery (LAD) flow wave forms (alpha=2.65, Re(mean)=59 and 57, respectively, and Re(peak)= 137 and 94, respectively) to evaluate the effect of these conditions on particle residence times downstream of the stenoses. Amberlite particles (1.05 g/cm3, 400 microm) were added to the fluid to simulate platelets and their motion through the stenotic region and were traced using a laser light sheet flow visualization method with pseudo-color display. Two-dimensional (2D) particle motions were recorded and particle washout in the stenotic throat and downstream section were computed for all cases. All four model cases demonstrated jetting through the stenosis which followed an arching pattern around a large separation zone downstream. Considerable mixing was observed within these vortex regions during high flow phases. Particle washout profiles showed no clear trend between the degrees of stenosis although particles downstream of the stenoses tended to remain longer for LAD conditions. The critical washout cycle (1% of particles remaining downstream of the stenosis), however, was longer for the 95% stenoses cases under each flow condition due to the larger protected region immediately downstream and maximal for the LAD 95% case. Results of this study suggest that particle residence times downstream of 75% and 95% stenoses (approximately 3-6 s for ICA and approximately 8-10 s for LAD) exceed the minimum time for platelet adhesion (approximately 1 s) for at least 1% of cells and, thus, may be sufficient to initiate thrombus formation under resting conditions.
NASA Astrophysics Data System (ADS)
Plaza Guingla, D. A.; Pauwels, V. R.; De Lannoy, G. J.; Matgen, P.; Giustarini, L.; De Keyser, R.
2012-12-01
The objective of this work is to analyze the improvement in the performance of the particle filter by including a resample-move step or by using a modified Gaussian particle filter. Specifically, the standard particle filter structure is altered by the inclusion of the Markov chain Monte Carlo move step. The second choice adopted in this study uses the moments of an ensemble Kalman filter analysis to define the importance density function within the Gaussian particle filter structure. Both variants of the standard particle filter are used in the assimilation of densely sampled discharge records into a conceptual rainfall-runoff model. In order to quantify the obtained improvement, discharge root mean square errors are compared for different particle filters, as well as for the ensemble Kalman filter. First, a synthetic experiment is carried out. The results indicate that the performance of the standard particle filter can be improved by the inclusion of the resample-move step, but its effectiveness is limited to situations with limited particle impoverishment. The results also show that the modified Gaussian particle filter outperforms the rest of the filters. Second, a real experiment is carried out in order to validate the findings from the synthetic experiment. The addition of the resample-move step does not show a considerable improvement due to performance limitations in the standard particle filter with real data. On the other hand, when an optimal importance density function is used in the Gaussian particle filter, the results show a considerably improved performance of the particle filter.
Guha, R A; Shear, N H; Papini, M
2010-10-01
The impact and penetration of high speed particles with the human skin is of interest for targeted drug delivery by transdermal powder injection. However, it is often difficult to perform penetration experiments on dermal tissue using micron scale particles. To address this, a finite element model of the impact and penetration of a 2 μm gold particle into the human dermis was developed and calibrated using experiments found in the literature. Using dimensional analysis, the model was linked to a larger scale steel ball-gelatin system in order to extract key material parameters for both systems and perform impact studies. In this manner, an elastic modulus of 2.25 MPa was found for skin, in good agreement with reported values from the literature. Further gelatin experiments were performed with steel, polymethyl methacrylate, titanium, and tungsten carbide balls in order to determine the effects of particle size and density on penetration depth. Both the finite element model and the steel-gelatin experiments were able to predict the penetration behavior that was found by other investigators in the study of the impact of typical particles used for vaccine delivery into the human dermis. It can therefore be concluded that scaled up systems utilizing ballistic gelatins can be used to investigate the performance of transdermal powder injection technology.
Guha, R A; Shear, N H; Papini, M
2010-10-01
The impact and penetration of high speed particles with the human skin is of interest for targeted drug delivery by transdermal powder injection. However, it is often difficult to perform penetration experiments on dermal tissue using micron scale particles. To address this, a finite element model of the impact and penetration of a 2 μm gold particle into the human dermis was developed and calibrated using experiments found in the literature. Using dimensional analysis, the model was linked to a larger scale steel ball-gelatin system in order to extract key material parameters for both systems and perform impact studies. In this manner, an elastic modulus of 2.25 MPa was found for skin, in good agreement with reported values from the literature. Further gelatin experiments were performed with steel, polymethyl methacrylate, titanium, and tungsten carbide balls in order to determine the effects of particle size and density on penetration depth. Both the finite element model and the steel-gelatin experiments were able to predict the penetration behavior that was found by other investigators in the study of the impact of typical particles used for vaccine delivery into the human dermis. It can therefore be concluded that scaled up systems utilizing ballistic gelatins can be used to investigate the performance of transdermal powder injection technology. PMID:20887013
Modeling the impact of sea-spray on particle concentrations in a coastal city.
Pryor, S C; Barthelmie, R J; Schoof, J T; Binkowski, F S; Delle Monache, L; Stull, R
2008-02-25
With the worlds population becoming increasingly focused on coastal locations there is a need to better understand the interactions between anthropogenic emissions and marine atmospheres. Herein an atmospheric chemistry-transport model is used to assess the impacts of sea-spray chemistry on the particle composition in and downwind of a coastal city--Vancouver, British Columbia. It is shown that the model can reasonably represent the average features of the gas phase and particle climate relative to in situ measurements. It is further demonstrated that reactions in/on sea-spray affect the entire particle ensemble and particularly the size distribution of particle nitrate, but that the importance of these heterogeneous reactions is critically dependent on both the initial vertical profile of sea spray and the sea-spray source functions. The results emphasize the need for improved understanding of sea spray production and dispersion and further that model analyses of air quality in coastal cities conducted without inclusion of sea-spray interactions may yield mis-leading results in terms of emission sensitivities of particle composition and concentrations.
Modeling the impact of sea-spray on particle concentrations in a coastal city.
Pryor, S C; Barthelmie, R J; Schoof, J T; Binkowski, F S; Delle Monache, L; Stull, R
2008-02-25
With the worlds population becoming increasingly focused on coastal locations there is a need to better understand the interactions between anthropogenic emissions and marine atmospheres. Herein an atmospheric chemistry-transport model is used to assess the impacts of sea-spray chemistry on the particle composition in and downwind of a coastal city--Vancouver, British Columbia. It is shown that the model can reasonably represent the average features of the gas phase and particle climate relative to in situ measurements. It is further demonstrated that reactions in/on sea-spray affect the entire particle ensemble and particularly the size distribution of particle nitrate, but that the importance of these heterogeneous reactions is critically dependent on both the initial vertical profile of sea spray and the sea-spray source functions. The results emphasize the need for improved understanding of sea spray production and dispersion and further that model analyses of air quality in coastal cities conducted without inclusion of sea-spray interactions may yield mis-leading results in terms of emission sensitivities of particle composition and concentrations. PMID:18061242
NASA Astrophysics Data System (ADS)
Pirjola, L.; Karl, M.; Rönkkö, T.; Arnold, F.
2015-09-01
A high concentration of volatile nucleation mode particles (NUP) formed in the atmosphere when the exhaust cools and dilutes has hazardous health effects and it impairs the visibility in urban areas. Nucleation mechanisms in diesel exhaust are only poorly understood. We performed model studies using two sectional aerosol dynamics process models AEROFOR and MAFOR on the formation of particles in the exhaust of a diesel engine, equipped with an oxidative after-treatment system and running with low fuel sulfur content (FSC) fuel, under laboratory sampling conditions where the dilution system mimics real-world conditions. Different nucleation mechanisms were tested. Based on the measured gaseous sulfuric acid (GSA) and non-volatile core and soot particle number concentrations of the raw exhaust, the model simulations showed that the best agreement between model predictions and measurements in terms of particle number size distribution was obtained by barrier-free heteromolecular homogeneous nucleation between the GSA and a semi-volatile organic vapour combined with the homogeneous nucleation of GSA alone. Major growth of the particles was predicted to occur due to the similar organic vapour at concentrations of (1-2) × 1012 cm-3. The pre-existing core and soot mode concentrations had an opposite trend on the NUP formation, and the maximum NUP formation was predicted if a diesel particle filter (DPF) was used. On the other hand, the model predicted that the NUP formation ceased if the GSA concentration in the raw exhaust was less than 1010 cm-3, which was the case when biofuel was used.
NASA Astrophysics Data System (ADS)
Huang, L.; Gong, S. L.; Gordon, M.; Liggio, J.; Staebler, R. M.; Stroud, C. A.; Lu, G.; Mihele, C.; Brook, J. R.; Jia, C. Q.
2014-05-01
Many studies have shown that on-road vehicle emissions are the dominant source of ultrafine particles (UFP; diameter < 100 nm) in urban areas and near-roadway environments. In order to advance our knowledge on the complex interactions and competition among atmospheric dilution, dispersion and dynamics of UFPs, an aerosol dynamics-CFD coupled model is developed and validated against field measurements. A unique approach of applying periodic boundary conditions is proposed to model pollutant dispersion and dynamics in one unified domain from the tailpipe level to the ambient near-road environment. This approach significantly reduces the size of the computational domain, and therefore, allows fast simulation of multiple scenarios. The model is validated against measured turbulent kinetic energy (TKE) and pollution gradients near a major highway. Through a model sensitivity analysis, the relative importance of individual aerosol dynamical processes on the total particle number concentration (N) and particle number-size distribution (PSD) near a highway is investigated. The results demonstrate that (1) coagulation has a negligible effect on N and particle growth, (2) binary homogeneous nucleation (BHN) of H2SO4-H2O is likely responsible for elevated N closest to the road, (3) N and particle growth are very sensitive to the condensation of semi-volatile organics (SVOCs), particle dry deposition, and the interaction between these processes. The results also indicate that, without the proper treatment of atmospheric boundary layer (i.e. its wind profile and turbulence quantities), the nucleation rate would be underestimated by a factor of 5 in the vehicle wake region due to overestimated mixing. Therefore, introducing ABL conditions to activity-based emission models may potentially improve their performance in estimating UFP traffic emissions.
NASA Astrophysics Data System (ADS)
Ling, Hong; Lung, Shih-Chun Candice; Uhrner, Ulrich
2016-04-01
Rapidly increasing urban pollution poses severe health risks.Especially fine particles pollution is considered to be closely related to respiratory and cardiovascular disease. In this work, ambient fine particles are studied in street canyons of a typical Asian residential community using a computational fluid dynamics (CFD) dispersion modelling approach. The community is characterised by an artery road with a busy traffic flow of about 4000 light vehicles (mainly cars and motorcycles) per hour at rush hours, three streets with hundreds light vehicles per hour at rush hours and several small lanes with less traffic. The objective is to study the spatial distribution of the ambient fine particle concentrations within micro-environments, in order to assess fine particle exposure of the people living in the community. The GRAL modelling system is used to simulate and assess the emission and dispersion of the traffic-related fine particles within the community. Traffic emission factors and traffic situation is assigned using both field observation and local emissions inventory data. High resolution digital elevation data (DEM) and building height data are used to resolve the topographical features. Air quality monitoring and mobile monitoring within the community is used to validate the simulation results. By using this modelling approach, the dispersion of fine particles in street canyons is simulated; the impact of wind condition and street orientation are investigated; the contributions of car and motorcycle emissions are quantified respectively; the residents' exposure level of fine particles is assessed. The study is funded by "Taiwan Megacity Environmental Research (II)-chemistry and environmental impacts of boundary layer aerosols (Year 2-3) (103-2111-M-001-001-); Spatial variability and organic markers of aerosols (Year 3)(104-2111-M-001 -005 -)"
A MODEL FOR THE ESCAPE OF SOLAR-FLARE-ACCELERATED PARTICLES
Masson, S.; Antiochos, S. K.; DeVore, C. R.
2013-07-10
We address the problem of how particles are accelerated by solar flares can escape into the heliosphere on timescales of an hour or less. Impulsive solar energetic particle (SEP) bursts are generally observed in association with so-called eruptive flares consisting of a coronal mass ejection (CME) and a flare. These fast SEPs are believed to be accelerated directly by the flare, rather than by the CME shock. However, the precise mechanism by which the particles are accelerated remains controversial. Regardless of the origin of the acceleration, the particles should remain trapped in the closed magnetic fields of the coronal flare loops and the ejected flux rope, given the magnetic geometry of the standard eruptive-flare model. In this case, the particles would reach the Earth only after a delay of many hours to a few days (coincident with the bulk ejecta arriving at Earth). We propose that the external magnetic reconnection intrinsic to the breakout model for CME initiation can naturally account for the prompt escape of flare-accelerated energetic particles onto open interplanetary magnetic flux tubes. We present detailed 2.5-dimensional magnetohydrodynamic simulations of a breakout CME/flare event with a background isothermal solar wind. Our calculations demonstrate that if the event occurs sufficiently near a coronal-hole boundary, interchange reconnection between open and closed fields can occur. This process allows particles from deep inside the ejected flux rope to access solar wind field lines soon after eruption. We compare these results to standard observations of impulsive SEPs and discuss the implications of the model on further observations and calculations.
Setyawan, Heru; Shimada, Manabu; Hayashi, Yutaka; Okuyama, Kikuo; Winardi, Sugeng
2005-02-15
The equilibrium and trapping of dust particles in a plasma sheath are investigated, both experimentally and theoretically. A self-consistent sheath model including input power as one of the model parameters is proposed, to predict the equilibrium position of particle trap. The electron temperature and density are estimated from the observed current and power (I-P) characteristics using the sheath model developed. Direct comparisons are made between the measured equilibrium position and the predicted equilibrium position. The equilibrium position moves closer to the electrode with increasing rf power and particle size. The position is apparently related to the sheath thickness, which decreases with increasing rf power. The model can correctly predict the experimentally observed trend in the equilibrium position of particle trap. It is found that the particle charge becomes positive when the particle gets closer to the electrode, due to the dominant influence of ion currents to the particle surface.
Improving the LPJ-GUESS modelled carbon balance with a particle filter data assimilation technique
NASA Astrophysics Data System (ADS)
McRobert, Andrew; Scholze, Marko; Kemp, Sarah; Smith, Ben
2015-04-01
The recent increases in anthropogenic carbon dioxide (CO_2) emissions have disrupted the equilibrium in the global carbon cycle pools with the ocean and terrestrial pools increasing their respective storages to accommodate roughly half of the anthropogenic increase. Dynamic global vegetation models (DGVM) have been developed to quantify the modern carbon cycle changes. In this study, a particle filter data assimilation technique has been used to calibrate the process parameters in the DGVM LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator). LPJ-GUESS simulates individual plant function types (pft) as a competitive balance within high resolution forest patches. Thirty process parameters have been optimized twice, using both a sequential and iterative method of particle filter. The iterative method runs the model for the full time period of thirteen years and then evaluates the cost function from the mismatch of observations and model results before adjusting the parameters and repeating the full time period. The sequential method runs the model and particle filter for each year of the time series in order, adjusting the parameters between each year, then loops back to beginning of the series to repeat. For each particle, the model output of NEP (Net Ecosystem Productivity) is compared to eddy flux measurements from ICOS flux towers to minimize the cost function. A high-resolution regional carbon balance has been simulated for central Sweden using a network of several ICOS flux towers.
SEPEM: A tool for statistical modeling the solar energetic particle environment
NASA Astrophysics Data System (ADS)
Crosby, Norma; Heynderickx, Daniel; Jiggens, Piers; Aran, Angels; Sanahuja, Blai; Truscott, Pete; Lei, Fan; Jacobs, Carla; Poedts, Stefaan; Gabriel, Stephen; Sandberg, Ingmar; Glover, Alexi; Hilgers, Alain
2015-07-01
Solar energetic particle (SEP) events are a serious radiation hazard for spacecraft as well as a severe health risk to humans traveling in space. Indeed, accurate modeling of the SEP environment constitutes a priority requirement for astrophysics and solar system missions and for human exploration in space. The European Space Agency's Solar Energetic Particle Environment Modelling (SEPEM) application server is a World Wide Web interface to a complete set of cross-calibrated data ranging from 1973 to 2013 as well as new SEP engineering models and tools. Both statistical and physical modeling techniques have been included, in order to cover the environment not only at 1 AU but also in the inner heliosphere ranging from 0.2 AU to 1.6 AU using a newly developed physics-based shock-and-particle model to simulate particle flux profiles of gradual SEP events. With SEPEM, SEP peak flux and integrated fluence statistics can be studied, as well as durations of high SEP flux periods. Furthermore, effects tools are also included to allow calculation of single event upset rate and radiation doses for a variety of engineering scenarios.
Nguyen, Jennifer; Hayakawa, Carole K; Mourant, Judith R; Venugopalan, Vasan; Spanier, Jerome
2016-05-01
We present a polarization-sensitive, transport-rigorous perturbation Monte Carlo (pMC) method to model the impact of optical property changes on reflectance measurements within a discrete particle scattering model. The model consists of three log-normally distributed populations of Mie scatterers that approximate biologically relevant cervical tissue properties. Our method provides reflectance estimates for perturbations across wavelength and/or scattering model parameters. We test our pMC model performance by perturbing across number densities and mean particle radii, and compare pMC reflectance estimates with those obtained from conventional Monte Carlo simulations. These tests allow us to explore different factors that control pMC performance and to evaluate the gains in computational efficiency that our pMC method provides. PMID:27231642
Nguyen, Jennifer; Hayakawa, Carole K.; Mourant, Judith R.; Venugopalan, Vasan; Spanier, Jerome
2016-01-01
We present a polarization-sensitive, transport-rigorous perturbation Monte Carlo (pMC) method to model the impact of optical property changes on reflectance measurements within a discrete particle scattering model. The model consists of three log-normally distributed populations of Mie scatterers that approximate biologically relevant cervical tissue properties. Our method provides reflectance estimates for perturbations across wavelength and/or scattering model parameters. We test our pMC model performance by perturbing across number densities and mean particle radii, and compare pMC reflectance estimates with those obtained from conventional Monte Carlo simulations. These tests allow us to explore different factors that control pMC performance and to evaluate the gains in computational efficiency that our pMC method provides. PMID:27231642
A polarizable coarse-grained protein model for dissipative particle dynamics.
Peter, Emanuel K; Lykov, Kirill; Pivkin, Igor V
2015-10-01
We present a new coarse-grained polarizable protein model for dissipative particle dynamics (DPD) method. This method allows large timesteps in particle-based systems and speeds up sampling by many orders of magnitude. Our new model is based on the electrostatic polarization of the protein backbone and a detailed representation of the sidechains in combination with a polarizable water model. We define our model parameters using the experimental structures of two proteins, TrpZip2 and TrpCage. Backmapping and subsequent short replica-exchange molecular dynamics runs verify our approach and show convergence to the experimental structures on the atomistic level. We validate our model on five different proteins: GB1, the WW-domain, the B-domain of Protein A, the peripheral binding subunit and villin headpiece. PMID:26339692
NASA Astrophysics Data System (ADS)
Gulliver, Eric A.
The objective of this thesis to identify and develop techniques providing direct comparison between simulated and real packed particle mixture microstructures containing submicron-sized particles. This entailed devising techniques for simulating powder mixtures, producing real mixtures with known powder characteristics, sectioning real mixtures, interrogating mixture cross-sections, evaluating and quantifying the mixture interrogation process and for comparing interrogation results between mixtures. A drop and roll-type particle-packing model was used to generate simulations of random mixtures. The simulated mixtures were then evaluated to establish that they were not segregated and free from gross defects. A powder processing protocol was established to provide real mixtures for direct comparison and for use in evaluating the simulation. The powder processing protocol was designed to minimize differences between measured particle size distributions and the particle size distributions in the mixture. A sectioning technique was developed that was capable of producing distortion free cross-sections of fine scale particulate mixtures. Tessellation analysis was used to interrogate mixture cross sections and statistical quality control charts were used to evaluate different types of tessellation analysis and to establish the importance of differences between simulated and real mixtures. The particle-packing program generated crescent shaped pores below large particles but realistic looking mixture microstructures otherwise. Focused ion beam milling was the only technique capable of sectioning particle compacts in a manner suitable for stereological analysis. Johnson-Mehl and Voronoi tessellation of the same cross-sections produced tessellation tiles with different the-area populations. Control charts analysis showed Johnson-Mehl tessellation measurements are superior to Voronoi tessellation measurements for detecting variations in mixture microstructure, such as altered
A velocity-dissipation stochastic trajectory model for dispersal of heavy particles inside canopies
NASA Astrophysics Data System (ADS)
Duman, T.; Trakhtenbrot, A.; Poggi, D.; Cassiani, M.; Katul, G. G.
2014-12-01
While the importance of dispersal of windborne heavy particles such as seeds or pollen inside canopies is rarely disputed, the details needed to describe turbulent fluctuations in such applications continue to draw significant research attention. Turbulence and heavy-particle dispersal within canopies are sensitive to interactions between meteorological conditions and canopy structure as well as on particle shape and mass. In many applications, dispersal of heavy particles is required over a broad range of time scales ranging from hours to several decades thereby frustrating any attempt to resolve all aspects of turbulence. In recent years, Lagrangian stochastic trajectory models have been favored for predicting seed dispersal and are viewed as an acceptable compromise between empirical models with their ad-hoc parameterizations and computationally intensive Large Eddy Simulations. Here, an important feature of turbulence, namely the intermittency in dissipation rate, is incorporated into such trajectory models. Adding this effect has been recently shown to alter scalar dispersion patterns, especially in the far field. This method is applied here to heavy particles, where the long distance dispersal is deemed significant for many applications. This modeling approach was first evaluated using controlled laboratory experiments, where uniform-sized spheres were released within a canopy comprised of uniform cylinders inside a flume (see figure). The extended model that includes intermittency effects, as well as inertial drag forces on the particles, was shown to provide superior fit with the measured dispersal kernel than simpler models that add a constant settling velocity for each particle and/or do not include intermittency. The extended model results captured short distance dispersal and the heavy tails. Next the extended model was evaluated against a field experiment, where plant seeds were manually released inside a hardwood forest canopy (see figure). This
Simulation of River Bluffs and Slip-Off Slopes With a Discrete Particle-Based Model
NASA Astrophysics Data System (ADS)
Lancaster, S. T.; Zunka, J. P.; Tucker, G. E.
2013-12-01
A discrete particle-based model simulates evolution of two-dimensional valley cross sections similar to those produced by bedrock meandering rivers and thereby suggests that characteristic features such as overhanging cliffs and talus slopes are dependent on specific relationships among process rates. Discrete coordinates on a gridded cross-section define locations of particles of intact bedrock, sediment (loose material with half the bulk density of bedrock), water, or air on that grid, and each particle of rock or sediment has a unique (or zero) concentration of terrestrial cosmogenic nuclides (TCNs). Stochastic processes determine both the possible locations of process actions and the results of those actions. Stochastic discharges generate boundary shear stresses, calculated by an approximation to the ray-isovel model, that determine removal probabilities for candidate particles of bedrock or sediment from the boundary of a self-formed channel. An asymmetric probability distribution governs the selection of candidate particles on the wetted perimeter and drives asymmetric fluvial erosion and transport that can undermine adjacent slopes, so that the channel migrates laterally. Sediment is produced from intact bedrock by weathering and rock fall. The latter acts only on candidate bedrock particles that are undermined and exposed at the surface. Weathering produces two sediment particles from one of bedrock, and thereby inflates the surface, when slope-normal random walks from candidate sites on the surface end at bedrock particles, so that the sediment-bedrock interface is irregular and discontinuous. Diffusive transport moves candidate particles on random walks in random directions along the surface, where transition probabilities depend on local topography. TCNs are produced when the randomly situated and oriented random walks of cosmic rays end at bedrock or sediment, and not water, particles. The model produces asymmetric channels and valley cross sections
NASA Astrophysics Data System (ADS)
Tancock, M. J.; Lane, S. N.; Hardy, R. J.
2012-12-01
There has been a significant amount of research conducted in order to understand the flow fields at natural river confluences. Much of this has been made possible due to advances in the use of Computational Fluid Dynamics (CFD). However, much of this research has been conducted on river confluences with negligible water surface slopes and any understanding of the sediment dynamics is largely implied from the flow fields. Therefore, a key challenge is to understand the flow and sediment dynamics of steep river confluences with dynamic boundaries. Two numerical modelling developments are presented which together are capable of increasing our understanding of the sediment dynamics of steep river confluences. The first is the application of a Height-of-Liquid (HOL) model within a CFD framework to explicitly solve the water surface elevation. This is a time-dependent, multiphase treatment of the fluid dynamics which solves for the change in volume of water and air in each vertical column of the mesh. The second is the development of a reduced complexity discrete particle transport model which uses the change in momentum on a spherical particle to predict the transport paths through the flow field determined from CFD simulations. The performance of the two models is tested using field data from a series of highly dynamic, steep gravel-bed confluences on a braidplain of the Borgne d'Arolla, Switzerland. The HOL model is validated against the water surface elevation and flow velocity data and is demonstrated to provide a reliable representation of the flow field in fast-flowing, supercritical flows. In order to validate the discrete particle model, individual particles were tracked using electronic tacheometry. The model is demonstrated to accurately represent the particle tracks obtained in the field and provides a new methodology to understand the dynamic morphology of braid plains.
NASA Astrophysics Data System (ADS)
Suparta, Wayan; Gusrizal
2014-08-01
We implement a hierarchical Bayesian spatiotemporal (HBST) model to forecast the daily trapped particle flux distribution over the South Atlantic Anomaly (SAA) region. The National Oceanic and Atmospheric Administration (NOAA)-15 data from 1-30 March 2008 with particle energies as >30 keV (mep0e1) and >300 keV (mep0e3) for electrons and 80-240 keV (mep0p2) and > 6900 keV (mep0p6) for protons were used as the model input to forecast the flux values on 31 March 2008. Data were transformed into logarithmic values and gridded in a 5∘×5∘ longitude and latitude size to fulfill the modelling precondition. A Monte Carlo Markov chain (MCMC) was then performed to solve the HBST Gaussian Process (GP) model by using the Gibbs sampling method. The result for this model was interpolated by a Kriging technique to achieve the whole distribution figure over the SAA region. Statistical results of the root mean square error (RMSE), mean absolute percentage error (MAPE), and bias (BIAS) showed a good indicator of the HBST method. The statistical validation also indicated the high variability of particle flux values in the SAA core area. The visual validation showed a powerful combination of HBST-GP model with Kriging interpolation technique. The Kriging also produced a good quality of the distribution map of particle flux over the SAA region as indicated by its small variance value. This suggests that the model can be applied in the development of a Low Earth Orbit (LEO)-Equatorial satellite for monitoring trapped particle radiation hazard.
A low resolution model for the chromatin core particle by neutron scattering
Suau, Pedro; Kneale, G.Geoff; Braddock, Gordon W.; Baldwin, John P.; Bradbury, E.Morton
1977-01-01
Neutron scattering studies have been applied to chromatin core particles in solution, using the contrast variation technique. On the basis of the contrast dependance of the radius of gyration and the radial distribution function it is shown that the core particle consists of a core containing most of the histone around which is wound the DNA helix,following a path with a mean radius of 4.5 nm,in association with a small proportion of the histones. Separation of the shape from the internal structure, followed by model calculations shows that the overall shape of the particle is that of a flat cylinder with dimensions ca. 11×11×6 nm. Further details of the precise folding of the DNA cannot be deduced from the data, but detailed model calculations support concurrent results from crystallographic studies25. Images PMID:593885
A comprehensive viscosity model for micro magnetic particle dispersed in silicone oil
NASA Astrophysics Data System (ADS)
Jung, Im Doo; Kim, Moobum; Park, Seong Jin
2016-04-01
Magnetorheological behavior of micro magnetic particle dispersed in silicone oil has been characterized by a multiplied form of phenomenological models taking the effect of shear rate, powder volume fraction, temperature and magnetic flux density. Magnetorheological fluid samples with seven different particle volume fraction were prepared by adding ferrite particles in silicone base oil and their shear viscosity of fluid samples were measured under three different temperatures (40 °C, 70 °C, and 110 °C) and ten different magnetic flux density (0-100 mT). The fluid had an upper limit to the increase of viscosity under the effect of external magnetic field and the saturation values were dependent on the operating temperature, shear rate and volume fraction of magnetic powder. The rheological behaviors have been characterized by our developed model which can be very useful for the precise control of the magnetorheological fluid.
A comparison of total reaction cross section models used in particle and heavy ion transport codes
NASA Astrophysics Data System (ADS)
Sihver, Lembit; Lantz, M.; Takechi, M.; Kohama, A.; Ferrari, A.; Cerutti, F.; Sato, T.
To be able to calculate the nucleon-nucleus and nucleus-nucleus total reaction cross sections with precision is very important for studies of basic nuclear properties, e.g. nuclear structure. This is also of importance for particle and heavy ion transport calculations because, in all particle and heavy ion transport codes, the probability function that a projectile particle will collide within a certain distance x in the matter depends on the total reaction cross sections. Furthermore, the total reaction cross sections will also scale the calculated partial fragmentation cross sections. It is therefore crucial that accurate total reaction cross section models are used in the transport calculations. In this paper, different models for calculating nucleon-nucleus and nucleus-nucleus total reaction cross sections are compared and discussed.
NASA Astrophysics Data System (ADS)
Huang, X.; Zhou, L. X.; Ding, A. J.; Qi, X. M.; Nie, W.; Wang, M. H.; Chi, X. G.; Petaja, T.; Kerminen, V.-M.; Roldin, P.; Rusanen, A.; Kulmala, M.; Boy, M.
2015-10-01
New particle formation (NPF) has been investigated intensively during the last two decades because of its influence on aerosol population and the possible contribution to cloud condensation nuclei. However, intensive measurements and modelling activities on this topic in urban metropolitans in China with frequently high pollution episodes are still very limited. This study provides results from a comprehensive modelling study on the occurrence of new particle formation events in the western part of the Yangtze River Delta region (YRD), China. The comprehensive modelling system, which combines regional chemical transport model WRF-Chem (the Weather Research and Forecasting model coupled with Chemistry) and the sectional box model MALTE-BOX (the model to predict new aerosol formation in the lower troposphere), was shown to be capable of simulating atmospheric nucleation and subsequent growth. Here we present a detailed discussion of three typical NPF days, during which the measured air masses were notably influenced by either anthropogenic activities, biogenic emissions, or mixed ocean and continental sources. Overall, simulated NPF events were generally in good agreement with the corresponding measurements, enabling us to get further insights into NPF processes in the YRD region. Based on the simulations, we conclude that besides gas-phase sulphuric acid, biogenic organic compounds, particularly monoterpenes, play an essential role in condensational growth of newly formed clusters and probably also in the particle formation process through their low volatile oxidation products. Although some uncertainties remain in this modelling system, this method provides a possibility to better understand the NPF processes.
A Lagrangian particle model to predict the airborne spread of foot-and-mouth disease virus
NASA Astrophysics Data System (ADS)
Mayer, D.; Reiczigel, J.; Rubel, F.
Airborne spread of bioaerosols in the boundary layer over a complex terrain is simulated using a Lagrangian particle model, and applied to modelling the airborne spread of foot-and-mouth disease (FMD) virus. Two case studies are made with study domains located in a hilly region in the northwest of the Styrian capital Graz, the second largest town in Austria. Mountainous terrain as well as inhomogeneous and time varying meteorological conditions prevent from application of so far used Gaussian dispersion models, while the proposed model can handle these realistically. In the model, trajectories of several thousands of particles are computed and the distribution of virus concentration near the ground is calculated. This allows to assess risk of infection areas with respect to animal species of interest, such as cattle, swine or sheep. Meteorological input data like wind field and other variables necessary to compute turbulence were taken from the new pre-operational version of the non-hydrostatic numerical weather prediction model LMK ( Lokal-Modell-Kürzestfrist) running at the German weather service DWD ( Deutscher Wetterdienst). The LMK model provides meteorological parameters with a spatial resolution of about 2.8 km. To account for the spatial resolution of 400 m used by the Lagrangian particle model, the initial wind field is interpolated upon the finer grid by a mass consistent interpolation method. Case studies depict a significant influence of local wind systems on the spread of virus. Higher virus concentrations at the upwind side of the hills and marginal concentrations in the lee are well observable, as well as canalization effects by valleys. The study demonstrates that the Lagrangian particle model is an appropriate tool for risk assessment of airborne spread of virus by taking into account the realistic orographic and meteorological conditions.
Experiment and modeling: Ignition of aluminum particles with a carbon dioxide laser
NASA Astrophysics Data System (ADS)
Mohan, Salil
Aluminum is a promising ingredient for high energy density compositions used in propulsion systems, explosives, and pyrotechnics. Aluminum powder fuel additives enable one to achieve higher combustion enthalpies and reaction temperatures. Therefore, to develop aluminum based novel and customized high density energetic materials, understanding of ignition and combustion kinetics of aluminum powders is required. In most practical systems, metal ignition and combustion occur in environments with rapidly changing temperatures and gas compositions. The kinetics of exothermic reactions in related energetic materials is commonly characterized by thermal analysis, where the heating rates are very low, on the order of 1--50 K/min. The extrapolation of the identified kinetics to the high heating rates is difficult and requires direct experimental verification. This difficulty led to development of new experimental approaches to directly characterize ignition kinetics for the heating rates in the range of 103--104 K/s. However, the practically interesting heating rates of 106 K/s range have not been achieved. This work is directed at development of an experimental technique and respective heat transfer model for studying ignition of aluminum and other micron-sized metallic particles at heating rates varied around 106 K/s. The experimental setup uses a focused CO2 laser as a heating source and a plate capacitor aerosolizer to feed the aluminum particles into the laser beam. The setup allows using different environment for particle aerosolization. The velocities of particles in the jet are in the range of 0.1 --0 3 m/s. For each selected jet velocity, the laser power is increased until the particles are observed to ignite. The ignition is detected optically using a digital camera and a photomultiplier. The ignition thresholds for spherical aluminum powder were measured at three different particle jet velocities, in air environment. A single particle heat transfer model was
Hsieh, Paul A.
2001-01-01
This report serves as a user?s guide for two computer models: TopoDrive and ParticleFlow. These two-dimensional models are designed to simulate two ground-water processes: topography-driven flow and advective transport of fluid particles. To simulate topography-driven flow, the user may specify the shape of the water table, which bounds the top of the vertical flow section. To simulate transport of fluid particles, the model domain is a rectangle with overall flow from left to right. In both cases, the flow is under steady state, and the distribution of hydraulic conductivity may be specified by the user. The models compute hydraulic head, ground-water flow paths, and the movement of fluid particles. An interactive visual interface enables the user to easily and quickly explore model behavior, and thereby better understand ground-water flow processes. In this regard, TopoDrive and ParticleFlow are not intended to be comprehensive modeling tools, but are designed for modeling at the exploratory or conceptual level, for visual demonstration, and for educational purposes.
Particle versus density models in spark formation: X-rays from pulled fronts?
NASA Astrophysics Data System (ADS)
Ebert, Ute
2008-03-01
Streamer discharges govern the early stages of sparks and lightning, of spark-like phenomena in water, oil, and semiconductors, in industrial corona reactors, or in gigantic sprite discharges above thunderclouds [1,2]. Thunderstorms recently have been found to emit terrestrial gamma-ray flashes or X-rays towards satellites and towards the ground. These emissions might be explained by particle models of ``pulled'' streamer ionization fronts. In general, the growing discharge channel has an inner structure with multiple scales [1-3]. While the largest part of this channel can be treated in a density approximation for the electrons and ions, the dynamics of the ionization front is that of a pulled front; it is determined in the leading edge where the density approach eventually breaks down. We therefore investigate a realistic MC particle model for the motion of single electrons in a discharge in pure nitrogen. The particle model not only incorporates particle fluctuations, but also shows that the electron energies are systematically larger in the leading edge of the front than in the corresponding density model, and that the ionization level behind the front is higher as well, while the front velocity hardly changes [3]. These effects increase with increasing applied electric field and might actually cause the recently observed X-ray emission from lightning through rare very energetic runaway electrons in the tail of the distribution. Comparing the leading edge of the particle front with a linear particle avalanche, the avalanche shows the same mean density gradient and energy overshoot in its leading edge as the nonlinear front; hence the pulled front concept in this sense applies to discrete particle models as well [3]. This gives a key to understanding the above effects through analytical approximations and to develop efficient numerical methods coupling particle and density models in space.[1] U. Ebert et al., Plasma Sources Sci. Techn. 15, S118 (2006) (ar
Simulation and Experimental Studies of Jamming for Model Two-Dimensional Particles Under Flow
NASA Astrophysics Data System (ADS)
Guariguata, A.; Wu, D. T.; Koh, C. A.; Sum, A. K.; Sloan, E. D.
2009-06-01
Jamming and plugging of flowlines with gas hydrates is the most critical issue in the flow assurance of oil and gas production lines. Because solid hydrate particles are often suspended in a fluid, the pipeline jamming and flow constriction formed by hydrates depend not only on particle/wall properties, such as friction, binding forces and mechanical characteristics, but also on the concentration of particles upstream of the restriction, flow velocity, fluid viscosity, and forces between the particles. Therefore, to gain insight into the jamming phenomena, both experiments and computer simulations on two-dimensional model systems have been carried out to characterize the flow of particles in a channel, with the eventual goal of applying that knowledge to gas hydrates jamming. Using the simulation software PFC2d®, we studied the effect of restriction geometry and flow velocity on the jamming process of particles. Results from the simulations were compared to experimental measurements on polyethylene discs floating on water flowing in an open channel.
A micromechanical model to predict the flow of soft particle glasses
NASA Astrophysics Data System (ADS)
Seth, Jyoti R.; Mohan, Lavanya; Locatelli-Champagne, Clémentine; Cloitre, Michel; Bonnecaze, Roger T.
2011-11-01
Soft particle glasses form a broad family of materials made of deformable particles, as diverse as microgels, emulsion droplets, star polymers, block copolymer micelles and proteins, which are jammed at volume fractions where they are in contact and interact via soft elastic repulsions. Despite a great variety of particle elasticity, soft glasses have many generic features in common. They behave like weak elastic solids at rest but flow very much like liquids above the yield stress. This unique feature is exploited to process high-performance coatings, solid inks, ceramic pastes, textured food and personal care products. Much of the understanding of these materials at volume fractions relevant in applications is empirical, and a theory connecting macroscopic flow behaviour to microstructure and particle properties remains a formidable challenge. Here we propose a micromechanical three-dimensional model that quantitatively predicts the nonlinear rheology of soft particle glasses. The shear stress and the normal stress differences depend on both the dynamic pair distribution function and the solvent-mediated EHD interactions among the deformed particles. The predictions, which have no adjustable parameters, are successfully validated with experiments on concentrated emulsions and polyelectrolyte microgel pastes, highlighting the universality of the flow properties of soft glasses. These results provide a framework for designing new soft additives with a desired rheological response.
Modeling Techniques for Evaluation the Effectiveness of Particle Damping in Turbomachinery
NASA Technical Reports Server (NTRS)
Ehrgott, R.; Panossian, H.; Davis, G.
2009-01-01
High power turbopumps are frequently used to supply propellants to the combustion chambers of rocket engines. Due to the high pressures and flow-rates required, turbopump components are subjected to harsh environments which include dynamic excitation due to random, sine, and acoustic vibration. Additionally, fluid-induced forces can couple with the dynamics of the structure resulting in flow induced instabilities (flutter). Structural response to these forms of excitation results in reduced fatigue life and increases the likelihood of an operational failure. Particle damping has been used successfully on vibration problems in the past by increasing the damping and therefore reducing the response to acceptable levels. Empirical methods have typically been employed to evaluate the performance of the particles in reducing the structural response. This report explores the use of finite element methods to estimate the effectiveness of particle damping in a typical non-rotating turbopump component. Axisymmetric harmonic models are used to estimate the increase in modal damping produced by the addition of particles in the cavity of an axisymmetric seal. Target modes of vibration are evaluated to quantify how the effective particle damping is altered by geometry changes in the seal design. A new method to predict the performance of particle dampers is developed and shown to provide more reasonable estimates of damping.
Hogan, R C; Cuzzi, J N
2007-05-01
A cascade model is described based on multiplier distributions determined from three-dimensional (3D) direct numerical simulations (DNS) of turbulent particle laden flows, which include two-way coupling between the phases at global mass loadings equal to unity. The governing Eulerian equations are solved using psuedospectral methods on up to 512(3) computional grid points. DNS results for particle concentration and enstrophy at Taylor microscale Reynolds numbers in the range 34-170 were used to directly determine multiplier distributions on spatial scales three times the Kolmogorov length scale. The multiplier probability distribution functions (PDFs) are well characterized by the beta distribution function. The width of the PDFs, which is a measure of intermittency, decreases with increasing mass loading within the local region where the multipliers are measured. The functional form of this dependence is not sensitive to Reynolds numbers in the range considered. A partition correlation probability is included in the cascade model to account for the observed spatial anticorrelation between particle concentration and enstrophy. Joint probability distribution functions of concentration and enstrophy generated using the cascade model are shown to be in excellent agreement with those derived directly from our 3D simulations. Probabilities predicted by the cascade model are presented at Reynolds numbers well beyond what is achievable by direct simulation. These results clearly indicate that particle mass loading significantly reduces the probabilities of high particle concentration and enstrophy relative to those resulting from unloaded runs. Particle mass density appears to reach a limit at around 100 times the gas density. This approach has promise for significant computational savings in certain applications.
Irradiation of Neurons with High-Energy Charged Particles: An In Silico Modeling Approach
Alp, Murat; Parihar, Vipan K.; Limoli, Charles L.; Cucinotta, Francis A.
2015-01-01
In this work, a stochastic computational model of microscopic energy deposition events is used to study for the first time damage to irradiated neuronal cells of the mouse hippocampus. An extensive library of radiation tracks for different particle types is created to score energy deposition in small voxels and volume segments describing a neuron’s morphology that later are sampled for given particle fluence or dose. Methods included the construction of in silico mouse hippocampal granule cells from neuromorpho.org with spine and filopodia segments stochastically distributed along the dendritic branches. The model is tested with high-energy 56Fe, 12C, and 1H particles and electrons. Results indicate that the tree-like structure of the neuronal morphology and the microscopic dose deposition of distinct particles may lead to different outcomes when cellular injury is assessed, leading to differences in structural damage for the same absorbed dose. The significance of the microscopic dose in neuron components is to introduce specific local and global modes of cellular injury that likely contribute to spine, filopodia, and dendrite pruning, impacting cognition and possibly the collapse of the neuron. Results show that the heterogeneity of heavy particle tracks at low doses, compared to the more uniform dose distribution of electrons, juxtaposed with neuron morphology make it necessary to model the spatial dose painting for specific neuronal components. Going forward, this work can directly support the development of biophysical models of the modifications of spine and dendritic morphology observed after low dose charged particle irradiation by providing accurate descriptions of the underlying physical insults to complex neuron structures at the nano-meter scale. PMID:26252394
Particle-size dependent effects in the Balb/c murine model of inhalational melioidosis
Thomas, Richard J.; Davies, C.; Nunez, A.; Hibbs, S.; Eastaugh, L.; Harding, S.; Jordan, J.; Barnes, K.; Oyston, P.; Eley, S.
2012-01-01
Deposition of Burkholderia pseudomallei within either the lungs or nasal passages of the Balb/c murine model resulted in different infection kinetics. The infection resulting from the inhalation of B. pseudomallei within a 12 μm particle aerosol was prolonged compared to a 1 μm particle aerosol with a mean time-to-death (MTD) of 174.7 ± 14.9 h and 73.8 ± 11.3 h, respectively. Inhalation of B. pseudomallei within 1 μm or 12 μm particle aerosols resulted in a median lethal dose (MLD) of 4 and 12 cfu, respectively. The 12 μm particle inhalational infection was characterized by a marked involvement of the nasal mucosa and extension of bacterial colonization and inflammatory lesions from the olfactory epithelium through the olfactory nerves (or tracts) to the olfactory bulb (100%), culminating in abscessation of the brain (33%). Initial involvement of the upper respiratory tract lymphoid tissues (nasal-associated lymphoid tissue (NALT) and cervical lymph nodes) was observed in both the 1 and 12 μm particle inhalational infections (80–85%). Necrotising alveolitis and bronchiolitis were evident in both inhalational infections, however, lung pathology was greater after inhalation of the 1 μm particle aerosol with pronounced involvement of the mediastinal lymph node (50%). Terminal disease was characterized by bacteraemia in both inhalational infections with dissemination to the spleen, liver, kidneys, and thymus. Treatment with co-trimoxazole was more effective than treatment with doxycycline irrespective of the size of the particles inhaled. Doxycycline was more effective against the 12 μm particle inhalational infection as evidenced by increased time to death. However, both treatment regimes exhibited significant relapse when therapy was discontinued with massive enlargement and abscessation of the lungs, spleen, and cervical lymph nodes observed. PMID:22919690
Weipeng, Wang; Jianli, Liu; Bingzi, Zhao; Jiabao, Zhang; Xiaopeng, Li; Yifan, Yan
2015-01-01
Mathematical descriptions of classical particle size distribution (PSD) data are often used to estimate soil hydraulic properties. Laser diffraction methods (LDM) now provide more detailed PSD measurements, but deriving a function to characterize the entire range of particle sizes is a major challenge. The aim of this study was to compare the performance of eighteen PSD functions for fitting LDM data sets from a wide range of soil textures. These models include five lognormal models, five logistic models, four van Genuchten models, two Fredlund models, a logarithmic model, and an Andersson model. The fits were evaluated using Akaike’s information criterion (AIC), adjusted R2, and root-mean-square error (RMSE). The results indicated that the Fredlund models (FRED3 and FRED4) had the best performance for most of the soils studied, followed by one logistic growth function extension model (MLOG3) and three lognormal models (ONLG3, ORLG3, and SHCA3). The performance of most PSD models was better for soils with higher silt content and poorer for soils with higher clay and sand content. The FRED4 model best described the PSD of clay, silty clay, clay loam, silty clay loam, silty loam, loam, and sandy loam, whereas FRED3, MLOG3, ONLG3, ORLG3, and SHCA3 showed better performance for most soils studied. PMID:25927441
NASA Astrophysics Data System (ADS)
Mukin, R. V.; Alipchenkov, V. M.; Zaichik, L. I.; Mukina, L. S.; Strizhov, V. F.
2011-12-01
The purpose of the study is to present an explicit algebraic Reynolds stress (nonlinear turbulent viscosity) model combined with modified k - ɛ turbulence model taking into account particles effect on turbulence for calculating the main turbulent characteristics of two-phase flows. For calculating particles distribution in space we used diffusion-inertia model (DIM). The turbulence attenuating in the presence of particles is clearly observed, investigated and compared with the experimental data. The developed model adequately described turbulence anisotropy and the influence of particles inertia and concentration on the turbulence intensity.
Range Verification Methods in Particle Therapy: Underlying Physics and Monte Carlo Modeling
Kraan, Aafke Christine
2015-01-01
Hadron therapy allows for highly conformal dose distributions and better sparing of organs-at-risk, thanks to the characteristic dose deposition as function of depth. However, the quality of hadron therapy treatments is closely connected with the ability to predict and achieve a given beam range in the patient. Currently, uncertainties in particle range lead to the employment of safety margins, at the expense of treatment quality. Much research in particle therapy is therefore aimed at developing methods to verify the particle range in patients. Non-invasive in vivo monitoring of the particle range can be performed by detecting secondary radiation, emitted from the patient as a result of nuclear interactions of charged hadrons with tissue, including β+ emitters, prompt photons, and charged fragments. The correctness of the dose delivery can be verified by comparing measured and pre-calculated distributions of the secondary particles. The reliability of Monte Carlo (MC) predictions is a key issue. Correctly modeling the production of secondaries is a non-trivial task, because it involves nuclear physics interactions at energies, where no rigorous theories exist to describe them. The goal of this review is to provide a comprehensive overview of various aspects in modeling the physics processes for range verification with secondary particles produced in proton, carbon, and heavier ion irradiation. We discuss electromagnetic and nuclear interactions of charged hadrons in matter, which is followed by a summary of some widely used MC codes in hadron therapy. Then, we describe selected examples of how these codes have been validated and used in three range verification techniques: PET, prompt gamma, and charged particle detection. We include research studies and clinically applied methods. For each of the techniques, we point out advantages and disadvantages, as well as clinical challenges still to be addressed, focusing on MC simulation aspects. PMID:26217586
Range Verification Methods in Particle Therapy: Underlying Physics and Monte Carlo Modeling.
Kraan, Aafke Christine
2015-01-01
Hadron therapy allows for highly conformal dose distributions and better sparing of organs-at-risk, thanks to the characteristic dose deposition as function of depth. However, the quality of hadron therapy treatments is closely connected with the ability to predict and achieve a given beam range in the patient. Currently, uncertainties in particle range lead to the employment of safety margins, at the expense of treatment quality. Much research in particle therapy is therefore aimed at developing methods to verify the particle range in patients. Non-invasive in vivo monitoring of the particle range can be performed by detecting secondary radiation, emitted from the patient as a result of nuclear interactions of charged hadrons with tissue, including β (+) emitters, prompt photons, and charged fragments. The correctness of the dose delivery can be verified by comparing measured and pre-calculated distributions of the secondary particles. The reliability of Monte Carlo (MC) predictions is a key issue. Correctly modeling the production of secondaries is a non-trivial task, because it involves nuclear physics interactions at energies, where no rigorous theories exist to describe them. The goal of this review is to provide a comprehensive overview of various aspects in modeling the physics processes for range verification with secondary particles produced in proton, carbon, and heavier ion irradiation. We discuss electromagnetic and nuclear interactions of charged hadrons in matter, which is followed by a summary of some widely used MC codes in hadron therapy. Then, we describe selected examples of how these codes have been validated and used in three range verification techniques: PET, prompt gamma, and charged particle detection. We include research studies and clinically applied methods. For each of the techniques, we point out advantages and disadvantages, as well as clinical challenges still to be addressed, focusing on MC simulation aspects.
Range Verification Methods in Particle Therapy: Underlying Physics and Monte Carlo Modeling.
Kraan, Aafke Christine
2015-01-01
Hadron therapy allows for highly conformal dose distributions and better sparing of organs-at-risk, thanks to the characteristic dose deposition as function of depth. However, the quality of hadron therapy treatments is closely connected with the ability to predict and achieve a given beam range in the patient. Currently, uncertainties in particle range lead to the employment of safety margins, at the expense of treatment quality. Much research in particle therapy is therefore aimed at developing methods to verify the particle range in patients. Non-invasive in vivo monitoring of the particle range can be performed by detecting secondary radiation, emitted from the patient as a result of nuclear interactions of charged hadrons with tissue, including β (+) emitters, prompt photons, and charged fragments. The correctness of the dose delivery can be verified by comparing measured and pre-calculated distributions of the secondary particles. The reliability of Monte Carlo (MC) predictions is a key issue. Correctly modeling the production of secondaries is a non-trivial task, because it involves nuclear physics interactions at energies, where no rigorous theories exist to describe them. The goal of this review is to provide a comprehensive overview of various aspects in modeling the physics processes for range verification with secondary particles produced in proton, carbon, and heavier ion irradiation. We discuss electromagnetic and nuclear interactions of charged hadrons in matter, which is followed by a summary of some widely used MC codes in hadron therapy. Then, we describe selected examples of how these codes have been validated and used in three range verification techniques: PET, prompt gamma, and charged particle detection. We include research studies and clinically applied methods. For each of the techniques, we point out advantages and disadvantages, as well as clinical challenges still to be addressed, focusing on MC simulation aspects. PMID:26217586
Soot particle size modelling in 3D simulations of diesel engine combustion
NASA Astrophysics Data System (ADS)
Fraioli, V.; Beatrice, C.; Lazzaro, M.
2011-12-01
The present work is focused on multi-dimensional simulations of combustion in diesel engines. The primary objective was to test, in a diesel engine framework, a soot particle size model to represent the carbon particle formation and calculate the corresponding size distribution function. Simulations are performed by means of a parallel version of the KIVA3V numerical code, modified to adopt detailed kinetics reaction mechanisms. A skeletal reaction scheme for n-heptane autoignition has been extended, to include PAH kinetics and carbonaceous particle formation and consumption rates: the full reaction set is made up of 82 gas species and 50 species accounting for the particles, thus the complete reaction scheme comprises 132 species and 2206 reaction steps. Four different engine operative conditions, varying engine speed and load, are taken into account and experimentally tested on a single cylinder diesel engine fuelling pure n-heptane. Computed particle size distribution functions are compared with corresponding measurements at the exhaust, performed by a differential mobility spectrometer. A satisfying agreement between computed and measured combustion profiles is obtained in all the conditions. A reasonable aerosol evolution can be obtained, yet in all the cases the model exhibits the tendency to overestimate the number of particles within the range 5-160 nm. Moreover calculations predict a nucleation mode not detected by the available instrument. According to the simulations, the total number and size of the nascent particles would not depend on the operative conditions, while the features of the larger aggregates distinctly vary with the engine functioning.
Simple One-Dimensional Quantum-Mechanical Model for a Particle Attached to a Surface
ERIC Educational Resources Information Center
Fernandez, Francisco M.
2010-01-01
We present a simple one-dimensional quantum-mechanical model for a particle attached to a surface. It leads to the Schrodinger equation for a harmonic oscillator bounded on one side that we solve in terms of Weber functions and discuss the behaviour of the eigenvalues and eigenfunctions. We derive the virial theorem and other exact relationships…
Displacements Of Brownian Particles In Terms Of Marian Von Smoluchowski's Heuristic Model
ERIC Educational Resources Information Center
Klein, Hermann; Woermann, Dietrich
2005-01-01
Albert Einstein's theory of the Brownian motion, Marian von Smoluchowski's heuristic model, and Perrin's experimental results helped to bring the concept of molecules from a state of being a useful hypothesis in chemistry to objects existing in reality. Central to the theory of Brownian motion is the relation between mean particle displacement and…
ERIC Educational Resources Information Center
Kottonau, Johannes
2011-01-01
Effectively teaching the concepts of osmosis to college-level students is a major obstacle in biological education. Therefore, a novel computer model is presented that allows students to observe the random nature of particle motion simultaneously with the seemingly directed net flow of water across a semipermeable membrane during osmotic…
Particle Model for Work, Heat, and the Energy of a Thermodynamic System
ERIC Educational Resources Information Center
DeVoe, Howard
2007-01-01
A model of a thermodynamic system is described in which particles (representing atoms) interact with one another, the surroundings, and the earth's gravitational field according to the principles of classical mechanics. The system's energy "E" and internal energy "U" are defined. The importance is emphasized of the dependence of energy and work on…
A two-fluid model for particle acceleration and dynamics in black-hole accretion flows
NASA Astrophysics Data System (ADS)
Lee, Jason P.
Hot, tenuous Advection-Dominated Accretion Flows (ADAFs) are ideal sites for the Fermi acceleration of relativistic particles at standing shock waves in the accretion disk. Previous work has demonstrated that the shock-acceleration process can be efficient enough to power the observed, strong outflows in radio-loud active galaxies such as M87. However, the dynamical effect (back-reaction) on the flow, due to the pressure of the relativistic particles, has not been previously considered, as this effect can have a significant influence on the disk structure. We reexamine the problem by creating a new two-fluid model that includes the dynamical effect of the relativistic particle pressure, as well as the background (thermal) gas pressure. The new model is analogous to the incorporation of the cosmic-ray pressure in the two-fluid model of cosmic-ray-modified supernova shock waves. We derive a new set of shock jump conditions and obtain dynamical solutions that describe the structure of the disk, the discontinuous shock, and the outflow. From this, we show that smooth (shock-free) global flows are impossible when relativistic particle diffusion is included in the dynamical model.
Preservice Teachers' Pedagogical Content Knowledge of Using Particle Models in Teaching Chemistry
ERIC Educational Resources Information Center
De Jong, Onno; Van Driel, Jan H.; Verloop, Nico
2005-01-01
In this article, we describe the results of a study of the pedagogical content knowledge (PCK) of preservice chemistry teachers in the context of a postgraduate teacher education program. A group of preservice teachers (n = 12) took part in an experimental introductory course module about the use of particle models to help secondary school…
NASA Astrophysics Data System (ADS)
Saiz-Lopez, A.; Plane, J. M. C.; McFiggans, G.; Williams, P. I.; Ball, S. M.; Bitter, M.; Jones, R. L.; Hongwei, C.; Hoffmann, T.
2005-07-01
A model of iodine chemistry in the marine boundary layer (MBL) has been used to investigate the impact of daytime coastal emissions of molecular iodine (I2). The model contains a full treatment of gas-phase iodine chemistry, combined with a description of the nucleation and growth, by condensation and coagulation, of iodine oxide nano-particles. In-situ measurements of coastal emissions of I2 made by the broadband cavity ring-down spectroscopy (BBCRDS) and inductively coupled plasma-mass spectrometry (ICP/MS) techniques are presented and compared to long path differential optical absorption spectroscopy (DOAS) observations of I2 at Mace Head, Ireland. Simultaneous measurements of enhanced I2 emissions and particle bursts show that I2 is almost certainly the main precursor of new particles at this coastal location. The ratio of IO to I2 predicted by the model indicates that the iodine species observed by the DOAS are concentrated over a short distance (about 8% of the 4.2 km light path) consistent with the intertidal zone, bringing them into good agreement with the I2 measurements made by the two in-situ techniques. The model is then used to investigate the effect of iodine emission on ozone depletion, and the production of new particles and their evolution to form stable cloud condensation nuclei (CCN).
NASA Astrophysics Data System (ADS)
Saiz-Lopez, A.; Plane, J. M. C.; McFiggans, G.; Williams, P. I.; Ball, S. M.; Bitter, M.; Jones, R. L.; Hongwei, C.; Hoffmann, T.
2006-03-01
A model of iodine chemistry in the marine boundary layer (MBL) has been used to investigate the impact of daytime coastal emissions of molecular iodine (I2). The model contains a full treatment of gas-phase iodine chemistry, combined with a description of the nucleation and growth, by condensation and coagulation, of iodine oxide nano-particles. In-situ measurements of coastal emissions of I2 made by the broadband cavity ring-down spectroscopy (BBCRDS) and inductively coupled plasma-mass spectrometry (ICP/MS) techniques are presented and compared to long path differential optical absorption spectroscopy (DOAS) observations of I2 at Mace Head, Ireland. Simultaneous measurements of enhanced I2 emissions and particle bursts show that I2 is almost certainly the main precursor of new particles at this coastal location. The ratio of IO to I2 predicted by the model indicates that the iodine species observed by the DOAS are concentrated over a short distance (about 8% of the 4.2 km light path) consistent with the intertidal zone, bringing them into good agreement with the I2 measurements made by the two in-situ techniques. The model is then used to investigate the effect of iodine emission on ozone depletion, and the production of new particles and their evolution to form stable cloud condensation nuclei (CCN).
The Particle/Wave-in-a-Box Model in Dutch Secondary Schools
ERIC Educational Resources Information Center
Hoekzema, Dick; van den Berg, Ed; Schooten, Gert; van Dijk, Leo
2007-01-01
The combination of mathematical and conceptual difficulties makes teaching quantum physics at secondary schools a precarious undertaking. With many of the conceptual difficulties being unavoidable, simplifying the mathematics becomes top priority. The particle/wave-in-a-box provides a teaching model which includes many aspects of serious …
Multi-point Observations and Modeling of Particle Injections During Substorms
NASA Astrophysics Data System (ADS)
Henderson, M. G.; Woodroffe, J. R.; Jordanova, V.; Harris, C.
2015-12-01
Dispersionless and dispersed particle injections associated with substorms have been studied for many years based on observations acquired primarily at geosynchronous orbit. A general picture that has emerged is that particles are energized and rapidly transported/organized behind an "injection boundary" that penetrates closer to Earth in some magnetic local time sector (e.g. the so-called double-spiral injection boundary model). While this picture provides a very good description of injections at geosynchronous orbit, with the launch of the Van Allen Probes mission, we are now able to explore the evolution of injection signatures well inside of geosynchronous orbit at multiple locations as well. We find that the injection boundary model also appears to reproduce a number of complicated types of dispersion patterns observed in the Van Allen Probes particle data. The dispersion patterns are found to depend dramatically on orbital configuration and timing of onset relative to the phasing of the spacecraft in their orbits. In addition to observational results, we present results of simulated dispersion patterns obtained from the injection boundary model using guiding center particle tracing in two different field configurations: 1) a simplistic dipole magnetic field with Volland-Stern electric field, and 2) RAM/SCB running in the Space Weather Modeling Framework.
Sorption/desorption kinetics of contaminants on mobile particles: Modeling and experimental evidence
NASA Astrophysics Data System (ADS)
Bold, Steffen; Kraft, Siegfried; Grathwohl, Peter; Liedl, Rudolf
2003-12-01
In this study the impact of sorption/desorption kinetics between organic contaminants and mobile particles suspended in subsurface water is analyzed. TCE migration through a granular activated carbon column is investigated at different transport velocities with lignite and activated carbon particles as mobile carriers. The measured breakthrough characteristics of TCE can be reproduced by a reactive transport model simulating sorption/desorption kinetics applying an intraparticle diffusion approach for mobile particles and the packed bed of granular activated carbon. Model predictions are based on independently measured physicochemical parameters, i.e., no calibration of TCE sorption/desorption is required. The close matches of experimental data to predicted data validate the exclusively process-based model assumptions and indicate that this approach has large predictive capabilities. Extending these findings, a sensitivity study is presented in order to specify under which conditions sorption/desorption of contaminants in mobile particles has to be modeled as a kinetic process. It is found that sorption/desorption kinetics are of major importance for Damköhler numbers between 0.01 and 100.
NASA Astrophysics Data System (ADS)
Yang, Xiufeng; Liu, Moubin; Peng, Shiliu
2014-12-01
This paper presents a smoothed particle hydrodynamics (SPH) and element bending group (EBG) coupling method for modeling the interaction of flexible fibers with moving viscous fluids. SPH is a well-developed mesh-free particle method for simulating viscous fluid flows. EBG is also a particle method for modeling flexible bodies. The interaction of flexible fibers with moving viscous fluids is rendered through the interaction of EBG particles for flexible fiber and SPH particles for fluid. In numerical simulation, flexible fibers of different lengths are immersed in a moving viscous fluid driven by a body force. The drag force on the fiber obtained from SPH-EBG simulation agrees well with experimental observations. It is shown that the flexible fiber demonstrates three typical bending modes, including the U-shaped mode, the flapping mode, and the closed mode, and that the flexible fiber experiences a drag reduction due to its reconfiguration by bending. It is also found that the U 4/3 drag scaling law for a flexible fiber is only valid for the U-shaped mode, but not valid for the flapping and closed modes. The results indicate that the reconfiguration of a flexible fiber is caused by the fluid force acting on it, while vortex shedding is of importance in the translations of bending modes.
Modeling the evolution of aerosol particles in a ship plume using PartMC-MOSAIC
NASA Astrophysics Data System (ADS)
Tian, J.; Riemer, N.; Pfaffenberger, L.; Schlager, H.; Petzold, A.
2013-06-01
This study investigates the evolution of ship-emitted aerosol particles using the stochastic particle-resolved model PartMC-MOSAIC. Comparisons of our results with observations from the QUANTIFY Study in 2007 in the English channel and the Gulf of Biscay showed that the model was able to reproduce the observed evolution of total number concentration and the vanishing of the nucleation mode consisting of sulfate particles. Further process analysis revealed that during the first hour after emission, dilution reduced the total number concentration by four orders of magnitude, while coagulation reduced it by an additional order of magnitude. Neglecting coagulation resulted in an overprediction of more than one order of magnitude in the number concentration of particles smaller than 40 nm at a plume age of 100 s. Coagulation also significantly altered the mixing state of the particles, leading to a continuum of internal mixtures of sulfate and black carbon. The impact on cloud condensation nuclei (CCN) concentrations depended on the supersaturation threshold S at which CCN activity was evaluated. For the base case conditions simulated here, characterized by a low formation rate of secondary aerosol species, neglecting coagulation led to an underestimation of CCN concentrations of about 20% for S=0.6% and of about 40% for S=0.3%. For S=0.1% the differences between simulations including coagulation and neglecting coagulation were negligible.
Modeling crack growth during Li insertion in storage particles using a fracture phase field approach
NASA Astrophysics Data System (ADS)
Klinsmann, Markus; Rosato, Daniele; Kamlah, Marc; McMeeking, Robert M.
2016-07-01
Fracture of storage particles is considered to be one of the major reasons for capacity fade and increasing power loss in many commercial lithium ion batteries. The appearance of fracture and cracks in the particles is commonly ascribed to mechanical stress, which evolves from inhomogeneous swelling and shrinkage of the material when lithium is inserted or extracted. Here, a coupled model of lithium diffusion, mechanical stress and crack growth using a phase field method is applied to investigate how the formation of cracks depends on the size of the particle and the presence or absence of an initial crack, as well as the applied flux at the boundary. The model shows great versatility in that it is free of constraints with respect to particle geometry, dimension or crack path and allows simultaneous observation of the evolution of lithium diffusion and crack growth. In this work, we focus on the insertion process. In particular, we demonstrate the presence of intricate fracture phenomena, such as, crack branching or complete breakage of storage particles within just a single half cycle of lithium insertion, a phenomenon that was only speculated about before.
Discrete particle model for bedload sediment transport in the surf zone
NASA Astrophysics Data System (ADS)
Calantoni, Joseph
2002-04-01
Predicting the evolution of nearshore bathymetry from the highest uprush of the swash offshore to the location of wave breaking is a difficult problem of significant importance, with economic, legal, engineering, scientific, and military implications for coastal environments. Despite the apparent accessibility of the phenomena of interest, namely, the motion of sand under the forcing of waves and currents, the predictive capability of existing models for nearshore evolution is poor. A detailed study of the forces exerted on individual sand grains is undertaken in an effort to elucidate sediment transport mechanisms in the surf zone. New results indicate that fluid acceleration is a particularly important feature of surf zone transport; likewise, the processes of particle size segregation and the role of particle shape are newly explored. The study methodology employs computer simulations that describe the collective and individual motions of discrete particles immersed in a Newtonian fluid having essentially arbitrary density and viscosity. In this study all particle properties are those of quartz sand, and the fluid properties correspond to saltwater at 20°C. Such discrete-particle models, having a basis in molecular dynamics studies, have a broad range of applications in addition to the sedimentological one of interest here; for example, similar methodologies have been applied to traffic flow, schooling fish, crowd control, and other problems in which the particulate nature of the phenomenon is of critical importance.
NASA Technical Reports Server (NTRS)
Parker, Linda Neergaard; Zank, Gary P.
2013-01-01
We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al., 1999) in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box (Melrose and Pope, 1993; Zank et al., 2000). We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (Emax) appropriate for quasi-parallel and quasi-perpendicular shocks (Zank et al., 2000, 2006; Dosch and Shalchi, 2010) and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).
Particle-based model to simulate the micromechanics of biological cells
NASA Astrophysics Data System (ADS)
van Liedekerke, P.; Tijskens, E.; Ramon, H.; Ghysels, P.; Samaey, G.; Roose, D.
2010-06-01
This paper is concerned with addressing how biological cells react to mechanical impulse. We propose a particle based model to numerically study the mechanical response of these cells with subcellular detail. The model focuses on a plant cell in which two important features are present: (1) the cell’s interior liquidlike phase inducing hydrodynamic phenomena, and (2) the cell wall, a viscoelastic solid membrane that encloses the protoplast. In this particle modeling framework, the cell fluid is modeled by a standard smoothed particle hydrodynamics (SPH) technique. For the viscoelastic solid phase (cell wall), a discrete element method (DEM) is proposed. The cell wall hydraulic conductivity (permeability) is built in through a constitutive relation in the SPH formulation. Simulations show that the SPH-DEM model is in reasonable agreement with compression experiments on an in vitro cell and with analytical models for the basic dynamical modes of a spherical liquid filled shell. We have performed simulations to explore more complex situations such as relaxation and impact, thereby considering two cell types: a stiff plant type and a soft animal-like type. Their particular behavior (force transmission) as a function of protoplasm and cell wall viscosity is discussed. We also show that the mechanics during and after cell failure can be modeled adequately. This methodology has large flexibility and opens possibilities to quantify problems dealing with the response of biological cells to mechanical impulses, e.g., impact, and the prediction of damage on a (sub)cellular scale.
Micromechanical and macroscopic models of ductile fracture in particle reinforced metallic materials
NASA Astrophysics Data System (ADS)
Hu, Chao; Bai, Jie; Ghosh, Somnath
2007-06-01
This paper is aimed at developing two modules contributing to the overall framework of multi-scale modelling of ductile fracture of particle reinforced metallic materials. The first module is for detailed micromechanical analysis of particle fragmentation and matrix cracking of heterogeneous microstructures. The Voronoi cell FEM for particle fragmentation is extended in this paper to incorporate ductile failure through matrix cracking in the form of void growth and coalescence using a non-local Gurson-Tvergaard-Needleman (GTN) model. In the resulting enriched Voronoi cell finite element model (VCFEM) or E-VCFEM, the assumed stress-based hybrid VCFEM formulation is overlaid with narrow bands of displacement based elements to accommodate strain softening in the constitutive behaviour. The second module develops an anisotropic plasticity-damage model in the form of the GTN model for macroscopic analysis in the multi-scale material model. Parameters in this model are calibrated from results of homogenization of microstructural variables obtained by E-VCFEM analysis of microstructural representative volume element. Numerical examples conducted yield satisfactory results.
Elucidating determinants of aerosol composition through particle-type-based receptor modeling
NASA Astrophysics Data System (ADS)
McGuire, M. L.; Jeong, C.-H.; Slowik, J. G.; Chang, R. Y.-W.; Corbin, J. C.; Lu, G.; Mihele, C.; Rehbein, P. J. G.; Sills, D. M. L.; Abbatt, J. P. D.; Brook, J. R.; Evans, G. J.
2011-03-01
An aerosol time-of-flight mass spectrometer (ATOFMS) was deployed at a semi-rural site in Southern Ontario to characterize the size and chemical composition of individual particles. Particle-type-based receptor modelling of these data was used to investigate the determinants of aerosol chemical composition in this region. Individual particles were classified into particle-types and positive matrix factorization (PMF) was applied to their temporal trends to separate and cross-apportion particle-types to factors. The extent of chemical processing for each factor was assessed by evaluating the internal and external mixing state of the characteristic particle-types. The nine factors identified helped to elucidate the coupled interactions of these determinants. Nitrate-laden dust was found to be the dominant type of locally emitted particles measured by ATOFMS. Several factors associated with aerosol transported to the site from intermediate local-to-regional distances were identified: the Organic factor was associated with a combustion source to the north-west; the ECOC Day factor was characterized by nearby local-to-regional carbonaceous emissions transported from the south-west during the daytime; and the Fireworks factor consisted of pyrotechnic particles from the Detroit region following holiday fireworks displays. Regional aerosol from farther emissions sources were reflected through three factors: two biomass burning factors and a highly chemically processed long range transport factor. The biomass burning factors were separated by PMF due to differences in chemical processing which were caused in part by the passage of two thunderstorm gust fronts with different air mass histories. The remaining two factors, ECOC Night and Nitrate Background, represented the night-time partitioning of nitrate to pre-existing particles of different origins. The distinct meteorological conditions observed during this month-long study in the summer of 2007 provided a unique range
Elucidating determinants of aerosol composition through particle-type-based receptor modeling
NASA Astrophysics Data System (ADS)
McGuire, M. L.; Jeong, C.-H.; Slowik, J. G.; Chang, R. Y.-W.; Corbin, J. C.; Lu, G.; Mihele, C.; Rehbein, P. J. G.; Sills, D. M. L.; Abbatt, J. P. D.; Brook, J. R.; Evans, G. J.
2011-08-01
An aerosol time-of-flight mass spectrometer (ATOFMS) was deployed at a semi-rural site in southern Ontario to characterize the size and chemical composition of individual particles. Particle-type-based receptor modelling of these data was used to investigate the determinants of aerosol chemical composition in this region. Individual particles were classified into particle-types and positive matrix factorization (PMF) was applied to their temporal trends to separate and cross-apportion particle-types to factors. The extent of chemical processing for each factor was assessed by evaluating the internal and external mixing state of the characteristic particle-types. The nine factors identified helped to elucidate the coupled interactions of these determinants. Nitrate-laden dust was found to be the dominant type of locally emitted particles measured by ATOFMS. Several factors associated with aerosol transported to the site from intermediate local-to-regional distances were identified: the Organic factor was associated with a combustion source to the north-west; the ECOC Day factor was characterized by nearby local-to-regional carbonaceous emissions transported from the south-west during the daytime; and the Fireworks factor consisted of pyrotechnic particles from the Detroit region following holiday fireworks displays. Regional aerosol from farther emissions sources was reflected through three factors: two Biomass Burning factors and a highly chemically processed Long Range Transport factor. The Biomass Burning factors were separated by PMF due to differences in chemical processing which were in part elucidated by the passage of two thunderstorm gust fronts with different air mass histories. The remaining two factors, ECOC Night and Nitrate Background, represented the night-time partitioning of nitrate to pre-existing particles of different origins. The distinct meteorological conditions observed during this month-long study in the summer of 2007 provided a unique
NASA Astrophysics Data System (ADS)
Tartakovsky, Alexandre M.; Panchenko, Alexander
2016-01-01
We present a novel formulation of the Pairwise Force Smoothed Particle Hydrodynamics (PF-SPH) model and use it to simulate two- and three-phase flows in bounded domains. In the PF-SPH model, the Navier-Stokes equations are discretized with the Smoothed Particle Hydrodynamics (SPH) method, and the Young-Laplace boundary condition at the fluid-fluid interface and the Young boundary condition at the fluid-fluid-solid interface are replaced with pairwise forces added into the Navier-Stokes equations. We derive a relationship between the parameters in the pairwise forces and the surface tension and static contact angle. Next, we demonstrate the model's accuracy under static and dynamic conditions. Finally, we use the Pf-SPH model to simulate three phase flow in a porous medium.
Three-loop neutrino mass model with doubly charged particles from isodoublets
NASA Astrophysics Data System (ADS)
Okada, Hiroshi; Yagyu, Kei
2016-01-01
We propose a new type of a three-loop induced neutrino mass model with dark matter candidates which are required for the neutrino mass generation. The smallness of neutrino masses can be naturally explained without introducing super heavy particles, namely, much heavier than a TeV scale and quite small couplings as compared to the gauge couplings. We find that as a bonus, the anomaly of the muon anomalous magnetic moment can simultaneously be explained by loop effects of new particles. In our model, there are doubly charged scalar bosons and leptons from isospin doublet fields which give characteristic collider signatures. In particular, the doubly charged scalar bosons can decay into the same-sign dilepton with its chirality of both right-handed or left- and right-handed. This can be a smoking gun signature to identify our model and be useful to distinguish other models with doubly charged scalar bosons at collider experiments.
Evaluation of thermochemical models for particle and continuum simulations of hypersonic flow
NASA Technical Reports Server (NTRS)
Boyd, Iain D.; Gokcen, Tahir
1992-01-01
Computations are presented for one-dimensional, strong shock waves that are typical of those that form in front of a reentering spacecraft. The fluid mechanics and thermochemistry are modeled using two different approaches. The first employs traditional continuum techniques in solving the Navier-Stokes equations. The second approach employs a particle simulation technique (the direct simulation Monte Carlo method, DSMC). The thermochemical models employed in these two techniques are quite different. The present investigation presents an evaluation of thermochemical models for nitrogen under hypersonic flow conditions. Four separate cases are considered that are dominated in turn by vibrational relaxation, weak dissociation, strong dissociation and weak ionization. In near-continuum, hypersonic flow, the nonequilibrium thermochemical models employed in continuum and particle simulations produce nearly identical solutions. Further, the two approaches are evaluated successfully against available experimental data for weakly and strongly dissociating flows.
Status of the L2 and Lunar Charged Particle Environment Models
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Diekmann, Anne M.; Blackwell, William C., Jr.
2007-01-01
The L2 Charged Particle Environment (L2-CPE) model is an engineering tool which provides free field charged particle environments for distant magnetotail, magnetosheath, and solar wind environments. L2-CPE is intended for use in assessing contributions from low energy radiation environments (4.1 keV to few MeV) to radiation dose in thin materials used in construction of spacecraft to be placed in orbit about the Sun-Earth L2 point. This paper describes the status of the current version of the L2-CPE model including structure of the model used to organize plasma environments into solar wind, magnetosheath, and magnetotail environments, the algorithms used to estimate radiation fluence in sparsely sampled environments, the updated graphical user interface, and output options for flux and fluence environments. In addition, we describe the status and plans for updating the model to include environments relevant to lunar programs.
Auxiliary particle filter-model predictive control of the vacuum arc remelting process
NASA Astrophysics Data System (ADS)
Lopez, F.; Beaman, J.; Williamson, R.
2016-07-01
Solidification control is required for the suppression of segregation defects in vacuum arc remelting of superalloys. In recent years, process controllers for the VAR process have been proposed based on linear models, which are known to be inaccurate in highly-dynamic conditions, e.g. start-up, hot-top and melt rate perturbations. A novel controller is proposed using auxiliary particle filter-model predictive control based on a nonlinear stochastic model. The auxiliary particle filter approximates the probability of the state, which is fed to a model predictive controller that returns an optimal control signal. For simplicity, the estimation and control problems are solved using Sequential Monte Carlo (SMC) methods. The validity of this approach is verified for a 430 mm (17 in) diameter Alloy 718 electrode melted into a 510 mm (20 in) diameter ingot. Simulation shows a more accurate and smoother performance than the one obtained with an earlier version of the controller.
2014-01-01
This work reports a new evidence of the versatility of silica sol as a stabilizer for Pickering emulsions. The organization of silica particles at the oil-water interface is a function of the nucleation model. The present results show that nucleation model, together with monomer hydrophobicity, can be used as a trigger to modify the packing density of silica particles at the oil-water interface: Less hydrophobic methylmethacrylate, more wettable with silica particles, favors the formation of core-shell-structured composite when the composite particles are prepared by miniemulsion polymerization in which monomers are fed in batch (droplet nucleation). By contrast, hydrophobic butylacrylate promotes the encapsulating efficiency of silica when monomers are fed dropwise (homogeneous nucleation). The morphologies of polyacrylate-nano-SiO2 composites prepared from different feed ratio of methylmethacrylate/butylacrylate (with different hydrophobicity) and by different feed processes are characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) techniques. The results from SEM and TEM show that the morphologies of the as-prepared polyacrylate/nano-SiO2 composite can be a core-shell structure or a bare acrylic sphere. The stability of resulting emulsions composed of these composite particles is strongly dependent on the surface coverage of silica particles. The emulsion stability is improved by densely silica-packed composite particles. PMID:25313299
NASA Technical Reports Server (NTRS)
Chakrabarti, S.; Martin, J. J.; Pearson, J. B.; Lewis, R. A.
2003-01-01
The NASA MSFC Propulsion Research Center (PRC) is conducting a research activity examining the storage of low energy antiprotons. The High Performance Antiproton Trap (HiPAT) is an electromagnetic system (Penning-Malmberg design) consisting of a 4 Tesla superconductor, a high voltage confinement electrode system, and an ultra high vacuum test section; designed with an ultimate goal of maintaining charged particles with a half-life of 18 days. Currently, this system is being experimentally evaluated using normal matter ions which are cheap to produce and relatively easy to handle and provide a good indication of overall trap behavior, with the exception of assessing annihilation losses. Computational particle-in-cell plasma modeling using the XOOPIC code is supplementing the experiments. Differing electrode voltage configurations are employed to contain charged particles, typically using flat, modified flat and harmonic potential wells. Ion cloud oscillation frequencies are obtained experimentally by amplification of signals induced on the electrodes by the particle motions. XOOPIC simulations show that for given electrode voltage configurations, the calculated charged particle oscillation frequencies are close to experimental measurements. As a two-dimensional axisymmetric code, XOOPIC cannot model azimuthal plasma variations, such as those induced by radio-frequency (RF) modulation of the central quadrupole electrode in experiments designed to enhance ion cloud containment. However, XOOPIC can model analytically varying electric potential boundary conditions and particle velocity initial conditions. Application of these conditions produces ion cloud axial and radial oscillation frequency modes of interest in achieving the goal of optimizing HiPAT for reliable containment of antiprotons.
NASA Astrophysics Data System (ADS)
Hrycik, Janelle M.; Chassé, Joël; Ruddick, Barry R.; Taggart, Christopher T.
2013-11-01
Early life-stage dispersal influences recruitment and is of significance in explaining the distribution and connectivity of marine species. Motivations for quantifying dispersal range from biodiversity conservation to the design of marine reserves and the mitigation of species invasions. Here we compare estimates of real particle dispersion in a coastal marine environment with similar estimates provided by hydrodynamic modelling. We do so by using a system of magnetically attractive particles (MAPs) and a magnetic-collector array that provides measures of Lagrangian dispersion based on the time-integration of MAPs dispersing through the array. MAPs released as a point source in a coastal marine location dispersed through the collector array over a 5-7 d period. A virtual release and observed (real-time) environmental conditions were used in a high-resolution three-dimensional hydrodynamic model to estimate the dispersal of virtual particles (VPs). The number of MAPs captured throughout the collector array and the number of VPs that passed through each corresponding model location were enumerated and compared. Although VP dispersal reflected several aspects of the observed MAP dispersal, the comparisons demonstrated model sensitivity to the small-scale (random-walk) particle diffusivity parameter (Kp). The one-dimensional dispersal kernel for the MAPs had an e-folding scale estimate in the range of 5.19-11.44 km, while those from the model simulations were comparable at 1.89-6.52 km, and also demonstrated sensitivity to Kp. Variations among comparisons are related to the value of Kp used in modelling and are postulated to be related to MAP losses from the water column and (or) shear dispersion acting on the MAPs; a process that is constrained in the model. Our demonstration indicates a promising new way of 1) quantitatively and empirically estimating the dispersal kernel in aquatic systems, and 2) quantitatively assessing and (or) improving regional hydrodynamic
Near-threshold boson pair production in the model of smeared-mass unstable particles
Kuksa, V. I.; Pasechnik, R. S.
2010-09-15
Near-threshold production of boson pairs is considered within the framework of the model of unstable particles with smeared mass. We describe the principal aspects of the model and consider the strategy of calculations including the radiative corrections. The results of calculations are in good agreement with LEP II data and Monte-Carlo simulations. Suggested approach significantly simplifies calculations with respect to the standard perturbative one.
NASA Technical Reports Server (NTRS)
Yokoyama, Jun'ichi; Suto, Yasushi
1991-01-01
A phenomenological model to produce isocurvature baryon-number fluctuations is proposed in the framework of inflationary cosmology. The resulting spectrum of density fluctuation is very different from the conventional Harrison-Zel'dovich shape. The model, with the parameters satisfying several requirements from particle physics and cosmology, provides an appropriate initial condition for the minimal baryon isocurvature scenario of galaxy formation discussed by Peebles.
Model for coal ash agglomeration based on two-particle dynamics
Moseley, J.L.; O'Brien, T.J.
1986-01-01
The agglomeration of coal and coal ash in fluidized-bed gasifiers (FBG's) is of great interest in coal conversion. However, only limited work has been done to develop analytical models in order to understand ash agglomeration in FBG's. This paper focuses on two-particle collision dynamics, which is then used to develop a criterion for the agglutination of the two particles. The main assumption of this mechanism is that the binding force can be modeled as ''piecewise'' conservative. This makes it possible to compute the maximum energy that can be dissipated by the system. Comparison of this quantity with the initial kinetic energy provides the agglutination criteria. A specific version of this model is obtained by making specific choices for the contact force and the binding force. An analytic formula for the critical velocity, the relative collision velocity below which agglutination takes place, is obtained for head-on collisions; a numerical technique is developed for collisions which are not head-on. A process change which increases the critical velocity increases the likelihood of agglutination of particles with random relative velocities. To examine the critical velocity as a function of temperature, the model requires correlations for the shear modulus and surface adhesiveness coefficient of the particles. Although these correlations are derived from limited experimental information, they lead to reasonable results and agreement with existing experimental data on agglomeration and defluidization. By considering the agglutination of particles of average size and temperature, a measure of the agglomeration tendency of a FBG can be obtained. Finally, the sensitivity of the model to system parameters is also investigated and an assessment of needed additional work is made. 35 refs., 12 figs.
Paramagnetic particle assemblies as colloidal models for atomic and molecular systems
NASA Astrophysics Data System (ADS)
Li, Dichuan
2011-12-01
Colloidal particles are ideal models for studying the behavior of atomic and molecular systems. They resemble their atomic and molecular analogues in that their dynamics are driven by thermal energy and their equilibrium properties are controlled by inter-particle interactions. Based on this analogy, it is reasonable to construct colloidal chains, where each particle represents a repeat unit, as models for polymers. The advantages of this system over molecular systems are its controllable rigidity, contour length and diameter, as well as the convenience to capture its instantaneous shape and position via video microscopy, which are not trivial to realize in molecular systems. By utilizing the dipolar properties of magnetic colloids, a number of groups have assembled semiflexible and rigid colloidal chains by cross-linking magnetic beads under a magnetic field using polymer linkers. Recently, efforts in constructing colloidal chains led even to anisotropic magnetic colloidal chains that mimic the detailed atomic arrangements of polymers. These properties make colloidal chains possible candidates for the classic bead-spring or bead-rod model systems for semiflexible and rigid polymers. In my thesis, I present a method for generating linear colloidal chain structures by linking surface functionalized paramagnetic particles using DNA. First, I investigate the force interactions between individual magnetic particles unde