Sample records for positively regulate expression

  1. Comprehensive analysis of lncRNAs microarray profile and mRNA-lncRNA co-expression in oncogenic HPV-positive cervical cancer cell lines.

    PubMed

    Yang, LingYun; Yi, Ke; Wang, HongJing; Zhao, YiQi; Xi, MingRong

    2016-08-02

    Long non-coding RNAs are emerging to be novel regulators in gene expression. In current study, lncRNAs microarray and lncRNA-mRNA co-expression analysis were performed to explore the alternation and function of lncRNAs in cervical cancer cells. We identified that 4750 lncRNAs (15.52%) were differentially expressed in SiHa (HPV-16 positive) (2127 up-regulated and 2623 down-regulated) compared with C-33A (HPV negative), while 5026 lncRNAs (16.43%) were differentially expressed in HeLa (HPV-18 positive) (2218 up-regulated and 2808 down-regulated) respectively. There were 5008 mRNAs differentially expressed in SiHa and 4993 in HeLa, which were all cataloged by GO terms and KEGG pathway. With the help of mRNA-lncRNA co-expression network, we found that ENST00000503812 was significantly negative correlated with RAD51B and IL-28A expression in SiHa, while ENST00000420168, ENST00000564977 and TCONS_00010232 had significant correlation with FOXQ1 and CASP3 expression in HeLa. Up-regulation of ENST00000503812 may inhibit RAD51B and IL-28A expression and result in deficiency of DNA repair pathway and immune responses in HPV-16 positive cervical cancer cell. Up-regulation of ENST00000420168, ENST00000564977 and down-regulation of TCONS_00010232 might stimulate FOXQ1 expression and suppress CASP3 expression in HPV-18 positive cervical cancer cell, which lead to HPV-induced proliferation and deficiency in apoptosis. These results indicate that changes of lncRNAs and related mRNAs might impact on several cellular pathways and involve in HPV-induced proliferation, which enriches our understanding of lncRNAs and coding transcripts anticipated in HPV oncogenesis of cervical cancer.

  2. Proton receptor GPR68 expression in dendritic-cell-like S100β-positive cells of rat anterior pituitary gland: GPR68 induces interleukin-6 gene expression in extracellular acidification.

    PubMed

    Horiguchi, Kotaro; Higuchi, Masashi; Yoshida, Saishu; Nakakura, Takashi; Tateno, Kozue; Hasegawa, Rumi; Takigami, Shu; Ohsako, Shunji; Kato, Takako; Kato, Yukio

    2014-11-01

    S100β-positive cells, which do not express the classical pituitary hormones, appear to possess multifunctional properties and are assumed to be heterogeneous in the anterior pituitary gland. The presence of several protein markers has shown that S100β-positive cells are composed of populations such as stem/progenitor cells, epithelial cells, astrocytes and dendritic cells. Recently, we succeeded in separating S100β-positive cells into round-cell (dendritic-cell-like) and process-cell types. We also found the characteristic expression of anti-inflammatory factors (interleukin-6, Il-6) and membrane receptors (integrin β-6) in the round type. Here, we further investigate the function of the subpopulation of S100β-positive cells. Since IL-6 is also a paracrine factor that regulates hormone producing-cells, we examine whether a correlation exists among extracellular acid stress, IL-6 and hormone production by using primary cultures of anterior pituitary cells. Dendritic-cell-like S100β-positive cells notably expressed Gpr68 (proton receptor) and Il-6. Furthermore, the expression of Il-6 and proopiomelanocortin (Pomc) was up-regulated by extracellular acidification. The functional role of IL-6 and GPR68 in the gene expression of Pomc during extracellular acidification was also examined. Small interfering RNA for Il-6 up-regulated Pomc expression and that for Gpr68 reversed the down-regulation of Il-6 and up-regulated Pomc expression by extracellular acidification. Thus, S100β-positive dendritic-like cells can sense an increase in extracellular protons via GPR68 and respond by the production of IL-6 in order to suppress the up-regulation of Pomc expression.

  3. Human telomerase reverse transcriptase regulates vascular endothelial growth factor expression via human papillomavirus oncogene E7 in HPV-18-positive cervical cancer cells.

    PubMed

    Li, Fang; Cui, Jinquan

    2015-07-01

    Human papillomavirus (HPV) infection induces chronic and precancerous lesions and results in invasive cervical cancer. Human telomerase as well as inflammatory and angiogenic factors such as telomerase reverse transcriptase (hTERT) or vascular endothelial growth factor (VEGF) could play a role in regulating HPV-induced cervical cancer. This study investigated underlying molecular events in HPV-induced HPV-positive cervical cancer through hTERT and VEGF in vitro. Expressions of hTERT, a rate-limiting subunit of telomerase, and VEGF mRNA and proteins were, respectively, assessed by qRT-PCR, ELISA, and TRAP-ELISA in HPV-positive tissue samples and cervical cancer cell lines. To assess hTERT and VEGF secretion, hTERT overexpression and knockdown were conducted in HPV-18-positive Hela cells by hTERT cDNA and shRNA transfection, respectively. Then, the effect of HPV E6 and E7 on VEGF expressions was assessed in HPV-negative cervical cancer cells. Data have shown that VEGF expression levels are associated with hTERT expressions and telomerase activity in HPV-positive cervical cancer tissues and cells. Knockdown of hTERT expression down-regulated VEGF expressions, whereas overexpression of hTERT up-regulated VEGF expressions in HPV-18-positive Hela cells. Furthermore, HPV E7 oncoprotein was necessary for hTERT to up-regulate VEGF expressions in HPV-negative cervical cancer cells. Data from this current study indicate that HPV oncoproteins up-regulated hTERT and telomerase activity and in turn promoted VEGF expressions, which could be a key mechanism for HPV-induced cervical cancer development and progression.

  4. Dimorphous expressions of positive emotion: displays of both care and aggression in response to cute stimuli.

    PubMed

    Aragón, Oriana R; Clark, Margaret S; Dyer, Rebecca L; Bargh, John A

    2015-03-01

    Extremely positive experiences, and positive appraisals thereof, produce intense positive emotions that often generate both positive expressions (e.g., smiles) and expressions normatively reserved for negative emotions (e.g., tears). We developed a definition of these dimorphous expressions and tested the proposal that their function is to regulate emotions. We showed that individuals who express emotions in this dimorphous manner do so as a general response across a variety of emotionally provoking situations, which suggests that these expressions are responses to intense positive emotion rather than unique to one particular situation. We used cute stimuli (an elicitor of positive emotion) to demonstrate both the existence of these dimorphous expressions and to provide preliminary evidence of their function as regulators of emotion. © The Author(s) 2015.

  5. Context shapes social judgments of positive emotion suppression and expression.

    PubMed

    Kalokerinos, Elise K; Greenaway, Katharine H; Casey, James P

    2017-02-01

    It is generally considered socially undesirable to suppress the expression of positive emotion. However, previous research has not considered the role that social context plays in governing appropriate emotion regulation. We investigated a context in which it may be more appropriate to suppress than express positive emotion, hypothesizing that positive emotion expressions would be considered inappropriate when the valence of the expressed emotion (i.e., positive) did not match the valence of the context (i.e., negative). Six experiments (N = 1,621) supported this hypothesis: when there was a positive emotion-context mismatch, participants rated targets who suppressed positive emotion as more appropriate, and evaluated them more positively than targets who expressed positive emotion. This effect occurred even when participants were explicitly made aware that suppressing targets were experiencing mismatched emotion for the context (e.g., feeling positive in a negative context), suggesting that appropriate emotional expression is key to these effects. These studies are among the first to provide empirical evidence that social costs to suppression are not inevitable, but instead are dependent on context. Expressive suppression can be a socially useful emotion regulation strategy in situations that call for it. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. REGγ regulates ERα degradation via ubiquitin–proteasome pathway in breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chai, Fan; Liang, Yan; Bi, Jiong

    2015-01-02

    Highlights: • High expression of REGγ is correlated with ERα status and poor clinical features. • Cell growth, mobility and invasion are significantly impaired by REGγ knockdown. • REGγ indirectly regulates ERα protein expression. - Abstract: REGγ is a proteasome coactivator which regulates proteolytic activity in eukaryotic cells. Abundant lines of evidence have showed that REGγ is over expressed in a number of human carcinomas. However, its precise role in the pathogenesis of cancer is still unclear. In this study, by examining 200 human breast cancer specimens, we demonstrated that REGγ was highly expressed in breast cancers, and the expressionmore » of REGγ was positively correlated with breast cancer patient estrogen receptor alpha (ERα) status. Moreover, the expression of REGγ was found positively associated with poor clinical features and low survival rates in ERα positive breast cancer patients. Further cell culture studies using MCF7 and BT474 breast cancer cell lines showed that cell proliferation, motility, and invasion capacities were decreased significantly by REGγ knockdown. Lastly, we demonstrated that REGγ indirectly regulates the degradation of ERα protein via ubiquitin–proteasome pathway. In conclusion, our findings provide the evidence that REGγ expression was positively correlated with ERα status and poor clinical prognosis in ERα positive breast cancer patients. As well, we disclose a new connection between the two molecules that are both highly expressed in most breast cancer cases.« less

  7. Positive correlation between ADAR expression and its targets suggests a complex regulation mediated by RNA editing in the human brain

    PubMed Central

    Liscovitch, Noa; Bazak, Lily; Levanon, Erez Y; Chechik, Gal

    2014-01-01

    A-to-I RNA editing by adenosine deaminases acting on RNA is a post-transcriptional modification that is crucial for normal life and development in vertebrates. RNA editing has been shown to be very abundant in the human transcriptome, specifically at the primate-specific Alu elements. The functional role of this wide-spread effect is still not clear; it is believed that editing of transcripts is a mechanism for their down-regulation via processes such as nuclear retention or RNA degradation. Here we combine 2 neural gene expression datasets with genome-level editing information to examine the relation between the expression of ADAR genes with the expression of their target genes. Specifically, we computed the spatial correlation across structures of post-mortem human brains between ADAR and a large set of targets that were found to be edited in their Alu repeats. Surprisingly, we found that a large fraction of the edited genes are positively correlated with ADAR, opposing the assumption that editing would reduce expression. When considering the correlations between ADAR and its targets over development, 2 gene subsets emerge, positively correlated and negatively correlated with ADAR expression. Specifically, in embryonic time points, ADAR is positively correlated with many genes related to RNA processing and regulation of gene expression. These findings imply that the suggested mechanism of regulation of expression by editing is probably not a global one; ADAR expression does not have a genome wide effect reducing the expression of editing targets. It is possible, however, that RNA editing by ADAR in non-coding regions of the gene might be a part of a more complex expression regulation mechanism. PMID:25692240

  8. Positive correlation between ADAR expression and its targets suggests a complex regulation mediated by RNA editing in the human brain.

    PubMed

    Liscovitch, Noa; Bazak, Lily; Levanon, Erez Y; Chechik, Gal

    2014-01-01

    A-to-I RNA editing by adenosine deaminases acting on RNA is a post-transcriptional modification that is crucial for normal life and development in vertebrates. RNA editing has been shown to be very abundant in the human transcriptome, specifically at the primate-specific Alu elements. The functional role of this wide-spread effect is still not clear; it is believed that editing of transcripts is a mechanism for their down-regulation via processes such as nuclear retention or RNA degradation. Here we combine 2 neural gene expression datasets with genome-level editing information to examine the relation between the expression of ADAR genes with the expression of their target genes. Specifically, we computed the spatial correlation across structures of post-mortem human brains between ADAR and a large set of targets that were found to be edited in their Alu repeats. Surprisingly, we found that a large fraction of the edited genes are positively correlated with ADAR, opposing the assumption that editing would reduce expression. When considering the correlations between ADAR and its targets over development, 2 gene subsets emerge, positively correlated and negatively correlated with ADAR expression. Specifically, in embryonic time points, ADAR is positively correlated with many genes related to RNA processing and regulation of gene expression. These findings imply that the suggested mechanism of regulation of expression by editing is probably not a global one; ADAR expression does not have a genome wide effect reducing the expression of editing targets. It is possible, however, that RNA editing by ADAR in non-coding regions of the gene might be a part of a more complex expression regulation mechanism.

  9. Expression of POEM, a positive regulator of osteoblast differentiation, is suppressed by TNF-{alpha}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukasaki, Masayuki; Yamada, Atsushi, E-mail: yamadaa@dent.showa-u.ac.jp; Suzuki, Dai

    2011-07-15

    Highlights: {yields} TNF-{alpha} inhibits POEM gene expression. {yields} Inhibition of POEM gene expression is caused by NF-{kappa}B activation by TNF-{alpha}. {yields} Over-expression of POEM recovers inhibition of osteoblast differentiation by TNF-{alpha}. -- Abstract: POEM, also known as nephronectin, is an extracellular matrix protein considered to be a positive regulator of osteoblast differentiation. In the present study, we found that tumor necrosis factor-{alpha} (TNF-{alpha}), a key regulator of bone matrix properties and composition that also inhibits terminal osteoblast differentiation, strongly inhibited POEM expression in the mouse osteoblastic cell line MC3T3-E1. TNF-{alpha}-induced down-regulation of POEM gene expression occurred in both time- andmore » dose-dependent manners through the nuclear factor kappa B (NF-{kappa}B) pathway. In addition, expressions of marker genes in differentiated osteoblasts were down-regulated by TNF-{alpha} in a manner consistent with our findings for POEM, while over-expression of POEM recovered TNF-{alpha}-induced inhibition of osteoblast differentiation. These results suggest that TNF-{alpha} inhibits POEM expression through the NF-{kappa}B signaling pathway and down-regulation of POEM influences the inhibition of osteoblast differentiation by TNF-{alpha}.« less

  10. Critical role of types 2 and 3 deiodinases in the negative regulation of gene expression by T₃in the mouse cerebral cortex.

    PubMed

    Hernandez, Arturo; Morte, Beatriz; Belinchón, Mónica M; Ceballos, Ainhoa; Bernal, Juan

    2012-06-01

    Thyroid hormones regulate brain development and function through the control of gene expression, mediated by binding of T(3) to nuclear receptors. Brain T(3) concentration is tightly controlled by homeostatic mechanisms regulating transport and metabolism of T(4) and T(3). We have examined the role of the inactivating enzyme type 3 deiodinase (D3) in the regulation of 43 thyroid hormone-dependent genes in the cerebral cortex of 30-d-old mice. D3 inactivation increased slightly the expression of two of 22 positively regulated genes and significantly decreased the expression of seven of 21 negatively regulated genes. Administration of high doses of T(3) led to significant changes in the expression of 12 positive genes and three negative genes in wild-type mice. The response to T(3) treatment was enhanced in D3-deficient mice, both in the number of genes and in the amplitude of the response, demonstrating the role of D3 in modulating T(3) action. Comparison of the effects on gene expression observed in D3 deficiency with those in hypothyroidism, hyperthyroidism, and type 2 deiodinase (D2) deficiency revealed that the negative genes are more sensitive to D2 and D3 deficiencies than the positive genes. This observation indicates that, in normal physiological conditions, D2 and D3 play critical roles in maintaining local T(3) concentrations within a very narrow range. It also suggests that negatively and positively regulated genes do not have the same physiological significance or that their regulation by thyroid hormone obeys different paradigms at the molecular or cellular levels.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Min; Wu, Junjie, E-mail: wujunjiesh@126.com; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433

    Highlights: •Dnmt3A and Dnmt3B are involved in the down-regulation of WIF-1 expression in non-small-cell lung cancer. •MiR-29 family members could restore WIF-1 expression through demethylation. •MiR-29s suppress Wnt/β-catenin signaling pathway and inhibit tumor growth. •The expression of miR-29a and miR-29b could be regulated partially in a positive feedback loop. -- Abstract: Wnt inhibitory factor-1 (WIF-1) silencing induced by promoter hypermethylation is a common mechanism of aberrant activation of the Wnt signaling pathway in non-small-cell lung cancer (NSCLC). However, the activity of regulators associated with the methylation of the WIF-1 gene remains unclear. Here, we investigated the role of three DNAmore » methyltransferases (DNMT1, DNMT3A and DNMT3B) in the expression of WIF-1. The three DNMTs were up-regulated in NSCLC tumor tissues and suppression of DNMT3A and DNMT3B restored the expression of WIF-1 in NSCLC cells. The miR-29 family (miR-29a, -29b, and -29c), which negatively regulates DNMT3A and DNMT3B, was examined in association with the Wnt/β-catenin signaling pathway. A positive correlation between the expression of WIF-1 and that of MiR-29s was observed in NSCLC tissues. Methylation-specific PCR and Western blotting indicated that miR-29s positively regulate WIF-1 expression by inhibiting the methylation of its promoter. Furthermore, miR-29 overexpression downregulated β-catenin expression, inhibited cell proliferation and induced apoptosis. The expression of miR-29a and miR-29b was partially regulated by DNMT3A and DNMT3B in a positive feedback loop. Taken together, our findings show that miR-29s suppress the Wnt signaling pathway through demethylation of WIF-1 in NSCLC.« less

  12. Testing the effects of suppression and reappraisal on emotional concordance using a multivariate multilevel model.

    PubMed

    Butler, Emily A; Gross, James J; Barnard, Kobus

    2014-04-01

    In theory, the essence of emotion is coordination across experiential, behavioral, and physiological systems in the service of functional responding to environmental demands. However, people often regulate emotions, which could either reduce or enhance cross-system concordance. The present study tested the effects of two forms of emotion regulation (expressive suppression, positive reappraisal) on concordance of subjective experience (positive-negative valence), expressive behavior (positive and negative), and physiology (inter-beat interval, skin conductance, blood pressure) during conversations between unacquainted young women. As predicted, participants asked to suppress showed reduced concordance for both positive and negative emotions. Reappraisal instructions also reduced concordance for negative emotions, but increased concordance for positive ones. Both regulation strategies had contagious interpersonal effects on average levels of responding. Suppression reduced overall expression for both regulating and uninstructed partners, while reappraisal reduced negative experience. Neither strategy influenced the uninstructed partners' concordance. These results suggest that emotion regulation impacts concordance by altering the temporal coupling of phasic subsystem responses, rather than by having divergent effects on subsystem tonic levels. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. The expression of Longus type 4 pilus of enterotoxigenic Escherichia coli is regulated by LngR and LngS and by H-NS, CpxR and CRP global regulators.

    PubMed

    De la Cruz, Miguel A; Ruiz-Tagle, Alejandro; Ares, Miguel A; Pacheco, Sabino; Yáñez, Jorge A; Cedillo, Lilia; Torres, Javier; Girón, Jorge A

    2017-05-01

    Enterotoxigenic Escherichia coli produces a long type 4 pilus called Longus. The regulatory elements and the environmental signals controlling the expression of Longus-encoding genes are unknown. We identified two genes lngR and lngS in the Longus operon, whose predicted products share homology with transcriptional regulators. Isogenic lngR and lngS mutants were considerably affected in transcription of lngA pilin gene. The expression of lngA, lngR and lngS genes was optimally expressed at 37°C at pH 7.5. The presence of glucose and sodium chloride had a positive effect on Longus expression. The presence of divalent ions, particularly calcium, appears to be an important stimulus for Longus production. In addition, we studied H-NS, CpxR and CRP global regulators, on Longus expression. The response regulator CpxR appears to function as a positive regulator of lng genes as the cpxR mutant showed reduced levels of lngRSA expression. In contrast, H-NS and CRP function as negative regulators since expression of lngA was up-regulated in isogenic hns and crp mutants. H-NS and CRP were required for salt- and glucose-mediated regulation of Longus. Our data suggest the existence of a complex regulatory network controlling Longus expression, involving both local and global regulators in response to different environmental signals. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Dynamics of positive emotion regulation: associations with youth depressive symptoms.

    PubMed

    Fussner, Lauren M; Luebbe, Aaron M; Bell, Debora J

    2015-04-01

    Depression is frequently considered a disorder of impaired affect regulation with deficits across both positive and negative affective systems. However, where deficits in emotion regulation occur in youth, specifically regarding regulation of positive emotions, is relatively unknown. The current study tested whether deficits in broad (felt and expressed) and specific (up-regulation and maintenance) positive emotion processes are associated with youth depressive symptoms. Adolescents (n = 134; 65 girls) in grades 7 to 9 completed a self-report measure of depressive symptoms prior to participating in two parent-child interactions tasks, a rewarding trivia task and a problem-solving conflict task. During the interaction tasks, adolescent's overall self-reported experience and observed expression of positive affect (PA) was examined. Following the reward task, youth's ability to up-regulate PA (PA response) and maintain PA while buffering against NA (PA persistence) was explored observationally. Results suggested that reduced experience and expression of PA was associated with depression symptoms, but only in a context that elicited negative emotions. No association was found between PA response and depression symptoms; however, shorter PA persistence was associated with elevated depressive symptoms. Youth higher in depressive symptoms appear able to respond similarly to rewarding events, but fail to maintain PA and ward off NA when transitioning from a positive to negative task.

  15. [Effect of Jianpi Yangzheng Xiaozheng Recipe on Apoptosis and Autophagy of Subcutaneous Transplanted Tumor in Nude Mice: an Experimental Study on Mechanism].

    PubMed

    Wu, Jian; Liu, Shen-lin; Zhang, Xing-xing; Chen, Min; Zou, Xi

    2015-09-01

    To observe the effect of Jianpi Yangzheng Xiaozheng Recipe (JYXR) on the tumor inhibition rate of subcutaneous transplanted tumor gastric cancer cell line MGC-803 in BALB/c nude mice, and to study its molecular mechanism of apoptosis and autophagy. Gastric cancer cell line MGC-803 was subcutaneously inoculated to nude mice for preparing transplanted gastric cancer models. Totally 32 BALB/c nude mice were randomly divided into 4 groups according to random digit table, i.e., the negative control group, the positive control group, the high dose JYXR group, the low dose JYXR group, 8 in each group. Normal saline was administered to mice in the negative control group by gastrogavage. 5-fluorouracil (5-Fu) at 2. 5 mg/kg was administered to mice in the positive control group by gastrogavage. JYXR at 85 and 43 g/kg was administered to mice in the high dose JYXR group and the low dose JYXR group by gastrogavage, once per day for 10 successive days. The effect of JYXR on the tumor inhibition rate of subcutaneous transplanted tumor was observed. Effects of JYXR on gene expression levels of Bax, Bcl-2, Fas, Cyclin D1, Cyclin D2, and Cyclin D3 in transplanted tumor were observed by real-time PCR. Effects of JYXR on protein expression levels of Procaspase-3, Procaspase-8, Procaspase-9, cleaved-PARP, Beclin-1, and LC3B were detected using Western blot. (1) Compared with the negative control group, the tumor weight was obviously reduced in the rest three groups (P <0. 05). The tumor weight was higher in the high dose JYXR group and the low dose JYXR group than in the positive control group (P <0. 05). (2) Results of RT-PCR indicated that, compared with the negative control group, expression levels of Bax were up-regulated, but expression levels of Bcl-2, Cyclin D1, Cyclin D2, and Cyclin D3 were down-regulated in the positive control group and JYXR groups (P <0. 05). The expression level of Fas was up-regulated in the positive control group and the high dose JYXR group (P <0. 05). Compared with the positive control group, expression levels of Fas, and Bax were all down-regulated, but expression levels of Bcl-2, Cyclin D2, and Cyclin D3 were all up-regulated in the high dose JYXR group and the low dose JYXR group (all P <0. 05). The expression level of Cyclin D1 was down-regulated in the high dose JYXR group, but it was up-regulated in the low dose JYXR group ( both P <0. 05). (3) Results of Western blot showed, compared with the negative control group, expression levels of Procaspase-3, Procaspase-8, and Procaspase-9 were down-regulated, but expression levels of cleaved-PARP, Beclin-1, and LC3B II were up-regulated in the high dose JYXR group and the low dose JYXR group (all P <0.05). Compared with the negative control group, expression levels of Procaspase-3, Procaspase-8, Procaspase-9, and LC3B II were down-regulated, but expression levels of cleaved-PARP, Beclin-1, and LC3B I were up-regulated in the positive control group (all P <0. 05). JYXR showed significant inhibition on subcutaneous transplanted tumor gastric cancer cell line MGC-803 in BALB/c nude mice. Its mechanism might be associated with activating apoptosis and autophagy correlated factors.

  16. GBF1 differentially regulates CAT2 and PAD4 transcription to promote pathogen defense in Arabidopsis thaliana.

    PubMed

    Giri, Mrunmay K; Singh, Nidhi; Banday, Zeeshan Z; Singh, Vijayata; Ram, Hathi; Singh, Deepjyoti; Chattopadhyay, Sudip; Nandi, Ashis K

    2017-09-01

    G-BOX BINDING FACTOR 1 (GBF1) influences light-regulated seedling development in Arabidopsis, and inhibits CATALASE 2 (CAT2) expression during senescence. CAT2 functions as a scavenger of hydrogen peroxide. The role of GBF1 in the defense response is not known. We report here that GBF1 positively influences the defense against virulent and avirulent strains of Pseudomonas syringae. The gbf1 mutants are susceptible, whereas GBF1 over-expresser transgenic plants are resistant to bacterial pathogens. GBF1 negatively regulates pathogen-induced CAT2 expression and thereby positively regulates the hypersensitive response. In addition to CAT2 promoter, GBF1 binds to the G-box-like element present in the intron of PHYTOALEXIN DEFICIENT 4 (PAD4). This association of GBF1 with PAD4 intron is enhanced upon pathogenesis. GBF1 positively regulates PAD4 transcription in an intron-dependent manner. GBF1-mediated positive regulation of PAD4 expression is also evident in gbf1 mutant and GBF1 over-expression lines. Similar to pad4 mutants, pathogen-induced camalexin and salicylic acid (SA) accumulation, and expression of SA-inducible PATHOGENESIS RELATED1 (PR1) gene are compromised in the gbf1 mutant. Exogenous application of SA rescues the loss-of-defense phenotypes of gbf1 mutant. Thus, altogether, our results demonstrate that GBF1 is an important component of the plant defense response that functions upstream of SA accumulation and, by oppositely regulating CAT2 and PAD4, promotes disease resistance in Arabidopsis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  17. Multiple transcription factors directly regulate Hox gene lin-39 expression in ventral hypodermal cells of the C. elegans embryo and larva, including the hypodermal fate regulators LIN-26 and ELT-6.

    PubMed

    Liu, Wan-Ju; Reece-Hoyes, John S; Walhout, Albertha J M; Eisenmann, David M

    2014-05-13

    Hox genes encode master regulators of regional fate specification during early metazoan development. Much is known about the initiation and regulation of Hox gene expression in Drosophila and vertebrates, but less is known in the non-arthropod invertebrate model system, C. elegans. The C. elegans Hox gene lin-39 is required for correct fate specification in the midbody region, including the Vulval Precursor Cells (VPCs). To better understand lin-39 regulation and function, we aimed to identify transcription factors necessary for lin-39 expression in the VPCs, and in particular sought factors that initiate lin-39 expression in the embryo. We used the yeast one-hybrid (Y1H) method to screen for factors that bound to 13 fragments from the lin-39 region: twelve fragments contained sequences conserved between C. elegans and two other nematode species, while one fragment was known to drive reporter gene expression in the early embryo in cells that generate the VPCs. Sixteen transcription factors that bind to eight lin-39 genomic fragments were identified in yeast, and we characterized several factors by verifying their physical interactions in vitro, and showing that reduction of their function leads to alterations in lin-39 levels and lin-39::GFP reporter expression in vivo. Three factors, the orphan nuclear hormone receptor NHR-43, the hypodermal fate regulator LIN-26, and the GATA factor ELT-6 positively regulate lin-39 expression in the embryonic precursors to the VPCs. In particular, ELT-6 interacts with an enhancer that drives GFP expression in the early embryo, and the ELT-6 site we identified is necessary for proper embryonic expression. These three factors, along with the factors ZTF-17, BED-3 and TBX-9, also positively regulate lin-39 expression in the larval VPCs. These results significantly expand the number of factors known to directly bind and regulate lin-39 expression, identify the first factors required for lin-39 expression in the embryo, and hint at a positive feedback mechanism involving GATA factors that maintains lin-39 expression in the vulval lineage. This work indicates that, as in other organisms, the regulation of Hox gene expression in C. elegans is complicated, redundant and robust.

  18. Identification and Characterization of Genes Required for Early Myxococcus xanthus Developmental Gene Expression

    PubMed Central

    Guo, Dongchuan; Wu, Yun; Kaplan, Heidi B.

    2000-01-01

    Starvation and cell density regulate the developmental expression of Myxococcus xanthus gene 4521. Three classes of mutants allow expression of this developmental gene during growth on nutrient agar, such that colonies of strains containing a Tn5 lac Ω4521 fusion are Lac+. One class of these mutants inactivates SasN, a negative regulator of 4521 expression; another class activates SasS, a sensor kinase-positive regulator of 4521 expression; and a third class blocks lipopolysaccharide (LPS) O-antigen biosynthesis. To identify additional positive regulators of 4521 expression, 11 Lac− TnV.AS transposon insertion mutants were isolated from a screen of 18,000 Lac+ LPS O-antigen mutants containing Tn5 lac Ω4521 (Tcr). Ten mutations identified genes that could encode positive regulators of 4521 developmental expression based on their ability to abolish 4521 expression during development in the absence of LPS O antigen and in an otherwise wild-type background. Eight of these mutations mapped to the sasB locus, which encodes the known 4521 regulators SasS and SasN. One mapped to sasS, whereas seven identified new genes. Three mutations mapped to a gene encoding an NtrC-like response regulator homologue, designated sasR, and four others mapped to a gene designated sasP. One mutation, designated ssp10, specifically suppressed the LPS O-antigen defect; the ssp10 mutation had no effect on 4521 expression in an otherwise wild-type background but reduced 4521 developmental expression in the absence of LPS O antigen to a level close to that of the parent strain. All of the mutations except those in sasP conferred defects during growth and development. These data indicate that a number of elements are required for 4521 developmental expression and that most of these are necessary for normal growth and fruiting body development. PMID:10913090

  19. A distal ABA responsive element in AtNCED3 promoter is required for positive feedback regulation of ABA biosynthesis in Arabidopsis.

    PubMed

    Yang, Yan-Zhuo; Tan, Bao-Cai

    2014-01-01

    The plant hormone abscisic acid (ABA) plays a crucial role in plant development and responses to abiotic stresses. Recent studies indicate that a positive feedback regulation by ABA exists in ABA biosynthesis in plants under dehydration stress. To understand the molecular basis of this regulation, we analyzed the cis-elements of the AtNCED3 promoter in Arabidopsis. AtNCED3 encodes the first committed and highly regulated dioxygenase in the ABA biosynthetic pathway. Through delineated and mutagenesis analyses in stable-transformed Arabidopsis, we revealed that a distal ABA responsive element (ABRE: GGCACGTG, -2372 to -2364 bp) is required for ABA-induced AtNCED3 expression. By analyzing the AtNCED3 expression in ABRE binding protein ABF3 over-expression transgenic plants and knock-out mutants, we provide evidence that the ABA feedback regulation of AtNCED3 expression is not mediated by ABF3.

  20. Epidermal patterning genes are active during embryogenesis in Arabidopsis.

    PubMed

    Costa, Silvia; Dolan, Liam

    2003-07-01

    Epidermal cells in the root of Arabidopsis seedling differentiate either as hair or non-hair cells, while in the hypocotyl they become either stomatal or elongated cells. WEREWOLF (WER) and GLABRA2 (GL2) are positive regulators of non-hair and elongated cell development. CAPRICE (CPC) is a positive regulator of hair cell development in the root. We show that WER, GL2 and CPC are expressed and active during the stages of embryogenesis when the pattern of cells in the epidermis of the root-hypocotyl axis forms. GL2 is first expressed in the future epidermis in the heart stage embryo and its expression is progressively restricted to those cells that will acquire a non-hair identity in the transition between torpedo and mature stage. The expression of GL2 at the heart stage requires WER function. WER and CPC are transiently expressed throughout the root epidermal layer in the torpedo stage embryo when the cell-specific pattern of GL2 expression is being established in the epidermis. We also show that WER positively regulates CPC transcription and GL2 negatively regulates WER transcription in the mature embryo. We propose that the restriction of GL2 to the future non-hair cells in the root epidermis can be correlated with the activities of WER and CPC during torpedo stage. In the embryonic hypocotyl we show that WER controls GL2 expression. We also provide evidence indicating that CPC may also regulate GL2 expression in the hypocotyl.

  1. PGC1α -1 Nucleosome Position and Splice Variant Expression and Cardiovascular Disease Risk in Overweight and Obese Individuals.

    PubMed

    Henagan, Tara M; Stewart, Laura K; Forney, Laura A; Sparks, Lauren M; Johannsen, Neil; Church, Timothy S

    2014-01-01

    PGC1α, a transcriptional coactivator, interacts with PPARs and others to regulate skeletal muscle metabolism. PGC1α undergoes splicing to produce several mRNA variants, with the NTPGC1α variant having a similar biological function to the full length PGC1α (FLPGC1α). CVD is associated with obesity and T2D and a lower percentage of type 1 oxidative fibers and impaired mitochondrial function in skeletal muscle, characteristics determined by PGC1α expression. PGC1α expression is epigenetically regulated in skeletal muscle to determine mitochondrial adaptations, and epigenetic modifications may regulate mRNA splicing. We report in this paper that skeletal muscle PGC1α  -1 nucleosome (-1N) position is associated with splice variant NTPGC1α but not FLPGC1α expression. Division of participants based on the -1N position revealed that those individuals with a -1N phased further upstream from the transcriptional start site (UP) expressed lower levels of NTPGC1α than those with the -1N more proximal to TSS (DN). UP showed an increase in body fat percentage and serum total and LDL cholesterol. These findings suggest that the -1N may be a potential epigenetic regulator of NTPGC1α splice variant expression, and -1N position and NTPGC1α variant expression in skeletal muscle are linked to CVD risk. This trial is registered with clinicaltrials.gov, identifier NCT00458133.

  2. N-MYC down-regulated-like proteins regulate meristem initiation by modulating auxin transport and MAX2 expression.

    PubMed

    Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M

    2013-01-01

    N-MYC down-regulated-like (NDL) proteins interact with the Gβ subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development. Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation) confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele) mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem. NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients.

  3. N-MYC DOWN-REGULATED-LIKE Proteins Regulate Meristem Initiation by Modulating Auxin Transport and MAX2 Expression

    PubMed Central

    Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M.

    2013-01-01

    Background N-MYC DOWN-REGULATED-LIKE (NDL) proteins interact with the Gβ subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development. Methodology/Principal Findings Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation) confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele) mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem. Conclusion/Significance NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients. PMID:24223735

  4. The Effects of Cognitive Reappraisal and Expressive Suppression on Memory of Emotional Pictures.

    PubMed

    Wang, Yan Mei; Chen, Jie; Han, Ben Yue

    2017-01-01

    In the field of emotion research, the influence of emotion regulation strategies on memory with emotional materials has been widely discussed in recent years. However, existing studies have focused exclusively on regulating negative emotion but not positive emotion. Therefore, in the present study, we investigated the influence of emotion regulation strategies for positive emotion on memory. One hundred and twenty college students were selected as participants. Emotional pictures (positive, negative and neutral) were selected from Chinese Affective Picture System (CAPS) as experimental materials. We employed a mixed, 4 (emotion regulation strategies: cognitive up-regulation, cognitive down-regulation, expressive suppression, passive viewing) × 3 (emotional pictures: positive, neutral, negative) experimental design. We investigated the influences of different emotion regulation strategies on memory performance, using free recall and recognition tasks with pictures varying in emotional content. The results showed that recognition and free recall memory performance of the cognitive reappraisal groups (up-regulation and down-regulation) were both better than that of the passive viewing group for all emotional pictures. No significant differences were reported in the two kinds of memory scores between the expressive suppression and passive viewing groups. The results also showed that the memory performance with the emotional pictures differed according to the form of memory test. For the recognition test, participants performed better with positive images than with neutral images. Free recall scores with negative images were higher than those with neutral images. These results suggest that both cognitive reappraisal regulation strategies (up-regulation and down-regulation) promoted explicit memories of the emotional content of stimuli, and the form of memory test influenced performance with emotional pictures.

  5. Positive regulation of Leptospira interrogans kdp expression by KdpE as Demonstrated with a novel β-galactosidase reporter in Leptospira biflexa.

    PubMed

    Matsunaga, James; Coutinho, Mariana L

    2012-08-01

    Leptospirosis is a potentially deadly zoonotic disease that afflicts humans and animals. Leptospira interrogans, the predominant agent of leptospirosis, encounters diverse conditions as it proceeds through its life cycle, which includes stages inside and outside the host. Unfortunately, the number of genetic tools available for examining the regulation of gene expression in L. interrogans is limited. Consequently, little is known about the genetic circuits that control gene expression in Leptospira. To better understand the regulation of leptospiral gene expression, the L. interrogans kdp locus, encoding homologs of the P-type ATPase KdpABC potassium transporter with their KdpD sensors and KdpE response regulators, was selected for analysis. We showed that a kdpE mutation in L. interrogans prevented the increase in kdpABC mRNA levels observed in the wild-type L. interrogans strain when external potassium levels were low. To confirm that KdpE was a positive regulator of kdpABC transcription, we developed a novel approach for constructing chromosomal genetic fusions to the endogenous bgaL (β-galactosidase) gene of the nonpathogen Leptospira biflexa. We demonstrated positive regulation of a kdpA'-bgaL fusion in L. biflexa by the L. interrogans KdpE response regulator. A control lipL32'-bgaL fusion was not regulated by KdpE. These results demonstrate the utility of genetic fusions to the bgaL gene of L. biflexa for examining leptospiral gene regulation.

  6. The RNA-binding protein CsrA plays a central role in positively regulating virulence factors in Erwinia amylovora

    PubMed Central

    Ancona, Veronica; Lee, Jae Hoon; Zhao, Youfu

    2016-01-01

    The GacS/GacA two-component system (also called GrrS/GrrA) is a global regulatory system which is highly conserved among gamma-proteobacteria. This system positively regulates non-coding small regulatory RNA csrB, which in turn binds to the RNA-binding protein CsrA. However, how GacS/GacA-Csr system regulates virulence traits in E. amylovora remains unknown. Results from mutant characterization showed that the csrB mutant was hypermotile, produced higher amount of exopolysaccharide amylovoran, and had increased expression of type III secretion (T3SS) genes in vitro. In contrast, the csrA mutant exhibited complete opposite phenotypes, including non-motile, reduced amylovoran production and expression of T3SS genes. Furthermore, the csrA mutant did not induce hypersensitive response on tobacco or cause disease on immature pear fruits, indicating that CsrA is a positive regulator of virulence factors. These findings demonstrated that CsrA plays a critical role in E. amylovora virulence and suggested that negative regulation of virulence by GacS/GacA acts through csrB sRNA, which binds to CsrA and neutralizes its positive effect on T3SS gene expression, flagellar formation and amylovoran production. Future research will be focused on determining the molecular mechanism underlying the positive regulation of virulence traits by CsrA. PMID:27845410

  7. The RNA-binding protein CsrA plays a central role in positively regulating virulence factors in Erwinia amylovora.

    PubMed

    Ancona, Veronica; Lee, Jae Hoon; Zhao, Youfu

    2016-11-15

    The GacS/GacA two-component system (also called GrrS/GrrA) is a global regulatory system which is highly conserved among gamma-proteobacteria. This system positively regulates non-coding small regulatory RNA csrB, which in turn binds to the RNA-binding protein CsrA. However, how GacS/GacA-Csr system regulates virulence traits in E. amylovora remains unknown. Results from mutant characterization showed that the csrB mutant was hypermotile, produced higher amount of exopolysaccharide amylovoran, and had increased expression of type III secretion (T3SS) genes in vitro. In contrast, the csrA mutant exhibited complete opposite phenotypes, including non-motile, reduced amylovoran production and expression of T3SS genes. Furthermore, the csrA mutant did not induce hypersensitive response on tobacco or cause disease on immature pear fruits, indicating that CsrA is a positive regulator of virulence factors. These findings demonstrated that CsrA plays a critical role in E. amylovora virulence and suggested that negative regulation of virulence by GacS/GacA acts through csrB sRNA, which binds to CsrA and neutralizes its positive effect on T3SS gene expression, flagellar formation and amylovoran production. Future research will be focused on determining the molecular mechanism underlying the positive regulation of virulence traits by CsrA.

  8. Neuropeptide gene expression in brain is differentially regulated by midbrain dopamine neurons.

    PubMed

    Lindefors, N; Brené, S; Herrera-Marschitz, M; Persson, H

    1990-01-01

    In situ hybridization was used to study the expression of prepro-neuropeptide Y (NPY), preprosomatostatin (SOM), preprotachykinin (PPT) and preprocholecystokinin (CCK) mRNA in caudate-putamen and frontoparietal cortex of rat brain with unilateral lesion of midbrain dopamine neurons. Neurons expressing NPY and SOM mRNA showed a similar distribution and the expression of both NPY and SOM appears to be regulated by dopamine in a similar fashion. Following a dopamine deafferentation, the numerical density of both NPY and SOM mRNA producing neurons almost doubled in the lesioned caudate-putamen with no change in the average grain density over positive neurons. Hence, in the intact caudate-putamen dopamine appears to suppress expression of these two neuropeptide genes leading to an activation of both NPY and SOM mRNA expression in many non- or low-expressing neurons when the level of dopamine is decreased. In the fronto-parietal cortex, on the other hand, dopamine appears to stimulate NPY and SOM gene expression. Thus, in the absence of dopamine about half of the NPY positive neurons disappeared. However, for SOM the number of positive neurons did not change, but rather most positive neurons appeared to have down-regulated their SOM mRNA expression. No evidence was found for a change in CCK mRNA expression by the dopamine deafferentation, while PPT mRNA expression decreased in the deafferented caudate-putamen. Consequently, dopamine exerts dissimilar effects on the expression of different neuropeptide genes, that in turn do not respond in the same way in different brain regions.

  9. Insulin-like growth factor-1-mediated regulation of miR-193a expression promotes the migration and proliferation of c-kit-positive mouse cardiac stem cells.

    PubMed

    Sun, Yuning; Xu, Rongfeng; Huang, Jia; Yao, Yuyu; Pan, Xiaodong; Chen, Zhongpu; Ma, Genshan

    2018-02-21

    C-kit-positive cardiac stem cells (CSCs) have been shown to be a promising candidate treatment for myocardial infarction and heart failure. Insulin-like growth factor (IGF)-1 is an anabolic growth hormone that regulates cellular proliferation, differentiation, senescence, and death in various tissues. Although IGF-1 promotes the migration and proliferation of c-kit-positive mouse CSCs, the underlying mechanism remains unclear. Cells were isolated from adult mouse hearts, and c-kit-positive CSCs were separated using magnetic beads. The cells were cultured with or without IGF-1, and c-kit expression was measured by Western blotting. IGF-1 induced CSC proliferation and migration, as measured through Cell Counting Kit-8 (CCK-8) and Transwell assays, respectively. The miR-193a expression was measured by quantitative real-time PCR (qPCR) assays. IGF-1 enhanced c-kit expression in c-kit-positive CSCs. The activities of the phosphoinositol 3-kinase (PI3K)/AKT signaling pathway and DNA methyltransferases (DNMTs) were enhanced, and their respective inhibitors LY294002 and 5-azacytidine (5-AZA) blunted c-kit expression. Based on the results of quantitative real-time PCR (qPCR) assays, the expression of miR-193a, which is embedded in a CpG island, was down-regulated in the IGF-1-stimulated group and negatively correlated with c-kit expression, whereas c-kit-positive CSCs infected with lentivirus carrying micro-RNA193a displayed reduced c-kit expression, migration and proliferation. IGF-1 upregulated c-kit expression in c-kit-positive CSCs resulting in enhanced CSC proliferation and migration by activating the PI3K/AKT/DNMT signaling pathway to epigenetically silence miR-193a, which negatively modifies the c-kit expression level.

  10. c-Fos downregulation positively regulates EphA5 expression in a congenital hypothyroidism rat model.

    PubMed

    Song, Honghua; Zheng, Yuqin; Cai, Fuying; Ma, Yanyan; Yang, Jingyue; Wu, Youjia

    2018-04-01

    The EphA5 receptor is well established as an axon guidance molecule during neural system development and plays an important role in dendritic spine formation and synaptogenesis. Our previous study has showed that EphA5 is decreased in the developing brain of congenital hypothyroidism (CH) and the EphA5 promoter methylation modification participates in its decrease. c-Fos, a well-kown transcription factor, has been considered in association with brain development. Bioinformatics analysis showed that the EphA5 promoter region contained five putative c-fos binding sites. The chromatin immunoprecipitation (ChIP) assays were used to assess the direct binding of c-fos to the EphA5 promoter. Furthermore, dual-luciferase assays showed that these three c-fos protein binding sites were positive regulatory elements for EphA5 expression in PC12 cells. Moreover, We verified c-fos positively regulation for EphA5 expression in CH model. Q-PCR and Western blot showed that c-fos overexpression could upregulate EphA5 expression in hippocampal neurons of rats with CH. Our results suggest that c-fos positively regulates EphA5 expression in CH rat model.

  11. Diverse correlation patterns between microRNAs and their targets during tomato fruit development indicates different modes of microRNA actions.

    PubMed

    Lopez-Gomollon, Sara; Mohorianu, Irina; Szittya, Gyorgy; Moulton, Vincent; Dalmay, Tamas

    2012-12-01

    MicroRNAs negatively regulate the accumulation of mRNAs therefore when they are expressed in the same cells their expression profiles show an inverse correlation. We previously described one positively correlated miRNA/target pair, but it is not known how widespread this phenomenon is. Here, we investigated the correlation between the expression profiles of differentially expressed miRNAs and their targets during tomato fruit development using deep sequencing, Northern blot and RT-qPCR. We found an equal number of positively and negatively correlated miRNA/target pairs indicating that positive correlation is more frequent than previously thought. We also found that the correlation between microRNA and target expression profiles can vary between mRNAs belonging to the same gene family and even for the same target mRNA at different developmental stages. Since microRNAs always negatively regulate their targets, the high number of positively correlated microRNA/target pairs suggests that mutual exclusion could be as widespread as temporal regulation. The change of correlation during development suggests that the type of regulatory circuit directed by a microRNA can change over time and can be different for individual gene family members. Our results also highlight potential problems for expression profiling-based microRNA target identification/validation.

  12. A Distal ABA Responsive Element in AtNCED3 Promoter Is Required for Positive Feedback Regulation of ABA Biosynthesis in Arabidopsis

    PubMed Central

    Yang, Yan-Zhuo; Tan, Bao-Cai

    2014-01-01

    The plant hormone abscisic acid (ABA) plays a crucial role in plant development and responses to abiotic stresses. Recent studies indicate that a positive feedback regulation by ABA exists in ABA biosynthesis in plants under dehydration stress. To understand the molecular basis of this regulation, we analyzed the cis-elements of the AtNCED3 promoter in Arabidopsis. AtNCED3 encodes the first committed and highly regulated dioxygenase in the ABA biosynthetic pathway. Through delineated and mutagenesis analyses in stable-transformed Arabidopsis, we revealed that a distal ABA responsive element (ABRE: GGCACGTG, -2372 to -2364 bp) is required for ABA-induced AtNCED3 expression. By analyzing the AtNCED3 expression in ABRE binding protein ABF3 over-expression transgenic plants and knock-out mutants, we provide evidence that the ABA feedback regulation of AtNCED3 expression is not mediated by ABF3. PMID:24475264

  13. Region specific regulation of glutamic acid decarboxylase mRNA expression by dopamine neurons in rat brain.

    PubMed

    Lindefors, N; Brene, S; Herrera-Marschitz, M; Persson, H

    1989-01-01

    In situ hybridization histochemistry and RNA blots were used to study the expression of glutamic acid decarboxylase (GAD) mRNA in rats with or without a unilateral lesion of midbrain dopamine neurons. Two populations of GAD mRNA positive neurons were found in the intact caudate-putamen, substantia nigra and fronto-parietal cortex. In caudate-putamen, only one out of ten of the GAD mRNA positive neurons expressed high levels, while in substantia nigra every second of the positive neurons expressed high levels of GAD mRNA. Relatively few, but intensively labelled neurons were found in the intact fronto-parietal cerebral cortex. In addition, one out of six of the GAD mRNA positive neurons in the fronto-parietal cortex showed a low labeling. On the ipsilateral side, the forebrain dopamine deafferentation induced an increase in the number of neurons expressing high levels of GAD mRNA in caudate-putamen, and a decrease in fronto-parietal cortex. A smaller decrease was also seen in substantia nigra. However, the total number of GAD mRNA positive neurons were not significantly changed in any of these brain regions. The changes in the levels of GAD mRNA after the dopamine lesion were confirmed by RNA blot analysis. Hence, midbrain dopamine neurons appear to control neuronal expression of GAD mRNA by a tonic down-regulation in a fraction of GAD mRNA positive neurons in caudate-putamen, and a tonic up-regulation in a fraction of GAD mRNA positive neurons in fronto-parietal cortex and substantia nigra.

  14. Sharing Concerns: Interpersonal Worry Regulation in Romantic Couples

    PubMed Central

    2016-01-01

    Two dyadic studies investigated interpersonal worry regulation in heterosexual relationships. In Study 1, we video-recorded 40 romantic couples discussing shared concerns. Male partners’ worry positively predicted female partners’ interpersonal calming attempts, and negatively predicted female partners’ interpersonal alerting attempts (i.e., attempts to make their partners appreciate the seriousness of concerns). Video-cued recall data also indicated that changes in partner A’s worry over time positively predicted partner B’s motivation to reduce partner A’s worry, and that this effect was stronger when B was the female partner. Study 2 was a dyadic survey of 100 couples. Individual differences in partner A’s negative affect were positive predictors of partner B’s interpersonal calming, and individual differences in partner A’s expressive suppression were negative predictors of partner B’s interpersonal calming. Further, individual differences in male partners’ expressivity were significant positive predictors of female partners’ interpersonal calming, and individual differences in male partners’ reappraisal were significant positive predictors of female partners’ interpersonal alerting. These findings suggest that interpersonal worry regulation relates to partners’ expression and intrapersonal regulation of worry, but not equally for men and women. PMID:26882336

  15. Emotion Regulation in Adolescence: A Prospective Study of Expressive Suppression and Depressive Symptoms

    ERIC Educational Resources Information Center

    Larsen, Junilla K.; Vermulst, Ad A.; Geenen, Rinie; van Middendorp, Henriet; English, Tammy; Gross, James J.; Ha, Thao; Evers, Catharine; Engels, Rutger C. M. E.

    2013-01-01

    Cross-sectional studies have shown a positive association between expressive suppression and depressive symptoms. These results have been interpreted as reflecting the impact of emotion regulation efforts on depression. However, it is also possible that depression may alter emotion regulation tendencies. The goal of the present study was to…

  16. Regulation of DREAM Expression by Group I mGluR

    PubMed Central

    Lee, Jinu; Kim, Insook; Oh, So Ra; Ko, Suk Jin; Lim, Mi Kyung; Kim, Dong Goo

    2011-01-01

    DREAM (downstream regulatory element antagonistic modulator) is a calcium-binding protein that regulates dynorphin expression, promotes potassium channel surface expression, and enhances presenilin processing in an expression level-dependent manner. However, no molecular mechanism has yet explained how protein levels of DREAM are regulated. Here we identified group I mGluR (mGluR1/5) as a positive regulator of DREAM protein expression. Overexpression of mGluR1/5 increased the cellular level of DREAM. Up-regulation of DREAM resulted in increased DREAM protein in both the nucleus and cytoplasm, where the protein acts as a transcriptional repressor and a modulator of its interacting proteins, respectively. DHPG (3,5-dihydroxyphenylglycine), a group I mGluR agonist, also up-regulated DREAM expression in cortical neurons. These results suggest that group I mGluR is the first identified receptor that may regulate DREAM activity in neurons. PMID:21660149

  17. Transcriptional Regulator LsrB of Sinorhizobium meliloti Positively Regulates the Expression of Genes Involved in Lipopolysaccharide Biosynthesis

    PubMed Central

    Tang, Guirong; Wang, Ying

    2014-01-01

    Rhizobia induce nitrogen-fixing nodules on host legumes, which is important in agriculture and ecology. Lipopolysaccharide (LPS) produced by rhizobia is required for infection or bacteroid survival in host cells. Genes required for LPS biosynthesis have been identified in several Rhizobium species. However, the regulation of their expression is not well understood. Here, Sinorhizobium meliloti LsrB, a member of the LysR family of transcriptional regulators, was found to be involved in LPS biosynthesis by positively regulating the expression of the lrp3-lpsCDE operon. An lsrB in-frame deletion mutant displayed growth deficiency, sensitivity to the detergent sodium dodecyl sulfate, and acidic pH compared to the parent strain. This mutant produced slightly less LPS due to lower expression of the lrp3 operon. Analysis of the transcriptional start sites of the lrp3 and lpsCDE gene suggested that they constitute one operon. The expression of lsrB was positively autoregulated. The promoter region of lrp3 was specifically precipitated by anti-LsrB antibodies in vivo. The promoter DNA fragment containing TN11A motifs was bound by the purified LsrB protein in vitro. These new findings suggest that S. meliloti LsrB is associated with LPS biosynthesis, which is required for symbiotic nitrogen fixation on some ecotypes of alfalfa plants. PMID:24951786

  18. The Expression of Glyceraldehyde-3-Phosphate Dehydrogenase Associated Cell Cycle (GACC) Genes Correlates with Cancer Stage and Poor Survival in Patients with Solid Tumors

    PubMed Central

    Wang, Dunrui; Moothart, Daniel R.; Lowy, Douglas R.; Qian, Xiaolan

    2013-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is often used as a stable housekeeping marker for constant gene expression. However, the transcriptional levels of GAPDH may be highly up-regulated in some cancers, including non-small cell lung cancers (NSCLC). Using a publically available microarray database, we identified a group of genes whose expression levels in some cancers are highly correlated with GAPDH up-regulation. The majority of the identified genes are cell cycle-dependent (GAPDH Associated Cell Cycle, or GACC). The up-regulation pattern of GAPDH positively associated genes in NSCLC is similar to that observed in cultured fibroblasts grown under conditions that induce anti-senescence. Data analysis demonstrated that up-regulated GAPDH levels are correlated with aberrant gene expression related to both glycolysis and gluconeogenesis pathways. Down-regulation of fructose-1,6-bisphosphatase (FBP1) in gluconeogenesis in conjunction with up-regulation of most glycolytic genes is closely related to high expression of GAPDH in the tumors. The data presented demonstrate that up-regulation of GAPDH positively associated genes is proportional to the malignant stage of various tumors and is associated with an unfavourable prognosis. Thus, this work suggests that GACC genes represent a potential new signature for cancer stage identification and disease prognosis. PMID:23620736

  19. A Myeloid Hypoxia-inducible Factor 1α-Krüppel-like Factor 2 Pathway Regulates Gram-positive Endotoxin-mediated Sepsis*

    PubMed Central

    Mahabeleshwar, Ganapati H.; Qureshi, Muhammad Awais; Takami, Yoichi; Sharma, Nikunj; Lingrel, Jerry B.; Jain, Mukesh K.

    2012-01-01

    Although Gram-positive infections account for the majority of cases of sepsis, the molecular mechanisms underlying their effects remains poorly understood. We investigated how cell wall components of Gram-positive bacteria contribute to the development of sepsis. Experimental observations derived from cultured primary macrophages and the cell line indicate that Gram-positive bacterial endotoxins induce hypoxia-inducible factor 1α (HIF-1α) mRNA and protein expression. Inoculation of live or heat-inactivated Gram-positive bacteria with macrophages induced HIF-1 transcriptional activity in macrophages. Concordant with these results, myeloid deficiency of HIF-1α attenuated Gram-positive bacterial endotoxin-induced cellular motility and proinflammatory gene expression in macrophages. Conversely, Gram-positive bacteria and their endotoxins reduced expression of the myeloid anti-inflammatory transcription factor Krüppel-like transcription factor 2 (KLF2). Sustained expression of KLF2 reduced and deficiency of KLF2 enhanced Gram-positive endotoxins induced HIF-1α mRNA and protein expression in macrophages. More importantly, KLF2 attenuated Gram-positive endotoxins induced cellular motility and proinflammatory gene expression in myeloid cells. Consistent with these results, mice deficient in myeloid HIF-1α were protected from Gram-positive endotoxin-induced sepsis mortality and clinical symptomatology. By contrast, myeloid KLF2-deficient mice were susceptible to Gram-positive sepsis induced mortality and clinical symptoms. Collectively, these observations identify HIF-1α and KLF2 as critical regulators of Gram-positive endotoxin-mediated sepsis. PMID:22110137

  20. Integration Host Factor Is Required for RpoN-Dependent hrpL Gene Expression and Controls Motility by Positively Regulating rsmB sRNA in Erwinia amylovora.

    PubMed

    Lee, Jae Hoon; Zhao, Youfu

    2016-01-01

    Erwinia amylovora requires an hrp-type III secretion system (T3SS) to cause disease. It has been reported that HrpL, the master regulator of T3SS, is transcriptionally regulated by sigma factor 54 (RpoN), YhbH, and HrpS. In this study, the role of integration host factor (IHF) in regulating hrpL and T3SS gene expression was investigated. IHF is a nucleoid-associated protein that regulates gene expression by influencing nucleoid structure and DNA bending. Our results showed that both ihfA and ihfB mutants of E. amylovora did not induce necrotic lesions on pear fruits. Growth of both mutants was greatly reduced, and expression of the hrpL and T3SS genes was significantly down-regulated as compared with those of the wild type. In addition, expression of the ihfA, but not the ihfB gene, was under auto-suppression by IHF. Furthermore, both ihfA and ihfB mutants were hypermotile, due to significantly reduced expression of small RNA (sRNA) rsmB. Electrophoresis mobility shift assay further confirmed that IHF binds to the promoters of the hrpL and ihfA genes, as well as the rsmB sRNA gene. These results indicate that IHF is required for RpoN-dependent hrpL gene expression and virulence, and controls motility by positively regulating the rsmB sRNA in E. amylovora.

  1. H19, a marker of developmental transition, is reexpressed in human atherosclerotic plaques and is regulated by the insulin family of growth factors in cultured rabbit smooth muscle cells.

    PubMed

    Han, D K; Khaing, Z Z; Pollock, R A; Haudenschild, C C; Liau, G

    1996-03-01

    H19 is a developmentally regulated gene with putative tumor suppressor activity, and loss of H19 expression may be involved in Wilms' tumorigenesis. In this report, we have performed in situ hybridization analysis of H19 expression during normal rabbit development and in human atherosclerotic plaques. We have also used cultured smooth muscle cells to identify H19 regulatory factors. Our data indicate that H19 expression in the developing skeletal and smooth muscles correlated with specific differentiation events in these tissues. Expression of H19 in the skeletal muscle correlated with nonproliferative, actin-positive muscle cells. In the prenatal blood vessel, H19 expression was both temporally and spatially regulated with initial loss of expression in the inner smooth muscle layers adjacent to the lumen. We also identified H19-positive cells within the adult atherosclerotic lesion and we suggest that these cells may recapitulate earlier developmental events. These results, along with the identification of the insulin family of growth factors as potent regulatory molecules for H19 expression, provide additional clues toward understanding the physiological regulation and function of H19.

  2. H19, a marker of developmental transition, is reexpressed in human atherosclerotic plaques and is regulated by the insulin family of growth factors in cultured rabbit smooth muscle cells.

    PubMed Central

    Han, D K; Khaing, Z Z; Pollock, R A; Haudenschild, C C; Liau, G

    1996-01-01

    H19 is a developmentally regulated gene with putative tumor suppressor activity, and loss of H19 expression may be involved in Wilms' tumorigenesis. In this report, we have performed in situ hybridization analysis of H19 expression during normal rabbit development and in human atherosclerotic plaques. We have also used cultured smooth muscle cells to identify H19 regulatory factors. Our data indicate that H19 expression in the developing skeletal and smooth muscles correlated with specific differentiation events in these tissues. Expression of H19 in the skeletal muscle correlated with nonproliferative, actin-positive muscle cells. In the prenatal blood vessel, H19 expression was both temporally and spatially regulated with initial loss of expression in the inner smooth muscle layers adjacent to the lumen. We also identified H19-positive cells within the adult atherosclerotic lesion and we suggest that these cells may recapitulate earlier developmental events. These results, along with the identification of the insulin family of growth factors as potent regulatory molecules for H19 expression, provide additional clues toward understanding the physiological regulation and function of H19. PMID:8636440

  3. Quorum-sensing regulators in Gram-positive bacteria: 'cherchez le peptide'.

    PubMed

    Monnet, V; Gardan, R

    2015-07-01

    Gram-positive bacteria can regulate gene expression at the population level via a mechanism known as quorum sensing. Oligopeptides serve as the signaling molecules; they are secreted and then are either detected at the bacterial surface by two-component systems or reinternalized via an oligopeptide transport system. In the latter case, imported peptides interact with cognate regulators (phosphatases or transcriptional regulators) that modulate the expression of target genes. These regulators help control crucial functions such as virulence, persistence, conjugation and competence and have been reported in bacilli, enterococci and streptococci. They form the rapidly growing RRNPP group. In this issue of Molecular Microbiology, Hoover et al. (2015) highlight the group's importance: they have identified a new family of regulators, Tprs (Transcription factor regulated by a Phr peptide), which work with internalized Phr-like peptides. The mechanisms underlying the expression of the genes that encode these internalized peptides are poorly documented. However, Hoover et al. (2015) have provided a new insight: an environmental molecule, glucose, can inhibit expression of the Phr-like peptide gene via catabolic repression. This previously undescribed regulatory pathway, controlling the production of a bacteriocin, might influence Streptococcus pneumonia's fitness in the nasopharynx, where galactose is present. © 2015 John Wiley & Sons Ltd.

  4. MiR-34a Inhibits Viability and Invasion of Human Papillomavirus-Positive Cervical Cancer Cells by Targeting E2F3 and Regulating Survivin.

    PubMed

    Geng, Dianzhong; Song, Xiaohua; Ning, Fangling; Song, Qianhua; Yin, Honghua

    2015-05-01

    Previous studies confirmed that high-risk human papillomavirus (HR-HPV) infection is a risk factor of cervical cancer, and the infection was associated with significantly reduced miR-34a expression during carcinogenesis. However, the downstream targets of miR-34a and their roles are still not well understood. This study explored the regulative role of miR-34a on E2F3 and survivin expression and the viability and invasion of HPV-positive cervical cancer cells. MiR-34a and survivin expression in 56 cases of HR-HPV-positive patients, 28 cases of HR-HPV-negative patients, and 28 normal cases without HR-HPV infections were measured. Human papillomavirus-18-positive HeLa cervical cancer cells and HPV-16-positive SiHa cells were used to explore the effect of miR-34a on cell viability and invasion. The molecular target of miR-34a was also explored in cervical cancer cells. The results showed that miR-34a overexpression could inhibit HPV-positive cancer cell viability, whereas its downregulation promoted cell viability. E2F3 is a direct target of miR-34a in HPV-positive cervical cancer cells. By targeting E2F3, miR-34a could regulate the expression of survivin. Thus, through regulating E2F3 and survivin, miR-34a could reduce the viability and invasion of HPV-positive cervical cancer cells. This study confirmed a novel miR-34a-E2F3-survivin axis in the tumor suppressor role of miR-34a in cervical cancer.

  5. Integration of multiple stimuli-sensing systems to regulate HrpS and type III secretion system in Erwinia amylovora.

    PubMed

    Lee, Jae Hoon; Zhao, Youfu

    2018-02-01

    The bacterial enhancer binding protein (bEBP) HrpS is essential for Erwinia amylovora virulence by activating the type III secretion system (T3SS). However, how the hrpS gene is regulated remains poorly understood in E. amylovora. In this study, 5' rapid amplification of cDNA ends and promoter deletion analyses showed that the hrpS gene contains two promoters driven by HrpX/HrpY and the Rcs phosphorelay system, respectively. Electrophoretic mobility shift and gene expression assays demonstrated that integration host factor IHF positively regulates hrpS expression through directly binding the hrpX promoter and positively regulating hrpX/hrpY expression. Moreover, hrpX expression was down-regulated in the relA/spoT ((p)ppGpp-deficient) mutant and the dksA mutant, but up-regulated when the wild-type strain was treated with serine hydroxamate, which induced (p)ppGpp-mediated stringent response. Furthermore, the csrA mutant showed significantly reduced transcripts of major hrpS activators, including the hrpX/hrpY, rcsA and rcsB genes, indicating that CsrA is required for full hrpS expression. On the other hand, the csrB mutant exhibited up-regulation of the rcsA and rcsB genes, and hrpS expression was largely diminished in the csrB/rcsB mutant, indicating that the Rcs system is mainly responsible for the increased hrpS expression in the csrB mutant. These findings suggest that E. amylovora recruits multiple stimuli-sensing systems, including HrpX/HrpY, the Rcs phosphorelay system and the Gac-Csr system, to regulate hrpS and T3SS gene expression.

  6. Increased TET1 Expression in Inflammatory Microenvironment of Hyperinsulinemia Enhances the Response of Endometrial Cancer to Estrogen by Epigenetic Modulation of GPER

    PubMed Central

    Lv, Qiao-Ying; Xie, Bing-Ying; Yang, Bing-Yi; Ning, Cheng-Cheng; Shan, Wei-Wei; Gu, Chao; Luo, Xue-Zhen; Chen, Xiao-Jun; Zhang, Zhen-Bo; Feng, You-Ji

    2017-01-01

    Background: Insulin resistance (IR) has been well studied in the initiation and development of endometrial endometrioid carcinoma (EEC). As yet, it has been largely neglected for estrogen sensitivity in local endometrium in hyperinsulinemia-induced systemic microenvironment. The aim of this study was to investigate the role of insulin in regulating estrogen sensitivity and explore the potential mechanisms in insulin-driven inflammatory microenvironment. Methods: We first investigated the effect of insulin on estradiol-driven endometrial cancer cells proliferation in vitro to address the roles of insulin in modulating estrogen sensitivity. Then GPER, ERα and TET1 in EEC samples with or without insulin resistance were screened by immunohistochemistry to confirm whether insulin resistance regulates estrogen receptors. Further mechanism analysis was carried out to address whether TET1 was mediated epigenetic modulation of GPER in insulin-induced microenvironment. Results: Insulin enhanced estradiol-driven endometrial cancer cells proliferation by up-regulating G-protein-coupled estrogen receptor (GPER) expression, but not ERα or ERβ. Immunohistochemistry of EEC tissues showed that GPER expression was greatly increased in endometrial tissues from EEC subjects with insulin resistance and was positively correlated with Ten-eleven-translocation 1 (TET1) expression. Mechanistically, insulin up-regulates TET1 expression, and the latter, an important DNA hydroxymethylase, could up-regulate GPER expression through epigenetic modulation. Conclusion: This study identified TET1 as the upstream regulator of GPER expression and provides a possible mechanism that insulin-induced positive regulation of estrogen sensitivity in endometrial cancer cells. Increasing expression of GPER through TET1-mediated epigenetic modulation may emerge as the main regulator to enhance the response of endometrial cancer to estrogen in insulin-driven inflammatory microenvironment. PMID:28382153

  7. Increased TET1 Expression in Inflammatory Microenvironment of Hyperinsulinemia Enhances the Response of Endometrial Cancer to Estrogen by Epigenetic Modulation of GPER.

    PubMed

    Lv, Qiao-Ying; Xie, Bing-Ying; Yang, Bing-Yi; Ning, Cheng-Cheng; Shan, Wei-Wei; Gu, Chao; Luo, Xue-Zhen; Chen, Xiao-Jun; Zhang, Zhen-Bo; Feng, You-Ji

    2017-01-01

    Background: Insulin resistance (IR) has been well studied in the initiation and development of endometrial endometrioid carcinoma (EEC). As yet, it has been largely neglected for estrogen sensitivity in local endometrium in hyperinsulinemia-induced systemic microenvironment. The aim of this study was to investigate the role of insulin in regulating estrogen sensitivity and explore the potential mechanisms in insulin-driven inflammatory microenvironment. Methods: We first investigated the effect of insulin on estradiol-driven endometrial cancer cells proliferation in vitro to address the roles of insulin in modulating estrogen sensitivity. Then GPER, ERα and TET1 in EEC samples with or without insulin resistance were screened by immunohistochemistry to confirm whether insulin resistance regulates estrogen receptors. Further mechanism analysis was carried out to address whether TET1 was mediated epigenetic modulation of GPER in insulin-induced microenvironment. Results: Insulin enhanced estradiol-driven endometrial cancer cells proliferation by up-regulating G-protein-coupled estrogen receptor (GPER) expression, but not ERα or ERβ. Immunohistochemistry of EEC tissues showed that GPER expression was greatly increased in endometrial tissues from EEC subjects with insulin resistance and was positively correlated with Ten-eleven-translocation 1 (TET1) expression. Mechanistically, insulin up-regulates TET1 expression, and the latter, an important DNA hydroxymethylase, could up-regulate GPER expression through epigenetic modulation. Conclusion: This study identified TET1 as the upstream regulator of GPER expression and provides a possible mechanism that insulin-induced positive regulation of estrogen sensitivity in endometrial cancer cells. Increasing expression of GPER through TET1-mediated epigenetic modulation may emerge as the main regulator to enhance the response of endometrial cancer to estrogen in insulin-driven inflammatory microenvironment.

  8. The moderating role of autonomy and control on the benefits of written emotion expression.

    PubMed

    Weinstein, Netta; Hodgins, Holley S

    2009-03-01

    Two studies examined the hypothesis that relative to control motivation, autonomy motivation is associated with effective written expression and regulation, leading to positive emotional, physical, and cognitive outcomes over time. Participants viewed a Hiroshima-Nagasaki documentary in each of two sessions. Study 1 showed that dispositionally autonomous participants, particularly those who expressed, had positive well-being, energy, and memory after the second viewing. Study 2 explored benefits of situational motivation by priming autonomy and control. Results showed that dispositionally controlled individuals received the same benefits as autonomous individuals only when primed with autonomy and encouraged to express. Coding of writing content revealed that the benefits of autonomy were mediated by nondefensive and effective emotional processing, as reflected in greater use of self-referencing and cognitive mechanism words and lower use of concrete words. Results support the expectation that autonomy relates to effective expression and emotion regulation, leading to positive functioning over time.

  9. HilD and PhoP independently regulate the expression of grhD1, a novel gene required for Salmonella Typhimurium invasion of host cells.

    PubMed

    Banda, María M; López, Carolina; Manzo, Rubiceli; Rico-Pérez, Gadea; García, Pablo; Rosales-Reyes, Roberto; De la Cruz, Miguel A; Soncini, Fernando C; García-Del Portillo, Francisco; Bustamante, Víctor H

    2018-03-19

    When Salmonella is grown in the nutrient-rich lysogeny broth (LB), the AraC-like transcriptional regulator HilD positively controls the expression of genes required for Salmonella invasion of host cells, such as the Salmonella pathogenicity island 1 (SPI-1) genes. However, in minimal media, the two-component system PhoP/Q activates the expression of genes necessary for Salmonella replication inside host cells, such as the SPI-2 genes. Recently, we found that the SL1344_1872 hypothetical gene, located in a S. Typhimurium genomic island, is co-expressed with the SPI-1 genes. In this study we demonstrate that HilD induces indirectly the expression of SL1344_1872 when S. Typhimurium is grown in LB; therefore, we named SL1344_1872 as grhD1 for gene regulated by HilD. Furthermore, we found that PhoP positively controls the expression of grhD1, independently of HilD, when S. Typhimurium is grown in LB or N-minimal medium. Moreover, we demonstrate that the grhD1 gene is required for the invasion of S. Typhimurium into epithelial cells, macrophages and fibroblasts, as well as for the intestinal inflammatory response caused by S. Typhimurium in mice. Thus, our results reveal a novel virulence factor of Salmonella, whose expression is positively and independently controlled by the HilD and PhoP transcriptional regulators.

  10. Emotion regulation strategies mediate the associations of positive and negative affect to upper extremity physical function.

    PubMed

    Talaei-Khoei, Mojtaba; Nemati-Rezvani, Hora; Fischerauer, Stefan F; Ring, David; Chen, Neal; Vranceanu, Ana-Maria

    2017-05-01

    The Gross process model of emotion regulation holds that emotion-eliciting situations (e.g. musculoskeletal illness) can be strategically regulated to determine the final emotional and behavioral response. Also, there is some evidence that innate emotional traits may predispose an individual to a particular regulating coping style. We enrolled 107 patients with upper extremity musculoskeletal illness in this cross-sectional study. They completed self-report measures of positive and negative affect, emotion regulation strategies (cognitive reappraisal and expressive suppression), upper extremity physical function, pain intensity, and demographics. We used Preacher and Hayes' bootstrapping approach to process analysis to infer the direct effect of positive and negative affect on physical function as well as their indirect effects through activation of emotion regulation strategies. Negative affect was associated with decreased physical function. The association was partly mediated by expressive suppression (b (SE)=-.10 (.05), 95% BCa CI [-.21, -.02]). Positive affect was associated with increased physical function. Cognitive reappraisal partially mediated this association (b (SE)=.11 (.05), 95% BCa CI [.03, .24]). After controlling for pain intensity, the ratio of the mediated effect to total effect grew even larger in controlled model comparing to uncontrolled model (33% vs. 26% for expressive suppression and 32% vs. 30% for cognitive reappraisal). The relationships between affect, emotion regulation strategies and physical function appear to be more dependent on the emotional response to an orthopedic condition rather than the intensity of the nociceptive stimulation of the pain. Findings support integration of emotion regulation training in skill-based psychotherapy in this population to mitigate the effect of negative affect and enhance the influence of positive affect on physical function. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The ASK1 gene regulates B function gene expression in cooperation with UFO and LEAFY in Arabidopsis.

    PubMed

    Zhao, D; Yu, Q; Chen, M; Ma, H

    2001-07-01

    The Arabidopsis floral regulatory genes APETALA3 (AP3) and PISTILLATA (PI) are required for the B function according to the ABC model for floral organ identity. AP3 and PI expression are positively regulated by the LEAFY (LFY) and UNUSUAL FLORAL ORGANS (UFO) genes. UFO encodes an F-box protein, and we have shown previously that UFO genetically interacts with the ASK1 gene encoding a SKP1 homologue; both the F-box containing protein and SKP1 are subunits of ubiquitin ligases. We show here that the ask1-1 mutation can enhance the floral phenotypes of weak lfy and ap3 mutants; therefore, like UFO, ASK1 also interacts with LFY and AP3 genetically. Furthermore, our results from RNA in situ hybridizations indicate that ASK1 regulates early AP3 and PI expression. These results support the idea that UFO and ASK1 together positively regulate AP3 and PI expression. We propose that the UFO and ASK1 proteins are components of a ubiquitin ligase that mediates the proteolysis of a repressor of AP3 and PI expression. Our genetic studies also indicate that ASK1 and UFO play a role in regulating the number of floral organ primordia, and we discuss possible mechanisms for such a regulation.

  12. The global regulator of pathogenesis PnCon7 positively regulates Tox3 effector gene expression through direct interaction in the wheat pathogen Parastagonospora nodorum.

    PubMed

    Lin, Shao-Yu; Chooi, Yit-Heng; Solomon, Peter S

    2018-05-03

    To investigate effector gene regulation in the wheat pathogenic fungus Parastagonospora nodorum, the promoter and expression of Tox3 was characterised through a series of complementary approaches. Promoter deletion and DNase I footprinting experiments identified a 25 bp region in the Tox3 promoter as being required for transcription. Subsequent yeast one-hybrid analysis using the DNA sequence as bait identified that interacting partner as the C2H2 zinc finger transcription factor PnCon7, a putative master regulator of pathogenesis. Silencing of PnCon7 resulted in the down-regulation of Tox3 demonstrating that the transcription factor has a positive regulatory role on gene expression. Analysis of Tox3 expression in the PnCon7 silenced strains revealed a strong correlation with PnCon7 transcript levels, supportive of a direct regulatory role. Subsequent pathogenicity assays using PnCon7-silenced isolates revealed that the transcription factor was required for Tox3-mediated disease. The expression of two other necrotrophic effectors (ToxA and Tox1) was also affected but in a non-dose dependent manner suggesting that the regulatory role of PnCon7 on these genes was indirect. Collectively, these data have advanced our fundamental understanding of the Con7 master regulator of pathogenesis by demonstrating its positive regulatory role on the Tox3 effector in P. nodorum through direct interaction. This article is protected by copyright. All rights reserved. © 2018 John Wiley & Sons Ltd.

  13. MdHY5 positively regulates cold tolerance via CBF-dependent and CBF-independent pathways in apple.

    PubMed

    An, Jian-Ping; Yao, Ji-Fang; Wang, Xiao-Na; You, Chun-Xiang; Wang, Xiao-Fei; Hao, Yu-Jin

    2017-11-01

    Cold stress is a major external stimulator that affects crop quality and productivity. The CBF cold regulatory pathway has been regarded as a master regulator in the response to cold stress. In this study, we found that the apple bZIP transcription factor, MdHY5, was responsive to cold treatment both at the transcriptional and at the post-translational levels. Moreover, overexpression of MdHY5 enhanced cold tolerance in apple calli and Arabidopsis. Subsequently, EMSA assay and transient expression assay demonstrated that MdHY5 positively regulated the transcript of MdCBF1 by binding to G-Box motif of its promoter. Furthermore, MdHY5 also regulated the expression of CBF-independent cold-regulated genes. Taken together, our data suggest that MdHY5 positively modulates plant cold tolerance through CBF-dependent and CBF-independent pathways, providing a deeper understanding of MdHY5-regulated cold tolerance in apple. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Parent emotional expressiveness and children's self-regulation: Associations with abused children's school functioning

    PubMed Central

    Haskett, Mary E.; Stelter, Rebecca; Proffit, Katie; Nice, Rachel

    2012-01-01

    Objective Identifying factors associated with school functioning of abused children is important in prevention of long-term negative outcomes associated with school failure. The purpose of this study was to examine the degree to which parent emotional expressiveness and children's self-regulation predicted early school behavior of abused children. Methods The sample included 92 physically abused children ages 4-7 and one of their parents (95.7% mothers). Parents completed a measure of their own emotional expressiveness, and parents and teachers provided reports of children's self-regulatory skills. Children's school functioning was measured by observations of playground aggression and teacher reports of aggression and classroom behavior. Results Parents’ expression of positive and negative emotions was associated with various aspects of children's self-regulation and functioning in the school setting. Links between self-regulation and children's school adjustment were robust; poor self-regulation was associated with higher aggression and lower cooperation and self-directed behavior in the classroom. There was minimal support for a mediating role of children's self-regulation in links between parent expressiveness and children's behavior. Practice implications Findings point to the relevance of parent emotional expressivity and children's self-regulatory processes in understanding physically abused children's functioning at the transition to school. Although further research is needed, findings indicate that increasing parental expression of positive emotion should be a focus in treatment along with reduction in negativity of abusive parents. Further, addressing children's self-regulation could be important in efforts to reduce aggression and enhance children's classroom competence. PMID:22565040

  15. Parent emotional expressiveness and children's self-regulation: associations with abused children's school functioning.

    PubMed

    Haskett, Mary E; Stelter, Rebecca; Proffit, Katie; Nice, Rachel

    2012-04-01

    Identifying factors associated with school functioning of abused children is important in prevention of long-term negative outcomes associated with school failure. The purpose of this study was to examine the degree to which parent emotional expressiveness and children's self-regulation predicted early school behavior of abused children. The sample included 92 physically abused children ages 4-7 and one of their parents (95.7% mothers). Parents completed a measure of their own emotional expressiveness, and parents and teachers provided reports of children's self-regulatory skills. Children's school functioning was measured by observations of playground aggression and teacher reports of aggression and classroom behavior. Parents' expression of positive and negative emotions was associated with various aspects of children's self-regulation and functioning in the school setting. Links between self-regulation and children's school adjustment were robust; poor self-regulation was associated with higher aggression and lower cooperation and self-directed behavior in the classroom. There was minimal support for a mediating role of children's self-regulation in links between parent expressiveness and children's behavior. Findings point to the relevance of parent emotional expressivity and children's self-regulatory processes in understanding physically abused children's functioning at the transition to school. Although further research is needed, findings indicate that increasing parental expression of positive emotion should be a focus in treatment along with reduction in negativity of abusive parents. Further, addressing children's self-regulation could be important in efforts to reduce aggression and enhance children's classroom competence. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Akt1 Controls the Timing and Amplitude of Vascular Circadian Gene Expression

    PubMed Central

    Luciano, Amelia K.; Santana, Jeans M.; Velazquez, Heino; Sessa, William C.

    2017-01-01

    The AKT signaling pathway is important for circadian rhythms in mammals and flies (Drosophila). However, AKT signaling in mammals is more complicated since there are 3 isoforms of AKT, each performing slightly different functions. Here we study the most ubiquitous AKT isoform, Akt1, and its role at the organismal level in the central and vascular peripheral clocks. Akt1−/− mice exhibit relatively normal behavioral rhythms with only minor differences in circadian gene expression in the liver and heart. However, circadian gene expression in the Akt1−/− aorta, compared with control aorta, follows a distinct pattern. In the Akt1−/− aorta, positive regulators of circadian transcription have lower amplitude rhythms and peak earlier in the day, and negative circadian regulators are expressed at higher amplitudes and peak later in the day. In endothelial cells, negative circadian regulators exhibit an increased amplitude of expression, while the positive circadian regulators are arrhythmic with a decreased amplitude of expression. This indicates that Akt1 conditions the normal circadian rhythm in the vasculature more so than in other peripheral tissues where other AKT isoforms or kinases might be important for daily rhythms. PMID:28452287

  17. Akt1 Controls the Timing and Amplitude of Vascular Circadian Gene Expression.

    PubMed

    Luciano, Amelia K; Santana, Jeans M; Velazquez, Heino; Sessa, William C

    2017-06-01

    The AKT signaling pathway is important for circadian rhythms in mammals and flies ( Drosophila). However, AKT signaling in mammals is more complicated since there are 3 isoforms of AKT, each performing slightly different functions. Here we study the most ubiquitous AKT isoform, Akt1, and its role at the organismal level in the central and vascular peripheral clocks. Akt1 -/- mice exhibit relatively normal behavioral rhythms with only minor differences in circadian gene expression in the liver and heart. However, circadian gene expression in the Akt1 -/- aorta, compared with control aorta, follows a distinct pattern. In the Akt1 -/- aorta, positive regulators of circadian transcription have lower amplitude rhythms and peak earlier in the day, and negative circadian regulators are expressed at higher amplitudes and peak later in the day. In endothelial cells, negative circadian regulators exhibit an increased amplitude of expression, while the positive circadian regulators are arrhythmic with a decreased amplitude of expression. This indicates that Akt1 conditions the normal circadian rhythm in the vasculature more so than in other peripheral tissues where other AKT isoforms or kinases might be important for daily rhythms.

  18. HIV-1 Tat induces DNMT over-expression through microRNA dysregulation in HIV-related non Hodgkin lymphomas.

    PubMed

    Luzzi, Anna; Morettini, Federica; Gazaneo, Sara; Mundo, Lucia; Onnis, Anna; Mannucci, Susanna; Rogena, Emily A; Bellan, Cristiana; Leoncini, Lorenzo; De Falco, Giulia

    2014-01-01

    A close association between HIV infection and the development of cancer exists. Although the advent of highly active antiretroviral therapy has changed the epidemiology of AIDS-associated malignancies, a better understanding on how HIV can induce malignant transformation will help the development of novel therapeutic agents. HIV has been reported to induce the expression of DNMT1 in vitro, but still no information is available about the mechanisms regulating DNMT expression in HIV-related B-cell lymphomas. In this paper, we investigated the expression of DNMT family members (DNMT1, DNMT3a/b) in primary cases of aggressive B-cell lymphomas of HIV-positive subjects. Our results confirmed the activation of DNMT1 by HIV in vivo, and reported for the first time a marked up-regulation of DNMT3a and DNMT3b in HIV-positive aggressive B-cell lymphomas. DNMT up-regulation in HIV-positive tumors correlated with down-regulation of specific microRNAs, as the miR29 family, the miR148-152 cluster, known to regulate their expression. Literature reports the activation of DNMTs by the human polyomavirus BKV large T-antigen and adenovirus E1a, through the pRb/E2F pathway. We have previously demonstrated that the HIV Tat protein is able to bind to the pocket proteins and to inactivate their oncosuppressive properties, resulting in uncontrolled cell proliferation. Therefore, we focused on the role of Tat, due to its capability to be released from infected cells and to dysregulate uninfected ones, using an in vitro model in which Tat was ectopically expressed in B-cells. Our findings demonstrated that the ectopic expression of Tat was per se sufficient to determine DNMT up-regulation, based on microRNA down-regulation, and that this results in aberrant hypermethylation of target genes and microRNAs. These results point at a direct role for Tat in participating in uninfected B-cell lymphomagenesis, through dysregulation of the epigenetical control of gene expression.

  19. TORNADO1 regulates root epidermal patterning through the WEREWOLF pathway in Arabidopsis thaliana.

    PubMed

    Kwak, Su-Hwan; Song, Sang-Kee; Lee, Myeong Min; Schiefelbein, John

    2015-01-01

    Cell fate in the root epidermis of Arabidopsis thaliana is determined in a position-dependent manner. SCRAMBLED (SCM), an atypical leucine-rich repeat receptor-like kinase, mediates this positional regulation via its effect on WEREWOLF (WER) expression, and subsequently, its downstream transcription factor, GLABRA2 (GL2), which are required for nonhair cell development. Previously, TORNADO1 (TRN1), a plant-specific protein with a leucine-rich repeat ribonuclease inhibitor-like domain, was shown to be required for proper epidermal patterning in Arabidopsis roots. In this work, we analyzed the possible involvement of TRN1 in the known root epidermal gene network. We discovered that the trn1 mutant caused the ectopic expression of WER and the randomized expression of GL2 and EGL3. This suggests that TRN1 regulates the position-dependent cell fate determination by affecting WER expression in Arabidopsis root epidermis. Additionally, the distinct phenotypes of the aerial parts of the trn1-t and scm-2 mutant suggest that TRN1 and SCM might have different functions in the development of aerial parts.

  20. TORNADO1 regulates root epidermal patterning through the WEREWOLF pathway in Arabidopsis thaliana

    PubMed Central

    Kwak, Su-Hwan; Song, Sang-Kee; Lee, Myeong Min; Schiefelbein, John

    2015-01-01

    Cell fate in the root epidermis of Arabidopsis thaliana is determined in a position-dependent manner. SCRAMBLED (SCM), an atypical leucine-rich repeat receptor-like kinase, mediates this positional regulation via its effect on WEREWOLF (WER) expression, and subsequently, its downstream transcription factor, GLABRA2 (GL2), which are required for nonhair cell development. Previously, TORNADO1 (TRN1), a plant-specific protein with a leucine-rich repeat ribonuclease inhibitor-like domain, was shown to be required for proper epidermal patterning in Arabidopsis roots. In this work, we analyzed the possible involvement of TRN1 in the known root epidermal gene network. We discovered that the trn1 mutant caused the ectopic expression of WER and the randomized expression of GL2 and EGL3. This suggests that TRN1 regulates the position-dependent cell fate determination by affecting WER expression in Arabidopsis root epidermis. Additionally, the distinct phenotypes of the aerial parts of the trn1-t and scm-2 mutant suggest that TRN1 and SCM might have different functions in the development of aerial parts. PMID:26451798

  1. The MYB107 Transcription Factor Positively Regulates Suberin Biosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gou, Mingyue; Hou, Guichuan; Yang, Huijun

    Suberin, a lipophilic polymer deposited in the outer integument of the Arabidopsis ( Arabidopsis thaliana) seed coat, represents an essential sealing component controlling water and solute movement and protecting seed from pathogenic infection. Although many genes responsible for suberin synthesis are identified, the regulatory components controlling its biosynthesis have not been definitively determined. Here, we show that the Arabidopsis MYB107 transcription factor acts as a positive regulator controlling suberin biosynthetic gene expression in the seed coat. MYB107 coexpresses with suberin biosynthetic genes in a temporal manner during seed development. Disrupting MYB107 particularly suppresses the expression of genes involved in suberinmore » but not cutin biosynthesis, lowers seed coat suberin accumulation, alters suberin lamellar structure, and consequently renders higher seed coat permeability and susceptibility to abiotic stresses. Furthermore, MYB107 directly binds to the promoters of suberin biosynthetic genes, verifying its primary role in regulating their expression. Identifying MYB107 as a positive regulator for seed coat suberin synthesis offers a basis for discovering the potential transcriptional network behind one of the most abundant lipid-based polymers in nature.« less

  2. The MYB107 Transcription Factor Positively Regulates Suberin Biosynthesis

    DOE PAGES

    Gou, Mingyue; Hou, Guichuan; Yang, Huijun; ...

    2016-12-13

    Suberin, a lipophilic polymer deposited in the outer integument of the Arabidopsis ( Arabidopsis thaliana) seed coat, represents an essential sealing component controlling water and solute movement and protecting seed from pathogenic infection. Although many genes responsible for suberin synthesis are identified, the regulatory components controlling its biosynthesis have not been definitively determined. Here, we show that the Arabidopsis MYB107 transcription factor acts as a positive regulator controlling suberin biosynthetic gene expression in the seed coat. MYB107 coexpresses with suberin biosynthetic genes in a temporal manner during seed development. Disrupting MYB107 particularly suppresses the expression of genes involved in suberinmore » but not cutin biosynthesis, lowers seed coat suberin accumulation, alters suberin lamellar structure, and consequently renders higher seed coat permeability and susceptibility to abiotic stresses. Furthermore, MYB107 directly binds to the promoters of suberin biosynthetic genes, verifying its primary role in regulating their expression. Identifying MYB107 as a positive regulator for seed coat suberin synthesis offers a basis for discovering the potential transcriptional network behind one of the most abundant lipid-based polymers in nature.« less

  3. The MYB107 Transcription Factor Positively Regulates Suberin Biosynthesis1[OPEN

    PubMed Central

    Yang, Huijun; Cai, Yuanheng; Kai, Guoyin

    2017-01-01

    Suberin, a lipophilic polymer deposited in the outer integument of the Arabidopsis (Arabidopsis thaliana) seed coat, represents an essential sealing component controlling water and solute movement and protecting seed from pathogenic infection. Although many genes responsible for suberin synthesis are identified, the regulatory components controlling its biosynthesis have not been definitively determined. Here, we show that the Arabidopsis MYB107 transcription factor acts as a positive regulator controlling suberin biosynthetic gene expression in the seed coat. MYB107 coexpresses with suberin biosynthetic genes in a temporal manner during seed development. Disrupting MYB107 particularly suppresses the expression of genes involved in suberin but not cutin biosynthesis, lowers seed coat suberin accumulation, alters suberin lamellar structure, and consequently renders higher seed coat permeability and susceptibility to abiotic stresses. Furthermore, MYB107 directly binds to the promoters of suberin biosynthetic genes, verifying its primary role in regulating their expression. Identifying MYB107 as a positive regulator for seed coat suberin synthesis offers a basis for discovering the potential transcriptional network behind one of the most abundant lipid-based polymers in nature. PMID:27965303

  4. Longitudinal associations between physically abusive parents' emotional expressiveness and children's self-regulation.

    PubMed

    Milojevich, Helen M; Haskett, Mary E

    2018-03-01

    The present study took a developmental psychopathology approach to examine the longitudinal association between parents' emotional expressiveness and children's self-regulation. Data collection spanned from 2004 to 2008. Ninety-two physically abusive parents completed yearly assessments of their emotional expressiveness, as well as their children's self-regulation abilities. Observational and behavioral measures were also obtained yearly to capture both parents' emotional expressiveness and children's self-regulation. Specifically, parents participated in a parent-child interaction task, which provided insight into their levels of flat affect. A puzzle box task was completed by each child to assess self-regulation. Results indicated, first, that greater parental expression of negative emotions predicted poorer self-regulation in children, both concurrently and across time. Second, parental expressions of positive emotions and parents' flat affect were unrelated to children's self-regulation. Findings inform our understanding of parental socialization of self-regulation and provide insight into the roles of distinct components of emotional expressiveness. Moreover, findings have crucial implications for understanding emotional expressiveness in high-risk samples and increase our understanding of within-group functioning among maltreating families that may serve as a means to direct intervention efforts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. GDSL LIPASE1 Modulates Plant Immunity through Feedback Regulation of Ethylene Signaling1[W

    PubMed Central

    Kim, Hye Gi; Kwon, Sun Jae; Jang, Young Jin; Nam, Myung Hee; Chung, Joo Hee; Na, Yun-Cheol; Guo, Hongwei; Park, Ohkmae K.

    2013-01-01

    Ethylene is a key signal in the regulation of plant defense responses. It is required for the expression and function of GDSL LIPASE1 (GLIP1) in Arabidopsis (Arabidopsis thaliana), which plays an important role in plant immunity. Here, we explore molecular mechanisms underlying the relationship between GLIP1 and ethylene signaling by an epistatic analysis of ethylene response mutants and GLIP1-overexpressing (35S:GLIP1) plants. We show that GLIP1 expression is regulated by ethylene signaling components and, further, that GLIP1 expression or application of petiole exudates from 35S:GLIP1 plants affects ethylene signaling both positively and negatively, leading to ETHYLENE RESPONSE FACTOR1 activation and ETHYLENE INSENSITIVE3 (EIN3) down-regulation, respectively. Additionally, 35S:GLIP1 plants or their exudates increase the expression of the salicylic acid biosynthesis gene SALICYLIC ACID INDUCTION-DEFICIENT2, known to be inhibited by EIN3 and EIN3-LIKE1. These results suggest that GLIP1 regulates plant immunity through positive and negative feedback regulation of ethylene signaling, and this is mediated by its activity to accumulate a systemic signal(s) in the phloem. We propose a model explaining how GLIP1 regulates the fine-tuning of ethylene signaling and ethylene-salicylic acid cross talk. PMID:24170202

  6. Burkholderia mallei and Burkholderia pseudomallei Cluster 1 Type VI Secretion System Gene Expression Is Negatively Regulated by Iron and Zinc

    PubMed Central

    Burtnick, Mary N.; Brett, Paul J.

    2013-01-01

    Burkholderia mallei is a facultative intracellular pathogen that causes glanders in humans and animals. Previous studies have demonstrated that the cluster 1 type VI secretion system (T6SS-1) expressed by this organism is essential for virulence in hamsters and is positively regulated by the VirAG two-component system. Recently, we have shown that T6SS-1 gene expression is up-regulated following internalization of this pathogen into phagocytic cells and that this system promotes multinucleated giant cell formation in infected tissue culture monolayers. In the present study, we further investigated the complex regulation of this important virulence factor. To assess T6SS-1 expression, B. mallei strains were cultured in various media conditions and Hcp1 production was analyzed by Western immunoblotting. Transcript levels of several VirAG-regulated genes (bimA, tssA, hcp1 and tssM) were also determined using quantitative real time PCR. Consistent with previous observations, T6SS-1 was not expressed during growth of B. mallei in rich media. Curiously, growth of the organism in minimal media (M9G) or minimal media plus casamino acids (M9CG) facilitated robust expression of T6SS-1 genes whereas growth in minimal media plus tryptone (M9TG) did not. Investigation of this phenomenon confirmed a regulatory role for VirAG in this process. Additionally, T6SS-1 gene expression was significantly down-regulated by the addition of iron and zinc to M9CG. Other genes under the control of VirAG did not appear to be as tightly regulated by these divalent metals. Similar results were observed for B. pseudomallei, but not for B. thailandensis. Collectively, our findings indicate that in addition to being positively regulated by VirAG, B. mallei and B. pseudomallei T6SS-1 gene expression is negatively regulated by iron and zinc. PMID:24146925

  7. Burkholderia mallei and Burkholderia pseudomallei cluster 1 type VI secretion system gene expression is negatively regulated by iron and zinc.

    PubMed

    Burtnick, Mary N; Brett, Paul J

    2013-01-01

    Burkholderia mallei is a facultative intracellular pathogen that causes glanders in humans and animals. Previous studies have demonstrated that the cluster 1 type VI secretion system (T6SS-1) expressed by this organism is essential for virulence in hamsters and is positively regulated by the VirAG two-component system. Recently, we have shown that T6SS-1 gene expression is up-regulated following internalization of this pathogen into phagocytic cells and that this system promotes multinucleated giant cell formation in infected tissue culture monolayers. In the present study, we further investigated the complex regulation of this important virulence factor. To assess T6SS-1 expression, B. mallei strains were cultured in various media conditions and Hcp1 production was analyzed by Western immunoblotting. Transcript levels of several VirAG-regulated genes (bimA, tssA, hcp1 and tssM) were also determined using quantitative real time PCR. Consistent with previous observations, T6SS-1 was not expressed during growth of B. mallei in rich media. Curiously, growth of the organism in minimal media (M9G) or minimal media plus casamino acids (M9CG) facilitated robust expression of T6SS-1 genes whereas growth in minimal media plus tryptone (M9TG) did not. Investigation of this phenomenon confirmed a regulatory role for VirAG in this process. Additionally, T6SS-1 gene expression was significantly down-regulated by the addition of iron and zinc to M9CG. Other genes under the control of VirAG did not appear to be as tightly regulated by these divalent metals. Similar results were observed for B. pseudomallei, but not for B. thailandensis. Collectively, our findings indicate that in addition to being positively regulated by VirAG, B. mallei and B. pseudomallei T6SS-1 gene expression is negatively regulated by iron and zinc.

  8. Caregiver Emotional Expressiveness, Child Emotion Regulation, and Child Behavior Problems among Head Start Families

    ERIC Educational Resources Information Center

    McCoy, Dana Charles; Raver, C. Cybele

    2011-01-01

    The present study examined the relationships between caregivers' self-reported positive and negative emotional expressiveness, observer assessments of children's emotion regulation, and teachers' reports of children's internalizing and externalizing behaviors in a sample of 97 primarily African American and Hispanic Head Start families. Results…

  9. Expression of Master Regulators of T-cell, Helper T-cell and Follicular Helper T-cell Differentiation in Angioimmunoblastic T-cell Lymphoma.

    PubMed

    Matsumoto, Yosuke; Nagoshi, Hisao; Yoshida, Mihoko; Kato, Seiichi; Kuroda, Junya; Shimura, Kazuho; Kaneko, Hiroto; Horiike, Shigeo; Nakamura, Shigeo; Taniwaki, Masafumi

    2017-11-01

    Objective It has been postulated that the normal counterpart of angioimmunoblastic T-cell lymphoma (AITL) is the follicular helper T-cell (TFH). Recent immunological studies have identified several transcription factors responsible for T-cell differentiation. The master regulators associated with T-cell, helper T-cell (Th), and TFH differentiation are reportedly BCL11B, Th-POK, and BCL6, respectively. We explored the postulated normal counterpart of AITL with respect to the expression of the master regulators of T-cell differentiation. Methods We performed an immunohistochemical analysis in 15 AITL patients to determine the expression of the master regulators and several surface markers associated with T-cell differentiation. Results BCL11B was detected in 10 patients (67%), and the surface marker of T-cells (CD3) was detected in all patients. Only 2 patients (13%) expressed the marker of naïve T-cells (CD45RA), but all patients expressed the marker of effector T-cells (CD45RO). Nine patients expressed Th-POK (60%), and 7 (47%) expressed a set of surface antigens of Th (CD4-positive and CD8-negative). In addition, BCL6 and the surface markers of TFH (CXCL13, PD-1, and SAP) were detected in 11 (73%), 8 (53%), 14 (93%), and all patients, respectively. Th-POK-positive/BCL6-negative patients showed a significantly shorter overall survival (OS) than the other patients (median OS: 33.0 months vs. 74.0 months, p=0.020; log-rank test). Conclusion Many of the AITL patients analyzed in this study expressed the master regulators of T-cell differentiation. The clarification of the diagnostic significance and pathophysiology based on the expression of these master regulators in AITL is expected in the future.

  10. Parents’ emotion expression as a predictor of child’s social competence: children with or without intellectual disability

    PubMed Central

    Green, S.; Baker, B.

    2014-01-01

    Background Parents’ expression of positive emotion towards children who are typically developing (TD) is generally associated with better social development. However, the association between parents’ negative emotion expression and social development can be positive or negative depending upon a number of factors, including the child’s emotion regulation abilities. Given the lower emotion regulation capabilities of children with intellectual disability (ID), we hypothesised that parents’ negative emotion expression would be associated with lower social development in children with ID compared to those with TD. Methods Participants were 180 families of children with or without ID enrolled in a longitudinal study. Parents’ positive and negative affect were coded live from naturalistic home interactions at child ages 5–8 years, and child’s social skills were measured by using mother report at child ages 6–9 years. We examined mothers’ and fathers’ emotion expression as a time-varying predictor of social skills across ages 5–9 years. Results Mothers, but not fathers, expressed less positive affect and more negative affect with ID group children. Parents’ positive affect expression was related to social skills only for TD children, with mothers’ positive affect predicting higher social skills. Contrary to expectations, fathers’ positive affect predicted lower social skills. Parents’ negative affect predicted significantly lower social skills for children with ID than for children with TD. Conclusions Findings support the theory that low to moderate levels of negative expression may be less beneficial or detrimental for children with ID compared to children with TD. Implications for further research and intervention are discussed. PMID:21241394

  11. A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation.

    PubMed

    Zhu, Mingku; Chen, Guoping; Zhou, Shuang; Tu, Yun; Wang, Yi; Dong, Tingting; Hu, Zongli

    2014-01-01

    Fruit ripening in tomato (Solanum lycopersicum) is a complicated development process affected by both endogenous hormonal and genetic regulators and external signals. Although the role of NOR, a member of the NAC domain family, in mediating tomato fruit ripening has been established, its underlying molecular mechanisms remain unclear. To explore further the role of NAC transcription factors in fruit ripening, we characterized a new tomato NAC domain protein, named SlNAC4, which shows high accumulation in sepal and at the onset of fruit ripening. Various stress treatments including wounding, NaCl, dehydration and low temperature significantly increased the expression of SlNAC4. Reduced expression of SlNAC4 by RNA interference (RNAi) in tomato resulted in delayed fruit ripening, suppressed Chl breakdown and decreased ethylene synthesis mediated mainly through reduced expression of ethylene biosynthesis genes of system-2, and reduced carotenoids by alteration of the carotenoid pathway flux. Transgenic tomato fruits also displayed significant down-regulation of multiple ripening-associated genes, indicating that SlNAC4 functions as a positive regulator of fruit ripening by affecting ethylene synthesis and carotenoid accumulation. Moreover, we also noted that SlNAC4 could not be induced by ethylene and may function upstream of the ripening regulator RIN and positively regulate its expression. Yeast two-hybrid assay further revealed that SlNAC4 could interact with both RIN and NOR protein. These results suggested that ethylene-dependent and -independent processes are regulated by SlNAC4 in the fruit ripening regulatory network.

  12. Celecoxib can suppress expression of genes associated with PGE2 pathway in chondrocytes under inflammatory conditions.

    PubMed

    Sun, Tian-Wen; Wu, Zhi-Hong; Weng, Xi-Sheng

    2015-01-01

    This study aimed to investigate the effect of a selective cyclooxygenase-2 (COX-2) inhibitor (celecoxib) on the expression of arachidonate-associated inflammatory genes in cultured human normal chondrocytes. Normal chondrocytes were obtained from the cartilage of three different amputated patients without osteoarthritis (OA). Affymetrix Human microarray was used to assess the alterations in gene expression in three groups of cells: untreated cells (negative control group), cells treated with interleukin-1β (IL-1β) (positive control group), and cells treated with IL-1β and celecoxib. The patterns of up-regulation and down-regulation of gene expression were further validated by real-time PCR. A total of 1091 up-regulated genes and 1252 down-regulated genes were identified in the positive control group compared with the negative control group. Among them, PTGS2, ADAMTS5, PTGER2, mPTGES and PTGER4 are known to be involved in chondrocyte inflammation, while VEGFA, BCL2, TRAF1, CYR61, BMP6, DAPK1, DUSP7, IL1RN, MMP13 and TNFSF10 were reported being associated with cytokine and chemokine signaling. 189 up-regulated genes and 177 down-regulated genes were identified in the positive control group compared with intervention group. PTGS1, PTGS2, ADAMTS5, PTGER2, mPTGES and PTGER4 were among the genes down-regulated upon the treatment with celecoxib. Our results demonstrated that the OA chondrocytes are the site of active eicosanoid production. IL-1β can activate inflammation in chondrocytes and trigger the production of various proteins involved in cyclooxygenase pathway. The expression of genes corresponding to these proteins can be down-regulated by celecoxib. The findings indicate that the therapy with prostaglandin E2 (PGE2)-blocking agents may decrease the PGE2 production not only by direct inhibition of COX-2 activity, but also by down-regulating the expression of genes encoding for COX-2, microsomal prostaglandin-endoperoxide synthase 1 (mPGES-1) and prostaglandin E receptors 4 (EP4) in the articular chondrocytes.

  13. Differential microRNA expression is associated with androgen receptor expression in breast cancer.

    PubMed

    Shi, Yaqin; Yang, Fang; Sun, Zijia; Zhang, Wenwen; Gu, Jun; Guan, Xiaoxiang

    2017-01-01

    The androgen receptor (AR) is frequently expressed in breast cancer; however, its prognostic value remains unclear. AR expression in breast cancer has been associated with improved outcomes in estrogen receptor (ER)‑positive breast cancer compared with ER‑negative disease. Eliminating AR function in breast cancer is critically important for breast cancer progression. However, the mechanism underlying AR regulation remains poorly understood. The study of microRNAs (miRNAs) has provided important insights into the pathogenesis of hormone‑dependent cancer. To determine whether miRNAs function in the AR regulation of breast cancer, the present study performed miRNA expression profiling in AR‑positive and ‑negative breast cancer cell lines. A total of 153 miRNAs were differentially expressed in AR‑positive compared with AR‑negative breast cancer cells; 52 were upregulated and 101 were downregulated. A number of these have been extensively associated with breast cancer cell functions, including proliferation, invasion and drug‑resistance. Furthermore, through pathway enrichment analysis, signaling pathways associated with the prediction targets of the miRNAs were characterized, including the vascular endothelial growth factor and mammalian target of rapamycin signaling pathways. In conclusion, the results of the present study indicated that the expression of miRNAs may be involved in the mechanism underlying AR regulation of breast cancer, and may improve understanding of the role of AR in breast cancer.

  14. Regulation of DM-20 mRNA expression and intracellular translocation of glutathione-S-transferase pi isoform during oligodendrocyte differentiation in the adult rat spinal cord.

    PubMed

    Kitada, Masaaki; Takeda, Kazuya; Dezawa, Mari

    2016-07-01

    We previously demonstrated that NG2-positive oligodendrocyte precursor cells (OPCs) do not express DM-20 mRNA and identified a distinct DM-20 mRNA-positive cell population expressing glutathione-S-transferase pi isoform (GST-pi) in the nucleus (GST-pi(Nuc)) of the adult rat spinal cord. As GST-pi intranuclear localization correlates with progenitor cell properties, we examined the differentiation status of this cell population under the intensive 5-bromo-2'-deoxyuridine (BrdU) administration method, consisting of intraperitoneal BrdU injections every 2 h for 48 h. We observed that a certain population of proliferating/proliferated cells expressed DM-20 mRNA, and sometimes two proliferating/proliferated cells were observed still attached to each other. We performed triple staining for BrdU, DM-20 mRNA, and NG2 and found pairs of neighboring BrdU-positive cells, which were considered to originate from the same progenitor cells and where both cells expressed DM-20 mRNA. Triple staining for BrdU, DM-20 mRNA, and GST-pi detected proliferating/proliferated cells exhibiting the GST-pi(Nuc)/DM-20 mRNA-positive expression pattern. These findings suggested the presence of a GST-pi(Nuc)/DM-20 mRNA-positive oligodendrocyte-lineage progenitor cell population in the adult rat spinal cord. However, we did not find any pair of neighboring BrdU-positive cells with this expression pattern. These observations collectively support the idea that GST-pi(Nuc)/DM-20 mRNA-expressing cells are the progeny of NG2-positive OPCs rather than a novel type of oligodendrocyte-lineage progenitor cells and that DM-20 mRNA expression is dynamically regulated during differentiation of OPCs into oligodendrocytes.

  15. Global gene expression analysis using RNA-seq uncovered a new role for SR1/CAMTA3 transcription factor in salt stress

    PubMed Central

    Prasad, Kasavajhala V. S. K.; Abdel-Hameed, Amira A. E.; Xing, Denghui; Reddy, Anireddy S. N.

    2016-01-01

    Abiotic and biotic stresses cause significant yield losses in all crops. Acquisition of stress tolerance in plants requires rapid reprogramming of gene expression. SR1/CAMTA3, a member of signal responsive transcription factors (TFs), functions both as a positive and a negative regulator of biotic stress responses and as a positive regulator of cold stress-induced gene expression. Using high throughput RNA-seq, we identified ~3000 SR1-regulated genes. Promoters of about 60% of the differentially expressed genes have a known DNA binding site for SR1, suggesting that they are likely direct targets. Gene ontology analysis of SR1-regulated genes confirmed previously known functions of SR1 and uncovered a potential role for this TF in salt stress. Our results showed that SR1 mutant is more tolerant to salt stress than the wild type and complemented line. Improved tolerance of sr1 seedlings to salt is accompanied with the induction of salt-responsive genes. Furthermore, ChIP-PCR results showed that SR1 binds to promoters of several salt-responsive genes. These results suggest that SR1 acts as a negative regulator of salt tolerance by directly repressing the expression of salt-responsive genes. Overall, this study identified SR1-regulated genes globally and uncovered a previously uncharacterized role for SR1 in salt stress response. PMID:27251464

  16. Noncoding somatic and inherited single-nucleotide variants converge to promote ESR1 expression in breast cancer.

    PubMed

    Bailey, Swneke D; Desai, Kinjal; Kron, Ken J; Mazrooei, Parisa; Sinnott-Armstrong, Nicholas A; Treloar, Aislinn E; Dowar, Mark; Thu, Kelsie L; Cescon, David W; Silvester, Jennifer; Yang, S Y Cindy; Wu, Xue; Pezo, Rossanna C; Haibe-Kains, Benjamin; Mak, Tak W; Bedard, Philippe L; Pugh, Trevor J; Sallari, Richard C; Lupien, Mathieu

    2016-10-01

    Sustained expression of the estrogen receptor-α (ESR1) drives two-thirds of breast cancer and defines the ESR1-positive subtype. ESR1 engages enhancers upon estrogen stimulation to establish an oncogenic expression program. Somatic copy number alterations involving the ESR1 gene occur in approximately 1% of ESR1-positive breast cancers, suggesting that other mechanisms underlie the persistent expression of ESR1. We report significant enrichment of somatic mutations within the set of regulatory elements (SRE) regulating ESR1 in 7% of ESR1-positive breast cancers. These mutations regulate ESR1 expression by modulating transcription factor binding to the DNA. The SRE includes a recurrently mutated enhancer whose activity is also affected by rs9383590, a functional inherited single-nucleotide variant (SNV) that accounts for several breast cancer risk-associated loci. Our work highlights the importance of considering the combinatorial activity of regulatory elements as a single unit to delineate the impact of noncoding genetic alterations on single genes in cancer.

  17. Selective rescue of selenoprotein expression in mice lacking a highly specialized methyl group in selenocysteine tRNA.

    PubMed

    Carlson, Bradley A; Xu, Xue-Ming; Gladyshev, Vadim N; Hatfield, Dolph L

    2005-02-18

    Selenocysteine (Sec) is the 21st amino acid in the genetic code. Its tRNA is variably methylated on the 2'-O-hydroxyl site of the ribosyl moiety at position 34 (Um34). Herein, we identified a role of Um34 in regulating the expression of some, but not all, selenoproteins. A strain of knock-out transgenic mice was generated, wherein the Sec tRNA gene was replaced with either wild type or mutant Sec tRNA transgenes. The mutant transgene yielded a tRNA that lacked two base modifications, N(6)-isopentenyladenosine at position 37 (i(6)A37) and Um34. Several selenoproteins, including glutathione peroxidases 1 and 3, SelR, and SelT, were not detected in mice rescued with the mutant transgene, whereas other selenoproteins, including thioredoxin reductases 1 and 3 and glutathione peroxidase 4, were expressed in normal or reduced levels. Northern blot analysis suggested that other selenoproteins (e.g. SelW) were also poorly expressed. This novel regulation of protein expression occurred at the level of translation and manifested a tissue-specific pattern. The available data suggest that the Um34 modification has greater influence than the i(6)A37 modification in regulating the expression of various mammalian selenoproteins and Um34 is required for synthesis of several members of this protein class. Many proteins that were poorly rescued appear to be involved in responses to stress, and their expression is also highly dependent on selenium in the diet. Furthermore, their mRNA levels are regulated by selenium and are subject to nonsense-mediated decay. Overall, this study described a novel mechanism of regulation of protein expression by tRNA modification that is in turn regulated by levels of the trace element, selenium.

  18. Sex-specific mouse liver gene expression: genome-wide analysis of developmental changes from pre-pubertal period to young adulthood

    PubMed Central

    2012-01-01

    Background Early liver development and the transcriptional transitions during hepatogenesis are well characterized. However, gene expression changes during the late postnatal/pre-pubertal to young adulthood period are less well understood, especially with regards to sex-specific gene expression. Methods Microarray analysis of male and female mouse liver was carried out at 3, 4, and 8 wk of age to elucidate developmental changes in gene expression from the late postnatal/pre-pubertal period to young adulthood. Results A large number of sex-biased and sex-independent genes showed significant changes during this developmental period. Notably, sex-independent genes involved in cell cycle, chromosome condensation, and DNA replication were down regulated from 3 wk to 8 wk, while genes associated with metal ion binding, ion transport and kinase activity were up regulated. A majority of genes showing sex differential expression in adult liver did not display sex differences prior to puberty, at which time extensive changes in sex-specific gene expression were seen, primarily in males. Thus, in male liver, 76% of male-specific genes were up regulated and 47% of female-specific genes were down regulated from 3 to 8 wk of age, whereas in female liver 67% of sex-specific genes showed no significant change in expression. In both sexes, genes up regulated from 3 to 8 wk were significantly enriched (p < E-76) in the set of genes positively regulated by the liver transcription factor HNF4α, as determined in a liver-specific HNF4α knockout mouse model, while genes down regulated during this developmental period showed significant enrichment (p < E-65) for negative regulation by HNF4α. Significant enrichment of the developmentally regulated genes in the set of genes subject to positive and negative regulation by pituitary hormone was also observed. Five sex-specific transcriptional regulators showed sex-specific expression at 4 wk (male-specific Ihh; female-specific Cdx4, Cux2, Tox, and Trim24) and may contribute to the developmental changes that lead to global acquisition of liver sex-specificity by 8 wk of age. Conclusions Overall, the observed changes in gene expression during postnatal liver development reflect the deceleration of liver growth and the induction of specialized liver functions, with widespread changes in sex-specific gene expression primarily occurring in male liver. PMID:22475005

  19. Immunomodulatory effect of CD200-positive human placenta-derived stem cells in the early phase of stroke

    PubMed Central

    Kong, TaeHo; Park, Ji-Min; Jang, Ji Hyon; Kim, C-Yoon; Bae, Sang-Hun; Choi, Yuri; Jeong, Yun-Hwa; Kim, Chul; Chang, Sung Woon; Kim, Joopyung; Moon, Jisook

    2018-01-01

    Human placenta amniotic membrane-derived mesenchymal stem cells (AMSCs) regulate immune responses, and this property can be exploited to treat stroke patients via cell therapy. We investigated the expression profile of AMSCs cultured under hypoxic conditions and observed interesting expression changes in various genes involved in immune regulation. CD200, an anti-inflammatory factor and positive regulator of TGF-β, was more highly expressed under hypoxic conditions than normoxic conditions. Furthermore, AMSCs exhibited inhibition of pro-inflammatory cytokine expression in co-cultures with LPS-primed BV2 microglia, and this effect was decreased in CD200-silenced AMSCs. The AMSCs transplanted into the ischemic rat model of stroke dramatically inhibited the expression of pro-inflammatory cytokines and up-regulated CD200, as compared with the levels in the sham-treated group. Moreover, decreased microglia activation in the boundary region and improvements in behavior were confirmed in AMSC-treated ischemic rats. The results suggested that the highly expressed CD200 from the AMSCs in a hypoxic environment modulates levels of inflammatory cytokines and microglial activation, thus increasing the therapeutic recovery potential after hypoxic-ischemic brain injury, and further demonstrated the immunomodulatory function of AMSCs in a stroke model. PMID:29328072

  20. Long noncoding RNA MALAT1 promotes osterix expression to regulate osteogenic differentiation by targeting miRNA-143 in human bone marrow-derived mesenchymal stem cells.

    PubMed

    Gao, Yuan; Xiao, Fei; Wang, Chenglong; Wang, Chuandong; Cui, Penglei; Zhang, Xiaoling; Chen, Xiaodong

    2018-05-09

    Osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) is essential for the human bone formation, and emerging evidence shows that long non-coding RNAs (lncRNAs) play important roles in hBMSC osteogenic differentiation. MALAT1 is often regarded as a tumor-related lncRNA, but its function in mesenchymal stem cell differentiation remains to be defined. In this study, we aimed to investigate whether MALAT1 regulates Osterix (Osx) expression by sponging miR-143 to promote hBMSC osteogenic differentiation. Firstly, we found that the expression of MALAT1 was much lower in hBMSCs from osteoporosis patients and miR-143 was contrarily higher. In addition, MALAT1 expression increased, and miR-143 decreased when hBMSCs were treated with osteogenic induction. Then, we used short hairpin RNAs to knockdown MALAT1, and the results showed that hBMSC osteogenic differentiation decreased significantly, indicating that MALAT1 is a positive regulator of osteogenic differentiation in hBMSCs. Furthermore, by luciferase assays, we found that MALAT1 could directly bind to miR-143 and negatively regulate its expression. Similarly, miR-143 could directly bind to the target site on the Osx 3'-UTR and then inhibit Osx expression. Knockdown of MALAT1 decreased Osx expression, and co-transfection of miR-143 inhibitor could rescue Osx mRNA expression. While Osx expression was increased in MALAT1-overexpressing hBMSCs, it was reversed by the miR-143 mimics. Moreover, Osx silencing decreased ALP, OCN, and OPN mRNA expression induced by the miR-143 inhibitor. Altogether, our findings suggest that MALAT1 acts to regulate Osx expression through targeting miR-143; thus, it is considered as a positive regulator in hBMSC osteogenic differentiation. © 2018 Wiley Periodicals, Inc.

  1. 14-3-3ε Overexpression Contributes to Epithelial-Mesenchymal Transition of Hepatocellular Carcinoma

    PubMed Central

    Liang, Shu-Man; Chen, Shyh-Chang; Wang, John; Hsu, Chiun; Wu, Yao-Ming; Liou, Jun-Yang

    2013-01-01

    Background 14-3-3ε is implicated in regulating tumor progression, including hepatocellular carcinoma (HCC). Our earlier study indicated that elevated 14-3-3ε expression is significantly associated with higher risk of metastasis and lower survival rates of HCC patients. However, the molecular mechanisms of how 14-3-3ε regulates HCC tumor metastasis are still unclear. Methodology and Principal Findings In this study, we show that increased 14-3-3ε expression induces HCC cell migration and promotes epithelial-mesenchymal transition (EMT), which is determined by the reduction of E-cadherin expression and induction of N-cadherin and vimentin expression. Knockdown with specific siRNA abolished 14-3-3ε-induced cell migration and EMT. Furthermore, 14-3-3ε selectively induced Zeb-1 and Snail expression, and 14-3-3ε-induced cell migration was abrogated by Zeb-1 or Snail siRNA. In addition, the effect of 14-3-3ε-reduced E-cadherin was specifically restored by Zeb-1 siRNA. Positive 14-3-3ε expression was significantly correlated with negative E-cadherin expression, as determined by immunohistochemistry analysis in HCC tumors. Analysis of 14-3-3ε/E-cadherin expression associated with clinicopathological characteristics revealed that the combination of positive 14-3-3ε and negative E-cadherin expression is significantly correlated with higher incidence of HCC metastasis and poor 5-year overall survival. In contrast, patients with positive 14-3-3ε and positive E-cadherin expression had better prognostic outcomes than did those with negative E-cadherin expression. Significance Our findings show for the first time that E-cadherin is one of the downstream targets of 14-3-3ε in modulating HCC tumor progression. Thus, 14-3-3ε may act as an important regulator in modulating tumor metastasis by promoting EMT as well as cell migration, and it may serve as a novel prognostic biomarker or therapeutic target for HCC. PMID:23483955

  2. Emotional competence and extrinsic emotion regulation directed toward an ostracized person.

    PubMed

    Nozaki, Yuki

    2015-12-01

    Positive interpersonal relationships hinge on individuals' competence in regulating others' emotions as well as their own. Nevertheless, little is known about the relationship between emotional competence and specific interpersonal behaviors. In particular, it is unclear which situations require emotional competence for extrinsic emotion regulation and whether emotionally competent individuals actually attempt to regulate others' emotions. To clarify these issues, the current investigation examined the relationship between emotional competence and extrinsic emotion regulation directed toward an ostracized person. The results of Study 1 (N = 39) indicated that interpersonal emotional competence (competence related to others' emotions) was positively associated with participants' efforts to relieve the ostracized person's sadness. In Study 2 (N = 120), this relationship was moderated by the ostracized person's emotional expression. In particular, participants with high interpersonal emotional competence were more likely to attempt to regulate the sadness of ostracized individuals who expressed neutral affect. In contrast, when the ostracized person expressed sadness, there were no significant relationships between high or low interpersonal emotional competence and extrinsic emotion regulation behavior. These results offer novel insight into how emotionally competent individuals use their competence to benefit others. (c) 2015 APA, all rights reserved).

  3. Parents' emotion expression as a predictor of child's social competence: children with or without intellectual disability.

    PubMed

    Green, S; Baker, B

    2011-03-01

    Parents' expression of positive emotion towards children who are typically developing (TD) is generally associated with better social development. However, the association between parents' negative emotion expression and social development can be positive or negative depending upon a number of factors, including the child's emotion regulation abilities. Given the lower emotion regulation capabilities of children with intellectual disability (ID), we hypothesised that parents' negative emotion expression would be associated with lower social development in children with ID compared to those with TD. Participants were 180 families of children with or without ID enrolled in a longitudinal study. Parents' positive and negative affect were coded live from naturalistic home interactions at child ages 5-8 years, and child's social skills were measured by using mother report at child ages 6-9 years. We examined mothers' and fathers' emotion expression as a time-varying predictor of social skills across ages 5-9 years. Mothers, but not fathers, expressed less positive affect and more negative affect with ID group children. Parents' positive affect expression was related to social skills only for TD children, with mothers' positive affect predicting higher social skills. Contrary to expectations, fathers' positive affect predicted lower social skills. Parents' negative affect predicted significantly lower social skills for children with ID than for children with TD. Findings support the theory that low to moderate levels of negative expression may be less beneficial or detrimental for children with ID compared to children with TD. Implications for further research and intervention are discussed. © 2011 The Authors. Journal of Intellectual Disability Research © 2011 Blackwell Publishing Ltd.

  4. Individual differences in automatic emotion regulation affect the asymmetry of the LPP component.

    PubMed

    Zhang, Jing; Zhou, Renlai

    2014-01-01

    The main goal of this study was to investigate how automatic emotion regulation altered the hemispheric asymmetry of ERPs elicited by emotion processing. We examined the effect of individual differences in automatic emotion regulation on the late positive potential (LPP) when participants were viewing blocks of positive high arousal, positive low arousal, negative high arousal and negative low arousal pictures from International affect picture system (IAPS). Two participant groups were categorized by the Emotion Regulation-Implicit Association Test which has been used in previous research to identify two groups of participants with automatic emotion control and with automatic emotion express. The main finding was that automatic emotion express group showed a right dominance of the LPP component at posterior electrodes, especially in high arousal conditions. But no right dominance of the LPP component was observed for automatic emotion control group. We also found the group with automatic emotion control showed no differences in the right posterior LPP amplitude between high- and low-arousal emotion conditions, while the participants with automatic emotion express showed larger LPP amplitude in the right posterior in high-arousal conditions compared to low-arousal conditions. This result suggested that AER (Automatic emotion regulation) modulated the hemispheric asymmetry of LPP on posterior electrodes and supported the right hemisphere hypothesis.

  5. Comparison of Five Major Trichome Regulatory Genes in Brassica villosa with Orthologues within the Brassicaceae

    PubMed Central

    Nayidu, Naghabushana K.; Kagale, Sateesh; Taheri, Ali; Withana-Gamage, Thushan S.; Parkin, Isobel A. P.; Sharpe, Andrew G.; Gruber, Margaret Y.

    2014-01-01

    Coding sequences for major trichome regulatory genes, including the positive regulators GLABRA 1(GL1), GLABRA 2 (GL2), ENHANCER OF GLABRA 3 (EGL3), and TRANSPARENT TESTA GLABRA 1 (TTG1) and the negative regulator TRIPTYCHON (TRY), were cloned from wild Brassica villosa, which is characterized by dense trichome coverage over most of the plant. Transcript (FPKM) levels from RNA sequencing indicated much higher expression of the GL2 and TTG1 regulatory genes in B. villosa leaves compared with expression levels of GL1 and EGL3 genes in either B. villosa or the reference genome species, glabrous B. oleracea; however, cotyledon TTG1 expression was high in both species. RNA sequencing and Q-PCR also revealed an unusual expression pattern for the negative regulators TRY and CPC, which were much more highly expressed in trichome-rich B. villosa leaves than in glabrous B. oleracea leaves and in glabrous cotyledons from both species. The B. villosa TRY expression pattern also contrasted with TRY expression patterns in two diploid Brassica species, and with the Arabidopsis model for expression of negative regulators of trichome development. Further unique sequence polymorphisms, protein characteristics, and gene evolution studies highlighted specific amino acids in GL1 and GL2 coding sequences that distinguished glabrous species from hairy species and several variants that were specific for each B. villosa gene. Positive selection was observed for GL1 between hairy and non-hairy plants, and as expected the origin of the four expressed positive trichome regulatory genes in B. villosa was predicted to be from B. oleracea. In particular the unpredicted expression patterns for TRY and CPC in B. villosa suggest additional characterization is needed to determine the function of the expanded families of trichome regulatory genes in more complex polyploid species within the Brassicaceae. PMID:24755905

  6. DNA Microarray Gene Expression Profile of Marginal Zone versus Follicular B cells and Idiotype Positive Marginal Zone B cells Before and After Immunization with Streptococcus pneumoniae 1

    PubMed Central

    Liu, Jiabin; Behrens, Timothy W.; Kearney, John F.

    2014-01-01

    Marginal Zone (MZ) B cells play an important role in the clearance of blood-borne bacterial infections via rapid T-independent IgM responses. We have previously demonstrated that MZ B cells respond rapidly and robustly to bacterial particulates. To determine the MZ-specific genes that are expressed to allow for this response, MZ and Follicular (FO) B cells were sort-purified and analyzed via DNA microarray analysis. We identified 181 genes that were significantly different between the two B cell populations. 99 genes were more highly expressed in MZ B cells while 82 genes were more highly expressed in FO B cells. To further understand the molecular mechanisms by which MZ B cells respond so rapidly to bacterial challenge, idiotype positive and negative MZ B cells were sort-purified before (0 hour) or after (1 hour) i.v. immunization with heat killed Streptococcus pneumoniae, R36A, and analyzed via DNA microarray analysis. We identified genes specifically up regulated or down regulated at 1 hour following immunization in the idiotype positive MZ B cells. These results give insight into the gene expression pattern in resting MZ vs. FO B cells and the specific regulation of gene expression in antigen-specific MZ B cells following interaction with antigen. PMID:18453586

  7. Transcription factor AP-2γ induces early Cdx2 expression and represses HIPPO signaling to specify the trophectoderm lineage

    PubMed Central

    Cao, Zubing; Carey, Timothy S.; Ganguly, Avishek; Wilson, Catherine A.; Paul, Soumen; Knott, Jason G.

    2015-01-01

    Cell fate decisions are fundamental to the development of multicellular organisms. In mammals the first cell fate decision involves segregation of the pluripotent inner cell mass and the trophectoderm, a process regulated by cell polarity proteins, HIPPO signaling and lineage-specific transcription factors such as CDX2. However, the regulatory mechanisms that operate upstream to specify the trophectoderm lineage have not been established. Here we report that transcription factor AP-2γ (TFAP2C) functions as a novel upstream regulator of Cdx2 expression and position-dependent HIPPO signaling in mice. Loss- and gain-of-function studies and promoter analysis revealed that TFAP2C binding to an intronic enhancer is required for activation of Cdx2 expression during early development. During the 8-cell to morula transition TFAP2C potentiates cell polarity to suppress HIPPO signaling in the outside blastomeres. TFAP2C depletion triggered downregulation of PARD6B, loss of apical cell polarity, disorganization of F-actin, and activation of HIPPO signaling in the outside blastomeres. Rescue experiments using Pard6b mRNA restored cell polarity but only partially corrected position-dependent HIPPO signaling, suggesting that TFAP2C negatively regulates HIPPO signaling via multiple pathways. Several genes involved in regulation of the actin cytoskeleton (including Rock1, Rock2) were downregulated in TFAP2C-depleted embryos. Inhibition of ROCK1 and ROCK2 activity during the 8-cell to morula transition phenocopied TFAP2C knockdown, triggering a loss of position-dependent HIPPO signaling and decrease in Cdx2 expression. Altogether, these results demonstrate that TFAP2C facilitates trophectoderm lineage specification by functioning as a key regulator of Cdx2 transcription, cell polarity and position-dependent HIPPO signaling. PMID:25858457

  8. Tonic ubiquitylation controls T-cell receptor:CD3 complex expression during T-cell development.

    PubMed

    Wang, Haopeng; Holst, Jeff; Woo, Seng-Ryong; Guy, Cliff; Bettini, Matt; Wang, Yao; Shafer, Aaron; Naramura, Mayumi; Mingueneau, Michaël; Dragone, Leonard L; Hayes, Sandra M; Malissen, Bernard; Band, Hamid; Vignali, Dario A A

    2010-04-07

    Expression of the T-cell receptor (TCR):CD3 complex is tightly regulated during T-cell development. The mechanism and physiological role of this regulation are unclear. Here, we show that the TCR:CD3 complex is constitutively ubiquitylated in immature double positive (DP) thymocytes, but not mature single positive (SP) thymocytes or splenic T cells. This steady state, tonic CD3 monoubiquitylation is mediated by the CD3varepsilon proline-rich sequence, Lck, c-Cbl, and SLAP, which collectively trigger the dynamin-dependent downmodulation, lysosomal sequestration and degradation of surface TCR:CD3 complexes. Blocking this tonic ubiquitylation by mutating all the lysines in the CD3 cytoplasmic tails significantly upregulates TCR levels on DP thymocytes. Mimicking monoubiquitylation by expression of a CD3zeta-monoubiquitin (monoUb) fusion molecule significantly reduces TCR levels on immature thymocytes. Moreover, modulating CD3 ubiquitylation alters immunological synapse (IS) formation and Erk phosphorylation, thereby shifting the signalling threshold for positive and negative selection, and regulatory T-cell development. Thus, tonic TCR:CD3 ubiquitylation results in precise regulation of TCR expression on immature T cells, which is required to maintain the fidelity of T-cell development.

  9. Tonic ubiquitylation controls T-cell receptor:CD3 complex expression during T-cell development

    PubMed Central

    Wang, Haopeng; Holst, Jeff; Woo, Seng-Ryong; Guy, Cliff; Bettini, Matt; Wang, Yao; Shafer, Aaron; Naramura, Mayumi; Mingueneau, Michaël; Dragone, Leonard L; Hayes, Sandra M; Malissen, Bernard; Band, Hamid; Vignali, Dario A A

    2010-01-01

    Expression of the T-cell receptor (TCR):CD3 complex is tightly regulated during T-cell development. The mechanism and physiological role of this regulation are unclear. Here, we show that the TCR:CD3 complex is constitutively ubiquitylated in immature double positive (DP) thymocytes, but not mature single positive (SP) thymocytes or splenic T cells. This steady state, tonic CD3 monoubiquitylation is mediated by the CD3ɛ proline-rich sequence, Lck, c-Cbl, and SLAP, which collectively trigger the dynamin-dependent downmodulation, lysosomal sequestration and degradation of surface TCR:CD3 complexes. Blocking this tonic ubiquitylation by mutating all the lysines in the CD3 cytoplasmic tails significantly upregulates TCR levels on DP thymocytes. Mimicking monoubiquitylation by expression of a CD3ζ-monoubiquitin (monoUb) fusion molecule significantly reduces TCR levels on immature thymocytes. Moreover, modulating CD3 ubiquitylation alters immunological synapse (IS) formation and Erk phosphorylation, thereby shifting the signalling threshold for positive and negative selection, and regulatory T-cell development. Thus, tonic TCR:CD3 ubiquitylation results in precise regulation of TCR expression on immature T cells, which is required to maintain the fidelity of T-cell development. PMID:20150895

  10. TALE activators regulate gene expression in a position- and strand-dependent manner in mammalian cells.

    PubMed

    Uhde-Stone, Claudia; Cheung, Edna; Lu, Biao

    2014-01-24

    Transcription activator-like effectors (TALEs) are a class of transcription factors that are readily programmable to regulate gene expression. Despite their growing popularity, little is known about binding site parameters that influence TALE-mediated gene activation in mammalian cells. We demonstrate that TALE activators modulate gene expression in mammalian cells in a position- and strand-dependent manner. To study the effects of binding site location, we engineered TALEs customized to recognize specific DNA sequences located in either the promoter or the transcribed region of reporter genes. We found that TALE activators robustly activated reporter genes when their binding sites were located within the promoter region. In contrast, TALE activators inhibited the expression of reporter genes when their binding sites were located on the sense strand of the transcribed region. Notably, this repression was independent of the effector domain utilized, suggesting a simple blockage mechanism. We conclude that TALE activators in mammalian cells regulate genes in a position- and strand-dependent manner that is substantially different from gene activation by native TALEs in plants. These findings have implications for optimizing the design of custom TALEs for genetic manipulation in mammalian cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. AtPP2CG1, a protein phosphatase 2C, positively regulates salt tolerance of Arabidopsis in abscisic acid-dependent manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xin, E-mail: fangfei6073@126.com; Zhu, Yanming, E-mail: ymzhu2001@neau.edu.cn; Zhai, Hong, E-mail: Zhai.h@neigaehrb.ac.cn

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer AtPP2CG1 positively regulates salt tolerance in ABA-dependent manner. Black-Right-Pointing-Pointer AtPP2CG1 up-regulates the expression of marker genes in different pathways. Black-Right-Pointing-Pointer AtPP2CG1 expresses in the vascular system and trichomes of Arabidopsis. -- Abstract: AtPP2CG1 (Arabidopsis thaliana protein phosphatase 2C G Group 1) was predicted as an abiotic stress candidate gene by bioinformatic analysis in our previous study. The gene encodes a putative protein phosphatase 2C that belongs to Group G of PP2C. There is no report of Group G genes involved in abiotic stress so far. Real-time RT-PCR analysis showed that AtPP2CG1 expression was induced by salt, drought, andmore » abscisic acid (ABA) treatment. The expression levels of AtPP2CG1 in the ABA synthesis-deficient mutant abi2-3 were much lower than that in WT plants under salt stress suggesting that the expression of AtPP2CG1 acts in an ABA-dependent manner. Over-expression of AtPP2CG1 led to enhanced salt tolerance, whereas its loss of function caused decreased salt tolerance. These results indicate that AtPP2CG1 positively regulates salt stress in an ABA-dependent manner. Under salt treatment, AtPP2CG1 up-regulated the expression levels of stress-responsive genes, including RD29A, RD29B, DREB2A and KIN1. GUS activity was detected in roots, leaves, stems, flower, and trichomes of AtPP2CG1 promoter-GUS transgenic plants. AtPP2CG1 protein was localized in nucleus and cytoplasm via AtPP2CG1:eGFP and YFP:AtPP2CG1 fusion approaches.« less

  12. Associations between transcriptional changes and protein phenotypes provide insights into immune regulation in corals.

    PubMed

    Fuess, Lauren E; Pinzόn C, Jorge H; Weil, Ernesto; Mydlarz, Laura D

    2016-09-01

    Disease outbreaks in marine ecosystems have driven worldwide declines of numerous taxa, including corals. Some corals, such as Orbicella faveolata, are particularly susceptible to disease. To explore the mechanisms contributing to susceptibility, colonies of O. faveolata were exposed to immune challenge with lipopolysaccharides. RNA sequencing and protein activity assays were used to characterize the response of corals to immune challenge. Differential expression analyses identified 17 immune-related transcripts that varied in expression post-immune challenge. Network analyses revealed several groups of transcripts correlated to immune protein activity. Several transcripts, which were annotated as positive regulators of immunity were included in these groups, and some were downregulated following immune challenge. Correlations between expression of these transcripts and protein activity results further supported the role of these transcripts in positive regulation of immunity. The observed pattern of gene expression and protein activity may elucidate the processes contributing to the disease susceptibility of species like O. faveolata. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Age and Gender Differences in Relationships Among Emotion Regulation, Mood, and Mental Health.

    PubMed

    Masumoto, Kouhei; Taishi, Nozomi; Shiozaki, Mariko

    2016-01-01

    Objective: We investigated the effects of age on mood and mental health-mediated emotion regulation, such as cognitive reappraisal and expressive suppression, and examined whether these relationships differ according to gender. Method: We recruited 936 Japanese participants. They comprised six age groups ranging from 20 to 70 years old, with 156 participants in each age group and equal numbers of men and women. Results: Structural equation model analysis showed that older participants were more likely to use cognitive reappraisal, further enhancing positive mood and reducing negative mood, whereas, age did not affect expressive suppression. Moreover, expressive suppression had a smaller impact on mood than cognitive reappraisal. A multi-group analysis showed significant gender differences. In men, cognitive reappraisal increased with age and influenced mood more positively than in women. Discussion: Our findings indicated gender differences in aging effects on emotion regulation. We discussed about these results from the cognitive process, motivation to emotion regulation, and cultural differences.

  14. Emotion Regulation Strategies, Secondary Traumatic Stress, and Compassion Satisfaction in Healthcare Providers.

    PubMed

    Măirean, Cornelia

    2016-11-16

    The aim of the present study is to examine the relationships between two emotion regulation strategies (cognitive reappraisal and expressive suppression), secondary traumatic stress, and compassion satisfaction in a sample of 190 healthcare providers. Another aim of this study is to examine if the relations between emotion regulation strategies and traumatic stress symptoms are moderated by compassion satisfaction. The respondents volunteered to take part in the research and completed self-reporting measures describing the use of emotional regulation strategies, the symptoms of secondary traumatic stress, and the compassion satisfaction. The results revealed negative associations between cognitive reappraisal and secondary traumatic stress, while expressive suppression is positively associated with arousal. Moreover, cognitive reappraisal is positively related to compassion satisfaction, while secondary traumatic stress symptoms are negatively correlated with compassion satisfaction. Furthermore, the relationship between expressive suppression and intrusions is moderated by compassion satisfaction. The implications of these results for enhancing professional quality of life in the context of secondary exposure to traumatic life events are discussed.

  15. Tissue Inhibitor of Metalloproteinase-2 (TIMP-2) expression is regulated by multiple neural differentiation signals

    PubMed Central

    Jaworski, Diane M.; Pérez-Martínez, Leonor

    2010-01-01

    Neuronal differentiation requires exquisitely timed cell cycle arrest for progenitors to acquire an appropriate neuronal cell fate and is achieved by communication between soluble signals, such as growth factors and extracellular matrix molecules. Here we report that the expression of TIMP-2, a matrix metalloproteinase inhibitor, is up-regulated by signals that control proliferation (bFGF and EGF) and differentiation (retinoic acid and NGF) in neural progenitor and neuroblastoma cell lines. TIMP-2 expression coincides with the appearance of neurofilament-positive neurons, indicating that TIMP-2 may play a role in neurogenesis. The up-regulation of TIMP-2 expression by proliferative signals suggests a role in the transition from proliferation to neuronal differentiation. Live labeling experiments demonstrate TIMP-2 expression only on α3 integrin-positive cells. Thus, TIMP-2 function may be mediated via interaction with integrin receptor(s). We propose that TIMP-2 represents a component of the neurogenic signaling cascade induced by mitogenic stimuli that may withdraw progenitor cells from the cell cycle permitting their terminal neuronal differentiation. PMID:16805810

  16. Emotional expressivity and emotion regulation: Relation to academic functioning among elementary school children.

    PubMed

    Kwon, Kyongboon; Hanrahan, Amanda R; Kupzyk, Kevin A

    2017-03-01

    We examined emotional expressivity (i.e., happiness, sadness, and anger) and emotion regulation (regulation of exuberance, sadness, and anger) as they relate to academic functioning (motivation, engagement, and achievement). Also, we tested the premise that emotional expressivity and emotion regulation are indirectly associated with achievement through academic motivation and engagement. Participants included 417 elementary school students (Mage = 10 years; 52% female; 60% Black) and their teachers from a Midwestern metropolitan area. We used child and teacher questionnaires, and data were analyzed with structural equation modeling. Regarding emotionality, happiness was positively associated with multiple aspects of academic functioning whereas an inverse association was found for anger; sadness was not associated with academic functioning. Also, happiness and anger were indirectly related to achievement through academic engagement. Emotion regulation was positively associated with multiple aspects of academic functioning; it was also indirectly associated with achievement through engagement. Implications are discussed regarding how social and emotional learning programs in schools can further benefit from research on children's emotions. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Small Antisense RNA RblR Positively Regulates RuBisCo in Synechocystis sp. PCC 6803.

    PubMed

    Hu, Jinlu; Li, Tianpei; Xu, Wen; Zhan, Jiao; Chen, Hui; He, Chenliu; Wang, Qiang

    2017-01-01

    Small regulatory RNAs (sRNAs) function as transcriptional and post-transcriptional regulators of gene expression in organisms from all domains of life. Cyanobacteria are thought to have developed a complex RNA-based regulatory mechanism. In the current study, by genome-wide analysis of differentially expressed small RNAs in Synechocystis sp. PCC 6803 under high light conditions, we discovered an asRNA (RblR) that is 113nt in length and completely complementary to its target gene rbcL , which encodes the large chain of RuBisCO, the enzyme that catalyzes carbon fixation. Further analysis of the RblR(+)/(-) mutants revealed that RblR acts as a positive regulator of rbcL under various stress conditions; Suppressing RblR adversely affects carbon assimilation and thus the yield, and those phenotypes of both the wild type and the overexpressor could be downgraded to the suppressor level by carbonate depletion, indicated a regulatory role of RblR in CO 2 assimilation. In addition, a real-time expression platform in Escherichia coli was setup and which confirmed that RblR promoted the translation of the rbcL mRNA into the RbcL protein. The present study is the first report of a regulatory RNA that targets RbcL in Synechocystis sp. PCC 6803, and provides strong evidence that RblR regulates photosynthesis by positively modulating rbcL expression in Synechocystis .

  18. Small Antisense RNA RblR Positively Regulates RuBisCo in Synechocystis sp. PCC 6803

    PubMed Central

    Hu, Jinlu; Li, Tianpei; Xu, Wen; Zhan, Jiao; Chen, Hui; He, Chenliu; Wang, Qiang

    2017-01-01

    Small regulatory RNAs (sRNAs) function as transcriptional and post-transcriptional regulators of gene expression in organisms from all domains of life. Cyanobacteria are thought to have developed a complex RNA-based regulatory mechanism. In the current study, by genome-wide analysis of differentially expressed small RNAs in Synechocystis sp. PCC 6803 under high light conditions, we discovered an asRNA (RblR) that is 113nt in length and completely complementary to its target gene rbcL, which encodes the large chain of RuBisCO, the enzyme that catalyzes carbon fixation. Further analysis of the RblR(+)/(−) mutants revealed that RblR acts as a positive regulator of rbcL under various stress conditions; Suppressing RblR adversely affects carbon assimilation and thus the yield, and those phenotypes of both the wild type and the overexpressor could be downgraded to the suppressor level by carbonate depletion, indicated a regulatory role of RblR in CO2 assimilation. In addition, a real-time expression platform in Escherichia coli was setup and which confirmed that RblR promoted the translation of the rbcL mRNA into the RbcL protein. The present study is the first report of a regulatory RNA that targets RbcL in Synechocystis sp. PCC 6803, and provides strong evidence that RblR regulates photosynthesis by positively modulating rbcL expression in Synechocystis. PMID:28261186

  19. Analysis of gene expression profile induced by EMP-1 in esophageal cancer cells using cDNA Microarray

    PubMed Central

    Wang, Hai-Tao; Kong, Jian-Ping; Ding, Fang; Wang, Xiu-Qin; Wang, Ming-Rong; Liu, Lian-Xin; Wu, Min; Liu, Zhi-Hua

    2003-01-01

    AIM: To obtain human esophageal cancer cell EC9706 stably expressed epithelial membrane protein-1 (EMP-1) with integrated eukaryotic plasmid harboring the open reading frame (ORF) of human EMP-1, and then to study the mechanism by which EMP-1 exerts its diverse cellular action on cell proliferation and altered gene profile by exploring the effect of EMP-1. METHODS: The authors first constructed pcDNA3.1/myc-his expression vector harboring the ORF of EMP-1 and then transfected it into human esophageal carcinoma cell line EC9706. The positive clones were analyzed by Western blot and RT-PCR. Moreover, the cell growth curve was observed and the cell cycle was checked by FACS technique. Using cDNA microarray technology, the authors compared the gene expression pattern in positive clones with control. To confirm the gene expression profile, semi-quantitative RT-PCR was carried out for 4 of the randomly picked differentially expressed genes. For those differentially expressed genes, classification was performed according to their function and cellular component. RESULTS: Human EMP-1 gene can be stably expressed in EC9706 cell line transfected with human EMP-1. The authors found the cell growth decreased, among which S phase was arrested and G1 phase was prolonged in the transfected positive clones. By cDNA microarray analysis, 35 genes showed an over 2.0 fold change in expression level after transfection, with 28 genes being consistently up-regulated and 7 genes being down-regulated. Among the classified genes, almost half of the induced genes (13 out of 28 genes) were related to cell signaling, cell communication and particularly to adhesion. CONCLUSION: Overexpression of human EMP-1 gene can inhibit the proliferation of EC9706 cell with S phase arrested and G1 phase prolonged. The cDNA microarray analysis suggested that EMP-1 may be one of regulators involved in cell signaling, cell communication and adhesion regulators. PMID:12632483

  20. Analysis of gene expression profile induced by EMP-1 in esophageal cancer cells using cDNA Microarray.

    PubMed

    Wang, Hai-Tao; Kong, Jian-Ping; Ding, Fang; Wang, Xiu-Qin; Wang, Ming-Rong; Liu, Lian-Xin; Wu, Min; Liu, Zhi-Hua

    2003-03-01

    To obtain human esophageal cancer cell EC9706 stably expressed epithelial membrane protein-1 (EMP-1) with integrated eukaryotic plasmid harboring the open reading frame (ORF) of human EMP-1, and then to study the mechanism by which EMP-1 exerts its diverse cellular action on cell proliferation and altered gene profile by exploring the effect of EMP-1. The authors first constructed pcDNA3.1/myc-his expression vector harboring the ORF of EMP-1 and then transfected it into human esophageal carcinoma cell line EC9706. The positive clones were analyzed by Western blot and RT-PCR. Moreover, the cell growth curve was observed and the cell cycle was checked by FACS technique. Using cDNA microarray technology, the authors compared the gene expression pattern in positive clones with control. To confirm the gene expression profile, semi-quantitative RT-PCR was carried out for 4 of the randomly picked differentially expressed genes. For those differentially expressed genes, classification was performed according to their function and cellular component. Human EMP-1 gene can be stably expressed in EC9706 cell line transfected with human EMP-1. The authors found the cell growth decreased, among which S phase was arrested and G1 phase was prolonged in the transfected positive clones. By cDNA microarray analysis, 35 genes showed an over 2.0 fold change in expression level after transfection, with 28 genes being consistently up-regulated and 7 genes being down-regulated. Among the classified genes, almost half of the induced genes (13 out of 28 genes) were related to cell signaling, cell communication and particularly to adhesion. Overexpression of human EMP-1 gene can inhibit the proliferation of EC9706 cell with S phase arrested and G1 phase prolonged. The cDNA microarray analysis suggested that EMP-1 may be one of regulators involved in cell signaling, cell communication and adhesion regulators.

  1. Down-regulation of monocarboxylate transporter 1 (MCT1) gene expression in the colon of piglets is linked to bacterial protein fermentation and pro-inflammatory cytokine-mediated signalling.

    PubMed

    Villodre Tudela, Carmen; Boudry, Christelle; Stumpff, Friederike; Aschenbach, Jörg R; Vahjen, Wilfried; Zentek, Jürgen; Pieper, Robert

    2015-02-28

    The present study investigated the influence of bacterial metabolites on monocarboxylate transporter 1 (MCT1) expression in pigs using in vivo, ex vivo and in vitro approaches. Piglets (n 24) were fed high-protein (26 %) or low-protein (18 %) diets with or without fermentable carbohydrates. Colonic digesta samples were analysed for a broad range of bacterial metabolites. The expression of MCT1, TNF-α, interferon γ (IFN-γ) and IL-8 was determined in colonic tissue. The expression of MCT1 was lower and of TNF-α and IL-8 was higher with high-protein diets (P< 0·05). MCT1 expression was positively correlated with l-lactate, whereas negatively correlated with NH₃ and putrescine (P< 0·05). The expression of IL-8 and TNF-α was negatively correlated with l-lactate and positively correlated with NH₃ and putrescine, whereas the expression of IFN-γ was positively correlated with histamine and 4-ethylphenol (P< 0·05). Subsequently, porcine colonic tissue and Caco-2 cells were incubated with Na-butyrate, NH₄Cl or TNF-α as selected bacterial metabolites or mediators of inflammation. Colonic MCT1 expression was higher after incubation with Na-butyrate (P< 0·05) and lower after incubation with NH₄Cl or TNF-α (P< 0·05). Incubation of Caco-2 cells with increasing concentrations of these metabolites confirmed the up-regulation of MCT1 expression by Na-butyrate (linear, P< 0·05) and down-regulation by TNF-α and NH₄Cl (linear, P< 0·05). The high-protein diet decreased the expression of MCT1 in the colon of pigs, which appears to be linked to NH₃- and TNF-α-mediated signalling.

  2. A positive feedback mechanism that regulates expression of miR-9 during neurogenesis.

    PubMed

    Davila, Jonathan L; Goff, Loyal A; Ricupero, Christopher L; Camarillo, Cynthia; Oni, Eileen N; Swerdel, Mavis R; Toro-Ramos, Alana J; Li, Jiali; Hart, Ronald P

    2014-01-01

    MiR-9, a neuron-specific miRNA, is an important regulator of neurogenesis. In this study we identify how miR-9 is regulated during early differentiation from a neural stem-like cell. We utilized two immortalized rat precursor clones, one committed to neurogenesis (L2.2) and another capable of producing both neurons and non-neuronal cells (L2.3), to reproducibly study early neurogenesis. Exogenous miR-9 is capable of increasing neurogenesis from L2.3 cells. Only one of three genomic loci capable of encoding miR-9 was regulated during neurogenesis and the promoter region of this locus contains sufficient functional elements to drive expression of a luciferase reporter in a developmentally regulated pattern. Furthermore, among a large number of potential regulatory sites encoded in this sequence, Mef2 stood out because of its known pro-neuronal role. Of four Mef2 paralogs, we found only Mef2C mRNA was regulated during neurogenesis. Removal of predicted Mef2 binding sites or knockdown of Mef2C expression reduced miR-9-2 promoter activity. Finally, the mRNA encoding the Mef2C binding partner HDAC4 was shown to be targeted by miR-9. Since HDAC4 protein could be co-immunoprecipitated with Mef2C protein or with genomic Mef2 binding sequences, we conclude that miR-9 regulation is mediated, at least in part, by Mef2C binding but that expressed miR-9 has the capacity to reduce inhibitory HDAC4, stabilizing its own expression in a positive feedback mechanism.

  3. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli.

    PubMed

    Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2016-04-26

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation.

  4. KDM4B and KDM4A promote endometrial cancer progression by regulating androgen receptor, c-myc, and p27kip1

    PubMed Central

    Kwan, Suet-Ying; Chen, Limo; Chen, Jin-Hong; Ying, Zuo-Lin; Zhou, Ye; Gu, Wei; Wang, Li-Hua; Cheng, Wei-Wei; Zeng, Jianfang; Wan, Xiao-Ping; Mok, Samuel C.; Wong, Kwong-Kwok; Bao, Wei

    2015-01-01

    Epidemiological evidence suggests that elevated androgen levels and genetic variation related to the androgen receptor (AR) increase the risk of endometrial cancer (EC). However, the role of AR in EC is poorly understood. We report that two members of the histone demethylase KDM4 family act as major regulators of AR transcriptional activityin EC. In the MFE-296 cell line, KDM4B and AR upregulate c-myc expression, while in AN3CA cells KDM4A and AR downregulate p27kip1. Additionally, KDM4B expression is positively correlated with AR expression in EC cell lines with high baseline AR expression, while KDM4A and AR expression are positively correlated in low-AR cell lines. In clinical specimens, both KDM4B and KDM4A expression are significantly higher in EC tissues than that in normal endometrium. Finally, patients with alterations in AR, KDM4B, KDM4A, and c-myc have poor overall and disease-free survival rates. Together, these findings demonstrate that KDM4B and KDM4A promote EC progression by regulating AR activity. PMID:26397136

  5. Negative regulators of brown adipose tissue (BAT)-mediated thermogenesis.

    PubMed

    Sharma, Bal Krishan; Patil, Mallikarjun; Satyanarayana, Ande

    2014-12-01

    Brown adipose tissue (BAT) is specialized for energy expenditure, a process called adaptive thermogenesis. PET-CT scans recently demonstrated the existence of metabolically active BAT in adult humans, which revitalized our interest in BAT. Increasing the amount and/or activity of BAT holds tremendous promise for the treatment of obesity and its associated diseases. PGC1α is the master regulator of UCP1-mediated thermogenesis in BAT. A number of proteins have been identified to influence thermogenesis either positively or negatively through regulating the expression or transcriptional activity of PGC1α. Therefore, BAT activation can be achieved by either inducing the expression of positive regulators of PGC1α or by inhibiting the repressors of the PGC1α/UCP1 pathway. Here, we review the most important negative regulators of PGC1α/UCP1 signaling and their mechanism of action in BAT-mediated thermogenesis. © 2014 Wiley Periodicals, Inc.

  6. lin-4 and the NRDE pathway are required to activate a transgenic lin-4 reporter but not the endogenous lin-4 locus in C. elegans.

    PubMed

    Jiao, Alan L; Foster, Daniel J; Dixon, Julia; Slack, Frank J

    2018-01-01

    As the founding member of the microRNA (miRNA) gene family, insights into lin-4 regulation and function have laid a conceptual foundation for countless miRNA-related studies that followed. We previously showed that a transcriptional lin-4 reporter in C. elegans was positively regulated by a lin-4-complementary element (LCE), and by lin-4 itself. In this study, we sought to (1) identify additional factors required for lin-4 reporter expression, and (2) validate the endogenous relevance of a potential positive autoregulatory mechanism of lin-4 expression. We report that all four core nuclear RNAi factors (nrde-1, nrde-2, nrde-3 and nrde-4), positively regulate lin-4 reporter expression. In contrast, endogenous lin-4 levels were largely unaffected in nrde-2;nrde-3 mutants. Further, an endogenous LCE deletion generated by CRISPR-Cas9 revealed that the LCE was also not necessary for the activity of the endogenous lin-4 promoter. Finally, mutations in mature lin-4 did not reduce primary lin-4 transcript levels. Taken together, these data indicate that under growth conditions that reveal effects at the transgenic locus, a direct, positive autoregulatory mechanism of lin-4 expression does not occur in the context of the endogenous lin-4 locus.

  7. A Common Position-Dependent Mechanism Controls Cell-Type Patterning and GLABRA2 Regulation in the Root and Hypocotyl Epidermis of Arabidopsis1

    PubMed Central

    Hung, Chen-Yi; Lin, Yan; Zhang, Meng; Pollock, Susan; David Marks, M.; Schiefelbein, John

    1998-01-01

    A position-dependent pattern of epidermal cell types is produced during root development in Arabidopsis thaliana. This pattern is reflected in the expression pattern of GLABRA2 (GL2), a homeobox gene that regulates cell differentiation in the root epidermis. GL2 promoter::GUS fusions were used to show that the TTG gene, a regulator of root epidermis development, is necessary for maximal GL2 activity but is not required for the pattern of GL2 expression. Furthermore, GL2-promoter activity is influenced by expression of the myc-like maize R gene (35S::R) in Arabidopsis but is not affected by gl2 mutations. A position-dependent pattern of cell differentiation and GL2-promoter activity was also discovered in the hypocotyl epidermis that was analogous to the pattern in the root. Non-GL2-expressing cell files in the hypocotyl epidermis located outside anticlinal cortical cell walls exhibit reduced cell length and form stomata. Like the root, the hypocotyl GL2 activity was shown to be influenced by ttg and 35S::R but not by gl2. The parallel pattern of cell differentiation in the root and hypocotyl indicates that TTG and GL2 participate in a common position-dependent mechanism to control cell-type patterning throughout the apical-basal axis of the Arabidopsis seedling. PMID:9576776

  8. Noncoding somatic and inherited single-nucleotide variants converge to promote ESR1 expression in breast cancer

    PubMed Central

    Bailey, Swneke D.; Desai, Kinjal; Kron, Ken J.; Mazrooei, Parisa; Sinnott-Armstrong, Nicholas A.; Treloar, Aislinn E.; Dowar, Mark; Thu, Kelsie L.; Cescon, David W.; Silvester, Jennifer; Yang, S. Y. Cindy; Wu, Xue; Pezo, Rossanna C.; Haibe-Kains, Benjamin; Mak, Tak W.; Bedard, Philippe L.; Pugh, Trevor J.; Sallari, Richard C.; Lupien, Mathieu

    2016-01-01

    Sustained expression of the oestrogen receptor alpha (ESR1) drives two-thirds of breast cancer and defines the ESR1-positive subtype. ESR1 engages enhancers upon oestrogen stimulation to establish an oncogenic expression program1. Somatic copy number alterations involving the ESR1 gene occur in approximately 1% of ESR1-positive breast cancers2–5, implying that other mechanisms underlie the persistent expression of ESR1. We report the significant enrichment of somatic mutations within the set of regulatory elements (SRE) regulating ESR1 in 7% of ESR1-positive breast cancers. These mutations regulate ESR1 expression by modulating transcription factor binding to the DNA. The SRE includes a recurrently mutated enhancer whose activity is also affected by a functional inherited single nucleotide variant (SNV) rs9383590 that accounts for several breast cancer risk-loci. Our work highlights the importance of considering the combinatorial activity of regulatory elements as a single unit to delineate the impact of noncoding genetic alterations on single genes in cancer. PMID:27571262

  9. RNAi screen in Drosophila larvae identifies histone deacetylase 3 as a positive regulator of the hsp70 heat shock gene expression during heat shock.

    PubMed

    Achary, Bhavana G; Campbell, Katie M; Co, Ivy S; Gilmour, David S

    2014-05-01

    The transcription regulation of the Drosophila hsp70 gene is a complex process that involves the regulation of multiple steps, including the establishment of paused Pol II and release of Pol II into elongation upon heat shock activation. While the major players involved in the regulation of gene expression have been studied in detail, additional factors involved in this process continue to be discovered. To identify factors involved in hsp70 expression, we developed a screen that capitalizes on a visual assessment of heat shock activation using a hsp70-beta galactosidase reporter and publicly available RNAi fly lines to deplete candidate proteins. We validated the screen by showing that the depletion of HSF, CycT, Cdk9, Nurf 301, or ELL prevented the full induction of hsp70 by heat shock. Our screen also identified the histone deacetylase HDAC3 and its associated protein SMRTER as positive regulators of hsp70 activation. Additionally, we show that HDAC3 and SMRTER contribute to hsp70 gene expression at a step subsequent to HSF-mediated activation and release of the paused Pol II that resides at the promoter prior to heat shock induction. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Regulation of the grapevine polygalacturonase-inhibiting protein encoding gene: expression pattern, induction profile and promoter analysis.

    PubMed

    Joubert, D Albert; de Lorenzo, Giulia; Vivier, Melané A

    2013-03-01

    Regulation of defense in plants is a complex process mediated by various signaling pathways. Promoter analysis of defense-related genes is useful to understand these signaling pathways involved in regulation. To this end, the regulation of the polygalacturonase-inhibiting protein encoding gene from Vitis vinifera L. (Vvpgip1) was analyzed with regard to expression pattern and induction profile as well as the promoter in terms of putative regulatory elements present, core promoter size and the start of transcription. Expression of Vvpgip1 is tissue-specific and developmentally regulated. Vvpgip1 expression was induced in response to auxin, salicylic acid and sugar treatment, wounding and pathogen infection. The start of transcription was mapped to 17 bp upstream of the ATG and the core promoter was mapped to the 137 bp upstream of the ATG. Fructose- and Botrytis responsiveness were identified in the region between positions -3.1 and -1.5 kb. The analyses showed induction in water when the leaves were submersed and this response and the response to wounding mapped to the region between positions -1.1 and -0.1 kb. In silico analyses revealed putative cis-acting elements in these areas that correspond well to the induction stimuli tested.

  11. Alternative Sigma Factor Over-Expression Enables Heterologous Expression of a Type II Polyketide Biosynthetic Pathway in Escherichia coli

    PubMed Central

    Stevens, David Cole; Conway, Kyle R.; Pearce, Nelson; Villegas-Peñaranda, Luis Roberto; Garza, Anthony G.; Boddy, Christopher N.

    2013-01-01

    Background Heterologous expression of bacterial biosynthetic gene clusters is currently an indispensable tool for characterizing biosynthetic pathways. Development of an effective, general heterologous expression system that can be applied to bioprospecting from metagenomic DNA will enable the discovery of a wealth of new natural products. Methodology We have developed a new Escherichia coli-based heterologous expression system for polyketide biosynthetic gene clusters. We have demonstrated the over-expression of the alternative sigma factor σ54 directly and positively regulates heterologous expression of the oxytetracycline biosynthetic gene cluster in E. coli. Bioinformatics analysis indicates that σ54 promoters are present in nearly 70% of polyketide and non-ribosomal peptide biosynthetic pathways. Conclusions We have demonstrated a new mechanism for heterologous expression of the oxytetracycline polyketide biosynthetic pathway, where high-level pleiotropic sigma factors from the heterologous host directly and positively regulate transcription of the non-native biosynthetic gene cluster. Our bioinformatics analysis is consistent with the hypothesis that heterologous expression mediated by the alternative sigma factor σ54 may be a viable method for the production of additional polyketide products. PMID:23724102

  12. Increasing Sucrose Uptake Capacity of Wheat Grains Stimulates Storage Protein Synthesis1[W

    PubMed Central

    Weichert, Nicola; Saalbach, Isolde; Weichert, Heiko; Kohl, Stefan; Erban, Alexander; Kopka, Joachim; Hause, Bettina; Varshney, Alok; Sreenivasulu, Nese; Strickert, Marc; Kumlehn, Jochen; Weschke, Winfriede; Weber, Hans

    2010-01-01

    Increasing grain sink strength by improving assimilate uptake capacity could be a promising approach toward getting higher yield. The barley (Hordeum vulgare) sucrose transporter HvSUT1 (SUT) was expressed under control of the endosperm-specific Hordein B1 promoter (HO). Compared with the wild type, transgenic HOSUT grains take up more sucrose (Suc) in vitro, showing that the transgene is functional. Grain Suc levels are not altered, indicating that Suc fluxes are influenced rather than steady-state levels. HOSUT grains have increased percentages of total nitrogen and prolamins, which is reflected in increased levels of phenylalanine, tyrosine, tryptophan, isoleucine, and leucine at late grain development. Transcript profiling indicates specific stimulation of prolamin gene expression at the onset of storage phase. Changes in gene expression and metabolite levels related to carbon metabolism and amino acid biosynthesis suggest deregulated carbon-nitrogen balance, which together indicate carbon sufficiency and relative depletion of nitrogen. Genes, deregulated together with prolamin genes, might represent candidates, which respond positively to assimilate supply and are related to sugar-starch metabolism, cytokinin and brassinosteroid functions, cell proliferation, and sugar/abscisic acid signaling. Genes showing inverse expression patterns represent potential negative regulators. It is concluded that HvSUT1 overexpression increases grain protein content but also deregulates the metabolic status of wheat (Triticum aestivum) grains, accompanied by up-regulated gene expression of positive and negative regulators related to sugar signaling and assimilate supply. In HOSUT grains, alternating stimulation of positive and negative regulators causes oscillatory patterns of gene expression and highlights the capacity and great flexibility to adjust wheat grain storage metabolism in response to metabolic alterations. PMID:20018590

  13. Thyroid hormone negatively regulates CDX2 and SOAT2 mRNA expression via induction of miRNA-181d in hepatic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yap, Chui Sun; Sinha, Rohit Anthony; Ota, Sho

    2013-11-01

    Highlights: •Thyroid hormone induces miR-181d expression in human hepatic cells and mouse livers. •Thyroid hormone downregulates CDX2 and SOAT2 (or ACAT2) via miR-181d. •miR-181d reduces cholesterol output from human hepatic cells. -- Abstract: Thyroid hormones (THs) regulate transcription of many metabolic genes in the liver through its nuclear receptors (TRs). Although the molecular mechanisms for positive regulation of hepatic genes by TH are well understood, much less is known about TH-mediated negative regulation. Recently, several nuclear hormone receptors were shown to downregulate gene expression via miRNAs. To further examine the potential role of miRNAs in TH-mediated negative regulation, we usedmore » a miRNA microarray to identify miRNAs that were directly regulated by TH in a human hepatic cell line. In our screen, we discovered that miRNA-181d is a novel hepatic miRNA that was regulated by TH in hepatic cell culture and in vivo. Furthermore, we identified and characterized two novel TH-regulated target genes that were downstream of miR-181d signaling: caudal type homeobox 2 (CDX2) and sterol O-acyltransferase 2 (SOAT2 or ACAT2). CDX2, a known positive regulator of hepatocyte differentiation, was regulated by miR-181d and directly activated SOAT2 gene expression. Since SOAT2 is an enzyme that generates cholesteryl esters that are packaged into lipoproteins, our results suggest miR-181d plays a significant role in the negative regulation of key metabolic genes by TH in the liver.« less

  14. Negative Regulation of NF-κB by the ING4 Tumor Suppressor in Breast Cancer

    PubMed Central

    Byron, Sara A.; Min, Elizabeth; Thal, Tanya S.; Hostetter, Galen; Watanabe, Aprill T.; Azorsa, David O.; Little, Tanya H.; Tapia, Coya; Kim, Suwon

    2012-01-01

    Nuclear Factor kappa B (NF-κB) is a key mediator of normal immune response but contributes to aggressive cancer cell phenotypes when aberrantly activated. Here we present evidence that the Inhibitor of Growth 4 (ING4) tumor suppressor negatively regulates NF-κB in breast cancer. We surveyed primary breast tumor samples for ING4 protein expression using tissue microarrays and a newly generated antibody. We found that 34% of tumors expressed undetectable to low levels of the ING4 protein (n = 227). Tumors with low ING4 expression were frequently large in size, high grade, and lymph node positive, suggesting that down-regulation of ING4 may contribute to breast cancer progression. In the same tumor set, we found that low ING4 expression correlated with high levels of nuclear phosphorylated p65/RelA (p-p65), an activated form of NF-κB (p = 0.018). Fifty seven percent of ING4-low/p-p65-high tumors were lymph node-positive, indicating a high metastatic tendency of these tumors. Conversely, ectopic expression of ING4 inhibited p65/RelA phosphorylation in T47D and MCF7 breast cancer cells. In addition, ING4 suppressed PMA-induced cell invasion and NF-κB-target gene expression in T47D cells, indicating that ING4 inhibited NF-κB activity in breast cancer cells. Supportive of the ING4 function in the regulation of NF-κB-target gene expression, we found that ING4 expression levels inversely correlated with the expression of NF-κB-target genes in primary breast tumors by analyzing public gene expression datasets. Moreover, low ING4 expression or high expression of the gene signature composed of a subset of ING4-repressed NF-κB-target genes was associated with reduced disease-free survival in breast cancer patients. Taken together, we conclude that ING4 negatively regulates NF-κB in breast cancer. Consequently, down-regulation of ING4 leads to activation of NF-κB, contributing to tumor progression and reduced disease-free patient survival in breast cancer. PMID:23056468

  15. Weighted gene co-expression network analysis of expression data of monozygotic twins identifies specific modules and hub genes related to BMI.

    PubMed

    Wang, Weijing; Jiang, Wenjie; Hou, Lin; Duan, Haiping; Wu, Yili; Xu, Chunsheng; Tan, Qihua; Li, Shuxia; Zhang, Dongfeng

    2017-11-13

    The therapeutic management of obesity is challenging, hence further elucidating the underlying mechanisms of obesity development and identifying new diagnostic biomarkers and therapeutic targets are urgent and necessary. Here, we performed differential gene expression analysis and weighted gene co-expression network analysis (WGCNA) to identify significant genes and specific modules related to BMI based on gene expression profile data of 7 discordant monozygotic twins. In the differential gene expression analysis, it appeared that 32 differentially expressed genes (DEGs) were with a trend of up-regulation in twins with higher BMI when compared to their siblings. Categories of positive regulation of nitric-oxide synthase biosynthetic process, positive regulation of NF-kappa B import into nucleus, and peroxidase activity were significantly enriched within GO database and NF-kappa B signaling pathway within KEGG database. DEGs of NAMPT, TLR9, PTGS2, HBD, and PCSK1N might be associated with obesity. In the WGCNA, among the total 20 distinct co-expression modules identified, coral1 module (68 genes) had the strongest positive correlation with BMI (r = 0.56, P = 0.04) and disease status (r = 0.56, P = 0.04). Categories of positive regulation of phospholipase activity, high-density lipoprotein particle clearance, chylomicron remnant clearance, reverse cholesterol transport, intermediate-density lipoprotein particle, chylomicron, low-density lipoprotein particle, very-low-density lipoprotein particle, voltage-gated potassium channel complex, cholesterol transporter activity, and neuropeptide hormone activity were significantly enriched within GO database for this module. And alcoholism and cell adhesion molecules pathways were significantly enriched within KEGG database. Several hub genes, such as GAL, ASB9, NPPB, TBX2, IL17C, APOE, ABCG4, and APOC2 were also identified. The module eigengene of saddlebrown module (212 genes) was also significantly correlated with BMI (r = 0.56, P = 0.04), and hub genes of KCNN1 and AQP10 were differentially expressed. We identified significant genes and specific modules potentially related to BMI based on the gene expression profile data of monozygotic twins. The findings may help further elucidate the underlying mechanisms of obesity development and provide novel insights to research potential gene biomarkers and signaling pathways for obesity treatment. Further analysis and validation of the findings reported here are important and necessary when more sample size is acquired.

  16. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance.

    PubMed

    Doherty, Colleen J; Van Buskirk, Heather A; Myers, Susan J; Thomashow, Michael F

    2009-03-01

    The Arabidopsis thaliana CBF cold response pathway plays a central role in cold acclimation. It is characterized by rapid cold induction of genes encoding the CBF1-3 transcription factors, followed by expression of the CBF gene regulon, which imparts freezing tolerance. Our goal was to further the understanding of the cis-acting elements and trans-acting factors involved in expression of CBF2. We identified seven conserved DNA motifs (CM), CM1 to 7, that are present in the promoters of CBF2 and another rapidly cold-induced gene encoding a transcription factor, ZAT12. The results presented indicate that in the CBF2 promoter, CM4 and CM6 have negative regulatory activity and that CM2 has both negative and positive activity. A Myc binding site in the CBF2 promoter was also found to have positive regulatory effects. Moreover, our results indicate that members of the calmodulin binding transcription activator (CAMTA) family of transcription factors bind to the CM2 motif, that CAMTA3 is a positive regulator of CBF2 expression, and that double camta1 camta3 mutant plants are impaired in freezing tolerance. These results establish a role for CAMTA proteins in cold acclimation and provide a possible point of integrating low-temperature calcium and calmodulin signaling with cold-regulated gene expression.

  17. Chromosome position effects on gene expression in Escherichia coli K-12

    PubMed Central

    Bryant, Jack A.; Sellars, Laura E.; Busby, Stephen J. W.; Lee, David J.

    2014-01-01

    In eukaryotes, the location of a gene on the chromosome is known to affect its expression, but such position effects are poorly understood in bacteria. Here, using Escherichia coli K-12, we demonstrate that expression of a reporter gene cassette, comprised of the model E. coli lac promoter driving expression of gfp, varies by ∼300-fold depending on its precise position on the chromosome. At some positions, expression was more than 3-fold higher than at the natural lac promoter locus, whereas at several other locations, the reporter cassette was completely silenced: effectively overriding local lac promoter control. These effects were not due to differences in gene copy number, caused by partially replicated genomes. Rather, the differences in gene expression occur predominantly at the level of transcription and are mediated by several different features that are involved in chromosome organization. Taken together, our findings identify a tier of gene regulation above local promoter control and highlight the importance of chromosome position effects on gene expression profiles in bacteria. PMID:25209233

  18. HAT1 induces lung cancer cell apoptosis via up regulating Fas.

    PubMed

    Han, Na; Shi, Lei; Guo, Qiuyun; Sun, Wei; Yu, Yang; Yang, Li; Zhang, Xiaoxi; Zhang, Mengxian

    2017-10-27

    The dysfunction of apoptosis is one of the factors contributing to lung cancer (LC) growth. Histone acetyltransferase HAT1 can up regulate cell apoptosis. This study aims to investigate the mechanism by which HAT1 induces LC cell (LCC) apoptosis via up regulating the expression of Fas. In this study, the surgically removed human LC tissues were collected. LCCs were isolated from the LC tissues and analyzed for the expression of HAT1 and Fas by RT-qPCR and Western blotting. We observed that the expression of Fas was negatively correlated with PAR2 in LCCs. Activation of PAR2 suppressed the expression of Fas in normal lung epithelial cells. The expression of HAT1 was lower and positively correlated with Fas expression and negatively correlated with PAR2 expression in LCCs. Activation of PAR2 suppressed Fas expression in lung epithelial cells via inhibiting HAT1. Restoration of HAT1 expression restored Fas expression in LCCs and induced LCC apoptosis. In conclusion, less expression of HAT1 in LCCs was associated with the pathogenesis of LC. Up regulation of HAT1 expression in LCCs can induce LCCs apoptosis, which may be a potential novel therapy for the treatment of LC.

  19. GPER mediated estradiol reduces miR-148a to promote HLA-G expression in breast cancer.

    PubMed

    Tao, Sifeng; He, Haifei; Chen, Qiang; Yue, Wenjie

    2014-08-15

    Breast cancer is the most common malignant diseases in women. miR-148a plays an important role in regulation of cancer cell proliferation and cancer invasion and down-regulation of miR-148a has been reported in both estrogen receptor (ER) positive and triple-negative (TN) breast cancer. However, the regulation mechanism of miR-148a is unclear. The role of estrogen signaling, a signaling pathway is important in development and progression of breast cancer. Therefore, we speculated that E2 may regulate miR-148a through G-protein-coupled estrogen receptor-1 (GPER). To test our hypothesis, we checked the effects of E2 on miR-148a expression in ER positive breast cancer cell MCF-7 and TN cancer cell MDA-MB-231. Then we used GPER inhibitor G15 to investigate whether GPER is involved in regulation of E2 on miR-148a. Furthermore, we analyzed whether E2 affects the expression of HLA-G, which is a miR-148a target gene through GPER. The results showed that E2 induces the level of miR-148a in MCF-7 and MDA-MB-231 cells, GPER mediates the E2-induced increase in miR-148a expression in MCF-7 and MDA-MB-231 cells and E2-GPER regulates the expression of HLA-G by miR-148a. In conclusion, our findings offer important new insights into the ability of estrogenic GPER signaling to trigger HLA-G expression through inhibiting miR-148a that supports immune evasion in breast cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Regulation of voltage-gated sodium channel expression in cancer: hormones, growth factors and auto-regulation

    PubMed Central

    Fraser, Scott P.; Ozerlat-Gunduz, Iley; Brackenbury, William J.; Fitzgerald, Elizabeth M.; Campbell, Thomas M.; Coombes, R. Charles; Djamgoz, Mustafa B. A.

    2014-01-01

    Although ion channels are increasingly being discovered in cancer cells in vitro and in vivo, and shown to contribute to different aspects and stages of the cancer process, much less is known about the mechanisms controlling their expression. Here, we focus on voltage-gated Na+ channels (VGSCs) which are upregulated in many types of carcinomas where their activity potentiates cell behaviours integral to the metastatic cascade. Regulation of VGSCs occurs at a hierarchy of levels from transcription to post-translation. Importantly, mainstream cancer mechanisms, especially hormones and growth factors, play a significant role in the regulation. On the whole, in major hormone-sensitive cancers, such as breast and prostate cancer, there is a negative association between genomic steroid hormone sensitivity and functional VGSC expression. Activity-dependent regulation by positive feedback has been demonstrated in strongly metastatic cells whereby the VGSC is self-sustaining, with its activity promoting further functional channel expression. Such auto-regulation is unlike normal cells in which activity-dependent regulation occurs mostly via negative feedback. Throughout, we highlight the possible clinical implications of functional VGSC expression and regulation in cancer. PMID:24493753

  1. CD147 and matrix-metalloproteinase-2 expression in metastatic and non-metastatic uveal melanomas.

    PubMed

    Lüke, Julia; Vukoja, Vlatka; Brandenbusch, Tim; Nassar, Khaled; Rohrbach, Jens Martin; Grisanti, Salvatore; Lüke, Matthias; Tura, Aysegül

    2016-06-03

    Extracellular matrix remodelling regulated by matrix-metalloproteinase (MMP) inducer (CD147) is a crucial process during tumor cell invasion and regulation of blood supply. In this study, we evaluated the correlation of CD147 and MMP-2 expression with major prognostic factors for uveal melanoma and the development of metastasis. The expression of CD147 and MMP-2 was analyzed in 49 samples of uveal melanomas. Triple immunofluorescence stainings using markers against glial cells (GFAP), endothelial cells (CD34) and macrophages (CD68) were performed to further analyse the exact localisation of CD147 and MMP-2 positivity. In 28 cases clinical metastatic disease were found. The remaining 21 cases showed no signs of metastatic disease for an average follow-up of 10 years. Correlation analysis (Pearson correlation) was performed to analyse the association of CD147 and MMP-2 expression with known prognostic factors, vasculogenic mimicry (VM), the mature vasculature (von Willebrand Factor) and tumor induced angiogenesis (by means of Endoglin expression). CD147 and MMP-2 were expressed in 47 (96.0 %) of the uveal melanomas. CD147 up-regulation was significantly correlated with a higher MMP-2 expression. The overall expression analysis revealed no significant difference in the metastatic (p = 0.777) and non-metastatic subgroup (p = 0.585). No correlation of CD147 expression and any system of blood supply was evident. In the non-metastatic sub-group a significant correlation of clustered CD147 positive cells with largest basal diameter (p = 0.039), height (p = 0.047) and TNM-stage (p = 0.013) was evident. These data may indicate that CD147 regulates MMP-2 expression in uveal melanoma cells.

  2. Transcription regulation of the Saccharomyces cerevisiae PIS1 gene by inositol and the pleiotropic regulator, Ume6p.

    PubMed

    Jani, Niketa M; Lopes, John M

    2008-12-01

    In Saccharomyces cerevisiae, transcription of most of the phospholipid biosynthetic genes (e.g. INO1, CHO1, CHO2 and OPI3) is repressed by growth in the presence of inositol and choline and derepressed in their absence. This regulation requires the Ino2p and Ino4p activators and the Opi1p repressor. The PIS1 structural gene is required for the synthesis of the essential lipid phosphatidylinositol. Previous reports show that PIS1 expression is uncoupled from inositol/choline regulation, but is regulated by carbon source, hypoxia and zinc. However, in this study we found that the expression of PIS1 is induced twofold by inositol. This regulation did not require Ino2p and Ino4p, although Ino4p was required for full expression. Ino4p is a basic helix-loop-helix protein that requires a binding partner. Curiously, none of the other basic helix-loop-helix proteins affected PIS1 expression. Inositol induction did require another general regulator of phospholipid biosynthesis, Ume6p. Ume6p was found to be a positive regulator of PIS1 gene expression. Ume6p, and several associated factors, were required for inositol-mediated induction and chromatin immunoprecipitation analysis showed that Ume6p directly regulates PIS1 expression. Thus, we demonstrate novel regulation of the PIS1 gene by Ume6p.

  3. Protein expression patterns of cell cycle regulators in operable breast cancer.

    PubMed

    Zagouri, Flora; Kotoula, Vassiliki; Kouvatseas, George; Sotiropoulou, Maria; Koletsa, Triantafyllia; Gavressea, Theofani; Valavanis, Christos; Trihia, Helen; Bobos, Mattheos; Lazaridis, Georgios; Koutras, Angelos; Pentheroudakis, George; Skarlos, Pantelis; Bafaloukos, Dimitrios; Arnogiannaki, Niki; Chrisafi, Sofia; Christodoulou, Christos; Papakostas, Pavlos; Aravantinos, Gerasimos; Kosmidis, Paris; Karanikiotis, Charisios; Zografos, George; Papadimitriou, Christos; Fountzilas, George

    2017-01-01

    To evaluate the prognostic role of elaborate molecular clusters encompassing cyclin D1, cyclin E1, p21, p27 and p53 in the context of various breast cancer subtypes. Cyclin E1, cyclin D1, p53, p21 and p27 were evaluated with immunohistochemistry in 1077 formalin-fixed paraffin-embedded tissues from breast cancer patients who had been treated within clinical trials. Jaccard distances were computed for the markers and the resulted matrix was used for conducting unsupervised hierarchical clustering, in order to identify distinct groups correlating with prognosis. Luminal B and triple-negative (TNBC) tumors presented with the highest and lowest levels of cyclin D1 expression, respectively. By contrast, TNBC frequently expressed Cyclin E1, whereas ER-positive tumors did not. Absence of Cyclin D1 predicted for worse OS, while absence of Cyclin E1 for poorer DFS. The expression patterns of all examined proteins yielded 3 distinct clusters; (1) Cyclin D1 and/or E1 positive with moderate p21 expression; (2) Cyclin D1 and/or E1, and p27 positive, p53 protein negative; and, (3) Cyclin D1 or E1 positive, p53 positive, p21 and p27 negative or moderately positive. The 5-year DFS rates for clusters 1, 2 and 3 were 70.0%, 79.1%, 67.4% and OS 88.4%, 90.4%, 78.9%, respectively. It seems that the expression of cell cycle regulators in the absence of p53 protein is associated with favorable prognosis in operable breast cancer.

  4. GamR, the LysR-Type Galactose Metabolism Regulator, Regulates hrp Gene Expression via Transcriptional Activation of Two Key hrp Regulators, HrpG and HrpX, in Xanthomonas oryzae pv. oryzae.

    PubMed

    Rashid, M Mamunur; Ikawa, Yumi; Tsuge, Seiji

    2016-07-01

    Xanthomonas oryzae pv. oryzae is the causal agent of bacterial leaf blight of rice. For the virulence of the bacterium, the hrp genes, encoding components of the type III secretion system, are indispensable. The expression of hrp genes is regulated by two key hrp regulators, HrpG and HrpX: HrpG regulates hrpX, and HrpX regulates other hrp genes. Several other regulators have been shown to be involved in the regulation of hrp genes. Here, we found that a LysR-type transcriptional regulator that we named GamR, encoded by XOO_2767 of X. oryzae pv. oryzae strain MAFF311018, positively regulated the transcription of both hrpG and hrpX, which are adjacent to each other but have opposite orientations, with an intergenic upstream region in common. In a gel electrophoresis mobility shift assay, GamR bound directly to the middle of the upstream region common to hrpG and hrpX The loss of either GamR or its binding sites decreased hrpG and hrpX expression. Also, GamR bound to the upstream region of either a galactose metabolism-related gene (XOO_2768) or a galactose metabolism-related operon (XOO_2768 to XOO_2771) located next to gamR itself and positively regulated the genes. The deletion of the regulator gene resulted in less bacterial growth in a synthetic medium with galactose as a sole sugar source. Interestingly, induction of the galactose metabolism-related gene was dependent on galactose, while that of the hrp regulator genes was galactose independent. Our results indicate that the LysR-type transcriptional regulator that regulates the galactose metabolism-related gene(s) also acts in positive regulation of two key hrp regulators and the following hrp genes in X. oryzae pv. oryzae. The expression of hrp genes encoding components of the type III secretion system is essential for the virulence of many plant-pathogenic bacteria, including Xanthomonas oryzae pv. oryzae. It is specifically induced during infection. Research has revealed that in this bacterium, hrp gene expression is controlled by two key hrp regulators, HrpG and HrpX, along with several other regulators in the complex regulatory network, but the details remain unclear. Here, we found that a novel LysR-type transcriptional activator, named GamR, functions as an hrp regulator by directly activating the transcription of both hrpG and hrpX Interestingly, GamR also regulates a galactose metabolism-related gene (or operon) in a galactose-dependent manner, while the regulation of hrpG and hrpX is independent of the sugar. Our finding of a novel hrp regulator that directly and simultaneously regulates two key hrp regulators provides new insights into an important and complex regulation system of X. oryzae pv. oryzae hrp genes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. The phosphotransferase VanU represses expression of four qrr genes antagonizing VanO-mediated quorum-sensing regulation in Vibrio anguillarum

    PubMed Central

    Weber, Barbara; Lindell, Kristoffer; El Qaidi, Samir; Hjerde, Erik; Willassen, Nils-Peder

    2011-01-01

    Vibrio anguillarum utilizes quorum sensing to regulate stress responses required for survival in the aquatic environment. Like other Vibrio species, V. anguillarum contains the gene qrr1, which encodes the ancestral quorum regulatory RNA Qrr1, and phosphorelay quorum-sensing systems that modulate the expression of small regulatory RNAs (sRNAs) that destabilize mRNA encoding the transcriptional regulator VanT. In this study, three additional Qrr sRNAs were identified. All four sRNAs were positively regulated by σ54 and the σ54-dependent response regulator VanO, and showed a redundant activity. The Qrr sRNAs, together with the RNA chaperone Hfq, destabilized vanT mRNA and modulated expression of VanT-regulated genes. Unexpectedly, expression of all four qrr genes peaked at high cell density, and exogenously added N-acylhomoserine lactone molecules induced expression of the qrr genes at low cell density. The phosphotransferase VanU, which phosphorylates and activates VanO, repressed expression of the Qrr sRNAs and stabilized vanT mRNA. A model is presented proposing that VanU acts as a branch point, aiding cross-regulation between two independent phosphorelay systems that activate or repress expression of the Qrr sRNAs, giving flexibility and precision in modulating VanT expression and inducing a quorum-sensing response to stresses found in a constantly changing aquatic environment. PMID:21948044

  6. The phosphotransferase VanU represses expression of four qrr genes antagonizing VanO-mediated quorum-sensing regulation in Vibrio anguillarum.

    PubMed

    Weber, Barbara; Lindell, Kristoffer; El Qaidi, Samir; Hjerde, Erik; Willassen, Nils-Peder; Milton, Debra L

    2011-12-01

    Vibrio anguillarum utilizes quorum sensing to regulate stress responses required for survival in the aquatic environment. Like other Vibrio species, V. anguillarum contains the gene qrr1, which encodes the ancestral quorum regulatory RNA Qrr1, and phosphorelay quorum-sensing systems that modulate the expression of small regulatory RNAs (sRNAs) that destabilize mRNA encoding the transcriptional regulator VanT. In this study, three additional Qrr sRNAs were identified. All four sRNAs were positively regulated by σ(54) and the σ(54)-dependent response regulator VanO, and showed a redundant activity. The Qrr sRNAs, together with the RNA chaperone Hfq, destabilized vanT mRNA and modulated expression of VanT-regulated genes. Unexpectedly, expression of all four qrr genes peaked at high cell density, and exogenously added N-acylhomoserine lactone molecules induced expression of the qrr genes at low cell density. The phosphotransferase VanU, which phosphorylates and activates VanO, repressed expression of the Qrr sRNAs and stabilized vanT mRNA. A model is presented proposing that VanU acts as a branch point, aiding cross-regulation between two independent phosphorelay systems that activate or repress expression of the Qrr sRNAs, giving flexibility and precision in modulating VanT expression and inducing a quorum-sensing response to stresses found in a constantly changing aquatic environment.

  7. A Positive Feedback Mechanism That Regulates Expression of miR-9 during Neurogenesis

    PubMed Central

    Oni, Eileen N.; Swerdel, Mavis R.; Toro-Ramos, Alana J.; Li, Jiali; Hart, Ronald P.

    2014-01-01

    MiR-9, a neuron-specific miRNA, is an important regulator of neurogenesis. In this study we identify how miR-9 is regulated during early differentiation from a neural stem-like cell. We utilized two immortalized rat precursor clones, one committed to neurogenesis (L2.2) and another capable of producing both neurons and non-neuronal cells (L2.3), to reproducibly study early neurogenesis. Exogenous miR-9 is capable of increasing neurogenesis from L2.3 cells. Only one of three genomic loci capable of encoding miR-9 was regulated during neurogenesis and the promoter region of this locus contains sufficient functional elements to drive expression of a luciferase reporter in a developmentally regulated pattern. Furthermore, among a large number of potential regulatory sites encoded in this sequence, Mef2 stood out because of its known pro-neuronal role. Of four Mef2 paralogs, we found only Mef2C mRNA was regulated during neurogenesis. Removal of predicted Mef2 binding sites or knockdown of Mef2C expression reduced miR-9-2 promoter activity. Finally, the mRNA encoding the Mef2C binding partner HDAC4 was shown to be targeted by miR-9. Since HDAC4 protein could be co-immunoprecipitated with Mef2C protein or with genomic Mef2 binding sequences, we conclude that miR-9 regulation is mediated, at least in part, by Mef2C binding but that expressed miR-9 has the capacity to reduce inhibitory HDAC4, stabilizing its own expression in a positive feedback mechanism. PMID:24714615

  8. Identification of the Regulon of AphB and Its Essential Roles in LuxR and Exotoxin Asp Expression in the Pathogen Vibrio alginolyticus.

    PubMed

    Gao, Xiating; Liu, Yang; Liu, Huan; Yang, Zhen; Liu, Qin; Zhang, Yuanxing; Wang, Qiyao

    2017-10-15

    In Vibrio species, AphB is essential to activate virulence cascades by sensing low-pH and anaerobiosis signals; however, its regulon remains largely unknown. Here, AphB is found to be a key virulence regulator in Vibrio alginolyticus , a pathogen for marine animals and humans. Chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-seq) enabled the detection of 20 loci in the V. alginolyticus genome that contained AphB-binding peaks. An AphB-specific binding consensus was confirmed by electrophoretic mobility shift assays (EMSAs), and the regulation of genes flanking such binding sites was demonstrated using quantitative real-time PCR analysis. AphB binds directly to its own promoter and positively controls its own expression in later growth stages. AphB also activates the expression of the exotoxin Asp by binding directly to the promoter regions of asp and the master quorum-sensing (QS) regulator luxR DNase I footprinting analysis uncovered distinct AphB-binding sites (BBS) in these promoters. Furthermore, a BBS in the luxR promoter region overlaps that of LuxR-binding site I, which mediates the positive control of luxR promoter activity by AphB. This study provides new insights into the AphB regulon and reveals the mechanisms underlying AphB regulation of physiological adaptation and QS-controlled virulence in V. alginolyticus IMPORTANCE In this work, AphB is determined to play essential roles in the expression of genes associated with QS, physiology, and virulence in V. alginolyticus , a pathogen for marine animals and humans. AphB was found to bind directly to 20 genes and control their expression by a 17-bp consensus binding sequence. Among the 20 genes, the aphB gene itself was identified to be positively autoregulated, and AphB also positively controlled asp and luxR expression. Taken together, these findings improve our understanding of the roles of AphB in controlling physiological adaptation and QS-controlled virulence gene expression. Copyright © 2017 American Society for Microbiology.

  9. Differentially expressed proteins among normal cervix, cervical intraepithelial neoplasia and cervical squamous cell carcinoma.

    PubMed

    Zhao, Q; He, Y; Wang, X-L; Zhang, Y-X; Wu, Y-M

    2015-08-01

    To explore the differentially expressed proteins in normal cervix, cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma (CSCC) tissues by differential proteomics technique. Cervical tissues (including normal cervix, CIN and CSCC) were collected in Department of Gynecologic Oncology of Beijing Obstetrics and Gynecology Hospital. Two-dimensional fluorescence difference in gel electrophoresis (2-D DIGE) and DeCyder software were used to detect the differentially expressed proteins. Matrix-assisted laser desorption/ionization-time-of-flight tandem mass spectrometry (MALDI-TOF/TOF MS) was used to identify the differentially expressed proteins. Western blot (WB) and immunohistochemistry (IHC) were performed to validate the expressions of selected proteins among normal cervix, CIN and CSCC. 2-D DIGE images with high resolution and good repeatability were obtained. Forty-six differentially expressed proteins (27 up-regulated and 19 down-regulated) were differentially expressed among the normal cervix, CIN and CSCC. 26 proteins were successfully identified by MALDI-TOF/TOF MS. S100A9 (S100 calcium-binding protein A9) was the most significantly up-regulated protein. Eukaryotic elongation factor 1-alpha-1 (eEF1A1) was the most significantly down-regulated protein. Pyruvate kinase isozymes M2 (PKM2) was both up-regulated and down-regulated. The results of WB showed that with the increase in the severity of cervical lesions, the expression of S100A9 protein was significantly increased among the three groups (P = 0.010). The expression of eEF1A1 was reduced but without significant difference (P = 0.861). The expression of PKM2 was significantly reduced (P = 0.000). IHC showed that protein S100A9 was mainly expressed in the cytoplasm, and its positive expression rate was 20.0 % in normal cervix, 70.0 % in CIN and 100.0 % in CSCC, with a significant difference among them (P = 0.006). eEF1A1 was mainly expressed in the cell plasma, and its positive expression rate was 70.0 % in normal cervix, 73.3 % in CIN and 60.0 % in CSCC tissues, without significant difference among them (P = 0.758). PKM2 was mainly expressed in the cell nuclei, and its positive expression rate was 100.0 % in normal cervix, 93.3 % in CIN and 75.0 % in CSCC tissues, showing a difference close to statistical significance (P = 0.059) among them. There are differentially expressed proteins among normal cervix, CIN and CSCC. S100A9, eEF1A1 and PKM2 may become candidate markers for early diagnosis of cervical cancer and new targets for therapy. It also provides a basis for further studies of the mechanism for CIN developing to CSCC.

  10. Zinc finger protein 598 inhibits cell survival by promoting UV-induced apoptosis.

    PubMed

    Yang, Qiaohong; Gupta, Romi

    2018-01-19

    UV is one of the major causes of DNA damage induced apoptosis. However, cancer cells adopt alternative mechanisms to evade UV-induced apoptosis. To identify factors that protect cancer cells from UV-induced apoptosis, we performed a genome wide short-hairpin RNA (shRNA) screen, which identified Zinc finger protein 598 (ZNF598) as a key regulator of UV-induced apoptosis. Here, we show that UV irradiation transcriptionally upregulates ZNF598 expression. Additionally, ZNF598 knockdown in cancer cells inhibited UV-induced apoptosis. In our study, we observe that ELK1 mRNA level as well as phosphorylated ELK1 levels was up regulated upon UV irradiation, which was necessary for UV irradiation induced upregulation of ZNF598. Cells expressing ELK1 shRNA were also resistant to UV-induced apoptosis, and phenocopy ZNF598 knockdown. Upon further investigation, we found that ZNF598 knockdown inhibits UV-induced apoptotic gene expression, which matches with decrease in percentage of annexin V positive cell. Similarly, ectopic expression of ZNF598 promoted apoptotic gene expression and also increased annexin V positive cells. Collectively, these results demonstrate that ZNF598 is a UV irradiation regulated gene and its loss results in resistance to UV-induced apoptosis.

  11. Pepper CabZIP63 acts as a positive regulator during Ralstonia solanacearum or high temperature-high humidity challenge in a positive feedback loop with CaWRKY40.

    PubMed

    Shen, Lei; Liu, Zhiqin; Yang, Sheng; Yang, Tong; Liang, Jiaqi; Wen, Jiayu; Liu, Yanyan; Li, Jiazhi; Shi, Lanping; Tang, Qian; Shi, Wei; Hu, Jiong; Liu, Cailing; Zhang, Yangwen; Lin, Wei; Wang, Rongzhang; Yu, Huanxin; Mou, Shaoliang; Hussain, Ansar; Cheng, Wei; Cai, Hanyang; He, Li; Guan, Deyi; Wu, Yang; He, Shuilin

    2016-04-01

    CaWRKY40 is known to act as a positive regulator in the response of pepper (Capsicum annuum) to Ralstonia solanacearum inoculation (RSI) or high temperature-high humidity (HTHH), but the underlying mechanism remains elusive. Herein, we report that CabZIP63, a pepper bZIP family member, participates in this process by regulating the expression of CaWRKY40. CabZIP63 was found to localize in the nuclei, be up-regulated by RSI or HTHH, bind to promoters of both CabZIP63(pCabZIP63) and CaWRKY40(pCaWRKY40), and activate pCabZIP63- and pCaWRKY40-driven β-glucuronidase expression in a C- or G-box-dependent manner. Silencing of CabZIP63 by virus-induced gene silencing (VIGS) in pepper plants significantly attenuated their resistance to RSI and tolerance to HTHH, accompanied by down-regulation of immunity- or thermotolerance-associated CaPR1, CaNPR1, CaDEF1, and CaHSP24. Hypersensitive response-mediated cell death and expression of the tested immunity- and thermotolerance-associated marker genes were induced by transient overexpression (TOE) of CabZIP63, but decreased by that of CabZIP63-SRDX. Additionally, binding of CabZIP63 to pCaWRKY40 was up-regulated by RSI or HTHH, and the transcript level of CaWRKY40 and binding of CaWRKY40 to the promoters of CaPR1, CaNPR1, CaDEF1 and CaHSP24 were up-regulated by TOE of CabZIP63. On the other hand, CabZIP63 was also up-regulated transcriptionally by TOE of CaWRKY40. The data suggest collectively that CabZIP63 directly or indirectly regulates the expression of CaWRKY40 at both the transcriptional and post-transcriptional level, forming a positive feedback loop with CaWRKY40 during pepper's response to RSI or HTHH. Altogether, our data will help to elucidate the underlying mechanism of crosstalk between pepper's response to RSI and HTHH. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Dynamic changes in parent affect and adolescent cardiac vagal regulation: a real-time analysis.

    PubMed

    Cui, Lixian; Morris, Amanda Sheffield; Harrist, Amanda W; Larzelere, Robert E; Criss, Michael M

    2015-04-01

    The current study explored the role of parents' negative and positive affect in adolescent respiratory sinus arrhythmia (RSA) reactivity during a parent-adolescent conflict discussion task and the moderating effects of adolescent sex and age. Questionnaire data were collected from 206 adolescents (10-18 years of age; M = 13.37 years) and their primary caregivers (83.3% biological mothers). Electrocardiogram and respiration data were collected from adolescents, and RSA variables were computed. Parent affect was coded during the conflict discussion task. Multilevel modeling was used to distinguish the between- and within-individual effects of parent affect on adolescent RSA. Results indicated that observed within-parent-teen dyad anger was negatively associated with adolescent RSA, controlling for previous-minute RSA level, particularly among adolescents 13 years and older. In addition, observed between-dyad positive affect was positively linked to RSA for both boys and girls when previous-minute RSA level was controlled. Within-dyad positive affect was positively related to girl's RSA only. These findings suggest that expressions of positive affect may be related to better vagal regulation (RSA increases), whereas expressions of anger may be related to poor vagal regulation (RSA decreases) during social engagement. (c) 2015 APA, all rights reserved).

  13. The Sex Differences in Regulating Unpleasant Emotion by Expressive Suppression: Extraversion Matters

    PubMed Central

    Cai, Ayan; Lou, Yixue; Long, Quanshan; Yuan, Jiajin

    2016-01-01

    Males are known for more suppression of emotional displays than females. However, when the emotion regulation effect of expressive suppression is greater in males, and how this sex difference varies with emotion display-related personality (e.g., extraversion), are undetermined. Event-related potentials were recorded while male and female participants different in extraversion were required to attend to or suppress emotional expression to negative pictures. Sex and extraversion did not modulate self-reported emotional experience. However, late positive potential (LPP) amplitudes showed an extraversion-moderated sex difference in the 2000–3000 ms and the 3000–4000 ms time epochs. LPP amplitudes were decreased during suppression versus viewing conditions in ambivert males, while this effect was absent in ambivert females. However, the LPP amplitudes of extraverts were similar for suppression and viewing conditions, irrespective of sex and timing. Regardless of early, middle, or late time windows, LPP amplitudes were positively related to self-reported emotion. These results suggest a male advantage for using expressive suppression for emotion regulation in non-extraverted, ambivert individuals. PMID:27458408

  14. The Sex Differences in Regulating Unpleasant Emotion by Expressive Suppression: Extraversion Matters.

    PubMed

    Cai, Ayan; Lou, Yixue; Long, Quanshan; Yuan, Jiajin

    2016-01-01

    Males are known for more suppression of emotional displays than females. However, when the emotion regulation effect of expressive suppression is greater in males, and how this sex difference varies with emotion display-related personality (e.g., extraversion), are undetermined. Event-related potentials were recorded while male and female participants different in extraversion were required to attend to or suppress emotional expression to negative pictures. Sex and extraversion did not modulate self-reported emotional experience. However, late positive potential (LPP) amplitudes showed an extraversion-moderated sex difference in the 2000-3000 ms and the 3000-4000 ms time epochs. LPP amplitudes were decreased during suppression versus viewing conditions in ambivert males, while this effect was absent in ambivert females. However, the LPP amplitudes of extraverts were similar for suppression and viewing conditions, irrespective of sex and timing. Regardless of early, middle, or late time windows, LPP amplitudes were positively related to self-reported emotion. These results suggest a male advantage for using expressive suppression for emotion regulation in non-extraverted, ambivert individuals.

  15. Regulation of nucleosome positioning by a CHD Type III chromatin remodeler and its relationship to developmental gene expression in Dictyostelium.

    PubMed

    Platt, James L; Kent, Nicholas A; Kimmel, Alan R; Harwood, Adrian J

    2017-04-01

    Nucleosome placement and repositioning can direct transcription of individual genes; however, the precise interactions of these events are complex and largely unresolved at the whole-genome level. The Chromodomain-Helicase-DNA binding (CHD) Type III proteins are a subfamily of SWI2/SNF2 proteins that control nucleosome positioning and are associated with several complex human disorders, including CHARGE syndrome and autism. Type III CHDs are required for multicellular development of animals and Dictyostelium but are absent in plants and yeast. These CHDs can mediate nucleosome translocation in vitro, but their in vivo mechanism is unknown. Here, we use genome-wide analysis of nucleosome positioning and transcription profiling to investigate the in vivo relationship between nucleosome positioning and gene expression during development of wild-type (WT) Dictyostelium and mutant cells lacking ChdC, a Type III CHD protein ortholog. We demonstrate major nucleosome positional changes associated with developmental gene regulation in WT. Loss of chdC caused an increase of intragenic nucleosome spacing and misregulation of gene expression, affecting ∼50% of the genes that are repositioned during WT development. These analyses demonstrate active nucleosome repositioning during Dictyostelium multicellular development, establish an in vivo function of CHD Type III chromatin remodeling proteins in this process, and reveal the detailed relationship between nucleosome positioning and gene regulation, as cells transition between developmental states. © 2017 Platt et al.; Published by Cold Spring Harbor Laboratory Press.

  16. Mothering, fathering, and the regulation of negative and positive emotions in high-functioning preschoolers with autism spectrum disorder.

    PubMed

    Hirschler-Guttenberg, Yael; Golan, Ofer; Ostfeld-Etzion, Sharon; Feldman, Ruth

    2015-05-01

    Children with autism spectrum disorder (ASD) exhibit difficulties in regulating emotions and authors have called to study the specific processes underpinning emotion regulation (ER) in ASD. Yet, little observational research examined the strategies preschoolers with ASD use to regulate negative and positive emotions in the presence of their mothers and fathers. Forty preschoolers with ASD and 40 matched typically developing children and their mothers and fathers participated. Families were visited twice for identical battery of paradigms with mother or father. Parent-child interactions were coded for parent and child behaviors and children engaged in ER paradigms eliciting negative (fear) and positive (joy) emotions with each parent. ER paradigms were microcoded for negative and positive emotionality, ER strategies, and parent regulation facilitation. During free play, mothers' and fathers' sensitivity and warm discipline were comparable across groups; however, children with ASD displayed lower positive engagement and higher withdrawal. During ER paradigms, children with ASD expressed less positive emotionality overall and more negative emotionality during fear with father. Children with ASD used more simple self-regulatory strategies, particularly during fear, but expressed comparable levels of assistance seeking behavior toward mother and father in negative and positive contexts. Parents of children with ASD used less complex regulation facilitation strategies, including cognitive reappraisal and emotional reframing, and employed simple tactics, such as physical comforting to manage fear and social gaze to maintain joy. Findings describe general and parent- and emotion-specific processes of child ER and parent regulation facilitation in preschoolers with ASD. Results underscore the ability of such children to seek parental assistance during moments of high arousal and the parents' sensitive adaptation to their children's needs. Reduced positive emotionality, rather than increased negative reactivity and self-regulatory efforts, emerges as the consistent element associated with ER processes in this group. © 2014 Association for Child and Adolescent Mental Health.

  17. CIP2A down regulation enhances the sensitivity of pancreatic cancer cells to gemcitabine.

    PubMed

    Xu, Peng; Yao, Jie; He, Jin; Zhao, Long; Wang, Xiaodong; Li, Zhennan; Qian, Jianjun

    2016-03-22

    Cancerous inhibitor of protein phosphatase 2A (CIP2A) is an oncoprotein which participates in inhibiting tumor apoptosis in pancreatic cancer cells. Using immunohistochemical staining, we investigated the expression of CIP2A protein in 72 cases of human pancreatic ductal adenocarcinoma (PDAC) tissue and 27 cases of adjacent normal pancreatic tissue. The positive rate of CIP2A protein expression in pancreatic cancer tissue was70.83 %, which was significantly higher than that in adjacent non- cancerous pancreatic tissue (11.11%). The expression of CIP2A was found to be correlated with TNM stage, but not correlated with age, gender, tumor location, smoking status, alcohol consumption, diabetes, high blood pressure, BMI, tumor size, lymph node metastasis or distant metastases. Kaplan- Meier survival analysis showed that patients with positive CIP2A protein expression had a lower overall survival rate than patients without CIP2A expression. COX regression analysis indicated that expression of CIP2A was an independent prognostic factor for pancreatic ductal adenocarcinoma. In addition, down-regulation of CIP2A inhibited cell proliferation and increased sensitivity to gemcitabine in pancreatic cancer cells by decreasing AKT signaling pathway. Our results indicated that down-regulation of CIP2A could be a novel therapeutic strategy for pancreatic cancer.

  18. Isolation and characterization of a R2R3-MYB transcription factor gene related to anthocyanin biosynthesis in the spathes of Anthurium andraeanum (Hort.).

    PubMed

    Li, Chonghui; Qiu, Jian; Yang, Guangsui; Huang, Surong; Yin, Junmei

    2016-10-01

    A R2R3-MYB gene AaMYB2 was isolated from Anthurium andraeanum (Hort.) and was functionally characterized to be a positive transcriptional regulator for anthocyanin biosynthesis in the spathes and leaves. Spathe coloration is an important Anthurium andraeanum (Hort.) characteristic, which is mainly contributed by anthocyanins. R2R3-MYB transcription factors (TFs) are important regulators of anthocyanin biosynthesis in plants. Here we describe the identification and characterization of AaMYB2, a member in subgroup 6 of the R2R3-MYB TFs family, which correlated with anthocyanin biosynthesis in A. andraeanum. AaMYB2 was a nuclear-localization protein with positive transcriptional activity, and prominently expressed in the red spathes. Ectopic expression of AaMYB2 in tobacco led to anthocyanin accumulation and up-regulation of the early and late anthocyanin pathway genes, particularly NtDFR, NtANS, and NtUFGT, and the endogenous TF genes NtAn2 and NtAn1 in leaves. In the developing red spathes of 'Tropical' and 'Vitara', the expression of AaMYB2 was closely linked to anthocyanin accumulation, and co-expressed with AaCHS, AaF3H, and AaANS, the latter two of which were regarded as the potential targets of the R locus encoding a TF controlling spathe colors inheritance in anthurium. In addition, the transcription level of AaMYB2 in various cultivars with different color phenotypes showed that AaMYB2 was drastically expressed in the spathes from the red, pink, and purple cultivars, but hardly detected in the spathes from the white and green ones. Besides, AaMYB2 also showed higher expression in newly developmental leaves when anthocyanin was actively biosynthesized. Taken together, AaMYB2 positively related to anthocyanin biosynthesis in anthurium spathes and leaves, and appeared to regulate the expression of AaF3H, AaANS, and possibly AaCHS.

  19. Hepcidin suppression in β-thalassemia is associated with the down-regulation of atonal homolog 8.

    PubMed

    Upanan, Supranee; McKie, Andrew T; Latunde-Dada, Gladys O; Roytrakul, Sittiruk; Uthaipibull, Chairat; Pothacharoen, Peraphan; Kongtawelert, Prachya; Fucharoen, Suthat; Srichairatanakool, Somdet

    2017-08-01

    Atonal homolog 8 (ATOH8) is defined as a positive regulator of hepcidin transcription, which links erythropoietic activity with iron-sensing molecules. In the present study, we investigated the association between hepcidin and ATOH8 expression in β-thalassemia. We found that inhibition of hepcidin expression in β-thalassemia is correlated with reduced ATOH8 expression. Hepatic hepcidin 1 (Hamp1) and Atoh8 mRNA expression were down-regulated in β-thalassemic mice. Hepcidin (HAMP) and ATOH8 mRNA expression were consistently suppressed in Huh7 cells cultured in medium supplemented with β-thalassemia patient serum. The Huh7 cells, which were transfected with ATOH8-FLAG expression plasmid and cultured in the supplemented medium, exhibited increased levels of ATOH8 mRNA, ATOH8-FLAG protein, pSMAD1,5,8, and HAMP mRNA. Interestingly, over-expression of ATOH8 reversed the effects of hepcidin suppression induced by the β-thalassemia patient sera. In conclusion, hepcidin suppression in β-thalassemia is associated with the down-regulation of ATOH8 in response to anemia. We, therefore, suggest that ATOH8 is an important transcriptional regulator of hepcidin in β-thalassemia.

  20. Cot/Tpl2 regulates IL-23 p19 expression in LPS-stimulated macrophages through ERK activation.

    PubMed

    Kakimoto, K; Musikacharoen, T; Chiba, N; Bandow, K; Ohnishi, T; Matsuguchi, T

    2010-03-01

    We have previously reported that a serine/threonine protein kinase, Cot/Tpl2, is a negative regulator of Th1-type immunity through inhibiting IL-12 expression in antigen presenting cells (APCs) stimulated by Toll-like receptor (TLR) ligands. We here show that Cot/Tpl2(-/-) macrophages produce significantly less IL-23, an important regulator of Th17-type response, than the wild-type counterparts in response to lipopolysaccharide (LPS), which is a ligand for TLR4. The decreased IL-23 production in Cot/Tpl2(-/-) macrophages is, at least partly, regulated at the transcriptional level, as the LPS-mediated IL-23 p19 mRNA induction was significantly less in Cot/Tpl2(-/-) macrophages. Chemical inhibition of extracellular signal-regulated kinase (ERK) activity similarly inhibited IL-23 expression in LPS-stimulated wild-type macrophages. As Cot/Tpl2 is an essential upstream component of the ERK activation pathway of LPS, it is suggested that Cot/Tpl2 positively regulates IL-23 expression through ERK activation. These results indicate that Cot/Tpl2 may be involved in balancing Th1/Th17 differentiation by regulating the expression ratio of IL-12 and IL-23 in APCs.

  1. Functional dissection of a napin gene promoter: identification of promoter elements required for embryo and endosperm-specific transcription.

    PubMed

    Ellerström, M; Stålberg, K; Ezcurra, I; Rask, L

    1996-12-01

    The promoter region (-309 to +44) of the Brassica napus storage protein gene napA was studied in transgenic tobacco by successive 5' as well as internal deletions fused to the reporter gene GUS (beta-glucuronidase). The expression in the two main tissues of the seed, the endosperm and the embryo, was shown to be differentially regulated. This tissue-specific regulation within the seed was found to affect the developmental expression during seed development. The region between -309 to -152, which has a large effect on quantitative expression, was shown to harbour four elements regulating embryo and one regulating endosperm expression. This region also displayed enhancer activity. Deletion of eight bp from position -152 to position -144 totally abolished the activity of the napA promoter. This deletion disrupted a cis element with similarity to an ABA-responsive element (ABRE) overlapping with an E-box, demonstrating its crucial importance for quantitative expression. An internal deletion of the region -133 to -120, resulted in increased activity in both leaves and endosperm and a decreased activity in the embryo. Within this region, a cis element similar to the (CA)n element, found in other storage protein promoters, was identified. This suggest that the (CA)n element is important for conferring seed specificity by serving both as an activator and a repressor element.

  2. Transcription factor AP-2γ induces early Cdx2 expression and represses HIPPO signaling to specify the trophectoderm lineage.

    PubMed

    Cao, Zubing; Carey, Timothy S; Ganguly, Avishek; Wilson, Catherine A; Paul, Soumen; Knott, Jason G

    2015-05-01

    Cell fate decisions are fundamental to the development of multicellular organisms. In mammals the first cell fate decision involves segregation of the pluripotent inner cell mass and the trophectoderm, a process regulated by cell polarity proteins, HIPPO signaling and lineage-specific transcription factors such as CDX2. However, the regulatory mechanisms that operate upstream to specify the trophectoderm lineage have not been established. Here we report that transcription factor AP-2γ (TFAP2C) functions as a novel upstream regulator of Cdx2 expression and position-dependent HIPPO signaling in mice. Loss- and gain-of-function studies and promoter analysis revealed that TFAP2C binding to an intronic enhancer is required for activation of Cdx2 expression during early development. During the 8-cell to morula transition TFAP2C potentiates cell polarity to suppress HIPPO signaling in the outside blastomeres. TFAP2C depletion triggered downregulation of PARD6B, loss of apical cell polarity, disorganization of F-actin, and activation of HIPPO signaling in the outside blastomeres. Rescue experiments using Pard6b mRNA restored cell polarity but only partially corrected position-dependent HIPPO signaling, suggesting that TFAP2C negatively regulates HIPPO signaling via multiple pathways. Several genes involved in regulation of the actin cytoskeleton (including Rock1, Rock2) were downregulated in TFAP2C-depleted embryos. Inhibition of ROCK1 and ROCK2 activity during the 8-cell to morula transition phenocopied TFAP2C knockdown, triggering a loss of position-dependent HIPPO signaling and decrease in Cdx2 expression. Altogether, these results demonstrate that TFAP2C facilitates trophectoderm lineage specification by functioning as a key regulator of Cdx2 transcription, cell polarity and position-dependent HIPPO signaling. © 2015. Published by The Company of Biologists Ltd.

  3. Sustained Expression of Negative Regulators of Myelination Protects Schwann Cells from Dysmyelination in a Charcot-Marie-Tooth 1B Mouse Model.

    PubMed

    Florio, Francesca; Ferri, Cinzia; Scapin, Cristina; Feltri, M Laura; Wrabetz, Lawrence; D'Antonio, Maurizio

    2018-05-02

    Schwann cell differentiation and myelination in the PNS are the result of fine-tuning of positive and negative transcriptional regulators. As myelination starts, negative regulators are downregulated, whereas positive ones are upregulated. Fully differentiated Schwann cells maintain an extraordinary plasticity and can transdifferentiate into "repair" Schwann cells after nerve injury. Reactivation of negative regulators of myelination is essential to generate repair Schwann cells. Negative regulators have also been implicated in demyelinating neuropathies, although their role in disease remains elusive. Here, we used a mouse model of Charcot-Marie-Tooth neuropathy type 1B (CMT1B), the P0S63del mouse characterized by ER stress and the activation of the unfolded protein response, to show that adult Schwann cells are in a partial differentiation state because they overexpress transcription factors that are normally expressed only before myelination. We provide evidence that two of these factors, Sox2 and Id2, act as negative regulators of myelination in vivo However, their sustained expression in neuropathy is protective because ablation of Sox2 or/and Id2 from S63del mice of both sexes results in worsening of the dysmyelinating phenotype. This is accompanied by increased levels of mutant P0 expression and exacerbation of ER stress, suggesting that limited differentiation may represent a novel adaptive mechanism through which Schwann cells counter the toxic effect of a mutant terminal differentiation protein. SIGNIFICANCE STATEMENT In many neuropathies, Schwann cells express high levels of early differentiation genes, but the significance of these altered expression remained unclear. Because many of these factors may act as negative regulators of myelination, it was suggested that their misexpression could contribute to dysmyelination. Here, we show that the transcription factors Sox2 and Id2 act as negative regulators of myelination in vivo , but that their sustained expression in Charcot-Marie-Tooth type 1B (CMT1B) represents an adaptive response activated by the Schwann cells to reduce mutant protein toxicity and prevent demyelination. Copyright © 2018 the authors 0270-6474/18/384275-14$15.00/0.

  4. EWS-FLI1 reprograms the metabolism of Ewing sarcoma cells via positive regulation of glutamine import and serine-glycine biosynthesis.

    PubMed

    Sen, Nirmalya; Cross, Allison M; Lorenzi, Philip L; Khan, Javed; Gryder, Berkley E; Kim, Suntae; Caplen, Natasha J

    2018-06-06

    Ewing sarcoma (EWS) is a soft tissue and bone tumor that occurs primarily in adolescents and young adults. In most cases of EWS, the chimeric transcription factor, EWS-FLI1 is the primary oncogenic driver. The epigenome of EWS cells reflects EWS-FLI1 binding and activation or repression of transcription. Here, we demonstrate that EWS-FLI1 positively regulates the expression of proteins required for serine-glycine biosynthesis and uptake of the alternative nutrient source glutamine. Specifically, we show that EWS-FLI1 activates expression of PHGDH, PSAT1, PSPH, and SHMT2. Using cell-based studies, we also establish that EWS cells are dependent on glutamine for cell survival and that EWS-FLI1 positively regulates expression of the glutamine transporter, SLC1A5 and two enzymes involved in the one-carbon cycle, MTHFD2 and MTHFD1L. Inhibition of serine-glycine biosynthesis in EWS cells impacts their redox state leading to an accumulation of reactive oxygen species, DNA damage, and apoptosis. Importantly, analysis of EWS primary tumor transcriptome data confirmed that the aforementioned genes we identified as regulated by EWS-FLI1 exhibit increased expression compared with normal tissues. Furthermore, retrospective analysis of an independent data set generated a significant stratification of the overall survival of EWS patients into low- and high-risk groups based on the expression of PHGDH, PSAT1, PSPH, SHMT2, SLC1A5, MTHFD2, and MTHFD1L. In summary, our study demonstrates that EWS-FLI1 reprograms the metabolism of EWS cells and that serine-glycine metabolism or glutamine uptake are potential targetable vulnerabilities in this tumor type. © 2018 The Authors. Molecular Carcinogenesis Published by WileyPeriodicals, Inc.

  5. Positive Selection at the Polyhomeotic Locus Led to Decreased Thermosensitivity of Gene Expression in Temperate Drosophila melanogaster

    PubMed Central

    Voigt, Susanne; Laurent, Stefan; Litovchenko, Maria; Stephan, Wolfgang

    2015-01-01

    Drosophila melanogaster as a cosmopolitan species has successfully adapted to a wide range of different environments. Variation in temperature is one important environmental factor that influences the distribution of species in nature. In particular for insects, which are mostly ectotherms, ambient temperature plays a major role in their ability to colonize new habitats. Chromatin-based gene regulation is known to be sensitive to temperature. Ambient temperature leads to changes in the activation of genes regulated in this manner. One such regulatory system is the Polycomb group (PcG) whose target genes are more expressed at lower temperatures than at higher ones. Therefore, a greater range in ambient temperature in temperate environments may lead to greater variability (plasticity) in the expression of these genes. This might have detrimental effects, such that positive selection acts to lower the degree of the expression plasticity. We provide evidence for this process in a genomic region that harbors two PcG-regulated genes, polyhomeotic proximal (ph-p) and CG3835. We found a signature of positive selection in this gene region in European populations of D. melanogaster and investigated the region by means of reporter gene assays. The target of selection is located in the intergenic fragment between the two genes. It overlaps with the promoters of both genes and an experimentally validated Polycomb response element (PRE). This fragment harbors five sequence variants that are highly differentiated between European and African populations. The African alleles confer a temperature-induced plasticity in gene expression, which is typical for PcG-mediated gene regulation, whereas thermosensitivity is reduced for the European alleles. PMID:25855066

  6. Lopinavir up-regulates expression of the antiviral protein ribonuclease L in human papillomavirus-positive cervical carcinoma cells.

    PubMed

    Batman, Gavin; Oliver, Anthony W; Zehbe, Ingeborg; Richard, Christina; Hampson, Lynne; Hampson, Ian N

    2011-01-01

    We have previously shown that the HIV protease inhibitor lopinavir has selective toxicity against human papillomavirus (HPV)-positive cervical carcinoma cells via an unknown mechanism. SiHa cervical carcinoma cells were stably transfected with the proteasome sensor vector pZsProSensor-1 to confirm lopinavir inhibits the proteasome in these cells. The Panorama Xpress profiler 725 antibody array was then used to analyse specific changes in protein expression in lopinavir-treated versus control untreated SiHa cells followed by PCR and western blotting. Colorimetric growth assays of lopinavir-treated E6/E7 immortalised versus control human keratinocytes were performed. Targeted small interfering RNA gene silencing followed by growth assay comparison of lopinavir-treated/untreated SiHa cells was also used. Lopinavir induced an increase in the fluorescence of pZsProSensor-1 transfected SiHa cells, indicative of proteasomal inhibition. Ribonuclease L (RNASEL) protein was shown to be up-regulated in lopinavir-treated SiHa cells, which was confirmed by PCR and western blot. Targeted silencing of RNASEL reduced the sensitivity of SiHa cells to lopinavir. Selective toxicity against E6/E7 immortalised keratinocytes versus control cells was also seen with lopinavir and was associated with up-regulated RNASEL expression. These data are consistent with the toxicity of lopinavir against HPV-positive cervical carcinoma cells being related to its ability to block viral proteasome activation and induce an up-regulation of the antiviral protein RNASEL. This is supported by the drug's selective toxicity and up-regulation of RNASEL in E6/E7 immortalised keratinocytes combined with the increased resistance to lopinavir observed in SiHa cells following silencing of RNASEL gene expression.

  7. [Regulation of Positive and Negative Emotions as Mediator between Maternal Emotion Socialization and Child Problem Behavior].

    PubMed

    Fäsche, Anika; Gunzenhauser, Catherine; Friedlmeier, Wolfgang; von Suchodoletz, Antje

    2015-01-01

    The present study investigated five to six year old children's ability to regulate negative and positive emotions in relation to psychosocial problem behavior (N=53). It was explored, whether mothers' supportive and nonsupportive strategies of emotion socialization influence children's problem behavior by shaping their emotion regulation ability. Mothers reported on children's emotion regulation and internalizing and externalizing problem behavior via questionnaire, and were interviewed about their preferences for socialization strategies in response to children's expression of negative affect. Results showed that children with more adaptive expression of adequate positive emotions had less internalizing behavior problems. When children showed more control of inadequate negative emotions, children were less internalizing as well as externalizing in their behavior. Furthermore, results indicated indirect relations of mothers' socialization strategies with children's problem behavior. Control of inadequate negative emotions mediated the link between non-supportive strategies on externalizing problem behavior. Results suggest that emotion regulatory processes should be part of interventions to reduce the development of problematic behavior in young children. Parents should be trained in dealing with children's emotions in a constructive way.

  8. Degradation of the HilC and HilD regulator proteins by ATP-dependent Lon protease leads to downregulation of Salmonella pathogenicity island 1 gene expression.

    PubMed

    Takaya, Akiko; Kubota, Yohsuke; Isogai, Emiko; Yamamoto, Tomoko

    2005-02-01

    Salmonella pathogenicity island 1 (SPI1) enables infecting Salmonella to cross the small intestinal barrier and to escape phagocytosis by inducing apoptosis. Several environmental signals and transcriptional regulators modulate the expression of hilA, which encodes a protein playing a central role in the regulatory hierarchy of SPI1 gene expression. We have previously shown that Lon, a stress-induced ATP-dependent protease, is a negative regulator of hilA, suggesting that it targets factors required for activating hilA expression. To elucidate the mechanisms by which Lon protease negatively regulates SPI1 transcription, we looked for its substrate proteins. We found that HilC and HilD, which are positive regulators of hilA expression, accumulate in Lon-depleted cells, and that the enhancement of SPI1 expression that occurs in a lon-disrupted mutant is not observed in the lon hilC hilD triple null mutant. Furthermore, we demonstrated that the half-lives of HilC and HilD are, respectively, about 12 times and three times longer in the Lon-depleted mutant, than in the Lon+ cells, suggesting that Lon targets both of HilC and HilD. In view of these findings, we suggest that the regulation of SPI1 expression is negatively controlled through degradation of the HilC and HilD transcriptional regulators by Lon.

  9. Hedgehog Is a Positive Regulator of FGF Signalling during Embryonic Tracheal Cell Migration

    PubMed Central

    Butí, Elisenda; Mesquita, Duarte; Araújo, Sofia J.

    2014-01-01

    Cell migration is a widespread and complex process that is crucial for morphogenesis and for the underlying invasion and metastasis of human cancers. During migration, cells are steered toward target sites by guidance molecules that induce cell direction and movement through complex intracellular mechanisms. The spatio-temporal regulation of the expression of these guidance molecules is of extreme importance for both normal morphogenesis and human disease. One way to achieve this precise regulation is by combinatorial inputs of different transcription factors. Here we used Drosophila melanogaster mutants with migration defects in the ganglionic branches of the tracheal system to further clarify guidance regulation during cell migration. By studying the cellular consequences of overactivated Hh signalling, using ptc mutants, we found that Hh positively regulates Bnl/FGF levels during embryonic stages. Our results show that Hh modulates cell migration non-autonomously in the tissues surrounding the action of its activity. We further demonstrate that the Hh signalling pathway regulates bnl expression via Stripe (Sr), a zinc-finger transcription factor with homology to the Early Growth Response (EGR) family of vertebrate transcription factors. We propose that Hh modulates embryonic cell migration by participating in the spatio-temporal regulation of bnl expression in a permissive mode. By doing so, we provide a molecular link between the activation of Hh signalling and increased chemotactic responses during cell migration. PMID:24651658

  10. Hedgehog is a positive regulator of FGF signalling during embryonic tracheal cell migration.

    PubMed

    Butí, Elisenda; Mesquita, Duarte; Araújo, Sofia J

    2014-01-01

    Cell migration is a widespread and complex process that is crucial for morphogenesis and for the underlying invasion and metastasis of human cancers. During migration, cells are steered toward target sites by guidance molecules that induce cell direction and movement through complex intracellular mechanisms. The spatio-temporal regulation of the expression of these guidance molecules is of extreme importance for both normal morphogenesis and human disease. One way to achieve this precise regulation is by combinatorial inputs of different transcription factors. Here we used Drosophila melanogaster mutants with migration defects in the ganglionic branches of the tracheal system to further clarify guidance regulation during cell migration. By studying the cellular consequences of overactivated Hh signalling, using ptc mutants, we found that Hh positively regulates Bnl/FGF levels during embryonic stages. Our results show that Hh modulates cell migration non-autonomously in the tissues surrounding the action of its activity. We further demonstrate that the Hh signalling pathway regulates bnl expression via Stripe (Sr), a zinc-finger transcription factor with homology to the Early Growth Response (EGR) family of vertebrate transcription factors. We propose that Hh modulates embryonic cell migration by participating in the spatio-temporal regulation of bnl expression in a permissive mode. By doing so, we provide a molecular link between the activation of Hh signalling and increased chemotactic responses during cell migration.

  11. Mechanisms of allele-selective down-regulation of HLA class I in Burkitt's lymphoma.

    PubMed

    Imreh, M P; Zhang, Q J; de Campos-Lima, P O; Imreh, S; Krausa, P; Browning, M; Klein, G; Masucci, M G

    1995-07-04

    Burkitt lymphomas (BL) that arise in HLA-AII-positive individuals are characterized by selective loss/down-regulation of the HLA AII polypeptide. We have investigated the molecular basis of such down-regulation by comparing 5 pairs of BL lines and Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines (LCL) derived from the normal B cells of the same individuals. The presence of apparently intact HLA AII genes was confirmed in all 5 BL/LCL pairs by polymerase chain reaction (PCR) typing and by Southern-blot hybridization with HLA A locus-specific probes. Northern-blot analysis with locus- and allele-specific probes revealed a significantly lower expression or absence of AII-specific mRNA in all 5 BL lines compared to the corresponding LCLs. Up-regulation of AII-specific mRNA was achieved by IFN alpha treatment of 2 BL lines with low HLA AII expression (BL-28 and BL-72) while the treatment had no effect in 3 BL lines (WWI-BL, WW2-BL and BL41) that did not express the endogenous gene. HLA AII expression was restored by transfection of the gene in WWI-BL whereas transfectants of BL-41 remained AII-negative. An HLA-AII-promoter-driven chloramphenicol acetyl transferase reporter gene (pAIICAT) was active in WWI-BL but not in BL-41. HLA-AII was expressed in hybrids of BL-41 with an AII-positive LCL, while expression of the endogenous HLA AII gene could not be restored by fusion of BL-41 with an AII-negative LCL, although an adequate set of transcription factors was present in the hybrid. Our results suggest that genetic defects and lack of transcription factors may contribute to the selective down-regulation of HLA AII in BL cells.

  12. Differential regulation of luteinizing hormone and follicle-stimulating hormone expression during ovarian development and under sexual steroid feedback in the European eel.

    PubMed

    Schmitz, Monika; Aroua, Salima; Vidal, Bernadette; Le Belle, Nadine; Elie, Pierre; Dufour, Sylvie

    2005-01-01

    Pituitary gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH) are, in teleosts as in mammals, under the control of hypothalamic factors and steroid feedbacks. In teleosts, feedback regulations largely vary depending on species and physiological stage. In the present study the regulation of FSH and LH expression was investigated in the European eel, a fish of biological and phylogenetical interest as a representative of an early group of teleosts. The eel FSHbeta subunit was cloned, sequenced and together with earlier isolated eel LHbeta and glycoprotein hormone alpha (GPalpha) subunits used to study the differential regulation of LH and FSH. In situ hybridization indicated that FSHbeta and LHbeta are expressed by separate cells of the proximal pars distalis of the adenohypophysis, differently from the situation in mammals. The profiles of LHbeta and FSHbeta subunit expression were compared during experimental ovarian maturation, using dot-blot assays. Expression levels for LHbeta and GPalpha increased throughout ovarian development with a positive correlation between these two subunits. Conversely, FSHbeta mRNA levels decreased. To understand the role of sex steroids in these opposite variations, immature eels were treated with estradiol (E2)and testosterone (T), both steroids being produced in eel ovaries during gonadal development. E2 treatment induced increases in both LHbeta and GPalpha mRNA levels, without any significant effect on FSHbeta. In contrast, T treatment induced a decrease in FSHbeta mRNA levels, without any significant effect on the other subunits. These data demonstrate that steroids exert a differential feedback on eel gonadotropin expression, with an E2-specific positive feedback on LH and a T-specific negative feedback on FSH, leading to an opposite regulation of LH and FSH during ovarian development. Copyright 2005 S. Karger AG, Basel

  13. The Proteome of Shigella flexneri 2a 2457T Grown at 30 and 37 °C*

    PubMed Central

    Zhu, Li; Zhao, Ge; Stein, Robert; Zheng, Xuexue; Hu, Wei; Shang, Na; Bu, Xin; Liu, Xiankai; Wang, Jie; Feng, Erling; Wang, Bin; Zhang, Xuemin; Ye, Qinong; Huang, Peitang; Zeng, Ming; Wang, Hengliang

    2010-01-01

    To upgrade the proteome reference map of Shigella flexneri 2a 2457T, the protein expression profiles of log phase and stationary phase cells grown at 30 and 37 °C were thoroughly analyzed using multiple overlapping narrow pH range (between pH 4.0 and 11.0) two-dimensional gel electrophoresis. A total of 723 spots representing 574 protein entries were identified by MALDI-TOF/TOF MS, including the majority of known key virulence factors. 64 hypothetical proteins and six misannotated proteins were also experimentally identified. A comparison between the four proteome maps showed that most of the virulence-related proteins were up-regulated at 37 °C, and the differences were more notable in stationary phase cells, suggesting that the expressions of these virulence factors were not only controlled by temperature but also controlled by the nutrients available in the environment. The expression patterns of some virulence-related genes under the four different conditions suggested that they might also be regulated at the post-transcriptional level. A further significant finding was that the expression of the protein ArgT was dramatically up-regulated at 30 °C. The results of semiquantitative RT-PCR analysis showed that expression of argT was not regulated at the transcriptional level. Therefore, we carried out a series of experiments to uncover the mechanism regulating ArgT levels and found that the differential expression of ArgT was due to its degradation by a periplasmic protease, HtrA, whose activity, but not its synthesis, was affected by temperature. The cleavage site in ArgT was between position 160 (Val) and position 161 (Ala). These results may provide useful insights for understanding the physiology and pathogenesis of S. flexneri. PMID:20164057

  14. The proteome of Shigella flexneri 2a 2457T grown at 30 and 37 degrees C.

    PubMed

    Zhu, Li; Zhao, Ge; Stein, Robert; Zheng, Xuexue; Hu, Wei; Shang, Na; Bu, Xin; Liu, Xiankai; Wang, Jie; Feng, Erling; Wang, Bin; Zhang, Xuemin; Ye, Qinong; Huang, Peitang; Zeng, Ming; Wang, Hengliang

    2010-06-01

    To upgrade the proteome reference map of Shigella flexneri 2a 2457T, the protein expression profiles of log phase and stationary phase cells grown at 30 and 37 degrees C were thoroughly analyzed using multiple overlapping narrow pH range (between pH 4.0 and 11.0) two-dimensional gel electrophoresis. A total of 723 spots representing 574 protein entries were identified by MALDI-TOF/TOF MS, including the majority of known key virulence factors. 64 hypothetical proteins and six misannotated proteins were also experimentally identified. A comparison between the four proteome maps showed that most of the virulence-related proteins were up-regulated at 37 degrees C, and the differences were more notable in stationary phase cells, suggesting that the expressions of these virulence factors were not only controlled by temperature but also controlled by the nutrients available in the environment. The expression patterns of some virulence-related genes under the four different conditions suggested that they might also be regulated at the post-transcriptional level. A further significant finding was that the expression of the protein ArgT was dramatically up-regulated at 30 degrees C. The results of semiquantitative RT-PCR analysis showed that expression of argT was not regulated at the transcriptional level. Therefore, we carried out a series of experiments to uncover the mechanism regulating ArgT levels and found that the differential expression of ArgT was due to its degradation by a periplasmic protease, HtrA, whose activity, but not its synthesis, was affected by temperature. The cleavage site in ArgT was between position 160 (Val) and position 161 (Ala). These results may provide useful insights for understanding the physiology and pathogenesis of S. flexneri.

  15. The homeostatic regulation of REM sleep: A role for localized expression of brain-derived neurotrophic factor in the brainstem.

    PubMed

    Datta, Subimal; Knapp, Clifford M; Koul-Tiwari, Richa; Barnes, Abigail

    2015-10-01

    Homeostatic regulation of REM sleep plays a key role in neural plasticity and deficits in this process are implicated in the development of many neuropsychiatric disorders. Little is known, however, about the molecular mechanisms that underlie this homeostatic regulation process. This study examined the hypothesis that, during selective REM sleep deprivation (RSD), increased brain-derived neurotrophic factor (BDNF) expression in REM sleep regulating areas is critical for the development of homeostatic drive for REM sleep, as measured by an increase in the number of REM sleep transitions. Rats were assigned to RSD, non-sleep deprived (BSL), or total sleep deprivation (TSD) groups. Physiological recordings were obtained from cortical, hippocampal, and pontine EEG electrodes over a 6h period, in which sleep deprivation occurred during the first 3h. In the RSD, but not the other conditions, homeostatic drive for REM sleep increased progressively. BDNF protein expression was significantly greater in the pedunculopontine tegmentum (PPT) and subcoeruleus nucleus (SubCD) in the RSD as compared to the TSD and BSL groups, areas that regulate REM sleep, but not in the medial preoptic area, which regulates non-REM sleep. There was a significant positive correlation between RSD-induced increases in number of REM sleep episodes and increased BDNF expression in the PPT and SubCD. These increases positively correlated with levels of homeostatic drive for REM sleep. These results, for the first time, suggest that selective RSD-induced increased expression of BDNF in the PPT and SubCD are determinant factors in the development of the homeostatic drive for REM sleep. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Four and a half domain 2 (FHL2) scaffolding protein is a marker of connective tissues of developing digits and regulates fibrogenic differentiation of limb mesodermal progenitors.

    PubMed

    Lorda-Diez, C I; Montero, J A; Sanchez-Fernandez, C; Garcia-Porrero, J A; Chimal-Monroy, J; Hurle, J M

    2018-04-01

    Four and a half LIM domain 2 (FHL2) is a multifunctional scaffolding protein of well-known function regulating cell signalling cascades and gene transcription in cancer tissues. However, its function in embryonic systems is poorly characterized. Here, we show that Fhl2 is involved in the differentiation of connective tissues of developing limb autopod. We show that Fhl2 exhibits spatially restricted and temporally dynamic expression around the tendons of developing digits, interphalangeal joint capsules, and fibrous peridigital tissue. Immunolabelling analysis of the skeletal progenitors identified a predominant, but not exclusive, cytoplasmic distribution of FHL2 being associated with focal adhesions and actin cytoskeleton. In the course of chondrogenic differentiation of cultures of limb skeletal progenitors, the expression of Fhl2 is down-regulated. Furthermore, cultures of skeletal progenitors overexpressing Fhl2 take on a predominant fibrogenic appearance. Both gain-of-function and loss-of-function experiments in the micromass culture assays revealed a positive transcriptional influence of Fhl2 in the expression of fibrogenic markers including Scleraxis, Tenomodulin, Tenascin C, βig-h3, and Tgif1. We further show that the expression of Fhl2 is positively regulated by profibrogenic signals including Tgfβ2, all-trans-retinoic acid, and canonical Wnt signalling molecules and negatively regulated by prochondrogenic factors of the bone morphogenetic protein family. Expression of Fhl2 is also regulated negatively in immobilized limbs, but this influence appears to be mediated by other connective tissue markers, such as Tgfβs and Scleraxis. Copyright © 2018 John Wiley & Sons, Ltd.

  17. The Homeostatic Regulation of REM Sleep: A role for Localized Expression of Brain-Derived Neurotrophic Factor in the Brainstem

    PubMed Central

    Datta, Subimal; Knapp, Clifford M.; Koul-Tiwari, Richa; Barnes, Abigail

    2015-01-01

    Homeostatic regulation of REM sleep plays a key role in neural plasticity and deficits in this process are implicated in the development of many neuropsychiatric disorders. Little is known, however, about the molecular mechanisms that underlie this homeostatic regulation process. This study examined the hypothesis that, during selective REM sleep deprivation (RSD), increased brain-derived neurotrophic factor (BDNF) expression in REM sleep regulating areas is critical for the development of homeostatic drive for REM sleep, as measured by an increase in the number of REM sleep transitions. Rats were assigned to RSD, non-sleep deprived (BSL), or total sleep deprivation (TSD) groups. Physiological recordings were obtained from cortical, hippocampal, and pontine EEG electrodes over a 6-hour period, in which sleep deprivation occurred during the first 3 hours. In the RSD, but not the other conditions, homeostatic drive for REM sleep increased progressively. BDNF protein expression was significantly greater in the pedunculopontine tegmentum (PPT) and subcoeruleus nucleus (SubCD) in the RSD as compared to the TSD and BSL groups, areas that regulate REM sleep, but not in the medial preoptic area, which regulates non-REM sleep. There was a significant positive correlation between RSD-induced increases in number of REM sleep episodes and increased BDNF expression in the PPT and SubCD. These increases positively correlated with levels of homeostatic drive for REM sleep. These results, for the first time, suggest that selective RSD-induced increased expression of BDNF in the PPT and SubCD are determinant factors in the development of the homeostatic drive for REM sleep. PMID:26146031

  18. Cloning of B cell-specific membrane tetraspanning molecule BTS possessing B cell proliferation-inhibitory function.

    PubMed

    Suenaga, Tadahiro; Arase, Hisashi; Yamasaki, Sho; Kohno, Masayuki; Yokosuka, Tadashi; Takeuchi, Arata; Hattori, Takamichi; Saito, Takashi

    2007-11-01

    Lymphocyte proliferation is regulated by signals through antigen receptors, co-stimulatory receptors, and other positive and negative modulators. Several membrane tetraspanning molecules are also involved in the regulation of lymphocyte growth and death. We cloned a new B cell-specific tetraspanning (BTS) membrane molecule, which is similar to CD20 in terms of expression, structure and function. BTS is specifically expressed in the B cell line and its expression is increased after the pre-B cell stage. BTS is expressed in intracellular granules and on the cell surface. Overexpression of BTS in immature B cell lines induces growth retardation through inhibition of cell cycle progression and cell size increase without inducing apoptosis. This inhibitory function is mediated predominantly by the N terminus of BTS. The development of mature B cells is inhibited in transgenic mice expressing BTS, suggesting that BTS is involved in the in vivo regulation of B cells. These results indicate that BTS plays a role in the regulation of cell division and B cell growth.

  19. Large clusters of co-expressed genes in the Drosophila genome.

    PubMed

    Boutanaev, Alexander M; Kalmykova, Alla I; Shevelyov, Yuri Y; Nurminsky, Dmitry I

    2002-12-12

    Clustering of co-expressed, non-homologous genes on chromosomes implies their co-regulation. In lower eukaryotes, co-expressed genes are often found in pairs. Clustering of genes that share aspects of transcriptional regulation has also been reported in higher eukaryotes. To advance our understanding of the mode of coordinated gene regulation in multicellular organisms, we performed a genome-wide analysis of the chromosomal distribution of co-expressed genes in Drosophila. We identified a total of 1,661 testes-specific genes, one-third of which are clustered on chromosomes. The number of clusters of three or more genes is much higher than expected by chance. We observed a similar trend for genes upregulated in the embryo and in the adult head, although the expression pattern of individual genes cannot be predicted on the basis of chromosomal position alone. Our data suggest that the prevalent mechanism of transcriptional co-regulation in higher eukaryotes operates with extensive chromatin domains that comprise multiple genes.

  20. WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependent regulator of epidermal cell patterning.

    PubMed

    Lee, M M; Schiefelbein, J

    1999-11-24

    The formation of the root epidermis of Arabidopsis provides a simple and elegant model for the analysis of cell patterning. A novel gene, WEREWOLF (WER), is described here that is required for position-dependent patterning of the epidermal cell types. The WER gene encodes a MYB-type protein and is preferentially expressed within cells destined to adopt the non-hair fate. Furthermore, WER is shown to regulate the position-dependent expression of the GLABRA2 homeobox gene, to interact with a bHLH protein, and to act in opposition to the CAPRICE MYB. These results suggest a simple model to explain the specification of the two root epidermal cell types, and they provide insight into the molecular mechanisms used to control cell patterning.

  1. Various Regulatory Modes for Circadian Rhythmicity and Sexual Dimorphism in the Non-Neuronal Cardiac Cholinergic System.

    PubMed

    Oikawa, Shino; Kai, Yuko; Mano, Asuka; Ohata, Hisayuki; Nemoto, Takahiro; Kakinuma, Yoshihiko

    2017-08-01

    Cardiomyocytes possess a non-neuronal cardiac cholinergic system (NNCCS) regulated by a positive feedback system; however, its other regulatory mechanisms remain to be elucidated, which include the epigenetic control or regulation by the female sex steroid, estrogen. Here, the NNCCS was shown to possess a circadian rhythm; its activity was upregulated in the light-off phase via histone acetyltransferase (HAT) activity and downregulated in the light-on phase. Disrupting the circadian rhythm altered the physiological choline acetyltransferase (ChAT) expression pattern. The NNCCS circadian rhythm may be regulated by miR-345, independently of HAT, causing decreased cardiac ChAT expression. Murine cardiac ChAT expression and ACh contents were increased more in female hearts than in male hearts. This upregulation was downregulated by treatment with the estrogen receptor antagonist tamoxifen, and in contrast, estrogen reciprocally regulated cardiac miR-345 expression. These results suggest that the NNCCS is regulated by the circadian rhythm and is affected by sexual dimorphism.

  2. Methylation of Werner syndrome protein is associated with the occurrence and development of invasive meningioma via the regulation of Myc and p53 expression.

    PubMed

    Li, Puxian; Hao, Shuyu; Bi, Zhiyong; Zhang, Junting; Wu, Zhen; Ren, Xiaohui

    2015-08-01

    The aim of the present study was to investigate the positive rate of Werner syndrome protein (WRN) methylation in meningioma patients, and further assess the association between WRN methylation and the occurrence of meningioma. A total of 56 consecutive meningioma patients and 26 healthy individuals were enrolled in the study. A methylation-specific polymerase chain reaction assay was performed to detect the positive rate of WRN methylation in the peripheral blood and tissue samples collected from the recruited subjects. In addition, western blot analysis was performed to determine the protein expression levels of WRN, Myc and p53 in the peripheral blood and tissue samples. The positive rate of WRN methylation in the peripheral blood of the meningioma group was increased when compared with the control group (P<0.05). In addition, the protein expression levels of WRN were significantly decreased in the peripheral blood and tissue samples collected from the individuals with a positive WRN methylation status (P<0.05), as compared with the samples without WRN methylation. Furthermore, the protein expression levels of Myc and p53 were increased in the peripheral blood and tissue samples that exhibited positive WRN methylation when compared with those without WRN methylation (P<0.05). Therefore, WRN methylation was demonstrated to be associated with the occurrence and development of invasive meningioma, possibly through the regulation of Myc and p53 expression.

  3. Intermittent fasting up-regulates Fsp27/Cidec gene expression in white adipose tissue.

    PubMed

    Karbowska, Joanna; Kochan, Zdzislaw

    2012-03-01

    Fat-specific protein of 27 kDa (FSP27) is a novel lipid droplet protein that promotes triacylglycerol storage in white adipose tissue (WAT). The regulation of the Fsp27 gene expression in WAT is largely unknown. We investigated the nutritional regulation of FSP27 in WAT. The effects of intermittent fasting (48 d, eight cycles of 3-d fasting and 3-d refeeding), caloric restriction (48 d), fasting-refeeding (3-d fasting and 3-d refeeding), and fasting (3 d) on mRNA expression of FSP27, peroxisome proliferator-activated receptor γ (PPARγ2), CCAAT/enhancer binding protein α (C/EBPα), and M isoform of carnitine palmitoyltransferase 1 (a positive control for PPARγ activation) in epididymal WAT and on serum triacylglycerol, insulin, and leptin levels were determined in Wistar rats. We also determined the effects of PPARγ activation by rosiglitazone or pioglitazone on FSP27 mRNA levels in primary rat adipocytes. Long-term intermittent fasting, in contrast to other dietary manipulations, significantly up-regulated Fsp27 gene expression in WAT. Moreover, in rats subjected to intermittent fasting, serum insulin levels were elevated; PPARγ2 and C/EBPα mRNA expression in WAT was increased, and there was a positive correlation of Fsp27 gene expression with PPARγ2 and C/EBPα mRNA levels. FSP27 mRNA expression was also increased in adipocytes treated with PPARγ agonists. Our study demonstrates that the transcription of the Fsp27 gene in adipose tissue may be induced in response to nutritional stimuli. Furthermore, PPARγ2, C/EBPα, and insulin may be involved in the nutritional regulation of FSP27. Thus intermittent fasting, despite lower caloric intake, may promote triacylglycerol deposition in WAT by increasing the expression of genes involved in lipid storage, such as Fsp27. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. GSK3 Protein Positively Regulates Type I Insulin-like Growth Factor Receptor through Forkhead Transcription Factors FOXO1/3/4

    PubMed Central

    Huo, Xiaodong; Liu, Shu; Shao, Ting; Hua, Hui; Kong, Qingbin; Wang, Jiao; Luo, Ting; Jiang, Yangfu

    2014-01-01

    Glycogen synthase kinase-3 (GSK3) has either tumor-suppressive roles or pro-tumor roles in different types of human tumors. A number of GSK3 targets in diverse signaling pathways have been uncovered, such as tuberous sclerosis complex subunit 2 and β-catenin. The O subfamily of forkhead/winged helix transcription factors (FOXO) is known as tumor suppressors that induce apoptosis. In this study, we find that FOXO binds to type I insulin-like growth factor receptor (IGF-IR) promoter and stimulates its transcription. GSK3 positively regulates the transactivation activity of FOXO and stimulates IGF-IR expression. Although kinase-dead GSK3β cannot up-regulate IGF-IR, the constitutively active GSK3β induces IGF-IR expression in a FOXO-dependent manner. Serum starvation or Akt inhibition leads to an increase in IGF-IR expression, which could be blunted by GSK3 inhibition. GSK3β knockdown or GSK3 inhibitor suppresses IGF-I-induced IGF-IR, Akt, and ERK1/2 phosphorylation. Moreover, knockdown of GSK3β or FOXO1/3/4 leads to a decrease in cellular proliferation and abrogates IGF-I-induced hepatoma cell proliferation. These results suggest that GSK3 and FOXO may positively regulate IGF-I signaling and hepatoma cell proliferation. PMID:25053419

  5. Identification and function analysis of contrary genes in Dupuytren's contracture.

    PubMed

    Ji, Xianglu; Tian, Feng; Tian, Lijie

    2015-07-01

    The present study aimed to analyze the expression of genes involved in Dupuytren's contracture (DC), using bioinformatic methods. The profile of GSE21221 was downloaded from the gene expression ominibus, which included six samples, derived from fibroblasts and six healthy control samples, derived from carpal-tunnel fibroblasts. A Distributed Intrusion Detection System was used in order to identify differentially expressed genes. The term contrary genes is proposed. Contrary genes were the genes that exhibited opposite expression patterns in the positive and negative groups, and likely exhibited opposite functions. These were identified using Coexpress software. Gene ontology (GO) function analysis was conducted for the contrary genes. A network of GO terms was constructed using the reduce and visualize gene ontology database. Significantly expressed genes (801) and contrary genes (98) were screened. A significant association was observed between Chitinase-3-like protein 1 and ten genes in the positive gene set. Positive regulation of transcription and the activation of nuclear factor-κB (NF-κB)-inducing kinase activity exhibited the highest degree values in the network of GO terms. In the present study, the expression of genes involved in the development of DC was analyzed, and the concept of contrary genes proposed. The genes identified in the present study are involved in the positive regulation of transcription and activation of NF-κB-inducing kinase activity. The contrary genes and GO terms identified in the present study may potentially be used for DC diagnosis and treatment.

  6. Additional regulatory activities of MrkH for the transcriptional expression of the Klebsiella pneumoniae mrk genes: Antagonist of H-NS and repressor.

    PubMed

    Ares, Miguel A; Fernández-Vázquez, José L; Pacheco, Sabino; Martínez-Santos, Verónica I; Jarillo-Quijada, Ma Dolores; Torres, Javier; Alcántar-Curiel, María D; González-Y-Merchand, Jorge A; De la Cruz, Miguel A

    2017-01-01

    Klebsiella pneumoniae is a common opportunistic pathogen causing nosocomial infections. One of the main virulence determinants of K. pneumoniae is the type 3 pilus (T3P). T3P helps the bacterial interaction to both abiotic and biotic surfaces and it is crucial for the biofilm formation. T3P is genetically organized in three transcriptional units: the mrkABCDF polycistronic operon, the mrkHI bicistronic operon and the mrkJ gene. MrkH is a regulatory protein encoded in the mrkHI operon, which positively regulates the mrkA pilin gene and its own expression. In contrast, the H-NS nucleoid protein represses the transcriptional expression of T3P. Here we reported that MrkH and H-NS positively and negatively regulate mrkJ expression, respectively, by binding to the promoter of mrkJ. MrkH protein recognized a sequence located at position -63.5 relative to the transcriptional start site of mrkJ gene. Interestingly, our results show that, in addition to its known function as classic transcriptional activator, MrkH also positively controls the expression of mrk genes by acting as an anti-repressor of H-NS; moreover, our results support the notion that high levels of MrkH repress T3P expression. Our data provide new insights about the complex regulatory role of the MrkH protein on the transcriptional control of T3P in K. pneumoniae.

  7. Additional regulatory activities of MrkH for the transcriptional expression of the Klebsiella pneumoniae mrk genes: Antagonist of H-NS and repressor

    PubMed Central

    Ares, Miguel A.; Fernández-Vázquez, José L.; Pacheco, Sabino; Martínez-Santos, Verónica I.; Jarillo-Quijada, Ma. Dolores; Torres, Javier; Alcántar-Curiel, María D.; González-y-Merchand, Jorge A.; De la Cruz, Miguel A.

    2017-01-01

    Klebsiella pneumoniae is a common opportunistic pathogen causing nosocomial infections. One of the main virulence determinants of K. pneumoniae is the type 3 pilus (T3P). T3P helps the bacterial interaction to both abiotic and biotic surfaces and it is crucial for the biofilm formation. T3P is genetically organized in three transcriptional units: the mrkABCDF polycistronic operon, the mrkHI bicistronic operon and the mrkJ gene. MrkH is a regulatory protein encoded in the mrkHI operon, which positively regulates the mrkA pilin gene and its own expression. In contrast, the H-NS nucleoid protein represses the transcriptional expression of T3P. Here we reported that MrkH and H-NS positively and negatively regulate mrkJ expression, respectively, by binding to the promoter of mrkJ. MrkH protein recognized a sequence located at position -63.5 relative to the transcriptional start site of mrkJ gene. Interestingly, our results show that, in addition to its known function as classic transcriptional activator, MrkH also positively controls the expression of mrk genes by acting as an anti-repressor of H-NS; moreover, our results support the notion that high levels of MrkH repress T3P expression. Our data provide new insights about the complex regulatory role of the MrkH protein on the transcriptional control of T3P in K. pneumoniae. PMID:28278272

  8. GPER mediated estradiol reduces miR-148a to promote HLA-G expression in breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Sifeng, E-mail: taosifeng@aliyun.com; He, Haifei; Chen, Qiang

    Highlights: • E2 induces the level of miR-148a in MCF-7 and MDA-MB-231 cells. • GPER mediates the E2-induced increase of miR-148a in MCF-7 and MDA-MB-231 cells. • E2-GPER regulates the expression of HLA-G by miR-148a. - Abstract: Breast cancer is the most common malignant diseases in women. miR-148a plays an important role in regulation of cancer cell proliferation and cancer invasion and down-regulation of miR-148a has been reported in both estrogen receptor (ER) positive and triple-negative (TN) breast cancer. However, the regulation mechanism of miR-148a is unclear. The role of estrogen signaling, a signaling pathway is important in development andmore » progression of breast cancer. Therefore, we speculated that E2 may regulate miR-148a through G-protein-coupled estrogen receptor-1 (GPER). To test our hypothesis, we checked the effects of E2 on miR-148a expression in ER positive breast cancer cell MCF-7 and TN cancer cell MDA-MB-231. Then we used GPER inhibitor G15 to investigate whether GPER is involved in regulation of E2 on miR-148a. Furthermore, we analyzed whether E2 affects the expression of HLA-G, which is a miR-148a target gene through GPER. The results showed that E2 induces the level of miR-148a in MCF-7 and MDA-MB-231 cells, GPER mediates the E2-induced increase in miR-148a expression in MCF-7 and MDA-MB-231 cells and E2-GPER regulates the expression of HLA-G by miR-148a. In conclusion, our findings offer important new insights into the ability of estrogenic GPER signaling to trigger HLA-G expression through inhibiting miR-148a that supports immune evasion in breast cancer.« less

  9. Rac1 GTPase regulates 11β hydroxysteroid dehydrogenase type 2 and fibrotic remodeling.

    PubMed

    Lavall, Daniel; Schuster, Pia; Jacobs, Nadine; Kazakov, Andrey; Böhm, Michael; Laufs, Ulrich

    2017-05-05

    The aim of the study was to characterize the role of Rac1 GTPase for the mineralocorticoid receptor (MR)-mediated pro-fibrotic remodeling. Transgenic mice with cardiac overexpression of constitutively active Rac1 (RacET) develop an age-dependent phenotype with atrial dilatation, fibrosis, and atrial fibrillation. Expression of MR was similar in RacET and WT mice. The expression of 11β hydroxysteroid dehydrogenase type 2 (11β-HSD2) was age-dependently up-regulated in the atria and the left ventricles of RacET mice on mRNA and protein levels. Statin treatment inhibiting Rac1 geranylgeranylation reduced 11β-HSD2 up-regulation. Samples of human left atrial myocardium showed a positive correlation between Rac1 activity and 11β-HSD2 expression ( r = 0.7169). Immunoprecipitation showed enhanced Rac1-bound 11β-HSD2 relative to Rac1 expression in RacET mice that was diminished with statin treatment. Both basal and phorbol 12-myristate 13-acetate (PMA)-induced NADPH oxidase activity were increased in RacET and correlated positively with 11β-HSD2 expression ( r = 0.788 and r = 0.843, respectively). In cultured H9c2 cardiomyocytes, Rac1 activation with l-buthionine sulfoximine increased; Rac1 inhibition with NSC23766 decreased 11β-HSD2 mRNA and protein expression. Connective tissue growth factor (CTGF) up-regulation induced by aldosterone was prevented with NSC23766. Cardiomyocyte transfection with 11β-HSD2 siRNA abolished the aldosterone-induced CTGF up-regulation. Aldosterone-stimulated MR nuclear translocation was blocked by the 11β-HSD2 inhibitor carbenoxolone. In cardiac fibroblasts, nuclear MR translocation induced by aldosterone was inhibited with NSC23766 and spironolactone. NSC23766 prevented the aldosterone-induced proliferation and migration of cardiac fibroblasts and the up-regulation of CTGF and fibronectin. In conclusion, Rac1 GTPase regulates 11β-HSD2 expression, MR activation, and MR-mediated pro-fibrotic signaling. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Estrogen-dependent regulation of sodium/hydrogen exchanger-3 (NHE3) expression via estrogen receptor β in proximal colon of pregnant mice.

    PubMed

    Choijookhuu, Narantsog; Sato, Yoko; Nishino, Tomoya; Endo, Daisuke; Hishikawa, Yoshitaka; Koji, Takehiko

    2012-05-01

    Although constipation is very common during pregnancy, the exact mechanism is unknown. We hypothesized that the involvement of estrogen receptor (ER) in the regulation of electrolyte transporter in the colon leads to constipation. In this study, the intestines of normal female ICR mouse and pregnant mice were examined for the expression of ERα and ERβ by immunohistochemistry and in situ hybridization. ERβ, but not ERα, was expressed in surface epithelial cells of the proximal, but not distal, colon on pregnancy days 10, 15, and 18, but not day 5, and the number of ERβ-positive cells increased significantly during pregnancy. Expression of NHE3, the gene that harbors estrogen response element, examined by immunohistochemistry and western blotting, was localized in the surface epithelial cells of the proximal colon and increased in parallel with ERβ expression. In ovariectomized mice, NHE3 expression was only marginal and was up-regulated after treatment with 17β-estradiol (E(2)), but not E(2) + ICI 182,780 (estrogen receptor antagonist). Moreover, knock-down of ERβ expression by electroporetically transfected siRNA resulted in a significant reduction of NHE3 expression. These results indicate that ERβ regulates the expression of NHE3 in the proximal colon of pregnant mice through estrogen action, suggesting the involvement of increased sodium absorption by up-regulated NHE3 in constipation during pregnancy.

  11. Regulation of chlorogenic acid biosynthesis by hydroxycinnamoyl CoA quinate hydroxycinnamoyl transferase in Lonicera japonica.

    PubMed

    Zhang, Jingru; Wu, Minlin; Li, Weidong; Bai, Genben

    2017-12-01

    For many centuries, Lonicera japonica has been used as an effective herb for the treatment of inflammation and swelling because of the presence of bioactive components such as chlorogenic acid (CGA). To clarify the relationship between L. japonica hydroxycinnamoyl CoA quinate hydroxycinnamoyl transferase (HQT) gene expression and CGA content, an HQT eukaryotic expression system was constructed using Gateway cloning. L. japonica callus transformed with HQT was obtained using Agrobacterium tumefaciens-mediated transformation. We found a positive correlation between CGA content, determined by High-Performance Liquid Chromatography (HPLC), and the expression of HQT, analyzed by semi-quantitative RT-PCR. This study demonstrates that the HQT gene positively regulates CGA synthesis and lays the foundation for further study into enhancing efficacious components of medicinal plants. Copyright © 2017. Published by Elsevier Masson SAS.

  12. SALT-RESPONSIVE ERF1 is a negative regulator of grain filling and gibberellin-mediated seedling establishment in rice.

    PubMed

    Schmidt, Romy; Schippers, Jos H M; Mieulet, Delphine; Watanabe, Mutsumi; Hoefgen, Rainer; Guiderdoni, Emmanuel; Mueller-Roeber, Bernd

    2014-02-01

    Grain quality is an important agricultural trait that is mainly determined by grain size and composition. Here, we characterize the role of the rice transcription factor (TF) SALT-RESPONSIVE ERF1 (SERF1) during grain development. Through genome-wide expression profiling and chromatin immunoprecipitation, we found that SERF1 directly regulates RICE PROLAMIN-BOX BINDING FACTOR (RPBF), a TF that functions as a positive regulator of grain filling. Loss of SERF1 enhances RPBF expression resulting in larger grains with increased starch content, while SERF1 overexpression represses RPBF resulting in smaller grains. Consistently, during grain filling, starch biosynthesis genes such as GRANULE-BOUND STARCH SYNTHASEI (GBSSI), STARCH SYNTHASEI (SSI), SSIIIa, and ADP-GLUCOSE PYROPHOSPHORYLASE LARGE SUBUNIT2 (AGPL2) are up-regulated in SERF1 knockout grains. Moreover, SERF1 is a direct upstream regulator of GBSSI. In addition, SERF1 negatively regulates germination by controlling RPBF expression, which mediates the gibberellic acid (GA)-induced expression of RICE AMYLASE1A (RAmy1A). Loss of SERF1 results in more rapid seedling establishment, while SERF1 overexpression has the opposite effect. Our study reveals that SERF1 represents a negative regulator of grain filling and seedling establishment by timing the expression of RPBF.

  13. NF-kappaB specifically activates BMP-2 gene expression in growth plate chondrocytes in vivo and in a chondrocyte cell line in vitro.

    PubMed

    Feng, Jian Q; Xing, Lianping; Zhang, Jiang-Hong; Zhao, Ming; Horn, Diane; Chan, Jeannie; Boyce, Brendan F; Harris, Stephen E; Mundy, Gregory R; Chen, Di

    2003-08-01

    Bone morphogenetic protein-2 (BMP-2) regulates growth plate chondrogenesis during development and postnatal bone growth, but the control mechanisms of BMP-2 expression in growth plate chondrocytes are unknown. Here we have used both in vitro and in vivo approaches to demonstrate that transcription factor, NF-kappaB, regulates BMP-2 gene expression in chondrocytes. Two putative NF-kappaB response elements were found in the -2712/+165 region of the BMP-2 gene. Cotransfection of mutant I-kappaBalpha expression plasmids with BMP-2 promoter-luciferase reporters into TMC-23 chondrocyte cell line suppressed BMP-2 transcription. Mutations in NF-kappaB response elements in the BMP-2 gene lead to decreases in BMP-2 promoter activity. Electrophoretic mobility shift assay using nuclear extracts from TMC-23 chondrocytic cells revealed that the NF-kappaB subunits p50 and p65 bound to the NF-kappaB response elements of the BMP-2 gene. Thus, NF-kappaB may positively regulate BMP-2 gene transcription. Consistent with these findings, expression of BMP-2 mRNA was significantly reduced in growth plate chondrocytes in NF-kappaB p50/p52 dKO mice, which associated with decreased numbers of 5-bromo-2'-deoxyuridine (BrdUrd)-positive cells in the proliferating zone of growth plate in these mice. Therefore, in postnatal growth plate chondrocytes, expression of BMP-2 is regulated by NF-kappaB, which may play an important role in chondrogenesis.

  14. Dynamics of gene expression with positive feedback to histone modifications at bivalent domains

    NASA Astrophysics Data System (ADS)

    Huang, Rongsheng; Lei, Jinzhi

    2018-03-01

    Experiments have shown that in embryonic stem cells, the promoters of many lineage-control genes contain “bivalent domains”, within which the nucleosomes possess both active (H3K4me3) and repressive (H3K27me3) marks. Such bivalent modifications play important roles in maintaining pluripotency in embryonic stem cells. Here, to investigate gene expression dynamics when there are regulations in bivalent histone modifications and random partition in cell divisions, we study how positive feedback to histone methylation/demethylation controls the transition dynamics of the histone modification patterns along with cell cycles. We constructed a computational model that includes dynamics of histone marks, three-stage chromatin state transitions, transcription and translation, feedbacks from protein product to enzymes to regulate the addition and removal of histone marks, and the inheritance of nucleosome state between cell cycles. The model reveals how dynamics of both nucleosome state transition and gene expression are dependent on the enzyme activities and feedback regulations. Results show that the combination of stochastic histone modification at each cell division and the deterministic feedback regulation work together to adjust the dynamics of chromatin state transition in stem cell regenerations.

  15. Inhibition of miR-146b expression increases radioiodine-sensitivity in poorly differential thyroid carcinoma via positively regulating NIS expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Luchuan; Lv, Bin; Chen, Bo

    2015-07-10

    Dedifferentiated thyroid carcinoma (DTC) with the loss of radioiodine uptake (RAIU) is often observed in clinical practice under radioiodine therapy, indicating the challenge for poor prognosis. MicroRNA (miRNA) has emerged as a promising therapeutic target in many diseases; yet, the role of miRNAs in RAIU has not been generally investigated. Based on recent studies about miRNA expression in papillary or follicular thyroid carcinomas, the expression profiles of several thyroid relative miRNAs were investigated in one DTC cell line, derived from normal DTC cells by radioiodine treatment. The top candidate miR-146b, with the most significant overexpression profiles in dedifferentiated cells, wasmore » picked up. Further research found that miR-146b could be negatively regulated by histone deacetylase 3 (HDAC3) in normal cells, indicating the correlation between miR-146b and Na{sup +}/I{sup −} symporter (NIS)-mediated RAIU. Fortunately, it was confirmed that miR-146b could regulate NIS expression/activity; what is more important, miR-146b interference would contribute to the recovery of radioiodine-sensitivity in dedifferentiated cells via positively regulating NIS. In the present study, it was concluded that NIS-mediated RAIU could be modulated by miR-146b; accordingly, miR-146b might serve as one of targets to enhance efficacy of radioactive therapy against poorly differential thyroid carcinoma (PDTC). - Highlights: • Significant upregulated miR-146b was picked up from thyroid relative miRNAs in DTC. • MiR-146b was negatively regulated by HDAC3 in normal thyroid carcinoma cells. • NIS activity and expression could be regulated by miR-146b in thyroid carcinoma. • MiR-146b inhibition could recover the decreased radioiodine-sensitivity of DTC cells.« less

  16. ERβ1 inhibits the migration and invasion of breast cancer cells through upregulation of E-cadherin in a Id1-dependent manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yan; Ming, Jia; Xu, Yan

    2015-02-06

    Highlights: • Expression of ERβ1 was positively correlated with E-cadherin in breast cancer cell. • ERβ1 upregulates E-cadherin expression in breast cancer cell lines. • ERβ1 upregulates E-cadherin expression in a Id1-dependent manner. - Abstract: ERβ1 is a member of the nuclear receptor superfamily of ligand-regulated transcription factors. It plays an important role in regulating the progression of breast cancer. However, the mechanisms of ERβ1 in tumorigenesis, metastasis and prognosis are still not fully clear. In this study, we showed that the expression of ERβ1 was positively correlated with E-cadherin expression in breast cancer cell lines. In addition, we foundmore » that ERβ1 upregulates E-cadherin expression in breast cancer cell lines. Furthermore, we also found that ERβ1 inhibits the migration and invasion of breast cancer cells and upregulated E-cadherin expression in a Id1-dependent manner. Taken together, our study provides further understanding of the molecular mechanism of ERβ1 in tumor metastasis and suggests the feasibility of developing novel therapeutic approaches to target Id1 to inhibit breast cancer metastasis.« less

  17. The Ror1 receptor tyrosine kinase plays a critical role in regulating satellite cell proliferation during regeneration of injured muscle.

    PubMed

    Kamizaki, Koki; Doi, Ryosuke; Hayashi, Makoto; Saji, Takeshi; Kanagawa, Motoi; Toda, Tatsushi; Fukada, So-Ichiro; Ho, Hsin-Yi Henry; Greenberg, Michael Eldon; Endo, Mitsuharu; Minami, Yasuhiro

    2017-09-22

    The Ror family receptor tyrosine kinases, Ror1 and Ror2, play important roles in regulating developmental morphogenesis and tissue- and organogenesis, but their roles in tissue regeneration in adult animals remain largely unknown. In this study, we examined the expression and function of Ror1 and Ror2 during skeletal muscle regeneration. Using an in vivo skeletal muscle injury model, we show that expression of Ror1 and Ror2 in skeletal muscles is induced transiently by the inflammatory cytokines, TNF-α and IL-1β, after injury and that inhibition of TNF-α and IL-1β by neutralizing antibodies suppresses expression of Ror1 and Ror2 in injured muscles. Importantly, expression of Ror1 , but not Ror2 , was induced primarily in Pax7-positive satellite cells (SCs) after muscle injury, and administration of neutralizing antibodies decreased the proportion of Pax7-positive proliferative SCs after muscle injury. We also found that stimulation of a mouse myogenic cell line, C2C12 cells, with TNF-α or IL-1β induced expression of Ror1 via NF-κB activation and that suppressed expression of Ror1 inhibited their proliferative responses in SCs. Intriguingly, SC-specific depletion of Ror1 decreased the number of Pax7-positive SCs after muscle injury. Collectively, these findings indicate for the first time that Ror1 has a critical role in regulating SC proliferation during skeletal muscle regeneration. We conclude that Ror1 might be a suitable target in the development of diagnostic and therapeutic approaches to manage muscular disorders. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Cell Surface Trafficking of TLR1 Is Differentially Regulated by the Chaperones PRAT4A and PRAT4B*

    PubMed Central

    Hart, Bryan E.; Tapping, Richard I.

    2012-01-01

    The subcellular localization of Toll-like receptors (TLRs) is critical to their ability to function as innate immune sensors of microbial infection. We previously reported that an I602S polymorphism of human TLR1 is associated with aberrant trafficking of the receptor to the cell surface, loss of responses to TLR1 agonists, and differential susceptibility to diseases caused by pathogenic mycobacteria. Through an extensive analysis of receptor deletion and point mutants we have discovered that position 602 resides within a short 6 amino acid cytoplasmic region that is required for TLR1 surface expression. This short trafficking motif, in conjunction with the adjacent transmembrane domain, is sufficient to direct TLR1 to the cell surface. A serine at position 602 interrupts this trafficking motif and prevents cell surface expression of TLR1. Additionally, we have found that ER-resident TLR chaperones, PRAT4A and PRAT4B, act as positive and negative regulators of TLR1 surface trafficking, respectively. Importantly, either over-expression of PRAT4A or knock-down of PRAT4B rescues cell surface expression of the TLR1 602S variant. We also report that IFN-γ treatment of primary human monocytes derived from homozygous 602S individuals rescues TLR1 cell surface trafficking and cellular responses to soluble agonists. This event appears to be mediated by PRAT4A whose expression is strongly induced in human monocytes by IFN-γ. Collectively, these results provide a mechanism for the differential trafficking of TLR1 I602S variants, and highlight the distinct roles for PRAT4A and PRAT4B in the regulation of TLR1 surface expression. PMID:22447933

  19. Immunohistochemical and Biochemical Expression Patterns of TTF-1, RAGE, GLUT-1 and SOX2 in HCV-Associated Hepatocellular Carcinomas

    PubMed Central

    Aboushousha, Tarek; Mamdouh, Samah; Hamdy, Hussam; Helal, Noha; Khorshed, Fatma; Safwat, Gehan; Seleem, Mohamed

    2018-01-01

    Objective: To investigate the expression of TTF-1, RAGE, GLUT1 and SOX2 in HCV-associated HCCs and in surrounding non-tumorous liver tissue. Material and Methods: Tissue material from partial hepatectomy cases for HCC along with corresponding serum samples and 30 control serum samples from healthy volunteers were studied. Biopsies were classified into: non-tumor hepatic tissue (36 sections); HCC (33 sections) and liver cell dysplasia (LCD) (15 sections). All cases were positive for HCV. Immunohistochemistry (IHC), gene extraction and quantitative real-time reverse-transcription assays (qRT-PCR) were applied. Results: By IHC, LCD and HCC showed significantly high percentages of positive cases with all markers. SOX2 showed significant increase with higher HCC grades, while RAGE demonstrated an inverse relation and GLUT-1 and TTF-1 lacked any correlation. In nontumorous-HCV tissue, we found significantly high TTF-1, low RAGE and negative SOX2 expression. RAGE, GLUT-1 and SOX2 show non-significant elevation positivity in high grade HCV compared to low grade lesions. TTF-1, RAGE and SOX2 exhibited low expression in cirrhosis compared to fibrosis. Biochemical studies on serum and tissue extracts revealed significant down-regulation of RAGE, GLUT-1 and SOX2 genes, as well as significant up-regulation of the TTF-1 gene in HCC cases compared to controls. All studied genes show significant correlation with HCC grade. In non-tumor tissue, only TTF-1 gene expression had a significant correlation with the fibrosis score. Conclusion: Higher expression of TTF-1, RAGE, GLUT-1 and SOX2 in HCC and dysplasia compared to non-tumor tissues indicates up-regulation of these markers as early events during the development of HCV-associated HCC. PMID:29373917

  20. Immunohistochemical and Biochemical Expression Patterns of TTF-1, RAGE, GLUT-1 and SOX2 in HCV-Associated Hepatocellular Carcinomas

    PubMed

    Aboushousha, Tarek; Mamdouh, Samah; Hamdy, Hussam; Helal, Noha; Khorshed, Fatma; Safwat, Gehan; Seleem, Mohamed

    2018-01-27

    Objective: To investigate the expression of TTF-1, RAGE, GLUT1 and SOX2 in HCV-associated HCCs and in surrounding non-tumorous liver tissue. Material and Methods: Tissue material from partial hepatectomy cases for HCC along with corresponding serum samples and 30 control serum samples from healthy volunteers were studied. Biopsies were classified into: non-tumor hepatic tissue (36 sections); HCC (33 sections) and liver cell dysplasia (LCD) (15 sections). All cases were positive for HCV. Immunohistochemistry (IHC), gene extraction and quantitative real-time reverse-transcription assays (qRT-PCR) were applied. Results: By IHC, LCD and HCC showed significantly high percentages of positive cases with all markers. SOX2 showed significant increase with higher HCC grades, while RAGE demonstrated an inverse relation and GLUT-1 and TTF-1 lacked any correlation. In nontumorous-HCV tissue, we found significantly high TTF-1, low RAGE and negative SOX2 expression. RAGE, GLUT-1 and SOX2 show non-significant elevation positivity in high grade HCV compared to low grade lesions. TTF-1, RAGE and SOX2 exhibited low expression in cirrhosis compared to fibrosis. Biochemical studies on serum and tissue extracts revealed significant down-regulation of RAGE, GLUT-1 and SOX2 genes, as well as significant up-regulation of the TTF-1 gene in HCC cases compared to controls. All studied genes show significant correlation with HCC grade. In non-tumor tissue, only TTF-1 gene expression had a significant correlation with the fibrosis score. Conclusion: Higher expression of TTF-1, RAGE, GLUT-1 and SOX2 in HCC and dysplasia compared to non-tumor tissues indicates up-regulation of these markers as early events during the development of HCV-associated HCC. Creative Commons Attribution License

  1. Alu-derived cis-element regulates tumorigenesis-dependent gastric expression of GASDERMIN B (GSDMB).

    PubMed

    Komiyama, Hiromitsu; Aoki, Aya; Tanaka, Shigekazu; Maekawa, Hiroshi; Kato, Yoriko; Wada, Ryo; Maekawa, Takeo; Tamura, Masaru; Shiroishi, Toshihiko

    2010-02-01

    GASDERMIN B (GSDMB) belongs to the novel gene family GASDERMIN (GSDM). All GSDM family members are located in amplicons, genomic regions often amplified during cancer development. Given that GSDMB is highly expressed in cancerous cells and the locus resides in an amplicon, GSDMB may be involved in cancer development and/or progression. However, only limited information is available on GSDMB expression in tissues, normal and cancerous, from cancer patients. Furthermore, the molecular mechanisms that regulate GSDMB expression in gastric tissues are poorly understood. We investigated the spatiotemporal expression patterns of GSDMB in gastric cancer patients and the 5' regulatory sequences upstream of GSDMB. GSDMB was not expressed in the majority of normal gastric-tissue samples, and the expression level was very low in the few normal samples with GSDMB expression. Most pre-cancer samples showed moderate GSDMB expression, and most cancerous samples showed augmented GSDMB expression. Analysis of genome sequences revealed that an Alu element resides in the 5' region upstream of GSDMB. Reporter assays using intact, deleted, and mutated Alu elements clearly showed that this Alu element positively regulates GSDMB expression and that a putative IKZF binding motif in this element is crucial to upregulate GSDMB expression.

  2. Prohibitin promotes androgen receptor activation in ER-positive breast cancer

    PubMed Central

    Liu, Pengying; Xu, Yumei; Zhang, Wenwen; Li, Yan; Tang, Lin; Chen, Weiwei; Xu, Jing; Sun, Qian; Guan, Xiaoxiang

    2017-01-01

    ABSTRACT Prohibitin (PHB) is an evolutionarily conserved protein with multiple functions in both normal and cancer cells. Androgen receptor (AR) was reported to act as a different role in the ER-positive and ER-negative breast cancer. However, little is known about the role of PHB and whether PHB could regulate AR expression in the ER-positive breast cancer. Here, we determined the expression and clinical outcomes of PHB in breast cancer samples using 121 breast cancer tissues and published databases, and investigated the role of PHB in breast cancer cell growth, apoptosis and cell cycle arrest in the ER-positive breast cancer cells. We obtained the expression of PHB is significantly low in breast cancer samples, and low PHB expression positively correlated with poor prognosis of breast cancer. We detected that PHB could inhibit breast cancer cell proliferation, change cell cycle distribution and promote cell apoptosis in the ER-positive breast cancer cells. Moreover, we found PHB could significantly increase AR expression in both mRNA and protein levels in the ER-positive breast cancer cells. Additionally, a significant positive correlation between PHB and AR expression was identified in the 121 breast cancer tissues. PHB and AR expression are associated with prognosis in the ER-positive breast cancer patients. Our results indicate that PHB promotes AR activation in ER-positive breast cancer, making PHB and AR potential molecular targets for ER-positive breast cancer therapy. PMID:28272969

  3. PTP1B promotes aggressiveness of breast cancer cells by regulating PTEN but not EMT.

    PubMed

    Liu, Xue; Chen, Qian; Hu, Xu-Gang; Zhang, Xian-Chao; Fu, Ti-Wei; Liu, Qing; Liang, Yan; Zhao, Xi-Long; Zhang, Xia; Ping, Yi-Fang; Bian, Xiu-Wu

    2016-10-01

    Metastasis is a complicated, multistep process and remains the major cause of cancer-related mortality. Exploring the molecular mechanisms underlying tumor metastasis is crucial for development of new strategies for cancer prevention and treatment. In this study, we found that protein tyrosine phosphatase 1B (PTP1B) promoted breast cancer metastasis by regulating phosphatase and tensin homolog (PTEN) but not epithelial-mesenchymal transition (EMT). By detecting PTP1B expression of the specimens from 128 breast cancer cases, we found that the level of PTP1B was higher in breast cancer tissues than the corresponding adjacent normal tissues. Notably, PTP1B was positively associated with lymph node metastasis (LNM) and estrogen receptor (ER) status. In vitro, disturbing PTP1B expression obviously attenuated cell migration and invasion. On the contrary, PTP1B overexpression significantly increased migration and invasion of breast cancer cells. Mechanistically, PTP1B knockdown upregulated PTEN, accompanied with an abatement of AKT phosphorylation and the expression of matrix metalloproteinase 2 (MMP2) and MMP7. Conversely, forced expression of PTP1B reduced PTEN and increased AKT phosphorylation as well as the expression of MMP2 and MMP7. Notably, neither EMT nor stemness of breast cancer cells was regulated by PTP1B. We also found that PTP1B acted as an independent prognostic factor and predicted poor prognosis in ER-positive breast cancer patients. Taken together, our findings provide advantageous evidence for the development of PTP1B as a potential therapeutic target for breast cancer, especially for ER-positive breast cancer patients.

  4. Expression of alkyl hydroperoxide reductase is regulated negatively by OxyR1 and positively by RpoE2 sigma factor in Azospirillum brasilense Sp7.

    PubMed

    Singh, Sudhir; Dwivedi, Susheel Kumar; Singh, Vijay Shankar; Tripathi, Anil Kumar

    2016-10-01

    OxyR proteins are LysR-type transcriptional regulators, which play an important role in responding to oxidative stress in bacteria. Azospirillum brasilense Sp7 harbours two copies of OxyR. The inactivation of the oxyR1, the gene organized divergently to ahpC in A. brasilense Sp7, led to an increased tolerance to alkyl hydroperoxides, which was corroborated by an increase in alkyl hydroperoxide reductase (AhpC) activity, enhanced expression of ahpC :lacZ fusion and increased synthesis of AhpC protein in the oxyR1::km mutant. The upstream region of ahpC promoter harboured a putative OxyR binding site, T-N11-A. Mutation of T, A or both in the T-N11-Amotif caused derepression of ahpC in A. brasilense suggesting that T-N11-A might be the binding site for a negative regulator. Retardation of the electrophoretic mobility of the T-N11-A motif harbouring oxyR1-ahpC intergenic DNA by recombinant OxyR1, under reducing as well as oxidizing conditions, indicated that OxyR1 acts as a negative regulator of ahpC in A. brasilense. Sequence of the promoter of ahpC, predicted on the basis of transcriptional start site, and an enhanced expression of ahpC:lacZ fusion in chrR2::km mutant background suggested that ahpC promoter was RpoE2 dependent. Thus, this study shows that in A. brasilense Sp7, ahpC expression is regulated negatively by OxyR1 but is regulated positively by RpoE2, an oxidative-stress-responsive sigma factor. It also shows that OxyR1 regulates the expression RpoE1, which is known to play an important role during photooxidative stress in A. brasilense.

  5. Transcriptome sequencing of Eucalyptus camaldulensis seedlings subjected to water stress reveals functional single nucleotide polymorphisms and genes under selection

    PubMed Central

    2012-01-01

    Background Water stress limits plant survival and production in many parts of the world. Identification of genes and alleles responding to water stress conditions is important in breeding plants better adapted to drought. Currently there are no studies examining the transcriptome wide gene and allelic expression patterns under water stress conditions. We used RNA sequencing (RNA-seq) to identify the candidate genes and alleles and to explore the evolutionary signatures of selection. Results We studied the effect of water stress on gene expression in Eucalyptus camaldulensis seedlings derived from three natural populations. We used reference-guided transcriptome mapping to study gene expression. Several genes showed differential expression between control and stress conditions. Gene ontology (GO) enrichment tests revealed up-regulation of 140 stress-related gene categories and down-regulation of 35 metabolic and cell wall organisation gene categories. More than 190,000 single nucleotide polymorphisms (SNPs) were detected and 2737 of these showed differential allelic expression. Allelic expression of 52% of these variants was correlated with differential gene expression. Signatures of selection patterns were studied by estimating the proportion of nonsynonymous to synonymous substitution rates (Ka/Ks). The average Ka/Ks ratio among the 13,719 genes was 0.39 indicating that most of the genes are under purifying selection. Among the positively selected genes (Ka/Ks > 1.5) apoptosis and cell death categories were enriched. Of the 287 positively selected genes, ninety genes showed differential expression and 27 SNPs from 17 positively selected genes showed differential allelic expression between treatments. Conclusions Correlation of allelic expression of several SNPs with total gene expression indicates that these variants may be the cis-acting variants or in linkage disequilibrium with such variants. Enrichment of apoptosis and cell death gene categories among the positively selected genes reveals the past selection pressures experienced by the populations used in this study. PMID:22853646

  6. Repression of ESR1 transcription by MYOD potentiates letrozole-resistance in ERα-positive breast cancer cells.

    PubMed

    Zhang, Qiang; Liu, Xiao-Yan; Li, Shuang; Zhao, Zhao; Li, Juan; Cui, Ming-Ke; Wang, En-Hua

    2017-10-21

    Transcriptional silencing of estrogen receptor α (ERα) expression is an important etiology contributing to the letrozole-resistance in ERα-positive breast cancer (BCa) cells, but the transcription factors responsible for this transcriptional repression remain largely unidentified. Here we report that the expression of the basic helix-loop-helix myogenic regulatory factor MYOD was abnormally up-regulated in letrozole-resistant BCa tissues and in experimentally-induced letrozole-resistant BCa cells. Overexpression of the exogenous MYOD impaired ERα expression and potentiated letrozole-resistance in letrozole-sensitive MCF7 cells, whereas MYOD knockdown could effectively restore ERα expression and thereby promote letrozole-sensitivity in letrozole-resistant MCF-7/LR cells. Mechanistically, MYOD was shown to be a potent corepressor of ESR1 transcription, and this transcriptional repression was significantly enhanced in the presence of letrozole treatment. Thus, targeted inhibition of MYOD may restore ERα level and lead to resensitization to letrozole-based hormone therapy, providing a novel therapeutic strategy for relapsed ERα-positive BCa patients. Our data also underscore an unexpected chemotherapeutic facet of MYOD, which may operate as a novel regulator of BCa biology. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Reconstruction of nuclear receptor network reveals that NR2E3 is a novel upstream regulator of ESR1 in breast cancer

    PubMed Central

    Park, Yun-Yong; Kim, Kyounghyun; Kim, Sang-Bae; Hennessy, Bryan T; Kim, Soo Mi; Park, Eun Sung; Lim, Jae Yun; Li, Jane; Lu, Yiling; Gonzalez-Angulo, Ana Maria; Jeong, Woojin; Mills, Gordon B; Safe, Stephen; Lee, Ju-Seog

    2012-01-01

    ESR1 is one of the most important transcription factors and therapeutic targets in breast cancer. By applying systems-level re-analysis of publicly available gene expression data, we uncovered a potential regulator of ESR1. We demonstrated that orphan nuclear receptor NR2E3 regulates ESR1 via direct binding to the ESR1 promoter with concomitant recruitment of PIAS3 to the promoter in breast cancer cells, and is essential for physiological cellular activity of ESR1 in estrogen receptor (ER)-positive breast cancer cells. Moreover, expression of NR2E3 was significantly associated with recurrence-free survival and a favourable response to tamoxifen treatment in women with ER-positive breast cancer. Our results provide mechanistic insights on the regulation of ESR1 by NR2E3 and the clinical relevance of NR2E3 in breast cancer. PMID:22174013

  8. Inhibition of PDE4B suppresses inflammation by increasing expression of the deubiquitinase CYLD

    PubMed Central

    Komatsu, Kensei; Lee, Ji-Yun; Miyata, Masanori; Hyang Lim, Jae; Jono, Hirofumi; Koga, Tomoaki; Xu, Haidong; Yan, Chen; Kai, Hirofumi; Li, Jian-Dong

    2013-01-01

    The deubiquitinase CYLD acts as a key negative regulator to tightly control overactive inflammation. Most anti-inflammatory strategies have focused on directly targeting the positive regulator, which often results in significant side effects such as suppression of the host defence response. Here, we show that inhibition of phosphodiesterase 4B (PDE4B) markedly enhances upregulation of CYLD expression in response to bacteria, thereby suggesting that PDE4B acts as a negative regulator for CYLD. Interestingly, in Cyld-deficient mice, inhibition of PDE4B no longer suppresses inflammation. Moreover, PDE4B negatively regulates CYLD via specific activation of JNK2 but not JNK1. Importantly, ototopical post-inoculation administration of a PDE4 inhibitor suppresses inflammation in this animal model, thus demonstrating the therapeutic potential of targeting PDE4. These studies provide insights into how inflammation is tightly regulated via the inhibition of its negative regulator and may also lead to the development of new anti-inflammatory therapeutics that upregulate CYLD expression. PMID:23575688

  9. Cell-type-specific expression of neural cell adhesion molecule (N-CAM) in Ito cells of rat liver. Up-regulation during in vitro activation and in hepatic tissue repair.

    PubMed

    Knittel, T; Aurisch, S; Neubauer, K; Eichhorst, S; Ramadori, G

    1996-08-01

    Ito cells (lipocytes, stellate cells) are regarded as the principle matrix-producing cell of the liver and have been shown recently to express glial fibrillary acidic protein, an intermediate filament typically found in glia cells of the nervous system. The present study examines 1) whether Ito cells of rat liver express central nervous system typical adhesion molecules, namely, neural cell adhesion molecule (N-CAM), in a cell-type-specific manner and 2) whether N-CAM expression is affected by activation of Ito cells in vitro and during rat liver injury in vivo. As assessed by reverse transcriptase polymerase chain reaction, Northern blotting, Western blotting, and immunocytochemistry of freshly isolated and cultivated hepatic cells, N-CAM expression was restricted to Ito cells and was absent in hepatocytes, Kupffer cells, and sinusoidal endothelial cells. Ito cells expressed predominantly N-CAM-coding transcripts of 6.1 and 4.8 kb in size and 140-kd isoforms of the N-CAM protein, which was localized on the cell surface membrane of Ito cells. In parallel to glial fibrillary acidic protein down-regulation and smooth muscle alpha-actin up-regulation, N-CAM expression was increased during in vitro transformation of Ito cells from resting to activated (myofibroblast-like) cells and by the fibrogenic mediator transforming growth factor-beta 1. By immunohistochemistry, N-CAM was detected in normal rat liver in the portal field as densely packed material and in a spot as well as fiber-like pattern probably representing nerve structures. However, after liver injury, N-CAM expression became detectable in mesenchymal cells within and around the necrotic area and within fibrotic septae. In serially cut tissue sections, N-CAM-positive cells were predominantly co-distributed with smooth muscle alpha-actin-positive cells rather than glial fibrillary acidic protein-positive cells, especially in fibrotic livers. The experimental results illustrate that N-CAM positivity in the liver cannot be solely ascribed to nerve endings as, among the different types of resident liver cells, Ito cells specifically express N-CAM in vitro and presumably in vivo. In addition to its role as potential cell-type-specific marker protein for activated Ito cells, the induction of N-CAM expression might illustrate a mechanism by which mesenchymal cell proliferation might be inhibited when tissue repair is concluded.

  10. Role of ERRF, a Novel ER-Related Nuclear Factor, in the Growth Control of ER-Positive Human Breast Cancer Cells

    PubMed Central

    Su, Dan; Fu, Xiaoying; Fan, Songqing; Wu, Xiao; Wang, Xin-Xin; Fu, Liya; Dong, Xue-Yuan; Ni, Jianping Jenny; Fu, Li; Zhu, Zhengmao; Dong, Jin-Tang

    2012-01-01

    Whereas estrogen–estrogen receptor α (ER) signaling plays an important role in breast cancer growth, it is also necessary for the differentiation of normal breast epithelial cells. How this functional conversion occurs, however, remains unknown. Based on a genome-wide sequencing study that identified mutations in several breast cancer genes, we examined some of the genes for mutations, expression levels, and functional effects on cell proliferation and tumorigenesis. We present the data for C1orf64 or ER-related factor (ERRF) from 31 cell lines and 367 primary breast cancer tumors. Whereas mutation of ERRF was infrequent (1 of 79 or 1.3%), its expression was up-regulated in breast cancer, and the up-regulation was more common in lower-stage tumors. In addition, increased ERRF expression was significantly associated with ER and/or progesterone receptor (PR) positivity, which was still valid in human epidermal growth factor receptor 2 (HER2)–negative tumors. In ER-positive tumors, ERRF expression was inversely correlated with HER2 status. Furthermore, higher ERRF protein expression was significantly associated with better disease-free survival and overall survival, particularly in ER- and/or PR-positive and HER2-negative tumors (luminal A subtype). Functionally, knockdown of ERRF in two ER-positive breast cancer cell lines, T-47D and MDA-MB-361, suppressed cell growth in vitro and tumorigenesis in xenograft models. These results suggest that ERRF plays a role in estrogen-ER–mediated growth of breast cancer cells and could, thus, be a potential therapeutic target. PMID:22341523

  11. Heterosis in rice seedlings: its relationship to gibberellin content and expression of gibberellin metabolism and signaling genes.

    PubMed

    Ma, Qian; Hedden, Peter; Zhang, Qifa

    2011-08-01

    Despite the accumulation of data on the genetic and molecular understanding of heterosis, there is little information on the regulation of heterosis at the physiological level. In this study, we performed a quantitative analysis of endogenous gibberellin (GA) content and expression profiling of the GA metabolism and signaling genes to investigate the possible relationship between GA signaling and heterosis for seedling development in rice (Oryza sativa). The materials used were an incomplete diallele set of 3 × 3 crosses and the six parents. In the growing shoots of the seedlings at 20 d after sowing, significant positive correlations between the contents of some GA species and performance and heterosis based on shoot dry mass were detected. Expression analyses of GA-related genes by real-time reverse transcription-polymerase chain reaction revealed that 13 out of the 16 GA-related genes examined exhibited significant differential expression among the F1 hybrid and its parents, acting predominantly in the modes of overdominance and positive dominance. Expression levels of nine genes in the hybrids displayed significant positive correlations with the heterosis of shoot dry mass. These results imply that GAs play a positive role in the regulation of heterosis for rice seedling development. In shoots plus root axes of 4-d-old germinating seeds that had undergone the deetiolation, mimicking normal germination in soil, the axis dry mass was positively correlated with the content of GA₂₉ but negatively correlated with that of GA₁₉. Our findings provide supporting evidence for GAs playing an important regulatory role in heterosis for rice seedling development.

  12. Triptolide inhibits proliferation of Epstein–Barr virus-positive B lymphocytes by down-regulating expression of a viral protein LMP1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Heng; Guo, Wei; Long, Cong

    Highlights: • Triptolide inhibits proliferation of EBV-positive lymphoma cells in vitro and in vivo. • Triptolide reduces expression of LMP1 by decreasing its transcription level. • Triptolide inhibits ED-L1 promoter activity. - Abstract: Epstein–Barr virus (EBV) infects various types of cells and mainly establishes latent infection in B lymphocytes. The viral latent membrane protein 1 (LMP1) plays important roles in transformation and proliferation of B lymphocytes infected with EBV. Triptolide is a compound of Tripterygium extracts, showing anti-inflammatory, immunosuppressive, and anti-cancer activities. In this study, it is determined whether triptolide inhibits proliferation of Epstein–Barr virus-positive B lymphocytes. The CCK-8 assaysmore » were performed to examine cell viabilities of EBV-positive B95-8 and P3HR-1 cells treated by triptolide. The mRNA and protein levels of LMP1 were examined by real time-PCR and Western blotting, respectively. The activities of two LMP1 promoters (ED-L1 and TR-L1) were determined by Dual luciferase reportor assay. The results showed that triptolide inhibited the cell viability of EBV-positive B lymphocytes, and the over-expression of LMP1 attenuated this inhibitory effect. Triptolide decreased the LMP1 expression and transcriptional levels in EBV-positive B cells. The activity of LMP1 promoter ED-L1 in type III latent infection was strongly suppressed by triptolide treatment. In addition, triptolide strongly reduced growth of B95-8 induced B lymphoma in BALB/c nude mice. These results suggest that triptolide decreases proliferation of EBV-induced B lymphocytes possibly by a mechanism related to down-regulation of the LMP1 expression.« less

  13. Down-regulation of Toll-like Receptor TLR4 Is Associated with HPV DNA Integration in Penile Carcinoma.

    PubMed

    Damasdi, Miklos; Kovacs, Krisztina; Farkas, Nelli; Jakab, Ferenc; Kovacs, Gyula

    2017-10-01

    Development of penile cancers is attributed to HPV-related carcinogenesis. Our aim was to analyze HPV positivity and TLR4, p16 ink4a and p53 expression. HPV presence was assessed with virus-specific TaqMan PCR and HPV Genotyping Test in 31 penile cancers. Immunohistochemistry was carried out on tissue microarray. TLR4 expression was detected in 4 of the 16 HPV positive and 13 of the 15 HPV negative tumors. We found a significant inverse correlation between HPV positivity and TLR4 expression (p=0.0006). Ten of the 16 HPV-positive but none of the 15 HPV-negative tumors expressed p16INK4a. A significant correlation was seen between p53 expression and lack of HPV DNA (p=0.0191) as well as between TLR4 and p53 expression (p=0.0198) in penile cancers. Our findings suggest a protective role of TLR4 expression against HPV DNA integration and the viral and non-viral carcinogenesis of penile cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  14. RNA binding protein RNPC1 inhibits breast cancer cells metastasis via activating STARD13-correlated ceRNA network.

    PubMed

    Zhang, Zhiting; Guo, Qianqian; Zhang, Shufang; Xiang, Chenxi; Guo, Xinwei; Zhang, Feng; Gao, Lanlan; Ni, Haiwei; Xi, Tao; Zheng, Lufeng

    2018-05-07

    RNA binding proteins (RBPs) are pivotal post-transcriptional regulators. RNPC1, an RBP, acts as a tumor suppressor through binding and regulating the expression of target genes in cancer cells. This study disclosed that RNPC1 expression was positively correlated with breast cancer patients' relapse free and overall survival, and RNPC1suppressed breast cancer cells metastasis. Mechanistically, RNPC1 promoting a competing endogenous network (ceRNA) crosstalk between STARD13, CDH5, HOXD10, and HOXD1 (STARD13-correlated ceRNA network) that we previously confirmed in breast cancer cells through stabilizing the transcripts and thus facilitating the expression of these four genes in breast cancer cells. Furthermore, RNPC1 overexpression restrained the promotion of STARD13, CDH5, HOXD10, and HOXD1 knockdown on cell metastasis. Notably, RNPC1 expression was positively correlated with CDH5, HOXD1 and HOXD10 expression in breast cancer tissues, and attenuated adriamycin resistance. Taken together, these results identified that RNPC1 could inhibit breast cancer cells metastasis via promoting STARD13-correlated ceRNA network.

  15. Tobacco TTG2 and ARF8 function concomitantly to control flower colouring by regulating anthocyanin synthesis genes.

    PubMed

    Li, P; Chen, X; Sun, F; Dong, H

    2017-07-01

    Recently we elucidated that tobacco TTG2 cooperates with ARF8 to regulate the vegetative growth and seed production. Here we show that TTG2 and ARF8 control flower colouring by regulating expression of ANS and DFR genes, which function in anthocyanin biosynthesis. Genetic modifications that substantially altered expression levels of the TTG2 gene and production quantities of TTG2 protein were correlated with flower development and colouring. Degrees of flower colour were increased by TTG2 overexpression but decreased through TTG2 silencing, in coincidence with high and low concentrations of anthocyanins in flowers. Of five genes involved in the anthocyanin biosynthesis pathway, only ANS and DFR were TTG2-regulated and displayed enhancement and diminution of expression with TTG2 overexpression and silencing, respectively. The floral expression of ANS and DFR also needed a functional ARF8 gene, as ANS and DFR expression were attenuated by ARF8 silencing, which concomitantly diminished the role of TTG2 in anthocyanin production. While ARF8 required TTG2 to be expressed by itself and to regulate ANS and DFR expression, the concurrent presence of normally functional TTG2 and ARF8 was critical for floral production of anthocyanins and also for flower colouration. Our data suggest that TTG2 functions concomitantly with ARF8 to control degrees of flower colour by regulating expression of ANS and DFR, which are involved in the anthocyanin biosynthesis pathway. ARF8 depends on TTG2 to regulate floral expression of ANS and DFR with positive effects on anthocyanin production and flower colour. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. G protein-coupled receptor 30 expression is up-regulated by EGF and TGF alpha in estrogen receptor alpha-positive cancer cells.

    PubMed

    Vivacqua, Adele; Lappano, Rosamaria; De Marco, Paola; Sisci, Diego; Aquila, Saveria; De Amicis, Francesca; Fuqua, Suzanne A W; Andò, Sebastiano; Maggiolini, Marcello

    2009-11-01

    In the present study, we evaluated the regulation of G protein-coupled receptor (GPR)30 expression in estrogen receptor (ER)-positive endometrial, ovarian, and estrogen-sensitive, as well as tamoxifen-resistant breast cancer cells. We demonstrate that epidermal growth factor (EGF) and TGF alpha transactivate the GPR30 promoter and accordingly up-regulate GPR30 mRNA and protein levels only in endometrial and tamoxifen-resistant breast cancer cells. These effects exerted by EGF and TGF alpha were dependent on EGF receptor (EGFR) expression and activation and involved phosphorylation of the Tyr(1045) and Tyr(1173) EGFR sites. Using gene-silencing experiments and specific pharmacological inhibitors, we have ascertained that EGF and TGF alpha induce GPR30 expression through the EGFR/ERK transduction pathway, and the recruitment of c-fos to the activator protein-1 site located within GPR30 promoter sequence. Interestingly, we show that functional cross talk of GPR30 with both activated EGFR and ER alpha relies on a physical interaction among these receptors, further extending the potential of estrogen to trigger a complex stimulatory signaling network in hormone-sensitive tumors. Given that EGFR/HER2 overexpression is associated with tamoxifen resistance, our data may suggest that ligand-activated EGFR could contribute to the failure of tamoxifen therapy also by up-regulating GPR30, which in turn could facilitates the action of estrogen. In addition, important for resistance is the ability of tamoxifen to bind to and activate GPR30, the expression of which is up-regulated by EGFR activation. Our results emphasize the need for new endocrine agents able to block widespread actions of estrogen without exerting any stimulatory activity on transduction pathways shared by the steroid and growth factor-signaling networks.

  17. Enhanced endothelial cell senescence by lithium-induced matrix metalloproteinase-1 expression.

    PubMed

    Struewing, Ian T; Durham, Samuel N; Barnett, Corey D; Mao, Catherine D

    2009-06-26

    Endothelial cell (EC) senescence and dysfunction occurring after chronic injury and inflammation are highly associated with the development and progression of cardiovascular diseases. However, the factors involved in the establishment of EC senescence remain poorly understood. We have previously shown that lithium, an inhibitor of glycogen synthase kinase (GSK)-3beta and activator of the Wnt/beta-catenin signaling pathway, induces an EC senescent-like phenotype. Herein, we show that lithium induces a rapid and pronounced up-regulation of the matrix metalloproteinase (MMP)-1, an inflammation and senescent cell marker, at the mRNA and protein levels, whereas the induction of two other senescent cell markers is either weak (interleukin-8) or delayed (plasminogen activator inhibitor-1). Lithium effect on MMP-1 expression is also specific among other MMPs and not mediated by GSK3beta inhibition. Lithium affects MMP-1 expression mainly at the transcriptional level but neither the AP1/Ets regulatory sites nor the redox sensitive (-1607/2G) site in MMP-1 promoter are involved in lithium-dependent MMP-1 regulation. However, down-regulation of p53, a target of lithium in EC, dampens both basal and lithium-induced MMP-1 expression, which further links MMP-1 up-regulation with the establishment of cell senescence. Although increased MMP-1 levels are usually associated with angiogenesis in enabled proliferative EC, the exogenous addition of activated MMP-1 on lithium- arrested EC increases the number of EC positive for the senescent-associated-beta-galactosidase marker. Conversely, down-regulation of MMP-1 expression by small interfering RNAs blunts the lithium-dependent increase in senescent-associated-beta-galactosidase positive cells. Altogether our data indicate that lithium-induced MMP-1 may participate in the reinforcement of EC senescence and reveal a novel mechanism for lithium-induced tissue remodeling.

  18. Astrocytic glutamine synthetase is expressed in the neuronal somatic layers and down-regulated proportionally to neuronal loss in the human epileptic hippocampus.

    PubMed

    Papageorgiou, Ismini E; Valous, Nektarios A; Lahrmann, Bernd; Janova, Hana; Klaft, Zin-Juan; Koch, Arend; Schneider, Ulf C; Vajkoczy, Peter; Heppner, Frank L; Grabe, Niels; Halama, Niels; Heinemann, Uwe; Kann, Oliver

    2018-05-01

    Human mesial temporal lobe epilepsy (MTLE) features subregion-specific hippocampal neurodegeneration and reactive astrogliosis, including up-regulation of the glial fibrillary acidic protein (GFAP) and down-regulation of glutamine synthetase (GS). However, the regional astrocytic expression pattern of GFAP and GS upon MTLE-associated neurodegeneration still remains elusive. We assessed GFAP and GS expression in strict correlation with the local neuronal number in cortical and hippocampal surgical specimens from 16 MTLE patients using immunohistochemistry, stereology and high-resolution image analysis for digital pathology and whole-slide imaging. In the cortex, GS-positive (GS+) astrocytes are dominant in all neuronal layers, with a neuron to GS+ cell ratio of 2:1. GFAP-positive (GFAP+) cells are widely spaced, with a GS+ to GFAP+ cell ratio of 3:1-5:1. White matter astrocytes, on the contrary, express mainly GFAP and, to a lesser extent, GS. In the hippocampus, the neuron to GS+ cell ratio is approximately 1:1. Hippocampal degeneration is associated with a reduction of GS+ astrocytes, which is proportional to the degree of neuronal loss and primarily present in the hilus. Up-regulation of GFAP as a classical hallmark of reactive astrogliosis does not follow the GS-pattern and is prominent in the CA1. Reactive alterations were proportional to the neuronal loss in the neuronal somatic layers (stratum pyramidale and hilus), while observed to a lesser extent in the axonal/dendritic layers (stratum radiatum, molecular layer). We conclude that astrocytic GS is expressed in the neuronal somatic layers and, upon neurodegeneration, is down-regulated proportionally to the degree of neuronal loss. © 2018 Wiley Periodicals, Inc.

  19. Arabidopsis ROP-interactive CRIB motif-containing protein 1 (RIC1) positively regulates auxin signalling and negatively regulates abscisic acid (ABA) signalling during root development.

    PubMed

    Choi, Yunjung; Lee, Yuree; Kim, Soo Young; Lee, Youngsook; Hwang, Jae-Ung

    2013-05-01

    Auxin and abscisic acid (ABA) modulate numerous aspects of plant development together, mostly in opposite directions, suggesting that extensive crosstalk occurs between the signalling pathways of the two hormones. However, little is known about the nature of this crosstalk. We demonstrate that ROP-interactive CRIB motif-containing protein 1 (RIC1) is involved in the interaction between auxin- and ABA-regulated root growth and lateral root formation. RIC1 expression is highly induced by both hormones, and expressed in the roots of young seedlings. Whereas auxin-responsive gene induction and the effect of auxin on root growth and lateral root formation were suppressed in the ric1 knockout, ABA-responsive gene induction and the effect of ABA on seed germination, root growth and lateral root formation were potentiated. Thus, RIC1 positively regulates auxin responses, but negatively regulates ABA responses. Together, our results suggest that RIC1 is a component of the intricate signalling network that underlies auxin and ABA crosstalk. © 2012 Blackwell Publishing Ltd.

  20. RNA-mediated regulation in Gram-positive pathogens: an overview punctuated with examples from the group A Streptococcus

    PubMed Central

    Miller, Eric W.; Cao, Tram N.; Pflughoeft, Kathryn J.; Sumby, Paul

    2014-01-01

    RNA-based mechanisms of regulation represent a ubiquitous class of regulators that are associated with diverse processes including nutrient sensing, stress response, modulation of horizontal gene transfer, and virulence factor expression. While better studied in Gram-negative bacteria, the literature is replete with examples of the importance of RNA-mediated regulatory mechanisms to the virulence and fitness of Gram-positives. Regulatory RNAs are classified as cis-acting, e.g. riboswitches, which modulate the transcription, translation, or stability of co-transcribed RNA, or trans-acting, e.g. small regulatory RNAs, which target separate mRNAs or proteins. The group A Streptococcus (GAS, Streptococcus pyogenes) is a Gram-positive bacterial pathogen from which several regulatory RNA mechanisms have been characterized. The study of RNA-mediated regulation in GAS has uncovered novel concepts with respect to how small regulatory RNAs may positively regulate target mRNA stability, and to how CRISPR RNAs are processed from longer precursors. This review provides an overview of RNA-mediated regulation in Gram-positive bacteria, and is highlighted with specific examples from GAS research. The key roles that these systems play in regulating bacterial virulence are discussed and future perspectives outlined. PMID:25091277

  1. UP-REGULATION OF IL-6, IL-8 AND CCL2 GENE EXPRESSION AFTER ACUTE INFLAMMATION: CORRELATION TO CLINICAL PAIN

    PubMed Central

    Wang, Xiao-Min; Hamza, May; Wu, Tai-Xia; Dionne, Raymond A.

    2012-01-01

    Tissue injury initiates a cascade of inflammatory mediators and hyperalgesic substances including prostaglandins, cytokines and chemokines. Using microarray and qRT-PCR gene expression analyses, the present study evaluated changes in gene expression of a cascade of cytokines following acute inflammation and the correlation between the changes in the gene expression level and pain intensity in the oral surgery clinical model of acute inflammation. Tissue injury resulted in a significant up-regulation in the gene expression of Interleukin-6 (IL-6; 63.3-fold), IL-8 (8.1-fold), chemokine (C-C motif) ligand 2 (CCL2; 8.9-fold), chemokine (C-X-C motif) ligand 1 (CXCL1; 30.5-fold), chemokine (C-X-C motif) ligand 2 (CXCL2; 26-fold) and annexin A1 (ANXA1; 12-fold). The up-regulation of IL-6 gene expression was significantly correlated to the up-regulation on the gene expression of IL-8, CCL2, CXCL1 and CXCL2. Interestingly, the tissue injury induced up-regulation of IL-6 gene expression, IL-8 and CCL2 were positively correlated to pain intensity at 3 hours post-surgery, the onset of acute inflammatory pain. However, ketorolac treatment did not have a significant effect on the gene expression of IL-6, IL-8, CCL2, CXCL2 and ANXA1 at the same time point of acute inflammation. These results demonstrate that up-regulation of IL-6, IL-8 and CCL2 gene expression contributes to the development of acute inflammation and inflammatory pain. The lack of effect for ketorolac on the expression of these gene products may be related to the ceiling analgesic effects of non-steroidal anti-inflammatory drugs. PMID:19233564

  2. Effect of DanQi Pill on PPARα, lipid disorders and arachidonic acid pathway in rat model of coronary heart disease.

    PubMed

    Chang, Hong; Wang, Qiyan; Shi, Tianjiao; Huo, Kuiyuan; Li, Chun; Zhang, Qian; Wang, Guoli; Wang, Yuanyuan; Tang, Binghua; Wang, Wei; Wang, Yong

    2016-03-22

    Danqi pill (DQP) is one of the most widely prescribed formulas and has been shown to have remarkable protective effect on coronary heart disease (CHD). However, its regulatory effects on lipid metabolism disorders haven't been comprehensively studied so far. We aimed to explore the effects of DQP on Peroxisome Proliferator activated receptors α (PPARα), lipid uptake-transportation-metabolism pathway and arachidonic acid (AA)-mediated inflammation pathway in rats with CHD. 80 Sprague-Dawley (SD) Rats were randomly divided into sham group, model group, positive control group and DQP group. Rat model of CHD was induced by ligation of left ventricle anterior descending artery and fed with high fat diet in all but the sham group. Rats in sham group only underwent thoracotomy. After surgery, rats in the positive control and DQP group received daily treatments of pravastatin and DQP respectively. At 28 days after surgery, rats were sacrificed and plasma lipids were evaluated by plasma biochemical detection. Western blot and PCR were applied to evaluate the expressions of PPARα, proteins involved in lipid metabolism and AA pathways. Twenty eight days after surgery, dyslipidemia developed in CHD model rats, as illustrated by elevated plasma lipid levels. Expressions of apolipoprotein A-I (ApoA-I), cluster of differentiation 36 (CD36) and fatty acid binding protein (FABP) in the heart tissues of model group were down-regulated compared with those in sham group. Expressions of carnitine palmitoyl transferase I (CPT-1A) and lipoproteinlipase (LPL) were also reduced significantly. In addition, levels of phospholipase A2 (PLA2) and cyclooxygenase 2 (COX-2) were up-regulated. Expressions of Nuclear factor-κB (NF- κB) and signal transducer and activator of transcription 3 (STAT3) also increased. Furthermore, Expression of PPARα decreased in the model group. DQP significantly up-regulated expressions of ApoA-I and FABP, as well as the expressions of CPT-1A and CD36. In addition, DQP down-regulated expressions of PLA2, COX-2 and NF-κB in inflammation pathway. Levels of STAT3 and LPL were not affected by DQP treatment. In particular, DQP up-regulated PPARα level significantly. DQP could effectively regulate lipid uptake-transportation-metabolism process in CHD model rats, and the effect is achieved mainly by activating ApoA-I-CD36-CPT-1A molecules. Interestingly, DQP can up-regulate expression of PPARα significantly. The anti-inflammatory effect of DQP is partly exerted by inhibiting expressions of PLA2-COX2 -NF-κB pathway.

  3. Suppression of HTLV-1 replication by Tax-mediated rerouting of the p13 viral protein to nuclear speckles

    PubMed Central

    Andresen, Vibeke; Pise-Masison, Cynthia A.; Sinha-Datta, Uma; Bellon, Marcia; Valeri, Valerio; Washington Parks, Robyn; Cecchinato, Valentina; Fukumoto, Risaku; Nicot, Christophe

    2011-01-01

    Disease development in human T-cell leukemia virus type 1 (HTLV-1)–infected individuals is positively correlated with the level of integrated viral DNA in T cells. HTLV-1 replication is positively regulated by Tax and Rex and negatively regulated by the p30 and HBZ proteins. In the present study, we demonstrate that HTLV-1 encodes another negative regulator of virus expression, the p13 protein. Expressed separately, p13 localizes to the mitochondria, whereas in the presence of Tax, part of it is ubiquitinated, stabilized, and rerouted to the nuclear speckles. The p13 protein directly binds Tax, decreases Tax binding to the CBP/p300 transcriptional coactivator, and, by reducing Tax transcriptional activity, suppresses viral expression. Because Tax stabilizes its own repressor, these findings suggest that HTLV-1 has evolved a complex mechanism to control its own replication. Further, these results highlight the importance of studying the function of the HTLV-1 viral proteins, not only in isolation, but also in the context of full viral replication. PMID:21677314

  4. Desensitization and Incomplete Recovery of Hepatic Target Genes After Chronic Thyroid Hormone Treatment and Withdrawal in Male Adult Mice

    PubMed Central

    Ohba, Kenji; Singh, Brijesh Kumar; Sinha, Rohit Anthony; Lesmana, Ronny; Liao, Xiao-Hui; Ghosh, Sujoy; Refetoff, Samuel

    2016-01-01

    Clinical symptoms may vary and not necessarily reflect serum thyroid hormone (TH) levels during acute and chronic hyperthyroidism as well as recovery from hyperthyroidism. We thus examined changes in hepatic gene expression and serum TH/TSH levels in adult male mice treated either with a single T3 (20 μg per 100 g body weight) injection (acute T3) or daily injections for 14 days (chronic T3) followed by 10 days of withdrawal. Gene expression arrays from livers harvested at these time points showed that among positively-regulated target genes, 320 were stimulated acutely and 429 chronically by T3. Surprisingly, only 69 of 680 genes (10.1%) were induced during both periods, suggesting desensitization of the majority of acutely stimulated target genes. About 90% of positively regulated target genes returned to baseline expression levels after 10 days of withdrawal; however, 67 of 680 (9.9%) did not return to baseline despite normalization of serum TH/TSH levels. Similar findings also were observed for negatively regulated target genes. Chromatin immunoprecipitation analysis of representative positively regulated target genes suggested that acetylation of H3K9/K14 was associated with acute stimulation, whereas trimethylation of H3K4 was associated with chronic stimulation. In an in vivo model of chronic intrahepatic hyperthyroidism since birth, adult male monocarboxylate transporter-8 knockout mice also demonstrated desensitization of most acutely stimulated target genes that were examined. In summary, we have identified transcriptional desensitization and incomplete recovery of gene expression during chronic hyperthyroidism and recovery. Our findings may be a potential reason for discordance between clinical symptoms and serum TH levels observed in these conditions. PMID:26866609

  5. Nuclear translocation of β-catenin and decreased expression of epithelial cadherin in human papillomavirus-positive tonsillar cancer: an early event in human papillomavirus-related tumour progression?

    PubMed

    Stenner, Markus; Yosef, Basima; Huebbers, Christian U; Preuss, Simon F; Dienes, Hans-Peter; Speel, Ernst-Jan M; Odenthal, Margarete; Klussmann, Jens P

    2011-06-01

    High-risk human papillomaviruses (HPVs) constitute an important risk factor for tonsillar cancer. This study describes changes in cell adhesion molecules during metastasis of HPV-related and HPV-unrelated tonsillar carcinomas. We examined 48 primary tonsillar carcinoma samples (25 HPV-16 DNA-positive, 23 HPV-16 DNA-negative) and their respective lymph node metastases for their HPV status and for the expression of p16, epithelial cadherin (E-cadherin), β-catenin, and vimentin. A positive HPV-specific polymerase chain reaction finding correlated significantly with p16 overexpression in both primary tumours and their metastases (P<0.0001 for both). In HPV-unrelated carcinomas, the expression of E-cadherin was significantly lower in metastases than in primary tumours (P<0.001). In contrast, the expression of nuclear β-catenin was significantly higher in metastases than in primary tumours (P=0.016). In HPV-related carcinomas, nuclear localization of β-catenin expression was already apparent in primary tumours (P=0.030). The expression of vimentin significantly correlated with the grading of the primary tumour (P=0.021). Our data indicate that the down-regulation of E-cadherin and the up-regulation of nuclear β-catenin expression might be crucial steps during tumour progression of tonsillar carcinomas, being already present in primary tumours in HPV-driven carcinomas, but becoming apparent in HPV-unrelated tumours later in the process of metastasis. © 2011 Blackwell Publishing Limited.

  6. An atypical bHLH protein encoded by POSITIVE REGULATOR OF GRAIN LENGTH 2 is involved in controlling grain length and weight of rice through interaction with a typical bHLH protein APG.

    PubMed

    Heang, Dany; Sassa, Hidenori

    2012-06-01

    Grain size is an important yield component in rice, however, genes controlling the trait remain poorly understood. Previously, we have shown that an antagonistic pair of basic helix-loop-helix (bHLH) proteins, POSITIVE REGULATOR OF GRAIN LENGTH 1 (PGL1) and ANTAGONIST OF PGL1 (APG), is involved in controlling rice grain length. Here, we report the involvement of another atypical bHLH protein gene, POSITIVE REGULATOR OF GRAIN LENGTH 2 (PGL2), in the regulation of rice grain length. Over-expression of PGL2 in the lemma/palea increased grain length and weight in correlation with the level of transgene expression. Observation of the inner epidermal cells of lemma of PGL2-overexpressing lines revealed that the long grain size is caused by an increase in cell length. PGL2 interacts with a typical bHLH protein APG, a negative regulator of rice grain length and weight, in vitro and in vivo. It was reported that overexpression of BU1 (BRASSINOSTEROID UPREGULATED 1), the closest homolog of PGL2, caused an increase in grain length. However, we detected no interaction between BU1 and APG. These findings suggest that PGL2 and PGL1 redundantly suppress the function of APG by forming heterodimers to positively regulate the rice grain length, while the pathway through which BU1, the closest homolog of PGL2, controls grain length is independent of APG.

  7. An atypical bHLH protein encoded by POSITIVE REGULATOR OF GRAIN LENGTH 2 is involved in controlling grain length and weight of rice through interaction with a typical bHLH protein APG

    PubMed Central

    Heang, Dany; Sassa, Hidenori

    2012-01-01

    Grain size is an important yield component in rice, however, genes controlling the trait remain poorly understood. Previously, we have shown that an antagonistic pair of basic helix-loop-helix (bHLH) proteins, POSITIVE REGULATOR OF GRAIN LENGTH 1 (PGL1) and ANTAGONIST OF PGL1 (APG), is involved in controlling rice grain length. Here, we report the involvement of another atypical bHLH protein gene, POSITIVE REGULATOR OF GRAIN LENGTH 2 (PGL2), in the regulation of rice grain length. Over-expression of PGL2 in the lemma/palea increased grain length and weight in correlation with the level of transgene expression. Observation of the inner epidermal cells of lemma of PGL2-overexpressing lines revealed that the long grain size is caused by an increase in cell length. PGL2 interacts with a typical bHLH protein APG, a negative regulator of rice grain length and weight, in vitro and in vivo. It was reported that overexpression of BU1 (BRASSINOSTEROID UPREGULATED 1), the closest homolog of PGL2, caused an increase in grain length. However, we detected no interaction between BU1 and APG. These findings suggest that PGL2 and PGL1 redundantly suppress the function of APG by forming heterodimers to positively regulate the rice grain length, while the pathway through which BU1, the closest homolog of PGL2, controls grain length is independent of APG. PMID:23136524

  8. Analysis tools for the interplay between genome layout and regulation.

    PubMed

    Bouyioukos, Costas; Elati, Mohamed; Képès, François

    2016-06-06

    Genome layout and gene regulation appear to be interdependent. Understanding this interdependence is key to exploring the dynamic nature of chromosome conformation and to engineering functional genomes. Evidence for non-random genome layout, defined as the relative positioning of either co-functional or co-regulated genes, stems from two main approaches. Firstly, the analysis of contiguous genome segments across species, has highlighted the conservation of gene arrangement (synteny) along chromosomal regions. Secondly, the study of long-range interactions along a chromosome has emphasised regularities in the positioning of microbial genes that are co-regulated, co-expressed or evolutionarily correlated. While one-dimensional pattern analysis is a mature field, it is often powerless on biological datasets which tend to be incomplete, and partly incorrect. Moreover, there is a lack of comprehensive, user-friendly tools to systematically analyse, visualise, integrate and exploit regularities along genomes. Here we present the Genome REgulatory and Architecture Tools SCAN (GREAT:SCAN) software for the systematic study of the interplay between genome layout and gene expression regulation. SCAN is a collection of related and interconnected applications currently able to perform systematic analyses of genome regularities as well as to improve transcription factor binding sites (TFBS) and gene regulatory network predictions based on gene positional information. We demonstrate the capabilities of these tools by studying on one hand the regular patterns of genome layout in the major regulons of the bacterium Escherichia coli. On the other hand, we demonstrate the capabilities to improve TFBS prediction in microbes. Finally, we highlight, by visualisation of multivariate techniques, the interplay between position and sequence information for effective transcription regulation.

  9. Transcription Factor Foxo1 Is a Negative Regulator of NK Cell Maturation and Function

    PubMed Central

    Deng, Youcai; Kerdiles, Yann; Chu, Jianhong; Yuan, Shunzong; Wang, Youwei; Chen, Xilin; Mao, Hsiaoyin; Zhang, Lingling; Zhang, Jianying; Hughes, Tiffany; Deng, Yafei; Zhang, Qi; Wang, Fangjie; Zou, Xianghong; Liu, Chang-Gong; Freud, Aharon G.; Li, Xiaohui; Caligiuri, Michael A; Vivier, Eric; Yu, Jianhua

    2015-01-01

    SUMMARY Little is known about the role of negative regulators in controlling natural killer (NK) cell development and effector functions. Foxo1 is a multifunctional transcription factor of the forkhead family. Using a mouse model of conditional deletion in NK cells, we found that Foxo1 negatively controlled NK cell differentiation and function. Immature NK cells expressed abundant Foxo1 and little Tbx21 relative to mature NK cells, but these two transcription factors reversed their expression as NK cells proceeded through development. Foxo1 promoted NK cell homing to lymph nodes through upregulating CD62L expression, and impaired late-stage maturation and effector functions by repressing Tbx21 expression. Loss of Foxo1 rescued the defect in late-stage NK cell maturation in heterozygous Tbx21+/− mice. Collectively, our data reveal a regulatory pathway by which the negative regulator Foxo1 and the positive regulator Tbx21 play opposing roles in controlling NK cell development and effector functions. PMID:25769609

  10. The adapter protein, Grb10, is a positive regulator of vascular endothelial growth factor signaling.

    PubMed

    Giorgetti-Peraldi, S; Murdaca, J; Mas, J C; Van Obberghen, E

    2001-07-05

    Vascular endothelial growth factor (VEGF) is an important regulator of vasculogenesis and angiogenesis. Activation of VEGF receptors leads to the recruitment of SH2 containing proteins which link the receptors to the activation of signaling pathways. Here we report that Grb10, an adapter protein of which the biological role remains unknown, is tyrosine phosphorylated in response to VEGF in endothelial cells (HUVEC) and in 293 cells expressing the VEGF receptor KDR. An intact SH2 domain is required for Grb10 tyrosine phosphorylation in response to VEGF, and this phosphorylation is mediated in part through the activation of Src. In HUVEC, VEGF increases Grb10 mRNA level. Expression of Grb10 in HUVEC or in KDR expressing 293 cells results in an increase in the amount and in the tyrosine phosphorylation of KDR. In 293 cells, this is correlated with the activation of signaling molecules, such as MAP kinase. By expressing mutants of Grb10, we found that the positive action of Grb10 is independent of its SH2 domain. Moreover, these Grb10 effects on KDR seem to be specific since Grb10 has no effect on the insulin receptor, and Grb2, another adapter protein, does not mimic the effect of Grb10 on KDR. In conclusion, we propose that VEGF up-regulates Grb10 level, which in turn increases KDR molecules, suggesting that Grb10 could be involved in a positive feedback loop in VEGF signaling.

  11. Emotion regulation and emotion coherence: evidence for strategy-specific effects.

    PubMed

    Dan-Glauser, Elise S; Gross, James J

    2013-10-01

    One of the central tenets of emotion theory is that emotions involve coordinated changes across experiential, behavioral, and physiological response domains. Surprisingly little is known, however, about how the strength of this emotion coherence is altered when people try to regulate their emotions. To address this issue, we recorded experiential, behavioral, and physiological responses while participants watched negative and positive pictures. Cross-correlations were used to quantify emotion coherence. Study 1 tested how two types of suppression (expressive and physiological) influence coherence. Results showed that both strategies decreased the response coherence measured in negative and positive contexts. Study 2 tested how multichannel suppression (simultaneously targeting expressive and physiological responses) and acceptance influence emotion coherence. Results again showed that suppression decreased coherence. By contrast, acceptance was not significantly different from the unregulated condition. These findings help to clarify the nature of emotion response coherence by showing how different forms of emotion regulation may differentially affect it.

  12. SGK3 sustains ERα signaling and drives acquired aromatase inhibitor resistance through maintaining endoplasmic reticulum homeostasis.

    PubMed

    Wang, Yuanzhong; Zhou, Dujin; Phung, Sheryl; Warden, Charles; Rashid, Rumana; Chan, Nymph; Chen, Shiuan

    2017-02-21

    Many estrogen receptor alpha (ERα)-positive breast cancers initially respond to aromatase inhibitors (AIs), but eventually acquire resistance. Here, we report that serum- and glucocorticoid-inducible kinase 3 (SGK3), a kinase transcriptionally regulated by ERα in breast cancer, sustains ERα signaling and drives acquired AI resistance. SGK3 is up-regulated and essential for endoplasmic reticulum (EnR) homeostasis through preserving sarcoplasmic/EnR calcium ATPase 2b (SERCA2b) function in AI-resistant cells. We have further found that EnR stress response down-regulates ERα expression through the protein kinase RNA-like EnR kinase (PERK) arm, and SGK3 retains ERα expression and signaling by preventing excessive EnR stress. Our study reveals regulation of ERα expression mediated by the EnR stress response and the feed-forward regulation between SGK3 and ERα in breast cancer. Given SGK3 inhibition reduces AI-resistant cell survival by eliciting excessive EnR stress and also depletes ERα expression/function, we propose SGK3 inhibition as a potential effective treatment of acquired AI-resistant breast cancer.

  13. MicroRNA-218 functions as a tumor suppressor in lung cancer by targeting IL-6/STAT3 and negatively correlates with poor prognosis.

    PubMed

    Yang, Yan; Ding, Lili; Hu, Qun; Xia, Jia; Sun, Junjie; Wang, Xudong; Xiong, Hua; Gurbani, Deepak; Li, Lianbo; Liu, Yan; Liu, Aiguo

    2017-08-22

    Aberrant expression of microRNAs in different human cancer types has been widely reported. MiR-218 acts as a tumor suppressor in diverse human cancer types impacting regulation of multiple genes in oncogenic pathways. Here, we evaluated the expression and function of miR-218 in human lung cancer and ALDH positive lung cancer cells to understand the potential mechanisms responsible for disease pathology. Also, the association between its host genes and the target genes could be useful towards the better understanding of prognosis in clinical settings. Publicly-available data from The Cancer Genome Atlas (TCGA) was mined to compare the levels of miR-218 and its host gene SLIT2/3 between lung cancer tissues and normal lung tissues. Transfection of miR-218 to investigate its function in lung cancer cells was done and in vivo effects were determined using miR-218 expressing lentiviruses. Aldefluor assay and Flow cytometry was used to quantify and enrich ALDH positive lung cancer cells. Levels of miR-218, IL-6R, JAK3 and phosphorylated STAT3 were compared in ALDH1A1 positive and ALDH1A1 negative cells. Overexpression of miR-218 in ALDH positive cells was carried to test the survival by tumorsphere culture. Finally, utilizing TCGA data we studied the association of target genes of miR-218 with the prognosis of lung cancer. We observed that the expression of miR-218 was significantly down-regulated in lung cancer tissues compared to normal lung tissues. Overexpression of miR-218 decreased cell proliferation, invasion, colony formation, and tumor sphere formation in vitro and repressed tumor growth in vivo. We further found that miR-218 negatively regulated IL-6 receptor and JAK3 gene expression by directly targeting the 3'-UTR of their mRNAs. In addition, the levels of both miR-218 host genes and the components of IL-6/STAT3 pathway correlated with prognosis of lung cancer patients. MiR-218 acts as a tumor suppressor in lung cancer via IL-6/STAT3 signaling pathway regulation.

  14. Expression and regulation of glucocorticoid-induced leucine zipper in the developing anterior pituitary gland.

    PubMed

    Ellestad, Laura E; Malkiewicz, Stefanie A; Guthrie, H David; Welch, Glenn R; Porter, Tom E

    2009-02-01

    The expression profile of glucocorticoid-induced leucine zipper (GILZ) in the anterior pituitary during the second half of embryonic development in the chick is consistent with in vivo regulation by circulating corticosteroids. However, nothing else has been reported about the presence of GILZ in the neuroendocrine system. We sought to characterize expression and regulation of GILZ in the chicken embryonic pituitary gland and determine the effect of GILZ overexpression on anterior pituitary hormone levels. Pituitary GILZ mRNA levels increased during embryogenesis to a maximum on the day of hatch, and decreased through the first week after hatch. GILZ expression was rapidly upregulated by corticosterone in embryonic pituitary cells. To determine whether GILZ regulates hormone gene expression in the developing anterior pituitary, we overexpressed GILZ in embryonic pituitary cells and measured mRNA for the major pituitary hormones. Exogenous GILZ increased prolactin mRNA above basal levels, but not as high as that in corticosterone-treated cells, indicating that GILZ may play a small role in lactotroph differentiation. The largest effect we observed was a twofold increase in FSH beta subunit in cells transfected with GILZ but not treated with corticosterone, suggesting that GILZ may positively regulate gonadotroph development in a manner not involving glucocorticoids. In conclusion, this is the first report to characterize avian GILZ and examine its regulation in the developing neuroendocrine system. We have shown that GILZ is upregulated by glucocorticoids in the embryonic pituitary gland and may regulate expression of several pituitary hormones.

  15. Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice

    PubMed Central

    Sugimoto, Kazuhiko; Takeuchi, Yoshinobu; Ebana, Kaworu; Miyao, Akio; Hirochika, Hirohiko; Hara, Naho; Ishiyama, Kanako; Kobayashi, Masatomo; Ban, Yoshinori; Hattori, Tsukaho; Yano, Masahiro

    2010-01-01

    Seed dormancy provides a strategy for flowering plants to survive adverse natural conditions. It is also an important agronomic trait affecting grain yield, quality, and processing performance. We cloned a rice quantitative trait locus, Sdr4, which contributes substantially to differences in seed dormancy between japonica (Nipponbare) and indica (Kasalath) cultivars. Sdr4 expression is positively regulated by OsVP1, a global regulator of seed maturation, and in turn positively regulates potential regulators of seed dormancy and represses the expression of postgerminative genes, suggesting that Sdr4 acts as an intermediate regulator of dormancy in the seed maturation program. Japonica cultivars have only the Nipponbare allele (Sdr4-n), which endows reduced dormancy, whereas both the Kasalath allele (Srd4-k) and Sdr4-n are widely distributed in the indica group, indicating prevalent introgression. Srd4-k also is found in the wild ancestor Oryza rufipogon, whereas Sdr4-n appears to have been produced through at least two mutation events from the closest O. rufipogon allele among the accessions examined. These results are discussed with respect to possible selection of the allele during the domestication process. PMID:20220098

  16. Bone resorption and remodeling in murine collagenase-induced osteoarthritis after administration of glucosamine

    PubMed Central

    2011-01-01

    Introduction Glucosamine is an amino-monosaccharide and precursor of glycosaminoglycans, major components of joint cartilage. Glucosamine has been clinically introduced for the treatment of osteoarthritis but the data about its protective role in disease are insufficient. The goal of this study was to investigate the effect of long term administration of glucosamine on bone resorption and remodeling. Methods The effect of glucosamine on bone resorption and remodeling was studied in a model of collagenase-induced osteoarthritis (CIOA). The levels of macrophage-inflammatory protein (MIP)-1α, protein regulated upon activation, normal T-cell expressed, and secreted (RANTES), soluble receptor activator of nuclear factor kappa-B ligand (RANKL), tumor necrosis factor (TNF)-α, and interleukin (IL)-6, 4 and 10 in synovial fluid were measured by enzyme-linked immunosorbent assay (ELISA). Cell populations in synovial extracts and the expression of RANKL, of receptors for TNF-α (TNF-αR) and interferon γ (IFN-γR) on clusters of differentiation (CD) three positive T cells were analyzed by flow cytometry. Transforming growth factor (TGF)-β3, bone morphogenetic protein (BMP)-2, phosphorylated protein mothers against decapentaplegic homolog 2 (pSMAD-2), RANKL and Dickkopf-1 protein (DKK-1) positive staining in CIOA joints were determined by immunohistochemistry. Results The administration of glucosamine hydrochloride in CIOA mice inhibited loss of glycosaminoglycans (GAGs) and proteoglycans (PGs) in cartilage, bone erosion and osteophyte formation. It decreased the levels of soluble RANKL and IL-6 and induced IL-10 increase in the CIOA joint fluids. Glucosamine limited the number of CD11b positive Ly6G neutrophils and RANKL positive CD3 T cells in the joint extracts. It suppressed bone resorption via down-regulation of RANKL expression and affected bone remodeling in CIOA by decreasing BMP-2, TGF-β3 and pSMAD-2 expression and up-regulating DKK-1 joint levels. Conclusions Our data suggest that glucosamine hydrochloride inhibits bone resorption through down-regulation of RANKL expression in the joints, via reduction of the number of RANKL positive CD3 T cells and the level of sRANKL in the joints extracts. These effects of glucosamine appear to be critical for the progression of CIOA and result in limited bone remodeling of the joints. PMID:21410959

  17. Novel regulatory loci controlling oxygen- and pH-regulated gene expression in Salmonella typhimurium.

    PubMed Central

    Aliabadi, Z; Park, Y K; Slonczewski, J L; Foster, J W

    1988-01-01

    Three new loci were discovered, each of which participates in the regulation of anaerobic gene expression. The regulatory gene earA negatively regulates the expression of the anaerobiosis-inducible gene aniG as well as that of at least three other genes, as determined by two-dimensional polyacrylamide gel electrophoresis. The earA locus maps at 86 min. The expression of aniG was also shown to be controlled by changes in external pH under aerobic and anaerobic conditions. Maximal expression was observed under anaerobic conditions at an external pH of 6.0. Significant transcriptional activity was also observed under aerobic conditions at pH 6.0. This was in contrast to hyd, whose expression was dependent upon anaerobiosis and varied with external pH. The pH dependence disappeared under fully aerobic conditions. Mutations in earA had no effect upon hyd expression. The two other regulators identified were oxrF, which controls aniH, and oxrG, which, in concert with oxrA and oxrB, controls aniC and aniI. The oxrG locus was mapped to 88 min and appears to code for a positive regulator. Various oxr mutants were subjected to two-dimensional polyacrylamide electrophoretic analysis of anaerobiosis-inducible proteins. Several pathways of anaerobic control were observed by means of these techniques. Images PMID:3276666

  18. Interaction of Osmotic Stress, Temperature, and Abscisic Acid in the Regulation of Gene Expression in Arabidopsis

    PubMed Central

    Xiong, Liming; Ishitani, Manabu; Zhu, Jian-Kang

    1999-01-01

    The impact of simultaneous environmental stresses on plants and how they respond to combined stresses compared with single stresses is largely unclear. By using a transgene (RD29A-LUC) consisting of the firefly luciferase coding sequence (LUC) driven by the stress-responsive RD29A promoter, we investigated the interactive effects of temperature, osmotic stress, and the phytohormone abscisic acid (ABA) in the regulation of gene expression in Arabidopsis seedlings. Results indicated that both positive and negative interactions exist among the studied stress factors in regulating gene expression. At a normal growth temperature (22°C), osmotic stress and ABA act synergistically to induce the transgene expression. Low temperature inhibits the response to osmotic stress or to combined treatment of osmotic stress and ABA, whereas low temperature and ABA treatments are additive in inducing transgene expression. Although high temperature alone does not activate the transgene, it significantly amplifies the effects of ABA and osmotic stress. The effect of multiple stresses in the regulation of RD29A-LUC expression in signal transduction mutants was also studied. The results are discussed in the context of cold and osmotic stress signal transduction pathways. PMID:9880362

  19. The role of hypoxia and HIF1α in the regulation of STAR-mediated steroidogenesis in granulosa cells.

    PubMed

    Kowalewski, Mariusz Pawel; Gram, Aykut; Boos, Alois

    2015-02-05

    The adaptive responses to hypoxia are mediated by hypoxia-inducible factor 1 alpha (HIF1α). Its role, however, in regulating steroidogenesis remains poorly understood. We examined the role of hypoxia and HIF1α in regulating steroid acute regulatory protein (STAR) expression and steroidogenesis in immortalized (KK1) mouse granulosa cells under progressively lowering O2 concentrations (20%, 15%, 10%, 5%, 1%). Basal and dbcAMP-stimulated progesterone synthesis was decreased under severe hypoxia (1% and 5% O2). The partial hypoxia revealed opposing effects, with a significant increase in steroidogenic response at 10% O2 in dbcAMP-treated cells: Star-promoter activity, mRNA and protein expression were increased. The hypoxia-stimulated STAR expression was PKA-dependent. Binding of HIF1α to the Star-promoter was potentiated under partial hypoxia. Inhibition of the transcriptional activity or expression of HIF1α suppressed STAR-expression. HIF1α appears to be a positive regulator of basal and stimulated STAR-expression, which under partial hypoxia is capable of increasing the steroidogenic capacity of granulosa cells. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  20. Nuclear localisation of LASP-1 correlates with poor long-term survival in female breast cancer.

    PubMed

    Frietsch, J J; Grunewald, T G P; Jasper, S; Kammerer, U; Herterich, S; Kapp, M; Honig, A; Butt, E

    2010-05-25

    LIM and SH3 protein 1 (LASP-1) is a nucleo-cytoplasmatic signalling protein involved in cell proliferation and migration and is upregulated in breast cancer in vitro studies have shown that LASP-1 might be regulated by prostate-derived ETS factor (PDEF), p53 and/or LASP1 gene amplification. This current study analysed the prognostic significance of LASP-1 on overall survival (OS) in 177 breast cancer patients and addressed the suggested mechanisms of LASP-1-regulation. Nucleo-cytoplasmatic LASP-1-positivity of breast carcinoma samples was correlated with long-term survival, clinicopathological parameters, Ki67-positivity and PDEF expression. Rate of LASP1 amplification was determined in micro-dissected primary breast cancer cells using quantitative RT-PCR. Cell-phase dependency of nuclear LASP-1-localisation was studied in synchronised cells. In addition, LASP-1, PDEF and p53 expression was compared in cell lines of different tumour entities to define principles for LASP-1-regulation. We showed that LASP-1 overexpression is not due to LASP1 gene amplification. Moreover, no correlation between p53-mutations or PDEF-expression and LASP-1-status was observed. However, nuclear LASP-1-localisation in breast carcinomas is increased during proliferation with peak in G2/M-phase and correlated significantly with Ki67-positivity and poor OS. Our results provide evidence that nuclear LASP-1-positivity may serve as a negative prognostic indicator for long-term survival of breast cancer patients.

  1. Protective role of Smad6 in inflammation-induced valvular cell calcification

    PubMed Central

    Li, Xin; Lim, Jina J.; Lu, Jinxiu; Pedego, Taylor M.; Demer, Linda; Tintut, Yin

    2016-01-01

    Calcific aortic vascular and valvular disease (CAVD) is associated with hyperlipidemia, the effects of which occur through chronic inflammation. Evidence suggests that inhibitory small mothers against decapentaplegic (I-Smads; Smad6 and 7) regulate valve embryogenesis and may serve as a mitigating factor in CAVD. However, whether I-Smads regulate inflammation-induced calcific vasculopathy is not clear. Therefore, we investigated the role of I-Smads in atherosclerotic calcification. Results showed that expression of Smad6, but not Smad7, was reduced in aortic and valve tissues of hyperlipidemic compared with normolipemic mice, while expression of tumor necrosis factor alpha (TNF-a) was upregulated. To test whether the effects are in response to inflammatory cytokines, we isolated murine aortic valve leaflets and cultured valvular interstitial cells (mVIC) from the normolipemic mice. By immunochemistry, mVICs were strongly positive for vimentin, weakly positive for smooth muscle alpha actin, and negative for an endothelial cell marker. TNF-a upregulated alkaline phosphatase (ALP) activity and matrix mineralization in mVICs. By gene expression analysis, TNF-a significantly upregulated bone morphogenetic protein 2 (BMP-2) expression while downregulating Smad6 expression. Smad7 expression was not significantly affected. To further test the role of Smad6 on TNF-a-induced valvular cell calcification, we knocked down Smad6 expression using lentiviral transfection. In cells transfected with Smad6 shRNA, TNF-a further augmented ALP activity, expression of BMP-2, Wnt- and redox-regulated genes, and matrix mineralization compared with the control cells. These findings suggest that TNF-a induces valvular and vascular cell calcification, in part, by specifically reducing the expression of a BMP-2 signaling inhibitor, Smad6. PMID:25864564

  2. Protective Role of Smad6 in Inflammation-Induced Valvular Cell Calcification.

    PubMed

    Li, Xin; Lim, Jina; Lu, Jinxiu; Pedego, Taylor M; Demer, Linda; Tintut, Yin

    2015-10-01

    Calcific aortic vascular and valvular disease (CAVD) is associated with hyperlipidemia, the effects of which occur through chronic inflammation. Evidence suggests that inhibitory small mothers against decapentaplegic (I-Smads; Smad6 and 7) regulate valve embryogenesis and may serve as a mitigating factor in CAVD. However, whether I-Smads regulate inflammation-induced calcific vasculopathy is not clear. Therefore, we investigated the role of I-Smads in atherosclerotic calcification. Results showed that expression of Smad6, but not Smad7, was reduced in aortic and valve tissues of hyperlipidemic compared with normolipemic mice, while expression of tumor necrosis factor alpha (TNF-α) was upregulated. To test whether the effects are in response to inflammatory cytokines, we isolated murine aortic valve leaflets and cultured valvular interstitial cells (mVIC) from the normolipemic mice. By immunochemistry, mVICs were strongly positive for vimentin, weakly positive for smooth muscle α actin, and negative for an endothelial cell marker. TNF-α upregulated alkaline phosphatase (ALP) activity and matrix mineralization in mVICs. By gene expression analysis, TNF-α significantly upregulated bone morphogenetic protein 2 (BMP-2) expression while downregulating Smad6 expression. Smad7 expression was not significantly affected. To further test the role of Smad6 on TNF-α-induced valvular cell calcification, we knocked down Smad6 expression using lentiviral transfection. In cells transfected with Smad6 shRNA, TNF-α further augmented ALP activity, expression of BMP-2, Wnt- and redox-regulated genes, and matrix mineralization compared with the control cells. These findings suggest that TNF-α induces valvular and vascular cell calcification, in part, by specifically reducing the expression of a BMP-2 signaling inhibitor, Smad6. © 2015 Wiley Periodicals, Inc.

  3. TmCactin plays an important role in Gram-negative and -positive bacterial infection by regulating expression of 7 AMP genes in Tenebrio molitor

    PubMed Central

    Jo, Yong Hun; Jung Kim, Yu; Beom Park, Ki; Hwan Seong, Jeong; Gon Kim, Soo; Park, Soyi; Young Noh, Mi; Seok Lee, Yong; Soo Han, Yeon

    2017-01-01

    Cactin was originally identified as an interactor of the Drosophila IκB factor Cactus and shown to play a role in controlling embryonic polarity and regulating the NF-κB signaling pathway. While subsequent studies have identified the roles for Cactin in the mammalian immune response, the immune function of Cactin in insects has not been described yet. Here, we identified a Cactin gene from the mealworm beetle, Tenebrio molitor (TmCactin) and characterized its functional role in innate immunity. TmCactin was highly expressed in prepupa to last instar stages, and its expression was high in the integument and Malpighian tubules of last instar larvae and adults. TmCactin was induced in larvae after infection with different pathogens and detectable within 3 hours of infection. The highest levels of TmCactin expression were detected at 9 hours post infection. TmCactin RNAi significantly decreased the survival rates of larvae after challenge with Escherichia coli and Staphylococcus aureus, but had no significant effect after challenge with Candida albicans. Furthermore, TmCactin RNAi significantly reduced the expression of seven antimicrobial peptide genes (AMPs) after bacterial challenge. Our results suggest that TmCactin may serve as an important regulator of innate immunity, mediating AMP responses against both Gram-positive and Gram-negative bacteria in T. molitor. PMID:28418029

  4. Expression Profiling of Regulatory and Biosynthetic Genes in Contrastingly Anthocyanin Rich Strawberry (Fragaria × ananassa) Cultivars Reveals Key Genetic Determinants of Fruit Color.

    PubMed

    Hossain, Mohammad Rashed; Kim, Hoy-Taek; Shanmugam, Ashokraj; Nath, Ujjal Kumar; Goswami, Gayatri; Song, Jae-Young; Park, Jong-In; Nou, Ill-Sup

    2018-02-26

    Anthocyanins are the resultant end-point metabolites of phenylapropanoid/flavonoid (F/P) pathway which is regulated at transcriptional level via a series of structural genes. Identifying the key genes and their potential interactions can provide us with the clue for novel points of intervention for improvement of the trait in strawberry. We profiled the expressions of putative regulatory and biosynthetic genes of cultivated strawberry in three developmental and characteristically colored stages of fruits of contrastingly anthocyanin rich cultivars: Tokun, Maehyang and Soelhyang. Besides FaMYB10, a well-characterized positive regulator, FaMYB5 , FabHLH3 and FabHLH3-delta might also act as potential positive regulators, while FaMYB11 , FaMYB9 , FabHLH33 and FaWD44-1 as potential negative regulators of anthocyanin biosynthesis in these high-anthocyanin cultivars. Among the early BGs, Fa4CL7 , FaF3H , FaCHI1 , FaCHI3 , and FaCHS, and among the late BGs, FaDFR4-3 , FaLDOX , and FaUFGT2 showed significantly higher expression in ripe fruits of high anthocyanin cultivars Maehyang and Soelhyang. Multivariate analysis revealed the association of these genes with total anthocyanins. Increasingly higher expressions of the key genes along the pathway indicates the progressive intensification of pathway flux leading to final higher accumulation of anthocyanins. Identification of these key genetic determinants of anthocyanin regulation and biosynthesis in Korean cultivars will be helpful in designing crop improvement programs.

  5. Effects of cycle stage on regionalised galanin, galanin receptors 1-3, GNRH and GNRH receptor mRNA expression in the ovine hypothalamus.

    PubMed

    Whitelaw, Christine Margaret; Robinson, Jane Elizabeth; Hastie, Peter Mark; Padmanabhan, Vasantha; Evans, Neil Price

    2012-03-01

    The neurotransmitter galanin has been implicated in the steroidogenic regulation of reproduction based on work mainly conducted in rodents. This study investigated the temporal changes in the expression of galanin and its three receptor isoforms and GNRH and GNRHR mRNA in specific hypothalamic nuclei known to be involved in the regulation of reproductive cyclicity, namely the medial pre-optic area (mPOA), the rostral mPOA/organum vasculosum of the lamina terminalis, the paraventricular nucleus and the arcuate nucleus using an ovine model. Following synchronisation of their oestrous cycles, tissues were collected from ewes at five time points: the early follicular, mid follicular (MF) and late follicular phases and the early luteal and mid luteal phases. The results indicated significant differences in regional expression of most of the genes studied, with galanin mRNA expression being highest during the MF phase at the start of the GNRH/LH surge and the expression of the three galanin receptor (GalR) isoforms and GNRH and its receptor highest during the luteal phase. These findings are consistent with a role for galanin in the positive feedback effects of oestradiol (E(2)) on GNRH secretion and a role for progesterone induced changes in the pattern of expression of GalRs in the regulation of the timing of E(2)'s positive feedback through increased sensitivity of galanin-sensitive systems to secreted galanin.

  6. c-Myb promotes the survival of CD4+CD8+ double positive thymocytes through up-regulation of Bcl-xL1

    PubMed Central

    Yuan, Joan; Crittenden, Rowena B.; Bender, Timothy P.

    2010-01-01

    Mechanisms that regulate the lifespan of CD4+CD8+ double positive (DP) thymocytes help shape the peripheral T cell repertoire. However, the molecular mechanisms that control DP thymocyte survival remain poorly understood. The Myb proto-oncogene encodes a transcription factor required during multiple stages of T cell development. We demonstrate that Myb mRNA expression is up-regulated in the small, pre-selection DP stage during T cell development. Using a conditional deletion mouse model, we demonstrate that Myb deficient DP thymocytes undergo premature apoptosis, resulting in a limited Tcrα repertoire biased towards 5’ Jα segment usage. Premature apoptosis occurs in the small pre-selection DP compartment in an αβTCR independent manner and is a consequence of decreased Bcl-xL expression. Forced Bcl-xL expression is able to rescue survival and re-introduction of c-Myb restores both Bcl-xL expression and the small pre-selection DP compartment. We further demonstrate that thymocytes become dependent on Bcl-xL for survival upon entering the quiescent, small pre-selection DP stage and c-Myb promotes transcription at the Bclx locus via a genetic pathway that is independent of the expression of TCF-1 or RORγt, two transcription factors that induce Bcl-xL expression in T cell development. Thus, Bcl-xL is a novel mediator of c-Myb activity during normal T cell development. PMID:20142358

  7. Human RNA polymerase II associated factor 1 complex promotes tumorigenesis by activating c-MYC transcription in non-small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhi, Xiuyi; Giroux-Leprieur, Etienne; Respiratory Diseases and Thoracic Oncology Department, Ambroise Pare Hospital – APHP, Versailles Saint Quentin en Yvelines University, 9 Avenue Charles de Gaulle, 92100, Boulogne-Billancourt

    2015-10-02

    Human RNA polymerase II (RNAPII)-associated factor 1 complex (hPAF1C) plays a crucial role in protein-coding gene transcription. Overexpression of hPAF1C has been implicated in the initiation and progression of various human cancers. However, the molecular pathways involved in tumorigenesis through hPAF1C remain to be elucidated. The current study suggested hPAF1C expression as a prognostic biomarker for early stage non-small cell lung cancer (NSCLC) and patients with low hPAF1C expression levels had significantly better overall survival. Furthermore, the expression of hPAF1C was found to be positively correlated with c-MYC expression in patient tumor samples and in cancer cell lines. Mechanistic studiesmore » indicated that hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription. These results demonstrated the prognostic value of hPAF1C in early-stage NSCLC and the role of hPAF1C in the transcriptional regulation of c-MYC oncogene during NSCLC tumorigenesis. - Highlights: • hPAF1C expression is a prognostic biomarker for early stage non-small cell lung cancer. • The expression of hPAF1C was positively correlated with c-MYC in tumor samples of patients and in several NSCLC cell lines. • hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription.« less

  8. The Correlation Between PARP1 and BRCA1 in AR Positive Triple-negative Breast Cancer.

    PubMed

    Luo, Jiayan; Jin, Juan; Yang, Fang; Sun, Zijia; Zhang, Wenwen; Shi, Yaqin; Xu, Jing; Guan, Xiaoxiang

    2016-01-01

    Triple-negative breast cancer (TNBC) lacks estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER-2) expression and thus cannot benefit from conventional hormonal or anti-HER2 targeted therapies. Anti-androgen therapy has shown a certain effect on androgen receptor (AR) positive TNBC. The emerging researches have proved that poly (ADP-ribose) polymerase (PARP) inhibitor is effective in BRCA1-deficient breast cancers. We demonstrated that combination of AR antagonist (bicalutamide) and PARP inhibitor (ABT-888) could inhibit cell viability and induce cell apoptosis significantly whatever in vitro or in vivo setting in AR-positive TNBC. Previous studies have proved that both BRCA1 and PARP1 have close connections with AR in prostate cancer. We explored the correlation among AR, PARP1 and BRCA1 in TNBC for the first time. After BRCA1 overexpression, the expression of AR and PARP1 were decreased in mRNA and protein levels. Additionally, AR positively regulated PARP1 while PARP1 also up-regulated AR expression in vitro. We also confirmed BRCA1 expression was negatively correlated with AR and PARP1 in TNBC patients using a tissue microarray with TNBC patient samples. These results suggest that the combination of bicalutamide and PARP inhibitor may be a potential strategy for TNBC patients and merits further evaluation.

  9. CAPRICE positively regulates stomatal formation in the Arabidopsis hypocotyl

    PubMed Central

    2008-01-01

    In the Arabidopsis hypocotyl, stomata develop only from a set of epidermal cell files. Previous studies have identified several negative regulators of stomata formation. Such regulators also trigger non-hair cell fate in the root. Here, it is shown that TOO MANY MOUTHS (TMM) positively regulates CAPRICE (CPC) expression in differentiating stomaless-forming cell files, and that the CPC protein might move to the nucleus of neighbouring stoma-forming cells, where it promotes stomata formation in a redundant manner with TRIPTYCHON (TRY). Unexpectedly, the CPC protein was also localized in the nucleus and peripheral cytoplasm of hypocotyl fully differentiated epidermal cells, suggesting that CPC plays an additional role to those related to stomata formation. These results identify CPC and TRY as positive regulators of stomata formation in the embryonic stem, which increases the similarity between the genetic control of root hair and stoma cell fate determination. PMID:19513241

  10. Investigating the Control of Chlorophyll Degradation by Genomic Correlation Mining.

    PubMed

    Ghandchi, Frederick P; Caetano-Anolles, Gustavo; Clough, Steven J; Ort, Donald R

    2016-01-01

    Chlorophyll degradation is an intricate process that is critical in a variety of plant tissues at different times during the plant life cycle. Many of the photoactive chlorophyll degradation intermediates are exceptionally cytotoxic necessitating that the pathway be carefully coordinated and regulated. The primary regulatory step in the chlorophyll degradation pathway involves the enzyme pheophorbide a oxygenase (PAO), which oxidizes the chlorophyll intermediate pheophorbide a, that is eventually converted to non-fluorescent chlorophyll catabolites. There is evidence that PAO is differentially regulated across different environmental and developmental conditions with both transcriptional and post-transcriptional components, but the involved regulatory elements are uncertain or unknown. We hypothesized that transcription factors modulate PAO expression across different environmental conditions, such as cold and drought, as well as during developmental transitions to leaf senescence and maturation of green seeds. To test these hypotheses, several sets of Arabidopsis genomic and bioinformatic experiments were investigated and re-analyzed using computational approaches. PAO expression was compared across varied environmental conditions in the three separate datasets using regression modeling and correlation mining to identify gene elements co-expressed with PAO. Their functions were investigated as candidate upstream transcription factors or other regulatory elements that may regulate PAO expression. PAO transcript expression was found to be significantly up-regulated in warm conditions, during leaf senescence, and in drought conditions, and in all three conditions significantly positively correlated with expression of transcription factor Arabidopsis thaliana activating factor 1 (ATAF1), suggesting that ATAF1 is triggered in the plant response to these processes or abiotic stresses and in result up-regulates PAO expression. The proposed regulatory network includes the freezing, senescence, and drought stresses modulating factor ATAF1 and various other transcription factors and pathways, which in turn act to regulate chlorophyll degradation by up-regulating PAO expression.

  11. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu; Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4; Cheng, Jung-Chien

    2013-11-01

    Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited.more » In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells.« less

  12. Emotional Reactivity and Regulation in Head Start Children: Links to Ecologically-Valid Behaviors and Internalizing Problems

    PubMed Central

    Morgan, Judith K.; Izard, Carroll E.; Hyde, Christopher

    2013-01-01

    Children’s emotional reactivity may interact with their regulatory behaviors to contribute to internalizing problems and social functioning even early in development. Ninety-one preschool children participated in a longitudinal project examining children’s reactivity and regulatory behaviors as predictors of internalizing problems and positive and negative social behavior in the classroom. Children who paired negative emotion expression with disengagement during a laboratory task showed higher levels of internalizing problems and more negative social behavior in the classroom six months later. Positive emotion expression paired with engagement during a laboratory task predicted more positive social behavior in the classroom six months later. Physiological reactivity and regulation also predicted children’s social behavior in the classroom. Findings suggest that preschool children with maladaptive reactivity and regulatory patterns may be at greater risk for internalizing problems even in early childhood. PMID:25067866

  13. Programmed death-1 ligands 1 and 2 expression in cutaneous squamous cell carcinoma and their relationship with tumour- infiltrating dendritic cells.

    PubMed

    Jiao, Q; Liu, C; Li, W; Li, W; Fang, F; Qian, Q; Zhang, X

    2017-06-01

    The programmed death-1 (PD-1) receptor ligands, PD-L1 and PD-L2, are co-stimulatory molecules that contribute to the negative regulation of T lymphocyte activation. It is still unclear whether there is correlation between PD-L1 or PD-L2 and tumour-infiltrating dendritic cells (TIDCs) in cutaneous squamous cell carcinoma (CSCC). The aim of this study was to analyse PD-L1 and PD-L2 expression and dendritic cells infiltration in tumour tissue of CSCC patients and investigate their clinical significance. Immunohistochemical analysis was used to evaluate the expression of PD-L1, PD-L2, CD1a and CD83 in 61 CSCC tissues. The immunofluoresence double-labelling technique was performed to detect the co-expression of PD-L1 or PD-L2 and CD1a or CD83 in tumour tissues. We found that 25 of 61 cases CSCC (40·98%) exhibited positivity for PD-L1, whereas 37 of 61 cases CSCC (60·66%) exhibited positivity for PD-L2. A higher percentage of CD1a-positive cases were observed on both PD-L1-positive and PD-L2-positive specimens compared with that of CD83-positive cases (92·29% versus 37·60%, 83·20% versus 33·16%). The expression of PD-L1 and PD-L2 on CD1a + cells was significantly higher than that on CD83 + cells in tumour tissues of CSCC patients. Furthermore, the expression rate of PD-L1 was associated with UICC stage, and the expression rate of PD-L2 was associated with predominant differentiation and tumour size in CSCC. Our results indicated that higher expression of PD-L1 and PD-L2 on CD1a + cells than that on CD83 + cells in CSCC tumour tissues may contribute to negative regulation in anti-tumour immune responses. © 2017 British Society for Immunology.

  14. A Novel Dual-cre Motif Enables Two-Way Autoregulation of CcpA in Clostridium acetobutylicum.

    PubMed

    Zhang, Lu; Liu, Yanqiang; Yang, Yunpeng; Jiang, Weihong; Gu, Yang

    2018-04-15

    The master regulator CcpA (catabolite control protein A) manages a large and complex regulatory network that is essential for cellular physiology and metabolism in Gram-positive bacteria. Although CcpA can affect the expression of target genes by binding to a cis -acting catabolite-responsive element ( cre ), whether and how the expression of CcpA is regulated remain poorly explored. Here, we report a novel dual- cre motif that is employed by the CcpA in Clostridium acetobutylicum , a typical solventogenic Clostridium species, for autoregulation. Two cre sites are involved in CcpA autoregulation, and they reside in the promoter and coding regions of CcpA. In this dual- cre motif, cre P , in the promoter region, positively regulates ccpA transcription, whereas cre ORF , in the coding region, negatively regulates this transcription, thus enabling two-way autoregulation of CcpA. Although CcpA bound cre P more strongly than cre ORF in vitro , the in vivo assay showed that cre ORF -based repression dominates CcpA autoregulation during the entire fermentation. Finally, a synonymous mutation of cre ORF was made within the coding region, achieving an increased intracellular CcpA expression and improved cellular performance. This study provides new insights into the regulatory role of CcpA in C. acetobutylicum and, moreover, contributes a new engineering strategy for this industrial strain. IMPORTANCE CcpA is known to be a key transcription factor in Gram-positive bacteria. However, it is still unclear whether and how the intracellular CcpA level is regulated, which may be essential for maintaining normal cell physiology and metabolism. We discovered here that CcpA employs a dual- cre motif to autoregulate, enabling dynamic control of its own expression level during the entire fermentation process. This finding answers the questions above and fills a void in our understanding of the regulatory network of CcpA. Interference in CcpA autoregulation leads to improved cellular performance, providing a new useful strategy in genetic engineering of C. acetobutylicum Since CcpA is widespread in Gram-positive bacteria, including pathogens, this dual- cre -based CcpA autoregulation would be valuable for increasing our understanding of CcpA-based global regulation in bacteria. Copyright © 2018 American Society for Microbiology.

  15. Localized Disruption of Narp in Medial Prefrontal Cortex Blocks Reinforcer Devaluation Performance

    ERIC Educational Resources Information Center

    Johnson, Alexander W.; Han, Sungho; Blouin, Ashley M.; Saini, Jasjit; Worley, Paul F.; During, Matthew J.; Holland, Peter C.; Baraban, Jay M.; Reti, Irving M.

    2010-01-01

    Neuronal activity regulated pentraxin (Narp) is a secreted protein that regulates [alpha]-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPAR) aggregation and synaptogenesis. Mapping of Narp-positive neurons in brain has revealed it is prominently expressed in several limbic system projection pathways. Consistent with this…

  16. Cocaine-and Amphetamine Regulated Transcript (CART) Peptide Is Expressed in Precursor Cells and Somatotropes of the Mouse Pituitary Gland

    PubMed Central

    Mortensen, Amanda H.

    2016-01-01

    Cocaine-and Amphetamine Regulated Transcript (CART) peptide is expressed in the brain, endocrine and neuroendocrine systems and secreted into the serum. It is thought to play a role in regulation of hypothalamic pituitary functions. Here we report a spatial and temporal analysis of Cart expression in the pituitaries of adult and developing normal and mutant mice with hypopituitarism. We found that Prop1 is not necessary for initiation of Cart expression in the fetal pituitary at e14.5, but it is required indirectly for maintenance of Cart expression in the postnatal anterior pituitary gland. Pou1f1 deficiency has no effect on Cart expression before or after birth. There is no 1:1 correspondence between CART and any particular cell type. In neonates, CART is detected primarily in non-proliferating, POU1F1-positive cells. CART is also found in some cells that express TSH and GH suggesting a correspondence with committed progenitors of the POU1F1 lineage. In summary, we have characterized the normal temporal and cell specific expression of CART in mouse development and demonstrate that postnatal CART expression in the pituitary gland requires PROP1. PMID:27685990

  17. Arabidopsis Response Regulator1 and Arabidopsis Histidine Phosphotransfer Protein2 (AHP2), AHP3, and AHP5 Function in Cold Signaling1[W][OA

    PubMed Central

    Jeon, Jin; Kim, Jungmook

    2013-01-01

    The Arabidopsis (Arabidopsis thaliana) two-component signaling system, which is composed of sensor histidine kinases, histidine phosphotransfer proteins, and response regulators, mediates the cytokinin response and various other plant responses. We have previously shown that ARABIDOPSIS HISTIDINE KINASE2 (AHK2), AHK3, and cold-inducible type A ARABIDOPSIS RESPONSE REGULATORS (ARRs) play roles in cold signaling. However, the roles of type B ARRs and ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEINS (AHPs) have not been investigated in cold signaling. Here, we show that ARR1 and AHP2, AHP3, and AHP5 play positive roles in the cold-inducible expression of type A ARRs. arr1 mutants showed greatly reduced cold-responsive expression of type A ARRs compared with the wild type, whereas ARR1-overexpressing Arabidopsis exhibited the hypersensitive cold response of type A ARRs as well as enhanced freezing tolerance with cytokinin, suggesting that ARR1 functions as a positive factor of cold signaling. Transgenic Arabidopsis expressing ARR1ΔDDK:GR lacking the amino-terminal receiver domain showed wild-type expression levels of type A ARRs in response to cold, indicating that the signal receiver domain of ARR1 might be important for cold-responsive expression of type A ARRs. ahp2 ahp3 ahp5 triple mutations greatly reduced type A ARR expression in response to cold, whereas the single or double ahp mutants displayed wild-type levels of ARR expression, suggesting that AHP2, AHP3, and AHP5 are redundantly involved in cold signaling. Taken together, these results suggest that ARR1 mediates cold signal via AHP2, AHP3, or AHP5 from AHK2 and AHK3 to express type A ARRs. We further identified a cold transcriptome affected by ahk2 ahk3 mutations by microarray analysis, revealing a new cold-responsive gene network regulated downstream of AHK2 and AHK3. PMID:23124324

  18. Expression of Death Receptor 4 Is Positively Regulated by MEK/ERK/AP-1 Signaling and Suppressed upon MEK Inhibition*

    PubMed Central

    Yao, Weilong; Oh, You-Take; Deng, Jiusheng; Yue, Ping; Deng, Liang; Huang, Henry; Zhou, Wei; Sun, Shi-Yong

    2016-01-01

    Death receptor 4 (DR4) is a cell surface receptor for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and triggers apoptosis upon ligation with TRAIL or aggregation. MEK/ERK signaling is a well known and the best-studied effector pathway downstream of Ras and Raf. This study focuses on determining the impact of pharmacological MEK inhibition on DR4 expression and elucidating the underlying mechanism. We found that several MEK inhibitors including MEK162, AZD6244, and PD0325901 effectively decreased DR4 protein levels including cell surface DR4 in different cancer cell lines. Accordingly, pre-treatment of TRAIL-sensitive cancer cell lines with a MEK inhibitor desensitized them to TRAIL-induced apoptosis. These results indicate that MEK inhibition negatively regulates DR4 expression and cell response to TRAIL-induced apoptosis. MEK inhibitors did not alter DR4 protein stability, rather decreased its mRNA levels, suggesting a transcriptional regulation. In contrast, enforced activation of MEK/ERK signaling by expressing ectopic B-Raf (V600E) or constitutively activated MEK1 (MEK1-CA) or MEK2 (MEK2-CA) activated ERK and increased DR4 expression; these effects were inhibited when a MEK inhibitor was present. Promoter analysis through deletion and mutation identified the AP-1 binding site as an essential response element for enhancing DR4 transactivation by MEK1-CA. Furthermore, inhibition of AP-1 by c-Jun knockdown abrogated the ability of MEK1-CA to increase DR4 promoter activity and DR4 expression. These results suggest an essential role of AP-1 in mediating MEK/ERK activation-induced DR4 expression. Our findings together highlight a previously undiscovered mechanism that positively regulates DR4 expression through activation of the MEK/ERK/AP-1 signaling pathway. PMID:27576686

  19. Dynamic Regulation of Platelet-Derived Growth Factor Receptor α Expression in Alveolar Fibroblasts during Realveolarization

    PubMed Central

    Chen, Leiling; Acciani, Thomas; Le Cras, Tim; Lutzko, Carolyn

    2012-01-01

    Although the importance of platelet-derived growth factor receptor (PDGFR)-α signaling during normal alveogenesis is known, it is unclear whether this signaling pathway can regulate realveolarization in the adult lung. During alveolar development, PDGFR-α–expressing cells induce α smooth muscle actin (α-SMA) and differentiate to interstitial myofibroblasts. Fibroblast growth factor (FGF) signaling regulates myofibroblast differentiation during alveolarization, whereas peroxisome proliferator-activated receptor (PPAR)-γ activation antagonizes myofibroblast differentiation in lung fibrosis. Using left lung pneumonectomy, the roles of FGF and PPAR-γ signaling in differentiation of myofibroblasts from PDGFR-α–positive precursors during compensatory lung growth were assessed. FGF receptor (FGFR) signaling was inhibited by conditionally activating a soluble dominant-negative FGFR2 transgene. PPAR-γ signaling was activated by administration of rosiglitazone. Changes in α-SMA and PDGFR-α protein expression were assessed in PDGFR-α–green fluorescent protein (GFP) reporter mice using immunohistochemistry, flow cytometry, and real-time PCR. Immunohistochemistry and flow cytometry demonstrated that the cell ratio and expression levels of PDGFR-α–GFP changed dynamically during alveolar regeneration and that α-SMA expression was induced in a subset of PDGFR-α–GFP cells. Expression of a dominant-negative FGFR2 and administration of rosiglitazone inhibited induction of α-SMA in PDGFR-α–positive fibroblasts and formation of new septae. Changes in gene expression of epithelial and mesenchymal signaling molecules were assessed after left lobe pneumonectomy, and results demonstrated that inhibition of FGFR2 signaling and increase in PPAR-γ signaling altered the expression of Shh, FGF, Wnt, and Bmp4, genes that are also important for epithelial–mesenchymal crosstalk during early lung development. Our data demonstrate for the first time that a comparable epithelial–mesenchymal crosstalk regulates fibroblast phenotypes during alveolar septation. PMID:22652199

  20. Focusing on symptoms rather than diagnoses in brain dysfunction: conscious and nonconscious expression in impulsiveness and decision-making.

    PubMed

    Palomo, T; Beninger, R J; Kostrzewa, R M; Archer, T

    2008-08-01

    Symptoms and syndromes in neuropathology, whether expressed in conscious or nonconscious behaviour, remain imbedded in often complex diagnostic categories. Symptom-based strategies for studying brain disease states are driven by assessments of presenting symptoms, signs, assay results, neuroimages and biomarkers. In the present account, symptom-based strategies are contrasted with existing diagnostic classifications. Topics include brain areas and regional circuitry underlying decision-making and impulsiveness, and motor and learned expressions of explicit and implicit processes. In three self-report studies on young adult and adolescent healthy individuals, it was observed that linear regression analyses between positive and negative affect, self-esteem, four different types of situational motivation: intrinsic, identified regulation, extrinsic regulation and amotivation, and impulsiveness predicted significant associations between impulsiveness with negative affect and lack of motivation (i.e., amotivation) and internal locus of control, on the one hand, and non-impulsiveness with positive affect, self-esteem, and high motivation (i.e., intrinsic motivation and identified regulation), on the other. Although presymptomatic, these cognitive-affective characterizations illustrate individuals' choice behaviour in appraisals of situations, events and proclivities essentially of distal perspective. Neuropathological expressions provide the proximal realities of symptoms and syndromes with underlying dysfunctionality of brain regions, circuits and molecular mechanisms.

  1. Annexin A1 Down-Regulation in Head and Neck Cancer Is Associated with Epithelial Differentiation Status

    PubMed Central

    Pedrero, Juana Maria Garcia; Fernandez, M. Pilar; Morgan, Reginald O.; Zapatero, Agustin Herrero; Gonzalez, Maria Victoria; Nieto, Carlos Suarez; Rodrigo, Juan Pablo

    2004-01-01

    Annexin A1 (ANXA1) protein expression was evaluated by Western blot in a series of 32 head and neck squamous cell carcinomas (HNSCCs) in a search for molecular alterations that could serve as useful diagnostic/prognostic markers. ANXA1 down-regulation was observed in 24 cases (75%) compared with patient-matched normal epithelium. In relation to clinicopathological variables, ANXA1 down-regulation was significantly associated with advanced T stages (P = 0.029), locoregional lymph node metastases (P = 0.038), advanced disease stage (P = 0.006), hypopharyngeal localization (P = 0.038), and poor histological differentiation (P = 0.005). ANXA1 expression was also analyzed by immunohistochemistry in paraffin-embedded sections from 22 of 32 HNSCCs and 8 premalignant lesions. All dysplastic tissues showed significantly reduced ANXA1 expression compared to a strong positive signal observed in adjacent normal epithelia (except basal and suprabasal cells). A close association was observed between ANXA1 expression and the histological grade in HNSCC. Well-differentiated tumors presented a positive ANXA1 signal in highly keratinized areas whereas moderately and poorly differentiated tumors exhibited very weak or negative staining. Our findings clearly identify ANXA1 as an effective differentiation marker for the histopathological grading of HNSCCs and for the detection of epithelial dysplasia. PMID:14695321

  2. Spontaneous Regulation of Emotions in Preschool Children Who Stutter: Preliminary Findings

    PubMed Central

    Johnson, Kia N.; Walden, Tedra A.; Conture, Edward G.; Karrass, Jan

    2013-01-01

    Purpose Emotional regulation of preschool children who do (CWS) and do not stutter (CWNS) was assessed using a disappointing gift (DG) procedure (Cole, 1986; Saarni, 1984, 1992). Method Participants consisted of 16 3- to 5-year-old CWS and CWNS (11 boys and 5 girls in each talker group). After assessing each child’s knowledge of display rules about socially-appropriate expression of emotions, children participated in a DG procedure and received a desirable gift preceding a free-play task and a disappointing gift preceding a second free-play task. Dependent variables consisted of participants’ positive and negative expressive nonverbal behaviors exhibited during receipt of a desirable gift and disappointing gift, as well as conversational speech disfluencies exhibited following receipt of each gift. Results Findings indicated that CWS and CWNS exhibited no significant differences in amount of positive emotional expressions after receiving the desired gift; however, CWS, when compared to CWNS, exhibited more negative emotional expressions after receiving the undesirable gift. Furthermore, CWS were more disfluent after receiving the desired gift when compared to receiving the disappointing gift. Ancillary findings also indicated that CWS and CWNS had equivalent knowledge of display rules. Conclusion Findings suggest that efforts to concurrently regulate emotional behaviors and (non)stutterings may be problematic for preschool-age CWS. PMID:20643793

  3. Rev-erb beta regulates the Srebp-1c promoter and mRNA expression in skeletal muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramakrishnan, Sathiya N.; Lau, Patrick; Crowther, Lisa M.

    2009-10-30

    The nuclear hormone receptor, Rev-erb beta operates as a transcriptional silencer. We previously demonstrated that exogenous expression of Rev-erb{beta}{Delta}E in skeletal muscle cells increased Srebp-1c mRNA expression. We validated these in vitro observations by injection of an expression vector driving Rev-erb{beta}{Delta}E expression into mouse tibialis muscle that resulted in increased Srebp-1c mRNA expression. Paradoxically, Rev-erb{beta} siRNA expression in skeletal muscle cells repressed Srebp-1c expression, and indicated that Rev-erb{beta} expression was necessary for Srebp-1c expression. ChIP analysis demonstrated that Rev-erb{beta} was recruited to the Srebp-1c promoter. Moreover, Rev-erb{beta} trans-activated the Srebp-1c promoter, in contrast, Rev-erb{beta} efficiently repressed the Rev-erb{alpha} promoter, amore » previously characterized target gene. Finally, treatment with the Rev-erb agonist (hemin) (i) increased the trans-activation of the Srebp-1c promoter by Rev-erb{beta}; and (ii) increased Rev-erb{beta} and Srebp-1c mRNA expression. These data suggest that Rev-erb{beta} has the potential to activate gene expression, and is a positive regulator of Srebp-1c, a regulator of lipogenesis.« less

  4. BRCA1-IRIS regulates cyclin D1 expression in breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakuci, Enkeleda; Mahner, Sven; DiRenzo, James

    2006-10-01

    The regulator of cell cycle progression, cyclin D1, is up-regulated in breast cancer cells; its expression is, in part, dependent on ER{alpha} signaling. However, many ER{alpha}-negative tumors and tumor cell lines (e.g., SKBR3) also show over-expression of cyclin D1. This suggests that, in addition to ER{alpha} signaling, cyclin D1 expression is under the control of other signaling pathways; these pathways may even be over-expressed in the ER{alpha}-negative cells. We previously noticed that both ER{alpha}-positive and -negative cell lines over-express BRCA1-IRIS mRNA and protein. Furthermore, the level of over-expression of BRCA1-IRIS in ER{alpha}-negative cell lines even exceeded its over-expression level inmore » ER{alpha}-positive cell lines. In this study, we show that: (1) BRCA1-IRIS forms complex with two of the nuclear receptor co-activators, namely, SRC1 and SRC3 (AIB1) in an ER{alpha}-independent manner. (2) BRCA1-IRIS alone, or in connection with co-activators, is recruited to the cyclin D1 promoter through its binding to c-Jun/AP1 complex; this binding activates the cyclin D1 expression. (3) Over-expression of BRCA1-IRIS in breast cells over-activates JNK/c-Jun; this leads to the induction of cyclin D1 expression and cellular proliferation. (4) BRCA1-IRIS activation of JNK/c-Jun/AP1 appears to account for this, because in cells that were depleted from BRCA1-IRIS, JNK remained inactive. However, depletion of SRC1 or SRC3 instead reduced c-Jun expression. Our data suggest that this novel signaling pathway links BRCA1-IRIS to cellular proliferation through c-Jun/AP1 nuclear pathway; finally, this culminates in the increased expression of the cyclin D1 gene.« less

  5. [Effect of tagalsin on p53 and Bcl-2 expression in hepatoma H(22) tumor-bearing mice].

    PubMed

    Song, Xiu-qi; Guo, Yun-liang; Wang, Bing-gao; Sun, Shao-jie; Yao, Ru-yong

    2011-07-01

    To explore the effect and mechanism of tagalsin on hepatoma cells. The animal models were established by transplanting H(22) mouse hepatoma cells to mouse liver, and ten days later the mice were randomly divided into five groups: blank group, carmofur positive group and tagalsin groups, including low-dose, middle-dose and high-dose groups. Then medicine or oil was given to the mice by gastric gavage in consecutive 5 days with a 2-days interval as a course of treatment, two courses in all. All mice were killed at 24 hours after medication, and the survival period, ascites conditions, aggressive conditions intra- or extra-liver, weight changes, tumor volume and spleen index of the tumor-bearing mice were observed. Pathological changes of the tumors were examined. Apoptotic factors p53 and Bcl-2 protien and mRNA were detected by immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR). tagalsin inhibited the hepatoma growth effectively without influencing spleen index to some extent. The tumor inhibition rate of tagalsin low, middle and high dose groups were 17.9%, 63.1% and 71.8%, respectively. Immunohistochemical results showed that the p53 and Bcl-2 protein positive cell counts of the positive control and experimental groups were significantly lower than those of the blank group (P < 0.01). RT-PCR results showed that the p53 mRNA expression was significantly enhanced and Bcl-2 mRNA expression was decreased in the positive control groups and tagalsin treatment groups, especially in the high dose group, compared with those of the blank group (P < 0.05). tagalsin can inhibit the growth of mouse hepatoma cells significantly. The mechanism of its anti-tumor effect may work via up-regulating the wild type p53 gene expression and down-regulating Bcl-2 gene expression and thus regulating tumor cell apoptosis.

  6. Downregulation of MicroRNA miR-526a by Enterovirus Inhibits RIG-I-Dependent Innate Immune Response

    PubMed Central

    Xu, Changzhi; He, Xiang; Zheng, Zirui; Zhang, Zhe; Wei, Congwen; Guan, Kai; Hou, Lihua; Zhang, Buchang; Zhu, Lin; Cao, Yuan; Zhang, Yanhong; Cao, Ye; Ma, Shengli; Wang, Penghao; Zhang, Pingping; Xu, Quanbin; Ling, Youguo

    2014-01-01

    ABSTRACT Retinoic acid-inducible gene I (RIG-I) is an intracellular RNA virus sensor that induces type I interferon-mediated host-protective innate immunity against viral infection. Although cylindromatosis (CYLD) has been shown to negatively regulate innate antiviral response by removing K-63-linked polyubiquitin from RIG-I, the regulation of its expression and the underlying regulatory mechanisms are still incompletely understood. Here we show that RIG-I activity is regulated by inhibition of CYLD expression mediated by the microRNA miR-526a. We found that viral infection specifically upregulates miR-526a expression in macrophages via interferon regulatory factor (IRF)-dependent mechanisms. In turn, miR-526a positively regulates virus-triggered type I interferon (IFN-I) production, thus suppressing viral replication, the underlying mechanism of which is the enhancement of RIG-I K63-linked ubiquitination by miR-526a via suppression of the expression of CYLD. Remarkably, virus-induced miR-526a upregulation and CYLD downregulation are blocked by enterovirus 71 (EV71) 3C protein, while ectopic miR-526a expression inhibits the replication of EV71 virus. The collective results of this study suggest a novel mechanism of the regulation of RIG-I activity during RNA virus infection by miR-526a and suggest a novel mechanism for the evasion of the innate immune response controlled by EV71. IMPORTANCE RNA virus infection upregulates the expression of miR-526a in macrophages through IRF-dependent pathways. In turn, miR-526a positively regulates virus-triggered type I IFN production and inhibits viral replication, the underlying mechanism of which is the enhancement of RIG-I K-63 ubiquitination by miR-526a via suppression of the expression of CYLD. Remarkably, virus-induced miR-526a upregulation and CYLD downregulation are blocked by enterovirus 71 (EV71) 3C protein; cells with overexpressed miR-526a were highly resistant to EV71 infection. The collective results of this study suggest a novel mechanism of the regulation of RIG-I activity during RNA virus infection by miR-526a and propose a novel mechanism for the evasion of the innate immune response controlled by EV71. PMID:25056901

  7. Beta-Catenin Signaling Plays a Disparate Role in Different Phases of Fracture Repair: Implications for Therapy to Improve Bone Healing

    PubMed Central

    Chen, Yan; Whetstone, Heather C; Lin, Alvin C; Nadesan, Puviindran; Wei, Qingxia; Poon, Raymond; Alman, Benjamin A

    2007-01-01

    Background Delayed fracture healing causes substantial disability and usually requires additional surgical treatments. Pharmacologic management to improve fracture repair would substantially improve patient outcome. The signaling pathways regulating bone healing are beginning to be unraveled, and they provide clues into pharmacologic management. The β-catenin signaling pathway, which activates T cell factor (TCF)-dependent transcription, has emerged as a key regulator in embryonic skeletogenesis, positively regulating osteoblasts. However, its role in bone repair is unknown. The goal of this study was to explore the role of β-catenin signaling in bone repair. Methods and Findings Western blot analysis showed significant up-regulation of β-catenin during the bone healing process. Using a β-Gal activity assay to observe activation during healing of tibia fractures in a transgenic mouse model expressing a TCF reporter, we found that β-catenin-mediated, TCF-dependent transcription was activated in both bone and cartilage formation during fracture repair. Using reverse transcription-PCR, we observed that several WNT ligands were expressed during fracture repair. Treatment with DKK1 (an antagonist of WNT/β-catenin pathway) inhibited β-catenin signaling and the healing process, suggesting that WNT ligands regulate β-catenin. Healing was significantly repressed in mice conditionally expressing either null or stabilized β-catenin alleles induced by an adenovirus expressing Cre recombinase. Fracture repair was also inhibited in mice expressing osteoblast-specific β-catenin null alleles. In stark contrast, there was dramatically enhanced bone healing in mice expressing an activated form of β-catenin, whose expression was restricted to osteoblasts. Treating mice with lithium activated β-catenin in the healing fracture, but healing was enhanced only when treatment was started subsequent to the fracture. Conclusions These results demonstrate that β-catenin functions differently at different stages of fracture repair. In early stages, precise regulation of β-catenin is required for pluripotent mesenchymal cells to differentiate to either osteoblasts or chondrocytes. Once these undifferentiated cells have become committed to the osteoblast lineage, β-catenin positively regulates osteoblasts. This is a different function for β-catenin than has previously been reported during development. Activation of β-catenin by lithium treatment has potential to improve fracture healing, but only when utilized in later phases of repair, after mesenchymal cells have become committed to the osteoblast lineage. PMID:17676991

  8. Beta-catenin signaling plays a disparate role in different phases of fracture repair: implications for therapy to improve bone healing.

    PubMed

    Chen, Yan; Whetstone, Heather C; Lin, Alvin C; Nadesan, Puviindran; Wei, Qingxia; Poon, Raymond; Alman, Benjamin A

    2007-07-31

    Delayed fracture healing causes substantial disability and usually requires additional surgical treatments. Pharmacologic management to improve fracture repair would substantially improve patient outcome. The signaling pathways regulating bone healing are beginning to be unraveled, and they provide clues into pharmacologic management. The beta-catenin signaling pathway, which activates T cell factor (TCF)-dependent transcription, has emerged as a key regulator in embryonic skeletogenesis, positively regulating osteoblasts. However, its role in bone repair is unknown. The goal of this study was to explore the role of beta-catenin signaling in bone repair. Western blot analysis showed significant up-regulation of beta-catenin during the bone healing process. Using a beta-Gal activity assay to observe activation during healing of tibia fractures in a transgenic mouse model expressing a TCF reporter, we found that beta-catenin-mediated, TCF-dependent transcription was activated in both bone and cartilage formation during fracture repair. Using reverse transcription-PCR, we observed that several WNT ligands were expressed during fracture repair. Treatment with DKK1 (an antagonist of WNT/beta-catenin pathway) inhibited beta-catenin signaling and the healing process, suggesting that WNT ligands regulate beta-catenin. Healing was significantly repressed in mice conditionally expressing either null or stabilized beta-catenin alleles induced by an adenovirus expressing Cre recombinase. Fracture repair was also inhibited in mice expressing osteoblast-specific beta-catenin null alleles. In stark contrast, there was dramatically enhanced bone healing in mice expressing an activated form of beta-catenin, whose expression was restricted to osteoblasts. Treating mice with lithium activated beta-catenin in the healing fracture, but healing was enhanced only when treatment was started subsequent to the fracture. These results demonstrate that beta-catenin functions differently at different stages of fracture repair. In early stages, precise regulation of beta-catenin is required for pluripotent mesenchymal cells to differentiate to either osteoblasts or chondrocytes. Once these undifferentiated cells have become committed to the osteoblast lineage, beta-catenin positively regulates osteoblasts. This is a different function for beta-catenin than has previously been reported during development. Activation of beta-catenin by lithium treatment has potential to improve fracture healing, but only when utilized in later phases of repair, after mesenchymal cells have become committed to the osteoblast lineage.

  9. A positive feedback regulation of ISL-1 in DLBCL but not in pancreatic β-cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qiao, E-mail: zhangqiao200824@126.com; Yang, Zhe, E-mail: zheyang@bjmu.edu.cn; Wang, Weiping, E-mail: wwp@bjmu.edu.cn

    2014-07-04

    Highlights: • ISL-1 is highly expressed in human pancreatic β-cells and DLBCL. • ISL-1 accelerates the tumorigenesis of DLBCL in vivo. • c-Myc positively regulates ISL-1 expression in DLBCL but not in pancreatic β-cells. • ISL-1 and c-Myc forms an ISL-1/c-Myc transcriptional complex only in DLBCL. • Positive feedback regulation of ISL-1 does not exist in normal pancreatic β-cell. - Abstract: Insulin enhancer binding protein-1 (ISL-1), a LIM-homeodomain transcription factor, has been reported to play essential roles in promoting adult pancreatic β-cells proliferation. Recent studies indicate that ISL-1 may also involve in the occurrence of a variety of tumors. However,more » whether ISL-1 has any functional effect on tumorigenesis, and what are the differences on ISL-1 function in distinct conditions, are completely unknown. In this study, we found that ISL-1 was highly expressed in human pancreatic β-cells, as well as in diffuse large B cell lymphoma (DLBCL), but to a much less extent in other normal tissues or tumor specimens. Further study revealed that ISL-1 promoted the proliferation of pancreatic β-cells and DLBCL cells, and also accelerated the tumorigenesis of DLBCL in vivo. We also found that ISL-1 could activate c-Myc transcription not only in pancreatic β-cells but also in DLBCL cells. However, a cell-specific feedback regulation was detectable only in DLBCL cells. This auto-regulatory loop was established by the interaction of ISL-1 and c-Myc to form an ISL-1/c-Myc transcriptional complex, and synergistically to promote ISL-1 transcription through binding on the ISL-1 promoter. Taken together, our results demonstrate a positive feedback regulation of ISL-1 in DLBCL but not in pancreatic β-cells, which might result in the functional diversities of ISL-1 in different physiological and pathological processes.« less

  10. Regulation of Hyaluronan (HA) Metabolism Mediated by HYBID (Hyaluronan-binding Protein Involved in HA Depolymerization, KIAA1199) and HA Synthases in Growth Factor-stimulated Fibroblasts.

    PubMed

    Nagaoka, Aya; Yoshida, Hiroyuki; Nakamura, Sachiko; Morikawa, Tomohiko; Kawabata, Keigo; Kobayashi, Masaki; Sakai, Shingo; Takahashi, Yoshito; Okada, Yasunori; Inoue, Shintaro

    2015-12-25

    Regulation of hyaluronan (HA) synthesis and degradation is essential to maintenance of extracellular matrix homeostasis. We recently reported that HYBID (HYaluronan-Binding protein Involved in hyaluronan Depolymerization), also called KIAA1199, plays a key role in HA depolymerization in skin and arthritic synovial fibroblasts. However, regulation of HA metabolism mediated by HYBID and HA synthases (HASs) under stimulation with growth factors remains obscure. Here we report that TGF-β1, basic FGF, EGF, and PDGF-BB commonly enhance total amount of HA in skin fibroblasts through up-regulation of HAS expression, but molecular size of newly produced HA is dependent on HYBID expression levels. Stimulation of HAS1/2 expression and suppression of HYBID expression by TGF-β1 were abrogated by blockade of the MAPK and/or Smad signaling and the PI3K-Akt signaling, respectively. In normal human skin, expression of the TGF-β1 receptors correlated positively with HAS2 expression and inversely with HYBID expression. On the other hand, TGF-β1 up-regulated HAS1/2 expression but exerted only a slight suppressive effect on HYBID expression in synovial fibroblasts from the patients with osteoarthritis or rheumatoid arthritis, resulting in the production of lower molecular weight HA compared with normal skin and synovial fibroblasts. These data demonstrate that although TGF-β1, basic FGF, EGF, and PDGF-BB enhance HA production in skin fibroblasts, TGF-β1 most efficiently contributes to production of high molecular weight HA by HAS up-regulation and HYBID down-regulation and suggests that inefficient down-regulation of HYBID by TGF-β1 in arthritic synovial fibroblasts may be linked to accumulation of depolymerized HA in synovial fluids in arthritis patients. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. miRNA-148a regulates the expression of the estrogen receptor through DNMT1-mediated DNA methylation in breast cancer cells

    PubMed Central

    Xu, Yurui; Chao, Lin; Wang, Jianyu; Sun, Yonghong

    2017-01-01

    Breast cancer remains the most prevalent cancer among women worldwide. The expression of estrogen receptor-α (ER-α) is an important marker for prognosis. ER-α status may be positive or negative in breast cancer cells, although the cause of negative or positive status is not yet fully characterized. In the present study, the expression of ER-α and miRNA-148a was assessed in two breast cancer cell lines, HCC1937 and MCF7. An association between ER-α and miRNA-148a expression was identified. It was then demonstrated that DNA methyltransferase 1 (DNMT1) is a target of miRNA-148a, which may suppress the expression of ER-α via DNA methylation. Finally, an miRNA-148a mimic or inhibitor was transfected into MCF7 cells; the miRNA-148a mimic increased ER-α expression whereas the miRNA-148a inhibitor decreased ER-α expression. In conclusion, it was identified that miRNA-148a regulates ER-α expression through DNMT1-mediated DNA methylation in breast cancer cells. This may represent a potential miRNA-based strategy to modulate the expression of ER-α and provide a novel perspective for investigating the role of miRNAs in treating breast cancer. PMID:29085474

  12. Optomotor-blind negatively regulates Drosophila eye development by blocking Jak/STAT signaling.

    PubMed

    Tsai, Yu-Chen; Grimm, Stefan; Chao, Ju-Lan; Wang, Shih-Chin; Hofmeyer, Kerstin; Shen, Jie; Eichinger, Fred; Michalopoulou, Theoni; Yao, Chi-Kuang; Chang, Chih-Hsuan; Lin, Shih-Han; Sun, Y Henry; Pflugfelder, Gert O

    2015-01-01

    Organ formation requires a delicate balance of positive and negative regulators. In Drosophila eye development, wingless (wg) is expressed at the lateral margins of the eye disc and serves to block retinal development. The T-box gene optomotor-blind (omb) is expressed in a similar pattern and is regulated by Wg. Omb mediates part of Wg activity in blocking eye development. Omb exerts its function primarily by blocking cell proliferation. These effects occur predominantly in the ventral margin. Our results suggest that the primary effect of Omb is the blocking of Jak/STAT signaling by repressing transcription of upd which encodes the Jak receptor ligand Unpaired.

  13. Analysis of inflammasomes and antiviral sensing components reveals decreased expression of NLRX1 in HIV-positive patients assuming efficient antiretroviral therapy.

    PubMed

    Nasi, Milena; De Biasi, Sara; Bianchini, Elena; Digaetano, Margherita; Pinti, Marcello; Gibellini, Lara; Pecorini, Simone; Carnevale, Gianluca; Guaraldi, Giovanni; Borghi, Vanni; Mussini, Cristina; Cossarizza, Andrea

    2015-09-24

    Few studies have investigated the importance of different components of the inflammasome system and of innate mitochondrial sensing (IMS) pathways in HIV infection and its treatment. We analysed the expression of several components of the inflammasome and of the IMS in HIV-positive patients taking successful combination antiretroviral therapy (cART). We enrolled 20 HIV-positive patients under cART, who achieved viral suppression since at least 10 months and 20 age and sex-matched healthy donors. By RT-PCR, using peripheral blood mononuclear cells (PBMCs), we quantified the mRNA expression of 16 genes involved in inflammasome activation and regulation (AIM2, NAIP, PYCARD, CASP1, CASP5, NLRP6, NLRP1, NLRP3, TXNIP, BCL2, NLRC4, PANX1, P2RX7, IL-18, IL-1β, SUGT1) and eight genes involved in IMS (MFN2, MFN1, cGAS, RIG-I, MAVS, NLRX1, RAB32, STING). Compared with controls, HIV-positive patients showed significantly lower mRNA levels of the mitochondrial protein NLRX1, which plays a key role in regulating apoptotic cell death; main PBMC subpopulations behave in a similar manner. No differences were observed in the expression of inflammasome components, which however showed complex correlations. The decreased level of NLRX1 in HIV infection could suggest that the virus is able to downregulate mechanisms linked to triggering of cell death in several immune cell types. The fact that HIV-positive patients did not show altered expression of inflammasome components, nor of most genes involved in IMS, suggests that the infection and/or the chronic immune activation does not influence the transcriptional machinery of innate mechanisms able to trigger inflammation at different levels.

  14. Heterosis in Rice Seedlings: Its Relationship to Gibberellin Content and Expression of Gibberellin Metabolism and Signaling Genes1[W][OA

    PubMed Central

    Ma (马谦), Qian; Hedden, Peter; Zhang (张启发), Qifa

    2011-01-01

    Despite the accumulation of data on the genetic and molecular understanding of heterosis, there is little information on the regulation of heterosis at the physiological level. In this study, we performed a quantitative analysis of endogenous gibberellin (GA) content and expression profiling of the GA metabolism and signaling genes to investigate the possible relationship between GA signaling and heterosis for seedling development in rice (Oryza sativa). The materials used were an incomplete diallele set of 3 × 3 crosses and the six parents. In the growing shoots of the seedlings at 20 d after sowing, significant positive correlations between the contents of some GA species and performance and heterosis based on shoot dry mass were detected. Expression analyses of GA-related genes by real-time reverse transcription-polymerase chain reaction revealed that 13 out of the 16 GA-related genes examined exhibited significant differential expression among the F1 hybrid and its parents, acting predominantly in the modes of overdominance and positive dominance. Expression levels of nine genes in the hybrids displayed significant positive correlations with the heterosis of shoot dry mass. These results imply that GAs play a positive role in the regulation of heterosis for rice seedling development. In shoots plus root axes of 4-d-old germinating seeds that had undergone the deetiolation, mimicking normal germination in soil, the axis dry mass was positively correlated with the content of GA29 but negatively correlated with that of GA19. Our findings provide supporting evidence for GAs playing an important regulatory role in heterosis for rice seedling development. PMID:21693671

  15. The Temporal Dynamics of Two Response-Focused Forms of Emotion Regulation: Experiential, Expressive, and Autonomic Consequences

    PubMed Central

    Dan-Glauser, Elise S.; Gross, James J.

    2011-01-01

    This study examines the early affective consequences of two close forms of suppression. Participants (N=37) were shown negative, positive, and neutral pictures and cued either to attend to the pictures, or to perform expressive or physiological suppression (i.e. reduce body reactions). Continuous measures of experience, expressivity, and autonomic responses showed that both suppression strategies produced rapid response modulation. Common effects of the two strategies included a transient increase in negative feeling, a durable decrease in positive feeling, and a decrease in expressivity, cardiovascular activity, and oxygenation. The two strategies were significantly different only in response to positive stimuli, with physiological suppression showing a larger decrease in experience intensity and blood pressure. These results suggest a strong overlap between the two suppression strategies in terms of their early impact on emotional responses. PMID:21361967

  16. A Machine Learning Approach to Predict Gene Regulatory Networks in Seed Development in Arabidopsis

    PubMed Central

    Ni, Ying; Aghamirzaie, Delasa; Elmarakeby, Haitham; Collakova, Eva; Li, Song; Grene, Ruth; Heath, Lenwood S.

    2016-01-01

    Gene regulatory networks (GRNs) provide a representation of relationships between regulators and their target genes. Several methods for GRN inference, both unsupervised and supervised, have been developed to date. Because regulatory relationships consistently reprogram in diverse tissues or under different conditions, GRNs inferred without specific biological contexts are of limited applicability. In this report, a machine learning approach is presented to predict GRNs specific to developing Arabidopsis thaliana embryos. We developed the Beacon GRN inference tool to predict GRNs occurring during seed development in Arabidopsis based on a support vector machine (SVM) model. We developed both global and local inference models and compared their performance, demonstrating that local models are generally superior for our application. Using both the expression levels of the genes expressed in developing embryos and prior known regulatory relationships, GRNs were predicted for specific embryonic developmental stages. The targets that are strongly positively correlated with their regulators are mostly expressed at the beginning of seed development. Potential direct targets were identified based on a match between the promoter regions of these inferred targets and the cis elements recognized by specific regulators. Our analysis also provides evidence for previously unknown inhibitory effects of three positive regulators of gene expression. The Beacon GRN inference tool provides a valuable model system for context-specific GRN inference and is freely available at https://github.com/BeaconProjectAtVirginiaTech/beacon_network_inference.git. PMID:28066488

  17. Memory for faces with emotional expressions in Alzheimer's disease and healthy older participants: positivity effect is not only due to familiarity.

    PubMed

    Sava, Alina-Alexandra; Krolak-Salmon, Pierre; Delphin-Combe, Floriane; Cloarec, Morgane; Chainay, Hanna

    2017-01-01

    Young individuals better memorize initially seen faces with emotional rather than neutral expressions. Healthy older participants and Alzheimer's disease (AD) patients show better memory for faces with positive expressions. The socioemotional selectivity theory postulates that this positivity effect in memory reflects a general age-related preference for positive stimuli, subserving emotion regulation. Another explanation might be that older participants use compensatory strategies, often considering happy faces as previously seen. The question about the existence of this effect in tasks not permitting such compensatory strategies is still open. Thus, we compared the performance of healthy participants and AD patients for positive, neutral, and negative faces in such tasks. Healthy older participants and AD patients showed a positivity effect in memory, but there was no difference between emotional and neutral faces in young participants. Our results suggest that the positivity effect in memory is not entirely due to the sense of familiarity for smiling faces.

  18. Omega-3 fatty acid deficiency selectively up-regulates delta6-desaturase expression and activity indices in rat liver: prevention by normalization of omega-3 fatty acid status.

    PubMed

    Hofacer, Rylon; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Magrisso, I Jack; Benoit, Stephen C; McNamara, Robert K

    2011-09-01

    This study investigated the effects of perinatal dietary omega-3 (n-3) fatty acid depletion and subsequent repletion on the expression of genes that regulate long-chain (LC) polyunsaturated fatty acid biosynthesis in rat liver and brain. It was hypothesized that chronic n-3 fatty acid deficiency would increase liver Fads1 and Fads2 messenger RNA (mRNA) expression/activity and that n-3 fatty acid repletion would normalize this response. Adult rats fed the n-3-free diet during perinatal development exhibited significantly lower erythrocyte, liver, and frontal cortex LCn-3 fatty acid composition and reciprocal elevations in LC omega-6 (n-6) fatty acid composition compared with controls (CONs) and repleted rats. Liver Fads2, but not Fads1, Elovl2, or Elovl5, mRNA expression was significantly greater in n-3-deficient (DEF) rats compared with CONs and was partially normalized in repleted rats. The liver 18:3n-6/18:2n-6 ratio, an index of delta6-desturase activity, was significantly greater in DEF rats compared with CON and repleted rats and was positively correlated with Fads2 mRNA expression among all rats. The liver 18:3n-6/18:2n-6 ratio, but not Fads2 mRNA expression, was also positively correlated with erythrocyte and frontal cortex LCn-6 fatty acid compositions. Neither Fads1 or Fads2 mRNA expression was altered in brain cortex of DEF rats. These results confirm previous findings that liver, but not brain, delta6-desaturase expression and activity indices are negatively regulated by dietary n-3 fatty acids. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. The Epstein Barr-encoded BART-6-3p microRNA affects regulation of cell growth and immuno response in Burkitt lymphoma

    PubMed Central

    2014-01-01

    Background Burkitt lymphoma is an aggressive B-cell lymphoma presenting in three clinical forms: endemic, sporadic and immunodeficiency-associated. More than 90% of endemic Burkitt lymphoma carry latent Epstein-Barr virus, whereas only 20% of sporadic Burkitt lymphoma are associated with Epstein-Barr infection. Although the Epstein-Barr virus is highly related with the endemic form, how and whether the virus participates in its pathogenesis remains to be fully elucidated. In particular, the virus may impair cellular gene expression by its own encoded microRNAs. Methods Using microRNA profiling we compared Epstein-Barr-positive and Epstein-Barr-negative Burkitt lymphoma cases for both cellular and viral microRNAs. The array results were validated by qRT-PCR, and potential targets of viral microRNAs were then searched by bioinformatic predictions, and classified in functional categories, according to the Gene Ontology. Our findings were validated by in vitro functional studies and by immunohistochemistry on a larger series of cases. Results We showed that a few cellular microRNAs are differentially expressed between Epstein-Barr-positive and Epstein-Barr-negative Burkitt lymphoma cases, and identified a subset of viral microRNAs expressed in Epstein-Barr-positive Burkitt lymphomas. Of these, we characterized the effects of viral BART6-3p on regulation of cellular genes. In particular, we analyzed the IL-6 receptor genes (IL-6Rα and IL-6ST), PTEN and WT1 expression for their possible relevance to Burkitt lymphoma. By means of immunohistochemistry, we observed a down-regulation of the IL-6 receptor and PTEN specifically in Epstein-Barr-positive Burkitt lymphoma cases, which may result in the impairment of key cellular pathways and may contribute to malignant transformation. On the contrary, no differences were observed between Epstein-Barr-positive and Epstein-Barr-negative Burkitt lymphoma cases for WT1 expression. Conclusions Our preliminary results point at an active role for the Epstein-Barr virus in Burkitt lymphomagenesis and suggest new possible mechanisms used by the virus in determining dysregulation of the host cell physiology. PMID:24731550

  20. The Epstein Barr-encoded BART-6-3p microRNA affects regulation of cell growth and immuno response in Burkitt lymphoma.

    PubMed

    Ambrosio, Maria Raffaella; Navari, Mohsen; Di Lisio, Lorena; Leon, Eduardo Andres; Onnis, Anna; Gazaneo, Sara; Mundo, Lucia; Ulivieri, Cristina; Gomez, Gonzalo; Lazzi, Stefano; Piris, Miguel Angel; Leoncini, Lorenzo; De Falco, Giulia

    2014-01-01

    Burkitt lymphoma is an aggressive B-cell lymphoma presenting in three clinical forms: endemic, sporadic and immunodeficiency-associated. More than 90% of endemic Burkitt lymphoma carry latent Epstein-Barr virus, whereas only 20% of sporadic Burkitt lymphoma are associated with Epstein-Barr infection. Although the Epstein-Barr virus is highly related with the endemic form, how and whether the virus participates in its pathogenesis remains to be fully elucidated. In particular, the virus may impair cellular gene expression by its own encoded microRNAs. Using microRNA profiling we compared Epstein-Barr-positive and Epstein-Barr-negative Burkitt lymphoma cases for both cellular and viral microRNAs. The array results were validated by qRT-PCR, and potential targets of viral microRNAs were then searched by bioinformatic predictions, and classified in functional categories, according to the Gene Ontology. Our findings were validated by in vitro functional studies and by immunohistochemistry on a larger series of cases. We showed that a few cellular microRNAs are differentially expressed between Epstein-Barr-positive and Epstein-Barr-negative Burkitt lymphoma cases, and identified a subset of viral microRNAs expressed in Epstein-Barr-positive Burkitt lymphomas. Of these, we characterized the effects of viral BART6-3p on regulation of cellular genes. In particular, we analyzed the IL-6 receptor genes (IL-6Rα and IL-6ST), PTEN and WT1 expression for their possible relevance to Burkitt lymphoma. By means of immunohistochemistry, we observed a down-regulation of the IL-6 receptor and PTEN specifically in Epstein-Barr-positive Burkitt lymphoma cases, which may result in the impairment of key cellular pathways and may contribute to malignant transformation. On the contrary, no differences were observed between Epstein-Barr-positive and Epstein-Barr-negative Burkitt lymphoma cases for WT1 expression. Our preliminary results point at an active role for the Epstein-Barr virus in Burkitt lymphomagenesis and suggest new possible mechanisms used by the virus in determining dysregulation of the host cell physiology.

  1. Jasmonate regulates the inducer of cbf expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis.

    PubMed

    Hu, Yanru; Jiang, Liqun; Wang, Fang; Yu, Diqiu

    2013-08-01

    The inducer of cbf expression (ICE)-C-repeat binding factor/DRE binding factor1 (CBF/DREB1) transcriptional pathway plays a critical role in modulating cold stress responses in Arabidopsis thaliana. Dissecting crucial upstream regulatory signals or components of the ICE-CBF/DREB1 cascade will enhance our understanding of plant cold-tolerance mechanisms. Here, we show that jasmonate positively regulates plant responses to freezing stress in Arabidopsis. Exogenous application of jasmonate significantly enhanced plant freezing tolerance with or without cold acclimation. By contrast, blocking endogenous jasmonate biosynthesis and signaling rendered plants hypersensitive to freezing stress. Consistent with the positive role of jasmonate in freezing stress, production of endogenous jasmonate was triggered by cold treatment. In addition, cold induction of genes acting in the CBF/DREB1 signaling pathway was upregulated by jasmonate. Further investigation revealed that several jasmonate ZIM-domain (JAZ) proteins, the repressors of jasmonate signaling, physically interact with ICE1 and ICE2 transcription factors. JAZ1 and JAZ4 repress the transcriptional function of ICE1, thereby attenuating the expression of its regulon. Consistent with this, overexpression of JAZ1 or JAZ4 represses freezing stress responses of Arabidopsis. Taken together, our study provides evidence that jasmonate functions as a critical upstream signal of the ICE-CBF/DREB1 pathway to positively regulate Arabidopsis freezing tolerance.

  2. Hepatitis B surface antigen gene expression is regulated by sex steroids and glucocorticoids in transgenic mice.

    PubMed Central

    Farza, H; Salmon, A M; Hadchouel, M; Moreau, J L; Babinet, C; Tiollais, P; Pourcel, C

    1987-01-01

    We have investigated the basis for liver-specific and sex-linked expression of hepatitis B surface antigen (HBsAg) gene in transgenic mice by monitoring the level of liver HBsAg mRNA and serum HBsAg at different stages of development and in response to sex-hormone regulation. Transcription of the HBsAg gene starts at day 15 of development, together with that of the albumin gene, and reaches a comparable level at birth. HBsAg mRNA level and HBsAg production are parallel in males and females during prenatal development and until the first month of life, but HBsAg gene expression increases 5-10 times in males at puberty. After castration, the level of expression decreases dramatically in both males and females and is subsequently increased by injection of testosterone or estradiol. Glucocorticoids also regulated positively expression of the HBsAg gene. Our results suggest that sex hormones play a role in hepatitis B virus gene expression during natural infection and could explain the difference in incidence of chronic carriers between men and women. Images PMID:3469661

  3. Regulation of neuropeptide Y gene expression in rat brain.

    PubMed

    Lindefors, N; Brené, S; Herrera-Marschitz, M; Persson, H

    1990-01-01

    NPY mRNA expression was studied in rat brain using in situ hybridization and RNA blot analysis. Transsynaptic regulation of NPY gene expression was specifically studied in caudate-putamen and frontoparietal (somatosensory) cortex of rats with unilateral lesion of midbrain dopamine neurons and in sham-injected animals. NPY mRNA expression in these two brain regions and the regulation of midbrain dopamine neurons were compared with that of SOM, PPT, CCK and GAD mRNA expression. Neurons expressing NPY and SOM mRNA showed a similar distribution and the expression of both NPY and SOM appears to be regulated by dopamine in a similar fashion. Following a unilateral dopamine deafferentation, the numerical density of both NPY and SOM mRNA expressing neurons almost doubled in the lesioned rat caudate-putamen with no change in the average grain density over positive neurons. Hence, in the intact caudate-putamen dopamine appears to normally suppress expression of these two neuropeptide genes. An activation of both NPY and SOM mRNA expression in many non- or low-expressing neurons is seen when the level of dopamine is decreased. In the frontoparietal cortex, on the other hand, dopamine appears to stimulate NPY and SOM gene expression. RNA blot analysis shows clear-cut changes of NPY mRNA levels in both caudate-putamen and frontoparietal cortex consistent with the changes observed using in situ hybridization. No evidence was found for a change in CCK mRNA expression by the dopamine deafferentation, while PPT mRNA expression decreased in the deafferented caudate-putamen. Consequently, dopamine exerts dissimilar effects on the expression of different neuropeptide genes, that in turn do not respond in the same way in different brain regions. Indirect evidence is also presented indicating that dopamine regulates NPY mRNA expression in a subpopulation of neurons that possibly also express GAD mRNA, both in caudate-putamen and in frontoparietal cortex.

  4. The Arabidopsis tandem CCCH zinc finger proteins AtTZF4, 5 and 6 are involved in light-, abscisic acid- and gibberellic acid-mediated regulation of seed germination.

    PubMed

    Bogamuwa, Srimathi; Jang, Jyan-Chyun

    2013-08-01

    Tandem CCCH zinc finger proteins (TZFs) are post-transcriptional regulators of gene expression in animals and yeast. Genetic studies indicate that plant TZFs are involved in hormone-mediated developmental and environmental responses. We have demonstrated previously that Arabidopsis AtTZF1 can localize to processing bodies (PBs) and stress granules (SGs), and affects abscisic acid (ABA)- and gibberellic acid (GA)-mediated growth, stress and gene expression responses. Here we show that AtTZF4, 5 and 6 are specifically expressed in seeds. Consistent with the observation that their expression levels decline during seed imbibition, AtTZF4, 5 and 6 are up-regulated by ABA and down-regulated by GA. Mutant analyses indicate that AtTZF4, 5 and 6 act as positive regulators for ABA- and negative regulators for light- and GA-mediated seed germination responses. Results of gene expression analysis indicate that AtTZF4, 5 and 6 affect seed germination by controlling genes critical for ABA and GA response. Furthermore, AtTZF4, 5 and 6 can co-localize with both PB and SG markers in Arabidopsis cells. Specifically, AtTZF6 can be assembled into PBs and SGs in embryos with the induction of stress hormone methyl jasmonate under the control of native AtTZF6 promoter. © 2013 John Wiley & Sons Ltd.

  5. Modulation of light-driven arousal by LIM-homeodomain transcription factor Apterous in large PDF-positive lateral neurons of the Drosophila brain

    PubMed Central

    Shimada, Naoto; Inami, Show; Sato, Shoma; Kitamoto, Toshihiro; Sakai, Takaomi

    2016-01-01

    Apterous (Ap), the best studied LIM-homeodomain transcription factor in Drosophila, cooperates with the cofactor Chip (Chi) to regulate transcription of specific target genes. Although Ap regulates various developmental processes, its function in the adult brain remains unclear. Here, we report that Ap and Chi in the neurons expressing PDF, a neuropeptide, play important roles in proper sleep/wake regulation in adult flies. PDF-expressing neurons consist of two neuronal clusters: small ventral-lateral neurons (s-LNvs) acting as the circadian pacemaker and large ventral-lateral neurons (l-LNvs) regulating light-driven arousal. We identified that Ap localizes to the nuclei of s-LNvs and l-LNvs. In light-dark (LD) cycles, RNAi knockdown or the targeted expression of dominant-negative forms of Ap or Chi in PDF-expressing neurons or l-LNvs promoted arousal. In contrast, in constant darkness, knockdown of Ap in PDF-expressing neurons did not promote arousal, indicating that a reduced Ap function in PDF-expressing neurons promotes light-driven arousal. Furthermore, Ap expression in l-LNvs showed daily rhythms (peaking at midnight), which are generated by a direct light-dependent mechanism rather than by the endogenous clock. These results raise the possibility that the daily oscillation of Ap expression in l-LNvs may contribute to the buffering of light-driven arousal in wild-type flies. PMID:27853240

  6. Modulation of light-driven arousal by LIM-homeodomain transcription factor Apterous in large PDF-positive lateral neurons of the Drosophila brain.

    PubMed

    Shimada, Naoto; Inami, Show; Sato, Shoma; Kitamoto, Toshihiro; Sakai, Takaomi

    2016-11-17

    Apterous (Ap), the best studied LIM-homeodomain transcription factor in Drosophila, cooperates with the cofactor Chip (Chi) to regulate transcription of specific target genes. Although Ap regulates various developmental processes, its function in the adult brain remains unclear. Here, we report that Ap and Chi in the neurons expressing PDF, a neuropeptide, play important roles in proper sleep/wake regulation in adult flies. PDF-expressing neurons consist of two neuronal clusters: small ventral-lateral neurons (s-LNvs) acting as the circadian pacemaker and large ventral-lateral neurons (l-LNvs) regulating light-driven arousal. We identified that Ap localizes to the nuclei of s-LNvs and l-LNvs. In light-dark (LD) cycles, RNAi knockdown or the targeted expression of dominant-negative forms of Ap or Chi in PDF-expressing neurons or l-LNvs promoted arousal. In contrast, in constant darkness, knockdown of Ap in PDF-expressing neurons did not promote arousal, indicating that a reduced Ap function in PDF-expressing neurons promotes light-driven arousal. Furthermore, Ap expression in l-LNvs showed daily rhythms (peaking at midnight), which are generated by a direct light-dependent mechanism rather than by the endogenous clock. These results raise the possibility that the daily oscillation of Ap expression in l-LNvs may contribute to the buffering of light-driven arousal in wild-type flies.

  7. T-box Transcription Regulator Tbr2 Is Essential for the Formation and Maintenance of Opn4/Melanopsin-Expressing Intrinsically Photosensitive Retinal Ganglion Cells

    PubMed Central

    Li, Hongyan; Zhang, Zhijing; Kiyama, Takae; Panda, Satchidananda; Hattar, Samer; Ribelayga, Christophe P.; Mills, Stephen L.

    2014-01-01

    Opsin 4 (Opn4)/melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) play a major role in non-image-forming visual system. Although advances have been made in understanding their morphological features and functions, the molecular mechanisms that regulate their formation and survival remain unknown. Previously, we found that mouse T-box brain 2 (Tbr2) (also known as Eomes), a T-box-containing transcription factor, was expressed in a subset of newborn RGCs, suggesting that it is involved in the formation of specific RGC subtypes. In this in vivo study, we used complex mouse genetics, single-cell dye tracing, and behavioral analyses to determine whether Tbr2 regulates ipRGC formation and survival. Our results show the following: (1) Opn4 is expressed exclusively in Tbr2-positive RGCs; (2) no ipRGCs are detected when Tbr2 is genetically ablated before RGC specification; and (3) most ipRGCs are eliminated when Tbr2 is deleted in established ipRGCs. The few remaining ipRGCs display abnormal dendritic morphological features and functions. In addition, some Tbr2-expressing RGCs can activate Opn4 expression on the loss of native ipRGCs, suggesting that Tbr2-expressing RGCs may serve as a reservoir of ipRGCs to regulate the number of ipRGCs and the expression levels of Opn4. PMID:25253855

  8. A quantitative validated model reveals two phases of transcriptional regulation for the gap gene giant in Drosophila.

    PubMed

    Hoermann, Astrid; Cicin-Sain, Damjan; Jaeger, Johannes

    2016-03-15

    Understanding eukaryotic transcriptional regulation and its role in development and pattern formation is one of the big challenges in biology today. Most attempts at tackling this problem either focus on the molecular details of transcription factor binding, or aim at genome-wide prediction of expression patterns from sequence through bioinformatics and mathematical modelling. Here we bridge the gap between these two complementary approaches by providing an integrative model of cis-regulatory elements governing the expression of the gap gene giant (gt) in the blastoderm embryo of Drosophila melanogaster. We use a reverse-engineering method, where mathematical models are fit to quantitative spatio-temporal reporter gene expression data to infer the regulatory mechanisms underlying gt expression in its anterior and posterior domains. These models are validated through prediction of gene expression in mutant backgrounds. A detailed analysis of our data and models reveals that gt is regulated by domain-specific CREs at early stages, while a late element drives expression in both the anterior and the posterior domains. Initial gt expression depends exclusively on inputs from maternal factors. Later, gap gene cross-repression and gt auto-activation become increasingly important. We show that auto-regulation creates a positive feedback, which mediates the transition from early to late stages of regulation. We confirm the existence and role of gt auto-activation through targeted mutagenesis of Gt transcription factor binding sites. In summary, our analysis provides a comprehensive picture of spatio-temporal gene regulation by different interacting enhancer elements for an important developmental regulator. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Comparative analysis of COX-2, vascular endothelial growth factor and microvessel density in human renal cell carcinomas.

    PubMed

    Hemmerlein, B; Galuschka, L; Putzer, N; Zischkau, S; Heuser, M

    2004-12-01

    Cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) are frequently up-regulated in malignant tumours and play a role in proliferation, apoptosis, angiogenesis and tumour invasion. In the present study, the expression of COX-2 and VEGF in renal cell carcinoma (RCC) was analysed and correlated with the microvessel density (MVD). COX-2 and VEGF were analysed by realtime reverse transcriptase-polymerase chain reaction and immunohistochemistry. The MVD was assessed by CD31 immunohistochemistry. The expression of COX-2 and VEGF was determined in the RCC cell lines A498 and Caki-1 under short-term hypoxia and in multicellular tumour cell aggregates. COX-2 was expressed in RCC by tumour epithelia, endothelia and macrophages in areas of cystic tumour regression and tumour necrosis. COX-2 protein in RCC was not altered in comparison with normal renal tissue. VEGF mRNA was up-regulated in RCC and positively correlated with MVD. RCC with high up-regulation of VEGF mRNA showed weak intracytoplasmic expression of VEGF in tumour cells. Intracytoplasmic VEGF protein expression was negatively correlated with MVD. In RCC with necrosis the MVD was reduced in comparison with RCC without necrosis. A498 RCC cells down-regulated COX-2 and up-regulated VEGF under conditions of hypoxia. In Caki-1 cells COX-2 expression remained stable, whereas VEGF was significantly up-regulated. In multicellular A498 cell aggregates COX-2 and VEGF were up-regulated centrally, whereas no gradient was found in Caki-1 cells. COX-2 and VEGF are potential therapeutic targets because COX-2 and VEGF are expressed in RCC and associated cell populations such as endothelia and monocytes/macrophages.

  10. Hypoxia and hypoglycaemia in Ewing's sarcoma and osteosarcoma: regulation and phenotypic effects of Hypoxia-Inducible Factor.

    PubMed

    Knowles, Helen J; Schaefer, Karl-Ludwig; Dirksen, Uta; Athanasou, Nicholas A

    2010-07-16

    Hypoxia regulates gene expression via the transcription factor HIF (Hypoxia-Inducible Factor). Little is known regarding HIF expression and function in primary bone sarcomas. We describe HIF expression and phenotypic effects of hypoxia, hypoglycaemia and HIF in Ewing's sarcoma and osteosarcoma. HIF-1alpha and HIF-2alpha immunohistochemistry was performed on a Ewing's tumour tissue array. Ewing's sarcoma and osteosarcoma cell lines were assessed for HIF pathway induction by Western blot, luciferase assay and ELISA. Effects of hypoxia, hypoglycaemia and isoform-specific HIF siRNA were assessed on proliferation, apoptosis and migration. 17/56 Ewing's tumours were HIF-1alpha-positive, 15 HIF-2alpha-positive and 10 positive for HIF-1alpha and HIF-2alpha. Expression of HIF-1alpha and cleaved caspase 3 localised to necrotic areas. Hypoxia induced HIF-1alpha and HIF-2alpha in Ewing's and osteosarcoma cell lines while hypoglycaemia specifically induced HIF-2alpha in Ewing's. Downstream transcription was HIF-1alpha-dependent in Ewing's sarcoma, but regulated by both isoforms in osteosarcoma. In both cell types hypoglycaemia reduced cellular proliferation by >or= 45%, hypoxia increased apoptosis and HIF siRNA modulated hypoxic proliferation and migration. Co-localisation of HIF-1alpha and necrosis in Ewing's sarcoma suggests a role for hypoxia and/or hypoglycaemia in in vivo induction of HIF. In vitro data implicates hypoxia as the primary HIF stimulus in both Ewing's and osteosarcoma, driving effects on proliferation and apoptosis. These results provide a foundation from which to advance understanding of HIF function in the pathobiology of primary bone sarcomas.

  11. Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 (MALAT1) interacts with estrogen receptor and predicted poor survival in breast cancer.

    PubMed

    Huang, Nai-Si; Chi, Ya-Yun; Xue, Jing-Yan; Liu, Meng-Ying; Huang, Sheng; Mo, Miao; Zhou, Shu-Ling; Wu, Jiong

    2016-06-21

    Metastasis associated in lung adenocarcinoma transcript 1 (MALAT1), a lncRNA that was first recognized as a prognostic parameter for patient survival of stage I lung cancer, is up-regulated in multiple human malignancies, including breast cancer. However, the mechanism of its function remained elusive. In the current study, by examining MALAT1 expression on mRNA level, we demonstrated that compared with MCF10A, MALAT1 expression was up-regulated in the majority of breast cancer cell lines (9/12). In 26 pairs of estrogen receptor (ER)-positive breast cancer samples, MALAT1 expression was significantly up-regulated compared with adjacent normal tissues (P = 0.012). Furthermore, of 204 breast cancer patients, high MALAT1 expression was associated with positive ER (P = 0.023) and progesterone receptor (PR) (P = 0.024) status. Further analysis using TCGA database revealed that ER and its target genes PGR and CCND1, were overexpressed in MALAT1 altered group compared with unaltered group, both on the mRNA and protein level. Lastly, we verified MALAT1's prognostic value in breast cancer. At the cut-off value of 75%, MALAT1 was the only independent prognostic factor of recurrence-free survival (RFS) in ER-negative patients in a multivariate Cox regression model (hazard ratio [HR] = 2.83, 95% confidence interval [CI] 1.02-7.83). MALAT1 overexpression was also associated with poor RFS in tamoxifen treated ER-positive breast cancer patients, which might serve as a potential biomarker to predict endocrine treatment sensitivity.

  12. Applications of Gene Targeting Technology to Mental Retardation and Developmental Disability Research

    ERIC Educational Resources Information Center

    Pimenta, Aurea F.; Levitt, Pat

    2005-01-01

    The human and mouse genome projects elucidated the sequence and position map of innumerous genes expressed in the central nervous system (CNS), advancing our ability to manipulate these sequences and create models to investigate regulation of gene expression and function. In this article, we reviewed gene targeting methodologies with emphasis on…

  13. An AlgU-regulated antisense transcript encoded within the Pseudomonas syringae fleQ gene has a positive effect on motility

    USDA-ARS?s Scientific Manuscript database

    Bacterial flagella production is controlled by a multi-tiered regulatory system that coordinates expression of 40-50 subunits and correct assembly of these complicated structures. Flagellar expression is environmentally controlled, presumably to optimize the benefits and liabilities of flagellar ex...

  14. The knottin-like Blufensin family regulates genes involved in nuclear import and the secretory pathway in barley-powdery mildew interactions

    USDA-ARS?s Scientific Manuscript database

    Plants have evolved complex regulatory mechanisms to control a multi-layered defense response to microbial attack. Both temporal and spatial gene expression are tightly regulated in response to pathogen ingress, modulating both positive and negative control of defense. BLUFENSINs, small knottin-like...

  15. Genomic Pangea: coordinate gene regulation and cell-specific chromosomal topologies.

    PubMed

    Laster, Kyle; Kosak, Steven T

    2010-06-01

    The eukaryotic nucleus is functionally organized. Gene loci, for example, often reveal altered localization patterns according to their developmental regulation. Whole chromosomes also demonstrate non-random nuclear positions, correlated with inherent characteristics such as gene density or size. Given that hundreds to thousands of genes are coordinately regulated in any given cell type, interest has grown in whether chromosomes may be specifically localized according to gene regulation. A synthesis of the evidence for preferential chromosomal organization suggests that, beyond basic characteristics, chromosomes can assume positions functionally related to gene expression. Moreover, analysis of total chromosome organization during cellular differentiation indicates that unique chromosome topologies, albeit probabilistic, in effect define a cell lineage. Future work with new techniques, including the advanced forms of the chromosome conformation capture (3C), and the development of next-generation whole-genome imaging approaches, will help to refine our view of chromosomal organization. We suggest that genomic organization during cellular differentiation should be viewed as a dynamic process, with gene expression patterns leading to chromosome associations that feed back on themselves, leading to the self-organization of the genome according to coordinate gene regulation. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. The ribonucleoprotein Csr network.

    PubMed

    Seyll, Ethel; Van Melderen, Laurence

    2013-11-08

    Ribonucleoprotein complexes are essential regulatory components in bacteria. In this review, we focus on the carbon storage regulator (Csr) network, which is well conserved in the bacterial world. This regulatory network is composed of the CsrA master regulator, its targets and regulators. CsrA binds to mRNA targets and regulates translation either negatively or positively. Binding to small non-coding RNAs controls activity of this protein. Expression of these regulators is tightly regulated at the level of transcription and stability by various global regulators (RNAses, two-component systems, alarmone). We discuss the implications of these complex regulations in bacterial adaptation.

  17. The role of ZmWRKY4 in regulating maize antioxidant defense under cadmium stress.

    PubMed

    Hong, Changyong; Cheng, Dan; Zhang, Guoqiang; Zhu, Dandan; Chen, Yahua; Tan, Mingpu

    2017-01-22

    WRKY transcription factors act as positive regulators in abiotic stress responses by activation of the cellular antioxidant systems. However, there are few reports on the response of WRKY genes to cadmium (Cd) stress. In this study, the role of maize ZmWRKY4 in regulating antioxidant enzymes in Cd stress was investigated. The results indicated that Cd induced up-regulation of the expression and the activities of ZmWRKY4 and superoxide dismutase (SOD) and ascorbate peroxidase (APX). Transient expression and RNA interference (RNAi) silencing of ZmWRKY4 in maize mesophyll protoplasts further revealed that ZmWRKY4 was required for the abscisic acid (ABA)-induced increase in expression and activity of SOD and APX. Overexpression of ZmWRKY4 in protoplasts upregulated the expression and the activities of antioxidant enzymes, whereas ABA induced increases in the expression and the activities of antioxidant enzymes were blocked by the RNAi silencing of ZmWRKY4. Bioinformatic analysis indicated that ZmSOD4 and ZmcAPX both harbored two W-boxes, binding motif for WRKY transcription factors, in their promoter region. Intriguingly, ZmWRKY4 belongs to group I WRKYs with two WRKY domains. Moreover, the synchronized expression patterns indicate that ZmWRKY4 might play a critical role in either regulating the ZmSOD4 and ZmcAPX expression or cooperating with them in response to stress and phytohormone. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Nitric Oxide Mediates the Hormonal Control of Crassulacean Acid Metabolism Expression in Young Pineapple Plants1[W][OA

    PubMed Central

    Freschi, Luciano; Rodrigues, Maria Aurineide; Domingues, Douglas Silva; Purgatto, Eduardo; Van Sluys, Marie-Anne; Magalhaes, Jose Ronaldo; Kaiser, Werner M.; Mercier, Helenice

    2010-01-01

    Genotypic, developmental, and environmental factors converge to determine the degree of Crassulacean acid metabolism (CAM) expression. To characterize the signaling events controlling CAM expression in young pineapple (Ananas comosus) plants, this photosynthetic pathway was modulated through manipulations in water availability. Rapid, intense, and completely reversible up-regulation in CAM expression was triggered by water deficit, as indicated by the rise in nocturnal malate accumulation and in the expression and activity of important CAM enzymes. During both up- and down-regulation of CAM, the degree of CAM expression was positively and negatively correlated with the endogenous levels of abscisic acid (ABA) and cytokinins, respectively. When exogenously applied, ABA stimulated and cytokinins repressed the expression of CAM. However, inhibition of water deficit-induced ABA accumulation did not block the up-regulation of CAM, suggesting that a parallel, non-ABA-dependent signaling route was also operating. Moreover, strong evidence revealed that nitric oxide (NO) may fulfill an important role during CAM signaling. Up-regulation of CAM was clearly observed in NO-treated plants, and a conspicuous temporal and spatial correlation was also evident between NO production and CAM expression. Removal of NO from the tissues either by adding NO scavenger or by inhibiting NO production significantly impaired ABA-induced up-regulation of CAM, indicating that NO likely acts as a key downstream component in the ABA-dependent signaling pathway. Finally, tungstate or glutamine inhibition of the NO-generating enzyme nitrate reductase completely blocked NO production during ABA-induced up-regulation of CAM, characterizing this enzyme as responsible for NO synthesis during CAM signaling in pineapple plants. PMID:20147491

  19. Structure and expression profiling of a novel calcium-dependent protein kinase gene, CDPK3a, in leaves, stems, grapes, and cell cultures of wild-growing grapevine Vitis amurensis Rupr.

    PubMed

    Kiselev, K V; Dubrovina, A S; Shumakova, O A; Karetin, Y A; Manyakhin, A Y

    2013-03-01

    KEY MESSAGE : VaCDPK3a is actively expressed in leaves, stems, inflorescences, and berries of Vitis amurensis and may act as a positive growth regulator, but is not involved in the regulation of resveratrol biosynthesis. Calcium-dependent protein kinases (CDPKs) are known to play important roles in plant development and defense against biotic and abiotic stresses. It has previously been shown that CDPK3a is the predominant CDPK transcript in cell cultures of wild-growing grapevine Vitis amurensis Rupr., which is known to possess high resistance against environmental stresses and to produce resveratrol, a polyphenol with valuable pharmacological effects. In this study, we aimed to define the full cDNA sequence of VaCDPK3a and analyze its organ-specific expression, responses to plant hormones, temperature stress and exogenous NaCl, and the effects of VaCDPK3a overexpression on biomass accumulation and resveratrol content in V. amurensis calli. VaCDPK3a was actively expressed in all analyzed V. amurensis organs and tissues and was not transcriptionally regulated by salt and temperature stresses. The highest VaCDPK3a expression was detected in young leaves and the lowest in stems. A reduction in the VaCDPK3a expression correlated with a lower rate of biomass accumulation and higher resveratrol content in calli of V. amurensis under different growth conditions. Overexpression of the VaCDPK3a gene in the V. amurensis calli significantly increased cell growth for a short period of time but did not have an effect on resveratrol production. Further subculturing of the transformed calli resulted in cell death and a decrease in expression of the endogenous VaCDPK3a. The data suggest that while VaCDPK3a acts as a positive regulator of V. amurensis cell growth, it is not involved in the signaling pathway regulating resveratrol biosynthesis and resistance to salt and temperature stresses.

  20. Domestication-driven Gossypium profilin 1 (GhPRF1) gene transduces early flowering phenotype in tobacco by spatial alteration of apical/floral-meristem related gene expression.

    PubMed

    Pandey, Dhananjay K; Chaudhary, Bhupendra

    2016-05-13

    Plant profilin genes encode core cell-wall structural proteins and are evidenced for their up-regulation under cotton domestication. Notwithstanding striking discoveries in the genetics of cell-wall organization in plants, little is explicit about the manner in which profilin-mediated molecular interplay and corresponding networks are altered, especially during cellular signalling of apical meristem determinacy and flower development. Here we show that the ectopic expression of GhPRF1 gene in tobacco resulted in the hyperactivation of apical meristem and early flowering phenotype with increased flower number in comparison to the control plants. Spatial expression alteration in CLV1, a key meristem-determinacy gene, is induced by the GhPRF1 overexpression in a WUS-dependent manner and mediates cell signalling to promote flowering. But no such expression alterations are recorded in the GhPRF1-RNAi lines. The GhPRF1 transduces key positive flowering regulator AP1 gene via coordinated expression of FT4, SOC1, FLC1 and FT1 genes involved in the apical-to-floral meristem signalling cascade which is consistent with our in silico profilin interaction data. Remarkably, these positive and negative flowering regulators are spatially controlled by the Actin-Related Protein (ARP) genes, specifically ARP4 and ARP6 in proximate association with profilins. This study provides a novel and systematic link between GhPRF1 gene expression and the flower primordium initiation via up-regulation of the ARP genes, and an insight into the functional characterization of GhPRF1 gene acting upstream to the flowering mechanism. Also, the transgenic plants expressing GhPRF1 gene show an increase in the plant height, internode length, leaf size and plant vigor. Overexpression of GhPRF1 gene induced early and increased flowering in tobacco with enhanced plant vigor. During apical meristem determinacy and flower development, the GhPRF1 gene directly influences key flowering regulators through ARP-genes, indicating for its role upstream in the apical-to-floral meristem signalling cascade.

  1. Scc2 regulates gene expression by recruiting cohesin to the chromosome as a transcriptional activator during yeast meiosis

    PubMed Central

    Lin, Weiqiang; Jin, Hui; Liu, Xiuwen; Hampton, Kristin; Yu, Hong-Guo

    2011-01-01

    To tether sister chromatids, a protein-loading complex, including Scc2, recruits cohesin to the chromosome at discrete loci. Cohesin facilitates the formation of a higher-order chromosome structure that could also influence gene expression. How cohesin directly regulates transcription remains to be further elucidated. We report that in budding yeast Scc2 is required for sister-chromatid cohesion during meiosis for two reasons. First, Scc2 is required for activating the expression of REC8, which encodes a meiosis-specific cohesin subunit; second, Scc2 is necessary for recruiting meiotic cohesin to the chromosome to generate sister-chromatid cohesion. Using a heterologous reporter assay, we have found that Scc2 increases the activity of its target promoters by recruiting cohesin to establish an upstream cohesin-associated region in a position-dependent manner. Rec8-associated meiotic cohesin is required for the full activation of the REC8 promoter, revealing that cohesin has a positive feedback on transcriptional regulation. Finally, we provide evidence that chromosomal binding of cohesin is sufficient for target-gene activation during meiosis. Our data support a noncanonical role for cohesin as a transcriptional activator during cell differentiation. PMID:21508318

  2. Hypoxia induces cyclophilin B through the activation of transcription factor 6 in gastric adenocarcinoma cells.

    PubMed

    Jeong, Kwon; Kim, Kiyoon; Kim, Hunsung; Oh, Yoojung; Kim, Seong-Jin; Jo, Yunhee; Choe, Wonchae

    2015-06-01

    Hypoxia is an important form of physiological stress that induces cell death, due to the resulting endoplasmic reticulum (ER) stress, particularly in solid tumors. Although previous studies have indicated that cyclophilin B (CypB) plays a role in ER stress, there is currently no direct information supporting the mechanism of CypB involvement under hypoxic conditions. However, it has previously been demonstrated that ER stress positively regulates the expression of CypB. In the present study, it was demonstrated that CypB is transcriptionally regulated by hypoxia-mediated activation of transcription factor 6 (ATF6), an ER stress transcription factor. Subsequently, the effects of ATF6 on CypB promoter activity were investigated and an ATF6-responsive region in the promoter was identified. Hypoxia and ATF6 expression each increased CypB promoter activity. Collectively, these results demonstrate that ATF6 positively regulates the expression of CypB by binding to an ATF6-responsive region in the promoter, which may play an important role in the attenuation of apoptosis in the adaption to hypoxia. These results suggest that CypB may be a key molecule in the adaptation of cells to hypoxic conditions.

  3. Hypoxia induces cyclophilin B through the activation of transcription factor 6 in gastric adenocarcinoma cells

    PubMed Central

    JEONG, KWON; KIM, KIYOON; KIM, HUNSUNG; OH, YOOJUNG; KIM, SEONG-JIN; JO, YUNHEE; CHOE, WONCHAE

    2015-01-01

    Hypoxia is an important form of physiological stress that induces cell death, due to the resulting endoplasmic reticulum (ER) stress, particularly in solid tumors. Although previous studies have indicated that cyclophilin B (CypB) plays a role in ER stress, there is currently no direct information supporting the mechanism of CypB involvement under hypoxic conditions. However, it has previously been demonstrated that ER stress positively regulates the expression of CypB. In the present study, it was demonstrated that CypB is transcriptionally regulated by hypoxia-mediated activation of transcription factor 6 (ATF6), an ER stress transcription factor. Subsequently, the effects of ATF6 on CypB promoter activity were investigated and an ATF6-responsive region in the promoter was identified. Hypoxia and ATF6 expression each increased CypB promoter activity. Collectively, these results demonstrate that ATF6 positively regulates the expression of CypB by binding to an ATF6-responsive region in the promoter, which may play an important role in the attenuation of apoptosis in the adaption to hypoxia. These results suggest that CypB may be a key molecule in the adaptation of cells to hypoxic conditions. PMID:26137159

  4. The Role of Hox Genes in Female Reproductive Tract Development, Adult Function, and Fertility.

    PubMed

    Du, Hongling; Taylor, Hugh S

    2015-11-09

    HOX genes convey positional identity that leads to the proper partitioning and adult identity of the female reproductive track. Abnormalities in reproductive tract development can be caused by HOX gene mutations or altered HOX gene expression. Diethylstilbestrol (DES) and other endocrine disruptors cause Müllerian defects by changing HOX gene expression. HOX genes are also essential regulators of adult endometrial development. Regulated HOXA10 and HOXA11 expression is necessary for endometrial receptivity; decreased HOXA10 or HOXA11 expression leads to decreased implantation rates. Alternation of HOXA10 and HOXA11 expression has been identified as a mechanism of the decreased implantation associated with endometriosis, polycystic ovarian syndrome, leiomyoma, polyps, adenomyosis, and hydrosalpinx. Alteration of HOX gene expression causes both uterine developmental abnormalities and impaired adult endometrial development that prevent implantation and lead to female infertility. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  5. The Nuclear Receptor, RORγ, Regulates Pathways Necessary for Breast Cancer Metastasis

    PubMed Central

    Oh, Tae Gyu; Wang, Shu-Ching M.; Acharya, Bipul R.; Goode, Joel M.; Graham, J. Dinny; Clarke, Christine L.; Yap, Alpha S.; Muscat, George E.O.

    2016-01-01

    We have previously reported that RORγ expression was decreased in ER − ve breast cancer, and increased expression improves clinical outcomes. However, the underlying RORγ dependent mechanisms that repress breast carcinogenesis have not been elucidated. Here we report that RORγ negatively regulates the oncogenic TGF-β/EMT and mammary stem cell (MaSC) pathways, whereas RORγ positively regulates DNA-repair. We demonstrate that RORγ expression is: (i) decreased in basal-like subtype cancers, and (ii) inversely correlated with histological grade and drivers of carcinogenesis in breast cancer cohorts. Furthermore, integration of RNA-seq and ChIP-chip data reveals that RORγ regulates the expression of many genes involved in TGF-β/EMT-signaling, DNA-repair and MaSC pathways (including the non-coding RNA, LINC00511). In accordance, pharmacological studies demonstrate that an RORγ agonist suppresses breast cancer cell viability, migration, the EMT transition (microsphere outgrowth) and mammosphere-growth. In contrast, RNA-seq demonstrates an RORγ inverse agonist induces TGF-β/EMT-signaling. These findings suggest pharmacological modulation of RORγ activity may have utility in breast cancer. PMID:27211549

  6. Analyzing the soybean transcriptome during autoregulation of mycorrhization identifies the transcription factors GmNF-YA1a/b as positive regulators of arbuscular mycorrhization.

    PubMed

    Schaarschmidt, Sara; Gresshoff, Peter M; Hause, Bettina

    2013-06-18

    Similarly to the legume-rhizobia symbiosis, the arbuscular mycorrhiza interaction is controlled by autoregulation representing a feedback inhibition involving the CLAVATA1-like receptor kinase NARK in shoots. However, little is known about signals and targets down-stream of NARK. To find NARK-related transcriptional changes in mycorrhizal soybean (Glycine max) plants, we analyzed wild-type and two nark mutant lines interacting with the arbuscular mycorrhiza fungus Rhizophagus irregularis. Affymetrix GeneChip analysis of non-inoculated and partially inoculated plants in a split-root system identified genes with potential regulation by arbuscular mycorrhiza or NARK. Most transcriptional changes occur locally during arbuscular mycorrhiza symbiosis and independently of NARK. RT-qPCR analysis verified nine genes as NARK-dependently regulated. Most of them have lower expression in roots or shoots of wild type compared to nark mutants, including genes encoding the receptor kinase GmSIK1, proteins with putative function as ornithine acetyl transferase, and a DEAD box RNA helicase. A predicted annexin named GmAnnx1a is differentially regulated by NARK and arbuscular mycorrhiza in distinct plant organs. Two putative CCAAT-binding transcription factor genes named GmNF-YA1a and GmNF-YA1b are down-regulated NARK-dependently in non-infected roots of mycorrhizal wild-type plants and functional gene analysis confirmed a positive role for these genes in the development of an arbuscular mycorrhiza symbiosis. Our results indicate GmNF-YA1a/b as positive regulators in arbuscular mycorrhiza establishment, whose expression is down-regulated by NARK in the autoregulated root tissue thereby diminishing subsequent infections. Genes regulated independently of arbuscular mycorrhization by NARK support an additional function of NARK in symbioses-independent mechanisms.

  7. A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS.

    PubMed

    Lee, I; Wolfe, D S; Nilsson, O; Weigel, D

    1997-02-01

    . Development of petals and stamens in Arabidopsis flowers requires the function of the organ-identity gene APETALA3 (AP3), whose RNA is expressed specifically in petal and stamen primordia. AP3 expression is positively regulated by the meristem-identity gene LEAFY (LFY), which is expressed ubiquitously in young flowers. It is unknown how the transition from ubiquitous expression of LFY to region-specific expression of AP3 is made. It has previously been proposed for Antirrhinum that another gene, FIMBRIATA (FIM), mediates between the LFY and AP3 orthologs, with the three genes acting in a simple regulatory hierarchy. FIM is activated later than the LFY ortholog, and its expression is more restricted than that of the LFY ortholog. . We have tested whether the model proposed for Antirrhinum applies to Arabidopsis, by creating transgenic plants in which the FIM ortholog UNUSUAL FLORAL ORGANS (UFO) was expressed constitutively from the promoter of the cauliflower mosaic virus 35S gene. In 35S::UFO flowers, AP3 was expressed precociously and ectopically, confirming that UFO is an upstream regulator of AP3. However, 35S::UFO could not restore petal and stamen development in lfy mutants, indicating that UFO can only function in the presence of LFY activity. The failure of 35S::UFO to rescue lfy mutants is consistent with our observation that UFO expression levels are not markedly changed in lfy mutants. . We conclude that UFO is not a simple mediator between meristem- and organ-identity genes, but is likely to be a partially dispensable co-regulator that acts together with LFY. The interplay between LFY and UFO provides a paradigm for how a global regulator such as LFY activates selected target genes only in restricted regions within its expression domain.

  8. Dicarbonyl stress and glyoxalase enzyme system regulation in human skeletal muscle.

    PubMed

    Mey, Jacob T; Blackburn, Brian K; Miranda, Edwin R; Chaves, Alec B; Briller, Joan; Bonini, Marcelo G; Haus, Jacob M

    2018-02-01

    Skeletal muscle insulin resistance is a hallmark of Type 2 diabetes (T2DM) and may be exacerbated by protein modifications by methylglyoxal (MG), known as dicarbonyl stress. The glyoxalase enzyme system composed of glyoxalase 1/2 (GLO1/GLO2) is the natural defense against dicarbonyl stress, yet its protein expression, activity, and regulation remain largely unexplored in skeletal muscle. Therefore, this study investigated dicarbonyl stress and the glyoxalase enzyme system in the skeletal muscle of subjects with T2DM (age: 56 ± 5 yr.; BMI: 32 ± 2 kg/m 2 ) compared with lean healthy control subjects (LHC; age: 27 ± 1 yr.; BMI: 22 ± 1 kg/m 2 ). Skeletal muscle biopsies obtained from the vastus lateralis at basal and insulin-stimulated states of the hyperinsulinemic (40 mU·m -2 ·min -1 )-euglycemic (5 mM) clamp were analyzed for proteins related to dicarbonyl stress and glyoxalase biology. At baseline, T2DM had increased carbonyl stress and lower GLO1 protein expression (-78.8%), which inversely correlated with BMI, percent body fat, and HOMA-IR, while positively correlating with clamp-derived glucose disposal rates. T2DM also had lower NRF2 protein expression (-31.6%), which is a positive regulator of GLO1, while Keap1 protein expression, a negative regulator of GLO1, was elevated (207%). Additionally, insulin stimulation during the clamp had a differential effect on NRF2, Keap1, and MG-modified protein expression. These data suggest that dicarbonyl stress and the glyoxalase enzyme system are dysregulated in T2DM skeletal muscle and may underlie skeletal muscle insulin resistance. Whether these phenotypic differences contribute to the development of T2DM warrants further investigation.

  9. Roles of Protein Kinase A and Adenylate Cyclase in Light-Modulated Cellulase Regulation in Trichoderma reesei

    PubMed Central

    Schuster, André; Tisch, Doris; Seidl-Seiboth, Verena; Kubicek, Christian P.

    2012-01-01

    The cyclic AMP (cAMP) pathway represents a central signaling cascade with crucial functions in all organisms. Previous studies of Trichoderma reesei (anamorph of Hypocrea jecorina) suggested a function of cAMP signaling in regulation of cellulase gene expression. We were therefore interested in how the crucial components of this pathway, adenylate cyclase (ACY1) and cAMP-dependent protein kinase A (PKA), would affect cellulase gene expression. We found that both ACY1 and PKA catalytic subunit 1 (PKAC1) are involved in regulation of vegetative growth but are not essential for sexual development. Interestingly, our results showed considerably increased transcript abundance of cellulase genes in darkness compared to light (light responsiveness) upon growth on lactose. This effect is strongly enhanced in mutant strains lacking PKAC1 or ACY1. Comparison to the wild type showed that ACY1 has a consistently positive effect on cellulase gene expression in light and darkness, while PKAC1 influences transcript levels of cellulase genes positively in light but negatively in darkness. A function of PKAC1 in light-modulated cellulase gene regulation is also reflected by altered complex formation within the cel6a/cbh2 promoter in light and darkness and in the absence of pkac1. Analysis of transcript levels of cellulase regulator genes indicates that the regulatory output of the cAMP pathway may be established via adjustment of XYR1 abundance. Consequently, both adenylate cyclase and protein kinase A are involved in light-modulated cellulase gene expression in T. reesei and have a dampening effect on the light responsiveness of this process. PMID:22286997

  10. MicroRNA-21 regulates the proliferation and apoptosis of cervical cancer cells via tumor necrosis factor-α.

    PubMed

    Xu, Lin; Xu, Qian; Li, Xiwen; Zhang, Xiaoling

    2017-10-01

    The proliferation and apoptosis of tumor cells are regulated by a variety of microRNAs (miRs). miR‑21 can inhibit the apoptosis of cancer cells in vitro. Tumor necrosis factor α (TNF‑α) serves an important role in the induction of proliferation of cervical cancer cells. Previous studies have demonstrated that the expression level of miR‑21 is associated with TNF‑α expression in alveolar macrophages. However, to the best of our knowledge, whether miR‑21 regulates TNF‑α in cervical cells has not been reported. The present study was designed to investigate whether miR‑21 regulates TNF‑α expression, proliferation and apoptosis of cervical cancer cells. miR‑21, miR‑21 inhibitor and control miRNA were synthesized and transfected into HeLa cervical cancer cells. Reverse transcription‑quantitative polymerase chain reaction was used to measure the expression levels of miR‑21 and TNF‑α at the mRNA level. Western blotting was used to measure the expression levels of TNF‑α at the protein level. MTT assay and Hoechest‑33342 staining were used to measure the proliferation and apoptosis of HeLa cells. miR‑21 was identified to upregulate the mRNA and protein expression levels of TNF‑α. Furthermore, upregulation of TNF‑α enhanced the proliferation capability of HeLa cells. Changes in the expression levels of miR‑21 and TNF‑α did not significantly affect the apoptosis of Hela cells. In conclusion, the present study demonstrated that miR‑21 regulates the expression of TNF‑α in HeLa cells. Additionally, the expression level of TNF‑α was positively associated with the proliferation capability of Hela cells, but not apoptosis. Therefore, miR‑21 regulates the proliferation of HeLa cells through regulation of TNF‑α. These results provide novel potential therapeutic targets for the treatment of cervical cancer.

  11. Circulating plant miRNAs can regulate human gene expression in vitro

    PubMed Central

    Pastrello, Chiara; Tsay, Mike; McQuaid, Rosanne; Abovsky, Mark; Pasini, Elisa; Shirdel, Elize; Angeli, Marc; Tokar, Tomas; Jamnik, Joseph; Kotlyar, Max; Jurisicova, Andrea; Kotsopoulos, Joanne; El-Sohemy, Ahmed; Jurisica, Igor

    2016-01-01

    While Brassica oleracea vegetables have been linked to cancer prevention, the exact mechanism remains unknown. Regulation of gene expression by cross-species microRNAs has been previously reported; however, its link to cancer suppression remains unexplored. In this study we address both issues. We confirm plant microRNAs in human blood in a large nutrigenomics study cohort and in a randomized dose-controlled trial, finding a significant positive correlation between the daily amount of broccoli consumed and the amount of microRNA in the blood. We also demonstrate that Brassica microRNAs regulate expression of human genes and proteins in vitro, and that microRNAs cooperate with other Brassica-specific compounds in a possible cancer-preventive mechanism. Combined, we provide strong evidence and a possible multimodal mechanism for broccoli in cancer prevention. PMID:27604570

  12. Regulation of catalase expression in healthy and cancerous cells.

    PubMed

    Glorieux, Christophe; Zamocky, Marcel; Sandoval, Juan Marcelo; Verrax, Julien; Calderon, Pedro Buc

    2015-10-01

    Catalase is an important antioxidant enzyme that dismutates hydrogen peroxide into water and molecular oxygen. The catalase gene has all the characteristics of a housekeeping gene (no TATA box, no initiator element sequence, high GC content in promoter) and a core promoter that is highly conserved among species. We demonstrate in this review that within this core promoter, the presence of DNA binding sites for transcription factors, such as NF-Y and Sp1, plays an essential role in the positive regulation of catalase expression. Additional transcription factors, such as FoxO3a, are also involved in this regulatory process. There is strong evidence that the protein Akt/PKB in the PI3K signaling pathway plays a major role in the expression of catalase by modulating the activity of FoxO3a. Over the past decade, other transcription factors (PPARγ, Oct-1, etc.), as well as genetic, epigenetic, and posttranscriptional processes, have emerged as crucial contributors to the regulation of catalase expression. Altered expression levels of catalase have been reported in cancer tissues compared to their normal counterparts. Deciphering the molecular mechanisms that regulate catalase expression could, therefore, be of crucial importance for the future development of pro-oxidant cancer chemotherapy. Copyright © 2015. Published by Elsevier Inc.

  13. Differential regulation of ParaHox genes by retinoic acid in the invertebrate chordate amphioxus (Branchiostoma floridae).

    PubMed

    Osborne, Peter W; Benoit, Gérard; Laudet, Vincent; Schubert, Michael; Ferrier, David E K

    2009-03-01

    The ParaHox cluster is the evolutionary sister to the Hox cluster. Like the Hox cluster, the ParaHox cluster displays spatial and temporal regulation of the component genes along the anterior/posterior axis in a manner that correlates with the gene positions within the cluster (a feature called collinearity). The ParaHox cluster is however a simpler system to study because it is composed of only three genes. We provide a detailed analysis of the amphioxus ParaHox cluster and, for the first time in a single species, examine the regulation of the cluster in response to a single developmental signalling molecule, retinoic acid (RA). Embryos treated with either RA or RA antagonist display altered ParaHox gene expression: AmphiGsx expression shifts in the neural tube, and the endodermal boundary between AmphiXlox and AmphiCdx shifts its anterior/posterior position. We identified several putative retinoic acid response elements and in vitro assays suggest some may participate in RA regulation of the ParaHox genes. By comparison to vertebrate ParaHox gene regulation we explore the evolutionary implications. This work highlights how insights into the regulation and evolution of more complex vertebrate arrangements can be obtained through studies of a simpler, unduplicated amphioxus gene cluster.

  14. Increased visfatin levels are associated with higher disease activity in anti-Jo-1-positive myositis patients.

    PubMed

    Hulejová, Hana; Kryštůfková, Olga; Mann, Heřman; Klein, Martin; Pavlíčková, Klára; Zámečník, Josef; Vencovský, Jiří; Šenolt, Ladislav

    2016-01-01

    The aim of this study was to evaluate serum levels of visfatin in anti-Jo-1-positive myositis patients, its expression in muscle tissue and to investigate potential relationships between visfatin, B-cell activating factor of the TNF family (BAFF), disease activity and anti-Jo-1 autoantibody levels. Serum levels of visfatin and BAFF were measured in 38 anti-Jo-1 positive myositis patients and 35 healthy subjects. Disease activity was evaluated by myositis disease activity assessment tool (MYOACT) using visual analogue scales (VAS) and by serum muscle enzymes. Visfatin expression was evaluated by immunohistochemistry in muscle tissue of myositis patients (n=10) and compared with non-inflammatory control muscle tissue samples from patients with myasthenia gravis (n=5). Serum visfatin and BAFF levels were significantly higher in myositis patients compared to healthy subjects and were associated with clinical muscle activity assessed by VAS. Only serum BAFF levels, but not visfatin levels, positively correlated with muscle enzyme concentrations and anti-Jo1 antibody levels. There was a positive correlation between visfatin and BAFF serum levels in myositis patients but a negative correlation was observed in healthy subjects. Visfatin expression was up-regulated in endomysial and perimysial inflammatory infiltrates of muscle tissue from myositis patients. Up-regulation of visfatin in myositis muscle tissue and an association between increased visfatin levels and muscle disease activity evaluated by MYOACT in anti-Jo-1 positive myositis patients could support possible role of visfatin in the pathogenesis of myositis.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanai, Dai; Ueda, Atsushi; Akagi, Tadayuki

    Embryonic stem (ES) cells, derived from the inner cell mass of blastocysts, have a characteristic cell cycle with truncated G1 and G2 phases. Recent findings that suppression of Oct3/4 expression results in a reduced proliferation rate of ES cells suggest the involvement of Oct3/4 in the regulation of ES cell growth, although the underlying molecular mechanism remains unclear. In the present study, we identified E2F3a as a direct target gene of Oct3/4 in ES cells. Oct3/4 directly bound to the promoter region of the E2F3a gene and positively regulated expression of E2F3a in mouse ES cells. Suppression of E2F3a activitymore » by E2F6 overexpression led to the reduced proliferation in ES cells, which was relieved by co-expression of E2F3a. Furthermore, cell growth retardation caused by loss of Oct3/4 was rescued by E2F3a expression. These results suggest that Oct3/4 upregulates E2F3a expression to promote ES cell growth. - Highlights: • Oct3/4 positively regulates E2F3a expression in ES cells. • Oct3/4 binds to the promoter region of the E2F3a gene. • Overexpression of E2F6, an inhibitor of E2F3a, reduces ES cell growth. • E2F3a recovers growth retardation of ES cells caused by Oct3/4 reduction.« less

  16. Regulation of ocular surface inflammation by prostaglandin E receptor subtype EP3.

    PubMed

    Ueta, Mayumi

    2010-11-01

    We first investigated whether the prostaglandin (PG) E2-PGE receptor subtype EP3 axis regulates the development of murine experimental allergic conjunctivitis because it has been reported that this pathway negatively regulates allergic reactions in a murine allergic asthma model. We observed that EP3 is constitutively expressed in mice conjunctival epithelium. EP3 knockout mice demonstrated significantly increased eosinophil infiltration in conjunctiva after ragweed challenge compared with wild-type mice. Consistently, significantly higher expression of eotaxin-1 messenger RNA was observed in Ptger3-/- mice. Conversely, treatment of wild-type mice with an EP3-selective agonist significantly decreased eosinophil infiltration, which was blunted in Ptger3-/- mice. Expression of cyclooxygenase-2 and PGE synthases was upregulated and PGE2 content increased in the eyelids after ragweed challenge. These data suggest that PGE2 acts on EP3 in the conjunctival epithelium and downregulates the progression of experimental allergic conjunctivitis. We next examined and compared the expression of EP3 in human conjunctival epithelium in various ocular surface diseases. Human conjunctival epithelium expressed EP3-specific messenger RNA and EP3 protein. Although we could clearly find positive signals in the conjunctival epithelium from patients with noninflammatory ocular surface diseases such as conjunctivochalasis and pterygium, we could not find positive signals in that from those with inflammatory disorders such as Stevens-Johnson syndrome and ocular cicatricial pemphigoid. Likewise, expression of the PGE receptor subtype EP4 was clearly found in the conjunctival epithelium from patients with conjunctivochalasis and pterygium but not from patients with Stevens-Johnson syndrome and ocular cicatricial pemphigoid.

  17. cAMP-response-element-binding protein positively regulates breast cancer metastasis and subsequent bone destruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Son, Jieun; Lee, Jong-Ho; Kim, Ha-Neui

    2010-07-23

    Research highlights: {yields} CREB is highly expressed in advanced breast cancer cells. {yields} Tumor-related factors such as TGF-{beta} further elevate CREB expression. {yields} CREB upregulation stimulates metastatic potential of breast cancer cells. {yields} CREB signaling is required for breast cancer-induced bone destruction. -- Abstract: cAMP-response-element-binding protein (CREB) signaling has been reported to be associated with cancer development and poor clinical outcome in various types of cancer. However, it remains to be elucidated whether CREB is involved in breast cancer development and osteotropism. Here, we found that metastatic MDA-MB-231 breast cancer cells exhibited higher CREB expression than did non-metastatic MCF-7 cellsmore » and that CREB expression was further increased by several soluble factors linked to cancer progression, such as IL-1, IGF-1, and TGF-{beta}. Using wild-type CREB and a dominant-negative form (K-CREB), we found that CREB signaling positively regulated the proliferation, migration, and invasion of MDA-MB-231 cells. In addition, K-CREB prevented MDA-MB-231 cell-induced osteolytic lesions in a mouse model of cancer metastasis. Furthermore, CREB signaling in cancer cells regulated the gene expression of PTHrP, MMPs, and OPG, which are closely involved in cancer metastasis and bone destruction. These results indicate that breast cancer cells acquire CREB overexpression during their development and that this CREB upregulation plays an important role in multiple steps of breast cancer bone metastasis.« less

  18. Androgen receptor mediated epigenetic regulation of CRISP3 promoter in prostate cancer cells.

    PubMed

    Pathak, Bhakti R; Breed, Ananya A; Deshmukh, Priyanka; Mahale, Smita D

    2018-07-01

    Cysteine-rich secretory protein 3 (CRISP3) is one of the most upregulated genes in prostate cancer. Androgen receptor (AR) plays an important role not only in initial stages of prostate cancer development but also in the advanced stage of castration-resistant prostate cancer (CRPC). Role of AR in regulation of CRISP3 expression is not yet known. In order to understand the regulation of CRISP3 expression, various overlapping fragments of CRISP3 promoter were cloned in pGL3 luciferase reporter vector. All constructs were transiently and stably transfected in PC3 (CRISP3 negative) and LNCaP (CRISP3 positive) cell lines and promoter activity was measured by luciferase assay. Promoter activity of LNCaP stable clones was significantly higher than PC3 stable clones. Further in CRISP3 negative PC3 and RWPE-1 cells, CRISP3 promoter was shown to be silenced by histone deacetylation. Treatment of LNCaP cells with DHT resulted in increase in levels of CRISP3 transcript and protein. AR dependency of CRISP3 promoter was also evaluated in LNCaP stable clones by luciferase assay. To provide molecular evidence of epigenetic regulation of CRISP3 promoter and its response to DHT, ChIP PCR was performed in PC3 and LNCaP cells. Our results demonstrate that CRISP3 expression in prostate cancer cells is androgen dependent and in AR positive cells, CRISP3 promoter is epigenetically regulated by AR. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Regulating the Intersection of Metabolism and Pathogenesis in Gram-positive Bacteria

    PubMed Central

    RICHARDSON, ANTHONY R.; SOMERVILLE, GREG A.; SONENSHEIN, ABRAHAM L.

    2015-01-01

    Pathogenic bacteria must contend with immune systems that actively restrict the availability of nutrients and cofactors, and create a hostile growth environment. To deal with these hostile environments, pathogenic bacteria have evolved or acquired virulence determinants that aid in the acquisition of nutrients. This connection between pathogenesis and nutrition may explain why regulators of metabolism in nonpathogenic bacteria are used by pathogenic bacteria to regulate both metabolism and virulence. Such coordinated regulation is presumably advantageous because it conserves carbon and energy by aligning synthesis of virulence determinants with the nutritional environment. In Gram-positive bacterial pathogens, at least three metabolite-responsive global regulators, CcpA, CodY, and Rex, have been shown to coordinate the expression of metabolism and virulence genes. In this chapter, we discuss how environmental challenges alter metabolism, the regulators that respond to this altered metabolism, and how these regulators influence the host-pathogen interaction. PMID:26185086

  20. Novel function of transcription factor Nrf2 as an inhibitor of RON tyrosine kinase receptor-mediated cancer cell invasion.

    PubMed

    Thangasamy, Amalraj; Rogge, Jessica; Krishnegowda, Naveen K; Freeman, James W; Ammanamanchi, Sudhakar

    2011-09-16

    Recepteur d' origine nantais (RON), a tyrosine kinase receptor, is aberrantly expressed in human tumors and promotes cancer cell invasion. RON receptor activation is also associated with resistance to tamoxifen treatment in breast cancer cells. Nrf2 is a positive regulator of cytoprotective genes. Using chromatin immunoprecipitation (ChIP) and site-directed mutagenesis studies of the RON promoter, we identified Nrf2 as a negative regulator of RON gene expression. High Nrf2 and low RON expression was observed in normal mammary tissue whereas high RON and low or undetectable expression of Nrf2 was observed in breast tumors. The Nrf2 inducer sulforaphane (SFN) as well as ectopic Nrf2 expression or knock-down of the Nrf2 negative regulator keap1, which stabilizes Nrf2, inhibited RON expression and invasion of carcinoma cells. Consequently, our studies identified a novel functional role for Nrf2 as a "repressor" and RON kinase as a molecular target of SFN, which mediates the anti-tumor effects of SFN. These results are not limited to breast cancer cells since the Nrf2 inducer SFN stabilized Nrf2 and inhibited RON expression in carcinoma cells from various tumor types.

  1. Ethylene induces combinatorial effects of histone H3 acetylation in gene expression in Arabidopsis.

    PubMed

    Wang, Likai; Zhang, Fan; Rode, Siddharth; Chin, Kevin K; Ko, Eun Esther; Kim, Jonghwan; Iyer, Vishwanath R; Qiao, Hong

    2017-07-17

    Histone acetylation and deacetylation are essential for gene regulation and have been implicated in the regulation of plant hormone responses. Many studies have indicated the role of histone acetylation in ethylene signaling; however, few studies have investigated how ethylene signaling regulates the genomic landscape of chromatin states. Recently, we found that ethylene can specifically elevate histone H3K14 acetylation and the non-canonical histone H3K23 acetylation in etiolated seedlings and the gene activation is positively associated with the elevation of H3K14Ac and H3K23Ac in response to ethylene. To assess the role of H3K9, H3K14, and H3K23 histone modifications in the ethylene response, we examined how ethylene regulates histone acetylation and the transcriptome at global level and in ethylene regulated genes both in wild type (Col-0) and ein2-5 seedlings. Our results revealed that H3K9Ac, H3K14Ac, and H3K23Ac are preferentially enriched around the transcription start sites and are positively correlated with gene expression levels in Col-0 and ein2-5 seedlings both with and without ethylene treatment. In the absence of ethylene, no combinatorial effect of H3K9Ac, H3K14Ac, and H3K23Ac on gene expression was detected. In the presence of ethylene, however, combined enrichment of the three histone acetylation marks was associated with high gene expression levels, and this ethylene-induced change was EIN2 dependent. In addition, we found that ethylene-regulated genes are expressed at medium or high levels, and a group of ethylene regulated genes are marked by either one of H3K9Ac, H3K14Ac or H3K23Ac. In this group of genes, the levels of H3K9Ac were altered by ethylene, but in the absence of ethylene the levels of H3K9Ac and peak breadths are distinguished in up- and down- regulated genes. In the presence of ethylene, the changes in the peak breadths and levels of H3K14Ac and H3K23Ac are required for the alteration of gene expressions. Our study reveals that the plant hormone ethylene induces combinatorial effects of H3K9Ac, K14Ac and K23Ac histone acetylation in gene expression genome widely. Further, for a group of ethylene regulated genes, in the absence of ethylene the levels and the covered breadths of H3K9Ac are the preexist markers for distinguishing up- and down- regulated genes, the change in the peak breadths and levels of H3K14Ac and H3K23Ac are required for the alteration of gene expression in the presence of ethylene.

  2. Regulation of the X Chromosome in the Germline and Soma of Drosophila melanogaster Males.

    PubMed

    Argyridou, Eliza; Parsch, John

    2018-05-04

    During the evolution of heteromorphic sex chromosomes, the sex-specific Y chromosome degenerates, while the X chromosome evolves new mechanisms of regulation. Using bioinformatic and experimental approaches, we investigate the expression of the X chromosome in Drosophila melanogaster . We observe nearly complete X chromosome dosage compensation in male somatic tissues, but not in testis. The X chromosome contains disproportionately fewer genes with high expression in testis than the autosomes, even after accounting for the lack of dosage compensation, which suggests that another mechanism suppresses their expression in the male germline. This is consistent with studies of reporter genes and transposed genes, which find that the same gene has higher expression when autosomal than when X-linked. Using a new reporter gene that is expressed in both testis and somatic tissues, we find that the suppression of X-linked gene expression is limited to genes with high expression in testis and that the extent of the suppression is positively correlated with expression level.

  3. Emotion Regulation and Emotion Coherence: Evidence for Strategy-Specific Effects

    PubMed Central

    Dan-Glauser, Elise S.; Gross, James J.

    2014-01-01

    One of the central tenets of emotion theory is that emotions involve coordinated changes across experiential, behavioral, and physiological response domains. Surprisingly little is known, however, on how the strength of this emotion coherence is altered when people try to regulate their emotions. To address this issue, we recorded experiential, behavioral, and physiological responses while participants watched negative and positive pictures. Cross-correlations were used to quantify emotion coherence. Study 1 tested how two types of suppression (expressive and physiological) influence coherence. Results showed that both strategies decreased the response coherence measured in negative and positive contexts. Study 2 tested how multi-channel suppression (simultaneously targeting expressive and physiological responses) and acceptance influence emotion coherence. Results again showed that suppression decreased coherence. By contrast, acceptance was not significantly different from the unregulated condition. These findings help to clarify the nature of emotion response coherence by showing how different forms of emotion regulation may differentially affect it. PMID:23731438

  4. A protein phosphatase network controls the temporal and spatial dynamics of differentiation commitment in human epidermis

    PubMed Central

    Walko, Gernot; Viswanathan, Priyalakshmi; Tihy, Matthieu; Nijjher, Jagdeesh; Dunn, Sara-Jane; Lamond, Angus I

    2017-01-01

    Epidermal homeostasis depends on a balance between stem cell renewal and terminal differentiation. The transition between the two cell states, termed commitment, is poorly understood. Here, we characterise commitment by integrating transcriptomic and proteomic data from disaggregated primary human keratinocytes held in suspension to induce differentiation. Cell detachment induces several protein phosphatases, five of which - DUSP6, PPTC7, PTPN1, PTPN13 and PPP3CA – promote differentiation by negatively regulating ERK MAPK and positively regulating AP1 transcription factors. Conversely, DUSP10 expression antagonises commitment. The phosphatases form a dynamic network of transient positive and negative interactions that change over time, with DUSP6 predominating at commitment. Boolean network modelling identifies a mandatory switch between two stable states (stem and differentiated) via an unstable (committed) state. Phosphatase expression is also spatially regulated in vivo and in vitro. We conclude that an auto-regulatory phosphatase network maintains epidermal homeostasis by controlling the onset and duration of commitment. PMID:29043977

  5. Positive Gene Regulation by a Natural Protective miRNA Enables Arbuscular Mycorrhizal Symbiosis.

    PubMed

    Couzigou, Jean-Malo; Lauressergues, Dominique; André, Olivier; Gutjahr, Caroline; Guillotin, Bruno; Bécard, Guillaume; Combier, Jean-Philippe

    2017-01-11

    Arbuscular mycorrhizal (AM) symbiosis associates most plants with fungi of the phylum Glomeromycota. The fungus penetrates into roots and forms within cortical cell branched structures called arbuscules for nutrient exchange. We discovered that miR171b has a mismatched cleavage site and is unable to downregulate the miR171 family target gene, LOM1 (LOST MERISTEMS 1). This mismatched cleavage site is conserved among plants that establish AM symbiosis, but not in non-mycotrophic plants. Unlike other members of the miR171 family, miR171b stimulates AM symbiosis and is expressed specifically in root cells that contain arbuscules. MiR171b protects LOM1 from negative regulation by other miR171 family members. These findings uncover a unique mechanism of positive post-transcriptional regulation of gene expression by miRNAs and demonstrate its relevance for the establishment of AM symbiosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Expression of Slug in S100β-protein-positive cells of postnatal developing rat anterior pituitary gland.

    PubMed

    Horiguchi, Kotaro; Fujiwara, Ken; Tsukada, Takehiro; Yako, Hideji; Tateno, Kozue; Hasegawa, Rumi; Takigami, Shu; Ohsako, Shunji; Yashiro, Takashi; Kato, Takako; Kato, Yukio

    2016-02-01

    Among heterogeneous S100β-protein-positive (S100β-positive) cells, star-like cells with extended cytoplasmic processes, the so-called folliculo-stellate cells, envelop hormone-producing cells or interconnect homophilically in the anterior pituitary. S100β-positive cells are known, from immunohistochemistry, to emerge from postnatal day (P) 10 and to proliferate and migrate in the parenchyma of the anterior pituitary with growth. Recent establishment of S100β-GFP transgenic rats expressing specifically green fluorescent protein (GFP) under the control of the S100β-promoter has allowed us to observe living S100β-positive cells. In the present study, we first confirmed that living S100β-positive cells in tissue cultures of S100β-GFP rat pituitary at P5 were present prior to P10 by means of confocal laser microscopy and that they proliferated and extended their cytoplasmic processes. Second, we examined the expression of the Snail-family zinc-finger transcription factors, Snail and Slug, to investigate the mechanism behind the morphological changes and the proliferation of S100β-positive cells. Interestingly, we detected Slug expression in S100β-positive cells and its increase together with development in the anterior pituitary. To analyze downstream of SLUG in S100β-positive cells, we utilized specific small interfering RNA for Slug mRNAs and observed that the expression of matrix metalloprotease (Mmp) 9, Mmp14 and chemokine Cxcl12 was down-regulated and that morphological changes and proliferation were decreased. Thus, our findings suggest that S100β-positive cells express Slug and that its expression is important for subsequent migration and proliferation.

  7. Expression profile of IGF-I-calcineurin-NFATc3-dependent pathway genes in skeletal muscle during early development between duck breeds differing in growth rates.

    PubMed

    Shu, Jingting; Li, Huifang; Shan, Yanju; Xu, Wenjuan; Chen, Wenfeng; Song, Chi; Song, Weitao

    2015-06-01

    The insulin-like growth factor I (IGF-I)-calcineurin (CaN)-NFATc signaling pathways have been implicated in the regulation of myocyte hypertrophy and fiber-type specificity. In the present study, the expression of the CnAα, NFATc3, and IGF-I genes was quantified by RT-PCR for the first time in the breast muscle (BM) and leg muscle (LM) on days 13, 17, 21, 25, and 27 of embryonic development, as well as at 7 days posthatching (PH), in Gaoyou and Jinding ducks, which differ in their muscle growth rates. Consistent expression patterns of CnAα, NFATc3, and IGF-I were found in the same anatomical location at different development stages in both duck breeds, showing significant differences in an age-specific fashion. However, the three genes were differentially expressed in the two different anatomical locations (BM and LM). CnAα, NFATc3, and IGF-I messenger RNA (mRNA) could be detected as early as embryonic day 13 (ED13), and the highest level appeared at this stage in both BM and LM. Significant positive relationships were observed in the expression of the studied genes in the BM and LM of both duck breeds. Also, the expression of these three genes showed a positive relationship with the percentage of type IIb fibers and a negative relationship with the percentage of type I fibers and type IIa fibers. Our data indicate differential expression and coordinated developmental regulation of the selected genes involved in the IGF-I-calcineurin-NFATc3 pathway in duck skeletal muscle during embryonic and early PH growth and development; these data also indicate that this signaling pathway might play a role in the regulation of myofiber type transition.

  8. FOXA1 promotes tumor cell proliferation through AR involving the Notch pathway in endometrial cancer

    PubMed Central

    2014-01-01

    Background Increasing evidence suggests that forkhead box A1 (FOXA1) is frequently dysregulated in many types of human cancers. However, the exact function and mechanism of FOXA1 in human endometrial cancer (EC) remains unclear. Methods FOXA1 expression, androgen receptor (AR) expression, and the relationships of these two markers with clinicopathological factors were determined by immunohistochemistry analysis. FOXA1 and AR were up-regulated by transient transfection with plasmids, and were down-regulated by transfection with siRNA or short hairpin RNA (shRNA). The effects of FOXA1 depletion and FOXA1 overexpression on AR-mediated transcription as well as Notch pathway and their impact on EC cell proliferation were examined by qRT-PCR, western blotting, co-immunoprecipitation, ChIP-PCR, MTT, colony-formation, and xenograft tumor–formation assays. Results We found that the expression of FOXA1 and AR in ECs was significantly higher than that in a typical hyperplasia and normal tissues. FOXA1 expression was significantly correlated with AR expression in clinical tissues. High FOXA1 levels positively correlated with pathological grade and depth of myometrial invasion in EC. High AR levels also positively correlated with pathological grade in EC. Moreover, the expression of XBP1, MYC, ZBTB16, and UHRF1, which are downstream targets of AR, was promoted by FOXA1 up-regulation or inhibited by FOXA1 down-regulation. Co-immunoprecipitation showed that FOXA1 interacted with AR in EC cells. ChIP-PCR assays showed that FOXA1 and AR could directly bind to the promoter and enhancer regions upstream of MYC. Mechanistic investigation revealed that over-expression of Notch1 and Hes1 proteins by FOXA1 could be reversed by AR depletion. In addition, we showed that down-regulation of AR attenuated FOXA1-up-regulated cell proliferation. However, AR didn’t influence the promotion effect of FOXA1 on cell migration and invasion. In vivo xenograft model, FOXA1 knockdown reduced the rate of tumor growth. Conclusions These results suggest that FOXA1 promotes cell proliferation by AR and activates Notch pathway. It indicated that FOXA1 and AR may serve as potential gene therapy in EC. PMID:24512546

  9. Phosphate starvation induced OsPHR4 mediates Pi-signaling and homeostasis in rice.

    PubMed

    Ruan, Wenyuan; Guo, Meina; Wu, Ping; Yi, Keke

    2017-02-01

    OsPHR4 mediates the regulation of Pi-starvation signaling and Pi-homeostasis in a PHR1-subfamily dependent manner in rice. Phosphate (Pi) starvation response is a sophisticated process for plant in the natural environment. In this process, PHOSPHATE STARVATION RESPONSE 1 (PHR1) subfamily genes play a central role in regulating Pi-starvation signaling and Pi-homeostasis. Besides the three PHR1 orthologs in Oryza sativa L. (Os) [(Os) PHR1, (Os) PHR2, and (Os) PHR3], which were reported to regulated Pi-starvation signaling and Pi-homeostasis redundantly, a close related PHR1 ortholog [designated as (Os) PHR4] is presented in rice genome with unknown function. In this study, we found that OsPHR4 is a Pi-starvation induced gene and mainly expresses in vascular tissues through all growth and development periods. The expression of OsPHR4 is positively regulated by OsPHR1, OsPHR2 and OsPHR3. The nuclear located OsPHR4 can respectively interact with other three PHR1 subfamily members to regulate downstream Pi-starvation induced genes. Consistent with the positive role of PHR4 in regulating Pi-starvation signaling, the OsPHR4 overexpressors display higher Pi accumulation in the shoot and elevated expression of Pi-starvation induced genes under Pi-sufficient condition. Besides, moderate growth retardation and repression of the Pi-starvation signaling in the OsPHR4 RNA interfering (RNAi) transgenic lines can be observed under Pi-deficient condition. Together, we propose that OsPHR4 mediates the regulation of Pi-starvation signaling and Pi-homeostasis in a PHR1-subfamily dependent manner in rice.

  10. Expression of BTBD7 in primary salivary adenoid cystic carcinoma and correlation with Slug and prognosis.

    PubMed

    Yang, Liu; Wang, Tiejun; Zhang, Jun; Liu, Zhonghao; Wang, Xuxia

    2016-06-24

    BTB/POZ domain-containing protein 7 (BTBD7) is recognized as a regulatory gene that regulates epithelial cell dynamics and branching morphogenesis. It is also reported for regulating epithelial-mesenchymal transition (EMT) molecules and involved in the process of invasion and metastasis of lung cancer and hepatocellular carcinoma. Slug is a transcriptional factor of EMT which plays a crucial role in the process of primary salivary adenoid cystic carcinoma (SACC). However, the role of BTBD7 in SACC and the correlation with Slug have not been identified. This study investigated the expression of BTBD7 and correlation with Slug, as well as the prognostic significance of BTBD7 in SACC. The expression of BTBD7 and Slug were examined in ACC-LM and ACC-83 cell lines and immunohistochemically in paraffin embedded tissue specimens from 66 primary SACC patients. Statistical analyses were performed to evaluate the correlation between BTBD7 expression and Slug expression and the prognostic significance of BTBD7 expression. BTBD7 protein expression was initially verified in ACC-LM and ACC-83 cell lines. The positive rate of BTBD7 expression was 62.1% in SACC to 20% in normal salivary tissues comparatively. BTBD7 expression was significantly correlated with Slug expression in SACC (P< 0.05). Increased BTBD7 expression was significantly associated with the TNM stage, tissue typing, distant metastasis and patients' poor clinical outcome. Positive expression of BTBD7 in SACC could play an important role in the development of cancer and may serve as a favorable predictor for diagnosis and poor prognosis of patients.

  11. Regulation of theta-antigen expression by agents altering cyclic AMP level and by thymic factor.

    PubMed

    Bach, M A; Fournier, C; Bach, J F

    1975-02-28

    Thymic factor, cyclic AMP, and products increasing its cellular level, such as Prostaglandin E1, induce the appearance of the theta-antigen on T-cell precursors whether assessed by a rossette-inhibition assay or a cytotoxic assay after cell fractionation on BSA discontinuous gradiet. Synergism has been demonstrated between cyclic AMPT and TF for that effect. Conversely, decrease of theta expression has been obtained by altering cyclic AMP level in theta-positive cells either increasing it by dibutyryl cAMP treatment or decreasing it by indomethacin treatment. Finally, these data suggest the involvement of cyclic AMP in the regulation of theta expression under thymic hormone control.

  12. Optomotor-Blind Negatively Regulates Drosophila Eye Development by Blocking Jak/STAT Signaling

    PubMed Central

    Tsai, Yu-Chen; Grimm, Stefan; Chao, Ju-Lan; Wang, Shih-Chin; Hofmeyer, Kerstin; Shen, Jie; Eichinger, Fred; Michalopoulou, Theoni; Yao, Chi-Kuang; Chang, Chih-Hsuan; Lin, Shih-Han; Sun, Y. Henry; Pflugfelder, Gert O.

    2015-01-01

    Organ formation requires a delicate balance of positive and negative regulators. In Drosophila eye development, wingless (wg) is expressed at the lateral margins of the eye disc and serves to block retinal development. The T-box gene optomotor-blind (omb) is expressed in a similar pattern and is regulated by Wg. Omb mediates part of Wg activity in blocking eye development. Omb exerts its function primarily by blocking cell proliferation. These effects occur predominantly in the ventral margin. Our results suggest that the primary effect of Omb is the blocking of Jak/STAT signaling by repressing transcription of upd which encodes the Jak receptor ligand Unpaired. PMID:25781970

  13. Genome-wide miRNA screening reveals miR-310 family members negatively regulate the immune response in Drosophila melanogaster via co-targeting Drosomycin.

    PubMed

    Li, Yao; Li, Shengjie; Li, Ruimin; Xu, Jiao; Jin, Ping; Chen, Liming; Ma, Fei

    2017-03-01

    Although innate immunity mediated by Toll signaling has been extensively studied in Drosophila melanogaster, the role of miRNAs in regulating the Toll-mediated immune response remains largely unknown. In this study, following Gram-positive bacterial challenge, we identified 93 differentially expressed miRNAs via genome-wide miRNA screening. These miRNAs were regarded as immune response related (IRR). Eight miRNAs were confirmed to be involved in the Toll-mediated immune response upon Gram-positive bacterial infection through genetic screening of 41 UAS-miRNA lines covering 60 miRNAs of the 93 IRR miRNAs. Interestingly, four out of these eight miRNAs, miR-310, miR-311, miR-312 and miR-313, are clustered miRNAs and belong to the miR-310 family. These miR-310 family members were shown to target and regulate the expression of Drosomycin, an antimicrobial peptide produced by Toll signaling. Taken together, our study implies important regulatory roles of miRNAs in the Toll-mediated innate immune response of Drosophila upon Gram-positive bacterial infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Discretization provides a conceptually simple tool to build expression networks.

    PubMed

    Vass, J Keith; Higham, Desmond J; Mudaliar, Manikhandan A V; Mao, Xuerong; Crowther, Daniel J

    2011-04-18

    Biomarker identification, using network methods, depends on finding regular co-expression patterns; the overall connectivity is of greater importance than any single relationship. A second requirement is a simple algorithm for ranking patients on how relevant a gene-set is. For both of these requirements discretized data helps to first identify gene cliques, and then to stratify patients.We explore a biologically intuitive discretization technique which codes genes as up- or down-regulated, with values close to the mean set as unchanged; this allows a richer description of relationships between genes than can be achieved by positive and negative correlation. We find a close agreement between our results and the template gene-interactions used to build synthetic microarray-like data by SynTReN, which synthesizes "microarray" data using known relationships which are successfully identified by our method.We are able to split positive co-regulation into up-together and down-together and negative co-regulation is considered as directed up-down relationships. In some cases these exist in only one direction, with real data, but not with the synthetic data. We illustrate our approach using two studies on white blood cells and derived immortalized cell lines and compare the approach with standard correlation-based computations. No attempt is made to distinguish possible causal links as the search for biomarkers would be crippled by losing highly significant co-expression relationships. This contrasts with approaches like ARACNE and IRIS.The method is illustrated with an analysis of gene-expression for energy metabolism pathways. For each discovered relationship we are able to identify the samples on which this is based in the discretized sample-gene matrix, along with a simplified view of the patterns of gene expression; this helps to dissect the gene-sample relevant to a research topic--identifying sets of co-regulated and anti-regulated genes and the samples or patients in which this relationship occurs.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Fujin; Department of Urinary Surgery, Huai'an Hospital to Xuzhou Medical University, Huai'an, Jiangsu; Ma, Song

    Lactate dehydrogenase-A(LDH-A) is an important rate-limiting enzyme in the Warburg effect. Survival analysis indicated poor clinical outcomes in MIBC with high LDH-A expression. The results of in vitro experiment indicated that LDH-A promotes MIBC cells proliferation, invasion and migration. The positive relationship between LDH-A expression and CSC/EMT markers was confirmed both in invasive bladder cell line and in 136 MIBC specimens. Thus, we conclude that LDH-A may be a promising target for MIBC. - Highlights: • Survival analysis indicated poor clinical outcomes in MIBC with high LDH-A expression. • IHC analysis of 136 MIBC specimens revealed increased LDH-A is correlated withmore » positive Oct4 and negative E-cadherin. • In vitro experiments demonstrated LDH-A promotes MIBC progression by positive regulation of EMT/CSC.« less

  16. Spontaneous regulation of emotions in preschool children who stutter: preliminary findings.

    PubMed

    Johnson, Kia N; Walden, Tedra A; Conture, Edward G; Karrass, Jan

    2010-12-01

    Emotional regulation of preschool children who stutter (CWS) and children who do not stutter (CWNS) was assessed through use of a disappointing gift (DG) procedure (P. M. Cole, 1986; C. Saarni, 1984, 1992). Participants consisted of 16 CWS and CWNS (11 boys and 5 girls in each talker group) who were 3 to 5 years of age. After assessing each child's knowledge of display rules about socially appropriate expression of emotions, the authors asked the children to participate in a DG procedure. The children received a desirable gift preceding the first free-play task and a disappointing gift preceding a second free-play task. Dependent variables consisted of participants' positive and negative expressive nonverbal behaviors exhibited during receipt of a desirable gift and disappointing gift as well as conversational speech disfluencies exhibited following receipt of each gift. Findings indicated that CWS and CWNS exhibited no significant differences in amount of positive emotional expressions after receiving the desired gift; however, CWS--when compared with CWNS--exhibited more negative emotional expressions after receiving the undesirable gift. Furthermore, CWS were more disfluent after receiving the desired gift than after receiving the disappointing gift. Ancillary findings also indicated that CWS and CWNS had equivalent knowledge of display rules. Findings suggest that efforts to concurrently regulate emotional behaviors and that speech disfluencies may be problematic for preschool-age CWS.

  17. FLIP switches Fas-mediated glucose signaling in human pancreatic cells from apoptosis to cell replication

    NASA Astrophysics Data System (ADS)

    Maedler, Kathrin; Fontana, Adriano; Ris, Frédéric; Sergeev, Pavel; Toso, Christian; Oberholzer, José; Lehmann, Roger; Bachmann, Felix; Tasinato, Andrea; Spinas, Giatgen A.; Halban, Philippe A.; Donath, Marc Y.

    2002-06-01

    Type 2 diabetes mellitus results from an inadequate adaptation of the functional pancreatic cell mass in the face of insulin resistance. Changes in the concentration of glucose play an essential role in the regulation of cell turnover. In human islets, elevated glucose concentrations impair cell proliferation and induce cell apoptosis via up-regulation of the Fas receptor. Recently, it has been shown that the caspase-8 inhibitor FLIP may divert Fas-mediated death signals into those for cell proliferation in lymphatic cells. We observed expression of FLIP in human pancreatic cells of nondiabetic individuals, which was decreased in tissue sections of type 2 diabetic patients. In vitro exposure of islets from nondiabetic organ donors to high glucose levels decreased FLIP expression and increased the percentage of apoptotic terminal deoxynucleotidyltransferase-mediated UTP end labeling (TUNEL)-positive cells; FLIP was no longer detectable in such TUNEL-positive cells. Up-regulation of FLIP, by incubation with transforming growth factor or by transfection with an expression vector coding for FLIP, protected cells from glucose-induced apoptosis, restored cell proliferation, and improved cell function. The beneficial effects of FLIP overexpression were blocked by an antagonistic anti-Fas antibody, indicating their dependence on Fas receptor activation. The present data provide evidence for expression of FLIP in the human cell and suggest a novel approach to prevent and treat diabetes by switching Fas signaling from apoptosis to proliferation.

  18. Low Necroptosis Process Predicts Poor Treatment Outcome of Human Papillomavirus Positive Cervical Cancers by Decreasing Tumor-Associated Macrophages M1 Polarization.

    PubMed

    Li, Lin; Yu, Song; Zang, Chunyi

    2018-01-01

    The aim of this study was to assess the functions of the necroptosis process on the prognosis of high-risk human papillomavirus (HR-HPV)-related cervical cancer. PCR and western blotting were used to demonstrate the expression of the necroptosis marker, mixed lineage kinase domain-like protein (MLKL), in whole blood and peripheral blood mononuclears (PBMCs) of 89 cervical cancer patients and 15 healthy volunteers. Necroptosis levels and M1 polarization were determined in tumor co-cultured macrophages. We found that MLKL expressions were significantly increased in cervical cancer patients in both whole blood and PBMC samples compared to the expressions in the healthy controls. Low MLKL expression was significantly associated with decreased survival rate in overall survival and disease-free survival. Co-culture cervical cancer cells decrease the necroptosis process of macrophage, together with the proinflammatory factors (M1 markers) downregulation, and this negative regulation was exacerbated in HPV-positive cases. Necroptosis enhancer RIPK3 overexpression showed reversed regulation of these M1 markers, suggesting that co-culture cervical cancer cells decrease the macrophage M1 polarization partly through necroptosis downregulation. Our study revealed that necroptosis process could be a relevant marker for the determination of the prognosis in cervical cancer patients, which might be because of its role in regulating macrophage polarization. © 2018 S. Karger AG, Basel.

  19. Regulatory RNAs in Bacillus subtilis: a Gram-Positive Perspective on Bacterial RNA-Mediated Regulation of Gene Expression.

    PubMed

    Mars, Ruben A T; Nicolas, Pierre; Denham, Emma L; van Dijl, Jan Maarten

    2016-12-01

    Bacteria can employ widely diverse RNA molecules to regulate their gene expression. Such molecules include trans-acting small regulatory RNAs, antisense RNAs, and a variety of transcriptional attenuation mechanisms in the 5' untranslated region. Thus far, most regulatory RNA research has focused on Gram-negative bacteria, such as Escherichia coli and Salmonella. Hence, there is uncertainty about whether the resulting insights can be extrapolated directly to other bacteria, such as the Gram-positive soil bacterium Bacillus subtilis. A recent study identified 1,583 putative regulatory RNAs in B. subtilis, whose expression was assessed across 104 conditions. Here, we review the current understanding of RNA-based regulation in B. subtilis, and we categorize the newly identified putative regulatory RNAs on the basis of their conservation in other bacilli and the stability of their predicted secondary structures. Our present evaluation of the publicly available data indicates that RNA-mediated gene regulation in B. subtilis mostly involves elements at the 5' ends of mRNA molecules. These can include 5' secondary structure elements and metabolite-, tRNA-, or protein-binding sites. Importantly, sense-independent segments are identified as the most conserved and structured potential regulatory RNAs in B. subtilis. Altogether, the present survey provides many leads for the identification of new regulatory RNA functions in B. subtilis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Quorum Sensing in Chromobacterium violaceum: DNA Recognition and Gene Regulation by the CviR Receptor ▿ †

    PubMed Central

    Stauff, Devin L.; Bassler, Bonnie L.

    2011-01-01

    The bacterial pathogen Chromobacterium violaceum uses a LuxIR-type quorum-sensing system to detect and respond to changes in cell population density. CviI synthesizes the autoinducer C10-homoserine lactone (C10-HSL), and CviR is a cytoplasmic DNA binding transcription factor that activates gene expression following binding to C10-HSL. A number of behaviors are controlled by quorum sensing in C. violaceum. However, few genes have been shown to be directly controlled by CviR, in part because the DNA motif bound by CviR is not well characterized. Here, we define the DNA sequence required for promoter recognition by CviR. Using in vivo data generated from a library of point mutations in a CviR-regulated promoter, we find that CviR binds to a palindrome with the ideal sequence CTGNCCNNNNGGNCAG. We constructed a position weight matrix using these in vivo data and scanned the C. violaceum genome to predict CviR binding sites. We measured direct activation of the identified promoters by CviR and found that CviR controls the expression of the promoter for a chitinase, a type VI secretion-related gene, a transcriptional regulator gene, a guanine deaminase gene, and cviI. Indeed, regulation of cviI expression by CviR generates a canonical quorum-sensing positive-feedback loop. PMID:21622734

  1. Quorum sensing in Chromobacterium violaceum: DNA recognition and gene regulation by the CviR receptor.

    PubMed

    Stauff, Devin L; Bassler, Bonnie L

    2011-08-01

    The bacterial pathogen Chromobacterium violaceum uses a LuxIR-type quorum-sensing system to detect and respond to changes in cell population density. CviI synthesizes the autoinducer C(10)-homoserine lactone (C(10)-HSL), and CviR is a cytoplasmic DNA binding transcription factor that activates gene expression following binding to C(10)-HSL. A number of behaviors are controlled by quorum sensing in C. violaceum. However, few genes have been shown to be directly controlled by CviR, in part because the DNA motif bound by CviR is not well characterized. Here, we define the DNA sequence required for promoter recognition by CviR. Using in vivo data generated from a library of point mutations in a CviR-regulated promoter, we find that CviR binds to a palindrome with the ideal sequence CTGNCCNNNNGGNCAG. We constructed a position weight matrix using these in vivo data and scanned the C. violaceum genome to predict CviR binding sites. We measured direct activation of the identified promoters by CviR and found that CviR controls the expression of the promoter for a chitinase, a type VI secretion-related gene, a transcriptional regulator gene, a guanine deaminase gene, and cviI. Indeed, regulation of cviI expression by CviR generates a canonical quorum-sensing positive-feedback loop.

  2. Regulatory RNAs in Bacillus subtilis: a Gram-Positive Perspective on Bacterial RNA-Mediated Regulation of Gene Expression

    PubMed Central

    Mars, Ruben A. T.; Nicolas, Pierre; Denham, Emma L.

    2016-01-01

    SUMMARY Bacteria can employ widely diverse RNA molecules to regulate their gene expression. Such molecules include trans-acting small regulatory RNAs, antisense RNAs, and a variety of transcriptional attenuation mechanisms in the 5′ untranslated region. Thus far, most regulatory RNA research has focused on Gram-negative bacteria, such as Escherichia coli and Salmonella. Hence, there is uncertainty about whether the resulting insights can be extrapolated directly to other bacteria, such as the Gram-positive soil bacterium Bacillus subtilis. A recent study identified 1,583 putative regulatory RNAs in B. subtilis, whose expression was assessed across 104 conditions. Here, we review the current understanding of RNA-based regulation in B. subtilis, and we categorize the newly identified putative regulatory RNAs on the basis of their conservation in other bacilli and the stability of their predicted secondary structures. Our present evaluation of the publicly available data indicates that RNA-mediated gene regulation in B. subtilis mostly involves elements at the 5′ ends of mRNA molecules. These can include 5′ secondary structure elements and metabolite-, tRNA-, or protein-binding sites. Importantly, sense-independent segments are identified as the most conserved and structured potential regulatory RNAs in B. subtilis. Altogether, the present survey provides many leads for the identification of new regulatory RNA functions in B. subtilis. PMID:27784798

  3. Relationship Between Emotions, Emotion Regulation, and Well-Being of Professional Caregivers of People With Dementia.

    PubMed

    Bassal, Catherine; Czellar, Judith; Kaiser, Susanne; Dan-Glauser, Elise S

    2016-05-01

    So far, limited research has been carried out to better understand the interplay between the emotions, the use of emotion regulation strategies, and the well-being of professional caregivers of People with Dementia (PwD). This pilot study (N = 43 professional caregivers) aimed to (1) describe the type and frequency of emotions experienced at work; (2) analyze the associations between experienced emotions, emotion regulation strategies, and well-being; and (3) test whether the use of specific emotion regulation strategies moderates the relationship between experienced emotions and emotional exhaustion. In the challenging context of professionally caring for PwD, results suggest that (1) caregivers experience positive emotions more frequently than negative emotions; (2) caregivers using relatively inappropriate regulation strategies are more likely to experience negative emotions, less likely to experience positive emotions, and have poorer physical and mental health; and (3) expressive suppression significantly moderates the relationship between positive experienced emotions and emotional exhaustion. © The Author(s) 2015.

  4. Ethylene Promotes Cadmium-induced Root Growth Inhibition through EIN3 controlled XTH33 and LSU1 expression in Arabidopsis.

    PubMed

    Kong, Xiangpei; Li, Cuiling; Zhang, Feng; Yu, Qianqian; Gao, Shan; Zhang, Maolin; Tian, Huiyu; Zhang, Jian; Yuan, Xianzheng; Ding, Zhaojun

    2018-06-05

    Cadmium (Cd) stress is one of the most serious heavy metal stresses limiting plant growth and development. However, the molecular mechanisms underlying Cd-induced root growth inhibition remain unclear. Here, we found that ethylene signaling positively regulates Cd-induced root growth inhibition. Arabidopsis seedlings pretreated with the ethylene precursor 1-aminocyclopropane-1-carboxylic acid exhibited enhanced Cd-induced root growth inhibition; while the addition of the ethylene biosynthesis inhibitor aminoethoxyvinyl glycine decreased Cd-induced root growth inhibition. Consistently, ethylene-insensitive mutants such as ein4-1, ein3-1 eil1-1 double mutant, and EBF1ox, displayed an increased tolerance to Cd. Furthermore, we also observed that Cd inhibited EIN3 protein degradation, a process which was regulated by ethylene signaling. Genetic and biochemical analyses showed that EIN3 enhanced root growth inhibition under Cd stress through direct binding to the promoters and regulating the expression of XTH33 and LSU1, which encode key regulators of cell wall extension and S metabolic process, respectively. Collectively, our study demonstrates that ethylene plays a positive role in Cd-regulated root growth inhibition through EIN3-mediated transcriptional regulation of XTH33 and LSU1, and provides a molecular framework for the integration of environmental signals and intrinsic regulators in modulating plant root growth. This article is protected by copyright. All rights reserved.

  5. Penicillin biosynthesis in Aspergillus oryzae and its overproduction by genetic engineering.

    PubMed

    Marui, Junichiro; Ohashi-Kunihiro, Sumiko; Ando, Tomohiro; Nishimura, Marie; Koike, Hideaki; Machida, Masayuki

    2010-07-01

    Aspergillus oryzae penicillin biosynthetic genes were clustered. The penicillin production was positively regulated by VeA, a global gene regulator required for transcriptional expression of the penicillin biosynthetic genes. Overexpression of the biosynthetic genes by a strong promoter yielded a greater than 100-fold increase in penicillin production. 2010 Elsevier B.V. All rights reserved.

  6. Inactivation of p53 in pterygium influence miR-200a expression resulting in ZEB1/ZEB2 up-regulation and EMT processing.

    PubMed

    Wu, Chueh-Wei; Peng, Mei-Ling; Yeh, Ken-Tu; Tsai, Yi-Yu; Chiang, Chun-Chi; Cheng, Ya-Wen

    2016-05-01

    Loss of p53 function has been linked to progression of pterygium. MiR-200a is known to be controlled by p53. Here, we hypothesize that expression of miR-200a and downstream ZEB1/ZEB2 genes are regulated epithelial-mesenchymal transition (EMT) involved in the pathogenesis and recurrence of pterygium. For this study, 120 primary pterygial samples were collected. Immunohistochemistry and real-time RT-PCR were performed to determine the expression of p53, p53 down-stream EMT associated protein and miR-200a. The molecular correlation of p53, miR-200a and downstream genes were confirmed using primary pterygium cells (PECs). Expression of miR-200a in pterygium tissues was significantly lower than in conjunctiva controls (p = 0.015). Up-regulated miR-200a levels were positively correlated with and p53 protein expression (p < 0.001). The miR-200a downstream ZEB1/ZEB1 protein expression were negative correlated with miR-200a expression. Cell model studies demonstrated that miR-200a controlled the EMT of PECs through up-regulated ZEB1, ZEB2 and Snail gene expression. Our study demonstrated that inactivation of p53 in pterygium may influence miR-200a, resulting in ZEB1/ZEB2 up-regulation and EMT processing of pterygium. Therefore, we suggest that expression of miR-200a play an important role in EMT processing and recurrence of pterygium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The zebrafish gene cloche acts upstream of a flk-1 homologue to regulate endothelial cell differentiation.

    PubMed

    Liao, W; Bisgrove, B W; Sawyer, H; Hug, B; Bell, B; Peters, K; Grunwald, D J; Stainier, D Y

    1997-01-01

    The zebrafish cloche mutation affects both the endothelial and hematopoietic lineages at a very early stage (Stainier, D. Y. R., Weinstein, B. M., Detrich, H. W., Zon, L. I. and Fishman, M. C. (1995). Development 121, 3141-3150). The most striking vascular phenotype is the absence of endocardial cells from the heart. Microscopic examination of mutant embryos reveals the presence of endothelial-like cells in the lower trunk and tail regions while head vessels appear to be missing, indicating a molecular diversification of the endothelial lineage. Cell transplantation experiments show that cloche acts cell-autonomously within the endothelial lineage. To analyze further the role of cloche in regulating endothelial cell differentiation, we have examined the expression of flk-1 and tie, two receptor tyrosine kinase genes expressed early and sequentially in the endothelial lineage. In wild-type fish, flk-1-positive cells are found throughout the embryo and differentiate to form the nascent vasculature. In cloche mutants, flk-1-positive cells are found only in the lower trunk and tail regions, and this expression is delayed as compared to wild-type. Unlike the flk-1-positive cells in wild-type embryos, those in cloche mutants do not go on to express tie, suggesting that their differentiation is halted at an early stage. We also find that the cloche mutation is not linked to flk-1. These data indicate that cloche affects the differentiation of all endothelial cells and that it acts at a very early stage, either by directly regulating flk-1 expression or by controlling the differentiation of cells that normally develop to express flk-1. cloche mutants also have a blood deficit and their hematopoietic tissues show no expression of the hematopoietic transcription factor genes GATA-1 or GATA-2 at early stages. Because the appearance of distinct levels of flk-1 expression is delayed in cloche mutants, we examined GATA-1 expression at late embryonic stages and found some blood cell differentiation that appears to be limited to the region lined by the flk-1-expressing cells. The spatial restriction of blood in the ventroposterior-most region of cloche mutant embryos may be indicative of a ventral source of signal(s) controlling hematopoietic differentiation. In addition, the restricted colocalization of blood and endothelium in cloche mutants suggests that important interactions occur between these two lineages during normal development.

  8. Klf8 regulates left-right asymmetric patterning through modulation of Kupffer's vesicle morphogenesis and spaw expression.

    PubMed

    Lin, Che-Yi; Tsai, Ming-Yuan; Liu, Yu-Hsiu; Lu, Yu-Fen; Chen, Yi-Chung; Lai, Yun-Ren; Liao, Hsin-Chi; Lien, Huang-Wei; Yang, Chung-Hsiang; Huang, Chang-Jen; Hwang, Sheng-Ping L

    2017-07-17

    Although vertebrates are bilaterally symmetric organisms, their internal organs are distributed asymmetrically along a left-right axis. Disruption of left-right axis asymmetric patterning often occurs in human genetic disorders. In zebrafish embryos, Kupffer's vesicle, like the mouse node, breaks symmetry by inducing asymmetric expression of the Nodal-related gene, spaw, in the left lateral plate mesoderm (LPM). Spaw then stimulates transcription of itself and downstream genes, including lft1, lft2, and pitx2, specifically in the left side of the diencephalon, heart and LPM. This developmental step is essential to establish subsequent asymmetric organ positioning. In this study, we evaluated the role of krüppel-like factor 8 (klf8) in regulating left-right asymmetric patterning in zebrafish embryos. Zebrafish klf8 expression was disrupted by both morpholino antisense oligomer-mediated knockdown and a CRISPR-Cas9 system. Whole-mount in situ hybridization was conducted to evaluate gene expression patterns of Nodal signalling components and the positions of heart and visceral organs. Dorsal forerunner cell number was evaluated in Tg(sox17:gfp) embryos and the length and number of cilia in Kupffer's vesicle were analyzed by immunocytochemistry using an acetylated tubulin antibody. Heart jogging, looping and visceral organ positioning were all defective in zebrafish klf8 morphants. At the 18-22 s stages, klf8 morphants showed reduced expression of genes encoding Nodal signalling components (spaw, lft1, lft2, and pitx2) in the left LPM, diencephalon, and heart. Co-injection of klf8 mRNA with klf8 morpholino partially rescued spaw expression. Furthermore, klf8 but not klf8△zf overexpressing embryos showed dysregulated bilateral expression of Nodal signalling components at late somite stages. At the 10s stage, klf8 morphants exhibited reductions in length and number of cilia in Kupffer's vesicle, while at 75% epiboly, fewer dorsal forerunner cells were observed. Interestingly, klf8 mutant embryos, generated by a CRISPR-Cas9 system, showed bilateral spaw expression in the LPM at late somite stages. This observation may be partly attributed to compensatory upregulation of klf12b, because klf12b knockdown reduced the percentage of klf8 mutants exhibiting bilateral spaw expression. Our results demonstrate that zebrafish Klf8 regulates left-right asymmetric patterning by modulating both Kupffer's vesicle morphogenesis and spaw expression in the left LPM.

  9. Aurora A regulates expression of AR-V7 in models of castrate resistant prostate cancer.

    PubMed

    Jones, Dominic; Noble, Martin; Wedge, Steve R; Robson, Craig N; Gaughan, Luke

    2017-02-16

    Androgen receptor variants (AR-Vs) provide a mechanism of therapy evasion in castrate-resistant prostate cancer (CRPC), yet mechanisms of regulation remain largely unknown. Here we investigate the role of Aurora A kinase on AR-Vs in models of CRPC and show depletion of Aurora A reduces AR-V target gene expression. Importantly, knockdown of Aurora A reconfigures splicing of AR pre-mRNA to discriminately down-regulate synthesis of AR-V transcripts, including AR-V7, without effecting full-length AR mRNA; and as a consequence, AR-V-driven proliferation and survival of CRPC cells is markedly reduced. Critically, these effects are reproduced by Aurora A inhibition. We show that Aurora A levels increase in advanced disease and AURKA is an AR-V target gene demonstrating a positive feedback mechanism of androgenic signalling in CRPC. In all, our data suggests that Aurora A plays a pivotal role in regulation of AR-V7 expression and represents a new therapeutic target in CRPC.

  10. Aurora A regulates expression of AR-V7 in models of castrate resistant prostate cancer

    PubMed Central

    Jones, Dominic; Noble, Martin; Wedge, Steve R.; Robson, Craig N.; Gaughan, Luke

    2017-01-01

    Androgen receptor variants (AR-Vs) provide a mechanism of therapy evasion in castrate-resistant prostate cancer (CRPC), yet mechanisms of regulation remain largely unknown. Here we investigate the role of Aurora A kinase on AR-Vs in models of CRPC and show depletion of Aurora A reduces AR-V target gene expression. Importantly, knockdown of Aurora A reconfigures splicing of AR pre-mRNA to discriminately down-regulate synthesis of AR-V transcripts, including AR-V7, without effecting full-length AR mRNA; and as a consequence, AR-V-driven proliferation and survival of CRPC cells is markedly reduced. Critically, these effects are reproduced by Aurora A inhibition. We show that Aurora A levels increase in advanced disease and AURKA is an AR-V target gene demonstrating a positive feedback mechanism of androgenic signalling in CRPC. In all, our data suggests that Aurora A plays a pivotal role in regulation of AR-V7 expression and represents a new therapeutic target in CRPC. PMID:28205582

  11. The RNA helicase DDX39B and its paralog DDX39A regulate androgen receptor splice variant AR-V7 generation.

    PubMed

    Nakata, Daisuke; Nakao, Shoichi; Nakayama, Kazuhide; Araki, Shinsuke; Nakayama, Yusuke; Aparicio, Samuel; Hara, Takahito; Nakanishi, Atsushi

    2017-01-29

    Mounting evidence suggests that constitutively active androgen receptor (AR) splice variants, typified by AR-V7, are associated with poor prognosis and resistance to androgen deprivation therapy in prostate cancer patients. However, mechanisms governing the generation of AR splice variants are not fully understood. In this study, we aimed to investigate the dynamics of AR splice variant generation using the JDCaP prostate cancer model that expresses AR splice variants under androgen depletion. Microarray analysis of JDCaP xenografts before and after expression of AR splice variants suggested that dysregulation of RNA processing pathways is likely involved in AR splice variant generation. To explore factors contributing to generation of AR-V7 mRNA, we conducted a focused RNA interference screen in AR-V7-positive JDCaP-hr cells using an shRNA library targeting spliceosome-related genes. This screen identified DDX39B as a regulator of AR-V7 mRNA expression. Simultaneous knockdown of DDX39B and its paralog DDX39A drastically and selectively downregulated AR-V7 mRNA expression in multiple AR-V7-positive prostate cancer cell lines. DDX39B was upregulated in relapsed JDCaP xenografts expressing AR splice variants, suggesting its role in expression of AR splice variants. Taken together, our findings offer insight into the mechanisms of AR splice variant generation and identify DDX39 as a potential drug target for the treatment of AR splice variant-positive prostate cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. N-myc downstream-regulated gene 1 promotes oxaliplatin-triggered apoptosis in colorectal cancer cells via enhancing the ubiquitination of Bcl-2.

    PubMed

    Yang, Xiao; Zhu, Fan; Yu, Chaoran; Lu, Jiaoyang; Zhang, Luyang; Lv, Yanfeng; Sun, Jing; Zheng, Minhua

    2017-07-18

    N-myc downstream-regulated gene1 (NDRG1) has been identified as a potent tumor suppressor gene. The molecular mechanisms of anti-tumor activity of NDRG1 involve its suppressive effects on a variety of tumorigenic signaling pathways. The purpose of this study was to investigate the role of NDRG1 in the apoptosis of colorectal cancer (CRC) cells. We first collected the clinical data of locally advanced rectal cancer (LARC) patients receiving oxaliplatin-based neoadjuvant chemotherapy in our medical center. Correlation analysis revealed that NDRG1 positively associated with the downstaging rates and prognosis of patients. Then, the effects of over-expression and depletion of NDRG1 gene on apoptosis of colorectal cancer were tested in vitro and in vivo. NDRG1 over-expression promoted apoptosis in colorectal cancer cells whereas depletion of NDRG1 resulted in resistance to oxaliplatin treatment. Furthermore, we observed that Bcl-2, a major anti-apoptotic protein, was regulated by NDRG1 at post-transcriptional level. By binding Protein kinase Cα (PKCα), a classical regulating factor of Bcl-2, NDRG1 enhanced the ubiquitination and degradation of Bcl-2, thus promoting apoptosis in CRC cells. In addition, NDRG1 inhibited tumor growth and promoted apoptosis in mouse xenograft model. In conclusion,NDRG1 promotes oxaliplatin-triggered apoptosis in colorectal cancer. Therefore, colorectal cancer patients can be stratified by the expression level of NDRG1. NDRG1-positive patients may benefit from oxaliplatin-containing chemotherapy regimens whereas those with negative NDRG1 expression should avoid the usage of this cytotoxic drug.

  13. Interaction of KLF6 and Sp1 regulates basigin-2 expression mediated proliferation, invasion and metastasis in hepatocellular carcinoma

    PubMed Central

    Dong, Ya-Lu; Zhang, Jing; Wang, Yong-Qiang; Liu, Lili; Zhang, He-Long; Huang, Jian-Guo; Liao, Cheng-Gong

    2016-01-01

    Accumulating evidence suggests that the tumor suppressor gene Krüppel-like factor 6 (KLF6) plays important roles in both development and progression of cancer. However, the role of KLF6 in hepatocellular carcinoma (HCC) remains unclear. Cancer-related molecule basigin-2 plays an important role in HCC progression and metastasis. Sp1, one of Sp/KLFs family members, regulates basigin-2 expression in HCC. The involvement of KLFs in basigin-2 regulation and HCC progression and metastasis has not been investigated. We first measured KLF6 expression levels in 50 pairs of HCC and adjacent normal tissues (ANTs) by immunohistochemistry. Specifically, low KLF6 expression but high Sp1 and basigin-2 expression were found in HCC tissues. By contrast, the ANTs showed high KLF6 expression but low Sp1 and basigin-2 expression. Kaplan–Meier analysis showed that higher expression of KLF6 was associated with better overall survival. The survival rate of KLF6-negative patients was lower than that of KLF6-positive patients (P = 0.015). We also found that KLF6 binds to the basigin-2 and Sp1 promoters and decreases their expression. Thus, we identified a microcircuitry mechanism in which KLF6 can repress basigin-2 expression directly by binding to its promoter or indirectly by inhibiting the expression of the transcription factor Sp1 to block gene expression. Additionally, overexpression of KLF6 suppressed the invasion, metastasis and proliferation of HCC cells in vitro and in vivo by targeting basigin-2. Our study provides new evidence that interaction of KLF6 and Sp1 regulates basigin-2 expression in HCC and that KLF6 represses the invasive and metastatic capacities of HCC through basigin-2. PMID:27057625

  14. The novel estrogen receptor G-protein-coupled receptor 30 is expressed in human bone.

    PubMed

    Heino, Terhi J; Chagin, Andrei S; Sävendahl, Lars

    2008-05-01

    Estrogens have significant impact on bone mineral metabolism. Besides the classical estrogen receptors (ERalpha and ERbeta), a trans-membrane G-protein-coupled receptor (GPR30) has been demonstrated to mediate estrogenic effects. We aimed to study whether GPR30 is expressed in bone cells and if so, whether the level of expression is developmentally regulated. Metaphyseal bone biopsies were collected from the tibia in 14 boys and 6 girls, all at different stages of puberty. GPR30 protein expression was studied by immunohistochemistry in paraffin-embedded sections. GPR30-positive osteocytes and osteoblasts were quantified and linear regression analysis was applied. Cytoplasmic GPR30 expression was detected in osteoblasts, osteocytes, and osteoclasts. Osteocytes were more frequently positive for GPR30 than osteoblasts (58+/-4% vs 46+/-3% positive cells respectively, P<0.05). Detailed analysis demonstrated that GPR30 positivity declined during pubertal development in osteocytes (R=-0.56, P<0.01) but not in osteoblasts (R=-0.31, P>0.05). No sex difference was observed in the numbers of GPR30-positive osteoblasts or osteocytes. Furthermore, GPR30 expression did not correlate with chronological or bone age. In conclusion, the novel ER GPR30 is expressed in osteoblasts, osteocytes, and osteoclasts suggesting that non-genomic estrogen signaling via GPR30 may exist in bone. However, the functional role of GPR30 in bone tissue remains to be elucidated.

  15. IFNA-AS1 regulates CD4+ T cell activation in myasthenia gravis though HLA-DRB1.

    PubMed

    Luo, Mengchuan; Liu, Xiaofang; Meng, Huanyu; Xu, Liqun; Li, Yi; Li, Zhibin; Liu, Chang; Luo, Yue-Bei; Hu, Bo; Xue, Yuanyuan; Liu, Yu; Luo, Zhaohui; Yang, Huan

    2017-10-01

    Abnormal CD4 + T cell activation is known to play roles in the pathogenesis of myasthenia gravis (MG). However, little is known about the mechanisms underlying the roles of lncRNAs in regulating CD4 + T cell. In this study, we discovered that the lncRNA IFNG-AS1 is abnormally expressed in MG patients associated with quantitative myasthenia gravis (QMG) and the positive anti-AchR Ab levels patients. IFNG-AS1 influenced Th1/Treg cell proliferation and regulated the expression levels of their transcription factors in an experimental autoimmune myasthenia gravis (EAMG)model. IFNG-AS1 could reduce the expression of HLA-DRB and HLA-DOB and they had a negative correlation in MG. Furthermore IFNG-AS1 influenced the expression levels of CD40L and CD4 + T cells activation in MG patient partly depend on effecting the HLA-DRB1 expression. It suggests that IFNG-AS1 may be involved in CD4 + T cell-mediated immune responses in MG. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Long non-coding RNA MIAT is estrogen-responsive and promotes estrogen-induced proliferation in ER-positive breast cancer cells.

    PubMed

    Li, Yuehua; Jiang, Baohong; Wu, Xiaoping; Huang, Qin; Chen, Wenqi; Zhu, Hongbo; Qu, Xiaofei; Xie, Liming; Ma, Xin; Huang, Guo

    2018-05-21

    Estrogen drives the development and progression of estrogen receptor (ER)-positive breast cancer. However, the detailed mechanism underlying ER-driven carcinogenesis remains unclear despite extensive studies. Previously reports indicated higher expression of long non-coding RNA (lncRNA) myocardial infarction associated transcript (MIAT) in ER-positive breast cancer tissues than in ER-negative tissues. However, the functional relevance of MIAT in ER-positive breast cancer tumorigenesis was poorly understood. Here, we investigated the role of lncRNA MIAT in ER-positive breast cancer cells. MIAT was over-expressed in ER-positive breast cancer tissues and ER-positive breast cancer cell line MCF-7. Activating estrogen signaling by diethylstilbestrol (DES) led to a dose- and time-dependent up-regulation of MIAT in MCF-7 cells that was dependent on ERα, as evidenced by ERα silencing and pharmacological inhibition using ER antagonist ICI 182780. Silencing MIAT decreased DES-induced MCF-7 cell proliferation while overexpressing MIAT increased MCF-7 cell proliferation. Further mechanistic study identified that MIAT was critical for G1 to S phase cell cycle transition. Taken together, these results suggest that lncRNA MIAT is an estrogen-inducible lncRNA and a key regulator in ER-positive breast cancer cell growth. MIAT could serve as a potential biomarker and promising therapeutic target for ER-positive breast cancer. Copyright © 2018. Published by Elsevier Inc.

  17. Deciphering principles of transcription regulation in eukaryotic genomes

    PubMed Central

    Nguyen, Dat H; D'haeseleer, Patrik

    2006-01-01

    Transcription regulation has been responsible for organismal complexity and diversity in the course of biological evolution and adaptation, and it is determined largely by the context-dependent behavior of cis-regulatory elements (CREs). Therefore, understanding principles underlying CRE behavior in regulating transcription constitutes a fundamental objective of quantitative biology, yet these remain poorly understood. Here we present a deterministic mathematical strategy, the motif expression decomposition (MED) method, for deriving principles of transcription regulation at the single-gene resolution level. MED operates on all genes in a genome without requiring any a priori knowledge of gene cluster membership, or manual tuning of parameters. Applying MED to Saccharomyces cerevisiae transcriptional networks, we identified four functions describing four different ways that CREs can quantitatively affect gene expression levels. These functions, three of which have extrema in different positions in the gene promoter (short-, mid-, and long-range) whereas the other depends on the motif orientation, are validated by expression data. We illustrate how nature could use these principles as an additional dimension to amplify the combinatorial power of a small set of CREs in regulating transcription. PMID:16738557

  18. Valine-glutamine (VQ) motif coding genes are ancient and non-plant-specific with comprehensive expression regulation by various biotic and abiotic stresses.

    PubMed

    Jiang, Shu-Ye; Sevugan, Mayalagu; Ramachandran, Srinivasan

    2018-05-09

    Valine-glutamine (VQ) motif containing proteins play important roles in abiotic and biotic stress responses in plants. However, little is known about the origin and evolution as well as comprehensive expression regulation of the VQ gene family. In this study, we systematically surveyed this gene family in 50 plant genomes from algae, moss, gymnosperm and angiosperm and explored their presence in other species from animals, bacteria, fungi and viruses. No VQs were detected in all tested algae genomes and all genomes from moss, gymnosperm and angiosperm encode varying numbers of VQs. Interestingly, some of fungi, lower animals and bacteria also encode single to a few VQs. Thus, they are not plant-specific and should be regarded as an ancient family. Their family expansion was mainly due to segmental duplication followed by tandem duplication and mobile elements. Limited contribution of gene conversion was detected to the family evolution. Generally, VQs were very much conserved in their motif coding region and were under purifying selection. However, positive selection was also observed during species divergence. Many VQs were up- or down-regulated by various abiotic / biotic stresses and phytohormones in rice and Arabidopsis. They were also co-expressed with some of other stress-related genes. All of the expression data suggest a comprehensive expression regulation of the VQ gene family. We provide new insights into gene expansion, divergence, evolution and their expression regulation of this VQ family. VQs were detectable not only in plants but also in some of fungi, lower animals and bacteria, suggesting the evolutionary conservation and the ancient origin. Overall, VQs are non-plant-specific and play roles in abiotic / biotic responses or other biological processes through comprehensive expression regulation.

  19. Aromatase expression increases the survival and malignancy of estrogen receptor positive breast cancer cells.

    PubMed

    Mukhopadhyay, Keya De; Liu, Zhao; Bandyopadhyay, Abhik; Kirma, Nameer B; Tekmal, Rajeshwar R; Wang, Shui; Sun, Lu-Zhe

    2015-01-01

    In postmenopausal women, local estrogen produced by adipose stromal cells in the breast is believed to support estrogen receptor alpha (ERα) positive breast cancer cell survival and growth. This raises the question of how the ERα positive metastatic breast cancer cells survive after they enter blood and lymph circulation, where estrogen level is very low in postmenopausal women. In this study, we show that the aromatase expression increased when ERα positive breast cancer cells were cultured in suspension. Furthermore, treatment with the aromatase substrate, testosterone, inhibited suspension culture-induced apoptosis whereas an aromatase inhibitor attenuated the effect of testosterone suggesting that suspended circulating ERα positive breast cancer cells may up-regulate intracrine estrogen activity for survival. Consistent with this notion, a moderate level of ectopic aromatase expression rendered a non-tumorigenic ERα positive breast cancer cell line not only tumorigenic but also metastatic in female nude mice without exogenous estrogen supplementation. The increased malignant phenotype was confirmed to be due to aromatase expression as the growth of orthotopic tumors regressed with systemic administration of an aromatase inhibitor. Thus, our study provides experimental evidence that aromatase plays an important role in the survival of metastatic ERα breast cancer cells by suppressing anoikis.

  20. Oestrogen receptor-mediated expression of Olfactomedin 4 regulates the progression of endometrial adenocarcinoma

    PubMed Central

    Duan, Chao; Liu, Xubin; Liang, Shuang; Yang, Zheng; Xia, Meng; Wang, Liantang; Chen, Shangwu; Yu, Li

    2014-01-01

    Endometrial adenocarcinoma is the most common tumour of the female genital tract in developed countries, and oestrogen receptor (ER) signalling plays a pivotal role in its pathogenesis. When we used bioinformatics tools to search for the genes contributing to gynecological cancers, the expression of Olfactomedin 4 (OLFM4) was found by digital differential display to be associated with differentiation of endometrial adenocarcinoma. Aberrant expression of OLFM4 has been primarily reported in tumours of the digestive system. The mechanism of OLFM4 in tumuorigenesis is elusive. We investigated OLFM4 expression in endometrium, analysed the association of OLFM4 with ER signalling in endometrial adenocarcinoma, and examined the roles of OLFM4 in endometrial adenocarcinoma. Expression of OLFM4 was increased during endometrial carcinogenesis, linked to the differentiation of endometrioid adenocarcinoma, and positively related to the expression of oestrogen receptor-α (ERα) and progesterone receptor. Moreover, ERα-mediated signalling regulated expression of OLFM4, and knockdown of OLFM4 enhanced proliferation, migration and invasion of endometrial carcinoma cells. Down-regulation of OLFM4 was associated with decreased cumulative survival rate of patients with endometrioid adenocarcinoma. Our data suggested that impairment of ERα signal-mediated OLFM4 expression promoted the malignant progression of endometrioid adenocarcinoma, which may have significance for the therapy of this carcinoma. PMID:24495253

  1. Antiaging Gene Klotho Regulates Adrenal CYP11B2 Expression and Aldosterone Synthesis

    PubMed Central

    Zhou, Xiaoli; Chen, Kai; Wang, Yongjun; Schuman, Mariano; Lei, Han

    2016-01-01

    Deficiency of the antiaging gene Klotho (KL) induces renal damage and hypertension through unknown mechanisms. In this study, we assessed whether KL regulates expression of CYP11B2, a key rate–limiting enzyme in aldosterone synthesis, in adrenal glands. We found that haplodeficiency of KL(+/−) in mice increased the plasma level of aldosterone by 16 weeks of age, which coincided with spontaneous and persistent elevation of BP. Blockade of aldosterone actions by eplerenone reversed KL deficiency–induced hypertension and attenuated the kidney damage. Protein expression of CYP11B2 was upregulated in adrenal cortex of KL(+/−) mice. KL and CYP11B2 proteins colocalized in adrenal zona glomerulosa cells. Silencing of KL upregulated and overexpression of KL downregulated CYP11B2 expression in human adrenocortical cells. Notably, silencing of KL decreased expression of SF-1, a negative transcription factor of CYP11B2, but increased phosphorylation of ATF2, a positive transcription factor of CYP11B2, which may contribute to upregulation of CYP11B2 expression. Therefore, these results show that KL regulates adrenal CYP11B2 expression. KL deficiency–induced spontaneous hypertension and kidney damage may be partially attributed to the upregulation of CYP11B2 expression and aldosterone synthesis. PMID:26471128

  2. MiR-17/20/93/106 promote hematopoietic cell expansion by targeting sequestosome 1–regulated pathways in mice

    PubMed Central

    Meenhuis, Annemarie; van Veelen, Peter A.; de Looper, Hans; van Boxtel, Nicole; van den Berge, Iris J.; Sun, Su M.; Taskesen, Erdogan; Stern, Patrick; de Ru, Arnoud H.; van Adrichem, Arjan J.; Demmers, Jeroen; Jongen-Lavrencic, Mojca; Löwenberg, Bob; Touw, Ivo P.; Sharp, Phillip A.

    2011-01-01

    MicroRNAs (miRNAs) are pivotal for regulation of hematopoiesis but their critical targets remain largely unknown. Here, we show that ectopic expression of miR-17, -20,-93 and -106, all AAAGUGC seed-containing miRNAs, increases proliferation, colony outgrowth and replating capacity of myeloid progenitors and results in enhanced P-ERK levels. We found that these miRNAs are endogenously and abundantly expressed in myeloid progenitors and down-regulated in mature neutrophils. Quantitative proteomics identified sequestosome 1 (SQSTM1), an ubiquitin-binding protein and regulator of autophagy-mediated protein degradation, as a major target for these miRNAs in myeloid progenitors. In addition, we found increased expression of Sqstm1 transcripts during CSF3-induced neutrophil differentiation of 32D-CSF3R cells and an inverse correlation of SQSTM1 protein levels and miR-106 expression in AML samples. ShRNA-mediated silencing of Sqstm1 phenocopied the effects of ectopic miR-17/20/93/106 expression in hematopoietic progenitors in vitro and in mice. Further, SQSTM1 binds to the ligand-activated colony-stimulating factor 3 receptor (CSF3R) mainly in the late endosomal compartment, but not in LC3 positive autophagosomes. SQSTM1 regulates CSF3R stability and ligand-induced mitogen-activated protein kinase signaling. We demonstrate that AAAGUGC seed-containing miRNAs promote cell expansion, replating capacity and signaling in hematopoietic cells by interference with SQSTM1-regulated pathways. PMID:21628417

  3. Regulatory networks between neurotrophins and miRNAs in brain diseases and cancers

    PubMed Central

    Shi, Jian

    2015-01-01

    Neurotrophins are involved in many physiological and pathological processes in the nervous system. They regulate and modify signal transduction, transcription and translation in neurons. It is recently demonstrated that the neurotrophin expression is regulated by microRNAs (miRNAs), changing our views on neurotrophins and miRNAs. Generally, miRNAs regulate neurotrophins and their receptors in at least two ways: (1) miRNAs bind directly to the 3′ untranslated region (UTR) of isoform-specific mRNAs and post-transcriptionally regulate their expression; (2) miRNAs bind to the 3′ UTR of the regulatory factors of neurotrophins and regulate their expression. On the other hand, neurotrophins can regulate miRNAs. The results of BNDF research show that neurotrophins regulate miRNAs in at least three ways: (1) ERK stimulation enhances the activation of TRBP (HIV-1 TAR RNA-binding protein) and Dicer, leading to the upregulation of miRNA biogenesis; (2) ERK-dependent upregulation of Lin28a (RNA-binding proteins) blocks select miRNA biogenesis; (3) transcriptional regulation of miRNA expression through activation of transcription factors, including CREB and NF-κB. These regulatory processes integrate positive and negative regulatory loops in neurotrophin and miRNA signaling pathways, and also expand the function of neurotrophins and miRNAs. In this review, we summarize the current knowledge of the regulatory networks between neurotrophins and miRNAs in brain diseases and cancers, for which novel cutting edge therapeutic, delivery and diagnostic approaches are emerging. PMID:25544363

  4. Signaling pathways regulating the expression of Prx1 and Prx2 in the Chick Mandibular Mesenchyme

    PubMed Central

    Doufexi, Aikaterini-El; Mina, Mina

    2009-01-01

    Prx1 and Prx2 are members of the aristaless-related homeobox genes shown to play redundant but essential roles in morphogenesis of the mandibular processes. To gain insight into the signaling pathways that regulate expression of Prx genes in the mandibular mesenchyme, we used the chick as a model system. We examined the patterns of gene expression in the face and the roles of signals derived from the epithelium on the expression of Prx genes in the mandibular mesenchyme. Our results demonstrated stage-dependent roles of mandibular epithelium on the expression of Prx in the mandibular mesenchyme and provide evidence for positive roles of members of the fibroblast and hedgehog families derived from mandibular epithelium on the expression of Prx genes in the mandibular mesenchyme. Our studies suggest that endothelin-1 signaling derived from the mesenchyme is involved in restricting the expression of Prx2 to the medial mandibular mesenchyme. PMID:18942149

  5. Opposing Functions of the ETS Factor Family Define Shh Spatial Expression in Limb Buds and Underlie Polydactyly

    PubMed Central

    Lettice, Laura A.; Williamson, Iain; Wiltshire, John H.; Peluso, Silvia; Devenney, Paul S.; Hill, Alison E.; Essafi, Abdelkader; Hagman, James; Mort, Richard; Grimes, Graeme; DeAngelis, Carlo L.; Hill, Robert E.

    2012-01-01

    Summary Sonic hedgehog (Shh) expression during limb development is crucial for specifying the identity and number of digits. The spatial pattern of Shh expression is restricted to a region called the zone of polarizing activity (ZPA), and this expression is controlled from a long distance by the cis-regulator ZRS. Here, members of two groups of ETS transcription factors are shown to act directly at the ZRS mediating a differential effect on Shh, defining its spatial expression pattern. Occupancy at multiple GABPα/ETS1 sites regulates the position of the ZPA boundary, whereas ETV4/ETV5 binding restricts expression outside the ZPA. The ETS gene family is therefore attributed with specifying the boundaries of the classical ZPA. Two point mutations within the ZRS change the profile of ETS binding and activate Shh expression at an ectopic site in the limb bud. These molecular changes define a pathogenetic mechanism that leads to preaxial polydactyly (PPD). PMID:22340503

  6. BIG LEAF is a regulator of organ size and adventitious root formation in poplar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stagesmore » of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. Additionally, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. Here, we conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.« less

  7. BIG LEAF is a regulator of organ size and adventitious root formation in poplar

    PubMed Central

    Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena; Meilan, Richard; Strauss, Steven H.; Busov, Victor B.

    2017-01-01

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stages of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. In addition, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. We conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting. PMID:28686626

  8. BIG LEAF is a regulator of organ size and adventitious root formation in poplar

    DOE PAGES

    Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena; ...

    2017-07-07

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stagesmore » of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. Additionally, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. Here, we conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.« less

  9. BIG LEAF is a regulator of organ size and adventitious root formation in poplar.

    PubMed

    Yordanov, Yordan S; Ma, Cathleen; Yordanova, Elena; Meilan, Richard; Strauss, Steven H; Busov, Victor B

    2017-01-01

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stages of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. In addition, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. We conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.

  10. Sox2 Is an Androgen Receptor-Repressed Gene That Promotes Castration-Resistant Prostate Cancer

    PubMed Central

    Kregel, Steven; Kiriluk, Kyle J.; Rosen, Alex M.; Cai, Yi; Reyes, Edwin E.; Otto, Kristen B.; Tom, Westin; Paner, Gladell P.; Szmulewitz, Russell Z.; Vander Griend, Donald J.

    2013-01-01

    Despite advances in detection and therapy, castration-resistant prostate cancer continues to be a major clinical problem. The aberrant activity of stem cell pathways, and their regulation by the Androgen Receptor (AR), has the potential to provide insight into novel mechanisms and pathways to prevent and treat advanced, castrate-resistant prostate cancers. To this end, we investigated the role of the embryonic stem cell regulator Sox2 [SRY (sex determining region Y)-box 2] in normal and malignant prostate epithelial cells. In the normal prostate, Sox2 is expressed in a portion of basal epithelial cells. Prostate tumors were either Sox2-positive or Sox2-negative, with the percentage of Sox2-positive tumors increasing with Gleason Score and metastases. In the castration-resistant prostate cancer cell line CWR-R1, endogenous expression of Sox2 was repressed by AR signaling, and AR chromatin-IP shows that AR binds the enhancer element within the Sox2 promoter. Likewise, in normal prostate epithelial cells and human embryonic stem cells, increased AR signaling also decreases Sox2 expression. Resistance to the anti-androgen MDV3100 results in a marked increase in Sox2 expression within three prostate cancer cell lines, and in the castration-sensitive LAPC-4 prostate cancer cell line ectopic expression of Sox2 was sufficient to promote castration-resistant tumor formation. Loss of Sox2 expression in the castration-resistant CWR-R1 prostate cancer cell line inhibited cell growth. Up-regulation of Sox2 was not associated with increased CD133 expression but was associated with increased FGF5 (Fibroblast Growth Factor 5) expression. These data propose a model of elevated Sox2 expression due to loss of AR-mediated repression during castration, and consequent castration-resistance via mechanisms not involving induction of canonical embryonic stem cell pathways. PMID:23326489

  11. Enhancement of high glucose-induced PINK1 expression by melatonin stimulates neuronal cell survival: Involvement of MT2 /Akt/NF-κB pathway.

    PubMed

    Onphachanh, Xaykham; Lee, Hyun Jik; Lim, Jae Ryong; Jung, Young Hyun; Kim, Jun Sung; Chae, Chang Woo; Lee, Sei-Jung; Gabr, Amr Ahmed; Han, Ho Jae

    2017-09-01

    Hyperglycemia is a representative hallmark and risk factor for diabetes mellitus (DM) and is closely linked to DM-associated neuronal cell death. Previous investigators reported on a genome-wide association study and showed relationships between DM and melatonin receptor (MT), highlighting the role of MT signaling by assessing melatonin in DM. However, the role of MT signaling in DM pathogenesis is unclear. Therefore, we investigated the role of mitophagy regulators in high glucose-induced neuronal cell death and the effect of melatonin against high glucose-induced mitophagy regulators in neuronal cells. In our results, high glucose significantly increased PTEN-induced putative kinase 1 (PINK1) and LC-3B expressions; as well it decreased cytochrome c oxidase subunit 4 expression and Mitotracker™ fluorescence intensity. Silencing of PINK1 induced mitochondrial reactive oxygen species (ROS) accumulation and mitochondrial membrane potential impairment, increased expressions of cleaved caspases, and increased the number of annexin V-positive cells. In addition, high glucose-stimulated melatonin receptor 1B (MTNR1B) mRNA and PINK1 expressions were reversed by ROS scavenger N-acetyl cysteine pretreatment. Upregulation of PINK1 expression in neuronal cells is suppressed by pretreatment with MT 2 receptor-specific inhibitor 4-P-PDOT. We further showed melatonin stimulated Akt phosphorylation, which was followed by nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) phosphorylation and nuclear translocation. Silencing of PINK1 expression abolished melatonin-regulated mitochondrial ROS production, cleaved caspase-3 and caspase-9 expressions, and the number of annexin V-positive cells. In conclusion, we have demonstrated the melatonin stimulates PINK1 expression via an MT 2 /Akt/NF-κB pathway, and such stimulation is important for the prevention of neuronal cell apoptosis under high glucose conditions. © 2017 The Authors. Journal of Pineal Research Published by John Wiley & Sons Ltd.

  12. A novel positive transcriptional feedback loop in midbrain-hindbrain boundary development is revealed through analysis of the zebrafish pax2.1 promoter in transgenic lines.

    PubMed

    Picker, Alexander; Scholpp, Steffen; Böhli, Heike; Takeda, Hiroyuki; Brand, Michael

    2002-07-01

    The pax2.1 gene encodes a paired-box transcription factor that is one of the earliest genes to be specifically activated in development of the midbrain and midbrain-hindbrain boundary (MHB), and is required for the development and organizer activity of this territory. To understand how this spatially restricted transcriptional activity of pax2.1 is achieved, we have isolated and characterized the pax2.1-promoter using a lacZ and a GFP reporter gene in transient injection assays and transgenic lines. Stable transgenic expression of this reporter gene shows that a 5.3-kb fragment of the 5' region contains most, but not all, elements required for driving pax2.1 expression. The expressing tissues include the MHB, hindbrain, spinal cord, ear and pronephros. Transgene activation in the pronephros and developing ear suggests that these pax2.1-expressing tissues are composed of independently regulated subdomains. In addition, ectopic but spatially restricted activation of the reporter genes in rhombomeres 3 and 5 and in the forebrain, which do not normally express endogenous pax2.1, demonstrates the importance of negative regulation of pax2.1. Comparison of transgene expression in wild-type and homozygous pax2.1 mutant no isthmus (noi) embryos reveals that the transgene contains control element(s) for a novel, positive transcriptional feedback loop in MHB development. Transcription of endogenous pax2.1 at the MHB is known to be initially Pax2.1 independent, during activation in late gastrulation. In contrast, transgene expression requires the endogenous Pax2.1 function. Transplantations, mRNA injections and morpholino knock-down experiments show that this feedback regulation of pax2.1 transcription occurs cell-autonomously, and that it requires eng2 and eng3 as known targets for Pax2.1 regulation. We suggest that this novel feedback loop may allow continuation of pax2.1 expression, and hence development of the MHB organizer, to become independent of the patterning machinery of the gastrula embryo.

  13. CBX7 regulates stem cell-like properties of gastric cancer cells via p16 and AKT-NF-κB-miR-21 pathways.

    PubMed

    Ni, Su-Jie; Zhao, Li-Qin; Wang, Xiao-Feng; Wu, Zhen-Hua; Hua, Rui-Xi; Wan, Chun-Hua; Zhang, Jie-Yun; Zhang, Xiao-Wei; Huang, Ming-Zhu; Gan, Lu; Sun, Hua-Lin; Dimri, Goberdhan P; Guo, Wei-Jian

    2018-02-08

    Chromobox protein homolog 7 (CBX7), a member of the polycomb group (PcG) family of proteins, is involved in the regulation of cell proliferation and cancer progression. PcG family members, such as BMI, Mel-18, and EZH2, are integral constituents of the polycomb repressive complexes (PRCs) and have been known to regulate cancer stem cell (CSC) phenotype. However, the role of other PRCs' constituents such as CBX7 in the regulation of CSC phenotype remains largely elusive. This study was to investigate the role of CBX7 in regulating stem cell-like properties of gastric cancer and the underlying mechanisms. Firstly, the role of CBX7 in regulating stem cell-like properties of gastric cancer was investigated using sphere formation, Western blot, and xenograft tumor assays. Next, RNA interference and ectopic CBX7 expression were employed to determine the impact of CBX7 on the expression of CSC marker proteins and CSC characteristics. The expression of CBX7, its downstream targets, and stem cell markers were analyzed in gastric stem cell spheres, common cancer cells, and gastric cancer tissues. Finally, the pathways by which CBX7 regulates stem cell-like properties of gastric cancer were explored. We found that CBX7, a constituent of the polycomb repressive complex 1 (PRC1), plays an important role in maintaining stem cell-like characteristics of gastric cancer cells via the activation of AKT pathway and the downregulation of p16. Spearman rank correlation analysis showed positive correlations among the expression of CBX7 and phospho-AKT (pAKT), stem cell markers OCT-4, and CD133 in gastric cancer tissues. In addition, CBX7 was found to upregulate microRNA-21 (miR-21) via the activation of AKT-NF-κB pathway, and miR-21 contributes to CBX7-mediated CSC characteristics. CBX7 positively regulates stem cell-like characteristics of gastric cancer cells by inhibiting p16 and activating AKT-NF-κB-miR-21 pathway.

  14. Insulin Is Required to Maintain Albumin Expression by Inhibiting Forkhead Box O1 Protein*

    PubMed Central

    Chen, Qing; Lu, Mingjian; Monks, Bobby R.; Birnbaum, Morris J.

    2016-01-01

    Diabetes is accompanied by dysregulation of glucose, lipid, and protein metabolism. In recent years, much effort has been spent on understanding how insulin regulates glucose and lipid metabolism, whereas the effect of insulin on protein metabolism has received less attention. In diabetes, hepatic production of serum albumin decreases, and it has been long established that insulin positively controls albumin gene expression. In this study, we used a genetic approach in mice to identify the mechanism by which insulin regulates albumin gene transcription. Albumin expression was decreased significantly in livers with insulin signaling disrupted by ablation of the insulin receptor or Akt. Concomitant deletion of Forkhead Box O1 (Foxo1) in these livers rescued the decreased albumin secretion. Furthermore, activation of Foxo1 in the liver is sufficient to suppress albumin expression. These results suggest that Foxo1 acts as a repressor of albumin expression. PMID:26668316

  15. Hippocampal gene expression in a rat model of depression after electroacupuncture at the Baihui and Yintang acupoints

    PubMed Central

    Duan, Dongmei; Yang, Xiuyan; Ya, Tu; Chen, Liping

    2014-01-01

    Preliminary basic research and clinical findings have demonstrated that electroacupuncture therapy exhibits positive effects in ameliorating depression. However, most studies of the underlying mechanism are at the single gene level; there are few reports regarding the mechanism at the whole-genome level. Using a rat genomic gene-chip, we profiled hippocampal gene expression changes in rats after electroacupuncture therapy. Electroacupuncture therapy alleviated depression-related manifestations in the model rats. Using gene-chip analysis, we demonstrated that electroacupuncture at Baihui (DU20) and Yintang (EX-HN3) regulates the expression of 21 genes. Real-time PCR showed that the genes Vgf, Igf2, Tmp32, Loc500373, Hif1a, Folr1, Nmb, and Rtn were upregulated or downregulated in depression and that their expression tended to normalize after electroacupuncture therapy. These results indicate that electroacupuncture at Baihui and Yintang modulates depression by regulating the expression of particular genes. PMID:25206746

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabrielson, Marike; Reizer, Edwin; Stål, Olle

    An increasing body of evidence is pointing towards mitochondrial regulation of the cell cycle. In a previous study of HER2-positive tumours we could demonstrate a common loss in the gene encoding for the mitochondrial transporter SLC25A43 and also a significant relation between SLC25A43 protein expression and S-phase fraction. Here, we investigated the consequence of suppressed SLC25A43 expression on cell cycle progression and proliferation in breast epithelial cells. In the present study, we suppressed SLC25A43 using siRNA in immortalised non-cancerous breast epithelial MCF10A cells and HER2-positive breast cancer cells BT-474. Viability, apoptosis, cell proliferation rate, cell cycle phase distribution, and nuclearmore » Ki-67 and p21, were assessed by flow cytometry. Cell cycle related gene expressions were analysed using real-time PCR. We found that SLC25A43 knockdown in MCF10A cells significantly inhibited cell cycle progression during G{sub 1}-to-S transition, thus significantly reducing the proliferation rate and fraction of Ki-67 positive MCF10A cells. In contrast, suppressed SLC25A43 expression in BT-474 cells resulted in a significantly increased proliferation rate together with an enhanced G{sub 1}-to-S transition. This was reflected by an increased fraction of Ki-67 positive cells and reduced level of nuclear p21. In line with our previous results, we show a role for SLC25A43 as a regulator of cell cycle progression and proliferation through a putative mitochondrial checkpoint. These novel data further strengthen the connection between mitochondrial function and the cell cycle, both in non-malignant and in cancer cells. - Highlights: • Proposed cell cycle regulation through the mitochondrial transporter SLC25A43. • SLC25A43 alters cell proliferation rate and cell cycle progression. • Suppressed SLC25A43 influences transcription of cell cycle regulatory genes.« less

  17. Identification of Cell Cycle-Regulated Genes by Convolutional Neural Network.

    PubMed

    Liu, Chenglin; Cui, Peng; Huang, Tao

    2017-01-01

    The cell cycle-regulated genes express periodically with the cell cycle stages, and the identification and study of these genes can provide a deep understanding of the cell cycle process. Large false positives and low overlaps are big problems in cell cycle-regulated gene detection. Here, a computational framework called DLGene was proposed for cell cycle-regulated gene detection. It is based on the convolutional neural network, a deep learning algorithm representing raw form of data pattern without assumption of their distribution. First, the expression data was transformed to categorical state data to denote the changing state of gene expression, and four different expression patterns were revealed for the reported cell cycle-regulated genes. Then, DLGene was applied to discriminate the non-cell cycle gene and the four subtypes of cell cycle genes. Its performances were compared with six traditional machine learning methods. At last, the biological functions of representative cell cycle genes for each subtype are analyzed. Our method showed better and more balanced performance of sensitivity and specificity comparing to other machine learning algorithms. The cell cycle genes had very different expression pattern with non-cell cycle genes and among the cell-cycle genes, there were four subtypes. Our method not only detects the cell cycle genes, but also describes its expression pattern, such as when its highest expression level is reached and how it changes with time. For each type, we analyzed the biological functions of the representative genes and such results provided novel insight to the cell cycle mechanisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. The Kto-Skd complex can regulate ptc expression by interacting with Cubitus interruptus (Ci) in the Hedgehog signaling pathway.

    PubMed

    Mao, Feifei; Yang, Xiaofeng; Fu, Lin; Lv, Xiangdong; Zhang, Zhao; Wu, Wenqing; Yang, Siqi; Zhou, Zhaocai; Zhang, Lei; Zhao, Yun

    2014-08-08

    The hedgehog (Hh) signaling pathway plays a very important role in metazoan development by controlling pattern formation. Drosophila imaginal discs are subdivided into anterior and posterior compartments that derive from adjacent cell populations. The anterior/posterior (A/P) boundaries, which are critical to maintaining the position of organizers, are established by a complex mechanism involving Hh signaling. Here, we uncover the regulation of ptc in the Hh signaling pathway by two subunits of mediator complex, Kto and Skd, which can also regulate boundary location. Collectively, we provide further evidence that Kto-Skd affects the A/P-axial development of the whole wing disc. Kto can interact with Cubitus interruptus (Ci), bind to the Ci-binding region on ptc promoter, which are both regulated by Hh signals to down-regulate ptc expression. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Regulation of hepatitis B virus ENI enhancer activity by hepatocyte-enriched transcription factor HNF3.

    PubMed

    Chen, M; Hieng, S; Qian, X; Costa, R; Ou, J H

    1994-11-15

    Hepatitis B virus (HBV) ENI enhancer can activate the expression of HBV and non-HBV genes in a liver-specific manner. By performing the electrophoretic mobility-shift assays, we demonstrated that the three related, liver-enriched, transcription factors, HNF3 alpha, HNF3 beta, and HNF3 gamma could all bind to the 2c site of HBV ENI enhancer. Mutations introduced in the 2c site to abolish the binding by HNF3 reduced the enhancer activity approximately 15-fold. Moreover, expression of HNF3 antisense sequences to suppress the expression of HNF3 in Huh-7 hepatoma cells led to reduction of the ENI enhancer activity. These results indicate that HNF3 positively regulates the ENI enhancer activity and this regulation is most likely mediated through the 2c site. The requirement of HNF3 for the ENI enhancer activity could explain the liver specificity of this enhancer element.

  20. Conserved regulatory mechanism controls the development of cells with rooting functions in land plants.

    PubMed

    Tam, Thomas Ho Yuen; Catarino, Bruno; Dolan, Liam

    2015-07-21

    Land plants develop filamentous cells-root hairs, rhizoids, and caulonemata-at the interface with the soil. Members of the group XI basic helix-loop-helix (bHLH) transcription factors encoded by LOTUS JAPONICUS ROOTHAIRLESS1-LIKE (LRL) genes positively regulate the development of root hairs in the angiosperms Lotus japonicus, Arabidopsis thaliana, and rice (Oryza sativa). Here we show that auxin promotes rhizoid and caulonema development by positively regulating the expression of PpLRL1 and PpLRL2, the two LRL genes in the Physcomitrella patens genome. Although the group VIII bHLH proteins, AtROOT HAIR DEFECTIVE6 and AtROOT HAIR DEFECTIVE SIX-LIKE1, promote root-hair development by positively regulating the expression of AtLRL3 in A. thaliana, LRL genes promote rhizoid development independently of PpROOT HAIR DEFECTIVE SIX-LIKE1 and PpROOT HAIR DEFECITVE SIX-LIKE2 (PpRSL1 and PpRSL2) gene function in P. patens. Together, these data demonstrate that both LRL and RSL genes are components of an ancient auxin-regulated gene network that controls the development of tip-growing cells with rooting functions among most extant land plants. Although this network has diverged in the moss and the angiosperm lineages, our data demonstrate that the core network acted in the last common ancestor of the mosses and angiosperms that existed sometime before 420 million years ago.

  1. Conserved regulatory mechanism controls the development of cells with rooting functions in land plants

    PubMed Central

    Tam, Thomas Ho Yuen; Catarino, Bruno; Dolan, Liam

    2015-01-01

    Land plants develop filamentous cells—root hairs, rhizoids, and caulonemata—at the interface with the soil. Members of the group XI basic helix–loop–helix (bHLH) transcription factors encoded by LOTUS JAPONICUS ROOTHAIRLESS1-LIKE (LRL) genes positively regulate the development of root hairs in the angiosperms Lotus japonicus, Arabidopsis thaliana, and rice (Oryza sativa). Here we show that auxin promotes rhizoid and caulonema development by positively regulating the expression of PpLRL1 and PpLRL2, the two LRL genes in the Physcomitrella patens genome. Although the group VIII bHLH proteins, AtROOT HAIR DEFECTIVE6 and AtROOT HAIR DEFECTIVE SIX-LIKE1, promote root-hair development by positively regulating the expression of AtLRL3 in A. thaliana, LRL genes promote rhizoid development independently of PpROOT HAIR DEFECTIVE SIX-LIKE1 and PpROOT HAIR DEFECITVE SIX-LIKE2 (PpRSL1 and PpRSL2) gene function in P. patens. Together, these data demonstrate that both LRL and RSL genes are components of an ancient auxin-regulated gene network that controls the development of tip-growing cells with rooting functions among most extant land plants. Although this network has diverged in the moss and the angiosperm lineages, our data demonstrate that the core network acted in the last common ancestor of the mosses and angiosperms that existed sometime before 420 million years ago. PMID:26150509

  2. PAI-1, a target gene of miR-143, regulates invasion and metastasis by upregulating MMP-13 expression of human osteosarcoma.

    PubMed

    Hirahata, Mio; Osaki, Mitsuhiko; Kanda, Yusuke; Sugimoto, Yui; Yoshioka, Yusuke; Kosaka, Nobuyoshi; Takeshita, Fumitaka; Fujiwara, Tomohiro; Kawai, Akira; Ito, Hisao; Ochiya, Takahiro; Okada, Futoshi

    2016-05-01

    Despite recent improvements in the therapy for osteosarcoma, 30-40% of osteosarcoma patients die of this disease, mainly due to its lung metastasis. We have previously reported that intravenous injection of miR-143 significantly suppresses lung metastasis of human osteosarcoma cells (143B) in a mouse model. In this study, we examined the biological role and mechanism of miR-143 in the metastasis of human osteosarcoma cells. We identified plasminogen activator inhibitor-1 (PAI-1) as a direct target gene of miR-143. To determine the role of PAI-1 in human osteosarcoma cells, siRNA was transfected into 143B cells for knockdown of PAI-1 expression. An in vitro study showed that downregulation of PAI-1 suppressed cell invasion activity, but not proliferation. Moreover, injection of PAI-1 siRNA into a primary lesion in the osteosarcoma mouse model inhibited lung metastasis compared to control siRNA-injected mice, without influencing the proliferative activity of the tumor cells. Subsequent examination using 143B cells revealed that knockdown of PAI-1 expression resulted in downregulation of the expression and secretion of matrix metalloproteinase-13 (MMP-13), which is also a target gene of miR-143 and a proteolytic enzyme that regulates tumor-induced osteolysis. Immunohistochemical analysis using clinical samples showed that higher miR-143 expressing cases showed poor expression of PAI-1 in the primary tumor cells. All such cases belonged to the lung metastasis-negative group. Moreover, the frequency of lung metastasis-positive cases was significantly higher in PAI-1 and MMP-13 double-positive cases than in PAI-1 or MMP-13 single-positive or double-negative cases (P < 0.05). These results indicated that PAI-1, a target gene of miR-143, regulates invasion and lung metastasis via enhancement of MMP-13 expression and secretion in human osteosarcoma cells, suggesting that these molecules could be potential therapeutic target genes for preventing lung metastasis in osteosarcoma patients. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  3. Transcriptome analysis uncovers Arabidopsis F-BOX STRESS INDUCED 1 as a regulator of jasmonic acid and abscisic acid stress gene expression.

    PubMed

    Gonzalez, Lauren E; Keller, Kristen; Chan, Karen X; Gessel, Megan M; Thines, Bryan C

    2017-07-17

    The ubiquitin 26S proteasome system (UPS) selectively degrades cellular proteins, which results in physiological changes to eukaryotic cells. F-box proteins are substrate adaptors within the UPS and are responsible for the diversity of potential protein targets. Plant genomes are enriched in F-box genes, but the vast majority of these have unknown roles. This work investigated the Arabidopsis F-box gene F-BOX STRESS INDUCED 1 (FBS1) for its effects on gene expression in order elucidate its previously unknown biological function. Using publically available Affymetrix ATH1 microarray data, we show that FBS1 is significantly co-expressed in abiotic stresses with other well-characterized stress response genes, including important stress-related transcriptional regulators. This gene suite is most highly expressed in roots under cold and salt stresses. Transcriptome analysis of fbs1-1 knock-out plants grown at a chilling temperature shows that hundreds of genes require FBS1 for appropriate expression, and that these genes are enriched in those having roles in both abiotic and biotic stress responses. Based on both this genome-wide expression data set and quantitative real-time PCR (qPCR) analysis, it is apparent that FBS1 is required for elevated expression of many jasmonic acid (JA) genes that have established roles in combatting environmental stresses, and that it also controls a subset of JA biosynthesis genes. FBS1 also significantly impacts abscisic acid (ABA) regulated genes, but this interaction is more complex, as FBS1 has both positive and negative effects on ABA-inducible and ABA-repressible gene modules. One noteworthy effect of FBS1 on ABA-related stress processes, however, is the restraint it imposes on the expression of multiple class I LIPID TRANSFER PROTEIN (LTP) gene family members that have demonstrated protective effects in water deficit-related stresses. FBS1 impacts plant stress responses by regulating hundreds of genes that respond to the plant stress hormones JA and ABA. The positive effect that FBS1 has on JA processes and the negative effect it has on at least some ABA processes indicates that it in part regulates cellular responses balanced between these two important stress hormones. More broadly then, FBS1 may aid plant cells in switching between certain biotic (JA) and abiotic (ABA) stress responses. Finally, because FBS1 regulates a subset of JA biosynthesis and response genes, we conclude that it might have a role in tuning hormone responses to particular circumstances at the transcriptional level.

  4. Influence and timing of arrival of murine neural crest on pancreatic beta cell development and maturation.

    PubMed

    Plank, Jennifer L; Mundell, Nathan A; Frist, Audrey Y; LeGrone, Alison W; Kim, Thomas; Musser, Melissa A; Walter, Teagan J; Labosky, Patricia A

    2011-01-15

    Interactions between cells from the ectoderm and mesoderm influence development of the endodermally-derived pancreas. While much is known about how mesoderm regulates pancreatic development, relatively little is understood about how and when the ectodermally-derived neural crest regulates pancreatic development and specifically, beta cell maturation. A previous study demonstrated that signals from the neural crest regulate beta cell proliferation and ultimately, beta cell mass. Here, we expand on that work to describe timing of neural crest arrival at the developing pancreatic bud and extend our knowledge of the non-cell autonomous role for neural crest derivatives in the process of beta cell maturation. We demonstrated that murine neural crest entered the pancreatic mesenchyme between the 26 and 27 somite stages (approximately 10.0 dpc) and became intermingled with pancreatic progenitors as the epithelium branched into the surrounding mesenchyme. Using a neural crest-specific deletion of the Forkhead transcription factor Foxd3, we ablated neural crest cells that migrate to the pancreatic primordium. Consistent with previous data, in the absence of Foxd3, and therefore the absence of neural crest cells, proliferation of insulin-expressing cells and insulin-positive area are increased. Analysis of endocrine cell gene expression in the absence of neural crest demonstrated that, although the number of insulin-expressing cells was increased, beta cell maturation was significantly impaired. Decreased MafA and Pdx1 expression illustrated the defect in beta cell maturation; we discovered that without neural crest, there was a reduction in the percentage of insulin-positive cells that co-expressed Glut2 and Pdx1 compared to controls. In addition, transmission electron microscopy analyses revealed decreased numbers of characteristic insulin granules and the presence of abnormal granules in insulin-expressing cells from mutant embryos. Together, these data demonstrate that the neural crest is a critical regulator of beta cell development on two levels: by negatively regulating beta cell proliferation and by promoting beta cell maturation. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Regulation of galactokinase gene expression in Tetrahymena thermophila. II. Identification of 3,4-dihydroxyphenylalanine as a primary effector of adrenergic control of galactokinase expression.

    PubMed

    Ness, J C; Morse, D E

    1985-08-25

    Intracellular concentrations of catecholamines were determined in wild-type and mutant Tetrahymena thermophila, using the highly sensitive techniques of high-performance liquid chromatography and electro-chemical detection. Catecholamines were determined in these cell strains grown under various steady-state conditions, including those which initiate and maintain repression of galactokinase gene expression. Wild-type cells grown in defined minimal medium supplemented with 1% glycerol, exhibiting derepressed galactokinase synthesis, were found to contain considerable quantities of dopa (3,4-dihydroxyphenylalanine) and dopamine, but no detectable levels of either norepinephrine or epinephrine. Analyses of wild-type cells revealed a strong positive correlation between the internal concentration of dopa and expression of the galactokinase gene, both of which are regulated by exogenous carbohydrates, catecholamine agonists, or dibutyryl-cAMP; an analogous relationship between intracellular dopamine concentrations and galactokinase activity was not found. In addition, a correlation between intracellular dopa content and the phenotypic expression of galactokinase in various mutants deficient in the catecholamine biosynthetic pathway or in glucokinase further confirms the role of dopa as a primary effector in the regulation of galactokinase gene expression.

  6. Genome-wide DNA methylation reprogramming in response to inorganic arsenic links inhibition of CTCF binding, DNMT expression and cellular transformation

    NASA Astrophysics Data System (ADS)

    Rea, Matthew; Eckstein, Meredith; Eleazer, Rebekah; Smith, Caroline; Fondufe-Mittendorf, Yvonne N.

    2017-02-01

    Chronic low dose inorganic arsenic (iAs) exposure leads to changes in gene expression and epithelial-to-mesenchymal transformation. During this transformation, cells adopt a fibroblast-like phenotype accompanied by profound gene expression changes. While many mechanisms have been implicated in this transformation, studies that focus on the role of epigenetic alterations in this process are just emerging. DNA methylation controls gene expression in physiologic and pathologic states. Several studies show alterations in DNA methylation patterns in iAs-mediated pathogenesis, but these studies focused on single genes. We present a comprehensive genome-wide DNA methylation analysis using methyl-sequencing to measure changes between normal and iAs-transformed cells. Additionally, these differential methylation changes correlated positively with changes in gene expression and alternative splicing. Interestingly, most of these differentially methylated genes function in cell adhesion and communication pathways. To gain insight into how genomic DNA methylation patterns are regulated during iAs-mediated carcinogenesis, we show that iAs probably targets CTCF binding at the promoter of DNA methyltransferases, regulating their expression. These findings reveal how CTCF binding regulates DNA methyltransferase to reprogram the methylome in response to an environmental toxin.

  7. Genome-wide DNA methylation reprogramming in response to inorganic arsenic links inhibition of CTCF binding, DNMT expression and cellular transformation

    PubMed Central

    Rea, Matthew; Eckstein, Meredith; Eleazer, Rebekah; Smith, Caroline; Fondufe-Mittendorf , Yvonne N.

    2017-01-01

    Chronic low dose inorganic arsenic (iAs) exposure leads to changes in gene expression and epithelial-to-mesenchymal transformation. During this transformation, cells adopt a fibroblast-like phenotype accompanied by profound gene expression changes. While many mechanisms have been implicated in this transformation, studies that focus on the role of epigenetic alterations in this process are just emerging. DNA methylation controls gene expression in physiologic and pathologic states. Several studies show alterations in DNA methylation patterns in iAs-mediated pathogenesis, but these studies focused on single genes. We present a comprehensive genome-wide DNA methylation analysis using methyl-sequencing to measure changes between normal and iAs-transformed cells. Additionally, these differential methylation changes correlated positively with changes in gene expression and alternative splicing. Interestingly, most of these differentially methylated genes function in cell adhesion and communication pathways. To gain insight into how genomic DNA methylation patterns are regulated during iAs-mediated carcinogenesis, we show that iAs probably targets CTCF binding at the promoter of DNA methyltransferases, regulating their expression. These findings reveal how CTCF binding regulates DNA methyltransferase to reprogram the methylome in response to an environmental toxin. PMID:28150704

  8. The Arabidopsis GASA10 gene encodes a cell wall protein strongly expressed in developing anthers and seeds.

    PubMed

    Trapalis, Menelaos; Li, Song Feng; Parish, Roger W

    2017-07-01

    The Arabidopsis GASA10 gene encodes a GAST1-like (Gibberellic Acid-Stimulated) protein. Reporter gene analysis identified consistent expression in anthers and seeds. In anthers expression was developmentally regulated, first appearing at stage 7 of anther development and reaching a maximum at stage 11. Strongest expression was in the tapetum and developing microspores. GASA10 expression also occurred throughout the seed and in root vasculature. GASA10 was shown to be transported to the cell wall. Using GASA1 and GASA6 as positive controls, gibberellic acid was found not to induce GASA10 expression in Arabidopsis suspension cells. Overexpression of GASA10 (35S promoter-driven) resulted in a reduction in silique elongation. GASA10 shares structural similarities to the antimicrobial peptide snakin1, however, purified GASA10 failed to influence the growth of a variety of bacterial and fungal species tested. We propose cell wall associated GASA proteins are involved in regulating the hydroxyl radical levels at specific sites in the cell wall to facilitate wall growth (regulating cell wall elongation). Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Xenopus microRNA genes are predominantly located within introns and are differentially expressed in adult frog tissues via post-transcriptional regulation

    PubMed Central

    Tang, Guo-Qing; Maxwell, E. Stuart

    2008-01-01

    The amphibian Xenopus provides a model organism for investigating microRNA expression during vertebrate embryogenesis and development. Searching available Xenopus genome databases using known human pre-miRNAs as query sequences, more than 300 genes encoding 142 Xenopus tropicalis miRNAs were identified. Analysis of Xenopus tropicalis miRNA genes revealed a predominate positioning within introns of protein-coding and nonprotein-coding RNA Pol II-transcribed genes. MiRNA genes were also located in pre-mRNA exons and positioned intergenically between known protein-coding genes. Many miRNA species were found in multiple locations and in more than one genomic context. MiRNA genes were also clustered throughout the genome, indicating the potential for the cotranscription and coordinate expression of miRNAs located in a given cluster. Northern blot analysis confirmed the expression of many identified miRNAs in both X. tropicalis and X. laevis. Comparison of X. tropicalis and X. laevis blots revealed comparable expression profiles, although several miRNAs exhibited species-specific expression in different tissues. More detailed analysis revealed that for some miRNAs, the tissue-specific expression profile of the pri-miRNA precursor was distinctly different from that of the mature miRNA profile. Differential miRNA precursor processing in both the nucleus and cytoplasm was implicated in the observed tissue-specific differences. These observations indicated that post-transcriptional processing plays an important role in regulating miRNA expression in the amphibian Xenopus. PMID:18032731

  10. Transcription regulation by the Mediator complex.

    PubMed

    Soutourina, Julie

    2018-04-01

    Alterations in the regulation of gene expression are frequently associated with developmental diseases or cancer. Transcription activation is a key phenomenon in the regulation of gene expression. In all eukaryotes, mediator of RNA polymerase II transcription (Mediator), a large complex with modular organization, is generally required for transcription by RNA polymerase II, and it regulates various steps of this process. The main function of Mediator is to transduce signals from the transcription activators bound to enhancer regions to the transcription machinery, which is assembled at promoters as the preinitiation complex (PIC) to control transcription initiation. Recent functional studies of Mediator with the use of structural biology approaches and functional genomics have revealed new insights into Mediator activity and its regulation during transcription initiation, including how Mediator is recruited to transcription regulatory regions and how it interacts and cooperates with PIC components to assist in PIC assembly. Novel roles of Mediator in the control of gene expression have also been revealed by showing its connection to the nuclear pore and linking Mediator to the regulation of gene positioning in the nuclear space. Clear links between Mediator subunits and disease have also encouraged studies to explore targeting of this complex as a potential therapeutic approach in cancer and fungal infections.

  11. Role of ornithine decarboxylase in regulation of estrogen receptor alpha expression and growth in human breast cancer cells

    PubMed Central

    Zhu, Qingsong; Jin, Lihua; Casero, Robert A.

    2013-01-01

    Our previous studies demonstrated that specific polyamine analogues, oligoamines, down-regulated the activity of a key polyamine biosynthesis enzyme, ornithine decarboxylase (ODC), and suppressed expression of estrogen receptor alpha (ERα) in human breast cancer cells. However, the mechanism underlying the potential regulation of ERα expression by polyamine metabolism has not been explored. Here, we demonstrated that RNAi-mediated knockdown of ODC (ODC KD) down-regulated the polyamine pool, and hindered growth in ERα-positive MCF7 and T47D and ERα-negative MDA-MB-231 breast cancer cells. ODC KD significantly induced the expression and activity of the key polyamine catabolism enzymes, spermine oxidase (SMO) and spermidine/spermine N1-acetyltransferase (SSAT). However, ODC KD-induced growth inhibition could not be reversed by exogenous spermidine or overexpression of antizyme inhibitor (AZI), suggesting that regulation of ODC on cell proliferation may involve the signaling pathways independent of polyamine metabolism. In MCF7 and T47D cells, ODC KD, but not DFMO treatment, diminished the mRNA and protein expression of ERα. Overexpression of antizyme (AZ), an ODC inhibitory protein, suppressed ERα expression, suggesting that ODC plays an important role in regulation of ERα expression. Decrease of ERα expression by ODC siRNA altered the mRNA expression of a subset of ERα response genes. Our previous analysis showed that oligoamines disrupt the binding of Sp1 family members to an ERα minimal promoter element containing GC/CA-rich boxes. By using DNA affinity precipitation and mass spectrometry analysis, we identified ZBTB7A, MeCP2, PARP-1, AP2, and MAZ as co-factors of Sp1 family members that are associated with the ERα minimal promoter element. Taken together, these data provide insight into a novel antiestrogenic mechanism for polyamine biosynthesis enzymes in breast cancer. PMID:22976807

  12. A1E reduces stemness and self-renewal in HPV 16-positive cervical cancer stem cells.

    PubMed

    Kwon, Taeho; Bak, Yesol; Ham, Sun-Young; Yu, Dae-Yeul; Yoon, Do-Young

    2016-02-02

    Cervical cancer is the second most common cancer in females. Recent reports have revealed the critical role of cervical cancer stem cells (CSCs) in tumorigenicity and metastasis. Previously we demonstrated that A1E exerts an anti-proliferative action, which inhibits the growth of cervical cancer cells. A1E is composed of 11 oriental medicinal herbs. Cervical cancer cell culture, wund healing and invasion assay, flow cytometry, sheroid formation assay, and wstern blot assays were performed in HPV 16-positive SiHa cell and HPV 16-negative C33A cells. A1E targets the E6 and E7 oncogenes; thus, A1E significantly inhibited proliferation of human papilloma virus (HPV) 16-positive SiHa cells, it did not inhibit the proliferation of HPV-negative C33A cells. Accordingly, we investigated whether A1E can regulate epithelial-to-mesenchymal transition (EMT), CSC self-renewal, and stemness-related gene expression in cervical cancer cells. Down rgulation of cell migration, cell invasion, and EMT was observed in A1E-treated SiHa cells. Specifically, A1E-treated SiHa cells showed significant decreases in OCT-3/4 and Sox2 expression levels and in sphere formation. Moreover, CSCs makers ALDH+ and ALDH, CD133 double positive cell were significantly decreased in A1E-treated SiHa cells. However, A1E treatment did not down regulate ALDH+ expression and the number of ALDH/CD133 double positive cells in C33A cells. Taken together, A1E can inhibit CSCs and reduce the expression of stemness markers. Treating CSCs with A1E may be a potential therapy for cervical cancer.

  13. Specificity protein 1 regulates topoisomerase IIβ expression in SH-SY5Y cells during neuronal differentiation.

    PubMed

    Guo, Hui; Cao, Cuili; Chi, Xueqian; Zhao, Junxia; Liu, Xia; Zhou, Najing; Han, Shuo; Yan, Yongxin; Wang, Yanling; Xu, Yannan; Yan, Yunli; Cui, Huixian; Sun, Hongxia

    2014-10-01

    Topoisomerase IIβ (top IIβ) is a nuclear enzyme with an essential role in neural development. The regulation of top IIβ gene expression during neural differentiation is poorly understood. Functional analysis of top IIβ gene structure displayed a GC box sequence in its transcription promoter, which binds the nuclear transcription factor specificity protein 1 (Sp1). Sp1 regulates gene expression via multiple mechanisms and is essential for early embryonic development. This study seeks to determine whether Sp1 regulates top IIβ gene expression during neuronal differentiation. For this purpose, human neuroblastoma SH-SY5Y cells were induced to neuronal differentiation in the presence of all-trans retinoic acid (RA) for 5 days. After incubation with 10 μM RA for 3-5 days, a majority of the cells exited the cell cycle to become postmitotic neurons, characterized by the presence of longer neurite outgrowths and expression of the neuronal marker microtubule-associated protein-2 (MAP2). Elevated Sp1 and top IIβ mRNA and protein levels were detected and found to be positively correlated with the differentiation stage. Chromatin immunoprecipitation assay demonstrated an increased recruitment of Sp1 to the top IIβ promoter after RA treatment. Mithramycin A, a compound that interferes with Sp1 binding to GC-rich DNA sequences, downregulated the expression of top IIβ, resulting in reduced expression of MAP2 and decreased neurite length compared with the control group. Our results indicate that Sp1 regulates top IIβ expression by binding to the GC box of the gene promoter during neuronal differentiation in SH-SY5Y cells. © 2014 Wiley Periodicals, Inc.

  14. Comparative Study of Early Cold-Regulated Proteins by Two-Dimensional Difference Gel Electrophoresis Reveals a Key Role for Phospholipase Dα1 in Mediating Cold Acclimation Signaling Pathway in Rice.

    PubMed

    Huo, Chenmin; Zhang, Baowen; Wang, Hui; Wang, Fawei; Liu, Meng; Gao, Yingjie; Zhang, Wenhua; Deng, Zhiping; Sun, Daye; Tang, Wenqiang

    2016-04-01

    To understand the early signaling steps that regulate cold responses in rice, two-dimensional difference gel electrophoresis (2-D DIGE)(1)was used to study early cold-regulated proteins in rice seedlings. Using mass spectrometry, 32 spots, which represent 26 unique proteins that showed an altered expression level within 5 min of cold treatment were identified. Among these proteins, Western blot analyses confirmed that the cellular phospholipase D α1 (OsPLDα1) protein level was increased as early as 1 min after cold treatment. Genetic studies showed that reducing the expression ofOsPLDα1makes rice plants more sensitive to chilling stress as well as cold acclimation increased freezing tolerance. Correspondingly, cold-regulated proteomic changes and the expression of the cold-responsive C repeat/dehydration-responsive element binding 1 (OsDREB1) family of transcription factors were inhibited in thepldα1mutant. We also found that the expression ofOsPLDα1is directly regulated by OsDREB1A. This transcriptional regulation ofOsPLDα1could provide positive feedback regulation of the cold signal transduction pathway in rice. OsPLDα1 hydrolyzes phosphatidylcholine to produce the signal molecule phosphatidic acid (PA). By lipid-overlay assay, we demonstrated that the rice cold signaling proteins, MAP kinase 6 (OsMPK6) and OsSIZ1, bind directly to PA. Taken together, our results suggest that OsPLDα1 plays a key role in transducing cold signaling in rice by producing PA and regulatingOsDREB1s' expression by OsMPK6, OsSIZ1, and possibly other PA-binding proteins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Characterization of human mitochondrial ferritin promoter: identification of transcription factors and evidences of epigenetic control

    NASA Astrophysics Data System (ADS)

    Guaraldo, Michela; Santambrogio, Paolo; Rovelli, Elisabetta; di Savino, Augusta; Saglio, Giuseppe; Cittaro, Davide; Roetto, Antonella; Levi, Sonia

    2016-09-01

    Mitochondrial ferritin (FtMt) is an iron storage protein belonging to the ferritin family but, unlike the cytosolic ferritin, it has an iron-unrelated restricted tissue expression. FtMt appears to be preferentially expressed in cell types characterized by high metabolic activity and oxygen consumption, suggesting a role in protecting mitochondria from iron-dependent oxidative damage. The human gene (FTMT) is intronless and its promoter region has not been described yet. To analyze the regulatory mechanisms controlling FTMT expression, we characterized the 5‧ flanking region upstream the transcriptional starting site of FTMT by in silico enquiry of sequences conservation, DNA deletion analysis, and ChIP assay. The data revealed a minimal promoter region and identified the presence of SP1, CREB and YY1 as positive regulators, and GATA2, FoxA1 and C/EBPβ as inhibitors of the transcriptional regulation. Furthermore, the FTMT transcription is increased by acetylating and de-methylating agent treatments in K562 and HeLa cells. These treatments up-regulate FtMt expression even in fibroblasts derived from a Friedreich ataxia patient, where it might exert a beneficial effect against mitochondrial oxidative damage. The expression of FTMT appears regulated by a complex mechanism involving epigenetic events and interplay between transcription factors.

  16. Hypoxia inducible factor-1α-induced interleukin-33 expression in intestinal epithelia contributes to mucosal homeostasis in inflammatory bowel disease.

    PubMed

    Sun, M; He, C; Wu, W; Zhou, G; Liu, F; Cong, Y; Liu, Z

    2017-03-01

    Intestinal epithelial cells (IECs), an important barrier to gut microbiota, are subject to low oxygen tension, particularly during intestinal inflammation. Hypoxia inducible factor-1α (HIF-1α) is expressed highly in the inflamed mucosa of inflammatory bowel disease (IBD) and functions as a key regulator in maintenance of intestinal homeostasis. However, how IEC-derived HIF-1α regulates intestinal immune responses in IBD is still not understood completely. We report here that the expression of HIF-1α and IL-33 was increased significantly in the inflamed mucosa of IBD patients as well as mice with colitis induced by dextran sulphate sodium (DSS). The levels of interleukin (IL)-33 were correlated positively with that of HIF-1α. A HIF-1α-interacting element was identified in the promoter region of IL-33, indicating that HIF-1α activity regulates IL-33 expression. Furthermore, tumour necrosis factor (TNF) facilitated the HIF-1α-dependent IL-33 expression in IEC. Our data thus demonstrate that HIF-1α-dependent IL-33 in IEC functions as a regulatory cytokine in inflamed mucosa of IBD, thereby regulating the intestinal inflammation and maintaining mucosal homeostasis. © 2016 British Society for Immunology.

  17. Transcriptome and Degradome Sequencing Reveals Dormancy Mechanisms of Cunninghamia lanceolata Seeds.

    PubMed

    Cao, Dechang; Xu, Huimin; Zhao, Yuanyuan; Deng, Xin; Liu, Yongxiu; Soppe, Wim J J; Lin, Jinxing

    2016-12-01

    Seeds with physiological dormancy usually experience primary and secondary dormancy in the nature; however, little is known about the differential regulation of primary and secondary dormancy. We combined multiple approaches to investigate cytological changes, hormonal levels, and gene expression dynamics in Cunninghamia lanceolata seeds during primary dormancy release and secondary dormancy induction. Light microscopy and transmission electron microscopy revealed that protein bodies in the embryo cells coalesced during primary dormancy release and then separated during secondary dormancy induction. Transcriptomic profiling demonstrated that expression of genes negatively regulating gibberellic acid (GA) sensitivity reduced specifically during primary dormancy release, whereas the expression of genes positively regulating abscisic acid (ABA) biosynthesis increased during secondary dormancy induction. Parallel analysis of RNA ends revealed uncapped transcripts for ∼55% of all unigenes. A negative correlation between fold changes in expression levels of uncapped versus capped mRNAs was observed during primary dormancy release. However, this correlation was loose during secondary dormancy induction. Our analyses suggest that the reversible changes in cytology and gene expression during dormancy release and induction are related to ABA/GA balance. Moreover, mRNA degradation functions as a critical posttranscriptional regulator during primary dormancy release. These findings provide a mechanistic framework for understanding physiological dormancy in seeds. © 2016 American Society of Plant Biologists. All Rights Reserved.

  18. Transcriptome and Degradome Sequencing Reveals Dormancy Mechanisms of Cunninghamia lanceolata Seeds1

    PubMed Central

    Xu, Huimin; Liu, Yongxiu; Soppe, Wim J.J.; Lin, Jinxing

    2016-01-01

    Seeds with physiological dormancy usually experience primary and secondary dormancy in the nature; however, little is known about the differential regulation of primary and secondary dormancy. We combined multiple approaches to investigate cytological changes, hormonal levels, and gene expression dynamics in Cunninghamia lanceolata seeds during primary dormancy release and secondary dormancy induction. Light microscopy and transmission electron microscopy revealed that protein bodies in the embryo cells coalesced during primary dormancy release and then separated during secondary dormancy induction. Transcriptomic profiling demonstrated that expression of genes negatively regulating gibberellic acid (GA) sensitivity reduced specifically during primary dormancy release, whereas the expression of genes positively regulating abscisic acid (ABA) biosynthesis increased during secondary dormancy induction. Parallel analysis of RNA ends revealed uncapped transcripts for ∼55% of all unigenes. A negative correlation between fold changes in expression levels of uncapped versus capped mRNAs was observed during primary dormancy release. However, this correlation was loose during secondary dormancy induction. Our analyses suggest that the reversible changes in cytology and gene expression during dormancy release and induction are related to ABA/GA balance. Moreover, mRNA degradation functions as a critical posttranscriptional regulator during primary dormancy release. These findings provide a mechanistic framework for understanding physiological dormancy in seeds. PMID:27760880

  19. Long non-coding RNA MIAT promotes breast cancer progression and functions as ceRNA to regulate DUSP7 expression by sponging miR-155-5p.

    PubMed

    Luan, Tian; Zhang, Ximei; Wang, Shuyuan; Song, Yan; Zhou, Shunheng; Lin, Jing; An, Weiwei; Yuan, Weiguang; Yang, Yue; Cai, Huilong; Zhang, Qingyuan; Wang, Lihong

    2017-09-29

    Long non-coding RNAs (lncRNA) have been reported as key regulators in the progression and metastasis of breast cancer. In this study, we found that the lncRNA myocardial infarction associated transcript (MIAT) expression was upregulated in breast cancer in The Cancer Genome Atlas (TCGA) data sets. We validated that MIAT was higher in breast cancer cell lines and advanced breast tumors than in normal controls. And MIAT overexpression associated with TNM stage and lymphnode metastasis. Knockdown MIAT inhibited breast cancer cell proliferation and promoted apoptosis. Also MIAT downregulation suppressed epithelial-mesenchymal transition (EMT) and decreased migration and invasion in MDA-MB-231 and MCF-7 breast cancer cell lines. More importantly, knockdown MIAT inhibited tumor growth in vivo . Our results suggested that MIAT acted as a competing endogenous RNA (ceRNA) to regulate the expression of dual specificity phosphatase 7 (DUSP7) by taking up miR-155-5p in breast cancer. There were positive correlation between MIAT and DUSP7 expression in breast cancer patients. We conclude that MIAT promotes breast cancer progression and functions as ceRNA to regulate DUSP7 expression by sponging miR-155-5p in breast cancer.

  20. EMMPRIN is associated with S100A4 and predicts patient outcome in colorectal cancer

    PubMed Central

    Boye, K; Nesland, J M; Sandstad, B; Haugland Haugen, M; Mælandsmo, G M; Flatmark, K

    2012-01-01

    Background: Proteolytic enzymes and their regulators have important biological roles in colorectal cancer by stimulating invasion and metastasis, which makes these factors attractive as potential prognostic biomarkers. Methods: The expression of extracellular matrix metalloproteinase inducer (EMMPRIN) was characterised using immunohistochemistry in primary tumours from a cohort of 277 prospectively recruited colorectal cancer patients, and associations with expression of S100A4, clinicopathological parameters and patient outcome were investigated. Results: One hundred and ninety-eight samples (72%) displayed positive membrane staining of the tumour cells, whereas 10 cases (4%) were borderline positive. EMMPRIN expression was associated with shorter metastasis-free, disease-specific and overall survival in both univariate and multivariate analyses. The prognostic impact was largely confined to TNM stage III, and EMMPRIN-negative stage III patients had an excellent prognosis. Furthermore, EMMPRIN was significantly associated with expression of S100A4, and the combined expression of these biomarkers conferred an even poorer prognosis. However, there was no evidence of direct regulation between the two proteins in the colorectal cancer cell lines HCT116 and SW620 in siRNA knockdown experiments. Conclusion: EMMPRIN is a promising prognostic biomarker in colorectal cancer, and our findings suggest that it could be used in the selection of stage III patients for adjuvant therapy. PMID:22782346

  1. Relationship between expression of gastrin, somatostatin, Fas/FasL and caspases in large intestinal carcinoma.

    PubMed

    Mao, Jia-Ding; Wu, Pei; Yang, Ying-Lin; Wu, Jian; Huang, He

    2008-05-14

    To explore the correlation between the mRNAs and protein expression of gastrin (GAS), somatostatin (SS) and apoptosis index (AI), apoptosis regulation gene Fas/FasL and caspases in large intestinal carcinoma (LIC). Expression of GAS and SS mRNAs were detected by nested RT-PCR in 79 cases of LIC. Cell apoptosis was detected by molecular biology in situ apoptosis detecting methods (TUNEL). Immunohistochemical staining for GAS, SS, Fas/FasL, caspase-3 and caspase-8 was performed according to the standard streptavidin-biotin-peroxidase (S-P) method. There was a significant positive correlation between mRNA and protein expression of GAS and SS (GASrs = 0.99, P < 0.01; SSrs = 0.98, P < 0.01). There was significant difference in positive expression rates of GAS, SS mRNAs and protein among different histological differentiation, histological types and Dukes' stage of LIC. The AI in GAS high and moderate expression groups was significantly lower than that in low expression groups (3.75 +/- 2.38 vs 7.82 +/- 2.38, P < 0.01; 5.51 +/- 2.66 vs 7.82 +/- 2.38, P < 0.01), and the AI in SS high and moderate expression groups was significantly higher than that in low expression groups (9.03 +/- 1.76 vs 5.35 +/- 3.00, P < 0.01; 7.44 +/- 2.67 vs 5.35 +/- 3.00, P < 0.01). There was a significant negative correlation between the integral ratio of GAS to SS and the AI (r(s) = -0.41, P < 0.01). The positive expression rate of FasL in GAS high and moderate expression groups was higher than that in low expression group (90.9% and 81.0% vs 53.2%, P < 0.05). The positive expression rates of Fas, caspase-8 and caspase-3 in SS high (90.0%, 90.0% and 100%) and moderate (80.0%, 70.0%, 75.0%) expression groups were higher than that in low expression group (53.1%, 42.9%, 49.0%) (90.0% and 80.0% vs 53.1%, P < 0.05; 90.0% and 70.0% vs 42.9%, P < 0.05; 100.0% and 75.0% vs 49.0%, P < 0.05). There was a significant positive correlation between the integral ratio of GAS to SS and the semiquantitative integral of FasL (rs = 0.32, P < 0.01). GAS and SS play important roles in the regulation and control of cell apoptosis in LIC, and the mechanism may be directly related to the aberrant expression of Fas/FasL. The GAS and SS will be valuable targets of the biological behavior of LIC.

  2. Relationship between expression of gastrin, somatostatin, Fas/FasL and caspases in large intestinal carcinoma

    PubMed Central

    Mao, Jia-Ding; Wu, Pei; Yang, Ying-Lin; Wu, Jian; Huang, He

    2008-01-01

    AIM: To explore the correlation between the mRNAs and protein expression of gastrin (GAS), somatostatin (SS) and apoptosis index (AI), apoptosis regulation gene Fas/FasL and caspases in large intestinal carcinoma (LIC). METHODS: Expression of GAS and SS mRNAs were detected by nested RT-PCR in 79 cases of LIC. Cell apoptosis was detected by molecular biology in situ apoptosis detecting methods (TUNEL). Immunohistochemical staining for GAS, SS, Fas/FasL, caspase-3 and caspase-8 was performed according to the standard streptavidin-biotin-peroxidase (S-P) method. RESULTS: There was a significant positive correlation between mRNA and protein expression of GAS and SS (GASrs=0.99, P < 0.01; SSrs = 0.98, P < 0.01). There was significant difference in positive expression rates of GAS, SS mRNAs and protein among different histological differentiation, histological types and Dukes’ stage of LIC. The AI in GAS high and moderate expression groups was significantly lower than that in low expression groups (3.75 ± 2.38 vs 7.82 ± 2.38, P < 0.01; 5.51 ± 2.66 vs 7.82 ± 2.38, P < 0.01), and the AI in SS high and moderate expression groups was significantly higher than that in low expression groups (9.03 ± 1.76 vs 5.35 ± 3.00, P < 0.01; 7.44 ± 2.67 vs 5.35 ± 3.00, P < 0.01). There was a significant negative correlation between the integral ratio of GAS to SS and the AI (rs = -0.41, P < 0.01). The positive expression rate of FasL in GAS high and moderate expression groups was higher than that in low expression group (90.9% and 81.0% vs 53.2%, P < 0.05). The positive expression rates of Fas, caspase-8 and caspase-3 in SS high (90.0%, 90.0% and 100%) and moderate (80.0%, 70.0%, 75.0%) expression groups were higher than that in low expression group (53.1%, 42.9%, 49.0%) (90.0% and 80.0% vs 53.1%, P < 0.05; 90.0% and 70.0% vs 42.9%, P < 0.05; 100.0% and 75.0% vs 49.0%, P < 0.05). There was a significant positive correlation between the integral ratio of GAS to SS and the semiquantitative integral of FasL (rs = 0.32, P < 0.01). CONCLUSION: GAS and SS play important roles in the regulation and control of cell apoptosis in LIC, and the mechanism may be directly related to the aberrant expression of Fas/FasL. The GAS and SS will be valuable targets of the biological behavior of LIC. PMID:18473402

  3. The MADS transcription factor XAL2/AGL14 modulates auxin transport during Arabidopsis root development by regulating PIN expression

    PubMed Central

    Garay-Arroyo, Adriana; Ortiz-Moreno, Enrique; de la Paz Sánchez, María; Murphy, Angus S; García-Ponce, Berenice; Marsch-Martínez, Nayelli; de Folter, Stefan; Corvera-Poiré, Adriana; Jaimes-Miranda, Fabiola; Pacheco-Escobedo, Mario A; Dubrovsky, Joseph G; Pelaz, Soraya; Álvarez-Buylla, Elena R

    2013-01-01

    Elucidating molecular links between cell-fate regulatory networks and dynamic patterning modules is a key for understanding development. Auxin is important for plant patterning, particularly in roots, where it establishes positional information for cell-fate decisions. PIN genes encode plasma membrane proteins that serve as auxin efflux transporters; mutations in members of this gene family exhibit smaller roots with altered root meristems and stem-cell patterning. Direct regulators of PIN transcription have remained elusive. Here, we establish that a MADS-box gene (XAANTAL2, XAL2/AGL14) controls auxin transport via PIN transcriptional regulation during Arabidopsis root development; mutations in this gene exhibit altered stem-cell patterning, root meristem size, and root growth. XAL2 is necessary for normal shootward and rootward auxin transport, as well as for maintaining normal auxin distribution within the root. Furthermore, this MADS-domain transcription factor upregulates PIN1 and PIN4 by direct binding to regulatory regions and it is required for PIN4-dependent auxin response. In turn, XAL2 expression is regulated by auxin levels thus establishing a positive feedback loop between auxin levels and PIN regulation that is likely to be important for robust root patterning. PMID:24121311

  4. A novel SMAC mimetic APG-1387 exhibits dual antitumor effect on HBV-positive hepatocellular carcinoma with high expression of cIAP2 by inducing apoptosis and enhancing innate anti-tumor immunity.

    PubMed

    Pan, Wentao; Luo, Qiuyun; Yan, Xianglei; Yuan, Luping; Yi, Hanjie; Zhang, Lin; Li, Baoxia; Zhang, Yuxin; Sun, Jian; Qiu, Miao-Zhen; Yang, Da-Jun

    2018-04-18

    Check point inhibitor anti-PD1 antibody produced some efficacy in Hepatocellular Carcinoma (HCC) patients previously treated with sorafenib. Unfortunately, HCC patients with hepatitis B virus (HBV) infection did not respond as well as uninfected patients. Previously, Second mitochondria-derived activator of caspases (SMAC) mimetics-the antagonist for inhibitor of apoptosis proteins (IAPs) can rapidly reduce serum hepatitis B virus DNA in animal model. APG-1387 is a novel SMAC-mimetic, small molecule inhibitor targeting inhibitor of apoptosis proteins (IAPs). In our study, firstly, we found that HCC patients with copy number alteration of cIAP1, cIAP2, and XIAP had a dismal prognosis. Then, we discovered that APG-1387 alone could induce apoptosis of PLC/PRF/5 which was HBV positive both in-vitro and in-vivo. Furthermore, we found that APG-1387 significantly up-regulated the expression of calreticulin and HLA-DR in PLC/PRF/5 via activating non-classic NF-κB pathway. Also, compared to vehicle group, APG-1387 increased NK cell counts by 5 folds in PLC/PRF/5 xenograft model. In-vitro, APG-1387 positively regulated T cells by reducing Treg differentiation and down-regulating PD1 expression in CD4 T cell. Moreover, APG-1387 had no impact on memory T cells. Consequently, our results suggest that APG1387 could be a good candidate to combine with anti-PD1 antibody treatment to overcome low responds of check point inhibitors in HBV positive HCC. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. A Positive Feedback Loop between Glial Cells Missing 1 and Human Chorionic Gonadotropin (hCG) Regulates Placental hCGβ Expression and Cell Differentiation

    PubMed Central

    Cheong, Mei-Leng; Wang, Liang-Jie; Chuang, Pei-Yun; Chang, Ching-Wen; Lee, Yun-Shien; Lo, Hsiao-Fan; Tsai, Ming-Song

    2015-01-01

    Human chorionic gonadotropin (hCG) is composed of a common α subunit and a placenta-specific β subunit. Importantly, hCG is highly expressed in the differentiated and multinucleated syncytiotrophoblast, which is formed via trophoblast cell fusion and stimulated by cyclic AMP (cAMP). Although the ubiquitous activating protein 2 (AP2) transcription factors TFAP2A and TFAP2C may regulate hCGβ expression, it remains unclear how cAMP stimulates placenta-specific hCGβ gene expression and trophoblastic differentiation. Here we demonstrated that the placental transcription factor glial cells missing 1 (GCM1) binds to a highly conserved promoter region in all six hCGβ paralogues by chromatin immunoprecipitation-on-chip (ChIP-chip) analyses. We further showed that cAMP stimulates GCM1 and the CBP coactivator to activate the hCGβ promoter through a GCM1-binding site (GBS1), which also constitutes a previously identified AP2 site. Given that TFAP2C may compete with GCM1 for GBS1, cAMP enhances the association between the hCGβ promoter and GCM1 but not TFAP2C. Indeed, the hCG-cAMP-protein kinase A (PKA) signaling pathway also stimulates Ser269 and Ser275 phosphorylation of GCM1, which recruits CBP to mediate GCM1 acetylation and stabilization. Consequently, hCG stimulates the expression of GCM1 target genes, including the fusogenic protein syncytin-1, to promote placental cell fusion. Our study reveals a positive feedback loop between GCM1 and hCG regulating placental hCGβ expression and cell differentiation. PMID:26503785

  6. The Polycistronic miR166k-166h Positively Regulates Rice Immunity via Post-transcriptional Control of EIN2

    PubMed Central

    Salvador-Guirao, Raquel; Hsing, Yue-ie; San Segundo, Blanca

    2018-01-01

    MicroRNAs (miRNAs) are small RNAs acting as regulators of gene expression at the post-transcriptional level. In plants, most miRNAs are generated from independent transcriptional units, and only a few polycistronic miRNAs have been described. miR166 is a conserved miRNA in plants targeting the HD-ZIP III transcription factor genes. Here, we show that a polycistronic miRNA comprising two miR166 family members, miR166k and miR166h, functions as a positive regulator of rice immunity. Rice plants with activated MIR166k-166h expression showed enhanced resistance to infection by the fungal pathogens Magnaporthe oryzae and Fusarium fujikuroi, the causal agents of the rice blast and bakanae disease, respectively. Disease resistance in rice plants with activated MIR166k-166h expression was associated with a stronger expression of defense responses during pathogen infection. Stronger induction of MIR166k-166h expression occurred in resistant but not susceptible rice cultivars. Notably, the ethylene-insensitive 2 (EIN2) gene was identified as a novel target gene for miR166k. The regulatory role of the miR166h-166k polycistron on the newly identified target gene results from the activity of the miR166k-5p specie generated from the miR166k-166h precursor. Collectively, our findings support a role for miR166k-5p in rice immunity by controlling EIN2 expression. Because rice blast is one of the most destructive diseases of cultivated rice worldwide, unraveling miR166k-166h-mediated mechanisms underlying blast resistance could ultimately help in designing appropriate strategies for rice protection. PMID:29616057

  7. Acquisition and expression of conditioned taste aversion differentially affects extracellular signal regulated kinase and glutamate receptor phosphorylation in rat prefrontal cortex and nucleus accumbens

    PubMed Central

    Marotta, Roberto; Fenu, Sandro; Scheggi, Simona; Vinci, Stefania; Rosas, Michela; Falqui, Andrea; Gambarana, Carla; De Montis, M. Graziella; Acquas, Elio

    2014-01-01

    Conditioned taste aversion (CTA) can be applied to study associative learning and its relevant underpinning molecular mechanisms in discrete brain regions. The present study examined, by immunohistochemistry and immunocytochemistry, the effects of acquisition and expression of lithium-induced CTA on activated Extracellular signal Regulated Kinase (p-ERK) in the prefrontal cortex (PFCx) and nucleus accumbens (Acb) of male Sprague-Dawley rats. The study also examined, by immunoblotting, whether acquisition and expression of lithium-induced CTA resulted in modified levels of phosphorylation of glutamate receptor subunits (NR1 and GluR1) and Thr34- and Thr75-Dopamine-and-cAMP-Regulated PhosphoProtein (DARPP-32). CTA acquisition was associated with an increase of p-ERK-positive neurons and phosphorylated NR1 receptor subunit (p-NR1) in the PFCx, whereas p-GluR1, p-Thr34- and p-Thr75-DARPP-32 levels were not changed in this brain region. CTA expression increased the number of p-ERK-positive neurons in the shell (AcbSh) and core (AcbC) but left unmodified p-NR1, p-GluR1, p-Thr34- and p-Thr75-DARPP-32 levels. Furthermore, post-embedding immunogold quantitative analysis in AcbSh revealed that CTA expression significantly increased nuclear p-ERK immunostaining as well as p-ERK-labeled axo-spinous contacts. Overall, these results indicate that ERK and NR1, but not GluR1 and DARPP-32, are differentially phosphorylated as a consequence of acquisition and expression of aversive associative learning. Moreover, these results confirm that CTA represents an useful approach to study the molecular basis of associative learning in rats and suggest the involvement of ERK cascade in learning-associated synaptic plasticity. PMID:24847227

  8. Expression of Tlx in both stem cells and transit amplifying progenitors regulates stem cell activation and differentiation in the neonatal lateral subependymal zone.

    PubMed

    Obernier, Kirsten; Simeonova, Ina; Fila, Tatiana; Mandl, Claudia; Hölzl-Wenig, Gabriele; Monaghan-Nichols, Paula; Ciccolini, Francesca

    2011-09-01

    Niche homeostasis in the postnatal subependymal zone of the lateral ventricle (lSEZ) requires coordinated proliferation and differentiation of neural progenitor cells. The mechanisms regulating this balance are scarcely known. Recent observations indicate that the orphan nuclear receptor Tlx is an intrinsic factor essential in maintaining this balance. However, the effect of Tlx on gene expression depends on age and cell-type cues. Therefore, it is essential to establish its expression pattern at different developmental ages. Here, we show for the first time that in the neonatal lSEZ activated neural stem cells (NSCs) and especially transit-amplifying progenitors (TAPs) express Tlx and that its expression may be regulated at the posttranscriptional level. We also provide evidence that in both cell types Tlx affects gene expression in a positive and negative manner. In activated NSCs, but not in TAPs, absence of Tlx leads to overexpression of negative cell cycle regulators and impairment of proliferation. Moreover, in both cell types, the homeobox transcription factor Dlx2 is downregulated in the absence of Tlx. This is paralleled by increased expression of Olig2 in activated NSCs and glial fibrillary acidic protein in TAPs, indicating that in both populations Tlx decreases gliogenesis. Consistent with this, we found a higher proportion of cells expressing glial makers in the neonatal lSEZ of mutant mice than in the wild type counterpart. Thus, Tlx playing a dual role affects the expression of distinct genes in these two lSEZ cell types. Copyright © 2011 AlphaMed Press.

  9. Cubilin expression is monoallelic and epigenetically augmented via PPARs

    PubMed Central

    2013-01-01

    Background Cubilin is an endocytic receptor that is necessary for renal and intestinal absorption of a range of ligands. Endocytosis mediated by cubilin and its co-receptor megalin is the principal mechanism for proximal tubule reabsorption of proteins from the glomerular filtrate. Cubilin is also required for intestinal endocytosis of intrinsic factor-vitamin B12 complex. Despite its importance, little is known about the regulation of cubilin expression. Results Here we show that cubilin expression is under epigenetic regulation by at least two processes. The first process involves inactivation of expression of one of the cubilin alleles. This monoallelic expression state could not be transformed to biallelic by inhibiting DNA methylation or histone deacetylation. The second process involves transcriptional regulation of cubilin by peroxisome proliferator-activated receptor (PPAR) transcription factors that are themselves regulated by DNA methylation and histone deacetylation. This is supported by findings that inhibitors of DNA methylation and histone deacetylation, 5Aza and TSA, increase cubilin mRNA and protein in renal and intestinal cell lines. Not only was the expression of PPARα and γ inducible by 5Aza and TSA, but the positive effects of TSA and 5Aza on cubilin expression were also dependent on both increased PPAR transcription and activation. Additionally, 5Aza and TSA had similar effects on the expression of the cubilin co-receptor, megalin. Conclusions Together, these findings reveal that cubilin and megalin mRNA expression is under epigenetic control and thus point to new avenues for overcoming pathological suppression of these genes through targeting of epigenetic regulatory processes. PMID:23773363

  10. Myostatin signals through Pax7 to regulate satellite cell self-renewal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFarlane, Craig; Department of Biological Sciences, University of Waikato, Hamilton; Hennebry, Alex

    2008-01-15

    Myostatin, a Transforming Growth Factor-beta (TGF-{beta}) super-family member, has previously been shown to negatively regulate satellite cell activation and self-renewal. However, to date the mechanism behind Myostatin function in satellite cell biology is not known. Here we show that Myostatin signals via a Pax7-dependent mechanism to regulate satellite cell self-renewal. While excess Myostatin inhibited Pax7 expression via ERK1/2 signaling, an increase in Pax7 expression was observed following both genetic inactivation and functional antagonism of Myostatin. As a result, we show that either blocking or inactivating Myostatin enhances the partitioning of the fusion-incompetent self-renewed satellite cell lineage (high Pax7 expression, lowmore » MyoD expression) from the pool of actively proliferating myogenic precursor cells. Consistent with this result, over-expression of Pax7 in C2C12 myogenic cells resulted in increased self-renewal through a mechanism which slowed both myogenic proliferation and differentiation. Taken together, these results suggest that increased expression of Pax7 promotes satellite cell self-renewal, and furthermore Myostatin may control the process of satellite cell self-renewal through regulation of Pax7. Thus we speculate that, in addition to the intrinsic factors (such as Pax7), extrinsic factors both positive and negative in nature, will play a major role in determining the stemness of skeletal muscle satellite cells.« less

  11. A quantitative proteomics approach identifies ETV6 and IKZF1 as new regulators of an ERG-driven transcriptional network

    PubMed Central

    Unnikrishnan, Ashwin; Guan, Yi F.; Huang, Yizhou; Beck, Dominik; Thoms, Julie A. I.; Peirs, Sofie; Knezevic, Kathy; Ma, Shiyong; de Walle, Inge V.; de Jong, Ineke; Ali, Zara; Zhong, Ling; Raftery, Mark J.; Taghon, Tom; Larsson, Jonas; MacKenzie, Karen L.; Van Vlierberghe, Pieter; Wong, Jason W. H.; Pimanda, John E.

    2016-01-01

    Aberrant stem cell-like gene regulatory networks are a feature of leukaemogenesis. The ETS-related gene (ERG), an important regulator of normal haematopoiesis, is also highly expressed in T-ALL and acute myeloid leukaemia (AML). However, the transcriptional regulation of ERG in leukaemic cells remains poorly understood. In order to discover transcriptional regulators of ERG, we employed a quantitative mass spectrometry-based method to identify factors binding the 321 bp ERG +85 stem cell enhancer region in MOLT-4 T-ALL and KG-1 AML cells. Using this approach, we identified a number of known binders of the +85 enhancer in leukaemic cells along with previously unknown binders, including ETV6 and IKZF1. We confirmed that ETV6 and IKZF1 were also bound at the +85 enhancer in both leukaemic cells and in healthy human CD34+ haematopoietic stem and progenitor cells. Knockdown experiments confirmed that ETV6 and IKZF1 are transcriptional regulators not just of ERG, but also of a number of genes regulated by a densely interconnected network of seven transcription factors. At last, we show that ETV6 and IKZF1 expression levels are positively correlated with expression of a number of heptad genes in AML and high expression of all nine genes confers poorer overall prognosis. PMID:27604872

  12. Changes in neural network homeostasis trigger neuropsychiatric symptoms.

    PubMed

    Winkelmann, Aline; Maggio, Nicola; Eller, Joanna; Caliskan, Gürsel; Semtner, Marcus; Häussler, Ute; Jüttner, René; Dugladze, Tamar; Smolinsky, Birthe; Kowalczyk, Sarah; Chronowska, Ewa; Schwarz, Günter; Rathjen, Fritz G; Rechavi, Gideon; Haas, Carola A; Kulik, Akos; Gloveli, Tengis; Heinemann, Uwe; Meier, Jochen C

    2014-02-01

    The mechanisms that regulate the strength of synaptic transmission and intrinsic neuronal excitability are well characterized; however, the mechanisms that promote disease-causing neural network dysfunction are poorly defined. We generated mice with targeted neuron type-specific expression of a gain-of-function variant of the neurotransmitter receptor for glycine (GlyR) that is found in hippocampectomies from patients with temporal lobe epilepsy. In this mouse model, targeted expression of gain-of-function GlyR in terminals of glutamatergic cells or in parvalbumin-positive interneurons persistently altered neural network excitability. The increased network excitability associated with gain-of-function GlyR expression in glutamatergic neurons resulted in recurrent epileptiform discharge, which provoked cognitive dysfunction and memory deficits without affecting bidirectional synaptic plasticity. In contrast, decreased network excitability due to gain-of-function GlyR expression in parvalbumin-positive interneurons resulted in an anxiety phenotype, but did not affect cognitive performance or discriminative associative memory. Our animal model unveils neuron type-specific effects on cognition, formation of discriminative associative memory, and emotional behavior in vivo. Furthermore, our data identify a presynaptic disease-causing molecular mechanism that impairs homeostatic regulation of neural network excitability and triggers neuropsychiatric symptoms.

  13. A Positive Regulatory Loop between a Wnt-Regulated Non-coding RNA and ASCL2 Controls Intestinal Stem Cell Fate.

    PubMed

    Giakountis, Antonis; Moulos, Panagiotis; Zarkou, Vasiliki; Oikonomou, Christina; Harokopos, Vaggelis; Hatzigeorgiou, Artemis G; Reczko, Martin; Hatzis, Pantelis

    2016-06-21

    The canonical Wnt pathway plays a central role in stem cell maintenance, differentiation, and proliferation in the intestinal epithelium. Constitutive, aberrant activity of the TCF4/β-catenin transcriptional complex is the primary transforming factor in colorectal cancer. We identify a nuclear long non-coding RNA, termed WiNTRLINC1, as a direct target of TCF4/β-catenin in colorectal cancer cells. WiNTRLINC1 positively regulates the expression of its genomic neighbor ASCL2, a transcription factor that controls intestinal stem cell fate. WiNTRLINC1 interacts with TCF4/β-catenin to mediate the juxtaposition of its promoter with the regulatory regions of ASCL2. ASCL2, in turn, regulates WiNTRLINC1 transcriptionally, closing a feedforward regulatory loop that controls stem cell-related gene expression. This regulatory circuitry is highly amplified in colorectal cancer and correlates with increased metastatic potential and decreased patient survival. Our results uncover the interplay between non-coding RNA-mediated regulation and Wnt signaling and point to the diagnostic and therapeutic potential of WiNTRLINC1. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Sequential and combinatorial roles of maf family genes define proper lens development.

    PubMed

    Reza, Hasan Mahmud; Urano, Atsuyo; Shimada, Naoko; Yasuda, Kunio

    2007-01-16

    Maf proteins have been shown to play pivotal roles in lens development in vertebrates. The developing chick lens expresses at least three large Maf proteins. However, the transcriptional relationship among the three large maf genes and their various roles in transactivating the downstream genes largely remain to be elucidated. Chick embryos were electroporated with wild-type L-maf, c-maf, and mafB by in ovo electroporation, and their effects on gene expression were determined by in situ hybridization using specific probes or by immunostaining. Endogenous gene expression was determined using nonelectroporated samples. A regulation mechanism exists among the members of maf family gene. An early-expressed member of this gene family typically stimulates the expression of later-expressed members. We also examined the regulation of various lens-expressing genes with a focus on the interaction between different Maf proteins. We found that the transcriptional ability of Maf proteins varies, even when the target is the same, in parallel with their discrete functions. L-Maf and c-Maf have no effect on E-cadherin expression, whereas MafB enhances its expression and thereby impedes lens vesicle formation. This study also revealed that Maf proteins can regulate the expression of gap junction genes, connexins, and their interacting partner, major intrinsic protein (MIP), during lens development. Misexpression of L-Maf and c-Maf induces ectopic expression of Cx43 and MIP; in contrast, MafB appears to have no effect on Cx43, but induces MIP significantly as evidenced from our gain-of-function experiments. Our results indicate that large Maf function is indispensable for chick lens initiation and development. In addition, L-Maf positively regulates most of the essential genes in this program and directs a series of molecular events leading to proper formation of the lens.

  15. Integrated Analysis of Long Noncoding RNA and mRNA Expression Profile in Advanced Laryngeal Squamous Cell Carcinoma.

    PubMed

    Feng, Ling; Wang, Ru; Lian, Meng; Ma, Hongzhi; He, Ning; Liu, Honggang; Wang, Haizhou; Fang, Jugao

    2016-01-01

    Long non-coding RNA (lncRNA) plays an important role in tumorigenesis. However, the expression pattern and function of lncRNAs in laryngeal squamous cell carcinoma (LSCC) are still unclear. To investigate the aberrantly expressed lncRNAs and mRNAs in advanced LSCC, we screened lncRNA and mRNA expression profiles in 9 pairs of primary Stage IVA LSCC tissues and adjacent non-neoplastic tissues by lncRNA and mRNA integrated microarrays. Gene Ontology and pathway analysis were performed to find out the significant function and pathway of the differentially expressed mRNAs, gene-gene functional interaction network and ceRNA network were constructed to select core mRNAs, and lncRNA-mRNA expression correlation network was built to identify the interactions between lncRNA and mRNA. qRT-PCR was performed to further validate the expressions of selected lncRNAs and mRNAs in advanced LSCC. We found 1459 differentially expressed lncRNAs and 2381 differentially expressed mRNAs, including 846 up-regulated lncRNAs and 613 down-regulated lncRNAs, 1542 up-regulated mRNAs and 839 down-regulated mRNAs. The mRNAs ITGB1, HIF1A, and DDIT4 were selected as core mRNAs, which are mainly involved in biological processes, such as matrix organization, cell cycle, adhesion, and metabolic pathway. LncRNA-mRNA expression correlation network showed LncRNA NR_027340, MIR31HG were positively correlated with ITGB1, HIF1A respectively. LncRNA SOX2-OT was negatively correlated with DDIT4. qRT-PCR further validated the expression of these lncRNAs and mRNAs. The work provides convincing evidence that the identified lncRNAs and mRNAs are potential biomarkers in advanced LSCC for further future studies.

  16. Identification of ATP Citrate Lyase as a Positive Regulator of Glycolytic Function in Glioblastomas

    PubMed Central

    Beckner, Marie E.; Fellows-Mayle, Wendy; Zhang, Zhe; Agostino, Naomi R.; Kant, Jeffrey A.; Day, Billy W.; Pollack, Ian F.

    2009-01-01

    Glioblastomas, the most malignant type of glioma, are more glycolytic than normal brain tissue. Robust migration of glioblastoma cells has been previously demonstrated under glycolytic conditions and their pseudopodia contain increased glycolytic and decreased mitochondrial enzymes. Glycolysis is suppressed by metabolic acids, including citric acid which is excluded from mitochondria during hypoxia. We postulated that glioma cells maintain glycolysis by regulating metabolic acids, especially in their pseudopodia. The enzyme that breaks down cytosolic citric acid is ATP citrate lyase (ACLY). Our identification of increased ACLY in pseudopodia of U87 glioblastoma cells on 1D gels and immunoblots prompted investigation of ACLY gene expression in gliomas for survival data and correlation with expression of ENO1, that encodes enolase 1. Queries of the NIH’s REMBRANDT brain tumor database based on Affymetrix data indicated that decreased survival correlated with increased gene expression of ACLY in gliomas. Queries of gliomas and glioblastomas found an association of upregulated ACLY and ENO1 expression by chi square for all probe sets (reporters) combined and correlation for numbers of probe sets indicating shared upregulation of these genes. Real-time quantitative PCR confirmed correlation between ACLY and ENO1 in 21 glioblastomas (p < 0.001). Inhibition of ACLY with hydroxycitrate suppressed (p < 0.05) in vitro glioblastoma cell migration, clonogenicity and brain invasion under glycolytic conditions and enhanced the suppressive effects of a Met inhibitor on cell migration. In summary, gene expression data, proteomics and functional assays support ACLY as a positive regulator of glycolysis in glioblastomas. PMID:19795461

  17. Galanin-like Peptide (GALP) is a Hypothalamic Regulator of Energy Homeostasis and Reproduction

    PubMed Central

    Lawrence, Catherine; Fraley, Gregory S.

    2010-01-01

    Galanin-like peptide (GALP) was discovered in 1999 in the porcine hypothalamus and was found to be a 60 amino-acid neuropeptide. GALP shares sequence homology to galanin (1–13) in position 9–21 and can bind to, as well as activate, the three galanin receptor subtypes (GalR1-3). GALP-expressing cells are limited, and are mainly found in the arcuate nucleus of the hypothalamus (ARC) and the posterior pituitary. GALP-positive neurons in the ARC project to several brain regions where they appear to make contact with multiple neuromodulators. These neuromodulators are involved in the regulation of energy homeostasis and reproduction, anatomical evidence that suggests a role for GALP in these physiological functions. In support of this idea, GALP gene expression is regulated by several factors that reflect metabolic state including the metabolic hormones leptin and insulin, thyroid hormones, and blood glucose. Considerable evidence now exists to support the hypothesis that GALP has a role in the regulation of energy homeostasis and reproduction; and, that GALP’s role may be independent of the known galanin receptors. In this review we (1) provide an overview of the distribution of GALP, and discuss the potential relationship between GALP and other neuromodulators of energy homeostasis and reproduction, (2) discuss the metabolic factors that regulate GALP expression, (3) review the evidence for the role of GALP in energy homeostasis and reproduction, (4) discuss the potential downstream mediators and mechanisms underlying GALP’s effects, and (5) discuss the possibility that GALP may mediate it’s effects via an as yet unidentified GALP-specific receptor. PMID:20558195

  18. STAT5A and STAT5B have opposite correlations with drug response gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamba, V., E-mail: vlamba@ufl.edu; Jia, B.; Liang, F.

    Introduction: STAT5A and STAT5B are important transcription factors that play a key role in regulation of several important physiological processes including proliferation, survival, mediation of responses to cytokines and in regulating gender differences in drug response genes such as the hepatic cytochrome P450s (CYPs) that are responsible for a large majority of drug metabolism reactions in the human body. STAT5A and STAT5b have a high degree of sequence homology and have been reported to have largely similar functions. Recent studies have, however, indicated that they can also often have distinct and unique roles in regulating gene expression. Objective: In thismore » study, we evaluated the association of STAT5A and STAT5B mRNA expression levels with those of several key hepatic cytochrome P450s (CYPs) and hepatic transcription factors (TFs) and evaluated the potential roles of STAT5A and 5b in mediating gender differences in these CYPs and TFs. Methods: Expression profiling for major hepatic CYP isoforms and transcription factors was performed using RNA sequencing (RNA-seq) in 102 human liver samples (57 female, 45 male). Real time PCR gene expression data for selected CYPs and TFs was available on a subset of 50 human liver samples (25 female, 25 male) and was used to validate the RNA-seq findings. Results: While STAT5A demonstrated significant negative correlation with expression levels of multiple hepatic transcription factors (including NR1I2 and HNF4A) and DMEs such as CYP3A4 and CYP2C19, STAT5B expression was observed to demonstrate positive associations with several CYPs and TFs analyzed. As STAT5A and STAT5B have been shown to be important in regulation of gender differences in CYPs, we also analyzed STAT5A and 5b associations with CYPs and TFs separately in males and females and observed gender dependent differential associations of STATs with several CYPs and TFs. Results from the real time PCR validation largely supported our RNA-seq findings. Conclusions: Using both RNA sequencing and real time PCR, we examined the association of STAT5A and STAT5B mRNA expression with CYP and TF gene expression. While STAT5A demonstrated significant negative correlations with expression levels of multiple hepatic TFs (including NR1I2 and HNF4α) and CYPs (eg. CYP3A4, CYP2C19), STAT5B expression was observed to demonstrate positive association with most of the CYPs/TFs analyzed suggesting that STAT5A and STAT5b have potentially different and distinct roles in regulating expression of hepatic drug response genes. Further studies are needed to elucidate the potential roles of STAT5A and 5b in regulation of CYPs/TFs and the potential implications of these findings.« less

  19. Barley disease susceptibility factor RACB acts in epidermal cell polarity and positioning of the nucleus

    PubMed Central

    Scheler, Björn; Schnepf, Vera; Galgenmüller, Carolina; Ranf, Stefanie; Hückelhoven, Ralph

    2016-01-01

    RHO GTPases are regulators of cell polarity and immunity in eukaryotes. In plants, RHO-like RAC/ROP GTPases are regulators of cell shaping, hormone responses, and responses to microbial pathogens. The barley (Hordeum vulgare L.) RAC/ROP protein RACB is required for full susceptibility to penetration by Blumeria graminis f.sp. hordei (Bgh), the barley powdery mildew fungus. Disease susceptibility factors often control host immune responses. Here we show that RACB does not interfere with early microbe-associated molecular pattern-triggered immune responses such as the oxidative burst or activation of mitogen-activated protein kinases. RACB also supports rather than restricts expression of defence-related genes in barley. Instead, silencing of RACB expression by RNAi leads to defects in cell polarity. In particular, initiation and maintenance of root hair growth and development of stomatal subsidiary cells by asymmetric cell division is affected by silencing expression of RACB. Nucleus migration is a common factor of developmental cell polarity and cell-autonomous interaction with Bgh. RACB is required for positioning of the nucleus near the site of attack from Bgh. We therefore suggest that Bgh profits from RACB’s function in cell polarity rather than from immunity-regulating functions of RACB. PMID:27056842

  20. SCF E3 ligase PP2-B11 plays a positive role in response to salt stress in Arabidopsis

    PubMed Central

    Jia, Fengjuan; Wang, Chunyan; Huang, Jinguang; Yang, Guodong; Wu, Changai; Zheng, Chengchao

    2015-01-01

    Skp1–Cullin–F-box (SCF) E3 ligases are essential to the post-translational regulation of many important factors involved in cellular signal transduction. In this study, we identified an F-box protein from Arabidopsis thaliana, AtPP2-B11, which was remarkably induced with increased duration of salt treatment in terms of both transcript and protein levels. Transgenic Arabidopsis plants overexpressing AtPP2-B11 exhibited obvious tolerance to high salinity, whereas the RNA interference line was more sensitive to salt stress than wild-type plants. Isobaric tag for relative and absolute quantification analysis revealed that 4311 differentially expressed proteins were regulated by AtPP2-B11 under salt stress. AtPP2-B11 could upregulate the expression of annexin1 (AnnAt1) and function as a molecular link between salt stress and reactive oxygen species accumulation in Arabidopsis. Moreover, AtPP2-B11 influenced the expression of Na+ homeostasis genes under salt stress, and the AtPP2-B11 overexpressing lines exhibited lower Na+ accumulation. These results suggest that AtPP2-B11 functions as a positive regulator in response to salt stress in Arabidopsis. PMID:26041321

  1. Barley disease susceptibility factor RACB acts in epidermal cell polarity and positioning of the nucleus.

    PubMed

    Scheler, Björn; Schnepf, Vera; Galgenmüller, Carolina; Ranf, Stefanie; Hückelhoven, Ralph

    2016-05-01

    RHO GTPases are regulators of cell polarity and immunity in eukaryotes. In plants, RHO-like RAC/ROP GTPases are regulators of cell shaping, hormone responses, and responses to microbial pathogens. The barley (Hordeum vulgare L.) RAC/ROP protein RACB is required for full susceptibility to penetration by Blumeria graminis f.sp. hordei (Bgh), the barley powdery mildew fungus. Disease susceptibility factors often control host immune responses. Here we show that RACB does not interfere with early microbe-associated molecular pattern-triggered immune responses such as the oxidative burst or activation of mitogen-activated protein kinases. RACB also supports rather than restricts expression of defence-related genes in barley. Instead, silencing of RACB expression by RNAi leads to defects in cell polarity. In particular, initiation and maintenance of root hair growth and development of stomatal subsidiary cells by asymmetric cell division is affected by silencing expression of RACB. Nucleus migration is a common factor of developmental cell polarity and cell-autonomous interaction with Bgh RACB is required for positioning of the nucleus near the site of attack from Bgh We therefore suggest that Bgh profits from RACB's function in cell polarity rather than from immunity-regulating functions of RACB. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Tumor Progression Is Mediated by Thymosin-β4 through a TGFβ/MRTF Signaling Axis.

    PubMed

    Morita, Tsuyoshi; Hayashi, Ken'ichiro

    2018-05-01

    Although enhanced thymosin β4 (TMSB4X/Tβ4) expression is associated with tumor progression and metastasis, its tumor-promoting functions remain largely unknown. Here, it is demonstrated that TGFβ facilitates Tβ4 expression and leads to the activation of myocardin-related transcription factors (MRTF), which are coactivators of serum response factor (SRF) and regulate the expression of genes critical for the epithelial-mesenchymal transition (EMT) and tumor metastasis. In murine mammary gland cells (NMuMG), Tβ4 upregulation is required for full induction of a MRTF-regulated EMT gene expression program after TGFβ stimulation. Tβ4 levels are transcriptionally regulated via the novel cis -acting element AGACAAAG, which interacts with Smad and T-cell factor/lymphoid enhancer factor (TCF/LEF) to synergistically activate the Tβ4 promoter downstream of TGFβ. Murine skin melanoma cells (B16F0 and B16F1) also show the expression regulation of Tβ4 by Smad and TCF/LEF. Tβ4-knockout B16F1 (Tβ4 KO) clones show significantly diminished expression level of tumor-associated genes, which is regulated by the TGFβ/MRTFs pathway. In multiple human cancers, Tβ4 levels correlate positively with TGFβ1 and the tumor-associated gene expression levels through processes that respectively depend on TGFβ receptor 1 (TGFBR1) and MRTF expression. Kaplan-Meier survival analyses demonstrate that high Tβ4 expression associates with poor prognosis in an SRF expression-dependent manner in several cancers. In mice, Tβ4 KO clones show significantly decreased experimental metastatic potential; furthermore, ectopic expression of constitutively active MRTF-A fully restores the diminished metastatic activity. In conclusion, the TGFβ/Tβ4/MRTF/SRF pathway is critical for metastasis and tumor progression. Implications: These findings define a molecular mechanism underlying a tumor-promoting function of thymosin β4 through activation of MRTF/SRF signaling. Mol Cancer Res; 16(5); 880-93. ©2018 AACR . ©2018 American Association for Cancer Research.

  3. Stable suppression of myostatin gene expression in goat fetal fibroblast cells by lentiviral vector-mediated RNAi.

    PubMed

    Patel, Utsav A; Patel, Amrutlal K; Joshi, Chaitanya G

    2015-01-01

    Myostatin (MSTN) is a secreted growth factor that negatively regulates skeletal muscle mass, and therefore, strategies to block myostatin-signaling pathway have been extensively pursued to increase the muscle mass in livestock. Here, we report a lentiviral vector-based delivery of shRNA to disrupt myostatin expression into goat fetal fibroblasts (GFFs) that were commonly used as karyoplast donors in somatic-cell nuclear transfer (SCNT) studies. Sh-RNA positive cells were screened by puromycin selection. Using real-time polymerase chain reaction (PCR), we demonstrated efficient knockdown of endogenous myostatin mRNA with 64% down-regulation in sh2 shRNA-treated GFF cells compared to GFF cells treated by control lentivirus without shRNA. Moreover, we have also demonstrated both the induction of interferon response and the expression of genes regulating myogenesis in GFF cells. The results indicate that myostatin-targeting siRNA produced endogenously could efficiently down-regulate myostatin expression. Therefore, targeted knockdown of the MSTN gene using lentivirus-mediated shRNA transgenics would facilitate customized cell engineering, allowing potential use in the establishment of stable cell lines to produce genetically engineered animals. © 2014 American Institute of Chemical Engineers.

  4. The Nuclear Receptor, RORγ, Regulates Pathways Necessary for Breast Cancer Metastasis.

    PubMed

    Oh, Tae Gyu; Wang, Shu-Ching M; Acharya, Bipul R; Goode, Joel M; Graham, J Dinny; Clarke, Christine L; Yap, Alpha S; Muscat, George E O

    2016-04-01

    We have previously reported that RORγ expression was decreased in ER-ve breast cancer, and increased expression improves clinical outcomes. However, the underlying RORγ dependent mechanisms that repress breast carcinogenesis have not been elucidated. Here we report that RORγ negatively regulates the oncogenic TGF-β/EMT and mammary stem cell (MaSC) pathways, whereas RORγ positively regulates DNA-repair. We demonstrate that RORγ expression is: (i) decreased in basal-like subtype cancers, and (ii) inversely correlated with histological grade and drivers of carcinogenesis in breast cancer cohorts. Furthermore, integration of RNA-seq and ChIP-chip data reveals that RORγ regulates the expression of many genes involved in TGF-β/EMT-signaling, DNA-repair and MaSC pathways (including the non-coding RNA, LINC00511). In accordance, pharmacological studies demonstrate that an RORγ agonist suppresses breast cancer cell viability, migration, the EMT transition (microsphere outgrowth) and mammosphere-growth. In contrast, RNA-seq demonstrates an RORγ inverse agonist induces TGF-β/EMT-signaling. These findings suggest pharmacological modulation of RORγ activity may have utility in breast cancer. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Laminin and collagen modulate expression of the small leucine-rich proteoglycan fibromodulin in rat anterior pituitary gland.

    PubMed

    Syaidah, Rahimi; Horiguchi, Kotaro; Fujiwara, Ken; Tsukada, Takehiro; Kikuchi, Motoshi; Yashiro, Takashi

    2013-11-01

    The anterior pituitary is a complex organ consisting of five types of hormone-producing cells, non–hormone-producing cells such as folliculostellate (FS) cells and vascular cells (endothelial cells and pericytes). We have previously shown that FS cells and pericytes produce fibromodulin, a small leucine-rich proteoglycan (SLRP). SLRPs are major proteoglycans of the extracellular matrix (ECM) and are important in regulating cell signaling pathways and ECM assembly. However, the mechanism regulating fibromodulin expression in the anterior pituitary has not been elucidated. Here, we investigate whether fibromodulin expression is modulated by major anterior pituitary ECM components such as laminin and type I collagen. Using transgenic rats expressing green fluorescent protein (GFP) specifically in FS cells, we examine fibromodulin expression in GFP-positive (FS cells) and GFP-negative cells (e.g., pericytes, endocrine cells and endothelial cells). Immunostaining and Western blot analysis were used to assess protein expression in the presence and absence of laminin or type I collagen. We confirmed fibromodulin expression in the pituitary and observed the up-regulation of fibromodulin in FS cells in the presence of ECM components. However, neither laminin nor type I collagen affected expression in GFP-negative cells. This suggests that laminin and type I collagen support the function of FS cells by increasing fibromodulin protein expression in the anterior pituitary.

  6. Genes up-regulated during red coloration in UV-B irradiated lettuce leaves.

    PubMed

    Park, Jong-Sug; Choung, Myoung-Gun; Kim, Jung-Bong; Hahn, Bum-Soo; Kim, Jong-Bum; Bae, Shin-Chul; Roh, Kyung-Hee; Kim, Yong-Hwan; Cheon, Choong-Ill; Sung, Mi-Kyung; Cho, Kang-Jin

    2007-04-01

    Molecular analysis of gene expression differences between green and red lettuce leaves was performed using the SSH method. BlastX comparisons of subtractive expressed sequence tags (ESTs) indicated that 7.6% of clones encoded enzymes involved in secondary metabolism. Such clones had a particularly high abundance of flavonoid-metabolism proteins (6.5%). Following SSH, 566 clones were rescreened for differential gene expression using dot-blot hybridization. Of these, 53 were found to overexpressed during red coloration. The up-regulated expression of six genes was confirmed by Northern blot analyses. The expression of chalcone synthase (CHS), flavanone 3-hydroxylase (F3H), and dihydroflavonol 4-reductase (DFR) genes showed a positive correlation with anthocyanin accumulation in UV-B-irradiated lettuce leaves; flavonoid 3',5'-hydroxylase (F3',5'H) and anthocyanidin synthase (ANS) were expressed continuously in both samples. These results indicated that the genes CHS, F3H, and DFR coincided with increases in anthocyanin accumulation during the red coloration of lettuce leaves. This study show a relationship between red coloration and the expression of up-regulated genes in lettuce. The subtractive cDNA library and EST database described in this study represent a valuable resource for further research for secondary metabolism in the vegetable crops.

  7. Induction of PD-L1 Expression by the EML4-ALK Oncoprotein and Downstream Signaling Pathways in Non-Small Cell Lung Cancer.

    PubMed

    Ota, Keiichi; Azuma, Koichi; Kawahara, Akihiko; Hattori, Satoshi; Iwama, Eiji; Tanizaki, Junko; Harada, Taishi; Matsumoto, Koichiro; Takayama, Koichi; Takamori, Shinzo; Kage, Masayoshi; Hoshino, Tomoaki; Nakanishi, Yoichi; Okamoto, Isamu

    2015-09-01

    Therapies targeted to the immune checkpoint mediated by PD-1 and PD-L1 show antitumor activity in a subset of patients with non-small cell lung cancer (NSCLC). We have now examined PD-L1 expression and its regulation in NSCLC positive for the EML4-ALK fusion gene. The expression of PD-L1 at the protein and mRNA levels in NSCLC cell lines was examined by flow cytometry and by reverse transcription and real-time PCR analysis, respectively. The expression of PD-L1 in 134 surgically resected NSCLC specimens was evaluated by immunohistochemical analysis. The PD-L1 expression level was higher in NSCLC cell lines positive for EML4-ALK than in those negative for the fusion gene. Forced expression of EML4-ALK in Ba/F3 cells markedly increased PD-L1 expression, whereas endogenous PD-L1 expression in EML4-ALK-positive NSCLC cells was attenuated by treatment with the specific ALK inhibitor alectinib or by RNAi with ALK siRNAs. Furthermore, expression of PD-L1 was downregulated by inhibitors of the MEK-ERK and PI3K-AKT signaling pathways in NSCLC cells positive for either EML4-ALK or activating mutations of the EGFR. Finally, the expression level of PD-L1 was positively associated with the presence of EML4-ALK in NSCLC specimens. Our findings that both EML4-ALK and mutant EGFR upregulate PD-L1 by activating PI3K-AKT and MEK-ERK signaling pathways in NSCLC reveal a direct link between oncogenic drivers and PD-L1 expression. ©2015 American Association for Cancer Research.

  8. Zhx2 (zinc fingers and homeoboxes 2) regulates major urinary protein gene expression in the mouse liver

    PubMed Central

    Jiang, Jieyun; Creasy, Kate Townsend; Purnell, Justin; Peterson, Martha L.; Spear, Brett T.

    2017-01-01

    The mouse major urinary proteins (Mups) are encoded by a large family of highly related genes clustered on chromosome 4. Mups, synthesized primarily and abundantly in the liver and secreted through the kidneys, exhibit male-biased expression. Mups bind a variety of volatile ligands; these ligands, and Mup proteins themselves, influence numerous behavioral traits. Although urinary Mup protein levels vary between inbred mouse strains, this difference is most pronounced in BALB/cJ mice, which have dramatically low urinary Mup levels; this BALB/cJ trait had been mapped to a locus on chromosome 15. We previously identified Zhx2 (zinc fingers and homeoboxes 2) as a regulator of numerous liver-enriched genes. Zhx2 is located on chromosome 15, and a natural hypomorphic mutation in the BALB/cJ Zhx2 allele dramatically reduces Zhx2 expression. Based on these data, we hypothesized that reduced Zhx2 levels are responsible for lower Mup expression in BALB/cJ mice. Using both transgenic and knock-out mice along with in vitro assays, our data show that Zhx2 binds Mup promoters and is required for high levels of Mup expression in the adult liver. In contrast to previously identified Zhx2 targets that appear to be repressed by Zhx2, Mup genes are positively regulated by Zhx2. These data identify Zhx2 as a novel regulator of Mup expression and indicate that Zhx2 activates as well as represses expression of target genes. PMID:28258223

  9. Myostatin Promotes Interleukin-1β Expression in Rheumatoid Arthritis Synovial Fibroblasts through Inhibition of miR-21-5p.

    PubMed

    Hu, Sung-Lin; Chang, An-Chen; Huang, Chien-Chung; Tsai, Chun-Hao; Lin, Cheng-Chieh; Tang, Chih-Hsin

    2017-01-01

    Rheumatoid arthritis (RA) is characterized by the infiltration of a number of pro-inflammatory cytokines into synovial fluid and patients with RA often develop joint destruction and deficits in muscle mass. The growth factor myostatin is a key regulator linking muscle mass and bone structure. We sought to determine whether myostatin regulates rheumatoid synovial fibroblast activity and inflammation in RA. We found that levels of myostatin and interleukin (IL)-1β (a key pro-inflammatory cytokine in RA) in synovial fluid from RA patients were overexpressed and positively correlated. In in vitro investigations, we found that myostatin dose-dependently regulated IL-1β expression through the ERK, JNK, and AP-1 signal-transduction pathways. Computational analysis confirmed that miR-21-5p directly targets the expression of the 3' untranslated region (3' UTR) of IL-1β. Treatment of cells with myostatin inhibited miR-21-5p expression and miR-21-5p mimic prevented myostatin-induced enhancement of IL-1β expression, showing an inverse correlation between miR-21-5p and IL-1β expression during myostatin treatment. We also found significantly increased paw swelling in an animal model of collagen-induced arthritis (CIA), compared with controls; immunohistochemistry staining revealed substantially higher levels of myostatin and IL-1β expression in CIA tissue. Our evidence indicates that myostatin regulates IL-1β production. Thus, targeting myostatin may represent a potential therapeutic target for RA.

  10. Expression, regulation, and function of drug transporters in cervicovaginal tissues of a mouse model used for microbicide testing

    PubMed Central

    Zhou, Tian; Hu, Minlu; Pearlman, Andrew; Rohan, Lisa C.

    2016-01-01

    P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance protein 4 (MRP4) are three efflux transporters that play key roles in the pharmacokinetics of antiretroviral drugs used in the pre-exposure prophylaxis of HIV sexual transmission. In this study, we investigated the expression, regulation, and function of these transporters in cervicovaginal tissues of a mouse model. Expression and regulation were examined using real-time RT-PCR and immunohistochemical staining, in the mouse tissues harvested at estrus and diestrus stages under natural cycling or after hormone synchronization. The three transporters were expressed at moderate to high levels compared to the liver. Transporter proteins were localized in various cell types in different tissue segments. Estrous cycle and exogenous hormone treatment affected transporter mRNA and protein expression, in a tissue- and transporter-dependent manner. Depo-Provera-synchronized mice were dosed vaginally or intraperitoneally with 3H-TFV, with or without MK571 co-administration, to delineate the function of cervicovaginal Mrp4. Co-administration of MK571 significantly increased the concentration of vaginally-administered TFV in endocervix and vagina. MK571 increased the concentration of intraperitoneally-administered TFV in the cervicovaginal lavage and vagina by several fold. Overall, P-gp, Bcrp, and Mrp4 were positively expressed in mouse cervicovaginal tissues, and their expression can be regulated by the estrous cycle or by exogenous hormones. In this model, the Mrp4 transporter impacted TFV distribution in cervicovaginal tissues. PMID:27453435

  11. Less Empathic and More Reactive: The Different Impact of Childhood Maltreatment on Facial Mimicry and Vagal Regulation

    PubMed Central

    Ardizzi, Martina; Umiltà, Maria Alessandra; Evangelista, Valentina; Di Liscia, Alessandra; Ravera, Roberto; Gallese, Vittorio

    2016-01-01

    Facial mimicry and vagal regulation represent two crucial physiological responses to others’ facial expressions of emotions. Facial mimicry, defined as the automatic, rapid and congruent electromyographic activation to others’ facial expressions, is implicated in empathy, emotional reciprocity and emotions recognition. Vagal regulation, quantified by the computation of Respiratory Sinus Arrhythmia (RSA), exemplifies the autonomic adaptation to contingent social cues. Although it has been demonstrated that childhood maltreatment induces alterations in the processing of the facial expression of emotions, both at an explicit and implicit level, the effects of maltreatment on children’s facial mimicry and vagal regulation in response to facial expressions of emotions remain unknown. The purpose of the present study was to fill this gap, involving 24 street-children (maltreated group) and 20 age-matched controls (control group). We recorded their spontaneous facial electromyographic activations of corrugator and zygomaticus muscles and RSA responses during the visualization of the facial expressions of anger, fear, joy and sadness. Results demonstrated a different impact of childhood maltreatment on facial mimicry and vagal regulation. Maltreated children did not show the typical positive-negative modulation of corrugator mimicry. Furthermore, when only negative facial expressions were considered, maltreated children demonstrated lower corrugator mimicry than controls. With respect to vagal regulation, whereas maltreated children manifested the expected and functional inverse correlation between RSA value at rest and RSA response to angry facial expressions, controls did not. These results describe an early and divergent functional adaptation to hostile environment of the two investigated physiological mechanisms. On the one side, maltreatment leads to the suppression of the spontaneous facial mimicry normally concurring to empathic understanding of others’ emotions. On the other side, maltreatment forces the precocious development of the functional synchronization between vagal regulation and threatening social cues facilitating the recruitment of fight-or-flight defensive behavioral strategies. PMID:27685802

  12. Tyrosine Kinase Inhibition in HPV-related Squamous Cell Carcinoma Reveals Beneficial Expression of cKIT and Src.

    PubMed

    Kramer, Benedikt; Kneissle, Marcel; Birk, Richard; Rotter, Nicole; Aderhold, Christoph

    2018-05-01

    Therapeutic options of locally advanced or metastatic head and neck squamous cell carcinoma (HNSCC) are limited. Src and cKIT are key protein regulators for local tumor progression. The aim of the study was to investigate the therapeutic potential of targeted therapies in human squamous cell carcinoma (HNSCC) in vitro. Therefore, the influence of the selective tyrosine kinase inhibitors niotinib, dasatinib, erlotinib, gefitinib and afatinib on Src and cKIT expression in Human papilloma virus (HPV)-positive and HPV-negative squamous cancer cells (SCC) was analyzed in vitro. ELISA was performed to evaluate the expression of Src and cKIT under the influence of nilotinib, dasatinib, erlotinib, gefitinib and afatinib (10 μmol/l) in HPV-negative and HPV-positive SCC (24-96 h of incubation). Gefitinib significantly increased cKIT expression in HPV-positive and HPV-negative cells whereas nilotinib and afatinib decreased cKIT expression in HPV-positive SCC. The influence of tyrosine kinase inhibitors in HPV-negative SCC was marginal. Surprisingly, Src expression was significantly increased by all tested tyrosine kinase inhibitors in HPV-positive SCC. The results revealed beneficial and unexpected information concerning the interaction of selective tyrosine kinase inhibitors and the tumor biology of HNSCC. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  13. 1, 25(OH){sub 2}D{sub 3}-induced interaction of vitamin D receptor with p50 subunit of NF-κB suppresses the interaction between KLF5 and p50, contributing to inhibition of LPS-induced macrophage proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Dong; School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063000; Zhang, Ruo-nan

    KLF5 and nuclear factor κB (NF-κB) regulate cell proliferation and inflammation. Vitamin D signaling through vitamin D receptor (VDR) exerts anti-proliferative and anti-inflammatory actions. However, an actual relationship between KLF5, NF-κB and VDR in the inflammation and proliferation of macrophages is still unclear. Here, we showed that LPS and proinflammatory cytokines stimulate KLF5 gene expression in macrophages, and that 1, 25(OH){sub 2}D{sub 3} suppresses LPS-induced KLF5 expression and cell proliferation via upregulation of VDR expression. Mechanistic studies suggested that KLF5 interacts with p50 subunit of NF-κB to cooperatively induce the expressions of positive cell cycle regulators cyclin B1 and Cdk1/Cdc2more » in LPS-treated macrophages. Further studies revealed that 1, 25(OH){sub 2}D{sub 3}-induced interaction of VDR with p50 decreases LPS-induced interaction of KLF5 with p50. Collectively, we identify a novel regulatory pathway in which 1, 25(OH){sub 2}D{sub 3} induces VDR expression and promotes VDR interaction with p50 subunit of NF-κB, which in turn attenuates the association of KLF5 with p50 subunit of NF-κB and thus exerts anti-inflammatory and anti-proliferative effects on macrophages. - Highlights: • 1, 25(OH){sub 2}D{sub 3} suppresses LPS-induced KLF5 expression via upregulation of VDR expression. • KLF5 interacts with NF-κB-p50 to cooperatively induce the expressions of positive cell cycle regulators cyclin B1 and Cdk1/Cdc2 in LPS-treated macrophages. • 1,25(OH){sub 2}D{sub 3} induces interaction of VDR with p50.« less

  14. SNW1 Is a Critical Regulator of Spatial BMP Activity, Neural Plate Border Formation, and Neural Crest Specification in Vertebrate Embryos

    PubMed Central

    Wu, Mary Y.; Ramel, Marie-Christine; Howell, Michael; Hill, Caroline S.

    2011-01-01

    Bone morphogenetic protein (BMP) gradients provide positional information to direct cell fate specification, such as patterning of the vertebrate ectoderm into neural, neural crest, and epidermal tissues, with precise borders segregating these domains. However, little is known about how BMP activity is regulated spatially and temporally during vertebrate development to contribute to embryonic patterning, and more specifically to neural crest formation. Through a large-scale in vivo functional screen in Xenopus for neural crest fate, we identified an essential regulator of BMP activity, SNW1. SNW1 is a nuclear protein known to regulate gene expression. Using antisense morpholinos to deplete SNW1 protein in both Xenopus and zebrafish embryos, we demonstrate that dorsally expressed SNW1 is required for neural crest specification, and this is independent of mesoderm formation and gastrulation morphogenetic movements. By exploiting a combination of immunostaining for phosphorylated Smad1 in Xenopus embryos and a BMP-dependent reporter transgenic zebrafish line, we show that SNW1 regulates a specific domain of BMP activity in the dorsal ectoderm at the neural plate border at post-gastrula stages. We use double in situ hybridizations and immunofluorescence to show how this domain of BMP activity is spatially positioned relative to the neural crest domain and that of SNW1 expression. Further in vivo and in vitro assays using cell culture and tissue explants allow us to conclude that SNW1 acts upstream of the BMP receptors. Finally, we show that the requirement of SNW1 for neural crest specification is through its ability to regulate BMP activity, as we demonstrate that targeted overexpression of BMP to the neural plate border is sufficient to restore neural crest formation in Xenopus SNW1 morphants. We conclude that through its ability to regulate a specific domain of BMP activity in the vertebrate embryo, SNW1 is a critical regulator of neural plate border formation and thus neural crest specification. PMID:21358802

  15. Positional signaling mediated by a receptor-like kinase in Arabidopsis.

    PubMed

    Kwak, Su-Hwan; Shen, Ronglai; Schiefelbein, John

    2005-02-18

    The position-dependent specification of root epidermal cells in Arabidopsis provides an elegant paradigm for cell patterning during development. Here, we describe a new gene, SCRAMBLED (SCM), required for cells to appropriately interpret their location within the developing root epidermis. SCM encodes a receptor-like kinase protein with a predicted extracellular domain of six leucine-rich repeats and an intracellular serine-threonine kinase domain. SCM regulates the expression of the GLABRA2, CAPRICE, WEREWOLF, and ENHANCER OF GLABRA3 transcription factor genes that define the cell fates. Further, the SCM gene is expressed throughout the developing root. Therefore, SCM likely enables developing epidermal cells to detect positional cues and establish an appropriate cell-type pattern.

  16. N-Myc Differentially Regulates Expression of MXI1 Isoforms in Neuroblastoma1

    PubMed Central

    Armstrong, Michael B; Mody, Rajen J; Ellis, D Christian; Hill, Adam B; Erichsen, David A; Wechsler, Daniel S

    2013-01-01

    Amplification of the MYCN proto-oncogene is associated with a poor prognosis in patients with metastatic neuroblastoma (NB). MYCN encodes the N-Myc protein, a transcriptional regulator that dimerizes with the Max transcription factor, binds to E-box DNA sequences, and regulates genes involved in cell growth and apoptosis. Overexpression of N-Myc leads to transcriptional activation and an increase in NB cell proliferation. Mxi1, a member of the Myc family of transcriptional regulators, also binds to Max. However, Mxi1 is a transcriptional repressor and inhibits proliferation of NB cells, suggesting that Mxi1 functions as an N-Myc antagonist. Our laboratory previously identified Mxi1-0, an alternatively transcribed Mxi1 isoform. Mxi1-0 has properties distinct from those of Mxi1; in contrast to Mxi1, Mxi1-0 is unable to suppress c-Myc-dependent transcription. We now show that Mxi1-0 expression increases in response to MYCN overexpression in NB cells, with a positive correlation between MYCN and MXI1-0 RNA levels. We also show that N-Myc expression differentially regulates the MXI1 and MXI1-0 promoters: Increased MYCN expression suppresses MXI1 promoter activity while enhancing transcription through the MXI1-0 promoter. Finally, induction of Mxi1-0 leads to increased proliferation, whereas expression of Mxi1 inhibits cell growth, indicating differential roles for these two proteins. These data suggest that N-Myc differentially regulates the expression of MXI1 and MXI1-0 and can alter the balance between the two transcription factors. Furthermore, MXI1-0 appears to be a downstream target of MYCN-dependent signaling pathways and may contribute to N-Myc-dependent cell growth and proliferation. PMID:24403858

  17. Klotho down-regulates Egr-1 by inhibiting TGF-β1/Smad3 signaling in high glucose treated human mesangial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yang; Department of Geriatrics, Zhu Jiang Hospital, Southern Medical University, Guangzhou, Guangdong; Hu, Fang

    Diabetic kidney disease (DKD) has become the leading cause of end-stage renal disease worldwide and is associated with glomerular mesangial cell (MC) proliferation and excessive extracellular matrix (ECM) production. Klotho can attenuate renal fibrosis in part by inhibiting TGF-β1/Smad3 signaling in DKD. Early growth response factor 1 (Egr-1) has been shown to play a key role in renal fibrosis in part by facilitating the formation of a positive feedback loop involving TGF-β1. However, whether Klotho down-regulates Egr-1 by inhibiting TGF-β1/Smad3 signaling in DKD is unclear. In the present study, we assessed human MCs that were incubated under high-glucose conditions tomore » mimic diabetes. Then, we transfected the cells with Klotho plasmid or siRNA to overexpress or knock down Klotho gene and protein expression. Klotho, Egr-1, fibronectin (FN), collagen type I (Col I), Smad3 and phosphorylated Smad3 (p-Smad3) gene and protein expression levels were determined by RT-qPCR and western blotting respectively. High glucose time-dependently down-regulated Klotho mRNA and protein expression in cultured human MCs. pcDNA3.1-Klotho transfection-mediated Klotho overexpression down-regulated Egr-1, FN and Col I expression and the p-Smad3/Smad3 ratio in human MCs. Conversely, siRNA-mediated Klotho silencing up-regulated Egr-1, FN, and Col I expression and the p-Smad3/Smad3 ratio. Moreover, the effects of si-Klotho on Egr-1 expression were abolished by the TGF-β1 inhibitor SB-431542. Klotho overexpression can prevent mesangial ECM production in high-glucose-treated human MCs, an effect that has been partially attributed to Egr-1 down-regulation facilitated by TGF-β1/Smad3 signaling inhibition. - Highlights: • High glucose time-dependently down-regulated Klotho mRNA and protein expression in cultured human MCs. • Klotho overexpression down-regulated Egr-1 and prevented mesangial ECM production in high-glucose-treated human MCs. • Klotho down-regulated Egr-1 by inhibiting TGF-β1/Smad3 signaling in high-glucose-treated human MCs.« less

  18. LncRNA Expression Profile of Human Thoracic Aortic Dissection by High-Throughput Sequencing.

    PubMed

    Sun, Jie; Chen, Guojun; Jing, Yuanwen; He, Xiang; Dong, Jianting; Zheng, Junmeng; Zou, Meisheng; Li, Hairui; Wang, Shifei; Sun, Yili; Liao, Wangjun; Liao, Yulin; Feng, Li; Bin, Jianping

    2018-01-01

    In this study, the long non-coding RNA (lncRNA) expression profile in human thoracic aortic dissection (TAD), a highly lethal cardiovascular disease, was investigated. Human TAD (n=3) and normal aortic tissues (NA) (n=3) were examined by high-throughput sequencing. Bioinformatics analyses were performed to predict the roles of aberrantly expressed lncRNAs. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied to validate the results. A total of 269 lncRNAs (159 up-regulated and 110 down-regulated) and 2, 255 mRNAs (1 294 up-regulated and 961 down-regulated) were aberrantly expressed in human TAD (fold-change> 1.5, P< 0.05). QRT-PCR results of five dysregulated genes were consistent with HTS data. A lncRNA-mRNA coexpression analysis showed positive correlations between the up-regulated lncRNA (ENSG00000269936) and its adjacent up-regulated mRNA (MAP2K6, R=0.940, P< 0.01), and between the down-regulated lncRNA_1421 and its down-regulated mRNAs (FBLN5, R=0.950, P< 0.01; ACTA2, R=0.96, P< 0.01; TIMP3, R=0.96, P< 0.05). The lncRNA-miRNA-mRNA network indicated that the up-regulated lncRNA XIST and p21 had similar sequences targeted by has-miR-17-5p. The results of luciferase assay and fluorescence immuno-cytochemistry were consistent with that. And qRT-PCR results showed that lncRNA XIST and p21 were expressed at a higher level and has-miR-17-5p was expressed at a lower level in TAD than in NA. The predicted binding motifs of three up-regulated lncRNAs (ENSG00000248508, ENSG00000226530, and EG00000259719) were correlated with up-regulated RUNX1 (R=0.982, P< 0.001; R=0.967, P< 0.01; R=0.960, P< 0.01, respectively). Our study revealed a set of dysregulated lncRNAs and predicted their multiple potential functions in human TAD. These findings suggest that lncRNAs are novel potential therapeutic targets for human TAD. © 2018 The Author(s). Published by S. Karger AG, Basel.

  19. Genetic and Functional Investigation of Zn2Cys6 Transcription Factors RSE2 and RSE3 in Podospora anserina

    PubMed Central

    Bovier, Elodie; Sellem, Carole H.; Humbert, Adeline

    2014-01-01

    In Podospora anserina, the two zinc cluster proteins RSE2 and RSE3 are essential for the expression of the gene encoding the alternative oxidase (aox) when the mitochondrial electron transport chain is impaired. In parallel, they activated the expression of gluconeogenic genes encoding phosphoenolpyruvate carboxykinase (pck) and fructose-1,6-biphosphatase (fbp). Orthologues of these transcription factors are present in a wide range of filamentous fungi, and no other role than the regulation of these three genes has been evidenced so far. In order to better understand the function and the organization of RSE2 and RSE3, we conducted a saturated genetic screen based on the constitutive expression of the aox gene. We identified 10 independent mutations in 9 positions in rse2 and 11 mutations in 5 positions in rse3. Deletions were generated at some of these positions and the effects analyzed. This analysis suggests the presence of central regulatory domains and a C-terminal activation domain in both proteins. Microarray analysis revealed 598 genes that were differentially expressed in the strains containing gain- or loss-of-function mutations in rse2 or rse3. It showed that in addition to aox, fbp, and pck, RSE2 and RSE3 regulate the expression of genes encoding the alternative NADH dehydrogenase, a Zn2Cys6 transcription factor, a flavohemoglobin, and various hydrolases. As a complement to expression data, a metabolome profiling approach revealed that both an rse2 gain-of-function mutation and growth on antimycin result in similar metabolic alterations in amino acids, fatty acids, and α-ketoglutarate pools. PMID:24186951

  20. p16INK4A expression as biomarker for HPV 16-related vulvar neoplasias.

    PubMed

    Riethdorf, Sabine; Neffen, Eduardo F; Cviko, Aida; Löning, Thomas; Crum, Christopher P; Riethdorf, Lutz

    2004-12-01

    Up-regulation of p16INK4A is associated with high-risk human papillomavirus (HPV) in preinvasive and invasive cervical neoplasia. However, its expression in vulvar carcinomas, which have a diverse pathogenesis, has not been extensively studied. One hundred seventy-seven vulvar intraepithelial neoplasms (VIN), squamous cell carcinomas (SCC), and benign squamous epithelia were analyzed for p16 expression. RNA/RNA in situ hybridization was used to detect HPV 16 E6/E7 transcripts in 112. Ninety-five percent of VIN 3 and basaloid or warty SCCs (76/80) and 4% of keratinizing SCC (2/48) were moderately to strongly immunopositive for p16, which localized to nucleus and cytoplasm; 52/58 analyzed (90%) contained HPV 16 transcripts. The positive predictive value (PPV) of moderate to strong diffuse p16 immunostaining and HPV positivity for the diagnosis of VIN 3 and of basaloid or warty SCC was 97% and 95%, respectively. Conversely, 94% of keratinizing SCC contained heterogeneous staining, and when present, it was strictly cytoplasmic and frequently localized to the cells at the epithelial-stromal interface. Benign squamous epithelia were p16 negative, with the exception of lichen sclerosus, which contained focal and heterogeneously p16 positive in 42%. As in the cervix, intense diffuse p16 expression supports an HPV-related neoplastic process in vulvar neoplasia, irrespective of the level of differentiation. Up-regulation of p16 at the epithelial-stromal interface in HPV negative keratinizing SCCs is consistent with an HPV-independent response to alterations associated with invasion. These disparate patterns of p16 expression underscore 2 different mechanisms for p16 expression in HPV-related and HPV-unrelated vulvar carcinomas.

  1. Tristetraprolin regulates the expression of the human inducible nitric-oxide synthase gene.

    PubMed

    Fechir, Marcel; Linker, Katrin; Pautz, Andrea; Hubrich, Thomas; Förstermann, Ulrich; Rodriguez-Pascual, Fernando; Kleinert, Hartmut

    2005-06-01

    The expression of human inducible NO synthase (iNOS) is regulated both by transcriptional and post-transcriptional mechanisms. Stabilization of mRNAs often depends on activation of p38 mitogen-activated protein kinase (p38 MAPK). In human DLD-1 cells, inhibition of p38 MAPK by the compound 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole (SB203580) or by overexpression of a dominant-negative p38 MAPKalpha protein resulted in a reduction of human iNOS mRNA and protein expression, whereas human iNOS promoter activity was not affected. An important RNA binding protein regulated by the p38 MAPK pathway and involved in the regulation of the stability of several mRNAs is tristetraprolin. RNase protection, quantitative real-time polymerase chain reaction, and Western blot experiments showed that cytokines used to induce iNOS expression in DLD-1 cells also enhanced tristetraprolin expression. SB203580 incubation reduced cytokine-mediated enhancement of tristetraprolin expression. Overexpression or down-regulation of tristetraprolin in stably transfected DLD-1- or A549/8 cells consistently resulted in enhanced or reduced iNOS expression by modulating iNOS-mRNA stability. In UV cross-linking experiments, recombinant tristetraprolin did not interact with the human iNOS mRNA. However, coimmunoprecipitation experiments showed interaction of tristetraprolin with the KH-type splicing regulatory protein (KSRP), which is known to recruit mRNAs containing AU-rich elements to the exosome for degradation. This tristetraprolin-KSRP interaction was enhanced by cytokines and reduced by SB203580 treatment. We conclude that tristetraprolin positively regulates human iNOS expression by enhancing the stability of human iNOS mRNA. Because tristetraprolin does not directly bind to the human iNOS mRNA but interacts with KSRP, tristetraprolin is likely to stabilize iNOS mRNA by capturing the KSRP-exosome complex.

  2. Shikonin regulates C-MYC and GLUT1 expression through the MST1-YAP1-TEAD1 axis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vališ, Karel, E-mail: karel.valis@biomed.cas.cz; Faculty of Science, Charles University, Prague; Talacko, Pavel

    The general mechanism underlying the tumor suppressor activity of the Hippo signaling pathway remains unclear. In this study, we explore the molecular mechanisms connecting the Hippo signaling pathway with glucose metabolism. We have found that two key regulators of glycolysis, C-MYC and GLUT1, are targets of the Hippo signaling pathway in human leukemia cells. Our results revealed that activation of MST1 by the natural compound shikonin inhibited the expression of GLUT1 and C-MYC. Furthermore, RNAi experiments confirmed the regulation of GLUT1 and C-MYC expression via the MST1-YAP1-TEAD1 axis. Surprisingly, YAP1 was found to positively regulate C-MYC mRNA levels in complexmore » with TEAD1, while it negatively regulates C-MYC levels in cooperation with MST1. Hence, YAP1 serves as a rheostat for C-MYC, which is regulated by MST1. In addition, depletion of MST1 stimulates lactate production, whereas the specific depletion of TEAD1 has an opposite effect. The inhibition of lactate production and cellular proliferation induced by shikonin also depends on the Hippo pathway activity. Finally, a bioinformatic analysis revealed conserved TEAD-binding motifs in the C-MYC and GLUT1 promoters providing another molecular data supporting our observations. In summary, regulation of glucose metabolism could serve as a new tumor suppressor mechanism orchestrated by the Hippo signaling pathway. - Highlights: • Shikonin inhibits C-MYC and GLUT1 expression in MST1 and YAP1 dependent manner. • YAP1-TEAD1 interaction activates C-MYC and GLUT1 expression. • MST1 in cooperation with YAP1 inhibits C-MYC and GLUT1 expression. • MST1-YAP1-TEAD1 axis regulates lactate production by leukemic cells. • MST1 and YAP1 proteins block proliferation of leukemic cells.« less

  3. Decidual activin: its role in the apoptotic process and its regulation by prolactin.

    PubMed

    Tessier, Christian; Prigent-Tessier, Anne; Bao, Lei; Telleria, Carlos M; Ferguson-Gottschall, Susan; Gibori, Gil B; Gu, Yan; Bowen-Shauver, Jennifer M; Horseman, Nelson D; Gibori, Geula

    2003-05-01

    Successful pregnancy requires profound differentiation and reorganization of the uterine tissues including, as pregnancy progresses, extensive apoptosis of decidual tissue to accommodate the developing conceptus. We have previously shown a positive correlation between expression of activin A and apoptosis in the decidua and have also shown that expression of activin A occurs at the time when prolactin (PRL) receptors disappear from decidual cells. The goals of this study were to examine whether activin A plays a role in decidual apoptosis and whether expression of activin A in the decidua is regulated by PRL and placental lactogens. Studies were carried out using primary rat decidual cells, a decidual cell line (GG-AD), and PRL null mice. Treatment of decidual cells with activin A significantly increased DNA degradation, caspase 3 activity, and caspase 3 mRNA expression. However, this effect was observed only in the absence of endogenous activin production by these cells. Addition of follistatin to decidual cells that were producing activin A decreased both caspase 3 activity and mRNA expression. Similarly, addition of activin-blocking antibodies to cultures of GG-AD cells, which also produce activin A, caused a reduction in both DNA degradation and caspase 3 activity. PRL and placental lactogens caused an inhibition of activin A mRNA expression in primary decidual cells. Even more convincingly, decidua of PRL null mice expressed abundant activin A at a time when no expression of this hormone is detected in wild-type mice and treatment of PRL null mice with PRL caused a profound inhibition of activin A mRNA expression. In summary, our investigations into the role and regulation of decidual activin have revealed that activin A can induce cell death in the decidua and that its expression is under tight regulation by PRL and placental lactogens.

  4. Genomics of a Metamorphic Timing QTL: met1 Maps to a Unique Genomic Position and Regulates Morph and Species-Specific Patterns of Brain Transcription

    PubMed Central

    Page, Robert B.; Boley, Meredith A.; Kump, David K.; Voss, Stephen R.

    2013-01-01

    Very little is known about genetic factors that regulate life history transitions during ontogeny. Closely related tiger salamanders (Ambystoma species complex) show extreme variation in metamorphic timing, with some species foregoing metamorphosis altogether, an adaptive trait called paedomorphosis. Previous studies identified a major effect quantitative trait locus (met1) for metamorphic timing and expression of paedomorphosis in hybrid crosses between the biphasic Eastern tiger salamander (Ambystoma tigrinum tigrinum) and the paedomorphic Mexican axolotl (Ambystoma mexicanum). We used existing hybrid mapping panels and a newly created hybrid cross to map the met1 genomic region and determine the effect of met1 on larval growth, metamorphic timing, and gene expression in the brain. We show that met1 maps to the position of a urodele-specific chromosome rearrangement on linkage group 2 that uniquely brought functionally associated genes into linkage. Furthermore, we found that more than 200 genes were differentially expressed during larval development as a function of met1 genotype. This list of differentially expressed genes is enriched for proteins that function in the mitochondria, providing evidence of a link between met1, thyroid hormone signaling, and mitochondrial energetics associated with metamorphosis. Finally, we found that met1 significantly affected metamorphic timing in hybrids, but not early larval growth rate. Collectively, our results show that met1 regulates species and morph-specific patterns of brain transcription and life history variation. PMID:23946331

  5. IRF4 controls the positioning of mature B cells in the lymphoid microenvironments by regulating NOTCH2 expression and activity

    PubMed Central

    Simonetti, Giorgia; Carette, Amanda; Silva, Kathryn; Wang, Haowei; De Silva, Nilushi S.; Heise, Nicole; Siebel, Christian W.; Shlomchik, Mark J.

    2013-01-01

    The transcription factor interferon regulatory factor-4 (IRF4) is expressed in B cells at most developmental stages. In antigen-activated B cells, IRF4 controls germinal center formation, class-switch recombination, and the generation of plasma cells. Here we describe a novel function for IRF4 in the homeostasis of mature B cells. Inducible deletion of irf4 specifically in B cells in vivo led to the aberrant accumulation of irf4-deleted follicular B cells in the marginal zone (MZ) area. IRF4-deficient B cells showed elevated protein expression and activation of NOTCH2, a transmembrane receptor and transcriptional regulator known to be required for MZ B cell development. Administration of a NOTCH2-inhibitory antibody abolished nuclear translocation of NOTCH2 in B cells within 12 h and caused a rapid and progressive disintegration of the MZ that was virtually complete 48 h after injection. The disappearance of the MZ was accompanied by a transient increase of MZ-like B cells in the blood rather than increased B cell apoptosis, demonstrating that continued NOTCH2 activation is critical for the retention of B cells in the MZ. Our results suggest that IRF4 controls the positioning of mature B cells in the lymphoid microenvironments by regulating NOTCH2 expression. These findings may have implications for the understanding of B cell malignancies with dysregulated IRF4 and NOTCH2 activity. PMID:24323359

  6. Targeting Notch1 signaling pathway positively affects the sensitivity of osteosarcoma to cisplatin by regulating the expression and/or activity of Caspase family

    PubMed Central

    2014-01-01

    Background The introduction of cisplatin has improved the long-term survival rate in osteosarcoma patients. However, some patients are intrinsically resistant to cisplatin. This study reported that the activation of Notch1 is positively correlated with cisplatin sensitivity, evidenced by both clinical and in vitro data. Results In this study, a total 8 osteosarcoma specimens were enrolled and divided into two groups according to their cancer chemotherapeutic drugs sensitivity examination results. The relationship between Notch1 expression and cisplatin sensitivity of osteosarcoma patients was detected by immunohistochemistry and semi-quantitative analysis. Subsequently, two typical osteosarcoma cell lines, Saos-2 and MG63, were selected to study the changes of cisplatin sensitivity by up-regulating (NICD1 plasmid transfeciton) or decreasing (gamma-secretase complex inhibitor DAPT) the activation state of Notch1 signaling pathway. Our results showed a significant correlation between the expression of Notch1 and cisplatin sensitivity in patient specimens. In vitro, Saos-2 with higher expression of Notch1 had significantly better cisplatin sensitivity than MG63 whose Notch1 level was relatively lower. By targeting regulation in vitro, the cisplatin sensitivity of Saos-2 and MG63 had significantly increased after the activation of Notch1 signaling pathway, and vice versa. Further mechanism investigation revealed that activation/inhibition of Notch1 sensitized/desensitized cisplatin-induced apoptosis, which probably depended on the changes in the activity of Caspase family, including Caspase 3, Caspase 8 and Caspase 9 in these cells. Conclusions Our data clearly demonstrated that Notch1 is critical for cisplatin sensitivity in osteosarcoma. It can be used as a molecular marker and regulator for cisplatin sensitivity in osteosarcoma patients. PMID:24894297

  7. Identification and validation of midbrain Kcnq4 regulation of heavy alcohol consumption in rodents.

    PubMed

    McGuier, Natalie S; Rinker, Jennifer A; Cannady, Reginald; Fulmer, Diana B; Jones, Sara R; Hoffman, Michaela; Mulholland, Patrick J

    2018-05-24

    Currently available pharmacotherapies for treating alcohol use disorder (AUD) suffer from deleterious side effects and are not efficacious in diverse populations. Clinical and preclinical studies provide evidence that the Kcnq family of genes that encode K V 7 channels influence alcohol intake and dependence. K V 7 channels are a class of slowly activating voltage-dependent K + channels that regulate neuronal excitability. Studies indicate that the K V 7 channel positive modulator retigabine can decrease dopaminergic neuron firing, alter dopamine (DA) release, and reduce alcohol intake in heavy drinking rodents. Given the critical nature of ventral tegmental area (VTA) DA to the addiction process and predominant expression of Kcnq4 in DA neurons, we investigated the role of midbrain Kcnq genes and K V 7 channels in the VTA of genetically diverse mice and long-term heavy drinking rats, respectively. Integrative bioinformatics analysis identified negative correlations between midbrain Kcnq4 expression and alcohol intake and seeking behaviors. Kcnq4 expression levels were also correlated with dopaminergic-related phenotypes in BXD strains, and Kcnq4 was present in support intervals for alcohol sensitivity and alcohol withdrawal severity QTLs in rodents. Pharmacological validation studies revealed that VTA K V 7 channels regulate excessive alcohol intake in rats with a high-drinking phenotype. Administration of a novel and selective K V 7.2/4 channel positive modulator also reduced alcohol drinking in rats. Together, these findings indicate that midbrain Kcnq4 expression regulates alcohol-related behaviors in genetically diverse mice and provide evidence that K V 7.4 channels are a critical mediator of excessive alcohol drinking. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. MINCR is a MYC-induced lncRNA able to modulate MYC's transcriptional network in Burkitt lymphoma cells.

    PubMed

    Doose, Gero; Haake, Andrea; Bernhart, Stephan H; López, Cristina; Duggimpudi, Sujitha; Wojciech, Franziska; Bergmann, Anke K; Borkhardt, Arndt; Burkhardt, Birgit; Claviez, Alexander; Dimitrova, Lora; Haas, Siegfried; Hoell, Jessica I; Hummel, Michael; Karsch, Dennis; Klapper, Wolfram; Kleo, Karsten; Kretzmer, Helene; Kreuz, Markus; Küppers, Ralf; Lawerenz, Chris; Lenze, Dido; Loeffler, Markus; Mantovani-Löffler, Luisa; Möller, Peter; Ott, German; Richter, Julia; Rohde, Marius; Rosenstiel, Philip; Rosenwald, Andreas; Schilhabel, Markus; Schneider, Markus; Scholz, Ingrid; Stilgenbauer, Stephan; Stunnenberg, Hendrik G; Szczepanowski, Monika; Trümper, Lorenz; Weniger, Marc A; Hoffmann, Steve; Siebert, Reiner; Iaccarino, Ingram

    2015-09-22

    Despite the established role of the transcription factor MYC in cancer, little is known about the impact of a new class of transcriptional regulators, the long noncoding RNAs (lncRNAs), on MYC ability to influence the cellular transcriptome. Here, we have intersected RNA-sequencing data from two MYC-inducible cell lines and a cohort of 91 B-cell lymphomas with or without genetic variants resulting in MYC overexpression. We identified 13 lncRNAs differentially expressed in IG-MYC-positive Burkitt lymphoma and regulated in the same direction by MYC in the model cell lines. Among them, we focused on a lncRNA that we named MYC-induced long noncoding RNA (MINCR), showing a strong correlation with MYC expression in MYC-positive lymphomas. To understand its cellular role, we performed RNAi and found that MINCR knockdown is associated with an impairment in cell cycle progression. Differential gene expression analysis after RNAi showed a significant enrichment of cell cycle genes among the genes down-regulated after MINCR knockdown. Interestingly, these genes are enriched in MYC binding sites in their promoters, suggesting that MINCR acts as a modulator of the MYC transcriptional program. Accordingly, MINCR knockdown was associated with a reduction in MYC binding to the promoters of selected cell cycle genes. Finally, we show that down-regulation of Aurora kinases A and B and chromatin licensing and DNA replication factor 1 may explain the reduction in cellular proliferation observed on MINCR knockdown. We, therefore, suggest that MINCR is a newly identified player in the MYC transcriptional network able to control the expression of cell cycle genes.

  9. Gα-cAMP/PKA pathway positively regulates pigmentation, chaetoglobosin A biosynthesis and sexual development in Chaetomium globosum

    PubMed Central

    Hu, Yang; Chen, Longfei; Akhberdi, Oren; Yu, Xi; Liu, Yanjie; Zhu, Xudong

    2018-01-01

    Sensing the environmental signals, the canonical Gα-cAMP/PKA pathway modulates mycelial growth and development, and negatively regulates some secondary metabolism in filamentous fungi, e.g. aflatoxin in Aspergillus nidulans. Here we report the characterization of this signaling pathway in Chaetomium globosum, a widely spread fungus known for synthesizing abundant secondary metabolites, e.g. chaetoglobosin A (ChA). RNAi-mediated knockdown of a putative Gα-encoding gene gna-1, led to plural changes in phenotype, e.g. albino mycelium, significant restriction on perithecium development and decreased production of ChA. RNA-seq profiling and qRT-PCR verified significantly fall in expression of corresponding genes, e.g. pks-1 and CgcheA. These defects could be restored by simultaneous knock-down of the pkaR gene encoding a regulatory subunit of cAMP-dependent protein kinase A (PKA), suggesting that pkaR had a negative effect on the above mentioned traits. Confirmatively, the intracellular level of cAMP in wild-type strain was about 3.4-fold to that in gna-1 silenced mutant pG14, and addition of a cAMP analog, 8-Br-cAMP, restored the same defects, e.g., the expression of CgcheA. Furthermore, the intracellular cAMP in gna-1 and pkaR double silenced mutant was approaching the normal level. The following activity inhibition experiment proved that the expression of CgcheA was indeed regulated by PKA. Down-regulation of LaeA/VeA/SptJ expression in gna-1 mutant was also observed, implying that Gα signaling may crosstalk to other regulatory pathways. Taken together, this study proposes that the heterotrimeric Gα protein-cAMP/PKA signaling pathway positively mediates the sexual development, melanin biosynthesis, and secondary metabolism in C. globosum. PMID:29652900

  10. RUNX1 positively regulates the ErbB2/HER2 signaling pathway through modulating SOS1 expression in gastric cancer cells.

    PubMed

    Mitsuda, Yoshihide; Morita, Ken; Kashiwazaki, Gengo; Taniguchi, Junichi; Bando, Toshikazu; Obara, Moeka; Hirata, Masahiro; Kataoka, Tatsuki R; Muto, Manabu; Kaneda, Yasufumi; Nakahata, Tatsutoshi; Liu, Pu Paul; Adachi, Souichi; Sugiyama, Hiroshi; Kamikubo, Yasuhiko

    2018-04-23

    The dual function of runt-related transcriptional factor 1 (RUNX1) as an oncogene or oncosuppressor has been extensively studied in various malignancies, yet its role in gastric cancer remains elusive. Up-regulation of the ErbB2/HER2 signaling pathway is frequently-encountered in gastric cancer and contributes to the maintenance of these cancer cells. This signaling cascade is partly mediated by son of sevenless homolog (SOS) family, which function as adaptor proteins in the RTK cascades. Herein we report that RUNX1 regulates the ErbB2/HER2 signaling pathway in gastric cancer cells through transactivating SOS1 expression, rendering itself an ideal target in anti-tumor strategy toward this cancer. Mechanistically, RUNX1 interacts with the RUNX1 binding DNA sequence located in SOS1 promoter and positively regulates it. Knockdown of RUNX1 led to the decreased expression of SOS1 as well as dephosphorylation of ErbB2/HER2, subsequently suppressed the proliferation of gastric cancer cells. We also found that our novel RUNX inhibitor (Chb-M') consistently led to the deactivation of the ErbB2/HER2 signaling pathway and was effective against several gastric cancer cell lines. Taken together, our work identified a novel interaction of RUNX1 and the ErbB2/HER2 signaling pathway in gastric cancer, which can potentially be exploited in the management of this malignancy.

  11. [Immunohistochemical analysis of cell cycle-regulating protein (p21, p27 and Ki67) expression in endoscopic biopsy samples from patients with gastroesophageal reflux disease].

    PubMed

    Koyama, Shigeki; Nishiyama, Yorihiro; Ishizuka, Izumi

    2007-05-01

    We performed an immunohistochemical analysis of cell cycle-regulating protein (p21, p27 and Ki67) expression in endoscopic biopsy samples from the patients with gastroesophageal reflux disease (GERD) using angled -biopsy forceps. Inflammatory cell accumulation into the lamina propria was detected even in patients with modified Los Angeles (LA) system grades N or M. In grade N or M patients with no changes in the epithelium, the area of p21, p27 and Ki67 positive cells was expanded compared to normal mucosa. The area of p21, p27 and Ki67 positive cells tended to expand upward in the epithelium with GERD severity based on the LA classification grading. These indicate that inflammatory cell infiltration into the lamina propria is initial histological change of GERD.

  12. Positive and Negative Regulation of Muscle Cell Identity by Members of the hedgehog and TGF-β Gene Families

    PubMed Central

    Du, Shao Jun; Devoto, Stephen H.; Westerfield, Monte; Moon, Randall T.

    1997-01-01

    We have examined whether the development of embryonic muscle fiber type is regulated by competing influences between Hedgehog and TGF-β signals, as previously shown for development of neuronal cell identity in the neural tube. We found that ectopic expression of Hedgehogs or inhibition of protein kinase A in zebrafish embryos induces slow muscle precursors throughout the somite but muscle pioneer cells only in the middle of the somite. Ectopic expression in the notochord of Dorsalin-1, a member of the TGF-β superfamily, inhibits the formation of muscle pioneer cells, demonstrating that TGF-β signals can antagonize the induction of muscle pioneer cells by Hedgehog. We propose that a Hedgehog signal first induces the formation of slow muscle precursor cells, and subsequent Hedgehog and TGF-β signals exert competing positive and negative influences on the development of muscle pioneer cells. PMID:9314535

  13. Maternal depression and anxiety, social synchrony, and infant regulation of negative and positive emotions.

    PubMed

    Granat, Adi; Gadassi, Reuma; Gilboa-Schechtman, Eva; Feldman, Ruth

    2017-02-01

    Maternal postpartum depression (PPD) exerts long-term negative effects on infants; yet the mechanisms by which PPD disrupts emotional development are not fully clear. Utilizing an extreme-case design, 971 women reported symptoms of depression and anxiety following childbirth and 215 high and low on depressive symptomatology reported again at 6 months. Of these, mothers diagnosed with major depressive disorder (n = 22), anxiety disorders (n = 19), and controls (n = 59) were visited at 9 months. Mother-infant interaction was microcoded for maternal and infant's social behavior and synchrony. Infant negative and positive emotional expression and self-regulation were tested in 4 emotion-eliciting paradigms: anger with mother, anger with stranger, joy with mother, and joy with stranger. Infants of depressed mothers displayed less social gaze and more gaze aversion. Gaze and touch synchrony were lowest for depressed mothers, highest for anxious mothers, and midlevel among controls. Infants of control and anxious mothers expressed less negative affect with mother compared with stranger; however, maternal presence failed to buffer negative affect in the depressed group. Maternal depression chronicity predicted increased self-regulatory behavior during joy episodes, and touch synchrony moderated the effects of PPD on infant self-regulation. Findings describe subtle microlevel processes by which maternal depression across the postpartum year disrupts the development of infant emotion regulation and suggest that diminished social synchrony, low differentiation of attachment and nonattachment contexts, and increased self-regulation during positive moments may chart pathways for the cross-generational transfer of emotional maladjustment from depressed mothers to their infants. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. Activation of TGF-β1-CD147 positive feedback loop in hepatic stellate cells promotes liver fibrosis.

    PubMed

    Li, Hai-Yan; Ju, Di; Zhang, Da-Wei; Li, Hao; Kong, Ling-Min; Guo, Yanhai; Li, Can; Wang, Xi-Long; Chen, Zhi-Nan; Bian, Huijie

    2015-11-12

    Activation of hepatic stellate cells (HSCs) by transforming growth factor-β1 (TGF-β1) initiates HBV-associated fibrogenesis. The mechanism of TGF-β1 modulating HSC activation is not fully uncovered. We hypothesized a positive feedback signaling loop of TGF-β1-CD147 promoting liver fibrogenesis by activation of HSCs. Human HSC cell line LX-2 and spontaneous liver fibrosis model derived from HBV transgenic mice were used to evaluate the activation of molecules in the signaling loop. Wound healing and cell contraction assay were performed to detect the CD147-overexpressed HSC migration and contraction. The transcriptional regulation of CD147 by TGF-β1/Smad4 was determined using dual-luciferase reporter assay and chromatin immunoprecipitation. We found that a positive reciprocal regulation between TGF-β1 and CD147 mediated HSC activation. CD147 over-expression promoted HSC migration and accelerated TGF-β1-induced cell contraction. Phosphorylation of Smad2 and Smad3 in cooperation with Smad4 mediated the TGF-β1-regulated CD147 expression. Smad4 activated the transcription by direct interaction with CD147 promoter. Meanwhile, CD147 modulated the activated phenotype of HSCs through the ERK1/2 and Sp1 which up-regulated α-SMA, collagen I, and TGF-β1 synthesis. These findings indicate that TGF-β1-CD147 loop plays a key role in regulating the HSC activation and combination of TGF-β receptor inhibitor and anti-CD147 antibody might be promised to reverse fibrogenesis.

  15. Activation of TGF-β1-CD147 positive feedback loop in hepatic stellate cells promotes liver fibrosis

    PubMed Central

    Li, Hai-Yan; Ju, Di; Zhang, Da-Wei; Li, Hao; Kong, Ling-Min; Guo, Yanhai; Li, Can; Wang, Xi-Long; Chen, Zhi-Nan; Bian, Huijie

    2015-01-01

    Activation of hepatic stellate cells (HSCs) by transforming growth factor-β1 (TGF-β1) initiates HBV-associated fibrogenesis. The mechanism of TGF-β1 modulating HSC activation is not fully uncovered. We hypothesized a positive feedback signaling loop of TGF-β1-CD147 promoting liver fibrogenesis by activation of HSCs. Human HSC cell line LX-2 and spontaneous liver fibrosis model derived from HBV transgenic mice were used to evaluate the activation of molecules in the signaling loop. Wound healing and cell contraction assay were performed to detect the CD147-overexpressed HSC migration and contraction. The transcriptional regulation of CD147 by TGF-β1/Smad4 was determined using dual-luciferase reporter assay and chromatin immunoprecipitation. We found that a positive reciprocal regulation between TGF-β1 and CD147 mediated HSC activation. CD147 over-expression promoted HSC migration and accelerated TGF-β1-induced cell contraction. Phosphorylation of Smad2 and Smad3 in cooperation with Smad4 mediated the TGF-β1-regulated CD147 expression. Smad4 activated the transcription by direct interaction with CD147 promoter. Meanwhile, CD147 modulated the activated phenotype of HSCs through the ERK1/2 and Sp1 which up-regulated α-SMA, collagen I, and TGF-β1 synthesis. These findings indicate that TGF-β1-CD147 loop plays a key role in regulating the HSC activation and combination of TGF-β receptor inhibitor and anti-CD147 antibody might be promised to reverse fibrogenesis. PMID:26559755

  16. Sp1-CD147 positive feedback loop promotes the invasion ability of ovarian cancer.

    PubMed

    Zhao, Jing; Ye, Wei; Wu, Juan; Liu, Lijuan; Yang, Lina; Gao, Lu; Chen, Biliang; Zhang, Fanglin; Yang, Hong; Li, Yu

    2015-07-01

    CD147 is a novel cancer biomarker that has been confirmed to be overexpressed in ovarian carcinoma, which is significantly associated with poor prognosis. Although the Sp1 protein regulates the expression level of CD147, it remains unclear whether Sp1 phosphorylation plays a role in this regulation. A dual-luciferase assay revealed that T453 and T739 mutations decreased the activity of Sp1 binding to the promoter of CD147, followed by a decrease in CD147 mRNA and protein expression. Western blot analysis showed that CD147 promoted Sp1 phosphorylation at T453 and T739 through the PI3K/AKT and MAPK/ERK pathways. In addition, blocking the Sp1-CD147 positive feedback loop reduced the invasion ability of HO-8910pm cells. Immunohistochemical staining showed that the components of the feedback loop were overexpressed in ovarian cancer tissues. The correlation analysis revealed a significant correlation between phospho-Sp1 (T453), phospho-Sp1 (T739) and CD147 expression levels, with correlation coefficients of r=0.477 and r=0.461, respectively. Collectively, our results suggest that a Sp1-CD147 positive feedback loop plays a critical role in the invasion ability of ovarian cancer cells.

  17. Individual and interpersonal emotion regulation among adults with substance use disorders and matched controls.

    PubMed

    Dingle, Genevieve A; Neves, Diana da Costa; Alhadad, Sakinah S J; Hides, Leanne

    2018-06-01

    Self-report studies show that negative emotional states and ineffective use of emotion regulation strategies are key maintaining factors of substance use disorders (SUD). However, experimental research into emotional processing in adults with SUD is in its infancy. Theoretical conceptualizations of emotion regulation have shifted from a focus on individual (internal) processes to one that encompasses social and interpersonal functions - including the regulation of facial expression of emotion. The purpose of this study was to examine the individual and interpersonal emotion regulation capacity of 35 adults in residential treatment diagnosed with a SUD compared to 35 demographically matched controls (both samples M age  = 25 years; 37% females). Participants completed a facial emotion expression flexibility task while viewing emotive images, as well as the Difficulties of Emotion Regulation Scale (DERS) and the Social (Emotion) Expectancy Scale (SES). Adults in SUD treatment experienced significantly more emotion regulation difficulties on all DERS subscales than controls. They also reported higher levels of negative self-evaluation and social expectancies not to feel negative emotions (anxiety and depression) compared to controls. Moreover, when viewing emotive images, the treatment sample showed significantly less flexibility of their emotional expression compared to the control sample. These findings demonstrate that the awareness, expression, and regulation of emotions are particularly difficult for people with SUD and this may maintain their substance use and provide an important target for treatment. Compared to matched controls, adults with substance use disorders self-report significantly more difficulties with emotional awareness and regulation. Compared to matched controls, adults with substance use disorders report significantly greater expectancies not to show depression and anxiety. When viewing positive and negative images, adults with substance use disorders are significantly less flexible in their facial expression of emotion than matched controls in response to regulatory instructions. Emotion regulation should be measured and addressed as part of substance use disorder treatment. © 2017 Commonwealth of Australia. British Journal of Clinical Psychology © 2017 The British Psychological Society.

  18. Emotional expressivity in older and younger adults' descriptions of personal memories.

    PubMed

    Schryer, Emily; Ross, Michael; St Jacques, Peggy; Levine, Brian; Fernandes, Myra

    2012-01-01

    BACKGROUND/STUDY CONTEXT: According to the socioemotional selectivity theory (SST; Mather & Carstensen, 2003, Psychological Sciences, 14, 409-415), aging is associated with greater motivation to regulate emotions. The authors propose that the language people use to describe personal memories provides an index of age differences in emotional self-regulation. In the present article, the authors reanalyzed three previously published studies in which older (aged 60-88) and younger (aged 17-33) participants described emotional and neutral memories from their recent and distant pasts. The authors analyzed the language of the memories using Pennebaker, Booth, and Francis's (2007) Linguistic Inquiry Word Count program (Austin, TX: LIWC Inc.), which calculates the percentage of positive and negative emotion words. In Studies 1 and 2, older adults used more positive emotion words than did younger adults to describe their autobiographical memories from the recent past, particularly when these were of a neutral valence. In Study 3, older adults used more positive emotion words when describing more recent memories (from the past 5 years) but not when describing distant childhood or adolescent memories. The authors suggest that these age differences in emotional expressivity support SST, and represent an as-yet unreported age difference that may stem from differences in motivation to regulate emotion.

  19. A super-family of transcriptional activators regulates bacteriophage packaging and lysis in Gram-positive bacteria

    PubMed Central

    Quiles-Puchalt, Nuria; Tormo-Más, María Ángeles; Campoy, Susana; Toledo-Arana, Alejandro; Monedero, Vicente; Lasa, Íñigo; Novick, Richard P.; Christie, Gail E.; Penadés, José R.

    2013-01-01

    The propagation of bacteriophages and other mobile genetic elements requires exploitation of the phage mechanisms involved in virion assembly and DNA packaging. Here, we identified and characterized four different families of phage-encoded proteins that function as activators required for transcription of the late operons (morphogenetic and lysis genes) in a large group of phages infecting Gram-positive bacteria. These regulators constitute a super-family of proteins, here named late transcriptional regulators (Ltr), which share common structural, biochemical and functional characteristics and are unique to this group of phages. They are all small basic proteins, encoded by genes present at the end of the early gene cluster in their respective phage genomes and expressed under cI repressor control. To control expression of the late operon, the Ltr proteins bind to a DNA repeat region situated upstream of the terS gene, activating its transcription. This involves the C-terminal part of the Ltr proteins, which control specificity for the DNA repeat region. Finally, we show that the Ltr proteins are the only phage-encoded proteins required for the activation of the packaging and lysis modules. In summary, we provide evidence that phage packaging and lysis is a conserved mechanism in Siphoviridae infecting a wide variety of Gram-positive bacteria. PMID:23771138

  20. Time course of emotion-related responding during distraction and reappraisal

    PubMed Central

    Schönfelder, Sandra; Kanske, Philipp; Heissler, Janine

    2014-01-01

    Theoretical accounts of emotion regulation (ER) discriminate various cognitive strategies to voluntarily modify emotional states. Amongst these, attentional deployment (i.e. distraction) and cognitive change (i.e. reappraisal), have been shown to successfully down-regulate emotions. Neuroimaging studies found that both strategies differentially engage neural structures associated with selective attention, working memory and cognitive control. The aim of this study was to further delineate similarities and differences between the ER strategies reappraisal and distraction by investigating their temporal brain dynamics using event-related potentials (ERPs) and their patterns of facial expressive behavior. Twenty-one participants completed an ER experiment in which they had to either passively view positive, neutral and negative pictures, reinterpret them to down-regulate affective responses (reappraisal), or solve a concurrently presented mathematical equation (distraction). Results demonstrate the efficacy of both strategies in the subjective control of emotion, accompanied by reductions of facial expressive activity (Corrugator supercilii and Zygomaticus major). ERP results indicated that distraction, compared with reappraisal, yielded a stronger and earlier attenuation of the late positive potential (LPP) magnitude for negative pictures. For positive pictures, only distraction but not reappraisal had significant effect on LPP attenuation. The results support the process model of ER, separating subtypes of cognitive strategies based on their specific time course. PMID:23988760

  1. Up-regulation of HOXB cluster genes are epigenetically regulated in tamoxifen-resistant MCF7 breast cancer cells.

    PubMed

    Yang, Seoyeon; Lee, Ji-Yeon; Hur, Ho; Oh, Ji Hoon; Kim, Myoung Hee

    2018-05-28

    Tamoxifen (TAM) is commonly used to treat estrogen receptor (ER)-positive breast cancer. Despite the remarkable benefits, resistance to TAM presents a serious therapeutic challenge. Since several HOX transcription factors have been proposed as strong candidates in the development of resistance to TAM therapy in breast cancer, we generated an in vitro model of acquired TAM resistance using ER-positive MCF7 breast cancer cells (MCF7-TAMR), and analyzed the expression pattern and epigenetic states of HOX genes. HOXB cluster genes were uniquely up-regulated in MCF7-TAMR cells. Survival analysis of in slico data showed the correlation of high expression of HOXB genes with poor response to TAM in ER-positive breast cancer patients treated with TAM. Gain- and loss-of-function experiments showed that the overexpression of multi HOXB genes in MCF7 renders cancer cells more resistant to TAM, whereas the knockdown restores TAM sensitivity. Furthermore, activation of HOXB genes in MCF7-TAMR was associated with histone modifications, particularly the gain of H3K9ac. These findings imply that the activation of HOXB genes mediate the development of TAM resistance, and represent a target for development of new strategies to prevent or reverse TAM resistance.

  2. Up-regulated EMMPRIN/CD147 protein expression might play a role in colorectal carcinogenesis and its subsequent progression without an alteration of its glycosylation and mRNA level.

    PubMed

    Zheng, Hua-chuan; Wang, Wei; Xu, Xiao-yan; Xia, Pu; Yu, Miao; Sugiyama, Toshiro; Takano, Yasuo

    2011-04-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) was reported to involve in the invasion and metastasis of malignancies by regulating the expression of vascular endothelial growth factor (VEGF) in stromal and cancer cells. The study aimed to clarify the role of EMMPRIN expression in tumorigenesis and progression of colorectal carcinomas (CRC). EMMPRIN expression was examined on tissue microarray containing colorectal carcinomas, adenoma and non-neoplastic mucosa (NNM) by immunohistochemistry and in situ hybridization (ISH). Colorectal carcinoma cell lines (DLD-1, HCT-15, SW480 and WiDr) and tissues were studied for EMMPRIN expression by Western blot or RT-PCR, followed by sequencing. All carcinoma cell lines showed EMMPRIN expression at both mRNA and protein levels. Two synonymous mutations were found in carcinoma cell lines at codon109 (GCT → GCC: Ala) or 179 (GAT → GAC: Asp). Frozen CRC tissues displayed higher EMMPRIN expression than paired NNM (P < 0.05). EMMPRIN expression was immunohistochemically stronger in colorectal high-grade adenoma, adenocarcinoma and metastatic carcinoma than non-neoplastic superficial epithelium and low-grade adenoma (P < 0.05). In contrast, its mRNA level was similar from colorectal NNM, adenoma to adenocarcinoma by ISH, in line with the findings of RT-PCR (P > 0.05). Immunohistochemically, EMMPRIN expression was positively correlated with tumor size, depth of invasion, vascular or lymphatic invasion, grade of infiltration (INF), ki-67 and VEGF expression of CRCs (P < 0.05). Among them, depth of invasion was an independent associated factor for EMMPRIN expression in CRCs (P < 0.05). Up-regulated EMMPRIN protein expression might contribute to colorectal carcinogenesis without the alteration of its glycosylation and mRNA level. Aberrant EMMPRIN protein expression might promote growth or invasion of CRCs possibly through increased ki-67 expression and inducible angiogenesis via up-regulating VEGF expression.

  3. Immuno-Navigator, a batch-corrected coexpression database, reveals cell type-specific gene networks in the immune system

    PubMed Central

    Vandenbon, Alexis; Dinh, Viet H.; Mikami, Norihisa; Kitagawa, Yohko; Teraguchi, Shunsuke; Ohkura, Naganari; Sakaguchi, Shimon

    2016-01-01

    High-throughput gene expression data are one of the primary resources for exploring complex intracellular dynamics in modern biology. The integration of large amounts of public data may allow us to examine general dynamical relationships between regulators and target genes. However, obstacles for such analyses are study-specific biases or batch effects in the original data. Here we present Immuno-Navigator, a batch-corrected gene expression and coexpression database for 24 cell types of the mouse immune system. We systematically removed batch effects from the underlying gene expression data and showed that this removal considerably improved the consistency between inferred correlations and prior knowledge. The data revealed widespread cell type-specific correlation of expression. Integrated analysis tools allow users to use this correlation of expression for the generation of hypotheses about biological networks and candidate regulators in specific cell types. We show several applications of Immuno-Navigator as examples. In one application we successfully predicted known regulators of importance in naturally occurring Treg cells from their expression correlation with a set of Treg-specific genes. For one high-scoring gene, integrin β8 (Itgb8), we confirmed an association between Itgb8 expression in forkhead box P3 (Foxp3)-positive T cells and Treg-specific epigenetic remodeling. Our results also suggest that the regulation of Treg-specific genes within Treg cells is relatively independent of Foxp3 expression, supporting recent results pointing to a Foxp3-independent component in the development of Treg cells. PMID:27078110

  4. miRNA-558 promotes gastric cancer progression through attenuating Smad4-mediated repression of heparanase expression.

    PubMed

    Zheng, Liduan; Jiao, Wanju; Song, Huajie; Qu, Hongxia; Li, Dan; Mei, Hong; Chen, Yajun; Yang, Feng; Li, Huanhuan; Huang, Kai; Tong, Qiangsong

    2016-09-29

    Previous studies have indicated that as the only mammalian endo-β-D-glucuronidase, heparanase (HPSE) is up-regulated and associated with poor prognosis in gastric cancer, while the underlying mechanisms still remain to be determined. Herein, through integrative analysis of public datasets, we found microRNA-558 (miR-558) and SMAD family member 4 (Smad4) as the crucial transcription regulators of HPSE expression in gastric cancer, with their adjacent target sites within the promoter of HPSE. We identified that endogenous miR-558 activated the transcription and expression of HPSE in gastric cancer cell lines. In contrast, Smad4 suppressed the nascent transcription and expression of HPSE via directly binding to its promoter. Mechanistically, miR-558 recognized its complementary site within HPSE promoter to decrease the binding of Smad4 in an Argonaute 1-dependent manner. Ectopic expression or knockdown experiments indicated that miR-558 promoted the in vitro and in vivo tumorigenesis and aggressiveness of gastric cancer cell lines via attenuating Smad4-mediated repression of HPSE expression. In clinical gastric cancer specimens, up-regulation of miR-558 and down-regulation of Smad4 were positively correlated with HPSE expression. Kaplan-Meier survival analysis revealed that miR-558 and Smad4 were associated with unfavourable and favourable outcome of gastric cancer patients, respectively. Therefore, these findings demonstrate that miR-558 facilitates the progression of gastric cancer through directly targeting the HPSE promoter to attenuate Smad4-mediated repression of HPSE expression.

  5. miRNA-558 promotes gastric cancer progression through attenuating Smad4-mediated repression of heparanase expression

    PubMed Central

    Zheng, Liduan; Jiao, Wanju; Song, Huajie; Qu, Hongxia; Li, Dan; Mei, Hong; Chen, Yajun; Yang, Feng; Li, Huanhuan; Huang, Kai; Tong, Qiangsong

    2016-01-01

    Previous studies have indicated that as the only mammalian endo-β-D-glucuronidase, heparanase (HPSE) is up-regulated and associated with poor prognosis in gastric cancer, while the underlying mechanisms still remain to be determined. Herein, through integrative analysis of public datasets, we found microRNA-558 (miR-558) and SMAD family member 4 (Smad4) as the crucial transcription regulators of HPSE expression in gastric cancer, with their adjacent target sites within the promoter of HPSE. We identified that endogenous miR-558 activated the transcription and expression of HPSE in gastric cancer cell lines. In contrast, Smad4 suppressed the nascent transcription and expression of HPSE via directly binding to its promoter. Mechanistically, miR-558 recognized its complementary site within HPSE promoter to decrease the binding of Smad4 in an Argonaute 1-dependent manner. Ectopic expression or knockdown experiments indicated that miR-558 promoted the in vitro and in vivo tumorigenesis and aggressiveness of gastric cancer cell lines via attenuating Smad4-mediated repression of HPSE expression. In clinical gastric cancer specimens, up-regulation of miR-558 and down-regulation of Smad4 were positively correlated with HPSE expression. Kaplan–Meier survival analysis revealed that miR-558 and Smad4 were associated with unfavourable and favourable outcome of gastric cancer patients, respectively. Therefore, these findings demonstrate that miR-558 facilitates the progression of gastric cancer through directly targeting the HPSE promoter to attenuate Smad4-mediated repression of HPSE expression. PMID:27685626

  6. Regulation of gene expression in the mammalian eye and its relevance to eye disease.

    PubMed

    Scheetz, Todd E; Kim, Kwang-Youn A; Swiderski, Ruth E; Philp, Alisdair R; Braun, Terry A; Knudtson, Kevin L; Dorrance, Anne M; DiBona, Gerald F; Huang, Jian; Casavant, Thomas L; Sheffield, Val C; Stone, Edwin M

    2006-09-26

    We used expression quantitative trait locus mapping in the laboratory rat (Rattus norvegicus) to gain a broad perspective of gene regulation in the mammalian eye and to identify genetic variation relevant to human eye disease. Of >31,000 gene probes represented on an Affymetrix expression microarray, 18,976 exhibited sufficient signal for reliable analysis and at least 2-fold variation in expression among 120 F(2) rats generated from an SR/JrHsd x SHRSP intercross. Genome-wide linkage analysis with 399 genetic markers revealed significant linkage with at least one marker for 1,300 probes (alpha = 0.001; estimated empirical false discovery rate = 2%). Both contiguous and noncontiguous loci were found to be important in regulating mammalian eye gene expression. We investigated one locus of each type in greater detail and identified putative transcription-altering variations in both cases. We found an inserted cREL binding sequence in the 5' flanking sequence of the Abca4 gene associated with an increased expression level of that gene, and we found a mutation of the gene encoding thyroid hormone receptor beta2 associated with a decreased expression level of the gene encoding short-wavelength sensitive opsin (Opn1sw). In addition to these positional studies, we performed a pairwise analysis of gene expression to identify genes that are regulated in a coordinated manner and used this approach to validate two previously undescribed genes involved in the human disease Bardet-Biedl syndrome. These data and analytical approaches can be used to facilitate the discovery of additional genes and regulatory elements involved in human eye disease.

  7. A novel role of Yin-Yang-1 in pulmonary tuberculosis through the regulation of the chemokine CCL4.

    PubMed

    Rangel-Santiago, Jesus F; Baay-Guzman, Guillermina J; Duran-Padilla, Marco A; Lopez-Bochm, Karla A; Garcia-Romero, Beatriz L; Hernandez-Cueto, Daniel D; Pantoja-Escobar, Gerardo; Vega, Mario I; Hernandez-Pando, Rogelio; Huerta-Yepez, Sara

    2016-01-01

    Mycobacterium tuberculosis (M. tb) is the etiological agent of pulmonary tuberculosis (TB); this disease remains a worldwide health problem. Yin-Yang-1 (YY1) plays a major role in the maintenance and progression of some pulmonary diseases, including pulmonary fibrosis. However, the role of YY1 in TB remains unknown. The aim of this study was to elucidate the role of YY1 in the regulation of CCL4 and its implication in TB. We determined whether YY1 regulates CCL4 using reporter plasmids, ChIP and siRNA assays. Immunohistochemistry and digital pathology were used to measure the expression of YY1 and CCL4 in a mouse model of TB. A retrospective comparison of patients with TB and control subjects was used to measure the expression of YY1 and CCL4 using tissue microarrays. Our results showed that YY1 regulates the transcription of CCL4; moreover, YY1, CCL4 and TGF-β were overexpressed in the lung tissues of mice with TB during the late stages of the disease and the tissues of TB patients. The expression of CCL4 and TGF-β correlated with YY1 expression. In conclusion, YY1 regulates CCL4 transcription; moreover, YY1 is overexpressed in experimental and human TB and is positively correlated with CCL4 and TGF-β expression. Therefore, treatments that decrease YY1 expression may be a new therapeutic strategy against TB. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Zfp206 regulates ES cell gene expression and differentiation.

    PubMed

    Zhang, Wen; Walker, Emily; Tamplin, Owen J; Rossant, Janet; Stanford, William L; Hughes, Timothy R

    2006-01-01

    Understanding transcriptional regulation in early developmental stages is fundamental to understanding mammalian development and embryonic stem (ES) cell properties. Expression surveys suggest that the putative SCAN-Zinc finger transcription factor Zfp206 is expressed specifically in ES cells [Zhang,W., Morris,Q.D., Chang,R., Shai,O., Bakowski,M.A., Mitsakakis,N., Mohammad,N., Robinson,M.D., Zirngibl,R., Somogyi,E. et al., (2004) J. Biol., 3, 21; Brandenberger,R., Wei,H., Zhang,S., Lei,S., Murage,J., Fisk,G.J., Li,Y., Xu,C., Fang,R., Guegler,K. et al., (2004) Nat. Biotechnol., 22, 707-716]. Here, we confirm this observation, and we show that ZFP206 expression decreases rapidly upon differentiation of cultured mouse ES cells, and during development of mouse embryos. We find that there are at least six isoforms of the ZFP206 transcript, the longest being predominant. Overexpression and depletion experiments show that Zfp206 promotes formation of undifferentiated ES cell clones, and positively regulates abundance of a very small set of transcripts whose expression is also specific to ES cells and the two- to four-cell stages of preimplantation embryos. This set includes members of the Zscan4, Thoc4, Tcstv1 and eIF-1A gene families, none of which have been functionally characterized in vivo but whose members include apparent transcription factors, RNA-binding proteins and translation factors. Together, these data indicate that Zfp206 is a regulator of ES cell differentiation that controls a set of genes expressed very early in development, most of which themselves appear to be regulators.

  9. A putative positive feedback regulation mechanism in CsACS2 expression suggests a modified model for sex determination in cucumber (Cucumis sativus L.)

    PubMed Central

    Wang, Shu; Tao, Qianyi; Pan, Junsong; Si, Longting; Gong, Zhenhui; Cai, Run

    2012-01-01

    It is well established that the plant hormone ethylene plays a key role in cucumber sex determination. Since the unisexual control gene M was cloned and shown to encode an ethylene synthase, instead of an ethylene receptor, the ‘one-hormone hypothesis’, which was used to explain the cucumber sex phenotype, has been challenged. Here, the physiological function of CsACS2 (the gene encoded by the M locus) was studied using the transgenic tobacco system. The results indicated that overexpression of CsACS2 increased ethylene production in the tobacco plant, and the native cucumber promoter had no activity in transgenic tobacco (PM). However, when PM plants were treated with exogenous ethylene, CsACS2 expression could be detected. In cucumber, ethylene treatment could also induce transcription of CsACS2, while inhibition of ethylene action reduced the expression level. These findings suggest a positive feedback regulation mechanism for CsACS2, and a modified ‘one-hormone hypothesis’ for sex determination in cucumber is proposed. PMID:22577183

  10. A putative positive feedback regulation mechanism in CsACS2 expression suggests a modified model for sex determination in cucumber (Cucumis sativus L.).

    PubMed

    Li, Zheng; Wang, Shu; Tao, Qianyi; Pan, Junsong; Si, Longting; Gong, Zhenhui; Cai, Run

    2012-07-01

    It is well established that the plant hormone ethylene plays a key role in cucumber sex determination. Since the unisexual control gene M was cloned and shown to encode an ethylene synthase, instead of an ethylene receptor, the 'one-hormone hypothesis', which was used to explain the cucumber sex phenotype, has been challenged. Here, the physiological function of CsACS2 (the gene encoded by the M locus) was studied using the transgenic tobacco system. The results indicated that overexpression of CsACS2 increased ethylene production in the tobacco plant, and the native cucumber promoter had no activity in transgenic tobacco (PM). However, when PM plants were treated with exogenous ethylene, CsACS2 expression could be detected. In cucumber, ethylene treatment could also induce transcription of CsACS2, while inhibition of ethylene action reduced the expression level. These findings suggest a positive feedback regulation mechanism for CsACS2, and a modified 'one-hormone hypothesis' for sex determination in cucumber is proposed.

  11. Hierarchical genetic interactions between FOXG1 and LHX2 regulate the formation of the cortical hem in the developing telencephalon.

    PubMed

    Godbole, Geeta; Shetty, Ashwin S; Roy, Achira; D'Souza, Leora; Chen, Bin; Miyoshi, Goichi; Fishell, Gordon; Tole, Shubha

    2018-01-09

    During forebrain development, a telencephalic organizer called the cortical hem is crucial for inducing hippocampal fate in adjacent cortical neuroepithelium. How the hem is restricted to its medial position is therefore a fundamental patterning issue. Here, we demonstrate that Foxg1 - Lhx2 interactions are crucial for the formation of the hem. Loss of either gene causes a region of the cortical neuroepithelium to transform into hem. We show that FOXG1 regulates Lhx2 expression in the cortical primordium. In the absence of Foxg1 , the presence of Lhx2 is sufficient to suppress hem fate, and hippocampal markers appear selectively in Lhx2 -expressing regions. FOXG1 also restricts the temporal window in which loss of Lhx2 results in a transformation of cortical primordium into hem. Therefore, Foxg1 and Lhx2 form a genetic hierarchy in the spatiotemporal regulation of cortical hem specification and positioning, and together ensure the normal development of this hippocampal organizer. © 2018. Published by The Company of Biologists Ltd.

  12. HPV-16 E6/E7 promotes cell migration and invasion in cervical cancer via regulating cadherin switch in vitro and in vivo.

    PubMed

    Hu, Dongxiao; Zhou, Jiansong; Wang, Fenfen; Shi, Haiyan; Li, Yang; Li, Baohua

    2015-12-01

    Cadherin switch, as a key hallmark of epithelial-mesenchymal transition (EMT), is characterized by reduced E-cadherin expression and increased N-cadherin or P-cadherin expression, and has been implicated in many aggressive tumors, but the importance and regulatory mechanism of cadherin switch in cervical cancer have not been investigated. Our study aimed to explore the role of cadherin switch by regulation of HPV-16 E6/E7 in progression and metastasis of cervical cancer. The expressions of E-cadherin and P-cadherin were examined by immunohistochemical staining in 40 cases of high-grade cervical lesions with HPV-16 infection only in which HPV-16 E6 and E7 expression had been detected using qRT-PCR method. Through modulating E6 and E7 expression using HPV-16 E6/E7 promoter-targeting siRNAs or expressed vector in vitro, cell growth, migration, and invasion were separately tested by MTT, wound-healing and transwell invasion assays, as well as the expressions of these cadherins by western blot analyses. Finally, the expressions of these cadherins in cancerous tissues of BALB/c-nu mouse model inoculated with the stable HPV-16 E6/E7 gene silencing Siha and Caski cells were also measured by immunohistochemical staining. Pearson correlation coefficient analyses showed the strongly inverse correlation of E-cadherin expression and strongly positive correlation of P-cadherin expression with E6/E7 level in 40 cases of high-grade cervical lesions. Furthermore, the modulation of HPV-16 E6/E7 expression remarkably influenced cell proliferation, migration, and invasion, as well as the protein levels of E-cadherin and P-cadherin in cervical cell lines. Finally, the reduction of HPV-16 E6/E7 expression led to up-regulated expression of E-cadherin and down-regulated expression of P-cadherin in BALB/c-nu mouse model in vivo assay. Our results unraveled the possibility that HPV-16 E6/E7 could promote cell invasive potential via regulating cadherin switching, and consequently contribute to progression and metastasis of cervical cancer.

  13. Differential Pre-mRNA Splicing Regulates Nnat Isoforms in the Hypothalamus after Gastric Bypass Surgery in Mice

    PubMed Central

    Scott, William R.; Gelegen, Cigdem; Chandarana, Keval; Karra, Efthimia; Yousseif, Ahmed; Amouyal, Chloé; Choudhury, Agharul I.; Andreelli, Fabrizio; Withers, Dominic J.; Batterham, Rachel L.

    2013-01-01

    Background Neuronatin (NNAT) is an endoplasmic reticulum proteolipid implicated in intracellular signalling. Nnat is highly-expressed in the hypothalamus, where it is acutely regulated by nutrients and leptin. Nnat pre-mRNA is differentially spliced to create Nnat-α and -β isoforms. Genetic variation of NNAT is associated with severe obesity. Currently, little is known about the long-term regulation of Nnat. Methods Expression of Nnat isoforms were examined in the hypothalamus of mice in response to acute fast/feed, chronic caloric restriction, diet-induced obesity and modified gastric bypass surgery. Nnat expression was assessed in the central nervous system and gastrointestinal tissues. RTqPCR was used to determine isoform-specific expression of Nnat mRNA. Results Hypothalamic expression of both Nnat isoforms was comparably decreased by overnight and 24-h fasting. Nnat expression was unaltered in diet-induced obesity, or subsequent switch to a calorie restricted diet. Nnat isoforms showed differential expression in the hypothalamus but not brainstem after bypass surgery. Hypothalamic Nnat-β expression was significantly reduced after bypass compared with sham surgery (P = 0.003), and was positively correlated with post-operative weight-loss (R2 = 0.38, P = 0.01). In contrast, Nnat-α expression was not suppressed after bypass surgery (P = 0.19), and expression did not correlate with reduction in weight after surgery (R2 = 0.06, P = 0.34). Hypothalamic expression of Nnat-β correlated weakly with circulating leptin, but neither isoform correlated with fasting gut hormone levels post- surgery. Nnat expression was detected in brainstem, brown-adipose tissue, stomach and small intestine. Conclusions Nnat expression in hypothalamus is regulated by short-term nutrient availability, but unaltered by diet-induced obesity or calorie restriction. While Nnat isoforms in the hypothalamus are co-ordinately regulated by acute nutrient supply, after modified gastric bypass surgery Nnat isoforms show differential expression. These results raise the possibility that in the radically altered nutrient and hormonal milieu created by bypass surgery, resultant differential splicing of Nnat pre-mRNA may contribute to weight-loss. PMID:23527188

  14. Harnessing endogenous miR-181a to segregate transgenic antigen receptor expression in developing versus post-thymic T cells in murine hematopoietic chimeras.

    PubMed

    Papapetrou, Eirini P; Kovalovsky, Damian; Beloeil, Laurent; Sant'angelo, Derek; Sadelain, Michel

    2009-01-01

    MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression by targeting complementary sequences, referred to as miRNA recognition elements (MREs), typically located in the 3' untranslated region of mRNAs. miR-181a is highly expressed in developing thymocytes and markedly downregulated in post-thymic T cells. We investigated whether endogenous miR-181a can be harnessed to segregate expression of chimeric antigen receptors (CARs) and TCRs between developing and mature T cells. Lentiviral-encoded antigen receptors were tagged with a miR-181a-specific MRE and transduced into mouse BM cells that were used to generate hematopoietic chimeras. Expression of a CAR specific for human CD19 (hCD19) was selectively suppressed in late double-negative and double-positive thymocytes, coinciding with the peak in endogenous miR-181a expression. Receptor expression was fully restored in post-thymic resting and activated T cells, affording protection against a subsequent challenge with hCD19+ tumors. Hematopoietic mouse chimeras engrafted with a conalbumin-specific TCR prone to thymic clonal deletion acquired peptide-specific T cell responsiveness only when the vector-encoded TCR transcript was similarly engineered to be subject to regulation by miR-181a. These results demonstrate the potential of miRNA-regulated transgene expression in stem cell-based therapies, including cancer immunotherapy.

  15. Antiaging Gene Klotho Regulates Adrenal CYP11B2 Expression and Aldosterone Synthesis.

    PubMed

    Zhou, Xiaoli; Chen, Kai; Wang, Yongjun; Schuman, Mariano; Lei, Han; Sun, Zhongjie

    2016-06-01

    Deficiency of the antiaging gene Klotho (KL) induces renal damage and hypertension through unknown mechanisms. In this study, we assessed whether KL regulates expression of CYP11B2, a key rate-limiting enzyme in aldosterone synthesis, in adrenal glands. We found that haplodeficiency of KL(+/-) in mice increased the plasma level of aldosterone by 16 weeks of age, which coincided with spontaneous and persistent elevation of BP. Blockade of aldosterone actions by eplerenone reversed KL deficiency-induced hypertension and attenuated the kidney damage. Protein expression of CYP11B2 was upregulated in adrenal cortex of KL(+/-) mice. KL and CYP11B2 proteins colocalized in adrenal zona glomerulosa cells. Silencing of KL upregulated and overexpression of KL downregulated CYP11B2 expression in human adrenocortical cells. Notably, silencing of KL decreased expression of SF-1, a negative transcription factor of CYP11B2, but increased phosphorylation of ATF2, a positive transcription factor of CYP11B2, which may contribute to upregulation of CYP11B2 expression. Therefore, these results show that KL regulates adrenal CYP11B2 expression. KL deficiency-induced spontaneous hypertension and kidney damage may be partially attributed to the upregulation of CYP11B2 expression and aldosterone synthesis. Copyright © 2016 by the American Society of Nephrology.

  16. Fish as bioreactors: transgene expression of human coagulation factor VII in fish embryos.

    PubMed

    Hwang, Gyulin; Müller, Ferenc; Rahman, M Aziz; Williams, Darren W; Murdock, Paul J; Pasi, K John; Goldspink, Geoffrey; Farahmand, Hamid; Maclean, Norman

    2004-01-01

    A plasmid containing human coagulation factor VII (hFVII) complementary DNA regulated by a cytomegalovirus promoter was microinjected into fertilized eggs of zebrafish, African catfish, and tilapia. The active form of hFVll was detected in the fish embryos by various assays. This positive expression of human therapeutic protein in fish embryos demonstrates the possibility of exploitation of transgenic fish as bioreactors.

  17. Neuropilins are positive regulators of Hedgehog signal transduction

    PubMed Central

    Hillman, R. Tyler; Feng, Brian Y.; Ni, Jun; Woo, Wei-Meng; Milenkovic, Ljiljana; Hayden Gephart, Melanie G.; Teruel, Mary N.; Oro, Anthony E.; Chen, James K.; Scott, Matthew P.

    2011-01-01

    The Hedgehog (Hh) pathway is essential for vertebrate embryogenesis, and excessive Hh target gene activation can cause cancer in humans. Here we show that Neuropilin 1 (Nrp1) and Nrp2, transmembrane proteins with roles in axon guidance and vascular endothelial growth factor (VEGF) signaling, are important positive regulators of Hh signal transduction. Nrps are expressed at times and locations of active Hh signal transduction during mouse development. Using cell lines lacking key Hh pathway components, we show that Nrps mediate Hh transduction between activated Smoothened (Smo) protein and the negative regulator Suppressor of Fused (SuFu). Nrp1 transcription is induced by Hh signaling, and Nrp1 overexpression increases maximal Hh target gene activation, indicating the existence of a positive feedback circuit. The regulation of Hh signal transduction by Nrps is conserved between mammals and bony fish, as we show that morpholinos targeting the Nrp zebrafish ortholog nrp1a produce a specific and highly penetrant Hh pathway loss-of-function phenotype. These findings enhance our knowledge of Hh pathway regulation and provide evidence for a conserved nexus between Nrps and this important developmental signaling system. PMID:22051878

  18. NLR Nod1 signaling promotes survival of BCR-engaged mature B cells through up-regulated Nod1 as a positive outcome

    PubMed Central

    Asano, Masanao; Li, Yue-Sheng; Núñez, Gabriel

    2017-01-01

    Although B cell development requires expression of the B cell antigen receptor (BCR), it remains unclear whether engagement of self-antigen provides a positive impact for most B cells. Here, we show that BCR engagement by self-ligand during development in vivo results in up-regulation of the Nod-like receptor member Nod1, which recognizes the products of intestinal commensal bacteria. In anti-thymocyte/Thy-1 autoreactive BCR knock-in mice lacking self–Thy-1 ligand, immunoglobulin light chain editing occurred, generating B cells with up-regulated Nod1, including follicular and marginal zone B cells with natural autoreactivity. This BCR editing with increased Nod1 resulted in preferential survival. In normal adult mice, most mature B cells are enriched for Nod1 up-regulated cells, and signaling through Nod1 promotes competitive survival of mature B cells. These findings demonstrate a role for microbial products in promoting survival of mature B cells through up-regulated Nod1, providing a positive effect of BCR engagement on development of most B cells. PMID:28878001

  19. miRNA863-3p sequentially targets negative regulators—atypical receptor-like Pseudokinases—and serrate, a positive regulator of plant immunity upon infection

    USDA-ARS?s Scientific Manuscript database

    Plant small RNAs (sRNAs) play important roles in regulating gene expression during pathogen infection. We identified miR863-3p, which is specifically induced by the avirulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 carrying the effector avrRpt2. During early infection stages, miR86...

  20. The Relationship between the Expression of Ethylene-Related Genes and Papaya Fruit Ripening Disorder Caused by Chilling Injury

    PubMed Central

    Zou, Yuan; Zhang, Lin; Rao, Shen; Zhu, Xiaoyang; Ye, Lanlan; Chen, Weixin; Li, Xueping

    2014-01-01

    Papaya (Carica papaya L.) is sensitive to low temperature and easy to be subjected to chilling injury, which causes fruit ripening disorder. This study aimed to investigate the relationship between the expression of genes related to ethylene and fruit ripening disorder caused by chilling injury. Papaya fruits were firstly stored at 7°C and 12°C for 25 and 30 days, respectively, then treated with exogenous ethylene and followed by ripening at 25°C for 5 days. Chilling injury symptoms such as pulp water soaking were observed in fruit stored at 7°C on 20 days, whereas the coloration and softening were completely blocked after 25 days, Large differences in the changes in the expression levels of twenty two genes involved in ethylene were seen during 7°C-storage with chilling injury. Those genes with altered expression could be divided into three groups: the group of genes that were up-regulated, including ACS1/2/3, EIN2, EIN3s/EIL1, CTR1/2/3, and ERF1/3/4; the group of genes that were down-regulated, including ACO3, ETR1, CTR4, EBF2, and ERF2; and the group of genes that were un-regulated, including ACO1/2, ERS, and EBF1. The results also showed that pulp firmness had a significantly positive correlation with the expression of ACS2, ACO1, CTR1/4, EIN3a/b, and EBF1/2 in fruit without chilling injury. This positive correlation was changed to negative one in fruit after storage at 7°C for 25 days with chilling injury. The coloring index displayed significantly negative correlations with the expression levels of ACS2, ACO1/2, CTR4, EIN3a/b, ERF3 in fruit without chilling injury, but these correlations were changed into the positive ones in fruit after storage at 7°C for 25 days with chilling injury. All together, these results indicate that these genes may play important roles in the abnormal softening and coloration with chilling injury in papaya. PMID:25542021

  1. Dominant positive and negative selection using a hygromycin phosphotransferase-thymidine kinase fusion gene.

    PubMed

    Lupton, S D; Brunton, L L; Kalberg, V A; Overell, R W

    1991-06-01

    The hygromycin phosphotransferase gene was fused in-frame with the herpes simplex virus type 1 thymidine kinase gene. The resulting fusion gene (termed HyTK) confers hygromycin B resistance for dominant positive selection and ganciclovir sensitivity for negative selection and provides a means by which these selectable phenotypes may be expressed and regulated as a single genetic entity.

  2. Differential Expression of c-fos Proto-Oncogene in Normal Oral Mucosa versus Squamous Cell Carcinoma

    PubMed Central

    Krishna, Akhilesh; Bhatt, Madan Lal Brahma; Singh, Vineeta; Singh, Shraddha; Gangwar, Pravin Kumar; Singh, Uma Shankar; Kumar, Vijay; Mehrotra, Divya

    2018-01-01

    Background: The c-Fos nuclear protein dimerizes with Jun family proteins to form the transcription factor AP-1 complex which participates in signal transduction and regulation of normal cellular processes. In tumorigenesis, c-Fos promotes invasive growth through down-regulation of tumor suppressor genes but its role in oral carcinogenesis is not clear. Objectives: This study concerned c-fos gene expression in normal and malignant tissues of the oral cavity, with attention to associations between expression status and clinico-pathological profiles of OSCC patients. Method: A total of 65 histopathologically confirmed OSCC tissue samples were included in case group along with an equal number of age and sex-matched normal tissue samples of oral cavity for the control group. c-Fos protein and m-RNA expressions were analyzed using immunohistochemistry and qRT-PCR, respectively. Results: A significant low expression of c-Fos protein was observed in OSCC cases than normal control subjects (p= <0.001). The mean percent positivity of c-Fos protein in cases vs. controls was 24.91± 2.7 vs. 49.68± 2.2 (p= <0.001). Most OSCC tissue samples showed weak or moderate c-Fos expression whereas 53.8% of normal tissue sections presented with strong immunostaining. Moreover, the relative m-RNA expression for the c-fos gene was significantly decreased in case group (0.93± 0.48) as compared to the control group (1.22± 0.87). Majority of c-Fos positive cases were diagnosed with well developed tumor. The mean percent positivity of c-Fos protein was significantly lower in higher grade tumor as compared with normal oral mucosa (p= < 0.001). Conclusion: The present study suggested that the c-fos gene is downregulated in oral carcinomas. The disparity of c-Fos protein levels in different pathological grades of tumor and normal oral tissue samples may indicate that loss of c-Fos expression is related with the progression of OSCC. PMID:29582647

  3. Emerin and histone deacetylase 3 (HDAC3) cooperatively regulate expression and nuclear positions of MyoD, Myf5, and Pax7 genes during myogenesis

    PubMed Central

    Demmerle, Justin; Koch, Adam J.; Holaska, James M.

    2016-01-01

    The spatial organization of chromatin is critical in establishing cell-type dependent gene expression programs. The inner nuclear membrane protein emerin has been implicated in regulating global chromatin architecture. We show emerin associates with genomic loci of muscle differentiation promoting factors in murine myogenic progenitors, including Myf5 and MyoD. Prior to their transcriptional activation Myf5 and MyoD loci localized to the nuclear lamina in proliferating progenitors and moved to the nucleoplasm upon transcriptional activation during differentiation. The Pax7 locus, which is transcribed in proliferating progenitors, localized to the nucleoplasm and Pax7 moved to the nuclear lamina upon repression during differentiation. Localization of Myf5, MyoD, and Pax7 to the nuclear lamina and proper temporal expression of these genes required emerin and HDAC3. Interestingly, activation of HDAC3 catalytic activity rescued both Myf5 localization to the nuclear lamina and its expression. Collectively, these data support a model whereby emerin facilitates repressive chromatin formation at the nuclear lamina by activating the catalytic activity of HDAC3 to regulate the coordinated spatiotemporal expression of myogenic differentiation genes. PMID:24062260

  4. High-Throughput Screening to Identify Regulators of Meiosis-Specific Gene Expression in Saccharomyces cerevisiae.

    PubMed

    Kassir, Yona

    2017-01-01

    Meiosis and gamete formation are processes that are essential for sexual reproduction in all eukaryotic organisms. Multiple intracellular and extracellular signals feed into pathways that converge on transcription factors that induce the expression of meiosis-specific genes. Once triggered the meiosis-specific gene expression program proceeds in a cascade that drives progress through the events of meiosis and gamete formation. Meiosis-specific gene expression is tightly controlled by a balance of positive and negative regulatory factors that respond to a plethora of signaling pathways. The budding yeast Saccharomyces cerevisiae has proven to be an outstanding model for the dissection of gametogenesis owing to the sophisticated genetic manipulations that can be performed with the cells. It is possible to use a variety selection and screening methods to identify genes and their functions. High-throughput screening technology has been developed to allow an array of all viable yeast gene deletion mutants to be screened for phenotypes and for regulators of gene expression. This chapter describes a protocol that has been used to screen a library of homozygous diploid yeast deletion strains to identify regulators of the meiosis-specific IME1 gene.

  5. FAP positive fibroblasts induce immune checkpoint blockade resistance in colorectal cancer via promoting immunosuppression.

    PubMed

    Chen, Lingling; Qiu, Xiangting; Wang, Xinhua; He, Jian

    2017-05-20

    Immune checkpoint blockades that significantly prolonged survival of melanoma patients have been less effective on colorectal cancer (CRC) patients. Growing evidence suggested that fibroblast activation protein-alpha (FAP) on cancer associate fibroblasts (CAFs) has critical roles in regulating antitumor immune response by inducing tumor-promoting inflammation. In this study, we explored the roles of FAP in regulating the tumor immunity and immune checkpoint blockades resistance in CRC experimental systems. We found that CAFs with high FAP expression could induce immune checkpoint blockade resistance in CRC mouse model. Mechanistically, CAFs with high FAP expression promoted immunosuppression in the CRC tumor immune microenvironment by up-regulating CCL2 secretion, recruiting myeloid cells, and decreasing T-cell activity. In human CRC samples, FAP expression was proportional to myeloid cells number, but inversely related to T-cell number. High FAP expression also predicted poor survival of CRC patients. Taken together, our study suggested that high FAP expression in CAFs is one reason leading to immune checkpoint blockades resistance in CRC patients and FAP is an optional target for reversing immune checkpoint blockades resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Down-regulation of WAVE2, WASP family verprolin-homologous protein 2, in gastric cancer indicates lymph node metastasis and cell migration.

    PubMed

    Jia, Shuqin; Jia, Yongning; Weeks, Hoi Ping; Ruge, Fiona; Feng, Xuemin; Ma, Ruiting; Ji, Jiafu; Ren, Jianjun; Jiang, Wen G

    2014-05-01

    WAVE2 plays a crucial role in actin polymerisation and cell migration. We aimed to investigate the expression and cellular functions of WAVE2 in human gastric cancer (GC). The level of WAVE2 was determined using quantitative PCR (Q-PCR) in a cohort of human gastric tissues. Expression of WAVE2, ARP2, NWASP, ROCK1 and ROCK2 was examined using RT-PCR in paired tissues. WAVE2 and ARP2 protein co-expression was examined. Anti-WAVE2 transgene ribozymes were constructed and transiently transfected into human GC cells. Down-regulation of WAVE2 expression in GC was significantly correlated with lymph node metastasis. WAVE2 was positively correlated with E-cadherin and negatively with TWIST. Immunohistochemically, WAVE2 and ARP2 were not co-expressed in serial mirror sections. In vitro, WAVE2 knockdown was shown to increase cell motility, whilst ROCK inhibitor treatment reduced this effect in HGC27 cells. WAVE2 is down-regulated in GC and loses its metastatic role in GC. Knockdown of WAVE2 could increase metastatic potential by promoting the growth, invasiveness, motility, adhesiveness and suppressing EMT (epithelial-mesenchymal transition) of GC cells.

  7. Stroma-associated master regulators of molecular subtypes predict patient prognosis in ovarian cancer.

    PubMed

    Zhang, Shengzhe; Jing, Ying; Zhang, Meiying; Zhang, Zhenfeng; Ma, Pengfei; Peng, Huixin; Shi, Kaixuan; Gao, Wei-Qiang; Zhuang, Guanglei

    2015-11-04

    High-grade serous ovarian carcinoma (HGS-OvCa) has the lowest survival rate among all gynecologic cancers and is hallmarked by a high degree of heterogeneity. The Cancer Genome Atlas network has described a gene expression-based molecular classification of HGS-OvCa into Differentiated, Mesenchymal, Immunoreactive and Proliferative subtypes. However, the biological underpinnings and regulatory mechanisms underlying the distinct molecular subtypes are largely unknown. Here we showed that tumor-infiltrating stromal cells significantly contributed to the assignments of Mesenchymal and Immunoreactive clusters. Using reverse engineering and an unbiased interrogation of subtype regulatory networks, we identified the transcriptional modules containing master regulators that drive gene expression of Mesenchymal and Immunoreactive HGS-OvCa. Mesenchymal master regulators were associated with poor prognosis, while Immunoreactive master regulators positively correlated with overall survival. Meta-analysis of 749 HGS-OvCa expression profiles confirmed that master regulators as a prognostic signature were able to predict patient outcome. Our data unraveled master regulatory programs of HGS-OvCa subtypes with prognostic and potentially therapeutic relevance, and suggested that the unique transcriptional and clinical characteristics of ovarian Mesenchymal and Immunoreactive subtypes could be, at least partially, ascribed to tumor microenvironment.

  8. Human protein Staufen-2 promotes HIV-1 proliferation by positively regulating RNA export activity of viral protein Rev.

    PubMed

    Banerjee, Atoshi; Benjamin, Ronald; Balakrishnan, Kannan; Ghosh, Payel; Banerjee, Sharmistha

    2014-02-13

    The export of intron containing viral RNAs from the nucleus to the cytoplasm is an essential step in the life cycle of Human Immunodeficiency Virus-1 (HIV-1). As the eukaryotic system does not permit the transport of intron containing RNA out of the nucleus, HIV-1 makes a regulatory protein, Rev, that mediates the transportation of unspliced and partially spliced viral mRNA from the nucleus to the cytoplasm, thereby playing a decisive role in the generation of new infectious virus particles. Therefore, the host factors modulating the RNA export activity of Rev can be major determinants of virus production in an infected cell. In this study, human Staufen-2 (hStau-2) was identified as a host factor interacting with HIV-1 Rev through affinity chromatography followed by MALDI analyses. Our experiments involving transient expressions, siRNA mediated knockdowns and infection assays conclusively established that hStau-2 is a positive regulator of HIV-1 pathogenesis. We demonstrated that Rev-hStau-2 interactions positively regulated the RNA export activity of Rev and promoted progeny virus synthesis. The Rev-hStau-2 interaction was independent of RNA despite both being RNA binding proteins. hStau-2 mutant, with mutations at Q314R-A318F-K319E, deficient of binding Rev, failed to promote hStau-2 dependent Rev activity and viral production, validating the essentiality of this protein-protein interaction. The expression of this positive regulator was elevated upon HIV-1 infection in both human T-lymphocyte and astrocyte cell lines. With this study, we establish that human Staufen-2, a host factor which is up-regulated upon HIV-1 infection, interacts with HIV-1 Rev, thereby promoting its RNA export activity and progeny virus formation. Altogether, our study provides new insights into the emerging role of the Staufen family of mRNA transporters in host-pathogen interaction and supports the notion that obliterating interactions between viral and host proteins that positively regulate HIV-1 proliferation can significantly contribute to anti-retroviral treatments.

  9. MtPAR MYB transcription factor acts as an on switch for proanthocyanidin biosynthesis in Medicago truncatula

    PubMed Central

    Verdier, Jerome; Zhao, Jian; Torres-Jerez, Ivone; Ge, Shujun; Liu, Chenggang; He, Xianzhi; Mysore, Kirankumar S.; Dixon, Richard A.; Udvardi, Michael K.

    2012-01-01

    MtPAR (Medicago truncatula proanthocyanidin regulator) is an MYB family transcription factor that functions as a key regulator of proanthocyanidin (PA) biosynthesis in the model legume Medicago truncatula. MtPAR expression is confined to the seed coat, the site of PA accumulation. Loss-of-function par mutants contained substantially less PA in the seed coat than the wild type, whereas levels of anthocyanin and other specialized metabolites were normal in the mutants. In contrast, massive accumulation of PAs occurred when MtPAR was expressed ectopically in transformed hairy roots of Medicago. Transcriptome analysis of par mutants and MtPAR-expressing hairy roots, coupled with yeast one-hybrid analysis, revealed that MtPAR positively regulates genes encoding enzymes of the flavonoid–PA pathway via a probable activation of WD40-1. Expression of MtPAR in the forage legume alfalfa (Medicago sativa) resulted in detectable levels of PA in shoots, highlighting the potential of this gene for biotechnological strategies to increase PAs in forage legumes for reduction of pasture bloat in ruminant animals. PMID:22307644

  10. Identification and Characterization of a Cis Antisense RNA of the rpoH Gene of Salmonella enterica Serovar Typhi.

    PubMed

    Xiong, Changyan; Li, Xuejiao; Liu, Juanli; Zhao, Xin; Xu, Shungao; Huang, Xinxiang

    2018-01-01

    Antisense RNAs from complementary strands of protein coding genes regulate the expression of genes involved in many cellular processes. Using deep sequencing analysis of the Salmonella enterica serovar Typhi ( S. Typhi) transcriptome, a novel antisense RNA encoded on the strand complementary to the rpoH gene was revealed. In this study, the molecular features of this antisense RNA were assessed using northern blotting and rapid amplification of cDNA ends. The 3,508 nt sequence of RNA was identified as the antisense RNA of the rpoH gene and was named ArpH. ArpH was found to attenuate the invasion of HeLa cells by S. Typhi by regulating the expression of SPI-1 genes. In an rpoH mutant strain, the invasive capacity of S. Typhi was increased, whereas overexpression of ArpH positively regulates rpoH mRNA levels. Results of this study suggest that the cis -encoded antisense RNA ArpH is likely to affect the invasive capacity of S. Typhi by regulating the expression of rpoH .

  11. Zebrafish CiA interneurons are late-born primary neurons.

    PubMed

    Yeo, Sang-Yeob

    2009-12-11

    Pax2 is a neural-related transcription factor downstream of Notch signaling and is expressed in the developing spinal cord of zebrafish, including in CiA interneurons. However, the characteristics of pax2-positive neurons are largely unknown. The goal of this study was to characterize Pax2-positive neurons by examining their expression in embryos in which Notch function had been knocked down by mutation or injection of a morpholino or mRNA. I found that Pax2-positive CiA interneurons were late-differentiating primary neurons. pax2.1 was expressed in CoPA commissural neurons and CiA interneurons at 26 hpf. The number of pax2.1-positive cells increased in mind bomb mutant embryos or embryos injected with Su(H)1-MO, but not in cells injected with Xenopus Delta or Delta(stu) mRNA. These observations imply that Notch signaling plays a role in regulating the number of CiA neurons by preventing uncommitted precursors from acquiring a neuronal fate during vertebrate development.

  12. Two FGFRL-Wnt circuits organize the planarian anteroposterior axis.

    PubMed

    Scimone, M Lucila; Cote, Lauren E; Rogers, Travis; Reddien, Peter W

    2016-04-11

    How positional information instructs adult tissue maintenance is poorly understood. Planarians undergo whole-body regeneration and tissue turnover, providing a model for adult positional information studies. Genes encoding secreted and transmembrane components of multiple developmental pathways are predominantly expressed in planarian muscle cells. Several of these genes regulate regional identity, consistent with muscle harboring positional information. Here, single-cell RNA-sequencing of 115 muscle cells from distinct anterior-posterior regions identified 44 regionally expressed genes, including multiple Wnt and ndk/FGF receptor-like (ndl/FGFRL) genes. Two distinct FGFRL-Wnt circuits, involving juxtaposed anterior FGFRL and posterior Wnt expression domains, controlled planarian head and trunk patterning. ndl-3 and wntP-2 inhibition expanded the trunk, forming ectopic mouths and secondary pharynges, which independently extended and ingested food. fz5/8-4 inhibition, like that of ndk and wntA, caused posterior brain expansion and ectopic eye formation. Our results suggest that FGFRL-Wnt circuits operate within a body-wide coordinate system to control adult axial positioning.

  13. Protein tyrosine phosphatase, PTP1B, expression and activity in rat corneal endothelial cells

    PubMed Central

    Harris, Deshea L.

    2007-01-01

    Purpose The current studies were conducted to determine whether the protein tyrosine phosphatase, PTP1B, plays a role in regulating epidermal growth factor receptor (EGFR) Tyr992 phosphorylation and cell cycle entry in rat corneal endothelial cells. Methods Corneas were obtained from male Sprague-Dawley rats. PTP1B mRNA and protein expression were compared in confluent and subconfluent cells by RT-PCR and western blots. Immunocytochemistry was used to determine the subcellular localization of both PTP1B and EGFR following epidermal growth factor (EGF) stimulation. Western blots were used to analyze the time-dependent effect of EGF on phosphorylation of EGFR Tyr992 plus or minus CinnGEL 2Me, an inhibitor of PTP1B activity. The effect of PTP1B inhibition on cell cycle entry was determined by calculating the percent of Ki67-positive cells following EGF treatment. Results PTP1B mRNA expression was similar in confluent and subconfluent cells, but PTP1B protein was expressed at 3 fold higher levels in subconfluent cells. Positive staining for PTP1B was localized in vesicular structures below the plasma membrane. EGFR staining was located at cell-cell borders in untreated endothelium, but was mainly cytoplasmic by 15 min after EGF treatment. In control cultures, phosphorylation of EGFR Tyr992 peaked by 5 min following EGF stimulation and rapidly decreased to basal levels by 30 min. In cultures pretreated with CinnGEL 2Me, Tyr992 phosphorylation peaked 2 min following EGF addition and was consistently sustained at a higher level than controls until 60 min after treatment. By 18 h following EGF treatment, cultures pretreated with CinnGEL 2Me exhibited a 1.7 fold increase in the number of Ki67-positive cells compared with control cultures. Conclusions Comparison of PTP1B mRNA and protein levels indicates that PTP1B expression is regulated mainly at the protein level and is higher in subconfluent cells. PTP1B was located in vesicles below the plasma membrane. The fact that EGFR is internalized in response to EGF stimulation suggests that it could interact with and be regulated by PTP1B. The ability of PTP1B inhibitor to sustain EGFR Tyr992 phosphorylation and increase the number of Ki67-positive cells indicates that PTP1B plays a role in the negative regulation of EGF-induced signaling and helps suppress cell cycle entry. PMID:17563729

  14. The effect of Chinese herbs and its effective components on coronary heart disease through PPARs-PGC1α pathway.

    PubMed

    Wang, Qiyan; Li, Chun; Zhang, Qian; Wang, Yuanyuan; Shi, Tianjiao; Lu, Linghui; Zhang, Yi; Wang, Yong; Wang, Wei

    2016-12-12

    DanQi pill (DQP) is prescribed widely in China and has definite cardioprotective effect on coronary heart disease. Our previous studies proved that DQP could effectively regulate plasma levels of high density lipoprotein (HDL) and low density lipoprotein (LDL). However, the regulatory mechanisms of DQP and its major components Salvianolic acids and Panax notoginseng saponins (DS) on lipid metabolism disorders haven't been comprehensively studied so far. Rat model of coronary heart disease was induced by left anterior descending (LAD) artery ligation operations. Rats were divided into sham, model, DQP treated, DS treated and positive drug (clofibrate) treated groups. At 28 days after surgery, cardiac functions were assessed by echocardiography. Expressions of transcription factors and key molecules in energy metabolism pathway were measured by reverse transcriptase polymerase chain reaction or western blotting. In ischemic heart model, cardiac functions were severely injured but improved by treatments of DQP and DS. Expression of LPL was down-regulated in model group. Both DQP and DS could up-regulate the mRNA expression of LPL. Membrane proteins involved in lipid transport and uptake, such as FABP4 and CPT-1A, were down-regulated in ischemic heart tissues. Treatment with DQP and DS regulated lipid metabolisms by up-regulating expressions of FABP4 and CPT-1A. DQP and DS also suppressed expression of cytochrome P450. Furthermore, transcriptional factors, such as PPARα, PPARγ, RXRA and PGC-1α, were down-regulated in ischemic model group. DQP and DS could up-regulate expressions of these factors. However, DS showed a better efficacy than DQP on PGC-1α, a coactivator of PPARs. Key molecules in signaling pathways such as AKT1/2, ERK and PI3K were also regulated by DQP and DS simultaneously. Salvianolic acids and Panax notoginseng are the major effective components of DanQi pill in improving lipid metabolism in ischemic heart model. The effects may be mediated by regulating transcriptional factors such as PPARs, RXRA and PGC-1α.

  15. CLONING AND EXPRESSION OF THE TRANSLOCATOR PROTEIN (18 KDA), VOLTAGE-DEPENDENT ANION CHANNEL, AND DIAZEPAM BINDING INHIBITOR IN THE GONAD OF LARGEMOUTH BASS (MICROPTERUS SALMOIDES) ACROSS THE REPRODUCTIVE CYCLE

    PubMed Central

    Doperalski, Nicholas J.; Martyniuk, Christopher J.; Prucha, Melinda S.; Kroll, Kevin J.; Denslow, Nancy D.; Barber, David S.

    2011-01-01

    Cholesterol transport across the mitochondrial membrane is rate-limiting for steroidogenesis in vertebrates. Previous studies in fish have characterized expression of the steroidogenic acute regulatory protein, however the function and regulation of other genes and proteins involved in piscine cholesterol transport have not been evaluated. In the current study, mRNA sequences of the 18 kDa translocator protein (tspo; formerly peripheral benzodiazepine receptor), voltage-dependent anion channel (vdac), and diazepam binding inhibitor (dbi; also acyl-CoA binding protein) were cloned from largemouth bass. Gonadal expression was examined across reproductive stages to determine if expression is correlated with changes in steroid levels and with indicators of reproductive maturation. In testis, transcript abundance of tspo and dbi increased with reproductive maturation (6- and 23-fold maximal increase, respectively) and expression of tspo and dbi was positively correlated with reproductive stage, gonadosomatic index (GSI), and circulating levels of testosterone. Testis vdac expression was positively correlated with reproductive stage and GSI. In females, gonadal tspo and vdac expression was negatively correlated with GSI and levels of plasma testosterone and 17β-estradiol. Ovarian dbi expression was not correlated with indicators of reproductive maturation. These studies represent the first investigation of the steroidogenic role of tspo, vdac, and dbi in fish. Findings suggest that cholesterol transport in largemouth bass testis, but not ovary, may be transcriptionally-regulated, however further investigation will be necessary to fully elucidate the role of these genes in largemouth bass steroidogenesis. PMID:21600210

  16. Fascin Is Critical for the Maintenance of Breast Cancer Stem Cell Pool Predominantly via the Activation of the Notch Self-Renewal Pathway.

    PubMed

    Barnawi, Rayanah; Al-Khaldi, Samiyah; Majed Sleiman, Ghida; Sarkar, Abdullah; Al-Dhfyan, Abdullah; Al-Mohanna, Falah; Ghebeh, Hazem; Al-Alwan, Monther

    2016-12-01

    An emerging dogma shows that tumors are initiated and maintained by a subpopulation of cancer cells that hijack some stem cell features and thus referred to as "cancer stem cells" (CSCs). The exact mechanism that regulates the maintenance of CSC pool remains largely unknown. Fascin is an actin-bundling protein that we have previously demonstrated to be a major regulator of breast cancer chemoresistance and metastasis, two cardinal features of CSCs. Here, we manipulated fascin expression in breast cancer cell lines and used several in vitro and in vivo approaches to examine the relationship between fascin expression and breast CSCs. Fascin knockdown significantly reduced stem cell-like phenotype (CD44 hi /CD24 lo and ALDH + ) and reversal of epithelial to mesenchymal transition. Interestingly, expression of the embryonic stem cell transcriptional factors (Oct4, Nanog, Sox2, and Klf4) was significantly reduced when fascin expression was down-regulated. Functionally, fascin-knockdown cells were less competent in forming colonies and tumorspheres, consistent with lower basal self-renewal activity and higher susceptibility to chemotherapy. Fascin effect on CSC chemoresistance and self-renewability was associated with Notch signaling. Activation of Notch induced the relevant downstream targets predominantly in the fascin-positive cells. Limiting-dilution xenotransplantation assay showed higher frequency of tumor-initiating cells in the fascin-positive group. Collectively, our data demonstrated fascin as a critical regulator of breast CSC pool at least partially via activation of the Notch self-renewal signaling pathway and modification of the expression embryonic transcriptional factors. Targeting fascin may halt CSCs and thus presents a novel therapeutic approach for effective treatment of breast cancer. Stem Cells 2016;34:2799-2813 Video Highlight: https://youtu.be/GxS4fJ_Ow-o. © 2016 AlphaMed Press.

  17. LncRNA MALAT1 sponges miR-204 to promote osteoblast differentiation of human aortic valve interstitial cells through up-regulating Smad4.

    PubMed

    Xiao, Xiaoxiong; Zhou, Tingwen; Guo, Shichao; Guo, Chao; Zhang, Qiao; Dong, Nianguo; Wang, Yongjun

    2017-09-15

    Emerging evidences have indicated that long non-coding RNAs (lncRNAs) play vital roles in cardiovascular physiology and pathology. The lncRNA MALAT1, a highly abundant and conserved imprinted gene, has been implicated in many cardiovascular diseases. However, the function of MALAT1 in calcific aortic valve disease (CAVD) remains unknown. This study sought to document the function and underlying mechanism of MALAT1 in regulating CAVD. Protein level was determined by immunoblotting and immunofluorescence staining. MALAT1, miR-204 and mRNA expressions were detected by qRT-PCR. Mineralized bone matrix formation was assessed by Alizarin Red staining. The interaction between MALAT1 and miR-204 was studied using luciferase reporter assay, RNA pull-down assay and RNA-binding protein immunoprecipitation assay. Ectopic expression of MALAT1 was observed in calcific valves and after osteogenic induction in human aortic valve interstitial cells (VICs). In vitro experiments revealed that MALAT1 acted as a positive regulator of osteogenic differentiation by repressing miR-204 expression and activity and thereby promoting expression of osteoblast-specific markers, including alkaline phosphatase, mineralized bone matrix formation and osteocalcin. Mechanistically, we identified Smad4 as a direct target of miR-204. Importantly, MALAT1 could directly interact with miR-204 and overexpression of miR-204 efficiently reversed the upregulation of Smad4 induced by MALAT1. Thus, MALAT1 positively regulated the expression of Smad4 through sponging miR-204, and promoted osteogenic differentiation of VICs. Our study provides novel mechanistic insights into a critical role for lncRNA MALAT1 as a miRNA sponge in CAVD and sheds new light on lncRNA-directed diagnostics and therapeutics in CAVD. Copyright © 2017. Published by Elsevier B.V.

  18. RSL genes are sufficient for rhizoid system development in early diverging land plants.

    PubMed

    Jang, Geupil; Yi, Keke; Pires, Nuno D; Menand, Benoît; Dolan, Liam

    2011-06-01

    Land plants are anchored to their substratum from which essential inorganic nutrients are taken up. These functions are carried out by a system of rhizoids in early diverging groups of land plants, such as mosses, liverworts and hornworts. Physcomitrella patens RHD SIX-LIKE1 (PpRSL1) and PpRSL2 transcription factors are necessary for rhizoid development in mosses. Similar proteins, AtRHD6 and AtRSL1, control the development of root hairs in Arabidopsis thaliana. Auxin positively regulates root hair development independently of AtRHD6 and AtRSL1 in A. thaliana but the regulatory interactions between auxin and PpRSL1 and PpRSL2 are unknown. We show here that co-expression of PpRSL1 and PpRSL2 is sufficient for the development of the rhizoid system in the moss P. patens; constitutive expression of PpRSL1 and PpRSL2 converts developing leafy shoot axes (gametophores) into rhizoids. During wild-type development, PpRSL1 and PpRSL2 are expressed in the specialized cells that develop rhizoids, indicating that cell-specific expression of PpRSL1 and PpRSL2 is sufficient to promote rhizoid differentiation during wild-type P. patens development. In contrast to A. thaliana, auxin promotes rhizoid development by positively regulating PpRSL1 and PpRSL2 activity in P. patens. This indicates that even though the same genes control the development of root hairs and rhizoids, the regulation of this transcriptional network by auxin is different in these two species. This suggests that auxin might have controlled the development of the first land plant soil anchoring systems that evolved 465 million years ago by regulating the expression of RSL genes and that this regulatory network has changed since mosses and angiosperms last shared a common ancestor.

  19. Expression of the alaE gene is positively regulated by the global regulator Lrp in response to intracellular accumulation of l-alanine in Escherichia coli.

    PubMed

    Ihara, Kohei; Sato, Kazuki; Hori, Hatsuhiro; Makino, Yumiko; Shigenobu, Shuji; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2017-04-01

    The alaE gene in Escherichia coli encodes an l-alanine exporter that catalyzes the active export of l-alanine using proton electrochemical potential. In our previous study, alaE expression was shown to increase in the presence of l-alanyl-l-alanine (Ala-Ala). In this study, the global regulator leucine-responsive regulatory protein (Lrp) was identified as an activator of the alaE gene. A promoter less β-galactosidase gene was fused to an alaE upstream region (240 nucleotides). Cells that were lacZ-deficient and harbored this reporter plasmid showed significant induction of β-galactosidase activity (approximately 17-fold) in the presence of 6 mM l-alanine, l-leucine, and Ala-Ala. However, a reporter plasmid possessing a smaller alaE upstream region (180 nucleotides) yielded transformants with strikingly low enzyme activity under the same conditions. In contrast, lrp-deficient cells showed almost no β-galactosidase induction, indicating that Lrp positively regulates alaE expression. We next performed an electrophoretic mobility shift assay (EMSA) and a DNase I footprinting assay using purified hexahistidine-tagged Lrp (Lrp-His). Consequently, we found that Lrp-His binds to the alaE upstream region spanning nucleotide -161 to -83 with a physiologically relevant affinity (apparent K D , 288.7 ± 83.8 nM). Furthermore, the binding affinity of Lrp-His toward its cis-element was increased by l-alanine and l-leucine, but not by Ala-Ala and d-alanine. Based on these results, we concluded that the gene expression of the alaE is regulated by Lrp in response to intracellular levels of l-alanine, which eventually leads to intracellular homeostasis of l-alanine concentrations. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Relation between premorbid personality and patterns of emotion expression in mid- to late-stage dementia.

    PubMed

    Magai, C; Cohen, C I; Culver, C; Gomberg, D; Malatesta, C

    1997-11-01

    Twenty-seven nursing home patients with mid- to late-stage dementia participated in a study of the relation between preillness personality, as indexed by attachment and emotion regulation style, and current emotional behavior. Preillness measures were completed by family members and current assessments of emotion were supplied by nursing home aides and family members; in addition, emotion was coded during a family visit using an objective coding system for facial emotion expressions. Attachment style was found to be related to the expression of positive affect, with securely attached individuals displaying more positive affect than avoidantly attached individuals. In addition, high ratings on premorbid hostility were associated with higher rates of negative affect and lower rates of positive affect. These findings indicate that premorbid aspects of personality show continuity over time, even in mid- to late-stage dementia.

  1. Embodied Resistance to Persuasion in Advertising.

    PubMed

    Lewinski, Peter; Fransen, Marieke L; Tan, Ed S

    2016-01-01

    From the literature on resistance to persuasion in advertising, much is known about how people can resist advertising by adopting resistance strategies, such as avoidance, counter-arguing, and selective attention (e.g., Fransen et al., 2015b). However, the role of emotion regulation and bodily expression in resisting persuasion is so far underexplored. This is a surprising observation if one considers that at least 40% of advertisements use positive emotions (i.e., happiness) to persuade people to like the ad, brand, and product (Weinberger et al., 1995). In this article we present a framework in which we apply previous knowledge and theories on emotion regulation and embodiment to the process of resistance to persuasion. In doing so, we specifically address the role of facial expression in the course of resistance. The literature and findings from our own research lead us to propose that people can resist persuasion by controlling their facial expression of emotion when exposed to an advertisement. Controlling the expression of emotions elicited by an ad (for example refusing to smile) might be a fruitful way to resist the ad's persuasive potential. Moreover, we argue that co-viewers can affect embodied resistance to persuasion. Showing the viability of embodied resistance to persuasion is relevant in view of the fact that ads trying to persuade us by addressing our positive emotions are ubiquitous. Embodied resistance might help people to cope with these induced positive emotions in order to resist advertisements and might therefore work as a novel and effective strategy to resist persuasion.

  2. Embodied Resistance to Persuasion in Advertising

    PubMed Central

    Lewinski, Peter; Fransen, Marieke L.; Tan, Ed S.

    2016-01-01

    From the literature on resistance to persuasion in advertising, much is known about how people can resist advertising by adopting resistance strategies, such as avoidance, counter-arguing, and selective attention (e.g., Fransen et al., 2015b). However, the role of emotion regulation and bodily expression in resisting persuasion is so far underexplored. This is a surprising observation if one considers that at least 40% of advertisements use positive emotions (i.e., happiness) to persuade people to like the ad, brand, and product (Weinberger et al., 1995). In this article we present a framework in which we apply previous knowledge and theories on emotion regulation and embodiment to the process of resistance to persuasion. In doing so, we specifically address the role of facial expression in the course of resistance. The literature and findings from our own research lead us to propose that people can resist persuasion by controlling their facial expression of emotion when exposed to an advertisement. Controlling the expression of emotions elicited by an ad (for example refusing to smile) might be a fruitful way to resist the ad’s persuasive potential. Moreover, we argue that co-viewers can affect embodied resistance to persuasion. Showing the viability of embodied resistance to persuasion is relevant in view of the fact that ads trying to persuade us by addressing our positive emotions are ubiquitous. Embodied resistance might help people to cope with these induced positive emotions in order to resist advertisements and might therefore work as a novel and effective strategy to resist persuasion. PMID:27574512

  3. Interorganellar Regulation of Lysosome Positioning by the Golgi Apparatus through Rab34 Interaction with Rab-interacting Lysosomal Protein

    PubMed Central

    Wang, Tuanlao; Hong, Wanjin

    2002-01-01

    We present evidence to suggest the existence of a regulatory pathway for the Golgi apparatus to modulate the spatial positioning of otherwise distantly located lysosomes. Rab34, a new member of the Rab GTPase family, is associated primarily with the Golgi apparatus. Expression of wild-type or GTP-restricted but not GDP-restricted versions of Rab34 causes spatial redistribution of lysosomes from the periphery to the peri-Golgi region. The regulation of lysosomal positioning by Rab34 depends on its association with the membrane mediated by prenylation and its direct interaction with Rab-interacting lysosomal protein (RILP). This biological activity, mediated by Rab34-RILP interaction, is dependent on Lys82 in the switch I region. Our results have uncovered a novel mechanism for the Golgi apparatus to regulate the spatial distribution of another organelle. PMID:12475955

  4. The C-terminal domain of Nrf1 negatively regulates the full-length CNC-bZIP factor and its shorter isoform LCR-F1/Nrf1β; both are also inhibited by the small dominant-negative Nrf1γ/δ isoforms that down-regulate ARE-battery gene expression.

    PubMed

    Zhang, Yiguo; Qiu, Lu; Li, Shaojun; Xiang, Yuancai; Chen, Jiayu; Ren, Yonggang

    2014-01-01

    The C-terminal domain (CTD, aa 686-741) of nuclear factor-erythroid 2 p45-related factor 1 (Nrf1) shares 53% amino acid sequence identity with the equivalent Neh3 domain of Nrf2, a homologous transcription factor. The Neh3 positively regulates Nrf2, but whether the Neh3-like (Neh3L) CTD of Nrf1 has a similar role in regulating Nrf1-target gene expression is unknown. Herein, we report that CTD negatively regulates the full-length Nrf1 (i.e. 120-kDa glycoprotein and 95-kDa deglycoprotein) and its shorter isoform LCR-F1/Nrf1β (55-kDa). Attachment of its CTD-adjoining 112-aa to the C-terminus of Nrf2 yields the chimaeric Nrf2-C112Nrf1 factor with a markedly decreased activity. Live-cell imaging of GFP-CTD reveals that the extra-nuclear portion of the fusion protein is allowed to associate with the endoplasmic reticulum (ER) membrane through the amphipathic Neh3L region of Nrf1 and its basic c-tail. Thus removal of either the entire CTD or the essential Neh3L portion within CTD from Nrf1, LCR-F1/Nrf1β and Nrf2-C112Nrf1, results in an increase in their transcriptional ability to regulate antioxidant response element (ARE)-driven reporter genes. Further examinations unravel that two smaller isoforms, 36-kDa Nrf1γ and 25-kDa Nrf1δ, act as dominant-negative inhibitors to compete against Nrf1, LCR-F1/Nrf1β and Nrf2. Relative to Nrf1, LCR-F1/Nrf1β is a weak activator, that is positively regulated by its Asn/Ser/Thr-rich (NST) domain and acidic domain 2 (AD2). Like AD1 of Nrf1, both AD2 and NST domain of LCR-F1/Nrf1β fused within two different chimaeric contexts to yield Gal4D:Nrf1β607 and Nrf1β:C270Nrf2, positively regulate their transactivation activity of cognate Gal4- and Nrf2-target reporter genes. More importantly, differential expression of endogenous ARE-battery genes is attributable to up-regulation by Nrf1 and LCR-F1/Nrf1β and down-regulation by Nrf1γ and Nrf1δ.

  5. Circadian Clock Regulates Response to Pesticides in Drosophila via Conserved Pdp1 Pathway

    PubMed Central

    Beaver, Laura Michelle; Hooven, Louisa Ada; Butcher, Shawn Michael; Krishnan, Natraj; Sherman, Katherine Alice; Chow, Eileen Shin-Yeu; Giebultowicz, Jadwiga Maria

    2010-01-01

    Daily rhythms generated by the circadian clock regulate many life functions, including responses to xenobiotic compounds. In Drosophila melanogaster, the circadian clock consists of positive elements encoded by cycle (cyc) and Clock (Clk) and negative elements encoded by period (per) and timeless (tim) genes. The ϵ-isoform of the PAR-domain protein 1 (Pdp1ε) transcription factor is controlled by positive clock elements and regulates daily locomotor activity rhythms. Pdp1 target genes have not been identified, and its involvement in other clock output pathways is not known. Mammalian orthologs of Pdp1 have been implicated in the regulation of xenobiotic metabolism; therefore, we asked whether Pdp1 has a similar role in the fly. Using pesticides as model toxicants, we determined that disruption of Pdp1ε increased pesticide-induced mortality in flies. Flies deficient for cyc also showed increased mortality, while disruption of per and tim had no effect. Day/night and Pdp1-dependent differences in the expression of xenobiotic-metabolizing enzymes Cyp6a2, Cyp6g1, and α-Esterase-7 were observed and likely contribute to impaired detoxification. DHR96, a homolog of constitutive androstane receptor and pregnane X receptor, is involved in pesticide response, and DHR96 expression decreased when Pdp1 was suppressed. Taken together, our data uncover a pathway from the positive arm of the circadian clock through Pdp1 to detoxification effector genes, demonstrating a conserved role of the circadian system in modulating xenobiotic toxicity. PMID:20348229

  6. [Study on screening differentially expressed genes in mice livers by silver staining DD-PCR].

    PubMed

    Luan, Xin-Hong; Hu, Zhong-Ming; Liu, Wei-Quan; Jiang, Yu; Wang, Kai; Wu, Yong-Kui; Li, Qian-Xue

    2005-08-01

    To screen swimming-fatigue related genes in mice and lay theoretic basis for researching the molecular mechanism of fatigue. 30 male BALB/c mice (20 +/- 2g) were divided into control group, dipping in water group and swimming-fatigue group respectively. After fatigue for swimming in swimming-fatigue group, with control group and dipping in water group, liver tissues in mice were collected. With improved silver staining mRNA differential display method, the differentially expressed genes in mice livers were screened and evaluated by reversed Northern blot. The positive segments were analyzed homology by BLAST. 7 of DD-ESTs were gained. Two of them only expressed in swimming-fatigue group, two down-regulated expressed, and three up-regulated. One of them was a novel gene and was accepted by GenBank, AY615302. Seven DD-ESTs in swimming-fatigue mice were gained by silver staining mRNA differential display method.

  7. Constitutive gene expression and specification of tissue identity in adult planarian biology

    PubMed Central

    Reddien, Peter W.

    2011-01-01

    Planarians are flatworms that constitutively maintain adult tissues through cell turnover and can regenerate entire organisms from tiny body fragments. In addition to requiring new cells (from neoblasts), these feats require mechanisms that specify tissue identity in the adult. Critical roles for Wnt and BMP signaling in regeneration and maintenance of the body axes have been uncovered, among other regulatory factors. Available data indicate that genes involved in positional identity regulation at key embryonic stages in other animals display persisting regionalized expression in adult planarians. These expression patterns suggest that a constitutively active gene expression map exists for maintenance of the planarian body. Planarians therefore present a fertile ground for identification of factors regulating regionalization of the metazoan body plan and for study of the attributes of these factors that can lead to maintenance and regeneration of adult tissues. PMID:21680047

  8. Notch3 negatively regulates chemoresistance in breast cancers.

    PubMed

    Gu, Xiaoting; Lu, Chunxiao; He, Dongxu; Lu, Yangfan; Jin, Jian; Liu, Dequan; Ma, Xin

    2016-10-14

    To define the role of the NOTCH signaling pathway in the development of chemoresistance and the associated epithelial-mesenchymal transition (EMT), we investigated the effect of Notch3 on adriamycin (ADM)-resistant human breast cancer cells (MCF-7/ADM cells). We found that Notch3 was downregulated and involved in the chemoresistance of MCF-7/ADM cells, while forced expression of Notch3 reversed the chemoresistance. Furthermore, fos-related antigen 1 (Fra1) was negatively regulated by Notch3 and was highly expressed in MCF-7/ADM cells. Increased Fra1 activated the EMT process. Finally, Notch3 expression was confirmed in clinically chemoresistant samples of breast cancers from patients receiving anthracycline-based chemotherapy. Low expression of Notch3 was an unfavorable predictor of distant relapse-free survival in ER positive breast cancers. Taken together, our findings demonstrate that the Notch3-Fra1 signaling pathway mediates chemoresistance via the EMT.

  9. Netrin-4 regulates thalamocortical axon branching in an activity-dependent fashion.

    PubMed

    Hayano, Yasufumi; Sasaki, Kensuke; Ohmura, Nami; Takemoto, Makoto; Maeda, Yurie; Yamashita, Toshihide; Hata, Yoshio; Kitada, Kazuhiro; Yamamoto, Nobuhiko

    2014-10-21

    Axon branching is remodeled by sensory-evoked and spontaneous neuronal activity. However, the underlying molecular mechanism is largely unknown. Here, we demonstrate that the netrin family member netrin-4 (NTN4) contributes to activity-dependent thalamocortical (TC) axon branching. In the postnatal developmental stages of rodents, ntn4 expression was abundant in and around the TC recipient layers of sensory cortices. Neuronal activity dramatically altered the ntn4 expression level in the cortex in vitro and in vivo. TC axon branching was promoted by exogenous NTN4 and suppressed by depletion of the endogenous protein. Moreover, unc-5 homolog B (Unc5B), which strongly bound to NTN4, was expressed in the sensory thalamus, and knockdown of Unc5B in thalamic cells markedly reduced TC axon branching. These results suggest that NTN4 acts as a positive regulator for TC axon branching through activity-dependent expression.

  10. Androgen Triggers the Pro-Migratory CXCL12/CXCR4 Axis in AR-Positive Breast Cancer Cell Lines: Underlying Mechanism and Possible Implications for the Use of Aromatase Inhibitors in Breast Cancer.

    PubMed

    Azariadis, Kalliopi; Kiagiadaki, Fotini; Pelekanou, Vasiliki; Bempi, Vasiliki; Alexakis, Kostas; Kampa, Marilena; Tsapis, Andreas; Castanas, Elias; Notas, George

    2017-01-01

    Reports regarding the role of androgen in breast cancer (BC) are conflicting. Some studies suggest that androgen could lead to undesirable responses in the presence of certain BC tumor characteristics. We have shown that androgen induces C-X-C motif chemokine 12 (CXCL12) in BC cell lines. Our aim was to identify the mechanisms regulating the phenotypic effects of androgen-induced CXCL12 on Androgen Receptor (AR) positive BC cell lines. We analyzed the expression of CXCL12 and its receptors with qPCR and ELISA and the role of Nuclear Receptor Coactivator 1 (NCOA1) in this effect. AR effects on the CXCL12 promoter was studied via Chromatin-immunoprecipitation. We also analyzed publically available data from The Cancer Genome Atlas to verify AR-CXCL12 interactions and to identify the effect or Aromatase Inhibitors (AI) therapy on CXCL12 expression and disease progression in AR positive cases. CXCL12 induction occurs only in AR-positive BC cell lines, possibly via an Androgen Response Element, upstream of the CXCL12 promoter. The steroid receptor co-regulator NCOA1 is critical for this effect. Androgen only induced the motility of p53-mutant BC cells T47D cells via upregulation of CXCR4 expression while they had no effect on wild-type p53 MCF-7 cells. Loss of CXCR4 expression and depletion of CXCL12 abolished the effect of androgen in T47D cells while inhibition of p53 expression in MCF-7 cells made them responsive to androgen and increased their motility in the presence to androgen. Patients with estrogen receptor positive (ER+)/AR+ BC treated with AIs were at increased risk of disease progression compared to ER+/AR+ non-AI treated and ER+/AR- AI treated cases. AIs may lead to unfavorable responses in some ER/AR positive BC cases, especially in patients with AR+, p53 mutant tumors. © 2017 The Author(s). Published by S. Karger AG, Basel.

  11. Prognostic impact of c-Rel nuclear expression and REL amplification and crosstalk between c-Rel and the p53 pathway in diffuse large B-cell lymphoma

    PubMed Central

    Ok, Chi Young; Tzankov, Alexandar; Manyam, Ganiraju C.; Sun, Ruifan; Visco, Carlo; Zhang, Mingzhi; Montes-Moreno, Santiago; Dybkaer, Karen; Chiu, April; Orazi, Attilio; Zu, Youli; Bhagat, Govind; Richards, Kristy L.; Hsi, Eric D.; Choi, William W.L.; van Krieken, J. Han; Huh, Jooryung; Ponzoni, Maurilio; Ferreri, Andrés J.M.; Møller, Michael B.; Wang, Jinfeng; Parsons, Ben M.; Winter, Jane N.; Piris, Miguel A.; Pham, Lan V.; Medeiros, L. Jeffrey; Young, Ken H.

    2015-01-01

    Dysregulated NF-κB signaling is critical for lymphomagenesis. The regulation, function, and clinical relevance of c-Rel/NF-κB activation in diffuse large B-cell lymphoma (DLBCL) have not been well studied. In this study we analyzed the prognostic significance and gene-expression signature of c-Rel nuclear expression as surrogate of c-Rel activation in 460 patients with de novo DLBCL. Nuclear c-Rel expression, observed in 137 (26.3%) DLBCL patients frequently associated with extranoal origin, did not show significantly prognostic impact in the overall- or germinal center B-like-DLBCL cohort, likely due to decreased pAKT and Myc levels, up-regulation of FOXP3, FOXO3, MEG3 and other tumor suppressors coincided with c-Rel nuclear expression, as well as the complicated relationships between NF-κB members and their overlapping function. However, c-Rel nuclear expression correlated with significantly poorer survival in p63+ and BCL-2− activated B-cell-like-DLBCL, and in DLBCL patients with TP53 mutations. Multivariate analysis indicated that after adjusting clinical parameters, c-Rel positivity was a significantly adverse prognostic factor in DLBCL patients with wild type TP53. Gene expression profiling suggested dysregulations of cell cycle, metabolism, adhesion, and migration associated with c-Rel activation. In contrast, REL amplification did not correlate with c-Rel nuclear expression and patient survival, likely due to co-amplification of genes that negatively regulate NF-κB activation. These insights into the expression, prognostic impact, regulation and function of c-Rel as well as its crosstalk with the p53 pathway underscore the importance of c-Rel and have significant therapeutic implications. PMID:26324762

  12. MMSET deregulation affects cell cycle progression and adhesion regulons in t(4;14) myeloma plasma cells

    PubMed Central

    Brito, Jose L.R.; Walker, Brian; Jenner, Matthew; Dickens, Nicholas J.; Brown, Nicola J.M.; Ross, Fiona M.; Avramidou, Athanasia; Irving, Julie A.E.; Gonzalez, David; Davies, Faith E.; Morgan, Gareth J.

    2009-01-01

    Background The recurrent immunoglobulin translocation, t(4;14)(p16;q32) occurs in 15% of multiple myeloma patients and is associated with poor prognosis, through an unknown mechanism. The t(4;14) up-regulates fibroblast growth factor receptor 3 (FGFR3) and multiple myeloma SET domain (MMSET) genes. The involvement of MMSET in the pathogenesis of t(4;14) multiple myeloma and the mechanism or genes deregulated by MMSET upregulation are still unclear. Design and Methods The expression of MMSET was analyzed using a novel antibody. The involvement of MMSET in t(4;14) myelomagenesis was assessed by small interfering RNA mediated knockdown combined with several biological assays. In addition, the differential gene expression of MMSET-induced knockdown was analyzed with expression microarrays. MMSET gene targets in primary patient material was analyzed by expression microarrays. Results We found that MMSET isoforms are expressed in multiple myeloma cell lines, being exclusively up-regulated in t(4;14)-positive cells. Suppression of MMSET expression affected cell proliferation by both decreasing cell viability and cell cycle progression of cells with the t(4;14) translocation. These findings were associated with reduced expression of genes involved in the regulation of cell cycle progression (e.g. CCND2, CCNG1, BRCA1, AURKA and CHEK1), apoptosis (CASP1, CASP4 and FOXO3A) and cell adhesion (ADAM9 and DSG2). Furthermore, we identified genes involved in the latter processes that were differentially expressed in t(4;14) multiple myeloma patient samples. Conclusions In conclusion, dysregulation of MMSET affects the expression of several genes involved in the regulation of cell cycle progression, cell adhesion and survival. PMID:19059936

  13. Malat1 as an evolutionarily conserved lncRNA, plays a positive role in regulating proliferation and maintaining undifferentiated status of early-stage hematopoietic cells.

    PubMed

    Ma, Xian-Yong; Wang, Jian-Hui; Wang, Jing-Lan; Ma, Charles X; Wang, Xiao-Chun; Liu, Feng-Song

    2015-09-03

    The metastasis-associated lung adenocarcinoma transcription 1 (Malat1) is a highly conserved long non-coding RNA (lncRNA) gene. Previous studies showed that Malat1 is abundantly expressed in many tissues and involves in promoting tumor growth and metastasis by modulating gene expression and target protein activities. However, little is known about the biological function and regulation mechanism of Malat1 in normal cell proliferation. In this study we conformed that Malat1 is highly conserved across vast evolutionary distances amongst 20 species of mammals in terms of sequence, and found that mouse Malat1 expresses in tissues of liver, kidney, lung, heart, testis, spleen and brain, but not in skeletal muscle. After treating erythroid myeloid lymphoid (EML) cells with All-trans Retinoic Acid (ATRA), we investigated the expression and regulation of Malat1 during hematopoietic differentiation, the results showed that ATRA significantly down regulates Malat1 expression during the differentiation of EML cells. Mouse LRH (Lin-Rhodamine(low) Hoechst(low)) cells that represent the early-stage progenitor cells show a high level of Malat1 expression, while LRB (Lin - Hoechst(Low) Rhodamine(Bright)) cells that represent the late-stage progenitor cells had no detectable expression of Malat1. Knockdown experiment showed that depletion of Malat1 inhibits the EML cell proliferation. Along with the down regulation of Malat1, the tumor suppressor gene p53 was up regulated during the differentiation. Interestingly, we found two p53 binding motifs with help of bioinformatic tools, and the following chromatin immunoprecipitation (ChIP) test conformed that p53 acts as a transcription repressor that binds to Malat1's promoter. Furthermore, we testified that p53 over expression in EML cells causes down regulation of Malat1. In summary, this study indicates Malat1 plays a critical role in maintaining the proliferation potential of early-stage hematopoietic cells. In addition to its biological function, the study also uncovers the regulation pattern of Malat1 expression mediated by p53 in hematopoietic differentiation. Our research shed a light on exploring the Malat1 biological role including therapeutic significance to inhibit the proliferation potential of malignant cells.

  14. Expression profiling of tomato pre-abscission pedicels provides insights into abscission zone properties including competence to respond to abscission signals

    PubMed Central

    2013-01-01

    Background Detachment of plant organs occurs in abscission zones (AZs). During plant growth, the AZ forms, but does not develop further until the cells perceive abscission-promoting signals and initiate detachment. Upon signal perception, abscission initiates immediately; if there is no signal, abscission is not induced and the organ remains attached to the plant. However, little attention has been paid to the genes that maintain competence to respond to the abscission signal in the pre-abscission AZ. Recently, we found that the tomato (Solanum lycopersicum) transcription factors BLIND (Bl), GOBLET (GOB), Lateral suppressor (Ls) and a tomato WUSCHEL homologue (LeWUS) are expressed specifically in pre-abscission tissue, the anthesis pedicel AZs. To advance our understanding of abscission, here we profiled genome-wide gene expression in tomato flower pedicels at the pre-abscission stage. Results We examined the transcriptomes of three tomato flower pedicel regions, the AZ and flanking proximal- (Prox) and distal- (Dis) regions, and identified 89 genes that were preferentially expressed in the AZ compared to both Prox and Dis. These genes included several transcription factors that regulate apical or axillary shoot meristem activity. Also, genes associated with auxin activity were regulated in a Prox-Dis region-specific manner, suggesting that a gradient of auxin exists in the pedicel. A MADS-box gene affecting floral transition was preferentially expressed in the Prox region and other MADS-box genes for floral organ identification were preferentially expressed in Dis, implying that the morphologically similar Prox and Dis regions have distinct identities. We also analyzed the expression of known regulators; in anthesis pedicels, Bl, GOB, Ls and LeWUS were expressed in the vascular cells of the AZ region. However, after an abscission signal, Bl was up-regulated, but GOB, Ls and LeWUS were down-regulated, suggesting that Bl may be a positive regulator of abscission, but the others may be negative regulators. Conclusions This study reveals region-specific gene expression in tomato flower pedicels at anthesis and identifies factors that may determine the physiological properties of the pre-abscission pedicel. The region-specific transcriptional regulators and genes for auxin activity identified here may prevent flower abscission in the absence of signal or establish competence to respond to the abscission signal. PMID:23497084

  15. Defence responses regulated by jasmonate and delayed senescence caused by ethylene receptor mutation contribute to the tolerance of petunia to Botrytis cinerea.

    PubMed

    Wang, Hong; Liu, Gang; Li, Chunxia; Powell, Ann L T; Reid, Michael S; Zhang, Zhen; Jiang, Cai-Zhong

    2013-06-01

    Ethylene and jasmonate (JA) have powerful effects when plants are challenged by pathogens. The inducible promoter-regulated expression of the Arabidopsis ethylene receptor mutant ethylene-insensitive1-1 (etr1-1) causes ethylene insensitivity in petunia. To investigate the molecular mechanisms involved in transgenic petunia responses to Botrytis cinerea related to the ethylene and JA pathways, etr1-1-expressing petunia plants were inoculated with Botrytis cinerea. The induced expression of etr1-1 by a chemical inducer dexamethasone resulted in retarded senescence and reduced disease symptoms on detached leaves and flowers or intact plants. The extent of decreased disease symptoms correlated positively with etr1-1 expression. The JA pathway, independent of the ethylene pathway, activated petunia ethylene response factor (PhERF) expression and consequent defence-related gene expression. These results demonstrate that ethylene induced by biotic stress influences senescence, and that JA in combination with delayed senescence by etr1-1 expression alters tolerance to pathogens. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  16. Cohesin regulates tissue-specific expression by stabilizing highly occupied cis-regulatory modules

    PubMed Central

    Faure, Andre J.; Schmidt, Dominic; Watt, Stephen; Schwalie, Petra C.; Wilson, Michael D.; Xu, Huiling; Ramsay, Robert G.; Odom, Duncan T.; Flicek, Paul

    2012-01-01

    The cohesin protein complex contributes to transcriptional regulation in a CTCF-independent manner by colocalizing with master regulators at tissue-specific loci. The regulation of transcription involves the concerted action of multiple transcription factors (TFs) and cohesin's role in this context of combinatorial TF binding remains unexplored. To investigate cohesin-non-CTCF (CNC) binding events in vivo we mapped cohesin and CTCF, as well as a collection of tissue-specific and ubiquitous transcriptional regulators using ChIP-seq in primary mouse liver. We observe a positive correlation between the number of distinct TFs bound and the presence of CNC sites. In contrast to regions of the genome where cohesin and CTCF colocalize, CNC sites coincide with the binding of master regulators and enhancer-markers and are significantly associated with liver-specific expressed genes. We also show that cohesin presence partially explains the commonly observed discrepancy between TF motif score and ChIP signal. Evidence from these statistical analyses in wild-type cells, and comparisons to maps of TF binding in Rad21-cohesin haploinsufficient mouse liver, suggests that cohesin helps to stabilize large protein–DNA complexes. Finally, we observe that the presence of mirrored CTCF binding events at promoters and their nearby cohesin-bound enhancers is associated with elevated expression levels. PMID:22780989

  17. Differential Expression of Virulence Genes and Motility in Ralstonia (Pseudomonas) solanacearum during Exponential Growth.

    PubMed

    Clough, S J; Flavier, A B; Schell, M A; Denny, T P

    1997-03-01

    A complex network regulates virulence in Ralstonia solanacearum (formerly Pseudomonas solanacearum); central to this system is PhcA, a LysR-type transcriptional regulator. We report here that two PhcA-regulated virulence factors, endoglucanase (Egl) and acidic exopolysaccharide I (EPS I), and motility are expressed differentially during exponential growth in batch cultures. Tests with strains carrying lacZ fusions in a wild-type genetic background revealed that expression (on a per-cell basis) of phcA was constant but expression of egl and epsB increased 20- to 50-fold during multiplication from 1 x 10(sup7) to 5 x 10(sup8) CFU/ml. Expression of xpsR, an intermediate regulator downstream of PhcA in the regulatory cascade for eps expression, was similar to that of epsB and egl. Motility track photography revealed that all strains were essentially nonmotile at 10(sup6) CFU/ml. As cell density increased, 30 to 50% of wild-type cells were motile between 10(sup7) and 10(sup8) CFU/ml, but this population was again nonmotile at 10(sup9) CFU/ml. In contrast, about 60% of the cells of phcB and phcA mutants remained motile at 10(sup9) CFU/ml. Expression of phcB, which is not positively regulated by PhcA, was the inverse of epsB, egl, and xpsR (i.e., it decreased 20-fold at high cell density). PhcB is essential for production of an extracellular factor, tentatively identified as 3-hydroxypalmitic acid methyl ester (3-OH PAME), that might act as an exponential-phase signal to activate motility or expression of virulence genes. However, growth of the lacZ fusion strains in medium containing excess 3-OH PAME did not result in motility or expression of virulence genes at dramatically lower cell densities, suggesting that 3-OH PAME is not the only factor controlling these traits.

  18. Highly conserved sequences mediate the dynamic interplay of basic helix-loop-helix proteins regulating retinogenesis.

    PubMed

    Hernandez, Julio; Matter-Sadzinski, Lidia; Skowronska-Krawczyk, Dorota; Chiodini, Florence; Alliod, Christine; Ballivet, Marc; Matter, Jean-Marc

    2007-12-28

    The atonal homolog 5 (ATH5) protein is central to the transcriptional network regulating the specification of retinal ganglion cells, and its expression comes under the spatiotemporal control of several basic helix-loop-helix (bHLH) proteins in the course of retina development. Monitoring the in vivo occupancy of the ATH5 promoter by the ATH5, Ngn2, and NeuroM proteins and analyzing the DNA motifs they bind, we show that three evolutionarily conserved E-boxes are required for the bHLH proteins to control the different phases of ATH5 expression. E-box 4 mediates the activity of Ngn2, ATH5, and NeuroM along the pathway leading to the conversion of progenitors into newborn neurons. E-box 1, by mediating the antagonistic effects of Ngn2 and HES1 in proliferating progenitors, controls the expansion of the ATH5 expression domain in early retina. E-box 2 is required for the positive feedback by ATH5 that underlies the up-regulation of ATH5 expression when progenitors are going through their last cell cycle. The combinatorial nature of the regulation of the ATH5 promoter suggests that the bHLH proteins involved have no assigned E-boxes but use a common set at which they either cooperate or compete to finely tune ATH5 expression as development proceeds.

  19. CRP-cAMP mediates silencing of Salmonella virulence at the post-transcriptional level

    PubMed Central

    El Mouali, Youssef; Gaviria-Cantin, Tania; Gibert, Marta; Westermann, Alexander J.; Vogel, Jörg

    2018-01-01

    Invasion of epithelial cells by Salmonella enterica requires expression of genes located in the pathogenicity island I (SPI-1). The expression of SPI-1 genes is very tightly regulated and activated only under specific conditions. Most studies have focused on the regulatory pathways that induce SPI-1 expression. Here, we describe a new regulatory circuit involving CRP-cAMP, a widely established metabolic regulator, in silencing of SPI-1 genes under non-permissive conditions. In CRP-cAMP-deficient strains we detected a strong upregulation of SPI-1 genes in the mid-logarithmic growth phase. Genetic analyses revealed that CRP-cAMP modulates the level of HilD, the master regulator of Salmonella invasion. This regulation occurs at the post-transcriptional level and requires the presence of a newly identified regulatory motif within the hilD 3’UTR. We further demonstrate that in Salmonella the Hfq-dependent sRNA Spot 42 is under the transcriptional repression of CRP-cAMP and, when this transcriptional repression is relieved, Spot 42 exerts a positive effect on hilD expression. In vivo and in vitro assays indicate that Spot 42 targets, through its unstructured region III, the 3’UTR of the hilD transcript. Together, our results highlight the biological relevance of the hilD 3’UTR as a hub for post-transcriptional control of Salmonella invasion gene expression. PMID:29879120

  20. Integration of a complex regulatory cascade involving the SirA/BarA and Csr global regulatory systems that controls expression of the Salmonella SPI-1 and SPI-2 virulence regulons through HilD.

    PubMed

    Martínez, Luary C; Yakhnin, Helen; Camacho, Martha I; Georgellis, Dimitris; Babitzke, Paul; Puente, José L; Bustamante, Víctor H

    2011-06-01

    Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) play key roles in the pathogenesis of Salmonella enterica. Previously, we showed that when Salmonella grows in Luria-Bertani medium, HilD, encoded in SPI-1, first induces the expression of hilA, located in SPI-1, and subsequently of the ssrAB operon, located in SPI-2. These genes code for HilA and the SsrA/B two-component system, the positive regulators of the SPI-1 and SPI-2 regulons respectively. In this study, we demonstrate that CsrA, a global regulatory RNA binding protein, post-transcriptionally regulates hilD expression by directly binding near the Shine-Dalgarno and translation initiation codon sequences of the hilD mRNA, preventing its translation and leading to its accelerated turnover. Negative regulation is counteracted by the global SirA/BarA two-component system, which directly activates the expression of CsrB and CsrC, two non-coding regulatory RNAs that sequester CsrA, thereby preventing it from binding to its target mRNAs. Our results illustrate the integration of global and specific regulators into a multifactorial regulatory cascade controlling the expression of virulence genes acquired by horizontal transfer events. © 2011 Blackwell Publishing Ltd.

Top