Sample records for positron annihilation pa

  1. Positron Annihilation in Insulating Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asoka-Kumar, P; Sterne, PA

    2002-10-18

    We describe positron results from a wide range of insulating materials. We have completed positron experiments on a range of zeolite-y samples, KDP crystals, alkali halides and laser damaged SiO{sub 2}. Present theoretical understanding of positron behavior in insulators is incomplete and our combined theoretical and experimental approach is aimed at developing a predictive understanding of positrons and positronium annihilation characteristics in insulators. Results from alkali halides and alkaline-earth halides show that positrons annihilate with only the halide ions, with no apparent contribution from the alkali or alkaline-earth cations. This contradicts the results of our existing theory for metals, whichmore » predicts roughly equal annihilation contributions from cation and anion. We also present result obtained using Munich positron microprobe on laser damaged SiO{sub 2} samples.« less

  2. Development of an Electron-Positron Source for Positron Annihilation Lifetime Spectroscopy

    DTIC Science & Technology

    2007-01-01

    positron source for positron annihilation lifetime spectroscopy Final Report Report Title...Development of an Electron- Positron Source for Position Annihilation Lifetime Spectroscopy DAAD19-03-1-0287 Final Report 2/17/2007... annihilation lifetime spectroscopy REPORT DOCUMENTATION PAGE 18. SECURITY CLASSIFICATION ON THIS PAGE UNCLASSIFIED 2. REPORT DATE: 12b. DISTRIBUTION

  3. The annihilation of galactic positrons

    NASA Technical Reports Server (NTRS)

    Bussard, R.; Rematy, R.

    1978-01-01

    The probabilities of various channels of galactic positron annihilation were evaluated and the spectrum of the resulting radiation was calculated. The narrow width (FWHM less than 3.2 keV) of the 0.511 MeV line observed from the galactic center implies that a large fraction of positrons should annihilate in a medium of temperature less than 100,000 K and ionization fraction greater than 0.05. HII regions at the galactic center could be possible sites of annihilation.

  4. Positron annihilation induced Auger electron spectroscopy

    NASA Technical Reports Server (NTRS)

    Weiss, Alex; Koymen, A. R.; Mehl, David; Jensen, K. O.; Lei, Chun; Lee, K. H.

    1990-01-01

    Recently, Weiss et al. have demonstrated that it is possible to excite Auger transitions by annihilating core electrons using a low energy (less than 30eV) beam of positrons. This mechanism makes possible a new electron spectroscopy, Positron annihilation induced Auger Electron Spectroscopy (PAES). The probability of exciting an Auger transition is proportional to the overlap of the positron wavefunction with atomic core levels. Since the Auger electron energy provides a signature of the atomic species making the transition, PAES makes it possible to determine the overlap of the positron wavefunction with a particular element. PAES may therefore provide a means of detecting positron-atom complexes. Measurements of PAES intensities from clean and adsorbate covered Cu surfaces are presented which indicate that approx. 5 percent of positrons injected into CU at 25eV produce core annihilations that result in Auger transitions.

  5. Positron annihilation induced Auger electron emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, A.; Jibaly, M.; Lei, Chun

    1988-01-01

    We report on measurements of Auger electron emission from Cu and Fe due to core hole excitations produced by the removal of core electrons by matter-antimatter annihilation. Estimates are developed of the probability of positrons annihilating with a 3p electron in these materials. Several important advantages of Positron annihilation induced Auger Electron Spectroscopy (PAES) for surface analysis are suggested. 10 refs., 2 figs.

  6. ANTICOOL: Simulating positron cooling and annihilation in atomic gases

    NASA Astrophysics Data System (ADS)

    Green, D. G.

    2018-03-01

    The Fortran program ANTICOOL, developed to simulate positron cooling and annihilation in atomic gases for positron energies below the positronium-formation threshold, is presented. Given positron-atom elastic scattering phase shifts, normalised annihilation rates Zeff, and γ spectra as a function of momentum k, ANTICOOL enables the calculation of the positron momentum distribution f(k , t) as a function of time t, the time-varying normalised annihilation rate Z¯eff(t) , the lifetime spectrum and time-varying annihilation γ spectra. The capability and functionality of the program is demonstrated via a tutorial-style example for positron cooling and annihilation in room temperature helium gas, using accurate scattering and annihilation cross sections and γ spectra calculated using many-body theory as input.

  7. Monte Carlo investigation of positron annihilation in medical positron emission tomography

    NASA Astrophysics Data System (ADS)

    Chin, P. W.; Spyrou, N. M.

    2007-09-01

    A number of Monte Carlo codes are available for simulating positron emission tomography (PET), however, physics approximations differ. A number of radiation processes are deemed negligible, some without rigorous investigation. Some PET literature quantify approximations to be valid, without citing the data source. The radiation source is the first step in Monte Carlo simulations, for some codes this is 511 keV photons 180° apart, not polyenergetic positrons with radiation histories of their own. Without prior assumptions, we investigated electron-positron annihilation under clinical PET conditions. Just before annihilation, we tallied the positron energy and position. Right after annihilation, we tallied the energy and separation angle of photon pairs. When comparing PET textbooks with theory, PENELOPE and EGSnrc, only the latter three agreed. From 10 6 radiation histories, a positron source of 15O in a chest phantom annihilated at as high as 1.58 MeV, producing photons with energies 0.30-2.20 MeV, 79-180° apart. From 10 6 radiation histories, an 18F positron source in a head phantom annihilated at energies as high as 0.56 MeV, producing 0.33-1.18 MeV photons 109-180° apart. 2.5% and 0.8% annihilation events occurred inflight in the chest and the head phantoms, respectively. PET textbooks typically either do not mention any deviation from 180°, or state a deviation of 0.25° or 0.5°. Our findings are founded on the well-established Heitler cross-sections and relativistic kinematics, both adopted unanimously by PENELOPE, EGSnrc and GEANT4. Our results highlight the effects of annihilation in-flight, a process sometimes forgotten within the PET community.

  8. Tomographic Positron Annihilation Lifetime Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wagner, A.; Anwand, W.; Butterling, M.; Fiedler, F.; Fritz, F.; Kempe, M.; Cowan, T. E.

    2014-04-01

    Positron annihilation lifetime spectroscopy serves as a perfect tool for studies of open-volume defects in solid materials such as vacancies, vacancy agglomerates, and dislocations. Moreover, structures in porous media can be investigated ranging from 0.3 nm to 30 nm employing the variation of the Positronium lifetime with the pore size. While lifetime measurements close to the material's surface can be performed at positron-beam installations bulk materials, fluids, bio-materials or composite structures cannot or only destructively accessed by positron beams. Targeting those problems, a new method of non-destructive positron annihilation lifetime spectroscopy has been developed which features even a 3-dimensional tomographic reconstruction of the spatial lifetime distribution. A beam of intense bremsstrahlung is provided by the superconducting electron linear accelerator ELBE (Electron Linear Accelerator with high Brilliance and low Emittance) at Helmholtz-Zentrum Dresden-Rossendorf. Since the generation of bremsstrahlung and the transport to the sample preserves the sharp timing of the electron beam, positrons generated inside the entire sample volume by pair production feature a sharp start time stamp for lifetime studies. In addition to the existing technique of in-situ production of positrons inside large (cm3) bulk samples using high-energy photons up to 16 MeV from bremsstrahlung production, granular position-sensitive photon detectors have been employed. The detector system will be described and results for experiments using samples with increasing complexity will be presented. The Lu2SiO5:Ce scintillation crystals allow resolving the total energy to 5.1 % (root-mean-square, RMS) and the annihilation lifetime to 225 ps (RMS). 3-dimensional annihilation lifetime maps have been created in an offline-analysis employing well-known techniques from PET.

  9. Depth-dependent positron annihilation in different polymers

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zhang, P.; Cheng, G. D.; Li, D. X.; Wu, H. B.; Li, Z. X.; Cao, X. Z.; Jia, Q. J.; Yu, R. S.; Wang, B. Y.

    2013-09-01

    Depth-dependent positron annihilation Doppler broadening measurements were conducted for polymers with different chemical compositions. Variations of the S parameter with respect to incident positron energy were observed. For pure hydrocarbons PP, HDPE and oxygen-containing polymer PC, S parameter rises with increasing positron implantation depth. While for PI and fluoropolymers like PTFE, ETFE and PVF, S parameter decreases with higher positron energy. For chlorine-containing polymer PVDC, S parameter remains nearly constant at all incident positron energies. It is suggested that these three variation trends are resulted from a competitive effect between the depth-dependent positronium formation and the influence of highly electronegative atoms on positron annihilation characteristics.

  10. Applications of slow positrons to cancer research: Search for selectivity of positron annihilation to skin cancer

    NASA Astrophysics Data System (ADS)

    Jean, Y. C.; Li, Ying; Liu, Gaung; Chen, Hongmin; Zhang, Junjie; Gadzia, Joseph E.

    2006-02-01

    Slow positrons and positron annihilation spectroscopy (PAS) have been applied to medical research in searching for positron annihilation selectivity to cancer cells. We report the results of positron lifetime and Doppler broadening energy spectroscopies in human skin samples with and without cancer as a function of positron incident energy (up to 8 μm depth) and found that the positronium annihilates at a significantly lower rate and forms at a lower probability in the samples having either basal cell carcinoma (BCC) or squamous cell carcinoma (SCC) than in the normal skin. The significant selectivity of positron annihilation to skin cancer may open a new research area of developing positron annihilation spectroscopy as a novel medical tool to detect cancer formation externally and non-invasively at the early stages.

  11. Method for photon activation positron annihilation analysis

    DOEpatents

    Akers, Douglas W.

    2006-06-06

    A non-destructive testing method comprises providing a specimen having at least one positron emitter therein; determining a threshold energy for activating the positron emitter; and determining whether a half-life of the positron emitter is less than a selected half-life. If the half-life of the positron emitter is greater than or equal to the selected half-life, then activating the positron emitter by bombarding the specimen with photons having energies greater than the threshold energy and detecting gamma rays produced by annihilation of positrons in the specimen. If the half-life of the positron emitter is less then the selected half-life, then alternately activating the positron emitter by bombarding the specimen with photons having energies greater then the threshold energy and detecting gamma rays produced by positron annihilation within the specimen.

  12. Positron annihilation in the nuclear outflows of the Milky Way

    NASA Astrophysics Data System (ADS)

    Panther, Fiona H.; Crocker, Roland M.; Birnboim, Yuval; Seitenzahl, Ivo R.; Ruiter, Ashley J.

    2018-02-01

    Observations of soft gamma rays emanating from the Milky Way from SPI/INTEGRAL reveal the annihilation of ˜2 × 1043 positrons every second in the Galactic bulge. The origin of these positrons, which annihilate to produce a prominent emission line centred at 511 keV, has remained mysterious since their discovery almost 50 yr ago. A plausible origin for the positrons is in association with the intense star formation ongoing in the Galactic centre. Moreover, there is strong evidence for a nuclear outflow in the Milky Way. We find that advective transport and subsequent annihilation of positrons in such an outflow cannot simultaneously replicate the observed morphology of positron annihilation in the Galactic bulge and satisfy the requirement that 90 per cent of positrons annihilate once the outflow has cooled to 104 K.

  13. Development of an Electron-Positron Source for Positron Annihilation Lifetime Spectroscopy

    DTIC Science & Technology

    2009-12-19

    REPORT Development of an electron- positron source for positron annihilation lifetime spectroscopy : FINAL REPORT 14. ABSTRACT 16. SECURITY...to generate radiation, to accelerate particles, and to produce electrons and positrons from vacuum. From applications using existing high-repetition...theoretical directions. This report reviews work directed toward the application of positron generation from laser interaction with matter 1. REPORT DATE

  14. Measurement of positron annihilation lifetimes for positron burst by multi-detector array

    NASA Astrophysics Data System (ADS)

    Wang, B. Y.; Kuang, P.; Liu, F. Y.; Han, Z. J.; Cao, X. Z.; Zhang, P.

    2018-03-01

    It is currently impossible to exploit the timing information in a gamma-ray pulse generated within nanoseconds when a high-intensity positron burst annihilation event occurs in a target using conventional single-detector methods. A state-of-the-art solution to the problem is proposed in this paper. In this approach, a multi-detector array composed of many independent detection cells mounted spherically around the target is designed to detect the time distribution of the annihilated gamma rays generated following, in particular, a positron burst emitting huge amounts of positrons in a short pulse duration, even less than a few nano- or picoseconds.

  15. INSTRUMENTS AND METHODS OF INVESTIGATION: Positron annihilation spectroscopy in materials structure studies

    NASA Astrophysics Data System (ADS)

    Grafutin, Viktor I.; Prokop'ev, Evgenii P.

    2002-01-01

    A relatively new method of materials structure analysis — positron annihilation spectroscopy (PAS) — is reviewed. Measurements of positron lifetimes, the determination of positron 3γ- and 2γ-annihilation probabilities, and an investigation of the effects of different external factors on the fundamental characteristics of annihilation constitute the basis for this promising method. The ways in which the positron annihilation process operates in ionic crystals, semiconductors, metals and some condensed matter systems are analyzed. The scope of PAS is described and its prospects for the study of the electronic and defect structures are discussed. The applications of positron annihilation spectroscopy in radiation physics and chemistry of various substances as well as in physics and chemistry of solutions are exemplified.

  16. THE GALACTIC POSITRON ANNIHILATION RADIATION AND THE PROPAGATION OF POSITRONS IN THE INTERSTELLAR MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higdon, J. C.; Lingenfelter, R. E.; Rothschild, R. E.

    2009-06-10

    The ratio of the luminosity of diffuse 511 keV positron annihilation radiation, measured by INTEGRAL in its four years, from a Galactic 'positron bulge' (<1.5 kpc) compared to that of the disk is {approx}1.4. This ratio is roughly 4 times larger than that expected simply from the stellar bulge-to-disk ratio of {approx}0.33 of the Galactic supernovae (SNe), which are thought to be the principal source of the annihilating positrons through the decay of radionuclei made by explosive nucleosynthesis in the SNe. This large discrepancy has prompted a search for new sources. Here, however, we show that the measured 511 keVmore » luminosity ratio can be fully understood in the context of a Galactic SN origin when the differential propagation of these {approx} MeV positrons in the various phases of the interstellar medium is taken into consideration, since these relativistic positrons must first slow down to energies {<=}10 eV before they can annihilate. Moreover, without propagation, none of the proposed positron sources, new or old, can explain the two basic properties on the Galactic annihilation radiation: the fraction of the annihilation that occurs through positronium formation and the ratio of the broad/narrow components of the 511 keV line. In particular, we show that in the neutral phases of the interstellar medium, which fill most of the disk (>3.5 kpc), the cascade of the magnetic turbulence, which scatters the positrons, is damped by ion-neutral friction, allowing positrons to stream along magnetic flux tubes. We find that nearly 1/2 of the positrons produced in the disk escape from it into the halo. On the other hand, we show that within the extended, or interstellar, bulge (<3.5 kpc), essentially all of the positrons are born in the hot plasmas which fill that volume. We find that the diffusion mean free path is long enough that only a negligible fraction annihilate there and {approx}80% of them escape down into the H II and H I envelopes of molecular clouds

  17. Positron annihilation processes update

    NASA Technical Reports Server (NTRS)

    Guessoum, Nidhal; Skibo, Jeffrey G.; Ramaty, Reuven

    1997-01-01

    The present knowledge concerning the positron annihilation processes is reviewed, with emphasis on the data of the cross sections of the various processes of interest in astrophysical applications. Recent results are presented including results on reaction rates and line widths, the validity of which is verified.

  18. Positron annihilation in SiO 2-Si studied by a pulsed slow positron beam

    NASA Astrophysics Data System (ADS)

    Suzuki, R.; Ohdaira, T.; Uedono, A.; Kobayashi, Y.

    2002-06-01

    Positron and positronium (Ps) behavior in SiO 2-Si have been studied by means of positron annihilation lifetime spectroscopy (PALS) and age-momentum correlation (AMOC) spectroscopy with a pulsed slow positron beam. The PALS study of SiO 2-Si samples, which were prepared by a dry-oxygen thermal process, revealed that the positrons implanted in the Si substrate and diffused back to the interface do not contribute to the ortho-Ps long-lived component, and the lifetime spectrum of the interface has at least two components. From the AMOC study, the momentum distribution of the ortho-Ps pick-off annihilation in SiO 2, which shows broader momentum distribution than that of crystalline Si, was found to be almost the same as that of free positron annihilation in SiO 2. A varied interface model was proposed to interpret the results of the metal-oxide-semiconductor (MOS) experiments. The narrow momentum distribution found in the n-type MOS with a negative gate bias voltage could be attributed to Ps formation and rapid spin exchange in the SiO 2-Si interface. We have developed a two-dimensional positron lifetime technique, which measures annihilation time and pulse height of the scintillation gamma-ray detector for each event. Using this technique, the positronium behavior in a porous SiO 2 film, grown by a sputtering method, has been studied.

  19. SiO 2/SiC interface proved by positron annihilation

    NASA Astrophysics Data System (ADS)

    Maekawa, M.; Kawasuso, A.; Yoshikawa, M.; Itoh, H.

    2003-06-01

    We have studied positron annihilation in a Silicon carbide (SiC)-metal/oxide/semiconductor (MOS) structure using a monoenergetic positron beam. The Doppler broadening of annihilation quanta were measured as functions of the incident positron energy and the gate bias. Applying negative gate bias, significant increases in S-parameters were observed. This indicates the migration of implanted positrons towards SiO 2/SiC interface and annihilation at open-volume type defects. The behavior of S-parameters depending on the bias voltage was well correlated with the capacitance-voltage ( C- V) characteristics. We observed higher S-parameters and the interfacial trap density in MOS structures fabricated using the dry oxidation method as compared to those by pyrogenic oxidation method.

  20. Defect Characterization in Semiconductors with Positron Annihilation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Tuomisto, Filip

    Positron annihilation spectroscopy is an experimental technique that allows the selective detection of vacancy defects in semiconductors, providing a means to both identify and quantify them. This chapter gives an introduction to the principles of the positron annihilation techniques and then discusses the physics of some interesting observations on vacancy defects related to growth and doping of semiconductors. Illustrative examples are selected from studies performed in silicon, III-nitrides, and ZnO.

  1. Positron Annihilation Ratio Spectroscopy (PsARS) Applied to Positronium Formation Studies

    DTIC Science & Technology

    2010-03-01

    POSITRON ANNIHILATION RATIO SPECTROSCOPY (PsARS) APPLIED TO POSITRONIUM FORMATION STUDIES THESIS...AFIT/GNE/ENP/10-M07 POSITRON ANNIHILATION RATIO SPECTROSCOPY (PsARS) APPLIED TO POSITRONIUM FORMATION STUDIES ...lifetime studies in local electric field experiments. High local electric fields can polarize a positron -electron pair, which may result in an extended

  2. Efficient and surface site-selective ion desorption by positron annihilation.

    PubMed

    Tachibana, Takayuki; Yamashita, Takashi; Nagira, Masaru; Yabuki, Hisakuni; Nagashima, Yasuyuki

    2018-05-08

    We compared positron- and electron-stimulated desorption (e + SD and ESD) of positive ions from a TiO 2 (110) surface. Although desorption of O + ions was observed in both experiments, the desorption efficiency caused by positron bombardment was larger by one order of magnitude than that caused by electron bombardment at an incident energy of 500 eV. e + SD of O + ions remained highly efficient with incident positron energies between 10 eV and 600 eV. The results indicate that e + SD of O + ions is predominantly caused by pair annihilation of surface-trapped positrons with inner-shell electrons. We also tested e + SD from water chemisorbed on the TiO 2 surface and found that the desorption of specific ions was enhanced by positron annihilation, above the ion yield with electron bombardment. This finding corroborates our conclusion that annihilation-site selectivity of positrons results in site-selective ion desorption from a bombarded surface.

  3. Positron annihilation in a metal-oxide semiconductor studied by using a pulsed monoenergetic positron beam

    NASA Astrophysics Data System (ADS)

    Uedono, A.; Wei, L.; Tanigawa, S.; Suzuki, R.; Ohgaki, H.; Mikado, T.; Ohji, Y.

    1993-12-01

    The positron annihilation in a metal-oxide semiconductor was studied by using a pulsed monoenergetic positron beam. Lifetime spectra of positrons were measured as a function of incident positron energy for a polycrystalline Si(100 nm)/SiO2(400 nm)/Si specimen. Applying a gate voltage between the polycrystalline Si film and the Si substrate, positrons implanted into the specimen were accumulated at the SiO2/Si interface. From the measurements, it was found that the annihilation probability of ortho-positronium (ortho-Ps) drastically decreased at the SiO2/Si interface. The observed inhibition of the Ps formation was attributed to an interaction between positrons and defects at the SiO2/Si interface.

  4. Positron Annihilation Induced Auger Electron Spectroscopic Studies Of Reconstructed Semiconductor Surfaces

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Reed, J. A.; Starnes, S. G.; Weiss, A. H.

    2011-06-01

    The positron annihilation induced Auger spectrum from GaAs(100) displays six As and three Ga Auger peaks below 110 eV corresponding to M4,5VV, M2M4V, M2,3M4,5M4,5 Auger transitions for As and M2,3M4,5M4,5 Auger transitions for Ga. The integrated Auger peak intensities have been used to obtain experimental annihilation probabilities of surface trapped positrons with As 3p and 3d and Ga 3p core level electrons. PAES data is analyzed by performing calculations of positron surface and bulk states and annihilation characteristics of surface trapped positrons with relevant Ga and As core level electrons for both Ga- and As-rich (100) surfaces of GaAs, ideally terminated, non-reconstructed and with (2×8), (2×4), and (4×4) reconstructions. The orientation-dependent variations of the atomic and electron densities associated with reconstructions are found to affect localization of the positron wave function at the surface. Computed positron binding energy, work function, and annihilation characteristics demonstrate their sensitivity both to chemical composition and atomic structure of the topmost layers of the surface. Theoretical annihilation probabilities of surface trapped positrons with As 3d, 3p, and Ga 3p core level electrons are compared with the ones estimated from the measured Auger peak intensities.

  5. Positron annihilation lifetime study of oxide dispersion strengthened steels

    NASA Astrophysics Data System (ADS)

    Krsjak, V.; Szaraz, Z.; Hähner, P.

    2012-09-01

    A comparative positron annihilation lifetime study has been performed on various commercial ferritic and ferritic/martensitic oxide dispersion strengthened (ODS) steels. Both as-extruded and recrystallized materials were investigated. In the materials with recrystallized coarse-grained microstructures, only the positron trapping at small vacancy clusters and yttria nanofeatures was observed. Materials which had not undergone recrystallization treatment clearly showed additional positron trapping which is associated with dislocations. Dislocation densities were calculated from a two-component decomposition of the positron lifetime spectra by assuming the first component to be a superposition of the bulk controlled annihilation rate and the dislocation controlled trapping rate. The second component (which translates into lifetimes of 240-260 ps) was found to be well separated in all those ODS materials. This paper presents the potentialities and limitations of the positron annihilation lifetime spectroscopy, and discusses the results of the experimental determination of the defect concentrations and sensitivity of this technique to the material degradation due to thermally induced precipitation of chromium-rich α' phases.

  6. Positron states and annihilation characteristics of surface-trapped positrons at the oxidized Cu(110) surface

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Olenga, Antoine; Weiss, A. H.

    2013-03-01

    The process by which oxide layers are formed on metal surfaces is still not well understood. In this work we present the results of theoretical studies of positron states and annihilation characteristics of surface-trapped positrons at the oxidized Cu(110) surface. An ab-initio investigation of stability and associated electronic properties of different adsorption phases of oxygen on Cu(110) has been performed on the basis of density functional theory and using DMOl3 code. The changes in the positron work function and the surface dipole moment when oxygen atoms occupy on-surface and sub-surface sites have been attributed to charge redistribution within the first two layers, buckling effects within each layer and interlayer expansion. The computed positron binding energy, positron surface state wave function, and annihilation probabilities of surface trapped positrons with relevant core electrons demonstrate their sensitivity to oxygen coverage, elemental content, atomic structure of the topmost layers of surfaces, and charge transfer effects. Theoretical results are compared with experimental data obtained from studies of oxidized transition metal surfaces using positron annihilation induced Auger electron spectroscopy. This work was supported in part by the National Science Foundation Grant DMR-0907679.

  7. A study of fast ionic conductors by positron annihilation

    NASA Astrophysics Data System (ADS)

    Wang, Yung-Yu; Yang, Ju-Hua; Pan, Xiao-Liang; Lei, Zhen-Xi

    1988-06-01

    New fast ionic conductor systems of LiCl-LiF-B2O3 and LiF-B2O3 were studied by using the positron annihilation technique. It was found that the mid-life intensity I2 in positron annihilation has a linear relationship with the material's electrical conductivity log sigma. This result, combined with the measurement result on the linear annihilation parameter, indicated that the voids between microcrystals and network phases provided more transfer paths in the micro-crystalline LiF-LiCl-B2O3 system, which led to improved electrical conductivity in this type of material.

  8. Positron annihilation induced Auger electron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, A.

    1991-02-01

    A review is given on the results of PAES (positron annihilation induced Auger Electron Spectroscopy) studies to data, with a concentration on those results obtained at the University of Texas at Arlington. Low energy positions, trapped in a surface localized state annihilate with core electrons resulting in the emission of Auger electrons. The advantages of PEAS include: (i) the elimination of the very large secondary electron background, and (ii) increased surface selectivity. (AIP)

  9. Positron annihilation lifetime study of polyvinylpyrrolidone for nanoparticle-stabilizing pharmaceuticals.

    PubMed

    Shpotyuk, O; Bujňáková, Z; Baláž, P; Ingram, A; Shpotyuk, Y

    2016-01-05

    Positron annihilation lifetime spectroscopy was applied to characterize free-volume structure of polyvinylpyrrolidone used as nonionic stabilizer in the production of many nanocomposite pharmaceuticals. The polymer samples with an average molecular weight of 40,000 g mol(-1) were pelletized in a single-punch tableting machine under an applied pressure of 0.7 GPa. Strong mixing in channels of positron and positronium trapping were revealed in the polyvinylpyrrolidone pellets. The positron lifetime spectra accumulated under normal measuring statistics were analysed in terms of unconstrained three- and four-term decomposition, the latter being also realized under fixed 0.125 ns lifetime proper to para-positronium self-annihilation in a vacuum. It was shown that average positron lifetime extracted from each decomposition was primary defined by long-lived ortho-positronium component. The positron lifetime spectra treated within unconstrained three-term fitting were in obvious preference, giving third positron lifetime dominated by ortho-positronium pick-off annihilation in a polymer matrix. This fitting procedure was most meaningful, when analysing expected positron trapping sites in polyvinylpyrrolidone-stabilized nanocomposite pharmaceuticals. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Positron-Electron Annihilation Process in (2,2)-Difluoropropane Molecule

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Ma, Xiao-Guang; Zhu, Ying-Hao

    2016-04-01

    The positron-electron annihilation process in (2,2)-difluoropropane molecule and the corresponding gamma-ray spectra are studied by quantum chemistry method. The positrophilic electrons in (2,2)-difluoropropane molecule are found for the first time. The theoretical predictions show that the outermost 2s electrons of fluoride atoms play an important role in positron-electron annihilation process of (2,2)-difiuoropropane. In the present scheme, the correlation coefficient between the theoretical gamma-ray spectra and the experiments can be 99%. The present study gives an alternative annihilation model for positron-electron pair in larger molecules. Supported by the National Natural Science Foundation of China under Grant No. 11347011 and the Natural Science Foundation Project of Shandong Province under Grant No. ZR2011AM010 and 2014 Technology Innovation Fund of Ludong University under Grant Nos. 1d151007 and ld15l016

  11. Nondestructive examination using neutron activated positron annihilation

    DOEpatents

    Akers, Douglas W.; Denison, Arthur B.

    2001-01-01

    A method is provided for performing nondestructive examination of a metal specimen using neutron activated positron annihilation wherein the positron emitter source is formed within the metal specimen. The method permits in situ nondestructive examination and has the advantage of being capable of performing bulk analysis to determine embrittlement, fatigue and dislocation within a metal specimen.

  12. Positron line radiation from halo WIMP annihilations as a dark matter signature

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.; Wilczek, Frank

    1989-01-01

    We suggest a new signature for dark matter annihilation in the halo: high energy positron line radiation. Because the cosmic ray positron spectrum falls rapidly with energy, e+'s from halo WIMP annihilations can be a significant, clean signal for very massive WIMP's (approx. greater than 30 GeV). In the case that the e+e- annihilation channel has an appreciable branch, the e+ signal should be above background in a future detector, such as have been proposed for ASTROMAG, and of potential importance as a dark matter signature. A significant e+e- branching ratio can occur for neutralinos or Dirac neutrinos. High-energy, continuum positron radiation may also be an important signature for massive neutralino annihilations, especially near or above the threshold of the W+W- and ZoZo annihilation channels.

  13. Studies of the oxidized Cu(100) surface using positron annihilation induced Auger electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Maddox, W.; Fazleev, N. G.; Nadesalingam, M. P.; Weiss, A. H.

    2008-03-01

    We discuss recent progress in studies of an oxidized Cu(100) single crystal subjected to vacuum annealing over a temperature range from 293K to 1073K using positron annihilation induced Auger electron spectroscopy (PAES). The PAES measurements show a large monotonic increase in the intensity of the positron annihilation induced Cu M2,3 VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 573 K. The intensity then decreases monotonically as the annealing temperature is increased to 873 K. Experimental PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface, surface reconstructions, and electron-positron correlations effects. The effects of oxygen adsorption and surface reconstruction on localization of positron surface state wave functions and annihilation characteristics are analyzed. Possible explanations are provided for the observed behavior of the intensity of positron annihilation induced Cu M2,3VV Auger peak with changes of the annealing temperature.

  14. Positron annihilation at the Si/SiO2 interface

    NASA Astrophysics Data System (ADS)

    Leung, T. C.; Weinberg, Z. A.; Asoka-Kumar, P.; Nielsen, B.; Rubloff, G. W.; Lynn, K. G.

    1992-01-01

    Variable-energy positron annihilation depth-profiling has been applied to the study of the Si/SiO2 interface in Al-gate metal-oxide-semiconductor (MOS) structures. For both n- and p-type silicon under conditions of negative gate bias, the positron annihilation S-factor characteristic of the interface (Sint) is substantially modified. Temperature and annealing behavior, combined with known MOS physics, suggest strongly that Sint depends directly on holes at interface states or traps at the Si/SiO2 interface.

  15. Observation of interface defects in thermally oxidized SiC using positron annihilation

    NASA Astrophysics Data System (ADS)

    Dekker, James; Saarinen, Kimmo; Ólafsson, Halldór; Sveinbjörnsson, Einar Ö.

    2003-03-01

    Positron annihilation has been applied to study thermally oxidized 4H- and 6H-SiC. The SiC/SiO2 interface is found to contain a high density of open-volume defects. The positron trapping at the interface defects correlates with the charge of the interface determined by capacitance-voltage experiments. For oxides grown on n-SiC substrates, the positron annihilation characteristics at these defects are nearly indistinguishable from those of a silicon/oxide interface, with no discernable contribution from C-related bonds or carbon clusters. These results indicate that those defects at the SiC/oxide interface, which are visible to positrons, are similar to those at the Si/oxide interface. The positron annihilation characteristics suggest that these defects are vacancies surrounded by oxygen atoms.

  16. Applications of positron annihilation spectroscopy in materials research

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.

    1988-01-01

    Positron Annihilation Spectroscopy (PAS) has emerged as a powerful technique for research in condensed matter. It has been used extensively in the study of metals, ionic crystals, glasses and polymers. The present review concentrates on applications of positron lifetime measurements for elucidation of the physicochemical structure of polymers.

  17. Positron Annihilation in Polycrystalline Silver Samples Subjected to the Stretching Force

    NASA Astrophysics Data System (ADS)

    Pajak, J.; Rudzińska, W.; Pietrzak, R.; Szymański, Cz.; Smiatek, W.

    Angular distributions of the positron annihilation quanta, positron lifetime and resistivity were measured for polycrystalline silver samples deformed by uniaxial tension up to different deformation degrees. The S parameter as a function of deformation degree of the sample has been determined. The data obtained for silver samples elongated up to different elongation degrees indicate the dominant role of vacancies and larger defects type clusters created during the deformation process. The positron annihilation data are corrob-orated by results obtained by resistivity measurements.

  18. Positron Annihilation Ratio Spectroscopy Study of Electric Fields Applied to Positronium at Material Interfaces

    DTIC Science & Technology

    2011-03-01

    from 142 ns to a few ns [3:3]. Through the application of positron annihilation lifetime spectroscopy (PALS) on a material, the o-Ps lifetime can be...Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. POSITRON ANNIHILATION RATIO SPECTROSCOPY STUDY OF ELECTRIC FIELDS APPLIED TO...protection in the United States. AFIT/GNE/ENP/11-M19 POSITRON ANNIHILATION RATIO SPECTROSCOPY STUDY OF ELECTRIC FIELDS APPLIED TO POSITRONIUM AT

  19. Positron probes of the Ge(1 0 0) surface: The effects of surface reconstructions and electron positron correlations on positron trapping and annihilation characteristics

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Jung, E.; Weiss, A. H.

    2007-08-01

    Positron annihilation induced Auger electron spectroscopy (PAES) has been applied to study the Ge(1 0 0) surface. The high-resolution PAES spectrum from the Ge(1 0 0) surface displays several strong Auger peaks corresponding to M4,5N1N2,3, M2,3M4,5M4,5, M2,3M4,5V and M1M4,5M4,5 Auger transitions. The integrated peak intensities of Auger transitions are used to obtain experimental annihilation probabilities for the Ge 3d and 3p core level electrons. These experimental results are analyzed by performing calculations of positron surface states and annihilation characteristics of surface trapped positrons with relevant Ge core-level electrons for the non-reconstructed and reconstructed Ge(1 0 0)-p(2 × 1), Ge(1 0 0)-p(2 × 2) and Ge(1 0 0)-c(4 × 2) surfaces. It is found that the positron surface state wave function extends into the Ge lattice in the regions where atoms are displaced from their ideal terminated positions due to reconstructions. Estimates of the positron binding energy and the positron annihilation characteristics reveal their sensitivity to the specific atomic structure of the topmost layers of Ge(1 0 0). A comparison with PAES data reveals an agreement with theoretical core annihilation probabilities for the Auger transitions considered.

  20. The Effects of Surface Reconstruction and Electron-Positron Correlation on the Annihilation Characteristics of Positrons Trapped at Semiconductor Surfaces

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Jung, E.; Weiss, A. H.

    2009-03-01

    Experimental positron annihilation induced Auger electron spectroscopy (PAES) data from Ge(100) and Ge(111) surfaces display several strong Auger peaks corresponding to M4,5N1N2,3, M2,3M4,5M4,5, M2,3M4,5V, and M1M4,5M4,5 Auger transitions. The integrated peak intensities of Auger transitions have been used to obtain experimental annihilation probabilities for the Ge 3d and 3p core electrons. The experimental data were analyzed by performing theoretical studies of the effects of surface reconstructions and electron-positron correlations on image potential induced surface states and annihilation characteristics of positrons trapped at the reconstructed Ge(100) and Ge(111) surfaces. Calculations of positron surface states and annihilation characteristics have been performed for Ge(100) surface with (2×1), (2×2), and (4×2) reconstructions, and for Ge(111) surface with c(2×8) reconstruction. Estimates of the positron binding energy and annihilation characteristics reveal their sensitivity to the specific atomic structure of the topmost layers of the semiconductor and to the approximations used to describe electron-positron correlations. The results of these theoretical studies are compared with the ones obtained for the reconstructed Si(100)-(2×1) and Si(111)-(7×7) surfaces.

  1. The Effects of Surface Reconstruction and Electron-Positron Correlation on the Annihilation Characteristics of Positrons Trapped at Semiconductor Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fazleev, N. G.; Department of Physics, Kazan State University, Kazan 420008; Jung, E.

    2009-03-10

    Experimental positron annihilation induced Auger electron spectroscopy (PAES) data from Ge(100) and Ge(111) surfaces display several strong Auger peaks corresponding to M{sub 4,5}N{sub 1}N{sub 2,3}, M{sub 2,3}M{sub 4,5}M{sub 4,5}, M{sub 2,3}M{sub 4,5}V, and M{sub 1}M{sub 4,5}M{sub 4,5} Auger transitions. The integrated peak intensities of Auger transitions have been used to obtain experimental annihilation probabilities for the Ge 3d and 3p core electrons. The experimental data were analyzed by performing theoretical studies of the effects of surface reconstructions and electron-positron correlations on image potential induced surface states and annihilation characteristics of positrons trapped at the reconstructed Ge(100) and Ge(111) surfaces. Calculationsmore » of positron surface states and annihilation characteristics have been performed for Ge(100) surface with (2x1), (2x2), and (4x2) reconstructions, and for Ge(111) surface with c(2x8) reconstruction. Estimates of the positron binding energy and annihilation characteristics reveal their sensitivity to the specific atomic structure of the topmost layers of the semiconductor and to the approximations used to describe electron-positron correlations. The results of these theoretical studies are compared with the ones obtained for the reconstructed Si(100)-(2x1) and Si(111)-(7x7) surfaces.« less

  2. Positron annihilation spectroscopy in doped p-type ZnO

    NASA Astrophysics Data System (ADS)

    Majumdar, Sayanee; Sanyal, D.

    2011-07-01

    Positron annihilation lifetime (PAL) spectroscopy has been used to investigate the vacancy type defect of the Li and N doped ZnO. The mono-vacancies, shallow -vacancies and open volume defects have been found in both the Li and N doped ZnO. The mono-vacancies, shallow-vacancies and open volume defects increase in N-doped ZnO as the size of N is quite high compared to Li. Positron annihilation study showed that the doping above 1-3% Li and 3-4% N in ZnO are not required in order to achieve low resistivity, high hole concentration and good mobility.

  3. Positron annihilation spectroscopic studies of solvothermally synthesized ZnO nanobipyramids and nanoparticles

    NASA Astrophysics Data System (ADS)

    Ghoshal, Tandra; Biswas, Subhajit; Kar, Soumitra; Chaudhuri, Subhadra; Nambissan, P. M. G.

    2008-02-01

    Zinc oxide (ZnO) samples in the form of hexagonal-based bipyramids and particles of nanometer dimensions were synthesized through solvothermal route and characterized by x-ray diffraction and transmission electron microscopy. Positron annihilation experiments were performed to study the structural defects such as vacancies and surfaces in these nanosystems. From coincidence Doppler broadening measurements, the positron trapping sites were identified as Zn vacancies or Zn-O-Zn trivacancy clusters. The positron lifetimes, their relative intensities, and the Doppler broadened lineshape parameter S all showed characteristic changes across the nanobipyramid size corresponding to the thermal diffusion length of positrons. In large nanobipyramids, vacancies within the crystallites also trapped positrons and the effects of agglomeration of such vacancies due to increased temperatures of synthesis were reflected in the variation of the annihilation parameters with their base diameters. The sizes of the nanoparticles used were all in the limit of thermal diffusion length of positrons and the annihilation characteristics were in accordance with the decreasing contribution from surfaces with increasing particle size.

  4. Positron annihilation spectroscopic studies of solvothermally synthesized ZnO nanobipyramids and nanoparticles.

    PubMed

    Ghoshal, Tandra; Biswas, Subhajit; Kar, Soumitra; Chaudhuri, Subhadra; Nambissan, P M G

    2008-02-21

    Zinc oxide (ZnO) samples in the form of hexagonal-based bipyramids and particles of nanometer dimensions were synthesized through solvothermal route and characterized by x-ray diffraction and transmission electron microscopy. Positron annihilation experiments were performed to study the structural defects such as vacancies and surfaces in these nanosystems. From coincidence Doppler broadening measurements, the positron trapping sites were identified as Zn vacancies or Zn-O-Zn trivacancy clusters. The positron lifetimes, their relative intensities, and the Doppler broadened lineshape parameter S all showed characteristic changes across the nanobipyramid size corresponding to the thermal diffusion length of positrons. In large nanobipyramids, vacancies within the crystallites also trapped positrons and the effects of agglomeration of such vacancies due to increased temperatures of synthesis were reflected in the variation of the annihilation parameters with their base diameters. The sizes of the nanoparticles used were all in the limit of thermal diffusion length of positrons and the annihilation characteristics were in accordance with the decreasing contribution from surfaces with increasing particle size.

  5. Positron annihilation in perovskite superconductors; Theory and experiment

    NASA Astrophysics Data System (ADS)

    Turchi, P. E. A.; Wachs, A. L.; Jean, Y. C.; Howell, R. H.; Wetzler, K. H.; Fluss, M. J.

    1988-06-01

    Positron Annihilation Spectroscopy is shown to be of potential value for probing the electronic structure and the changes accompanying the superconducting transition of the new high T c materials. The experimental results of electron-positron momentum distribution for La 2CuO 4 agree with a ligand field approach, suggesting a strong electron localization and the importance of the covalency.

  6. Design of an Operando Positron Annihilation Gamma Spectrometer (OPAGS)

    NASA Astrophysics Data System (ADS)

    Satyal, Suman; Shastry, Kartik; Kalaskar, Sushant; Lim, Larry; Joglekar, Vibek; Weiss, Alexander

    2009-10-01

    Surface properties measured under UHV conditions cannot be extended to surfaces interacting with gases under realistic pressures due to surface reconstruction and other strong perturbations of the surface. Many surface probing techniques used till now have required UHV conditions to avoid data loss due to scattering of outgoing particles. Here we describe the design of an Operando Positron Annihilation Gamma Spectrometer (OPAGS) currently under construction at the University of Texas at Arlington. The new system will be capable of obtaining surface and defect specific chemical and charge state information from surfaces under realistic pressures. Differential pumping will be used to maintain the sample in a gas environment while the rest of the beam is under UHV. The Elemental content of the surface interacting with the gas environment will be determined from the Doppler broadened gamma spectra. This system will also include a time of flight (TOF) positron annihilation induced Auger spectrometer (TOF-PAES) for use in combined annihilation induced Auger and annihilation gamma measurements made under low pressure conditions.

  7. Positron-annihilation-induced ion desorption from TiO2(110)

    NASA Astrophysics Data System (ADS)

    Tachibana, T.; Hirayama, T.; Nagashima, Y.

    2014-05-01

    We have investigated the positron-stimulated desorption of ions from a TiO2(110) surface. Desorbed O+ ions were detected in coincidence with the emission of annihilation γ rays. The energy dependence of the ion yields shows that the O+ ions were detected at energies much lower than the previously reported threshold for electron impact desorption corresponding to the excitation energy of Ti(3p) core electrons. These results provide evidence that core-hole creation by positron annihilation with electrons in the core levels leads to ion desorption.

  8. Study of PRIMAVERA steel samples by a positron annihilation spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Grafutin, V.; Ilyukhina, O.; Krsjak, V.; Burcl, R.; Hähner, P.; Erak, D.; Zeman, A.

    2010-11-01

    In the present article, a positron annihilation spectroscopy investigation of VVER-440/230 weld materials is discussed. Important characteristics of metals such as Fermi energy, concentration of electrons in the conduction band, size and concentration of defects were experimentally determined for three model materials with higher level of copper (0.16 wt.%) and phosphorus (0.027-0.038 wt.%). The impact of neutron irradiation and subsequent annealing on crystal lattice parameters was investigated. The experiments with the angular correlation of positron annihilation radiation (ACAR) complement the published positron annihilation spectroscopy (PAS) studies of the radiation treated VVER materials as well as previous experiments on PRIMAVERA materials. The availability of the experimental reactor to prepare strong 64Cu positron sources provided for unique experimental conditions, such as good resolution of spectra (0.4 mrad) and reasonable short time of measurement (36 h). The present paper aims to contribute to further understanding of RPV (reactor pressure vessel) steels behaviour under irradiation conditions as well as annealing recovery procedures, which have already been applied at several VVER NPP units in Europe.

  9. Positron annihilation in the high-Tc superconductors

    NASA Astrophysics Data System (ADS)

    Chakraborty, Bulbul

    1989-01-01

    A model for positron annihilation in the high-Tc oxides is constructed based on the strongly correlated nature of the electrons in these systems. It is shown that the change in positron lifetime as a function of temperature in superconducting, nearly defect-free YBa2Cu3O7 and La1.85Sr0.15CuO4 can be understood on the basis of this model assuming that real hole-pair formation takes place in the superfluid state. The observed positron-lifetime changes in YBa2Cu3O7-x as a function of x is also found to be consistent with this model.

  10. Positron annihilation studies of zirconia doped with metal cations of different valence

    NASA Astrophysics Data System (ADS)

    Prochazka, I.; Cizek, J.; Melikhova, O.; Konstantinova, T. E.; Danilenko, I. A.; Yashchishyn, I. A.; Anwand, W.; Brauer, G.

    2013-06-01

    New results obtained by applying positron annihilation spectroscopy to the investigation of zirconia-based nanomaterials doped with metal cations of different valence are reported. The slow-positron implantation spectroscopy combined with Doppler broadening measurements was employed to study the sintering of pressure-compacted nanopowders of tetragonal yttria-stabilised zirconia (t-YSZ) and t-YSZ with chromia additive. Positronium (Ps) formation in t-YSZ was proven by detecting 3γ-annihilations of ortho-Ps and was found to gradually decrease with increasing sintering temperature. A subsurface layer with enhanced 3γ-annihilations, compared to the deeper regions, could be identified. Addition of chromia was found to inhibit Ps formation. In addition, first results of positron lifetime measurements on nanopowders of zirconia phase-stabilised with MgO and CeO2 are presented.

  11. Positron annihilation spectroscopy investigation of vacancy defects in neutron-irradiated 3 C -SiC

    DOE PAGES

    Hu, Xunxiang; Koyanagi, Takaaki; Katoh, Yutai; ...

    2017-03-10

    We described positron annihilation spectroscopy characterization results for neutron-irradiated 3 C -SiC, with a specific focus on explaining the size and character of vacancy clusters as a complement to the current understanding of the neutron irradiation response of 3 C -SiC. Positron annihilation lifetime spectroscopy was used to capture the irradiation temperature and dose dependence of vacancy defects in 3 C -SiC following neutron irradiation from 0.01 to 31 dpa in the temperature range from 380C °to 790C .° The neutral and negatively charged vacancy clusters were identified and quantified. The results suggest that the vacancy defects that were measuredmore » by positron annihilation spectroscopy technique contribute very little to the transient swelling of SiC. Additionally, we used coincidence Doppler broadening measurement to investigate the chemical identity surrounding the positron trapping sites.Finally, we found that silicon vacancy-related defects dominate in the studied materials and the production of the antisite defect C Si may result in an increase in the probability of positron annihilation with silicon core electrons.« less

  12. Theoretical calculations of positron annihilation characteristics in inorganic solids -- Recent advances and problems

    NASA Astrophysics Data System (ADS)

    Sob, M.; Sormann, H.; Kuriplach, J.

    Principles and applications of positron annihilation spectroscopy to electronic structure and defect studies are briefly reviewed and some recent advances and pending problems are illustrated by specific examples. In particular, it turns out that the sensitivity of calculated momentum densities of electron-positron annihilation pairs (MDAP) to the choice of electron crystal potential is higher or comparable to its sensitivity with respect to the choice of description of the electron-positron interaction. As a result, it is very hard to distinguish between various electron-positron interaction theories on the basis of the comparison of theoretical and experimental MDAPs. Furthermore, the positron affinity is determined theorttically for several systems having a band gap (semiconductors, insulators). It appears that the calculated positron affinities are significantly underestimated when compared to experimental data and, apparently, electron-positron interactions in such systems are not described satisfactorily by contemporary theoretical approaches. The above examples are related rather to electronic structure studies, but positrons are often used to investigate various open-volume defects in solids, which is dealt with in the last illustration. A non-selfconsistent computational technique suitable for the theoretical examination of configurations having large number (thousands) of non-equivalent atoms has been updated recently to treat non-periodic solids. It is based on the superposition of atomic densities in order to approximate the electronic density of the system studied. Though the charge redistribution due to selfconsistency effects is neglected, positron annihilation characteristics are determined quite reasonably. This allows for studying properties of extended defects like grain boundaries (and other interfaces), dislocations, precipitates, etc., which is very helpful when interpreting experimental positron annihilation data. Our technique is

  13. Digitized detection of gamma-ray signals concentrated in narrow time windows for transient positron annihilation lifetime spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinomura, A., E-mail: a.kinomura@aist.go.jp; Suzuki, R.; Oshima, N.

    2014-12-15

    A pulsed slow-positron beam generated by an electron linear accelerator was directly used for positron annihilation lifetime spectroscopy without any positron storage devices. A waveform digitizer was introduced to simultaneously capture multiple gamma-ray signals originating from positron annihilation events during a single accelerator pulse. The positron pulse was chopped and bunched with the chopper signals also sent to the waveform digitizer. Time differences between the annihilation gamma-ray and chopper peaks were calculated and accumulated as lifetime spectra in a computer. The developed technique indicated that positron annihilation lifetime spectroscopy can be performed in a 20 μs time window at amore » pulse repetition rate synchronous with the linear accelerator. Lifetime spectra of a Kapton sheet and a thermally grown SiO{sub 2} layer on Si were successfully measured. Synchronization of positron lifetime measurements with pulsed ion irradiation was demonstrated by this technique.« less

  14. Digitized detection of gamma-ray signals concentrated in narrow time windows for transient positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Kinomura, A.; Suzuki, R.; Oshima, N.; O'Rourke, B. E.; Nishijima, T.; Ogawa, H.

    2014-12-01

    A pulsed slow-positron beam generated by an electron linear accelerator was directly used for positron annihilation lifetime spectroscopy without any positron storage devices. A waveform digitizer was introduced to simultaneously capture multiple gamma-ray signals originating from positron annihilation events during a single accelerator pulse. The positron pulse was chopped and bunched with the chopper signals also sent to the waveform digitizer. Time differences between the annihilation gamma-ray and chopper peaks were calculated and accumulated as lifetime spectra in a computer. The developed technique indicated that positron annihilation lifetime spectroscopy can be performed in a 20 μs time window at a pulse repetition rate synchronous with the linear accelerator. Lifetime spectra of a Kapton sheet and a thermally grown SiO2 layer on Si were successfully measured. Synchronization of positron lifetime measurements with pulsed ion irradiation was demonstrated by this technique.

  15. Positron-annihilation 2D-ACAR studies of disordered and defected alloys

    NASA Astrophysics Data System (ADS)

    Bansil, A.; Prasad, R.; Smedskjaer, L. C.; Benedek, R.; Mijnarends, P. E.

    1987-09-01

    Theoretical and experimental progess in connection with 2D-ACAR positron annihilation studies of ordered, disordered, and defected alloys is discussed. We present, in particular, some of the recent developments concerning the electronic structure of disordered alloys, and the work in the area of annihilation from positrons trapped at vacancy-type defects in metals and alloys. The electronic structure and properties of a number of compounds are also discussed briefly; we comment specifically on high T sub c ceramic superconductors, Heusler alloys, and transition-metal aluminides.

  16. Investigation of the surface sensitivity of positron-annihilation-induced Auger-electron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehl, D.R.

    1990-01-01

    The first surface sensitivity studies of positron-annihilation-induced Auger-electron spectroscopy (PAES) are presented. Preliminary measurements on polycrystalline Al with adsorbates indicate that PAES is more selective of the surface than conventional electron-induced Auger electron spectroscopy (EAES). PAES and EAES studies of well-defined overlayer-metal systems of Cu(110)+S and Cu(110)+Cs verify that PAES is selective of the top atomic layer. This surface selectivity is accounted for by theoretical calculations which indicate that the positron surface state is displaced away from the substrate by the over-layer, decreasing the annihilation rate of positrons with substrate core electrons.

  17. Positron annihilation lifetime and Doppler broadening spectroscopy at the ELBE facility

    NASA Astrophysics Data System (ADS)

    Wagner, Andreas; Butterling, Maik; Liedke, Maciej O.; Potzger, Kay; Krause-Rehberg, Reinhard

    2018-05-01

    The Helmholtz-Zentrum Dresden-Rossendorf operates a superconducting linear accelerator for electrons with energies up to 35 MeV and average beam currents up to 1.6 mA with bunch charges up to 120 pC. The electron beam is employed to produce several secondary beams including X-rays from bremsstrahlung production, coherent IR light in a Free Electron Laser, superradiant THz radiation, neutrons, and positrons. The secondary positron beam after moderation feeds the Monoenergetic Positron Source (MePS) where positron annihilation lifetime (PALS) and positron annihilation Doppler-broadening experiments in materials science are performed. The adjustable repetition rate of the continuous-wave electron beams allows matching of the pulse separation to the positron lifetime in the sample under study. The energy of the positron beam can be set between 0.5 keV and 20 keV to perform depth resolved defect spectroscopy and porosity studies especially for thin films. Bulk materials, fluids, gases, and even radioactive samples can be studied at the unique Gamma-induced Positron Source (GiPS) where an intense bremsstrahlung source generates positrons directly inside the material under study. A 22Na-based monoenergetic positron beam serves for offline experiments and additional depth-resolved Doppler-broadening studies complementing both accelerator-based sources.

  18. Apparatus for photon activation positron annihilation analysis

    DOEpatents

    Akers, Douglas W [Idaho Falls, ID

    2007-06-12

    Non-destructive testing apparatus according to one embodiment of the invention comprises a photon source. The photon source produces photons having predetermined energies and directs the photons toward a specimen being tested. The photons from the photon source result in the creation of positrons within the specimen being tested. A detector positioned adjacent the specimen being tested detects gamma rays produced by annihilation of positrons with electrons. A data processing system operatively associated with the detector produces output data indicative of a lattice characteristic of the specimen being tested.

  19. Surface states and annihilation characteristics of positrons trapped at the oxidized Cu(100) surface

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Weiss, A. H.

    2013-06-01

    In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. Oxidation of the Cu(100) surface has been studied by performing an ab-initio investigation of the stability and electronic structure of the Cu(100) missing row reconstructed surface at various on-surface and subsurface oxygen coverages ranging from 0.5 to 1.5 monolayers using density functional theory (DFT). All studied structures have been found to be energetically more favorable as compared to structures formed by purely on-surface oxygen adsorption. The observed decrease in the positron work function when oxygen atoms occupy on-surface and subsurface sites has been attributed to a significant charge redistribution within the first two layers, buckling effects within each layer and an interlayer expansion. The computed positron binding energy, positron surface state wave function, and annihilation probabilities of the surface trapped positrons with relevant core electrons demonstrate their sensitivity to oxygen coverage, atomic structure of the topmost layers of surfaces, and charge transfer effects. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES). The results presented provide an explanation for the changes observed in the probability of annihilation of surface trapped positrons with Cu 3p core-level electrons as a function of annealing temperature.

  20. Simulation and Modeling of Positrons and Electrons in advanced Time-of-Flight Positron Annihilation Induced Auger Electron Spectroscopy Systems

    NASA Astrophysics Data System (ADS)

    Joglekar, Prasad; Shastry, Karthik; Satyal, Suman; Weiss, Alexander

    2011-10-01

    Time of Flight Positron Annihilation Induced Auger Electron Spectroscopy (T-O-F PAES) is a highly surface selective analytical technique in which elemental identification is accomplished through a measurement of the flight time distributions of Auger electrons resulting from the annihilation of core electron by positrons. SIMION charged particle optics simulation software was used to model the trajectories both the incident positrons and outgoing electrons in our existing T-O-F PAES system as well as in a new system currently under construction in our laboratory. The implication of these simulation regarding the instrument design and performance are discussed.

  1. Positron Annihilation Induced Auger and Gamma Spectroscopy of Catalytically Important Surfaces

    NASA Astrophysics Data System (ADS)

    Weiss, A. H.; Nadesalingam, M. P.; Sundaramoorthy, R.; Mukherjee, S.; Fazleev, N. G.

    2006-10-01

    The annihilation of positrons with core electrons results in unique signatures in the spectra of Auger-electron and annihilation-gamma rays that can be used to make clear chemical identification of atoms at the surface. Because positrons implanted at low energies are trapped with high efficiency in the image-correlation well where they are localized just outside the surface it is possible to use annihilation induced Auger and Gamma signals to probe the surfaces of solids with single atomic layer depth resolution. In this talk we will report recent applications of Positron Annihilation Induced Auger Electron Spectroscopy (PAES) and Auger-Gamma Coincidence Spectroscopy (AGCS) to the study of surface structure and surface chemistry. Our research has demonstrated that PAES spectra can provide new information regarding the composition of the top-most atomic layer. Applications of PAES to the study of catalytically important surfaces of oxides and wide band-gap semiconductors including TiO2, SiO2,Cu2O, and SiC will be presented. We conclude with a discussion of the use of Auger-Gamma and Gamma-Gamma coincidence spectroscopy for the study of surfaces at pressures closer to those found in practical chemical reactors. Research supported by the Welch Foundation Grant Number Y-1100.

  2. Free Volume Structure of Acrylic-Type Dental Nanocomposites Tested with Annihilating Positrons.

    PubMed

    Shpotyuk, Olha; Ingram, Adam; Shpotyuk, Oleh

    2016-12-01

    Positron annihilation spectroscopy in lifetime measuring mode exploring conventional fast-fast coincidence ORTEC system is employed to characterize free volume structure of commercially available acrylic-type dental restorative composite Charisma® (Heraeus Kulzer GmbH, Germany). The measured lifetime spectra for uncured and light-cured composites are reconstructed from unconstrained x3-term fitting and semi-empirical model exploring x3-x2-coupling decomposition algorithm. The governing channel of positron annihilation in the composites studied is ascribed to mixed positron-Ps trapping, where Ps decaying in the third component is caused entirely by input from free-volume holes in polymer matrix, while the second component is defined by free positron trapping in interfacial free-volume holes between filler nanoparticles and surrounded polymer matrix. Microstructure scenario of the photopolymerization shrinkage includes cross-linking of structural chains in polymer matrix followed by conversion of bound positron-electron (positronium) traps in positron-trapping interfacial free-volume voids in a vicinity of agglomerated filler nanoparticles.

  3. Photon-induced positron annihilation lifetime spectroscopy using ultrashort laser-Compton-scattered gamma-ray pulses

    NASA Astrophysics Data System (ADS)

    Taira, Y.; Toyokawa, H.; Kuroda, R.; Yamamoto, N.; Adachi, M.; Tanaka, S.; Katoh, M.

    2013-05-01

    High-energy ultrashort gamma-ray pulses can be generated via laser Compton scattering with 90° collisions at the UVSOR-II electron storage ring. As an applied study of ultrashort gamma-ray pulses, a new photon-induced positron annihilation lifetime spectroscopy approach has been developed. Ultrashort gamma-ray pulses with a maximum energy of 6.6 MeV and pulse width of 2.2 ps created positrons throughout bulk lead via pair production. Annihilation gamma rays were detected by a BaF2 scintillator mounted on a photomultiplier tube. A positron lifetime spectrum was obtained by measuring the time difference between the RF frequency of the electron storage ring and the detection time of the annihilation gamma rays. We calculated the response of the BaF2 scintillator and the time jitter caused by the variation in the total path length of the ultrashort gamma-ray pulses, annihilation gamma rays, and scintillation light using a Monte Carlo simulation code. The positron lifetime for bulk lead was successfully measured.

  4. New insights into the nanostructure of innovative thin film solar cells gained by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Eijt, S. W. H.; Shi, W.; Mannheim, A.; Butterling, M.; Schut, H.; Egger, W.; Dickmann, M.; Hugenschmidt, C.; Shakeri, B.; Meulenberg, R. W.; Callewaert, V.; Saniz, R.; Partoens, B.; Barbiellini, B.; Bansil, A.; Melskens, J.; Zeman, M.; Smets, A. H. M.; Kulbak, M.; Hodes, G.; Cahen, D.; Brück, E.

    2017-01-01

    Recent studies showed that positron annihilation methods can provide key insights into the nanostructure and electronic structure of thin film solar cells. In this study, positron annihilation lifetime spectroscopy (PALS) is applied to investigate CdSe quantum dot (QD) light absorbing layers, providing evidence of positron trapping at the surfaces of the QDs. This enables one to monitor their surface composition and electronic structure. Further, 2D-Angular Correlation of Annihilation Radiation (2D-ACAR) is used to investigate the nanostructure of divacancies in photovoltaic-high-quality a-Si:H films. The collected momentum distributions were converted by Fourier transformation to the direct space representation of the electron-positron autocorrelation function. The evolution of the size of the divacancies as a function of hydrogen dilution during deposition of a-Si:H thin films was examined. Finally, we present a first positron Doppler Broadening of Annihilation Radiation (DBAR) study of the emerging class of highly efficient thin film solar cells based on perovskites.

  5. Positron annihilation in transparent ceramics

    NASA Astrophysics Data System (ADS)

    Husband, P.; Bartošová, I.; Slugeň, V.; Selim, F. A.

    2016-01-01

    Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics.

  6. Positron deep level transient spectroscopy — a new application of positron annihilation to semiconductor physics

    NASA Astrophysics Data System (ADS)

    Beling, C. D.; Fung, S.; Au, H. L.; Ling, C. C.; Reddy, C. V.; Deng, A. H.; Panda, B. K.

    1997-05-01

    Recent positron mobility and lifetime measurements made on ac-biased metal on semi-insulating GaAs junctions, which have identified the native EL2 defect through a determination of the characteristic ionization energy of the donor level, are reviewed. It is shown that these measurements point towards a new spectroscopy, tentatively named positron-DLTS (deep level transient spectroscopy), that is the direct complement to conventional DLTS in that it monitors transients in the electric field of the depletion region rather than the inversely related depletion width, as deep levels undergo ionization. In this new spectroscopy, which may be applied to doped material by use of a suitable positron beam, electric field transients are monitored through the Doppler shift of the annihilation radiation resulting from the drift velocity of the positron in the depletion region. Two useful extensions of the new spectroscopy beyond conventional capacitance-DLTS are suggested. The first is that in some instances information on the microstructure of the defect causing the deep level may be inferred from the sensitivity of the positron to vacancy defects of negative and neutral charge states. The second is that the positron annihilation technique is intrinsically much faster than conventional DLTS with the capability of observing transients some 10 6 times faster, thus allowing deep levels (and even shallow levels) to be investigated without problems associated with carrier freeze-out.

  7. Free volume dependent fluorescence property of PMMA composite: Positron annihilation studies

    NASA Astrophysics Data System (ADS)

    Ravindrachary, V.; Praveena, S. D.; Bhajantri, R. F.; Ismayil, Crasta, Vincent

    2013-02-01

    The free volume related fluorescence properties of chalcone chromophore [1-(4-methylphenyl)-3-(4-N, N, dimethylaminophenyl)-2-propen-1-one doped Poly(methyl methacrylate) have been studied using fluorescence spectroscopy and Positron Annihilation lifetime spectroscopy techniques. The fluorescence spectra show that the fluorescence behavior depends on the free volume dependent polymer microstructure and varies with dopant concentration with in the composite. The origin and variation of fluorescence is understood by twisted internal charge transfer state as well as free volume. The Positron annihilation study shows that the free volume related microstructure of the composite is vary with doping level.

  8. Positron annihilation lifetime characterization of oxygen ion irradiated rutile TiO2

    NASA Astrophysics Data System (ADS)

    Luitel, Homnath; Sarkar, A.; Chakrabarti, Mahuya; Chattopadhyay, S.; Asokan, K.; Sanyal, D.

    2016-07-01

    Ferromagnetic ordering at room temperature has been induced in rutile phase of TiO2 polycrystalline sample by O ion irradiation. 96 MeV O ion induced defects in rutile TiO2 sample has been characterized by positron annihilation spectroscopic techniques. Positron annihilation results indicate the formation of cation vacancy (VTi, Ti vacancy) in these irradiated TiO2 samples. Ab initio density functional theoretical calculations indicate that in TiO2 magnetic moment can be induced either by creating Ti or O vacancies.

  9. High-resolution Auger-electron spectroscopy induced by positron annihilation on Fe, Ni, Cu, Zn, Pd, and Au

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.; Mayer, J.; Schreckenbach, K.

    2010-04-01

    Positron annihilation induced Auger electron spectroscopy (PAES) enables almost background free, non-destructive surface analysis with high surface selectivity. The Auger-spectrometer at the high intense positron source NEPOMUC now allows to record positron annihilation induced Auger spectra within a short data acquisition time of 10-80 minutes. With a new hemispherical electron energy analyzer and due to the exceptional peak to noise ratio, we succeeded to measure Auger-transitions such as the M2,3V V double peak of nickel with high energy resolution. The relative Auger-electron intensities are obtained by the analysis of the recorded positron annihilation induced Auger spectra for the surfaces of Fe, Ni, Cu, Pd and Au. It is demonstrated, that high-resolution PAES allows to determine experimentally the relative surface core annihilation probability of various atomic levels.

  10. Is There a Dark Matter Signal in the Galactic Positron Annihilation Radiation?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lingenfelter, R. E.; Rothschild, R. E.; Higdon, J. C.

    2009-07-17

    Assuming Galactic positrons do not go far before annihilating, a difference between the observed 511 keV annihilation flux distribution and that of positron production, expected from beta{sup +} decay in Galactic iron nucleosynthesis, was evoked as evidence of a new source and signal of dark matter. We show, however, that the dark matter sources cannot account for the observed positronium fraction without extensive propagation. Yet with such propagation, standard nucleosynthetic sources can fully account for the spatial differences and positronium fraction, leaving no new signal for dark matter to explain.

  11. Positron annihilation study of cavities in black Au films

    NASA Astrophysics Data System (ADS)

    Melikhova, O.; Čížek, J.; Hruška, P.; Vlček, M.; Procházka, I.; Anwand, W.; Novotný, M.; Bulíř, J.

    2017-01-01

    Defects in a black Au film were studied using variable energy positron annihilation spectroscopy. Black Au films exhibit porous morphology similar to cauliflower. This type of structure enhances the optical absorption due to a multiple reflections in the micro-cavities. A nanostructured black Au film was compared with conventional smooth Au films with high reflectivity. The black Au film exhibited a remarkably enhanced S-parameter in sub-surface region. This is caused by a narrow para-Positronium contribution to the annihilation peak.

  12. Satellite Observations of Annihilation of Positrons Produced at the Sun, the Earth, and Center of our Galaxy

    NASA Astrophysics Data System (ADS)

    Share, G. H.; Murphy, R. J.; Lin, R. P.

    2007-05-01

    Positrons are created in nuclear interactions that produce β +-unstable nuclei and pi+ mesons. Satellites remotely observe positron production when they annihilate with electrons yielding the characteristic line at 511 keV. Radiation detectors such as the germanium diodes on the Ramaty High-Energy Solar Spectrocopic Imager (RHESSI) observe this line from positrons by nuclei activated in the spacecraft by proton interactions during transit through the Earth's radiation belts and from cosmic radiation. This forms an intense background for solar and astrophysical observations. RHESSI and other satellites have observed positron annihilation in over 50 solar flares. These measurements provide information on the temperature, density, and ionization state of solar atmosphere where the positrons annihilate. The measurements suggest that up to a few kg of positrons are produced in these flares. Detectable annihilation-line radiation is also emitted from the Earth's atmosphere in interactions of cosmic rays and solar energetic particles. An extended annihilation-line source has also been detected within about 10 degrees of the center of the Milky Way that is attributed to positrons released in radioactive decays of nuclei with long half-lives produced in supernovae, novae, and other stellar explosions. From 1980 to 1988 NASA's Solar Maximum Mission satellite also detected belts of positrons emitted by nuclear reactors onboard KOSMOS satellites and trapped temporarily in the Earth's magnetic field. This work was supported by NASA Supporting Research & Technology grants.

  13. Materials characterization of free volume and void properties by two-dimensional positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Hongmin; Van Horn, J. David; Jean, Y. C.; Hung, Wei-Song; Lee, Kueir-Rarn

    2013-04-01

    Positron annihilation lifetime spectroscopy (PALS) has been widely used to determine the free volume and void properties in polymeric materials. Recently, a two dimensional positron annihilation lifetime spectroscopy (2DPALS) system has been developed for membrane applications. The system measures the coincident signals between the lifetime and the energy which could separate the 2γ and 3γ annihilations and improve the accuracy in the determination of the free volume and void properties. When 2D-PALS is used in coupling with a variable mono-energy slow positron beam, it could be applied to a variety of material characterization. Results of free volumes and voids properties in a multi-layer polymer membrane characterized using 2D-PALS are presented.

  14. Oxidation and thermal reduction of the Cu(1 0 0) surface as studied using positron annihilation induced Auger electron spectroscopy (PAES)

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Nadesalingam, M. P.; Maddox, W.; Mukherjee, S.; Rajeshwar, K.; Weiss, A. H.

    2010-01-01

    Changes in the surface of an oxidized Cu(1 0 0) single crystal resulting from vacuum annealing have been investigated using positron annihilation induced Auger electron spectroscopy (PAES). PAES measurements show a large increase in the intensity of the annihilation induced Cu M 2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 °C. The intensity then decreases monotonically as the annealing temperature is increased to ˜600 °C. Experimental probabilities of annihilation of surface-trapped positrons with Cu 3p and O 1s core-level electrons are estimated from the measured intensities of the positron annihilation induced Cu M 2,3VV and O KLL Auger transitions. Experimental PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface, surface reconstructions, and electron-positron correlations effects. The effects of oxygen adsorption on localization of positron surface state wave function and annihilation characteristics are also analyzed. Possible explanation is proposed for the observed behavior of the intensity of positron annihilation induced Cu M 2,3VV and O KLL Auger peaks and probabilities of annihilation of surface-trapped positrons with Cu 3p and O 1s core-level electrons with changes of the annealing temperature.

  15. Theoretical studies of positron states and annihilation characteristics at the oxidized Cu(100) surface

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Weiss, A. H.

    2013-04-01

    In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. An ab-initio study of the electronic properties of the Cu(100) missing row reconstructed surface at various on surface and sub-surface oxygen coverages has been performed on the basis of the density functional theory (DFT) using the Dmol3 code and the generalized gradient approximation (GGA). Surface structures in calculations have been constructed by adding oxygen atoms to various surface hollow and sub-surface octahedral sites of the 0.5 monolayer (ML) missing row reconstructed phase of the Cu(100) surface with oxygen coverages ranging from 0.5 to 1.5 ML. The charge redistribution at the surface and variations in atomic structure and chemical composition of the topmost layers associated with oxidation and surface reconstruction have been found to affect the spatial extent and localization of the positron surface state wave function and annihilation probabilities of surface trapped positrons with relevant core electrons. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES). It has been shown that positron annihilation probabilities with Cu 3s and 3p core electrons decrease when total (on-surface and sub-surface) oxygen coverage of the Cu(100) surface increases up to 1 ML. The calculations show that for high oxygen coverage when total oxygen coverage is 1. 5 ML the positron is not bound to the surface.

  16. Theoretical studies of positron states and annihilation characteristics at the oxidized Cu(100) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fazleev, N. G.; Weiss, A. H.

    2013-04-19

    In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. An ab-initio study of the electronic properties of the Cu(100) missing row reconstructed surface at various on surface and sub-surface oxygen coverages has been performed on the basis of the density functional theory (DFT) using the Dmol3 code and the generalized gradient approximation (GGA). Surface structures in calculations have been constructed by adding oxygen atoms to various surface hollow and sub-surface octahedral sitesmore » of the 0.5 monolayer (ML) missing row reconstructed phase of the Cu(100) surface with oxygen coverages ranging from 0.5 to 1.5 ML. The charge redistribution at the surface and variations in atomic structure and chemical composition of the topmost layers associated with oxidation and surface reconstruction have been found to affect the spatial extent and localization of the positron surface state wave function and annihilation probabilities of surface trapped positrons with relevant core electrons. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES). It has been shown that positron annihilation probabilities with Cu 3s and 3p core electrons decrease when total (on-surface and sub-surface) oxygen coverage of the Cu(100) surface increases up to 1 ML. The calculations show that for high oxygen coverage when total oxygen coverage is 1. 5 ML the positron is not bound to the surface.« less

  17. Studies of the Ge(100) Surface Using a Low Energy Positron Beam: The Effects of Surface Reconstructions on Positron Trapping and Annihilation Characteristics

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Weiss, A. H.

    2008-03-01

    Positron annihilation induced Auger electron spectroscopy (PAES) has been applied to study the Ge(100) surface. The PAES spectrum from the Ge(100) surface displays several strong Auger peaks corresponding to M4,5N1N2,3 , M2,3M4,5M4,5 , M2,3M4,5V, and M1M4,5M4,5 Auger transitions. The integrated peak intensities of Auger transitions are used to obtain experimental annihilation probabilities for the Ge 3d and 3p core level electrons. The experimental results are analyzed by performing calculations of positron surface states and annihilation characteristics of surface trapped positrons with relevant Ge core-level electrons for the reconstructed Ge(100)-p(2x1), Ge(100)-p(2x2), and Ge(100)-c(4x2) surfaces. Estimates of positron binding energy, work function, and annihilation characteristics reveal their sensitivity to surface reconstruction of the topmost layers of clean Ge(100). These results are compared to the ones obtained for the reconstructed Si(100)-(2x1) and Si(100)-p(2x2) surfaces. A comparison with PAES data reveals an agreement with theoretical core annihilation probabilities for the Auger transitions considered.

  18. Design and building of new spin polarized Positron Annihilation Induced Auger Electron Spectrometer

    NASA Astrophysics Data System (ADS)

    Lim, Zheng Hui; Mishler, Michael; Joglekar, Prasad; Shastry, Karthik; Koymen, Ali; Sharma, Suresh; Weiss, Alexander

    2014-03-01

    We propose to develop a next generation high flux variable energy spin-polarized position beam facility for materials studies. This new system will have a higher efficiency than our current system, and it will also be the first in the world to combine spin polarization with a time of flight Positron Annihilation induced Auger Electron Spectroscopy (PAES). The spin polarized positrons are electromagnetically guided towards the sample with an axial magnetic field and perpendicular electric fields. These incident positrons get annihilated at the surface of the sample creating two gamma rays and auger electrons via Auger transitions. These signals are useful in characterizing material surface, surface magnetization, and energy sharing in valence band. This new spectrometer, which is currently under construction, will be a next generation positron system. NSF.

  19. Studies Of Oxidation And Thermal Reduction Of The Cu(100) Surface Using Positron Annihilation Induced Auger Electron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Nadesalingam, M. P.; Maddox, W.; Weiss, A. H.

    2011-06-01

    Positron annihilation induced Auger electron spectroscopy (PAES) measurements from the surface of an oxidized Cu(100) single crystal show a large increase in the intensity of the annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 °C. The PAES intensity then decreases monotonically as the annealing temperature is increased to ˜550 °C. Experimental positron annihilation probabilities with Cu 3p and O 1s core electrons are estimated from the measured intensities of the positron annihilation induced Cu M2,3VV and O KLL Auger transitions. PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of the surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface and various surface structures associated with low and high oxygen coverages. The variations in atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface are found to affect localization and spatial extent of the positron surface state wave function. The computed positron binding energy and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface. Theoretical positron annihilation probabilities with Cu 3p and O 1s core electrons computed for the oxidized Cu(100) surface are compared with experimental ones. The obtained results provide a demonstration of thermal reduction of the copper oxide surface after annealing at 300 °C followed by re-oxidation of the Cu(100) surface at higher annealing temperatures presumably due to diffusion of subsurface oxygen to the surface.

  20. Studies Of Oxidation And Thermal Reduction Of The Cu(100) Surface Using Positron Annihilation Induced Auger Electron Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fazleev, N. G.; Department of Physics, Kazan State University, Kazan 420008; Nadesalingam, M. P.

    2011-06-01

    Positron annihilation induced Auger electron spectroscopy (PAES) measurements from the surface of an oxidized Cu(100) single crystal show a large increase in the intensity of the annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 deg. C. The PAES intensity then decreases monotonically as the annealing temperature is increased to {approx}550 deg. C. Experimental positron annihilation probabilities with Cu 3p and O 1s core electrons are estimated from the measured intensities of the positron annihilation induced Cu M{sub 2,3}VV and O KLL Auger transitions. PAESmore » results are analyzed by performing calculations of positron surface states and annihilation probabilities of the surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface and various surface structures associated with low and high oxygen coverages. The variations in atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface are found to affect localization and spatial extent of the positron surface state wave function. The computed positron binding energy and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface. Theoretical positron annihilation probabilities with Cu 3p and O 1s core electrons computed for the oxidized Cu(100) surface are compared with experimental ones. The obtained results provide a demonstration of thermal reduction of the copper oxide surface after annealing at 300 deg. C followed by re-oxidation of the Cu(100) surface at higher annealing temperatures presumably due to diffusion of subsurface oxygen to the surface.« less

  1. Application of positron annihilation lineshape analysis to fatigue damage and thermal embrittlement for nuclear plant materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uchida, M.; Ohta, Y.; Nakamura, N.

    1995-08-01

    Positron annihilation (PA) lineshape analysis is sensitive to detect microstructural defects such as vacancies and dislocations. The authors are developing a portable system and applying this technique to nuclear power plant material evaluations; fatigue damage in type 316 stainless steel and SA508 low alloy steel, and thermal embrittlement in duplex stainless steel. The PA technique was found to be sensitive in the early fatigue life (up to 10%), but showed a little sensitivity for later stages of the fatigue life in both type 316 stainless steel and SA508 ferritic steel. Type 316 steel showed a higher PA sensitivity than SA508more » since the initial SA508 microstructure already contained a high dislocation density in the as-received state. The PA parameter increased as a fraction of aging time in CF8M samples aged at 350 C and 400 C, but didn`t change much in CF8 samples.« less

  2. Positron annihilation lifetime spectroscopy study of Kapton thin foils

    NASA Astrophysics Data System (ADS)

    Kanda, G. S.; Ravelli, L.; Löwe, B.; Egger, W.; Keeble, D. J.

    2016-01-01

    Variable energy positron annihilation lifetime spectroscopy (VE-PALS) experiments on polyimide material Kapton are reported. Thin Kapton foils are widely used in a variety of mechanical, electronic applications. PALS provides a sensitive probe of vacancy-related defects in a wide range of materials, including open volume in polymers. Varying the positron implantation energy enables direct measurement of thin foils. Thin Kapton foils are also commonly used to enclose the positron source material in conventional PALS measurements performed with unmoderated radionuclide sources. The results of depth-profiled positron lifetime measurements on 7.6 μm and 25 μm Kapton foils are reported and determine a dominant 385(1) ps lifetime component. The absence of significant nanosecond lifetime component due to positronium formation is confirmed.

  3. Measurement of the Positron Annihilation Induced Auger Electron Spectrum from Ag(100)

    NASA Astrophysics Data System (ADS)

    Joglekar, P.; Shastry, K.; Fazleev, N. G.; Weiss, A. H.

    2013-06-01

    Research has demonstrated that Positron Annihilation Induced Auger Spectroscopy (PAES) can be used to probe the top-most atomic layer of surfaces and to obtain Auger spectra that are completely free of beam-impact induced secondary background. The high degree of surface selectivity in PAES is a result of the fact that positrons implanted at low energies are trapped with high efficiency at an image-correlation potential well at the surface resulting in almost all of the positrons annihilating with atoms in the top-most layer. Secondary electrons associated with the impact of the incident positrons can be eliminated by a suitable choice of an incident beam energy. In this paper we present the results of measurements of the energy spectrum of electrons emitted as a result of positron annihilation induced Auger electron emission from a clean Ag(100) surface using a series of incident beam energies ranging from 20 eV down to 2 eV. A peak in the spectrum was observed at ~40 eV corresponding to the N2,3VV Auger transition in agreement with previous PAES studies. This peak was accompanied by an even larger low energy tail which persisted even at the lowest beam energies. Our results for Ag(100) are consistent with previous studies of Cu and Au and indicate that a significant fraction of electrons leaving the sample are emitted in the low energy tail and suggest a strong mechanism for energy sharing in the Auger process.

  4. Positron annihilation lifetime measurements of austenitic stainless and ferritic/martensitic steels irradiated in the SINQ target irradiation program

    NASA Astrophysics Data System (ADS)

    Sato, K.; Xu, Q.; Yoshiie, T.; Dai, Y.; Kikuchi, K.

    2012-12-01

    Titanium-doped austenitic stainless steel (JPCA) and reduced activated ferritic/martensitic steel (F82H) irradiated with high-energy protons and spallation neutrons were investigated by positron annihilation lifetime measurements. Subnanometer-sized (<˜0.8 nm) helium bubbles, which cannot be observed by transmission electron microscopy, were detected by positron annihilation lifetime measurements for the first time. For the F82H steel, the positron annihilation lifetime of the bubbles decreased with increasing irradiation dose and annealing temperature because the bubbles absorb additional He atoms. In the case of JPCA steel, the positron annihilation lifetime increased with increasing annealing temperature above 773 K, in which case the dissociation of complexes of vacancy clusters with He atoms and the growth of He bubbles was detected. He bubble size and density were also discussed.

  5. Three Dimensional Positron Annihilation Momentum Spectroscopy of Lithium Tetraborate Crystals

    DTIC Science & Technology

    2013-03-21

    Technique Applied to Measure Oxygen-Atom Defects in 6H Silicon Carbide ." AFIT PhD Dissertation. AFIT/DS/ENP/10-M02, (Mar 2010) [4] Charlton, M., and...of Experimental Observables of Positron-Vacancy Complexes in Silicon Carbide .” Ph.D. dissertation, Air Force Institute of Technology, 2005. [18...Resonances ............................ 19 2.1.2 3D Positron Annihilation Momentum Measurements (3DPAMMs) of 6H SiC

  6. Positron annihilation study of the high- Tc (Bi,Pb) 2Sr 2Ca 2Cu 3O x superconductor

    NASA Astrophysics Data System (ADS)

    Lim, H. J.; Byrne, J. G.

    1997-03-01

    Positron lifetime spectroscopy (PLS) and positron Doppler-broadening spectroscopy (PDBS) were applied to the high- Tc lead-doped Bi 2Sr 2Ca 2Cu 3O x (BPSCCO 2223) superconductor as a function of temperature. Neither positron lifetimes nor Doppler parameters ( S, W, and{S}/{W}) showed significant change through Tc. This may result from having the highest positron density in the open BiO 2 double layers and no significant positron density in the superconducting CuO 2 layers where positrons, if mainly present, are known to be sensitive to the transition in other high- Tc superconductors. Doppler parameters showed that the probability of positron annihilations with core electrons in the lattice slightly increased and that the probability of positron annihilations with conduction electrons slightly decreased as temperature decreased from ambient temperature to 20 K. The lifetime associated with positron annihilations in the perfect lattice of the sample ( τ1) was 209 ps and, due to the annihilations at internal surfaces or voids in the sample ( τ2) was about 540 ps, independent of temperature. Finally, the mean lifetime for BSCCO 2223 was about 307 ps.

  7. Quantum chemical approach for positron annihilation spectra of atoms and molecules beyond plane-wave approximation

    NASA Astrophysics Data System (ADS)

    Ikabata, Yasuhiro; Aiba, Risa; Iwanade, Toru; Nishizawa, Hiroaki; Wang, Feng; Nakai, Hiromi

    2018-05-01

    We report theoretical calculations of positron-electron annihilation spectra of noble gas atoms and small molecules using the nuclear orbital plus molecular orbital method. Instead of a nuclear wavefunction, the positronic wavefunction is obtained as the solution of the coupled Hartree-Fock or Kohn-Sham equation for a positron and the electrons. The molecular field is included in the positronic Fock operator, which allows an appropriate treatment of the positron-molecule repulsion. The present treatment succeeds in reproducing the Doppler shift, i.e., full width at half maximum (FWHM) of experimentally measured annihilation (γ-ray) spectra for molecules with a mean absolute error less than 10%. The numerical results indicate that the interpretation of the FWHM in terms of a specific molecular orbital is not appropriate.

  8. Design of an Operando Positron Annihilation Gamma Spectrometer (OPAGS)

    NASA Astrophysics Data System (ADS)

    Satyal, S.; Joglekar, P.; Kalaskar, S.; Shastry, K.; Weiss, A. H.

    2010-03-01

    Surface properties measured under UHV conditions cannot be extended to surfaces interacting with gases under realistic pressures due to surface reconstruction and other strong perturbations of the surface. We present the design of an Operando Positron Annihilation Gamma Spectrometer (OPAGS) currently under construction at the University of Texas at Arlington. This new system will enable us to probe the surface and gather defect specific chemical and charge state information from surfaces under realistic pressures. Differential pumping will be used to maintain the sample in a gas environment while the rest of the beam is maintained under UHV. The Elemental content of the surface interacting with the gas environment will be determined from the Doppler broadened gamma spectra. This system will include a time of flight (TOF) positron annihilation induced Auger spectrometer (TOF-PAES) which correlates with the Doppler measurements at lower pressures. These new technique help to understand the charge transfer mechanisms at the surface.

  9. Asymmetric 511 keV Positron Annihilation Line Emission from the Inner Galactic Disk

    NASA Technical Reports Server (NTRS)

    Skinner, Gerry; Weidenspointner, Georg; Jean, Pierre; Knodlseder, Jurgen; Ballmoos, Perer von; Bignami, Giovanni; Diehl, Roland; Strong, Andrew; Cordier, Bertrand; Schanne, Stephane; hide

    2008-01-01

    A recently reported asymmetry in the 511 keV gamma-ray line emission from the inner galactic disk is unexpected and mimics an equally unexpected one in the distribution of LMXBs seen at hard X-ray energies. A possible conclusion is that LMXBs are an important source of the positrons whose annihilation gives rise to the line. We will discuss these results, their statistical significance and that of any link between the two. The implication of any association between LMXBs and positrons for the strong annihilation radiation from the galactic bulge will be reviewed.

  10. Study of positron annihilation with core electrons at the clean and oxygen covered Ag(001) surface

    NASA Astrophysics Data System (ADS)

    Joglekar, P.; Shastry, K.; Olenga, A.; Fazleev, N. G.; Weiss, A. H.

    2013-03-01

    In this paper we present measurements of the energy spectrum of electrons emitted as a result of Positron Annihilation Induce Auger Electron Emission from a clean and oxygen covered Ag (100) surface using a series of incident beam energies ranging from 20 eV down to 2 eV. A peak was observed at ~ 40 eV corresponding to the N23VV Auger transition in agreement with previous PAES studies. Experimental results were investigated theoretically by calculations of positron states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the clean and oxygen covered Ag(100) surface. An ab-initio investigation of stability and associated electronic properties of different adsorption phases of oxygen on Ag(100) has been performed on the basis of density functional theory and using DMOl3 code. The computed positron binding energy, positron surface state wave function, and positron annihilation probabilities of surface trapped positrons with relevant core electrons demonstrate their sensitivity to oxygen coverage, elemental content, atomic structure of the topmost layers of surfaces, and charge transfer effects. Theoretical results are compared with experimental data. This work was supported in part by the National Science Foundation Grant # DMR-0907679.

  11. Positron annihilation induced Auger electron spectroscopic studies of oxide surfaces

    NASA Astrophysics Data System (ADS)

    Nadesalingam, Manori

    2005-03-01

    Defects on oxide surfaces are well known to play a key role in catalysis. TiO2, MgO, SiO2 surfaces were investigated using Time-Of-Flight Positron induced Auger Electron Spectroscopy (TOF-PAES). Previous work in bulk materials has demonstrated that positrons are particularly sensitive to charged defects. In PAES energetic electron emission results from Auger transitions initiated by annihilation of core electrons with positrons trapped in an image-potential well at the surface. Annealed samples in O2 environment show a strong Auger peak of Oxygen. The implication of these results will be discussed

  12. Temperature dependence of positron annihilation parameters in Tl-Ba-Ca-Cu-O superconductors

    NASA Astrophysics Data System (ADS)

    Sundar, C. S.; Bharathi, A.; Ching, W. Y.; Jean, Y. C.; Hor, P. H.; Meng, R. L.; Huang, Z. J.; Chu, C. W.

    1990-08-01

    The results of positron lifetime and Doppler broadened line-shape parameter measurements as a function of temperature, across Tc, in the Tl-Ba-Ca-Cu-O superconductors are presented. The bulk lifetime in the normal state is found to decrease with the increase in the number of CuO2 layers. Different temperature dependencies of the annihilation parameters are observed in the various Tl systems containing different numbers of CuO2 layers. In the Tl2Ba2Ca2Cu3O10 system, an increase in lifetime is observed below Tc, whereas in Tl2Ba2CaCu2O8, a decrease in lifetime is seen below Tc. In the Tl2Ba2CuO6 system, the lifetime is observed to be temperature independent. The different temperature variations of positron annihilation parameters are discussed in the light of the positron density distribution, obtained with use of the results of the self-consistent orthogonalized linear combination of atomic orbitals band-structure calculations. It is argued that the different temperature dependencies of the annihilation parameters is related to the positron density distribution within the unit cell and arise due to local charge transfer in the vicinity of the CuO2 layer in the superconducting state.

  13. Photoluminescence and positron annihilation spectroscopic investigation on a H+ irradiated ZnO single crystal

    NASA Astrophysics Data System (ADS)

    Sarkar, A.; Chakrabarti, Mahuya; Sanyal, D.; Bhowmick, D.; Dechoudhury, S.; Chakrabarti, A.; Rakshit, Tamita; Ray, S. K.

    2012-08-01

    Low temperature photoluminescence and room temperature positron annihilation spectroscopy have been employed to investigate the defects incorporated by 6 MeV H+ ions in a hydrothermally grown ZnO single crystal. Prior to irradiation, the emission from donor bound excitons is at 3.378 eV (10 K). The irradiation creates an intense and narrow emission at 3.368 eV (10 K). The intensity of this peak is nearly four times that of the dominant near band edge peak of the pristine crystal. The characteristic features of the 3.368 eV emission indicate its origin as a ‘hydrogen at oxygen vacancy’ type defect. The positron annihilation lifetime measurement reveals a single component lifetime spectrum for both the unirradiated (164 ± 1 ps) and irradiated crystal (175 ± 1 ps). It reflects the fact that the positron lifetime and intensity of the new irradiation driven defect species are a little higher compared to those in the unirradiated crystal. However, the estimated defect concentration, even considering the high dynamic defect annihilation rate in ZnO, comes out to be ˜4 × 1017 cm-3 (using SRIM software). This is a very high defect concentration compared to the defect sensitivity of positron annihilation spectroscopy. A probable reason is the partial filling of the incorporated vacancies (positron traps), which in ZnO are zinc vacancies. The positron lifetime of ˜175 ps (in irradiated ZnO) is consistent with recent theoretical calculations for partially hydrogen-filled zinc vacancies in ZnO. Passivation of oxygen vacancies by hydrogen is also reflected in the photoluminescence results. A possible reason for such vacancy filling (at both Zn and O sites) due to irradiation has also been discussed.

  14. Photoluminescence and positron annihilation spectroscopic investigation on a H(+) irradiated ZnO single crystal.

    PubMed

    Sarkar, A; Chakrabarti, Mahuya; Sanyal, D; Bhowmick, D; Dechoudhury, S; Chakrabarti, A; Rakshit, Tamita; Ray, S K

    2012-08-15

    Low temperature photoluminescence and room temperature positron annihilation spectroscopy have been employed to investigate the defects incorporated by 6 MeV H(+) ions in a hydrothermally grown ZnO single crystal. Prior to irradiation, the emission from donor bound excitons is at 3.378 eV (10 K). The irradiation creates an intense and narrow emission at 3.368 eV (10 K). The intensity of this peak is nearly four times that of the dominant near band edge peak of the pristine crystal. The characteristic features of the 3.368 eV emission indicate its origin as a 'hydrogen at oxygen vacancy' type defect. The positron annihilation lifetime measurement reveals a single component lifetime spectrum for both the unirradiated (164 ± 1 ps) and irradiated crystal (175 ± 1 ps). It reflects the fact that the positron lifetime and intensity of the new irradiation driven defect species are a little higher compared to those in the unirradiated crystal. However, the estimated defect concentration, even considering the high dynamic defect annihilation rate in ZnO, comes out to be ∼4 × 10(17) cm(-3) (using SRIM software). This is a very high defect concentration compared to the defect sensitivity of positron annihilation spectroscopy. A probable reason is the partial filling of the incorporated vacancies (positron traps), which in ZnO are zinc vacancies. The positron lifetime of ∼175 ps (in irradiated ZnO) is consistent with recent theoretical calculations for partially hydrogen-filled zinc vacancies in ZnO. Passivation of oxygen vacancies by hydrogen is also reflected in the photoluminescence results. A possible reason for such vacancy filling (at both Zn and O sites) due to irradiation has also been discussed.

  15. Hydrodynamic and kinetic models for spin-1/2 electron-positron quantum plasmas: Annihilation interaction, helicity conservation, and wave dispersion in magnetized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru

    2015-06-15

    We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular tomore » an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction.« less

  16. Positron annihilation study on ZnO-based scintillating glasses

    NASA Astrophysics Data System (ADS)

    Nie, Jiaxiang; Yu, Runsheng; Wang, Baoyi; Ou, Yuwen; Zhong, Yurong; Xia, Fang; Chen, Guorong

    2009-04-01

    Positron lifetime of ZnO-based scintillating glasses (55 - x)SiO 2-45ZnO- xBaF 2 ( x = 5, 10, 15 mol%) were measured with a conventional fast-fast spectrometer. Three positron lifetime components τ1, τ 2, and τ3 are ˜0.23 ns, ˜0.45 ns, and ˜1.6 ns, respectively. All the three positron lifetime components first increase with increasing BaF 2 concentration from 5 mol% to 10 mol%, then decreases as BaF 2 further increases to 15 mol%. The result suggests that the glass sample with 10 mol% BaF 2 contains the highest defect density, and is in excellent agreement with glass chemistry, glass density, thermal properties, and calculated crystallinity. Therefore, positron annihilation lifetime measurement is an effective tool for analyzing defects in ZnO-based scintillating glasses.

  17. Nano sulfide and oxide semiconductors as promising materials for studies by positron annihilation

    NASA Astrophysics Data System (ADS)

    Nambissan, P. M. G.

    2013-06-01

    A number of wide band gap sulfide and oxide semiconducting nanomaterial systems were investigated using the experimental techniques of positron lifetime and coincidence Doppler broadening measurements. The results indicated several features of the nanomaterial systems, which were found strongly related to the presence of vacancy-type defects and their clusters. Quantum confinement effects were displayed in these studies as remarkable changes in the positron lifetimes and the lineshape parameters around the same grain sizes below which characteristic blue shifts were observed in the optical absorption spectra. Considerable enhancement in the band gap and significant rise of the positron lifetimes were found occurring when the particle sizes were reduced to very low sizes. The results of doping or substitutions by other cations in semiconductor nanosystems were also interesting. Variously heat-treated TiO2 nanoparticles were studied recently and change of positron annihilation parameters across the anatase to rutile structural transition are carefully analyzed. Preliminary results of positron annihilation studies on Eu-doped CeO nanoparticles are also presented.

  18. Positron annihilation and X-ray diffraction studies on tin oxide thin films

    NASA Astrophysics Data System (ADS)

    Prabakar, K.; Abhaya, S.; Krishnan, R.; Kalavathi, S.; Dash, S.; Jayapandian, J.; Amarendra, G.

    2009-04-01

    Positron annihilation spectroscopy along with glancing incidence X-ray diffraction have been used to investigate tin oxide thin films grown on Si by pulsed laser deposition. The films were prepared at room temperature and at 670 K under oxygen partial pressure. As-grown samples are amorphous and are found to contain large concentration of open volume sites (vacancy defects). Post-deposition annealing of as-grown samples at 970 K is found to drastically reduce the number of open volume sites and the film becomes crystalline. However, film grown under elevated temperature and under partial pressure of oxygen is found to exhibit a lower S-parameter, indicating lower defect concentration. Based on the analysis of experimental positron annihilation results, the defect-sensitive S-parameter and the overlayer thickness of tin oxide thin films are deduced. S- W correlation plots exhibit distinct positron trapping defect states in three samples.

  19. Quality of Heusler single crystals examined by depth-dependent positron annihilation techniques

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.; Bauer, A.; Böni, P.; Ceeh, H.; Eijt, S. W. H.; Gigl, T.; Pfleiderer, C.; Piochacz, C.; Neubauer, A.; Reiner, M.; Schut, H.; Weber, J.

    2015-06-01

    Heusler compounds exhibit a wide range of different electronic ground states and are hence expected to be applicable as functional materials in novel electronic and spintronic devices. Since the growth of large and defect-free Heusler crystals is still challenging, single crystals of Fe2TiSn and Cu2MnAl were grown by the optical floating zone technique. Two positron annihilation techniques—angular correlation of annihilation radiation and Doppler broadening spectroscopy (DBS)—were applied in order to study both the electronic structure and lattice defects. Recently, we succeeded to observe clearly the anisotropy of the Fermi surface of Cu2MnAl, whereas the spectra of Fe2TiSn were disturbed by foreign phases. In order to estimate the defect concentration in different samples of Heusler compounds, the positron diffusion length was determined by DBS using a monoenergetic positron beam.

  20. Positron annihilation studies in ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Pujari, P. K.; Sudarshan, K.; Dutta, D.; Mahapatra, M.; Godbole, S. V.; Jayakumar, O. D.; Tyagi, A. K.

    2009-04-01

    We report results on positron annihilation spectroscopic (PAS) studies using lifetime and coincidence Doppler broadening techniques in zinc oxide (ZnO) nanoparticles (4 to 40 nm) synthesized by solid state pyrolytic reaction followed by annealing in the temperature range of 200 ∘C to 800 ∘C. Positron lifetime in the nanoparticles are observed to be higher than bulk lifetime in all the cases. Theoretical calculation of lifetime indicates the presence of either Zn or (Zn, O) vacancy clusters which migrate and anneal out at high temperature. Comparison of ratio spectra from coincidence Doppler broadening measurement and calculated electron momentum distribution indicates the presence of either Zn or (Zn, O) vacancies. In addition, photoluminescence (PL) measurements have been carried out to examine the role of defects on the intensity of emission in the visible region.

  1. Positron Annihilation Measurements of High Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Jung, Kang

    1995-01-01

    The temperature dependence of positron annihilation parameters has been measured for basic YBCO, Dy-doped, and Pr-doped superconducting compounds. The physical properties, such as crystal structure, electrical resistance, and critical temperature, have been studied for all samples. In the basic YBCO and Dy-doped samples, the defect -related lifetime component tau_{2 } was approximately constant from room temperature to above the critical temperature and then showed a step -like decrease in the temperature range 90K { ~} 40K. No significant temperature dependence was found in the short- and long-lifetime components, tau_{1} and tau_{3}. The x-ray diffraction data showed that the crystal structure of these two samples was almost the same. These results indicated that the electronic structure changed below the critical temperature. No transition was observed in the Pr-doped YBCO sample. The advanced computer program "PFPOSFIT" for positron lifetime analysis was modified to run on the UNIX system of the University of Utah. The destruction of superconductivity with Pr doping may be due to mechanisms such as hole filling or hole localization of the charge carriers and may be related to the valence state of the Pr ion. One-parameter analyses like the positron mean lifetime parameter and the Doppler line shape parameter S also have been studied. It was found that a transition in Doppler line shape parameter S was associated with the superconducting transition temperature in basic YBCO, Dy -doped, and 0.5 Pr-doped samples, whereas no transition was observed in the nonsuperconducting Pr-doped sample. The Doppler results indicate that the average electron momentum at the annihilation sites increases as temperature is lowered across the superconducting transition range and that electronic structure change plays an important role in high temperature superconductivity.

  2. Positron Annihilation in Superconducting 123 Compounds

    NASA Astrophysics Data System (ADS)

    Peter, M.; Manuel, A. A.; Erb, A.

    After a brief review of the theory of angular correlation of positron annihilation radiation (ACAR), we illustrate experimental principles and give examples of successful determination of electron momentum density (EMD) and of positron lifetime in solids. The central question which we try to answer concerns the contribution of positron spectroscopy to the knowledge and understanding of the new high temperature superconducting oxides. We find that in these oxides also, partially filled bands exist and we can observe parts of their Fermi surface and measure lifetimes in accordance with band theoretical calculations. There are characteristic differences, however. The intensity of the anisotropy of the ACAR signal is below theoretical expectation and signals depend on sample preparation. Recent studies by the Geneva group have concerned dependence of the signals on impurities, on oxygen content and on the thermal history of preparation. Of particular interest are correlations between the variations of these signals and between the variations of structural and transport properties in these substances. Besides deliberate additions of impurities, the Geneva group also reports progress in the preparations of samples of highest purity (barium zirconate crucibles). The alloy series PrxY1-xBa2Cu3O7-δ is of special interest because of exceptional transport properties. The recent positron results on these materials will be presented and commented in the light of theoretical models and in the light of the reported superconductivity of the Pr-compound.

  3. Testing quantum chromodynamics in electron-positron annihilation at high energies. [Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, L.S.

    1979-01-01

    Various measures of the distribution of hadronic energy produced in high energy electron-positron annihilation provide precise tests of the promising fundamental theory of hadronic physics, quantum chromodynamics. Recent work at the University of Washington on such energy cross sections is reviewed.

  4. Introduction to Time of Flight Positron Annihilation Induced Auger Spectroscopy (TOF-PAES)

    NASA Astrophysics Data System (ADS)

    Joglekar, Prasad; Kalaskar, Sushant; Shastry, Karthik; Satyal, Suman; Weiss, Alex

    2009-10-01

    Time of flight- positron annihilation induced auger electron spectroscopy (TOF-PAES) is extremely surface selective with close to 95% of the PAES signal stemming from the top-most atomic layer. In PAES, a beam of low energy (1eV -- 25eV) positrons is made incident on a surface where they become trapped in an image potential well. A fraction (up to several percent) of the positrons in the surface state annihilate with the core electrons of atoms at the surface resulting in core-holes. Electrons in higher levels can fill these core-hole via an Auger transition in which the energy associated with this filling the core hole is transferred to another electron which can leave the atom and the surface. The energy of the outgoing (Auger) electrons is characteristic of the energy levels of the atom and can be used to identify the specific element taking part in the transition. In this talk I will present a brief review of how the TOF PAES technique can be used to obtain Auger spectra that is completely free of secondary electron background.

  5. Positron annihilation studies in the field induced depletion regions of metal-oxide-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Asoka-Kumar, P.; Leung, T. C.; Lynn, K. G.; Nielsen, B.; Forcier, M. P.; Weinberg, Z. A.; Rubloff, G. W.

    1992-06-01

    The centroid shifts of positron annihilation spectra are reported from the depletion regions of metal-oxide-semiconductor (MOS) capacitors at room temperature and at 35 K. The centroid shift measurement can be explained using the variation of the electric field strength and depletion layer thickness as a function of the applied gate bias. An estimate for the relevant MOS quantities is obtained by fitting the centroid shift versus beam energy data with a steady-state diffusion-annihilation equation and a derivative-gaussian positron implantation profile. Inadequacy of the present analysis scheme is evident from the derived quantities and alternate methods are required for better predictions.

  6. Theory of Positron Annihilation in Helium-Filled Bubbles in Plutonium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterne, P A; Pask, J E

    2003-02-13

    Positron annihilation lifetime spectroscopy is a sensitive probe of vacancies and voids in materials. This non-destructive measurement technique can identify the presence of specific defects in materials at the part-per-million level. Recent experiments by Asoka-Kumar et al. have identified two lifetime components in aged plutonium samples--a dominant lifetime component of around 182 ps and a longer lifetime component of around 350-400ps. This second component appears to increase with the age of the sample, and accounts for only about 5 percent of the total intensity in 35 year-old plutonium samples. First-principles calculations of positron lifetimes are now used extensively to guidemore » the interpretation of positron lifetime data. At Livermore, we have developed a first-principles finite-element-based method for calculating positron lifetimes for defects in metals. This method is capable of treating system cell sizes of several thousand atoms, allowing us to model defects in plutonium ranging in size from a mono-vacancy to helium-filled bubbles of over 1 nm in diameter. In order to identify the defects that account for the observed lifetime values, we have performed positron lifetime calculations for a set of vacancies, vacancy clusters, and helium-filled vacancy clusters in delta-plutonium. The calculations produced values of 143ps for defect-free delta-Pu and 255ps for a mono-vacancy in Pu, both of which are inconsistent with the dominant experimental lifetime component of 182ps. Larger vacancy clusters have even longer lifetimes. The observed positron lifetime is significantly shorter than the calculated lifetimes for mono-vacancies and larger vacancy clusters, indicating that open vacancy clusters are not the dominant defect in the aged plutonium samples. When helium atoms are introduced into the vacancy cluster, the positron lifetime is reduced due to the increased density of electrons available for annihilation. For a mono-vacancy in Pu containing one

  7. Positron annihilation signatures associated with the outburst of the microquasar V404 Cygni.

    PubMed

    Siegert, Thomas; Diehl, Roland; Greiner, Jochen; Krause, Martin G H; Beloborodov, Andrei M; Bel, Marion Cadolle; Guglielmetti, Fabrizia; Rodriguez, Jerome; Strong, Andrew W; Zhang, Xiaoling

    2016-03-17

    Microquasars are stellar-mass black holes accreting matter from a companion star and ejecting plasma jets at almost the speed of light. They are analogues of quasars that contain supermassive black holes of 10(6) to 10(10) solar masses. Accretion in microquasars varies on much shorter timescales than in quasars and occasionally produces exceptionally bright X-ray flares. How the flares are produced is unclear, as is the mechanism for launching the relativistic jets and their composition. An emission line near 511 kiloelectronvolts has long been sought in the emission spectrum of microquasars as evidence for the expected electron-positron plasma. Transient high-energy spectral features have been reported in two objects, but their positron interpretation remains contentious. Here we report observations of γ-ray emission from the microquasar V404 Cygni during a recent period of strong flaring activity. The emission spectrum around 511 kiloelectronvolts shows clear signatures of variable positron annihilation, which implies a high rate of positron production. This supports the earlier conjecture that microquasars may be the main sources of the electron-positron plasma responsible for the bright diffuse emission of annihilation γ-rays in the bulge region of our Galaxy. Additionally, microquasars could be the origin of the observed megaelectronvolt continuum excess in the inner Galaxy.

  8. INTEGRAL/SPI Observations of Electron-Positron Annihilation Radiation from our Galaxy

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Watanabe, K.; Knoedlseder, J.; Jean, P.; Lonjou, V.; Weidenspointer, G.; Skinner, G.; Vedrenne, G.; Roques, J.-P.; Schanne, S.; hide

    2005-01-01

    The spectrometer on INTEGRAL (SPI) is a coded-aperture gamma-ray telescope with moderate angular resolution (3 deg) and superior energy resolution (2 keV at 511 kev). One of it's principal science goals is the detailed study of 511 keV electron-positron annihilation from our Galaxy. The origin of this radiation remains a mystery, however current morphological studies suggest an older stellar population. There has also been recent speculation on the possibility of the existence of light (< 100 MeV) dark matter particles whose annihilation or decay could produce the observed 511 keV emission. In this paper we summarize the current results from SPI, compare them with previous results and discuss their implication on possible models for the production of the annihilation radiation.

  9. The Correlation Between Dislocations and Vacancy Defects Using Positron Annihilation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pang, Jinbiao; Li, Hui; Zhou, Kai; Wang, Zhu

    2012-07-01

    An analysis program for positron annihilation lifetime spectra is only applicable to isolated defects, but is of no use in the presence of defective correlations. Such limitations have long caused problems for positron researchers in their studies of complicated defective systems. In order to solve this problem, we aim to take a semiconductor material, for example, to achieve a credible average lifetime of single crystal silicon under plastic deformation at different temperatures using positron life time spectroscopy. By establishing reasonable positron trapping models with defective correlations and sorting out four lifetime components with multiple parameters, as well as their respective intensities, information is obtained on the positron trapping centers, such as the positron trapping rates of defects, the density of the dislocation lines and correlation between the dislocation lines, and the vacancy defects, by fitting with the average lifetime with the aid of Matlab software. These results give strong grounds for the existence of dislocation-vacancy correlation in plastically deformed silicon, and lay a theoretical foundation for the analysis of positron lifetime spectra when the positron trapping model involves dislocation-related defects.

  10. Structure and sublimation of water ice films grown in vacuo at 120-190 K studied by positron and positronium annihilation.

    PubMed

    Townrow, S; Coleman, P G

    2014-03-26

    The crystalline structure of ∼ 5-20 μm water ice films grown at 165 and 172 K has been probed by measuring the fraction of positrons forming ortho-positronium (ortho-Ps) and decaying into three gamma photons. It has been established that films grown at slower rates (water vapour pressure ≥ 1 mPa) have lower concentrations of lattice defects and closed pores, which act as Ps traps, than those grown at higher rates (vapour pressure ∼ 100 mPa), evidenced by ortho-Ps diffusion lengths being approximately four times greater in the former. By varying the growth temperature between 162 and 182 K it was found that films become less disordered at temperatures above ∼ 172 K, with the ortho-Ps diffusion length rising by ∼ 60%, in this range. The sublimation energy for water ice films grown on copper has been measured to be 0.462(5) eV using the time dependence of positron annihilation parameters from 165 to 195 K, in agreement with earlier studies and with no measurable dependence on growth rate and thermal history.

  11. Characterization of Non-Polar ZnO Layers with Positron Annihilation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zubiaga, A.; Tuomisto, F.; Zúñiga-Pérez, J.; Muñoz-San José, V.

    2008-11-01

    We applied positron annihilation spectroscopy to study the effect of growth polarity on the vacancy defects in ZnO grown by metal-organic vapor phase deposition on sapphire. Both c-plane and a-plane ZnO layers were measured, and Zn vacancies were identified as the dominant defects detected by positrons. The results are qualitatively similar to those of earlier experiments in GaN. The Zn vacancy concentration decreases in c-plane ZnO by almost one order of magnitude (from high 1017 cm-3 to low 1017 cm-3) when the layer thickness is increased from 0.5 to 2 μm. Interestingly, in a-plane ZnO the Zn vacancy concentration is constant at a level of about 2×1017 cm-3 in all the samples with thicknesses varying from 0.6 to 2.4 μm. The anisotropy of the Doppler broadening of the annihilation radiation parallel and perpendicular to the hexagonal c-axis was also measured.

  12. Frequency domain kinetic of positron-electron annihilation in the MgO-Al2O3 spinel-type ceramics

    NASA Astrophysics Data System (ADS)

    Fl'unt, Orest; Klym, Halyna; Ingram, Adam

    2018-03-01

    In this work, the kinetic of positron-electron annihilation in the MgO-Al2O3 spinel-type ceramics sintered at different temperatures (1100, 1200 and 1400 °C) has been calculated and analyzed in a frequency domain. The spectra of real (in-phase) and imaginary (quadrature) components of positron-electron annihilation kinetic have been obtained numerically from usual temporal characteristics using integral Fourier transform. The numerical calculations were carried out using cubic spline interpolation of the pulse characteristics of MgO-Al2O3 ceramics in time domain with following analytical calculations of integrals. The obtained spectra as real so imaginary part of MgO-Al2O3 ceramics in frequency domain almost good obey a Debye law denying correlation between elementary positron annihilation processes. Complex diagrams of frequency domain responses of as-prepared samples have a shape of semicircles with close characteristic frequencies. Some deviation on low-frequency side of the semicircles is observed confirming an availability of longer time kinetic processes. Sintering temperature dependencies of the relaxation times and characteristic frequencies of positron-electron annihilation processes have been obtained. It is shown that position of large maxima on the frequency dependencies of imaginary part corresponds to fast average relaxation lifetime representing the most intensive interaction process of positrons with small cavity traps in solids.

  13. The electronic properties of high (Tc) superconductors probed by positron annihilation

    NASA Astrophysics Data System (ADS)

    Sundar, C. S.; Bharathi, A.; Jean, Y. C.; Hinks, D. G.; Dabrowski, B.; Zheng, Y.; Mitchell, A. W.; Ho, J. C.; Howell, K. H.; Wachs, A. L.

    1989-06-01

    The discovery of superconductivity at 30 K in Ba(.6)K(.4) BiO3 has generated considerable excitement in view of the contrasting properties of the Ba-K-Bi-O system when compared to the well known Cu-O based high temperature superconductors. Positron annihilation spectroscopy, which is a sensitive local probe of the electronic and defect properties of a solid, was extensively applied in the study of Cu-O based superconductors. The results of positron lifetime as a function of temperature in Ba-K-Bi-O are presented and compared with the known results in the cuprate superconductors. Plausible reasons for the observed temperature dependence of positron lifetime are presented.

  14. Positron annihilation lifetime spectroscopy (PALS) study of the as prepared and calcined MFI zeolites

    NASA Astrophysics Data System (ADS)

    Bosnar, Sanja; Vrankić, Martina; Bosnar, Damir; Ren, Nan; Šarić, Ankica

    2017-11-01

    The synthesis of high silica zeolites in many cases implies the usage of organic structural direction agents (SDA). However, to manifest their functionalities, the SDA occluded inside the channels of the as-synthesized structure should be removed, usually by a high temperature treatment (calcination). In this paper, the positron annihilation lifetime spectroscopy (PALS) was used to monitor the development of accessible spaces, their sizes and distributions in MFI zeolites, ZSM-5 and silicalite-1 in order to give an additional insight in the process of the SDA removal. For that purpose, a conventional PALS setup with 22Na positron source was applied. It was established that there is a pronounced difference between positron annihilation data for these two zeolites of the same structural type. The samples were additionally analysed by X-ray powder diffraction at room temperature with a crystal structure refinement and thermogravimetry.

  15. Positron annihilation studies of the AlOx/SiO2/Si interface in solar cell structures

    NASA Astrophysics Data System (ADS)

    Edwardson, C. J.; Coleman, P. G.; Li, T.-T. A.; Cuevas, A.; Ruffell, S.

    2012-03-01

    Film and film/substrate interface characteristics of 30 and 60 nm-thick AlOx films grown on Si substrates by thermal atomic layer deposition (ALD), and 30 nm-thick AlOx films by sputtering, have been probed using variable-energy positron annihilation spectroscopy (VEPAS) and Doppler-broadened spectra ratio curves. All samples were found to have an interface which traps positrons, with annealing increasing this trapping response, regardless of growth method. Thermal ALD creates an AlOx/SiOx/Si interface with positron trapping and annihilation occurring in the Si side of the SiOx/Si boundary. An induced positive charge in the Si next to the interface reduces diffusion into the oxides and increases annihilation in the Si. In this region there is a divacancy-type response (20 ± 2%) before annealing which is increased to 47 ± 2% after annealing. Sputtering seems to not produce samples with this same electrostatic shielding; instead, positron trapping occurs directly in the SiOx interface in the as-deposited sample, and the positron response to it increases after annealing as an SiO2 layer is formed. Annealing the film has the effect of lowering the film oxygen response in all film types. Compared to other structural characterization techniques, VEPAS shows larger sensitivity to differences in film preparation method and between as-deposited and annealed samples.

  16. Investigation on the porosity of zeolite NU-88 by means of positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Consolati, G.; Mariani, M.; Millini, R.; Quasso, F.

    2009-08-01

    Seven well characterized zeolites were investigated by positron annihilation lifetime spectroscopy. The lifetime spectra were analysed in four discrete components. The third one was associated with ortho-positronium annihilation in the channels, framed in terms of infinite cylinders. Differences between the radii determined from the positron annihilation technique and X-ray diffraction data were found and explained in terms of the physical structure of the channel. An analogous study on a high-silica NU-88 zeolite gave a value of 0.33 nm for the corresponding radius, in agreement with Ar and N 2 adsorption data as well as with the catalytic behaviour of this zeolite in several acid catalyzed reactions. The longest lifetime component in NU-88 reveals the existence of mesopores, with average radius of about 1.8 nm, which could explain the importance of hydrogen transfer reactions in this zeolite.

  17. J-PET detector system for studies of the electron-positron annihilations

    NASA Astrophysics Data System (ADS)

    Pawlik-Niedźwiecka, M.; Khreptak, O.; Gajos, A.; Wieczorek, A.; Alfs, D.; Bednarski, T.; Białas, P.; Curceanu, C.; Czerwiński, E.; Dulski, K.; Głowacz, B.; Gupta-Sharma, N.; Gorgol, M.; Hiesmayr, B. C.; Jasińska, B.; Kamińska, D.; Korcyl, G.; Kowalski, P.; Krzmień, W.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Niedźwiecki, Sz.; Raczyński, L.; Rudy, Z.; Silarski, M.; Wiślicki, W.; Zgardzińska, B.; Zieliński, M.; Moskal, P.

    2016-11-01

    Jagiellonian Positron Emission Tomograph (J-PET) has been recently constructed at the Jagiellonian University as a prototype of a cost-effective scanner for the metabolic imaging of the whole human body. J-PET detector is optimized for the measurement of momentum and polarization of photons from the electron-positron annihilations. It is built out of strips of plastic scintillators, forming three cylindrical layers. As detector of gamma quanta it will be used for studies of discrete symmetries and multiparticle entanglement of photons originating from the decays of ortho-positronium atoms.

  18. Survey of elemental specificity in positron annihilation peak shapes

    NASA Astrophysics Data System (ADS)

    Myler, U.; Simpson, P. J.

    1997-12-01

    Recently the detailed interpretation of positron-annihilation γ-ray peak shapes has proven to be of interest with respect to their chemical specificity. In this contribution, we show highly resolved spectra for a number of different elements. To this purpose, annihilation spectra with strongly reduced background intensities were recorded in the two detector geometry, using a variable-energy positron beam. Division of the subsequently normalized spectra by a standard spectrum (in our case the spectrum of pure silicon) yields quotient spectra, which display features characteristic of the sample material. First we ascertain that the specific spectrum of an element is conserved in different chemical compounds, demonstrated here by identical oxygen spectra obtained from both SiO2/Si and MgO/Mg. Second, we show highly resolved spectra for a number of different elements (Fe...Zn, Ag, Ir...Au). We show that the characteristic features in these spectra vary in a systematic fashion with the atomic number of the element and can be tentatively identified with particular orbitals. Finally, for 26 different elements we compare the maximum intensity in the quotient spectra with the relative atomic density in the corresponding element. To our knowledge, this is the most comprehensive survey of such data made to date.

  19. Defect identification in semiconductors with positron annihilation: experiment and theory

    NASA Astrophysics Data System (ADS)

    Tuomisto, Filip

    2015-03-01

    Positron annihilation spectroscopy is a very powerful technique for the detection, identification and quantification of vacancy-type defects in semiconductors. In the past decades, it has been used to reveal the relationship between opto-electronic properties and specific defects in a wide variety of materials - examples include parasitic yellow luminescence in GaN, dominant acceptor defects in ZnO and broad-band absorption causing brown coloration in natural diamond. In typical binary compound semiconductors, the selective sensitivity of the technique is rather strongly limited to cation vacancies that possess significant open volume and suitable charge (negative of neutral). On the other hand, oxygen vacancies in oxide semiconductors are a widely debated topic. The properties attributed to oxygen vacancies include the inherent n-type conduction, poor p-type dopability, coloration (absorption), deep level luminescence and non-radiative recombination, while the only direct experimental evidence of their existence has been obtained on the crystal surface. We will present recent advances in combining state-of-the-art positron annihilation experiments and ab initio computational approaches. The latter can be used to model both the positron lifetime and the electron-positron momentum distribution - quantities that can be directly compared with experimental results. We have applied these methods to study vacancy-type defects in III-nitride semiconductors (GaN, AlN, InN) and oxides such as ZnO, SnO2, In2O3andGa2O3. We will show that cation-vacancy-related defects are important compensating centers in all these materials when they are n-type. In addition, we will show that anion (N, O) vacancies can be detected when they appear as complexes with cation vacancies.

  20. Structure and positron annihilation spectra of tin incorporated in mesoporous molecular sieves

    NASA Astrophysics Data System (ADS)

    Zhang, H. Y.; He, Y. J.; Chen, Y. B.; Wang, H. Y.

    2002-12-01

    Mesoporous molecular sieves (MCM-41) consist of an ordered array of silica tubules comprised of pores with uniform controllable diameters in the nanometer range. Tin was successfully incorporated into MCM-41 using wet chemical techniques. Detailed structural analysis via x-ray diffraction and high resolution transmission electron microscopy confirm this, and indicate that, after sintering samples in air, SnO2 crystal nanoclusters formed in the channels. These conclusions are further supported by a study of the positron annihilation spectrum. In particular, the insensitivity, after incorporation of tin, of the long-lived component of the positron annihilation spectrum to whether an air or a vacuum annealing atmosphere is used indicates that tin in the MCM-41 channels hinders the entry of quenching oxygen from the air. Furthermore, after sintering, the complete loss of this long-lived component indicates that SnO2 nanoclusters fill the channels.

  1. Free-volume Study in GeS2-Ga2S3-CsCl Chalcohalide Glasses Using Positron Annihilation Technique

    NASA Astrophysics Data System (ADS)

    Klym, H.; Ingram, A.; Shpotyuk, O.; Szatanik, R.

    Positron annihilation lifetime spectroscopy combined with Doppler broadening of annihilation radiation was applied to study free-volume entities in Ge-Ga-S glasses having different amount of CsCl additives. It is shown that the structural changes caused by CsCl additives can be adequately described by positron trapping modes determined within two-state model. The results testify in a favor of rather unchanged nature of corresponding free-volume voids responsible for positron trapping in the studied glasses, when mainly concentration of these traps is a subject to most significant changes with composition.

  2. Temperature Dependence of Positron Annihilation in beta-Cyclodextrin and beta-Cyclodextrin Complexes

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Hsu Hadley, F. H., Jr.; Trinh, T.

    1996-11-01

    The effects of temperature on positron annihilation in beta-cyclodextrin and beta-cyclodextrin complexed with benzyl salicylate, benzyl acetate, ethyl salicylate, geraniol, linalool and nerol were studied. Samples were prepared by slurry, air-dried and freeze-dried methods. Lifetime spectra were measured as a function of temperature for each sample. Comparison of the annihilation rate and intensity of the longer-lived component showed that positronium formation was affected by guest molecules, preparation methods and temperature variations. Results can be used to explain beta-cyclodextrin complex formation with different guest molecules.

  3. Free-volume characterization of nanostructurized substances by positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Shpotyuk, O.; Ingram, A.; Shpotyuk, Ya.

    2018-02-01

    Methodological possibilities of positron annihilation lifetime (PAL) spectroscopy are examined to parameterize free-volume structural evolution processes in some nanostructurized substances obeying conversion from positronium (Ps) decaying to positron trapping. Unlike conventional x3-term fitting analysis based on admixed positron trapping and Ps decaying, the effect of nanostructurization is considered as occurring due to conversion from preferential Ps decaying in initial host matrix to positron trapping in modified (nanostructurized) host-guest matrix. The developed approach referred to as x3-x2-CDA (coupling decomposition algorithm) allows estimation defect-free bulk and defect-specific positron lifetimes of free-volume elements responsible for nanostructurization. The applicability of this approach is proved for some nanostructurized materials allowing free-volume changes through Ps-to-positron trapping conversion, such as (i) metallic Ag nanoparticles embedded in polymer matrix, (ii) structure-modification processes caused by swift heavy ions irradiation in polystyrene, and (iii) host-guest chemistry problems like water immersion in alumomagnesium spinel ceramics. This approach is considered to be used as test-indicator, separating processes of host-matrix nanostructurization due to embedded nanoparticles from uncorrelated changes in positron-trapping and Ps-decaying channels.

  4. Development and Testing of the Positron Identification By Coincident Annihilation Photons (PICAP) System

    NASA Astrophysics Data System (ADS)

    Tran, D.; Connell, J. J.; Lopate, C.; Bickford, B.

    2014-12-01

    Moderate energy positrons (~few to 10 MeV) have seldom been observed in the Heliosphere, due primarily to there not having been dedicated instruments for such measurements. Their detection would have implications in the study of Solar energetic particle events and the transport and modulation of the Solar wind and Galactic cosmic rays. The Positron Identification by Coincident Annihilation Photons (PICAP) system is designed specifically to measure these moderate energy positrons by simultaneously detecting the two 511-keV γ-ray photons that result from a positron stopping in the instrument and the subsequent electron-positron annihilation. This method is also expected to effectively discriminate positrons from protons by measuring the amount of energy deposited in the detectors (dE/dx versus residual energy). PICAP offers a low-mass, low-power option for measuring positrons, electrons, and ions in space. Following Monte Carlo modeling, a PICAP laboratory prototype, adaptable to a space-flight design, was designed, built, and tested. This instrument is comprised of (Si) solid-state detectors, plastic scintillation detectors, and high-Z BGO crystal scintillator suitable for detecting the 511-keV γ rays. The prototype underwent preliminary laboratory testing and calibration using radioactive sources for the purpose of establishing functionality. It has since been exposed to beams of energetic protons (up to ~200 MeV) at Massachusetts General Hospital's Francis H. Burr Proton Beam Therapy Center and positrons and electrons (up to ~10 MeV) at Idaho State University's Idaho Accelerator Center. The goal is to validate modeling and determine the performance of the instrument concept. We will present a summary of modeling calculations and analysis of data taken at the accelerator tests. This work is 95% supported by NASA Grant NNX10AC10G.

  5. Positron annihilation lifetime and photoluminescence studies on single crystalline ZnO

    NASA Astrophysics Data System (ADS)

    Sarkar, A.; Chakrabarti, Mahuya; Ray, S. K.; Bhowmick, D.; Sanyal, D.

    2011-04-01

    The room temperature positron annihilation lifetime for single crystalline ZnO has been measured as 164 ± 1 ps. The single component lifetime value is very close to but higher than the theoretically predicted value of ~ 154 ps. Photoluminescence study (at 10 K) indicates the presence of hydrogen and other defects, mainly acceptor related, in the crystal. Defects related to a lower open volume than zinc vacancies, presumably a complex with two hydrogen atoms, are the major trapping sites in the sample. The bulk positron lifetime in ZnO is expected to be a little less than 164 ps.

  6. Positron annihilation lifetime and photoluminescence studies on single crystalline ZnO.

    PubMed

    Sarkar, A; Chakrabarti, Mahuya; Ray, S K; Bhowmick, D; Sanyal, D

    2011-04-20

    The room temperature positron annihilation lifetime for single crystalline ZnO has been measured as 164 ± 1 ps. The single component lifetime value is very close to but higher than the theoretically predicted value of ~154 ps. Photoluminescence study (at 10 K) indicates the presence of hydrogen and other defects, mainly acceptor related, in the crystal. Defects related to a lower open volume than zinc vacancies, presumably a complex with two hydrogen atoms, are the major trapping sites in the sample. The bulk positron lifetime in ZnO is expected to be a little less than 164 ps.

  7. Correlation between ferromagnetism and defects in MgO nanocrystals studied by positron annihilation

    NASA Astrophysics Data System (ADS)

    Wang, D. D.; Chen, Z. Q.; Li, C. Y.; Li, X. F.; Cao, C. Y.; Tang, Z.

    2012-07-01

    High purity MgO nanopowders were pressed into pellets and annealed in air from 100 to 1400 °C. Variation of the microstructures was investigated by X-ray diffraction and positron annihilation spectroscopy. Annealing induces an increase in the MgO grain size from 27 to 60 nm with temperature increasing up to 1400 °C. Positron annihilation measurements reveal vacancy defects including Mg vacancies, vacancy clusters, microvoids and large pores in the grain boundary region. Rapid recovery of Mg monovacancies and vacancy clusters was observed after annealing above 1200 °C. Room temperature ferromagnetism was observed for MgO nanocrystals annealed at 100, 700, and 1000 °C. However, after 1400 °C annealing, MgO nanocrystals turn into diamagnetic. Our results suggest that the room temperature ferromagnetism in MgO nanocrystals might originate from the interfacial defects.

  8. The study of synthetic food dyes by positron annihilation lifetime spectroscopy.

    NASA Astrophysics Data System (ADS)

    Pivtsaev, A. A.; Razov, V. I.

    2015-06-01

    By method of positron annihilation lifetime spectroscopy (PALS), substances are food dyes were studied: E-102 (Tartrazine), E-124 (Ponso 4R), E 132 (Indigo carmine), E-133 (Brilliant Blue), E-151 (Black Shiny). They are examined for the presence of carcinogenic properties. The difference between dyes having explicit carcinogenic properties and mutagenic properties (non-explicit carcinogens) is established.

  9. Single-shot positron annihilation lifetime spectroscopy with LYSO scintillators

    NASA Astrophysics Data System (ADS)

    Alonso, A. M.; Cooper, B. S.; Deller, A.; Cassidy, D. B.

    2016-08-01

    We have evaluated the application of a lutetium yttrium oxyorthosilicate (LYSO) based detector to single-shot positron annihilation lifetime spectroscopy. We compare this detector directly with a similarly configured PbWO4 scintillator, which is the usual choice for such measurements. We find that the signal to noise ratio obtained using LYSO is around three times higher than that obtained using PbWO4 for measurements of Ps excited to longer-lived (Rydberg) levels, or when they are ionized soon after production. This is due to the much higher light output for LYSO (75% and 1% of NaI for LYSO and PbWO4 respectively). We conclude that LYSO is an ideal scintillator for single-shot measurements of positronium production and excitation performed using a low-intensity pulsed positron beam.

  10. Complete elimination of the secondary electron background in Auger spectra using Time of Flight Positron Annihilation Induced Auger Electron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Joglekar, Prasad; Shastry, Karthik; Kalaskar, Sushant; Satyal, Suman; Lim, L.; Weiss, Alexander

    2010-03-01

    Time of flight- positron annihilation induced Auger electron spectroscopy (TOF-PAES) is a surface analysis technique with high surface selectivity. Almost 95% of the TOF-PAES signal emerges from the topmost layer of the sample due to the trapping of positrons in an image-potential-well before annihilation. In this poster we will present new results that demonstrate how very low energy positron beams can be used together with the time of Flight (TOF) technique developed at The University of Texas at Arlington to obtain Auger spectra that are completely free of secondary electron background.

  11. Novel time-of-flight spectrometer for the analysis of positron annihilation induced Auger electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hugenschmidt, Christoph; Legl, Stefan; Physik-Department E21, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching

    2006-10-15

    Positron annihilation induced Auger-electron spectroscopy (PAES) has several advantages over conventional Auger-electron spectroscopy such as extremely high surface sensitivity and outstanding signal-to-noise ratio at the Auger-transition energy. In order to benefit from these prominent features a low-energy positron beam of high intensity is required for surface sensitive PAES studies. In addition, an electron energy analyzer is required, which efficiently detects the Auger electrons with acceptable energy resolution. For this reason a novel time-of-flight (TOF) spectrometer has been developed at the intense positron source NEPOMUC that allows PAES studies within short measurement time. This TOF-PAES setup combines a trochoidal filter andmore » a flight tube in a Faraday cage in order to achieve an improved energy resolution of about 1 eV at high electron energies up to E{approx_equal}1000 eV. The electron flight time is the time between the annihilation radiation at the sample and when the electron hits a microchannel plate detector at the end of the flight tube.« less

  12. Novel time-of-flight spectrometer for the analysis of positron annihilation induced Auger electrons

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, Christoph; Legl, Stefan

    2006-10-01

    Positron annihilation induced Auger-electron spectroscopy (PAES) has several advantages over conventional Auger-electron spectroscopy such as extremely high surface sensitivity and outstanding signal-to-noise ratio at the Auger-transition energy. In order to benefit from these prominent features a low-energy positron beam of high intensity is required for surface sensitive PAES studies. In addition, an electron energy analyzer is required, which efficiently detects the Auger electrons with acceptable energy resolution. For this reason a novel time-of-flight (TOF) spectrometer has been developed at the intense positron source NEPOMUC that allows PAES studies within short measurement time. This TOF-PAES setup combines a trochoidal filter and a flight tube in a Faraday cage in order to achieve an improved energy resolution of about 1eV at high electron energies up to E ≈1000eV. The electron flight time is the time between the annihilation radiation at the sample and when the electron hits a microchannel plate detector at the end of the flight tube.

  13. Application of positron annihilation lifetime technique to the study of deep level transients in semiconductors

    NASA Astrophysics Data System (ADS)

    Deng, A. H.; Shan, Y. Y.; Fung, S.; Beling, C. D.

    2002-03-01

    Unlike its conventional applications in lattice defect characterization, positron annihilation lifetime technique was applied to study temperature-dependent deep level transients in semiconductors. Defect levels in the band gap can be determined as they are determined by conventional deep level transient spectroscopy (DLTS) studies. The promising advantage of this application of positron annihilation over the conventional DLTS is that it could further extract extra microstructure information of deep-level defects, such as whether a deep level defect is vacancy related or not. A demonstration of EL2 defect level transient study in GaAs was shown and the EL2 level of 0.82±0.02 eV was obtained by a standard Arrhenius analysis, similar to that in conventional DLTS studies.

  14. Positron annihilation study of Y 1- xPr xBa 2Cu 3O 7

    NASA Astrophysics Data System (ADS)

    Zhao, Y. G.; Cao, B. S.; Yu, W. Z.; Du, Z. H.; Wang, Y. J.; Luo, C. Y.; Hu, H.; Wang, S.; Yang, J. H.; He, A. S.; Gu, B. L.

    1995-02-01

    A positron annihilation study of Y 1- xPr xBa 2Cu 3O 7 was performed. The results showed that charge transfer between the CuO 2 planes and 1D CuO chains upon Pr doping, as proposed in the literature, did not occur. Pr doping suppressed the anomaly of positron annihilation lifetime near and below Tc which has been observed in YBa 2Cu 3O 7. The perfection of the 1D CuO chains was reduced by Pr doping and this may be partly responsible for the increase of resistivity with Pr doping, and finally the semiconducting behaviour of DC resistivity in Y 1- xPr xBa 2Cu 3O 7 with x > 0.6.

  15. Positron Annihilation and Complementary Studies of Copper Sandblasted with Alumina Particles at Different Pressures

    PubMed Central

    Horodek, Paweł; Dryzek, Jerzy; Wróbel, Mirosław

    2017-01-01

    Positron annihilation spectroscopy and complementary methods were used to detect changes induced by sandblasting of alumina particles at different pressures varying from 1 to 6 bar in pure well-annealed copper. The positron lifetime measurements revealed existence of dislocations and vacancy clusters in the adjoined surface layer. The presence of retained alumina particles in the copper at the depth below 50 µm was found in the SEM pictures and also in the annihilation line shape parameter profiles measured in the etching experiment. The profiles show us that the total depth of damaged zones induced by sandblasting of alumina particles ranges from 140 µm up to ca. 800 µm and it depends on the applied pressure. The work-hardening of the adjoined surface layer was found in the microhardness measurements at the cross-section of the sandblasted samples. PMID:29168749

  16. An investigation of hydrogenized amorphous Si structures with Doppler broadening positron annihilation techniques

    NASA Astrophysics Data System (ADS)

    Petkov, M. P.; Marek, T.; Asoka-Kumar, P.; Lynn, K. G.; Crandall, R. S.; Mahan, A. H.

    1998-07-01

    In this letter, we examine the feasibility of applying positron annihilation spectroscopy to the study of hydrogenized amorphous silicon (a-Si:H)-based structures produced by chemical vapor deposition techniques. The positron probe, sensitive to open volume formations, is used to characterize neutral and negatively charged silicon dangling bonds, typical for undoped and n-doped a-Si:H, respectively. Using depth profiling along the growth direction a difference was observed in the electronic environment of these defects, which enables their identification in a p-i-n device.

  17. Positron Annihilation in Thunderstorms Observed by ILDAS.

    NASA Astrophysics Data System (ADS)

    Kochkin, P.; Sarria, D., Sr.; Van Deursen, A.; de Boer, A.; Bardet, M.; Allasia, C.; Flourens, F.; Østgaard, N.

    2017-12-01

    Positron clouds within thunderstorms were for the first time reported in 2015 [Dwyer et al. 2015]. The observation was made by the Airborne Detector for Energetic Lightning Emissions (ADELE) in 2009 at 14.1 km altitude. Strong 511 keV line enhancement was recorded synchronously with nearby electrical activity. It lasted at least 0.2 s and was modeled as annihilation from disperse positron cloud more than a kilometer across. Different positron generation mechanisms were proposed in the paper. In January 2016 an Airbus A340 factory test aircraft was intentionally flying through thunderstorms over Northern Australia. The aircraft was equipped with a dedicated in-flight lightning detection system ILDAS (http://ildas.nlr.nl). The system contains two gamma-ray scintillation detectors each with 38x38 mm cylinder LaBr3 crystals. Total 9 video cameras were installed on-board to monitor the outer surfaces. When the aircraft flew at 12 km inside an active thundercloud, the ambient electric field was strong enough to trigger electrical discharges from the sharp edges. One sequence of such discharges was accompanied with enhancements of 511 keV line, each lasted for 0.5 - 1.0 s and total duration over 15 s. The video cameras recorded electrical discharges attached to the aircraft during this process. ILDAS reported brief 100 A current pulses in association with these discharges. Ground-based lightning location networks, i.e. WWLLN and local Australian LIAS, have not detected any sferics from this region. A detailed Geant4 model of the aircraft was created. The model was used to test different production mechanisms for the observed emission. In this presentation we will show a detailed reconstruction ofthe events with precise mapping on infrared cloud snapshot. Videos from the cameras at the positron detection moment will be shown. The results of the Geant4 simulation will be presented and discussed. References: 1. Dwyer, Joseph R., et al. "Positron clouds within thunderstorms

  18. A study of vacancy defects related to gray tracks in KTiOPO{sub 4} (KTP) using positron annihilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yang; Li, Jing; Wang, Jiyang, E-mail: hdjiang@sdu.edu.cn

    For the first time to our knowledge, positron annihilation spectroscopy (PAS) was used to study vacancy defects in KTiOPO{sub 4} (KTP) single crystals. Positron annihilation lifetime spectroscopy combined with dielectric measurements identified the existence of oxygen vacancies and reflected the concentration of vacancy defects in three samples. The vacancy defects in KTP do not consist of monovacancies, but rather vacancy complexes. Doppler broadening indicates that the vacancy defects are distributed uniformly. A relationship is established where a crystal with a low oxygen vacancy concentration and a highly balanced stoichiometry has a higher resistance to gray track formation.

  19. Utility of positron annihilation lifetime technique for the assessment of spectroscopic data of some charge-transfer complexes derived from N-(1-Naphthyl)ethylenediamine dihydrochloride

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Adam, Abdel Majid A.; Sharshar, T.; Saad, Hosam A.; Eldaroti, Hala H.

    2014-03-01

    In this work, structural, thermal, morphological, pharmacological screening and positron annihilation lifetime measurements were performed on the interactions between a N-(1-Naphthyl)ethylenediamine dihydrochloride (NEDA·2HCl) donor and three types of acceptors to characterize these CT complexes. The three types of acceptors include π-acceptors (quinol and picric acid), σ-acceptors (iodine) and vacant orbital acceptors (tin(IV) tetrachloride and zinc chloride). The positron annihilation lifetime parameters were found to be dependent on the structure, electronic configuration, the power of acceptors and molecular weight of the CT complexes. The positron annihilation lifetime spectroscopy can be used as a probe for the formation of charge-transfer (CT) complexes.

  20. Current-induced spin polarization on a Pt surface: A new approach using spin-polarized positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Kawasuso, A.; Fukaya, Y.; Maekawa, M.; Zhang, H.; Seki, T.; Yoshino, T.; Saitoh, E.; Takanashi, K.

    2013-09-01

    Transversely spin-polarized positrons were injected near Pt and Au surfaces under an applied electric current. The three-photon annihilation of spin-triplet positronium, which was emitted from the surfaces into vacuum, was observed. When the positron spin polarization was perpendicular to the current direction, the maximum asymmetry of the three-photon annihilation intensity was observed upon current reversal for the Pt surfaces, whereas it was significantly reduced for the Au surface. The experimental results suggest that electrons near the Pt surfaces were in-plane and transversely spin-polarized with respect to the direction of the electric current. The maximum electron spin polarization was estimated to be more than 0.01 (1%).

  1. INTEGRAL/SPI Limits on Electron-Positron Annihilation Radiation from the Galactic Plane

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Watanabe, K.; Jean, P.; Knoedlseder, J.; Lonjou, V.; Roques, J. P.; Skinner, G. K.; vonBallmoos, P.; Weidenspointner, G.; Bazzano, A.

    2005-01-01

    The center of our Galaxy is a known strong source of electron-positron 511- keV annihilation radiation. Thus far, however, there have been no reliable detections of annihilation radiation outside of the central radian of our Galaxy. One of the primary objectives of the INTEGRAL (INTErnational Gamma-RAy Astrophysics Laboratory) mission, launched in Oct. 2002, is the detailed study of this radiation. The Spectrometer on INTEGRAL (SPI) is a high resolution coded-aperture gamma-ray telescope with an unprecedented combination of sensitivity, angular resolution and energy resolution. We report results from the first 10 months of observation. During this period a significant fraction of the observing time was spent in or near the Galactic Plane. No positive annihilation flux was detected outside of the central region (|l| greater than 40 degrees) of our Galaxy. In this paper we describe the observations and data analysis methods and give limits on the 511-keV flux.

  2. Li-doped MgO as catalysts for oxidative coupling of methane: A positron annihilation study

    NASA Astrophysics Data System (ADS)

    Dai, G. H.; Yan, Q. J.; Wang, Y.; Liu, Q. S.

    1991-08-01

    Magnesium oxides intentionally doped with lithium (with a maximum Li content of 40 tool%) for use as catalysts for oxidative coupling of methane were characterized by means of positron annihilation. The positron lifetime spectra, which could be reasonably well interpreted within the framework of the well-known trapping model, depend on the amount of Li doping of the MgO suggesting that positrons are trapped at dispersed small Li 2CO 3 precipitates. Very similar dependencies on lithium doping of the C 2 selectivity and the positron trapping rate ϰ imply an intimate relationship between the concentration of [Li] 0-centers (also referred to as [Li +O -] centers) and the selective activity of Li/MgO during catalytic reactions.

  3. Gadolinium substitution induced defect restructuring in multiferroic BiFeO3: case study by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Mukherjee, A.; Banerjee, M.; Basu, S.; Nambissan, P. M. G.; Pal, M.

    2013-12-01

    Positron annihilation spectroscopy (PAS) comprising of the measurements of positron lifetime and coincidence Doppler broadening spectra has been carried out to understand and monitor the evolution of the vacancy-type defects arising from the ionic deficiencies at lattice points of the multiferroic perovskite bismuth ferrite (BiFeO3) doped with 1, 5 and 10 at% gadolinium (Gd3+) ions. Negatively charged defects in the form of Bi3+ monovacancies (V_{Bi}^{3-} ) were present in the undoped nanocrystallites, which strongly trapped positrons. During the successive doping by Gd3+ ions, the positron trapping efficiency decreased while the doped ions combined with the vacancies to form complexes, which became neutral. A fraction of the positrons got annihilated at the crystallite surfaces too, being evident from the very large positron lifetimes obtained and confirming the nano-size-specific characteristics of the samples. Further, the intercrystallite regions provided favourable sites for orthopositronium formation, although in minute concentrations. The dopant ion-complex formation was also depicted clearly by the defect characteristic S-W plot. Also, the large change of electrical resistivity with Gd concentration has been explained nicely by invoking the defect information from the PAS study. The study has demonstrated the usefulness of an excellent method of defect identification in such a novel material system, which is vital information for exploiting them for further technological applications.

  4. Synthesis and characterization of magnesium oxide nanocrystallites and probing the vacancy-type defects through positron annihilation studies

    NASA Astrophysics Data System (ADS)

    Das, Anjan; Mandal, Atis Chandra; Roy, Soma; Prashanth, Pendem; Ahamed, Sk Izaz; Kar, Subhrasmita; Prasad, Mithun S.; Nambissan, P. M. G.

    2016-09-01

    Magnesium oxide nanocrystallites exhibit certain abnormal characteristics when compared to those of other wide band gap oxide semiconductors in the sense they are most prone to water absorption and formation of a hydroxide layer on the surface. The problem can be rectified by heating and pure nanocrystallites can be synthesized with controllable sizes. Inevitably the defect properties are distinctly divided between two stages, the one with the hydroxide layer (region I) and the other after the removal of the layer by annealing (region II). The lattice parameters, the optical band gap and even the positron annihilation characteristics are conspicuous by their distinct behavior in the two stages of the surface configurations of nanoparticles. While region I was specific with the formation of positronium-hydrogen complexes that drastically altered the defect-specific positron lifetimes, pick-off annihilation of orthopositronium atoms marked region II. The vacancy clusters within the nanocrystallites also trapped positrons. They agglomerated due to the effect of the higher temperatures and resulted in the growth of the nanocrystallites. The coincidence Doppler broadening spectroscopic measurements supported these findings and all the more indicated the trapping of positrons additionally into the neutral divacancies and negatively charged trivacancies. This is apart from the Mg2+ monovacancies which acted as the dominant trapping centers for positrons.

  5. Mathematical modeling of elementary trapping-reduction processes in positron annihilation lifetime spectroscopy: methodology of Ps-to-positron trapping conversion

    NASA Astrophysics Data System (ADS)

    Shpotyuk, Ya; Cebulski, J.; Ingram, A.; Shpotyuk, O.

    2017-12-01

    Methodological possibilities of positron annihilation lifetime (PAL) spectroscopy in application to nanostructurized substances treated within three-term fitting procedure are reconsidered to parameterize their atomic-deficient structural arrangement. In contrast to conventional three-term fitting analysis of the detected PAL spectra based on admixed positron trapping and positronium (Ps) decaying, the nanostructurization due to guest nanoparticles embedded in host matrix is considered as producing modified trapping, which involves conversion between these channels. The developed approach referred to as x3-x2-coupling decomposition algorithm allows estimation free volumes of interfacial voids responsible for positron trapping and bulk lifetimes in nanoparticle-embedded substances. This methodology is validated using experimental data of Chakraverty et al. [Phys. Rev. B71 (2005) 024115] on PAL study of composites formed by guest NiFe2O4 nanocrystals grown in host SiO2 matrix.

  6. An interpretation of the narrow positron annihilation feature from X-ray nova Muscae 1991

    NASA Technical Reports Server (NTRS)

    Chen, Wan; Gehrels, Neil; Cheng, F. H.

    1993-01-01

    The physical mechanism responsible for the narrow redshifted positron annihilation gamma-ray line from the X-ray nova Muscae 1991 is studied. The orbital inclination angle of the system is estimated and its black hole mass is constrained under the assumptions that the annihilation line centroid redshift is purely gravitational and that the line width is due to the combined effect of temperature broadening and disk rotation. The large black hole mass lower limit of 8 solar and the high binary mass ratio it implies raise a serious challenge to theoretical models of the formation and evolution of massive binaries.

  7. Positron annihilation spectroscopy for the determination of thickness and defect profile in thin semiconductor layers

    NASA Astrophysics Data System (ADS)

    Zubiaga, A.; García, J. A.; Plazaola, F.; Tuomisto, F.; Zúñiga-Pérez, J.; Muñoz-Sanjosé, V.

    2007-05-01

    We present a method, based on positron annihilation spectroscopy, to obtain information on the defect depth profile of layers grown over high-quality substrates. We have applied the method to the case of ZnO layers grown on sapphire, but the method can be very easily generalized to other heterostructures (homostructures) where the positron mean diffusion length is small enough. Applying the method to the ratio of W and S parameters obtained from Doppler broadening measurements, W/S plots, it is possible to determine the thickness of the layer and the defect profile in the layer, when mainly one defect trapping positron is contributing to positron trapping at the measurement temperature. Indeed, the quality of such characterization is very important for potential technological applications of the layer.

  8. International Conference on Positron Annihilation (6th) held at the University of Texas at Arlington, April 3-7, 1982. Program and Collected Abstracts.

    DTIC Science & Technology

    1983-02-23

    Annihilation Techniques SONIA MIIAN S., R. ZANA , J.CH. ABBE, and G. DUPLATRE - xxviii P-80 Study of Microemulsion Systems by Positron Annihilation...California, Berkeley CA 94720, U.S.A. Primary considerations for the design of positron emission tomographs for medical studies in humans are high...imaging system for medical applications is to produce an image in as short as time as possible which represents as accurately Ias possible the

  9. Time of flight spectrometer for background-free positron annihilation induced Auger electron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, S.; Shastry, K.; Anto, C. V.

    2016-03-15

    We describe a novel spectrometer designed for positron annihilation induced Auger electron spectroscopy employing a time-of-flight spectrometer. The spectrometer’s new configuration enables us to implant monoenergetic positrons with kinetic energies as low as 1.5 eV on the sample while simultaneously allowing for the detection of electrons emitted from the sample surface at kinetic energies ranging from ∼500 eV to 0 eV. The spectrometer’s unique characteristics made it possible to perform (a) first experiments demonstrating the direct transition of a positron from an unbound scattering state to a bound surface state and (b) the first experiments demonstrating that Auger electron spectramore » can be obtained down to 0 eV without the beam induced secondary electron background obscuring the low energy part of the spectra. Data are presented which show alternative means of estimating positron surface state binding energy and background-free Auger spectra.« less

  10. A General Quantum Mechanical Method to Predict Positron Spectroscopy

    DTIC Science & Technology

    2007-06-01

    7 2.1 Positron Annihilation Spectroscopy . . . . . . . . . . . . . 7 2.1.1 Positron Transport and Annihilation in Condensed Matter...8 2.1.2 Traditional Positron Annihilation Spectroscopy . . 10 2.1.3 Vibrational Feshbach Resonances of Positrons with... positron annihilation lifetime spectroscopy system . . . 63 11. Tungsten positron lifetime spectrum . . . . . . . . . . . . . . . . . . 66 12. K2B12H12

  11. Modeling and simulation of charged particle beam transport in the UTA 2 meter Time of Flight Positron Annihilation Induced Auger Spectrometer

    NASA Astrophysics Data System (ADS)

    Joglekar, Prasad; Lim, Lawrence; Kalaskar, Sushant; Shastry, Karthik; Satyal, Suman; Weiss, Alexander

    2010-10-01

    Time of Flight Positron Annihilation Induced Auger Electron Spectroscopy (TOF PAES) is a surface analytical technique with high surface selectivity. Almost 95% of the PAES signal originates from the sample's topmost layer due to the trapping of positrons just above the surface in an image-potential well before annihilation. This talk presents a description of the TOF technique as the results of modeling of the charged particle transport used in the design of the 2 meter TOF-PAES system currently under construction at UTA.

  12. Porosity in low dielectric constant SiOCH films depth profiled by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Brusa, R. S.; Spagolla, M.; Karwasz, G. P.; Zecca, A.; Ottaviani, G.; Corni, F.; Bacchetta, M.; Carollo, E.

    2004-03-01

    The 3γ annihilation of orthopositronium and the Doppler broadening of the positron annihilation line have been measured by implanting low energy positrons in low dielectric constant (low-k) SiOCH films. The evolution and stability of film porosity with thermal treatments in the 400-900 °C temperature range has been studied. The films have been produced by plasma enhanced chemical vapor deposition and after annealing in N2 atmospheres at 480 °C have been treated in N2+He plasma. The minimum free volume of the pores in the as-produced samples has been estimated to correspond to that of a sphere with radius r=0.6 nm. The treatment in the N2 plasma was found to seal the pores up to 45 nm depth. Both the composition of the films (as obtained by Rutherford backscattering spectroscopy and elastic recoil detection analysis) and the chemical environment of the pores probed by positrons were found to be very stable up to 600 °C thermal treatment. Above such a temperature a reduction of the hydrogen content accompanied by a change in the structure and in the chemical environment of the pores has been observed. In the samples thermal treated at 800-900 °C, the positronium formation is reduced by one-third respect with the as produced sample. In the annealed and as-produced films, a natural aging of 30 days in air was enough to contaminate the porosity, as pointed out by a strong reduction of the 3γ annihilations. The effect of contamination and the distribution of the pores were completely recovered after a thermal treatment at 400 °C. Artificial aging of SiOCH films in controlled atmospheres of H2, O2, H2O has shown that H2O is the more efficient contaminant in reducing the effective volume of the pores.

  13. Simulation and Modeling of charge particles transport using SIMION for our Time of Flight Positron Annihilation Induce Auger Electron Spectroscopy systems

    NASA Astrophysics Data System (ADS)

    Joglekar, Prasad; Shastry, K.; Satyal, Suman; Weiss, Alexander

    2012-02-01

    Time of flight Positron Annihilation Induced Auger Electron Spectroscopy system, a highly surface selective analytical technique using time of flight of auger electron resulting from the annihilation of core electrons by trapped incident positron in image potential well. We simulated and modeled the trajectories of the charge particles in TOF-PAES using SIMION for the development of new high resolution system at U T Arlington and current TOFPAES system. This poster presents the SIMION simulations results, Time of flight calculations and larmor radius calculations for current system as well as new system.

  14. Positron annihilation studies of silicon-based materials

    NASA Astrophysics Data System (ADS)

    Petkov, Mihail Petkov

    Positron Annihilation Spectroscopy (PAS) is used as a defect-profiling tool in the characterization of Si-based materials. PAS, in conjunction with variable energy positron beams, is a non-destructive depth-profiling probe, ideally suited for studying thin films, multi-layered structures, and buried interfaces. Its sensitivity to open-volume defects covers a wide range of defect sizes and concentrations, and surpasses that of most other techniques. This dissertation presents PAS investigations of electrical, chemical and mechanical properties of a number of advanced materials for future use by the semiconductor industry. Among the subjects of this work are: hydrogenated amorphous silicon (a-Si:H) for use in solar cells and flat-panel displays; low dielectric constant materials (low-k) for interlayer dielectrics; and thin-gate transistors, focusing on the defects at the Si/SiO 2 interface, which limit the device reliability. Results from extensive research on various possibilities to enhance the PAS capability by increasing its efficiency are presented in the appendices. The recognition of different dangling bond defects for low defect densities is achieved in these first PAS studies of void-free a-Si:H. Direct evidence of the existence of dopant-defect complexes is obtained for the first time. This research lays the foundation for future studies of the role of the impurities in light- and thermal degradation of a-Si:H PAS was applied to the characterization of porous low-k dielectrics. The annihilation observables are correlated with the dielectric properties of the material and their preparation conditions. PAS is the only non-destructive local k-probe, and the only tool for measuring void densities and sizes. The method is also sensitive to the chemical environment of the voids, seen during oxidation, water absorption, and forming gas anneal. Industrial research, partially based on these results, is currently in progress at IBM. A decade-old controversy

  15. Measurement of the spectra of low energy electrons resulting from Auger transitions induced by the annihilation of low energy positrons implanted at The Ag (100) surface

    NASA Astrophysics Data System (ADS)

    Shastry, Karthik; Joglekar, Prasad; Weiss, A. H.; Fazleev, N. G.

    2013-04-01

    A few percent of positrons bound to a solid surface annihilate with core electrons resulting in highly excited atoms containing core holes. These core holes may be filled in an auto-ionizing process in which a less tightly bound electron drops into the hole and the energy difference transferred to an outgoing "Auger electron." Because the core holes are created by annihilation and not impact it is possible to use very low energy positron beams to obtain annihilation induced Auger signals. The Auger signals so obtained have little or none of the large impact induced secondary electron background that interferes with measurements of the low energy Auger spectra obtained using the much higher incident energies necessary when using electron or photon beams. Here we present the results of measurements of the energy spectrum of low energy electrons emitted as a result of Positron Annihilation Induce Auger Electron Emission [1] from a clean Ag (100) surface. The measurements were performed using the University of Texas Arlington Time of Flight Positron Annihilation induced Auger Electron Spectrometer (T-O-F-PAES) System [2]. A strong double peak was observed at ˜35eV corresponding to the N2VV and N3VV Auger transitions in agreement with previous PAES studies [3].

  16. Application of a digital data acquisition system for time of flight Positron annihilation-induced Auger Electron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gladen, R. W.; Chirayath, V. A.; McDonald, A. D.; Fairchild, A. J.; Chrysler, M. D.; Imam, S. K.; Koymen, A. R.; Weiss, A. H.

    We describe herein a digital data acquisition system for a time-of-flight Positron annihilation-induced Auger Electron Spectrometer. This data acquisition system consists of a high-speed digitizer collecting signals induced by Auger electrons and annihilation gammas in a multi-channel plate electron detector and a BaF2 gamma detector, respectively. The time intervals between these two signals is used to determine the times of flight of the Auger electrons, which are analyzed by algorithms based on traditional nuclear electronics methods. Ultimately, this digital data acquisition system will be expanded to incorporate the first coincidence measurements of Auger electron and annihilation gamma energies.

  17. Vacancy-induced ferromagnetism in ZnO probed by spin-polarized positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Maekawa, Masaki; Abe, Hiroshi; Miyashita, Atsumi; Sakai, Seiji; Yamamoto, Shunya; Kawasuso, Atsuo

    2017-04-01

    We investigated the ferromagnetism of ZnO induced by oxygen implantation by using spin-polarized positron annihilation spectroscopy together with magnetization measurements. The magnetization measurements showed the appearance of ferromagnetism after oxygen implantation and its disappearance during post-implantation annealing at temperatures above 573 K. The Doppler broadening of annihilation radiation (DBAR) spectrum showed asymmetry upon field reversal after oxygen implantation. The obtained differential DBAR spectrum between positive and negative magnetic fields was well-explained with a theoretical calculation considering zinc vacancies. The disappearance of the field-reversal asymmetry of the DBAR spectrum as a result of annealing agreed with the observations of ferromagnetism by magnetization measurements. These results suggest the radiation-induced zinc vacancies to be the source of the observed ferromagnetism of ZnO.

  18. On-ground detection of an electron-positron annihilation line from thunderclouds.

    PubMed

    Umemoto, D; Tsuchiya, H; Enoto, T; Yamada, S; Yuasa, T; Kawaharada, M; Kitaguchi, T; Nakazawa, K; Kokubun, M; Kato, H; Okano, M; Tamagawa, T; Makishima, K

    2016-02-01

    Thunderclouds can produce bremsstrahlung gamma-ray emission, and sometimes even positrons. At 00:27:00 (UT) on 13 January 2012, an intense burst of gamma rays from a thundercloud was detected by the GROWTH experiment, located in Japan, facing the Sea of Japan. The event started with a sharp gamma-ray flash with a duration of <300 ms coincident with an intracloud discharge, followed by a decaying longer gamma-ray emission lasting for ∼60 s. The spectrum of this prolonged emission reached ∼10 MeV, and contained a distinct line emission at 508±3(stat.)±5(sys.) keV, to be identified with an electron-positron annihilation line. The line was narrow within the instrumental energy resolution (∼80keV), and contained 520±50 photons which amounted to ∼10% of the total signal photons of 5340±190 detected over 0.1-10 MeV. As a result, the line equivalent width reached 280±40 keV, which implies a nontrivial result. The result suggests that a downward positron beam produced both the continuum and the line photons.

  19. On-ground detection of an electron-positron annihilation line from thunderclouds

    NASA Astrophysics Data System (ADS)

    Umemoto, D.; Tsuchiya, H.; Enoto, T.; Yamada, S.; Yuasa, T.; Kawaharada, M.; Kitaguchi, T.; Nakazawa, K.; Kokubun, M.; Kato, H.; Okano, M.; Tamagawa, T.; Makishima, K.

    2016-02-01

    Thunderclouds can produce bremsstrahlung gamma-ray emission, and sometimes even positrons. At 00:27:00 (UT) on 13 January 2012, an intense burst of gamma rays from a thundercloud was detected by the GROWTH experiment, located in Japan, facing the Sea of Japan. The event started with a sharp gamma-ray flash with a duration of <300 ms coincident with an intracloud discharge, followed by a decaying longer gamma-ray emission lasting for ˜60 s. The spectrum of this prolonged emission reached ˜10 MeV, and contained a distinct line emission at 508 ±3 (stat .)±5 (sys .) keV, to be identified with an electron-positron annihilation line. The line was narrow within the instrumental energy resolution (˜80 keV) , and contained 520 ±50 photons which amounted to ˜10 % of the total signal photons of 5340 ±190 detected over 0.1-10 MeV. As a result, the line equivalent width reached 280 ±40 keV, which implies a nontrivial result. The result suggests that a downward positron beam produced both the continuum and the line photons.

  20. Two Meter Flight Path - Time of Flight Positron Annihilation Induced Auger Electron Spectrometer

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Shastry, K.; Maddox, W.; Weiss, A. H.

    2008-03-01

    Details of the design and construction of a new time of flight positron annihilation induced Auger electron (TOF-PAES) spectrometer are presented. The new spectrometer will be equipped with a 2 meter long ``TOF'' tube that can be biased at a potential different from that of the sample in order to increase or decrease the kinetic energy of the electrons traveling through the tube. The time of flight will be determined from timing signals obtained from the detection of the annihilation gamma (signaling the start of the flight) and detection of the annihilation induced Auger electron at the end of the 2 meter flight path (signaling the end of the flight). The 2 meter long flight path is a factor of two longer than used in previous TOF-PAES systems. The longer flight path can be expected to result in a fractional energy width: delta E/ E that is .5ex1 -.1em/ -.15em.25ex2 as large as the current UTA lab based TOF-PAES spectrometer.

  1. Voids in mixed-cation silicate glasses: Studies by positron annihilation lifetime and Fourier transform infrared spectroscopies

    NASA Astrophysics Data System (ADS)

    Reben, M.; Golis, E.; Filipecki, J.; Sitarz, M.; Kotynia, K.; Jeleń, P.; Grelowska, I.

    2014-08-01

    PALS in comparison with FTIR studies have been applied to investigate the structure of different oxide glasses. Three components of the positron lifetime τ (τ1 para- and τ3 ortho-positronium and τ2 intermediate lifetime component) and their intensities were obtained. The results of the calculation of mean values of positron lifetimes for the investigated glasses showed the existence of a long-living component on the positron annihilation lifetime spectra. From the Tao-Eldrup formula we can estimate the size of free volume. On the basis of the measurements we can conclude that the size and fraction of free volume reaches the biggest value for the fused silica glass. The degree of network polymerisation increases void size.

  2. Cation vacancies in ferroelectric PbTiO3 and Pb(Zr,Ti)O3 : A positron annihilation lifetime spectroscopy study

    NASA Astrophysics Data System (ADS)

    Keeble, D. J.; Singh, S.; Mackie, R. A.; Morozov, M.; McGuire, S.; Damjanovic, D.

    2007-10-01

    Positron annihilation lifetime spectroscopy measurements identify A - and B -site cation vacancies in ferroelectric perovskite oxides (ABO3) . Crystal PbTiO3 and ceramic lead zirconium titanate (PZT) were studied and gave consistent values for the lifetime resulting from positron localization at lead vacancies VPb . Positron trapping to B -site vacancies was inferred in PZT. Temperature dependent studies showed that the defect specific trapping rate was higher for VB compared to VPb , consistent with the larger negative charge. Doping PZT with Fe increased the fraction positron trapping to VB compared to VPb -type defects.

  3. Operando Positron Annihilation Gamma Spectrometer (OPAGS)

    NASA Astrophysics Data System (ADS)

    Satyal, S.; Shastry, K.; Mukherjee, S.; Weiss, A. H.

    2009-03-01

    Surface properties measured under UHV conditions cannot be extended to surfaces interacting with gases under realistic pressures due to surface reconstruction and other strong perturbations of the surface. Surface probing techniques require UHV conditions to perform efficiently and avoid data loss due to scattering of outgoing particles. This poster describes the design of an Operando Positron Annihilation Gamma Spectrometer (OPAGS) currently under construction at the University of Texas at Arlington. The new system will be capable of obtaining surface and defect specific chemical and charge state information from surfaces under realistic pressures. Differential pumping will be used to maintain the sample in a gas environment while the rest of the beam is under UHV. Elemental content of the surface interacting with the gas environment will be determined from the Doppler broadened gamma spectra. This system will also include a time of flight (TOF) Auger spectrometer which correlates with the results of the Doppler measurements at lower pressures. By employing the unique capabilities of OPAGS together with those of the TOF PAES spectroscopy the charge transfer mechanisms at the surface in catalytic systems can be understood.

  4. Defect Characterization in SiGe/SOI Epitaxial Semiconductors by Positron Annihilation

    PubMed Central

    2010-01-01

    The potential of positron annihilation spectroscopy (PAS) for defect characterization at the atomic scale in semiconductors has been demonstrated in thin multilayer structures of SiGe (50 nm) grown on UTB (ultra-thin body) SOI (silicon-on-insulator). A slow positron beam was used to probe the defect profile. The SiO2/Si interface in the UTB-SOI was well characterized, and a good estimation of its depth has been obtained. The chemical analysis indicates that the interface does not contain defects, but only strongly localized charged centers. In order to promote the relaxation, the samples have been submitted to a post-growth annealing treatment in vacuum. After this treatment, it was possible to observe the modifications of the defect structure of the relaxed film. Chemical analysis of the SiGe layers suggests a prevalent trapping site surrounded by germanium atoms, presumably Si vacancies associated with misfit dislocations and threading dislocations in the SiGe films. PMID:21170391

  5. Positron annihilation spectroscopy: Applications to Si, ZnO, and multilayer semiconductor structures

    NASA Astrophysics Data System (ADS)

    Schaffer, J. P.; Rohatgi, A.; Dewald, A. B.; Frost, R. L.; Pang, S. K.

    1989-11-01

    The potential of positron annihilation spectroscopy (PAS) for defect characterization at the atomic scale in semiconductors is demonstrated for Si, ZnO, and multilayer structures, such as an AlGaAs/GaAs solar cell. The types of defects discussed include: i) vacancy complexes, oxygen impurities and dopants, ii) the influence of cooling rates on spatial non-uniformities in defects, and iii) characterization of buried interfaces. In sev-eral instances, the results of the PAS investigations are correlated with data from other established semiconductor characterization techniques.

  6. Cosmic-ray antiprotons, positrons, and gamma rays from halo dark matter annihilation

    NASA Technical Reports Server (NTRS)

    Rudaz, S.; Stecker, F. W.

    1988-01-01

    The subject of cosmic ray antiproton production is reexamined by considering other choices for the nature of the Majorana fermion chi other than the photino considered in a previous article. The calculations are extended to include cosmic-ray positrons and cosmic gamma rays as annihilation products. Taking chi to be a generic higgsino or simply a heavy Majorana neutrino with standard couplings to the Z-zero boson allows the previous interpretation of the cosmic antiproton data to be maintained. In this case also, the annihilation cross section can be calculated independently of unknown particle physics parameters. Whereas the relic density of photinos with the choice of parameters in the previous paper turned out to be only a few percent of the closure density, the corresponding value for Omega in the generic higgsino or Majorana case is about 0.2, in excellent agreement with the value associated with galaxies and one which is sufficient to give the halo mass.

  7. Positron annihilation 2D-ACAR study of semi-coherent Li nanoclusters in MgO( 1 0 0 ) and MgO( 1 1 0 )

    NASA Astrophysics Data System (ADS)

    Falub, C. V.; Mijnarends, P. E.; Eijt, S. W. H.; van Huis, M. A.; van Veen, A.; Schut, H.

    2002-05-01

    Depth selective positron annihilation two-dimensional angular correlation of annihilation radiation (2D-ACAR) is used to determine the electronic structure of Li nanoclusters formed by implantation of 10 16 cm -26Li ions (with an energy of 30 keV) in MgO(1 0 0) and (1 1 0) crystals, and subsequently annealed at 950 K. The 2D-ACAR spectra of Li-implanted MgO obtained with 4 keV positrons reveal the semi-coherent ordering state of the embedded metallic Li nanoclusters. The results agree with ab initio Korringa-Kohn-Rostoker calculations.

  8. A simple shape-free model for pore-size estimation with positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Wada, Ken; Hyodo, Toshio

    2013-06-01

    Positron annihilation lifetime spectroscopy is one of the methods for estimating pore size in insulating materials. We present a shape-free model to be used conveniently for such analysis. A basic model in classical picture is modified by introducing a parameter corresponding to an effective size of the positronium (Ps). This parameter is adjusted so that its Ps-lifetime to pore-size relation merges smoothly with that of the well-established Tao-Eldrup model (with modification involving the intrinsic Ps annihilation rate) applicable to very small pores. The combined model, i.e., modified Tao-Eldrup model for smaller pores and the modified classical model for larger pores, agrees surprisingly well with the quantum-mechanics based extended Tao-Eldrup model, which deals with Ps trapped in and thermally equilibrium with a rectangular pore.

  9. Positron annihilation studies of vacancy related defects in ceramic and thin film Pb(Zr,Ti)O3 materials

    NASA Astrophysics Data System (ADS)

    Keeble, D. J.; Krishnan, A.; Umlor, M. T.; Lynn, K. G.; Warren, W. L.; Dimos, D.; Tuttle, B. A.

    Preliminary positron annihilation studies of ceramic and thin film Pb(Zr,Ti)O3 (PZT) materials have been completed. This paper examines effects of processing conditions on vacancy related defects. Positron lifetime measurements on bulk PLZT plates showed an increase in positron trapping to a defect state with increasing grain size consistent with trapping to lead vacancy related defects formed through lead oxide loss during processing. Variable energy positron beam measurements were completed on bulk PLZT plates, sol-gel PZT thin films, and laser ablated PLZT thin films. Films processed in a reduced oxygen atmosphere were found to give a higher S-parameter, due to an increase in concentration of neutral or negatively charged vacancy type defects, compared with material processed in an oxidizing ambient.

  10. Positron Annihilation Spectroscopy and Small Angle Neutron Scattering Characterization of Nanostructural Features in Irradiated Fe-Cu-Mn Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wirth, B D; Asoka-Kumar, P; Howell, R H

    2001-01-01

    Radiation embrittlement of nuclear reactor pressure vessel steels results from a high number density of nanometer sized Cu-Mn-Ni rich precipitates (CRPs) and sub-nanometer matrix features, thought to be vacancy-solute cluster complexes (VSC). However, questions exist regarding both the composition of the precipitates and the defect character and composition of the matrix features. We present results of positron annihilation spectroscopy (PAS) and small angle neutron scattering (SANS) characterization of irradiated and thermally aged Fe-Cu and Fe-Cu-Mn alloys. These complementary techniques provide insight into the composition and character of both types of nanoscale features. The SANS measurements indicate populations of CRPs andmore » VSCs in both alloys. The CRPs are coarser in the Fe-Cu alloy and the number densities of CRP and VSC increase with the addition of Mn. The PAS involved measuring both the positron lifetimes and the Doppler broadened annihilation spectra in the high momentum region to provide elemental sensitivity at the annihilation site. The spectra in Fe-Cu-Mn specimens thermally aged to peak hardness at 450 C and irradiated at 288 C are nearly identical to elemental Cu. Positron lifetime and spectrum measurements in Fe-Cu specimens irradiated at 288 C clearly show the existence of long lifetime ({approx}500 ps) open volume defects, which also contain Cu. Thus the SANS and PAS provide a self-consistent picture of nanostructures composed of CRPs and VSCs and tend to discount high Fe concentrations in the CRPs.« less

  11. A Positron Annihilation Study of Corrosion of Aluminum and Aluminum Alloy by NaOH

    NASA Astrophysics Data System (ADS)

    Wu, Y. C.; Zhai, T.; Coleman, P. G.

    2012-08-01

    Corrosion of fully-annealed pure aluminum and a continuous-cast AA2037 aluminum alloy (solutionized and water quenched) in a 1M NaOH solution for various periods of time were analyzed with positron beam-based Doppler broadening spectroscopy. By varying the energy of the incident positron beam, corrosion-induced defects at different depths from the surface were detected. It was found that the Doppler-broadened annihilation line-width parameter was significantly increased near the surface of pure aluminum after corrosion, probably due to the interaction between positrons and nanometer-sized voids formed near the aluminum surface during corrosion. Examination by atomic force microscopy indicated that many pits were formed on the aluminum surface after corrosion. In contrast, a significant decrease in the line-width parameter was observed in AA2037 alloy after corrosion and interpreted as being caused by copper enrichment at the metal-oxide interface during corrosion; such enrichment at large cavity sites was confirmed by energy dispersion spectrometry.

  12. Electronic structure and orientation relationship of Li nanoclusters embedded in MgO studied by depth-selective positron annihilation two-dimensional angular correlation

    NASA Astrophysics Data System (ADS)

    Falub, C. V.; Mijnarends, P. E.; Eijt, S. W.; van Huis, M. A.; van Veen, A.; Schut, H.

    2002-08-01

    Quantum-confined positrons are sensitive probes for determining the electronic structure of nanoclusters embedded in materials. In this work, a depth-selective positron annihilation 2D-ACAR (two-dimensional angular correlation of annihilation radiation) method is used to determine the electronic structure of Li nanoclusters formed by implantation of 1016-cm-2 30-keV 6Li ions in MgO (100) and (110) crystals and by subsequent annealing at 950 K. Owing to the difference between the positron affinities of lithium and MgO, the Li nanoclusters act as quantum dots for positrons. 2D-ACAR distributions for different projections reveal a semicoherent fitting of the embedded metallic Li nanoclusters to the host MgO lattice. Ab initio Korringa-Kohn-Rostoker calculations of the momentum density show that the anisotropies of the experimental distributions are consistent with an fcc crystal structure of the Li nanoclusters. The observed reduction of the width of the experimental 2D-ACAR distribution is attributed to positron trapping in vacancies associated with Li clusters. This work proposes a method for studying the electronic structure of metallic quantum dots embedded in an insulating material.

  13. Study on defect properties of nanocrystalline TiO2 during phase transition by positron annihilation lifetime

    NASA Astrophysics Data System (ADS)

    Zheng, F.; Liu, Y.; Liu, Z.; Dai, Y.-Q.; Fang, P.-F.; Wang, S.-J.

    2012-08-01

    The defect properties of nanocrystalline TiO2 were investigated by positron annihilation lifetime spectroscopy (PALS) and X-ray diffraction (XRD) as a function of annealed temperature that ranged from 300 to 850 °C. Below 500 °C, the measured positron lifetimes of τ1 (200-206 ps) and τ2 (378-402 ps) revealed the existence of mono-vacancy and vacancy-clusters at grain surface and in the micro-void of intergranular region. Between 500 and 750 °C, the phase transition from anatase to rutile was probed by the variations of positron lifetime and XRD pattern. With the increasing temperature from 500 to 850 °C, the positron lifetime τ1, τ2 and its intensity I2 sharply decreased from 200 ps, 378 ps, and 60% to 135 ps, 274 ps, and 33%, respectively. The results clearly indicate that the mono-vacancy or vacancy-clusters at grain surface and micro-voids between the grains were annealed out during the phase transition.

  14. Positron annihilation spectroscopy techniques applied to the study of an HPGe detector

    NASA Astrophysics Data System (ADS)

    Nascimento, E. do; Vanin, V. R.; Maidana, N. L.; Silva, T. F.; Rizzutto, M. A.; Fernández-Varea, J. M.

    2013-05-01

    Doppler Broadening Spectroscopy of the large Ge crystal of an HPGe detector was performed using positrons from pair production of 6.13 MeV γ-rays from the 19F(p,αγ)16O reaction. Two HPGe detectors facing opposite sides of the Ge crystal acting as target provided both coincidence and singles spectra. Changes in the shape of the annihilation peak were observed when the high voltage applied to the target detector was switched on or off, amounting to somewhat less than 20% when the areas of equivalent energy intervals in the corresponding normalized spectra are compared.

  15. Positron astrophysics and areas of relation to low-energy positron physics

    NASA Astrophysics Data System (ADS)

    Guessoum, Nidhal

    2014-05-01

    I briefly review our general knowledge of positron astrophysics, focusing mostly on the theoretical and modelling aspects. The experimental/observational aspects of the topic have recently been reviewed elsewhere [E. Churazov et al., Mon. Nat. R. Astron. Soc. 411, 1727 (2011); N. Prantazos et al., Rev. Mod. Phys. 83, 1001 (2011)]. In particular, I highlight the interactions and cross sections of the reactions that the positrons undergo in various cosmic media. Indeed, these must be of high interest to both the positron astrophysics community and the low-energy positron physics community in trying to find common areas of potential collaboration for the future or areas of research that will help the astrophysics community make further progress on the problem. The processes undergone by positrons from the moments of their birth to their annihilation (in the interstellar medium or other locations) are thus examined. The physics of the positron interactions with gases and solids (dust grains) and the physical conditions and characteristics of the environments where the processes of energy loss, positronium formation, and annihilation take place, are briefly reviewed. An explanation is given about how all the relevant physical information is taken into account in order to calculate annihilation rates and spectra of the 511 keV emission in the ISM; special attention is paid to positron interactions with dust and with polycyclic aromatic hydrocarbons. In particular, an attempt is made to show to what extent the interactions between positrons and interstellar dust grains are similar to laboratory experiments in which beams of low-energy positrons impinge upon solids and surfaces. Sample results are shown for the effect of dust grains on positron annihilation spectra in some phases of the ISM which, together with high resolution spectra measured by satellites, can be used to infer useful knowledge about the environment where the annihilation is predominantly taking place

  16. Synthesis and characterization of highly conductive charge-transfer complexes using positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Adam, Abdel Majid A.; Refat, Moamen S.; Sharshar, T.; Heiba, Z. K.

    Molecular charge-transfer complexes of the tetramethylethylenediamine (TMEDA) with picric acid (Pi-OH), benzene-1,4-diol (QL), tin(IV) tetrachloride (SnCl4), iodine, bromine, and zinc chloride (ZnCl2) have been synthesized and investigated by elemental and thermal analysis, electronic, infrared, Raman and proton-NMR, energy-dispersive X-ray spectroscopy, X-ray powder diffraction and positron annihilation lifetime spectroscopy, and scanning electron microscopy. In this work, three types of acceptors π-acceptors (Pi-OH and QL), σ-acceptors (iodine and bromine), and vacant orbital acceptors (SnCl4 and ZnCl2) were covered. The results of elemental analysis indicated that the CT complexes were formed with ratios 1:1 and 1:2 for QL, SnCl4, and ZnCl2 acceptors and iodine, Pi-OH, and Br2 acceptors, respectively. The type of chelating between the TMEDA donor and the mentioned acceptors depends upon the behavior of both items. The positron annihilation lifetime parameters were found to be dependent on the structure, electronic configuration, and the power of acceptors. The correlation between these parameters and the molecular weight and biological activities of studied complexes was also observed. Regarding the electrical properties, the AC conductivity and the dielectric coefficients were measured as a function of frequency at room temperature. The TMEDA charge-transfer complexes were screened against antibacterial (Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa) and antifungal (Aspergillus flavus and Candida albicans) activities.

  17. Positron transport in solids and the interaction of positrons with surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Yuan.

    1991-01-01

    In studying positron transport in solids, a two-stream model is proposed to account for the epithermal positrons. Thus positron implantation, thermalization, and diffusion processes are completely modeled. Experimentally, positron mobility in thermally grown SiO[sub 2] is measured in a sandwiched structure by using the Doppler broadening technique. Positron drift motion and the electric field configuration in a Si surface buried under overlayers are measured with the positron annihilation [gamma]-ray centroid shift technique. These studies are not only important in measuring positron transport and other properties in complicated systems, they are also of practical significance for material characterizations. In studying positronmore » interactions with surfaces, a multiple-encounter picture is proposed of thermal positrons participating in the surface escape processes. Positron trapping into the surface image potential is also studied, considering the long-range nature of the image potential. Experimentally, the positron annihilation induced Auger electron spectroscopy (PAES) is used to study an ionic insulator surface KCl(100).« less

  18. Defects in N/Ge coimplanted GaN studied by positron annihilation

    NASA Astrophysics Data System (ADS)

    Nakano, Yoshitaka; Kachi, Tetsu

    2002-01-01

    We have applied positron annihilation spectroscopy to study the depth distributions and species of defects in N-, Ge-, and N/Ge-implanted GaN at dosages of 1×1015 cm-2. For all the implanted samples, Ga vacancies introduced by ion-implantation are found to diffuse into much deeper regions of the GaN layers during the implantation and to change into some other vacancy-type defects by the annealing at 1300 °C. In particular, markedly different defects turn out to be newly created in the electrically activated regions for both the Ge- and N/Ge-implanted samples after annealing, indicating that these new defects are probably associated with the presence of the implanted Ge dopant atoms.

  19. Subnanopore filling during water vapor adsorption on microporous silica thin films as seen by low-energy positron annihilation

    NASA Astrophysics Data System (ADS)

    Ito, Kenji; Yoshimoto, Shigeru; O'Rourke, Brian E.; Oshima, Nagayasu; Kumagai, Kazuhiro

    2018-02-01

    Positron annihilation lifetime spectroscopy (PALS) using a low-energy positron microbeam extracted into air was applied to elucidating molecular-level pore structures formed in silicon-oxide-backboned microporous thin films under controlled humidity conditions; as a result, a direct observation of the interstitial spaces in the micropores filled with water molecules was achieved. It was demonstrated that PALS using a microbeam extracted into air in combination with water vapor adsorption is a powerful tool for the in-situ elucidation of both open and closed subnanoscaled pores of functional thin materials under practical conditions.

  20. Positron annihilation measurements in La 2-xSr xCuO 4 as a function of Sr doping

    NASA Astrophysics Data System (ADS)

    Bharathi, A.; Janaki, J.; Vasumathi, D.; Hariharan, Y.

    1989-12-01

    Results of positron annihilation, room temperature resistivityP(300K) and superconducting transition temperature (T c) measurements are presented in the La sbnd Sr sbnd Cu sbnd O system, as a function of Sr doping. The correlation in these parameters are understood as arising from changes in the carrier concentration.

  1. Vacancy identification in Co+ doped rutile TiO2 crystal with positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Qin, X. B.; Zhang, P.; Liang, L. H.; Zhao, B. Z.; Yu, R. S.; Wang, B. Y.; Wu, W. M.

    2011-01-01

    Co-doped rutile TiO2 films were synthesized by ion implantation. Variable energy positron annihilation Doppler broadening spectroscopy and coincidence Doppler broadening measurements were performed for identification of the vacancies. A newly formed type of vacancy can be concluded by the S-W plot and the CDB results indicated that the oxygen vacancy (VO) complex Ti-Co-VO and/or Ti-VO are formed with Co ions implantation and the vacancy concentration is increased with increase of dopant dose.

  2. Probing the formation of silicon nano-crystals (Si-ncs) using variable energy positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Knights, A. P.; Bradley, J. D. B.; Hulko, O.; Stevanovic, D. V.; Edwards, C. J.; Kallis, A.; Coleman, P. G.; Crowe, I. F.; Halsall, M. P.; Gwilliam, R. M.

    2011-01-01

    We describe preliminary results from studies of the formation of silicon nano-crystals (Si-ncs) embedded in stoichiometric, thermally grown SiO2 using Variable Energy Positron Annihilation Spectroscopy (VEPAS). We show that the VEPAS technique is able to monitor the introduction of structural damage. In SiO2 through the high dose Si+ ion implantation required to introduce excess silicon as a precursor to Si-nc formation. VEPAS is also able to characterize the rate of the removal of this damage with high temperature annealing, showing strong correlation with photoluminescence. Finally, VEPAS is shown to be able to selectively probe the interface between Si-ncs and the host oxide. Introduction of hydrogen at these interfaces suppresses the trapping of positrons at the interfaces.

  3. Density gradient in SiO 2 films on silicon as revealed by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Revesz, A. G.; Anwand, W.; Brauer, G.; Hughes, H. L.; Skorupa, W.

    2002-06-01

    Positron annihilation spectroscopy of thermally grown and deposited SiO 2 films on silicon shows in a non-destructive manner that these films have a gradient in their density. The gradient is most pronounced for the oxide grown in dry oxygen. Oxidation in water-containing ambient results in an oxide with reduced gradient, similarly to the gradient in the deposited oxide. These observations are in accordance with earlier optical and other studies using stepwise etching or a set of samples of varying thickness. The effective oxygen charge, which is very likely one of the reasons for the difference in the W parameters of silica glass and quartz crystal, could be even higher at some localized configurations in the SiO 2 films resulting in increased positron trapping.

  4. Positron Annihilation Spectroscopy as a Novel Interfacial Probe for Thin Polymeric Films and Nano-Composites

    NASA Astrophysics Data System (ADS)

    Awad, Somia; Chen, Hongmin; Maina, Grace; Lee, L. James; Gu, Xiaohong; Jean, Y. C.

    2010-03-01

    Positron annihilation spectroscopy (PAS) has been developed as a novel probe to characterize the sub-nanometer defect, free volume, profile from the surface, interfaces, and to the bulk in polymeric materials when a variable mono-energy slow positron beam is used. Free-volume hole sizes, fractions, and distributions are measurable as a function of depth at the high precision. PAS has been successfully used to study the interfacial properties of polymeric nanocomposites at different chemical bonding. In nano-scale thin polymeric films, such as in PS/SiO2, and PU/ZnO, significant variations of Tg as a function of depth and of wt% oxide are observed. Variations of Tg are dependent on strong or weak interactions between polymers and nano-scale oxides surfaces.

  5. Probing defects in chemically synthesized ZnO nanostrucures by positron annihilation and photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Chaudhuri, S. K.; Ghosh, Manoranjan; Das, D.; Raychaudhuri, A. K.

    2010-09-01

    The present article describes the size induced changes in the structural arrangement of intrinsic defects present in chemically synthesized ZnO nanoparticles of various sizes. Routine x-ray diffraction and transmission electron microscopy have been performed to determine the shapes and sizes of the nanocrystalline ZnO samples. Detailed studies using positron annihilation spectroscopy reveals the presence of zinc vacancy. Whereas analysis of photoluminescence results predict the signature of charged oxygen vacancies. The size induced changes in positron parameters as well as the photoluminescence properties, has shown contrasting or nonmonotonous trends as size varies from 4 to 85 nm. Small spherical particles below a critical size (˜23 nm) receive more positive surface charge due to the higher occupancy of the doubly charge oxygen vacancy as compared to the bigger nanostructures where singly charged oxygen vacancy predominates. This electronic alteration has been seen to trigger yet another interesting phenomenon, described as positron confinement inside nanoparticles. Finally, based on all the results, a model of the structural arrangement of the intrinsic defects in the present samples has been reconciled.

  6. PREFACE: The 16th International Conference on Positron Annihilation (ICPA-16)

    NASA Astrophysics Data System (ADS)

    Alam, Ashraf; Coleman, Paul; Dugdale, Stephen; Roussenova, Mina

    2013-06-01

    The 16th International Conference on Positron Annihilation (ICPA-16) was held at the University of Bristol, United Kingdom during 19-24 August, 2012. This triennial conference is the foremost gathering of the Positron Annihilation Physics community and it was hosted in the UK for the first time since the series of meetings first started back in 1965. The University of Bristol, the Alma Mater of Paul Dirac, is situated at the heart of the city, and it has established a worldwide reputation in research and teaching. Many of the topics which were discussed during ICPA-16 form an integral part of the research themes in the schools of Physics, Chemistry and Engineering of this University. ICPA-16 attracted a diverse audience, both from academic and industrial institutions, with over 200 participants from 29 countries. It continued the long held tradition of showcasing novel research in the field of positron annihilation and a total of 170 papers were presented as talks and posters. The papers reported studies of metallic and semi-conducting solids, polymers and soft matter, porous materials, surfaces and interfaces, as well as advances in experimental, analytical and biomedical applications. The high quality of the presented work, coupled with the enthusiastic exchange of ideas, provided an invaluable forum, especially for younger researchers and postgraduate students. The excellence of student presentations was acknowledged by the award of prizes for the best student posters, which were received by David Billington (University of Bristol, UK), Moussa Sidibe (CEMHTI, France) and Hongxia Xu (Tohoku University, Japan). All papers published in the Conference Proceedings were reviewed by ICPA-16 participants. We are indebted to all reviewers who contributed their time and intellectual resources, allowing the refereeing and editing process to move smoothly toward the compilation of the Proceedings. Our sincere thanks and gratitude go to everyone who contributed to the

  7. Probing vacancy-type free-volume defects in Li2B4O7 single crystal by positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Shpotyuk, O.; Adamiv, V.; Teslyuk, I.; Ingram, A.; Demchenko, P.

    2018-01-01

    Vacancy-type free-volume defects in lithium tetraborate Li2B4O7 single crystal, grown by the Czochralski technique, are probed with positron annihilation spectroscopy in the lifetime measuring mode. The experimental positron lifetime spectrum is reconstructed within the three-component fitting, involving channels of positron and positronium Ps trapping, as well as within the two-component fitting with a positronium-compensating source input. Structural configurations of the most efficient positron traps are considered using the crystallographic specificity of lithium tetraborate with the main accent on cation-type vacancies. Possible channels of positron trapping are visualized using the electronic structure calculations with density functional theory at the basis of structural parameters proper to Li2B4O7. Spatially-extended positron-trapping complexes involving singly-ionized lithium vacancies, with character lifetime close to 0.32 ns, are responsible for positron trapping in the nominally undoped lithium tetraborate Li2B4O7 crystal.

  8. Modeling of charged particles trajectories in order to optimize the design of a new, higher resolution, Time of flight- Positron Annihilation Induced Auger Electron Spectroscopy (TOF PAES) System

    NASA Astrophysics Data System (ADS)

    Joglekar, Prasad; Lim, L.; Satyal, Suman; Kalaskar, Sushant; Shastry, K.; Weiss, Alex

    2011-03-01

    Time of Flight Positron Annihilation Induced~Auger Electron Spectroscopy~(TOF PAES) is a surface analytical technique with high surface selectivity. TOF PAES is used to study elemental composition, surface defects, and various energy loss mechanisms. Positrons incident on the sample surface at low energies can be trapped in an image-potential well just above the surface Prior to annihilation. Consequently it is possible to use positron annihilation related signals to selectively probe the top-most atomic layer. This poster presents the results of modeling of the charge particle beam transport system performed in connection with the optimization of the the design of the new TOF-PAES system currently under construction at U T Arlington. The system will incorporate a 2 m long drift tube in order to achieve better energy resolution than our previous TOF-PAES system design which used a 1 m long drift tube NSF DMR 0907679, Welch Foundation Y 1100.

  9. Pore Topology Effects in Positron Annihilation Spectroscopy of Zeolites.

    PubMed

    Zubiaga, Asier; Warringham, Robbie; Mitchell, Sharon; Gerchow, Lars; Cooke, David; Crivelli, Paolo; Pérez-Ramírez, Javier

    2017-03-03

    Positron annihilation spectroscopy (PAS) is a powerful method to study the size and connectivity of pores in zeolites. The lifetime of positronium within the host material is commonly described by the Tao-Eldrup model. However, one of its largest limitations arises from the simple geometries considered for the shape of the pores, which cannot describe accurately the complex topologies in zeolites. Here, an atomic model that combines the Tao potential with the crystallographic structure is introduced to calculate the distribution and lifetime of Ps intrinsic to a given framework. A parametrization of the model is undertaken for a set of widely applied zeolite framework types (*BEA, FAU, FER, MFI, MOR, UTL), before extending the model to all known structures. The results are compared to structural and topological descriptors, and to the Tao-Eldrup model adapted for zeolites, demonstrating the intricate dependence of the lifetime on the pore architecture. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Positron studies of metal-oxide-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Au, H. L.; Asoka-Kumar, P.; Nielsen, B.; Lynn, K. G.

    1993-03-01

    Positron annihilation spectroscopy provides a new probe to study the properties of interface traps in metal-oxide semiconductors (MOS). Using positrons, we have examined the behavior of the interface traps as a function of gate bias. We propose a simple model to explain the positron annihilation spectra from the interface region of a MOS capacitor.

  11. A Study of the Vacancy-Impurity Interaction in Dilute Nickel Alloys by Core Electron Annihilation

    NASA Astrophysics Data System (ADS)

    Arbuzov, V. L.; Danilov, S. E.; Druzhkov, A. P.

    1997-08-01

    It is shown that the angular correlation of annihilation radiation can be used to identify vacancy-impurity complexes in dilute alloys. Annihilation of trapped positrons with core electrons bears information about the chemical environment of a vacancy defect. The method is especially effective for d-matrices doped with sp-impurities since annihilation parameters of positrons with d- and sp-shell electrons differ considerably. The potentialities of the method of core-electron annihilation of positrons are demonstrated taking electron-irradiated dilute Ni-P and Ni-Si alloys as an example. It is shown that the interaction between the vacancies, which migrate at the III stage of annealing, and P atoms in Ni-P causes a considerable change in the annihilation parameters of positrons with core electrons compared to pure Ni. In Ni-Si alloys the annihilation parameters of trapped positrons with core electrons do not differ from those in Ni. This fact is an evidence that Si atoms do not interact with vacancies in Ni.

  12. Application Of Positron Beams For The Characterization Of Nano-scale Pores In Thin Films

    NASA Astrophysics Data System (ADS)

    Hirata, K.; Ito, K.; Kobayashi, Y.; Suzuki, R.; Ohdaira, T.; Eijt, S. W. H.; Schut, H.; van Veen, A.

    2003-08-01

    We applied three positron annihilation techniques, positron 3γ-annihilation spectroscopy, positron annihilation lifetime spectroscopy, and angular correlation of annihilation radiation, to the characterization of nano-scale pores in thin films by combining them with variable-energy positron beams. Characterization of pores in thin films is an important part of the research on various thin films of industrial importance. The results of our recent studies on pore characterization of thin films by positron beams will be reported here.

  13. Positron annihilation lifetime study of Nafion/titanium dioxide nano-composite membranes

    NASA Astrophysics Data System (ADS)

    Lei, M.; Wang, Y. J.; Liang, C.; Huang, K.; Ye, C. X.; Wang, W. J.; Jin, S. F.; Zhang, R.; Fan, D. Y.; Yang, H. J.; Wang, Y. G.

    2014-01-01

    Positron annihilation lifetime (PAL) technique is applied for investigation of size and number density of free volumes in Nafion/TiO2-nanoparticles composite membrane. The proton transporting ability is correlated with the properties of free volume inside the membrane. It is revealed that composite membrane with 5 wt% of TiO2 nano-fillers exhibits good electrochemical performance under reduced humidity and it can be saturated with water at relative humidity of 50%, under which ionic clusters and proton transporting channels are formed, indicating that composite membranes with 5 wt% of TiO2 nano-fillers are effective electrolyte for fuel cells operated at reduced humidification levels. The results suggest that PAL can be a powerful tool for elucidating the relationship between microstructure and ion transport in polymer electrolyte membranes.

  14. Positron confinement in embedded lithium nanoclusters

    NASA Astrophysics Data System (ADS)

    van Huis, M. A.; van Veen, A.; Schut, H.; Falub, C. V.; Eijt, S. W.; Mijnarends, P. E.; Kuriplach, J.

    2002-02-01

    Quantum confinement of positrons in nanoclusters offers the opportunity to obtain detailed information on the electronic structure of nanoclusters by application of positron annihilation spectroscopy techniques. In this work, positron confinement is investigated in lithium nanoclusters embedded in monocrystalline MgO. These nanoclusters were created by means of ion implantation and subsequent annealing. It was found from the results of Doppler broadening positron beam analysis that approximately 92% of the implanted positrons annihilate in lithium nanoclusters rather than in the embedding MgO, while the local fraction of lithium at the implantation depth is only 1.3 at. %. The results of two-dimensional angular correlation of annihilation radiation confirm the presence of crystalline bulk lithium. The confinement of positrons is ascribed to the difference in positron affinity between lithium and MgO. The nanocluster acts as a potential well for positrons, where the depth of the potential well is equal to the difference in the positron affinities of lithium and MgO. These affinities were calculated using the linear muffin-tin orbital atomic sphere approximation method. This yields a positronic potential step at the MgO||Li interface of 1.8 eV using the generalized gradient approximation and 2.8 eV using the insulator model.

  15. Investigation of nanoscopic free volume and interfacial interaction in an epoxy resin/modified clay nanocomposite using positron annihilation spectroscopy.

    PubMed

    Patil, Pushkar N; Sudarshan, Kathi; Sharma, Sandeep K; Maheshwari, Priya; Rath, Sangram K; Patri, Manoranjan; Pujari, Pradeep K

    2012-12-07

    Epoxy/clay nanocomposites are synthesized using clay modified with the organic modifier N,N-dimethyl benzyl hydrogenated tallow quaternary ammonium salt (Cloisite 10A). The purpose is to investigate the influence of the clay concentration on the nanostructure, mainly on the free-volume properties and the interfacial interactions, of the epoxy/clay nanocomposite. Nanocomposites having 1, 3, 5 and 7.5 wt. % clay concentrations are prepared using the solvent-casting method. The dispersion of clay silicate layers and the morphologies of the fractured surfaces in the nanocomposites are studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The observed XRD patterns reveal an exfoliated clay structure in the nanocomposite with the lowest clay concentration (≤1 wt. %). The ortho-positronium lifetime (τ(3)), a measure of the free-volume size, as well as the fractional free volume (f(v)) are seen to decrease in the nanocomposites as compared to pristine epoxy. The intensity of free positron annihilation (I(2)), an index of the epoxy-clay interaction, decreases with the addition of clay (1 wt. %) but increases linearly at higher clay concentrations. Positron age-momentum correlation measurements are also carried out to elucidate the positron/positronium states in pristine epoxy and in the nanocomposites. The results suggest that in the case of the nanocomposite with the studied lowest clay concentration (1 wt. %), free positrons are primarily localized in the epoxy-clay interfaces, whereas at higher clay concentrations, annihilation takes place from the intercalated clay layers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ligand-surface interactions and surface oxidation of colloidal PbSe quantum dots revealed by thin-film positron annihilation methods

    NASA Astrophysics Data System (ADS)

    Shi, Wenqin; Eijt, Stephan W. H.; Suchand Sandeep, C. S.; Siebbeles, Laurens D. A.; Houtepen, Arjan J.; Kinge, Sachin; Brück, Ekkes; Barbiellini, Bernardo; Bansil, Arun

    2016-02-01

    Positron Two Dimensional Angular Correlation of Annihilation Radiation (2D-ACAR) measurements reveal modifications of the electronic structure and composition at the surfaces of PbSe quantum dots (QDs), deposited as thin films, produced by various ligands containing either oxygen or nitrogen atoms. In particular, the 2D-ACAR measurements on thin films of colloidal PbSe QDs capped with oleic acid ligands yield an increased intensity in the electron momentum density (EMD) at high momenta compared to PbSe quantum dots capped with oleylamine. Moreover, the EMD of PbSe QDs is strongly affected by the small ethylenediamine ligands, since these molecules lead to small distances between QDs and favor neck formation between near neighbor QDs, inducing electronic coupling between neighboring QDs. The high sensitivity to the presence of oxygen atoms at the surface can be also exploited to monitor the surface oxidation of PbSe QDs upon exposure to air. Our study clearly demonstrates that positron annihilation spectroscopy applied to thin films can probe surface transformations of colloidal semiconductor QDs embedded in functional layers.

  17. A study of inter-crystallite spaces in some polycrystalline inorganic systems using positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Shantarovich, V. P.; Suzuki, T.; Ito, Y.; Kondo, K.; Gustov, V. W.; Melikhov, I. V.; Berdonosov, S. S.; Ivanov, L. N.; Yu, R. S.

    2007-02-01

    Positron annihilation lifetime spectroscopy (PALS) was used for calculation of number density and effective sizes of free volume holes (inter-crystallite spaces) in polycrystal CaSO 4, CaCO 3 (vaterit) and Ca 10(PO 4) 6(OH) 2 (apatite). The effect of substitution of two-valence Ca(II) for three-valence Eu(III) on annihilation characteristics of apatite, studied together with the data on thermo-stimulated luminescence (TSL) and low-temperature sorption of gas (N 2), helped to elucidate mechanism of positronium atom (Ps) localization in the free volume holes and perform corresponding calculations. It came out that PALS is more sensitive to inter-crystallite sites (10 16 cm -3) in polycrystallites than to the free volume holes in polymer glasses (10 19 cm -3). This is due to higher mobility of the precursor of localized Ps in crystallites.

  18. High-temperature cuprate superconductors studied by x-ray Compton scattering and positron annihilation spectroscopies

    NASA Astrophysics Data System (ADS)

    Barbiellini, Bernardo

    2013-06-01

    The bulk Fermi surface in an overdoped (x = 0.3) single crystal of La2-xSrxCuO4 has been observed by using x-ray Compton scattering. This momentum density technique also provides a powerful tool for directly seeing what the dopant Sr atoms are doing to the electronic structure of La2CuO4. Because of wave function effects, positron annihilation spectroscopy does not yield a strong signature of the Fermi surface in extended momentum space, but it can be used to explore the role of oxygen defects in the reservoir layers for promoting high temperature superconductivity.

  19. Spectra of electrons emitted as a result of the sticking and annihilation of low energy positrons to the surfaces of graphene and highly oriented pyrolytic graphite (HOPG)

    NASA Astrophysics Data System (ADS)

    Chrysler, M.; Chirayath, V.; McDonald, A.; Lim, Z.; Shastry, K.; Gladen, R.; Fairchild, A.; Koymen, A.; Weiss, A.

    Positron annihilation induced Auger electron spectroscopy (PAES) was used to study the positron induced low energy electron spectra from HOPG and a sample composed of 6-8 layers of graphene grown on polycrystalline copper. A low energy (~2eV) beam of positrons was used to implant positrons into a surface localized state on the graphene and HOPG samples. Measurements of the energy spectra of the positron induced electrons obtained using a TOF spectrometer indicate the presence of an annihilation induced KLL C Auger peak (at ~263 eV) along with a narrow low energy secondary peak due to an Auger mediated positron sticking (AMPS) process. A broad spectral feature was also observed below ~15 eV which we believe may be due to a VVV C Auger transition not previously observed. The energy dependence of the integrated intensity of the AMPS peak was measured for a series of incident positron kinetic energies ranging from ~1.5 eV up to 11 eV from which the binding energy of the surface localized positron state on graphene and HOPG was estimated. The implication of our results regarding the applicability of AMPS and PAES to the study of graphene surfaces and interfaces will be discussed. This work was supported by NSF Grant No. DMR 1508719 and DMR 1338130.

  20. Evaluation of structural vacancies for 1/1-Al-Re-Si approximant crystals by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamada, K.; Suzuki, H.; Kitahata, H.; Matsushita, Y.; Nozawa, K.; Komori, F.; Yu, R. S.; Kobayashi, Y.; Ohdaira, T.; Oshima, N.; Suzuki, R.; Takagiwa, Y.; Kimura, K.; Kanazawa, I.

    2018-01-01

    The size of structural vacancies and structural vacancy density of 1/1-Al-Re-Si approximant crystals with different Re compositions were evaluated by positron annihilation lifetime and Doppler broadening measurements. Incident positrons were found to be trapped at the monovacancy-size open space surrounded by Al atoms. From a previous analysis using the maximum entropy method and Rietveld method, such an open space is shown to correspond to the centre of Al icosahedral clusters, which locates at the vertex and body centre. The structural vacancy density of non-metallic Al73Re17Si10 was larger than that of metallic Al73Re15Si12. The observed difference in the structural vacancy density reflects that in bonding nature and may explain that in the physical properties of the two samples.

  1. Optical transitions of the silicon vacancy in 6H-SiC studied by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Arpiainen, S.; Saarinen, K.; Hautojärvi, P.; Henry, L.; Barthe, M.-F.; Corbel, C.

    2002-08-01

    Positron annihilation spectroscopy has been applied to identify Si and C vacancies as irradiation-induced defects in 6H-SiC. Si vacancies are shown to have ionization levels at EC-0.6 eV and EC-1.1 eV below the conduction-band edge EC by detecting changes of positron trapping under monochromatic illumination. These levels are attributed to (2-/1-) and (1-/0) ionizations of the isolated Si vacancy. In as-grown n-type 6H-SiC, a native defect complex involving VSi is shown to have an ionization level slightly closer to conduction band at roughly EC-0.3 eV. These results are used further to present microscopic interpretations to effects seen in optical-absorption spectra and to electrical levels observed previously by deep-level transient spectroscopy.

  2. Probing the amphiphile micellar to hexagonal phase transition using Positron Annihilation Lifetime Spectroscopy.

    PubMed

    Dong, Aurelia W; Fong, Celesta; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2013-07-15

    Positron Annihilation Lifetime Spectroscopy (PALS) has been utilised only sparingly for structural characterisation in self assembled materials. Inconsistencies in approaches to experimental configuration and data analysis between studies has complicated comparisons between studies, meaning that the technique has not provided a cohesive data set across the study of different self assembled systems that advance the technique towards an important tool in soft matter research. In the current work a systematic study was conducted using ionic and non-ionic micellar systems with increasing surfactant concentration to probe positron behaviour on changes between micellar phase structures, and data analysed using contemporary approaches to fit four component spectra. A characteristic orthopositronium lifetime (in the organic regions) of 3.5±0.2 ns was obtained for the hexagonal phase for surfactants with C12 alkyl chains. Chemical quenching of the positron species was also observed for systems with ionic amphiphiles. The application of PALS has also highlighted an inconsistency in the published phase diagram for the octa(ethylene oxide) monododecyl ether (C12EO8) system. These results provide new insight into how the physical properties of micellar systems can be related to PALS parameters and means that the PALS technique can be applied to other more complex self-assembled amphiphile systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Electron–Positron Pair Creation Close to a Black Hole Horizon: Redshifted Annihilation Line in the Emergent X-Ray Spectra of a Black Hole. I.

    NASA Astrophysics Data System (ADS)

    Laurent, Philippe; Titarchuk, Lev

    2018-06-01

    We consider a Compton cloud (CC) surrounding a black hole (BH) in an accreting BH system, where electrons propagate with thermal and bulk velocities. In that cloud, soft (disk) photons may be upscattered off these energetic electrons and attain energies of several MeV. They could then create pairs due to photon–photon interactions. In this paper, we study the formation of the 511 keV annihilation line due to this photon–photon interaction, which results in the creation of electron–positron pairs, followed by the annihilation of the created positrons with the CC electrons. The appropriate conditions for annihilation-line generation take place very close to a BH horizon within (103–104)m cm from it, where m is the BH hole mass in solar units. As a result, the created annihilation line should be seen by the Earth observer as a blackbody bump, or the so-called reflection bump at energies around (511/20) (20/z) keV, where z ∼ 20 is a typical gravitational redshift experienced by the created annihilation-line photons when they emerge. This transient feature should occur in any accreting BH system, either galactic or extragalactic. Observational evidences for this feature in several galactic BH systems is detailed in an accompanying paper. An extended hard tail of the spectrum up to 1 MeV may also be formed due to X-ray photons upscattering off created pairs.

  4. Positron annihilation study of the interfacial defects in ZnO nanocrystals: Correlation with ferromagnetism

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Chen, Z. Q.; Wang, D. D.; Qi, N.; Gong, J.; Cao, C. Y.; Tang, Z.

    2010-01-01

    High purity ZnO nanopowders were pressed into pellets and annealed in air between 100 and 1200 °C. The crystal quality and grain size of the ZnO nanocrystals were investigated by x-ray diffraction 2θ scans. Annealing induces an increase in the grain size from 25 to 165 nm with temperature increasing from 400 to 1200 °C. Scanning electron microscopy and high-resolution transmission electron microscopy observations also confirm the grain growth during annealing. Positron annihilation measurements reveal vacancy defects including Zn vacancies, vacancy clusters, and voids in the grain boundary region. The voids show an easy recovery after annealing at 100-700 °C. However, Zn vacancies and vacancy clusters observed by positrons remain unchanged after annealing at temperatures below 500 °C and begin to recover at higher temperatures. After annealing at temperatures higher than 1000 °C, no positron trapping by the interfacial defects can be observed. Raman spectroscopy studies confirm the recovery of lattice disorder after annealing. Hysteresis loops are observed for the 100 and 400 °C annealed samples, which indicate ferromagnetism in ZnO nanocrystals. However, the ferromagnetism disappears after annealing above 700 °C, suggesting that it might originate from the surface defects such as Zn vacancies.

  5. Study of the surface contamination of copper with the improved positron annihilation-induced Auger electron spectrometer at NEPOMUC

    NASA Astrophysics Data System (ADS)

    Mayer, J.; Hugenschmidt, C.; Schreckenbach, K.

    2008-10-01

    The high intensity positron source NEPOMUC at the FRM-II in Munich enables measurement times for positron annihilation-induced Auger electron spectroscopy (PAES) of only 2.4 h/spectrum, in contrast to usual lab beams with measurement times up to several days. The high electron background due to surrounding experiments in the experimental hall of the FRM-II has been eliminated and hence background free experiments have become possible. Due to this, the signal to noise ratio has been enhanced to 4.5:1, compared to 1:3 with EAES. In addition, a long-term measurement has been performed in order to observe the contamination of a polycrystalline copper foil at 150 °C.

  6. Spatially resolved positron annihilation spectroscopy on friction stir weld induced defects.

    PubMed

    Hain, Karin; Hugenschmidt, Christoph; Pikart, Philip; Böni, Peter

    2010-04-01

    A friction stir welded (FSW) Al alloy sample was investigated by Doppler broadening spectroscopy (DBS) of the positron annihilation line. The spatially resolved defect distribution showed that the material in the joint zone becomes completely annealed during the welding process at the shoulder of the FSW tool, whereas at the tip, annealing is prevailed by the deterioration of the material due to the tool movement. This might be responsible for the increased probability of cracking in the heat affected zone of friction stir welds. Examination of a material pairing of steel S235 and the Al alloy Silafont36 by coincident Doppler broadening spectroscopy (CDBS) indicates the formation of annealed steel clusters in the Al alloy component of the sample. The clear visibility of Fe in the CDB spectra is explained by the very efficient trapping at the interface between steel cluster and bulk.

  7. Low energy positrons as probes of reconstructed semiconductor surfaces.

    NASA Astrophysics Data System (ADS)

    Fazleev, Nail G.; Weiss, Alex H.

    2007-03-01

    Positron probes of semiconductor surfaces that play a fundamental role in modern science and technology are capable to non-destructively provide information that is both unique to the probe and complimentary to that extracted using other more standard techniques. We discuss recent progress in studies of the reconstructed Si(100), Si(111), Ge(100), and Ge(111) surfaces, clean and exposed to hydrogen and oxygen, using a surface characterization technique, Positron-Annihilation-Induced Auger-Electron Spectroscopy (PAES). Experimental PAES results are analyzed by performing first-principles calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant core electrons for the reconstructed surfaces, taking into account discrete lattice effects, the electronic reorganization due to bonding, and charge redistribution effects at the surface. Effects of the hydrogen and oxygen adsorption on semiconductor surfaces on localization of positron surface state wave functions and annihilation characteristics are also analyzed. Theoretical calculations confirm that PAES intensities, which are proportional to annihilation probabilities of the surface trapped positrons that results in a core hole, are sensitive to the crystal face, surface structure and elemental content of the semiconductors.

  8. Studies of Oxidation of the Cu(100) Surface Using Low Energy Positrons

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Maddox, W. B.; Nadesalingam, M.; Rajeshwar, K.; Weiss, A. H.

    2009-03-01

    Changes in the surface of an oxidized Cu(100) single crystal resulting from vacuum annealing have been investigated using positron annihilation induced Auger electron spectroscopy (PAES). PAES measurements show a large increase in the intensity of the positron annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300° C. The intensity then decreases monotonically as the annealing temperature is increased to ˜600° C. Experimental PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface, surface reconstructions, and electron-positron correlations effects. Possible explanation for the observed behavior of the intensity of positron annihilation induced Cu M2,3VV Auger peak with changes of the annealing temperature is proposed.

  9. Studies of oxidation of the Cu(100) surface using low energy positrons.

    NASA Astrophysics Data System (ADS)

    Maddox, W. B.; Fazleev, N. G.; Weiss, A. H.

    2009-03-01

    Changes in the surface of an oxidized Cu(100) single crystal resulting from vacuum annealing have been investigated using positron annihilation induced Auger electron spectroscopy (PAES). PAES measurements show a large increase in the intensity of the positron annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300^o C. The intensity then decreases monotonically as the annealing temperature is increased to ˜600^o C. Experimental PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface, surface reconstructions, and electron-positron correlations effects. Possible explanation for the observed behavior of the intensity of positron annihilation induced Cu M2,3VV Auger peak with changes of the annealing temperature is proposed.

  10. Studies of Positrons Trapped at Quantum-Dot Like Particles Embedded in Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Nadesalingam, M. P.; Weiss, A. H.

    2009-03-01

    Experimental studies of the positron annihilation induced Auger electron (PAES) spectra from the Fe-Cu alloy surfaces with quantum-dot like Cu nanoparticles embedded in Fe show that the PAES signal from Cu increase rapidly as the concentration of Cu is enhanced by vacuum annealing. These measurements indicate that almost 75% of positrons that annihilate with core electrons due so with Cu even though the surface concentration of Cu as measured by EAES is only 6%. This result suggests that positrons become localized at sites at the surface containing high concentration of Cu atoms before annihilation. These experimental results are investigated theoretically by performing calculations of the "image-potential" positron surface states and annihilation characteristics of the surface trapped positrons with relevant Fe and Cu core-level electrons for the clean Fe(100) and Cu(100) surfaces and for the Fe(100) surface with quantum-dot like Cu nanoparticles embedded in the top atomic layers of the host substrate. Estimates of the positron binding energy and positron annihilation characteristics reveal their strong sensitivity to the nanoparticle coverage. Computed core annihilation probabilities are compared with experimental ones estimated from the measured Auger peak intensities. The observed behavior of the Fe and Cu PAES signal intensities is explained by theoretical calculations as being due to trapping of positrons in the regions of Cu nanoparticles embedded in the top atomic layers of Fe.

  11. Reflection of Low Energy Positrons from the Surface of Highly Oriented Pyrolytic Graphite and Single Layer Graphene.

    NASA Astrophysics Data System (ADS)

    Imam, S. K.; Chirayath, V. A.; Chrysler, M. D.; Fairchild, A. J.; Gladen, R. W.; Koymen, A. R.; Weiss, A. H.; UT Arlington Positron Surface Laboratory Team

    A time of flight positron annihilation induced Auger electron spectrometer (TOF-PAES) was utilized to measure the reflection of positrons as a function of incident positron energy (0 to 10 eV) from the surface of highly oriented pyrolytic graphite (HOPG) and from a single layer graphene (SLG) on a Cu foil. A NaI scintillation detector was used to measure the annihilation gamma from the reflected positrons as a function of incident positron kinetic energy. The annihilation of the positrons on HOPG and SLG were simultaneously measured using another NaI detector near the sample. The Auger electrons emitted as a result of the annihilation of positrons from the surface of the sample were also measured concurrently. As the positron kinetic energy was increased, the number of reflected positrons calculated from the intensity under the annihilation gamma peak showed a steady decrease. The positronium formation measured at the sample using the gamma spectrum showed a peak at 6 eV. The intensity of the carbon KVV Auger peak showed a dip at the same energy. The correlation of the three signals, intensity of reflected positrons, positrons annihilating at the sample and the Auger intensity are discussed for both samples. This work was supported by NSF Grant No. DMR 1508719 and DMR 1338130.

  12. Studies of Oxidation of the Cu(100) Surface Using Low Energy Positrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fazleev, N. G.; Kazan State University, Kazan 420008; Maddox, W. B.

    2009-03-10

    Changes in the surface of an oxidized Cu(100) single crystal resulting from vacuum annealing have been investigated using positron annihilation induced Auger electron spectroscopy (PAES). PAES measurements show a large increase in the intensity of the positron annihilation induced Cu M{sub 2,3}VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 deg. C. The intensity then decreases monotonically as the annealing temperature is increased to {approx}600 deg. C. Experimental PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant coremore » electrons taking into account the charge redistribution at the surface, surface reconstructions, and electron-positron correlations effects. Possible explanation for the observed behavior of the intensity of positron annihilation induced Cu M{sub 2,3}VV Auger peak with changes of the annealing temperature is proposed.« less

  13. Low-temperature positron annihilation study of B+-ion implanted PMMA

    NASA Astrophysics Data System (ADS)

    Kavetskyy, T. S.; Tsmots, V. M.; Voloshanska, S. Ya.; Šauša, O.; Nuzhdin, V. I.; Valeev, V. F.; Osin, Y. N.; Stepanov, A. L.

    2014-08-01

    Temperature dependent positron annihilation lifetime spectroscopy (PALS) measurements in the range of 50-300 K are carried out to study positronium formation in 40 KeV B+-ion implanted polymethylmethacrylate (B:PMMA) with two ion doses of 3.13 × 1015 and 3.75 × 1016 ions/cm2. The investigated samples show the various temperature trends of ortho-positronium (o-Ps) lifetime τ3 and intensity I3 in PMMA before and after ion implantation. Two transitions in the vicinity of ˜150 and ˜250 K, ascribed to γ and β transitions, respectively, are observed in the PMMA and B:PMMA samples in consistent with reference data for pristine sample. The obtained results are compared with room temperature PALS study of PMMA with different molecular weight (Mw) which known from literature. It is found that B+-ion implantation leads to decreasing Mw in PMMA at lower ion dose. At higher ion dose the local destruction of polymeric structure follows to broadening of lifetime distribution (hole size distribution).

  14. Detection of atomic scale changes in the free volume void size of three-dimensional colorectal cancer cell culture using positron annihilation lifetime spectroscopy.

    PubMed

    Axpe, Eneko; Lopez-Euba, Tamara; Castellanos-Rubio, Ainara; Merida, David; Garcia, Jose Angel; Plaza-Izurieta, Leticia; Fernandez-Jimenez, Nora; Plazaola, Fernando; Bilbao, Jose Ramon

    2014-01-01

    Positron annihilation lifetime spectroscopy (PALS) provides a direct measurement of the free volume void sizes in polymers and biological systems. This free volume is critical in explaining and understanding physical and mechanical properties of polymers. Moreover, PALS has been recently proposed as a potential tool in detecting cancer at early stages, probing the differences in the subnanometer scale free volume voids between cancerous/healthy skin samples of the same patient. Despite several investigations on free volume in complex cancerous tissues, no positron annihilation studies of living cancer cell cultures have been reported. We demonstrate that PALS can be applied to the study in human living 3D cell cultures. The technique is also capable to detect atomic scale changes in the size of the free volume voids due to the biological responses to TGF-β. PALS may be developed to characterize the effect of different culture conditions in the free volume voids of cells grown in vitro.

  15. Detection of Atomic Scale Changes in the Free Volume Void Size of Three-Dimensional Colorectal Cancer Cell Culture Using Positron Annihilation Lifetime Spectroscopy

    PubMed Central

    Castellanos-Rubio, Ainara; Merida, David; Garcia, Jose Angel; Plaza-Izurieta, Leticia; Fernandez-Jimenez, Nora; Plazaola, Fernando; Bilbao, Jose Ramon

    2014-01-01

    Positron annihilation lifetime spectroscopy (PALS) provides a direct measurement of the free volume void sizes in polymers and biological systems. This free volume is critical in explaining and understanding physical and mechanical properties of polymers. Moreover, PALS has been recently proposed as a potential tool in detecting cancer at early stages, probing the differences in the subnanometer scale free volume voids between cancerous/healthy skin samples of the same patient. Despite several investigations on free volume in complex cancerous tissues, no positron annihilation studies of living cancer cell cultures have been reported. We demonstrate that PALS can be applied to the study in human living 3D cell cultures. The technique is also capable to detect atomic scale changes in the size of the free volume voids due to the biological responses to TGF-β. PALS may be developed to characterize the effect of different culture conditions in the free volume voids of cells grown in vitro. PMID:24392097

  16. Defect induced ferromagnetism in MgO nanoparticles studied by optical and positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Kumar, Nitesh; Sanyal, D.; Sundaresan, A.

    2009-08-01

    Positron annihilation spectroscopy has been used to explore the nature of defects and to estimate the defect concentrations in ferromagnetic MgO nanoparticles. Our experimental results show that Mg vacancies or Mg vacancy concentration are present approximately at the concentration of 3.4 × 10 16 cm -3 in the nano-crystalline MgO which is twice the value that obtained for bulk sample. This is in correlation with the decrease of the intensity of blue luminescence and the saturation magnetic moment with increasing particle size. These results clearly demonstrate that the origin of magnetic moment and thus the ferromagnetism in MgO nanoparticles is due to Mg related vacancies at the surface of the particles.

  17. Measurements of defect structures by positron annihilation lifetime spectroscopy of the tellurite glass TeO2-P2O5-ZnO-LiNbO3 doped with ions of rare earth elements: Er3+, Nd3+ and Gd3+

    NASA Astrophysics Data System (ADS)

    Golis, E.; Yousef, El. S.; Reben, M.; Kotynia, K.; Filipecki, J.

    2015-12-01

    The objective of the study was the structural analysis of the TeO2-P2O5-ZnO-LiNbO3 tellurite glasses doped with ions of the rare-earth elements: Er3+, Nd3+ and Gd3+ based on the PALS (Positron Annihilation Lifetime Spectroscopy) method of measuring positron lifetimes. Values of positron lifetimes and the corresponding intensities may be connected with the sizes and number of structural defects, such as vacancies, mono-vacancies, dislocations or pores, the sizes of which range from a few angstroms to a few dozen nanometres. Experimental positron lifetime spectrum revealed existence of two positron lifetime components τ1 and τ2. Their interpretation was based on two-state positron trapping model where the physical parameters are the annihilation velocity and positron trapping rate.

  18. Positron accumulation effect in particles embedded in a low-density matrix

    NASA Astrophysics Data System (ADS)

    Dryzek, Jerzy; Siemek, Krzysztof

    2015-02-01

    Systematic studies of the so-called positron accumulation effect for samples with particles embedded in a matrix are reported. This effect is related to energetic positrons which penetrate inhomogeneous medium. Due to differences in the linear absorption coefficient, different amounts of positrons are accumulated and annihilate in the identical volume of both materials. Positron lifetime spectroscopy and Doppler broadening of the annihilation line using Na-22 positrons were applied to the studies of the epoxy resin samples with embedded micro-sized particles of transition metals, i.e., Ni, Sn, Mo, W, and nonmetal particles, i.e., Si and NaF. The significant difference between the determined fraction of positrons annihilating in the particles and the particle volume fraction indicates the positron accumulation effect. The simple phenomenological model and Monte Carlo simulations are able to describe the main features of the obtained dependencies. The aluminum alloy with embedded Sn nanoparticles is also considered for demonstration differences between the accumulation and another related effect, i.e., the positron affinity.

  19. The assessment of pore connectivity in hierarchical zeolites using positron annihilation lifetime spectroscopy: instrumental and morphological aspects.

    PubMed

    Zubiaga, Asier; Warringham, Robbie; Boltz, Marilyne; Cooke, David; Crivelli, Paolo; Gidley, David; Pérez-Ramírez, Javier; Mitchell, Sharon

    2016-04-07

    Recent studies demonstrated the power of positron annihilation lifetime spectroscopy (PALS) to characterise the connectivity and corresponding effectiveness of hierarchical pore networks in zeolites. This was based on the fractional escape of ortho-positronium (Ps), formed within the micropore framework, to vacuum. To further develop this technique, here we assess the impact of the positron implantation energy and of the zeolite crystal size and the particle morphology. Conventional measurements using fast positrons and beam measurements applying moderated positrons both readily distinguish purely microporous ZSM-5 zeolites comprised of single crystals or crystal aggregates. Unlike beam measurements, however, conventional measurements fail to discriminate model hierarchical zeolites with open or constricted mesopore architectures. Several steps are taken to rationalise these observations. The dominant contribution of Ps diffusion to the PALS response is confirmed by capping the external surface of the zeolite crystals with tetraethylorthosilicate, which greatly enhances the sensitivity to the micropore network. A one-dimensional model is constructed to predict the out-diffusion of Ps from a zeolite crystal, which is validated experimentally by comparing coffin-shaped single crystals of varying size. Calculation of the trends expected on the application of fast or moderated positrons indicates that the distinctions in the initial distribution of Ps at the crystal level cannot explain the limited sensitivity of the former to the mesopore architecture. Instead, we propose that the greater penetration of fast positrons within the sample increases the probability of Ps re-entry from intercrystalline voids into mesopores connected with the external surface of zeolite crystals, thereby reducing their fractional escape.

  20. Probing the defects in nano-semiconductors using positrons

    NASA Astrophysics Data System (ADS)

    Nambissan, P. M. G.

    2011-01-01

    Positron annihilation spectroscopy (PAS) is a very useful tool to study the defect properties of nanoscale materials. The ability of thermalized positrons to diffuse over to the surfaces of nanocrystallites prior to annihilation helps to explore the disordered atomic arrangement over there and is very useful in understanding the structure and properties of nanomaterials. As examples, the results of studies on FeS2 nanorods and ZnS nanoparticles are presented. In semiconductor nanoparticles, there are positron trapping sites within the grains also and these are characterised by using appropriate models on the measured positron lifetimes. We have observed vivid changes in the measured positron lifetimes and Doppler broadened gamma ray spectral lineshapes during structural transformations prompted by substitutional effects in Mn2+-doped ZnS nanorods. Interestingly, the nanoparticles did not exhibit the transformation, implying the morphologies of the nanosystems playing a decisive role. Quantum confinement effect in CdS nanoparticles was another phenomenon that could be seen through positron annihilation experiments. Coincidence Doppler broadening measurements have been useful to identify the elemental environment around the vacancy clusters that trap positrons. Recent studies on nanocrystalline oxide and sulphide semiconductors are also discussed.

  1. To the application of the emission Mössbauer and positron annihilation spectroscopies for detection of carcinogens

    NASA Astrophysics Data System (ADS)

    Bokov, A. V.; Byakov, V. M.; Kulikov, L. A.; Perfiliev, Yu. D.; Stepanov, S. V.

    2017-11-01

    Being the main cause of cancer, almost all chemical carcinogens are strong electrophiles, that is, they have a high affinity for the electron. We have shown that positron annihilation lifetime spectroscopy (PALS) is able to detect chemical carcinogens by their inhibition of positronium (Ps) formation in liquid media. Electrophilic carcinogens intercept thermalized track electrons, which are precursors of Ps, and as a result, when they are present Ps atom does not practically form. Available biophysical data seemingly indicate that frozen solutions model better an intracellular medium than the liquid ones. So it is reasonable to use emission Mössbauer spectroscopy (EMS) to detect chemical carcinogens, measuring the yield of 57Fe2+ions formed in reactions of Auger electrons and other secondary electrons they produced with 57Fe3+. These reactions are similar to the Ps formation process in the terminal part the positron track: e++ e- =>Ps. So EMS and PALS are complementary methods for detection of carcinogenic compounds.

  2. What is the fate of runaway positrons in tokamaks?

    DOE PAGES

    Liu, Jian; Qin, Hong; Fisch, Nathaniel J.; ...

    2014-06-19

    In this study, massive runaway positrons are generated by runaway electrons in tokamaks. The fate of these positrons encodes valuable information about the runaway dynamics. The phase space dynamics of a runaway position is investigated using a Lagrangian that incorporates the tokamak geometry, loop voltage, radiation and collisional effects. It is found numerically that runaway positrons will drift out of the plasma to annihilate on the first wall, with an in-plasma annihilation possibility less than 0.1%. The dynamics of runaway positrons provides signatures that can be observed as diagnostic tools.

  3. What is the fate of runaway positrons in tokamaks?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jian; Qin, Hong, E-mail: hongqin@ustc.edu.cn; Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543

    2014-06-15

    Massive runaway positrons are generated by runaway electrons in tokamaks. The fate of these positrons encodes valuable information about the runaway dynamics. The phase space dynamics of a runaway position is investigated using a Lagrangian that incorporates the tokamak geometry, loop voltage, radiation and collisional effects. It is found numerically that runaway positrons will drift out of the plasma to annihilate on the first wall, with an in-plasma annihilation possibility less than 0.1%. The dynamics of runaway positrons provides signatures that can be observed as diagnostic tools.

  4. Theoretical aspects of studies of oxide and semiconductor surfaces using low energy positrons

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Maddox, W. B.; Weiss, A. H.

    2011-01-01

    This paper presents the results of a theoretical study of positron surface and bulk states and annihilation characteristics of surface trapped positrons at the oxidized Cu(100) single crystal and at both As- and Ga-rich reconstructed GaAs(100) surfaces. The variations in atomic structure and chemical composition of the topmost layers of the surfaces associated with oxidation and reconstructions and the charge redistribution at the surfaces are found to affect localization and spatial extent of the positron surface-state wave functions. The computed positron binding energy, work function, and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the surfaces. Theoretical positron annihilation probabilities with relevant core electrons computed for the oxidized Cu(100) surface and the As- and Ga-rich reconstructed GaAs(100) surfaces are compared with experimental ones estimated from the positron annihilation induced Auger peak intensities measured from these surfaces.

  5. Oxygen-vacancy behavior in La2-xSrxCuO4-y by positron annihilation and oxygen diffusion

    NASA Astrophysics Data System (ADS)

    Smedskjaer, L. C.; Routbort, J. L.; Flandermeyer, B. K.; Rothman, S. J.; Legnini, D. G.; Baker, J. E.

    1987-09-01

    Oxygen-diffusion and positron-annihilation results for La2-xSrxCuO4-y compounds are reported. A qualitative explanation of the observed results is given on the basis of a model in which the oxygen-vacancy concentration in La2-xSrxCuO4-y is determined by Sr2+ ion clustering on the La sublattice. This model also leads to a maximum in the Cu3+ ion concentration as a function of the Sr2+ ion concentration.

  6. Positron lifetime in vanadium oxide bronzes

    NASA Astrophysics Data System (ADS)

    Dryzek, J.; Dryzek, E.

    2003-09-01

    The positron lifetime (PL) and Doppler broadening (DB) of annihilation line measurements have been performed in vanadium oxide bronzes MxV2O5. The dependence of these annihilation characteristics on the kind and concentration of the metal M donor has been observed. In the PL spectrum only one lifetime component has been detected in all studied bronzes. The results indicate the positron localization in the structural tunnels present in the crystalline lattice of the vanadium oxide bronzes. (

  7. Study of SiO2-Si and metal-oxide-semiconductor structures using positrons

    NASA Astrophysics Data System (ADS)

    Leung, T. C.; Asoka-Kumar, P.; Nielsen, B.; Lynn, K. G.

    1993-01-01

    Studies of SiO2-Si and metal-oxide-semiconductor (MOS) structures using positrons are summarized and a concise picture of the present understanding of positrons in these systems is provided. Positron annihilation line-shape S data are presented as a function of the positron incident energy, gate voltage, and annealing, and are described with a diffusion-annihilation equation for positrons. The data are compared with electrical measurements. Distinct annihilation characteristics were observed at the SiO2-Si interface and have been studied as a function of bias voltage and annealing conditions. The shift of the centroid (peak) of γ-ray energy distributions in the depletion region of the MOS structures was studied as a function of positron energy and gate voltage, and the shifts are explained by the corresponding variations in the strength of the electric field and thickness of the depletion layer. The potential role of the positron annihilation technique as a noncontact, nondestructive, and depth-sensitive characterization tool for the technologically important, deeply buried interface is shown.

  8. Evidence for a positron bound state on the surface of a topological insulator

    NASA Astrophysics Data System (ADS)

    Shastry, K.; Weiss, A. H.; Barbiellini, B.; Assaf, B. A.; Lim, Z. H.; Joglekar, P. V.; Heiman, D.

    2015-06-01

    We describe experiments aimed at probing the sticking of positrons to the surfaces of topological insulators using the Positron Annihilation induced Auger Electron Spectrometer (PAES). A magnetically guided beam was used to deposit positrons at the surface of Bi2Te2Se sample at energy of ∼2eV. Peaks observed in the energy spectra and intensities of electrons emitted as a result of positron annihilation showed peaks at energies corresponding to Auger peaks in Bi, Teand Se providing clear evidence of Auger emission associated with the annihilation of positrons in a surface bound state. Theoretical estimates of the binding energy of this state are compared with estimates obtained by measuring the incident beam energy threshold for secondary electron emission and the temperature dependence positronium(Ps) emission. The experiments provide strong evidence for the existence of a positron bound state at the surface of Bi2Te2Se and indicate the practicality of using positron annihilation to selectively probe the critically important top most layer of topological insulator system.

  9. Annihilation in Gases and Galaxies

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J. (Editor)

    1990-01-01

    This publication contains most of the papers, both invited and contributed, that were presented at the Workshop of Annihilation in Gases and Galaxies. This was the fifth in a biennial series associated with the International Conference on the Physics of Electronic and Atomic Collisions. Subjects covered included the scattering and annihilation of positrons and positronium atoms in various media, including those of astrophysical interest. In addition, the topics of antimatter and dark matter were covered.

  10. Vacancy-Induced Ferromagnetism in SnO2 Nanocrystals: A Positron Annihilation Study

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Yuan; Chen, Zhi-Quan; Pan, Rui-Kun; Wang, Shao-Jie

    2013-02-01

    SnO2 nanopowders were pressed into pellets and annealed in air from 100 to 1400°C. Both XRD and Raman spectroscopy confirm that all annealed samples were single phase with a tetragonal rutile structure. Annealing induces an increase in the SnO2 grain size from 30 to 83 nm. Positron annihilation measurements reveal vacancy defects in the grain boundary region, and the interfacial defects remain stable after annealing below 400°C, then they are gradually recovered with increasing annealing temperature up to 1200°C. Room temperature ferromagnetism was observed for SnO2 nanocrystals annealed below 1200°C, and the magnetization decreases continuously with increasing annealing temperature. However, the ferromagnetism disappears at 1200°C annealing. This shows good coincidence with the recovery of interfacial defects in the nanocrystals, suggesting that the ferromagnetism is probably induced by vacancy defects in the interface region.

  11. Development of dark disk model of positron anomaly origin

    NASA Astrophysics Data System (ADS)

    Belotsky, K. M.; Kirillov, A. A.; Solovyov, M. L.

    Dark disk model could be a remedy for dark matter (DM) explanation of positron anomaly (PA) in cosmic rays (CR). The main difficulty in PA explanation relates to cosmic gamma-radiation which is inevitably produced in DM annihilation or decay leading to tension with respective observation data. Introduction of “active” (producing CR) DM component concentrating in galactic disk alleviates this tension. Earlier, we considered 2-lepton modes, with branching ratios being chosen to fit in the best way all the observation data. Here we considered, in the framework of the same dark disk model, two cases: 2-body final state annihilation and 4-body one, and in each case a quark mode is added to the leptonic ones. It is shown that 4-body mode case is a little better than 2-body one from viewpoint of quality of observation data description at the fixed all other parameters (of CR propagation, background, disk height). The values of DM particle mass around 350GeV and 500GeV are more favorable for 2- and 4-body modes, respectively. Higher values would improve description of data on positrons only but accounting for data on gamma-radiation prevents it because of unwanted more abundant high-energy gamma production. Inclusion of the quark modes improves a little fitting data in both 4- and 2-body mode cases, contrary to naive expectations. In fact, quark mode has a bigger gammas yield than that of most gamma-productive leptonic mode — tau, but they are softer due to bigger final state hadron multiplicity.

  12. Positron lifetime setup based on DRS4 evaluation board

    NASA Astrophysics Data System (ADS)

    Petriska, M.; Sojak, S.; Slugeň, V.

    2014-04-01

    A digital positron lifetime setup based on DRS4 evaluation board designed at the Paul Scherrer Institute has been constructed and tested in the Positron annihilation laboratory Slovak University of Technology Bratislava. The high bandwidth, low power consumption and short readout time make DRS4 chip attractive for positron annihilation lifetime (PALS) setup, replacing traditional ADCs and TDCs. A software for PALS setup online and offline pulse analysis was developed with Qt,Qwt and ALGLIB libraries.

  13. Influence of O-Co-O layer thickness on the thermal conductivity of Na{sub x}Co{sub 2}O{sub 4} studied by positron annihilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, H. Q.; Zhao, B.; Zhang, T.

    2015-07-21

    Nominal stoichiometric Na{sub x}Co{sub 2}O{sub 4} (x = 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0) polycrystals were synthesized by a solid-state reaction method. They were further pressed into pellets by the spark plasma sintering. The crystal structure and morphology of Na{sub x}Co{sub 2}O{sub 4} samples were characterized by X-ray diffraction and scanning electron microscopy measurements. Good crystallinity and layered structures were observed for all the samples. Positron annihilation measurements were performed for Na{sub x}Co{sub 2}O{sub 4} as a function of Na content. Two lifetime components are resolved. τ{sub 1} is attributed mainly to positron annihilation in the O-Co-O layers and shifts tomore » Na layers only in the H3 phase. The second lifetime τ{sub 2} is due to positron annihilation in vacancy clusters which may exist in the Na layers or grain boundary region. The size of vacancy clusters grow larger but their concentration decreases with increasing Na content in the range of 1.0 < x < 1.8. The thickness of O-Co-O layer also shows continuous increase with increasing Na content, which is reflected by the increase of τ{sub 1}. The thermal conductivity κ, on the other hand, shows systematic decrease with increasing Na content. This suggests that the increasing spacing of O-Co-O layer could effectively reduce the thermal conductivity of Na{sub x}Co{sub 2}O{sub 4}.« less

  14. Optical and positron annihilation spectroscopic studies on PMMA polymer doped by rhodamine B/chloranilic acid charge transfer complex: Special relevance to the effect of γ-ray irradiation.

    PubMed

    Hassan, H E; Refat, Moamen S; Sharshar, T

    2016-04-15

    Polymeric sheets of poly (methylmethaclyerate) (PMMA) containing charge transfer (CT) complex of rhodamine B/chloranilic acid (Rho B/CHA) were synthesized in methanol solvent at room temperature. The systematic analysis done on the Rho B and its CT complex in the form of powder or polymeric sheets confirmed their structure and thermal stability. The IR spectra interpreted the charge transfer mode of interaction between the CHA central positions and the terminal carboxylic group. The polymer sheets were irradiated with 70 kGy of γ radiation using (60)Co source to study the enhanced changes in the structure and optical parameters. The microstructure changes of the PMMA sheets caused by γ-ray irradiation were analyzed using positron annihilation lifetime (PAL) and positron annihilation Doppler broadening (PADB) techniques. The positron life time components (τ(i)) and their corresponding intensities (I(i)) as well as PADB line-shape parameters (S and W) were found to be highly sensitive to the enhanced disorder occurred in the organic chains of the polymeric sheets due to γ-irradiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Optical and positron annihilation spectroscopic studies on PMMA polymer doped by rhodamine B/chloranilic acid charge transfer complex: Special relevance to the effect of γ-ray irradiation

    NASA Astrophysics Data System (ADS)

    Hassan, H. E.; Refat, Moamen S.; Sharshar, T.

    2016-04-01

    Polymeric sheets of poly (methylmethaclyerate) (PMMA) containing charge transfer (CT) complex of rhodamine B/chloranilic acid (Rho B/CHA) were synthesized in methanol solvent at room temperature. The systematic analysis done on the Rho B and its CT complex in the form of powder or polymeric sheets confirmed their structure and thermal stability. The IR spectra interpreted the charge transfer mode of interaction between the CHA central positions and the terminal carboxylic group. The polymer sheets were irradiated with 70 kGy of γ radiation using 60Co source to study the enhanced changes in the structure and optical parameters. The microstructure changes of the PMMA sheets caused by γ-ray irradiation were analyzed using positron annihilation lifetime (PAL) and positron annihilation Doppler broadening (PADB) techniques. The positron life time components (τi) and their corresponding intensities (Ii) as well as PADB line-shape parameters (S and W) were found to be highly sensitive to the enhanced disorder occurred in the organic chains of the polymeric sheets due to γ-irradiation.

  16. Positron Annihilation Studies of the Electronic Structure of Selected High-Temperature Cuprate and Organic Superconductors.

    NASA Astrophysics Data System (ADS)

    Chan, Lie Ping

    The understanding of the electronic structure of the high-T_{c} superconductors could be important for a full theoretical description of the mechanism behind superconductivity in these materials. In this thesis, we present our measurements of the positron -electron momentum distributions of the cuprate superconductors Bi_2Sr_2CaCu _2O_8, Tl _2Ba_2Ca _2Cu_3O_ {10}, and the organic superconductor kappa-(BEDT)_2Cu(NCS) _2. We use the positron Two-dimensional Angular Correlation of Annihilation Radiation technique to make the measurements on single crystals and compare our high-statistics data with band structure calculations to determine the existence and nature of the respective Fermi surfaces. The spectra from unannealed Bi _2Sr_2CaCu _2O_8 exhibit effects of the superlattice modulation in the BiO_2 layers, and a theoretical understanding of the modulation effects on the electronic band structure is required to interpret these spectra. Since the present theory does not consider the modulation, we have developed a technique to remove the modulation effects from our spectra, and the resultant data when compared with the positron -electron momentum distribution calculation, yield features consistent with the predicted CuO_2 and BiO_2 Fermi surfaces. In the data from unannealed Tl_2Ba _2Ca_2Cu_3 O_{10}, we only observe indications of the TlO Fermi surfaces, and attribute the absence of the predicted CuO_2 Fermi surfaces to the poor sample quality. In the absence of positron-electron momentum calculations for kappa-(BEDT)_2Cu(NCS) _2, we compare our data to electronic band structure calculations, and observed features suggestive of the predicted Fermi surface contributions from the BEDT cation layers. A complete positron-electron calculation for kappa-(BEDT)_2 Cu(NCS)_2 is required to understand the positron wavefunction effects in this material.

  17. Fermi surface ridge at second and third UMKLAPP positron annihilations in YBa 2Cu 3O 7- δ

    NASA Astrophysics Data System (ADS)

    Adam, Gh.; Adam, S.; Barbiellini, B.; Hoffmann, L.; Manuel, A. A.; Peter, M.; Massida, S.

    1993-12-01

    Results of statistical noise smoothing of the electron momentum distribution got by two-dimensional angular correlation of the electron-positron annihilation radiation technique on untwinned YBa 2Cu 3O 7- δ single crystals are reported. Two distinct signatures of the sheet of Fermi surface related to the CuO chains (the ridge) are resolved. The first occurs at second Umklapp processes, in agreement with previous evidence. The second one, identified for the first time, occurs at third Umklapp processes. Comparison with FLAPW calculations confirms this result.

  18. Slow positron beam generator for lifetime studies

    NASA Technical Reports Server (NTRS)

    Singh, Jag J. (Inventor); Eftekhari, Abe (Inventor); St.clair, Terry L. (Inventor)

    1991-01-01

    A slow positron beam generator uses a conductive source residing between two test films. Moderator pieces are placed next to the test film on the opposite side of the conductive source. A voltage potential is applied between the moderator pieces and the conductive source. Incident energetic positrons: (1) are emitted from the conductive source; (2) are passed through test film; and (3) isotropically strike moderator pieces before diffusing out of the moderator pieces as slow positrons, respectively. The slow positrons diffusing out of moderator pieces are attracted to the conductive source which is held at an appropriate potential below the moderator pieces. The slow positrons have to pass through the test films before reaching the conductive source. A voltage is adjusted so that the potential difference between the moderator pieces and the conductive source forces the positrons to stop in the test films. Measurable annihilation radiation is emitted from the test film when positrons annihilate (combine) with electrons in the test film.

  19. Annihilation physics of exotic galactic dark matter particles

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1990-01-01

    Various theoretical arguments make exotic heavy neutral weakly interacting fermions, particularly those predicted by supersymmetry theory, attractive candidates for making up the large amount of unseen gravitating mass in galactic halos. Such particles can annihilate with each other, producing secondary particles of cosmic-ray energies, among which are antiprotons, positrons, neutrinos, and gamma-rays. Spectra and fluxes of these annihilation products can be calculated, partly by making use of positron electron collider data and quantum chromodynamic models of particle production derived therefrom. These spectra may provide detectable signatures of exotic particle remnants of the big bang.

  20. Positrons in the Galaxy: Their Births, Marriages and Deaths

    NASA Technical Reports Server (NTRS)

    Skinner, Gerald K.

    2010-01-01

    High energy (approximately GeV) positrons are seen within cosmic rays and observation of a narrow line at 511 keV shows that positrons are annihilating in the galaxy after slowing down to approximately keV energies or less. Our state of knowledge of the origin of these positrons, of the formation of positronium 'atoms', and of the circumstances of their annihilation or escape from the galaxy are reviewed and the question of whether the two phenomena are linked is discussed.

  1. Positron lifetime beam for defect studies in thin epitaxial semiconductor structures

    NASA Astrophysics Data System (ADS)

    Laakso, A.; Saarinen, K.; Hautojärvi, P.

    2001-12-01

    Positron annihilation spectroscopies are methods for direct identification of vacancy-type defects by measuring positron lifetime and Doppler broadening of annihilation radiation and providing information about open volume, concentration and atoms surrounding the defect. Both these techniques are easily applied to bulk samples. Only the Doppler broadening spectroscopy can be employed in thin epitaxial samples by utilizing low-energy positron beams. Here we describe the positron lifetime beam which will provide us with a method to measure lifetime in thin semiconductor layers.

  2. Positron annihilation spectroscopy of vacancy-related defects in CdTe:Cl and CdZnTe:Ge at different stoichiometry deviations

    PubMed Central

    Šedivý, L.; Čížek, J.; Belas, E.; Grill, R.; Melikhova, O.

    2016-01-01

    Positron annihilation spectroscopy (PAS) was used to examine the effect of defined Cd-rich and Te-rich annealing on point defects in Cl-doped CdTe and Ge-doped CdZnTe semi-insulating single crystals. The as-grown crystals contain open-volume defects connected with Cd vacancies . It was found that the Cd vacancies agglomerate into clusters coupled with Cl in CdTe:Cl, and in CdZnTe:Ge they are coupled with Ge donors. While annealing in Cd pressure reduces of the density, subsequent annealing in Te pressure restores . The CdTe:Cl contains negatively-charged shallow traps interpreted as Rydberg states of A-centres and representing the major positron trapping sites at low temperature. Positrons confined in the shallow traps exhibit lifetime, which is shorter than the CdTe bulk lifetime. Interpretation of the PAS data was successfully combined with electrical resistivity, Hall effect measurements and chemical analysis, and allowed us to determine the principal point defect densities. PMID:26860684

  3. Evolution of the electronic structure of La2-xSrxCuO4 with doping determined by positron-annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Howell, R. H.; Sterne, P. A.; Fluss, M. J.; Kaiser, J. H.; Kitazawa, K.; Kojima, H.

    1994-05-01

    We have measured and calculated the electron-positron momentum distribution of La2-xSrxCuO4 samples for Sr concentrations of 0, 0.1, 0.13, and 0.2. Measured distributions were obtained at room temperature with high statistical precision, greater than 4×108 events, in the Lawrence Livermore National Laboratory positron-annihilation angular correlation spectrometer on single-crystal samples fabricated using the traveling solvent floating zone technique. Corresponding theoretical momentum-density calculations were performed using the linear muffin-tin-orbital method. The momentum distribution of all samples contained features derived from the overlap of the positron distribution with the valence electrons. In addition, discontinuities typical of a Fermi surface are seen in the doped samples. The form and position of these features are in general agreement with the Fermi surface and overall momentum distributions as predicted by band theory. However, the evolution of the Fermi surface with doping differed significantly from expectations based on single electron band theories.

  4. Role of Se vacancies on Shubnikov-de Haas oscillations in Bi2Se3: A combined magneto-resistance and positron annihilation study

    NASA Astrophysics Data System (ADS)

    Devidas, T. R.; Amaladass, E. P.; Sharma, Shilpam; Rajaraman, R.; Sornadurai, D.; Subramanian, N.; Mani, Awadhesh; Sundar, C. S.; Bharathi, A.

    2014-12-01

    Magneto-resistance measurements coupled with positron lifetime measurements, to characterize the vacancy-type defects, have been carried out on the topological insulator (TI) system Bi2Se3 of varying Se/Bi ratio. Pronounced Shubnikov-de Haas (SdH) oscillations are seen in nominal Bi2Se3.1 crystals for measurements performed in magnetic fields up to 15 T in the 4 K-10 K temperature range, with field applied perpendicularly to the (001) plane of the crystal. The quantum oscillations, characteristic of 2D electronic structure, are seen only in the crystals that have a lower concentration of Se vacancies, as inferred from positron annihilation spectroscopy.

  5. Energy Weighted Angular Correlations Between Hadrons Produced in Electron-Positron Annihilation.

    NASA Astrophysics Data System (ADS)

    Strharsky, Roger Joseph

    Electron-positron annihilation at large center of mass energy produces many hadronic particles. Experimentalists then measure the energies of these particles in calorimeters. This study investigated correlations between the angular locations of one or two such calorimeters and the angular orientation of the electron beam in the laboratory frame of reference. The calculation of these correlations includes weighting by the fraction of the total center of mass energy which the calorimeter measures. Starting with the assumption that the reaction proceeeds through the intermediate production of a single quark/anti-quark pair, a simple statistical model was developed to provide a phenomenological description of the distribution of final state hadrons. The model distributions were then used to calculate the one- and two-calorimeter correlation functions. Results of these calculations were compared with available data and several predictions were made for those quantities which had not yet been measured. Failure of the model to reproduce all of the data was discussed in terms of quantum chromodynamics, a fundamental theory which includes quark interactions.

  6. Detailed line shape analysis of the C KVV Auger peak of two carbon allotropes measured using a time of flight positron annihilation induced Auger electron spectrometer

    NASA Astrophysics Data System (ADS)

    Fairchild, A. J.; Chirayath, V. A.; Chrysler, M. D.; Gladen, R. W.; Imam, S. K.; Koymen, A. R.; Weiss, A. H.

    We report a detailed line shape analysis of the positron induced C KVV Auger line shape from highly oriented pyrolytic graphite (HOPG) and a single layer of graphene grown on polycrystalline Cu. A model consisting of the self-fold of the one-electron density of states including terms for hole-hole interactions, charge screening effects, and intrinsic loss mechanisms is compared to experimental C KVV line shapes measured using a positron induced Auger electron spectrometer (PAES). In traditional Auger spectroscopies which use an electron or photon to initiate the Auger process, extracting the relatively small Auger signal from the large secondary background can be quite difficult. Using a very low energy positron beam to create the core hole through an anti-matter matter annihilation entirely eliminates this background. Additionally, PAES has sensitivity to the top most atomic layer since the positron becomes trapped in an image potential well at the surface before annihilation. Therefore, the PAES signal from a single layer of graphene on polycrystalline Cu is primarily from the graphene overlayer with small contributions from the Cu substrate while the PAES signal from HOPG can be viewed as a single graphene layer with a graphite substrate. The influence of these two substrates on C KVV line shape is discussed. This work was supported by NSF Grant No. DMR 1508719 and DMR 1338130.

  7. Positron-annihilation study of the electronic structure of URu2Si2

    NASA Astrophysics Data System (ADS)

    Rozing, G. J.; Mijnarends, P. E.; Menovsky, A. A.; de Chtel, P. F.

    1991-04-01

    Measurements of the two-dimensional angular correlation of annihilation radiation (2D-ACAR) were performed on oriented single crystals of URu2Si2. The spectra, obtained with integration along four different symmetry directions, display anisotropic structure in fair agreement with a previous calculation of the two-photon momentum distribution. In particular, the contribution of the f-ligand hybridized electron states is clearly observed and reasonably well described by the band calculation. The 2D-ACAR distribution remains unchanged as the temperature is increased from 6 K in the Fermi-liquid state to 72 K, which is just above the coherence temperature. The inhomogeneity of the positron density in the unit cell complicates the Lock-Crisp-West (LCW) analysis of the experiments in terms of Fermi-surface features. Nevertheless, the disagreement between theory and experiment after LCW folding indicates that the Fermi surface as predicted by local-density-approximation band theory does not apply.

  8. Positron annihilation spectroscopic characterization of defects in wide band gap oxide semiconductors

    NASA Astrophysics Data System (ADS)

    Sarkar, A.; Luitel, Homnath; Gogurla, N.; Sanyal, D.

    2017-03-01

    Annealing effect of granular ZnO has been studied by Doppler broadened electron positron annihilated γ-ray (0.511 MeV) line shape measurement. Ratio curve analysis shows that granular ZnO samples contain both Zn and O vacancies. Such defects exist as agglomerates of several vacancies and start to recover above 400 °C annealing. It has also been observed that due to annealing temperature difference of 125 °C (from 325 °C to 450 °C), huge change occurs in low temperature photoluminescence (PL) of ZnO. Significant reduction of free to bound (FB) transition ~3.315 eV is observed for increasing the annealing temperature. It has been conjectured that ~3.315 eV PL in ZnO is related to particular decoration (unknown) of both Zn and O vacancies. The methodology of revealing defect-property correlation as employed here can also be applied to other types of semiconductors.

  9. Investigation of Positron Sticking to the Surfaces of Topological Insulators

    NASA Astrophysics Data System (ADS)

    Shastry, K.; Joglekar, P. V.; Olenga, A. Y.; Fazleev, N. G.; Weiss, A. H.; Barniellini, B.

    2013-03-01

    We describe experiments aimed at probing the sticking of positrons to the surfaces of topological insulators. In these experiments, a magnetically beam will be used to deposit positrons at the surface of Bi2Te2Se. The energy spectra and intensities of electrons emitted as a result of Positron Annihilation induced Auger electron Spectroscopy (PAES) provides a distinct element specific signal which can be used to determine if positrons can be trapped efficiently into a surface localized bound state. The experiments are aimed at determining the practicality of using positron annihilation to selectively probe the critically important top most layer of topological insulator system. Welch Y1100, NSF DMR 0907679

  10. Positron annihilation response and broadband dielectric spectroscopy: salol.

    PubMed

    Bartoš, J; Iskrová, M; Köhler, M; Wehn, R; Sauša, O; Lunkenheimer, P; Krištiak, J; Loidl, A

    2011-09-01

    A phenomenological analysis of the ortho-positronium (o-Ps) annihilation from positron annihilation lifetime spectroscopy (PALS) and the dynamics from broadband dielectric spectroscopy (BDS) are reported on a small molecular glass former of intermediate H-bonding and fragility: salol. The dielectric spectra extend over a very broad frequency range of about 2 × 10(-2)-3.5 × 10(11) Hz, providing information on the α-relaxation, the secondary relaxation giving rise to the excess wing, and the shallow high-frequency minimum in the micro- to milli-meter wave range. A number of empirical correlations between the o-Ps lifetime, τ(3)(T), and the various spectral and relaxation features have been observed. Thus, the phenomenological evaluation of the τ(3)(T) dependence of the PALS response of the amorphous sample reveals three characteristic PALS temperatures: T(g)(PALS), T(b1)(L) = 1.15T(g)(PALS) and T(b2)(L) = 1.25T(g)(PALS), which are discussed in relation to similar findings for some typical small molecular vdW- and H-bonded glass formers. A slighter change of the slope at T(b1)(L) appears to be related to the transition from excess wing to the primary α-process-dominated behavior, with the secondary process dominating in the deeply supercooled liquid state below T(b1)(L). The high-temperature plateau effect in the τ (3)(T) plot occurs at T(b2)(L) and agrees with the characteristic Stickel temperature, T(B)(ST), marking a qualitative change of the primary α process, but it does not follow the relation T(b2)(L) < T(α) [τ(3)(T(b2)) < τ(α)]. Both effects at T(b1)(L) and T(b2)(L) correlate with two crossovers in the spectral shape and related non-exponentiality parameter of the structural relaxation, β (KWW). Finally, the application of the two-order parameter (TOP) model to the structural relaxation as represented by the primary α relaxation times from BDS leads to the characteristic TOP temperature, T(m)(c), close to T(b1) from PALS. Within this model the

  11. Positronics of radiation-induced effects in chalcogenide glassy semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shpotyuk, O.; Kozyukhin, S. A., E-mail: sergkoz@igic.ras.ru; Shpotyuk, M.

    2015-03-15

    Using As{sub 2}S{sub 3} and AsS{sub 2} glasses as an example, the principal possibility of using positron annihilation spectroscopy methods for studying the evolution of the free volume of hollow nanoobjects in chalcogenide glassy semiconductors exposed to radiation is shown. The results obtained by measurements of the positron annihilation lifetime and Doppler broadening of the annihilation line in reverse chronological order are in full agreement with the optical spectroscopy data in the region of the fundamental absorption edge, being adequately described within coordination defect-formation and physical-aging models.

  12. Four-dimensional positron age-momentum correlation

    NASA Astrophysics Data System (ADS)

    Ackermann, Ulrich; Löwe, Benjamin; Dickmann, Marcel; Mitteneder, Johannes; Sperr, Peter; Egger, Werner; Reiner, Markus; Dollinger, Günther

    2016-11-01

    We have performed first four-dimensional age-momentum correlation (4D-AMOC) measurements at a pulsed high intensity positron micro beam and determined the absolute value of the three-dimensional momentum of the electrons annihilating with the positrons in coincidence with the positron age in the sample material. We operated two position sensitive detectors in coincidence to measure the annihilation radiation: a pixelated HPGe-detector and a microchannel plate image intensifier with a CeBr3 scintillator pixel array. The transversal momentum resolution of the 4D-AMOC setup was measured to be about 17 × 10-3 {m}0c (FWHM) and was circa 3.5 times larger than the longitudinal momentum resolution. The total time resolution was 540 ps (FWHM). We measured two samples: a gold foil and a carbon tape at a positron implantation energy of 2 keV. For each sample discrete electron momentum states and their respective positron lifetimes were extracted.

  13. Study of defects in an electroresistive Au/La2/3Sr1/3MnO3/SrTiO3(001) heterostructure by positron annihilation

    NASA Astrophysics Data System (ADS)

    Ferragut, R.; Dupaquier, A.; Brivio, S.; Bertacco, R.; Egger, W.

    2011-09-01

    Defects in an ultrathin Au/La2/3Sr1/3MnO3/SrTiO3 (Au/LSMO/STO) heterostructure displaying electroresistive behavior were studied using variable energy positron annihilation spectroscopy. Vacancy-like defects were found to be the dominant positron traps in the LSMO and STO thin perovskite oxides with a number density >1017 cm-3 and 2 × 1017 cm-3 in the STO substrate. High defect density was revealed by strong positron trapping at the Au/LSMO interface. Oxygen deficiency in LSMO would be the main source of these traps. Besides, a low density of sub-nano voids of ˜6 Å was found in the substrate and in the thin LSMO/STO films.

  14. Advanced characterization of lithium battery materials with positrons

    NASA Astrophysics Data System (ADS)

    Barbiellini, Bernardo; Kuriplach, Jan

    2017-01-01

    Cathode materials are crucial to improved battery performance, in part because there are not yet materials that can maintain high power and stable cycling with a capacity comparable to that of anode materials. Our parameter-free, gradient-corrected model for electron-positron correlations predicts that spectroscopies based on positron annihilation can be deployed to study the effect of lithium intercalation in the oxide matrix of the cathode. The positron characteristics in oxides can be reliably computed using methods based on first-principles. Thus, we can enable a fundamental characterization of lithium battery materials involving positron annihilation spectroscopy and first-principles calculations. The detailed information one can extract from positron experiments could be useful for understanding and optimizing both battery materials and bi-functional catalysts for oxygen reduction and evolution.

  15. Positron Annihilation Studies of High-Temperature Superconductors and Related Compounds

    NASA Astrophysics Data System (ADS)

    Rayner, Simon

    Available from UMI in association with The British Library. The work described in this thesis is concerned with the study of the electronic structure of the high T_{c} superconductor YBa _2Cu_3O _7 and related oxide compounds using the technique of two dimensional angular correlation of annihilation radiation. These compounds differ widely in their physical properties, ranging from materials such as nickel oxide, which is an insulator, to YBa_2Cu _3O_7 or ReO _3 which are superconducting over a certain temperature range. We have studied some of these compounds with a view to clarifying whether YBa _2Cu_3O_7 possessed a Fermi surface. The numerous theories that have been proposed to explain the observed superconducting phase of these materials can be classified into two main groups. The theories in the first group predict the existence of a quasi two dimensional Fermi surface whereas the remaining models do not but are based on an approach similar to that used to explain the observed electronic structure of the transition monoxides. The data obtained from our study of NiO, CoO and twinned crystals of YBa_2Cu _3O_7 was of low statistics and it was not possible to deduce anything of significance. However, we were able to deduce that, consistent with the predictions of theory, the positron was preferentially annihilating on the copper-oxygen chains. The data obtained from our measurement on untwinned crystals of YBa_2Cu_3 O_7 was of much higher statistics and we found one of clearest imaginable manifestations of a Fermi surface in the form of a ridge in the anisotropy of our data. The ridge is even more apparent in the LCW -folded spectra. The form and profile of the ridge are in substantial agreement with the theoretical predictions of a Gamma-X electron ridge section from the Cu-O chains.

  16. Fermi surface ridge at second and third Umklapp positron annihilations in Y Ba2Cu3O(7-delta)

    NASA Astrophysics Data System (ADS)

    Adam, G.; Adam, S.; Barbiellini, B.; Hoffmann, L.; Manuel, A. A.; Massidda, S.; Peter, M.

    1993-06-01

    Results of statistical noise smoothing of the electron momentum distribution obtained by two-dimensional angular correlation of the electron-positron annihilation radiation technique on untwinned YBa2Cu3O(7-delta) single crystals are reported. Two distinct signatures of the sheet of Fermi surface related to the CuO chains (the ridge) are resolved. The first occurs at second Umklapp processes, in agreement with previous evidence. The second one, identified for the first time, occurs at third Umklapp processes. Comparison with FLAPW calculations confirms this result.

  17. Constraints on Resonant Dark Matter Annihilation

    NASA Astrophysics Data System (ADS)

    Backovic, Mihailo

    Resonant dark matter annihilation drew much attention in the light of recent measurements of charged cosmic ray fluxes. Interpreting the anomalous signal in the positron fraction as a sign of dark matter annihilation in the galactic halo requires cross sections orders of magnitudes higher than the estimates coming from thermal relic abundance. Resonant dark matter annihilation provides a mechanism to bridge the apparent contradiction between thermal relic abundance and the positron data measured by PAMELA and FERMI satellites. In this thesis, we analyze a class of models which allow for dark matter to annihilate through an s-channel resonance. Our analysis takes into account constraints from thermal relic abundance and the recent measurements of charged lepton cosmic ray fluxes, first separately and then simultaneously. Consistency of resonant dark matter annihilation models with thermal relic abundance as measured by WMAP serves to construct a relationship between the full set of masses, couplings and widths involved. Extensive numerical analysis of the full four dimensional parameter space is summarized by simple analytic approximations. The expressions are robust enough to be generalized to models including additional annihilation channels. We provide a separate treatment of resonant annihilation of dark matter in the galac- tic halo. We find model-independent upper limits on halo dark matter annihilation rates and show that the most efficient annihilation mechanism involves s-channel resonances. Widths that are large compared to the energy spread in the galactic halo are capable of saturating unitarity bounds without much difficulty. Partial wave unitarity prevents the so called Sommerfeld factors from producing large changes in cross sections. In addition, the approximations made in Sommerfeld factors break down in the kinematic regions where large cross section enhancements are often cited. Simultaneous constraints from thermal relic abundance and halo

  18. Positron Annihilation Spectroscopy Characterization of Nanostructural Features in Reactor Steels

    NASA Astrophysics Data System (ADS)

    Glade, Stephen; Wirth, Brian; Asoka-Kumar, Palakkal; Sterne, Philip; Alinger, Matthew; Odette, George

    2004-03-01

    Irradiation embrittlement in nuclear reactor pressure vessel steels results from the formation of a high number density of nanometer sized copper rich precipitates and sub-nanometer defect-solute clusters. We present results of study to characterize the size and compositions of simple binary and ternary Fe-Cu-Mn model alloys and more representative Fe-Cu-Mn-Ni-Si-Mo-C reactor pressure vessel steels using positron annihilation spectroscopy (PAS). Using a recently developed spin-polarized PAS technique, we have also measured the magnetic properties of the nanometer-sized copper rich precipitates. Mn retards the precipitation kinetics and inhibits large vacancy cluster formation, suggesting a strong Mn-vacancy interaction which reduces radiation enhanced diffusion. The spin-polarized PAS measurements reveal the non-magnetic nature of the copper precipitates, discounting the notion that the precipitates contain significant quantities of Fe and providing an upper limit of at most a few percent Fe in the precipitates. PAS results on oxide dispersion-strengthened steel for use in fusion reactors will also be presented. Part of this work was performed under the auspices of the US Department of Energy by the University of California, Lawrence Livermore National Laboratory, under contract No. W-7405-ENG-48 with partial support provided from Basic Energy Sciences, Division of Materials Science.

  19. Apparatus for the analysis of surfaces in gas environments using Positron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Satyal, Suman; Lim, Lawrence; Joglekar, Vibek; Kalaskar, Sushant; Shastry, Karthik; Weiss, Alex

    2010-10-01

    Positron spectroscopy performed with low energy beams can provide highly surface specific information due to the trapping of positrons in an image potential surface state at the time of annihilation. Here we describe a spectrometer that will employ differential pumping to enable us to transport the positrons most of the way from the source to the sample under high vacuum and then to traverse a thin gas layer surrounding the sample. The positrons will be implanted into the sample at energies less than ˜10 keV ensuring that a large fraction will diffuse back to the surface before annihilation. The Elemental content of the surface interacting with the gas environment will then be determined from the Doppler broadened gamma spectra. This system will include a time of flight positron annihilation induced Auger spectrometer (TOF-PAES) which correlates with the Doppler measurements at lower pressures.

  20. Porous glasses as a matrix for incorporation of photonic materials. Pore determination by positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Reisfeld, Pore determination by positron annihilation lifetime spectroscopy R.; Saraidarov, T.; Jasinska, B.

    2004-07-01

    Porous glasses prepared by the sol-gel technique have a variety of applications when incorporated by photonic materials: tunable lasers, sensors, luminescence solar concentrators, semiconductor quantum dots, biological markers. The known methods of pore size determinations, the nitrogen adsorption and mercury porosimetry allow to determine the sizes of open pores. Positron annihilation lifetime spectroscopy (PALS) allows to determine pore sizes also of closed pores. As an example we have performed measurements of non-doped zirconia-silica-polyurethane (ZSUR) ormocer glasses and the same glasses doped with lead sulfide quantum dots. The pore radii range between 0.25-0.38 nm, total surface area 15.5-23.8 m 2/g.

  1. Characterization of Al-ALLOYS (50xx) by Using Positron Annihilation, X-Ray Diffraction and Vibrating Reed Techniques

    NASA Astrophysics Data System (ADS)

    Kumar, Uday; Badawi, Emad; Mukhopadhyay, P. K.

    A series of Al-Mgx alloys, with x = 0.82, 2.09, 2.28, 2.49 and 4.47 wt.%, respectively were characterized by using positron annihilation lifetime studies (PAL), X-ray diffraction (XRD), and sound velocity and internal friction using a vibrating reed technique (VRT). PAL lifetime values increase linearly as the composition is varied, but texturing or preferential orientation is maximum at an intermediate value of composition (x = 2.49%). The internal friction shows a minimum at the same composition, and the sound velocity changes show the maximum value here too. This means that at this composition the sample is the most ordered and defect free.

  2. Positrons as interface-sensitive probes of polar semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Makkonen, I.; Snicker, A.; Puska, M. J.; Mäki, J.-M.; Tuomisto, F.

    2010-07-01

    Group-III nitrides in their wurtzite crystal structure are characterized by large spontaneous polarization and significant piezoelectric contributions in heterostructures formed of these materials. Polarization discontinuities in polar heterostructures grown along the (0001) direction result in huge built-in electric fields on the order of megavolt per centimeter. We choose the III-nitride heterostructures as archetypal representatives of polar heterostructures formed of semiconducting or insulating materials and study the behavior of positrons in these structures using first-principles electronic-structure theory supported by positron annihilation experiments for bulk systems. The strong electric fields drive positrons close to interfaces, which is clearly seen in the predicted momentum distributions of annihilating electron-positron pairs as changes relative to the constituent bulk materials. Implications of the effect to positron defect studies of polar heterostructures are addressed.

  3. Sgr A* as Source of the Positrons Observed in the Galactic Center Region

    NASA Astrophysics Data System (ADS)

    Jean, Pierre; Guessoum, Nidhal; Ferrière, Katia

    2017-01-01

    We explore the possibility that a substantial fraction of the positrons observed to annihilate in the central region of our Galaxy come from the supermassive black hole Sgr A* that lies at the center. This idea was proposed by several authors, but the propagation of the emitted positrons into the bulge and beyond remained a serious problem for models of the origin of GC positrons. We assume models of positron production with different energies. The propagation of positrons from their production site is followed in detail with Monte-Carlo simulations, taking into account the physical conditions of the propagation regions as well as various physical interactions. Using the known physics of positron annihilation in astrophysical environments, we calculate the properties of the annihilation emission (time evolution and spatial distribution) for the different models under consideration. We present the results of these simulations and the conclusions/constraints that can be inferred from them.

  4. Staebler-Wronski Effect Studied with Positrons

    NASA Astrophysics Data System (ADS)

    Gessmann, Thomas; Weber, Marc H.; Lynn, Kelvin G.; Crandall, Richard S.; Yang, Jeffrey; Guha, Subhendu

    2001-03-01

    Positrons implanted into condensed matter may localize in open volume defects. The energies of gamma-rays emitted after annihilation of positrons with electrons are Doppler-shifted corresponding to the electron momenta at the annihilation site. We used depth-dependent positron annihilation spectroscopy [1] to investigate layers of hydrogenated amorphous-silicon (a-Si:H) deposited by plasma-enhanced chemical-vapor deposition (PECVD). The positron data are interpreted in terms of a dimensionless S-parameter referred to crystalline silicon. The magnitude of S is a measure for the size and concentration of open volume defects acting as trapping sites for positrons. In samples subjected to different hydrogen dilutions during film growth the S-parameter indicates a transition from the amorphous to the microcrystalline structure for large hydrogen-to-disilane ratios. In layers (thickness 250 nm) grown on stainless steel substrates [2] we find that hydrogen dilution results in reduced S-values (1.0127+-0.0007) compared to non-hydrogen diluted samples (1.0316+-0.0007) at room temperature. The S parameters in both hydrogen diluted and non-hydrogen diluted are the lowest ever measured attesting to the dense nature of the material. Previous studies [2] showed superior solar cell characteristics of these layers when grown with hydrogen-to-disilane ratios near the onset of microcrystallinity. Following one-sun light exposure for 400 hr a further decrease in S is observed in both normal and hydrogen diluted samples suggesting a change in the defect associated with light soaking. Two hours annealing at 160 C in air restores the original S-parameter. This behavior was observed for the first time by positron annihilation spectroscopy and may be interpreted as evidence of large scale metastable changes associated with the Staebler-Wronski effect [3]. [1] P.J. Schultz and K.G. Lynn, Rev. Mod. Phys. 60, 701 (1988). [2] S. Guha, J. Yang, D. L. Williamson, Y. Lubianker, J. D. Cohen, A. H

  5. A positron remoderator for the high intensity positron source NEPOMUC

    NASA Astrophysics Data System (ADS)

    Piochacz, Christian; Kögel, Gottfried; Egger, Werner; Hugenschmidt, Christoph; Mayer, Jakob; Schreckenbach, Klaus; Sperr, Peter; Stadlbauer, Martin; Dollinger, Günther

    2008-10-01

    A remoderator for the high intensity positron source NEPOMUC was developed and installed at the beam facility. A beam of remoderated positrons could be produced with different energies and a diameter of less than 2 mm was obtained. The efficiency of the remoderation setup was determined to be 5%. Due to the brilliance of the remoderated beam, the measurements at the coincidence Doppler broadening spectrometer (CDBS) and at the positron annihilation induced Auger electron spectrometer (PAES) could be improved. The setup and functionality of the remoderation device is presented as well as the first measurements at the remoderator, CDBS and PAES.

  6. Positron Spectroscopy of Nanodiamonds after Hydrogen Sorption

    PubMed Central

    Laptev, Roman; Abzaev, Yuri; Lider, Andrey; Ivashutenko, Alexander

    2018-01-01

    The structure and defects of nanodiamonds influence the hydrogen sorption capacity. Positronium can be used as a sensor for detecting places with the most efficient capture of hydrogen atoms. Hydrogenation of carbon materials was performed from gas atmosphere. The concentration of hydrogen absorbed by the sample depends on the temperature and pressure. The concentration 1.2 wt % is achieved at the temperature of 243 K and the pressure of 0.6 MPa. The hydrogen saturation of nanodiamonds changes the positron lifetime. Increase of sorption cycle numbers effects the positron lifetime, as well as the parameters of the Doppler broadening of annihilation line. The electron-positron annihilation being a sensitive method, it allows detecting the electron density fluctuation of the carbon material after hydrogen saturation. PMID:29324712

  7. Present status of the low energy linac-based slow positron beam and positronium spectrometer in Saclay

    NASA Astrophysics Data System (ADS)

    Liszkay, L.; Comini, P.; Corbel, C.; Debu, P.; Grandemange, P.; Pérez, P.; Rey, J.-M.; Reymond, J.-M.; Ruiz, N.; Sacquin, Y.; Vallage, B.

    2014-04-01

    A new slow positron beamline featuring a large acceptance positronium lifetime spectrometer has been constructed and tested at the linac-based slow positron source at IRFU CEA Saclay, France. The new instrument will be used in the development of a dense positronium target cloud for the GBAR experiment. The GBAR project aims at precise measurement of the gravitational acceleration of antihydrogen in the gravitational field of the Earth. Beyond application in fundamental science, the positron spectrometer will be used in materials research, for testing thin porous films and layers by means of positronium annihilation. The slow positron beamline is being used as a test bench to develop further instrumentation for positron annihilation spectroscopy (Ps time-of-flight, pulsed positron beam). The positron source is built on a low energy linear electron accelerator (linac). The 4.3 MeV electron energy used is well below the photoneutron threshold, making the source a genuine on-off device, without remaining radioactivity. The spectrometer features large BGO (Bismuth Germanate) scintillator detectors, with sufficiently large acceptance to detect all ortho-positronium annihilation lifetime components (annihilation in vacuum and in nanopores).

  8. Studies of high coverage oxidation of the Cu(100) surface using low energy positrons

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Maddox, W. B.; Weiss, A. H.

    2012-02-01

    The study of oxidation of single crystal metal surfaces is important in understanding the corrosive and catalytic processes associated with thin film metal oxides. The structures formed on oxidized transition metal surfaces vary from simple adlayers of chemisorbed oxygen to more complex structures which result from the diffusion of oxygen into subsurface regions. In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. Calculations are performed for various high coverage missing row structures ranging between 0.50 and 1.50 ML oxygen coverage. The results of calculations of positron binding energy, positron work function, and annihilation characteristics of surface trapped positrons with relevant core electrons as function of oxygen coverage are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES).

  9. Portable Positron Measurement System (PPMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akers, Doug

    Portable Positron Measurement System (PPMS) is an automated, non-destructive inspection system based on positron annihilation, which characterizes a material's in situatomic-level properties during the manufacturing processes of formation, solidification, and heat treatment. Simultaneous manufacturing and quality monitoring now are possible. Learn more about the lab's project on our facebook site http://www.facebook.com/idahonationallaboratory.

  10. Portable Positron Measurement System (PPMS)

    ScienceCinema

    None

    2017-12-09

    Portable Positron Measurement System (PPMS) is an automated, non-destructive inspection system based on positron annihilation, which characterizes a material's in situatomic-level properties during the manufacturing processes of formation, solidification, and heat treatment. Simultaneous manufacturing and quality monitoring now are possible. Learn more about the lab's project on our facebook site http://www.facebook.com/idahonationallaboratory.

  11. Nanostructure and Dynamics of Polymers and Thin Polymer Films: Studies by Positron Annihilation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yee, Albert F.

    1997-03-01

    The relaxational, mechanical and transport properties of glassy polymers are strongly influenced by the nanostructural and dynamical characteristics of each material. In very thin polymer films such characteristics may be affected by the presence of a free surface or a substrate. Positron Annihilation Lifetime Spectroscopy (PALS) is a useful and in some ways unique tool for probing these important characteristics. Conventional PALS on several bulk polymers over an extended temperature range are used to illustrate how these characteristics are obtained(HA Hristov, B Bolan, AF Yee, L Xie, and DW Gidley, accepted by Macromolecules.). A new technique, which we shall call "beam-PALS", and the results of its application on nm-thick polystyrene films supported on one side by a Si substrate are described. In beam-PALS the lifetime, τ _3, and formation fraction, I_3, of triplet positronium decaying in the void volume near the polymer surface are measured versus the positron implantation energy, E. The strong E dependence of I3 supports a spur-electron capture model of Ps formation with deduced spur sizes ranging from 200 to 660 ÅThin film measurements indicate that the mean probe depth can be much smaller, given mainly by the average positron implantation distance, Z(E)(L Xie, GB DeMaggio, WE Frieze, J DeVries, DW Gidley, HA Hristov and AF Yee, PRL 74, 4947 (1995).). The thermal expansion behaviors of thin, Si-supported polystyrene films near the glass transition temperature, Tg were also measured. A reduction in void volume expansion is correlated with a reduction in the apparent Tg as film thickness decreases. Our results can be fitted using a 3-layer model incorporating a 50 Åconstrained layer at the Si interface and a 20 Åsurface region with reduced T_g(GB DeMaggio, WE Frieze, DW Gidley, M Zhu, HA Hristov, and AF Yee, accepted by PRL.).

  12. Ab initio study of the positronation of the CaO and SrO molecules including calculation of annihilation rates.

    PubMed

    Buenker, Robert J; Liebermann, Heinz-Peter

    2012-07-15

    Ab initio multireference single- and double-excitation configuration interaction calculations have been performed to compute potential curves for ground and excited states of the CaO and SrO molecules and their positronic complexes, e(+)CaO, and e(+)SrO. The adiabatic dissociation limit for the (2)Σ(+) lowest states of the latter systems consists of the positive metal ion ground state (M(+)) and the OPs complex (e(+)O(-)), although the lowest energy limit is thought to be e(+)M + O. Good agreement is found between the calculated and experimental spectroscopic constants for the neutral diatomics wherever available. The positron affinity of the closed-shell X (1)Σ(+) ground states of both systems is found to lie in the 0.16-0.19 eV range, less than half the corresponding values for the lighter members of the alkaline earth monoxide series, BeO and MgO. Annihilation rates (ARs) have been calculated for all four positronated systems for the first time. The variation with bond distance is generally similar to what has been found earlier for the alkali monoxide series of positronic complexes, falling off gradually from the OPs AR value at their respective dissociation limits. The e(+)SrO system shows some exceptional behavior, however, with its AR value reaching a minimum at a relatively large bond distance and then rising to more than twice the OPs value close to its equilibrium distance. Copyright © 2012 Wiley Periodicals, Inc.

  13. Studies of oxidation and thermal reduction of the Cu(100) surface using a slow positron beam

    NASA Astrophysics Data System (ADS)

    Maddox, W. B.; Fazleev, N. G.; Nadesalingam, M. P.; Weiss, A. H.

    2007-10-01

    Positron probes of surfaces of oxides that play a fundamental role in modern science and technology are capable to non-destructively provide information that is both unique to the probe and complimentary to that extracted using other more standard techniques. We discuss recent progress in studies of oxidation and thermal reduction of the Cu(100) surface using positron-annihilation-induced Auger-electron spectroscopy (PAES). PAES measurements show a large increase in the intensity of the Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 C. The intensity then decreases monotonically as the annealing temperature is increased to 600 C. Experimental PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface and surface reconstruction. The effects of oxygen adsorption and defects on localization of the positron surface state wave function and positron annihilation characteristics are also analyzed. Possible explanations are provided for the observed behavior of the intensity of the positron annihilation induced Cu M2,3VV Auger peak with changes of the annealing temperature.

  14. High resolution positron annihilation induced Auger electron spectroscopy of the CuM 2,3VV-transition and of Cu sub-monolayers on Pd and Fe

    NASA Astrophysics Data System (ADS)

    Mayer, J.; Hugenschmidt, C.; Schreckenbach, K.

    2010-09-01

    We present a high resolution positron annihilation induced Auger Electron Spectroscopy (PAES) of the CuM 2,3VV-transition with the unprecedented energy resolution of Δ/EE <1%. This energy resolution and the highly intense positron source NEPOMUC enabled us to resolve the double peak structure with PAES for the first time within a measurement time of only 5.5 h. In addition, sub-monolayers of Cu were deposited on Fe- and Pd-samples in order to investigate the surface selectivity of PAES in comparison with EAES. The extremely high surface selectivity of PAES due to the different positron affinity of Cu and Fe lead to the result that with only 0.96 monolayer of Cu on Fe more than 55% of the emitted Auger electrons stem from Cu, whereas with EAES the Cu Auger fraction amounted to less than 6%.

  15. Development of positron annihilation spectroscopy for investigating deuterium decorated voids in neutron-irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Taylor, C. N.; Shimada, M.; Merrill, B. J.; Akers, D. W.; Hatano, Y.

    2015-08-01

    The present work is a continuation of a recent research to develop and optimize positron annihilation spectroscopy (PAS) for characterizing neutron-irradiated tungsten. Tungsten samples were exposed to neutrons in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory and damaged to 0.025 and 0.3 dpa. Subsequently, they were exposed to deuterium plasmas in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory. The implanted deuterium was desorbed through sample heating to 900 °C, and Doppler broadening (DB)-PAS was performed both before and after heating. Results show that deuterium impregnated tungsten is identified as having a smaller S-parameter. The S-parameter increases after deuterium desorption. Microstructural changes also occur during sample heating. These effects can be isolated from deuterium desorption by comparing the S-parameters from the deuterium-free back face with the deuterium-implanted front face. The application of using DB-PAS to examine deuterium retention in tungsten is examined.

  16. Study of oxide surfaces using time of flight positron annihilation induced Auger electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Nadesalingam, Manori Prasadika

    Transition metal oxides (TMOs) exhibit a rich collection of interesting and intriguing properties which can be used for wide variety of applications. In this dissertation, I will discuss the first PAES measurements on vacuum anneal induced changes in the surface layers of Cu2O/Ta, Cu 2O/TCO and oxidized Cu(100) prepared by spray coated, electrochemically deposition and thermal oxidation techniques respectively. PAES measurements on Cu2O/TCO shows that the a very large increase in the intensity of the Cu (M2,3 VV) Auger peak after annealing at 250°C. Similar but significantly smaller changes were observed in the EAES spectra consistent with the fact that PAES is primarily sensitive to the top-most atomic layer due to the fact that the positrons are trapped just outside the surface prior to annihilation while EAES samples several atomic layers. While PAES measurements on oxidized Cu(100) show a large monotonic increase in the intensity of the annihilation induced Cu (M2,3 VV) Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300°C. The intensity then decreases monotonically as the annealing temperature is increase to ˜500°C. These results provide a clear demonstration of the thermal reduction of the copper oxide surface after annealing at 300°C followed by re-oxidation of the copper surface at the higher annealing temperatures presumably due to the diffusion of subsurface oxygen to the surface.

  17. Recent Developments in Positron Emission Tomography (PET) Instrumentation

    DOE R&D Accomplishments Database

    Derenzo, S. E.; Budinger, T. F.

    1986-04-01

    This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors.

  18. Positron Annihilation Studies of High-Tc Superconductors

    NASA Astrophysics Data System (ADS)

    Peter, M.; Manuel, A. A.

    1989-01-01

    First we present the principles involved in the study of the two-photon momentum distribution: The method requires deconvolution of the positron wavefunction and the estimation of matrix elements effects. Single crystal samples must be of sufficient quality to avoid positron trapping (tested by positron lifetime measurements). In ordinary metals (alkalis, transition- and rare earth metals and compounds) two-photon momentum distribution studies have given results in close agreement with relevant band structure calculations. Discrepancies have been successfully described as enhancement effects due to correlations. In the superconducting oxides, measurements are more difficult because there are fewer conduction electrons and more trapping. Correlation effects of a different nature are expected to be important and might render the band picture inappropriate. Two-photon momentum distribution measurements have now been made by several groups, but have been interpreted in different ways. We relate the current state of affairs, and our present interpretation, to the latest available results.

  19. Positron annihilation characteristics, water uptake and proton conductivity of composite Nafion membranes.

    PubMed

    Yin, Chongshan; Wang, Lingtao; Li, Jingjing; Zhou, Yawei; Zhang, Haining; Fang, Pengfei; He, Chunqing

    2017-06-21

    The free volumes and proton conductivities of Nafion membranes were investigated at different humidities by positron annihilation lifetime spectroscopy (PALS) and using an electrochemical workstation, respectively. The results showed that the variation in o-Ps lifetime τ o-Ps was closely associated with the microstructure evolution and the development of hydrophilic ion clusters in Nafion membranes as a function of water uptake, regardless of metal oxide additives. In particular, with increasing relative humidity, the maximum value of τ o-Ps in the Nafion membranes corresponded to the formation of numerous water channels for proton transportation. Numerous well-connected water channels in Nafion-TiO 2 hybrid membranes could be formed at a much lower relative humidity (∼40% RH) than in the pristine one (∼75% RH), due to the better water retention ability of the Nafion-TiO 2 membranes. Further, a percolation behavior of proton conductivity at high water uptake in Nafion membranes was observed, which showed that the percolation of ionic-water clusters occurred at the water uptake of ∼4.5 wt%, and ∼6 wt% was basically enough for the formation of a well-connected water channel network.

  20. Positron Annihilation Spectroscopy during physical aging of carbon-black filled rubber composites

    NASA Astrophysics Data System (ADS)

    Jobando, Vincent; Wang, Jingyi; Quarles, C. A.

    2004-10-01

    We have used positron annihilation spectroscopy to investigate the relaxation behavior of vulcanized and un-vulcanized rubber-carbon black composites. The samples were studied at temperatures above their glassy transitions. Changes in o-Ps intensity and S-parameter are indicative of the structural relaxation process. We have found that at room temperature, both vulcanized and un-vulcanized rubber showed no changes after ageing for about two months. While within the same period, un-vulcanized samples heated at 60^oC and allowed to age at room -temperature showed a decrease in o-Ps intensity and S-parameter. The o-Ps lifetime also decreased after this heat treatment for the un-vulcanized samples while the vulcanized ones remained unchanged. The changes seen were reversible however when we stopped heating the samples. We proposed that heat disordered the system and on cooling, rubber molecules formed more ordered regions, which we interpreted as crystallization. Vulcanized samples remained unchanged. We also found out that free volume decreases during physical deformation of pure rubber, but rubber with carbon black showed a significant rise in free volume. The lifetimes however remained unchanged.

  1. Electron and positron states in HgBa2CuO4

    NASA Astrophysics Data System (ADS)

    Barbiellini, B.; Jarlborg, T.

    1994-08-01

    Local-density-calculations of the electronic structure of HgBa2CuO4 have been performed with the self-consistent linear muffin-tin orbital method. The positron-density distribution and its sensitivity due to different potentials are calculated. The annihilation rates are computed in order to study the chemical bonding and to predict the Fermi-surface signal. Comparisons are made with previous calculations on other high-Tc copper oxides concerning the Fermi-surface properties and electron-positron overlap. We discuss the possibility of observing the Fermi surface associated with the Cu-O planes in positron-annihilation experiments.

  2. Evaluation of defect formation in helium irradiated Y2O3 doped W-Ti alloys by positron annihilation and nanoindentation

    NASA Astrophysics Data System (ADS)

    Richter, Asta; Anwand, Wolfgang; Chen, Chun-Liang; Böttger, Roman

    2017-10-01

    Helium implanted tungsten-titanium ODS alloys are investigated using positron annihilation spectroscopy and nanoindentation. Titanium reduces the brittleness of the tungsten alloy, which is manufactured by mechanical alloying. The addition of Y2O3 nanoparticles increases the mechanical properties at elevated temperature and enhances irradiation resistance. Helium ion implantation was applied to simulate irradiation effects on these materials. The irradiation was performed using a 500 kV He ion implanter at fluences around 5 × 1015 cm-2 for a series of samples both at room temperature and at 600 °C. The microstructure and mechanical properties of the pristine and irradiated W-Ti-ODS alloy are compared with respect to the titanium and Y2O3 content. Radiation damage is studied by positron annihilation spectroscopy analyzing the lifetime and the Doppler broadening. Three types of helium-vacancy defects were detected after helium irradiation in the W-Ti-ODS alloy: small defects with high helium-to-vacancy ratio (low S parameter) for room temperature irradiation, larger open volume defects with low helium-to-vacancy ratio (high S parameter) at the surface and He-vacancy complexes pinned at nanoparticles deeper in the material for implantation at 600 °C. Defect induced hardness was studied by nanoindentation. A drastic hardness increase is observed after He ion irradiation both for room temperature and elevated irradiation temperature of 600 °C. The Ti alloyed tungsten-ODS is more affected by the hardness increase after irradiation compared to the pure W-ODS alloy.

  3. PhytoBeta imager: a positron imager for plant biology

    NASA Astrophysics Data System (ADS)

    Weisenberger, Andrew G.; Kross, Brian; Lee, Seungjoon; McKisson, John; McKisson, J. E.; Xi, Wenze; Zorn, Carl; Reid, Chantal D.; Howell, Calvin R.; Crowell, Alexander S.; Cumberbatch, Laurie; Fallin, Brent; Stolin, Alexander; Smith, Mark F.

    2012-07-01

    Several positron emitting radioisotopes such as 11C and 13N can be used in plant biology research. The 11CO2 tracer is used to facilitate plant biology research toward optimization of plant productivity, biofuel development and carbon sequestration in biomass. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using 11CO2. Because plants typically have very thin leaves, little medium is present for the emitted positrons to undergo an annihilation event. The emitted positrons from 11C (maximum energy 960 keV) could require up to approximately 4 mm of water equivalent material for positron annihilation. Thus many of the positrons do not annihilate inside the leaf, resulting in limited sensitivity for PET imaging. To address this problem we have developed a compact beta-positive, beta-minus particle imager (PhytoBeta imager) for 11CO2 leaf imaging. The detector is based on a Hamamatsu H8500 position sensitive photomultiplier tube optically coupled via optical grease to a 0.5 mm thick Eljen EJ-212 plastic scintillator. The detector is equipped with a flexible arm to allow its placement and orientation over or under the leaf to be studied while maintaining the leaf's original orientation. To test the utility of the system the detector was used to measure carbon translocation in a leaf of the spicebush (Lindera benzoin) under two transient light conditions.

  4. PhytoBeta imager: a positron imager for plant biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisenberger, Andrew G; Lee, Seungjoon; McKisson, John

    2012-06-01

    Several positron emitting radioisotopes such as 11C and 13N can be used in plant biology research. The 11CO2 tracer is used to facilitate plant biology research toward optimization of plant productivity, biofuel development and carbon sequestration in biomass. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using 11CO2. Because plants typically have very thin leaves, little medium is present for the emitted positrons to undergo an annihilation event. The emitted positrons from 11C (maximum energy 960 keV) could require up to approximately 4 mm of water equivalent material for positron annihilation. Thus manymore » of the positrons do not annihilate inside the leaf, resulting in limited sensitivity for PET imaging. To address this problem we have developed a compact beta-positive, beta-minus particle imager (PhytoBeta imager) for 11CO2 leaf imaging. The detector is based on a Hamamatsu H8500 position sensitive photomultiplier tube optically coupled via optical grease to a 0.5 mm thick Eljen EJ-212 plastic scintillator. The detector is equipped with a flexible arm to allow its placement and orientation over or under the leaf to be studied while maintaining the leaf's original orientation. To test the utility of the system the detector was used to measure carbon translocation in a leaf of the spicebush (Lindera benzoin) under two transient light conditions.« less

  5. Positronium formation in SiO2 films grown on Si substrates studied by monoenergetic positron beams

    NASA Astrophysics Data System (ADS)

    Uedono, A.; Wei, L.; Tanigawa, S.; Suzuki, R.; Ohgaki, H.; Mikado, T.; Kawano, T.; Ohji, Y.

    1994-04-01

    The annihilation characteristics of positrons in SiO2 films grown on Si substrates were studied by using monoenergetic positron beams. Doppler broadening profiles of the annihilation radiation and lifetime spectra of positrons were measured as a function of incident positron energy for SiO2 (166 nm)/Si specimens fabricated by thermal oxidation. From the measurements, it was found that about 90% of positrons implanted into the SiO2 film annihilate from positronium (Ps) states. This fact was due to the trapping of positrons by open-space defects and a resultant enhanced formation of Ps in such regions. For the SiO2 film grown at 650 °C, the lifetime of ortho-Ps was found to be shorter than that in the film grown at 1000 °C. This result suggests that the volume of open-space defects in the SiO2 film decreased with decreasing the growth rate of the SiO2 film.

  6. Effect of annealing on microstructure evolution in CoFeB/MgO/CoFeB heterostructures by positron annihilation

    NASA Astrophysics Data System (ADS)

    Zhao, Chong-Jun; Lu, Xiang-An; Zhao, Zhi-Duo; Li, Ming-Hua; Zhang, Peng; Wang, Bao-Yi; Cao, Xing-Zhong; Zhang, Jing-Yan; Yu, Guang-Hua

    2013-09-01

    As one of the most powerful tools for investigation of defects of materials, positron annihilation spectroscopy was employed to explore the thermal effects on the film microstructure evolution in CoFeB/MgO/CoFeB heterostructures. It is found that high annealing temperature can drive vacancy defects agglomeration and ordering acceleration in the MgO barrier. Meanwhile, another important type of defects, vacancy clusters, which are formed via the agglomeration of vacancy defects in the MgO barrier after annealing, still exists inside the MgO barrier. All these behaviors in the MgO barrier could potentially impact the overall performance in MgO based magnetic tunnel junctions.

  7. Time-dependent investigation of sub-monolayers of Ni on Pd using Positron-annihilation induced Auger Electron Spectroscopy and XPS

    NASA Astrophysics Data System (ADS)

    Zimnik, Samantha; Piochacz, Christian; Vohburger, Sebastian; Hugenschmidt, Christoph

    2016-01-01

    The surface of a polycrystalline Pd-substrate covered with (sub-) monolayers of Ni was investigated with Positron-annihilation induced Auger Electron Spectroscopy (PAES). Comparative studies using conventional AES induced by electrons and X-rays showed the outstanding surface sensitivity of PAES. Time-dependent PAES was performed on a 0.5 ML Ni cover layer on Pd and compared with conventional X-ray induced Photoelectron Spectroscopy (XPS) in order to observe changes in the elemental composition of the surface. The PAES results appear to show a migration of Ni atoms into the Pd substrate, whereas the Ni signal shows a decrease of 12% within 13 h with respect to the initial value.

  8. The Buffer-Gas Positron Accumulator and Resonances in Positron-Molecule Interactions

    NASA Technical Reports Server (NTRS)

    Surko, C.M.

    2007-01-01

    This is a personal account of the development of our buffer-gas positron trap and the new generation of cold beams that these traps enabled. Dick Drachman provided much appreciated advice to us from the time we started the project. The physics underlying trap operation is related to resonances (or apparent resonances) in positron-molecule interactions. Amusingly, experiments enabled by the trap allowed us to understand these processes. The positron-resonance "box score" to date is one resounding "yes," namely vibrational Feshbach resonances in positron annihilation on hydrocarbons; a "probably" for positron-impact electronic excitation of CO and NZ;an d a "maybe" for vibrational excitation of selected molecules. Two of these processes enabled the efficient operation of the trap, and one almost killed it in infancy. We conclude with a brief overview of further applications of the trapping technology discussed here, such as "massive" positron storage and beams with meV energy resolution.

  9. Matrix Isolation Spectroscopy Applied to Positron Moderatioin in Cryogenic Solids

    DTIC Science & Technology

    2011-07-01

    Current Positron Applications • 2-γ decay exploited in Positron Emission Tomography (PET) scanners. • Positrons localize & annihilate preferentially at...Air Force  Eglin Air Force Base AFRL-RW-EG-TP-2011-024 Matrix Isolation Spectroscopy Applied to Positron Moderation in Cryogenic Solids Distribution... Spectroscopy Applied to Positron Moderation in Cryogenic Solids 5a. CONTRACT NUMBER 5b. GRANT NUMBER 62602F 5c. PROGRAM ELEMENT NUMBER 6

  10. Positron-Induced Luminescence.

    PubMed

    Stenson, E V; Hergenhahn, U; Stoneking, M R; Pedersen, T Sunn

    2018-04-06

    We report on the observation that low-energy positrons incident on a phosphor screen produce significantly more luminescence than electrons do. For two different wide-band-gap semiconductor phosphors (ZnS:Ag and ZnO:Zn), we compare the luminescent response to a positron beam with the response to an electron beam. For both phosphors, the positron response is significantly brighter than the electron response, by a factor that depends strongly on incident energy (0-5 keV). Positrons with just a few tens of electron-volts of energy (for ZnS:Ag) or less (for ZnO:Zn) produce as much luminescence as is produced by electrons with several kilo-electron-volts. We attribute this effect to valence band holes and excited electrons produced by positron annihilation and subsequent Auger processes. These results demonstrate a valuable approach for addressing long-standing questions about luminescent materials.

  11. Positron-Induced Luminescence

    NASA Astrophysics Data System (ADS)

    Stenson, E. V.; Hergenhahn, U.; Stoneking, M. R.; Pedersen, T. Sunn

    2018-04-01

    We report on the observation that low-energy positrons incident on a phosphor screen produce significantly more luminescence than electrons do. For two different wide-band-gap semiconductor phosphors (ZnS:Ag and ZnO:Zn), we compare the luminescent response to a positron beam with the response to an electron beam. For both phosphors, the positron response is significantly brighter than the electron response, by a factor that depends strongly on incident energy (0-5 keV). Positrons with just a few tens of electron-volts of energy (for ZnS:Ag) or less (for ZnO:Zn) produce as much luminescence as is produced by electrons with several kilo-electron-volts. We attribute this effect to valence band holes and excited electrons produced by positron annihilation and subsequent Auger processes. These results demonstrate a valuable approach for addressing long-standing questions about luminescent materials.

  12. Formation of vacancy clusters and cavities in He-implanted silicon studied by slow-positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Brusa, Roberto S.; Karwasz, Grzegorz P.; Tiengo, Nadia; Zecca, Antonio; Corni, Federico; Tonini, Rita; Ottaviani, Gianpiero

    2000-04-01

    The depth profile of open volume defects has been measured in Si implanted with He at an energy of 20 keV, by means of a slow-positron beam and the Doppler broadening technique. The evolution of defect distributions has been studied as a function of isochronal annealing in two series of samples implanted at the fluence of 5×1015 and 2×1016 He cm-2. A fitting procedure has been applied to the experimental data to extract a positron parameter characterizing each open volume defect. The defects have been identified by comparing this parameter with recent theoretical calculations. In as-implanted samples the major part of vacancies and divacancies produced by implantation is passivated by the presence of He. The mean depth of defects as seen by the positron annihilation technique is about five times less than the helium projected range. During the successive isochronal annealing the number of positron traps decreases, then increases and finally, at the highest annealing temperatures, disappears only in the samples implanted at the lowest fluence. A minimum of open volume defects is reached at the annealing temperature of 250 °C in both series. The increase of open volume defects at temperatures higher than 250 °C is due to the appearance of vacancy clusters of increasing size, with a mean depth distribution that moves towards the He projected range. The appearance of vacancy clusters is strictly related to the out diffusion of He. In the samples implanted at 5×1015 cm-2 the vacancy clusters are mainly four vacancy agglomerates stabilized by He related defects. They disappear starting from an annealing temperature of 700 °C. In the samples implanted at 2×1016 cm-2 and annealed at 850-900 °C the vacancy clusters disappear and only a distribution of cavities centered around the He projected range remains. The role of vacancies in the formation of He clusters, which evolve in bubble and then in cavities, is discussed.

  13. Positron emission tomography wrist detector

    DOEpatents

    Schlyer, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois

    2006-08-15

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal representing a time-of-occurrence of an annihilation event, generating an address signal representing a channel detecting the annihilation event, and generating a channel signal including the time and address signals. The method also includes generating a composite signal including the channel signal and another similarly generated channel signal concerning another annihilation event. An apparatus that serially transfers annihilation information includes a time signal generator, address signal generator, channel signal generator, and composite signal generator. The time signal is asynchronous and the address signal is synchronous to a clock signal. A PET scanner includes a scintillation array, detection array, front-end array, and a serial encoder. The serial encoders include the time signal generator, address signal generator, channel signal generator, and composite signal generator.

  14. Desorption of water from hydrophilic MCM-41 mesopores: positron annihilation, FTIR and MD simulation studies.

    PubMed

    Maheshwari, Priya; Dutta, D; Muthulakshmi, T; Chakraborty, B; Raje, N; Pujari, P K

    2017-02-08

    The desorption mechanism of water from the hydrophilic mesopores of MCM-41 was studied using positron annihilation lifetime spectroscopy (PALS) and attenuated total reflection Fourier transform infrared spectroscopy supplemented with molecular dynamics (MD) simulation. PALS results indicated that water molecules do not undergo sequential evaporation in a simple layer-by-layer manner during desorption from MCM-41 mesopores. The results suggested that the water column inside the uniform cylindrical mesopore become stretched during desorption and induces cavitation (as seen in the case of ink-bottle type pores) inside it, keeping a dense water layer at the hydrophilic pore wall, as well as a water plug at both the open ends of the cylindrical pore, until the water was reduced to a certain volume fraction where the pore catastrophically empties. Before being emptied, the water molecules formed clusters inside the mesopores. The formation of molecular clusters below a certain level of hydration was corroborated by the MD simulation study. The results are discussed.

  15. The evolution of vacancy-type defects in silicon-on-insulator structures studied by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Coleman, P. G.; Nash, D.; Edwardson, C. J.; Knights, A. P.; Gwilliam, R. M.

    2011-07-01

    Variable-energy positron annihilation spectroscopy (VEPAS) has been applied to the study of the formation and evolution of vacancy-type defect structures in silicon (Si) and the 1.5 μm thick Si top layer of silicon-on-insulator (SOI) samples. The samples were implanted with 2 MeV Si ions at fluences between 1013 and 1015 cm-2, and probed in the as-implanted state and after annealing for 30 min at temperatures between 350 and 800 °C. In the case of SOI the ions were implanted such that their profile was predominantly in the insulating buried oxide layer, and thus their ability to combine with vacancies in the top Si layer, and that of other interstitials beyond the buried oxide, was effectively negated. No measurable differences in the positron response to the evolution of small clusters of n vacancies (Vn, n ˜ 3) in the top Si layer of the Si and SOI samples were observed after annealing up to 500 °C; at higher temperatures, however, this response persisted in the SOI samples as that in Si decreased toward zero. At 700 and 800 °C the damage in Si was below detectable levels, but the VEPAS response in the top Si layer in the SOI was consistent with the development of nanovoids.

  16. Two-component density functional theory calculations of positron lifetimes for small vacancy clusters in silicon

    NASA Astrophysics Data System (ADS)

    Makhov, D. V.; Lewis, Laurent J.

    2005-05-01

    The positron lifetimes for various vacancy clusters in silicon are calculated within the framework of the two-component electron-positron density functional theory. The effect of the trapped positron on the electron density and on the relaxation of the structure is investigated. Our calculations show that, contrary to the usual assumption, the positron-induced forces do not compensate in general for electronic inward forces. Thus, geometry optimization is required in order to determine positron lifetime accurately. For the monovacancy and the divacancy, the results of our calculations are in good agreement with the experimental positron lifetimes, suggesting that this approach gives good estimates of positron lifetimes for larger vacancy clusters, required for their correct identification with positron annihilation spectroscopy. As an application, our calculations show that fourfold trivacancies and symmetric fourfold tetravacancies have positron lifetimes similar to monovacancies and divacancies, respectively, and can thus be confused in the interpretation of positron annihilation experiments.

  17. Positron Interactions with Oriented Polymers and with Chiral Quartz Crystals

    NASA Astrophysics Data System (ADS)

    Wu, Fei

    Positron annihilation in various materials has been applied to characterize microstructure for decades. In this work, PALS was used to study material nanostructure, with a focus on the size and density of free volume and hole relaxation properties in polycarbonate (PC) and polymethylmethacrylate (PMMA); fundamental studies of polarized positron interaction with chiral crystals were also studied. Free volume relaxation in PC and PMMA with different levels of simple shear orientation was studied by PALS. Effects of applied pressure on the free volume recovery were evaluated. Combining the bulk- and pressure-dependent PALS analyses, the removal of applied pressure led to free-volume relaxation in all samples studied. The alignment of the polymer chains and free-volume holes imposes molecular restrictions on the molecular mobility of both PC and PMMA in their glassy states. Results indicated that the relaxation of the free volume holes at temperatures below glass transition is mostly reversible. Longitudinally polarized positron particles were used to reveal asymmetric interactions in chiral quartz crystals. Experimental results showed a significant intensity difference in free positronium annihilation for left handed (LH) and right handed (RH) chiral quartz crystals. Doppler broadening energy spectra (DBES) of z-cut LH or RH quartz disks at different angles were also measured by an "S parameter" to probe the observed difference. It was found that obtained annihilation energy difference of DBES was in agreement with the result of positron annihilation in bulk chiral crystals. PALS was used to compare different orientations and confirm asymmetric interactions in natural versus synthetic quartz LH and RH crystals in z and non-z orientations. Significant lifetime and intensity differences in free positronium annihilation for LH and RH quartz crystals were observed. The trend was found to be same in the related crystallographic orientations of the LH or RH crystals; the

  18. Positron annihilation study of the vacancy clusters in ODS Fe-14Cr alloys

    NASA Astrophysics Data System (ADS)

    Domínguez-Reyes, R.; Auger, M. A.; Monge, M. A.; Pareja, R.

    2017-04-01

    Oxide dispersion strengthened Fe14Cr and Fe14CrWTi alloys produced by mechanical alloying and hot isostatic pressing were subjected to isochronal annealing up to 1400 °C, and the evolution and thermal stability of the vacancy-type defects were investigated by positron annihilation spectroscopy (PAS). The results were compared to those from a non-oxide dispersion strengthened Fe14Cr alloy produced by following the same powder metallurgy route. The long lifetime component of the PAS revealed the existence of tridimensional vacancy clusters, or nanovoids, in all these alloys. Two recovery stages are found in the oxide dispersion strengthened alloys irrespective of the starting conditions of the samples. The first one starting at T > 750 °C is attributed to thermal shrinkage of large vacancy clusters, or voids. A strong increase in the intensity of the long lifetime after annealing at temperatures in the 800-1050 °C range indicates the development of new vacancy clusters. These defects appear to be unstable above 1050 °C, but some of them remain at temperatures as high as 1400 °C, at least for 90 min.

  19. Supramolecular interactions between triphenylphosphine oxide and benzamide evaluated by positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Oliveira, F. C.; Denadai, A. M. L.; Fulgêncio, F.; Oliveira, A. M.; Andrade, A. C. A.; Melo, A. C. A.; Yoshida, M. I.; Windmöller, D.; Magalhães, W. F.

    2017-04-01

    In the present work, intermolecular interactions between triphenylphosphine oxide (TPPO) and benzamide (BZM) has been studied in solid state by Positron Annihilation Lifetime Spectroscopy (PALS) and supported by several analytical techniques (in solid state and in solution) and by computational modeling (in gaseous phase). Isothermal Titration Calorimetry (ITC) in ethyl acetate solvent showed that complexation is a stepwise process, with 2:1 and 1:1 TPPO/BZM stoichiometries, both driven by entropy. HPLC analysis of isolated single crystal confirmed the existence of a 2:1 TPPO/BZM crystalline complex in solid state. The results of thermal analysis (TGA, DTA and DSC) and FTIR spectroscopy showed that the interactions in the complexes are relatively weaker than those found in pure precursors. Finally, PALS showed higher positronium formation probability (I3) at [TPPO0.62·BZM0.38] and [TPPO0.25·BZM0.75] molar fractions, corroborating the existence of two stoichiometries for the TPPO/BZM system and suggesting greater electronic availability of n- and π-electrons in heterosynton complexes, as resulting of interactions, bring forward new evidences of the participation of electronic excited states on the positronium formation mechanism.

  20. Auger electron emission initiated by the creation of valence-band holes in graphene by positron annihilation.

    PubMed

    Chirayath, V A; Callewaert, V; Fairchild, A J; Chrysler, M D; Gladen, R W; Mcdonald, A D; Imam, S K; Shastry, K; Koymen, A R; Saniz, R; Barbiellini, B; Rajeshwar, K; Partoens, B; Weiss, A H

    2017-07-13

    Auger processes involving the filling of holes in the valence band are thought to make important contributions to the low-energy photoelectron and secondary electron spectrum from many solids. However, measurements of the energy spectrum and the efficiency with which electrons are emitted in this process remain elusive due to a large unrelated background resulting from primary beam-induced secondary electrons. Here, we report the direct measurement of the energy spectra of electrons emitted from single layer graphene as a result of the decay of deep holes in the valence band. These measurements were made possible by eliminating competing backgrounds by employing low-energy positrons (<1.25 eV) to create valence-band holes by annihilation. Our experimental results, supported by theoretical calculations, indicate that between 80 and 100% of the deep valence-band holes in graphene are filled via an Auger transition.

  1. Auger electron emission initiated by the creation of valence-band holes in graphene by positron annihilation

    PubMed Central

    Chirayath, V. A.; Callewaert, V.; Fairchild, A. J.; Chrysler, M. D.; Gladen, R. W.; Mcdonald, A. D.; Imam, S. K.; Shastry, K.; Koymen, A. R.; Saniz, R.; Barbiellini, B.; Rajeshwar, K.; Partoens, B.; Weiss, A. H.

    2017-01-01

    Auger processes involving the filling of holes in the valence band are thought to make important contributions to the low-energy photoelectron and secondary electron spectrum from many solids. However, measurements of the energy spectrum and the efficiency with which electrons are emitted in this process remain elusive due to a large unrelated background resulting from primary beam-induced secondary electrons. Here, we report the direct measurement of the energy spectra of electrons emitted from single layer graphene as a result of the decay of deep holes in the valence band. These measurements were made possible by eliminating competing backgrounds by employing low-energy positrons (<1.25 eV) to create valence-band holes by annihilation. Our experimental results, supported by theoretical calculations, indicate that between 80 and 100% of the deep valence-band holes in graphene are filled via an Auger transition. PMID:28703225

  2. Studies of oxidation and thermal reduction of the Cu(100) surface using low energy positrons

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Maddox, W. B.; Weiss, A. H.

    2010-03-01

    Changes in the surface of an oxidized Cu(100) single crystal resulting from vacuum annealing have been investigated using positron annihilation induced Auger electron spectroscopy (PAES). PAES measurements show a large increase in the intensity of the Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 C. The intensity then decreases monotonically as the annealing temperature is increased to ˜600 C. In contrast, the O KLL PAES intensity is the lowest at 300 C and it starts to increase again as the temperature is increased further. PAES results are analyzed by performing calculations of positron surface states and annihilation characteristics taking into account the charge redistribution at the surface, surface reconstructions, and changes of electronic properties of the surfaces with adsorbed oxygen. Possible explanation is proposed for the observed behavior of the intensity of positron annihilation induced Cu M2,3VV and O KLL Auger peaks and probabilities of annihilation of surface trapped positrons with Cu 3p and O 1s core-level electrons with changes of the annealing temperature.

  3. Positron beam studies of solids and surfaces: A summary

    NASA Astrophysics Data System (ADS)

    Coleman, P. G.

    2006-02-01

    A personal overview is given of the advances in positron beam studies of solids and surfaces presented at the 10th International Workshop on Positron Beams, held in Doha, Qatar, in March 2005. Solids studied include semiconductors, metals, alloys and insulators, as well as biophysical systems. Surface studies focussed on positron annihilation-induced Auger electron spectroscopy (PAES), but interesting applications of positron-surface interactions in fields as diverse as semiconductor technology and studies of the interstellar medium serve to illustrate once again the breadth of scientific endeavour covered by slow positron beam investigations.

  4. Enhanced positron trapping by Ag nanoclusters at low temperatures: A challenge of positron sensitivity to quantum dots

    NASA Astrophysics Data System (ADS)

    Zou, B.; Qi, N.; Liu, Z. W.; Chen, Z. Q.; Liu, H. Q.; Yi, D. Q.; Tang, Z.

    2017-03-01

    Microstructure evolution of three Al-Ag alloys with different Ag contents (1 wt. % Ag, 5 wt. % Ag, and 15 wt. % Ag) was studied by positron annihilation spectroscopy during the aging process. In situ measurements of the positron lifetime and Doppler broadening of annihilation radiation indicate the fast formation of Ag-rich clusters during natural aging of the alloys. The formation of Ag-rich clusters was further confirmed by coincidence Doppler broadening measurements. The Ag signal reflected by the Coincidence Doppler broadening spectrum increases with increasing Ag content and is further enhanced after subsequent artificial aging at 140 °C. This might be due to the increase in the size of Ag clusters. The temperature dependence of the Doppler broadening spectra between 10 K and 290 K was measured for the Al-Ag alloys after natural and artificial aging. Detrapping of positrons from Ag clusters with increasing temperature was observed for all the three Al-Ag alloys after natural aging and for the Al-1 wt. % Ag after artificial aging. This indicates that Ag clusters act as shallow positron trapping centers. The thermal detrapping of positrons becomes ambiguous with increasing Ag content in the alloy and is nearly invisible in the artificially aged Al-5 wt. % Ag and Al-15 wt. % Ag. The positron binding energy of the Ag cluster is roughly estimated to be about 18.8 meV and 50 meV in the Al-1 wt. % Ag sample after natural aging and artificial aging at 140 °C, respectively, which suggests that the confinement of positrons in the quantum-dot like state depends on the size or chemical composition of clusters. Theoretical calculations confirm positron trapping by Ag nanoclusters, and the confinement of positrons is enhanced with increasing Ag cluster size.

  5. A comparison of the doppler-broadened positron annihilation spectra of neutron irradiated Al 2O 3 and MgAl 2O 3

    NASA Astrophysics Data System (ADS)

    Jones, P. L.; Schaffer, J. P.; Cocks, F. H.; Clinard, F. W.; Hurley, G. F.

    1985-01-01

    Radiation damage studies of oxides and ceramics have become of increasing importance due to the projected use of these materials in thermonuclear fusion reactors as electronic insulators and first wall materials. In addition these materials are important in RAD waste disposal. As part of a study of the defect structure in radiation damaged ceramics Doppler-broadened positron annihilation spectra have been obtained for a series of single crystal sapphire (α-Al 2O 3) and polycrystal (1:1) and (1:2) magnesium aluminate spinel (MgO·Al 2O 3 and MgO-2Al 2O 3) samples. These samples were irradiated in EBR-II to a fluence of 3 × 10 25 n/m 2 (E > 0.1 MeV) at 740°C, and 2 × 10 26 n/m 2 (E > 0.1 MeV) at ~ 550°C respectively. Positron annihilation spectra lineshapes for the irradiated, annealed, and as-received samples of both materials were compared using S parameter analysis. These calculations were made on deconvoluted gamma ray spectra that were free of any instrumental broadening effects. In this way, absolute S parameter changes could be calculated. The observed changes in the S parameter are consistent with independent volume swelling measurements for both the α-A1 2O 3 and the (1:2) MgAl 2O 4 samples. However, the change in S parameter measured for the (1:1) spinel is contrary to the measured volume change. This apparent anomaly indicates a predominence of interstitial as opposed to vacancy type defects in this material.

  6. Study of submonolayer films of Au/Cu(100) and Pd/Cu(100) using positron annihilation induced auger electron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, K.D.

    1992-01-01

    Positron Annihilation induced Auger Electron Spectroscopy (PAES), electron induced Auger Electron Spectroscopy (EAES), and Low Energy Electron Diffraction (LEED) have been used to study the surface composition, surface alloying and overlayer formation of ultrathin films of Au and Pd on Cu(100). This is the first systematic application of PAES to the study of the surface properties of ultrathin layers of metals on metal substrates. Temperature induced changes in the top layer surface compositions in Au/Cu(100) and Pd/Cu(100) are directly observed using PAES, while EAES spectra indicate only minor changes. The surface alloying of the Au/Cu(100) and Pd/Cu(100) systems are demonstratedmore » using PAES in conjunction with LEED. The PAES intensity measurements also provide evidence for positron trapping at surface defects such as steps, kinks and isolated adatoms. The PAES intensity was found to be strongly dependent on surface effects introduced by ion sputtering. The surface defect dependence of the PAES intensity is interpreted in terms of the surface atomic diffusion and positron trapping at surface defects in Au/Cu(100) and Pd/Cu(100). In both systems the shapes of the PAES intensity versus coverage curves for submonolayer coverages at 173K are quite distinct indicating differences in overlayer growth and diffusion behavior of Au and Pd adatoms on the Cu(100) surface. PAES intensities for both Au and Pd are saturated at 1 monolayer demonstrating the extreme surface selectivity of PAES.« less

  7. H passivation of Li on Zn-site in ZnO: Positron annihilation spectroscopy and secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Johansen, K. M.; Zubiaga, A.; Tuomisto, F.; Monakhov, E. V.; Kuznetsov, A. Yu.; Svensson, B. G.

    2011-09-01

    The interaction of hydrogen (H) with lithium (Li) and zinc vacancies (VZn) in hydrothermally grown n-type zinc oxide (ZnO) has been investigated by positron annihilation spectroscopy (PAS) and secondary ion mass spectrometry. Li on Zn-site (LiZn) is found to be the dominant trap for migrating H atoms, while the trapping efficiency of VZn is considerably smaller. After hydrogenation, where the LiZn acceptor is passivated via formation of neutral LiZn-H pairs, VZn occurs as the prime PAS signature and with a concentration similar to that observed in nonhydrogenated Li-poor samples. Despite a low efficiency as an H trap, the apparent concentration of VZn in Li-poor samples decreases after hydrogenation, as detected by PAS, and evidence for formation of the neutral VZnH2 complex is presented.

  8. Determination of interfacial states in solid heterostructures using a variable-energy positron beam

    DOEpatents

    Asoka kumar, Palakkal P. V.; Lynn, Kelvin G.

    1993-01-01

    A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO.sub.2 /Si, MOS or other semiconductor devices.

  9. Determination of interfacial states in solid heterostructures using a variable-energy positron beam

    DOEpatents

    Asokakumar, P.P.V.; Lynn, K.G.

    1993-04-06

    A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO[sub 2]/Si, MOS or other semiconductor devices.

  10. Temperature and depth dependence of positron annihilation parameters in YBa2Cu3O7-x and La1.85Sr0.15CuO4

    NASA Astrophysics Data System (ADS)

    Lynn, K. G.; Usmar, S. G.; Nielsen, B.; van der Kolk, G. J.; Kanazawa, I.; Sferlazzo, P.; Moodenbaugh, A. R.

    1988-02-01

    The temperature dependence of the positron annihilation parameters for YBa2Cu3O7-x x=0.7, 0.4 and 0.0 and La1.85Sr0.15CuO4 were measured. The depth dependence of the YBa2Cu3O7 was studied using a variable-energy positron beam showing a strong depth dependence in the Doppler line-shape extending up to an average depth of ˜5.0 μm. It was found that a transition in the Doppler line-shape parameter, ``S'', was associated with the superconducting transition temperature (Tc) in YBa2Cu3O7-x x=0.4 and 0.0 while no transition was observed in the nonsuperconducting YBa2Cu3O6.3. Positron lifetime parameters in YBa2Cu3O7 were found to be consistent with positrons localized at open volume regions (probably unoccupied crystallographic sites) in this material with a lifetime of 210 psec at 300 K. These results indicate that the electron density at these unoccupied sites increases, using a free electron model, approximately 9% between 100 and 12 K.

  11. Prompt Electron Production in Electron-Positron Annihilations at 29 GEV.

    NASA Astrophysics Data System (ADS)

    Koop, Dale E.

    We have studied the production of prompt electrons in high statistics sample (118 pb('-1)) of multihadron events produced in electron positron annihilations at 29 Gev. The experiment was performed using the DELCO facility on the PEP storage ring at SLAC. Electron identification was done primarily with a large acceptance threshold Cerenkov counter. Both the momentum and the transverse momentum spectra are measured in terms of a differential cross section for electrons having momenta in the range 0.5 < P < 5.5 Gev/c. We measure the inclusive cross section in this momentum range to be 35.8 (+OR-) 3.1 pb. The final distribution of candidates in the P - P(,(PERP)) plane are fit well using a Monte Carlo having a combination of bottom and charm quark decays with the semielectronic branching ratios of (15.0 (+OR-) 2.9)% and (8.9 (+OR-) 1.4)%. We observe no evidence of electron production from new sources and determine a cross section upper limit of 11.6 pb (90% CL) for this process. We find that the fragmentation functions are hard for both b and c quarks, characterized by the values < z(,b) > = 0.77 + 0.05 and < z(,c) > = 0.68 (+OR -) 0.06, where z is the fraction of the heavy quark's energy that is retained by the primary hadron containing the heavy quark. The fragmentation function is fit well by the form. (DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI). Finally, we observe events having two electrons with an inclusive cross section of 2.8 (+OR-) 1.3 pb for this process, which is consistent with the rate expected from the measured semielectronic rates.

  12. Quantum dynamics study on the binding of a positron to vibrationally excited states of hydrogen cyanide molecule

    NASA Astrophysics Data System (ADS)

    Takayanagi, Toshiyuki; Suzuki, Kento; Yoshida, Takahiko; Kita, Yukiumi; Tachikawa, Masanori

    2017-05-01

    We present computational results of vibrationally enhanced positron annihilation in the e+ + HCN/DCN collisions within a local complex potential model. Vibrationally elastic and inelastic cross sections and effective annihilation rates were calculated by solving a time-dependent complex-potential Schrödinger equation under the ab initio potential energy surface for the positron attached HCN molecule, [HCN; e+], with multi-component configuration interaction level (Kita and Tachikawa, 2014). We discuss the effect of vibrational excitation on the positron affinities from the obtained vibrational resonance features.

  13. Positron production using a 1.7 MV pelletron accelerator

    NASA Astrophysics Data System (ADS)

    Alcantara, K. F.; Crivelli, P.; Santos, A. C. F.

    2013-04-01

    We report the foremost phase of a fourth generation positron source, being constructed at the Federal University of Rio de Janeiro. Positron yields are reported by making use of the 19F(p,αe+e-)16O reaction, where the fluorine target is in the form of a CaF2 pellet. Positron production has been observed by detecting 511 keV annihilation gamma rays emerging from the irradiated CaF2 target.

  14. Gamma-Ray background spectrum and annihilation rate in the baryon-symmetric big-bang cosmology

    NASA Technical Reports Server (NTRS)

    Puget, J. L.

    1973-01-01

    An attempt was made to extract experimental data on baryon symmetry by observing annihilation products. Specifically, gamma rays and neutrons with long mean free paths were analyzed. Data cover absorption cross sections and radiation background of the 0.511 MeV gamma rays from positron annihilations and the 70 MeV gamma rays from neutral pion decay.

  15. Positron annihilation lifetime spectroscopy (PALS) as a characterization technique for nanostructured self-assembled amphiphile systems.

    PubMed

    Dong, Aurelia W; Pascual-Izarra, Carlos; Pas, Steven J; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2009-01-08

    Positron annihilation lifetime spectroscopy (PALS) has potential as a novel rapid characterization method for self-assembly amphiphile systems; however, a lack of systematic correlation of PALS parameters with structural attributes has limited its more widespread application. In this study, using the well-characterized phytantriol/water and the phytantriol/vitamin E acetate/water self-assembly amphiphile systems, the impact of systematic structural changes controlled by changes in composition and temperature on PALS parameters has been studied. The PALS parameters (orthopositronium (oPs) lifetime and intensity signatures) were shown to be sensitive to the molecular packing and mobility of the self-assembled lipid molecules in various lyotropic liquid crystalline phases, enabling differentiation between liquid crystalline structures. The oPs lifetime, related to the molecular packing and mobility, is correlated with rheological properties of the individual mesophases. The oPs lifetime links the lipid chain packing and mobility in the various mesophases to resultant macroscopic properties, such as permeability, which is critical for the use of these mesophase structures as diffusion-controlled release matrices for active liposoluble compounds.

  16. Positron annihilation lifetime spectroscopy (PALS): a probe for molecular organisation in self-assembled biomimetic systems.

    PubMed

    Fong, Celesta; Dong, Aurelia W; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2015-07-21

    Positron annihilation lifetime spectroscopy (PALS) has been shown to be highly sensitive to conformational, structural and microenvironmental transformations arising from subtle geometric changes in molecular geometry in self-assembling biomimetic systems. The ortho-positronium (oPs) may be considered an active probe that can provide information on intrinsic packing and mobility within low molecular weight solids, viscous liquids, and soft matter systems. In this perspective we provide a critical overview of the literature in this field, including the evolution of analysis software and experimental protocols with commentary upon the practical utility of PALS. In particular, we discuss how PALS can provide unique insight into the macroscopic transport properties of several porous biomembrane-like nanostructures and suggest how this insight may provide information on the release of drugs from these matrices to aid in developing therapeutic interventions. We discuss the potentially exciting and fruitful application of this technique to membrane dynamics, diffusion and permeability. We propose that PALS can provide novel molecular level information that is complementary to conventional characterisation techniques.

  17. Structural study of some divalent aluminoborate glasses using ultrasonic and positron annihilation techniques

    NASA Astrophysics Data System (ADS)

    Saddeek, Yasser B.; Mohamed, Hamdy F. M.; Azooz, Moenis A.

    2004-07-01

    Positron annihilation lifetime (PAL), ultrasonic techniques, and differential thermal analysis (DTA) were performed to study the structure of some aluminoborate glasses. The basic compositions of these glasses are 50 B2O3 + 10 Al2O3 + 40 RO (wt%), where RO is the divalent oxide (MgO, CaO, SrO, and CdO). The ultrasonic data show that the rigidity increases from MgO to CaO then decrease at SrO and again increases at CdO. The glass transition temperature (determined from DTA) decreases from MgO to SrO then increases at CdO. The trend of the thermal properties was attributed to thermal stability. The experimental data are correlated with the internal glass structure and its connectivity. The PAL data show that an inversely correlation between the relative fractional of the open hole volume and the density of the samples. Also, there is a good correlation between the ortho-positronium (o-Ps) lifetime (open hole volume size) and the bulk modulus of the samples (determined from ultrasonic technique). The open volume hole size distribution for the samples shows that the open volume holes expand in size for CaO, SrO, MgO, and CdO, respectively with their distribution function moving to higher volume size.

  18. Electronic and structural properties of micro-and nanometre-sized crystalline copper monoxide ceramics investigated by positron annihilation

    NASA Astrophysics Data System (ADS)

    Druzhkov, A. P.; Gizhevskii, B. A.; Arbuzov, V. L.; Kozlov, E. A.; Shalnov, K. V.; Naumov, S. V.; Perminov, D. A.

    2002-09-01

    Electronic and structural properties of copper monoxide (CuO) sintered as a common ceramic and nanoceramic are studied by positron annihilation spectroscopy. A CuO nanoceramic with crystallite size ranging from 15 to 90 nm was prepared from a common one by shock-wave loading. It is found that the momentum distribution of valence electrons in CuO is shifted, as compared with metallic copper, towards higher momentum values. This result is related to the effect of the Cu 3d-O 2p hybridization in the Cu-O ionic covalent bond formation. It is found that open volumes, identified mainly as small agglomerates of oxygen vacancies, appear at the nanoceramic crystallite interfaces. The degree of the Cu-O bond covalency decreases locally at the crystallite interfaces because of an oxygen deficit. The nanocrystalline state in CuO is shown to be thermally stable up to 700 K.

  19. Dark matter "transporting" mechanism explaining positron excesses

    NASA Astrophysics Data System (ADS)

    Kim, Doojin; Park, Jong-Chul; Shin, Seodong

    2018-04-01

    We propose a novel mechanism to explain the positron excesses, which are observed by satellite-based telescopes including PAMELA and AMS-02, in dark matter (DM) scenarios. The novelty behind the proposal is that it makes direct use of DM around the Galactic Center where DM populates most densely, allowing us to avoid tensions from cosmological and astrophysical measurements. The key ingredients of this mechanism include DM annihilation into unstable states with a very long laboratory-frame life time and their "retarded" decay near the Earth to electron-positron pair(s) possibly with other (in)visible particles. We argue that this sort of explanation is not in conflict with relevant constraints from big bang nucleosynthesis and cosmic microwave background. Regarding the resultant positron spectrum, we provide a generalized source term in the associated diffusion equation, which can be readily applicable to any type of two-"stage" DM scenarios wherein production of Standard Model particles occurs at completely different places from those of DM annihilation. We then conduct a data analysis with the recent AMS-02 data to validate our proposal.

  20. Miscibility and crystallization behavior of poly (3-hydroxybutyrate) and poly (ethylene glycol) blends studied by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Abdel-Hady, E. E.; Abdel-Hamed, M. O.; Hammam, A. M.

    2011-01-01

    Positron annihilation Lifetime (PAL) spectroscopy has been used to study the effect of PEG concentrations on the free volume properties of PHB. The data revealed that the ortho-positronium (o-Ps) lifetime τPs increases with 20% increase in concentration, decrease as the concentration increases to 40%, then rapid increase at 50% concentration of PEG. The o-Ps intensity, I3, shows a linear dependence as the concentration increases with a discontinuity at 20% concentration of PEG. Furthermore, the results presented and discussed in this work show that the PHB and PEG are miscible up to 40% of PEG but greater than 40%, the blend is immiscible. In addition, the mechanical properties of PHB are well improved by the addition of PEG with a low concentration up to 20%, while at higher concentration the blend becomes waxy.

  1. Investigation of Excitonic Polaritons in ZnO Microcavities

    DTIC Science & Technology

    2006-07-28

    defects on the nonradiative processes in L-MBE ZnO were studied using time-resolved PL making a connection with the results of positron annihilation...IMPLANTATION DEPTH (nm) S PA R A M E T E R POSITRON ENERGY (keV) 150010005003001000 0 5 10 15 20 25 30 0.42 0.44 0.46 0.48 0.50 ZnO single crystal 0.42...photoluminescence (TRPL) and monoenergetic positron annihilation methods, and elimination of point defects as a fundamental pathway in improving

  2. Slow positron applications at slow positron facility of institute of materials structure science, KEK

    NASA Astrophysics Data System (ADS)

    Hyodo, Toshio; Mochizuki, Izumi; Wada, Ken; Toge, Nobukazu; Shidara, Tetsuo

    2018-05-01

    Slow Positron Facility at High Energy Accelerator Research Organization (KEK) is a user dedicated facility with an energy-tunable (0.1 - 35 keV) slow positron beam created by a dedicated ˜ 50 MeV linac. It operates in a short pulse (width 1-12 ns, variable, 5×106 e+/s) and a long pulse (width 1.2 µs, 5×107 e+/s) modes of 50 Hz. High energy positrons from pair creation are moderated by reemission after thermalization in W foils. The reemitted positrons are then electrostatically accelerated to a desired energy up to 35 keV and magnetically transported. A pulse-stretching section (pulse stretcher) is installed in the middle of the beamline. It stretches the slow positron pulse for the experiments where too many positrons annihilating in the sample at the same time has to be avoided. Four experiment stations for TRHEPD (total-reflection high-energy positron diffraction), LEPD (low-energy positron diffraction), Ps- (positronium negative ion), and Ps-TOF (positronium time-of-flight) experiments are connected to the beamline branches, SPF-A3, SPF-A4, SPF-B1 and SPF-B2, respectively. Recent results of these stations are briefly described.

  3. Photoluminescence spectroscopy and positron annihilation spectroscopy probe of alloying and annealing effects in nonpolar m-plane ZnMgO thin films

    NASA Astrophysics Data System (ADS)

    Yang, A. L.; Song, H. P.; Liang, D. C.; Wei, H. Y.; Liu, X. L.; Jin, P.; Qin, X. B.; Yang, S. Y.; Zhu, Q. S.; Wang, Z. G.

    2010-04-01

    Temperature-dependent photoluminescence characteristics of non-polar m-plane ZnO and ZnMgO alloy films grown by metal organic chemical vapor deposition have been studied. The enhancement in emission intensity caused by localized excitons in m-plane ZnMgO alloy films was directly observed and it can be further improved after annealing in nitrogen. The concentration of Zn vacancies in the films was increased by alloying with Mg, which was detected by positron annihilation spectroscopy. This result is very important to directly explain why undoped Zn1-xMgxO thin films can show p-type conduction by controlling Mg content, as discussed by Li et al. [Appl. Phys. Lett. 91, 232115 (2007)].

  4. Positrons in surface physics

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, Christoph

    2016-12-01

    Within the last decade powerful methods have been developed to study surfaces using bright low-energy positron beams. These novel analysis tools exploit the unique properties of positron interaction with surfaces, which comprise the absence of exchange interaction, repulsive crystal potential and positron trapping in delocalized surface states at low energies. By applying reflection high-energy positron diffraction (RHEPD) one can benefit from the phenomenon of total reflection below a critical angle that is not present in electron surface diffraction. Therefore, RHEPD allows the determination of the atom positions of (reconstructed) surfaces with outstanding accuracy. The main advantages of positron annihilation induced Auger-electron spectroscopy (PAES) are the missing secondary electron background in the energy region of Auger-transitions and its topmost layer sensitivity for elemental analysis. In order to enable the investigation of the electron polarization at surfaces low-energy spin-polarized positrons are used to probe the outermost electrons of the surface. Furthermore, in fundamental research the preparation of well defined surfaces tailored for the production of bound leptonic systems plays an outstanding role. In this report, it is envisaged to cover both the fundamental aspects of positron surface interaction and the present status of surface studies using modern positron beam techniques.

  5. Characterization of helium-vacancy complexes in He-ions implanted Fe9Cr by using positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Te; Jin, Shuoxue; Zhang, Peng; Song, Ligang; Lian, Xiangyu; Fan, Ping; Zhang, Qiaoli; Yuan, Daqing; Wu, Haibiao; Yu, Runsheng; Cao, Xingzhong; Xu, Qiu; Wang, Baoyi

    2018-07-01

    The formation of helium bubble precursors, i.e., helium-vacancy complexes, was investigated for Fe9Cr alloy, which was uniformly irradiated by using 100 keV helium ions with fluences up to 5 × 1016 ions/cm2 at RT, 523, 623, 723, and 873 K. Helium-irradiation-induced microstructures in the alloy were probed by positron annihilation technique. The results show that the ratio of helium atom to vacancy (m/n) in the irradiation induced HemVn clusters is affected by the irradiation temperature. Irradiated at room temperature, there is a coexistence of large amounts of HemV1 and mono-vacancies in the sample. However, the overpressured HemVn (m > n) clusters or helium bubbles are easily formed by the helium-filled vacancy clusters (HemV1 and HemVn (m ≈ n)) absorbing helium atoms when irradiated at 523 K and 823 K. The results also show that void swelling of the alloy is the largest under 723 K irradiation.

  6. Defects versus grain size effects on the ferromagnetism of ZrO2 nanocrystals clarified by positron annihilation

    NASA Astrophysics Data System (ADS)

    Wang, D. D.; Qi, N.; Jiang, M.; Chen, Z. Q.

    2013-01-01

    Undoped ZrO2 nanocrystals were annealed in open air from 100 °C to 1300 °C. X-ray diffraction and transmission electron microscope were used to study the structure change and grain growth. Both the methods reveal that the ZrO2 grain size has very slight increase after annealing up to 900 °C. Positron annihilation measurements reveal a high concentration of vacancy defects which most probably exist in the grain boundary region. Thermal annealing above 500 °C causes recovery of these defects, and after annealing at 1200 °C, most of them are removed. Room temperature ferromagnetism is observed for the sample annealed at 100 °C and 500 °C. The magnetization becomes very weak after the nanocrystals are annealed at 700 °C, and it almost disappears at 1000 °C. It is clear that the intrinsic ferromagnetism in our ZrO2 nanocrystals is mostly related with the interfacial defects instead of grain size effects.

  7. Constraints on Dark Matter Annihilation by Synchrotron Emission based on Planck Data

    NASA Astrophysics Data System (ADS)

    Muanglay, Chalit; Wechakama, Maneenate; Cantlay, Brandon K.

    2017-09-01

    Synchrotron emission can be a good probe for dark matter particles in the Milky Way. We have investigated the production of electrons and positrons in the Milky Way within the context of dark matter annihilation. Upper limits on the relevant cross-section are obtained by comparing synchrotron emission in the microwave bands with Planck data. According to our results, the dark matter annihilation cross-section into electron-positron pairs should not be higher than the canonical value for a thermal relic if the mass of the dark matter candidate is smaller than a few GeV. In addition, we also look for constraints on the inner slope of dark matter density profile in the Milky Way. Our results indicate that the inner slope of dark matter profile is between 1 to 1.5.

  8. Positron production using a 1.7 MV pelletron accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alcantara, K. F.; Santos, A. C. F.; Crivelli, P.

    2013-04-19

    We report the foremost phase of a fourth generation positron source, being constructed at the Federal University of Rio de Janeiro. Positron yields are reported by making use of the {sup 19}F(p,{alpha}e{sup +}e{sup -}){sup 16}O reaction, where the fluorine target is in the form of a CaF{sub 2} pellet. Positron production has been observed by detecting 511 keV annihilation gamma rays emerging from the irradiated CaF{sub 2} target.

  9. Surface investigation of Si(1 0 0), Cu, Cu on Si(1 0 0), and Au on Cu with positron annihilation induced Auger-electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.; Mayer, J.; Schreckenbach, K.

    2007-06-01

    The surfaces of polycrystalline Cu, Au-coated Cu, Si(1 0 0) and of Si(1 0 0) coated with 1.5 monolayer Cu were investigated with positron annihilation induced Auger-electron spectroscopy (PAES). Since the electron background has been reduced considerably we observed the Cu M 2,3VV-Auger transition on a copper surface within only three hours which is the shortest acquisition time reported so far for PAES. In order to demonstrate PAES' high potential the Auger-yield, the signal-to-background ratio as well as the surface selectivity were compared with accompanying EAES-measurements quantitatively. A more efficient electron energy analyzer for the present PAES setup would lead to an additional efficiency gain of more than two orders of magnitude. The presented measurements were performed at the low-energy positron beam of high intensity NEPOMUC at the research reactor FRM II.

  10. Theoretical aspects of studies of high coverage oxidation of the Cu(100) surface using low energy positrons

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Maddox, W. B.; Reed, J. A.

    2011-03-01

    The study of adsorption of oxygen on transition metal surface is important for the understanding of oxidation, heterogeneous catalysis, and metal corrosion. The structures formed on transition metal surfaces vary from simple adlayers of chemisorbed oxygen to more complex structures which results from diffusion of oxygen into the sub-surface regions. In this work we present the results of an ab-initio investigation of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the Cu(100) missing row reconstructed surface under conditions of high oxygen coverage. Calculations are performed for various surface and subsurface oxygen coverages ranging from 0.50 to 1.50 monolayers. Calculations are also performed for the on-surface adsorption of oxygen on the unreconstructed Cu(001) surface for coverages up to one monolayer to use for comparison. Estimates of the positron binding energy, positron work function, and annihilation characteristics reveal their sensitivity to atomic structure of the topmost layers of the surface and charge transfer. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy.

  11. Radiative proton-antiproton annihilation to a lepton pair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmadov, A. I.; Institute of Physics, Azerbaijan National Academy of Sciences, Baku; Bytev, V. V.

    2010-11-01

    The annihilation of proton and antiproton to an electron-positron pair, including radiative corrections due to the emission of virtual and real photons is considered. The results are generalized to leading and next-to leading approximations. The relevant distributions are derived and numerical applications are given in the kinematical range accessible to the PANDA experiment at the FAIR facility.

  12. Tracking of the micro-structural changes of levonorgestrel-releasing intrauterine system by positron annihilation lifetime spectroscopy.

    PubMed

    Patai, Kálmán; Szente, Virág; Süvegh, Károly; Zelkó, Romána

    2010-12-01

    The morphology and the micro-structural changes of levonorgestrel-releasing intrauterine systems (IUSs) were studied in relation to the duration of their application. The morphology of the removed IUSs was examined without pre-treatment by scanning electron microscopy. The micro-structural changes of the different layers of IUSs were tracked by positron annihilation lifetime spectroscopy. Besides the previously found incrustation formation, the free volume of the hormone containing reservoir was remarkably increased after 3 years of application, thus increasing the real volume of the core of the systems. Although the free volume of the membrane encasing the core was not significantly changed in the course of the application, as a result of the core expansion, microcracks could be formed on the membrane surface. Along these cracks, deposits of different compositions can be formed, causing inflammatory complications and influencing the drug release of IUSs. Stability tests in combination with micro-structural screening of such IUSs could be required during their development phase to avoid the undesired side effects. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  13. Direct Observation of the Surface Segregation of Cu in Pd by Time-Resolved Positron-Annihilation-Induced Auger Electron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mayer, J.; Hugenschmidt, C.; Schreckenbach, K.

    2010-11-01

    Density functional theory calculations predict the surface segregation of Cu in the second atomic layer of Pd which has not been unambiguously confirmed by experiment so far. We report measurements on Pd surfaces covered with three and six monolayers of Cu using element selective positron-annihilation-induced Auger electron spectroscopy (PAES) which is sensitive to the topmost atomic layer. Moreover, time-resolved PAES, which was applied for the first time, enables the investigation of the dynamics of surface atoms and hence the observation of the segregation process. The time constant for segregation was experimentally determined to τ=1.38(0.21)h, and the final segregated configuration was found to be consistent with calculations. Time-dependent PAES is demonstrated to be a novel element selective technique applicable for the investigation of, e.g., heterogeneous catalysis, corrosion, or surface alloying.

  14. The status of the positron beam facility at NEPOMUC

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.

    2011-01-01

    The NEutron induced POsitron source MUniCh NEPOMUC provides a high intensity positron beam with 9·108 moderated positrons per second with a primary beam energy of 1keV. After remoderation, the positron beam is magnetically guided to five experimental setups: a coincident Doppler-broadening spectrometer (CDBS), a positron annihilation induced Auger-electron spectrometer (PAES), a pulsed low-energy positron system (PLEPS) as well as an interface for providing a pulsed beam with further improved brightness. An apparatus for the production of the negatively charged positronium ion Ps- is currently in operation at the open multi-purpose beam port, where additional experiments can be realized. Within this contribution, an overview of the positron beam facility NEPOMUC with its instrumentation at the research reactor FRMII is given.

  15. Positron states on the Cs/Cu(100) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koeymen, A.R.; Lee, K.H.; Mehl, D.

    1991-02-01

    The attenuation of the CuM{sub 23}VV Auger peak with Cs coverage on Cu(100) is measured using both positron-annihilation-induced Auger electron emission (PAES) and conventional (electron induced) Auger electron spectroscopy (EAES). The Cs coverage varies from 0 to 1 physical monolayer (ML). The data indicates that below 0.5 ML in agreement with first order theoretical calculations the positrons are trapped at the Cu/Cs interface. At higher Cs coverages the thermal desorption of the positrons as positronium drops the PAES intensity to zero whereas the EAES signal changes linearly as expected.

  16. Free volume study on the miscibility of PEEK/PEI blend using positron annihilation and dynamic mechanical thermal analysis

    NASA Astrophysics Data System (ADS)

    Ramani, R.; Alam, S.

    2015-06-01

    High performance polymer blend of poly(ether ether ketone) (PEEK) and poly(ether imide) (PEI) was examined for their free volume behaviour using positron annihilation lifetime spectroscopy and dynamic mechanical thermal analysis methods. The fractional free volume obtained from PALS shows a negative deviation from linear additivity rule implying good miscibility between PEEK and PEI. The dynamic modulus and loss tangent were obtained for the blends at three different frequencies 1, 10 and 100 Hz at temperatures close to and above their glass transition temperature. Applying Time-Temperature-Superposition (TTS) principle to the DMTA results, master curves were obtained at a reference temperature To and the WLF coefficients c01 and c02 were evaluated. Both the methods give similar results for the dependence of fractional free volume on PEI content in this blend. The results reveal that free volume plays an important role in determining the visco-elastic properties in miscible polymer blends.

  17. Efficient Cryosolid Positron Moderators

    DTIC Science & Technology

    2012-08-01

    high purity germanium KE .............................. kinetic energies KED ........................... kinetic energy ...12 10 9 E 160 GJ 160 MJ 160 kJ 160 J 160 mJ 160 µJ practical positron energy storage tabletop γ- laser Ps BEC demo Ps 2 formation demo state of the...magnitude larger than the energy densities of chemical explosives or propellants (!) [5]. Since this annihilation energy is released primarily as low

  18. Pressure from dark matter annihilation and the rotation curve of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Wechakama, M.; Ascasibar, Y.

    2011-05-01

    The rotation curves of spiral galaxies are one of the basic predictions of the cold dark matter paradigm, and their shape in the innermost regions has been hotly debated over the last decades. The present work shows that dark matter annihilation into electron-positron pairs may affect the observed rotation curve by a significant amount. We adopt a model-independent approach, where all the electrons and positrons are injected with the same initial energy E0˜mdmc2 in the range from 1 MeV to 1 TeV and the injection rate is constrained by INTEGRAL, Fermi and HESS data. The pressure of the relativistic electron-positron gas is determined by solving the diffusion-loss equation, considering inverse Compton scattering, synchrotron radiation, Coulomb collisions, bremsstrahlung and ionization. For values of the gas density and magnetic field that are representative of the Milky Way, it is estimated that pressure gradients are strong enough to balance gravity in the central parts if E0 < 1 GeV. The exact value depends somewhat on the astrophysical parameters, and it changes dramatically with the slope of the dark matter density profile. For very steep slopes, as those expected from adiabatic contraction, the rotation curves of spiral galaxies would be affected on ˜kpc scales for most values of E0. By comparing the predicted rotation curves with observations of dwarf and low surface brightness galaxies, we show that the pressure from dark matter annihilation may improve the agreement between theory and observations in some cases, but it also imposes severe constraints on the model parameters (most notably, the inner slope of halo density profile, as well as the mass and the annihilation cross-section of dark matter particles into electron-positron pairs).

  19. Positron and electron energy bands in several ionic crystals using restricted Hartree-Fock method

    NASA Astrophysics Data System (ADS)

    Kunz, A. B.; Waber, J. T.

    1981-08-01

    Using a restricted Hartree-Fock formalism and suitably localized and symmetrized wave functions, both the positron and electron energy bands were calculated for NaF, MgO and NiO. The lowest positron state at Γ 1 lies above the vacuum level and negative work functions are predicted. Positron annihilation rates were calculated and found to be in good agreement with measured lifetimes.

  20. New Possibilities of Positron-Emission Tomography

    NASA Astrophysics Data System (ADS)

    Volobuev, A. N.

    2018-01-01

    The reasons for the emergence of the angular distribution of photons generated as a result of annihilation of an electron and a positron in a positron-emission tomograph are investigated. It is shown that the angular distribution of the radiation intensity (i.e., the probability of photon emission at different angles) is a consequence of the Doppler effect in the center-of-mass reference system of the electron and the positron. In the reference frame attached to the electron, the angular distribution of the number of emitted photons does not exists but is replaced by the Doppler shift of the frequency of photons. The results obtained in this study make it possible to extend the potentialities of the positron-emission tomograph in the diagnostics of diseases and to obtain additional mechanical characteristics of human tissues, such as density and viscosity.

  1. Direct Observation of the Surface Segregation of Cu in Pd by Time-Resolved Positron-Annihilation-Induced Auger Electron Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, J.; Hugenschmidt, C.; Schreckenbach, K.

    2010-11-12

    Density functional theory calculations predict the surface segregation of Cu in the second atomic layer of Pd which has not been unambiguously confirmed by experiment so far. We report measurements on Pd surfaces covered with three and six monolayers of Cu using element selective positron-annihilation-induced Auger electron spectroscopy (PAES) which is sensitive to the topmost atomic layer. Moreover, time-resolved PAES, which was applied for the first time, enables the investigation of the dynamics of surface atoms and hence the observation of the segregation process. The time constant for segregation was experimentally determined to {tau}=1.38(0.21) h, and the final segregated configurationmore » was found to be consistent with calculations. Time-dependent PAES is demonstrated to be a novel element selective technique applicable for the investigation of, e.g., heterogeneous catalysis, corrosion, or surface alloying.« less

  2. Positron spectroscopy of 2D materials using an advanced high intensity positron beam

    NASA Astrophysics Data System (ADS)

    McDonald, A.; Chirayath, V.; Lim, Z.; Gladen, R.; Chrysler, M.; Fairchild, A.; Koymen, A.; Weiss, A.

    An advanced high intensity variable energy positron beam(~1eV to 20keV) has been designed, tested and utilized for the first coincidence Doppler broadening (CDB) measurements on 6-8 layers graphene on polycrystalline Cu sample. The system is capable of simultaneous Positron annihilation induced Auger electron Spectroscopy (PAES) and CDB measurements giving it unparalleled sensitivity to chemical structure at external surfaces, interfaces and internal pore surfaces. The system has a 3m flight path up to a micro channel plate (MCP) for the Auger electrons emitted from the sample. This gives a superior energy resolution for PAES. A solid rare gas(Neon) moderator was used for the generation of the monoenergetic positron beam. The positrons were successfully transported to the sample chamber using axial magnetic field generated with a series of Helmholtz coils. We will discuss the PAES and coincidence Doppler broadening measurements on graphene -Cu sample and present an analysis of the gamma spectra which indicates that a fraction of the positrons implanted at energies 7-60eV can become trapped at the graphene/metal interface. This work was supported by NSF Grant No. DMR 1508719 and DMR 1338130.

  3. Impact of oxygen diffusion on superconductivity in YBa2Cu3O7 -δ thin films studied by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Reiner, M.; Gigl, T.; Jany, R.; Hammerl, G.; Hugenschmidt, C.

    2018-04-01

    The oxygen deficiency δ in YBa2Cu3O7 -δ (YBCO) plays a crucial role for affecting high-temperature superconductivity. We apply (coincident) Doppler broadening spectroscopy of the electron-positron annihilation line to study in situ the temperature dependence of the oxygen concentration and its depth profile in single crystalline YBCO film grown on SrTiO3 (STO) substrates. The oxygen diffusion during tempering is found to lead to a distinct depth dependence of δ , which is not accessible using x-ray diffraction. A steady state reached within a few minutes is defined by both, the oxygen exchange at the surface and at the interface to the STO substrate. Moreover, we reveal the depth-dependent critical temperature Tc in the as prepared and tempered YBCO film.

  4. Positron-induced Auger-electron study of the Ge(100) surface: Positron thermal desorption and surface condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soininen, E.; Schwab, A.; Lynn, K.G.

    1991-05-01

    Positron-annihilation-induced Auger-electron spectroscopy (PAES) was used to study the effects of oxygen, residual gases, and temperature on a Ge(100) surface. Three low-energy Auger peaks were detected at 50, 90, and 100--150 eV, attributed to {ital M}{sub 2,3}{ital M4}{ital M4}, {ital M}{sub 2,3}{ital M4}{ital V}, and {ital M}{sub 1}{ital M4}{ital M4} Auger transitions, respectively. An estimated (4{plus minus}1)% of the surface-trapped positrons annihilate with Ge 3{ital p}--level electrons. The sensitivity of PAES to the surface condition is demonstrated. The PAES yield from a Ge(100) surface is reduced at elevated temperatures, in accord with an activation process earlier found in several positroniummore » (Ps) -fraction experiments. A desorption model adopted from these studies does not describe accurately the PAES results at higher temperatures ({gt}500 {degree}C), where the PAES intensity levels off to 5% of the room-temperature value. Possible sources for the discrepancy are discussed and models for positron trapping to deep surface traps are introduced. On the Ge(100) surface, an upper limit for Ps emission near the melting point is 97%. The error in calibration parameters due to the earlier assumption of 100% Ps emission seems to introduce only small errors into the Ps-fraction measurements.« less

  5. A possible signature of annihilating dark matter

    NASA Astrophysics Data System (ADS)

    Chan, Man Ho

    2018-02-01

    In this article, we report a new signature of dark matter annihilation based on the radio continuum data of NGC 1569 galaxy detected in the past few decades. After eliminating the thermal contribution of the radio signal, an abrupt change in the spectral index is shown in the radio spectrum. Previously, this signature was interpreted as an evidence of convective outflow of cosmic ray. However, we show that the cosmic ray contribution is not enough to account for the observed radio flux. We then discover that if dark matter annihilates via the 4-e channel with the thermal relic cross-section, the electrons and positrons produced would emit a strong radio flux which can provide an excellent agreement with the observed signature. The best-fitting dark matter mass is 25 GeV.

  6. Metastable self-trapping of positrons in MgO

    NASA Astrophysics Data System (ADS)

    Monge, M. A.; Pareja, R.; González, R.; Chen, Y.

    1997-01-01

    Low-temperature positron annihilation measurements have been performed on MgO single crystals containing either cation or anion vacancies. The temperature dependence of the S parameter is explained in terms of metastable self-trapped positrons which thermally hop through the crystal lattice. The experimental results are analyzed using a three-state trapping model assuming transitions from both delocalized and self-trapped states to deep trapped states at vacancies. The energy level of the self-trapped state was determined to be (62+/-5) meV above the delocalized state. The activation enthalpy for the hopping process of self-trapped positrons appears to depend on the kind of defect present in the crystals.

  7. Searching for dark photon with positrons at Jefferson lab

    NASA Astrophysics Data System (ADS)

    Marsicano, Luca

    2018-05-01

    The interest in the Dark Photon (A' or U) has recently grown, since it could act as a light mediator to a new sector of Dark Matter particles. In this paradigm, the electron-positron annihilation can rarely produce a γA' pair. Various experiments (e.g. PADME@LNF [1], VEPP-3 [2]) have been proposed to detect this process using positron beams impinging on fixed targets. In such experiments, the energy of the photon from the e+e-→ γA' process is measured with an electromagnetic calorimeter and the missing mass is computed (the A' interacts weakly with Standard Model matter so it can't be detected). However, the A' mass range that can be explored with this technique is limited by the accessible energy in the center of mass frame, which goes as the square root of the beam energy. The realization of a 11 GeV positron beam at Jefferson Lab would allow to search for A' masses up to ˜ 100 MeV, reaching unexplored regions of the A' parameter space. A preliminary study on the feasibility of a PADME-like experiment at Jefferson Lab has been carried out, assuming a 11 GeV positron beam with a ˜ 100 nA current. The achievable sensitivity was estimated, studying the main sources of background (positron bremsstrahlung, annihilation into 2 gammas) using CALCHEP [3] and GEANT4 [4] simulations.

  8. Formation of Isolated Zn Vacancies in ZnO Single Crystals by Absorption of Ultraviolet Radiation: A Combined Study Using Positron Annihilation, Photoluminescence, and Mass Spectroscopy

    NASA Astrophysics Data System (ADS)

    Khan, Enamul H.; Weber, Marc H.; McCluskey, Matthew D.

    2013-07-01

    Positron annihilation spectra reveal isolated zinc vacancy (VZn) creation in single-crystal ZnO exposed to 193-nm radiation at 100mJ/cm2 fluence. The appearance of a photoluminescence excitation peak at 3.18 eV in irradiated ZnO is attributed to an electronic transition from the VZn acceptor level at ˜100meV to the conduction band. The observed VZn density profile and hyperthermal Zn+ ion emission support zinc vacancy-interstitial Frenkel pair creation by exciting a wide 6.34 eV Zn-O antibonding state at 193-nm photon—a novel photoelectronic process for controlled VZn creation in ZnO.

  9. Formation of isolated Zn vacancies in ZnO single crystals by absorption of ultraviolet radiation: a combined study using positron annihilation, photoluminescence, and mass spectroscopy.

    PubMed

    Khan, Enamul H; Weber, Marc H; McCluskey, Matthew D

    2013-07-05

    Positron annihilation spectra reveal isolated zinc vacancy (V(Zn)) creation in single-crystal ZnO exposed to 193-nm radiation at 100 mJ/cm(2) fluence. The appearance of a photoluminescence excitation peak at 3.18 eV in irradiated ZnO is attributed to an electronic transition from the V(Zn) acceptor level at ~100 meV to the conduction band. The observed V(Zn) density profile and hyperthermal Zn(+) ion emission support zinc vacancy-interstitial Frenkel pair creation by exciting a wide 6.34 eV Zn-O antibonding state at 193-nm photon-a novel photoelectronic process for controlled V(Zn) creation in ZnO.

  10. Positron Lifetime Modulation by Electric Field Induced Positronium Formation on a Gold Surface

    DTIC Science & Technology

    2012-03-22

    Angular Momentum (3) ......................................................................... 11 Stopping Power (4...isotope from which it was born, diffused into the material before annihilation occurred. 6 The radioisotope used in this experiment is Na-22 which...that positrons may be useful in studying the internal structure of a wide variety of materials. The radioisotope positron source used in this

  11. Estimating the contributions to the Low Energy Tail in Cu and Ag (100) using Positron Annihilation Auger Electron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shastry, K.; Joglekar, P. V.; Satyal, S.; Weiss, A. H.

    2012-02-01

    Low energy Auger lineshapes are difficult to measure because they sit on a large background due to secondary electrons arising from loss processes unrelated to the Auger mechanism. In this poster we discuss the implications of our Positron Annihilation Auger electron Spectroscopy (PAES) measurements of the ratio of the integrated Auger Peak and integrated low energy tail (LET) intensities for comparisons between theoretical and measured values of the Auger intensities. The experiments were carried out at university of Texas at Arlington on Ag (100) crystal. The various contributions to the low energy tail are highlighted in terms of processes intrinsic and extrinsic to the Auger mechanism. Our conclusions regarding the importance of the LET in determining the ratio of electrons in the Auger peak to the number of initial core holes are discussed in light of the electron stimulated Auger results obtained by Seah et al. using monte carlo simulations on various elements.

  12. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons

    NASA Astrophysics Data System (ADS)

    Xu, Tongjun; Shen, Baifei; Xu, Jiancai; Li, Shun; Yu, Yong; Li, Jinfeng; Lu, Xiaoming; Wang, Cheng; Wang, Xinliang; Liang, Xiaoyan; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2016-03-01

    Experimental generation of ultrashort MeV positron beams with high intensity and high density using a compact laser-driven setup is reported. A high-density gas jet is employed experimentally to generate MeV electrons with high charge; thus, a charge-neutralized MeV positron beam with high density is obtained during laser-accelerated electrons irradiating high-Z solid targets. It is a novel electron-positron source for the study of laboratory astrophysics. Meanwhile, the MeV positron beam is pulsed with an ultrashort duration of tens of femtoseconds and has a high peak intensity of 7.8 × 1021 s-1, thus allows specific studies of fast kinetics in millimeter-thick materials with a high time resolution and exhibits potential for applications in positron annihilation spectroscopy.

  13. Low energy positron beam system for the investigation of 2D and porous materials

    NASA Astrophysics Data System (ADS)

    Chrysler, M. D.; Chirayath, V. A.; Mcdonald, A. D.; Gladen, R. W.; Fairchild, A. J.; Koymen, A. R.; Weiss, A. H.

    2017-01-01

    An advanced variable energy positron beam (~2 eV to 20 keV) has been designed, tested and utilized for coincidence Doppler broadening (CDB) measurements at the University of Texas at Arlington (UTA). A high efficiency solidified rare gas (Neon) moderator was used for the generation of a slow positron beam. The gamma rays produced as a result of the annihilation of positrons with the sample electrons are measured using a high purity Germanium (HPGe) detector in coincidence with a NaI(Tl) detector. Modifications to the system, currently underway, permits simultaneous measurements utilizing Positron annihilation induced Auger Electron Spectroscopy (PAES) and CDB. The tendency of positrons to become trapped in an image potential well at the surface will allow the new system to be used in measurements of the chemical structure of surfaces, internal or external and interfaces. The system will utilize a time of flight (TOF) technique for electron energy measurements. A 3m flight path from the sample to a micro-channel plate (MCP) in the new system will give it superior energy resolution at higher electron energies as compared to previous TOF systems utilizing shorter flight paths.

  14. Positron annihilation studies in the Nd-Ce-Cu-O superconductor

    NASA Astrophysics Data System (ADS)

    Sundar, C. S.; Bharathi, A.; Jean, Y. C.; Hor, P. H.; Meng, R. L.; Huang, Z. J.; Chu, C. W.

    1990-07-01

    In the superconducting Nd1.85Ce0.15CuO3.98, the positron lifetime is observed to decrease from 211 to 205 ps in the temperature range of 150-50 K, whereas in the nonsuperconducting Nd1.85Ce0.15CuO4, having a lifetime value of 231 ps, no significant temperature dependence of lifetime is observed. The difference in the lifetimes of the superconducting and nonsuperconducting samples and their temperature dependencies are understood in terms of positron interaction with the vacancies in the system. Doppler-broadened line shapes of energy spectra are found to show similar results as lifetime measurements. Theoretical calculations are used to show that the oxygen vacancies are weaker traps compared with the vacancies at the Cu and Nd sites. The observed decrease in lifetime in the superconducting sample is interpreted in terms of an increase in the fraction of positrons trapped at the oxygen vacancies as the temperature is lowered. Plausible reasons for the temperature independence of lifetime across Tc in the superconducting sample are discussed.

  15. Positronics of subnanometer atomistic imperfections in solids as a high-informative structure characterization tool.

    PubMed

    Shpotyuk, Oleh; Filipecki, Jacek; Ingram, Adam; Golovchak, Roman; Vakiv, Mykola; Klym, Halyna; Balitska, Valentyna; Shpotyuk, Mykhaylo; Kozdras, Andrzej

    2015-01-01

    Methodological possibilities of positron annihilation lifetime (PAL) spectroscopy applied to characterize different types of nanomaterials treated within three-term fitting procedure are critically reconsidered. In contrast to conventional three-term analysis based on admixed positron- and positronium-trapping modes, the process of nanostructurization is considered as substitutional positron-positronium trapping within the same host matrix. Developed formalism allows estimate interfacial void volumes responsible for positron trapping and characteristic bulk positron lifetimes in nanoparticle-affected inhomogeneous media. This algorithm was well justified at the example of thermally induced nanostructurization occurring in 80GeSe2-20Ga2Se3 glass.

  16. Positronics of subnanometer atomistic imperfections in solids as a high-informative structure characterization tool

    NASA Astrophysics Data System (ADS)

    Shpotyuk, Oleh; Filipecki, Jacek; Ingram, Adam; Golovchak, Roman; Vakiv, Mykola; Klym, Halyna; Balitska, Valentyna; Shpotyuk, Mykhaylo; Kozdras, Andrzej

    2015-02-01

    Methodological possibilities of positron annihilation lifetime (PAL) spectroscopy applied to characterize different types of nanomaterials treated within three-term fitting procedure are critically reconsidered. In contrast to conventional three-term analysis based on admixed positron- and positronium-trapping modes, the process of nanostructurization is considered as substitutional positron-positronium trapping within the same host matrix. Developed formalism allows estimate interfacial void volumes responsible for positron trapping and characteristic bulk positron lifetimes in nanoparticle-affected inhomogeneous media. This algorithm was well justified at the example of thermally induced nanostructurization occurring in 80GeSe2-20Ga2Se3 glass.

  17. Positron surface state as a spectroscopic probe for characterizing surfaces of topological insulator materials

    NASA Astrophysics Data System (ADS)

    Callewaert, Vincent; Shastry, K.; Saniz, Rolando; Makkonen, Ilja; Barbiellini, Bernardo; Assaf, Badih A.; Heiman, Donald; Moodera, Jagadeesh S.; Partoens, Bart; Bansil, Arun; Weiss, A. H.

    2016-09-01

    Topological insulators are attracting considerable interest due to their potential for technological applications and as platforms for exploring wide-ranging fundamental science questions. In order to exploit, fine-tune, control, and manipulate the topological surface states, spectroscopic tools which can effectively probe their properties are of key importance. Here, we demonstrate that positrons provide a sensitive probe for topological states and that the associated annihilation spectrum provides a technique for characterizing these states. Firm experimental evidence for the existence of a positron surface state near Bi2Te2Se with a binding energy of Eb=2.7 ±0.2 eV is presented and is confirmed by first-principles calculations. Additionally, the simulations predict a significant signal originating from annihilation with the topological surface states and show the feasibility to detect their spin texture through the use of spin-polarized positron beams.

  18. Novel Cosmic-Ray Electron and Positron Constraints on MeV Dark Matter Particles.

    PubMed

    Boudaud, Mathieu; Lavalle, Julien; Salati, Pierre

    2017-07-14

    MeV dark matter (DM) particles annihilating or decaying to electron-positron pairs cannot, in principle, be observed via local cosmic-ray (CR) measurements because of the shielding solar magnetic field. In this Letter, we take advantage of spacecraft Voyager 1's capacity for detecting interstellar CRs since it crossed the heliopause in 2012. This opens up a new avenue to probe DM in the sub-GeV energy/mass range that we exploit here for the first time. From a complete description of the transport of electrons and positrons at low energy, we derive predictions for both the secondary astrophysical background and the pair production mechanisms relevant to DM annihilation or decay down to the MeV mass range. Interestingly, we show that reacceleration may push positrons up to energies larger than the DM particle mass. We combine the constraints from the Voyager and AMS-02 data to get novel limits covering a very extended DM particle mass range, from MeV to TeV. In the MeV mass range, our limits reach annihilation cross sections of order ⟨σv⟩∼10^{-28}  cm^{3}/s. An interesting aspect is that these limits barely depend on the details of cosmic-ray propagation in the weak reacceleration case, a configuration which seems to be favored by the most recent B/C data. Though extracted from a completely different and new probe, these bounds have a strength similar to those obtained with the cosmic microwave background-they are even more stringent for p-wave annihilation.

  19. Dual-isotope PET using positron-gamma emitters.

    PubMed

    Andreyev, A; Celler, A

    2011-07-21

    Positron emission tomography (PET) is widely recognized as a highly effective functional imaging modality. Unfortunately, standard PET cannot be used for dual-isotope imaging (which would allow for simultaneous investigation of two different biological processes), because positron-electron annihilation products from different tracers are indistinguishable in terms of energy. Methods that have been proposed for dual-isotope PET rely on differences in half-lives of the participating isotopes; these approaches, however, require making assumptions concerning kinetic behavior of the tracers and may not lead to optimal results. In this paper we propose a novel approach for dual-isotope PET and investigate its performance using GATE simulations. Our method requires one of the two radioactive isotopes to be a pure positron emitter and the second isotope to emit an additional high-energy gamma in a cascade simultaneously with positron emission. Detection of this auxiliary prompt gamma in coincidence with the annihilation event allows us to identify the corresponding 511 keV photon pair as originating from the same isotope. Two list-mode datasets are created: a primary dataset that contains all detected 511 keV photon pairs from both isotopes, and a second, tagged (much smaller) dataset that contains only those PET events for which a coincident prompt gamma has also been detected. An image reconstructed from the tagged dataset reflects the distribution of the second positron-gamma radiotracer and serves as a prior for the reconstruction of the primary dataset. Our preliminary simulation study with partially overlapping (18)F/(22)Na and (18)F/(60)Cu radiotracer distributions showed that in these two cases the dual-isotope PET method allowed for separation of the two activity distributions and recovered total activities with relative errors of about 5%.

  20. Defect mediated ferromagnetism in Ni-doped ZnO nanocrystals evidenced by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Yuan; Chen, Z. Q.; Zou, B.; Zhao, X. G.; Tang, Z.; Wang, S. J.

    2012-10-01

    NiO/ZnO nanocomposites with NiO content of 4 at. % and 20 at. % were annealed up to 1200 °C to get Ni doped ZnO nanocrystals. Raman scattering spectra illustrate a broad and strong band at 500-600cm-1 in all nanocomposites after annealing above 700 °C, which suggests incorporation of Ni in the ZnO lattice. However, x-ray diffraction measurements show that NiO phase can be still observed in all nanocomposites after annealing, which indicates that Ni is partially doped into the ZnO structure. Positron annihilation measurements reveal large number of vacancy defects in the interface region of all nanocomposites, and they are gradually recovered with increasing annealing temperature up to 1000 °C. Room temperature ferromagnetism can be observed in the NiO/ZnO nanocomposites, which is stronger in the 20 at. % NiO/ZnO nanocomposites, and the magnetization decreases continuously with increasing annealing temperature. This indicates that the ferromagnetism at low annealing temperatures originates from the NiO nanograins, and they become antiferromanetic after subsequent higher temperature annealing which leads to the weakening of ferromagnetism. After annealing up to 1000 °C, the ferromagnetism in both the two samples becomes nearly invisible. The disappearance of ferromagnetism shows good coincidence with the recovery of vacancy defects in NiO/ZnO nanocomposites. It can be inferred that the ferromagnetism is mediated by vacancy defects which are distributed in the interface region.

  1. Positron kinetics in an idealized PET environment

    PubMed Central

    Robson, R. E.; Brunger, M. J.; Buckman, S. J.; Garcia, G.; Petrović, Z. Lj.; White, R. D.

    2015-01-01

    The kinetic theory of non-relativistic positrons in an idealized positron emission tomography PET environment is developed by solving the Boltzmann equation, allowing for coherent and incoherent elastic, inelastic, ionizing and annihilating collisions through positronium formation. An analytic expression is obtained for the positronium formation rate, as a function of distance from a spherical source, in terms of the solutions of the general kinetic eigenvalue problem. Numerical estimates of the positron range - a fundamental limitation on the accuracy of PET, are given for positrons in a model of liquid water, a surrogate for human tissue. Comparisons are made with the ‘gas-phase’ assumption used in current models in which coherent scattering is suppressed. Our results show that this assumption leads to an error of the order of a factor of approximately 2, emphasizing the need to accurately account for the structure of the medium in PET simulations. PMID:26246002

  2. Spectroscopic, Elemental and Thermal Analysis, and Positron Annihilation Studies on Ca(II), Sr(II), Ba(II), Pb(II), and Fe(III) Penicillin G Potassium Complexes

    NASA Astrophysics Data System (ADS)

    Refat, M. S.; Sharshara, T.

    2015-11-01

    The [Pb(Pin)2] · 3H2O, [M(Pin)(H2O)2(Cl)] · nH2O (M = SrII, CaII or BaII; n = 0-1), and [Fe(Pin)2(Cl)(H2O)] · H2O penicillin G potassium (Pin) complexes were synthesized and characterized using elemental analyses, molar conductivity, thermal analysis and electronic spectroscopy techniques. The positron annihilation lifetime (PAL) and Doppler broadening (DB) techniques have been employed to probe the defects and structural changes of Pin ligand and its complexes. The PAL and DB line-shape parameters were discussed in terms of the structure, molecular weight, ligand-metal molar ratio, and other properties of the Pin complexes.

  3. Positron trapping at defects in copper oxide superconductors

    NASA Astrophysics Data System (ADS)

    McMullen, T.; Jena, P.; Khanna, S. N.; Li, Yi; Jensen, Kjeld O.

    1991-05-01

    Positron states and lifetimes at defects in the copper oxide superconductors La2-xSrxCuO4, YBa2Cu3O7-x, and Bi2Sr2CaCu2O8+x are calculated with use of the superposed-atom model. In the Bi2Sr2CaCu2O8+x compound, we find that the smaller metal-ion vacancies appear to only bind positrons weakly, while missing oxygens do not trap positrons. In contrast, metal-ion vacancies in La2-xSrxCuO4 and YBa2Cu3O7-x bind positrons by ~1 eV, and oxygen-related defects appear to be the weak-binding sites in these materials. The sites that bind positrons only weakly, by energies ~kBT, are of particular interest in view of the complex temperature dependences of the annihilation characteristics that are observed in these materials.

  4. Present and future experiments using bright low-energy positron beams

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, Christoph

    2017-01-01

    Bright slow positron beams enable not only experiments with drastically reduced measurement time and improved signal-to-noise ratio but also the realization of novel experimental techniques. In solid state physics and materials science positron beams are usually applied for the depth dependent analysis of vacancy-like defects and their chemical surrounding using positron lifetime and (coincident) Doppler broadening spectroscopy. For surface studies, annihilation induced Auger-electron spectroscopy allows the analysis of the elemental composition in the topmost atomic layer, and the atomic positions at the surface can be determined by positron diffraction with outstanding accuracy. In fundamental research low-energy positron beams are used for the production of e.g. cold positronium or positronium negative ions. All the aforementioned experiments benefit from the high intensity of present positron beam facilities. In this paper, we scrutinize the technical constraints limiting the achievable positron intensity and the available kinetic energy at the sample position. Current efforts and future developments towards the generation of high intensity spin-polarized slow positron beams paving the way for new positron experiments are discussed.

  5. Development of a Simple Positron Age-Momentum Setup

    NASA Astrophysics Data System (ADS)

    Sheffield, Thomas; Quarles, C. A.

    2009-04-01

    A positron age-momentum setup that uses NIM Bin electronic modules and a conventional multichannel analyzer (MCA) is described. The essential idea is to accumulate a Doppler broadened spectrum (sensitive to the annihilation electron momentum) using a high purity Germanium detector in coincidence with a BaF2 scintillation counter, which also serves as the stop signal in a conventional positron lifetime setup. The MCA that collects the Doppler spectrum is gated by a selected region of the lifetime spectrum. Thus we can obtain Doppler broadening spectra as a function of positron lifetime: an age-momentum spectrum. The apparatus has been used so far to investigate a ZnO sample where the size of different vacancy trapping sites may affect the positron lifetime and the Doppler broadening spectrum. We are also looking at polymer and rubber carbon-black composite samples where differences in the Doppler spectrum may arise from positron trapping or positronium formation in the samples. Correction for background and contribution from the positron source itself to the Doppler spectrum will be discussed.

  6. Positrons from quantum evaporation of primordial black-holes

    NASA Technical Reports Server (NTRS)

    Durouchoux, P.; Wallyn, P.; Dubus, G.

    1997-01-01

    The unconfirmed prediction of quantum evaporation of primordial black holes (PBHs) is considered together with the related unanswered questions of whether PBHs ever existed and whether any could still exist. The behavior of the positrons from PHBs is modeled in relation to three facts. Firstly, the integrated emitted number spectrum of positrons is six to eight times larger than that of photons. Secondly, positrons emitted from PBHs lose energy and annihilate, producing a prominent line at 511 keV which is redshifted by the expansion of the universe. Thirdly, these photons may be detectable in the X-ray and low gamma ray energy ranges. The model predicts a flux which is significantly inferior to the instrument sensitivities of the foreseeable future.

  7. A field-assisted moderator for low-energy positron beams

    NASA Astrophysics Data System (ADS)

    Beling, C. D.; Simpson, R. I.; Charlton, M.; Jacobsen, F. M.; Griffith, T. C.; Moriarty, P.; Fung, S.

    1987-01-01

    A new positron field-assisted (FA) moderator based on the drift of positrons across a cooled silicon crystal is proposed. Using estimates for both the β + implantation profile and attainable drift velocities, the efficiency of drift to a slow e+ emitting surface is calculated using a diffusion equation which incorporates terms describing positron drift and annihilation. It is conjectured that efficiencies of up to 10% can be achieved. The use of epitaxially grown metallic suicide contacts to facilitate the application of the electric field is described and the consequences of using such contacts are fully discussed. Applications of the FA transmission mode moderator described here to produce timed brightness enhanced beams are briefly discussed.

  8. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Tongjun; Shen, Baifei, E-mail: bfshen@mail.shcnc.ac.cn; Xu, Jiancai, E-mail: jcxu@siom.ac.cn

    Experimental generation of ultrashort MeV positron beams with high intensity and high density using a compact laser-driven setup is reported. A high-density gas jet is employed experimentally to generate MeV electrons with high charge; thus, a charge-neutralized MeV positron beam with high density is obtained during laser-accelerated electrons irradiating high-Z solid targets. It is a novel electron–positron source for the study of laboratory astrophysics. Meanwhile, the MeV positron beam is pulsed with an ultrashort duration of tens of femtoseconds and has a high peak intensity of 7.8 × 10{sup 21} s{sup −1}, thus allows specific studies of fast kinetics in millimeter-thick materials withmore » a high time resolution and exhibits potential for applications in positron annihilation spectroscopy.« less

  9. First-cycle defect evolution of Li1-xNi1/3Mn1/3Co1/3O2 lithium ion battery electrodes investigated by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Seidlmayer, Stefan; Buchberger, Irmgard; Reiner, Markus; Gigl, Thomas; Gilles, Ralph; Gasteiger, Hubert A.; Hugenschmidt, Christoph

    2016-12-01

    In this study the structure and evolution of vacancy type defects in lithium ion batteries are investigated in respect of crystallographic properties. The relation between positron annihilation and electronic structure is discussed in terms of structural dynamics during the lithiation process. Samples of Li1-xNi1/3Mn1/3Co1/3O2 (NMC-111) electrodes with decreasing lithium content (x = 0-0.7) covering the whole range of state of charge were electrochemically prepared for the non-destructive analysis using positron coincidence Doppler broadening spectroscopy (CDBS). The positron measurements allowed us to observe the evolution of the defect structure caused by the delithiation process in the NMC-111 electrodes. The combination of CDBS with X-ray diffraction for the characterization of the lattice structures enabled the analysis of the well-known kinetic-hindrance-effect in the first charge-discharge cycle and possible implications of vacancy ordering. In particular, CDBS revealed the highest degree of relithiation after discharge to 3.0 V at 55 °C. For the first time, we report on the successful application of CDBS on NMC-111 electrodes yielding new insights in the important role of defects caused by the delithiation process and the kinetic hindrance effect.

  10. Physics and applications of positron beams in an integrated PET/MR.

    PubMed

    Watson, Charles C; Eriksson, Lars; Kolb, Armin

    2013-02-07

    In PET/MR systems having the PET component within the uniform magnetic field interior to the MR, positron beams can be injected into the PET field of view (FOV) from unshielded emission sources external to it, as a consequence of the action of the Lorentz force on the transverse components of the positron's velocity. Such beams may be as small as a few millimeters in diameter, but extend 50 cm or more axially without appreciable divergence. Larger beams form 'phantoms' of annihilations in air that can be easily imaged, and that are essentially free of γ-ray attenuation and scatter effects, providing a unique tool for characterizing PET systems and reconstruction algorithms. Thin targets intersecting these beams can produce intense annihilation sources having the thickness of a sheet of paper, which are very useful for high resolution measurements, and difficult to achieve with conventional sources. Targeted beams can provide other point, line and surface sources for various applications, all without the need to have radioactivity within the FOV. In this paper we discuss the physical characteristics of positron beams in air and present examples of their applications.

  11. The multi-scattering model for calculations of positron spatial distribution in the multilayer stacks, useful for conventional positron measurements

    NASA Astrophysics Data System (ADS)

    Dryzek, Jerzy; Siemek, Krzysztof

    2013-08-01

    The spatial distribution of positrons emitted from radioactive isotopes into stacks or layered samples is a subject of the presented report. It was found that Monte Carlo (MC) simulations using GEANT4 code are not able to describe correctly the experimental data of the positron fractions in stacks. The mathematical model was proposed for calculations of the implantation profile or positron fractions in separated layers or foils being components of a stack. The model takes into account only two processes, i.e., the positron absorption and backscattering at interfaces. The mathematical formulas were applied in the computer program called LYS-1 (layers profile analysis). The theoretical predictions of the model were in the good agreement with the results of the MC simulations for the semi infinite sample. The experimental verifications of the model were performed on the symmetrical and non-symmetrical stacks of different foils. The good agreement between the experimental and calculated fractions of positrons in components of a stack was achieved. Also the experimental implantation profile obtained using the depth scanning of positron implantation technique is very well described by the theoretical profile obtained within the proposed model. The LYS-1 program allows us also to calculate the fraction of positrons which annihilate in the source, which can be useful in the positron spectroscopy.

  12. Manipulation of positron orbits in a dipole magnetic field with fluctuating electric fields

    NASA Astrophysics Data System (ADS)

    Saitoh, H.; Horn-Stanja, J.; Nißl, S.; Stenson, E. V.; Hergenhahn, U.; Pedersen, T. Sunn; Singer, M.; Dickmann, M.; Hugenschmidt, C.; Stoneking, M. R.; Danielson, J. R.; Surko, C. M.

    2018-01-01

    We report the manipulation of positron orbits in a toroidal dipole magnetic field configuration realized with electric fields generated by segmented electrodes. When the toroidal circulation motion of positrons in the dipole field is coupled with time-varying electric fields generated by azimuthally segmented outer electrodes, positrons undergo oscillations of their radial positions. This enables quick manipulation of the spatial profiles of positrons in a dipole field trap by choosing appropriate frequency, amplitude, phase, and gating time of the electric fields. According to numerical orbit analysis, we applied these electric fields to positrons injected from the NEPOMUC slow positron facility into a prototype dipole field trap experiment with a permanent magnet. Measurements with annihilation γ-rays clearly demonstrated the efficient compression effects of positrons into the strong magnetic field region of the dipole field configuration. This positron manipulation technique can be used as one of essential tools for future experiments on the formation of electron-positron plasmas.

  13. Free volume of mixed cation borosilicate glass sealants elucidated by positron annihilation lifetime spectroscopy and its correlation with glass properties

    NASA Astrophysics Data System (ADS)

    Ojha, Prasanta K.; Rath, Sangram K.; Sharma, Sandeep K.; Sudarshan, Kathi; Pujari, Pradeep K.; Chongdar, Tapas K.; Gokhale, Nitin M.

    2015-01-01

    The role of La+3/Sr+2 ratios, which is varied from 0.08 to 5.09, on density, molar volume, packing fraction, free volume, thermal and electrical properties in strontium lanthanum aluminoborosilicate based glass sealants intended for solid oxide fuel cell (SOFC) applications is evaluated. The studies reveal expansion of the glass network evident from increasing molar volume and decreasing packing fraction of glasses with progressive La+3 substitutions. The molecular origin of these macroscopic structural features can be accounted for by the free volume parameters measured from positron annihilation lifetime spectroscopy (PALS). The La+3 induced expanded glass networks show increased number of subnanoscopic voids with larger sizes, as revealed from the ortho-positronium (o-Ps) lifetime and its intensity. A remarkably direct correspondence between the molar volume and fractional free volume trend is established with progressive La2O3 substitution in the glasses. The effect of these structural changes on the glass transition temperature, softening temperature, coefficient of thermal expansion, thermal stability as well as electrical conductivity has been studied.

  14. Surface and bulk investigations at the high intensity positron beam facility NEPOMUC

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.; Dollinger, G.; Egger, W.; Kögel, G.; Löwe, B.; Mayer, J.; Pikart, P.; Piochacz, C.; Repper, R.; Schreckenbach, K.; Sperr, P.; Stadlbauer, M.

    2008-10-01

    The NEutron-induced POsitron source MUniCh (NEPOMUC) at the research reactor FRM II delivers a low-energy positron beam ( E = 15-1000 eV) of high intensity in the range between 4 × 10 7 and 5 × 10 8 moderated positrons per second. At present four experimental facilities are in operation at NEPOMUC: a coincident Doppler-broadening spectrometer (CDBS) for defect spectroscopy and investigations of the chemical vicinity of defects, a positron annihilation-induced Auger-electron spectrometer (PAES) for surface studies and an apparatus for the production of the negatively charged positronium ion Ps -. Recently, the pulsed low-energy positron system (PLEPS) has been connected to the NEPOMUC beam line, and first positron lifetime spectra were recorded within short measurement times. A positron remoderation unit which is operated with a tungsten single crystal in back reflection geometry has been implemented in order to improve the beam brilliance. An overview of NEPOMUC's status, experimental results and recent developments at the running spectrometers are presented.

  15. Development of a Slow Positron Facility at Hebrew University of Jerusalem

    NASA Astrophysics Data System (ADS)

    Kelleher, Aidan

    2013-03-01

    Positron annihilation spectroscopy provides both depth of penetration to study bulk defects in materials as well as nano-scale resolution. This measurement range is achieved by slowing positrons from a radioactive source, typically 22Na, by sending them through a moderator, typically W or solid Ne. The nearly thermal positrons are then accelerated to the desired energy by means of an electrostatic potential. The SPOT project at The Hebrew University of Jerusalem proposes to increase the luminosity of the beam by applying the best practices currently in us, as well as using a short-lived source of positrons, 18F. Simulations based on our current designs indicate this project will be able to deliver positrons in the energy range of 50-50000eV with an energy resolution of 1eV is possible. We will present the unique technical challenges of using this source of positrons, how we plan to overcome them, the results of simulations, and facility construction progress.

  16. Improving depth resolutions in positron beam spectroscopy by concurrent ion-beam sputtering

    NASA Astrophysics Data System (ADS)

    John, Marco; Dalla, Ayham; Ibrahim, Alaa M.; Anwand, Wolfgang; Wagner, Andreas; Böttger, Roman; Krause-Rehberg, Reinhard

    2018-05-01

    The depth resolution of mono-energetic positron annihilation spectroscopy using a positron beam is shown to improve by concurrently removing the sample surface layer during positron beam spectroscopy. During ion-beam sputtering with argon ions, Doppler-broadening spectroscopy is performed with energies ranging from 3 keV to 5 keV allowing for high-resolution defect studies just below the sputtered surface. With this technique, significantly improved depth resolutions could be obtained even at larger depths when compared to standard positron beam experiments which suffer from extended positron implantation profiles at higher positron energies. Our results show that it is possible to investigate layered structures with a thickness of about 4 microns with significantly improved depth resolution. We demonstrated that a purposely generated ion-beam induced defect profile in a silicon sample could be resolved employing the new technique. A depth resolution of less than 100 nm could be reached.

  17. A modular positron camera for the study of industrial processes

    NASA Astrophysics Data System (ADS)

    Leadbeater, T. W.; Parker, D. J.

    2011-10-01

    Positron imaging techniques rely on the detection of the back-to-back annihilation photons arising from positron decay within the system under study. A standard technique, called positron emitting particle tracking (PEPT) [1], uses a number of these detected events to rapidly determine the position of a positron emitting tracer particle introduced into the system under study. Typical applications of PEPT are in the study of granular and multi-phase materials in the disciplines of engineering and the physical sciences. Using components from redundant medical PET scanners a modular positron camera has been developed. This camera consists of a number of small independent detector modules, which can be arranged in custom geometries tailored towards the application in question. The flexibility of the modular camera geometry allows for high photon detection efficiency within specific regions of interest, the ability to study large and bulky systems and the application of PEPT to difficult or remote processes as the camera is inherently transportable.

  18. Antimatter cosmic rays from dark matter annihilation: First results from an N-body experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavalle, J.; Nezri, E.; Athanassoula, E.

    2008-11-15

    While the particle hypothesis for dark matter may be very soon investigated at the LHC, and as the PAMELA and GLAST satellites are currently taking new data on charged and gamma cosmic rays, the need of controlling the theoretical uncertainties affecting the possible indirect signatures of dark matter annihilation is of paramount importance. The uncertainties which originate from the dark matter distribution are difficult to estimate because current astrophysical observations provide rather weak dynamical constraints and because, according to cosmological N-body simulations, dark matter is neither smoothly nor spherically distributed in galactic halos. Some previous studies made use of N-bodymore » simulations to compute the {gamma}-ray flux from dark matter annihilation, but such a work has never been performed for the antimatter (positron and antiproton) primary fluxes, for which transport processes complicate the calculations. We take advantage of the galaxylike 3D dark matter map extracted from the Horizon Project results to calculate the positron and antiproton fluxes from dark matter annihilation, in a model-independent approach as well as for dark matter particle benchmarks relevant at the LHC scale (from supersymmetric and extradimensional theories). We find that the flux uncertainties arise mainly from fluctuations of the local dark matter density, and are of {approx}1 order of magnitude. We compare our results to analytic descriptions of the dark matter halo, showing how the latter can well reproduce the former. The overall antimatter predictions associated with our benchmark models are shown to lie far below the existing measurements and, in particular, that of the positron fraction recently reported by PAMELA, and far below the background predictions as well. Finally, we stress the limits of the use of an N-body framework in this context.« less

  19. Possible detection of flare-generated positrons by Helios 1 on 3 Jun 1982

    NASA Technical Reports Server (NTRS)

    Kirsch, E.; Keppler, E.; Richter, K.

    1985-01-01

    The production of neutrons and gamma-ray lines by solar particles in the photosphere has been studied. The principal positron emiters which lead to the 0.51 MeV gamma-line are C-11 0-14, 0-15, N-13, Ne-19. The energies of the positrons form radioactive nuclei are of the order of few hundred keV. Positrons resulting from the pi(+) decay have energies of approx 10-100 MeV and cannot be measured by the MPAe-detector. Most of the positrons annihilate in the photosphere. A fraction however should be able to escape into the interplanetary space. Proton, electron and , for the first time, positron measurements (E = 152-546 keV) obtained by the MPAe-particle detector on board of Helios 1 are presented.

  20. Pair annihilation into neutrinos in strong magnetic fields.

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Fassio-Canuto, L.

    1973-01-01

    Among the processes that are of primary importance for the thermal history of a neutron star is electron-positron annihilation into neutrinos and photoneutrinos. These processes are computed in the presence of a strong magnetic field typical of neutron stars, and the results are compared with the zero-field case. It is shown that the neutrino luminosity Q(H) is greater than Q(O) for temperatures up to T about equal to 3 x 10 to the 8th power K and densities up to 1,000,000 g/cu cm.

  1. The pinching method for Galactic cosmic ray positrons: Implications in the light of precision measurements

    NASA Astrophysics Data System (ADS)

    Boudaud, M.; Bueno, E. F.; Caroff, S.; Genolini, Y.; Poulin, V.; Poireau, V.; Putze, A.; Rosier, S.; Salati, P.; Vecchi, M.

    2017-09-01

    Context. Two years ago, the Ams-02 collaboration released the most precise measurement of the cosmic ray positron flux. In the conventional approach, in which positrons are considered as purely secondary particles, the theoretical predictions fall way below the data above 10 GeV. One suggested explanation for this anomaly is the annihilation of dark matter particles, the so-called weakly interactive massive particles (WIMPs), into standard model particles. Most analyses have focused on the high-energy part of the positron spectrum, where the anomaly lies, disregarding the complicated GeV low-energy region where Galactic cosmic ray transport is more difficult to model and solar modulation comes into play. Aims: Given the high quality of the latest measurements by Ams-02, it is now possible to systematically re-examine the positron anomaly over the entire energy range, this time taking into account transport processes so far neglected, such as Galactic convection or diffusive re-acceleration. These might impact somewhat on the high-energy positron flux so that a complete and systematic estimate of the secondary component must be performed and compared to the Ams-02 measurements. The flux yielded by WIMPs also needs to be re-calculated more accurately to explore how dark matter might source the positron excess. Methods: We devise a new semi-analytical method to take into account transport processes thus far neglected, but important below a few GeV. It is essentially based on the pinching of inverse Compton and synchrotron energy losses from the magnetic halo, where they take place, inside the Galactic disc. The corresponding energy loss rate is artificially enhanced by the so-called pinching factor, which needs to be calculated at each energy. We have checked that this approach reproduces the results of the Green function method at the per mille level. This new tool is fast and allows one to carry out extensive scans over the cosmic ray propagation parameters. Results

  2. Evaluation of ion-implanted-silicon detectors for use in intraoperative positron-sensitive probes.

    PubMed

    Raylman, R R; Wahl, R L

    1996-11-01

    The continuing development of probes for use with beta (positron and electron) emitting radionuclides may result in more complete excision of tracer-avid tumors. Perhaps one of the most promising radiopharmaceuticals for this task is 18F-labeled-Fluoro-2-Deoxy-D-Glucose (FDG). This positron-emitting agent has been demonstrated to be avidly and rapidly absorbed by many human cancers. We have investigated the use of ion-implanted-silicon detectors in intraoperative positron-sensitive surgical probes for use with FDG. These detectors possess very high positron detection efficiency, while the efficiency for 511 keV photon detection is low. The spatial resolution, as well as positron and annihilation photon detection sensitivity, of an ion-implanted-silicon detector used with 18F was measured at several energy thresholds. In addition, the ability of the device to detect the presence of relatively small amounts of FDG during surgery was evaluated by simulating a surgical field in which some tumor was left intact following lesion excision. The performance of the ion-implanted-silicon detector was compared to the operating characteristics of a positron-sensitive surgical probe which utilizes plastic scintillator. In all areas of performance the ion-implanted-silicon detector proved superior to the plastic scintillator-based probe. At an energy threshold of 14 keV positron sensitivity measured for the ion-implanted-silicon detector was 101.3 cps/kBq, photon sensitivity was 7.4 cps/kBq. In addition, spatial resolution was found to be relatively unaffected by the presence of distant sources of annihilation photon flux. Finally, the detector was demonstrated to be able to localize small amounts of FDG in a simulated tumor bed; indicating that this device has promise as a probe to aid in FDG-guided surgery.

  3. Correlation of Gas Permeability in a Metal-Organic Framework MIL-101(Cr)–Polysulfone Mixed-Matrix Membrane with Free Volume Measurements by Positron Annihilation Lifetime Spectroscopy (PALS)

    PubMed Central

    Jeazet, Harold B. Tanh; Koschine, Tönjes; Staudt, Claudia; Raetzke, Klaus; Janiak, Christoph

    2013-01-01

    Hydrothermally stable particles of the metal-organic framework MIL-101(Cr) were incorporated into a polysulfone (PSF) matrix to produce mixed-matrix or composite membranes with excellent dispersion of MIL-101 particles and good adhesion within the polymer matrix. Pure gas (O2, N2, CO2 and CH4) permeation tests showed a significant increase of gas permeabilities of the mixed-matrix membranes without any loss in selectivity. Positron annihilation lifetime spectroscopy (PALS) indicated that the increased gas permeability is due to the free volume in the PSF polymer and the added large free volume inside the MIL-101 particles. The trend of the gas transport properties of the composite membranes could be reproduced by a Maxwell model. PMID:24957061

  4. Positron Annihilation Gamma Ray Lineshape Studies of Defects in Solids.

    DTIC Science & Technology

    1980-06-24

    of R. Waki in the development of anneal probably polygonized the zinc more completely the computer programs and for other experimental than did the...positron lifetime measurements. The assistance of R. Waki was greatly appreciated. References /1/ B.D. BOGGS and J.G. BYRNE, Metallurg.Trans. 4, 2153

  5. Characterization of free volume during vulcanization of styrene butadiene rubber by means of positron annihilation lifetime spectroscopy and dynamic mechanical test.

    PubMed

    Marzocca, A J; Cerveny, S; Salgueiro, W; Somoza, A; Gonzalez, L

    2002-02-01

    An experimental investigation was performed to study the effect on the free volume of the advance of the cross-linking reaction in a copolymer of styrene butadiene rubber by sulfur vulcanization. The dynamic modulus and loss tangent were evaluated over samples cured for different times at 433 K by dynamic mechanical tests over a range of frequencies between 5 and 80 Hz at temperatures between 200 and 300 K. Using the William-Landel-Ferry relationship, master curves were obtained at a reference temperature of 298 K and the coefficients c(0)(1) and c(0)(2) were evaluated. From these parameters the dependence of the free volume on the cure time is obtained. Positron annihilation lifetime spectroscopy was also used to estimate the size and number density of free volume sites in the material. The spectra were analyzed in terms of continuous distributions of free volume size. The results suggest an increase of the lower free volume size when cross linking takes place. Both techniques give similar results for the dependence of free volume on the time of cure of the polymer.

  6. Evolution of native point defects in ZnO bulk probed by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Peng, Cheng-Xiao; Wang, Ke-Fan; Zhang, Yang; Guo, Feng-Li; Weng, Hui-Min; Ye, Bang-Jiao

    2009-05-01

    This paper studies the evolution of native point defects with temperature in ZnO single crystals by positron lifetime and coincidence Doppler broadening (CDB) spectroscopy, combined with the calculated results of positron lifetime and electron momentum distribution. The calculated and experimental results of the positron lifetime in ZnO bulk ensure the presence of zinc monovacancy, and zinc monovacancy concentration begins to decrease above 600 °C annealing treatment. CDB is an effective method to distinguish the elemental species, here we combine this technique with calculated electron momentum distribution to determine the oxygen vacancies, which do not trap positrons due to their positive charge. The CDB spectra show that oxygen vacancies do not appear until 600 °C annealing treatment, and increase with the increase of annealing temperature. This study supports the idea that green luminescence has a close relation with oxygen vacancies.

  7. Element specificity of ortho-positronium annihilation for alkali-metal loaded SiO2 glasses.

    PubMed

    Sato, K; Hatta, T

    2015-03-07

    Momentum distributions associated with ortho-positronium (o-Ps) pick-off annihilation photon are often influenced by light elements, as, e.g., carbon, oxygen, and fluorine. This phenomenon, so-called element specificity of o-Ps pick-off annihilation, has been utilized for studying the elemental environment around the open spaces. To gain an insight into the element specificity of o-Ps pick-off annihilation, the chemical shift of oxygen 1s binding energy and the momentum distributions associated with o-Ps pick-off annihilation were systematically investigated for alkali-metal loaded SiO2 glasses by means of X-ray photoelectron spectroscopy and positron-age-momentum correlation spectroscopy, respectively. Alkali metals introduced into the open spaces surrounded by oxygen atoms cause charge transfer from alkali metals to oxygen atoms, leading to the lower chemical shift for the oxygen 1s binding energy. The momentum distribution of o-Ps localized into the open spaces is found to be closely correlated with the oxygen 1s chemical shift. This correlation with the deepest 1s energy level evidences that the element specificity of o-Ps originates from pick-off annihilation with orbital electrons, i.e., dominantly with oxygen 2p valence electrons and s electrons with lower probability.

  8. A next generation positron microscope and a survey of candidate samples for future positron studies

    NASA Astrophysics Data System (ADS)

    Dull, Terry Lou

    A positron microscope has been constructed and is nearing the conclusion of its assembly and testing. The instrument is designed to perform positron and electron microscopy in both scanning and magnifying modes. In scanning mode, a small beam of particles is rastered across the target and the amplitude of a positron or electron related signal is recorded as a function of position. For positrons this signal may come from Doppler Broadening Spectroscopy, Reemitted Positron Spectroscopy or Positron Annihilation Lifetime Spectroscopy. For electrons this signal may come from the number of secondary electrons or Auger Electron Spectroscopy. In magnifying mode an incident beam of particles is directed onto the target and emitted particles, either secondary electrons or reemitted positrons, are magnified to form an image. As a positron microscope the instrument will primarily operate in magnifying mode, as a positron reemission microscope. As an electron microscope the instrument will be able to operate in both magnifying and scanning modes. Depth-profiled Doppler Broadening Spectroscopy studies using a non-microscopic low-energy positron beam have also been performed on a series of samples to ascertain the applicability of positron spectroscopies and/or microscopy to their study. All samples have sub-micron film and/or feature size and thus are only susceptible to positron study with low-energy beams. Several stoichiometries and crystallinities of chalcogenide thin films (which can be optically reversibly switched between crystalline states) were studied and a correlation was found to exist between the amorphous/FCC S-parameter difference and the amorphous/FCC switching time. Amorphous silicon films were studied in an attempt to observe the well-established Staebler-Wronski effect as well as the more controversial photodilatation effect. However, DBS was not able to detect either effect. The passive oxide films on titanium and aluminum were studied in an attempt to verify

  9. Experimental and computational studies of positron-stimulated ion desorption from TiO2(1 1 0) surface

    NASA Astrophysics Data System (ADS)

    Yamashita, T.; Hagiwara, S.; Tachibana, T.; Watanabe, K.; Nagashima, Y.

    2017-11-01

    Experimental and computational studies of the positron-stimulated O+ ion desorption process from a TiO2(1 1 0) surface are reported. The measured data indicate that the O+ ion yields depend on the positron incident energy in the energy range between 0.5 keV and 15 keV. This dependence is closely related to the fraction of positrons which diffuse back to the surface after thermalization in the bulk. Based on the experimental and computational results, we conclude that the ion desorption via positron-stimulation occurs dominantly by the annihilation of surface-trapped positrons with core electrons of the topmost surface atoms.

  10. Non-invasive studies of multiphase flow in process equipment. Positron emission particle tracking technique

    NASA Astrophysics Data System (ADS)

    Balakin, B. V.; Adamsen, T. C. H.; Chang, Y.-F.; Kosinski, P.; Hoffmann, A. C.

    2017-01-01

    Positron emission particle tracking (PEPT) is a novel experimental technique for non-invasive inspection of industrial fluid/particle flows. The method is based on the dynamic positioning of a positron-emitting, flowing object (particle) performed through the sensing of annihilation events and subsequent numerical treatment to determine the particle position. The present paper shows an integrated overview of PEPT studies which were carried out using a new PET scanner in the Bergen University Hospital to study multiphase flows in different geometric configurations.

  11. Measurements of Positronium Formation Cross Sections for Positron-Kr, Xe Scattering

    NASA Astrophysics Data System (ADS)

    Kauppila, W. E.; Kwan, C. K.; Li, H.; Stein, T. S.; Zhou, S.

    1997-04-01

    Our experimental approach(S. Zhou et al., Phys. Rev. Lett. 73, 236 (1994).) for measuring Ps formation cross sections (Q_Ps) involves passing a variable energy positron beam through a gas scattering cell and detecting the 511 keV annihilation gamma rays resulting from the decay of para-Ps and from the interaction of ortho-Ps with the walls of the scattering cell. It is found that the Q_Ps curves for both Kr and Xe rise rapidly from their formation threshold energies of 7.2 and 5.3 eV, reach maxima within about 10 eV of their thresholds and then decrease to become rather small (less than 10% of the peak heights) above 100 eV. At the maxima Q_Ps accounts for more than 50% of the total scattering cross sections. There is some evidence of possible small scale structure in the Q_Ps curves between 10 and 100 eV. The present results are consistent with the prior measurements of Diana et al.( L.M. Diana et al., in "Atomic Physics with Positrons", edited by J.W. Humberston and E.A.G. Armour (Plenum, New York and London, 1987), p. 55; and in "Positron Annihilation", edited by L. Dorikens-Vanpraet et al. (World Scientific, Singapore, 1989), p. 311.) from near threshold to 70 eV for Kr and from 15 to 100 eV for Xe.

  12. The suppression of pulsar and gamma-ray burst annihilation lines by magnetic photon splitting

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    1993-01-01

    Neutron stars, relativistic and compact by nature, show great potential for the copious creation of electron-positron pairs in the magnetospheres; these rapidly cool, thermalize, and then annihilate. It is therefore expected that many neutron sources might display evidence of pair annihilation lines in the 400-500 keV range. It is shown that magnetic photon splitting, which operates effectively at these energies and in the enormous neutron star magnetic fields, can destroy an annihilation feature by absorbing line photons and reprocessing them to lower energies. In so doing, photon splitting creates a soft gamma-ray bump and a broad quasi-power-law contribution to the X-ray continuum, which is too flat to conflict with the observed X-ray paucity in gamma-ray bursts. The destruction of the line occurs in neutron stars with surface fields of 5 x 10 exp 12 G or maybe even less, depending on the size of the emission region.

  13. Defect characterization in Mg-doped GaN studied using a monoenergetic positron beam

    NASA Astrophysics Data System (ADS)

    Uedono, A.; Ishibashi, S.; Tenjinbayashi, K.; Tsutsui, T.; Nakahara, K.; Takamizu, D.; Chichibu, S. F.

    2012-01-01

    Vacancy-type defects in Mg-doped GaN grown by metalorganic vapor phase epitaxy were probed using a monoenergetic positron beam. For a sample fabricated with a high H2-flow rate, before post-growth annealing the major defect species detected by positrons was identified as vacancy-clusters. Evidence suggested that other donor-type defects such as nitrogen vacancies also existed. The defects increased the Fermi level position, and enhanced the diffusion of positrons toward the surface. The annihilation of positrons at the top surface was suppressed by Mg-doping. This was attributed to the introduction of a subsurface layer (<6 nm) with a low defect concentration, where the Fermi level position was considered to decrease due to partial activation of Mg. For samples after annealing, the trapping of positrons by residual vacancy-type defects was observed, and the sample crystal quality was found to depend on that before annealing.

  14. Slow positron beam production by a 14 MeV C.W. electron accelerator

    NASA Astrophysics Data System (ADS)

    Begemann, M.; Gräff, G.; Herminghaus, H.; Kalinowsky, H.; Ley, R.

    1982-10-01

    A 14 MeV c.w. electron accelerator is used for pair production in a tungsten target of 0.7 radiation lengths thickness. A small fraction of the positrons is thermalized and diffuses out of the surface ofsurface of a well annealed tungsten foil coated with MgO which is positioned immediately behind the target. The slow positrons are extracted from the target region and magnetically guided over a distance of 10 m onto a channelplate multiplier at the end of an S-shaped solenoid. The positrons are identified by their annihilation radiation using two NaI-detectors. The intensity of the slow positrons is proportional to the accelerator electron beam current. The maximum intensity of 2.2 × 10 5 slow positrons per second reaching thedetector at an accelerator current of 15 μA was limited by the power deposited in the uncooled target. The energy of the positrons is concentrated in a small region at about 1 eV and clearly demonstrates the emission of thermal positrons.

  15. Theoretical aspects of studies of high coverage oxidation of the Cu(100) surface using low energy positrons

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Maddox, W. B.

    2010-10-01

    The study of adsorption of oxygen on transition metal surface is important for the understanding of oxidation, heterogeneous catalysis, and metal corrosion. The structures formed on transition metal surfaces vary from simple adlayers of chemisorbed oxygen to oxygen diffusion into the sub-surface region and the formation of oxides. In this work we present the results of an ab-initio investigation of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. Calculations are performed for various high coverage missing row structures ranging between 0.50 and 1.50 ML oxygen coverage. Calculations are also performed for the on-surface adsorption of oxygen on the unreconstructed Cu(001) surface for coverages up to one monolayer to use for comparison. The geometry of the surfaces with adsorbed oxygen is fully optimized. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy.

  16. The scattering of low energy positrons by helium

    NASA Technical Reports Server (NTRS)

    Humberston, J. W.

    1973-01-01

    Kohn's variational method is used to calculate the positron-helium scattering length and low energy S-wave phase shifts for a quite realistic Hylleraas type of helium function containing an electron-electron correlation term. The zero energy wavefunction is used to calculate the value of the annihilation rate parameter Z sub eff. All the results are significantly different from those for Drachman's helium model B, but are in better agreement with the available experimental data.

  17. High sensitivity of positrons to oxygen vacancies and to copper-oxygen chain disorder in YBa2Cu3O(7-x)

    NASA Astrophysics Data System (ADS)

    von Stetten, E. C.; Berko, S.; Li, X. S.; Lee, R. R.; Brynestad, J.

    1988-05-01

    Temperature-dependent positron-electron momentum densities have been studied by two-dimensional angular correlation of annihilation radiation from 10 to 320 K in YBa2Cu3O(7-x) samples. The positron ground-state charge density, computed by the linearized augmented-plane-wave method, indicates that in YBa2Cu3O7 delocalized positrons sample preferentially the linear copper-oxygen chains. Positron localization due to disorder in these chains is invoked to explain the striking differences observed between superconducting (x = about 0.02) and nonsuperconducting (x = about 0.70) samples.

  18. Bulk Fermi surface and momentum density in heavily doped La2-xSrxCuO4 using high-resolution Compton scattering and positron annihilation spectroscopies

    NASA Astrophysics Data System (ADS)

    Al-Sawai, W.; Barbiellini, B.; Sakurai, Y.; Itou, M.; Mijnarends, P. E.; Markiewicz, R. S.; Kaprzyk, S.; Wakimoto, S.; Fujita, M.; Basak, S.; Lin, H.; Wang, Yung Jui; Eijt, S. W. H.; Schut, H.; Yamada, K.; Bansil, A.

    2012-03-01

    We have observed the bulk Fermi surface (FS) in an overdoped (x=0.3) single crystal of La2-xSrxCuO4 by using Compton scattering. A two-dimensional (2D) momentum density reconstruction from measured Compton profiles yields a clear FS signature in the third Brillouin zone along [100]. The quantitative agreement between density functional theory (DFT) calculations and momentum density experiment suggests that Fermi-liquid physics is restored in the overdoped regime. In particular the predicted FS topology is found to be in good accord with the corresponding experimental data. We find similar quantitative agreement between the measured 2D angular correlation of positron annihilation radiation (2D-ACAR) spectra and the DFT-based computations. However, 2D-ACAR does not give such a clear signature of the FS in the extended momentum space in either the theory or the experiment.

  19. Experimental determination of positron-related surface characteristics of 6H-SiC

    NASA Astrophysics Data System (ADS)

    Nangia, A.; Kim, J. H.; Weiss, A. H.; Brauer, G.

    2002-03-01

    The positron work function of 6H-SiC was determined to be -2.1±0.1 eV from an analysis of the energy spectrum of positrons reemitted from the surface. The positron reemission yield, highest in the sample inserted into vacuum after atmospheric exposure and cleaning with ethanol, was significantly reduced after sputtering with 3 keV, 125 μA min Ne+ ions. The yield was not recovered even after annealing at 900 °C, presumably due to the stability of sputter induced defects. Sputtering at lower energies caused a smaller decrease in the reemission yield that was largely recovered after annealing at 850 °C. Analysis using electron induced Auger electron spectroscopy and positron-annihilation-induced Auger electron spectroscopy indicated that the surface was Si enriched after sputtering and C enriched after subsequent annealing. Values of positron diffusion length and mobility in the unsputtered material were extracted from the dependence of the reemission yield on the beam energy. The application of SiC as a field-assisted positron moderator is discussed.

  20. Electron emission from surfaces resulting from low energy positron bombardment

    NASA Astrophysics Data System (ADS)

    Mukherjee, Saurabh

    Measurements of the secondary electron energy spectra resulting from very low energy positron bombardment of a polycrystalline Au and Cu (100) surfaces are presented that provide evidence for a single step transition from an unbound scattering state to an image potential bound state. The primary positron energy threshold for secondary electron emission and energy cutoff of the positron induced secondary electron energy peak are consistent with an Auger like process in which an incident positron make a transition from a scattering state to a surface-image potential bound while transferring all of the energy difference to an outgoing secondary electron. We term this process: the Auger mediated quantum sticking effect (AQSE). The intensities of the positron induced secondary electron peak are used to estimate the probability of this process as a function of incident positron energy. Positron annihilation induced Auger spectra (PAES) of Cu and Au are presented that are free of all primary beam induced secondary electron background. This background was eliminated by setting the positron beam energy below AQSE threshold. The background free PAES spectra obtained include the first measurements of the low energy tail of CVV Auger transitions all the way down to zero kinetic energy. The integrated intensity of this tail is several times larger than Auger peak itself which provides strong evidence for multi-electron Auger processes.

  1. Characterization of a transmission positron/positronium converter for antihydrogen production

    NASA Astrophysics Data System (ADS)

    Aghion, S.; Amsler, C.; Ariga, T.; Bonomi, G.; Brusa, R. S.; Caccia, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Ereditato, A.; Evans, C.; Ferragut, R.; Fesel, J.; Fontana, A.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Guatieri, F.; Haider, S.; Hinterberger, A.; Holmestad, H.; Kellerbauer, A.; Krasnický, D.; Lagomarsino, V.; Lansonneur, P.; Lebrun, P.; Malbrunot, C.; Mariazzi, S.; Matveev, V.; Mazzotta, Z.; Müller, S. R.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pacifico, N.; Pagano, D.; Penasa, L.; Petracek, V.; Povolo, L.; Prelz, F.; Prevedelli, M.; Ravelli, L.; Resch, L.; Rienäcker, B.; Robert, J.; Røhne, O. M.; Rotondi, A.; Sacerdoti, M.; Sandaker, H.; Santoro, R.; Scampoli, P.; Simon, M.; Smestad, L.; Sorrentino, F.; Testera, G.; Tietje, I. C.; Widmann, E.; Yzombard, P.; Zimmer, C.; Zmeskal, J.; Zurlo, N.; Andersen, S. L.; Chevallier, J.; Uggerhøj, U. I.; Lyckegaard, F.

    2017-09-01

    In this work a characterization study of forward emission from a thin, meso-structured silica positron/positronium (Ps) converter following implantation of positrons in light of possible antihydrogen production is presented. The target consisted of a ∼1 μm thick ultraporous silica film e-gun evaporated onto a 20 nm carbon foil. The Ps formation and emission was studied via Single Shot Positron Annihilation Lifetime Spectroscopy measurements after implantation of pulses with 3 - 4 ·107 positrons and 10 ns temporal width. The forward emission of implanted positrons and secondary electrons was investigated with a micro-channel plate - phosphor screen assembly, connected either to a CCD camera for imaging of the impinging particles, or to a fast photomultiplier tube to extract information about their time of flight. The maximum Ps formation fraction was estimated to be ∼10%. At least 10% of the positrons implanted with an energy of 3.3 keV are forward-emitted with a scattering angle smaller than 50° and maximum kinetic energy of 1.2 keV. At least 0.1-0.2 secondary electrons per implanted positron were also found to be forward-emitted with a kinetic energy of a few eV. The possible application of this kind of positron/positronium converter for antihydrogen production is discussed.

  2. Slow positron beam study of hydrogen ion implanted ZnO thin films

    NASA Astrophysics Data System (ADS)

    Hu, Yi; Xue, Xudong; Wu, Yichu

    2014-08-01

    The effects of hydrogen related defect on the microstructure and optical property of ZnO thin films were investigated by slow positron beam, in combination with x-ray diffraction, infrared and photoluminescence spectroscopy. The defects were introduced by 90 keV proton irradiation with doses of 1×1015 and 1×1016 ions cm-2. Zn vacancy and OH bonding (VZn+OH) defect complex were identified in hydrogen implanted ZnO film by positron annihilation and infrared spectroscopy. The formation of these complexes led to lattice disorder in hydrogen implanted ZnO film and suppressed the luminescence process.

  3. Compact conscious animal positron emission tomography scanner

    DOEpatents

    Schyler, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois; Volkow, Nora

    2006-10-24

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal for an event, generating an address signal representing a detecting channel, generating a detector channel signal including the time and address signals, and generating a composite signal including the channel signal and similarly generated signals. The composite signal includes events from detectors in a block and is serially output. An apparatus that serially transfers annihilation information from a block includes time signal generators for detectors in a block and an address and channel signal generator. The PET scanner includes a ring tomograph that mounts onto a portion of an animal, which includes opposing block pairs. Each of the blocks in a block pair includes a scintillator layer, detection array, front-end array, and a serial encoder. The serial encoder includes time signal generators and an address signal and channel signal generator.

  4. Feasibility study for positron emission mammography.

    PubMed

    Thompson, C J; Murthy, K; Weinberg, I N; Mako, F

    1994-04-01

    A feasibility study is presented for a small, low-cost, dedicated device for positron emission mammography. Two detector arrays above and below the breast would be placed in a conventional mammography unit. These detectors are sensitive to positron annihilation radiation, and are connected to a coincidence circuit and a multiplane image memory. Images of the distribution of positron-emitting isotope are obtained in real time by incrementing the memory location at the intersection of each line of response. Monte Carlo simulations of a breast phantom are compared with actual scans of this phantom in a conventional PET scanner. The simulations and experimental data are used to predict the performance of the proposed system. Spatial resolution experiments using very narrow bismuth germanate BGO crystals suggest that spatial resolutions of about 2 mm should be possible. The efficiency of the proposed device is about ten times that of a conventional brain scanner. The scatter fraction is greater, but the scattered radiation has a very flat distribution. By designing the device to fit in an existing mammography unit, conventional mammograms can be taken after the injection of the radio-pharmaceutical allowing exact registration of the emission and conventional mammographic images.

  5. Answer to Question {number_sign}30 [{open_quote}{open_quote}How are positrons moderated?,{close_quote}{close_quote} Thomas D. Rossing, Am. J. Phys. {bold 63}(12), 1065 (1995)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, M.; Lynn, K.G.

    1996-07-01

    The positrons from {beta}{sup +} decaying sources loss energyat a much faster rate than they annihilate. As the energy of the positrons drops, core excitations, plasmon excitation, electron/hole pair creation, and phonon scattering are the dominant processes of further energy loss.

  6. Positron transport studies at the Au - (InP:Fe) interface

    NASA Astrophysics Data System (ADS)

    Au, H. L.; Lee, T. C.; Beling, C. D.; Fung, S.

    1996-03-01

    Positron mobility and lifetime measurements have been carried out on semi-insulating Fe-doped InP samples with Au contacts used for electric field application. The lifetime measurements, with electric fields directed towards the Au - InP:Fe interface, reveal no component associated with interfacial open-volume sites and thus give no evidence of any positron mobility. The mobility measurements, made using the Doppler-shifted annihilation radiation technique, however, reveal a temperature independent positron mobility of about 0953-8984/8/10/012/img1 in the range 150 - 300 K. These observations, together with results from I - V analysis, are discussed with reference to two possible band-bending schemes. The first, which requires an ionized shallow donor region adjacent to the Au - InP interface, seems less plausible on a number of grounds. In the second, however, an 0953-8984/8/10/012/img2 negative space charge produces an adverse diffusion barrier for positrons approaching the interface together with a non-uniform electric field in the samples capable of explaining the observed mobility results.

  7. High-field penning-malmberg trap: confinement properties and use in positron accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartley, J.H.

    1997-09-01

    This dissertation reports on the development of the 60 kG cryogenic positron trap at Lawrence Livermore National Laboratory, and compares the trap`s confinement properties with other nonneutral plasma devices. The device is designed for the accumulation of up to 2{times}10{sup 9} positrons from a linear-accelerator source. This positron plasma could then be used in Bhabha scattering experiments. Initial efforts at time-of-flight accumulation of positrons from the accelerator show rapid ({approximately}100 ms) deconfinement, inconsistent with the long electron lifetimes. Several possible deconfinement mechanisms have been explored, including annihilation on residual gas, injection heating, rf noise from the accelerator, magnet field curvature,more » and stray fields. Detailed studies of electron confinement demonstrate that the empirical scaling law used to design the trap cannot be extrapolated into the parameter regime of this device. Several possible methods for overcoming these limitations are presented.« less

  8. Vacancy defects in electron-irradiated ZnO studied by Doppler broadening of annihilation radiation

    NASA Astrophysics Data System (ADS)

    Chen, Z. Q.; Betsuyaku, K.; Kawasuso, A.

    2008-03-01

    Vacancy defects in ZnO induced by electron irradiation were characterized by the Doppler broadening of annihilation radiation measurements together with the local density approximation calculations. Zinc vacancies (VZn) are responsible for positron trapping in the as-irradiated state. These are annealed out below 200°C . The further annealing at 400°C results in the formation of secondary defects attributed to the complexes composed of zinc vacancies and zinc antisites (VZn-ZnO) .

  9. Temperature dependence of low-energy positron-induced Auger-electron emission: Evidence for high surface sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, R.; Schwab, A.; Weiss, A.

    1990-08-01

    We report the experimental observation of the temperature dependence of the intensity of low-energy positron-annihilation-induced Auger-electron emission spectroscopy (PAES) from Cu(100). These studies show that the mechanism for stimulating Auger electrons is found to compete with positronium (Ps) emission from a surface. The positrons that induce Auger-electron emission therefore originate from the same surface state from which Ps is thermally desorbed. Hence, PAES should have higher surface sensitivity ({approximately}1 A) relative to conventional methods for generating Auger-electron emission from surfaces ({approximately}5--10 A).

  10. Auger mediated positron sticking on graphene and highly oriented pyrolytic graphite

    NASA Astrophysics Data System (ADS)

    Chirayath, V. A.; Chrysler, M.; McDonald, A.; Lim, Z.; Shastry, K.; Gladen, R.; Fairchild, A.; Koymen, A.; Weiss, A.

    Positron annihilation induced Auger electron spectroscopy (PAES) measurements on 6-8 layers graphene grown on polycrystalline copper and the measurements on a highly oriented pyrolytic graphite (HOPG) sample have indicated the presence of a bound surface state for positrons. Measurements carried out with positrons of kinetic energies lower than the electron work function for graphene or HOPG have shown emission of low energy electrons possible only through the Auger mediated positron sticking (AMPS) process. In this process the positron makes a transition from a positive energy scattering state to a bound surface state. The transition energy is coupled to a valence electron which may then have enough energy to get ejected from the sample surface. The positrons which are bound to surface state are highly localized in a direction perpendicular to surface and delocalized parallel to it which makes this process highly surface sensitive and can thus be used for characterizing graphene or graphite surfaces for open volume defects and surface impurities. The measurements have also shown an extremely large low energy tail for the C KVV Auger transition at 263eV indicative of another physical process for low energy emission. This work was supported by NSF Grant No. DMR 1508719 and DMR 1338130.

  11. On the empirical determination of positron trapping coefficient at nano-scale helium bubbles in steels irradiated in spallation target

    NASA Astrophysics Data System (ADS)

    Krsjak, Vladimir; Kuriplach, Jan; Vieh, Christiane; Peng, Lei; Dai, Yong

    2018-06-01

    In the present work, the specific positron trapping rate of small helium bubbles was empirically derived from positron annihilation lifetime spectroscopy (PALS) and transmission electron microscopy (TEM) studies of Fe9Cr martensitic steels. Both techniques are well known to be sensitive to nanometer-sized helium-filled cavities induced during irradiation in a mixed proton-neutron spectrum of spallation target. Complementary TEM and PALS studies show that positrons are being trapped to these defects at a rate of 1.2 ± 0.8 × 10-14 m3s-1. This suggests that helium bubbles in ferritic/martensitic steels are attractive traps for positrons comparable to mono-vacancies and quantitative analysis of the bubbles by PALS technique is plausible.

  12. Photo-detectors for time of flight positron emission tomography (ToF-PET).

    PubMed

    Spanoudaki, Virginia Ch; Levin, Craig S

    2010-01-01

    We present the most recent advances in photo-detector design employed in time of flight positron emission tomography (ToF-PET). PET is a molecular imaging modality that collects pairs of coincident (temporally correlated) annihilation photons emitted from the patient body. The annihilation photon detector typically comprises a scintillation crystal coupled to a fast photo-detector. ToF information provides better localization of the annihilation event along the line formed by each detector pair, resulting in an overall improvement in signal to noise ratio (SNR) of the reconstructed image. Apart from the demand for high luminosity and fast decay time of the scintillation crystal, proper design and selection of the photo-detector and methods for arrival time pick-off are a prerequisite for achieving excellent time resolution required for ToF-PET. We review the two types of photo-detectors used in ToF-PET: photomultiplier tubes (PMTs) and silicon photo-multipliers (SiPMs) with a special focus on SiPMs.

  13. Photo-Detectors for Time of Flight Positron Emission Tomography (ToF-PET)

    PubMed Central

    Spanoudaki, Virginia Ch.; Levin⋆, Craig S.

    2010-01-01

    We present the most recent advances in photo-detector design employed in time of flight positron emission tomography (ToF-PET). PET is a molecular imaging modality that collects pairs of coincident (temporally correlated) annihilation photons emitted from the patient body. The annihilation photon detector typically comprises a scintillation crystal coupled to a fast photo-detector. ToF information provides better localization of the annihilation event along the line formed by each detector pair, resulting in an overall improvement in signal to noise ratio (SNR) of the reconstructed image. Apart from the demand for high luminosity and fast decay time of the scintillation crystal, proper design and selection of the photo-detector and methods for arrival time pick-off are a prerequisite for achieving excellent time resolution required for ToF-PET. We review the two types of photo-detectors used in ToF-PET: photomultiplier tubes (PMTs) and silicon photo-multipliers (SiPMs) with a special focus on SiPMs. PMID:22163482

  14. Positron annihilation spectroscopic study of high performance semi-interpenetrating network polyimids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, A.K.

    1995-12-01

    Semi-interpenetrating (S-IPN) network polyimids were made from different proportions of LaRC RP46 (a thermosetpolyimid) and LaRC BDTA-ODA (a thermoplastic polyimid). The ultimate goal of this networking is to improve the mechanical properties of the thermoset polyimid. Positron lifetime study was made to calculate lifetime based on second component of the life time spectra and the free volume & microvoid size. All these properties tend to decrease steadily with increasing thermoset content except at the 50 percent thermoset level where these properties show sudden drop. This result contradicts with the initial expectation that the blend properties should change gradually if itmore » were a solid solution of thermoset (TSP) and thermoplastic (TPP) components. Thermal analyses (TMA, DSC, DMA & TGA) were run to complement the positron life time studies. The TMA and DSC studies confirm the contradiction mentioned above. Further experimentation with S-IPN polymers made at TSP/TTP content around 50/50 level are being conducted to explain this anomaly. Scanning electron microscope study of the S-IPN polyimid samples is under way in order to detect morphological differences which might help explain the phenomenon mentioned above.« less

  15. Thick-target-method study of Mα β x-ray production cross sections of Pb and Bi impacted by positrons up to 9 keV

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Liang, Y.; Xu, M. X.; Yuan, Y.; Chang, C. H.; Qian, Z. C.; Wang, B. Y.; Kuang, P.; Zhang, P.

    2018-03-01

    Atomic M -shell x-ray production cross sections induced by positrons near the threshold energy have been presented in this paper. In the experiment, online monitoring technology, which utilizes a high-purity germanium detector to record the annihilation photons emitted from the pure thick target impacted by positrons, was developed to obtain the accurate number of the incident positrons. The effects of the multiple scattering of incident positrons, from the bremsstrahlung and annihilation photons and other secondary particles on the experimental characteristic x-ray yield, were eliminated by Monte Carlo simulation in combination with theoretical integral calculation. The Tikhonov regularization method was adopted to handle the ill-posed inverse problem involved in the thick-target method, i.e., x-ray production cross sections by the corrected characteristic x-ray yield. Experimental results of Mα β x-ray production cross sections for Pb and Bi impacted by 6-9-keV positrons were compared with the corresponding values predicted by the distorted-wave Born approximation (DWBA). Good agreement was found between the two. Moreover, we have presented the experimental results on the ratios of the Mα β x-ray production cross sections by electron impact in the literature to that by 6-9-keV positron impact in this work. They were also in accordance with the theoretical ratios calculated by the predictions of DWBA theory.

  16. A novel source of MeV positron bunches driven by energetic protons for PAS application

    NASA Astrophysics Data System (ADS)

    Tan, Zongquan; Xu, Wenzhen; Liu, Yanfen; Xiao, Ran; Kong, Wei; Ye, Bangjiao

    2014-11-01

    This paper proposes a novel methodology of MeV positrons generation for PAS application. Feasibility of this proposal analyzed by G4Beamline and Transport have shown reasonable success. Using 2 Hz, 1.6 GeV, 100 ns and 1.5 μC/bunch proton bunches for bombarding a graphite target, about 100 ns e+ bunches are generated. Quasi-monochromatic positrons in the range of 1-10 MeV included in these bunches have a flux of >107/s, peak brightness of 1014/s. A magnetic-confinement beamline is utilized to transport the positrons and a "Fast Beam Chopper" is unprecedentedly extended to chop those relativistic bunches. The positron beam can be finally characterized by the energy range of 1-10 MeV and bunch width from one hundred ps up to 1 ns. Such ultrashort bunches can be useful in tomography-type positron annihilation spectroscopy (PAS) as well as other applications.

  17. Upper limits to the annihilation radiation luminosity of Centaurus A

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cline, T. L.; Paciesas, W. S.; Teegarden, B. J.; Tueller, J.; Dirouchoux, P.; Hameury, J. M.

    1983-01-01

    A high resolution observation of the active nucleus galaxy Centaurus A (NGC 5128) was made by the GSFC low energy gamma-ray spectrometer (LEGS) during a balloon flight on 1981 November 19. The measured spectrum between 70 and 500 keV is well represented by a power law of the form 1.05 x 10 (-4) (E/100 keV) (-1.59) ph/sq cm/s with no breaks or line features observed. The 98 percent confidence (2 sigma) flux upper limit for a narrow (3 keV) 511-keV positron annihilation line is 9.9 x 10 (-4) ph/sq cm/s. Using this upper limit, the ratio of the narrow-line annihilation radiation luminosity to the integral or = 511 keV luminosity is estimated to be 0.09 (2 sigma upper limit). This is compared with the measured value for our Galactic center in the Fall of 1979 of 0.10 to 0.13, indicating a difference in the emission regions in the nuclei of the two galaxies.

  18. Upper Limits to the Annihilation Radiation Luminosity of Centaurus a

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cline, T. L.; Paciesas, W. S.; Teegarden, B. J.; Tueller, J.; Dirouchoux, P.; Hameury, J. M.

    1983-01-01

    A high resolution observation of the active nucleus galaxy Centaurus A (NGC 5128) was made by the GSFC low energy gamma-ray spectrometer (LEGS) during a balloon flight on 1981 November 19. The measured spectrum between 70 and 500 keV is well represented by a power law of the form 1.05 x 10 (-4) (E/100 keV) (-1.59) ph/sq cm /s with no breaks or line features observed. The 98% confidence (2 sigma) flux upper limit for a narrow ( 3 keV) 511-keV positron annihilation line is 9.9 x 10 (-4) ph/ sq cm /s. Using this upper limit, the ratio of the narrow-line annihilation radiation luminosity to the integral or = 511 keV luminosity is estimated to be 0.09 (2 sigma upper limit). This is compared with the measured value for our galactic center in the Fall of 1979 of 0.10 to 0.13, indicating a difference in he emission regions in the nuclei of the two galaxies.

  19. Structural evolution of nanoporous silica thin films studied by positron annihilation spectroscopy and Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Patel, N.; Mariazzi, S.; Toniutti, L.; Checchetto, R.; Miotello, A.; Dirè, S.; Brusa, R. S.

    2007-09-01

    Three series of silica thin films with thicknesses in the 300 nm range were deposited by spin coating on Si substrates using different compositions of the sol precursors. Film samples were thermally treated in static air at temperatures ranging from 300 to 900 °C. The effect of sol precursors and thermal treatment temperature on the film porosity was analysed by Fourier transform infrared (FTIR) spectroscopy, depth profiling with positron annihilation spectroscopy (DP-PAS) and the analysis of the capacitance-voltage (C-V) characteristic. The maximum of the total porosity was found to occur at a temperature of 600 °C when removal of porogen and OH groups was completed. Film densification due to the collapsing of the pores was observed after drying at 900 °C. DP-PAS provides evidence that the increase in the total porosity is related to a progressive increase in the pore size. The increase in the pore size never gives rise to the onset of connected porosity. In the silica film samples prepared using a low acidity sol precursor, the pore size is always lower than 1 nm. By increasing the acid catalyst ratio in the sol, larger pores are formed. Pores with size larger than 2.3 nm can be obtained by adding porogen to the sol. In each series of silica film samples the shift of the antisymmetric Si-O-Si transversal optical (TO3) mode upon thermal treatment correlates with a change of the pore size as evidenced by DP-PAS analysis. The pore microstructure of the three series of silica films is different at all the examined treatment temperatures and depends on the composition of the precursor sol.

  20. Studies of discrete symmetries in a purely leptonic system using the Jagiellonian Positron Emission Tomograph

    NASA Astrophysics Data System (ADS)

    Moskal, P.; Alfs, D.; Bednarski, T.; Białas, P.; Curceanu, C.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Gupta-Sharma, N.; Gorgol, M.; Hiesmayr, B. C.; Jasińska, B.; Kamińska, D.; Khreptak, O.; Korcyl, G.; Kowalski, P.; Krzemień, W.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Niedźwiecki, Sz.; Pawlik-Niedńwiecka, M.; Raczyński, L.; Rudy, Z.; Silarski, M.; Smyrski, J.; Wieczorek, A.; Wiślicki, W.; Zgardzińska, B.; Zieliński, M.

    2016-11-01

    Discrete symmetries such as parity (P), charge-conjugation (C) and time reversal (T) are of fundamental importance in physics and cosmology. Breaking of charge conjugation symmetry (C) and its combination with parity (CP) constitute necessary conditions for the existence of the asymmetry between matter and antimatter in the observed Universe. The presently known sources of discrete symmetries violations can account for only a tiny fraction of the excess of matter over antimatter. So far CP and T symmetries violations were observed only for systems involving quarks and they were never reported for the purely leptonic objects. In this article we describe briefly an experimental proposal for the test of discrete symmetries in the decays of positronium atom which is made exclusively of leptons. The experiments are conducted by means of the Jagiellonian Positron Emission Tomograph (J-PET) which is constructed from strips of plastic scintillators enabling registration of photons from the positronium annihilation. J-PET tomograph together with the positronium target system enable to measure expectation values for the discrete symmetries odd operators constructed from (i) spin vector of the ortho-positronium atom, (ii) momentum vectors of photons originating from the decay of positronium, and (iii) linear polarization direction of annihilation photons. Linearly polarized positronium will be produced in the highly porous aerogel or polymer targets, exploiting longitudinally polarized positrons emitted by the sodium 22Na isotope. Information about the polarization vector of orthopositronium will be available on the event by event basis and will be reconstructed from the known position of the positron source and the reconstructed position of the orthopositronium annihilation. In 2016 the first tests and calibration runs are planned, and the data collection with high statistics will commence in the year 2017.

  1. High-temperature studies of grain boundaries in ultrafine grained alloys by means of positron lifetime

    NASA Astrophysics Data System (ADS)

    Würschum, R.; Shapiro, E.; Dittmar, R.; Schaefer, H.-E.

    2000-11-01

    Atomic free volumes and vacancies in the ultrafine grained alloys Pd84Zr16, Cu 0.1 wt % ZrO2, and Fe91Zr9 were studied by means of positron lifetime. The thermally stable microstructures serve as a novel type of model system for studying positron trapping and annihilation as well as the thermal behavior of vacancy-sized free volumes over a wide temperature range up to ca. 1200 K by making use of a metallic 58Co positron source. In ultrafine grained Cu the thermal formation of lattice vacancies could be observed. In Pd84Zr16 an increase of the specific positron trapping rate of nanovoids and, in addition, detrapping of positrons from free volumes with a mean size slightly smaller than one missing atom in the grain boundaries contributes to a reversible increase of the positron lifetime of more than 60 ps with measuring temperature. In Fe91Zr9 similar linear high-temperature increases of the positron lifetime are observed in the nanocrystalline and the amorphous state. The question of thermal vacancy formation in grain boundaries is addressed taking into account the different types of interface structures of the present alloys.

  2. Impenetrable barriers for positrons in neighbourhood of superheavy nuclei with Z>118

    NASA Astrophysics Data System (ADS)

    Neznamov, V. P.

    2017-12-01

    Analysis of quantum mechanical motion of charged half-spin particles in the repulsive Coulomb field results in that an impenetrable potential barrier not explored earlier was found. For a particle at rest with a reduced mass m, the barrier radius is equal to half classical radius: the barrier radius decreases with increase in the particle energy. For the stable and quasi-stable nuclei with Z > 118, presence of an impenetrable barrier as β +-decay leads to the existence of “traps” for positrons in the neighbourhood of nuclei and as Zcr ≃ 170 (with emission of electron-positron pairs by vacuum) leads to the existence of a quasi-constant source of annihilation quanta.

  3. Using polarized positrons to probe physics beyond the standard model

    NASA Astrophysics Data System (ADS)

    Furletova, Yulia; Mantry, Sonny

    2018-05-01

    A high intensity polarized positron beam, as part of the JLAB 12 GeV program and the proposed electron-ion collider (EIC), can provide a unique opportunity for testing the Standard Model (SM) and probing for new physics. The combination of high luminosity with polarized electrons and positrons incident on protons and deuterons can isolate important effects and distinguish between possible new physics scenarios in a manner that will complement current experimental efforts. A comparison of cross sections between polarized electron and positron beams will allow for an extraction of the poorly known weak neutral current coupling combination 2C3u - C3d and would complement the proposed plan for a precision extraction of the combination 2C2u - Cd at the EIC. Precision measurements of these neutral weak couplings would constrain new physics scenarios including Leptoquarks, R-parity violating supersymmetry, and electron and quark compositeness. The dependence of the charged current cross section on the longitudinal polarization of the positron beam will provide an independent probe to test the chiral structure of the electroweak interactions. A polarized positron can probe charged lepton flavor violation (CLFV) through a search for e+ → τ+ transitions in a manner that is independent and complementary to the proposed e- → τ- search at the EIC. A positron beam incident on an electron in a stationary nuclear target will also allow for a dark-photon (A') search via the annihilation process e+ + e- → A' + γ.

  4. Electronic structure of disordered CuPd alloys: A two-dimensional positron-annihilation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smedskjaer, L.C.; Benedek, R.; Siegel, R.W.

    1987-11-23

    Two-dimensional--angular-correlation experiments using posi- tron-annihilation spectroscopy were performed on a series of disordered Cu-rich CuPd-alloy single crystals. The results are compared with theoretical calculations based on the Korringa-Kohn-Rostoker coherent-potential approximation. Our experiments confirm the theoretically predicted flattening of the alloy Fermi surface near (110) with increasing Pd concentration. The momentum densities and the two-dimensional--angular-correlation spectra around zero momentum exhibit a characteristic signature of the electronic states near the valence-band edge in the alloy.

  5. Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s -wave dark matter annihilation from Planck results

    NASA Astrophysics Data System (ADS)

    Slatyer, Tracy R.

    2016-01-01

    Recent measurements of the cosmic microwave background (CMB) anisotropies by Planck provide a sensitive probe of dark matter annihilation during the cosmic dark ages, and specifically constrain the annihilation parameter feff⟨σ v ⟩/mχ. Using new results (paper II) for the ionization produced by particles injected at arbitrary energies, we calculate and provide feff values for photons and e+e- pairs injected at keV-TeV energies; the feff value for any dark matter model can be obtained straightforwardly by weighting these results by the spectrum of annihilation products. This result allows the sensitive and robust constraints on dark matter annihilation presented by the Planck collaboration to be applied to arbitrary dark matter models with s -wave annihilation. We demonstrate the validity of this approach using principal component analysis. As an example, we integrate over the spectrum of annihilation products for a range of Standard Model final states to determine the CMB bounds on these models as a function of dark matter mass, and demonstrate that the new limits generically exclude models proposed to explain the observed high-energy rise in the cosmic ray positron fraction. We make our results publicly available at http://nebel.rc.fas.harvard.edu/epsilon.

  6. [Shielding effect of clinical X-ray protector and lead glass against annihilation radiation and gamma rays of 99mTc].

    PubMed

    Fukuda, Atsushi; Koshida, Kichiro; Yamaguchi, Ichiro; Takahashi, Masaaki; Kitabayashi, Keitarou; Matsubara, Kousuke; Noto, Kimiya; Kawabata, Chikako; Nakagawa, Hiroto

    2004-12-01

    Various pharmaceutical companies in Japan are making radioactive drugs available for positron emission tomography (PET) in hospitals without a cyclotron. With the distribution of these drugs to hospitals, medical check-ups and examinations using PET are expected to increase. However, the safety guidelines for radiation in the new deployment of PET have not been adequately improved. Therefore, we measured the shielding effect of a clinical X-ray protector and lead glass against annihilation radiation and gamma rays of (99m)Tc. We then calculated the shielding effect of a 0.25 mm lead protector, 1 mm lead, and lead glass using the EGS4 (Electron Gamma Shower Version 4) code. The shielding effects of 22-mm lead glass against annihilation radiation and gamma rays of (99m)Tc were approximately 31.5% and 93.3%, respectively. The clinical X-ray protector against annihilation radiation approximately doubled the skin-absorbed dose.

  7. Chaos of energetic positron orbits in a dipole magnetic field and its potential application to a new injection scheme

    NASA Astrophysics Data System (ADS)

    Saitoh, H.; Yoshida, Z.; Yano, Y.; Nishiura, M.; Kawazura, Y.; Horn-Stanja, J.; Pedersen, T. Sunn

    2016-10-01

    We study the behavior of high-energy positrons emitted from a radioactive source in a magnetospheric dipole field configuration. Because the conservation of the first and second adiabatic invariants is easily destroyed in a strongly inhomogeneous dipole field for high-energy charged particles, the positron orbits are nonintegrable, resulting in chaotic motions. In the geometry of a typical magnetospheric levitated dipole experiment, it is shown that a considerable ratio of positrons from a 22Na source, located at the edge of the confinement region, has chaotic long orbit lengths before annihilation. These particles make multiple toroidal circulations and form a hollow toroidal positron cloud. Experiments with a small 22Na source in the Ring Trap 1 (RT-1) device demonstrated the existence of such long-lived positrons in a dipole field. Such a chaotic behavior of high-energy particles is potentially applicable to the formation of a dense toroidal positron cloud in the strong-field region of the dipole field in future studies.

  8. Application of positron annihilation lifetime spectroscopy (PALS) to study the nanostructure in amphiphile self-assembly materials: phytantriol cubosomes and hexosomes.

    PubMed

    Dong, Aurelia W; Fong, Celesta; Waddington, Lynne J; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2015-01-21

    Self-assembled amphiphile nanostructures of colloidal dimensions such as cubosomes and hexosomes are of interest as delivery vectors in pharmaceutical and nanomedicine applications. Translation would be assisted through a better of understanding of the effects of drug loading on the internal nanostructure, and the relationship between this nanostructure and drug release profile. Positron annihilation lifetime spectroscopy (PALS) is sensitive to local microviscosity and is used as an in situ molecular probe to examine the Q2 (cubosome) → H2 (hexosome) → L2 phase transitions of the pharmaceutically relevant phytantriol-water system in the presence of a model hydrophobic drug, vitamin E acetate (VitEA). It is shown that the ortho-positronium lifetime (τ) is sensitive to molecular packing and mobility and this has been correlated with the rheological properties of individual lyotropic liquid crystalline mesophases. Characteristic PALS lifetimes for L2 (τ4∼ 4 ns) ∼ H2 (τ4∼ 4 ns) > Q(2 Pn3m) (τ4∼ 2.2 ns) are observed for the phytantriol-water system, with the addition of VitEA yielding a gradual increase in τ from τ∼ 2.2 ns for cubosomes to τ∼ 3.5 ns for hexosomes. The dynamic chain packing at higher temperatures and in the L2 and H2 phases is qualitatively less "viscous", consistent with rheological measurements. This information offers increased understanding of the relationship between internal nanostructure and species permeability.

  9. Positron irradiation effect on positronium formation in gamma-irradiated LDPE and unplasticized PVC

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zang, P.; Cao, X. Z.; Yu, R. S.; Wang, B. Y.

    2017-06-01

    Positron irradiation effects on positronium formation in low-density polyethylene (LDPE), gamma-irradiated LDPE and unplasticized PVC (UPVC) are studied. At least in one of the three different measurements, i.e., prolonged positron annihilation measurement at room temperature, low temperature in darkness and subsequent measurement under light, changes in o-Ps intensity are observed in non-irradiated LDPE and gamma-irradiated LDPE. While in UPVC, change in o-Ps intensity is hardly observable in all the above-mentioned three measurements. Reduction of o-Ps intensity by light indicates that positronium formation via the recombination of a positron and a trapped electron exists in LDPE and gamma-irradiated LDPE. The absence of light bleaching effect, together with the fact that the value of o-Ps intensity in heating and cooling process of a thermal circle is nearly the same, indicates that in UPVC, positronium can not be formed through trapped electron mechanism. This study highlights the speciality of positronium formation in UPVC, positronium is formed exclusively by the recombination of electron-positron pairs with short separations.

  10. Microstructural probing of ferritic/martensitic steels using internal transmutation-based positron source

    NASA Astrophysics Data System (ADS)

    Krsjak, Vladimir; Dai, Yong

    2015-10-01

    This paper presents the use of an internal 44Ti/44Sc radioisotope source for a direct microstructural characterization of ferritic/martensitic (f/m) steels after irradiation in targets of spallation neutron sources. Gamma spectroscopy measurements show a production of ∼1MBq of 44Ti per 1 g of f/m steels irradiated at 1 dpa (displaced per atom) in the mixed proton-neutron spectrum at the Swiss spallation neutron source (SINQ). In the decay chain 44Ti → 44Sc → 44Ca, positrons are produced together with prompt gamma rays which enable the application of different positron annihilation spectroscopy (PAS) analyses, including lifetime and Doppler broadening spectroscopy. Due to the high production yield, long half-life and relatively high energy of positrons of 44Ti, this methodology opens up new potential for simple, effective and inexpensive characterization of radiation induced defects in f/m steels irradiated in a spallation target.

  11. Positron depth profiling of the structural and electronic structure transformations of hydrogenated Mg-based thin films

    NASA Astrophysics Data System (ADS)

    Eijt, S. W. H.; Kind, R.; Singh, S.; Schut, H.; Legerstee, W. J.; Hendrikx, R. W. A.; Svetchnikov, V. L.; Westerwaal, R. J.; Dam, B.

    2009-02-01

    We report positron depth-profiling studies on the hydrogen sorption behavior and phase evolution of Mg-based thin films. We show that the main changes in the depth profiles resulting from the hydrogenation to the respective metal hydrides are related to a clear broadening in the observed electron momentum densities in both Mg and Mg2Ni films. This shows that positron annihilation methods are capable of monitoring these metal-to-insulator transitions, which form the basis for important applications of these types of films in switchable mirror devices and hydrogen sensors in a depth-sensitive manner. Besides, some of the positrons trap at the boundaries of columnar grains in the otherwise nearly vacancy-free Mg films. The combination of positron annihilation and x-ray diffraction further shows that hydrogen loading at elevated temperatures, in the range of 480-600 K, leads to a clear Pd-Mg alloy formation of the Pd catalyst cap layer. At the highest temperatures, the hydrogenation induces a partial delamination of the ˜5 nm thin capping layer, as sensitively monitored by positron depth profiling of the fraction of ortho-positronium formed at interface with the cap layer. The delamination effectively blocks the hydrogen cycling. In Mg-Si bilayers, we investigated the reactivity upon hydrogen loading and heat treatments near 480 K, which shows that Mg2Si formation is fast relative to MgH2. The combination of positron depth profiling and transmission electron microscopy shows that hydrogenation promotes a complete conversion to Mg2Si for this destabilized metal hydride system, while a partially unreacted, Mg-rich amorphous prelayer remains on top of Mg2Si after a single heat treatment in an inert gas environment. Thin film studies indicate that the difficulty of rehydrogenation of Mg2Si is not primarily the result from slow hydrogen dissociation at surfaces, but is likely hindered by the presence of a barrier for removal of Mg from the readily formed Mg2Si.

  12. Efficient injection of an intense positron beam into a dipole magnetic field

    NASA Astrophysics Data System (ADS)

    Saitoh, H.; Stanja, J.; Stenson, E. V.; Hergenhahn, U.; Niemann, H.; Pedersen, T. Sunn; Stoneking, M. R.; Piochacz, C.; Hugenschmidt, C.

    2015-10-01

    We have demonstrated efficient injection and trapping of a cold positron beam in a dipole magnetic field configuration. The intense 5 eV positron beam was provided by the NEutron induced POsitron source MUniCh facility at the Heinz Maier-Leibnitz Zentrum, and transported into the confinement region of the dipole field trap generated by a supported, permanent magnet with 0.6 T strength at the pole faces. We achieved transport into the region of field lines that do not intersect the outer wall using the {E}× {B} drift of the positron beam between a pair of tailored plates that created the electric field. We present evidence that up to 38% of the beam particles are able to reach the intended confinement region and make at least a 180° rotation around the magnet where they annihilate on an insertable target. When the target is removed and the {E}× {B} plate voltages are switched off, confinement of a small population persists for on the order of 1 ms. These results lend optimism to our larger aims to apply a magnetic dipole field configuration for trapping of both positrons and electrons in order to test predictions of the unique properties of a pair plasma.

  13. Annealing properties of open volumes in HfSiOx and HfAlOx gate dielectrics studied using monoenergetic positron beams

    NASA Astrophysics Data System (ADS)

    Uedono, A.; Ikeuchi, K.; Yamabe, K.; Ohdaira, T.; Muramatsu, M.; Suzuki, R.; Hamid, A. S.; Chikyow, T.; Torii, K.; Yamada, K.

    2005-07-01

    Thin Hf0.6Si0.4Ox and Hf0.3Al0.7Ox films fabricated by metal-organic chemical-vapor deposition and atomic-layer-deposition techniques were characterized using monoenergetic positron beams. Measurements of the Doppler broadening spectra of annihilation radiation and the lifetime spectra of positions indicated that positrons annihilated from the trapped state by open volumes that exist intrinsically in amorphous structures of the films. For HfSiOx, the mean size of the open volumes and their size distribution decreased with increasing postdeposition annealing (PDA) temperature. For HfAlOx, although the overall behavior of the open volumes in response to annealing was similar to that for HfSiOx, PDA caused a separation of the mean size of the open volumes. When this separation occurred, the value of the line-shape parameter S increased, suggesting an oxygen deficiency in the amorphous matrix. This fragmentation of the amorphous matrix can be suppressed by decreasing the annealing time.

  14. Synchrotron Emission from Dark Matter Annihilation: Predictions for Constraints from Non-detections of Galaxy Clusters with New Radio Surveys

    NASA Astrophysics Data System (ADS)

    Storm, Emma; Jeltema, Tesla E.; Splettstoesser, Megan; Profumo, Stefano

    2017-04-01

    The annihilation of dark matter particles is expected to yield a broad radiation spectrum via the production of Standard Model particles in astrophysical environments. In particular, electrons and positrons from dark matter annihilation produce synchrotron radiation in the presence of magnetic fields. Galaxy clusters are the most massive collapsed structures in the universe, and are known to host ˜μG-scale magnetic fields. They are therefore ideal targets to search for, or to constrain the synchrotron signal from dark matter annihilation. In this work, we use the expected sensitivities of several planned surveys from the next generation of radio telescopes to predict the constraints on dark matter annihilation models which will be achieved in the case of non-detections of diffuse radio emission from galaxy clusters. Specifically, we consider the Tier 1 survey planned for the Low Frequency Array (LOFAR) at 120 MHz, the Evolutionary Map of the Universe (EMU) survey planned for the Australian Square Kilometre Array Pathfinder (ASKAP) at 1.4 GHz, and planned surveys for Aperture Tile in Focus (APERTIF) at 1.4 GHz. We find that, for massive clusters and dark matter masses ≲ 100 {GeV}, the predicted limits on the annihilation cross section would rule out vanilla thermal relic models for even the shallow LOFAR Tier 1, ASKAP, and APERTIF surveys.

  15. Late decaying 2-component dark matter scenario as an explanation of the AMS-02 positron excess

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buch, Jatan; Ralegankar, Pranjal; Rentala, Vikram, E-mail: jatan_buch@brown.edu, E-mail: pranjal6@illinois.edu, E-mail: rentala@phy.iitb.ac.in

    The long standing anomaly in the positron flux as measured by the PAMELA and AMS-02 experiments could potentially be explained by dark matter (DM) annihilations. This scenario typically requires a large 'boost factor' to be consistent with a thermal relic dark matter candidate produced via freeze-out. However, such an explanation is disfavored by constraints from CMB observations on energy deposition during the epoch of recombination. We discuss a scenario called late-decaying two-component dark matter (LD2DM), where the entire DM consists of two semi-degenerate species. Within this framework, the heavier species is produced as a thermal relic in the early universemore » and decays to the lighter species over cosmological timescales. Consequently, the lighter species becomes the DM which populates the universe today. We show that annihilation of the lighter DM species with an enhanced cross-section, produced via such a non-thermal mechanism, can explain the observed AMS-02 positron flux while avoiding CMB constraints. The observed DM relic density can be correctly reproduced as well with simple s -wave annihilation cross-sections. We demonstrate that the scenario is safe from CMB constraints on late-time energy depositions during the cosmic 'dark ages'. Interestingly, structure formation constraints force us to consider small mass splittings between the two dark matter species. We explore possible cosmological and particle physics signatures in a toy model that realizes this scenario.« less

  16. Using polarized positrons to probe physics beyond the standard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furletova, Yulia; Mantry, Sonny

    A high intensity polarized positron beam, as part of the JLAB 12 GeV program and the proposed electron-ion collider (EIC), can provide a unique opportunity for testing the Standard Model (SM) and probing for new physics. The combination of high luminosity with polarized electrons and positrons incident on protons and deuterons can isolate important effects and distinguish between possible new physics scenarios in a manner that will complement current experimental efforts. Here, a comparison of cross sections between polarized electron and positron beams will allow for an extraction of the poorly known weak neutral current coupling combination 2C 3u -more » C 3d and would complement the proposed plan for a precision extraction of the combination 2C 2u - C d at the EIC. Precision measurements of these neutral weak couplings would constrain new physics scenarios including Leptoquarks, R-parity violating supersymmetry, and electron and quark compositeness. The dependence of the charged current cross section on the longitudinal polarization of the positron beam will provide an independent probe to test the chiral structure of the electroweak interactions. A polarized positron can probe charged lepton flavor violation (CLFV) through a search for e + → τ + transitions in a manner that is independent and complementary to the proposed e - → τ - search at the EIC. A positron beam incident on an electron in a stationary nuclear target will also allow for a dark-photon (A') search via the annihilation process e + + e - → A' + γ.« less

  17. Using polarized positrons to probe physics beyond the standard model

    DOE PAGES

    Furletova, Yulia; Mantry, Sonny

    2018-05-25

    A high intensity polarized positron beam, as part of the JLAB 12 GeV program and the proposed electron-ion collider (EIC), can provide a unique opportunity for testing the Standard Model (SM) and probing for new physics. The combination of high luminosity with polarized electrons and positrons incident on protons and deuterons can isolate important effects and distinguish between possible new physics scenarios in a manner that will complement current experimental efforts. Here, a comparison of cross sections between polarized electron and positron beams will allow for an extraction of the poorly known weak neutral current coupling combination 2C 3u -more » C 3d and would complement the proposed plan for a precision extraction of the combination 2C 2u - C d at the EIC. Precision measurements of these neutral weak couplings would constrain new physics scenarios including Leptoquarks, R-parity violating supersymmetry, and electron and quark compositeness. The dependence of the charged current cross section on the longitudinal polarization of the positron beam will provide an independent probe to test the chiral structure of the electroweak interactions. A polarized positron can probe charged lepton flavor violation (CLFV) through a search for e + → τ + transitions in a manner that is independent and complementary to the proposed e - → τ - search at the EIC. A positron beam incident on an electron in a stationary nuclear target will also allow for a dark-photon (A') search via the annihilation process e + + e - → A' + γ.« less

  18. The intense slow positron beam facility at the PULSTAR reactor and applications in nano-materials study

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Moxom, Jeremy; Hawari, Ayman I.; Gidley, David W.

    2013-04-01

    An intense slow positron beam has been established at the PULSTAR nuclear research reactor of North Carolina State University. The slow positrons are generated by pair production in a tungsten moderator from gammarays produced in the reactor core and by neutron capture reactions in cadmium. The moderated positrons are electrostatically extracted and magnetically guided out of the region near the core. Subsequently, the positrons are used in two spectrometers that are capable of performing positron annihilation lifetime spectroscopy (PALS) and positron Doppler broadening spectroscopy (DBS) to probe the defect and free volume properties of materials. One of the spectrometers (e+-PALS) utilizes an rf buncher to produce a pulsed beam and has a timing resolution of 277 ps. The second spectrometer (Ps-PALS) uses a secondary electron timing technique and is dedicated to positronium lifetime measurements with an approximately 1 ns timing resolution. PALS measurements have been conducted in the e+-PALS spectrometer on a series of nano-materials including organic photovoltaic thin films, membranes for filtration, and polymeric fibers. These studies have resulted in understanding some critical issues related to the development of the examined nano-materials.

  19. Positronic probe of vacancy defects on surfaces of Au nanoparticles embedded in MgO

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Moxom, J.; Somieski, B.; White, C. W.; Mills, A. P., Jr.; Suzuki, R.; Ishibashi, S.

    2001-09-01

    Clusters of four atomic vacancies were found in Au nanoparticle-embedded MgO by positron lifetime spectroscopy [Phys. Rev. Lett. 83, 4586 (1999)]. These clusters were also suggested to locate at the surface of Au nanoparticles by one-detector measurements of Doppler broadening of annihilation radiation. In this work we provide evidence, using two-detector coincidence experiments of Doppler broadening (2D-DBAR), to clarify that these vacancy clusters reside on the surfaces of Au nanoparticles. This work also demonstrates a method for identifying defects at nanomaterials interfaces: a combination of both positron lifetime spectroscopy, which tells the type of the defects, and 2D-DBAR measurements, which reveals chemical environment of the defects.

  20. Antiproton-Hydrogen Atom Annihilation.

    DTIC Science & Technology

    1986-05-01

    Morgan, Jr., Concepts for the Design of an Antimatter Annihilation ’Rocket, Journal of the British Interplanetary Society 35, 405 (1982). 2. D.L. Morgan...Matter- Antimatter Annihilation, Phys. Rev. D 2, 1389 (1970). (Notes: results for p - H are equivalent to 5 -H; the bare + p annihilation cross section is

  1. Recovering the triple coincidence of non-pure positron emitters in preclinical PET

    NASA Astrophysics Data System (ADS)

    Lin, Hsin-Hon; Chuang, Keh-Shih; Chen, Szu-Yu; Jan, Meei-Ling

    2016-03-01

    Non-pure positron emitters, with their long half-lives, allow for the tracing of slow biochemical processes which cannot be adequately examined by the commonly used short-lived positron emitters. Most of these isotopes emit high-energy cascade gamma rays in addition to positron decay that can be detected and create a triple coincidence with annihilation photons. Triple coincidence is discarded in most scanners, however, the majority of the triple coincidence contains true photon pairs that can be recovered. In this study, we propose a strategy for recovering triple coincidence events to raise the sensitivity of PET imaging for non-pure positron emitters. To identify the true line of response (LOR) from a triple coincidence, a framework utilizing geometrical, energy and temporal information is proposed. The geometrical criterion is based on the assumption that the LOR with the largest radial offset among the three sub pairs of triple coincidences is least likely to be a true LOR. Then, a confidence time window is used to test the valid LOR among those within triple coincidence. Finally, a likelihood ratio discriminant rule based on the energy probability density distribution of cascade and annihilation gammas is established to identify the true LOR. An Inveon preclinical PET scanner was modeled with GATE (GEANT4 application for tomographic emission) Monte Carlo software. We evaluated the performance of the proposed method in terms of identification fraction, noise equivalent count rates (NECR), and image quality on various phantoms. With the inclusion of triple coincidence events using the proposed method, the NECR was found to increase from 11% to 26% and 19% to 29% for I-124 and Br-76, respectively, when 7.4-185 MBq of activity was used. Compared to the reconstructed images using double coincidence, this technique increased the SNR by 5.1-7.3% for I-124 and 9.3-10.3% for Br-76 within the activity range of 9.25-74 MBq, without compromising the spatial resolution or

  2. Dispersion of nano-nickel into γ-Al 2O 3 studied by positron

    NASA Astrophysics Data System (ADS)

    Jun, Zhu; Wang, S. J.; Luo, X. H.

    2003-10-01

    The positron annihilation lifetime spectra were measured as a function of the content of the nano-nickel, of temperature, as well as of the heating time for the supported nano-nickel catalyst that was prepared by mechanical mixture nano-metal nickel particles with gamma-alumina ( γ-Al 2O 3). The lifetime spectra were well resolved into four lifetime components. The longest lifetime τ4 was assigned to ortho-positronium annihilating in the secondary pore of the γ-Al 2O 3. The results showed that part of the nano-nickel had entered into γ-Al 2O 3 by thermal diffusion at heating above 200°C and had interacted with the face of the γ-Al 2O 3, but the length of diffusion is not very large.

  3. Photoluminescence and positron annihilation studies on Mg-doped nitrogen-polarity semipolar (101xAF1xAF) GaN heteroepitaxial layers grown by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Onuma, T.; Uedono, A.; Asamizu, H.; Sato, H.; Kaeding, J. F.; Iza, M.; DenBaars, S. P.; Nakamura, S.; Chichibu, S. F.

    2010-03-01

    The influences of enhanced stacking fault (SF) formation, which is peculiar to nitrogen-(N-) polarity growth and lattice-mismatched semipolar heteroepitaxy, on the electrical properties of (101¯1¯) Mg-doped GaN (GaN:Mg) epilayers were investigated. Although the residual donor concentration was higher than (0001) GaN because of N-polar growth, comparatively low Mg doping (3×1019 cm-3) gave a hole concentration approximately 1.5×1018 cm-3, which was an order of magnitude higher than (0001) GaN:Mg. As the acceptor ionization energy estimated from low temperature photoluminescence was quite similar for (101¯1¯) and (0001) GaN:Mg, the high Mg activation seems to result with the aid of high density SFs. Because the Doppler broadening S parameter for the positron annihilation measurement, which reflects the concentration or size of negatively charged cation vacancies, of (101¯1¯) GaN:Mg was smaller than (0001) case, (101¯1¯) orientation is well suited to Mg-doping.

  4. Nuclear annihilation by antinucleons

    DOE PAGES

    Lee, Teck-Ghee; Wong, Cheuk-Yin

    2016-01-25

    We examine the momentum dependence ofmore » $$\\bar{p}$$p and $$\\bar{n}$$p annihilation cross sections by considering the transmission through a nuclear potential and the $$\\bar {p}$$p Coulomb interaction. Compared to the $$\\bar{n}$$p annihilation cross section, the $$\\bar{p}$$p annihilation cross section is significantly enhanced by the Coulomb interaction for projectile momenta below p lab < 500 MeV/c, and the two annihilation cross sections approach the Pomeranchuk's equality limit [JETP 30, 423 (1956)] at p lab ~500 MeV/c. Using these elementary cross sections as the basic input data, the extended Glauber model is employed to evaluate the annihilation cross sections for $$\\bar{n}$$ and $$\\bar{p}$$ interaction with nuclei and the results compare well with experimental data.« less

  5. Vacancy-fluorine complexes and their impact on the properties of metal-oxide transistors with high-k gate dielectrics studied using monoenergetic positron beams

    NASA Astrophysics Data System (ADS)

    Uedono, A.; Inumiya, S.; Matsuki, T.; Aoyama, T.; Nara, Y.; Ishibashi, S.; Ohdaira, T.; Suzuki, R.; Miyazaki, S.; Yamada, K.

    2007-09-01

    Vacancy-fluorine complexes in metal-oxide semiconductors (MOS) with high-k gate dielectrics were studied using a positron annihilation technique. F+ ions were implanted into Si substrates before the deposition of gate dielectrics (HfSiON). The shift of threshold voltage (Vth) in MOS capacitors and an increase in Fermi level position below the HfSiON/Si interface were observed after F+ implantation. Doppler broadening spectra of the annihilation radiation and positron lifetimes were measured before and after HfSiON fabrication processes. From a comparison between Doppler broadening spectra and those obtained by first-principles calculation, the major defect species in Si substrates after annealing treatment (1050 °C, 5 s) was identified as vacancy-fluorine complexes (V3F2). The origin of the Vth shift in the MOS capacitors was attributed to V3F2 located in channel regions.

  6. Method for on-line evaluation of materials using prompt gamma ray analysis

    DOEpatents

    Akers, Douglas W [Idaho Falls, ID

    2009-12-08

    A method for evaluating a material specimen comprises: Mounting a neutron source and a detector adjacent the material specimen; bombarding the material specimen with neutrons from the neutron source to create prompt gamma rays within the material specimen, some of the prompt gamma rays being emitted from the material specimen, some of the prompt gamma rays resulting in the formation of positrons within the material specimen by pair production; collecting positron annihilation data by detecting with the detector at least one emitted annihilation gamma ray resulting from the annihilation of a positron; storing the positron annihilation data on a data storage system for later retrieval and processing; and continuing to collect and store positron annihilation data, the continued collected and stored positron annihilation data being indicative of an accumulation of lattice damage over time.

  7. Proton-irradiation induced defects in modified 310S steels characterized with positron annihilation spectroscopy and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Weiping; Shen, Zhenyu; Tang, Rui; Jin, Suoxue; Song, Yaoxiang; Long, Yunxiang; Wei, Yaxia; Zhou, Xiong; Chen, Cheng; Guo, Liping

    2018-07-01

    An effective method to improve the irradiation resistance of austenitic stainless steels is adding oversized solutes into steels. In this work, the irradiation resistances of two type of modified 310S steels, in one of which Zr was added and in another Nb, Ta, and W were added, were investigated by proton irradiations at 563 K. Irradiation induced vacancy-type defects was characterized with positron annihilation spectroscopy (PAS), while dislocation loops and bubbles whose size are greater than 1 nm are characterized with transmission electron microscopy (TEM). It is found that the relative S parameter ΔS/S extracted from PAS is more effective than S parameter in evaluating the quantity of vacancy-type defects. It was revealed from ΔS/S that more vacancy-type defects produced in (Nb, Ta, W)-added steels than that in Zr-added steels, and this trend became more obvious with the dose increasing. S-W curves reveal that proton irradiation induced two kinds of vacancy-type defects, i.e. vacancy clusters and proton-vacancy clusters. TEM observation shows that the density of small bubbles induced by proton in (Nb, Ta, W)-added steels is much higher than that in Zr-added steels. Both 1/3 <1 1 1> and 1/2 <1 1 0> dislocation loops were observed with TEM in all of the specimens. The mean size and number density of dislocation loops in (Nb, Ta, W)-added steels are slightly larger than that in Zr-added steels, and increased with increasing irradiation dose. Both PAS and TEM observations shows that irradiation damage in Zr-added steels is less serious than that (Nb, Ta, W)-added steels, and the possible mechanisms are discussed through the enhancement of point defect recombination by oversized solute atoms.

  8. a Positron 2D-ACAR Study of the Silicon-Dioxide Interface and the Point Defects in the Semi-Insulating Gallium Arsenide

    NASA Astrophysics Data System (ADS)

    Peng, Jianping

    The SiO_2-Si system has been the subject of extensive study for several decades. Particular interest has been paid to the interface between Si single crystal and the amorphous SiO_2 which determines the properties and performances of devices. This is significant because of the importance of Si technology in the semiconductor industry. The development of the high-intensity slow positron beam at Brookhaven National Laboratory make it possible to study this system for the first time using the positron two-dimensional angular correlation of annihilation radiation (2D-ACAR) technique. 2D-ACAR is a well established and is a non-destructive microscopic probe for studying the electronic structure of materials, and for doing the depth-resolved measurements. Some unique information was obtained from the measurements performed on the SiO_2-Si system: Positronium (Ps) atoms formation and trapping in microvoids in both oxide and interface regions; and positron annihilation at vacancy-like defects in the interface region which can be attributed to the famous Pb centers. The discovery of the microvoids in the interface region may have some impact on the fabrication of the next generation electronic devices. Using the conventional 2D-ACAR setup with a ^{22}Na as positron source, we also studied the native arsenic (As) vacancy in the semi -insulating gallium-arsenide (SI-GaAs), coupled with in situ infrared light illumination. The defect spectrum was obtained by comparing the spectrum taken without photo -illumination to the spectrum taken with photo-illumination. The photo-illumination excited electrons from valence band to the defect level so that positrons can become localized in the defects. The two experiments may represent a new direction of the application of positron 2D-ACAR technique on the solid state physics and materials sciences.

  9. Positron annihilation spectroscopy studies of bronze exposed to sandblasting at different pressure

    NASA Astrophysics Data System (ADS)

    Kurdyumov, S.; Siemek, K.; Horodek, P.

    2017-11-01

    An application of Doppler broadening of annihilation line spectroscopy to samples of beryllium bronze DIN-CuBe2 exposed to sandblasting is presented in performed studies. It is familiar that sandblasting introduces open-volume defects. Samples were sandblasted under different pressure for 1 minute using 110 μm particles of Al2O3. For a non-defected sample the constant value of S-parameter was detected. In the cases of sandblasted samples, S-parameter decreased when the depth enhanced. In our studies the thicknesses of defected zones were determined (it was c.a. 30 μm for a sample blasted under pressure of 1 bar and 110 μm - for 5 bar), and it was also observed that if sandblasting pressure is higher the defected zone is larger.

  10. Dark matter vs. astrophysics in the interpretation of AMS-02 electron and positron data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauro, Mattia Di; Donato, Fiorenza; Fornengo, Nicolao

    We perform a detailed quantitative analysis of the recent AMS-02 electron and positron data. We investigate the interplay between the emission from primary astrophysical sources, namely Supernova Remnants and Pulsar Wind Nebulae, and the contribution from a dark matter annihilation or decay signal. Our aim is to assess the information that can be derived on dark matter properties when both dark matter and primary astrophysical sources are assumed to jointly contribute to the leptonic observables measured by the AMS-02 experiment. We investigate both the possibility to set robust constraints on the dark matter annihilation/decay rate and the possibility to lookmore » for dark matter signals within realistic models that take into account the full complexity of the astrophysical background. Our results show that AMS-02 data enable to probe efficiently vast regions of the dark matter parameter space and, in some cases, to set constraints on the dark matter annihilation/decay rate that are comparable or even stronger than the ones derived from other indirect detection channels.« less

  11. Computer Simulation of Electron Positron Annihilation Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, y

    2003-10-02

    With the launching of the Next Linear Collider coming closer and closer, there is a pressing need for physicists to develop a fully-integrated computer simulation of e{sup +}e{sup -} annihilation process at center-of-mass energy of 1TeV. A simulation program acts as the template for future experiments. Either new physics will be discovered, or current theoretical uncertainties will shrink due to more accurate higher-order radiative correction calculations. The existence of an efficient and accurate simulation will help us understand the new data and validate (or veto) some of the theoretical models developed to explain new physics. It should handle well interfacesmore » between different sectors of physics, e.g., interactions happening at parton levels well above the QCD scale which are described by perturbative QCD, and interactions happening at much lower energy scale, which combine partons into hadrons. Also it should achieve competitive speed in real time when the complexity of the simulation increases. This thesis contributes some tools that will be useful for the development of such simulation programs. We begin our study by the development of a new Monte Carlo algorithm intended to perform efficiently in selecting weight-1 events when multiple parameter dimensions are strongly correlated. The algorithm first seeks to model the peaks of the distribution by features, adapting these features to the function using the EM algorithm. The representation of the distribution provided by these features is then improved using the VEGAS algorithm for the Monte Carlo integration. The two strategies mesh neatly into an effective multi-channel adaptive representation. We then present a new algorithm for the simulation of parton shower processes in high energy QCD. We want to find an algorithm which is free of negative weights, produces its output as a set of exclusive events, and whose total rate exactly matches the full Feynman amplitude calculation. Our strategy is to

  12. EL2 deep-level transient study in semi-insulating GaAs using positron-lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Shan, Y. Y.; Ling, C. C.; Deng, A. H.; Panda, B. K.; Beling, C. D.; Fung, S.

    1997-03-01

    Positron lifetime measurements performed on Au/GaAs samples at room temperature with an applied square-wave ac bias show a frequency dependent interface related lifetime intensity that peaks around 0.4 Hz. The observation is explained by the ionization of the deep-donor level EL2 to EL2+ in the GaAs region adjacent to the Au/GaAs interface, causing a transient electric field to be experienced by positrons drifting towards the interface. Without resorting to temperature scanning or any Arrhenius plot the EL2 donor level is found to be located 0.80+/-0.01+/-0.05 eV below the conduction-band minimum, where the first error estimate is statistical and the second systematic. The result suggests positron annihilation may, in some instances, act as an alternative to capacitance transient spectroscopies in characterizing deep levels in both semiconductors and semi-insulators.

  13. Direct conversion semiconductor detectors in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Cates, Joshua W.; Gu, Yi; Levin, Craig S.

    2015-05-01

    Semiconductor detectors are playing an increasing role in ongoing research to improve image resolution, contrast, and quantitative accuracy in preclinical applications of positron emission tomography (PET). These detectors serve as a medium for direct detection of annihilation photons. Early clinical translation of this technology has shown improvements in image quality and tumor delineation for head and neck cancers, relative to conventional scintillator-based systems. After a brief outline of the basics of PET imaging and the physical detection mechanisms for semiconductor detectors, an overview of ongoing detector development work is presented. The capabilities of semiconductor-based PET systems and the current state of these devices are discussed.

  14. Synchrotron cooling and annihilation of an e/+/-e/-/ plasma - The radiation mechanism for the 5 March, 1979 transient

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Bussard, R. W.; Lingenfelter, R. E.

    1981-01-01

    Positron-electron pair radiation is examined as a mechanism that could be responsible for the impulsive phase emission of the 5 March, 1979 transient. Synchrotron cooling and subsequent annihilation of the pairs can account for the energy spectrum, the very high brightness, and the 0.4 MeV feature observed from this transient, whose source is likely to be a neutron star in the supernova remnant N49 in the Large Magellanic Cloud. In this model, the observed radiation is produced in the skin layer of a hot, radiation-dominated pair atmosphere, probably confined to the vicinity of the neutron star by a strong magnetic field. In this layer, about 10 to the 12th generations of pairs are formed (by photon-photon collisions), cooled and annihilated during the 0.15 s duration of the impulsive phase.

  15. Positron annihilation on the surfaces of SiO 2 films thermally grown on single crystal of Cz-Si

    NASA Astrophysics Data System (ADS)

    Deng, Wen; Yue, Li; Zhang, Wei; Cheng, Xu-xin; Zhu, Yan-yan; Huang, Yu-yang

    2009-09-01

    Two-detector coincidence system and mono-energetic slow positron beam has been applied to measure the Doppler broadening spectra for single crystals of SiO2, SiO2 films with different thickness thermally grown on single crystal of Cz-Si, and single crystal of Si without oxide film. Oxygen is recognized as a peak at about 11.85 × 10-3m0c on the ratio curves. The S parameters decrease with the increase of positron implantation energy for the single crystal of SiO2 and Si without oxide film. However, for the thermally grown SiO2-Si sample, the S parameters in near surface of the sample increase with positron implantation energy. It is due to the formation of silicon oxide at the surface, which lead to lower S value. S and W parameters vary with positron implantation depth indicate that the SiO2-Si system consist of a surface layer, a SiO2 layer, a SiO2-Si interface layer and a semi-infinite Si substrate.

  16. Constraints on the dark matter annihilation from Fermi-LAT observation of M31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhengwei; Yuan, Qiang; Huang, Xiaoyuan

    2016-12-01

    Gamma-ray is a good probe of dark matter (DM) particles in the Universe. We search for the DM annihilation signals in the direction of the Andromeda galaxy (M31) using 7.5 year Fermi-LAT pass 8 data. Similar to Pshirkov et al. (2016), we find that there is residual excess emission from the direction of M31 if only the galactic disk as traced by the far infrared emission is considered. Adding a point-like source will improve the fitting effectively, although additional slight improvements can be found if an extended component such as a uniform disk or two bubbles is added instead. Takingmore » the far infrared disk plus a point source as the background model, we search for the DM annihilation signals in the data. We find that there is strong degeneracy between the emission from the galaxy and that from 10s GeV mass DM annihilation in the main halo with quark final state. However, the required DM annihilation cross section is about 10{sup −25}–10{sup −24} cm{sup 3}s{sup −1}, orders of magnitude larger than the constraints from observations of dwarf spheroidal galaxies, indicating a non-DM origin of the emission. If DM subhalos are taken into account, the degeneracy is broken. When considering the enhancement from DM subhalos, the constraints on DM model parameters are comparable to (or slightly weaker than) those from the population of dwarf spheroidal galaxies. We also discuss the inverse Compton scattering component from DM annihilation induced electrons/positrons. For the first time we include an energy dependent template of the inverse Compton emission (i.e., a template cube) in the data analysis to take into account the effect of diffusion of charged particles. We find a significant improvement of the constraints in the high mass range of DM particles after considering the inverse Compton emission.« less

  17. Three Dimensional Positron Annihilation Momentum Measurement Technique Applied to Measure Oxygen-Atom Defects in 6H Silicon Carbide

    DTIC Science & Technology

    2010-03-01

    Stormer et al [9] measured 6H SiC’s positron work function (Φ + ),-3.0 ± 0.2 eV, which is the same value for the most commonly used positron...Subjected to various Treatments‖, Materials Science Forum, Vols. 255-7, pp. 662-4. 9. Stormer J, Goodyear A, Anwand W, Brauer G, Coleman P, and

  18. Constraints on dark matter annihilation in clusters of galaxies with the Fermi large area telescope

    DOE PAGES

    Ackermann, M.; Ajello, M.; Allafort, A.; ...

    2010-05-20

    Nearby clusters and groups of galaxies are potentially bright sources of high-energy gamma-ray emission resulting from the pair-annihilation of dark matter particles. However, no significant gamma-ray emission has been detected so far from clusters in the first 11 months of observations with the Fermi Large Area Telescope. We interpret this non-detection in terms of constraints on dark matter particle properties. In particular for leptonic annihilation final states and particle masses greater than ~ 200 GeV, gamma-ray emission from inverse Compton scattering of CMB photons is expected to dominate the dark matter annihilation signal from clusters, and our gamma-ray limits excludemore » large regions of the parameter space that would give a good fit to the recent anomalous Pamela and Fermi-LAT electron-positron measurements. We also present constraints on the annihilation of more standard dark matter candidates, such as the lightest neutralino of supersymmetric models. The constraints are particularly strong when including the fact that clusters are known to contain substructure at least on galaxy scales, increasing the expected gamma-ray flux by a factor of ~ 5 over a smooth-halo assumption. Here, we also explore the effect of uncertainties in cluster dark matter density profiles, finding a systematic uncertainty in the constraints of roughly a factor of two, but similar overall conclusions. Finally, in this work, we focus on deriving limits on dark matter models; a more general consideration of the Fermi-LAT data on clusters and clusters as gamma-ray sources is forthcoming.« less

  19. Electron-positron momentum distribution measurements of high-T superconductors and related systems

    NASA Astrophysics Data System (ADS)

    Wachs, A. L.; Turchi, P. E. A.; Howell, R. J.; Jean, Y. C.; Fluss, M. J.; West, R. N.; Kaiser, J. H.; Rayner, S.; Hahgighi, H.; Merkle, K. L.

    1989-08-01

    Measurements are discussed of the 2-D angular correlation of positron annihilation radiation (ACAR) in La2CuO4, YBa2Cu3O7 (YBCO), and NiO. The measurements for NiO are the first such 2-D ACAR measurements; the YBCO results are of a higher statistical quality than previously reported in the literature. The data are compared with complementary theoretical calculations and with each other. The implication is discussed of the analysis for ACAR studies of similar and related systems.

  20. Modeling of the energy resolution of a 1 meter and a 3 meter time of flight positron annihilation induced Auger electron spectrometers

    NASA Astrophysics Data System (ADS)

    Fairchild, A.; Chirayath, V.; Gladen, R.; McDonald, A.; Lim, Z.; Chrysler, M.; Koymen, A.; Weiss, A.

    Simion 8.1®simulations were used to determine the energy resolution of a 1 meter long Time of Flight Positron annihilation induced Auger Electron Spectrometer (TOF-PAES). The spectrometer consists of: 1. a magnetic gradient section used to parallelize the electrons leaving the sample along the beam axis, 2. an electric field free time of flight tube and 3. a detection section with a set of ExB plates that deflect electrons exiting the TOF tube into a Micro-Channel Plate (MCP). Simulations of the time of flight distribution of electrons emitted according to a known secondary electron emission distribution, for various sample biases, were compared to experimental energy calibration peaks and found to be in excellent agreement. The TOF spectra at the highest sample bias was used to determine the timing resolution function describing the timing spread due to the electronics. Simulations were then performed to calculate the energy resolution at various electron energies in order to deconvolute the combined influence of the magnetic field parallelizer, the timing resolution, and the voltage gradient at the ExB plates. The energy resolution of the 1m TOF-PAES was compared to a newly constructed 3 meter long system. The results were used to optimize the geometry and the potentials of the ExB plates for obtaining the best energy resolution. This work was supported by NSF Grant NSF Grant No. DMR 1508719 and DMR 1338130.

  1. Cascade model of gamma-ray bursts: Power-law and annihilation-line components

    NASA Technical Reports Server (NTRS)

    Harding, A. K.; Sturrock, P. A.; Daugherty, J. K.

    1988-01-01

    If, in a neutron star magnetosphere, an electron is accelerated to an energy of 10 to the 11th or 12th power eV by an electric field parallel to the magnetic field, motion of the electron along the curved field line leads to a cascade of gamma rays and electron-positron pairs. This process is believed to occur in radio pulsars and gamma ray burst sources. Results are presented from numerical simulations of the radiation and photon annihilation pair production processes, using a computer code previously developed for the study of radio pulsars. A range of values of initial energy of a primary electron was considered along with initial injection position, and magnetic dipole moment of the neutron star. The resulting spectra was found to exhibit complex forms that are typically power law over a substantial range of photon energy, and typically include a dip in the spectrum near the electron gyro-frequency at the injection point. The results of a number of models are compared with data for the 5 Mar., 1979 gamma ray burst. A good fit was found to the gamma ray part of the spectrum, including the equivalent width of the annihilation line.

  2. Zn-vacancy related defects in ZnO grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Ling, F. C. C.; Luo, C. Q.; Wang, Z. L.; Anwand, W.; Wagner, A.

    2017-02-01

    Undoped and Ga-doped ZnO (002) films were grown c-sapphire using the pulsed laser deposition (PLD) method. Znvacancy related defects in the films were studied by different positron annihilation spectroscopy (PAS). These included Doppler broadening spectroscopy (DBS) employing a continuous monenergetic positron beam, and positron lifetime spectroscopy using a pulsed monoenergetic positron beam attached to an electron linear accelerator. Two kinds of Znvacancy related defects namely a monovacancy and a divacancy were identified in the films. In as-grown undoped samples grown with relatively low oxygen pressure P(O2)≤1.3 Pa, monovacancy is the dominant Zn-vacancy related defect. Annealing these samples at 900 oC induced Zn out-diffusion into the substrate and converted the monovacancy to divacancy. For the undoped samples grown with high P(O2)=5 Pa irrespective of the annealing temperature and the as-grown degenerate Ga-doped sample (n=1020 cm-3), divacancy is the dominant Zn-vacancy related defect. The clustering of vacancy will be discussed.

  3. Electron-positron interaction in jellium

    NASA Astrophysics Data System (ADS)

    Stachowiak, Henryk

    1990-06-01

    The problem of a positron in jellium is solved in an approach involving self-consistent perturbation of a Jastrow-type state. The merits of this approach are the following: (1) The one-electron wave functions are allowed to be nonorthogonal, (2) the formalism is indifferent with regard to uti- lizing the Pauli exclusion principle, and (3) numerical calculations are shorter by a factor of the order of 100 in comparison with other theories. The first two points are of special importance in view of the difficulties encountered both by the Kahana formalism and the approach of Lowy and Jackson. The screening cloud obtained in this work reproduces quite well the recent results of Rubaszek and Stachowiak, as do the partial annihilation rates. A comparison with the results of other theories and with experiment is also made.

  4. Microstructure of thermally grown and deposited alumina films probed with positrons

    NASA Astrophysics Data System (ADS)

    Somieski, Bertram; Hulett, Lester D.; Xu, Jun; Pint, Bruce A.; Tortorelli, Peter F.; Nielsen, Bent; Asoka-Kumar, Palakkal; Suzuki, Ryoichi; Ohdaira, Toshiyuki

    1999-03-01

    Aluminum oxide films used for corrosion protection of iron and nickel aluminides were generated by substrate oxidation as well as plasma and physical vapor depositions. The films grown by oxidation were crystalline. The others were amorphous. Defect structures of the films were studied by positron spectroscopy techniques. Lifetimes of the positrons, and Doppler broadening of the γ photons generated by their annihilation, were measured as functions of the energies with which they were injected. In this manner, densities and sizes of the defects were determined as functions of depths from the outer surfaces of the films. Alumina films generated by oxidation had high densities of open volume defects, mainly consisting of a few aggregated vacancies. In the outer regions of the films the structures of the defects did not depend on substrate compositions. Positron lifetime measurements, and the S and W parameters extracted from Doppler broadening spectra, showed uniform distributions of defects in the crystalline Al2O3 films grown on nickel aluminide substrates, but these data indicated intermediate layers of higher defect contents at the film/substrate interfaces of oxides grown on iron aluminide substrates. Amorphous films generated by plasma and physical vapor deposition had much larger open volume defects, which caused the average lifetimes of the injected positrons to be significantly longer. The plasma deposited film exhibited a high density of large cavities.

  5. Can Positron 2D-ACAR Resolve the Electronic Structure of HIGH-Tc Superconductors?

    NASA Astrophysics Data System (ADS)

    Chan, L. P.; Lynn, K. G.; Harshman, D. R.

    We examine the ability of the positron Two-Dimensional Angular Correlation Annihilation Radiation (2D-ACAR) technique to resolve the electronic structures of high-Tc cuprate superconductors. Following a short description of the technique, discussions of the theoretical assumptions, data analysis and experimental considerations, in relation to the high-Tc superconductors, are given. We briefly review recent 2D-ACAR experiments on YBa2Cu3O7-x, Bi2Sr2CaCuO8+δ and La2-xSrxCuO4. The 2D-ACAR technique is useful in resolving the band crossings associated with the layers of the superconductors that are preferentially sampled by the positrons. Together with other Fermi surface measurements (namely angle-resolved photoemission), 2D-ACAR can resolve some of the electronic structures of high-Tc cuprate superconductors. In addition, 2D-ACAR measurements of YBa2Cu3O7-x and Bi2Sr2CaCuO8+δ also reveal an interesting temperature dependence in the fine structures, and a change in the positron lifetime in the former.

  6. A Central Positron Source to Perform the Timing Alignment of Detectors in a PET Scanner

    NASA Astrophysics Data System (ADS)

    Thompson, C. J.; Camborde, M.-L.; Casey, M. E.

    2005-10-01

    Accurate timing alignment and stability are important to maximize the true counts and minimize the random counts in positron emission tomography. Its importance increases in time-of-flight (TOF) scanners. We propose using a central positron emitting source enclosed in a detector which detects the excess energy of the positron before it annihilates as a timing reference. All crystals can be time-aligned with respect to this central source. We evaluated 10 /spl mu/Ci /sup 22/Na and /sup 68/Ge sources embedded in cylinders of plastic scintillator coupled to a fast PMT. Light flashes produced after the parent isotope emits positrons are detected, and the anode signals from the PMT are the reference time for each positron decay. The time delay before the gamma ray is detected by the scanner's conventional gamma ray detectors is the time offset to be applied to that crystal. Since all detectors are almost the same distance from the central source, TOF errors are minimized. Preliminary results show a mean signal amplitude of >0.5 V from /sup 22/Na at 1000-V PMT bias, a timing FWHM of 850 ps with respect to a small LSO crystal. This suggests it could be useful to align both conventional and TOF PET scanners.

  7. An Electron-positron Jet Model for the Galactic Center

    NASA Technical Reports Server (NTRS)

    Burns, M. L.

    1983-01-01

    High energy observations of the galactic center on the subparsec scale seem to be consistent with electron-positron production in the form of relativistic jets. These jets could be produced by an approximately 1,000,000 solar mass black hole dynamo transportating pairs away from the massive core. An electromagnetic cascade shower would develop first from ambient soft protons and then nonlinearly; the shower using itself as a scattering medium. This is suited to producing, cooling and transporting pairs to the observed annihilation region. It is possible the center of our galaxy is a miniature version of more powerful active galactic nuclei that exhibit jet activity.

  8. An electron-positron jet model for the Galactic center

    NASA Technical Reports Server (NTRS)

    Burns, M. L.

    1983-01-01

    High energy observations of the galactic center on the subparsec scale seem to be consistent with electron-positron production in the form of relativistic jets. These jets could be produced by an approximately 1,000,000 solar mass black hole dynamo transporting pairs away from the massive core. An electomagnetic cascade shower would develop first from ambient soft protons and then nonlinearly, the shower using itself as a scattering medium. This is suited to producing, cooling and transporting pairs to the observed annihilation region. It is possible the center of our galaxy is a miniature version of more powerful active galactic nuclei that exhibit jet activity.

  9. An electron-positron jet model for the Galactic center

    NASA Astrophysics Data System (ADS)

    Burns, M. L.

    1983-07-01

    High energy observations of the galactic center on the subparsec scale seem to be consistent with electron-positron production in the form of relativistic jets. These jets could be produced by an approximately 1,000,000 solar mass black hole dynamo transporting pairs away from the massive core. An electomagnetic cascade shower would develop first from ambient soft protons and then nonlinearly, the shower using itself as a scattering medium. This is suited to producing, cooling and transporting pairs to the observed annihilation region. It is possible the center of our galaxy is a miniature version of more powerful active galactic nuclei that exhibit jet activity.

  10. An electron-positron jet model for the galactic center

    NASA Astrophysics Data System (ADS)

    Burns, M. L.

    1983-03-01

    High energy observations of the galactic center on the subparsec scale seem to be consistent with electron-positron production in the form of relativistic jets. These jets could be produced by an approximately 1,000,000 solar mass black hole dynamo transportating pairs away from the massive core. An electromagnetic cascade shower would develop first from ambient soft protons and then nonlinearly; the shower using itself as a scattering medium. This is suited to producing, cooling and transporting pairs to the observed annihilation region. It is possible the center of our galaxy is a miniature version of more powerful active galactic nuclei that exhibit jet activity.

  11. Positron annihilation study of Sr Doping in La(2-x)Sr(x)CuO4

    NASA Astrophysics Data System (ADS)

    Sterne, P. A.; Howell, R. H.; Fluss, M. J.; Kaiser, J. H.

    1993-04-01

    A combined experimental and threshold study of effects of Sr doping on electronic structure of La(2-x)Sr(x)CuO(4) was presented. Electron-positron momentum distributions were measured to high statistical precision (greater than 4 x 10(exp 8) counts) at room temperature for samples with Sr concentrations of x = 0.0, 0.1, 0.13, and 0.2. Analysis of all four spectra reveal strong features due to electron-positron wavefunction overlap, in quantitative agreement with theoretical calculations. The Sr doped samples show discontinuities consistent with presence of a Fermi surface. The form and position of these features are in general agreement with the predictions of band theory. Correspondence between theory and experiment, as well as some differences, are revealed by a detailed study of the changes in electron-position momentum density with increasing Sr doping.

  12. Constraints on cosmological dark matter annihilation from the Fermi-LAT isotropic diffuse gamma-ray measurement

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2010-04-01

    The first published Fermi large area telescope (Fermi-LAT) measurement of the isotropic diffuse gamma-ray emission is in good agreement with a single power law, and is not showing any signature of a dominant contribution from dark matter sources in the energy range from 20 to 100 GeV. Here, we use the absolute size and spectral shape of this measured flux to derive cross section limits on three types of generic dark matter candidates: annihilating into quarks, charged leptons and monochromatic photons. Predicted gamma-ray fluxes from annihilating dark matter are strongly affected by the underlying distribution of dark matter, and bymore » using different available results of matter structure formation we assess these uncertainties. We also quantify how the dark matter constraints depend on the assumed conventional backgrounds and on the Universe's transparency to high-energy gamma-rays. In reasonable background and dark matter structure scenarios (but not in all scenarios we consider) it is possible to exclude models proposed to explain the excess of electrons and positrons measured by the Fermi-LAT and PAMELA experiments. Derived limits also start to probe cross sections expected from thermally produced relics (e.g. in minimal supersymmetry models) annihilating predominantly into quarks. Finally, for the monochromatic gamma-ray signature, the current measurement constrains only dark matter scenarios with very strong signals.« less

  13. On the use of positron counting for radio-Assay in nuclear pharmaceutical production.

    PubMed

    Maneuski, D; Giacomelli, F; Lemaire, C; Pimlott, S; Plenevaux, A; Owens, J; O'Shea, V; Luxen, A

    2017-07-01

    Current techniques for the measurement of radioactivity at various points during PET radiopharmaceutical production and R&D are based on the detection of the annihilation gamma rays from the radionuclide in the labelled compound. The detection systems to measure these gamma rays are usually variations of NaI or CsF scintillation based systems requiring costly and heavy lead shielding to reduce background noise. These detectors inherently suffer from low detection efficiency, high background noise and very poor linearity. They are also unable to provide any reasonably useful position information. A novel positron counting technique is proposed for the radioactivity assay during radiopharmaceutical manufacturing that overcomes these limitations. Detection of positrons instead of gammas offers an unprecedented level of position resolution of the radiation source (down to sub-mm) thanks to the nature of the positron interaction with matter. Counting capability instead of charge integration in the detector brings the sensitivity down to the statistical limits at the same time as offering very high dynamic range and linearity from zero to any arbitrarily high activity. This paper reports on a quantitative comparison between conventional detector systems and the proposed positron counting detector. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Identification of vacancy defect complexes in transparent semiconducting oxides ZnO, In2O3 and SnO2.

    PubMed

    Makkonen, Ilja; Korhonen, Esa; Prozheeva, Vera; Tuomisto, Filip

    2016-06-08

    Positron annihilation spectroscopy, when combined with supporting high-quality modeling of positron states and annihilation in matter, is a powerful tool for detailed defect identification of vacancy-type defects in semiconductors and oxides. Here we demonstrate that the Doppler broadening of the positron annihilation radiation is a very sensitive means for observing the oxygen environment around cation vacancies, the main open-volume defects trapping positrons in measurements made for transparent semiconducting oxides. Changes in the positron annihilation signal due to external manipulation such as irradiation and annealing can be correlated with the associated changes in the sizes of the detected vacancy clusters. Our examples for ZnO, In2O3 and SnO2 demonstrate that oxygen vacancies in oxides can be detected directly using positron annihilation spectroscopy when they are complexed with cation vacancies.

  15. Identification of vacancy defect complexes in transparent semiconducting oxides ZnO, In2O3 and SnO2

    NASA Astrophysics Data System (ADS)

    Makkonen, Ilja; Korhonen, Esa; Prozheeva, Vera; Tuomisto, Filip

    2016-06-01

    Positron annihilation spectroscopy, when combined with supporting high-quality modeling of positron states and annihilation in matter, is a powerful tool for detailed defect identification of vacancy-type defects in semiconductors and oxides. Here we demonstrate that the Doppler broadening of the positron annihilation radiation is a very sensitive means for observing the oxygen environment around cation vacancies, the main open-volume defects trapping positrons in measurements made for transparent semiconducting oxides. Changes in the positron annihilation signal due to external manipulation such as irradiation and annealing can be correlated with the associated changes in the sizes of the detected vacancy clusters. Our examples for ZnO, In2O3 and SnO2 demonstrate that oxygen vacancies in oxides can be detected directly using positron annihilation spectroscopy when they are complexed with cation vacancies.

  16. Positron emission tomography with [ 18F]-FDG in oncology

    NASA Astrophysics Data System (ADS)

    Talbot, J. N.; Petegnief, Y.; Kerrou, K.; Montravers, F.; Grahek, D.; Younsi, N.

    2003-05-01

    Positron Emission Tomography (PET) is a several decade old imaging technique that has more recently demonstrated its utility in clinical applications. The imaging agents used for PET contain a positron emmiter coupled to a molecule that drives the radionuclide to target organs or to tissues performing the targetted biological function. PET is then part of functional imaging. As compared to conventional scintigraphy that uses gamma photons, the coincidence emission of two 511 keV annihilation photons in opposite direction that finally results from by beta plus decay makes it possible for PET to get rid of the collimators that greatly contribute to the poor resolution of scintigraphy. In this article, the authors describe the basics of physics for PET imaging and report on the clinical performances of the most commonly used PET tracer: [ 18F]-fluorodeoxyglucose (FDG). A recent and promising development in this field is fusion of images coming from different imaging modalities. New PET machines now include a CT and this fusion is therefore much easier.

  17. Electron-positron momentum density in Tl 2Ba 2CuO 6

    NASA Astrophysics Data System (ADS)

    Barbiellini, B.; Gauthier, M.; Hoffmann, L.; Jarlborg, T.; Manuel, A. A.; Massidda, S.; Peter, M.; Triscone, G.

    1994-08-01

    We present calculations of the electron-positron momentum density for the high- Tc superconductor Tl 2Ba 2CuO 6, together with some preliminary two-dimensional angular correlation of the annihilation radiation (2D-ACAR) measurements. The calculations are based on the first-principles electronic structure obtained using the full-potential linearized augmented plane wave (FLAPW) and the linear muffin-tin orbital (LMTO) methods. We also use a linear combination of the atomic orbitals-molecular orbital method (LCAO-MO) to discuss orbital contributions to the anisotropies. Some agreement between calculated and measured 2D-ACAR anisotropies encourage sample improvement for further Fermi surface investigations. Indeed, our results indicate a non-negligle overlap of the positron wave function with the CuOo 2 plane electrons. Therefore, this compound may be well suited for investigating the relevant CuO 2 Fermi surface by 2D-ACAR.

  18. SMM observations of gamma-ray transients. 3: A search for a broadened, redshifted positron annihilation line from the direction of the Galactic center

    NASA Technical Reports Server (NTRS)

    Harris, Michael J.; Share, Gerald H.; Leising, Mark D.

    1994-01-01

    We have searched for 1980-1988 Solar Maximum Mission gamma-ray spectrometer data for transient emission on timescales from hours to approximately 12 days of broad gamma-ray lines at energies approximately 400 keV, which were reported by the High Energy Astronomy Observatory (HEAO) 1 and SIGMA experiments from two sources lying toward the Galactic center. The lines have been interpreted as the product of the annihilation of positrons in pair plasmas surrounding the black hole candidate 1E 1740.7-2942 and the X-ray binary 1H 1822-371. Our results from a combined exposure of approximately 1.5 x 10(exp 7)s provide no convincing evidence for transient emission of this line on any timescale between approximately 9 hr and approximately 1 yr. Our 3 sigma upper limits on the line flux during approximately 12 day intervals are characteristically 4.8 x 10(exp -3) photon/sq cm/s, while for approximately 1 day intervals our 3 sigma upper limits are characteristically 4.9 x 10(exp -3) photon/sq cm/s. These results imply a duty cycle of less than 1.3% for the transient line measured from 1H 1822-371 during a approximately 3 week interval in 1977 by HEAO 1, and a duty cycle of less than or = 0.8% for the transient line detected in 1990 and 1992 from 1E 1740.7-2942 on approximately 1 day timescales by SIGMA.

  19. Anapole dark matter annihilation into photons

    NASA Astrophysics Data System (ADS)

    Latimer, David C.

    2017-05-01

    In models of anapole dark matter (DM), the DM candidate is a Majorana fermion whose primary interaction with standard model (SM) particles is through an anapole coupling to off-shell photons. As such, at tree-level, anapole DM undergoes p-wave annihilation into SM charged fermions via a virtual photon. But, generally, Majorana fermions are polarizable, coupling to two real photons. This fact admits the possibility that anapole DM can annihilate into two photons in an s-wave process. Using an explicit model, we compute both the tree-level and diphoton contributions to the anapole DM annihilation cross section. Depending on model parameters, the s-wave process can either rival or be dwarfed by the p-wave contribution to the total annihilation cross section. Subjecting the model to astrophysical upper bounds on the s-wave annihilation mode, we rule out the model with large s-wave annihilation.

  20. Supersymmetric resonant dark matter: A thermal model for the AMS-02 positron excess

    NASA Astrophysics Data System (ADS)

    Bai, Yang; Berger, Joshua; Lu, Sida

    2018-06-01

    We construct a thermal dark matter model with annihilation mediated by a resonance to explain the positron excess observed by PAMELA, Fermi-LAT and AMS-02, while satisfying constraints from cosmic microwave background (CMB) measurements. The challenging requirement is that the resonance has twice the dark matter mass to one part in a million. We achieve this by introducing an S U (3 )f dark flavor symmetry that is spontaneously broken to S U (2 )f×U (1 )f . The resonance is the heaviest state in the dark matter flavor multiplet, and the required mass relation is protected by the vacuum structure and supersymmetry from radiative corrections. The pseudo-Nambu-Goldstone bosons (PNGBs) from the dark flavor symmetry breaking can be slightly lighter than one GeV and dominantly decay into two muons just from kinematics, with subsequent decay into positrons. The PNGBs are produced in resonant dark matter semiannihilation, where two dark matter particles annihilate into an anti-dark matter particle and a PNGB. The dark matter mass in our model is constrained to be below around 1.9 TeV from fitting thermal relic abundance, AMS-02 data and CMB constraints. The superpartners of Standard Model (SM) particles can cascade decay into a light PNGB along with SM particles, yielding a correlated signal of this model at colliders. One of the interesting signatures is a resonance of a SM Higgs boson plus two collimated muons, which has superb discovery potential at LHC Run 2.

  1. Further search for selectivity of positron annihilation in the skin and cancerous systems

    NASA Astrophysics Data System (ADS)

    Liu, Guang; Chen, Hongmin; Chakka, Lakshmi; Cheng, Mei-Ling; Gadzia, Joseph E.; Suzuki, R.; Ohdaira, T.; Oshima, N.; Jean, Y. C.

    2008-10-01

    Positronium annihilation lifetime (PAL) spectroscopy and Doppler broadening energy spectra (DBES) have been used to search for selectivity and sensitivity for cancerous skin samples with and without cancer. This study is to further explore the melanoma cancerous system and other different types of skin samples. We found that the S parameter in melanoma skin samples cut at 0.39 mm depth from the same patient's skin is smaller than near the skin surface. However in 10 melanoma samples from different patients, the S parameters vary significantly. Similarly, among 10 normal skin samples without cancer, the S parameters also vary largely among different patients. To understand the sensitivity of PAS as a tool to detect cancer formation at the early stage, we propose a controlled and systematic study of in vivo experiments using UV-induced cancer skin from living animals.

  2. Strangeness production in deep-inelastic positron-proton scattering at HERA

    NASA Astrophysics Data System (ADS)

    Aid, S.; Anderson, M.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Babaev, A.; Bähr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Barth, M.; Bassler, U.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Braunschweig, W.; Brisson, V.; Bruel, P.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burton, M. J.; Calvet, D.; Campbell, A. J.; Carli, T.; Charlet, M.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Cocks, S.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Cousinou, M.-C.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Davis, C. L.; De Roeck, A.; De Wolf, E. A.; Delcourt, B.; Di Nezza, P.; Dirkmann, M.; Dixon, P.; Dlugosz, W.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Fahr, A. B.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieseer, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gayler, J.; Gebauer, M.; Genzel, H.; Gerhards, R.; Glazov, A.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Golec-Biernat, K.; Gonzalez-Pineiro, B.; Gorelov, I.; Grab, C.; Grässler, H.; Greenshaw, T.; Griffiths, R. K.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Hadig, T.; Haidt, D.; Haiduk, L.; Hampel, M.; Haynes, W. J.; Heinzelmann, G.; Henderson, R. C. M.; Henschel, H.; Herynek, I.; Hess, M. F.; Hewitt, K.; Hildesheim, W.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Hoffmann, D.; Holtom, T.; Horisberger, R.; Hudgson, V. L.; Hütte, M.; Ibbotson, M.; Itterbeck, H.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johnson, D. P.; Jung, H.; Kalmus, P. I. P.; Kander, M.; Kant, D.; Kaschowitz, R.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kaufmann, O.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhler, T.; Köhne, J. H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Lacour, D.; Laforge, B.; Lander, R.; Landon, M. P. J.; Lange, W.; Langenegger, U.; Laporte, J.-F.; Lebedev, A.; Lehner, F.; Levonian, S.; Lindström, G.; Lindstroem, M.; Link, J.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Lomas, J. W.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Megliori, A.; Mikocki, S.; Milstead, D.; Moeck, J.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, D.; Müller, G.; Müller, M.; Müller, M.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Négri, I.; Newman, P. R.; Newton, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Pawletta, H.; Peppel, E.; Perez, E.; Phillips, J. P.; Pieuchot, A.; Pitzl, D.; Pope, G.; Prell, S.; Rabbertz, K.; Rädel, G.; Reimer, P.; Reinshagen, S.; Rick, H.; Riech, V.; Riedlberger, J.; Riepenhausen, F.; Riess, S.; Rizvi, E.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Solochenko, V.; Soloviev, Y.; Specka, A.; Spiekermann, J.; Spielman, S.; Spitzer, H.; Squinabol, F.; Steenbock, M.; Steffen, P.; Steinberg, R.; Steiner, H.; Steinhart, J.; Stella, B.; Stellberger, A.; Stier, J.; Stiewe, J.; Stößlein, U.; Stolze, K.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taševský, M.; Tchernyshov, V.; Tchetchelnitski, S.; Theissen, J.; Thiebaux, C.; Thompson, G.; Truöl, P.; Tsipolitis, G.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Esch, P.; Van Mechelen, P.; Vandenplas, D.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walther, A.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L. R.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wobisch, M.; Wünsch, E.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zini, P.; Zomer, F.; Zsembery, J.; Zuber, K.; zurNedden, M.; H1 Collaboration

    1996-02-01

    Measurements of K0 meson and Λ baryon production in deep-inelastic positron-proton scattering (DIS) are presented in the kinematic range 10 < Q2 < 70 GeV 2 and 10 -4 < x < 10 -2. The measurements, obtained using the H1 detector at the HEPA collider, are discussed in the light of possible mechanisms for increased strangeness production at low Bjorken- x. Comparisons of the xF spectra, where xF is the fractional longitudinal momentum in the hadronic centre-of-mass frame, are made with results from electron-positron annihilation. The xF spectra and the K0 "seagull" plot are compared with previous DIS results. The mean K0 and Λ multiplicities are studied as a function of the centre-of-mass energy W and are observed to be consistent with a logarithmic increase with W when compared with previous measurements. A comparison of strangeness production in diffractive and non-diffractive DIS is made. An upper limit of 0.9 nb, at the 95% confidence level, is placed on the cross section for QCD instanton induced events.

  3. Resonant production of dark photons in positron beam dump experiments

    NASA Astrophysics Data System (ADS)

    Nardi, Enrico; Carvajal, Cristian D. R.; Ghoshal, Anish; Meloni, Davide; Raggi, Mauro

    2018-05-01

    Positrons beam dump experiments have unique features to search for very narrow resonances coupled superweakly to e+e- pairs. Due to the continued loss of energy from soft photon bremsstrahlung, in the first few radiation lengths of the dump a positron beam can continuously scan for resonant production of new resonances via e+ annihilation off an atomic e- in the target. In the case of a dark photon A' kinetically mixed with the photon, this production mode is of first order in the electromagnetic coupling α , and thus parametrically enhanced with respect to the O (α2)e+e-→γ A' production mode and to the O (α3)A' bremsstrahlung in e- -nucleon scattering so far considered. If the lifetime is sufficiently long to allow the A' to exit the dump, A'→e+e- decays could be easily detected and distinguished from backgrounds. We explore the foreseeable sensitivity of the Frascati PADME experiment in searching with this technique for the 17 MeV dark photon invoked to explain the Be 8 anomaly in nuclear transitions.

  4. Electroweak and Higgs boson internal bremsstrahlung. General considerations for Majorana dark matter annihilation and application to MSSM neutralinos

    NASA Astrophysics Data System (ADS)

    Bringmann, Torsten; Calore, Francesca; Galea, Ahmad; Garny, Mathias

    2017-09-01

    It is well known that the annihilation of Majorana dark matter into fermions is helicity suppressed. Here, we point out that the underlying mechanism is a subtle combination of two distinct effects, and we present a comprehensive analysis of how the suppression can be partially or fully lifted by the internal bremsstrahlung of an additional boson in the final state. As a concrete illustration, we compute analytically the full amplitudes and annihilation rates of supersymmetric neutralinos to final states that contain any combination of two standard model fermions, plus one electroweak gauge boson or one of the five physical Higgs bosons that appear in the minimal supersymmetric standard model. We classify the various ways in which these three-body rates can be large compared to the two-body rates, identifying cases that have not been pointed out before. In our analysis, we put special emphasis on how to avoid the double counting of identical kinematic situations that appear for two-body and three-body final states, in particular on how to correctly treat differential rates and the spectrum of the resulting stable particles that is relevant for indirect dark matter searches. We find that both the total annihilation rates and the yields can be significantly enhanced when taking into account the corrections computed here, in particular for models with somewhat small annihilation rates at tree-level which otherwise would not be testable with indirect dark matter searches. Even more importantly, however, we find that the resulting annihilation spectra of positrons, neutrinos, gamma-rays and antiprotons differ in general substantially from the model-independent spectra that are commonly adopted, for these final states, when constraining particle dark matter with indirect detection experiments.

  5. Improved Si0.5Ge0.5/Si interface quality achieved by the process of low energy hydrogen plasma cleaning and investigation of interface quality with positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Liao, M.-H.; Chen, C.-H.

    2013-04-01

    The Positron Annihilation Spectra (PAS), Raman, and Photoluminescence spectroscopy reveal that Si0.5Ge0.5/Si interface quality can be significantly improved by the low energy plasma cleaning process using hydrogen. In the PAS, the particularly small value of lifetime and intensity near the Si0.5Ge0.5/Si interface in the sample with the treatment indicate that the defect concentration is successfully reduced 2.25 times, respectively. Fewer defects existed in the Si0.5Ge0.5/Si interface result in the high compressive strain about 0.36% in the top epi-Si0.5Ge0.5 layer, which can be observed in Raman spectra and stronger radiative recombination rate about 1.39 times for the infrared emission, which can be observed in the photoluminescence spectra. With better Si0.5Ge0.5/Si interface quality, the SiGe-based devices can have better optical and electrical characteristics for more applications in the industry. The PAS is also demonstrated that it is the useful methodology tool to quantify the defect information in the SiGe-based material.

  6. Electron-positron momentum distribution measurements of high-T(sub c) superconductors and related systems

    NASA Astrophysics Data System (ADS)

    Wachs, A. L.; Turchi, P. E. A.; Howell, R. H.; Jean, Y. C.; Fluss, M. J.; West, R. N.; Kaiser, J. H.; Rayner, S.; Hahgighi, H.; Merkle, K. L.

    1989-06-01

    We discuss our measurements of the 2D-angular correlation of positron annihilation radiation (ACAR) in La(sub 2)CuO(sub 4), YBa(sub 2)Cu(sub 3)O(sub 7) (YBCO), and NiO. The measurements for NiO are the first such 2D-ACAR measurements; the YBCO results are of a higher statistical quality than previously reported in the literature. The data are compared with complementary theoretical calculations and with each other. We discuss the implication of our analysis for ACAR studies of similar and related systems.

  7. Positron and nanoindentation study of helium implanted high chromium ODS steels

    NASA Astrophysics Data System (ADS)

    Veternikova, Jana Simeg; Fides, Martin; Degmova, Jarmila; Sojak, Stanislav; Petriska, Martin; Slugen, Vladimir

    2017-12-01

    Three oxide dispersion strengthened (ODS) steels with different chromium content (MA 956, MA 957 and ODM 751) were studied as candidate materials for new nuclear reactors in term of their radiation stability. The radiation damage was experimentally simulated by helium ion implantation with energy of ions up to 500 keV. The study was focused on surface and sub-surface structural change due to the ion implantation observed by mostly non-destructive techniques: positron annihilation lifetime spectroscopy and nanoindentation. The applied techniques demonstrated the best radiation stability of the steel ODM 751. Blistering effect occurred due to high implantation dose (mostly in MA 956) was studied in details.

  8. Image Reconstruction from Under sampled Fourier Data Using the Polynomial Annihilation Transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archibald, Richard K.; Gelb, Anne; Platte, Rodrigo

    Fourier samples are collected in a variety of applications including magnetic resonance imaging and synthetic aperture radar. The data are typically under-sampled and noisy. In recent years, l 1 regularization has received considerable attention in designing image reconstruction algorithms from under-sampled and noisy Fourier data. The underlying image is assumed to have some sparsity features, that is, some measurable features of the image have sparse representation. The reconstruction algorithm is typically designed to solve a convex optimization problem, which consists of a fidelity term penalized by one or more l 1 regularization terms. The Split Bregman Algorithm provides a fastmore » explicit solution for the case when TV is used for the l1l1 regularization terms. Due to its numerical efficiency, it has been widely adopted for a variety of applications. A well known drawback in using TV as an l 1 regularization term is that the reconstructed image will tend to default to a piecewise constant image. This issue has been addressed in several ways. Recently, the polynomial annihilation edge detection method was used to generate a higher order sparsifying transform, and was coined the “polynomial annihilation (PA) transform.” This paper adapts the Split Bregman Algorithm for the case when the PA transform is used as the l 1 regularization term. In so doing, we achieve a more accurate image reconstruction method from under-sampled and noisy Fourier data. Our new method compares favorably to the TV Split Bregman Algorithm, as well as to the popular TGV combined with shearlet approach.« less

  9. Abstracts: Sagmore 9 Conference on Charge, Spin and Momentum Densities Held in Luso-Bussaco, Portugal on 26 June-2 July 1988

    DTIC Science & Technology

    1988-07-01

    other calculation. These results confirm the analy- sis of positron annihilation data made by Genoud at &1 (*1988) which requires a parametrized band...calculate the Compton-profile and the positron annihilation angular correlation of this coexisting system. We discuss the extent of appearance of metallic...momentum distributiom and spin density of forromsnetic Iron studied by spin polarised positron annihilation Abstract. We report dew first sbady of the

  10. Silicon displacement threshold energy determined by electron paramagnetic resonance and positron annihilation spectroscopy in cubic and hexagonal polytypes of silicon carbide

    NASA Astrophysics Data System (ADS)

    Kerbiriou, X.; Barthe, M.-F.; Esnouf, S.; Desgardin, P.; Blondiaux, G.; Petite, G.

    2007-05-01

    Both for electronic and nuclear applications, it is of major interest to understand the properties of point defects into silicon carbide (SiC). Low energy electron irradiations are supposed to create primary defects into materials. SiC single crystals have been irradiated with electrons at two beam energies in order to investigate the silicon displacement threshold energy into SiC. This paper presents the characterization of the electron irradiation-induced point defects into both polytypes hexagonal (6H) and cubic (3C) SiC single crystals by using both positron annihilation spectroscopy (PAS) and electron paramagnetic resonance (EPR). The nature and the concentration of the generated point defects depend on the energy of the electron beam and the polytype. After an electron irradiation at an energy of 800 keV vSi mono-vacancies and vSi-vC di-vacancies are detected in both 3C and 6H-SiC polytypes. On the contrary, the nature of point defects detected after an electron irradiation at 190 keV strongly depends on the polytype. Into 6H-SiC crystals, silicon Frenkel pairs vSi-Si are detected whereas only carbon vacancy related defects are detected into 3C-SiC crystals. The difference observed in the distribution of defects detected into the two polytypes can be explained by the different values of the silicon displacement threshold energies for 3C and 6H-SiC. By comparing the calculated theoretical numbers of displaced atoms with the defects numbers measured using EPR, the silicon displacement threshold energy has been estimated to be slightly lower than 20 eV in the 6H polytype and close to 25 eV in the 3C polytype.

  11. Pediatric radiation dosimetry for positron-emitting radionuclides using anthropomorphic phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Tianwu; Bolch, Wesley E.; Lee, Choonsik

    2013-10-15

    Purpose: Positron emission tomography (PET) plays an important role in the diagnosis, staging, treatment, and surveillance of clinically localized diseases. Combined PET/CT imaging exhibits significantly higher sensitivity, specificity, and accuracy than conventional imaging when it comes to detecting malignant tumors in children. However, the radiation dose from positron-emitting radionuclide to the pediatric population is a matter of concern since children are at a particularly high risk when exposed to ionizing radiation.Methods: The authors evaluate the absorbed fractions and specific absorbed fractions (SAFs) of monoenergy photons/electrons as well as S-values of 9 positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Rb-82,more » Y-86, and I-124) in 48 source regions for 10 anthropomorphic pediatric hybrid models, including the reference newborn, 1-, 5-, 10-, and 15-yr-old male and female models, using the Monte Carlo N-Particle eXtended general purpose Monte Carlo transport code.Results: The self-absorbed SAFs and S-values for most organs were inversely related to the age and body weight, whereas the cross-dose terms presented less correlation with body weight. For most source/target organ pairs, Rb-82 and Y-86 produce the highest self-absorbed and cross-absorbed S-values, respectively, while Cu-64 produces the lowest S-values because of the low-energy and high-frequency of electron emissions. Most of the total self-absorbed S-values are contributed from nonpenetrating particles (electrons and positrons), which have a linear relationship with body weight. The dependence of self-absorbed S-values of the two annihilation photons varies to the reciprocal of 0.76 power of the mass, whereas the self-absorbed S-values of positrons vary according to the reciprocal mass.Conclusions: The produced S-values for common positron-emitting radionuclides can be exploited for the assessment of radiation dose delivered to the pediatric population from

  12. Isochronal annealing studies on 1.1 MeV Fe ion irradiated RAFM steel using variable energy slow positron beam

    NASA Astrophysics Data System (ADS)

    Ramachandran, Renjith; David, C.; Rajaraman, R.; Abhaya, S.; Panigrahi, B. K.; Amarendra, G.

    2017-05-01

    Indian Reduced Activation Ferritic Martensitic steel is irradiated with 1.1 MeV Fe ions to a dose of 0.1 dpa at room temperature. The positron annihilation study showed a decrease in S-parameter with annealing temperature due to vacancy annealing. A complete defect recovery is observed beyond 1073 K. The linear nature of (S, W) correlation plot shows that only one kind of defect is present throughout the annealing temperature.

  13. ZnO Luminescence and scintillation studied via photoexcitation, X-ray excitation, and gamma-induced positron spectroscopy.

    PubMed

    Ji, J; Colosimo, A M; Anwand, W; Boatner, L A; Wagner, A; Stepanov, P S; Trinh, T T; Liedke, M O; Krause-Rehberg, R; Cowan, T E; Selim, F A

    2016-08-23

    The luminescence and scintillation properties of ZnO single crystals were studied by photoluminescence and X-ray-induced luminescence (XRIL) techniques. XRIL allowed a direct comparison to be made between the near-band emission (NBE) and trap emissions providing insight into the carrier recombination efficiency in the ZnO crystals. It also provided bulk luminescence measurements that were not affected by surface states. The origin of a green emission, the dominant trap emission in ZnO, was then investigated by gamma-induced positron spectroscopy (GIPS) - a unique defect spectroscopy method that enables positron lifetime measurements to be made for a sample without contributions from positron annihilation in the source materials. The measurements showed a single positron decay curve with a 175 ps lifetime component that was attributed to Zn vacancies passivated by hydrogen. Both oxygen vacancies and hydrogen-decorated Zn vacancies were suggested to contribute to the green emission. By combining scintillation measurements with XRIL, the fast scintillation in ZnO crystals was found to be strongly correlated with the ratio between the defect luminescence and NBE. This study reports the first application of GIPS to semiconductors, and it reveals the great benefits of the XRIL technique for the study of emission and scintillation properties of materials.

  14. ZnO Luminescence and scintillation studied via photoexcitation, X-ray excitation, and gamma-induced positron spectroscopy

    NASA Astrophysics Data System (ADS)

    Ji, J.; Colosimo, A. M.; Anwand, W.; Boatner, L. A.; Wagner, A.; Stepanov, P. S.; Trinh, T. T.; Liedke, M. O.; Krause-Rehberg, R.; Cowan, T. E.; Selim, F. A.

    2016-08-01

    The luminescence and scintillation properties of ZnO single crystals were studied by photoluminescence and X-ray-induced luminescence (XRIL) techniques. XRIL allowed a direct comparison to be made between the near-band emission (NBE) and trap emissions providing insight into the carrier recombination efficiency in the ZnO crystals. It also provided bulk luminescence measurements that were not affected by surface states. The origin of a green emission, the dominant trap emission in ZnO, was then investigated by gamma-induced positron spectroscopy (GIPS) - a unique defect spectroscopy method that enables positron lifetime measurements to be made for a sample without contributions from positron annihilation in the source materials. The measurements showed a single positron decay curve with a 175 ps lifetime component that was attributed to Zn vacancies passivated by hydrogen. Both oxygen vacancies and hydrogen-decorated Zn vacancies were suggested to contribute to the green emission. By combining scintillation measurements with XRIL, the fast scintillation in ZnO crystals was found to be strongly correlated with the ratio between the defect luminescence and NBE. This study reports the first application of GIPS to semiconductors, and it reveals the great benefits of the XRIL technique for the study of emission and scintillation properties of materials.

  15. ZnO Luminescence and scintillation studied via photoexcitation, X-ray excitation, and gamma-induced positron spectroscopy

    PubMed Central

    Ji, J.; Colosimo, A. M.; Anwand, W.; Boatner, L. A.; Wagner, A.; Stepanov, P. S.; Trinh, T. T.; Liedke, M. O.; Krause-Rehberg, R.; Cowan, T. E.; Selim, F. A.

    2016-01-01

    The luminescence and scintillation properties of ZnO single crystals were studied by photoluminescence and X-ray-induced luminescence (XRIL) techniques. XRIL allowed a direct comparison to be made between the near-band emission (NBE) and trap emissions providing insight into the carrier recombination efficiency in the ZnO crystals. It also provided bulk luminescence measurements that were not affected by surface states. The origin of a green emission, the dominant trap emission in ZnO, was then investigated by gamma-induced positron spectroscopy (GIPS) - a unique defect spectroscopy method that enables positron lifetime measurements to be made for a sample without contributions from positron annihilation in the source materials. The measurements showed a single positron decay curve with a 175 ps lifetime component that was attributed to Zn vacancies passivated by hydrogen. Both oxygen vacancies and hydrogen-decorated Zn vacancies were suggested to contribute to the green emission. By combining scintillation measurements with XRIL, the fast scintillation in ZnO crystals was found to be strongly correlated with the ratio between the defect luminescence and NBE. This study reports the first application of GIPS to semiconductors, and it reveals the great benefits of the XRIL technique for the study of emission and scintillation properties of materials. PMID:27550235

  16. Positron trapping in Y1-xPrxBa2Cu3O7-δ and the Fermi surface of YBa2Cu3O7-δ

    NASA Astrophysics Data System (ADS)

    Shukla, A.; Hoffmann, L.; Manuel, A. A.; Walker, E.; Barbiellini, B.; Peter, M.

    1995-03-01

    Temperature-dependent positron lifetime measurements in ceramic Y1-xPrxBa2Cu3O7-δ samples reveal positron trapping, in particular at low temperature and for small x. Positrons appear to be completely delocalized for T~400 K and higher. At high temperatures the lifetime for YBa2Cu3O7-δ and PrBa2Cu3O7-δ is identical (~165 ps) and close to the theoretical value. For these reasons a two-dimensional angular correlation of annihilation radiation (2D-ACAR) spectrum was measured in YBa2Cu3O7 at T=400 K. The spectrum width confirms the delocalization of the positron and the 2D-ACAR shows, apart from the one-dimensional Fermi surface due to CuO chains, a smaller Fermi surface sheet centered around the S point, in the first Brillouin zone.

  17. Nanoporosity studies of novel catalysts through positronium annihilation

    NASA Astrophysics Data System (ADS)

    Félix, M. V.; Rodríguez-Rojas, R. A.; Castañeda-Contreras, J.; Nava, R.; Consolati, G.; Castaño, V. M.

    2006-10-01

    Eight novel hybrid silica gel-succinic acid-zinc acetate samples were analyzed through Positron annihilation lifetime spectroscopy in order to study average free volume quantities and free volume distributions. The aim of this work was to understand the type of porosity within these species and its relationship with surface textural properties (tested by the BET method) and catalytic activity. We found a noticeable dependence of o-Ps lifetimes on the nature of each modifier agent (succinic acid, Zn acetate, succinic acid-Zn acetate) fixed on the surface of SiO 2 and SiO 2-Al 2O 3 particles. We observed the trend of the Zinc acetate to create mesopores among silica particles, while succinic acid acts as a positronium quencher and a nanoporosity performer. Long o-Ps lifetimes were decomposed into two components accounting for the existence of interparticle and intraparticle holes, however discrepancies beyond elementary facts between the BET method measurements and our positronium calculations were found. A discussion of the kind of open spaces analysis necessary to fully understand the porosity in these hybrid materials is also presented.

  18. Simulating Terrestrial Gamma Ray Flashes due to cosmic ray shower electrons and positrons

    NASA Astrophysics Data System (ADS)

    Connell, Paul

    2017-04-01

    The University of Valencia has developed a software simulator LEPTRACK to simulate the relativistic runaway electron avalanches, RREA, that are presumed to be the cause of Terrestrial Gamma Ray Flashes and their powerful accompanying Ionization/Excitation Flashes. We show here results of LEPTRACK simulations of RREA by the interaction of MeV energy electrons/positrons and photons in cosmic ray showers traversing plausible electric field geometries expected in storm clouds. The input beams of MeV shower products were created using the CORSIKA software package from the Karlsruhe Institute of Technology. We present images, videos and plots showing the different Ionization, Excitation and gamma-ray photon density fields produced, along with their time and spatial profile evolution, which depend critically on where the line of shower particles intercept the electric field geometry. We also show a new effect of incoming positrons in the shower, which make up a significant fraction of shower products, in particular their apparent "orbiting" within a high altitude negative induced shielding charge layer, which has been conjectured to produce a signature microwave emission, as well as a short range 511 keV annihilation line. The interesting question posed is if this conjectured positron emission can be observed and correlated with TGF orbital observations to show if a TGF originates in the macro E-fields of storm clouds or the micro E-fields of lightning leaders where this positron "orbiting" is not likely to occur.

  19. Donors, Acceptors, and Traps in AlGaN and AlGaN/GaN Epitaxial Layers

    DTIC Science & Technology

    2006-07-31

    the background. 3.3 Positron annihilation spectroscopy (PAS): acceptor-type defects Positrons injected into defect-free GaN are annihilated by electrons...electron concentration n, and the average Ga-vacancy VGa concentration deduced from positron annihilation spectroscopy . 0.09 3.47 3.46 - 3.45 •ŗ.47225...of this paper, are often investigated by deep level transient spectroscopy (DLTS), and the usual analysis of DLTS data is based on the assumption that

  20. Account of the intratrack radiolytic processes for interpretation of the AMOC spectrum of liquid water

    NASA Astrophysics Data System (ADS)

    Zvezhinskiy, D. S.; Butterling, M.; Wagner, A.; Krause-Rehberg, R.; Stepanov, S. V.

    2013-06-01

    Recent development of the Gamma-induced Positron Spectroscopy (GiPS) setup significantly extends applicability of the Age-Momentum Correlation technique (AMOC) for studies of the bulk samples. It also provides many advantages comparing with conventional positron annihilation experiments in liquids, such as extremely low annihilation fraction in vessel walls, absence of a positron source and positron annihilations in it. We have developed a new approach for processing and interpretation of the AMOC-GiPS data based on the diffusion recombination model of the intratrack radiolytic processes. This approach is verified in case of liquid water, which is considered as a reference medium in the positron and positronium chemistry.