Science.gov

Sample records for positron annihilation pa

  1. Distribution of positron annihilation radiation

    NASA Astrophysics Data System (ADS)

    Milne, Peter A.

    2006-10-01

    The SPI instrument on-board the ESA/INTEGRAL satellite is engaged in a mission-long study of positron annihilation radiation from the Galaxy. Early results suggest that the disk component is only weakly detected at 511 keV by SPI. We review CGRO/OSSE, TGRS and SMM studies of 511 keV line and positronium continuum emission from the Galaxy in light of the early INTEGRAL/SPI findings. We find that when similar spatial distributions are compared, combined fits to the OSSE/SMM/TGRS data-sets produce bulge and disk fluxes similar in total flux and in B/D ratio to the fits reported for SPI observations. We further find that the 511 keV line width reported by SPI is similar to the values reported by TGRS, particularly when spectral fits include both narrow-line and broad-line components. Collectively, the consistency between these four instruments suggests that all may be providing an accurate view of positron annihilation in the Galaxy.

  2. Positron annihilation induced Auger electron emission

    SciTech Connect

    Weiss, A.; Jibaly, M.; Lei, Chun; Mehl, D.; Mayer, R.; Lynn, K.G.

    1988-01-01

    We report on measurements of Auger electron emission from Cu and Fe due to core hole excitations produced by the removal of core electrons by matter-antimatter annihilation. Estimates are developed of the probability of positrons annihilating with a 3p electron in these materials. Several important advantages of Positron annihilation induced Auger Electron Spectroscopy (PAES) for surface analysis are suggested. 10 refs., 2 figs.

  3. Method for photon activation positron annihilation analysis

    DOEpatents

    Akers, Douglas W.

    2006-06-06

    A non-destructive testing method comprises providing a specimen having at least one positron emitter therein; determining a threshold energy for activating the positron emitter; and determining whether a half-life of the positron emitter is less than a selected half-life. If the half-life of the positron emitter is greater than or equal to the selected half-life, then activating the positron emitter by bombarding the specimen with photons having energies greater than the threshold energy and detecting gamma rays produced by annihilation of positrons in the specimen. If the half-life of the positron emitter is less then the selected half-life, then alternately activating the positron emitter by bombarding the specimen with photons having energies greater then the threshold energy and detecting gamma rays produced by positron annihilation within the specimen.

  4. Positron annihilation induced Auger electron spectroscopy

    NASA Technical Reports Server (NTRS)

    Weiss, Alex; Koymen, A. R.; Mehl, David; Jensen, K. O.; Lei, Chun; Lee, K. H.

    1990-01-01

    Recently, Weiss et al. have demonstrated that it is possible to excite Auger transitions by annihilating core electrons using a low energy (less than 30eV) beam of positrons. This mechanism makes possible a new electron spectroscopy, Positron annihilation induced Auger Electron Spectroscopy (PAES). The probability of exciting an Auger transition is proportional to the overlap of the positron wavefunction with atomic core levels. Since the Auger electron energy provides a signature of the atomic species making the transition, PAES makes it possible to determine the overlap of the positron wavefunction with a particular element. PAES may therefore provide a means of detecting positron-atom complexes. Measurements of PAES intensities from clean and adsorbate covered Cu surfaces are presented which indicate that approx. 5 percent of positrons injected into CU at 25eV produce core annihilations that result in Auger transitions.

  5. Positron Annihilation in the Bipositronium Ps2

    SciTech Connect

    Bailey, David H.; Frolov, Alexei M.

    2005-07-01

    The electron-positron-pair annihilation in the bipositronium PS2 is considered. In particular, the two-, three-, one- and zero-photon annihilation rates are determined to high accuracy. The corresponding analytical expressions are also presented. Also, a large number of bound state properties have been determined for this system.

  6. Nondestructive examination using neutron activated positron annihilation

    DOEpatents

    Akers, Douglas W.; Denison, Arthur B.

    2001-01-01

    A method is provided for performing nondestructive examination of a metal specimen using neutron activated positron annihilation wherein the positron emitter source is formed within the metal specimen. The method permits in situ nondestructive examination and has the advantage of being capable of performing bulk analysis to determine embrittlement, fatigue and dislocation within a metal specimen.

  7. Positron annihilation in solid and liquid Ni

    SciTech Connect

    Fluss, M.J.; Smedskjaer, L.C.; Chakraborty, B.; Chason, M.K.

    1982-03-01

    New techniques have been developed for the study of metals via positron annihilation which provide for the in-situ melting of the samples and subsequent measurements via Doppler broadening of positron-annihilation radiation. Here we report these metods currently in use at our laboratory; ion implantation of /sup 58/Co and the use of Al/sub 2/O/sub 3/ crucibles for in-situ melting followed by the decomposition of the Doppler-broadened spectrum into a parabolic and a Gaussian component. Our earliest results obtained for pure Ni in the polycrystalline solid and in the liquid state are compared. An interesting similarity is reported for the distributions of the high-momentum (Gaussian) component for positrons annihilating in vacancies at high temperatures and those annihilating in liquid Ni.

  8. Defects in metals. [Positron annihilation spectroscopy

    SciTech Connect

    Siegel, R.W.

    1982-06-01

    The application of positron annihilation spectroscopy (PAS) to the study of defects in metals has led to increased knowledge on lattice-defect properties during the past decade in two areas: the determination of atomic defect properties, particularly those of monovacancies, and the monitoring and characterization of vacancy-like microstructure development during post-irradiation and post-quench annealing. The study of defects in metals by PAS is reviewed within the context of the other available techniques for defect studies. The strengths and weaknesses of PAS as a method for the characterization of defect microstructures are considered. The additional possibilities for using the positron as a localized probe of the atomic and electronic structures of atomic defects are discussed, based upon theoretical calculations of the annihilation characteristics of defect-trapped positrons and experimental observations. Finally, the present status and future potential of PAS as a tool for the study of defects in metals is considered. 71 references, 9 figures.

  9. Apparatus for photon activation positron annihilation analysis

    DOEpatents

    Akers, Douglas W.

    2007-06-12

    Non-destructive testing apparatus according to one embodiment of the invention comprises a photon source. The photon source produces photons having predetermined energies and directs the photons toward a specimen being tested. The photons from the photon source result in the creation of positrons within the specimen being tested. A detector positioned adjacent the specimen being tested detects gamma rays produced by annihilation of positrons with electrons. A data processing system operatively associated with the detector produces output data indicative of a lattice characteristic of the specimen being tested.

  10. Positron scattering and annihilation from hydrogenlike ions

    SciTech Connect

    Novikov, S.A.; Bromley, M.W.J.; Mitroy, J.

    2004-05-01

    The Kohn variational method is used with a configuration-interaction-type wave function to determine the J=0 and J=1 phase shifts and annihilation parameter Z{sub eff} for positron-hydrogenic ion scattering. The phase shifts are within 1-2% of the best previous calculations. The values of Z{sub eff} are small and do not exceed unity for any of the momenta considered. At thermal energies Z{sub eff} is minute with a value of order 10{sup -50} occurring for He{sup +} at k=0.05a{sub 0}{sup -1}. In addition to the variational calculations, analytic expressions for the phase shift and annihilation parameters within the Coulomb wave Born approximation are derived and used to help elucidate the dynamics of positron collisions with positive ions.

  11. Application of positron annihilation in materials science

    SciTech Connect

    Siegel, R.W.; Fluss, M.J.; Smedskjaer, L.C.

    1984-05-01

    Owing to the ability of the positron to annihilate from a variety of defect-trapped states, positron annihilation spectroscopy (PAS) has been applied increasingly to the characterization and study of defects in materials in recent years. In metals particularly, it has been demonstrated that PAS can yield defect-specific information which, by itself or in conjunction with more traditional experimental techniques, has already made a significant impact upon the determination of atomic-defect properties and the monitoring and characterization of vacancy-like microstructure development, as occurs during post-irradiation annealing. The applications of PAS are now actively expanding to the study of more complex defect-related phenomena in irradiated or deformed metals and alloys, phase transformations and structural disorder, surfaces and near-surface defect characterization. A number of these applications in materials science are reviewed and discussed with respect to profitable future directions.

  12. Semiempirical Approach to Positron Annihilation in Molecules

    SciTech Connect

    Laricchia, G.; Wilkin, C.

    1997-09-01

    Anomalously large annihilation rates of positrons in binary collisions with molecules are interpreted as originating from the formation of virtual positronium accompanied by pick-off annihilation with one of the {ital other} molecular electrons. On this basis, a semiempirical {open_quotes}universal{close_quotes} formula is obtained which relates the annihilation rate to the molecular ionization energy in a manner similar to that originally discovered by Murphy and Surko [Phys.Rev.Lett.{bold 67}, 2954 (1991)]. This approach is found to lead to an explanation of the variation of Z{sub eff} over several orders of magnitude and to reproduce the correct general trends found among different molecular families. {copyright} {ital 1997} {ital The American Physical Society}

  13. Positron annihilation study of P implanted Si

    SciTech Connect

    Asoka-Kumar, P.; Au, H.L.; Lynn, K.G. ); Sferlazzo, P. . SED Division)

    1992-01-01

    High-energy ion implantation (above 200 keV) is now commonly used in a variety of VLSI processes. The high energy required for these implants is often achieved by implanting multiply charged ions, which inevitably brings in the problem of low-energy ion contamination. The low-energy contamination is difficult to diagnose and detect. Positron annihilation spectroscopy is used to examine the defect distributions in these high energy implants with varying degrees of contamination.

  14. Positron annihilation study of P implanted Si

    SciTech Connect

    Asoka-Kumar, P.; Au, H.L.; Lynn, K.G.; Sferlazzo, P.

    1992-12-01

    High-energy ion implantation (above 200 keV) is now commonly used in a variety of VLSI processes. The high energy required for these implants is often achieved by implanting multiply charged ions, which inevitably brings in the problem of low-energy ion contamination. The low-energy contamination is difficult to diagnose and detect. Positron annihilation spectroscopy is used to examine the defect distributions in these high energy implants with varying degrees of contamination.

  15. Positron annihilation studies of organic superconductivity

    SciTech Connect

    Yen, H.L.; Lou, Y.; Ali, E.H.

    1994-09-01

    The positron lifetimes of two organic superconductors, {kappa}-(ET){sub 2}Cu(NCS){sub 2} and {kappa}-(ET){sub 2}Cu[N(CN){sub 2}]Br, are measured as a function of temperature across {Tc}. A drop of positron lifetime below {Tc} is observed. Positron-electron momentum densities are measured by using 2D-ACAR to search for the Fermi surface in {kappa}-(ET){sub 2}Cu[N(CN){sub 2}]Br. Positron density distributions and positron-electron overlaps are calculated by using the orthogonalized linear combination atomic orbital (OLCAO) method to interprete the temperature dependence due to the local charge transfer which is inferred to relate to the superconducting transition. 2D-ACAR results in {kappa}-(ET){sub 2}Cu[N(CN){sub 2}]Br are compared with theoretical band calculations based on a first-principles local density approximation. Importance of performing accurate band calculations for the interpretation of positron annihilation data is emphasized.

  16. Positron-annihilation radiation from neutron stars.

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Borner, G.; Cohen, J. M.

    1973-01-01

    Matter accreted on the surfaces of neutron stars consists of energetic particles of a few tens to one or two hundred MeV per nucleon, depending on the neutron-star mass. In addition to heat, such particles produce nuclear reactions with the surface material. It is proposed that the recently observed 473 plus or minus 30 keV spectral feature from the galactic center is gravitationally redshifted positron-annihilation radiation produced at the surfaces of neutron stars. The principal observational tests of the model would be the detection of nuclear gamma-ray lines from the galactic center.

  17. Positron-annihilation study of radiation defects in sodium azide

    SciTech Connect

    Etin, G.I.; Ryabykh, S.M.

    1987-07-01

    Annihilation-photon angular correlation has been used to examine radiation defects in sodium azide capable of trapping positrons. The calculated and measured characteristics have been determined for various defects, including micropores filled by radiolytic nitrogen. The positron annihilation rates have been determined for the regions around radiation defects.

  18. Resolvability of defect ensembles with positron annihilation studies

    SciTech Connect

    Fluss, M.J.; Howell, R.H.; Rosenberg, I.J.; Meyer, P.

    1984-11-12

    Recent advances in the use of positron annihilation to study defect ensembles in and on the surfaces of metals, are pointing the way towards studies where particular positron-electron annihilation modes may be identified and studied in the presence of one another. Although a great deal is understood about the annihilation of positrons in ostensibly defect-free metals, much less is understood when the positron annihilates in complex defect systems such as liquid metals, amorphous solids, or at or near the vacuum-solid interface. In this paper the results of three experiments, all of which demonstrate means by which we can resolve various poistron annihilation channels from one another, are discussed.

  19. Applications of slow positrons to cancer research: Search for selectivity of positron annihilation to skin cancer

    NASA Astrophysics Data System (ADS)

    Jean, Y. C.; Li, Ying; Liu, Gaung; Chen, Hongmin; Zhang, Junjie; Gadzia, Joseph E.

    2006-02-01

    Slow positrons and positron annihilation spectroscopy (PAS) have been applied to medical research in searching for positron annihilation selectivity to cancer cells. We report the results of positron lifetime and Doppler broadening energy spectroscopies in human skin samples with and without cancer as a function of positron incident energy (up to 8 μm depth) and found that the positronium annihilates at a significantly lower rate and forms at a lower probability in the samples having either basal cell carcinoma (BCC) or squamous cell carcinoma (SCC) than in the normal skin. The significant selectivity of positron annihilation to skin cancer may open a new research area of developing positron annihilation spectroscopy as a novel medical tool to detect cancer formation externally and non-invasively at the early stages.

  20. Positron-annihilation spectroscopy of vacancy defects in aluminum

    SciTech Connect

    Chakraborty, B.; Berko, S.; Fluss, M.J.; Hoffmann, K.; Lippel, P.; Siegel, R.W.

    1982-06-01

    Positron-annihilation characteristics in a monovacancy and a divacancy in aluminium have been calculated self-consistently using a local density functional formalism, into which the many-body enhancement effects have been incorporated. Results for the theoretical two-dimensional angular correlation of annihilation radiation spectra are compared to experimental results obtained from an aluminum single crystal at 20/sup 0/C, where positrons annihilate from a Bloch-state, and at higher temperatures, 500/sup 0/C and 630/sup 0/C, where they annihilate primarily from vacancy-trapped states.

  1. Resonances and Bound States in Positron Annihilation on Molecules

    NASA Astrophysics Data System (ADS)

    Surko, C. M.

    2007-10-01

    Positron annihilation is important in such diverse areas as study of metabolic processes in the human brain and the characterization of materials. Annihilation on molecules has been a subject of keen interest for decades. In particular, annihilation rates can be orders of magnitude greater than those expected for simple collisions. Recent results put our understanding of many aspects of this long-standing problem on a firm footing. We now understand that the annihilation proceeds by vibrational Feshbach resonances (VFR). A prerequisite for the existence of these VFR is that the positron binds to the target. The annihilation energy spectra provide the best measures to date of positron binding energies. Predictions of a new theory of VFR-enhanced annihilation in small molecules (methyl halides) [1] show excellent, quantitative agreement with experiment. New data and analyses for larger molecules (e.g., hydrocarbons with more than two carbon atoms) show that annihilation rates depend strongly on the number of vibrational degrees of freedom but, surprisingly, only weakly on positron binding energy. This places important constraints on theories of annihilation in these molecules. Results for second bound (i.e., positronically excited) states and overtone and combination-mode VFR, as well as outstanding questions, will also be discussed. This work is done in collaboration with Jason Young. [1] G. F. Gribakin and C. M. R. Lee, Phys. Rev. Lett. 97, 193201 (2006).

  2. Positron annihilation characteristics in mesostructural silica films with various porosities

    NASA Astrophysics Data System (ADS)

    Xiong, Bangyun; Mao, Wenfeng; Tang, Xiuqin; He, Chunqing

    2014-03-01

    Porous silica films with various porosities were prepared via a sol-gel method using a nonionic amphiphilic triblock copolymer F127 as the structure-directing agent. Doppler broadening of positron annihilation radiation (DBAR) spectra were collected for the prepared films using a variable energy slow positron beam. Different linear relationships between positron annihilation line shape parameters S and W are found for the as-deposited films and calcined ones, indicative of the decomposition of the copolymer porogen in the as-deposited films upon calcination. This also reveals the variation of positron annihilation sites as a function of F127 loading or porosity. Strong correlations between positronium 3γ annihilation fraction, S parameter and porosity of the mesoporous silica films with isolated pores are obtained, which may provide a complementary method to determine closed porosities of mesoporous silica films by DBAR.

  3. Positron annihilation lifetime spectroscopy at a superconducting electron accelerator

    NASA Astrophysics Data System (ADS)

    Wagner, A.; Anwand, W.; Attallah, A. G.; Dornberg, G.; Elsayed, M.; Enke, D.; Hussein, A. E. M.; Krause-Rehberg, R.; Liedke, M. O.; Potzger, K.; Trinh, T. T.

    2017-01-01

    The Helmholtz-Zentrum Dresden-Rossendorf operates a superconducting linear accelerator for electrons with energies up to 35 MeV and average beam currents up to 1.6 mA. The electron beam is employed for production of several secondary beams including X-rays from bremsstrahlung production, neutrons, and positrons. The secondary positron beam after moderation feeds the Monoenergetic Positron Source (MePS) where positron annihilation lifetime (PALS) and positron annihilation Doppler-broadening experiments in materials science are performed in parallel. The adjustable repetition rate of the continuous-wave electron beams allows matching of the pulse separation to the positron lifetime in the sample under study. The energy of the positron beam can be set between 0.5 keV and 20 keV to perform depth resolved defect spectroscopy and porosity studies especially for thin films.

  4. Galactic Positron Annihilation Radiation as observed with INTEGRAL/SPI

    NASA Astrophysics Data System (ADS)

    Weidenspointner, G.; Lonjou, V.; Knoedlseder, J.; Jean, P.; Allain, M.; von Ballmoos, P.; Harris, M. J.; Skinner, G. K.; Vedrenne, G.; Teegarden, B. J.; Gehrels, N.; Guessoum, N.; Schoenfelder, V.; Chapuis, C.; Durouchoux, P.; Cisana, E.; Valesia, M.

    2004-08-01

    The origin of the positrons whose annihilation gives rise to an appreciable flux of gamma rays from the central regions of our Galaxy is one of the mysteries of high energy astrophysics. SPI, one of the two main instruments on board the INTEGRAL observatory, is uniquely suited to study this positron annihilation radiation. It is a high resolution Ge spectrometer (FWHM 2.1 keV at 511 keV) which can image the sky at an angular resolution of about 3 degrees using a coded mask. Early in the mission, the 511 keV annihilation line has already been detected by SPI from the inner Galaxy. We summarize here 1.5 years of SPI observations of annihilation radiation, and discuss the implications of these results for the origin of positrons in the Galaxy. G.W. acknowledges funding by ESA through an external fellowship.

  5. Ion acceleration and positron production and annihilation in solar flares

    NASA Astrophysics Data System (ADS)

    Guessoum, Nidhal

    I first review: a) the current state of knowledge of ion acceleration in solar flares; b) the physics of positron production and annihilation; and c) recent RHESSI data on solar flare annihilation radiation. I then show how the modeling of the positron production and annihilation in the chromosphere, coupled with the newly available high-resolution data on the 511 keV annihilation line, can have important physical implications w. r. t. the models: a) information on the temperature and density of the chromosphere; b) constraints on some of the physical characteristics of the flare and to some extent on the acceleration process.Although I do mention past instruments (SMM and Yohkoh), this review focuses on the RHESSI satellite, considering the quantum leap it has constituted in the quality of the data it is providing and consequently the constraints it can place on models (of ion acceleration, annihilation environment, etc.).

  6. Orientation dependence of relativistic-positron annihilation in single crystals

    SciTech Connect

    Kalashnikov, N. P.; Mazur, E. A. Olchak, A. S.

    2016-05-15

    An effect of the orientation dependence of the cross section for the single-photon annihilation of relativistic positrons with atomic electrons in a crystal is predicted. It is shown that the probability for the single-photon annihilation of a channeled positron in a crystal may be either suppressed in a crystal in relation to a homogeneous medium or, on the contrary, enhanced. The reason is that, depending on their incidence angle, the positrons may be either in the vicinity of ion planes of the crystal, where the electron density is higher, or far away from them, where the electron density is lower.

  7. Detecting positron-atom bound states through resonant annihilation.

    PubMed

    Dzuba, V A; Flambaum, V V; Gribakin, G F

    2010-11-12

    A method is proposed for detecting positron-atom bound states by observing enhanced positron annihilation due to electronic Feshbach resonances at electron-volt energies. The method is applicable to a range of open-shell transition-metal atoms which are likely to bind the positron: Fe, Co, Ni, Tc, Ru, Rh, Sn, Sb, Ta, W, Os, Ir, and Pt. Estimates of their binding energies are provided.

  8. Positron annihilation behavior in several corrosion protective polymeric coatings

    NASA Astrophysics Data System (ADS)

    Leidheiser, Henry; Szeles, Csaba; Vértes, Attila

    1987-04-01

    Positron annihilation was studied in a vinyl ester and four epoxy coatings on steel. Measurements were made on coatings in equilibrium with air at approximately 50% relative humidity and on coatings immersed in liquid water for 24 h. Three spectral components were identified: a short-lived component associated with annihilation largely in the steel substrate; a medium-lived component associated with annihilation in small voids in the coating; and a long-lived component associated with annihilation of o-positronium in the polymer matrix and within large voids in the polymer and at the polymer/metal interface. An excellent correlation was observed between the effect of water exposure on the annihilation spectra and the protective properties of the coating in an aggressive H 2SO 4 environment. Other correlations between the annihilation spectra and the protective properties were also identified.

  9. Neutrino annihilation of an electron-positron pair

    SciTech Connect

    Samsonenko, N.V.; Lal, K.C.

    1987-01-01

    In this study the authors carry out the analysis of the differential cross sections of the electron-positron pair annihilation process by simultaneously taking into account the spin effects, the interference of the charged and neutral currents, and also the possible nonzero neutrino rest mass. The differential cross sections are calculated in the COM system to first order in the weak interaction coupling constant with arbitrary electron and positron spin orientations and arbitrary neutrino and antineutrino polarizations.

  10. Positron annihilation in TiBe/sub 2/

    SciTech Connect

    Manuel, A.A.; Hoffmann, L.; Singh, A.K.; Jarlborg, T.; Peter, M.; Smith, J.L.; Fisk, Z.; Pecora, L.M.; Ehrlich, A.C.

    1988-01-01

    We report positron annihilation measurements on TiBe/sub 2/. Calculations using LMTO band structure method are also presented. The good agreement with the experimental data leads to the conclusion that the unusual magnetic properties of this compound can be well explained in terms of its electronic structure. A reconstruction of the electron-positron momentum distribution from calculated and measured 2D-ACPAR is discussed. 10 refs., 3 figs.

  11. Positron annihilation spectroscopy study of materials for reactor vessels

    NASA Astrophysics Data System (ADS)

    Grafutin, V. I.; Prokop'ev, E. P.; Krsjak, V.; Burcl, R.; Hähner, P.; Zeman, A.; Ilyukhina, O. V.; Erak, D.; Mogilevskyi, M. A.; Myasischeva, G. G.; Funtikov, Yu. V.

    2011-02-01

    Steels used in the nuclear industry have been experimentally studied by positron annihilation spectroscopy. Analysis of the experimental results and their comparison with the existing data make it possible to reveal vacancy defects, in particular, those caused by neutron radiation, and to determine their size.

  12. Application of conservation laws in electron-positron annihilation

    NASA Astrophysics Data System (ADS)

    Aryal, Bijaya

    2014-03-01

    Electron-positron annihilation and creation of gamma rays involve various conservation principles. The least possible number of gamma rays produced in an annihilation event for low energy case can be generally explained using energy and momentum conservation. For this purpose, we choose a convenient frame of reference in which the system has zero linear momentum just before the annihilation event occurs. A learning activity was designed to help introductory level physics students understand and apply some of these conservation principles in the context of electron-positron annihilation. This study presents the students' spontaneous application of prior learning resources while explaining the annihilation process and predicting the least possible number of gamma rays produced in an annihilation event. Qualitative and quantitative data were gathered from students' interviews and written responses from several semesters. Data analysis has revealed students' use of macroscopic analogies during these applications. Moreover, this study has shown that analogical mechanical models seemed to improve student performance. However, a majority of the students using such models provided incorrect reasoning in their explanations.

  13. Monte Carlo investigation of positron annihilation in medical positron emission tomography

    NASA Astrophysics Data System (ADS)

    Chin, P. W.; Spyrou, N. M.

    2007-09-01

    A number of Monte Carlo codes are available for simulating positron emission tomography (PET), however, physics approximations differ. A number of radiation processes are deemed negligible, some without rigorous investigation. Some PET literature quantify approximations to be valid, without citing the data source. The radiation source is the first step in Monte Carlo simulations, for some codes this is 511 keV photons 180° apart, not polyenergetic positrons with radiation histories of their own. Without prior assumptions, we investigated electron-positron annihilation under clinical PET conditions. Just before annihilation, we tallied the positron energy and position. Right after annihilation, we tallied the energy and separation angle of photon pairs. When comparing PET textbooks with theory, PENELOPE and EGSnrc, only the latter three agreed. From 10 6 radiation histories, a positron source of 15O in a chest phantom annihilated at as high as 1.58 MeV, producing photons with energies 0.30-2.20 MeV, 79-180° apart. From 10 6 radiation histories, an 18F positron source in a head phantom annihilated at energies as high as 0.56 MeV, producing 0.33-1.18 MeV photons 109-180° apart. 2.5% and 0.8% annihilation events occurred inflight in the chest and the head phantoms, respectively. PET textbooks typically either do not mention any deviation from 180°, or state a deviation of 0.25° or 0.5°. Our findings are founded on the well-established Heitler cross-sections and relativistic kinematics, both adopted unanimously by PENELOPE, EGSnrc and GEANT4. Our results highlight the effects of annihilation in-flight, a process sometimes forgotten within the PET community.

  14. Study of Chemical Carcinogens by Positron Annihilation Lifetime Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pivtsaev, A. A.; Razov, V. I.; Karasev, A. O.

    2013-11-01

    We have used positron annihilation lifetime spectroscopy to study the carcinogens C21H20BrN3, C4H7Cl2O4P, CCl4, CHCl3, AlF3, C8H12N4O, C6H4Cl2 and the non-carcinogens H2O, AlCl3, CH2Cl2, C2H6OS. We have established a correlation between the annihilation characteristics of the studied compounds and their degree of carcinogenicity.

  15. Positron annihilation study of cavities in black Au films

    NASA Astrophysics Data System (ADS)

    Melikhova, O.; Čížek, J.; Hruška, P.; Vlček, M.; Procházka, I.; Anwand, W.; Novotný, M.; Bulíř, J.

    2017-01-01

    Defects in a black Au film were studied using variable energy positron annihilation spectroscopy. Black Au films exhibit porous morphology similar to cauliflower. This type of structure enhances the optical absorption due to a multiple reflections in the micro-cavities. A nanostructured black Au film was compared with conventional smooth Au films with high reflectivity. The black Au film exhibited a remarkably enhanced S-parameter in sub-surface region. This is caused by a narrow para-Positronium contribution to the annihilation peak.

  16. Clumpiness of dark matter and the positron annihilation signal

    NASA Astrophysics Data System (ADS)

    Lavalle, J.; Pochon, J.; Salati, P.; Taillet, R.

    2007-02-01

    Context: The small-scale distribution of dark matter in galactic halos is poorly known. Several studies suggest that it could be very clumpy, which is of paramount importance when investigating the annihilation signal from exotic particles (e.g. supersymmetric or Kaluza-Klein). Aims: We focus on the annihilation signal in positrons. We estimate the associated uncertainty, that is due to the fact that we do not know exactly how the clumps are distributed in the Galactic halo. Methods: We perform a statistical study based on analytical computations, as well as numerical simulations. We study the average and variance of the annihilation signal over many Galactic halos having the same statistical properties. Results: We find that the so-called boost factor used by many authors should be used with caution, as i) it depends on energy and ii) it may be different for positrons, antiprotons and gamma rays, a fact which has not been discussed before. As an illustration, we use our results to discuss the positron spectrum measurements by the HEAT experiment.

  17. Positron Annihilation Spectroscopy Study of Barnett Shale Core

    NASA Astrophysics Data System (ADS)

    Ameena, Fnu; Alsleben, Helge; Quarles, Carroll A.

    Measurements are reported of positron annihilation lifetime and Doppler broadening parameters on 14 samples of Barnett shale core selected from 196 samples ranging from depths of 6107 to 6402 feet. The Barnett shale core was taken from EOG well Two-O-Five 2H located in Johnson county TX. The selected samples are dark clay-rich mudstone consisting of fine-grained clay minerals. The samples are varied in shape, typically a few inches long and about 1/2 inch in width and thickness, and are representative of the predominant facies in the core. X-ray fluorescence (XRF), X-ray diffraction (XRD), petrographic analysis and geochemical analysis of total organic carbon (TOC) were already available for each of the selected samples. The lifetime data are analyzed in terms of three lifetime components with the shortest lifetime fixed at 125 ps. The second lifetime is attributed to positron annihilation in the bulk and positron trapping; and the third lifetime is due to positronium. Correlations of the lifetimes, intensities, the average lifetime and S and W parameters with TOC, XRF and XRD parameters are discussed. The observed correlations suggest that positron spectroscopy may be a useful tool in characterizing shale.

  18. Computer Simulation of Electron Positron Annihilation Processes

    SciTech Connect

    Chen, y

    2003-10-02

    With the launching of the Next Linear Collider coming closer and closer, there is a pressing need for physicists to develop a fully-integrated computer simulation of e{sup +}e{sup -} annihilation process at center-of-mass energy of 1TeV. A simulation program acts as the template for future experiments. Either new physics will be discovered, or current theoretical uncertainties will shrink due to more accurate higher-order radiative correction calculations. The existence of an efficient and accurate simulation will help us understand the new data and validate (or veto) some of the theoretical models developed to explain new physics. It should handle well interfaces between different sectors of physics, e.g., interactions happening at parton levels well above the QCD scale which are described by perturbative QCD, and interactions happening at much lower energy scale, which combine partons into hadrons. Also it should achieve competitive speed in real time when the complexity of the simulation increases. This thesis contributes some tools that will be useful for the development of such simulation programs. We begin our study by the development of a new Monte Carlo algorithm intended to perform efficiently in selecting weight-1 events when multiple parameter dimensions are strongly correlated. The algorithm first seeks to model the peaks of the distribution by features, adapting these features to the function using the EM algorithm. The representation of the distribution provided by these features is then improved using the VEGAS algorithm for the Monte Carlo integration. The two strategies mesh neatly into an effective multi-channel adaptive representation. We then present a new algorithm for the simulation of parton shower processes in high energy QCD. We want to find an algorithm which is free of negative weights, produces its output as a set of exclusive events, and whose total rate exactly matches the full Feynman amplitude calculation. Our strategy is to create

  19. Calculation of Positron Binding Energies and Implications for Feshbach-Resonant Positron-Uracil Annihilation

    NASA Astrophysics Data System (ADS)

    Wanniarachchi, Indika; Morgan, Caroline

    2010-04-01

    Here we investigate by first-principles calculations the possible role of vibrational Feshbach resonances in enhancing positron annihilation for low-energy positron beams incident on uracil, a base found in RNA. Geometries, vibrational polarizabilities, and dipole moments for uracil and 5-halouracils are calculated with density functional theory, DFT-B3LYP with a 6-31G+(d, p) basis set, and are used to determine positron-uracil and positron-5-halouracil binding energies. The energy of the Feshbach resonances is then determined by the law of energy conservation. Experimental work on positron interactions with uracil and 5-halouracils in conjunction with the theoretical work reported here is underway.

  20. Development of a commercial positron annihilation lifetime measurement system

    NASA Astrophysics Data System (ADS)

    Yamawaki, M.; Ito, K.; Hattori, K.; Uesugi, N.

    2017-01-01

    In order to realize a commercial system with a user-friendly interface for positron annihilation lifetime (PAL) measurements, we have applied our previously developed anti-coincidence method to a compact system, controlled by dedicated software with a data analysis module. The functionality of the data-analysis code was confirmed by examining the reproducibility of input average lifetimes for calculated PAL histograms. A prototype for the commercial system was constructed and the validity of the analysis using the system was ensured by measuring a reference material.

  1. Evaluation of the reactor pressure vessel steels by positron annihilation

    NASA Astrophysics Data System (ADS)

    Slugeň, V.; Hein, H.; Sojak, S.; Simeg Veterníková, J.; Petriska, M.; Sabelová, V.; Pavúk, M.; Hinca, R.; Stacho, M.

    2013-11-01

    This paper presents a comparison of commercially used German and Russian reactor pressure vessel steels from the positron annihilation spectroscopy (PAS) point of view, having in mind knowledge obtained also from other techniques from the last decades. The second generation of Russian RPV steels seems to be fully comparable with German steels and their quality allows prolongation of NPP operating lifetime over projected 40 years. The embrittlement of CrMoV steels is relatively low due to effect of higher temperature which implies partial in situ annealing of primary microstructural point defects and therefore delays the degradation processes caused by neutron irradiation.

  2. Development of positron annihilation spectroscopy for characterizing neutron irradiated tungsten

    SciTech Connect

    C.N. Taylor; M. Shimada; D.W. Akers; M.W. Drigert; B.J. Merrill; Y. Hatano

    2013-05-01

    Tungsten samples (6 mm diameter, 0.2 mm thick) were irradiated to 0.025 and 0.3 dpa with neutrons in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory. Samples were then exposed to deuterium plasma in the tritium plasma experiment (TPE) at 100, 200 and 500ºC to a total fluence of 1 x 1026 m-2. Nuclear reaction analysis (NRA) and Doppler broadening positron annihilation spectroscopy (DB-PAS) were performed at various stages to characterize damage and retention. We present the first known results of neutron damaged tungsten characterized by DB-PAS in order to study defect concentration. Two positron sources, 22Na and 68Ge, probe ~58 µm and through the entire 200 µm thick samples, respectively. DB-PAS results reveal clear differences between the various irradiated samples. These results, and the calibration of DB-PAS to NRA data are presented.

  3. Open volume in bioadhesive detected by positron annihilation lifetime spectroscopy.

    PubMed

    Rätzke, Klaus; Wiegemann, Maja; Shaikh, Muhammad Qasim; Harms, Stephan; Adelung, Rainer; Egger, Werner; Sperr, Peter

    2010-07-01

    Barnacles attach to a wide variety of surfaces underwater and show substrate-specific adhesion mechanisms. Investigating and understanding these mechanisms is a key for developing new technical adhesives. We expected open volume (porosity) at the sub-nanometre scale to occur in barnacle adhesive. With positron annihilation lifetime spectroscopy (PALS) it is possible to detect porosity at the nanometre scale by determining the lifetime of positrons. This method has not been applied to bioadhesives so far. We showed that PALS is a suitable technique for the investigation of the barnacle base and its adhesive with respect to open volume. The results were interpreted using a standard model adapted from polymers. We thereby estimated pore sizes of 0.5 nm.

  4. Positron-annihilation spectroscopy of defects in metals: an assessment

    SciTech Connect

    Siegel, R.W.

    1982-06-01

    Positron annihilation spectroscopy (PAS) has made significant contributions to our knowledge regarding lattice defects in metals in two areas: (i) the determination of atomic defect properties, particularly those of monovacancies, and (ii) the monitoring and characterization of vacancy-like microstructure development during post-irradiation of post-quench annealing. The application of PAS to the study of defects in metals is selectively reviewed and critically assessed within the context of other available techniques for such investigations. Possibilities for using the positron as a localized probe of the structure of atomic defects are discussed. Finally, the present status and future potential of PAS as a tool for the study of defects in metals are considered relative to other available techniques. 92 references, 20 figures.

  5. Defect identification in semiconductors with positron annihilation: experiment and theory

    NASA Astrophysics Data System (ADS)

    Tuomisto, Filip

    2015-03-01

    Positron annihilation spectroscopy is a very powerful technique for the detection, identification and quantification of vacancy-type defects in semiconductors. In the past decades, it has been used to reveal the relationship between opto-electronic properties and specific defects in a wide variety of materials - examples include parasitic yellow luminescence in GaN, dominant acceptor defects in ZnO and broad-band absorption causing brown coloration in natural diamond. In typical binary compound semiconductors, the selective sensitivity of the technique is rather strongly limited to cation vacancies that possess significant open volume and suitable charge (negative of neutral). On the other hand, oxygen vacancies in oxide semiconductors are a widely debated topic. The properties attributed to oxygen vacancies include the inherent n-type conduction, poor p-type dopability, coloration (absorption), deep level luminescence and non-radiative recombination, while the only direct experimental evidence of their existence has been obtained on the crystal surface. We will present recent advances in combining state-of-the-art positron annihilation experiments and ab initio computational approaches. The latter can be used to model both the positron lifetime and the electron-positron momentum distribution - quantities that can be directly compared with experimental results. We have applied these methods to study vacancy-type defects in III-nitride semiconductors (GaN, AlN, InN) and oxides such as ZnO, SnO2, In2O3andGa2O3. We will show that cation-vacancy-related defects are important compensating centers in all these materials when they are n-type. In addition, we will show that anion (N, O) vacancies can be detected when they appear as complexes with cation vacancies.

  6. HEAO 3 measurements of the atmospheric positron annihilation line

    SciTech Connect

    Mahoney, W.A.; Ling, J.C.; Jacobson, A.S.

    1981-12-01

    All spectra measured with the High Energy resolution Gamma-Ray Spectroscopy Experiment (HEAO C-1) on the third High Energy Astronomy Observatory (HEAO 3) contain a strong line at 511 keV resulting from positron annihilation. This line originates in the instrument itself, the earth's atmosphere, and cosmic sources, possibly including the diffuse cosmic background. In order to understand the emission from cosmic sources, the atmospheric positron annihilation line emission has been determined as a function of geomagnetic latitude and zenith angle. Although the intensity of the line increases with increasing latitude, it was found that variations with zenith angle can be satisfactorily explained only if the atmospheric emission exhibits significant limb darkening. The atmospheric line has an energy of 511.07 +- 0.10 keV and a net width of 2.29 +- 0.30 keV FWHM. Characteristics of the instrument background have allowed an upper limit of 9.4 x 10/sup -3/ photons/cm/sup 2/-sec-sr to be placed on any narrow (< or approx. =3 keV) diffuse cosmic emission at 511 keV.

  7. Positron and gamma-ray signatures of dark matter annihilation and big-bang nucleosynthesis

    SciTech Connect

    Hisano, Junji; Kawasaki, Masahiro; Kohri, Kazunori; Nakayama, Kazunori

    2009-03-15

    The positron excess observed by the PAMELA experiment may come from dark matter annihilation, if the annihilation cross section is large enough. We show that the dark matter annihilation scenarios to explain the positron excess may also be compatible with the discrepancy of the cosmic lithium abundances between theory and observations. The winolike neutralino in the supersymmetric standard model is a good example for it. This scenario may be confirmed by Fermi satellite experiments.

  8. Positron-annihilation study of the equilibrium vacancy ensemble in aluminum

    SciTech Connect

    Fluss, M.J.; Berko, S.; Chakraborty, B.; Hoffmann, K.; Lippel, P.; Siegel, R.W.

    1982-06-01

    A preliminary report is presented of a positron-annihilation study of the equilibrium vacancy ensemble in aluminum using one- and two-dimensional angular correlation of annihilation radiation (ACAR) measurements versus temperature. The annihilation characteristics of a positron from the Bloch state, and the monovancy- and divacancy-trapped states have been calculated self-consistently within a supercell, including many-body enhancement effects, and are compared with experiment. 4 figures.

  9. Determination and applications of enhancement factors for positron and ortho-positronium annihilations

    SciTech Connect

    Mitroy, J.

    2005-12-15

    Electron-positron annihilation rates calculated directly from the electron and positron densities are known to underestimate the true annihilation rate. A correction factor, known as the enhancement factor, allows for the local increase of the electron density around the positron caused by the attractive electron-positron interaction. Enhancement factors are given for positrons annihilating with the 1s electron in H, He{sup +}, He, Li{sup 2+}, and Li{sup +}. The enhancement factor for a free positron annihilating with He{sup +} and He is found to be close to that of ortho-positronium (i.e., Ps in its triplet state) annihilating with these atoms. The enhancement factor for Ps-He scattering is used in conjunction with the known annihilation rate for pickoff annihilation to derive a scattering length of 1.47a{sub 0} for Ps-He scattering. Further, enhancement factors for e{sup +}-Ne and e{sup +}-Ar annihilation are used in conjunction with the pickoff annihilation rate to estimate scattering lengths of 1.46a{sub 0} for Ps-Ne scattering and 1.75a{sub 0} for Ps-Ar scattering.

  10. Fragmentation production of charmed hadrons in electron-positron annihilation

    SciTech Connect

    Novoselov, A. A.

    2010-10-15

    Processes involving the production of D* mesons and {Lambda}{sub c} baryons in electron-positron annihilation at the energies of 10.58 and 91.18 GeV are considered. At the energy of 10.58 GeV, the production of pairs of B mesons that is followed by their decay to charmed particles is analyzed along with direct charm production. The violation of scaling in the respective fragmentation functions is taken into account in the next-to-leading-logarithmic approximation of perturbative QCD. The required nonperturbative fragmentation functions are extracted numerically from experimental data obtained at B factories and are approximated by simple analytic expressions. It is shown that the difference in the nonperturbative fragmentation functions for transitions to mesons and baryons can readily be explained on the basis of the quark-counting rules.

  11. Moisture dependence of positron annihilation spectra in nylon-6

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; St. Clair, T. L.; Holt, W. H.; Mock, W., Jr.

    1984-01-01

    Positron annihilation time spectra have been measured in nylon-6 samples as a function of their moisture content. The measured average long life component lifetime values are: 1722 + or - 47 ps (dry), 1676 + or - 40 ps (14.6 percent saturation value), 1719 + or - 26 ps (29.3 percent saturation value), 1720 + or - 35 ps (50 percent of saturation value), 1857 + or - 35 ps (78.1 percent saturation value), and 1936 + or - 57 ps (saturated). It appears that nylon-6 has a special affinity for water at low concentration levels where H2O molecules enter between the (C = O - H-N) chemical bonds between nylon molecular chains. As the water concentration increases beyond a critical level, nylon-6 specimens start trapping H2O molecules in other bond sites or potential wells. The trapped water increases the free volume in the test specimens and reduces Ps atom formation as well as its subsequent decay rate.

  12. Moisture dependence of positron annihilation spectra in nylon-6

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; St. Clair, T. L.; Holt, W. H.; Mock, W., Jr.

    1984-01-01

    Positron annihilation time spectra have been measured in nylon-6 samples as a function of their moisture content. The measured average long life component lifetime values are: 1722 + or - 47 ps (dry), 1676 + or - 40 ps (14.6 percent saturation value), 1719 + or - 26 ps (29.3 percent saturation value), 1720 + or - 35 ps (50 percent of saturation value), 1857 + or - 35 ps (78.1 percent saturation value), and 1936 + or - 57 ps (saturated). It appears that nylon-6 has a special affinity for water at low concentration levels where H2O molecules enter between the (C = O - H-N) chemical bonds between nylon molecular chains. As the water concentration increases beyond a critical level, nylon-6 specimens start trapping H2O molecules in other bond sites or potential wells. The trapped water increases the free volume in the test specimens and reduces Ps atom formation as well as its subsequent decay rate.

  13. Photodegradation of Polymer Coatings Studied by Positron Annihilation

    NASA Astrophysics Data System (ADS)

    Zhang, Renwu; Chen, Hongmin; Cao, Huimin; Mallon, Peter; He, Ying; Sandreczki, Thomas; Jean, Y. C.; Nielsen, Bent; Suzuki, R.; Ohdaira, T.

    2000-03-01

    Photodegradation of polyurethane coatings and polyurethane-based paints is induced by accelerated UV irradiation using three light sources: 340nm-UVA, 313nm-UVB and Xe lamps. Positron annihilation spectroscopy (PAS) is applied to measure the nano-structural changes at the atomic level from the surface to the bulk. Significant variations of sub-nanometer defect parameters determined from PAS results are observed as a function of depth and of exposure time. A significant decrease of sub-nanometer defect content, free volumes and holes is observed due to photodegradation. The loss of durability at the early stage of UV irradiation is interpreted in terms of changes in crosslink density and formation of free radicals after chemical bonds are broken. H. Cao et al, Macromolecules, 32, 5925 (1999). Supported by NSF-CMS-9812717, and AFOSR

  14. Positron annihilation investigations on poly(methyl methacrylate)

    NASA Astrophysics Data System (ADS)

    Mohamed, Hamdy F. M.; Abd-Elsadek, Gomaa G.

    2000-06-01

    Positron lifetime and Doppler broadened annihilation radiation were measured for seven different samples of poly(methyl methacrylate) at room temperature in vacuum. The polymerisation of methyl methacrylate was carried out as a bulk polymerisation in the presence of benzoyl peroxide as an initiator. The effect of the amount of the initiator on the viscosity-average molecular weight was studied. It was found that the viscosity-average molecular weight decreased with increasing amount of the initiator. The average lifetime and intensity of ortho-positronium ( o-Ps) increased with increasing viscosity-average molecular weight up to 6.85 × 10 4 and remained constant after that. The S-parameter showed a similar behaviour as that of the o-Ps intensity.

  15. Positron annihilation studies of some charge transfer molecular complexes

    NASA Astrophysics Data System (ADS)

    El-Sayed, A. M. A.; Mohamed, Hamdy F. M.; Boraei, Anmed A. A.

    2000-06-01

    Positron annihilation lifetimes were measured for some solid charge transfer (CT) molecular complexes of quinoline compounds (2,6-dimethylquinoline, 6-methoxyquinoline, quinoline, 6-methylquinoline, 3-bromoquinoline and 2-chloro-4-methylquinoline) as electron donor and picric acid as an electron acceptor. The infrared spectra (IR) of the solid complexes clearly indicated the formation of the hydrogen-bonding CT-complexes. The annihilation spectra were analyzed into two lifetime components using PATFIT program. The values of the average and bulk lifetimes divide the complexes into two groups according to the non-bonding ionization potential of the donor (electron donating power) and the molecular weight of the complexes. Also, it is found that the ionization potential of the donors and molecular weight of the complexes have a conspicuous effect on the average and bulk lifetime values. The bulk lifetime values of the complexes are consistent with the formation of stable hydrogen-bonding CT-complexes as inferred from the IR-spectral data.

  16. Iodine-doped polyvinylalcohol using positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Lobo, Blaise; Ranganath, M. R.; Chandran, T. S. G. Ravi; Venugopal Rao, G.; Ravindrachary, V.; Gopal, S.

    1999-06-01

    Iodine-doped polyvinylalcohol, doped up to 52 wt %, was studied using positron annihilation lifetime technique and Doppler broadening of annihilation radiation. Three component, free fit analysis was used for the lifetime spectra. It is found that I3 drops sharply on initial iodine doping, whereas decrease in τ3 is small, indicating inhibition of positronium formation by the dopant. The S parameter, on iodine doping, initially shows a drastic increase due to the decrease in crystallinity of the doped sample. Differential scanning calorimetry (DSC) and x-ray diffraction curves confirm that doping results in decreased crystallinity of the sample. τ3 increases beyond 23 wt % doping level due to structural changes induced by formation of polyiodide complexes, which is confirmed by UV-Vis spectra, for moderately and highly doped samples. The drop in τ3 at higher levels of doping (>44 wt %) suggests chemical quenching of positronium, probably due to iodine aggregation. DSC confirms formation of iodine aggregates, as revealed by a large endotherm at 185 °C, for doping levels beyond 47 wt %.

  17. Early Stages of Precipitation Process in Al-(Mn-)Sc-Zr Alloy Characterized by Positron Annihilation

    NASA Astrophysics Data System (ADS)

    Vlach, Martin; Cizek, Jakub; Melikhova, Oksana; Stulikova, Ivana; Smola, Bohumil; Kekule, Tomas; Kudrnova, Hana; Gemma, Ryota; Neubert, Volkmar

    2015-04-01

    Thermal effects on the precipitation stages in as-cast Al-0.70 at. pct Mn-0.15 at. pct Sc-0.05 at. pct Zr alloy were studied. The role of lattice defects was elucidated by positron annihilation spectroscopy (lifetime and coincidence Doppler broadening) enabling investigation of solutes clustering at the atomic scale. This technique has never been used in the Al-Sc- and/or Al-Zr-based alloys so far. Studies by positron annihilation were combined with resistometry, hardness measurements, and microstructure observations. Positrons trapped at defects are preferentially annihilated by Sc electrons. Lifetime of trapped positrons indicates that Sc atoms segregate at dislocations. Maximum fraction of positrons annihilated by Sc electrons occurring at 453 K (180 °C) suggests that clustering of Sc bound with vacancies takes place. It is followed by peak of this fraction at 573 K (300 °C). A rise of the contribution of trapped positrons annihilated by Zr electrons starting at 513 K (240 °C) and attaining maximum also at 573 K (300 °C) confirms that Zr participates in precipitation of the Al3Sc particles already at these temperatures. The pronounced hardening at 573 K (300 °C) has its nature in the precipitation of the Al3Sc particles with a Zr-rich shell. The contribution of trapped positrons annihilated by Mn electrons was found to be negligible.

  18. Positron line radiation from halo WIMP annihilations as a dark matter signature

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.; Wilczek, Frank

    1989-01-01

    We suggest a new signature for dark matter annihilation in the halo: high energy positron line radiation. Because the cosmic ray positron spectrum falls rapidly with energy, e+'s from halo WIMP annihilations can be a significant, clean signal for very massive WIMP's (approx. greater than 30 GeV). In the case that the e+e- annihilation channel has an appreciable branch, the e+ signal should be above background in a future detector, such as have been proposed for ASTROMAG, and of potential importance as a dark matter signature. A significant e+e- branching ratio can occur for neutralinos or Dirac neutrinos. High-energy, continuum positron radiation may also be an important signature for massive neutralino annihilations, especially near or above the threshold of the W+W- and ZoZo annihilation channels.

  19. Positron Annihilation 3-D Momentum Spectrometry by Synchronous 2D-ACAR and DBAR

    NASA Astrophysics Data System (ADS)

    Burggraf, Larry W.; Bonavita, Angelo M.; Williams, Christopher S.; Fagan-Kelly, Stefan B.; Jimenez, Stephen M.

    2015-05-01

    A positron annihilation spectroscopy system capable of determining 3D electron-positron (e--e+) momentum densities has been constructed and tested. In this technique two opposed HPGe strip detectors measure angular coincidence of annihilation radiation (ACAR) and Doppler broadening of annihilation radiation (DBAR) in coincidence to produce 3D momentum datasets in which the parallel momentum component obtained from the DBAR measurement can be selected for annihilation events that possess a particular perpendicular momentum component observed in the 2D ACAR spectrum. A true 3D momentum distribution can also be produced. Measurement of 3-D momentum spectra in oxide materials has been demonstrated including O-atom defects in 6H SiC and silver atom substitution in lithium tetraborate crystals. Integration of the 3-D momentum spectrometer with a slow positron beam for future surface resonant annihilation spectrometry measurements will be described. Sponsorship from Air Force Office of Scientific Research

  20. Comment on "Gamma-ray spectra from low-energy positron annihilation processes in molecules"

    NASA Astrophysics Data System (ADS)

    Green, D. G.; Gribakin, G. F.

    2017-03-01

    In the article by Ma et al. [Phys. Rev. A 94, 052709 (2016), 10.1103/PhysRevA.94.052709], γ -ray spectra for positron annihilation on molecules were calculated in the independent-particle approximation with the positron wave function set to unity. Based on comparisons with experimental data, they concluded that inner valence electrons play a dominant role in positron annihilation. These conclusions are incorrect and resulted from fallacious analysis that ignored the known effect of the positron wave function on the spectra.

  1. Neutrino emissivity from electron-positron annihilation in hot matter in a strong magnetic field

    SciTech Connect

    Amsterdamski, P.; Haensel, P. )

    1990-10-15

    The neutrino emissivity due to electron-positron annihilation in a strong magnetic field is computed. A strong magnetic field can significantly increase the neutrino emissivity at {ital T}{similar to}10{sup 9} K.

  2. A Mystery of the Galactic Bulge: SPI Observations of Positron Annihilation

    NASA Astrophysics Data System (ADS)

    Weidenspointner, G.; Knödlseder, J.; Jean, P.; Lonjou, V.; von Ballmoos, P.; Gillard, W.; Harris, J. M.; Marcowith, A.; Skinner, G. K.; Vedrenne, G.; Shrader, C. R.; Teegarden, B. J.; Guessoum, N.; Diehl, R.; Schönfelder, V.; Schanne, S.; Winkler, C.

    2005-12-01

    The imaging spectrometer SPI on board ESA's INTEGRAL observatory provides us with an unprecedented view of positrons in our Galaxy. The first sky maps in the 511 keV annihilation line and in the positronium continuum emission show a puzzling concentration of annihilation radiation in the Galactic bulge. The annihilation of positrons appears to be even more concentrated in the bulge than old stellar populations such as Type Ia supernovae, novae, or low-mass X-ray binaries. New, speculative, physics such as positron production from light dark matter has begun to be discussed as a possible solution. High-resolution spectroscopy of the bulge emission is providing additional clues. SPI has allowed us to solve a few of the positron annihilation puzzles of the past, but has deepened the mystery of the Galactic bulge.

  3. Slow positron annihilation studies on helium irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Cui, Minghuan; Yao, Cunfeng; Shen, Tielong; Pang, Lilong; Zhu, Yabin; Li, Bingsheng; Cao, Xingzhong; Zhang, Peng; Sun, Jianrong; Zhu, Huiping; Wang, Ji; Gao, Xing; Gao, Ning; Chang, Hailong; Sheng, Yanbin; Zhang, Hongpeng; Wang, Zhiguang

    2017-09-01

    Pure tungsten samples were irradiated to 1.0 × 1016, 5.0 × 1016 and 1.0 × 1017 ions/cm2 at room temperature with 500 and 200 keV helium ions, respectively, to understand the growth of vacancy like defects in tungsten induced by helium irradiation. The doppler broadening spectroscopy of slow positron annihilation was used to characterize the behavior of vacancy like defects, such as HeliumnVacancym (i.e. HenVm) complexes, induced by He irradiation. When the irradiation fluence is below 1.0 × 1017 ions/cm2, the size and density of vacancy like defects show increasing trends with increasing fluences. The density of vacancy like defects decreases with increasing depths due to the increasing amounts or n/m ratios in HenVm complexes. When the ratios reach certain values, the size of vacancy like defects increases. When the 200 keV He irradiation fluence increases to 1.0 × 1017 ions/cm2, the size of vacancy like defects decreases. When the 500 keV He irradiation fluence increases to 1.0 × 1017 ions/cm2, the size and density of vacancy like defects grow larger. The formation and evolution of irradiation induced defects and the growth mechanism of HenVm complexes are discussed in this paper on the bases of dpa levels, He concentrations, CHe/dpa ratios and electronic energy loss depositions.

  4. Positron/Electron Annihilation via the Two-Photon Pathway

    NASA Astrophysics Data System (ADS)

    Gauthier, Isabelle

    When a positron/electron pair annihilate via the two-photon pathway, the emitted photons are momentum correlated. This correlation ensures that they move along a straight line path in opposite directions. An experiment performed in 2004 by Dr. V.D. Irby measured the time interval between detection of the photons. He observed a decay in the number of counts with increasing detection time interval, which he described using a Lorentzian, the line width of which at full-width half-maximum is measured to be 120ps. The data collected by Irby is interesting because current theory predicts that because the source is so localized (the effective source width used by Irby is safely within 5rnrn) the photons should be detected within a time interval of Deltat=d/c where d is the thickness of the source. This time interval corresponds to 17ps. This thesis fits the results to an exponential, and shows that this exponentially decaying nature of the coincidence time interval is characteristic of the entanglement of the two photons. We find that the wavefunctions of the photons decoheres in space according to how long the particle pair took to decay (which is exponential), and that the probability of simultaneous detection depends on the exponential of the product of the lifetime of positronium and the detection time interval.

  5. Positron annihilation study for cadmium (electronic structure and enhancement effect)

    NASA Astrophysics Data System (ADS)

    Hamid, A.

    2003-12-01

    The three dimensional electron density in momentum space ρ(p) and in wave vector space n(k) was reconstructed for cadmium (Cd). The measurements were performed using the two dimensional angular correlation of annihilation radiation (2D-ACAR) technique. Enhanced contributions in the spectra were observed around 5.5 mrad, discussed in terms of a Kahana-like enhancement effect. From another viewpoint, Fermi radii were analyzed in the (λM K), (ALM) and (AHK) planes, and they showed a maximum deviation of about 4% from the free electron Fermi radius. Moreover, comparisons to a radio-frequency size effect (RFSE) experiment and theoretical band structure calculations (using augmented plane wave (APW), linear combination of atomic orbital (LCAO) and linear muffin tin orbital (LMTO) methods) were examined. The results showed a qualitative agreement with both APW and LCAO calculations. However, a favorable agreement with the APW method was determined via Fermi surface dimensions. The differences of bands' occupation of n(k) between the current work and the APW method were argued in view of positron wave function in Cd.

  6. Detector resolution in positron annihilation Doppler broadening experiments

    NASA Astrophysics Data System (ADS)

    Heikinheimo, J.; Ala-Heikkilä, J.; Tuomisto, F.

    2017-09-01

    Positron annihilation Doppler broadening spectroscopy characterizes lattice point defects and is sensitive to very small vacancy densities. High-purity germanium detectors are generally used for recording the Doppler broadening spectrum because they provide good energy resolution and stability. However, the energy resolution of a germanium detector is somewhat dependent on the photon absorption geometry in the detector crystal. This change in the energy resolution changes also the Doppler broadening parameters. To observe the dependency of the resolution function and the Doppler broadening parameters, we performed experiments on Si samples in standard sandwich configuration with a Na-22 source. We changed the radiation geometry of the incident gamma photons via altering the distance of the sample-source package from the detector and by adding steel between the source and the detector. We observed the change of the absorption geometry in the germanium detector crystal by doing Monte Carlo simulations. The aim of this study is to help understand and decide what is the best way to compare the Doppler broadening parameters obtained with different measurement setups and even with the same setup when the geometry in the measurements has changed.

  7. Positron annihilation lifetime spectroscopy of ZnO bulk samples

    SciTech Connect

    Zubiaga, A.; Plazaola, F.; Garcia, J. A.; Tuomisto, F.; Munoz-Sanjose, V.; Tena-Zaera, R.

    2007-08-15

    In order to gain a further insight into the knowledge of point defects of ZnO, positron annihilation lifetime spectroscopy was performed on bulk samples annealed under different atmospheres. The samples were characterized at temperatures ranging from 10 to 500 K. Due to difficulties in the conventional fitting of the lifetime spectra caused by the low intensity of the defect signals, we have used an alternative method as a solution to overcome these difficulties and resolve all the lifetime components present in the spectra. Two different vacancy-type defects are identified in the samples: Zn vacancy complexes (V{sub Zn}-X) and vacancy clusters consisting of up to five missing Zn-O pairs. In addition to the vacancies, we observe negative-ion-type defects, which are tentatively attributed to intrinsic defects in the Zn sublattice. The effect of the annealing on the observed defects is discussed. The concentrations of the V{sub Zn}-X complexes and negative-ion-type defects are in the 0.2-2 ppm range, while the cluster concentrations are 1-2 orders of magnitude lower.

  8. Timelike Virtual Compton Scattering from Electron-Positron Radiative Annihilation

    SciTech Connect

    Afanasev, Andrei; Brodsky, Stanley J.; Carlson, Carl E.; Mukherjee, Asmita; /Indian Inst. Tech., Mumbai

    2009-03-31

    We propose measurements of the deeply virtual Compton amplitude (DVCS) {gamma}* {yields} H{bar H}{gamma} in the timelike t = (p{sub H} + p{sub {bar H}}){sup 2} > 0 kinematic domain which is accessible at electron-positron colliders via the radiative annihilation process e{sup +}e{sup -} {yields} H{bar H}{gamma}. These processes allow the measurement of timelike deeply virtual Compton scattering for a variety of H{bar H} hadron pairs such as {pi}{sup +}{pi}{sup -}, K{sup +}K{sup -}, and D{bar D} as well as p{bar p}. As in the conventional spacelike DVCS, there are interfering coherent amplitudes contributing to the timelike processes involving C = - form factors. The interference between the amplitudes measures the phase of the C = + timelike DVCS amplitude relative to the phase of the timelike form factors and can be isolated by considering the forward-backward e{sup +} {leftrightarrow} e{sup -} asymmetry. The J = 0 fixed pole contribution which arises from the local coupling of the two photons to the quark current plays a special role. As an example we present a simple model.

  9. Timelike Virtual Compton Scattering from Electron-Positron Radiative Annihilation

    SciTech Connect

    Andrei Afanaciev,Andrei Afanasev, Stanley J. Brodsky, Carl E. Carlson, Asmita Mukherjee

    2010-02-01

    We propose measurements of the deeply virtual Compton amplitude (DVCS), gamma* to H H-bar gamma, in the timelike t = (p_{H} + p_{H-bar})^2 > 0 kinematic domain which is accessible at electron-positron colliders via the radiative annihilation process e+ e- to H H-bar gamma. These processes allow the measurement of timelike deeply virtual Compton scattering for a variety of H H-bar hadron pairs such as pi+ pi-, K+ K-, and D D-bar as well as p p-bar. As in the conventional spacelike DVCS, there are interfering coherent amplitudes contributing to the timelike processes involving C= - form factors. The interference between the amplitudes measures the phase of the C=+ timelike DVCS amplitude relative to the phase of the timelike form factors and can be isolated by considering the forward-backward e+ \\leftrightarrow e- asymmetry. The J=0 fixed pole contribution which arises from the local coupling of the two photons to the quark current plays a special role. As an example we present a simple model.

  10. Investigations of Positron Annihilation with Atoms and Molecules using PsARS

    NASA Astrophysics Data System (ADS)

    Kauppila, W. E.; Edwards, J. J.; Miller, E. G.; Stein, T. S.; Surdutovich, E.

    2006-03-01

    Positrons, being the antiparticles of electrons, ultimately annihilate either directly with electrons (that are free or attached to atoms or molecules), or via the formation of positronium (Ps, a short-lived atom composed of a positron and an electron) with subsequent annihilation. In this work we have developed positronium annihilation ratio spectroscopy (PsARS), and are using PsARS to investigate the formation and destruction of Ps [1], as well as positron attachment to molecules. For this experiment a 3 to 100 eV positron beam obtained from a sodium-22 radioactive source is passed through a gas scattering cell and resulting annihilation gamma rays of different energies are detected in coincidence. Annihilation measurements, such as these, have astrophysical relevance since characteristic positron annihilation gamma rays have been observed from various extraterrestrial sources (e.g., solar flares and the direction towards the center of our galaxy). [1] W.E. Kauppila, E.G. Miller, H.F.M. Mohamed, K. Pipinos, T.S. Stein and E. Surdutovich, Phys. Rev. Lett. 93, 113401 (2004).

  11. Surfaces of colloidal PbSe nanocrystals probed by thin-film positron annihilation spectroscopy

    SciTech Connect

    Chai, L.; Schut, H.; Schaarenburg, L. C. van; Eijt, S. W. H.; Al-Sawai, W.; Barbiellini, B.; Bansil, A.; Gao, Y.; Houtepen, A. J.; Mijnarends, P. E.; Huis, M. A. van; Ravelli, L.; Egger, W.; Kaprzyk, S.

    2013-08-01

    Positron annihilation lifetime spectroscopy and positron-electron momentum density (PEMD) studies on multilayers of PbSe nanocrystals (NCs), supported by transmission electron microscopy, show that positrons are strongly trapped at NC surfaces, where they provide insight into the surface composition and electronic structure of PbSe NCs. Our analysis indicates abundant annihilation of positrons with Se electrons at the NC surfaces and with O electrons of the oleic ligands bound to Pb ad-atoms at the NC surfaces, which demonstrates that positrons can be used as a sensitive probe to investigate the surface physics and chemistry of nanocrystals inside multilayers. Ab initio electronic structure calculations provide detailed insight in the valence and semi-core electron contributions to the positron-electron momentum density of PbSe. Both lifetime and PEMD are found to correlate with changes in the particle morphology characteristic of partial ligand removal.

  12. Investigation of Positron-CO scattering using Positronium Annihilation Ratio Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kauppila, W. E.; Edwards, J. J.; Miller, E. G.; Stein, T. S.; Surdutovich, E.

    2006-05-01

    We are using the technique [1] of positronium annihilation ratio spectroscopy (PsARS) to study the annihilation of 6 - 13 eV positrons colliding with CO. In this method we detect in coincidence (a) two 511 keV annihilation gamma rays, and simultaneously (b) two 300 - 460 keV gamma rays from the three gamma decay of ortho-Ps. The ratio of these signals R3γ/2γ versus positron impact energy reveals anomalous behavior for CO when compared with other gases [1] suggesting that some other mechanism than Ps formation is contributing to positron annihilation at an energy about 1 eV above the Ps formation threshold of 7.2 eV. Recognizing that the threshold for electronic excitation by positron impact is located where the anomalous R3γ/2γ behavior occurs suggests that we may be observing an effect where the positron is electronically exciting CO and temporarily binding to the molecule in a resonance-like state from which the positron can annihilate with an electron producing an enhanced 511 keV coincidence signal consistent with our measurements. [1] W.E. Kauppila, E.G. Miller, H.F.M. Mohamed, K. Pipinos, T.S. Stein and E. Surdutovich, Phys. Rev. Lett. 93, 113401 (2004).

  13. Positron annihilation lifetime study of radiation-damaged natural zircons

    NASA Astrophysics Data System (ADS)

    Roberts, J.; Gaugliardo, P.; Farnan, I.; Zhang, M.; Vance, E. R.; Davis, J.; Karatchevtseva, I.; Knott, R. B.; Mudie, S.; Buckman, S. J.; Sullivan, J. P.

    2016-04-01

    Zircons are a well-known candidate waste form for actinides and their radiation damage behaviour has been widely studied by a range of techniques. In this study, well-characterised natural single crystal zircons have been studied using Positron Annihilation Lifetime Spectroscopy (PALS). In some, but not all, of the crystals that had incurred at least half of the alpha-event damage of ∼1019 α/g required to render them structurally amorphous, PALS spectra displayed long lifetimes corresponding to voids of ∼0.5 nm in diameter. The long lifetimes corresponded to expectations from published Small-Angle X-ray Scattering data on similar samples. However, the non-observation by PALS of such voids in some of the heavily damaged samples may reflect large size variations among the voids such that no singular size can be distinguished or. Characterisation of a range of samples was also performed using scanning electron microscopy, optical absorption spectroscopy, Raman scattering and X-ray scattering/diffraction, with the degree of alpha damage being inferred mainly from the Raman technique and X-ray diffraction. The observed void diameters and intensities of the long lifetime components were changed somewhat by annealing at 700 °C; annealing at 1200 °C removed the voids entirely. The voids themselves may derive from He gas bubbles or voids created by the inclusion of small quantities of organic and hydrous matter, notwithstanding the observation that no voidage was evidenced by PALS in two samples containing hydrous and organic matter.

  14. Monte Carlo modelling of the propagation and annihilation of nucleosynthesis positrons in the Galaxy

    NASA Astrophysics Data System (ADS)

    Alexis, A.; Jean, P.; Martin, P.; Ferrière, K.

    2014-04-01

    Aims: We want to estimate whether the positrons produced by the β+-decay of 26Al, 44Ti, and 56Ni synthesised in massive stars and supernovae are sufficient to explain the 511 keV annihilation emission observed in our Galaxy. Such a possibility has often been put forward in the past. In a previous study, we showed that nucleosynthesis positrons cannot explain the full annihilation emission. Here, we extend this work using an improved propagation model. Methods: We developed a Monte Carlo Galactic propagation code for ~MeV positrons in which the Galactic interstellar medium, the Galactic magnetic field, and the propagation are finely described. This code allows us to simulate the spatial distribution of the 511 keV annihilation emission. We tested several Galactic magnetic fields models and several positron escape fractions from type-Ia supernova for 56Ni positrons to account for the large uncertainties in these two parameters. We considered the collisional/ballistic transport mode and then compared the simulated 511 keV intensity spatial distributions to the INTEGRAL/SPI data. Results: Regardless of the Galactic magnetic field configuration and the escape fraction chosen for 56Ni positrons, the 511 keV intensity distributions are very similar. The main reason is that ~MeV positrons do not propagate very far away from their birth sites in our model. The direct comparison to the data does not allow us to constrain the Galactic magnetic field configuration and the escape fraction for 56Ni positrons. In any case, nucleosynthesis positrons produced in steady state cannot explain the full annihilation emission. The comparison to the data shows that (a) the annihilation emission from the Galactic disk can be accounted for; (b) the strongly peaked annihilation emission from the inner Galactic bulge can be explained by positrons annihilating in the central molecular zone, but this seems to require more positron sources than the population of massive stars and type Ia

  15. Positron annihilation spectroscopy of vacancy type defects in submicrocrystalline copper under annealing

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Pavel V.; Lider, Andrey M.; Bordulev, Yuriy S.; Laptev, Roman S.; Mironov, Yuriy P.; Rakhmatulina, Tanzilya V.; Korznikov, Alexandr V.

    2016-11-01

    The annealing of submicrocrystalline copper produced by the equal channel angular pressing followed by rolling was studied using positron annihilation and XRD analysis. In as-prepared samples, positrons are trapped at vacancies, concentration of which is very high (˜1.6 × 10-4) and dislocation type defects; however, a few percent of positrons annihilate from a free state. Increasing annealing temperature leads to the formation of vacancy complexes. The main positron trap centers in the temperature range ΔT = 20-300°C are vacancies and their small complexes of two or three vacancies. The dominant centers of positron trapping in the temperature range ΔT = 300-670°C are dislocation-type defects.

  16. Positron Annihilation Spectroscopy Of High Performance Polymer Films Under CO{sub 2} Pressure

    SciTech Connect

    Quarles, C. A.; Klaehn, John R.; Peterson, Eric S.; Urban-Klaehn, Jagoda M.

    2011-06-01

    Positron annihilation Lifetime and Doppler broadening measurements are reported for six polymer films as a function of carbon dioxide (CO{sub 2}) absolute pressure ranging from 0 to 45 psi. Since the polymer films were thin and did not absorb all positrons, corrections were made in the lifetime analysis for the absorption of positrons in the positron source and sample holder using the Monte Carlo transport code MCNP. The studied polymers are found to behave differently from each other. Some polymers form positronium and others, such as the polyimide structures, do not. For those polymers that form positronium an interpretation in terms of free volume is possible; for those that don't form positronium, further work is needed to determine how best to describe the behavior in terms of the bulk positron annihilation parameters. A few of the studied polymers exhibit changes in positron lifetime and intensity under CO{sub 2} pressure which may be described by the Henry or Langmuir sorption models, while the positron response of other polymers is rather insensitive to the CO{sub 2} pressure. The results demonstrate the usefulness of positron annihilation spectroscopy in investigating the sorption of CO{sub 2} into various polymers at pressures up to about 3 atm (45psi).

  17. Positron Annihilation Spectroscopy of High Performance Polymer Films under CO2 Pressure

    SciTech Connect

    C.A. Quarles; John R. Klaehn; Eric S. Peterson; Jagoda M. Urban-Klaehn

    2010-08-01

    Positron annihilation Lifetime and Doppler broadening measurements are reported for six polymer films as a function of carbon dioxide absolute pressure ranging from 0 to 45 psi. Since the polymer films were thin and did not absorb all positrons, corrections were made in the lifetime analysis for the absorption of positrons in the positron source and sample holder using the Monte Carlo transport code MCNP. Different polymers are found to behave differently. Some polymers studied form positronium and some, such as the polyimide structures, do not. For those samples that form positronium an interpretation in terms of free volume is possible; for those that don’t form positronium, further work is needed to determine how best to describe the behavior in terms of the bulk positron annihilation parameters. Some polymers exhibit changes in positron lifetime and intensity under CO2 pressure which may be described by the Henry or Langmuir sorption models, while the positron response of other polymers is rather insensitive to the CO2 pressure. The results demonstrate the usefulness of positron annihilation spectroscopy in investigating the sorption of CO2 into various polymers at pressures up to about 3 atm.

  18. Three Dimensional Positron Annihilation Momentum Spectroscopy of Lithium Tetraborate Crystals

    DTIC Science & Technology

    2013-03-21

    common reactions which generate a β + particle, an energetic positron. In addition to a positron, positive beta decay generates a neutrino as well...from [8]. 22 Na undergoes positive beta decay, ejecting a positron which has a rest mass-energy of 511 keV, and a neutrino . The maximum overall

  19. Study of PRIMAVERA steel samples by positron annihilation spectroscopy technique II - Lifetime measurements

    NASA Astrophysics Data System (ADS)

    Krsjak, V.; Grafutin, V.; Ilyukhina, O.; Burcl, R.; Ballesteros, A.; Hähner, P.

    2012-02-01

    In the present article, a positron annihilation lifetime technique was used for the study of VVER-440/230 weld materials, manufactured in the frame of the international PRIMAVERA project on microstructural investigation of the irradiated WWER-440 reactor pressure vessel steel. The present results complement our previous report of positron angular correlation experiments and provide in-depth characterization of vacancy type defects behavior under irradiation and thermal treatment. The results give new insight into the previously published atom probe tomography and angular correlation of annihilation radiation studies. The measurements do not show any association of phosphorus or its segregation to the open volume defects investigated by positron annihilation spectroscopy. The embrittlement effects related to the phosphorus seem to be effectively annealed-out during 475 °C thermal treatment and the post annealing microstructure and mechanical properties of the material are consequently affected mostly by agglomerations of vacancy clusters coarsened during thermal treatment.

  20. The annihilation of positrons in the cold phase of the interstellar medium revisited

    NASA Technical Reports Server (NTRS)

    Wallyn, P.; Durouchoux, PH.; Chapuis, C.; Leventhal, M.

    1994-01-01

    The positron cross sections in H and H2 media are reevaluated, taking into account new experimental results. Using a Monte Carlo simulation, we find a positronium fraction before thermalization of 0.90 for H2, in good agreement with the previous experimental result given by Brown et al. (1986). For H we obtain an upper limit of 0.98. We study the behavior of the charge exchange annihilation in a cold phase (molecular cloud). We calculate a formula for the slowing-down time t, before annihilation lasting Delta t, via charge exchange, of a positron beam with a given energy for different medium densities and initial energies. An upper limit of 0.7 MeV for the initial energy of the positrons, annihilating in the molecular cloud G0.86 - 0.08 near the gamma ray source positronium and gives new time constraints on their possible observation.

  1. The annihilation of positrons in the cold phase of the interstellar medium revisited

    NASA Technical Reports Server (NTRS)

    Wallyn, P.; Durouchoux, PH.; Chapuis, C.; Leventhal, M.

    1994-01-01

    The positron cross sections in H and H2 media are reevaluated, taking into account new experimental results. Using a Monte Carlo simulation, we find a positronium fraction before thermalization of 0.90 for H2, in good agreement with the previous experimental result given by Brown et al. (1986). For H we obtain an upper limit of 0.98. We study the behavior of the charge exchange annihilation in a cold phase (molecular cloud). We calculate a formula for the slowing-down time t, before annihilation lasting Delta t, via charge exchange, of a positron beam with a given energy for different medium densities and initial energies. An upper limit of 0.7 MeV for the initial energy of the positrons, annihilating in the molecular cloud G0.86 - 0.08 near the gamma ray source positronium and gives new time constraints on their possible observation.

  2. Rectifying barrier at GaN/SiC hetero-junction studied with positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Hu, Yi-Fan; Beling, D. C.

    2005-11-01

    Positron annihilation spectroscopy on GaN films grown on SiC substrate with MBE are presented. It is shown that the GaN/SiC interface is rectifying towards positrons, such that positrons can only travel from SiC to GaN and not vice versa. Potential steps seen by the positron at the GaN/SiC interface are calculated from experimental values of electron and positron work function. This ``rectifying'' effect has been successfully mimicked by inserting a thin region of very high electric field in the Variable Energy Positron Fit (VEPF) analysis. The built-in electric field is attributed to different positron affinities, dislocation and/or interface defects at the GaN/SiC interface.

  3. Positron annihilation studies of moisture in graphite-reinforced composites

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Holt, W. H.; Mock, W., Jr.; Buckingham, R. D.

    1980-01-01

    The positron lifetime technique of monitoring absorbed moisture is applied to several composites, including graphite/polymides which are candidates for high-temperature (over 260 C) applications. The experimental setup is a conventional fast-slow coincidence system wherein the positron lifetime is measured with respect to a reference time determined by the detection of a nuclear gamma ray emitted simultaneously with the positron. From the experiments, a rate of change of positron mean lifetime per unit mass of water can be determined for each type of specimen. Positron lifetime spectra are presented for a graphite/polyimide composite and for a pure polyimide.

  4. Digitized detection of gamma-ray signals concentrated in narrow time windows for transient positron annihilation lifetime spectroscopy

    SciTech Connect

    Kinomura, A. Suzuki, R.; Oshima, N.; O’Rourke, B. E.; Nishijima, T.; Ogawa, H.

    2014-12-15

    A pulsed slow-positron beam generated by an electron linear accelerator was directly used for positron annihilation lifetime spectroscopy without any positron storage devices. A waveform digitizer was introduced to simultaneously capture multiple gamma-ray signals originating from positron annihilation events during a single accelerator pulse. The positron pulse was chopped and bunched with the chopper signals also sent to the waveform digitizer. Time differences between the annihilation gamma-ray and chopper peaks were calculated and accumulated as lifetime spectra in a computer. The developed technique indicated that positron annihilation lifetime spectroscopy can be performed in a 20 μs time window at a pulse repetition rate synchronous with the linear accelerator. Lifetime spectra of a Kapton sheet and a thermally grown SiO{sub 2} layer on Si were successfully measured. Synchronization of positron lifetime measurements with pulsed ion irradiation was demonstrated by this technique.

  5. Positron annihilation lifetime study of polyvinylpyrrolidone for nanoparticle-stabilizing pharmaceuticals.

    PubMed

    Shpotyuk, O; Bujňáková, Z; Baláž, P; Ingram, A; Shpotyuk, Y

    2016-01-05

    Positron annihilation lifetime spectroscopy was applied to characterize free-volume structure of polyvinylpyrrolidone used as nonionic stabilizer in the production of many nanocomposite pharmaceuticals. The polymer samples with an average molecular weight of 40,000 g mol(-1) were pelletized in a single-punch tableting machine under an applied pressure of 0.7 GPa. Strong mixing in channels of positron and positronium trapping were revealed in the polyvinylpyrrolidone pellets. The positron lifetime spectra accumulated under normal measuring statistics were analysed in terms of unconstrained three- and four-term decomposition, the latter being also realized under fixed 0.125 ns lifetime proper to para-positronium self-annihilation in a vacuum. It was shown that average positron lifetime extracted from each decomposition was primary defined by long-lived ortho-positronium component. The positron lifetime spectra treated within unconstrained three-term fitting were in obvious preference, giving third positron lifetime dominated by ortho-positronium pick-off annihilation in a polymer matrix. This fitting procedure was most meaningful, when analysing expected positron trapping sites in polyvinylpyrrolidone-stabilized nanocomposite pharmaceuticals.

  6. Silicide phase formation in Ni/Si system: Depth-resolved positron annihilation and Rutherford backscattering study

    SciTech Connect

    Abhaya, S.; Amarendra, G.; Panigrahi, B.K.; Nair, K.G.M.

    2006-02-01

    Silicidation in Ni/Si thin-film junction has been investigated using depth-resolved positron annihilation spectroscopy (PAS) and Rutherford backscattering spectrometry (RBS). Identification of various silicide phases from an analysis of the positron annihilation parameters is consistent with the RBS results. Absence of vacancy defects in the silicide region is clearly brought out by PAS00.

  7. Asymmetric 511 keV Positron Annihilation Line Emission from the Inner Galactic Disk

    NASA Technical Reports Server (NTRS)

    Skinner, Gerry; Weidenspointner, Georg; Jean, Pierre; Knodlseder, Jurgen; Ballmoos, Perer von; Bignami, Giovanni; Diehl, Roland; Strong, Andrew; Cordier, Bertrand; Schanne, Stephane; Winkler, Christoph

    2008-01-01

    A recently reported asymmetry in the 511 keV gamma-ray line emission from the inner galactic disk is unexpected and mimics an equally unexpected one in the distribution of LMXBs seen at hard X-ray energies. A possible conclusion is that LMXBs are an important source of the positrons whose annihilation gives rise to the line. We will discuss these results, their statistical significance and that of any link between the two. The implication of any association between LMXBs and positrons for the strong annihilation radiation from the galactic bulge will be reviewed.

  8. Positron-annihilation 2D-ACAR studies of disordered and defected alloys

    SciTech Connect

    Bansil, A.; Prasad, R.; Smedskjaer, L.C.; Benedek, R.; Mijnarends, P.E.

    1987-09-01

    Theoretical and experimental progess in connection with 2D-ACAR positron annihilation studies of ordered, disordered, and defected alloys is discussed. We present, in particular, some of the recent developments concerning the electronic structure of disordered alloys, and the work in the area of annihilation from positrons trapped at vacancy-type defects in metals and alloys. The electronic structure and properties of a number of compounds are also discussed briefly; we comment specifically on high T/sub c/ ceramic superconductors, Heusler alloys, and transition-metal aluminides. 58 refs., 116 figs.

  9. Jet algorithms in electron-positron annihilation: perturbative higher order predictions

    NASA Astrophysics Data System (ADS)

    Weinzierl, Stefan

    2011-02-01

    This article gives results on several jet algorithms in electron-positron annihilation: Considered are the exclusive sequential recombination algorithms Durham, Geneva, Jade-E0 and Cambridge, which are typically used in electron-positron annihilation. In addition also inclusive jet algorithms are studied. Results are provided for the inclusive sequential recombination algorithms Durham, Aachen and anti- k t , as well as the infrared-safe cone algorithm SISCone. The results are obtained in perturbative QCD and are N3LO for the two-jet rates, NNLO for the three-jet rates, NLO for the four-jet rates and LO for the five-jet rates.

  10. Mössbauer and positron annihilation studies of pharmaceutically important iron-dextran complexes

    NASA Astrophysics Data System (ADS)

    Oshtrakh, M. I.; Kopelyan, E. A.; Semionkin, V. A.; Livshits, A. B.; Krylova, V. E.; Kozlov, A. A.

    1993-04-01

    Iron-dextran complexes are pharmaceutically important models of iron-storage protein ferritin. These complexes are used for treatment of iron-deficiency anemias. In this work we present the results of the study of various iron-dextran complexes by Mössbauer spectroscopy and the positron annihilation technique. Mössbauer spectroscopy indicated the differences between the electronic and magnetic structures of iron cores in iron-dextran complexes while positron annihilation showed variations of dextran shells in those complexes. Both techniques appeared to be useful to study microstructural variations in iron-dextran complexes.

  11. Asymmetric 511 keV Positron Annihilation Line Emission from the Inner Galactic Disk

    NASA Technical Reports Server (NTRS)

    Skinner, Gerry; Weidenspointner, Georg; Jean, Pierre; Knodlseder, Jurgen; Ballmoos, Perer von; Bignami, Giovanni; Diehl, Roland; Strong, Andrew; Cordier, Bertrand; Schanne, Stephane; hide

    2008-01-01

    A recently reported asymmetry in the 511 keV gamma-ray line emission from the inner galactic disk is unexpected and mimics an equally unexpected one in the distribution of LMXBs seen at hard X-ray energies. A possible conclusion is that LMXBs are an important source of the positrons whose annihilation gives rise to the line. We will discuss these results, their statistical significance and that of any link between the two. The implication of any association between LMXBs and positrons for the strong annihilation radiation from the galactic bulge will be reviewed.

  12. Positron annihilation spectroscopy investigation of vacancy defects in neutron-irradiated 3 C -SiC

    NASA Astrophysics Data System (ADS)

    Hu, Xunxiang; Koyanagi, Takaaki; Katoh, Yutai; Wirth, Brian D.

    2017-03-01

    Positron annihilation spectroscopy characterization results for neutron-irradiated 3 C -SiC are described here, with a specific focus on explaining the size and character of vacancy clusters as a complement to the current understanding of the neutron irradiation response of 3 C -SiC. Positron annihilation lifetime spectroscopy was used to capture the irradiation temperature and dose dependence of vacancy defects in 3 C -SiC following neutron irradiation from 0.01 to 31 dpa in the temperature range from 380°C to 790°C . The neutral and negatively charged vacancy clusters were identified and quantified. The results suggest that the vacancy defects that were measured by positron annihilation spectroscopy technique contribute very little to the transient swelling of SiC. In addition, coincidence Doppler broadening measurement was used to investigate the chemical identity surrounding the positron trapping sites. It was found that silicon vacancy-related defects dominate in the studied materials and the production of the antisite defect CSi may result in an increase in the probability of positron annihilation with silicon core electrons.

  13. New insights into the nanostructure of innovative thin film solar cells gained by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Eijt, S. W. H.; Shi, W.; Mannheim, A.; Butterling, M.; Schut, H.; Egger, W.; Dickmann, M.; Hugenschmidt, C.; Shakeri, B.; Meulenberg, R. W.; Callewaert, V.; Saniz, R.; Partoens, B.; Barbiellini, B.; Bansil, A.; Melskens, J.; Zeman, M.; Smets, A. H. M.; Kulbak, M.; Hodes, G.; Cahen, D.; Brück, E.

    2017-01-01

    Recent studies showed that positron annihilation methods can provide key insights into the nanostructure and electronic structure of thin film solar cells. In this study, positron annihilation lifetime spectroscopy (PALS) is applied to investigate CdSe quantum dot (QD) light absorbing layers, providing evidence of positron trapping at the surfaces of the QDs. This enables one to monitor their surface composition and electronic structure. Further, 2D-Angular Correlation of Annihilation Radiation (2D-ACAR) is used to investigate the nanostructure of divacancies in photovoltaic-high-quality a-Si:H films. The collected momentum distributions were converted by Fourier transformation to the direct space representation of the electron-positron autocorrelation function. The evolution of the size of the divacancies as a function of hydrogen dilution during deposition of a-Si:H thin films was examined. Finally, we present a first positron Doppler Broadening of Annihilation Radiation (DBAR) study of the emerging class of highly efficient thin film solar cells based on perovskites.

  14. Positron annihilation spectroscopy investigation of vacancy defects in neutron-irradiated 3C -SiC

    DOE PAGES

    Hu, Xunxiang; Koyanagi, Takaaki; Katoh, Yutai; ...

    2017-03-10

    We described positron annihilation spectroscopy characterization results for neutron-irradiated 3 C -SiC, with a specific focus on explaining the size and character of vacancy clusters as a complement to the current understanding of the neutron irradiation response of 3 C -SiC. Positron annihilation lifetime spectroscopy was used to capture the irradiation temperature and dose dependence of vacancy defects in 3 C -SiC following neutron irradiation from 0.01 to 31 dpa in the temperature range from 380C °to 790C .° The neutral and negatively charged vacancy clusters were identified and quantified. The results suggest that the vacancy defects that were measuredmore » by positron annihilation spectroscopy technique contribute very little to the transient swelling of SiC. Additionally, we used coincidence Doppler broadening measurement to investigate the chemical identity surrounding the positron trapping sites.Finally, we found that silicon vacancy-related defects dominate in the studied materials and the production of the antisite defect CSi may result in an increase in the probability of positron annihilation with silicon core electrons.« less

  15. Study on Momentum Density of Electrons and Fermi Surface in Niobium by Positron Annihilation

    NASA Astrophysics Data System (ADS)

    Kubota, Takeshi; Kondo, Hitoshi; Watanabe, Kazuhiro; Murakami, Yasukazu; Cho, Yang-Koo; Tanigawa, Shoichiro; Kawano, Takao; Bahng, Gun-Woong

    1990-12-01

    The three dimensional electron-positron momentum density in niobium has been reconstructed from measurements of two dimensional angular correlation of positron annihilation radiations (2D-ACAR) followed by the image reconstruction technique based on a direct Fourier transformation. We determined the position of the Fermi surface sheets; \\varGamma-centered hole octahedron, multiply connected jungle-gym arms and N-centered hole ellipsoids. The Fermi surface topology is in good agreement with the theory.

  16. Analysis of positron annihilation lifetime data by numerical laplace inversion with the program CONTIN

    NASA Astrophysics Data System (ADS)

    Gregory, Roger B.; Zhu, Yongkang

    1990-05-01

    The performance of the program CONTIN [Stephen W. Provencher, Comput. Phys. Commun. 27 (1982) 229], modified to solve Fredholm integral equations with convoluted kernels of the type that occur in the deconvolution and analysis of positron annihilation lifetime data, is investigated with computer-simulated test data. The method avoids direct determination of the instrument resolution function by employing the decay curve of a reference material with a well-known single lifetime. CONTIN employs a constrained, regularized least-squares analysis to calculate a continuous annihilation-rate probability density function (pdf) which is the most parsimonious solution that is consistent with the experimental data and prior knowledge. The performance of the algorithm for extracting positron annihilation lifetime information was evaluated by using several measures of the information content of the data described by Schrader and Usmar [in: Positron Annihilation Studies of Fluids, ed. S. Sharma (World Scientific, Singapore, 1988) p. 215]. The quality of the CONTIN reconstruction of the annihilation-rate pdf is strongly dependent on the information content of the data and is greatly improved as the total number of counts in the data set is increased. Nevertheless, the method provides excellent estimates of the intensities and mean lifetimes of peaks in the annihilation-rate pdf, even when the total counts in the data set are relatively low (10 5-10 6). The sensitivity of the algorithm to systematic errors in the data, including errors in the instrument resolution function, shifts in the positron of the zero-time channel of the sample and reference data and contamination of the reference decay by additional lifetime components was also evaluated. Errors in the FWHM of the instrument resolution function and shifts in the zero time channel as small as {1}/{10}to{1}/{5} of the channel width of the instrument generate additional spurious peaks in the annihilation-rate pdf and

  17. Optical and microstructural characterization of porous silicon using photoluminescence, SEM and positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Cheung, C. K.; Nahid, F.; Cheng, C. C.; Beling, C. D.; Fung, S.; Ling, C. C.; Djurisic, A. B.; Pramanik, C.; Saha, H.; Sarkar, C. K.

    2007-12-01

    We have studied the dependence of porous silicon morphology and porosity on fabrication conditions. N-type (100) silicon wafers with resistivity of 2-5 Ω cm were electrochemically etched at various current densities and anodization times. Surface morphology and the thickness of the samples were examined by scanning electron microscopy (SEM). Detailed information of the porous silicon layer morphology with variation of preparation conditions was obtained by positron annihilation spectroscopy (PAS): the depth-defect profile and open pore interconnectivity on the sample surface has been studied using a slow positron beam. Coincidence Doppler broadening spectroscopy (CDBS) was used to study the chemical environment of the samples. The presence of silicon micropores with diameter varying from 1.37 to 1.51 nm was determined by positron lifetime spectroscopy (PALS). Visible luminescence from the samples was observed, which is considered to be a combination effect of quantum confinement and the effect of Si = O double bond formation near the SiO2/Si interface according to the results from photoluminescence (PL) and positron annihilation spectroscopy measurements. The work shows that the study of the positronium formed when a positron is implanted into the porous surface provides valuable information on the pore distribution and open pore interconnectivity, which suggests that positron annihilation spectroscopy is a useful tool in the porous silicon micropores' characterization.

  18. Annihilation characteristics of positrons in free-standing thin metal and polymer films

    NASA Astrophysics Data System (ADS)

    Uedono, A.; Ito, K.; Nakamori, H.; Ata, S.; Ougizawa, T.; Ito, K.; Kobayashi, Y.; Cao, X.; Kurihara, T.; Oshima, N.; Ohdaira, T.; Suzuki, R.; Akahane, T.; Doyama, M.; Matsuya, K.; Jinno, S.; Fujinami, M.

    2008-03-01

    Annihilation characteristics of positrons and positronium (Ps) in thin metal and polymer films were studied. Monoenergetic positrons were implanted into free-standing thin W and Au films and the annihilation γ-rays of positron-electron pairs were measured as a function of the incident energy of positrons. At the front-side surfaces of the films, an emission of Ps into vacuum and a resultant self-annihilation of ortho-Ps (o-Ps) were observed. At the backside surfaces, the Ps emission was found to be enhanced by an increase in the numbers of epithermal positrons and/or secondary electrons introduced by the impact of energetic positrons. For thin polymer films (polyester and polystyrene), the emission rate of o-Ps from the backside surfaces was higher than that from the metal films, which was attributed to the out-diffusion of o-Ps formed in the films. Those results suggested that the emission rate of Ps into vacuum was sensitive to the Ps formation process in the bulk and at the surface.

  19. Positron annihilation studies of recrystallization in the subsurface zone induced by friction in magnesium—effect of the inhomogeneity on measured positron annihilation characteristics

    NASA Astrophysics Data System (ADS)

    Dryzek, Jerzy

    2014-02-01

    The discussion of the positron annihilation studies of crystal structure defects, like vacancies, dislocations, grain boundaries and the defect depth profile, is presented. The role of the positron implantation depth and positron diffusion in such studies has been considered in detail. For description of the measured annihilation characteristics the proposed theoretical models take into account both effects. The annealing studies of defects created in pure magnesium by compression or dry sliding-wear were used for demonstration of the discussed thesis. The positron lifetime measurements were applied for monitoring open volume defects behavior. It was demonstrated that annealing at the temperature of about 300 °C removes the defects created by compression. Application of the proposed model to description of the data obtained allows to determine the activation energy of the grain boundary mobility in pure magnesium equal to Q=0.56±0.18 eV. However, defects created by the dry sliding are not completely annealed up to the temperature of 500 °C. The defect depth profile induced by dry sliding evolves with the annealing temperature in such a way that at the worn surface concentration of defects gradually decreases but at the depth between 60 and 100 μm the generation of new defects takes place at temperature of 150 and 225 °C. Above 300 °C the defects still are extended up to the depth of about 80 μm.

  20. Measuring electron-positron annihilation radiation from laser plasma interactionsa)

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Tommasini, R.; Seely, J.; Szabo, C. I.; Feldman, U.; Pereira, N.; Gregori, G.; Falk, K.; Mithen, J.; Murphy, C. D.

    2012-10-01

    We investigated various diagnostic techniques to measure the 511 keV annihilation radiations. These include step-wedge filters, transmission crystal spectroscopy, single-hit CCD detectors, and streaked scintillating detection. While none of the diagnostics recorded conclusive results, the step-wedge filter that is sensitive to the energy range between 100 keV and 700 keV shows a signal around 500 keV that is clearly departing from a pure Bremsstrahlung spectrum and that we ascribe to annihilation radiation.

  1. The study of synthetic food dyes by positron annihilation lifetime spectroscopy.

    NASA Astrophysics Data System (ADS)

    Pivtsaev, A. A.; Razov, V. I.

    2015-06-01

    By method of positron annihilation lifetime spectroscopy (PALS), substances are food dyes were studied: E-102 (Tartrazine), E-124 (Ponso 4R), E 132 (Indigo carmine), E-133 (Brilliant Blue), E-151 (Black Shiny). They are examined for the presence of carcinogenic properties. The difference between dyes having explicit carcinogenic properties and mutagenic properties (non-explicit carcinogens) is established.

  2. Positron annihilation process in Ni/sub c/Cu/sub 1-c/ alloys

    SciTech Connect

    Szotek, Z.; Gyorffy, B.L.; Stocks, G.M.; Temmerman, W.M.

    1982-01-01

    New, accurate, calculations of the electron momentum distribution function for the Cu/sub 60/Ni/sub 40/ random solid solution are presented and the role played by the positron wavefunction in determining the Angular Correlation of the Annihilation Radiation (ACAR) is discussed in quantitative terms.

  3. Positron annihilation spectroscopy of vacancy-type defects hierarchy in submicrocrystalline nickel during annealing

    SciTech Connect

    Kuznetsov, Pavel V.; Mironov, Yuri P. E-mail: tolmach@ispms.tsc.ru Tolmachev, Aleksey I. E-mail: tolmach@ispms.tsc.ru Rakhmatulina, Tanzilya V. E-mail: tolmach@ispms.tsc.ru; Bordulev, Yuri S. E-mail: laptev.roman@gmail.com Laptev, Roman S. E-mail: laptev.roman@gmail.com Lider, Andrey M. E-mail: laptev.roman@gmail.com Mikhailov, Andrey A. E-mail: laptev.roman@gmail.com; Korznikov, Alexander V.

    2014-11-14

    Positron annihilation and X-ray diffraction analysis have been used to study submicrocrystalline nickel samples prepared by equal channel angular pressing. In the as-prepared samples the positrons are trapped at dislocation-type defects and in vacancy clusters that can include up to 5 vacancies. The study has revealed that the main positron trap centers at the annealing temperature of ΔT= 20°C-180°C are low-angle boundaries enriched by impurities. At ΔT = 180°C-360°C, the trap centers are low-angle boundaries providing the grain growth due to recrystallization in-situ.

  4. Influence of defect-impurity complexes on slow positron yield of a tungsten moderator: Positron annihilation, Auger, and SIMS study

    NASA Astrophysics Data System (ADS)

    Amarendra, G.; Rajaraman, R.; Rajagopalan, S.; Suzuki, R.; Ohdaira, T.

    2004-03-01

    Polycrystalline tungsten foil annealed at successively higher temperature up to ˜2300 K has been investigated for slow positron moderation yield. LINAC-based intense positron beam lifetime studies have revealed that reemitted slow positron and positronium fractions gradually improve upon high-temperature annealing. So as to correlate the presence of defects and chemical impurities with the improvement in slow positron yield, positron annihilation, Auger electron spectroscopy, and secondary ion mass spectroscopy (SIMS), studies have been carried out on virgin and high-temperature (˜2300 K) annealed W foils. The positron beam S parameter shows a large value throughout the sample depth corresponding to the virgin sample, while it is lower for annealed samples. This indicates that, as compared to virgin sample, the annealed W sample has a lower concentration of vacancylike defects. Auger studies revealed that in virgin state the surface is fully contaminated with carbon, while the annealed foil shows prominent W peaks. Corroborative SIMS concentration profiles have indicated that the carbon content is much lower in an annealed sample over a large depth region. From these studies, it is concluded that improvement in slow positron yield upon high-temperature annealing is obtained due to the removal of the surface tungsten-carbide layer as well as carbon-vacancy complexes present throughout the sample depth.

  5. Positron annihilation and magnetic properties studies of copper substituted nickel ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Kargar, Z.; Asgarian, S. M.; Mozaffari, M.

    2016-05-01

    Single phase copper substituted nickel ferrite Ni1-xCuxFe2O4 (x = 0.0, 0.1, 0.3 and 0.5) nanoparticles were synthesized by the sol-gel method. TEM images of the samples confirm formation of nano-sized particles. The Rietveld refinement of the X-ray diffraction patterns showed that lattice constant increase with increase in copper content from 8.331 for x = 0.0 to 8.355 Å in x = 0.5. Cation distribution of samples has been determined by the occupancy factor, using Rietveld refinement. The positron lifetime spectra of the samples were convoluted into three lifetime components. The shortest lifetime is due to the positrons that do not get trapped by the vacancy defects. The second lifetime is ascribed to annihilation of positrons in tetrahedral (A) and octahedral (B) sites in spinel structure. It is seen that for x = 0.1 and 0.3 samples, positron trapped within vacancies in A sites, but for x = 0.0 and 0.5, the positrons trapped and annihilated within occupied B sites. The longest lifetime component attributed to annihilation of positrons in the free volume between nanoparticles. The obtained results from coincidence Doppler broadening spectroscopy (CDBS) confirmed the results of positron annihilation lifetime spectroscopy (PALS) and also showed that the vacancy clusters concentration for x = 0.3 is more than those in other samples. Average defect density in the samples, determined from mean lifetime of annihilated positrons reflects that the vacancy concentration for x = 0.3 is maximum. The magnetic measurements showed that the saturation magnetization for x = 0.3 is maximum that can be explained by Néel's theory. The coercivity in nanoparticles increased with increase in copper content. This increase is ascribed to the change in anisotropy constant because of increase of the average defect density due to the substitution of Cu2+ cations and magnetocrystalline anisotropy of Cu2+ cations. Curie temperature of the samples reduces with increase in copper content which

  6. Free Volume Structure of Acrylic-Type Dental Nanocomposites Tested with Annihilating Positrons

    NASA Astrophysics Data System (ADS)

    Shpotyuk, Olha; Ingram, Adam; Shpotyuk, Oleh

    2016-11-01

    Positron annihilation spectroscopy in lifetime measuring mode exploring conventional fast-fast coincidence ORTEC system is employed to characterize free volume structure of commercially available acrylic-type dental restorative composite Charisma® (Heraeus Kulzer GmbH, Germany). The measured lifetime spectra for uncured and light-cured composites are reconstructed from unconstrained x3-term fitting and semi-empirical model exploring x3-x2-coupling decomposition algorithm. The governing channel of positron annihilation in the composites studied is ascribed to mixed positron-Ps trapping, where Ps decaying in the third component is caused entirely by input from free-volume holes in polymer matrix, while the second component is defined by free positron trapping in interfacial free-volume holes between filler nanoparticles and surrounded polymer matrix. Microstructure scenario of the photopolymerization shrinkage includes cross-linking of structural chains in polymer matrix followed by conversion of bound positron-electron (positronium) traps in positron-trapping interfacial free-volume voids in a vicinity of agglomerated filler nanoparticles.

  7. Free Volume Structure of Acrylic-Type Dental Nanocomposites Tested with Annihilating Positrons.

    PubMed

    Shpotyuk, Olha; Ingram, Adam; Shpotyuk, Oleh

    2016-12-01

    Positron annihilation spectroscopy in lifetime measuring mode exploring conventional fast-fast coincidence ORTEC system is employed to characterize free volume structure of commercially available acrylic-type dental restorative composite Charisma® (Heraeus Kulzer GmbH, Germany). The measured lifetime spectra for uncured and light-cured composites are reconstructed from unconstrained x3-term fitting and semi-empirical model exploring x3-x2-coupling decomposition algorithm. The governing channel of positron annihilation in the composites studied is ascribed to mixed positron-Ps trapping, where Ps decaying in the third component is caused entirely by input from free-volume holes in polymer matrix, while the second component is defined by free positron trapping in interfacial free-volume holes between filler nanoparticles and surrounded polymer matrix. Microstructure scenario of the photopolymerization shrinkage includes cross-linking of structural chains in polymer matrix followed by conversion of bound positron-electron (positronium) traps in positron-trapping interfacial free-volume voids in a vicinity of agglomerated filler nanoparticles.

  8. Many-body aspects of positron annihilation in the electron gas

    NASA Astrophysics Data System (ADS)

    Apaja, V.; Denk, S.; Krotscheck, E.

    2003-11-01

    We investigate positron annihilation in the electron gas as a case study for many-body theory, in particular, the Fermi-hypernetted-chain Euler-Lagrange (FHNC-EL) method. We examine several approximation schemes and show that one has to go up to the most sophisticated implementation of the theory available at the moment in order to get annihilation rates that agree reasonably well with experimental data. Even though there is basically just one number we look at, namely, the electron-positron pair-distribution function at zero distance, it is exactly this number that dictates how the full pair distribution behaves: in most cases, it falls off monotonously towards unity as the distance increases. Cases where the electron-positron pair distribution exhibits a dip are precursors to the formation of bound electron-positron pairs. The formation of electron-positron pairs is indicated by a divergence of the FHNC-EL equations; from this we can estimate the density regime where positrons must be localized. This occurs in our calculations in the range 9.4⩽rs⩽10, where rs is the dimensionless density parameter of the electron liquid.

  9. Positron annihilation in the near surface of room temperature ionic liquids

    NASA Astrophysics Data System (ADS)

    Hirade, T.; O’Rourke, B. E.; Kobayashi, Y.

    2017-01-01

    Positronium (Ps; a bound state of an electron and a positron) formation in insulating materials is explained by the spur reaction model. According to the model, electron and/or positron mobility affects the yield of Ps formation. A vertical slow positron beam was used to investigate the surface of a room temperature ionic liquid, N,N,N-trimethyl-N-propylammonium bis(trifluoromethanesulfonyl)imide (TMPA-TFSI). Measurement of positron lifetimes indicated a higher Ps formation probability in near surface of TMPA-TFSI than in the bulk. This result suggests that the electron (and positron) mobility in the near surface may be larger than that in the bulk. Moreover, the longest annihilation lifetime of triplet Ps (ortho-Ps) in the near surface was found to be shorter than that measured in the bulk liquid. Ortho-Ps lifetimes in liquids are well correlated with the surface tension with a shorter lifetime corresponding to higher surface tension. The higher Ps formation yield and the shorter ortho-Ps annihilation lifetime were probably caused by the layered structure in near surface of TMPA-TFSI. A vertical slow positron beam is a strong tool to investigate the surface of room temperature ionic liquids.

  10. On positron annihilation in concentrated random alloys and superconducting cuprates

    SciTech Connect

    Szotek, Z.; Temmerman, W.M.; Gyorffy, B.L.; Stocks, G.M.

    1988-01-01

    We discuss an application of a generalisation of the Lock-Crisp-West theorem to concentrated random alloys. Using a theory developed for binary random alloys we explore a possibility of positron localisation in the new high temperature superconductors. 7 refs., 1 fig.

  11. Study of PRIMAVERA steel samples by a positron annihilation spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Grafutin, V.; Ilyukhina, O.; Krsjak, V.; Burcl, R.; Hähner, P.; Erak, D.; Zeman, A.

    2010-11-01

    In the present article, a positron annihilation spectroscopy investigation of VVER-440/230 weld materials is discussed. Important characteristics of metals such as Fermi energy, concentration of electrons in the conduction band, size and concentration of defects were experimentally determined for three model materials with higher level of copper (0.16 wt.%) and phosphorus (0.027-0.038 wt.%). The impact of neutron irradiation and subsequent annealing on crystal lattice parameters was investigated. The experiments with the angular correlation of positron annihilation radiation (ACAR) complement the published positron annihilation spectroscopy (PAS) studies of the radiation treated VVER materials as well as previous experiments on PRIMAVERA materials. The availability of the experimental reactor to prepare strong 64Cu positron sources provided for unique experimental conditions, such as good resolution of spectra (0.4 mrad) and reasonable short time of measurement (36 h). The present paper aims to contribute to further understanding of RPV (reactor pressure vessel) steels behaviour under irradiation conditions as well as annealing recovery procedures, which have already been applied at several VVER NPP units in Europe.

  12. Annihilation momentum density of positrons trapped at vacancy-type defects in metals and alloys

    SciTech Connect

    Bansil, A.; Prasad, R.; Benedek, R.

    1988-01-01

    Positron annihilation, especially the angular correlation of annihilation radiation, is a powerful tool for investigating the electronic spectra of ordered as well as defected materials. The tendency of positrons to trap at vacancy-type defects should enable this technique to study the local environment of such defects. However, we need to develop a theoretical basis for calculating the two-photon annihilation momentum density rho/sub 2gamma/(p-vector). We have recently formulated and implemented a theory of rho/sub 2gamma/(p-vector) from vacancy-type defects in metals and alloys. This article gives an outline of our approach together with a few of our results. Section 2 summarizes the basic equations for evaluating rho/sub 2gamma/(p-vector). Our Green's function-based approach is nonperturbative and employs a realistic (one-particle) muffin-tin Hamiltonian for treating electrons and positrons. Section 3 presents and discusses rho/sub 2gamma/(p-vector) results for a mono-vacancy in Cu. We have neglected the effects of electron-positron correlations and of lattice distortion around the vacancy. Section 4 comments briefly on the question of treating defects such as divacancies and metal-impurity complexes in metals and alloys. Finally, in Section 5, we remark on the form of rho/sub 2gamma/(p-vector) for a mono-vacancy in jellium. 2 figs.

  13. Thermal Stability of MgyTi1-y Thin Films Investigated by Positron Annihilation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Anastasopol, A.; Eijt, S. W. H.; Schut, H.; Mulder, F. M.; Plazaola, F.; Dam, B.

    Mg-Ti compounds are attractive candidates as hydrogen storage materials for their fast sorption kinetics and high storage capacity. In this context, an investigation of their thermal stability is of great importance. The thermal stability of MgyTi1-y thin films was investigated using positron annihilation spectroscopy. Despite the positive enthalpy of mixing of Mg and Ti, positron Doppler Broadening of Annihilation Radiation (DBAR) depth profiling showed that Mg0.9Ti0.1 films are stable up to 300°C. However, for Mg0.7Ti0.3 films, segregation of Mg and Ti was observed at 300oC by the appearance of a clear Ti signature in the S-W diagrams and in the Doppler broadening depth profiles analyzed using VEPFIT. The thickness of the 250-300 nm thin films remained unchanged during the heating treatments. We further present ab-initio calculations of positron lifetimes of the corresponding metal and metal hydride phases for comparison to our previous positron annihilation lifetime spectroscopy (PALS) study.

  14. Photoinduced dehydrogenation of defects in undoped a-si:H using positron annihilation spectroscopy.

    PubMed

    Zou, X; Chan, Y C; Webb, D P; Lam, Y W; Hu, Y F; Beling, C D; Fung, S; Weng, H M

    2000-01-24

    We report changes in variable-energy positron annihilation spectroscopy measurements on undoped hydrogenated amorphous silicon films after light soaking. The change, seen predominantly in the high momentum band of the annihilation radiation, is not reversed by thermal annealing. We suggest, following recent models of the Staebler-Wronski effect, that light exposure induces hydrogen trapped in vacancylike defects to become mobile in the Si network. The observations place constraints on models of hydrogen motion fitting macroscopic Staebler-Wronski effect kinetics and may help to achieve a definitive description of metastability in a-Si:H.

  15. Thermal evolution of boron irradiation induced defects in predoped Si revealed by positron annihilation experiments

    SciTech Connect

    Nambissan, P. M. G.; Bhagwat, P. V.; Kurup, M. B.

    2007-06-01

    The isochronal annealing behavior of high energy (25-72 MeV) boron ion irradiation induced defects in boron-doped silicon is monitored through measurements of positron lifetimes and three distinct defect-evolution stages are identified. The initial boron doping created a defect environment where positrons could sensitively annihilate with the boron electrons, suggesting boron-decorated Si monovacancies as potential trapping sites. The irradiation results in the dissolution of boron from these sites and positrons are then trapped by the empty divacancies of Si. Charge neutralization of divacancies through interaction with boron atoms leads to enhanced positron trapping in the initial stages of isochronal annealing. The divacancies start annealing above 673 K. However, a remarkable defect evolution stage due to the diffusion of the boron atoms beyond their initial depths of penetration is seen above 873 K and it leaves the sample with defects still present even at the highest annealing temperature 1273 K used in this work.

  16. Time of flight spectrometer for background-free positron annihilation induced Auger electron spectroscopy

    SciTech Connect

    Mukherjee, S.; Shastry, K.; Anto, C. V.; Joglekar, P. V.; Nadesalingam, M. P.; Xie, S.; Jiang, N.; Weiss, A. H.

    2016-03-15

    We describe a novel spectrometer designed for positron annihilation induced Auger electron spectroscopy employing a time-of-flight spectrometer. The spectrometer’s new configuration enables us to implant monoenergetic positrons with kinetic energies as low as 1.5 eV on the sample while simultaneously allowing for the detection of electrons emitted from the sample surface at kinetic energies ranging from ∼500 eV to 0 eV. The spectrometer’s unique characteristics made it possible to perform (a) first experiments demonstrating the direct transition of a positron from an unbound scattering state to a bound surface state and (b) the first experiments demonstrating that Auger electron spectra can be obtained down to 0 eV without the beam induced secondary electron background obscuring the low energy part of the spectra. Data are presented which show alternative means of estimating positron surface state binding energy and background-free Auger spectra.

  17. Time of flight spectrometer for background-free positron annihilation induced Auger electron spectroscopy.

    PubMed

    Mukherjee, S; Shastry, K; Anto, C V; Joglekar, P V; Nadesalingam, M P; Xie, S; Jiang, N; Weiss, A H

    2016-03-01

    We describe a novel spectrometer designed for positron annihilation induced Auger electron spectroscopy employing a time-of-flight spectrometer. The spectrometer's new configuration enables us to implant monoenergetic positrons with kinetic energies as low as 1.5 eV on the sample while simultaneously allowing for the detection of electrons emitted from the sample surface at kinetic energies ranging from ∼500 eV to 0 eV. The spectrometer's unique characteristics made it possible to perform (a) first experiments demonstrating the direct transition of a positron from an unbound scattering state to a bound surface state and (b) the first experiments demonstrating that Auger electron spectra can be obtained down to 0 eV without the beam induced secondary electron background obscuring the low energy part of the spectra. Data are presented which show alternative means of estimating positron surface state binding energy and background-free Auger spectra.

  18. Enhancement models of momentum densities of annihilating electron-positron pairs: The many-body picture of natural geminals

    NASA Astrophysics Data System (ADS)

    Makkonen, Ilja; Ervasti, Mikko M.; Siro, Topi; Harju, Ari

    2014-01-01

    The correlated motion of a positron surrounded by electrons is a fundamental many-body problem. We approach this by modeling the momentum density of annihilating electron-positron pairs using the framework of reduced density matrices, natural orbitals, and natural geminals (electron-positron pair wave functions) of the quantum theory of many-particle systems. We find that an expression based on the natural geminals provides an exact, unique, and compact expression for the momentum density. The natural geminals can be used to define and to determine enhancement factors for enhancement models going beyond the independent-particle model for a better understanding of the results of positron annihilation experiments.

  19. Development and Testing of the Positron Identification By Coincident Annihilation Photons (PICAP) System

    NASA Astrophysics Data System (ADS)

    Tran, D.; Connell, J. J.; Lopate, C.; Bickford, B.

    2014-12-01

    Moderate energy positrons (~few to 10 MeV) have seldom been observed in the Heliosphere, due primarily to there not having been dedicated instruments for such measurements. Their detection would have implications in the study of Solar energetic particle events and the transport and modulation of the Solar wind and Galactic cosmic rays. The Positron Identification by Coincident Annihilation Photons (PICAP) system is designed specifically to measure these moderate energy positrons by simultaneously detecting the two 511-keV γ-ray photons that result from a positron stopping in the instrument and the subsequent electron-positron annihilation. This method is also expected to effectively discriminate positrons from protons by measuring the amount of energy deposited in the detectors (dE/dx versus residual energy). PICAP offers a low-mass, low-power option for measuring positrons, electrons, and ions in space. Following Monte Carlo modeling, a PICAP laboratory prototype, adaptable to a space-flight design, was designed, built, and tested. This instrument is comprised of (Si) solid-state detectors, plastic scintillation detectors, and high-Z BGO crystal scintillator suitable for detecting the 511-keV γ rays. The prototype underwent preliminary laboratory testing and calibration using radioactive sources for the purpose of establishing functionality. It has since been exposed to beams of energetic protons (up to ~200 MeV) at Massachusetts General Hospital's Francis H. Burr Proton Beam Therapy Center and positrons and electrons (up to ~10 MeV) at Idaho State University's Idaho Accelerator Center. The goal is to validate modeling and determine the performance of the instrument concept. We will present a summary of modeling calculations and analysis of data taken at the accelerator tests. This work is 95% supported by NASA Grant NNX10AC10G.

  20. Positron annihilation signatures associated with the outburst of the microquasar V404 Cygni

    NASA Astrophysics Data System (ADS)

    Siegert, Thomas; Diehl, Roland; Greiner, Jochen; Krause, Martin G. H.; Beloborodov, Andrei M.; Bel, Marion Cadolle; Guglielmetti, Fabrizia; Rodriguez, Jerome; Strong, Andrew W.; Zhang, Xiaoling

    2016-03-01

    Microquasars are stellar-mass black holes accreting matter from a companion star and ejecting plasma jets at almost the speed of light. They are analogues of quasars that contain supermassive black holes of 106 to 1010 solar masses. Accretion in microquasars varies on much shorter timescales than in quasars and occasionally produces exceptionally bright X-ray flares. How the flares are produced is unclear, as is the mechanism for launching the relativistic jets and their composition. An emission line near 511 kiloelectronvolts has long been sought in the emission spectrum of microquasars as evidence for the expected electron-positron plasma. Transient high-energy spectral features have been reported in two objects, but their positron interpretation remains contentious. Here we report observations of γ-ray emission from the microquasar V404 Cygni during a recent period of strong flaring activity. The emission spectrum around 511 kiloelectronvolts shows clear signatures of variable positron annihilation, which implies a high rate of positron production. This supports the earlier conjecture that microquasars may be the main sources of the electron-positron plasma responsible for the bright diffuse emission of annihilation γ-rays in the bulge region of our Galaxy. Additionally, microquasars could be the origin of the observed megaelectronvolt continuum excess in the inner Galaxy.

  1. Positron annihilation signatures associated with the outburst of the microquasar V404 Cygni.

    PubMed

    Siegert, Thomas; Diehl, Roland; Greiner, Jochen; Krause, Martin G H; Beloborodov, Andrei M; Bel, Marion Cadolle; Guglielmetti, Fabrizia; Rodriguez, Jerome; Strong, Andrew W; Zhang, Xiaoling

    2016-03-17

    Microquasars are stellar-mass black holes accreting matter from a companion star and ejecting plasma jets at almost the speed of light. They are analogues of quasars that contain supermassive black holes of 10(6) to 10(10) solar masses. Accretion in microquasars varies on much shorter timescales than in quasars and occasionally produces exceptionally bright X-ray flares. How the flares are produced is unclear, as is the mechanism for launching the relativistic jets and their composition. An emission line near 511 kiloelectronvolts has long been sought in the emission spectrum of microquasars as evidence for the expected electron-positron plasma. Transient high-energy spectral features have been reported in two objects, but their positron interpretation remains contentious. Here we report observations of γ-ray emission from the microquasar V404 Cygni during a recent period of strong flaring activity. The emission spectrum around 511 kiloelectronvolts shows clear signatures of variable positron annihilation, which implies a high rate of positron production. This supports the earlier conjecture that microquasars may be the main sources of the electron-positron plasma responsible for the bright diffuse emission of annihilation γ-rays in the bulge region of our Galaxy. Additionally, microquasars could be the origin of the observed megaelectronvolt continuum excess in the inner Galaxy.

  2. Surface states and positron annihilation spectroscopy: results and prospects from a first-principles approach

    NASA Astrophysics Data System (ADS)

    Callewaert, V.; Saniz, R.; Barbiellini, B.; Partoens, B.

    2017-01-01

    The trapping of positrons at the surface of a material can be exploited to study quite selectively the surface properties of the latter by means of positron annihilation spectroscopy techniques. To support these, it is desirable to be able to theoretically predict the existence of such positronic surface states and to describe their annihilation characteristics with core or valence surface electrons in a reliable way. Here, we build on the well-developed first-principles techniques for the study of positrons in bulk solids as well as on previous models for surfaces, and investigate two schemes that can improve the theoretical description of the interaction of positrons with surfaces. One is based on supplementing the local-density correlation potential with the corrugated image potential at the surface, and the other is based on the weighted-density approximation to correlation. We discuss our results for topological insulators, graphene layers, and quantum dots, with emphasis on the information that can be directly related to experiment. We also discuss some open theoretical problems that should be addressed by future research.

  3. Characterization of Densified Fully-Stabilized Nanometric Zirconia by Positron Annihilation Spectroscopy

    SciTech Connect

    Garay, J E; Glade, S C; Asoka-Kumar, P; Anselmi-Tamburini, U; Munir, Z A

    2005-04-05

    Fully-stabilized nanometric zirconia samples with varying degrees of porosity and grain sizes were analyzed using the coincidence Doppler broadening mode of the positron annihilation spectroscopy (PAS). A decrease in the low momentum fraction was observed and coincided with a decrease in porosity. In addition to pores, it is proposed that defects in the negatively charges grain boundary space region act as positron trapping centers; their effectiveness decreases with an increase in grain size. It is shown that PAS is sensitive to small grain size differences within the nanometric regime in these oxide materials.

  4. Positron annihilation studies of the electronic structure and fermiology of the high-{Tc} superconductors

    SciTech Connect

    Smedskjaer, L.C.; Bansil, A.

    1992-09-01

    We discuss the application of the positron annihilation angular correlation (ACAR) spectroscopy for investigating the electronic structure and Fermiology of the high-T{sub c} superconductors, with focus on the YBa{sub 2}Cu{sub 3}O{sub 7} system where most of the experimental and theoretical work has to date been concentrated. Comparisons between measured 2D-ACAR positron spectra and band theory predictions show a remarkable agreement (for the normal state), indicating that the electronic structure and Fermi surface of this material is described reasonably by the conventional picture.

  5. Positron annihilation studies of the electronic structure and fermiology of the high-[Tc] superconductors

    SciTech Connect

    Smedskjaer, L.C. ); Bansil, A. . Dept. of Physics)

    1992-09-01

    We discuss the application of the positron annihilation angular correlation (ACAR) spectroscopy for investigating the electronic structure and Fermiology of the high-T[sub c] superconductors, with focus on the YBa[sub 2]Cu[sub 3]O[sub 7] system where most of the experimental and theoretical work has to date been concentrated. Comparisons between measured 2D-ACAR positron spectra and band theory predictions show a remarkable agreement (for the normal state), indicating that the electronic structure and Fermi surface of this material is described reasonably by the conventional picture.

  6. J-PET detector system for studies of the electron-positron annihilations

    NASA Astrophysics Data System (ADS)

    Pawlik-Niedźwiecka, M.; Khreptak, O.; Gajos, A.; Wieczorek, A.; Alfs, D.; Bednarski, T.; Białas, P.; Curceanu, C.; Czerwiński, E.; Dulski, K.; Głowacz, B.; Gupta-Sharma, N.; Gorgol, M.; Hiesmayr, B. C.; Jasińska, B.; Kamińska, D.; Korcyl, G.; Kowalski, P.; Krzmień, W.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Niedźwiecki, Sz.; Raczyński, L.; Rudy, Z.; Silarski, M.; Wiślicki, W.; Zgardzińska, B.; Zieliński, M.; Moskal, P.

    2016-11-01

    Jagiellonian Positron Emission Tomograph (J-PET) has been recently constructed at the Jagiellonian University as a prototype of a cost-effective scanner for the metabolic imaging of the whole human body. J-PET detector is optimized for the measurement of momentum and polarization of photons from the electron-positron annihilations. It is built out of strips of plastic scintillators, forming three cylindrical layers. As detector of gamma quanta it will be used for studies of discrete symmetries and multiparticle entanglement of photons originating from the decays of ortho-positronium atoms.

  7. Monte Carlo Simulation of Pileup Effects in the Electron-Positron Annihilation Peak

    NASA Astrophysics Data System (ADS)

    do Nascimento, Eduardo; Fernández-Varea, José M.; Vanin, Vito R.; Maidana, Nora L.

    2011-08-01

    The Monte Carlo code PENELOPE is employed to simulate a typical experimental Doppler broadening coincidence spectrum (DBCS) where the energy spectrum of the photons emitted by the positrons interacting in the sample is recorded with two HPGe detectors in coincidence. The simulated spectrum reproduces well some of the structures observed in the measured DBCS, but not the prominent tails on the low- and high-energy sides of the electron-positron annihilation peak seen in the latter. Ad hoc variations of the cross sections implemented in PENELOPE did not improve the situation. A simple parameterization of the background noise in the DBCS is proposed, and the simulated spectrum is modified to account for pileup effects using this model of the background. The resulting spectrum is in good agreement with the experiment on the high-energy side of the annihilation peak.

  8. Positron annihilation lifetime evaluation of thermal cycling effects in atactic polystyrene

    SciTech Connect

    Kasbekar, A.D.; Jones, P.L.

    1989-01-01

    Positron annihilation lifetime spectroscopy (PALS) is an atomic-level probing technique that has been shown to be extremely sensitive to vacancy-type defects in a wide variety of solids. In amorphous and semicrystalline polymers this technique is uniquely sensitive to free-volume-based structural changes such as the glass transition. As such, PALS complements conventional macroscopic polymer characterization techniques. Positron annihilation lifetime spectroscopy (PALS) was used to investigate the thermal-cycling characteristics of two different-molecular-weight atactic polystyrene reins. Annealed compression-molded samples were thermally cycled over the temperature range 253 to 393 K with PAL spectra taken in 10 K increments upon both cooling and heating. The longest-lived component lifetime and intensity, indicative of orthopositronium pick-off, exhibit thermal dependencies that can be interpreted in a manner consistent with anticipated free-volume changes associated with structural transitions.

  9. Order-disorder transition in clathrate Ba6Ge25 studied by positron annihilation

    NASA Astrophysics Data System (ADS)

    Li, X. F.; Zhao, B.; Zhang, T.; He, H. F.; Zhang, Q.; Yang, D. W.; Chen, Z. Q.; Tang, X. F.

    2015-07-01

    Clathrate Ba6Ge25 is prepared by melt method and spark plasma sintering. Structural transition below room temperature is studied by positron annihilation and X-ray diffraction measurements. There is a pronounced transition in the temperature range of 200-250 K which might be involved with the movement of Ba atoms in Ge cages and result in disordered structure. This transition is further confirmed by the theoretical calculation of positron annihilation states. Thus our results confirm the structural models proposed by Carrillo-Cabrera et al. (2005). The measured specific heat capacity, electric resistivity and magnetic susceptibility all show anomalous transition in the same temperature range, indicating that the movement of Ba atoms in the cage has influence on the thermal, electric as well as magnetic properties of Ba6Ge25.

  10. INTEGRAL/SPI Observations of Electron-Positron Annihilation Radiation from our Galaxy

    NASA Astrophysics Data System (ADS)

    Teegarden, B. J.; Watanabe, K.; Knoedlseder, J.; Jean, P.; Lonjou, V.; Weidenspointner, G.; Skinner, G.; von Ballmoos, P.; Vedrenne, G.; Roques, J.-P.; Schanne, S.; Schoenfelder, V.

    2004-12-01

    The spectrometer on INTEGRAL (SPI) is a coded-aperture gamma-ray telescope with moderate angular resolution (3 deg) and superior energy resolution (2 keV at 511 keV). One of it's principal science goals is the detailed study of 511 keV electron-positron annihilation from our Galaxy. The origin of this radiation remains a mystery, however current morphological studies suggest an older stellar population. There has also been recent speculation on the possibility of the existence of light (< 100 MeV) dark matter particles whose annihilation or decay could produce the observed 511 keV emission. In this paper we summarize the current results from SPI, compare them with previous results and discuss their implication on possible models for the production of the annihilation radiation. INTEGRAL is a project of ESA. This work was supported by NASA and CNES.

  11. INTEGRAL SPI Limits on Electron-Positron Annihilation Radiation from the Galactic Plane

    NASA Astrophysics Data System (ADS)

    Teegarden, B. J.; Watanabe, K.; Jean, P.; Knödlseder, J.; Lonjou, V.; Roques, J. P.; Skinner, G. K.; von Ballmoos, P.; Weidenspointner, G.; Bazzano, A.; Butt, Y. M.; Decourchelle, A.; Fabian, A. C.; Goldwurm, A.; Güdel, M.; Hannikainen, D. C.; Hartmann, D. H.; Hornstrup, A.; Lewin, W. H. G.; Makishima, K.; Malzac, A.; Miller, J.; Parmar, A. N.; Reynolds, S. P.; Rothschild, R. E.; Schönfelder, V.; Tomsick, J. A.; Vink, J.

    2005-03-01

    The center of our Galaxy is a known strong source of electron-positron 511 keV annihilation radiation. Thus far, however, there have been no reliable detections of annihilation radiation outside of the central radian of our Galaxy. One of the primary objectives of the INTEGRAL (International Gamma-Ray Astrophysics Laboratory) mission, launched in 2002 October, is the detailed study of this radiation. The Spectrometer on INTEGRAL (SPI) is a high-resolution, coded-aperture gamma-ray telescope with an unprecedented combination of sensitivity, angular resolution, and energy resolution. We report results from the first 10 months of observation. During this period a significant fraction of the observing time was spent in or near the Galactic plane. No positive annihilation flux was detected outside of the central region (|l|>40deg) of our Galaxy. In this paper we describe the observations and data analysis methods and give limits on the 511 keV flux.

  12. INTEGRAL/SPI Observations of Electron-Positron Annihilation Radiation from our Galaxy

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Watanabe, K.; Knoedlseder, J.; Jean, P.; Lonjou, V.; Weidenspointer, G.; Skinner, G.; Vedrenne, G.; Roques, J.-P.; Schanne, S.; hide

    2005-01-01

    The spectrometer on INTEGRAL (SPI) is a coded-aperture gamma-ray telescope with moderate angular resolution (3 deg) and superior energy resolution (2 keV at 511 kev). One of it's principal science goals is the detailed study of 511 keV electron-positron annihilation from our Galaxy. The origin of this radiation remains a mystery, however current morphological studies suggest an older stellar population. There has also been recent speculation on the possibility of the existence of light (< 100 MeV) dark matter particles whose annihilation or decay could produce the observed 511 keV emission. In this paper we summarize the current results from SPI, compare them with previous results and discuss their implication on possible models for the production of the annihilation radiation.

  13. INTEGRAL/SPI Limits on Electron-Positron Annihilation Radiation from the Galactic Plane

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Watanabe, K.; Jean, P.; Knoedlseder, J.; Lonjou, V.; Roques, J. P.; Skinner, G. K.; vonBallmoos, P.; Weidenspointner, G.; Bazzano, A.

    2005-01-01

    The center of our Galaxy is a known strong source of electron-positron 511- keV annihilation radiation. Thus far, however, there have been no reliable detections of annihilation radiation outside of the central radian of our Galaxy. One of the primary objectives of the INTEGRAL (INTErnational Gamma-RAy Astrophysics Laboratory) mission, launched in Oct. 2002, is the detailed study of this radiation. The Spectrometer on INTEGRAL (SPI) is a high resolution coded-aperture gamma-ray telescope with an unprecedented combination of sensitivity, angular resolution and energy resolution. We report results from the first 10 months of observation. During this period a significant fraction of the observing time was spent in or near the Galactic Plane. No positive annihilation flux was detected outside of the central region (|l| greater than 40 degrees) of our Galaxy. In this paper we describe the observations and data analysis methods and give limits on the 511-keV flux.

  14. INTEGRAL/SPI Observations of Electron-Positron Annihilation Radiation from our Galaxy

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Watanabe, K.; Knoedlseder, J.; Jean, P.; Lonjou, V.; Weidenspointer, G.; Skinner, G.; Vedrenne, G.; Roques, J.-P.; Schanne, S.; Schoenfelder, V.

    2005-01-01

    The spectrometer on INTEGRAL (SPI) is a coded-aperture gamma-ray telescope with moderate angular resolution (3 deg) and superior energy resolution (2 keV at 511 kev). One of it's principal science goals is the detailed study of 511 keV electron-positron annihilation from our Galaxy. The origin of this radiation remains a mystery, however current morphological studies suggest an older stellar population. There has also been recent speculation on the possibility of the existence of light (< 100 MeV) dark matter particles whose annihilation or decay could produce the observed 511 keV emission. In this paper we summarize the current results from SPI, compare them with previous results and discuss their implication on possible models for the production of the annihilation radiation.

  15. P -wave coupled channel effects in electron-positron annihilation

    NASA Astrophysics Data System (ADS)

    Du, Meng-Lin; Meißner, Ulf-G.; Wang, Qian

    2016-11-01

    P -wave coupled channel effects arising from the D D ¯, D D¯ *+c .c . , and D*D¯* thresholds in e+e- annihilations are systematically studied. We provide an exploratory study by solving the Lippmann-Schwinger equation with short-ranged contact potentials obtained in the heavy quark limit. These contact potentials can be extracted from the P -wave interactions in the e+e- annihilations, and then be employed to investigate possible isosinglet P -wave hadronic molecules. In particular, such an investigation may provide information about exotic candidates with quantum numbers JPC=1-+ . In the mass region of the D D ¯, D D¯ *+c .c . , and D*D¯* thresholds, there are two quark model bare states, i.e. the ψ (3770 ) and ψ (4040 ), which are assigned as (13D1) and (31S1) states, respectively. By an overall fit of the cross sections of e+e-→D D ¯, D D¯ *+c .c . , D*D¯*, we determine the physical coupling constants to each channel and extract the pole positions of the ψ (3770 ) and ψ (4040 ). The deviation of the ratios from that in the heavy quark spin symmetry (HQSS) limit reflects the HQSS breaking effect due to the mass splitting between the D and the D*. Besides the two poles, we also find a pole a few MeV above the D D¯ *+c .c . threshold which can be related to the so-called G (3900 ) observed earlier by BABAR and Belle. This scenario can be further scrutinized by measuring the angular distribution in the D*D¯* channel with high luminosity experiments.

  16. Prediction of positron-annihilation parameters for vacancy-type defects in ternary alloy semiconductors by data-scientific approach

    NASA Astrophysics Data System (ADS)

    Ishibashi, Shoji; Kino, Hiori; Uedono, Akira; Miyake, Takashi; Terakura, Kiyoyuki

    2017-01-01

    We calculated positron annihilation parameters for mono- and di-vacancies in ternary semiconductors Al0.5Ga0.5N and In0.5Ga0.5N. It has been found that the obtained annihilation parameters are well correlated with structural parameters. By constructing multiple linear regression models using selected (about 1/4 of the total) datasets as training sets in order to reduce computational cost, we could predict annihilation parameters for the rest.

  17. SPI Observations of Positron Annihilation Radiation from the 4th Galactic Quadrant: Sky Distribution

    NASA Astrophysics Data System (ADS)

    Weidenspointner, G.; Lonjou, V.; Knödlseder, J.; Jean, P.; Allain, M.; von Ballmoos, P.; Harris, M. J.; Vedrenne, G.; Teegarden, B. J.; Gehrels, N.; Guessoum, N.; Schönfelder, V.; Chapuis, C.; Durouchoux, Ph.; Cisana, E.; Valsesia, M.

    2004-10-01

    During its first year in orbit the INTEGRAL observatory performed deep exposures of the Galactic Center region and scanning observations of the Galactic plane. We report on the status of our analysis of the positron annihilation radiation from the 4th Galactic quadrant with the spectrometer SPI, focusing on the sky distribution of the 511 keV line emission. The analysis methods are described; current constraints and limits on the Galactic bulge emission and the bulge-to-disk ratio are presented.

  18. Degradation of electron-irradiated polyethylene studied by positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Onodera, K.; Oka, T.; Kino, Y.; Sekine, T.

    2017-01-01

    Degradation of electron beam irradiated high-density polyethylene was studied by positron annihilation lifetime spectroscopy (PALS), micro-FT-IR, and gel fraction measurements. The obtained results indicated that ortho-positronium intensity is influenced not only by the irradiation but also the post oxidation, which illustrates that PALS may be a promising tool to monitor/evaluate the degradation of polyethylene induced by irradiation and long-term storage.

  19. Search for positron annihilation line and continuum radiation from the Galactic Center

    NASA Technical Reports Server (NTRS)

    Maccallum, C. J.; Leventhal, M.

    1985-01-01

    Our balloon-borne germain gamma-ray telescope was flown over Alice Springs, Australia, on 1984 November 20 to search for the 511 keV positron annihilation line from the Galactic Center. The measured line flux at Earth was (0.6 + or - 4.4) x 0.001 ph/sq cm/s indicating that the source was still in a low or off state.

  20. Transitions and relaxations in gamma-irradiated polypropylene studied by positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Djourelov, N.; Suzuki, T.; Shantarovich, V. P.; Dobreva, T.; Ito, Y.

    2005-01-01

    The changes in the relaxation and transition temperatures in PP due to gamma irradiation in a vacuum were measured by means of positron annihilation lifetime spectroscopy. It was shown that the gamma and beta relaxation temperatures, as well as the melting point follow the changes in the crystallinity with the irradiation dose. For the glass transition temperatures and premelting point, after irradiation dose of 88 kGy, an inverse of the changes was observed.

  1. Extragalactic Inverse Compton Light from Dark Matter annihilation and the Pamela positron excess

    SciTech Connect

    Profumo, Stefano; Jeltema, Tesla E. E-mail: tesla@ucolick.org

    2009-07-01

    We calculate the extragalactic diffuse emission originating from the up-scattering of cosmic microwave photons by energetic electrons and positrons produced in particle dark matter annihilation events at all redshifts and in all halos. We outline the observational constraints on this emission and we study its dependence on both the particle dark matter model (including the particle mass and its dominant annihilation final state) and on assumptions on structure formation and on the density profile of halos. We find that for low-mass dark matter models, data in the X-ray band provide the most stringent constraints, while the gamma-ray energy range probes models featuring large masses and pair-annihilation rates, and a hard spectrum for the injected electrons and positrons. Specifically, we point out that the all-redshift, all-halo inverse Compton emission from many dark matter models that might provide an explanation to the anomalous positron fraction measured by the Pamela payload severely overproduces the observed extragalactic gamma-ray background.

  2. Quantification of Stress History in Type 304L Stainless Steel Using Positron Annihilation Spectroscopy

    SciTech Connect

    Thomas W. Walters

    2011-04-01

    Five type 304L stainless steel specimens were subjected to incrementally increasing values of plastic strain. At each value of strain, the associated static stress was recorded and the specimen was subjected to Positron Annihilation Spectroscopy (PAS) using the Doppler Broadening method. A calibration curve for the ‘S’ parameter as a function of stress was developed based on the five specimens. Seven different specimens (blind specimens labeled B1-B7) of 304L stainless steel were subjected to values of stress inducing plastic deformation. The values of stress ranged from 310-517 MPa. The seven specimens were subjected to Positron Annihilation Spectroscopy post loading using the Doppler Broadening method, and the results were compared against the developed curve from the previous five specimens to determine feasibility of applying the curve to materials in order to non-destructively quantify stress history in materials based only on the ‘S’ parameter extracted from the Positron Annihilation Spectroscopy. Results for the calibration set of specimens indicated that calibration development is possible.

  3. Effect of positron source irradiation on positronium annihilation in fine powdered alumina

    NASA Astrophysics Data System (ADS)

    Liu, Z. W.; Chen, Z. Q.

    2016-09-01

    Positron lifetime and Doppler broadening of positron annihilation radiation were measured as a function of time to study the irradiation effect by 22Na positron source in fine powdered alumina. The γ-Al2O3 samples were put in a vacuum chamber with a pressure of about 10-6 Torr and were cooled down to 10 K by a closed-cycle helium gas refrigerator. The irradiation of γ-Al2O3 samples by positron source was taken for a duration of about two days immediately after the sample was cooled down. After that, the sample was subjected to a warm up process from 10 K to 300 K with a step of 10 K. Positron lifetime and Doppler broadening spectra were measured simultaneously during these processes. Two long lifetime components corresponding to ortho-positronium annihilation were observed. A significant shortening of these long lifetime components and a large increase in S parameter is observed during irradiation. It is supposed that positron source irradiation creates a large number of paramagnetic centers on the surface of the γ-Al2O3 grains, which induce spin conversion quenching of positronium. The irradiation induced paramagnetic centers are unstable above 70 K and are nearly annealed out when the temperature rises to 190 K. After warming up of the sample to room temperature, the positron lifetime spectrum is identical to that before irradiation. It was also found that after irradiation, a medium long lifetime component of about 5 ns appears, of which the intensity increases with increasing irradiation time. This may be originated from the formation of the surface o-Ps state. This surface o-Ps state is also inhibited at elevated temperatures. Our results indicate that positronium is a very sensitive probe for the surface defects in porous materials.

  4. Hunting for glueballs in electron-positron annihilation

    SciTech Connect

    Stanley Brodsky; Alfred Scharff Goldhaber; Jungil Lee

    2003-05-01

    We calculate the cross section for the exclusive production of J{sup PC} = 0{sup ++} glueballs G{sub 0} in association with the J/{psi} in e{sup +}e{sup -} annihilation using the pQCD factorization formalism. The required long-distance matrix element for the glueball is bounded by CUSB data from a search for resonances in radiative {Upsilon} decay. The cross section for e{sup +}e{sup -} {yields} J/{psi} + G{sub 0} at {radical}s = 10.6 GeV is similar to exclusive charmonium-pair production e{sup +}e{sup -} {yields} J/{psi} + h for h = {eta}{sub c} and {chi}{sub c0}, and is larger by a factor 2 than that for h = {eta}{sub c}(2S). As the subprocesses {gamma}* {yields} (c {bar c}) (c {bar c}) and {gamma}* {yields} (c {bar c}) (g g) are of the same nominal order in perturbative QCD, it is possible that some portion of the anomalously large signal observed by Belle in e{sup +}e{sup -} {yields} J/{psi} X may actually be due to the production of charmonium-glueball J/{psi} G{sub J} pairs.

  5. Hunting for Glueballs in Electron-Positron Annihilation

    SciTech Connect

    Brodsky, Stanley J.

    2003-05-28

    We calculate the cross section for the exclusive production of J{sup PC} = 0{sup ++} glueballs G{sub 0} in association with the J = {psi} in e{sup +}e{sup -} annihilation using the pQCD factorization formalism. The required long-distance matrix element for the glueball is bounded by CUSB data from a search for resonances in radiative {Upsilon} decay. The cross section for e{sup +}e{sup -} {yields} J/{psi} + G{sub 0} at {radical}s = 10.6 GeV is similar to exclusive charmonium-pair production e{sup +}e{sup -} J/{psi} + h for h = {eta}{sub c} and {chi}{sub c0}, and is larger by a factor 2 than that for h = {eta}c(2S). As the subprocesses {gamma}* {yields} (c{bar c})(c{bar c}) and {gamma}* {yields} (c{bar c})(gg) are of the same nominal order in perturbative QCD, it is possible that some portion of the anomalously large signal observed by Belle in e{sup +}e{sup -} {yields} J/{psi}X may actually be due to the production of charmonium-glueball J/{psi}G{sub J} pairs.

  6. Studies Of Oxidation And Thermal Reduction Of The Cu(100) Surface Using Positron Annihilation Induced Auger Electron Spectroscopy

    SciTech Connect

    Fazleev, N. G.; Nadesalingam, M. P.; Maddox, W.; Weiss, A. H.

    2011-06-01

    Positron annihilation induced Auger electron spectroscopy (PAES) measurements from the surface of an oxidized Cu(100) single crystal show a large increase in the intensity of the annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 deg. C. The PAES intensity then decreases monotonically as the annealing temperature is increased to {approx}550 deg. C. Experimental positron annihilation probabilities with Cu 3p and O 1s core electrons are estimated from the measured intensities of the positron annihilation induced Cu M{sub 2,3}VV and O KLL Auger transitions. PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of the surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface and various surface structures associated with low and high oxygen coverages. The variations in atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface are found to affect localization and spatial extent of the positron surface state wave function. The computed positron binding energy and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface. Theoretical positron annihilation probabilities with Cu 3p and O 1s core electrons computed for the oxidized Cu(100) surface are compared with experimental ones. The obtained results provide a demonstration of thermal reduction of the copper oxide surface after annealing at 300 deg. C followed by re-oxidation of the Cu(100) surface at higher annealing temperatures presumably due to diffusion of subsurface oxygen to the surface.

  7. Vacancy profile in reverse osmosis membranes studied by positron annihilation lifetime measurements and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Shimazu, A.; Goto, H.; Shintani, T.; Hirose, M.; Suzuki, R.; Kobayashi, Y.

    2013-06-01

    The positron annihilation technique using a slow positron beam can be used for the study of the vacancy profiles in typical reverse osmosis (RO) membranes. In this study, the vacancy profile in the polyamide membrane that exhibits a high permselectivity between ions and water was studied using the positron annihilation technique and molecular dynamics simulations. Ortho-positronium (o-Ps) lifetimes in the surface region of the membranes were evaluated by using a slow positron beam. The diffusion behavior of Na+ and water in the polyamides was simulated by molecular dynamics (MD) methods using the TSUBAME2 supercomputer at the Tokyo Institute of Technology and discussed with the vacancy profile probed by the o-Ps. The results suggested that the large hydration size of Na+ compared to the vacancy size in the polyamides contributes to the increased diffusivity selectivity of water/Na+ that is related to the NaCl desalination performance of the membrane. Both the hydration size of the ions and the vacancy size appeared to be significant parameters to discuss the diffusivity selectivity of water/ions in typical polyamide membranes.

  8. Study of radiation damage in ODS steels by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartošová, I.; Bouhaddane, A.; Dománková, M.; Slugeň, V.; Wall, D.; Selim, F. A.

    2016-01-01

    Microstructure of various oxide-dispersion-strengthened (ODS) steels with 15% chromium content was studied in term of vacancy defects presence and their accumulation after defined irradiation treatment, respectively. Studied materials originated from Kyoto University and studied via IAEA collaborative project. Samples were characterized “as received” by positron annihilation lifetime spectroscopy and their microstructure was examined by transmission electron microscopy as well. Samples were afterwards irradiated in Washington State University Nuclear Radiation Center via a strong gamma source (6TBq). Damage induced by gamma irradiation was evaluated by positron lifetime measurements in emphasis on defect accumulation in the materials. We have demonstrated strong defect production induced by gamma irradiation which results from positron measurement data.

  9. The 511 keV emission from positron annihilation in the Galaxy

    SciTech Connect

    Prantzos, N.; Boehm, C.; Bykov, A. M.; Diehl, R.; Ferriere, K.; Guessoum, N.; Jean, P.; Knoedlseder, J.; Marcowith, A.; Moskalenko, I. V.; Strong, A.; Weidenspointner, G.

    2011-07-01

    The first {gamma}-ray line originating from outside the Solar System that was ever detected is the 511 keV emission from positron annihilation in the Galaxy. Despite 30 years of intense theoretical and observational investigation, the main sources of positrons have not been identified up to now. Observations in the 1990s with OSSE/CGRO (Oriented Scintillation Spectrometer Experiment on GRO satellite/Compton Gamma Ray Observatory) showed that the emission is strongly concentrated toward the Galactic bulge. In the 2000s, the spectrometer SPI aboard the European Space Agency's (ESA) International Gamma Ray Astrophysics Laboratory (INTEGRAL) allowed scientists to measure that emission across the entire Galaxy, revealing that the bulge-to-disk luminosity ratio is larger than observed at any other wavelength. This mapping prompted a number of novel explanations, including rather ''exotic'' ones (e.g., dark matter annihilation). However, conventional astrophysical sources, such as type Ia supernovae, microquasars, or x-ray binaries, are still plausible candidates for a large fraction of the observed total 511 keV emission of the bulge. A closer study of the subject reveals new layers of complexity, since positrons may propagate far away from their production sites, making it difficult to infer the underlying source distribution from the observed map of 511 keV emission. However, in contrast to the rather well-understood propagation of high-energy (>GeV) particles of Galactic cosmic rays, understanding the propagation of low-energy ({approx}MeV) positrons in the turbulent, magnetized interstellar medium still remains a formidable challenge. The spectral and imaging properties of the observed 511 keV emission are reviewed and candidate positron sources and models of positron propagation in the Galaxy are critically discussed.

  10. Application of positron annihilation and Raman spectroscopies to the study of perovskite type materials

    NASA Astrophysics Data System (ADS)

    Grebennikov, D.; Ovchar, O.; Belous, A.; Mascher, P.

    2010-12-01

    Defect properties of perovskite type materials, Ba3B'Nb2O9 (where B'=Mg, Zn, or Co), with near-stoichiometric compositions were studied by positron annihilation and Raman spectroscopies. Theoretical simulations of stoichiometric perovskites revealed a dependence of the positron bulk lifetime on the degree of ordering. In Ba3MgNb2O9 (BMN) the positron bulk lifetime for a completely disordered structure is 195 ps versus 237 ps for a completely ordered one. The predicted bulk lifetimes for Ba3ZnNb2O9 (BZN) and Ba3CoNb2O9 (BCN), with Pm3¯m symmetries are 193 ps and 194 ps, respectively. It was found that deviation from stoichiometry results in the appearance of secondary Ba- and Nb-rich phases, which according to theoretical simulations have bulk lifetimes much longer than that of the host material. Positron lifetime spectroscopy was used to monitor changes in the concentration of these second phases. The difference between predicted defect lifetimes and the bulk values for the studied perovskites was less than 70 ps. This and the likely small concentrations made it impossible to discern the presence of point defects in the samples. Raman measurements demonstrated the presence of a particular mode that could be attributed to the formation of a 1:1 phase, the size of which is limited by requirements for charge compensation. The existence of an internal electric field between charged 1:1 nanoregions and the rest of material creates conditions for preferential positron annihilation that influence the obtained positron lifetime values. For BZN type materials it was found that the degree of 1:2 cation ordering decreases by increasing the sintering temperature to above 1400 °C.

  11. Novel time-of-flight spectrometer for the analysis of positron annihilation induced Auger electrons

    SciTech Connect

    Hugenschmidt, Christoph; Legl, Stefan

    2006-10-15

    Positron annihilation induced Auger-electron spectroscopy (PAES) has several advantages over conventional Auger-electron spectroscopy such as extremely high surface sensitivity and outstanding signal-to-noise ratio at the Auger-transition energy. In order to benefit from these prominent features a low-energy positron beam of high intensity is required for surface sensitive PAES studies. In addition, an electron energy analyzer is required, which efficiently detects the Auger electrons with acceptable energy resolution. For this reason a novel time-of-flight (TOF) spectrometer has been developed at the intense positron source NEPOMUC that allows PAES studies within short measurement time. This TOF-PAES setup combines a trochoidal filter and a flight tube in a Faraday cage in order to achieve an improved energy resolution of about 1 eV at high electron energies up to E{approx_equal}1000 eV. The electron flight time is the time between the annihilation radiation at the sample and when the electron hits a microchannel plate detector at the end of the flight tube.

  12. Measurement of the hadronic cross section in electron-positron annihilation

    SciTech Connect

    Clearwater, S.

    1983-11-01

    This thesis describes the most precise measurement to date of the ratio R, the hadronic cross section in lowest order electron-positron annihilation to the cross section for muon pair production in lowest order electron-positron annihilation. This experiment is of interest because R is a fundamental parameter that tests in a model independent way the basic assumptions of strong interaction theories. According to the assumptions of one of these theories the value of R is determined simply from the electric charges, spin, and color assignments of the produced quark-pairs. The experiment was carried out with the MAgnetic Calorimeter using collisions of 14.5 GeV electrons and positrons at the 2200m circumference PEP storage ring at SLAC. The MAC detector is one of the best-suited collider detectors for measuring R due to its nearly complete coverage of the full angular range. The data for this experiment were accumulated between February 1982 and April 1983 corresponding to a total event sample of about 40,000 hadronic events. About 5% of the data were taken with 14 GeV beams and the rest of the data were taken with 14.5 GeV beams. A description of particle interactions and experimental considerations is given.

  13. Positron annihilation study on free volume of amino acid modified, starch-grafted acrylamide copolymer

    NASA Astrophysics Data System (ADS)

    Mahmoud, K. R.; Al-Sigeny, S.; Sharshar, T.; El-Hamshary, H.

    2006-05-01

    Free volume measurements using positron annihilation lifetime spectroscopy was performed for uncrosslinked and crosslinked starch-grafted polyacrylamide, and their modified amino acid samples including some of their iron(III) complexes. The measurements were performed at room temperature. The analysis of lifetime spectra yielded mostly three lifetime components. It was observed that the values of the short lifetime component τ1 are slightly higher than the lifetime associated with the self-decay of para-positronium atoms in polymers. The free volume was probed using ortho-positronium pick-off annihilation lifetime parameters. The mean free volume has also been calculated from the lifetime data. The avrage value of this parameter of the crosslinked polymer were found to be higher than those of the uncrosslinked polymer.

  14. Enhanced Dark Matter Annihilation Rate for Positron and Electron Excesses from Q-Ball Decay

    SciTech Connect

    McDonald, John

    2009-10-09

    We show that Q-ball decay in Affleck-Dine baryogenesis models can account for dark matter when the annihilation cross section is sufficiently enhanced to explain the positron and electron excesses observed by PAMELA, ATIC, and PPB-BETS. For Affleck-Dine baryogenesis along a d=6 flat direction, the reheating temperature is approximately 30 GeV and the Q-ball decay temperature is in the range of 10-100 MeV. The lightest supersymmetric particles produced by Q-ball decay annihilate down to the observed dark matter density if the cross section is enhanced by a factor approx10{sup 3} relative to the thermal relic cross section.

  15. Local electron-electron interaction strength in ferromagnetic nickel determined by spin-polarized positron annihilation

    PubMed Central

    Ceeh, Hubert; Weber, Josef Andreass; Böni, Peter; Leitner, Michael; Benea, Diana; Chioncel, Liviu; Ebert, Hubert; Minár, Jan; Vollhardt, Dieter; Hugenschmidt, Christoph

    2016-01-01

    We employ a positron annihilation technique, the spin-polarized two-dimensional angular correlation of annihilation radiation (2D-ACAR), to measure the spin-difference spectra of ferromagnetic nickel. The experimental data are compared with the theoretical results obtained within a combination of the local spin density approximation (LSDA) and the many-body dynamical mean-field theory (DMFT). We find that the self-energy defining the electronic correlations in Ni leads to anisotropic contributions to the momentum distribution. By direct comparison of the theoretical and experimental results we determine the strength of the local electronic interaction U in ferromagnetic Ni as 2.0 ± 0.1 eV. PMID:26879249

  16. Cosmic-ray antiprotons, positrons, and gamma rays from halo dark matter annihilation

    NASA Technical Reports Server (NTRS)

    Rudaz, S.; Stecker, F. W.

    1988-01-01

    The subject of cosmic ray antiproton production is reexamined by considering other choices for the nature of the Majorana fermion chi other than the photino considered in a previous article. The calculations are extended to include cosmic-ray positrons and cosmic gamma rays as annihilation products. Taking chi to be a generic higgsino or simply a heavy Majorana neutrino with standard couplings to the Z-zero boson allows the previous interpretation of the cosmic antiproton data to be maintained. In this case also, the annihilation cross section can be calculated independently of unknown particle physics parameters. Whereas the relic density of photinos with the choice of parameters in the previous paper turned out to be only a few percent of the closure density, the corresponding value for Omega in the generic higgsino or Majorana case is about 0.2, in excellent agreement with the value associated with galaxies and one which is sufficient to give the halo mass.

  17. Mechanical durability of polymeric coatings studied by positron annihilation spectroscopy: correlation between cyclic loading and free volumes

    NASA Astrophysics Data System (ADS)

    Chen, H.; Peng, Q.; Huang, Y. Y.; Zhang, R.; Mallon, P. E.; Zhang, J.; Li, Y.; Wu, Y.; Richardson, J. R.; Sandreczki, T. C.; Jean, Y. C.; Suzuki, R.; Ohdaira, T.

    2002-06-01

    The mechanical durability of seven commercially polymeric coatings is investigated using slow positron beam techniques to monitor changes in sub-nanometer defects during the process of cyclic loading. Doppler broadened energy spectra and positron annihilation lifetime (PAL) measurements were performed as a function of the slow positron energy at different periods of cycling loading. The positron annihilation dada show that both S-defect parameter and o-positronium (Ps) lifetime decrease as the loading cycle increases. The results indicate a loss of free volumes due to the loss of mechanical durability by cyclic loading. A direct correlation between the loss of S-defect parameter and the period of loading cycle is observed. This is interpreted as that durability of polymeric coatings is controlled by the atomic level free volumes. It is shown that the slow positron beam is a very successful probe in detecting the very early stages of coating degradation due to mechanical processes.

  18. Structural transition in rare earth doped zirconium oxide: A positron annihilation study

    SciTech Connect

    Chakraborty, Keka; Bisoi, Abhijit

    2012-11-15

    Graphical abstract: New microstructural analysis and phase transition of rare earth doped mixed oxide compounds such as: Sm{sub 2−x}Dy{sub x}Zr{sub 2}O{sub 7} (where x = 0.0 ≤ x ≥ 2.0) that are potentially useful as solid oxide fuels, ionic conductors, optoelectronic materials and most importantly as radiation resistant host for high level rad-waste disposal, structural transition in the system is reported through positron annihilation spectroscopy as there is an indication in the X-ray diffraction analysis. Highlights: ► Zirconium oxide material doped with rare earth ions. ► The method of positron annihilation spectroscopy suggests a phase transition in the system. ► The crystal structure transformation from pure pyrochlore to defect fluorite type of structure is shown by X-ray diffraction results. -- Abstract: A series of compounds with the general composition Sm{sub 2−x}Dy{sub x}Zr{sub 2}O{sub 7} (where 0 ≤ x ≥ 2.0) were synthesized by chemical route and characterized by powder X-ray diffraction (XRD) analysis. The rare earth ion namely Sm{sup +3} in the compound was gradually replaced with another smaller and heavier ion, Dy{sup +3} of the 4f series, there by resulting in order–disorder structural transition, which has been studied by positron annihilation lifetime and Doppler broadening spectroscopy. This study reveals the subtle electronic micro environmental changes in the pyrochlore lattice (prevalent due to the oxygen vacancy in anti-site defect structure of the compound) toward its transformation to defect fluorite structure as found in Dy{sub 2}Zr{sub 2}O{sub 7}. A comparison of the changes perceived with PAS as compared to XRD analysis is critically assayed.

  19. Possible New Well-Logging Tool Using Positron Annihilation Spectroscopy to Detect TOC in Source Rocks

    NASA Astrophysics Data System (ADS)

    Patterson, Casey; Quarles, C. A.; Breyer, J. A.

    2001-10-01

    Possible New Well-Logging Tool Using Positron Annihilation Spectroscopy to Detect Total Organic Carbon (TOC) in Source Rocks PATTERSON, C., Department of Geology, Department of Physics, Texas Christian University, QUARLES, C.A., Department of Physics, Texas Christian University, Fort Worth, Texas, BREYER, J.A., Department of Geology, Texas Christian University, Fort, Worth, Texas. The positron produces two gamma rays upon annihilation with an electron. Depending on the momentum of the electron, the two resulting photons are shifted from the initial electron rest mass energy by the Doppler effect. We measure the distribution of gamma ray energies produced by annihilation on a petroleum source rock core. Core from the Mitchell Energy well T.P. Sims 2 of the Barnett Shale located in Wise County, Texas, is under study. Apparatus for the experiment consists of an Ortec Ge detector. The source used for the experiment is Ge68, which undergoes beta decay and produces the positrons that penetrate the core. It is placed on the middle of the core and covered with a small, annealed NiCu plate to prevent unnecessary background from the positrons annihilating with electrons other than in the core. Distance between the source and the detector is fixed at 6.75 inches. Measurements were made in specific locations at 2 inch increments for approximately an hour and a half where the predetermined Total Organic Carbon (TOC) values were made. Future studies involve an overall correlation of the core between experimental readings and TOC, including corrections for changes in grain size and lithology. Additional research has shown no distinct correlation between grain size and distribution of energies across the targeted spectrum. Additional corrections should be made for the decay in activity of the source. Future research also includes the determination for optimum time and distance for the source from the core. A long-term goal for the experiment is to develop an effective down

  20. Gamma-ray lines from novae. [relationship to radioactive decay and positron annihilation

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.; Hoyle, F.

    1974-01-01

    An appropriate gamma-ray telescope could detect the gamma-rays associated with radioactive decays. The observable lines would be the annihilation radiation following the positron emission of N-13, O-14, O-15, and Na-22 and the 2.312-MeV line emitted following the O-14 decay and the 1.274-MeV line emitted following the Na-22 decay. The experimental possibility should be borne in mind for the occurrence of novae within a few kiloparsecs.

  1. Positron annihilation spectroscopy techniques applied to the study of an HPGe detector

    SciTech Connect

    Nascimento, E. do; Vanin, V. R.; Maidana, N. L.; Silva, T. F.; Rizzutto, M. A.; Fernandez-Varea, J. M.

    2013-05-06

    Doppler Broadening Spectroscopy of the large Ge crystal of an HPGe detector was performed using positrons from pair production of 6.13 MeV {gamma}-rays from the {sup 19}F(p,{alpha}{gamma}){sup 16}O reaction. Two HPGe detectors facing opposite sides of the Ge crystal acting as target provided both coincidence and singles spectra. Changes in the shape of the annihilation peak were observed when the high voltage applied to the target detector was switched on or off, amounting to somewhat less than 20% when the areas of equivalent energy intervals in the corresponding normalized spectra are compared.

  2. Positron Annihilation Studies in Search of Fine Precipitates in Fe-9Cr alloys

    SciTech Connect

    Babu, S. Hari; Rajaraman, R.; Govindaraj, R.; Amarendra, G.; Sundar, C. S.

    2011-07-15

    Positron annihilation lifetime studies were carried out on cold worked pure Fe and Fe-9Cr alloy subjected to isochronal annealing in the temperature range from 300 to 1323 K. The measured lifetimes of Fe-9Cr alloy showed three distinct annealing stages as compared to pure Fe viz., initial annealing of defects, a plateau between 623 K and 873 K and noticeable increase beyond 1123 K. The second annealing stage is likely due to the formation of chromium rich nanoclusters. Third annealing stage beyond 1123 K is attributed to highly defected martensitic phase formation during cooling from y-phase.

  3. Electronic correlations in vanadium revealed by electron-positron annihilation measurements

    NASA Astrophysics Data System (ADS)

    Weber, Josef Andreas; Benea, Diana; Appelt, Wilhelm H.; Ceeh, Hubert; Kreuzpaintner, Wolfgang; Leitner, Michael; Vollhardt, Dieter; Hugenschmidt, Christoph; Chioncel, Liviu

    2017-02-01

    The electronic structure of vanadium measured by angular correlation of electron-positron annihilation radiation (ACAR) is compared with the predictions of the combined density functional and dynamical mean-field theory (DMFT). Reconstructing the momentum density from five two-dimensional projections we were able to determine the full Fermi surface and found excellent agreement with the DMFT calculations. In particular, we show that the local, dynamic self-energy corrections contribute to the anisotropy of the momentum density and need to be included to explain the experimental results.

  4. Thermal annealing of C ion irradiation defects in nuclear graphite studied by positron annihilation

    NASA Astrophysics Data System (ADS)

    Shi, C. Q.; Schut, H.; Li, Z. C.

    2016-01-01

    In order to investigate the thermal behaviour of radiation induced point defects in nuclear graphite, ETU10 graphite was implanted with 350 keV C+ ion to doses of 1015 and 1016 cm-2. The point defects introduced by the implantation were characterized by Positron Annihilation Doppler Broadening (PADB) and their thermal behaviour was studied during “in situ” annealing at Delft Variable Energy Positron beam (VEP). The annealing was performed for 5 minutes at temperatures ranging from 300 K (as implanted) to 1500 K in steps of 100 K. For both doses, an annealing stage at around 450 K is observed followed by a second stage around 700 K. For the high dose implantation vacancy complexes are found which are stable up to a temperature around 1400K.

  5. Positron annihilation study of Fe-ion irradiated reactor pressure vessel model alloys

    NASA Astrophysics Data System (ADS)

    Chen, L.; Li, Z. C.; Schut, H.; Sekimura, N.

    2016-01-01

    The degradation of reactor pressure vessel steels under irradiation, which results from the hardening and embrittlement caused by a high number density of nanometer scale damage, is of increasingly crucial concern for safe nuclear power plant operation and possible reactor lifetime prolongation. In this paper, the radiation damage in model alloys with increasing chemical complexity (Fe, Fe-Cu, Fe-Cu-Si, Fe-Cu-Ni and Fe-Cu-Ni-Mn) has been studied by Positron Annihilation Doppler Broadening spectroscopy after 1.5 MeV Fe-ion implantation at room temperature or high temperature (290 oC). It is found that the room temperature irradiation generally leads to the formation of vacancy-type defects in the Fe matrix. The high temperature irradiation exhibits an additional annealing effect for the radiation damage. Besides the Cu-rich clusters observed by the positron probe, the results show formation of vacancy-Mn complexes for implantation at low temperatures.

  6. Evidence of Positron Annihilation at Electronic Excitation Threshold for N2 ^*

    NASA Astrophysics Data System (ADS)

    Miller, E. G.; Edwards, J. J.; Kauppila, W. E.; Stein, T. S.; Surdutovich, E.

    2006-05-01

    We are investigating Positronium (Ps) formation for < 20 eV positrons interacting with N2 in a gas scattering cell. The technique [1] of Ps annihilation ratio spectroscopy (PsARS) is used to obtain the ratios of coincidence signals for two of the three gamma rays (S3γ) in the photon energy window 300 to 460 keV resulting from ortho-Ps decay to that for two 511 keV gamma rays (S2γ) arising from para-Ps decay and other processes. By comparing these ratios of S3 γ/S2γ for N2 to those for Ar it is found that N2 exhibits strikingly anomalous behavior near and below the Ps formation threshold. Typically, this ratio remains constant within 2 eV above the Ps threshold. For N2, this ratio decreases to zero at the threshold and an S2 γ signal remains for an energy of ˜0.3 eV below. Since N2 has an electronic excitation threshold for positron impact that opens up at ˜0.3 eV below the Ps threshold, the present results strongly suggest that the incident positron is electronically exciting N2 and then binding to the excited N2 in a temporary resonance-like state from which the bound positron annihilates with a molecular electron. ^*Research supported by NSF Grant PHY 99-88093.[1] W.E. Kauppila, E.G. Miller, H. F.M. Mohamed, K. Pipinos, T. S. Stein, and E. Surdutovich, Phys. Rev. Lett. 93, 113401 (2004).

  7. First-principles calculations of momentum distributions of annihilating electron-positron pairs in defects in UO2

    NASA Astrophysics Data System (ADS)

    Wiktor, Julia; Jomard, Gérald; Torrent, Marc; Bertolus, Marjorie

    2017-01-01

    We performed first-principles calculations of the momentum distributions of annihilating electron-positron pairs in vacancies in uranium dioxide. Full atomic relaxation effects (due to both electronic and positronic forces) were taken into account and self-consistent two-component density functional theory schemes were used. We present one-dimensional momentum distributions (Doppler-broadened annihilation radiation line shapes) along with line-shape parameters S and W. We studied the effect of the charge state of the defect on the Doppler spectra. The effect of krypton incorporation in the vacancy was also considered and it was shown that it should be possible to observe the fission gas incorporation in defects in UO2 using positron annihilation spectroscopy. We suggest that the Doppler broadening measurements can be especially useful for studying impurities and dopants in UO2 and of mixed actinide oxides.

  8. Modification of steel surfaces induced by turning: non-destructive characterization using Barkhausen noise and positron annihilation

    NASA Astrophysics Data System (ADS)

    Čížek, J.; Neslušan, M.; Čilliková, M.; Mičietová, A.; Melikhova, O.

    2014-11-01

    This paper deals with the characterization of sub-surface damage caused by the machining of 100Cr6 roll bearing steel. The samples turned using tools with variable flank wears were characterized by two non-destructive techniques sensitive to defects introduced by plastic deformation: magnetic Barkhausen noise and positron annihilation. These techniques were combined with light and electron microscopy, x-ray diffraction and microhardness testing. The results of the experiment showed that damage in the sub-surface region increases with increasing flank wear, but from a certain critical value dynamic recovery takes place. The intensity of Barkhausen noise strongly decreases with increasing flank wear due to the increasing density of the dislocations pinning the Bloch walls and suppressing their motion. This was confirmed by positron annihilation spectroscopy, which enables the determination of the dislocation density directly. Hence, a good correlation between Barkhausen noise emission and positron annihilation spectroscopy was found.

  9. Vacancy-type defects in bulk GaN grown by the Na-flux method probed using positron annihilation

    NASA Astrophysics Data System (ADS)

    Uedono, Akira; Imanishi, Masayuki; Imade, Mamoru; Yoshimura, Masashi; Ishibashi, Shoji; Sumiya, Masatomo; Mori, Yusuke

    2017-10-01

    Defects in bulk GaN grown by the Na-flux method have been studied using a positron annihilation technique. Pyramidal bulk samples showed striation and inhomogeneous color distributions. Measurements of the Doppler broadening spectra of the annihilation radiation and lifetime spectra of positrons revealed that the concentration of vacancy-type defects increased with decreasing transparency of the samples. The major defect species was identified as a Ga vacancy coupled with nitrogen vacancies. A correlation between the oxygen incorporation and the introduction of such vacancies was observed. For c-plane GaN grown by a coalescence growth method, the concentration of vacancy-type defects was close to or under the detection limit of positron annihilation technique (≤1015cm-3), suggesting that high-quality bulk GaN can be fabricated using this method.

  10. Configuration interaction calculations of potential curves and annihilation rates for positronic complexes of alkali monoxides.

    PubMed

    Buenker, Robert J; Liebermann, Heinz-Peter

    2009-09-21

    Ab initio multireference single- and double-excitation configuration interaction calculations have been carried out to compute the potential curves and annihilation rates (ARs) of positronic molecular complexes of a series of alkali monoxides. The dissociation limit for the lowest states of these systems consists of the positive alkali ion ground state (M(+)) and the OPs (e(+)O(-)) complex formed by attaching the positron to O(-), even though the ground state of the corresponding neutral molecule always correlates with uncharged fragments (M+O). The positron affinity of the neutral oxide (2)Pi state is greater than that of (2)Sigma(+) in each case, so that the e(+)MO ground state always has (3,1)Pi symmetry, despite the fact that both KO and RbO have (2)Sigma(+) ground states. The bonding in the positronic systems is highly ionic at all internuclear distances and this causes their ARs to decrease gradually as the positive alkali ion approaches the OPs fragment.

  11. Positron annihilation studies of defects in molecular beam epitaxy grown III-V layers

    SciTech Connect

    Umlor, M.T.; Keeble, D.J.; Asoka-Kumar, P.; Lynn, K.G.; Cooke, P.W.

    1994-08-01

    A summary of recent positron annihilation experiments on molecular beam epitaxy (MBE) grown III-V layers is Presented. Variable energy positron beam measurements on Al{sub 0.32}Ga{sub 0.68}As undoped and Si doped have been completed. Positron trapping at a open volume defect in Al{sub 0.32}Ga{sub 0.68}:Si for temperatures from 300 to 25 K in the dark was observed. The positron trap was lost after 1.3 eV illumination at 25K. These results indicate an open volume defect is associated with the local structure of the deep donor state of the DX center. Stability of MBE GaAs to thermal annealing war, investigated over the temperature range of 230 to 700{degrees}C, Proximity wafer furnace anneals in flowing argon were used, Samples grown above 450{degrees}C were shown to be stable but for sample below this temperature an anneal induced vacancy related defect was produced for anneals between 400 and 500{degrees}C. The nature of the defect was shown to be different for material grown at 350 and 230{degrees}C. Activation energies of 2.5 eV to 2.3 eV were obtained from isochronal anneal experiments for samples grown at 350 and 230{degrees}C, respectively.

  12. Characterization of vacancy defects in Cu(In,Ga)Se2 by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Elsharkawy, M. R. M.; Kanda, G. S.; Yakushev, M. V.; Abdel-Hady, E. E.; Keeble, D. J.

    2016-12-01

    The photovoltaic performance of Cu(In1-x,Gax)Se2 (CIGS) materials is commonly assumed to be degraded by the presence of vacancy-related defects. However, experimental identification of specific vacancy defects remains challenging. In this work we report positron lifetime measurements on CIGS crystals with x = 0, and x = 0.05, saturation trapping to two dominant vacancy defect types, in both types of crystal, is observed and found to be independent of temperature between 15-300 K. Atomic superposition method calculations of the positron lifetimes for a range of vacancy defects in CIS and CGS are reported. The calculated lifetimes support the assignment of the first experimental lifetime component to monovacancy or divacancy defects, and the second to trivacancies, or possibly the large In-Se divacancy. Further, the calculated positron parameters obtained here provide evidence that positron annihilation spectroscopy has the capability to identify specific vacancy-related defects in the Cu(In1-x,Gax)Se2 chalcogenides.

  13. Nano-free volume characterization by positron annihilation lifetime technique in flame-retardant poly (vinyl chloride) after thermal treatment

    NASA Astrophysics Data System (ADS)

    Mohsen, M.; Mostafa, N.; Rashad, S. M.; Ayoub, A.; Salem, E. F.

    2007-02-01

    The flammability tests are performed on flame-retardant poly (vinyl chloride) (FRPVC) material that has been used in cable insulation and jacketing construction for multi-purpose reactor (MPR) at Atomic Energy Authority of Egypt, as well as carbon-black FRPVC (CB-FRPVC) material produced by Egyptian Electrical Cable Company (EECC). The temperature variation of thermal conductivity, thermal expansion coefficients, and nano-size free volumes by means of positron annihilation lifetime (PAL) technique are determined. Correlation of positron annihilation and thermal conductivity has been discussed in terms of phonons as the main heat carriers.

  14. Investigations on variation of defects in fused silica with different annealing atmospheres using positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Lijuan; Chen, Jing; Jiang, Yilan; Liu, Jiandang; Gu, Bingchuan; Jiang, Xiaolong; Bai, Yang; Zhang, Chuanchao; Wang, Haijun; Luan, Xiaoyu; Ye, Bangjiao; Yuan, Xiaodong; Liao, Wei

    2017-10-01

    The laser damage resistance properties of the fused silica can be influenced by the microstructure variation of the atom-size intrinsic defects and voids in bulk silica. Two positron annihilation spectroscopy techniques have been used to investigate the microstructure variation of the vacancy clusters and the structure voids in the polishing redeposition layer and the defect layer of fused silica after annealing in different atmospheres. The fused silica samples were isothermally annealed at 1000 K for 3 h in a furnace under an air atmosphere, a vacuum atmosphere and a hydrogen atmosphere, respectively. The positron annihilation results show that ambient oxygen atmosphere only affects the surface of the fused silica (about 300 nm depth) due to the large volume and low diffusion coefficient of the oxygen atom. However, hydrogen atoms can penetrate into the defect layer inside the fused silica and then have an influence on vacancy defects and vacancy clusters, while having no effect on the large voids. Besides, research results indicate that an annealing process can reduce the size and concentration of vacancy clusters. The obtained data can provide important information for understanding the laser damage mechanism and improving laser damage resistance properties of the fused silica optics.

  15. Quantification of stress history in type 304L stainless steel using positron annihilation spectroscopy

    SciTech Connect

    Walters, Thomas W.; Walters, Leon C.; Schoen, Marco P.; Naidu, D. Subbaram; Dickerson, Charles; Perrenoud, Ben C.

    2011-04-15

    Five Type 304L stainless steel specimens were subjected to incrementally increasing values of plastic strain. At each value of strain, the associated static stress was recorded and the specimen was subjected to positron annihilation spectroscopy (PAS) using the Doppler Broadening method. A calibration curve for the 'S' parameter as a function of stress was developed based on the five specimens. Seven different specimens (blind specimens labeled B1-B7) of 304L stainless steel were subjected to values of stress inducing plastic deformation. The values of stress ranged from 310 to 517 MPa. The seven specimens were subjected to PAS post-loading using the Doppler Broadening method, and the results were compared against the developed curve from the previous five specimens. It was found that a strong correlation exists between the 'S' parameter, stress, and strain up to a strain value of 15%, corresponding to a stress value of 500 MPa, beyond which saturation of the 'S' parameter occurs. Research Highlights: {yields} Specimens were initially in an annealed/recrystallized condition. {yields} Calibration results indicate positron annihilation measurements yield correlation. {yields} Deformation produced by cold work was likely larger than the maximum strain.

  16. Positron Annihilation Induced Auger Electron Spectroscopy of Inner Shell Transitions Using Time-Of Technique

    NASA Astrophysics Data System (ADS)

    Xie, Shuping; Jiang, Neng; Weiss, A. H.

    2003-03-01

    Positron annihilation induced Auger electron spectroscopy (PAES) has been shown to have unique advantages over conventional electron collision induced Auger techniques, including the ability to eliminate the secondary electron background and selectively probe the top-most atomic layer on the sample surface. Here we report on the development of a new time-of-flight (TOF) spectrometer which combines features high efficiency magnetic transport and parrallel energy measurment with high resolution by using an innovative timing method. The new TOF-PAES system, was used to make the first quantitative comparative measurements of the Auger intensities associated with the annihilation of positrons with the deep core levels (1s) of S KLL (180eV), C KLL (270eV), N KLL (360eV), and O KLL (510eV). Experimental results of Auger probabilities at outer core level (3s, 3P) of Cu M2,3VV (60eV), M1VV (105eV) are compared with the theoretical value of Jensen and Weiss. Quantitatively study the surface adsorbate process on Cu is performed and concentration changes of surface components are obtained. These results demonstrate that TOF-PAES can be used to obtain quantitative,top-layer specific, information from chemically important elements including those with relatively deep core levels (e.g. C and O).

  17. The gamma-ray spectra of 5-carbon alkane isomers in the positron annihilation process

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoguang; Zhu, Yinghao; Liu, Yang

    2016-05-01

    The gamma-ray spectra of pentane (C5H12) and its two isomers, i.e., 2-Methylbutane (CH3C(CH3)HC2H5) and 2,2-Dimethylpropane (C(CH3)4) have been studied theoretically in the present work. The recent experimental gamma-ray spectra of these three molecules show that they have the same Doppler shifts, although their molecular structures are dramatically different. In order to reveal why the gamma-ray spectra of these molecules are less sensitive to the molecular structures, the one-dimensional gamma-ray spectra and spherically averaged momentum (SAM) distributions, the two-dimensional angular correlation of annihilation radiation (ACAR), and the three-dimensional momentum distributions of the positron-electron pair are studied. The one-centered momentum distributions of the electrons are found to play more important role than the multi-centered coordinate distributions. The present theoretical predictions have confirmed the experimental findings for the first time. The dominance of the inner valence electrons in the positron-electron annihilation process has also been suggested in the present work.

  18. QCD PHYSICS OPPORTUNITIES IN LOW-ENERGY ELECTRON-POSITRON ANNIHILATION

    SciTech Connect

    Brodsky, S

    2003-11-21

    I survey a number of interesting tests of quantum chromodynamics at the amplitude level which can be carried out in electron-positron annihilation and in photon-photon collisions at low energy. Some of the tests require e{sup +}e{sup -} center of mass energy as small as {radical}s = 2 GeV. Other tests which involve a spectrum of energies can be carried out advantageously at high energy facilities using the radiative return method. These include measurements of fundamental processes such as timelike form factors and transition amplitudes, timelike Compton scattering, timelike photon to meson transition amplitudes, and two-photon exclusive processes. Many of these reactions test basic principles of QCD such as hadronization at the amplitude level, factorization, and hadron helicity conservation, tools also used in the analysis of exclusive B and D decays. Measurements of the final-state polarization in hadron pair production determine the relative phase of the timelike form factors and thus strongly discriminate between analytic forms of models which fit the form factors in the spacelike region. The role of two-photon exchange amplitudes can be tested using the charge asymmetry of the e{sup +}e{sup -} {yields} B{bar B} processes. These tests can help resolve the discrepancy between the Jefferson laboratory measurements of the ratio of G{sub E} and G{sub M} proton form factors using the polarization transfer method versus measurements using the traditional Rosenbluth method. Precision measurements of the electron-positron annihilation cross section can test the generalized Crewther relation and determine whether the effective couplings defined from physical measurements show infrared fixed-point and near conformal behavior. I also discuss a number of tests of novel QCD phenomena accessible in e{sup +}e{sup -} annihilation, including near-threshold reactions, the production of baryonium, gluonium states, and pentaquarks.

  19. Positron Annihilation Spectroscopy as a Probe of Microscopic Structure and Physical Aging in Polymer.

    NASA Astrophysics Data System (ADS)

    Yu, Minzi

    Positron annihilation is studied as a characterization method for the properties of polymers. Previous studies indicate that the ortho-positronium lifetime tau _3 and intensity I_3 is correlated to the free volume "hole" size and number density of holes in a polymer. Positron annihilation lifetime (PAL) studies in polymers measure the change in free volume, and they are sensitive to different physical environments. PAL studies of the temperature dependence of a bisphenol-A polycarbonate shows that the free volume increases with increasing temperature, and it also obtains the transition temperatures T_{rm g} and T_beta^', from the tau_3 curve and the I_3 curve, respectively. The isothermal aging in polycarbonate shows that: I_3 decreases while tau_3 remains constant during a long-time annealing at a temperature far below T_{rm g}; and I_3 remains constant while tau_3 goes through a "over shooting" in the first few hours after quenching and annealing at a temperature just below T_{rm g}. The free volume in polycarbonate increases (as a result of an increase in tau_3 ) with applied tensile strain up to 4%, then levels off. Similarly, the free volume in polymethyl methacrylate (PMMA) decreases (as the result of tau_3 ) with applied compressional strain also up to -4% then levels off. A negative change in both tau_3 and I _3 has been observed when polycarbonate is under 3% tensile strain and after release of strain. A more advance technique of positron annihilation, PAL-momentum correlation which can give more detailed information about free volume structure in polymers, has also been studied and improved. Two 5-cm-diameter, 5-cm-long CsF scintillation detectors for lifetime measurement, and a 30-cm-diameter Anger camera whose y-analog pulse gives one-dimensional ACAR information, comprise a new experimental arrangement of PAL-momentum correlation system. Its triple -coincidence counting rate is about 2.5 per minute per microcurie of positron source and system time

  20. On-ground detection of an electron-positron annihilation line from thunderclouds

    NASA Astrophysics Data System (ADS)

    Umemoto, D.; Tsuchiya, H.; Enoto, T.; Yamada, S.; Yuasa, T.; Kawaharada, M.; Kitaguchi, T.; Nakazawa, K.; Kokubun, M.; Kato, H.; Okano, M.; Tamagawa, T.; Makishima, K.

    2016-02-01

    Thunderclouds can produce bremsstrahlung gamma-ray emission, and sometimes even positrons. At 00:27:00 (UT) on 13 January 2012, an intense burst of gamma rays from a thundercloud was detected by the GROWTH experiment, located in Japan, facing the Sea of Japan. The event started with a sharp gamma-ray flash with a duration of <300 ms coincident with an intracloud discharge, followed by a decaying longer gamma-ray emission lasting for ˜60 s. The spectrum of this prolonged emission reached ˜10 MeV, and contained a distinct line emission at 508 ±3 (stat .)±5 (sys .) keV, to be identified with an electron-positron annihilation line. The line was narrow within the instrumental energy resolution (˜80 keV) , and contained 520 ±50 photons which amounted to ˜10 % of the total signal photons of 5340 ±190 detected over 0.1-10 MeV. As a result, the line equivalent width reached 280 ±40 keV, which implies a nontrivial result. The result suggests that a downward positron beam produced both the continuum and the line photons.

  1. A Positron Annihilation Study of Corrosion of Aluminum and Aluminum Alloy by NaOH

    NASA Astrophysics Data System (ADS)

    Wu, Y. C.; Zhai, T.; Coleman, P. G.

    2012-08-01

    Corrosion of fully-annealed pure aluminum and a continuous-cast AA2037 aluminum alloy (solutionized and water quenched) in a 1M NaOH solution for various periods of time were analyzed with positron beam-based Doppler broadening spectroscopy. By varying the energy of the incident positron beam, corrosion-induced defects at different depths from the surface were detected. It was found that the Doppler-broadened annihilation line-width parameter was significantly increased near the surface of pure aluminum after corrosion, probably due to the interaction between positrons and nanometer-sized voids formed near the aluminum surface during corrosion. Examination by atomic force microscopy indicated that many pits were formed on the aluminum surface after corrosion. In contrast, a significant decrease in the line-width parameter was observed in AA2037 alloy after corrosion and interpreted as being caused by copper enrichment at the metal-oxide interface during corrosion; such enrichment at large cavity sites was confirmed by energy dispersion spectrometry.

  2. Preliminary studies on a variable energy positron annihilation lifetime spectroscopy system

    NASA Astrophysics Data System (ADS)

    Kwan, P. Y.; Cheung, C. K.; Beling, C. D.; Fung, S.

    2006-02-01

    There are many advantages in being able to perform positron annihilation lifetime spectroscopy (PALS) using a variable energy positron beam, the most obvious being the easy identification of different defect types at different depths. The difficulty in conducting variable energy (VE) PALS studies lies in the fact that a "start" signal is required to signal the entry of the positron into the target. Two methods have been used to overcome this problem, namely the bunching technique, which employs radio frequency (RF) cavities and choppers, and secondly the use of secondary electrons emitted from the target. The latter technique is in terms of experimental complexity much simpler, but has in the past suffered from poor time resolution (typically ˜500 ps). In this work, we present a series of computer simulations of a design based on the secondary electron emission from thin C-foils in transmission mode which shows that significant improvements in time resolution can be made with resolutions ˜200 ps being in principle possible.

  3. Thermal stability of nanocrystalline Cu studied by positron annihilation lifetime spectroscopy and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Zhou, Kai; Li, Hui; Pang, JinBiao; Wang, Zhu

    2012-06-01

    Thermal stability of nanocrystalline Cu prepared by compacting nanoparticles (mean grain size about 50 nm) under high pressure has been studied by means of positron annihilation lifetime spectroscopy and X-ray diffraction. A gradual increase of mean grain size in the sample is observed with an increase in ageing time at 180°C, indicating an increase of volume fraction of the ordered regions. Furthermore, during the ageing, the increase in average size of the vacancy clusters in grain boundaries is confirmed by the positron lifetime results. The recrystallization is observed at the temperature of about 180°C, and becomes significant above 650°C. Three annealing stages, which are at the intervals 180-400°C, 400-650°C and 650-900°C have been characterized by positron average lifetime. The average volume of the defects almost remains constant in the interval 400-650°C but becomes considerably smaller in the interval 650-900°C.

  4. On-ground detection of an electron-positron annihilation line from thunderclouds.

    PubMed

    Umemoto, D; Tsuchiya, H; Enoto, T; Yamada, S; Yuasa, T; Kawaharada, M; Kitaguchi, T; Nakazawa, K; Kokubun, M; Kato, H; Okano, M; Tamagawa, T; Makishima, K

    2016-02-01

    Thunderclouds can produce bremsstrahlung gamma-ray emission, and sometimes even positrons. At 00:27:00 (UT) on 13 January 2012, an intense burst of gamma rays from a thundercloud was detected by the GROWTH experiment, located in Japan, facing the Sea of Japan. The event started with a sharp gamma-ray flash with a duration of <300 ms coincident with an intracloud discharge, followed by a decaying longer gamma-ray emission lasting for ∼60 s. The spectrum of this prolonged emission reached ∼10 MeV, and contained a distinct line emission at 508±3(stat.)±5(sys.) keV, to be identified with an electron-positron annihilation line. The line was narrow within the instrumental energy resolution (∼80keV), and contained 520±50 photons which amounted to ∼10% of the total signal photons of 5340±190 detected over 0.1-10 MeV. As a result, the line equivalent width reached 280±40 keV, which implies a nontrivial result. The result suggests that a downward positron beam produced both the continuum and the line photons.

  5. Photon-induced positron annihilation lifetime spectroscopy using ultrashort laser-Compton-scattered gamma-ray pulses.

    PubMed

    Taira, Y; Toyokawa, H; Kuroda, R; Yamamoto, N; Adachi, M; Tanaka, S; Katoh, M

    2013-05-01

    High-energy ultrashort gamma-ray pulses can be generated via laser Compton scattering with 90° collisions at the UVSOR-II electron storage ring. As an applied study of ultrashort gamma-ray pulses, a new photon-induced positron annihilation lifetime spectroscopy approach has been developed. Ultrashort gamma-ray pulses with a maximum energy of 6.6 MeV and pulse width of 2.2 ps created positrons throughout bulk lead via pair production. Annihilation gamma rays were detected by a BaF2 scintillator mounted on a photomultiplier tube. A positron lifetime spectrum was obtained by measuring the time difference between the RF frequency of the electron storage ring and the detection time of the annihilation gamma rays. We calculated the response of the BaF2 scintillator and the time jitter caused by the variation in the total path length of the ultrashort gamma-ray pulses, annihilation gamma rays, and scintillation light using a Monte Carlo simulation code. The positron lifetime for bulk lead was successfully measured.

  6. Photon-induced positron annihilation lifetime spectroscopy using ultrashort laser-Compton-scattered gamma-ray pulses

    SciTech Connect

    Taira, Y.; Toyokawa, H.; Kuroda, R.; Yamamoto, N.; Adachi, M.; Tanaka, S.; Katoh, M.

    2013-05-15

    High-energy ultrashort gamma-ray pulses can be generated via laser Compton scattering with 90 Degree-Sign collisions at the UVSOR-II electron storage ring. As an applied study of ultrashort gamma-ray pulses, a new photon-induced positron annihilation lifetime spectroscopy approach has been developed. Ultrashort gamma-ray pulses with a maximum energy of 6.6 MeV and pulse width of 2.2 ps created positrons throughout bulk lead via pair production. Annihilation gamma rays were detected by a BaF{sub 2} scintillator mounted on a photomultiplier tube. A positron lifetime spectrum was obtained by measuring the time difference between the RF frequency of the electron storage ring and the detection time of the annihilation gamma rays. We calculated the response of the BaF{sub 2} scintillator and the time jitter caused by the variation in the total path length of the ultrashort gamma-ray pulses, annihilation gamma rays, and scintillation light using a Monte Carlo simulation code. The positron lifetime for bulk lead was successfully measured.

  7. Spatially resolved positron annihilation spectroscopy on friction stir weld induced defects

    NASA Astrophysics Data System (ADS)

    Hain, Karin; Hugenschmidt, Christoph; Pikart, Philip; Böni, Peter

    2010-04-01

    A friction stir welded (FSW) Al alloy sample was investigated by Doppler broadening spectroscopy (DBS) of the positron annihilation line. The spatially resolved defect distribution showed that the material in the joint zone becomes completely annealed during the welding process at the shoulder of the FSW tool, whereas at the tip, annealing is prevailed by the deterioration of the material due to the tool movement. This might be responsible for the increased probability of cracking in the heat affected zone of friction stir welds. Examination of a material pairing of steel S235 and the Al alloy Silafont36 by coincident Doppler broadening spectroscopy (CDBS) indicates the formation of annealed steel clusters in the Al alloy component of the sample. The clear visibility of Fe in the CDB spectra is explained by the very efficient trapping at the interface between steel cluster and bulk.

  8. Spatially resolved positron annihilation spectroscopy on friction stir weld induced defects

    PubMed Central

    Hain, Karin; Hugenschmidt, Christoph; Pikart, Philip; Böni, Peter

    2010-01-01

    A friction stir welded (FSW) Al alloy sample was investigated by Doppler broadening spectroscopy (DBS) of the positron annihilation line. The spatially resolved defect distribution showed that the material in the joint zone becomes completely annealed during the welding process at the shoulder of the FSW tool, whereas at the tip, annealing is prevailed by the deterioration of the material due to the tool movement. This might be responsible for the increased probability of cracking in the heat affected zone of friction stir welds. Examination of a material pairing of steel S235 and the Al alloy Silafont36 by coincident Doppler broadening spectroscopy (CDBS) indicates the formation of annealed steel clusters in the Al alloy component of the sample. The clear visibility of Fe in the CDB spectra is explained by the very efficient trapping at the interface between steel cluster and bulk. PMID:27877329

  9. Relative Defect Density Measurements of Laser Shock Peened 316L Stainless Steel Using Positron Annihilation Spectroscopy

    SciTech Connect

    Marcus A. Gagliardi; Bulent H. Sencer; A. W. Hunt; Stuart A. Maloy; George T. Gray III

    2011-12-01

    The surface of an annealed 316L stainless steel coupon was laser shock peened and Vickers hardness measurements were subsequently taken of its surface. This Vickers hardness data was compared with measurements taken using the technique of positron annihilation Doppler broadening spectroscopy. When compared, a correlation was found between the Vickers hardness data measurements and those made using Doppler broadening spectroscopy. Although materials with a high defect density can cause the S-parameter measurements to saturate, variations in the Sparameter measurements suggest that through further research the Doppler broadening technique could be used as a viable alternative to measuring a material's hardness. In turn, this technique, could be useful in industrial settings where surface hardness and surface defects are used to predict lifetime of components.

  10. Spatially resolved positron annihilation spectroscopy on friction stir weld induced defects.

    PubMed

    Hain, Karin; Hugenschmidt, Christoph; Pikart, Philip; Böni, Peter

    2010-04-01

    A friction stir welded (FSW) Al alloy sample was investigated by Doppler broadening spectroscopy (DBS) of the positron annihilation line. The spatially resolved defect distribution showed that the material in the joint zone becomes completely annealed during the welding process at the shoulder of the FSW tool, whereas at the tip, annealing is prevailed by the deterioration of the material due to the tool movement. This might be responsible for the increased probability of cracking in the heat affected zone of friction stir welds. Examination of a material pairing of steel S235 and the Al alloy Silafont36 by coincident Doppler broadening spectroscopy (CDBS) indicates the formation of annealed steel clusters in the Al alloy component of the sample. The clear visibility of Fe in the CDB spectra is explained by the very efficient trapping at the interface between steel cluster and bulk.

  11. Free volumes studies in Thymoquinone and Carvone β-cyclodextrin nanoparticles by positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Ferreira Marques, M. F.; Gordo, P. M.; Moreira da Silva, A.

    2013-06-01

    Positron annihilation lifetime spectroscopy is used to study free volume in β-cyclodextrin with the encapsulation of thymoquinone and S-carvone, in samples covering the guest to host fraction range from 1:0.1 to 1:1. The results clearly indicate the presence of long lifetime components related to Ps-formation. Although the behavior of the two guests is different, in both cases the results indicate the formation of 1:1 cyclodextrin inclusion compounds. Data show that the addition of carvone to β-cyclodextrin results in a decrease of the o-Ps lifetime corresponding to a reduction of the average radius of cavities from 2.41 Å to 2.29 Å, whereas the addition of thymoquine decreases the radius from 2.57 Å to 2.35 Å. In turn, the intensity varied from 20.55 to 19.20% and from 20.83 to 0.41%, respectively.

  12. Study of nitrogen implanted amorphous hydrogenated carbon thin films by variable-energy positron annihilation spectroscopy

    SciTech Connect

    Freire, F.L. Jr.; Franceschini, D.F.; Brusa, R.S.; Karwasz, G.R.; Mariotto, G.; Zecca, A.; Achete, C.A.

    1997-03-01

    Hard amorphous hydrogenated carbon ({ital a}-C:H) films deposited by self-bias glow discharge were implanted at room temperature with 70 keV nitrogen ions at fluences between 2.0 and 9.0{times}10{sup 16} N/cm{sup 2}. The implanted samples were analyzed by positron Doppler broadening annihilation spectroscopy to determine the voids distribution. For samples implanted with 2.0{times}10{sup 16} N/cm{sup 2} the defect distribution is broader than the vacancies depth profile predicted by Monte Carlo simulation. For higher fluences we observed a reduction of the defect density. These results are discussed in terms of a competition between two processes: ion induced defects and structural modifications induced in the films due to ion implantation. {copyright} {ital 1997 American Institute of Physics.}

  13. Vacancy-Induced Ferromagnetism in SnO2 Nanocrystals: A Positron Annihilation Study

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Yuan; Chen, Zhi-Quan; Pan, Rui-Kun; Wang, Shao-Jie

    2013-02-01

    SnO2 nanopowders were pressed into pellets and annealed in air from 100 to 1400°C. Both XRD and Raman spectroscopy confirm that all annealed samples were single phase with a tetragonal rutile structure. Annealing induces an increase in the SnO2 grain size from 30 to 83 nm. Positron annihilation measurements reveal vacancy defects in the grain boundary region, and the interfacial defects remain stable after annealing below 400°C, then they are gradually recovered with increasing annealing temperature up to 1200°C. Room temperature ferromagnetism was observed for SnO2 nanocrystals annealed below 1200°C, and the magnetization decreases continuously with increasing annealing temperature. However, the ferromagnetism disappears at 1200°C annealing. This shows good coincidence with the recovery of interfacial defects in the nanocrystals, suggesting that the ferromagnetism is probably induced by vacancy defects in the interface region.

  14. Positron annihilation lifetime spectroscopy of mechanically milled protein fibre powders and their free volume aspects

    NASA Astrophysics Data System (ADS)

    Patil, K.; Sellaiyan, S.; Rajkhowa, R.; Tsuzuki, T.; Lin, T.; Smith, S. V.; Wang, X.; Uedono, A.

    2013-06-01

    The present study reports the fabrication of ultra-fine powders from animal protein fibres such as cashmere guard hair, merino wool and eri silk along with their free volume aspects. The respectively mechanically cleaned, scoured and degummed cashmere guard hair, wool and silk fibres were converted into dry powders by a process sequence: Chopping, Attritor Milling, and Spray Drying. The fabricated protein fibre powders were characterised by scanning electron microscope, particle size distribution and positron annihilation lifetime spectroscopy (PALS). The PALS results indicated that the average free volume size in protein fibres increased on their wet mechanical milling with a decrease in the corresponding intensities leading to a resultant decrease in their fractional free volumes.

  15. Investigation of the Degree of Disorder of the Structure of Polymer Soft Contact Lenses Using Positron Annihilation Lifetime Spectroscopy PALS.

    PubMed

    Filipecki, Jacek; Kotynia, Katarzyna; Filipecka, Katarzyna

    2016-01-01

    Hydrogel and silicone-hydrogel polymeric materials are widely used in ophthalmology for the manufacture of contact lenses. An important aspect is the investigation of the structure of these materials. This study has been conducted in order to compare the degree of disorder and presence of free volumes in the internal structure of the polymeric soft contact lenses Omafilcon A (hydrogel) and Comfilcon A (silicone-hydrogel). Differences in the occurrence of trapping centers for positrons and free volumes between the types of investigated contact lenses have been demonstrated. Two types of polymeric contact lenses were used as materials: Omafilcon A (hydrogel) and Comfilcon A (silicone-hydrogel). The study was performed using positron annihilation lifetime spectroscopy (PALS). When the results of the measurements has been obtained, a graphical curve has created to describe the relationship of the number of annihilation acts in time. Significant changes were observed between the contact lenses investigated in positron trapping in macropores (based on a two-state model) and the presence of free volumes (based on the Tao-Eldrup model). The use of the positron annihilation two-state model made it possible to demonstrate that a higher positron trapping rate in macropores occurs in the silicone-hydrogel contact lens. Additionally, calculations using the Tao-Eldrup model show the existence of free volumes in both types of materials. The size and fraction of free volumes is much larger in the silicone-hydrogel contact lens.

  16. Detection of Mg17Al12 precipitates in deformed thermal-aged AZ91 alloy by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Ortega, Y.; Del Río, J.

    2004-02-01

    Positron-annihilation lifetime measurements are used to study the influence of Mg17Al12 precipitates in mechanical properties of deformed magnesium alloys containing 9 wt% Al and 1wt% Zn. Deformations are performed at room temperature on untreated and thermal-aged samples, and the response of the positron lifetime to the deformation degree is studied. Measurements reveal that changes in the average positron lifetime are very small on both samples. The slight increase of positron lifetime in deformed samples, seems to be related with the unfavourable orientation of Mg17Al12 precipitates in the magnesium matrix to produce work hardening, as it has shown by other authors through TEM observations. Further isothermal annealing experiments, on samples that are previously deformed, illustrate almost a complete recovery of the positron lifetime on untreated samples at 375 K and on age-hardened samples at 433 K.

  17. Hydrodynamic and kinetic models for spin-1/2 electron-positron quantum plasmas: Annihilation interaction, helicity conservation, and wave dispersion in magnetized plasmas

    SciTech Connect

    Andreev, Pavel A.

    2015-06-15

    We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular to an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction.

  18. PREFACE: The 16th International Conference on Positron Annihilation (ICPA-16)

    NASA Astrophysics Data System (ADS)

    Alam, Ashraf; Coleman, Paul; Dugdale, Stephen; Roussenova, Mina

    2013-06-01

    The 16th International Conference on Positron Annihilation (ICPA-16) was held at the University of Bristol, United Kingdom during 19-24 August, 2012. This triennial conference is the foremost gathering of the Positron Annihilation Physics community and it was hosted in the UK for the first time since the series of meetings first started back in 1965. The University of Bristol, the Alma Mater of Paul Dirac, is situated at the heart of the city, and it has established a worldwide reputation in research and teaching. Many of the topics which were discussed during ICPA-16 form an integral part of the research themes in the schools of Physics, Chemistry and Engineering of this University. ICPA-16 attracted a diverse audience, both from academic and industrial institutions, with over 200 participants from 29 countries. It continued the long held tradition of showcasing novel research in the field of positron annihilation and a total of 170 papers were presented as talks and posters. The papers reported studies of metallic and semi-conducting solids, polymers and soft matter, porous materials, surfaces and interfaces, as well as advances in experimental, analytical and biomedical applications. The high quality of the presented work, coupled with the enthusiastic exchange of ideas, provided an invaluable forum, especially for younger researchers and postgraduate students. The excellence of student presentations was acknowledged by the award of prizes for the best student posters, which were received by David Billington (University of Bristol, UK), Moussa Sidibe (CEMHTI, France) and Hongxia Xu (Tohoku University, Japan). All papers published in the Conference Proceedings were reviewed by ICPA-16 participants. We are indebted to all reviewers who contributed their time and intellectual resources, allowing the refereeing and editing process to move smoothly toward the compilation of the Proceedings. Our sincere thanks and gratitude go to everyone who contributed to the

  19. The all-sky distribution of 511 keV electron-positron annihilation emission

    NASA Astrophysics Data System (ADS)

    Knödlseder, J.; Jean, P.; Lonjou, V.; Weidenspointner, G.; Guessoum, N.; Gillard, W.; Skinner, G.; von Ballmoos, P.; Vedrenne, G.; Roques, J.-P.; Schanne, S.; Teegarden, B.; Schönfelder, V.; Winkler, C.

    2005-10-01

    We present a map of 511 keV electron-positron annihilation emission, based on data accumulated with the SPI spectrometer aboard ESA's INTEGRAL gamma-ray observatory, that covers approximately ~95% of the celestial sphere. Within the exposed sky area, 511 keV line emission is significantly detected towards the galactic bulge region and, at a very low level, from the galactic disk. The bulge emission is highly symmetric and is centred on the galactic centre with an extension of ~ 8° (FWHM). The emission is equally well described by models that represent the stellar bulge or halo populations. The detection significance of the bulge emission is ~ 50σ, that of the galactic disk is ~ 4σ. The disk morphology is only weakly constrained by the present data, being compatible with both the distribution of young and old stellar populations. The 511 keV line flux from the bulge and disk components is (1.05 ± 0.06) × 10-3 ph cm-2 s-1 and (0.7 ± 0.4) × 10-3 ph cm-2 s-1 respectively, corresponding to a bulge-to-disk flux ratio in the range 1-3. Assuming a positronium fraction of f_p=0.93 this translates into annihilation rates of (1.5 ± 0.1) × 1043 s-1and (0.3 ± 0.2) × 1043 s-1, respectively. The ratio of the bulge luminosity to that of the disk is in the range 3-9. We find no evidence for a point-like source in addition to the diffuse emission, down to a typical flux limit of ~10-4 ph cm-2 s-1. We also find no evidence for the positive latitude enhancement that has been reported from OSSE measurements; our 3σ upper flux limit for this feature is 1.5 × 10-4 ph cm-2 s-1. The disk emission can be attributed to the β^+-decay of the radioactive species 26 Al and 44Ti. The bulge emission arises from a different source which has only a weak or no disk component. We suggest that Type Ia supernovae and/or low-mass X-ray binaries are the prime candidates for the source of the galactic bulge positrons. Light dark matter annihilation could also explain the observed 511 ke

  20. Ultra Fine-Grained Metals Prepared by Severe Plastic Deformation: A Positron Annihilation Study

    NASA Astrophysics Data System (ADS)

    Čížek, J.; Procházka, I.; Kužel, R.; Matĕj, Z.; Cherkaska, V.; Cieslar, M.; Smola, B.; Stulíková, I.; Brauer, G.; Anwand, W.; Islamgaliev, R. K.; Kulyasova, O.

    2005-05-01

    Recent investigations of ultra fine-grained metals (Cu, Fe, Ni) performed within a Prague-Rossendorf-Ufa collaboration will be reviewed. The specimens were prepared by severe plastic deformation: the high-pressure torsion and equal channel angular pressing. Positron annihilation spectroscopy was used as the main method including (i) the conventional lifetime and the Doppler broadening measurements with 22Na and (ii) the slow-positron implantation spectroscopy with the Doppler broadening measurement. Other methods were also involved: transmission electron microscopy, X-ray diffraction, and microhardness. First, the mean grain size was determined and defects were identified in the as-deformed materials. Defects concentration and spatial distribution were studied in detail. Dislocations situated in distorted regions along grain boundaries, and a few-vacancy clusters distributed homogeneously inside dislocations-free grains, were observed in the ultra fine-grained Cu, Fe, and Ni. Subsequently, the thermal evolution of the ultra fine-grained structures during isochronal annealing was studied.

  1. Calculations of the interference of annihilation radiations with positron spectra in a Ge detector

    NASA Astrophysics Data System (ADS)

    Avignone, F. T.; Noma, H.; Moltz, D. M.; Toth, K. S.

    1981-10-01

    The distortion of the Kurie plots of allowed positron spectra due to annihilation radiations was calculated by a simple Monte-Carlo technique for a small intrinsic Ge detector. The experimentally observed non-linearity near the end point is accurately reproduced by the calculations. Corrections were calculated for 15 theoretical allowed spectra with end-point energies ranging from 2.5 to 10 MeV for one small detector 1.6 cm in diameter and 0.7 cm thick and one larger detector 4.0 cm in diameter and 1.0 cm thick. The major effect of this interference is to shift the end-point up in energy from 182 keV at 2.5 MeV and to 204 keV at 9 MeV in the small detector and from 279 keV at 2.5 MeV and to 321 keV at 9 MeV in the larger detector. The method was used to correct the end-point energies of the two positron branches in the decay of 82Sr. The corrected data give values of (3.19 ± 0.02) and (2.42 ± 0.02) MeV. The resulting Q-value is (4.21 ± 0.02) MeV.

  2. Defect Characterization in SiGe/SOI Epitaxial Semiconductors by Positron Annihilation

    NASA Astrophysics Data System (ADS)

    Ferragut, R.; Calloni, A.; Dupasquier, A.; Isella, G.

    2010-12-01

    The potential of positron annihilation spectroscopy (PAS) for defect characterization at the atomic scale in semiconductors has been demonstrated in thin multilayer structures of SiGe (50 nm) grown on UTB (ultra-thin body) SOI (silicon-on-insulator). A slow positron beam was used to probe the defect profile. The SiO2/Si interface in the UTB-SOI was well characterized, and a good estimation of its depth has been obtained. The chemical analysis indicates that the interface does not contain defects, but only strongly localized charged centers. In order to promote the relaxation, the samples have been submitted to a post-growth annealing treatment in vacuum. After this treatment, it was possible to observe the modifications of the defect structure of the relaxed film. Chemical analysis of the SiGe layers suggests a prevalent trapping site surrounded by germanium atoms, presumably Si vacancies associated with misfit dislocations and threading dislocations in the SiGe films.

  3. Spectroscopy of positron annihilation gamma rays from laser-exited media

    NASA Astrophysics Data System (ADS)

    Szabo, C. I.; Feldman, U.; Seely, J.; Hudson, L.; Chen, Hui; Tommasini, R.; Hazi, A.; Shepherd, R.; Zulick, C.; Dollar, F.; Falk, K.; Murphy, C. D.

    2010-11-01

    Motivated by calculations for gamma ray yields and results of positron beam measurements from laser irradiated high Z targets [1], a Gamma-ray Crystal Spectrometer (GCS) was built by Artep Inc. and fielded at the Titan laser facility of LLNL. The spectrometer is equipped with heavy shielding around a cylindrically bent Ge crystal in a transmission geometry. The Bremsstrahlung continuum and the 511 keV annihilation gamma rays are dispersed by the Ge(440) crystal and detected by an image plate placed on the Rowland circle. The gamma rays originate inside the thick target material (1 to 3 mm Au disks) where positrons are produced in the intense field of the high energy (350 J) short pulse (10 ps) laser irradiation. In addition to the spectrometer, two different electronic detection systems also recorded the gamma ray spectra using the single hit per pixel technique. The first gamma ray spectra recorded with the crystal spectrometer and the electronic detectors will be reported. [4pt] [1] Hui Chen et al., PRL 105, 015003 (2010)

  4. Photon from the annihilation process with CGC in the pA collision

    NASA Astrophysics Data System (ADS)

    Benić, Sanjin; Fukushima, Kenji

    2017-02-01

    We discuss the photon production in the pA collision in a framework of the color glass condensate (CGC) with expansion in terms of the proton color source ρp. We work in a regime where the color density ρA of the nucleus is large enough to justify the CGC treatment, while soft gluons in the proton could be dominant over quark components but do not yet belong to the CGC regime, so that we can still expand the amplitude in powers of ρp. The zeroth-order contribution to the photon production is known to appear from the Bremsstrahlung process and the first-order corrections consist of the Bremsstrahlung diagrams with pair produced quarks and the annihilation diagrams of quarks involving a gluon sourced by ρp. Because the final states are different there is no interference between these two processes. In this work we elucidate calculation procedures in details focusing on the annihilation diagrams only. Using the McLerran-Venugopalan model for the color average we numerically calculate the photon production rate and discuss functional forms that fit the numerical results.

  5. Gamma Spectra Resulting From the Annihilation of Positrons with Electrons in Single, Selected Core Levels of Cu, Ag and Au

    SciTech Connect

    Kim, S; Eshed, A; Goktepeli, S; Sterne, P A; Koymen, A R; Chen, W C; Weiss, A H

    2005-07-25

    The {gamma}-ray energy spectra due to positron annihilation with the 3p core-level of Cu, the 4p core-level of Ag, and 5p core level of Au were obtained separately from the total annihilation spectrum by measuring the energies of {gamma}-rays time coincident with Auger electrons emitted as a result of filling the core-hole left by annihilation. The results of these measurements are compared to the total annihilation spectra and with LDA based theoretical calculations. A comparison of area normalized momentum distributions with the individual cores extracted from the Doppler measurements shows good qualitative agreement, however, in all three spectra, the calculated values of the momentum density appears to fall below the measured values as the momentum increases. The discrepancies between theory and experiment are well outside the statistical uncertainties of the experiment and become more pronounced with increasing Z going down the column from Cu to Ag to Au. The comparison with the experimental results clearly indicates that the calculations are not predicting the correct ratio of high momentum to low momentum spectral weight and suggest the need to improve the treatment of many body electron-positron correlation effects in annihilation as they pertain to core levels.

  6. Calculation of positron annihilation characteristics of six main defects in 6 H -SiC and the possibility to distinguish them experimentally

    NASA Astrophysics Data System (ADS)

    Linez, F.; Makkonen, I.; Tuomisto, F.

    2016-07-01

    We have determined positron annihilation characteristics (lifetime and Doppler broadening) in six basic vacancy-type defects of 6 H -SiC and two nitrogen-vacancy complexes using ab initio calculations. The positron characteristics obtained allow us to point out which positron technique in the most adapted to identify a particular defect. They show that the coincidence Doppler broadening technique is the most relevant for observing the silicon vacancy-nitrogen complexes, VSiNC , and carbon vacancy-carbon antisite ones, VCCSi . For the other studied defects, the calculated positron characteristics are found to be too close for the defects to be easily distinguished using a single positron annihilation technique. Then it is required to use complementary techniques, positron annihilation based or other.

  7. Synthesis and characterization of magnesium oxide nanocrystallites and probing the vacancy-type defects through positron annihilation studies

    NASA Astrophysics Data System (ADS)

    Das, Anjan; Mandal, Atis Chandra; Roy, Soma; Prashanth, Pendem; Ahamed, Sk Izaz; Kar, Subhrasmita; Prasad, Mithun S.; Nambissan, P. M. G.

    2016-09-01

    Magnesium oxide nanocrystallites exhibit certain abnormal characteristics when compared to those of other wide band gap oxide semiconductors in the sense they are most prone to water absorption and formation of a hydroxide layer on the surface. The problem can be rectified by heating and pure nanocrystallites can be synthesized with controllable sizes. Inevitably the defect properties are distinctly divided between two stages, the one with the hydroxide layer (region I) and the other after the removal of the layer by annealing (region II). The lattice parameters, the optical band gap and even the positron annihilation characteristics are conspicuous by their distinct behavior in the two stages of the surface configurations of nanoparticles. While region I was specific with the formation of positronium-hydrogen complexes that drastically altered the defect-specific positron lifetimes, pick-off annihilation of orthopositronium atoms marked region II. The vacancy clusters within the nanocrystallites also trapped positrons. They agglomerated due to the effect of the higher temperatures and resulted in the growth of the nanocrystallites. The coincidence Doppler broadening spectroscopic measurements supported these findings and all the more indicated the trapping of positrons additionally into the neutral divacancies and negatively charged trivacancies. This is apart from the Mg2+ monovacancies which acted as the dominant trapping centers for positrons.

  8. Nonstoichiometry accommodation in SrTiO3 thin films studied by positron annihilation and electron microscopy

    NASA Astrophysics Data System (ADS)

    Keeble, D. J.; Wicklein, S.; Jin, L.; Jia, C. L.; Egger, W.; Dittmann, R.

    2013-05-01

    Accommodation of nonstoichiometry in SrTiO3 pulsed laser deposited (PLD) films was investigated using positron annihilation lifetime spectroscopy and (scanning) transmission electron microscopy. Increasing PLD laser fluence changed the stoichiometry from Ti to Sr deficient. Cation vacancy defects were detected, and the concentration ratio of Sr to Ti vacancies, [VSr]/[VTi], was observed to increase systematically in the Sr-deficient region, although no change in the electron microscopy lattice images was detected. Increasing Ti deficiency resulted in the accommodation of SrO layers in planar defects, and in the formation of vacancy cluster defects. A change from VTi to VSr defect positron trapping was also detected.

  9. Positron annihilation radiation and > 10 MeV gamma-rays from the 1997 November 6 flare

    NASA Astrophysics Data System (ADS)

    Yoshimori, M.; Suga, K.; Nakayama, S.; Ogawa, H.

    2001-08-01

    Yohkoh observed the positron annihilation ra diation at 511 keV and high-energy γ rays at 10-100 MeV from a X9.4/3B flare at 11:52 UT on November 6, 1997. A lower limit for line fluence is 64 ± 13 photons/cm2 and the line width (FWHM) was <16 keV. The Yohkoh data places restrictions on the temperature of <2.1 MK and the density of >1014 cm-3 at the positron annihilation site. The spectrum above 10 MeV suggests a mixture of primary electron bremsstrahlung and broad-band γ rays resulting from the π0 decay. It implies that protons were efficiently accelerated to energies above a few hundreds of MeV and streamed down to the chromosphere. We discuss high-energy particle production based on the Yohkoh and solar energetic particle (SEP) observations.

  10. Detection of helium in irradiated Fe9Cr alloys by coincidence Doppler broadening of slow positron annihilation

    NASA Astrophysics Data System (ADS)

    Cao, Xingzhong; Zhu, Te; Jin, Shuoxue; Kuang, Peng; Zhang, Peng; Lu, Eryang; Gong, Yihao; Guo, Liping; Wang, Baoyi

    2017-03-01

    An element analysis method, coincidence Doppler broadening spectroscopy of slow positron annihilation, was employed to detect helium in ion-irradiated Fe9Cr alloys. Spectra with higher peak to background ratio were recorded using a two-HPGe detector coincidence measuring system. It means that information in the high-momentum area of the spectra can be used to identify helium in metals. This identification is not entirely dependent on the helium concentration in the specimens, but is related to the structure and microscopic arrangement of atoms surrounding the positron annihilation site. The results of Doppler broadening spectroscopy and transmission electron microscopy show that vacancies and dislocations were formed in ion-irradiated specimens. Thermal helium desorption spectrometry was performed to obtain the types of He traps.

  11. Implications of an astrophysical interpretation of PAMELA and Fermi-LAT data for future searches of a positron signal from dark matter annihilations

    NASA Astrophysics Data System (ADS)

    Choi, Ki-Young; Yaguna, Carlos E.

    2010-01-01

    The recent data from PAMELA and Fermi-LAT can be interpreted as evidence of new astrophysical sources of high energy positrons. In that case, such astrophysical positrons constitute an additional background against the positrons from dark matter annihilation. In this paper, we study the effect of that background on the prospects for the detection of a positron dark matter signal in future experiments. In particular, we determine the new regions in the (mass, ⟨σv⟩) plane that are detectable by the AMS-02 experiment for several dark matter scenarios and different propagation models. We find that, due to the increased background, these regions feature annihilation rates that are up to a factor of 3 larger than those obtained for the conventional background. That is, an astrophysical interpretation of the present data by PAMELA and Fermi-LAT implies that the detection of positrons from dark matter annihilation is slightly more challenging than previously believed.

  12. Positron Annihilation Spectroscopy and Small Angle Neutron Scattering Characterization of Nanostructural Features in Irradiated Fe-Cu-Mn Alloys

    SciTech Connect

    Wirth, B D; Asoka-Kumar, P; Howell, R H; Odette, G R; Sterne, P A

    2001-01-01

    Radiation embrittlement of nuclear reactor pressure vessel steels results from a high number density of nanometer sized Cu-Mn-Ni rich precipitates (CRPs) and sub-nanometer matrix features, thought to be vacancy-solute cluster complexes (VSC). However, questions exist regarding both the composition of the precipitates and the defect character and composition of the matrix features. We present results of positron annihilation spectroscopy (PAS) and small angle neutron scattering (SANS) characterization of irradiated and thermally aged Fe-Cu and Fe-Cu-Mn alloys. These complementary techniques provide insight into the composition and character of both types of nanoscale features. The SANS measurements indicate populations of CRPs and VSCs in both alloys. The CRPs are coarser in the Fe-Cu alloy and the number densities of CRP and VSC increase with the addition of Mn. The PAS involved measuring both the positron lifetimes and the Doppler broadened annihilation spectra in the high momentum region to provide elemental sensitivity at the annihilation site. The spectra in Fe-Cu-Mn specimens thermally aged to peak hardness at 450 C and irradiated at 288 C are nearly identical to elemental Cu. Positron lifetime and spectrum measurements in Fe-Cu specimens irradiated at 288 C clearly show the existence of long lifetime ({approx}500 ps) open volume defects, which also contain Cu. Thus the SANS and PAS provide a self-consistent picture of nanostructures composed of CRPs and VSCs and tend to discount high Fe concentrations in the CRPs.

  13. Desorption of water from hydrophilic MCM-41 mesopores: positron annihilation, FTIR and MD simulation studies

    NASA Astrophysics Data System (ADS)

    Maheshwari, Priya; Dutta, D.; Muthulakshmi, T.; Chakraborty, B.; Raje, N.; Pujari, P. K.

    2017-02-01

    The desorption mechanism of water from the hydrophilic mesopores of MCM-41 was studied using positron annihilation lifetime spectroscopy (PALS) and attenuated total reflection Fourier transform infrared spectroscopy supplemented with molecular dynamics (MD) simulation. PALS results indicated that water molecules do not undergo sequential evaporation in a simple layer-by-layer manner during desorption from MCM-41 mesopores. The results suggested that the water column inside the uniform cylindrical mesopore become stretched during desorption and induces cavitation (as seen in the case of ink-bottle type pores) inside it, keeping a dense water layer at the hydrophilic pore wall, as well as a water plug at both the open ends of the cylindrical pore, until the water was reduced to a certain volume fraction where the pore catastrophically empties. Before being emptied, the water molecules formed clusters inside the mesopores. The formation of molecular clusters below a certain level of hydration was corroborated by the MD simulation study. The results are discussed.

  14. Moessbauer and Positron Annihilation Spectroscopy Applied to WWER-1000 RPV Steels

    SciTech Connect

    Slugen, V.; Lipka, J.; Zeman, A.; Debarberis, L.

    2005-04-26

    Moessbauer spectroscopy (MS) and Positron annihilation spectroscopy (PAS) were applied in the evaluation of the microstructure parameters and degradation processes of nuclear reactor pressure vessel (RPV) steel surveillance specimens. Study was oriented to the material investigation of Russian WWER-1000 steels (15Kh2MNFAA and 12Kh2N2MAA) with higher Ni content (1.26 wt.% in base metal and 1.7 wt.% in weld). For comparison, the WWER-440 weld metal (Sv10KhMFT) without Ni was measured too. Specimens were studied in as received form, after irradiation in LVR-15 experimental reactor to the neutron fluence F(E>0.5 MeV) = 1.47x1024 m-2s-1 and after annealing process in vacuum at 475 deg. C/2h. Changes due to different chemical composition and due to irradiation were registered using MS. Post-irradiation thermal treatment and annealing of defects was well detected by different PAS techniques. Results confirm the hypothesis that Ni affects size (decrease) and distribution (more homogeneous) of the Cu- and P-rich clusters and MxCx carbides.

  15. Supramolecular interactions between triphenylphosphine oxide and benzamide evaluated by positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Oliveira, F. C.; Denadai, A. M. L.; Fulgêncio, F.; Oliveira, A. M.; Andrade, A. C. A.; Melo, A. C. A.; Yoshida, M. I.; Windmöller, D.; Magalhães, W. F.

    2017-04-01

    In the present work, intermolecular interactions between triphenylphosphine oxide (TPPO) and benzamide (BZM) has been studied in solid state by Positron Annihilation Lifetime Spectroscopy (PALS) and supported by several analytical techniques (in solid state and in solution) and by computational modeling (in gaseous phase). Isothermal Titration Calorimetry (ITC) in ethyl acetate solvent showed that complexation is a stepwise process, with 2:1 and 1:1 TPPO/BZM stoichiometries, both driven by entropy. HPLC analysis of isolated single crystal confirmed the existence of a 2:1 TPPO/BZM crystalline complex in solid state. The results of thermal analysis (TGA, DTA and DSC) and FTIR spectroscopy showed that the interactions in the complexes are relatively weaker than those found in pure precursors. Finally, PALS showed higher positronium formation probability (I3) at [TPPO0.62·BZM0.38] and [TPPO0.25·BZM0.75] molar fractions, corroborating the existence of two stoichiometries for the TPPO/BZM system and suggesting greater electronic availability of n- and π-electrons in heterosynton complexes, as resulting of interactions, bring forward new evidences of the participation of electronic excited states on the positronium formation mechanism.

  16. A positron annihilation radiation telescope using Laue diffraction in a crystal lens

    NASA Astrophysics Data System (ADS)

    Smither, R. K.; von Ballmoos, P.

    1993-03-01

    We present a new type of gamma-ray telescope featuring a Laue diffraction lens, a detector module with a 3-by-3 germanium array, and a balloon gondola stabilized to 5 arc sec pointing accuracy. The instrument's lens is designed to collect 511 keV photons on its 150 sq cm effective area and focus them onto a small detector having only (approx) 14 cu cm of equivalent volume for background noise. As a result, this telescope overcomes the mass-sensitivity impasse of present detectors in which the collection areas are identical to the detection area. The sensitivity of our instrument is anticipated to be 3 (times) 10-5 ph cm-2 S-1 at 511 keV with an angular resolution of 15 arc sec and an energy resolution of 2 keV. These features will allow the resolve of a possible energetically narrow 511 keV positron annihilation line both energy-wise and spatially within a Galactic Center 'microquasar' as 1El740.7-2942 or GRS1758-258. In addition to the galactic 'microquasars', other prime objectives include Cyg X-1, X-ray binaries, pulsars, and AGNS.

  17. Clay particles - potential of positron annihilation lifetime spectroscopy (PALS) for studying interlayer spacing

    NASA Astrophysics Data System (ADS)

    Fong, N.; Guagliardo, P.; Williams, J.; Musumeci, A.; Martin, D.; Smith, S. V.

    2011-01-01

    Characterisation of clays is generally achieved by traditional methods, such as X-ray diffraction (XRD) and transmission electron microscopy (TEM). However, clays are often difficult to characterise due to lack of long-range order, thus these tools are not always reliable. Because interlayer spacing in clays can be adjusted to house molecules, there is growing interest to use these materials for drug delivery. Positron annihilation lifetime spectroscopy (PALS) was examined as an alternative tool to characterise a series of well-known clays. XRD of two layered double hydroxides; MgAl-LDH and MgGd-LDH, natural hectorite, fluoromica and laponite, and their PALS spectra were compared. XRD data was used to calculate the interlayer d- spacing in these materials and results show a decrease in interlayer spacing as the heavy metal ions are substituted for those of large ionic radii. Similar results were obtained for PALS data. This preliminary study suggests PALS has potential as a routine tool for characterising clay particles. Further work will examine the sensitivity and reliability of PALS to percent of metal doping and hydration in clay microstructure.

  18. Development of positron annihilation spectroscopy for investigating deuterium decorated voids in neutron-irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Taylor, C. N.; Shimada, M.; Merrill, B. J.; Akers, D. W.; Hatano, Y.

    2015-08-01

    The present work is a continuation of a recent research to develop and optimize positron annihilation spectroscopy (PAS) for characterizing neutron-irradiated tungsten. Tungsten samples were exposed to neutrons in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory and damaged to 0.025 and 0.3 dpa. Subsequently, they were exposed to deuterium plasmas in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory. The implanted deuterium was desorbed through sample heating to 900 °C, and Doppler broadening (DB)-PAS was performed both before and after heating. Results show that deuterium impregnated tungsten is identified as having a smaller S-parameter. The S-parameter increases after deuterium desorption. Microstructural changes also occur during sample heating. These effects can be isolated from deuterium desorption by comparing the S-parameters from the deuterium-free back face with the deuterium-implanted front face. The application of using DB-PAS to examine deuterium retention in tungsten is examined.

  19. JRQ and JPA irradiated and annealed reactor pressure vessel steels studied by positron annihilation

    NASA Astrophysics Data System (ADS)

    Slugeň, Vladimír; Gokhman, Oleksandr; Pecko, Stanislav; Sojak, Stanislav; Bergner, Frank

    2016-03-01

    The paper is focused on a comprehensive study of JRQ and JPA reactor pressure vessel steels from the positron annihilation lifetime spectroscopy (PALS) point of view. Based on our more than 20 years' experience with characterization of irradiated reactor steels, we confirmed that defects after irradiation start to grow and/or merge into bigger clusters. Experimental results shown that JPA steel is more sensitive to the creation of irradiation-induced defects than JRQ steel. It is most probably due to high copper content (0.29 wt.% in JPA) and copper precipitation has a major impact on neutron-induced defect creation at the beginning of the irradiation. Based on current PALS results, no large vacancy clusters were formed during irradiation, which could cause dangerous embrittlement concerning operation safety of nuclear power plant. The combined PALS, small angle neutron scattering and atomic probe tomography studies support the model for JRQ and JPA steels describing the structure of irradiation-induced clusters as agglomerations of vacancy clusters (consisting of 2-6 vacancies each) and are separated from each other by a distribution of atoms.

  20. Radiation defects induced by helium implantation in gold-based alloys investigated by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Thome, T.; Grynszpan, R. I.

    2006-06-01

    The formation of gas bubbles in metallic materials may result in drastic degradation of in-service properties. In order to investigate this effect in high density and medium-low melting temperature ( T-M ) alloys, positron annihilation spectroscopy measurements were performed on helium-implanted gold-silver solid solutions after isochronal annealing treatments. Three recovery stages are observed, attributed to the migration and elimination of defects not stabilized by helium atoms, helium bubble nucleation and bubble growth. Similarities with other metals are found for the recovery stages involving bubble nucleation and growth processes. Lifetime measurements indicate that He implantation leads to the formation of small and over-pressurized bubbles that generate internal stresses in the material. A comprehensive picture is drawn for possible mechanisms of helium bubble evolution. Two values of activation energy (0.26 and 0.53 eV) are determined below and above 0.7 T-M , respectively, from the variation of the helium bubble radius during the bubble growth stage. The migration and coalescence mechanism, which accounts for these very low activation energies, controls the helium bubble growth.

  1. Structure and sublimation of water ice films grown in vacuo at 120-190 K studied by positron and positronium annihilation.

    PubMed

    Townrow, S; Coleman, P G

    2014-03-26

    The crystalline structure of ∼ 5-20 μm water ice films grown at 165 and 172 K has been probed by measuring the fraction of positrons forming ortho-positronium (ortho-Ps) and decaying into three gamma photons. It has been established that films grown at slower rates (water vapour pressure ≥ 1 mPa) have lower concentrations of lattice defects and closed pores, which act as Ps traps, than those grown at higher rates (vapour pressure ∼ 100 mPa), evidenced by ortho-Ps diffusion lengths being approximately four times greater in the former. By varying the growth temperature between 162 and 182 K it was found that films become less disordered at temperatures above ∼ 172 K, with the ortho-Ps diffusion length rising by ∼ 60%, in this range. The sublimation energy for water ice films grown on copper has been measured to be 0.462(5) eV using the time dependence of positron annihilation parameters from 165 to 195 K, in agreement with earlier studies and with no measurable dependence on growth rate and thermal history.

  2. A study of inter-crystallite spaces in some polycrystalline inorganic systems using positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Shantarovich, V. P.; Suzuki, T.; Ito, Y.; Kondo, K.; Gustov, V. W.; Melikhov, I. V.; Berdonosov, S. S.; Ivanov, L. N.; Yu, R. S.

    2007-02-01

    Positron annihilation lifetime spectroscopy (PALS) was used for calculation of number density and effective sizes of free volume holes (inter-crystallite spaces) in polycrystal CaSO 4, CaCO 3 (vaterit) and Ca 10(PO 4) 6(OH) 2 (apatite). The effect of substitution of two-valence Ca(II) for three-valence Eu(III) on annihilation characteristics of apatite, studied together with the data on thermo-stimulated luminescence (TSL) and low-temperature sorption of gas (N 2), helped to elucidate mechanism of positronium atom (Ps) localization in the free volume holes and perform corresponding calculations. It came out that PALS is more sensitive to inter-crystallite sites (10 16 cm -3) in polycrystallites than to the free volume holes in polymer glasses (10 19 cm -3). This is due to higher mobility of the precursor of localized Ps in crystallites.

  3. Two-photon processes of electron-positron pair production and annihilation. I. Kinematics and cross sections

    NASA Astrophysics Data System (ADS)

    Nagirner, D. I.

    1999-01-01

    The kinematics of electron-positron pair production and annihilation, i.e., the determination and transformation of the momenta and energies of particles and photons upon the transition from an arbitrary reference frame to the center-of-mass frame of the particles and back, is analyzed in detail. It is found that the magnitudes of the particle momenta in certain directions in pair production may be ambiguous. An interpretation of this ambiguity and a way of circumventing it are given. Invariant quantities and the most convenient variables for calculating various integrals are found. Then the differential and total cross sections are given and the mean frequencies and dispersions of the frequencies of photons produced during annihilation are calculated.

  4. Positron annihilation and constant photocurrent method measurements on a-Si:H films: A comparative approach to defect identification

    NASA Astrophysics Data System (ADS)

    Gordo, P. M.; Ferreira Marques, M. F.; Lopes Gil, C.; de Lima, A. P.; Lavareda, G.; Nunes de Carvalho, C.; Amaral, A.; Kajcsos, Zs.

    2007-02-01

    Defect structure of hydrogenated amorphous silicon thin-films was studied by positron annihilation spectroscopy (PAS), whereas the density of states below the Fermi level was measured by constant photocurrent method (CPM). Divacancies and large vacancy clusters were identified as the main defects present in these films, with relative concentrations strongly dependent on the rf-power. Correlation between PAS, CPM results and I( V) characteristics of solar cells suggests the creation of energy levels above the Fermi energy, not observable by CPM, related to large vacancy clusters.

  5. Reinforcement Mechanism Of Polyurethane-Urea/Clay Nanocomposites Probed By Positron Annihilation Lifetime Spectroscopy And Dynamic Mechanical Analysis

    SciTech Connect

    Rath, S. K.; Patri, M.; Sudarshan, K.; Pujari, P. K.; Khakhar, D. V.

    2010-12-01

    A basis for quantitative analysis of the reinforcement mechanism of polyurethane-urea/clay nanocomposites using two characterization methods, positron annihilation life time spectroscopy (PALS) and dynamic mechanical analysis (DMA) is provided. DMA was used to measure the constrained volume fraction of amorphous soft segments induced by nanoclay and the storage modulus of the nanocomposites. The interfacial interactions in the nanocomposites were investigated by PALS. The modulus enhancement of the organoclay nanocomposites was found to have a good correlation with the volume fraction of the constrained region and the interfacial interactions.

  6. Defect formation and annealing behaviors of fluorine-implanted GaN layers revealed by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, M. J.; Yuan, L.; Cheng, C. C.; Beling, C. D.; Chen, K. J.

    2009-02-01

    Defect formation and annealing behaviors of fluorine-implanted, unintentionally doped GaN layers were studied by positron annihilation spectroscopy (PAS). Single Ga vacancies (VGa) were identified as the main vacancy-type defects detected by PAS after fluorine implantation at 180 keV with a dose of 1×1015 cm-2. Implantation-induced VGa tend to aggregate and form vacancy clusters after postimplantation annealing in N2 ambient at 600 °C. Fluorine ions tend to form F-vacancy complexes quickly after thermal annealing, which is consistent with the proposed diffusion model that predicts the behaviors of fluorine in GaN.

  7. Positron annihilation study for enhanced nitrogen-vacancy center formation in diamond by electron irradiation at 77 K

    SciTech Connect

    Tang, Z.; Chiba, T.; Nagai, Y.; Inoue, K.; Toyama, T.; Hasegawa, M.

    2014-04-28

    A compact ensemble of high density nitrogen-vacancy (NV) centers in diamond is essential to sense various external fields with a high precision at the nanoscale. Here, defects in type IIa and type Ib diamonds induced by 28 MeV electron irradiation at 77 K were studied by combining the positron annihilation spectroscopy and first-principles calculations. It is shown that the electron irradiation at 77 K can significantly enhance the NV center formation by directly converting 24% vacancies into the NV centers, indicating that it is an efficient way to produce the high density NV centers in the type Ib diamond.

  8. Modification of the mesoscopic structure in neutron irradiated EPDM viewed through positron annihilation spectroscopy and dynamic mechanical analysis

    NASA Astrophysics Data System (ADS)

    Lambri, O. A.; Plazaola, F.; Axpe, E.; Mocellini, R. R.; Zelada-Lambri, G. I.; García, J. A.; Matteo, C. L.; Sorichetti, P. A.

    2011-02-01

    This article focuses on the study of the mesoscopic structure in neutron irradiated EPDM both from experimental and theoretical points of view. In this work we reveal completely the modification of the mesostructure of the EPDM due to neutron irradiation, resolving volume fraction, size and distribution of the crystalline zones as a function of the irradiation dose. Positron annihilation spectroscopy and dynamic mechanical analysis techniques are applied and the results are discussed by means of new theoretical results for describing the interaction process between the crystals and amorphous zones in EPDM.

  9. The First Year of INTEGRAL/SPI: Status of 511 keV Positron Annihilation Line Observations

    NASA Astrophysics Data System (ADS)

    Weidenspointner, G.; Lonjou, V.; Knödlseder, J.; Jean, P.; Allain, M.; von Ballmoos, P.; Harris, M. J.; Vedrenne, G.; Teegarden, B. J.; Gehrels, N.; Guessoum, N.; Schönfelder, V.; Chapuis, C.; Dorouchoux, Ph.; Cisana, E.; Valesia, M.

    2004-12-01

    The INTEGRAL observatory, launched in October 2002, carries as one of its two main instruments the high resolution Ge spectrometer SPI . A coded mask allows SPI to image the sky with an angular resolution of about 3 degrees. We summarize the status of SPI observations of 511 keV positron annihilation line radiation from the Galactic center region after the first year of the INTEGRAL mission. The spatial distribution is dominated by emission from the bulge of the Galaxy; this bulge emission is well described by a Gaussian with a FWHM of about 8 degrees. The 511 keV line flux from the bulge is about 10-3 ph/cm2/s, the intrinsic width of the line is 2.7 keV (FWHM). We discuss the implications of these results for the origin of positrons in our Galaxy.

  10. Reply to "Comment on `Gamma-ray spectra from low-energy positron annihilation processes in molecules' "

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoguang; Wang, Meishan; Zhu, Yinghao; Yang, Chuanlu

    2017-03-01

    In reply to the Comment of Green et al. [Phys. Rev. A 95, 036701 (2017)., 10.1103/PhysRevA.95.036701] on our paper [Phys. Rev. A 94, 052709 (2016), 10.1103/PhysRevA.94.052709], we reconfirm that all the conclusions are based on the observation and the comparisons of the theoretical and experimental data. One criticism of Green et al. [Phys. Rev. A 95, 036701 (2017)., 10.1103/PhysRevA.95.036701] concerns the positrophilic electrons and the inner valence electrons. The inner valence electrons or positrophilic electrons show most agreeable widths with the corresponding experimental measurements due to their narrowest momentum distributions for all 59 molecules. However, we agree with the criticism of Green et al. [Phys. Rev. A 95, 036701 (2017)., 10.1103/PhysRevA.95.036701] and reconfirm that this agreement does not represent the dominance of the inner valence in the annihilation process. In this Reply, we will clarify the difference between agreement and dominance and illustrate with some figures. Another criticism is about the approximation used in our paper. We emphasize that the averaged discrepancy of 34.2% for these molecules of the theoretical γ -ray spectra from the experimental measurements is due to the neglect of the positron-electron correlations, vibrational couplings, virtual-state formation, even tunneling of core electrons not the neglect of the positron wave function. In this Reply, we will show, even in this zero-order approximation, these positron-induced effects in the electron-positron annihilation process of molecules can also be analyzed with more corrections and explanations.

  11. Utility of positron annihilation lifetime technique for the assessment of spectroscopic data of some charge-transfer complexes derived from N-(1-Naphthyl)ethylenediamine dihydrochloride

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Adam, Abdel Majid A.; Sharshar, T.; Saad, Hosam A.; Eldaroti, Hala H.

    2014-03-01

    In this work, structural, thermal, morphological, pharmacological screening and positron annihilation lifetime measurements were performed on the interactions between a N-(1-Naphthyl)ethylenediamine dihydrochloride (NEDA·2HCl) donor and three types of acceptors to characterize these CT complexes. The three types of acceptors include π-acceptors (quinol and picric acid), σ-acceptors (iodine) and vacant orbital acceptors (tin(IV) tetrachloride and zinc chloride). The positron annihilation lifetime parameters were found to be dependent on the structure, electronic configuration, the power of acceptors and molecular weight of the CT complexes. The positron annihilation lifetime spectroscopy can be used as a probe for the formation of charge-transfer (CT) complexes.

  12. High energy oxygen irradiation-induced defects in Fe-doped semi-insulating indium phosphide by positron annihilation technique

    NASA Astrophysics Data System (ADS)

    Pan, S.; Mandal, A.; Sohel, Md. A.; Saha, A. K.; Das, D.; Sen Gupta, A.

    2017-02-01

    Positron annihilation technique is applied to study the recovery of radiation-induced defects in 140 MeV oxygen (O6+) irradiated Fe-doped semi-insulating indium phosphide during annealing over a temperature region of 25∘C-650∘C. Lifetime spectra of the irradiated sample are fitted with three lifetime components. Trapping model analysis is used to characterize defect states corresponding to the de-convoluted lifetime values. After irradiation, the observed average lifetime of positron τavg = 263 ps at room temperature is higher than the bulk lifetime by 21 ps which reveals the presence of radiation-induced defects in the material. A decrease in τavg occurs during room temperature 25∘C to 200∘C indicating the dissociation of higher order defects, might be due to positron trapping in acceptor-type of defects (VIn). A reverse annealing stage is found at temperature range of 250∘C-425∘C for S-parameter probably due to the migration of vacancies and the formation of vacancy clusters. Increase in R-parameter from 325∘C to 425∘C indicates the change in the nature of predominant positron trapping sites. Beyond 425∘C, τavg, S-parameter and R-parameter starts decreasing and around 650∘C, τavg and S-parameter approached almost the bulk value showing the annealing out of radiation-induced defects.

  13. Characterization of γ-irradiated polymethyl methacrylate by means of mechanical properties and positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Rubiolo, G. H.; Somoza, A.; Goyanes, S. N.; Consolati, G.; Marzocca, A. J.

    1999-08-01

    An experimental investigation was undertaken to assess the effect of γ irradiation on the ``structural'' state and the corresponding inelastic deformation behavior of polymethyl methacrylate (PMMA). Uniaxial and constant strain rate compression tests were conducted over a range of strain rates at room temperature on glassy polymer specimens of PMMA subjected to different γ-irradiation doses. Measurements of positron annihilation lifetime spectroscopy were performed on samples before the compression test in an attempt to correlate free volume content with yield stress. A kinetic law of plastic flow considering a local shear transformation in a small volume Ω is used to represent the observed mechanical behavior. The density and size of the clusters are found for the material subjected to different irradiation dose. Positron annihilation lifetime spectroscopy was also used to estimate the size and number density of free volume sites in the polymer specimens. The dependence of both magnitudes with the irradiation dose follows those of the plastic cluster of volume Ω. Both results provide experimental evidence that the density and the size of high free volume sites can be used as an internal state variable for characterizing the mechanical state of glassy polymers.

  14. OSSE observations of Galactic 511 keV positron annihilation radiation - Initial phase 1 results. [Oriented Scintillation Spectrometer Experiment

    NASA Technical Reports Server (NTRS)

    Purcell, W. R.; Grabelsky, D. A.; Ulmer, M. P.; Johnson, W. N.; Kinzer, R. L.; Kurfess, J. D.; Strickman, M. S.; Jung, G. V.

    1993-01-01

    The Oriented Scintillation Spectrometer Experiment (OSSE) on the Compton Gamma-Ray Observatory (GRO) has performed numerous observations of the Galactic plane and Galactic center region to measure the distribution of Galactic 511 keV positron annihilation radiation and to search for time variability of the emission. The initial 511 keV line fluxes for the observations performed during the first 18 months of the GRO mission are presented. The 511 keV line flux for a typical Galactic center observation is (2.5 +/- 0.3) x 10 exp -4 gamma/sq cm per sec, where the quoted uncertainty represents the 1 sigma statistical uncertainty. No statistically significant time variability of the line flux has been observed; the 3 sigma upper limit to daily variations from the mean is 3 x 10 exp -4 gamma/sq cm per sec. The distribution of Galactic 511 keV positron annihilation radiation implied by the OSSE observations is discussed and compared with observations by other instruments.

  15. OSSE observations of Galactic 511 keV positron annihilation radiation - Initial phase 1 results. [Oriented Scintillation Spectrometer Experiment

    NASA Technical Reports Server (NTRS)

    Purcell, W. R.; Grabelsky, D. A.; Ulmer, M. P.; Johnson, W. N.; Kinzer, R. L.; Kurfess, J. D.; Strickman, M. S.; Jung, G. V.

    1993-01-01

    The Oriented Scintillation Spectrometer Experiment (OSSE) on the Compton Gamma-Ray Observatory (GRO) has performed numerous observations of the Galactic plane and Galactic center region to measure the distribution of Galactic 511 keV positron annihilation radiation and to search for time variability of the emission. The initial 511 keV line fluxes for the observations performed during the first 18 months of the GRO mission are presented. The 511 keV line flux for a typical Galactic center observation is (2.5 +/- 0.3) x 10 exp -4 gamma/sq cm per sec, where the quoted uncertainty represents the 1 sigma statistical uncertainty. No statistically significant time variability of the line flux has been observed; the 3 sigma upper limit to daily variations from the mean is 3 x 10 exp -4 gamma/sq cm per sec. The distribution of Galactic 511 keV positron annihilation radiation implied by the OSSE observations is discussed and compared with observations by other instruments.

  16. Electronic structure and positron annihilation in LaB/sub 6/ and CeB/sub 6/

    SciTech Connect

    Kubo, Y.; Asano, S.

    1989-05-01

    The energy-band structures for LaB/sub 6/ and CeB/sub 6/ are calculated by the full-potential linearized augmented-plane-wave (FLAPW)= method on the basis of the local-density approximation. The results of the FLAPW band calculations are applied for the calculations of the three-dimensional Lock-Crisp-West (LCW) folded momentum densities (3D LCW FMD's) of positron annihilation in LaB/sub 6/ and CeB/sub 6/ within an independent-particle model (IPM). The results are compared with the experimental ones reconstructed from two-dimensional angular correlation of positron-annihilation-radiation data by Tanigawa et al. Good agreement is observed in the general structures shown by the experimental and the theoretical 3D LCW FMD's. It is indicated that the basic structures of the 3D LCW FMD in LaB/sub 6/ are mainly determined by the Fermi-surface topology, and those in CeB/sub 6/ are due not only to the Fermi-surface topology but also the characters of the electron states near the Fermi energy. The detailed comparison of the experimental results with the IPM ones by the FLAPW method leads to qualitative discussions over the IPM framework in the systems of LaB/sub 6/ and CeB/sub 6/.

  17. Concurrent spectrometry of annihilation radiation and characteristic gamma-rays for activity assessment of selected positron emitters.

    PubMed

    Dolley, S G; Steyn, G F; van Rooyen, T J; Szelecsényi, F; Kovács, Z; Vermeulen, C; van der Meulen, N P

    2017-11-01

    A method is described to determine the activity of non-pure positron emitters in a radionuclide production environment by assessing the 511keV annihilation radiation concurrently with selected γ-lines, using a single High-Purity Germanium (HPGe) detector. Liquid sources of (22)Na, (52)Fe, (52m)Mn, (61)Cu, (64)Cu, (65)Zn, (66)Ga, (68)Ga, (82)Rb, (88)Y, (89)Zr and (132)Cs were prepared specifically for this study. Acrylic absorbers surrounding the sources ensured that the emitted β(+)-particles could not escape and annihilate away from the source region. The absorber thickness was matched to the maximum β(+) energy for each radionuclide. The effect on the 511keV detection efficiency by the non-homogeneous distribution of annihilation sites inside the source and absorber materials was investigated by means of Monte Carlo simulations. It was found that no self-absorption corrections other than those implicit to the detector calibration procedure needed to be applied. The medically important radionuclide, (64)Cu, is of particular interest as its strongest characteristic γ-ray has an intensity of less than 0.5%. In spite of the weakness of its emission intensity, the 1346keV γ-line is shown to be suitable for quantifying the (64)Cu production yield after chemical separation from the target matrix has been performed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Characterization of point defects in CdTe by positron annihilation spectroscopy

    SciTech Connect

    Elsharkawy, M. R. M.; Kanda, G. S.; Keeble, D. J.; Abdel-Hady, E. E.

    2016-06-13

    Positron lifetime measurements on CdTe 0.15% Zn-doped by weight are presented, trapping to monovacancy defects is observed. At low temperatures, localization at shallow binding energy positron traps dominates. To aid defect identification density functional theory, calculated positron lifetimes and momentum distributions are obtained using relaxed geometry configurations of the monovacancy defects and the Te antisite. These calculations provide evidence that combined positron lifetime and coincidence Doppler spectroscopy measurements have the capability to identify neutral or negative charge states of the monovacancies, the Te antisite, A-centers, and divacancy defects in CdTe.

  19. Positron Annihilation Ratio Spectroscopy (PsARS) Applied to Positronium Formation Studies

    DTIC Science & Technology

    2010-03-01

    emission, to Ne 22 . A β + decay is a radioactive process that converts a proton into a neutron, emitting a positron and a neutrino , as 6...in which over 0.5 Mev of binding energy is released in the form of kinetic energy split between the positron and the neutrino . The spectrum of

  20. The Distribution of Galactic 511 keV Positron Annihilation Radiation

    DTIC Science & Technology

    1994-01-01

    and 44Sc, this positron production rate implies a limit to the present rate of Galactic iron nucleosynthesis of 0:7 M per 100 years (see Ramaty...constraints on the positron production rate for the disk and spheroidal components, and on the present rate of Galactic nucleosynthesis of +-unstable

  1. Miscibility and crystallization behavior of poly (3-hydroxybutyrate) and poly (ethylene glycol) blends studied by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Abdel-Hady, E. E.; Abdel-Hamed, M. O.; Hammam, A. M.

    2011-01-01

    Positron annihilation Lifetime (PAL) spectroscopy has been used to study the effect of PEG concentrations on the free volume properties of PHB. The data revealed that the ortho-positronium (o-Ps) lifetime τPs increases with 20% increase in concentration, decrease as the concentration increases to 40%, then rapid increase at 50% concentration of PEG. The o-Ps intensity, I3, shows a linear dependence as the concentration increases with a discontinuity at 20% concentration of PEG. Furthermore, the results presented and discussed in this work show that the PHB and PEG are miscible up to 40% of PEG but greater than 40%, the blend is immiscible. In addition, the mechanical properties of PHB are well improved by the addition of PEG with a low concentration up to 20%, while at higher concentration the blend becomes waxy.

  2. Confined water in controlled pore glass CPG-10-120 studied by positron annihilation lifetime spectroscopy and differential scanning calorimetry

    NASA Astrophysics Data System (ADS)

    Šauša, O.; Mat'ko, I.; Illeková, E.; Macová, E.; Berek, D.

    2015-06-01

    The solidification and melting of water confined in the controlled pore glass (CPG) with average pore size 12.6 nm has been studied by differential scanning calorimetry (DSC) and positron annihilation lifetime spectroscopy (PALS). The fully-filled sample of CPG by water as well as the samples of CPG with different content of water were used. The measurements show the presence of amorphous and crystalline phases of water in this type and size of pores, freezing point depression of a confined liquid and presence of certain transitions at lower temperatures, which could be detected only for cooling regime. The localization of confined water in the partially filled pores of CPG at room temperature was studied.

  3. Auger electron emission initiated by the creation of valence-band holes in graphene by positron annihilation

    PubMed Central

    Chirayath, V. A.; Callewaert, V.; Fairchild, A. J.; Chrysler, M. D.; Gladen, R. W.; Mcdonald, A. D.; Imam, S. K.; Shastry, K.; Koymen, A. R.; Saniz, R.; Barbiellini, B.; Rajeshwar, K.; Partoens, B.; Weiss, A. H.

    2017-01-01

    Auger processes involving the filling of holes in the valence band are thought to make important contributions to the low-energy photoelectron and secondary electron spectrum from many solids. However, measurements of the energy spectrum and the efficiency with which electrons are emitted in this process remain elusive due to a large unrelated background resulting from primary beam-induced secondary electrons. Here, we report the direct measurement of the energy spectra of electrons emitted from single layer graphene as a result of the decay of deep holes in the valence band. These measurements were made possible by eliminating competing backgrounds by employing low-energy positrons (<1.25 eV) to create valence-band holes by annihilation. Our experimental results, supported by theoretical calculations, indicate that between 80 and 100% of the deep valence-band holes in graphene are filled via an Auger transition. PMID:28703225

  4. Hydrolytic Degradation of Poly(L-Lactide-co-Glycolide) Studied by Positron Annihilation Lifetime Spectroscopy and Other Techniques

    NASA Astrophysics Data System (ADS)

    Pamuła, E.; Dryzek, E.; Dobrzyński, P.

    2006-11-01

    Changes of the poly(L-lactide-co-glycolide) structure as a function of degradation time in phosphate-buffered saline for 7 weeks were investigated by gel permeation chromatography, differential scanning calorimetry, nuclear magnetic resonance (1H NMR), and positron annihilation lifetime spectroscopy. Surface properties as wettability by sessile drop and topography by atomic force microscopy were also characterized. Chain-scission of polyester bonds in hydrolysis reaction causes a quite uniform decrease in molecular weight, and finally results in an increase in semicrystallinity. Molecular composition of the copolymer and water contact angle do not change considerably during degradation time. Atomic force microscopy studies suggest that the copolymer degrades by "in bulk" mechanism. The average size of the molecular-level free volume holes declines considerably after one week of degradation and remains constant till the sixth week of degradation. The free volume fraction decreases as a function of degradation time.

  5. GRO: Red-shifted electron-positron annihilation gamma-rays from radiopulsars

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin

    1993-01-01

    Reported red-shifted e(+) + e(-) yields gamma + gamma 511 keV gamma-rays from the Crab pulsar would, if ultimately confirmed, provide crucial clues about the structure of the powerful magnetospheric accelerator in that rapidly spinning gamma-ray pulsar. In an attempt to understand the origin of this component of the Crab pulsar's emission, we try to account for the following: (1) a flow of approximately 10 exp 40 e(+/-)/s into near the surface of the neutron star; (2) a relatively narrow annihilation line implying that the annihilating e(+/-) pairs probably had a velocity (along vector B) less than or approximately = 10(exp -1)c; and (3) a tentative light curve suggesting a doubly peaked structure different from that of the rest of the Crab pulsar's nonthermal radiation.

  6. Positron annihilation study of proton-irradiated reactor pressure vessel steels

    NASA Astrophysics Data System (ADS)

    Liu, Xiangbing; Wang, Rongshan; Ren, Ai; Huang, Ping; Wu, Yichu; Jiang, Jing; Zhang, Chonghong; Wang, Xitao

    2012-10-01

    The microstructures, irradiation-induced defects and changes of mechanical property of Chinese domestic A508-3 steels after proton irradiation were investigated by TEM, positron lifetime, slow positron beam Doppler broadening spectroscopy and hardness measurements. The defects were induced by 240 keV proton irradiation with fluences of 1.25×1017 ions cm-2 (0.26 dpa), 2.5×1017 ions cm-2 (0.5 dpa), and 5.0×1017 ions cm-2 (1.0 dpa). The TEM observation revealed that the as-received steel had typical bainitic-ferritic microstructures. It was also observed that Doppler broadening S-parameter and average lifetime increased with dose level owing to the formation of defects and voids induced by proton irradiation. The correlation between positron parameters and hardness was found.

  7. Positron Annihilation Study of Ternary Sb2Te3- x Se x for Its Tuning Electrical and Thermal Properties

    NASA Astrophysics Data System (ADS)

    Zheng, Wenwen; Yang, Dongwang; Bi, Peng; He, Chunqing; Liu, Fengming; Shi, Jing; Ding, Yi; Wang, Ziyu; Xiong, Rui

    2017-05-01

    Atomic scale point defects play important roles in tuning the carrier concentration and ultimately influencing electrical and thermal properties. Herein, we fabricated the ternary Sb2Te3- x Se x alloys to study the intimate relationship of internal point defects and thermoelectric performance. The Se substitution of Te atoms in the Sb2Te3 lattice decreased the electrical conductivity from 2.2 × 105 S/m to 6.4 × 104 S/m owing to the reduced holes concentration. The declined point defects, including antisite defects and vacancies in materials, gave rise to the decrease in carrier concentration. The Seebeck coefficient of the ternary Sb2Te3- x Se x exhibited an increase with doping of Se atoms. Simultaneously, the thermal conductivity behaved a fallihg trend as well as increasing Se content. As a result, the ZT value reached the maximum from the corresponding Sb2Te2.9Se0.1 pellet. Positron annihilation measurement revealed that the average positron lifetime showed a monotonic decrease with Se addition, demonstrating the reduced point defects, which was in agreement with the thermoelectric performance.

  8. Positron Annihilation Study of Ternary Sb2Te3-x Se x for Its Tuning Electrical and Thermal Properties

    NASA Astrophysics Data System (ADS)

    Zheng, Wenwen; Yang, Dongwang; Bi, Peng; He, Chunqing; Liu, Fengming; Shi, Jing; Ding, Yi; Wang, Ziyu; Xiong, Rui

    2016-10-01

    Atomic scale point defects play important roles in tuning the carrier concentration and ultimately influencing electrical and thermal properties. Herein, we fabricated the ternary Sb2Te3-x Se x alloys to study the intimate relationship of internal point defects and thermoelectric performance. The Se substitution of Te atoms in the Sb2Te3 lattice decreased the electrical conductivity from 2.2 × 105 S/m to 6.4 × 104 S/m owing to the reduced holes concentration. The declined point defects, including antisite defects and vacancies in materials, gave rise to the decrease in carrier concentration. The Seebeck coefficient of the ternary Sb2Te3-x Se x exhibited an increase with doping of Se atoms. Simultaneously, the thermal conductivity behaved a fallihg trend as well as increasing Se content. As a result, the ZT value reached the maximum from the corresponding Sb2Te2.9Se0.1 pellet. Positron annihilation measurement revealed that the average positron lifetime showed a monotonic decrease with Se addition, demonstrating the reduced point defects, which was in agreement with the thermoelectric performance.

  9. CHARACTERIZATION OF PLASTICALLY-INDUCED STRUCTURAL CHANGES IN A Zr-BASED BULK METALLIC GLASS USING POSITRON ANNIHILATION SPECTROCOPY

    SciTech Connect

    Flores, K M; Kanungo, B P; Glade, S C; Asoka-Kumar, P

    2005-09-16

    Flow in metallic glasses is associated with stress-induced cooperative rearrangements of small groups of atoms involving the surrounding free volume. Understanding the details of these rearrangements therefore requires knowledge of the amount and distribution of the free volume and how that distribution evolves with deformation. The present study employs positron annihilation spectroscopy to investigate the free volume change in Zr{sub 58.5}Cu{sub 15.6}Ni{sub 12.8}Al{sub 10.3}Nb{sub 2.8} bulk metallic glass after inhomogeneous plastic deformation by cold rolling and structural relaxation by annealing. Results indicate that the size distribution of open volume sites is at least bimodal. The size and concentration of the larger group, identified as flow defects, changes with processing. Following initial plastic deformation the size of the flow defects increases, consistent with the free volume theory for flow. Following more extensive deformation, however, the size distribution of the positron traps shifts, with much larger open volume sites forming at the expense of the flow defects. This suggests that a critical strain is required for flow defects to coalesce and form more stable nanovoids, which have been observed elsewhere by high resolution TEM. Although these results suggest the presence of three distinct open volume size groups, further analysis indicates that all groups have the same line shape parameter. This is in contrast to the distinctly different interactions observed in crystalline materials with multiple defect types. This similarity may be due to the disordered structure of the glass and positron affinity to particular atoms surrounding open-volume regions.

  10. Lambda production in electron-positron annihilation at 29 GeV

    SciTech Connect

    Baden, A.R.

    1986-08-01

    The inclusive cross-secton for the production of the singly-strange baryons lambda and anti lambda, along with the differential cross-sections in momentum and energy, are measured by e/sup +/e/sup -/ annihilation at a center-of-mass energy of 29GeV. The charged decay mode lambda ..-->.. p..pi.. is used in a search for polarization. Such a polarization may be used as a check of CP invariance in lambda production. The sample of events with two detected decays is analyzed for correlations in production angle. 43 refs., 44 figs.

  11. Collins effect in semiinclusive deeply inelastic scattering and in electron-positron-annihilation

    SciTech Connect

    Efremov, A.V.; Goeke, K.; Schweitzer, P.

    2006-05-01

    The Collins fragmentation function is extracted from HERMES data on azimuthal single spin asymmetries in semi-inclusive deeply inelastic scattering, and BELLE data on azimuthal asymmetries in e{sup +}e{sup -}-annihilations. A Gaussian model is assumed for the distribution of transverse parton momenta and predictions are used from the chiral quark-soliton model for the transversity distribution function. We find that the HERMES and BELLE data yield a consistent picture of the Collins fragmentation function which is compatible with COMPASS data and the information previously obtained from an analysis of DELPHI data. Estimates for future experiments are made.

  12. Donor-doping effect in BaTiO 3 ceramics using positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Mohsen, M.; Krause-Rehberg, R.; Massoud, A. M.; Langhammer, H. T.

    2003-10-01

    Temperature-dependent measurements using positron lifetime spectroscopy (PLS) were carried out to study various defects in polycrystalline donor doped BaTiO 3 (BT) samples. Annealing under different donor-doping level of La and Y were performed. At high doping level, it was found that with increasing doping level the average lifetime increases. This is attributed to the interplay of complexes containing oxygen vacancies VO and other vacancies, such as VBa, VTi as well as grain boundaries.

  13. Positron Annihilation Ratio Spectroscopy Study of Electric Fields Applied to Positronium at Material Interfaces

    DTIC Science & Technology

    2011-03-01

    positron and neutrino are 14 emitted. When Na-22 decays, 90.4% of the time it decays via β + to an excited state of Ne-22. 3.7 psec after the...of Na-22 [12:7]. 22 22 11 10Na Ne e       (8) where γ is the gamma ray and ν is the neutrino . Due to the fact that the neutrino can

  14. Detection of atomic scale changes in the free volume void size of three-dimensional colorectal cancer cell culture using positron annihilation lifetime spectroscopy.

    PubMed

    Axpe, Eneko; Lopez-Euba, Tamara; Castellanos-Rubio, Ainara; Merida, David; Garcia, Jose Angel; Plaza-Izurieta, Leticia; Fernandez-Jimenez, Nora; Plazaola, Fernando; Bilbao, Jose Ramon

    2014-01-01

    Positron annihilation lifetime spectroscopy (PALS) provides a direct measurement of the free volume void sizes in polymers and biological systems. This free volume is critical in explaining and understanding physical and mechanical properties of polymers. Moreover, PALS has been recently proposed as a potential tool in detecting cancer at early stages, probing the differences in the subnanometer scale free volume voids between cancerous/healthy skin samples of the same patient. Despite several investigations on free volume in complex cancerous tissues, no positron annihilation studies of living cancer cell cultures have been reported. We demonstrate that PALS can be applied to the study in human living 3D cell cultures. The technique is also capable to detect atomic scale changes in the size of the free volume voids due to the biological responses to TGF-β. PALS may be developed to characterize the effect of different culture conditions in the free volume voids of cells grown in vitro.

  15. An evaluation of algorithms for the deconvolution of Doppler broadening positron annihilation radiation spectroscopy spectra

    NASA Astrophysics Data System (ADS)

    Woo, Teresa K. C.; Cheng, Vincent K. W.; Beling, Christopher D.; Ng, Michael K. P.

    2005-06-01

    Two least squares minimization methods for the deconvolution of 1D Doppler Broadening Annihilation Radiation Spectroscopy (DBARS) spectra have been tested with spectra generated by Monte Carlo simulation according to the following functional forms: inverted triangle, inverted parabola, Laplace, Lorentz and a model DBARS spectrum for a metal composed of an inverted parabola and a Gaussian function. These reference spectra were firstly convoluted with a Gaussian broadening factor and then restored to its original form with the algorithms. The method with Tikhonov regularizer and non-negativity constraint still failed to restore the sharp features of these spectral functions although the negative signal found in an earlier study was removed. On the other hand, the method with the Huber regularizer was successful. Optimization of the deconvolution in terms of regularization parameters is necessary to achieve good deconvolution. The optimization of the deconvolution was checked with visual matching and a quality factor which takes into account the number of counts in the spectrum.

  16. Fermi surface and conduction electrons of Na 0.64WO 3 by two-dimensional angular correlation of positron annihilation radiation

    NASA Astrophysics Data System (ADS)

    Akahane, T.; Hoffmann, K. R.; Chiba, T.; Berko, S.

    1985-06-01

    Two-dimensional angular correlation of positron annihilation radiation (2-D ACAR) form a Na 0.64WO 3 single crystal has been measured with a 64 detector 2-D ACAR apparatus. The results show that the Fermi surface of this compound has a jungle-gym like structure similar to that of ReO 3 and that the conduction electrons have strong t2g character.

  17. Nondestructive Induced Residual Stress Assessment in Superalloy Turbine Engine Components Using Induced Positron Annihilation (IPA)

    SciTech Connect

    Rideout, C. A.; Ritchie, S. J.; Denison, A.

    2007-03-21

    Induced Positron Analysis (IPA) has demonstrated the ability to nondestructively quantify shot peening/surface treatments and relaxation effects in single crystal superalloys, steels, titanium and aluminum with a single measurement as part of a National Science Foundation SBIR program and in projects with commercial companies. IPA measurement of surface treatment effects provides a demonstrated ability to quantitatively measure initial treatment effectiveness along with the effect of operationally induced changes over the life of the treated component. Use of IPA to nondestructively quantify surface and subsurface residual stresses in turbine engine materials and components will lead to improvements in current engineering designs and maintenance procedures.

  18. Characteristics of vinyl-ester and carbon fiber composite dry and wet probe by Positron Annihilation Lifetime Spectroscopy

    NASA Astrophysics Data System (ADS)

    Madani, Mahmoud; Granata, Richard D.

    2015-03-01

    Carbon fiber composites of vinylester resins, Derakane 8084 and 510A, were studied dry and after water exposure. In this study, positron annihilation lifetime spectroscopy (PALS) was used to investigate the free volume fraction and the size of the free volume voids within the polymer matrix. The relative free volume (fractions replae by of positron lifetime intensities) in VE8084 polymer and in VE510A (Space) polymer were 35.2% and 13.8%, respectively. The free volume lifetime and intensities were determined as a function of the polymer thickness and significant differences were observed in both polymers with versus without post-curing. The effects of water uptake in these materials were also determined by PALS. Water uptake showed a 2% change in intensity of the longer lifetime (1.85 ns) in VE8084 polymer and in VE510A about 1.8%. The longer lifetime intensities in the wet composites were 17.1% in the 8084 polymer and its carbon fiber composite and 7.1% in the 510A polymer and its carbon fiber composite. For composite with 8084 polymer saturated (0.33% water gain) with seawater at 40 or 60 °C, no change in the longer lifetime intensity was observed which indicates no water entered the free volume voids (indicates replace by and) some differences between composite and neat polymer. For 510A resin the third lifetime intensity dropped from 7.1% to 3.9% indicating 48% of the free volume filled with water in the composite only after saturation with seawater with respect to dry one.

  19. Positron annihilation spectroscopic study of high performance semi-interpenetrating network polyimids

    NASA Technical Reports Server (NTRS)

    Ray, Asit K.

    1995-01-01

    Semi-interpenetrating (S-IPN) network polyimids were made from different proportions of LaRC RP46 (a thermosetpolyimid) and LaRC BDTA-ODA (a thermoplastic polyimid). The ultimate goal of this networking is to improve the mechanical properties of the thermoset polyimid. Positron lifetime study was made to calculate lifetime based on second component of the life time spectra and the free volume & microvoid size. All these properties tend to decrease steadily with increasing thermoset content except at the 50 percent thermoset level where these properties show sudden drop. This result contradicts with the initial expectation that the blend properties should change gradually if it were a solid solution of thermoset (TSP) and thermoplastic (TPP) components. Thermal analyses (TMA, DSC, DMA & TGA) were run to complement the positron life time studies. The TMA and DSC studies confirm the contradiction mentioned above. Further experimentation with S-IPN polymers made at TSP/TTP content around 50/50 level are being conducted to explain this anomaly. Scanning electron microscope study of the S-IPN polyimid samples is under way in order to detect morphological differences which might help explain the phenomenon mentioned above.

  20. Study of radiation-induced degradation of RPV steels and model alloys by positron annihilation and Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Zeman, Andrej; Debarberis, Luigi; Kupča, L.'udovít; Acosta, Beatriz; Kytka, Miloš; Degmová, Jarmila

    2007-03-01

    The influence of different microstructural processes on the degradation due to radiation embrittlement has studied by positron annihilation and Mössbauer spectroscopy. The materials studied consisted of WWER-440 base (15Kh2MFA) and weld (10KhMFT) RPV steels which were neutron-irradiated at fluence levels of 0.78 × 10 24 m -2, 1.47 × 10 24 m -2 and 2.54 × 10 24 m -2; WWER-1000 base (15Kh2NMFAA) and weld (12Kh2N2MAA) irradiated at a fluence level 1.12 × 10 24 m -2; three different model alloys implanted with protons at two dose levels (up to 0.026 dpa), finally the base metal of WWER-1000 (15Kh2NMFAA) was thermally treated with the intention to simulate the P-segregation process. It has been shown possible to correlate the values of parameters obtained by such techniques and data of mechanical testing (ductile-to-brittle transition temperature and upper shelf energy).

  1. Dependence of alpha particle track diameter on the free volume holes size using positron annihilation lifetime technique

    NASA Astrophysics Data System (ADS)

    El-Gamal, S.; Abdalla, Ayman M.; Abdel-Hady, E. E.

    2015-09-01

    The alpha particle track diameter dependence of the free volume holes size (Vf) in DAM-ADC and CR-39 nuclear track detectors was investigated using positron annihilation lifetime technique. The effect of temperature on the alpha particle track diameter and free volume were also investigated in the T-range (RT-130 °C). The obtained results revealed that the values of ortho-positronium lifetime τ3 and Vf increases while I3 slightly increases as T increases for the two detectors. The values of τ3, Vf and I3 are higher in CR-39 than DAM-ADC. The interpretation of obtained results is based on the fact that increasing T leads to significant enhancement of thermal expansion of the polymer matrix and consequently Vf increases. The track diameter increases as T increases. This can be explained by the fact that the increase in T increases the crystal size and Vf in the polymer. A relationship between Vf and the alpha particle track diameter was obtained. Moreover results of detector irradiation, along with free volume evaluation are addressed and thoroughly discussed.

  2. Structural analysis of IPC zeolites and related materials using positron annihilation spectroscopy and high-resolution argon adsorption.

    PubMed

    Jagiello, J; Sterling, M; Eliášová, P; Opanasenko, M; Zukal, A; Morris, R E; Navaro, M; Mayoral, A; Crivelli, P; Warringham, R; Mitchell, S; Pérez-Ramírez, J; Čejka, J

    2016-06-01

    The advanced investigation of pore networks in isoreticular zeolites and mesoporous materials related to the IPC family was performed using high-resolution argon adsorption experiments coupled with the development of a state-of-the-art non-local density functional theory approach. The optimization of a kernel for model sorption isotherms for materials possessing the same layer structure, differing only in the interlayer connectivity (e.g. oxygen bridges, single- or double-four-ring building units, mesoscale pillars etc.) revealed remarkable differences in their porous systems. Using high-resolution adsorption data, the bimodal pore size distribution consistent with crystallographic data for IPC-6, IPC-7 and UTL samples is shown for the first time. A dynamic assessment by positron annihilation lifetime spectroscopy (PALS) provided complementary insights, simply distinguishing the enhanced accessibility of the pore network in samples incorporating mesoscale pillars and revealing the presence of a certain fraction of micropores undetected by gas sorption. Nonetheless, subtle differences in the pore size could not be discriminated based on the widely-applied Tao-Eldrup model. The combination of both methods can be useful for the advanced characterization of microporous, mesoporous and hierarchical materials.

  3. Vacancy trapping by solute atoms during quenching in Cu-based dilute alloys studied by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Yabuuchi, A.; Yamamoto, Y.; Ohira, J.; Sugita, K.; Mizuno, M.; Araki, H.; Shirai, Y.

    2009-11-01

    Frozen-in vacancies and the recovery have been investigated in some Cu-based dilute alloys by using positron annihilation lifetime spectroscopy. Cu-0.5at%Sb, Cu-0.5at%Sn and Cu-0.5at%In dilute bulk alloys were quenched to ice water from 1223 K. A pure-Cu specimen was also quenched from the same temperature. As a result, no frozen-in vacancies have been detected in as-quenched pure-Cu specimen. On the other hand, as-quenched Cu-0.5at%Sb alloy contained frozen-in thermal equilibrium vacancies with concentration of 3 × 10-5. Furthermore, these frozen-in vacancies in Cu-0.5at%Sb alloy were stable until 473 K, and began to migrate at 523 K. Finally, the Cu-Sb alloy were recovered to the fully annealed state at 823 K. This thermal stability clearly implies some interaction exists between a vacancy and Sb atom and due to the interaction, thermal equilibrium vacancies are trapped by Sb atoms during quenching.

  4. Accounting for the lack of nano-effect in a thermoset/clay nanocomposite: A positron annihilation study

    NASA Astrophysics Data System (ADS)

    Rath, S. K.; Sudarshan, K.; Patri, M.; Pujari, P. K.

    2015-06-01

    The effect of nanoclay dispersion on the thermo-mechanical properties of an unsaturated polyester thermoset resin was studied by flexural and dynamic mechanical property measurements. Transmission electron microscopy studies revealed intercalated clay dispersion morphology in the nanocomposites. The thermomechanical measurements showed a steady decrease in the flexural strength and a relaxation temperature, with only moderate increase in the storage modulus at 1% clay loading, followed by a drop at higher clay loadings. In order to understand the absence of nano-effect in this case, free volume measurements were carried out by using positron annihilation lifetime spectroscopy. A bimodal distribution of o-Ps life times was observed. Nanoclay loading resulted in the increase of the o-Ps intensity corresponding to the longest life time as well as free volume fraction suggesting diminished chain packing efficiency in the nanocomposites. We posit that nanoclay induced decreased chain packing efficiency and the presence of higher free volume size elements might cause deterioration in mechanical properties of the nanocomposites.

  5. Impacts of B-factory measurements on determination of fragmentation functions from electron-positron annihilation data

    NASA Astrophysics Data System (ADS)

    Hirai, M.; Kawamura, H.; Kumano, S.; Saito, K.

    2016-11-01

    Fragmentation functions are determined for the pion and kaon by global analyses of charged-hadron production data in electron-positron annihilation. Accurate measurements were reported by the Belle and BaBar collaborations for the fragmentation functions at the center-of-mass energies of 10.52 and 10.54 GeV, respectively, at the KEK and SLAC B factories, whereas other available ee measurements were mostly done at higher energies, mainly at the Z mass of 91.2 GeV. There is a possibility that gluon fragmentation functions, as well as quark fragmentation functions, are accurately determined by scaling violation. We report our global analysis of the fragmentation functions especially to show impacts of the B-factory measurements on the fragmentation function determination. Our results indicate that the fragmentation functions are determined more accurately not only by the scaling violation but also by the high-statistical nature of the Belle and BaBar data. However, there are some tensions between the Belle and BaBar data in comparison with previous measurements. We also explain how the flavor dependence of quark fragmentation functions and the gluon function are separated by using measurements at different Q values. In particular, the electric and weak charges are different depending on the quark type, so that a light-quark flavor separation also became possible in principle due to the precise data at both √s ≃10.5 and 91.2 GeV.

  6. A comparative study on ferromagnetic C/O-implanted GaN films by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Juping; Li, Qiang; Liu, Jiandang; Ye, Bangjiao

    2016-05-01

    Room temperature ferromagnetism was observed in both C- and O-implanted GaN films, which were irradiated by 80 keV C/O-ions with respective dose of 5 × 1016 and 2 × 1017 ions/cm2. Positron annihilation spectroscopy was used to explore the magnetic origin and the correlation between the magnetism and structural features. The results reveal that carbon-ions play an important role in the stable ferromagnetism in C-implanted GaN films, while oxygen has no effect on the magnetic properties, even than a weak hysteresis loop was observed in O-implanted sample. This weak ferromagnetism is demonstrated as originated from Ga-related vacancies which induced by implantation. With first-principle calculations, we confirmed that substitutional C-ion at N-site can introduce magnetic moment for 0.8 μB and stabilize ferromagnetic coupling with adjacent Ga-vacancy at room temperature. Moreover, the effect of O-ions was clearly ruled out. Our discussion gives an experimental and theoretical insight of the different origin of ferromagnetism between acceptor and donor non-metal-doped GaN materials.

  7. Ion induced modification in free volume in PN-6 and PES polymers by positron annihilation lifetime studies

    NASA Astrophysics Data System (ADS)

    Kumar, Rajesh; Prasad, Rajendra

    2007-03-01

    The irradiation of polymeric materials with swift heavy ions (SHI) results in a change of their free volume properties which have strong correlation with their macroscopic properties. Positron annihilation lifetime spectroscopy (PALS) has been developed into a powerful characterization tool for the study of free volume and free volume fraction in polymers. Polyamide nylon-6 (PN-6) and polyethersulphone (PES) films of thickness of 250 μm were irradiated with C5+ ions of energy 70 MeV from 15 UD Pelletron accelerator at Inter University Accelerator Centre (IUAC), New Delhi, India. PN-6 films were irradiated to the fluences of 1011, 1012 and 1013 ions/cm2 whereas PES films were irradiated to the fluences of 9.3 × 1011, 9.3 × 1012 and 1.2 × 1013 ions/cm2. Characterization of the effect of ion irradiation on free volume has been done by PALS. The average free volume and fractional free volume obtained from long lived component, attributed to ortho-positronium (o-Ps) lifetime, are found to decrease with the fluence in both the cases. With increasing fluence, scissioned segments cross-link randomly, resulting in a decrease of average free volume due to overlapping of tracks.

  8. Free volume evolution in 50 MeV Li3+ ion-irradiated polymers studied by positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh, Paramjit; Kumar, Rajesh; Prasad, Rajendra

    2013-02-01

    This article is aimed at studying the effect of ion irradiation on free volume of polyethersulphone (PES) and polyamide nylon-6 (PN-6) polymers by positron annihilation lifetime spectroscopy (PALS). Free volume properties of polymeric materials change with swift heavy ion irradiation. Free volume is found to have a strong correlation with the macroscopic properties of the polymer. PALS has recently emerged as a unique non-destructive and non-interfering nano-probe, capable of measuring the free volume hole size in polymers with high detection efficiency. PES and PN-6 polymer films of thickness of 250 μm were irradiated with Li3+ ions of energy 50 MeV from the 15 UD Pelletron accelerator at the Inter University Accelerator Centre, New Delhi, India. PES films were irradiated to the fluences of 1011, 1012, 1013 and 1014 ions/cm2, whereas PN-6 films were irradiated to the fluences of 1011, 1012 and 1013 ions/cm2. The average free volume and fractional free volume obtained from the long-lived component, attributed to ortho-positronium lifetime, are found to vary with the variation of fluence in both the cases.

  9. Measurement of the Total Cross Section and Energy - Correlations for Electron-Positron Annihilation Into Hadrons at 29 GEV.

    NASA Astrophysics Data System (ADS)

    Heltsley, Brian Keith

    This work describes measurements of the total cross section and the energy-energy correlation cross section for hadronic events produced in electron-positron annihilation at a center-of-mass energy of 29 GeV. The performance of the MAC detector at PEP, featuring total absorption calorimetry and charged particle tracking over nearly the full solid angle, is examined and found to meet the original design requirements. The unique and optimal features of MAC are fully exploited to reduce the systematics involved in both measurements, resulting in significant quantitative tests of the theory of quantum chromodynamics. Special attention is focussed on radiative corrections to the total cross section, which constitute a critical component of the acceptance determination, and for the first time the effects of higher order than (alpha)('3) QED processes are included. The total cross section measurement yields R = 3.91 with a total error of (+OR-)2.7%, an accuracy not previously attained by other experiments. For the energy-energy correlation cross section, the consequences of combining pure quantum chromodynamics with contrasting fragmentation models are explored and compared with the data, and result in different values for the strong coupling constant, (alpha)(,s) (TURNEQ) 0.13 (+OR-) 0.02 for incoherent jet formation and 0.24 (+OR-) 0.04 in the string model.

  10. AC Dielectric Properties and Positron Annihilation Study on Co and Ti Substitution Effect on Ca-Sr M-Hexaferrites

    NASA Astrophysics Data System (ADS)

    Mahmoud, K. R.; Eraky, M. R.

    2016-06-01

    The dependence of AC conductivity σ AC, dielectric constant έ, and dielectric loss tangent tan δ on frequency and composition have been investigated at room temperature for polycrystalline Ca0.5Sr0.5Co x Ti x Fe12 - 2 x O19 (where 0.0 ≤ x ≤ 0.8) hexaferrites. It was found that the parameters σ AC, ɛ ', and tan δ have maximum values at x = 0.4 of the Co and Ti substitution. The behavior of σ AC, ɛ ', and tan δ with frequency and composition was explained on the basis of the hopping conduction mechanism and the Koops model. Positron annihilation lifetime spectroscopy (PALS) was used to investigate the defects and changes in electron density for hexaferrite samples. The PAL parameters ( τ 1, I 1, τ 2, I 2, and mean lifetime) show that altering the doping percentage of the Co and Ti ions affects the size and concentration of defects. The results reveal that there are some large voids in the studied samples. The obtained results indicate the high sensitivity of the PALS technique to the enhanced structure changes with changing composition of the investigated samples and correlate the results with the measured electrical parameters.

  11. Analysis of exclusive kT jet algorithms in electron-positron annihilation

    NASA Astrophysics Data System (ADS)

    Chay, Junegone; Kim, Chul; Kim, Inchol

    2015-10-01

    We study the factorization of the dijet cross section in e+e- annihilation using the generalized exclusive jet algorithm which includes the cone-type, the JADE, the kT, the anti-kT and the Cambridge/Aachen jet algorithms as special cases. In order to probe the characteristics of the jet algorithms in a unified way, we consider the generalized kT jet algorithm with an arbitrary weight of the energies, in which various types of the kT-type algorithms are included for specific values of the parameter. We show that the jet algorithm respects the factorization property for the parameter α <2 . The factorized jet function and the soft function are well defined and infrared safe for all the jet algorithms except the kT algorithm. The kT algorithm (α =2 ) breaks the factorization since the jet and the soft functions are infrared divergent and are not defined for α =2 , though the dijet cross section is infrared finite. In the jet algorithms which enable factorization, we give a phenomenological analysis using the resummed and the fixed-order results.

  12. Helium-Implantation-Induced Damage in NHS Steel Investigated by Slow-Positron Annihilation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Yuan-Fei; Shen, Tie-Long; Gao, Xing; Gao, Ning; Yao, Cun-Feng; Sun, Jian-Rong; Wei, Kong-Fang; Li, Bing-Sheng; Zhang, Peng; Cao, Xing-Zhong; Zhu, Ya-Bin; Pang, Li-Long; Cui, Ming-Huan; Chang, Hai-Long; Wang, Ji; Zhu, Hui-Ping; Wang, Dong; Song, Peng; Sheng, Yan-Bin; Zhang, Hong-Peng; Hu, Bi-Tao; Wang, Zhi-Guang

    2014-03-01

    Evolutions of defects and helium contained defects produced by atomic displacement and helium deposition with helium implantation at different temperatures in novel high silicon (NHS) steel are investigated by a slow positron beam. Differences of the defect information among samples implanted by helium to a fluence of 1 × 1017 ions/cm2 at room temperature, 300°C, 450°C and 750°C are discussed. It is found that the mobility of vacancies and vacancy clusters, a recombination of vacancy-type defects and the formation of the He-V complex lead to the occurrence of these differences. At high temperature irradiations, a change of the diffusion mechanism of He atoms/He bubbles might be one of the reasons for the change of the S-parameter.

  13. Hard photon processes in electron-positron annihilation at 29 GeV

    SciTech Connect

    Gold, M.S.

    1986-11-01

    The hard photon processes ..mu mu gamma.. and hadrons + ..gamma.. in e/sup +/e/sup -/ annihilation at 29 GeV have been studied. The study is based on an integrated luminosity of 226 pb/sup -1/ taken at PEP with the Mark II detector. For the ..mu mu gamma.. process, a small fraction of non-planar events are observed with missing momentum along the beam direction. The resulting missing energy spectrum is consistent with that expected from higher order effects. The observed cross section is consistent with the predicted cross section for this process, sigma/sup exp/sigma/sup th/ = .90 +- .05 +- .06. The observed hard photon energy spectrum and mass distributions are found to be in agreement with O(..cap alpha../sup 3/) QED. The measured charge asymmetry is in good agreement with the predicted value, A/sub exp/A/sub th/ = .83 +- .25 +- .12. The ..mu gamma.. invariant mass distribution is used to place a limit on a possible excited muon coupling G..gamma../M* for excited muon masses in the range 1 < M* < 21 GeV of (G..gamma../M*)/sup 2/ < 10/sup -5/ GeV/sup -2/ at a 95% confidence level. In the hadrons + ..gamma.. process, evidence for final state radiation is found in an excess of events over that predicted from initial state radiation alone of 253 +- 54 +- 60 events. Further evidence for final state radiation is found in a large hadronic charge asymmetry A/sub Had+..gamma../= (-24.6 +- 5.5)%.

  14. Positron annihilation study in SmFeAsO and SmFeAsO0.82F0.18

    NASA Astrophysics Data System (ADS)

    Hao, Y. P.; Chen, X. L.; Liu, R. H.; Kong, W.; Cheng, B.; Xu, H. X.; Chen, X. H.; Han, R. D.; Weng, H. M.; Du, H. J.; Ye, B. J.

    2010-02-01

    SmFeAsO1-xFx polycrystalline samples were first studied by positron annihilation lifetime spectroscopy and Doppler-broadening spectroscopy, combined with the calculated results of positron lifetime. The experimental results agree well with the calculated positron bulk lifetime in SmFeAsO and SmFeAsF crystals. The temperature dependence of S-parameter shows a remarkable difference between the parent and superconductor. An abrupt jump of S-parameter is detected around 150 K in parent sample, however, two different slopes were shown below and above superconducting transition. The linearity S-T plot determines one-type of defects through the superconducting transition which must play an important role in superconductivity.

  15. Free volumes in bulk nanocrystalline metals studied by the complementary techniques of positron annihilation and dilatometry.

    PubMed

    Würschum, Roland; Oberdorfer, Bernd; Steyskal, Eva-Maria; Sprengel, Wolfgang; Puff, Werner; Pikart, Philip; Hugenschmidt, Christoph; Pippan, Reinhard

    2012-07-15

    Free-volume type defects, such as vacancies, vacancy-agglomerates, dislocations, and grain boundaries represent a key parameter in the properties of ultrafine-grained and nanocrystalline materials. Such free-volume type defects are introduced in high excess concentration during the processes of structural refinement by severe plastic deformation. The direct method of time-differential dilatometry is applied in the present work to determine the total amount and the kinetics of free volume by measuring the irreversible length change upon annealing of bulk nanocrystalline metals (Fe, Cu, Ni) prepared by high-pressure torsion (HPT). In the case of HPT-deformed Ni and Cu, distinct substages of the length change upon linear heating occur due to the loss of grain boundaries in the wake of crystallite growth. The data on dilatometric length change can be directly related to the fast annealing of free-volume type defects studied by in situ Doppler broadening measurements performed at the high-intensity positron beam of the FRM II (Garching, Munich, Germany).

  16. Positron annihilation Doppler broadening spectroscopy study on Fe-ion irradiated NHS steel

    NASA Astrophysics Data System (ADS)

    Zhu, Huiping; Wang, Zhiguang; Gao, Xing; Cui, Minghuan; Li, Bingsheng; Sun, Jianrong; Yao, Cunfeng; Wei, Kongfang; Shen, Tielong; Pang, Lilong; Zhu, Yabin; Li, Yuanfei; Wang, Ji; Song, Peng; Zhang, Peng; Cao, Xingzhong

    2015-02-01

    In order to study the evolution of irradiation-induced vacancy-type defects at different irradiation fluences and temperatures, a new type of ferritic/martensitic (F/M) steel named NHS (Novel High Silicon) was irradiated by 3.25 MeV Fe-ion at room temperature and 723 K to fluences of 4.3 × 1015 and 1.7 × 1016 ions/cm2. After irradiation, vacancy-type defects were investigated with variable-energy positron beam Doppler broadening spectra. Energetic Fe-ions produced a large number of vacancy-type defects in the NHS steel, but one single main type of vacancy-type defect was observed in both unirradiated and irradiated samples. The concentration of vacancy-type defects decreased with increasing temperature. With the increase of irradiation fluence, the concentration of vacancy-type defects increased in the sample irradiated at RT, whereas for the sample irradiated at 723 K, it decreased. The enhanced recombination between vacancies and excess interstitial Fe atoms from deeper layers, and high diffusion rate of self-interstitial atoms further improved by diffusion via grain boundary and dislocations at high temperature, are thought to be the main reasons for the reversed trend of vacancy-type defects between the samples irradiated at RT and 723 K.

  17. Mechanism of phosphorescence quenching in photomagnetic molecules determined by positron annihilation spectroscopy

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, A.; Naidu, S. V. N.

    1994-01-01

    Platinum Octaethyl Porphyrin (Pt.OEP) is an efficient phosphor under ultraviolet excitation. The phosphorescent triplet state (T(sub 1)) is readily quenched by the oxygen (O2) molecules. This phenomenon is being utilized as the basis for global air pressure measurements in aerodynamic facilities at various laboratories. The exact mechanism by which O2 molecules quench the (T(sub 1)-S(sub 0)) transitions is still unknown. The diamagnetic S(sub n) singlet states, which feed T(sub 1) states via intersystem crossings, would presumably not be affected by O2. It must be the magnetic T(sub 1) states, which can interact with the paramagnetic O2 molecules, that are affected. However, our positron lifetime and Doppler broadening studies suggest the formation of (S(sub n).02) complexes which can also eventually reduce the population of the T(sub 1) states (i.e. quench phosphorescence). This is possible since higher triplet states in (Pt-OEP) are admixed with the S(sub n) states via spin orbit interactions. The experimental procedures and the results of various measurements are discussed in this paper.

  18. Mechanism of phosphorescence quenching in photomagnetic molecules determined by positron annihilation spectroscopy

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, A.; Naidu, S. V. N.

    1994-01-01

    Platinum Octaethyl Porphyrin (Pt.OEP) is an efficient phosphor under ultraviolet excitation. The phosphorescent triplet state (T(sub 1)) is readily quenched by the oxygen (O2) molecules. This phenomenon is being utilized as the basis for global air pressure measurements in aerodynamic facilities at various laboratories. The exact mechanism by which O2 molecules quench the (T(sub 1) - S(sub 0)) transitions is still unknown. The diamagnetic S(sub n) singlet states, which feed T(sub 1) states via intersystem crossings, would presumably not be affected by O2. It must be the magnetic T(sub 1) states, which can interact with the paramagnetic O2 molecules, that are affected. However, our positron lifetime and Doppler broadening studies suggest the formation of (S(sub n) central dot O2) complexes which can also eventually reduce the population of the T(sub 1) states (i.e. quench phosphorescence). This is possible since higher triplet states in (Pt.OEP) are admixed with the S(sub n) states via spin orbit interactions. The experimental procedures and the results of various measurements are discussed in this paper.

  19. Positron annihilation study of defects in electron-irradiated single crystal zinc oxide

    NASA Astrophysics Data System (ADS)

    To, C. K.; Yang, B.; Beling, C. D.; Fung, S.; Ling, C. C.; Gong, M.

    2011-01-01

    Pressurized melt grown zinc oxide (ZnO) single crystals purchased from Cermet Inc. were irradiated by 2MeV electrons with fluence of 6x1017cm-2. Isochronal annealing from 100°C-800°C was performed on the crystals under argon and air ambience. Variable Energy Doppler Broadening Spectroscopy (VEDBS) was carried out on both the as-grown and the irradiated samples at each annealing step. The migration, agglomeration and annealing of grown-in and irradiated-introduced defects were studied. It was observed that the grown-in vacancy-type defects concentration decreased at 300°C and 600 °C. For the irradiated sample annealed in argon, the positron trapping vacancy-type defect concentration decreased at 300°C and 600°C. Further annealing the as-grown and irradiated samples in argon increased the S parameter further. For the irradiated sample annealed in air, the vacancy-type defect concentration decreases at 300°C and 700°C.

  20. Investigation of Oxygen-Induced Quenching of Phosphorescence in Photoexcited Aromatic Molecules by Positron Annihilation Spectroscopy

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, Abe

    1996-01-01

    Platinum OctaEthyl Porphyrin (Pt.OEP) is an efficient phosphor under ultraviolet excitation. The phosphorescent triplet state P(T(Sup 1)) is readily quenched by the oxygen O2 molecules. This phenomenon is being utilized as the basis for global air pressure measurements in aerodynamic facilities at various laboratories. The exact mechanism by which O2 molecules quench the P(T(Sup 1) approaches P(S(Sub O)) transitions is still unknown. The diamagnetic singlet states P(S(Sub n)), which feed P(T(Sub 1)) states via intersystem crossings, would presumably not be affected by O2. It must be only the magnetic P(T(Sub 1)) states, which can interact with the paramagnetic O2 molecules, that are affected. However, our positron lifetime and Doppler broadening studies suggest the formation of O2P(S(Sub n)), complexes which can also eventually reduce the population of the P(T(Sub 1)) states (i.e., quench phosphorescence). This reduction is possible because higher triplet states in (Pt.OEP) are admixed with the P(S(Sub 1)), states via spin orbit interactions. The experimental procedures and the results of various measurements are presented in this paper.

  1. A study of defects in iron-based binary alloys by the Mössbauer and positron annihilation spectroscopies

    SciTech Connect

    Idczak, R. Konieczny, R.; Chojcan, J.

    2014-03-14

    The room temperature positron annihilation lifetime spectra and {sup 57}Fe Mössbauer spectra were measured for pure Fe as well as for iron-based Fe{sub 1−x}Re{sub x}, Fe{sub 1−x}Os{sub x}, Fe{sub 1−x}Mo{sub x}, and Fe{sub 1−x}Cr{sub x} solid solutions, where x is in the range between 0.01 and 0.05. The measurements were performed in order to check if the known from the literature, theoretical calculations on the interactions between vacancies and solute atoms in iron can be supported by the experimental data. The vacancies were created during formation and further mechanical processing of the iron systems under consideration so the spectra mentioned above were collected at least twice for each studied sample synthesized in an arc furnace— after cold rolling to the thickness of about 40 μm as well as after subsequent annealing at 1270 K for 2 h. It was found that only in Fe and the Fe-Cr system the isolated vacancies thermally generated at high temperatures are not observed at the room temperature and cold rolling of the materials leads to creation of another type of vacancies which were associated with edge dislocations. In the case of other cold-rolled systems, positrons detect vacancies of two types mentioned above and Mössbauer nuclei “see” the vacancies mainly in the vicinity of non-iron atoms. This speaks in favour of the suggestion that in iron matrix the solute atoms of Os, Re, and Mo interact attractively with vacancies as it is predicted by theoretical computations and the energy of the interaction is large enough for existing the pairs vacancy-solute atom at the room temperature. On the other hand, the corresponding interaction for Cr atoms is either repulsive or attractive but smaller than that for Os, Re, and Mo atoms. The latter is in agreement with the theoretical calculations.

  2. General relativistic ray-tracing algorithm for the determination of the electron-positron energy deposition rate from neutrino pair annihilation around rotating neutron and quark stars

    NASA Astrophysics Data System (ADS)

    Kovács, Z.; Harko, T.

    2011-11-01

    We present a full general relativistic numerical code for estimating the energy-momentum deposition rate (EMDR) from neutrino pair annihilation (?). The source of the neutrinos is assumed to be a neutrino-cooled accretion disc around neutron and quark stars. We calculate the neutrino trajectories by using a ray-tracing algorithm with the general relativistic Hamilton's equations for neutrinos and derive the spatial distribution of the EMDR due to the annihilations of neutrinos and antineutrinos around rotating neutron and quark stars. We obtain the EMDR for several classes of rotating neutron stars, described by different equations of state of the neutron matter, and for quark stars, described by the Massachusetts Institute of Technology (MIT) bag model equation of state and in the colour-flavour-locked (CFL) phase. The distribution of the total annihilation rate of the neutrino-antineutrino pairs around rotating neutron and quark stars is studied for isothermal discs and accretion discs in thermodynamical equilibrium. We demonstrate both the differences in the equations of state for neutron and quark matter and rotation with the general relativistic effects significantly modify the EMDR of the electrons and positrons generated by the neutrino-antineutrino pair annihilation around compact stellar objects, as measured at infinity.

  3. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: Positronium annihilation in silica aerogel studied by a positron age-momentum correlation technique

    NASA Astrophysics Data System (ADS)

    Wang, Dan-Ni; Zhang, Lan-Zhi; Wang, Bao-Yi; Yu, Run-Sheng; Zhang, Zhi-Ming; Li, Dao-Wu; Wei, Long

    2009-01-01

    A high-performance positron age-momentum correlation (AMOC) spectrometer was newly developed. The counting rate is increased up to 200 cps much larger than the value 20 cps reported by other international groups. And at the same time, the time resolution still keeps at the international level of 220 ps. Furthermore, positronium (Ps) annihilation in silica aerogel was investigated by AMOC, which indicates: (1) Ps annihilation between the grains dominantly undergoes pick-off process and spin conversion from o-Ps to p-Ps; (2) Annealing below 400 °C changes the grain surface conditions, i. e. the desorption of hydrogen and the decrease of the defect centers concentration.

  4. Observation of the electron ridge Fermi surface in YBa{sub 2}Cu{sub 3}O{sub 7-x} by positron annihilation

    SciTech Connect

    Smedskjaer, L.C.; Fang, Y.; Bailey, K.G.; Welp, U.; Bansil, A.

    1991-04-01

    Positron annihilation (two-dimensional-angular-correlation) experiments on an untwinned single crystal of metallic YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} sample are reported in the c-projection. The measurements were carried out at room temperature and involved 94 Mcounts. An analysis of the spectra reveals clearly for the first time the presence of the electron ridge Fermi surface associated with the one-dimensional chain bands, and orthorhombic anisotropies in momentum density in good agreement with the band theory predictions.

  5. Ab initio study of the positronation of the CaO and SrO molecules including calculation of annihilation rates.

    PubMed

    Buenker, Robert J; Liebermann, Heinz-Peter

    2012-07-15

    Ab initio multireference single- and double-excitation configuration interaction calculations have been performed to compute potential curves for ground and excited states of the CaO and SrO molecules and their positronic complexes, e(+)CaO, and e(+)SrO. The adiabatic dissociation limit for the (2)Σ(+) lowest states of the latter systems consists of the positive metal ion ground state (M(+)) and the OPs complex (e(+)O(-)), although the lowest energy limit is thought to be e(+)M + O. Good agreement is found between the calculated and experimental spectroscopic constants for the neutral diatomics wherever available. The positron affinity of the closed-shell X (1)Σ(+) ground states of both systems is found to lie in the 0.16-0.19 eV range, less than half the corresponding values for the lighter members of the alkaline earth monoxide series, BeO and MgO. Annihilation rates (ARs) have been calculated for all four positronated systems for the first time. The variation with bond distance is generally similar to what has been found earlier for the alkali monoxide series of positronic complexes, falling off gradually from the OPs AR value at their respective dissociation limits. The e(+)SrO system shows some exceptional behavior, however, with its AR value reaching a minimum at a relatively large bond distance and then rising to more than twice the OPs value close to its equilibrium distance.

  6. Interstitial oxygen related defects and nanovoids in Au implanted a-SiO2 glass depth profiled by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Ravelli, L.; Macchi, C.; Mariazzi, S.; Mazzoldi, P.; Egger, W.; Hugenschmidt, C.; Somoza, A.; Brusa, R. S.

    2015-12-01

    Samples of amorphous silica were implanted with Au ions at an energy of 190 keV and fluences of 1× {{10}14} ions cm-2and 5× {{10}14} ions cm-2 at room temperature. The damage produced by ion implantation and its evolution with the thermal treatment at 800 °C for one hour in nitrogen atmosphere was depth profiled using three positron annihilation techniques: Doppler broadening spectroscopy, positron annihilation lifetime spectroscopy and coincidence Doppler broadening spectroscopy. Around the ion projected range of {{R}\\text{p}}=67 nm, a size reduction of the silica matrix intrinsic nanovoids points out a local densification of the material. Oxygen related defects were found to be present at depths four times the ion projected range, showing a high mobility of oxygen molecules from the densified and stressed region towards the bulk. The 800 °C thermal treatment leads to a recovery of the silica intrinsic nanovoids only in the deeper damaged region and the defect distribution, probed by positrons, shrinks around the ion projected range where the Au atoms aggregate. Open volume defects at the interface between Au and the amorphous matrix were evidenced in both the as implanted and in the thermal treated samples. A practically complete disappearance of the intrinsic nanovoids was observed around {{R}\\text{p}} when the implantation fluence was increased by two orders of magnitude (3× {{10}16} ions cm-2). In this case, the oxygen defects move to a depth five times larger than {{R}\\text{p}} .

  7. Positron annihilation spectroscopy of vacancy-related defects in CdTe:Cl and CdZnTe:Ge at different stoichiometry deviations

    PubMed Central

    Šedivý, L.; Čížek, J.; Belas, E.; Grill, R.; Melikhova, O.

    2016-01-01

    Positron annihilation spectroscopy (PAS) was used to examine the effect of defined Cd-rich and Te-rich annealing on point defects in Cl-doped CdTe and Ge-doped CdZnTe semi-insulating single crystals. The as-grown crystals contain open-volume defects connected with Cd vacancies . It was found that the Cd vacancies agglomerate into clusters coupled with Cl in CdTe:Cl, and in CdZnTe:Ge they are coupled with Ge donors. While annealing in Cd pressure reduces of the density, subsequent annealing in Te pressure restores . The CdTe:Cl contains negatively-charged shallow traps interpreted as Rydberg states of A-centres and representing the major positron trapping sites at low temperature. Positrons confined in the shallow traps exhibit lifetime, which is shorter than the CdTe bulk lifetime. Interpretation of the PAS data was successfully combined with electrical resistivity, Hall effect measurements and chemical analysis, and allowed us to determine the principal point defect densities. PMID:26860684

  8. Study of Submonolayer Films of GOLD/COPPER(100) and PALLADIUM/COPPER(100) Using Positron Annihilation Induced Auger Electron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Keunho

    Positron Annihilation induced Auger Electron Spectroscopy (PAES), Electron induced Auger Electron Spectroscopy (EAES), and Low Energy Electron Diffraction (LEED) have been used to study the surface composition, surface alloying and overlayer formation of ultrathin films of Au and Pd on Cu(100). This is the first systematic application of PAES to the study of the surface properties of ultrathin layers of metals on metal substrates. Temperature induced changes in the top layer surface compositions in Au/Cu(100) and Pd/Cu(100) are directly observed using PAES, while EAES spectra indicate only minor changes. The surface alloying of the Au/Cu(100) and Pd/Cu(100) systems are demonstrated using PAES in conjunction with LEED. The PAES intensity measurements also provide evidence for positron trapping at surface defects such as steps, kinks and isolated adatoms. The PAES intensity was found to be strongly dependent on surface defects introduced by ion sputtering. The surface defect dependence of the PAES intensity is interpreted in terms of the surface atomic diffusion and positron trapping at surface defects in Au/Cu(100) and Pd/Cu(100). In both systems the shapes of the PAES intensity versus coverage curves for submonolayer coverages at 173K are quite distinct indicating differences in overlayer growth and diffusion behavior of Au and Pd adatoms on the Cu(100) surface. PAES intensities for both Au and Pd are saturated at 1 monolayer demonstrating the extreme surface selectivity of PAES.

  9. Formation of isolated Zn vacancies in ZnO single crystals by absorption of ultraviolet radiation: a combined study using positron annihilation, photoluminescence, and mass spectroscopy.

    PubMed

    Khan, Enamul H; Weber, Marc H; McCluskey, Matthew D

    2013-07-05

    Positron annihilation spectra reveal isolated zinc vacancy (V(Zn)) creation in single-crystal ZnO exposed to 193-nm radiation at 100 mJ/cm(2) fluence. The appearance of a photoluminescence excitation peak at 3.18 eV in irradiated ZnO is attributed to an electronic transition from the V(Zn) acceptor level at ~100 meV to the conduction band. The observed V(Zn) density profile and hyperthermal Zn(+) ion emission support zinc vacancy-interstitial Frenkel pair creation by exciting a wide 6.34 eV Zn-O antibonding state at 193-nm photon-a novel photoelectronic process for controlled V(Zn) creation in ZnO.

  10. Dislocation Substructure in the Cold-Rolled Ni-20 Mass Pct Cr Alloy Analyzed by X-ray Diffraction, Positron Annihilation Lifetime, and Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Yonemura, Mitsuharu; Inoue, Koji

    2016-12-01

    The systematic change in the dislocation density and characteristics that develop under cold rolling as a simulated deformation was studied in order to examine the fundamental behavior of dislocations in terms of the dislocation substructure formation. In particular, the dislocation density was quantified by X-ray line profile analysis (XLPA), which is effective for quantifying the dislocation density and character; positron annihilation lifetime (PAL), which is sensitive to vacancy-type lattice defects; the Bailey-Hirsch equation from the hardness (Hv); and transmission electron microscopy (TEM). The strain dependency of the dislocation density analyzed by XLPA, PAL, TEM, and Hv showed a similar tendency with an increase in the dislocation. In particular, the dislocation density by XLPA had good agreement with the results of TEM at low strain levels and with PAL at high strain levels. As a result, a combination of these techniques successfully showed the behavior of the dislocation substructure.

  11. Nanopore structure relevant to the D2O permeation into silica thin films as studied by secondary ion mass spectrometry, ellipsometric porosimetory and positron annihilation

    NASA Astrophysics Data System (ADS)

    Yoshimoto, S.; Ito, K.; Hosomi, H.; Nakamura, T.; Takeda, M.

    2017-01-01

    Subnanoscopic pore structure relevant to the water permeation for two types of silica thin films, fabricated by plasma-enhanced chemical vapor deposition (PECVD) and thermal oxidization (TO), were examined by means of dynamic secondary ion mass spectrometry (D-SIMS), vapor-adsorption ellipsometric porosimetry (EP), and low-energy positron annihilation spectroscopy (PALS). The D‑ secondary ion intensity for the PECVD film, observed using D-SIMS, was much higher than for the TO film, indicative of the higher permeance of D2O molecules in the matrix of the PECVD film. The results from PALS and EP suggest that this is ascribed to the larger pores and the higher open porosity of the PECVD film as compared to the TO film.

  12. Direct Observation of the Surface Segregation of Cu in Pd by Time-Resolved Positron-Annihilation-Induced Auger Electron Spectroscopy

    SciTech Connect

    Mayer, J.; Hugenschmidt, C.; Schreckenbach, K.

    2010-11-12

    Density functional theory calculations predict the surface segregation of Cu in the second atomic layer of Pd which has not been unambiguously confirmed by experiment so far. We report measurements on Pd surfaces covered with three and six monolayers of Cu using element selective positron-annihilation-induced Auger electron spectroscopy (PAES) which is sensitive to the topmost atomic layer. Moreover, time-resolved PAES, which was applied for the first time, enables the investigation of the dynamics of surface atoms and hence the observation of the segregation process. The time constant for segregation was experimentally determined to {tau}=1.38(0.21) h, and the final segregated configuration was found to be consistent with calculations. Time-dependent PAES is demonstrated to be a novel element selective technique applicable for the investigation of, e.g., heterogeneous catalysis, corrosion, or surface alloying.

  13. Direct observation of the surface segregation of Cu in Pd by time-resolved positron-annihilation-induced Auger electron spectroscopy.

    PubMed

    Mayer, J; Hugenschmidt, C; Schreckenbach, K

    2010-11-12

    Density functional theory calculations predict the surface segregation of Cu in the second atomic layer of Pd which has not been unambiguously confirmed by experiment so far. We report measurements on Pd surfaces covered with three and six monolayers of Cu using element selective positron-annihilation-induced Auger electron spectroscopy (PAES) which is sensitive to the topmost atomic layer. Moreover, time-resolved PAES, which was applied for the first time, enables the investigation of the dynamics of surface atoms and hence the observation of the segregation process. The time constant for segregation was experimentally determined to τ=1.38(0.21)  h, and the final segregated configuration was found to be consistent with calculations. Time-dependent PAES is demonstrated to be a novel element selective technique applicable for the investigation of, e.g., heterogeneous catalysis, corrosion, or surface alloying.

  14. Effect of storage on microstructural changes of Carbopol polymers tracked by the combination of positron annihilation lifetime spectroscopy and FT-IR spectroscopy.

    PubMed

    Szabó, Barnabás; Süvegh, Károly; Zelkó, Romána

    2011-09-15

    Different types of Carbopols are frequently applied excipients of various dosage forms. Depending on the supramolecular structure, their water sorption behaviour could significantly differ. The purpose of the present study was to track the supramolecular changes of two types of Carbopol polymers (Carbopol 71G and Ultrez 10NF) alone and in their physical mixture with a water-soluble drug, vitamin B(12), as a function of storage time. The combination of FT-IR spectroscopy, positron annihilation lifetime spectroscopy (PALS) and Doppler-broadening spectroscopy was applied to follow the effect of water uptake on the structural changes. Our results indicate that water-induced interactions between polymeric chains can be sensitively detected. This enables the prediction of stability of dosage forms in the course of storage.

  15. A comparison of the doppler-broadened positron annihilation spectra of neutron irradiated Al 2O 3 and MgAl 2O 3

    NASA Astrophysics Data System (ADS)

    Jones, P. L.; Schaffer, J. P.; Cocks, F. H.; Clinard, F. W.; Hurley, G. F.

    1985-01-01

    Radiation damage studies of oxides and ceramics have become of increasing importance due to the projected use of these materials in thermonuclear fusion reactors as electronic insulators and first wall materials. In addition these materials are important in RAD waste disposal. As part of a study of the defect structure in radiation damaged ceramics Doppler-broadened positron annihilation spectra have been obtained for a series of single crystal sapphire (α-Al 2O 3) and polycrystal (1:1) and (1:2) magnesium aluminate spinel (MgO·Al 2O 3 and MgO-2Al 2O 3) samples. These samples were irradiated in EBR-II to a fluence of 3 × 10 25 n/m 2 (E > 0.1 MeV) at 740°C, and 2 × 10 26 n/m 2 (E > 0.1 MeV) at ~ 550°C respectively. Positron annihilation spectra lineshapes for the irradiated, annealed, and as-received samples of both materials were compared using S parameter analysis. These calculations were made on deconvoluted gamma ray spectra that were free of any instrumental broadening effects. In this way, absolute S parameter changes could be calculated. The observed changes in the S parameter are consistent with independent volume swelling measurements for both the α-A1 2O 3 and the (1:2) MgAl 2O 4 samples. However, the change in S parameter measured for the (1:1) spinel is contrary to the measured volume change. This apparent anomaly indicates a predominence of interstitial as opposed to vacancy type defects in this material.

  16. Single crystal growth of Ga[subscript 2](Se[subscript x]Te[subscript 1;#8722;x])[subscript 3] semiconductors and defect studies via positron annihilation spectroscopy

    SciTech Connect

    Abdul-Jabbar, N.M.; Bourret-Courchesne, E.D.; Wirth, B.D.

    2012-12-10

    Small single crystals of Ga{sub 2}(Se{sub x}Te{sub 1-x}){sub 3} semiconductors, for x = 0.1, 0.2, 0.3, were obtained via modified Bridgman growth techniques. High resolution powder x-ray diffractometry confirms a zincblende cubic structure, with additional satellite peaks observed near the (111) Bragg line. This suggests the presence of ordered vacancy planes along the [111] direction that have been previously observed in Ga{sub 2}Te{sub 3}. Defect studies via positron annihilation spectroscopy show an average positron lifetime of {approx} 400 ps in bulk as-grown specimens. Such a large lifetime suggests that the positron annihilation sites in these materials are dominated by defects. Moreover, analyzing the electron momenta via coincidence Doppler broadening measurements suggests a strong presence of large open-volume defects, likely to be vacancy clusters or voids.

  17. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: Identification of pore size in porous SiO2 thin film by positron annihilation

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Qin, Xiu-Bo; Wang, Dan-Ni; Yu, Run-Sheng; Wang, Qiao-Zhan; Ma, Yan-Yun; Wang, Bao-Yi

    2009-02-01

    Positron annihilation lifetime and Doppler broadening of annihilation line techniques have been used to obtain information about the small pore structure and size of porous SiO2 thin film produced by sputtered Al-Si thin film and etched Al-Si thin film. The film is prepared by an Al/Si 75:25 at.-% (Al75Si25) target with the radiofrequency (RF) power of 66 W at room temperature. A 5 wt.-% phosphoric acid solution is used to etch the Al cylinders. All the Al cylinders dissolved in the solution after 15 h at room temperature, and the sample is subsequently rinsed in pure water. In this way, the porous SiO2 on the Si substrate is produced. From our results, the values of all lifetime components in the spectra of Al-Si thin film are less than 1 ns, but the value of one of the lifetime components in the spectra of porous SiO2 thin film is τ = 7.80 ns. With these values of lifetime, RTE (Rectangular Pore Extension) model has been used to analyze the pore size.

  18. Measuring Positron Annihilation in NaI(Tl) Detectors as the Final Stage in a Carbon Diagnostic.

    NASA Astrophysics Data System (ADS)

    Braaten, Melissa; Brown, Cassarah; Padalino, Stephen; Glebov, Vladimir; Sangster, T. Craig; Duffy, Timothy

    2007-11-01

    This study was performed to increase the detection efficiency of 511 keV annihilation radiation from decaying C-11 by indentifying and eliminating different forms of background radiation originating from the source and the ambient background in the gamma ray coincidence spectrum. Cu-64 was substituted for C-11 in this investigation since it could be easily made from Cu-63 via neutron capture using a PuBe neutron source. Using Cu-64, the effect of ambient background and source induced radiation in the NaI detectors was examined in three coincidence spectra. The spectra were generated by pairing the output signals of the three NaI(Tl) detectors and displaying them as two dimensional spectra. Different gamma ray background contributions to the coincidence spectrum were studied, including annihilation radiation from pair production in the detectors and the lead shielding. Detector geometries and source materials which modified the Compton scattering background were also investigated.

  19. Graphene networks and their influence on free-volume properties of graphene-epoxidized natural rubber composites with a segregated structure: rheological and positron annihilation studies.

    PubMed

    He, Canzhong; She, Xiaodong; Peng, Zheng; Zhong, Jieping; Liao, Shuangquan; Gong, Wei; Liao, Jianhe; Kong, Lingxue

    2015-05-14

    Epoxidized natural rubber-graphene (ENR-GE) composites with segregated GE networks were successfully fabricated using the latex mixing combined in situ reduced technology. The rheological behavior and electrical conductivity of ENR-GE composites were investigated. At low frequencies, the storage modulus (G') became frequency-independent suggesting a solid-like rheological behavior and the formation of GE networks. According to the percolation theory, the rheological threshold of ENR-GE composites was calculated to be 0.17 vol%, which was lower than the electrical threshold of 0.23 vol%. Both percolation thresholds depended on the evolution of the GE networks in the composites. At low GE concentrations (<0.17 vol%), GE existed as individual units, while a "polymer-bridged GE network" was constructed in the composites when GE concentrations exceeded 0.17 vol%. Finally, a "three-dimensional GE network" with percolation conductive paths was formed with a GE concentration of 0.23 vol%, where a remarkable increase in the conductivity of ENR-GE composites was observed. The effect of GE on the atom scale free-volume properties of composites was further studied by positron annihilation lifetime spectroscopy and positron age momentum correlation measurements. The motion of ENR chains was retarded by the geometric confinement of "GE networks", producing a high-density interfacial region in the vicinity of GE nanoplatelets, which led to a lower ortho-positronium lifetime intensity and smaller free-volume hole size.

  20. Free-volume defects investigation of GeS2-Ga2S3-CsI chalcogenide glasses by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Junpeng; Wang, Guoxiang; Lin, Changgui; Zhang, Tengyu; Zhang, Rui; Huang, Zhaohuang; Shen, Xiang; Gu, Bingchuan; Ye, Bangjiao; Ying, Feifei; Li, Maozhong; Nie, Qiuhua

    2017-06-01

    The transformation behavior of free-volume defect in (80GeS2-20Ga2S3)100-x (CsI)x (x = 0, 5, 10, 15 mol%) chalcogenide glasses was studied by employing positron annihilation spectroscopic technique, which could reveal valuable information for in-depth understanding of nano-structural defects in glassy matrix. The results indicate that the structural changes caused by CsI additives can be adequately described by positron trapping modes determined with two-state model. The initial addition of CsI (x = 5 mol%) led to a void contraction, whereas, the void agglomeration occurred with the increase of CsI and the free-volume defects of the glasses were obviously reduced. The atomic density ρ is inversely proportional to the number of these defects. Meanwhile, the UV cut-off edge shifts toward short-wavelength with increasing of CsI. This study provides the valuable information of defects evolution in GeS2-Ga2S3-CsI glasses.

  1. Post-irradiation annealing behavior of microstructure and hardening of a reactor pressure vessel steel studied by positron annihilation and atom probe tomography

    NASA Astrophysics Data System (ADS)

    Kuramoto, A.; Toyama, T.; Takeuchi, T.; Nagai, Y.; Hasegawa, M.; Yoshiie, T.; Nishiyama, Y.

    2012-06-01

    Post-irradiation annealing (PIA) behavior of irradiation-induced microstructural changes and hardening of an A533B (0.16 wt.% Cu) steel after neutron-irradiation of 3.9 × 1019 n cm-2 (0.061 displacement per atom (dpa)) at 290 °C was studied by positron annihilation spectroscopy (PAS), atom probe tomography (APT) and Vickers microhardness measurements. Coincidence Doppler broadening and positron lifetime measurements clearly reveal two recovery stages; (i) as-irradiated state to annealing at 450 °C and (ii) annealing from 450 to 600 °C. The first stage is due to annealing out of the most of irradiation-induced vacancy-related defects, while the second stage corresponds to dissolving of irradiation-induced solute nanoclusters (SCs). APT observations reveal that the SCs are enriched with Cu, Mn, Ni and Si and that their number densities decrease with increasing annealing temperature without coarsening to give almost complete recovery at 550 °C. The experimental hardening is almost twice the SC hardening estimated by the Russell-Brown model below 350 °C, whereas it is almost the same as that estimated in the range 400-550 °C.

  2. Thermal and optical excitation of trapped electrons in high-density polyethylene (HDPE) studied through positron annihilation

    NASA Astrophysics Data System (ADS)

    Nahid, F.; Zhang, J. D.; Yu, T. F.; Ling, C. C.; Fung, S.; Beling, C. D.

    2011-04-01

    Positronium (Ps) formation in high-density polyethylene (HDPE) has been studied below the glass transition temperature. The formation probability increases with positron irradiation time due to an increasing number of inter-track trapped electrons becoming available for positron capture. The temperature variation of the saturated Ps level is discussed in different models. The quenching of trapped electrons by light has been studied and the optical de-trapping cross-section for different photon energies has been estimated over the visible region.

  3. Measurements of Defect Structures by Positron Annihilation Lifetime Spectroscopy of the Tellurite Glass 70TeO2-5XO-10P2O5-10ZnO-5PbF2 (X = Mg, Bi2, Ti) Doped with Ions of the Rare Earth Element Er3+

    NASA Astrophysics Data System (ADS)

    Pach, K.; Filipecki, J.; Golis, E.; Yousef, El. S.; Boyko, V.

    2017-04-01

    The objective of the study was the structural analysis of the 70TeO2-5XO-10P2O5-10ZnO-5PbF2 (X = Mg, Bi2, Ti) tellurite glasses doped with ions of the rare-earth elements Er3+, based on the PALS (positron annihilation lifetime spectroscopy) method of measuring positron lifetimes. Values of positron lifetimes and the corresponding intensities may be connected with the sizes and number of structural defects, the sizes of which range from a few angstroms to a few dozen nanometers. Experimental positron lifetime spectrum revealed existence of two positron lifetime components τ 1 and τ 2. Their interpretation was based on two-state positron trapping model where the physical parameters are the positron annihilation rate and positron trapping rate.

  4. Structural and defect characterization of Gd-doped GaN films by X-ray diffraction and positron annihilation

    NASA Astrophysics Data System (ADS)

    Yabuuchi, A.; Oshima, N.; O'Rourke, B. E.; Suzuki, R.; Ito, K.; Sano, S.; Higashi, K.; Zhou, Y.-K.; Hasegawa, S.

    2014-04-01

    Molecular-beam-epitaxy-grown Ga1-xGdxN films were investigated by X-ray diffraction and slow positron beams. From the positron lifetime results, N-vacancy-related defects may be expected in the Ga0.9Gd0.1N film grown under Ga-rich conditions which exhibits a lattice expansion in the c-axis direction. In contrast, Ga vacancies more than 1019 cm-3 were detected in the Ga0.9Gd0.1N film grown under N-rich conditions which does not exhibit the lattice expansion, implying that the highly-concentrated Ga vacancies contribute to a relaxation of the lattice distortion caused by incorporating oversized Gd atoms.

  5. Positron Annihilation Studies of Defects in Ti-6Al-4 V Subjected to Heat Treatments and Rolling

    NASA Astrophysics Data System (ADS)

    Sultana, Nashrin; Nambissan, P. M. G.; Datta, S.; Banerjee, M. K.

    Positron lifetime and coincidence Doppler broadening (CDBS) measurements were made on samples of Ti-6Al-4 V alloy subjected to different mechanical and thermal treatments. The results indicated the presence of point defects in moderate concentrations. The as-received sample was initially heat treated at 1343K for 30 minutes and slow-cooled to extract reference values. Even when subjected to heat treatment at 1343K and fast-quenched, the inherent defect structures did not show substantial reconfiguration in size or concentration. Yet in a separate case of heat treatment at the same temperature and duration followed by hot-rolling to 50% deformation, the deformation-induced defects were found retained in it on quenching. Soaking at the elevated temperature did not produce any significant difference. In another sample, when cold-rolling was performed after heat-treatment and fast-quenching, we found the retention followed by room-temperature migration and coalescence of the generated defects with the existing ones. The measured positron lifetimes suggested the existence of defects of smaller sizes and/or dislocations. In another sample of the alloy with identical treatments at 1248K (below the α to β transition), the positron lifetimes were slightly larger in magnitude.

  6. Three Dimensional Positron Annihilation Momentum Measurement Technique Applied to Measure Oxygen-Atom Defects in 6H Silicon Carbide

    DTIC Science & Technology

    2010-03-01

    decay of 22 Na is written as 22 22 * 11 10Na Ne (1) where is the neutrino and Ne* is the excited neon atom (Figure 2). Figure 2...Decay scheme of 22 Na. 90.4 % decays by emission of a positron and neutrino to the excited state of 22 Ne. The ground state is reached after 3.7...psec by emission of a release of 1.274 MeV [6:7]. 8 Neutrinos have a small probability of interaction with matter [6], so they are undetected

  7. Deconvolution of positron annihilation coincidence Doppler broadening spectra using an iterative projected Newton method with non-negativity constraints

    NASA Astrophysics Data System (ADS)

    Ho, K. F.; Beling, C. D.; Fung, S.; Cheng, Vincent K. W.; Ng, Michael K.; Yip, A. M.

    2003-11-01

    A generalized least-square method with Tikonov-Miller regularization and non-negativity constraints has been developed for deconvoluting two-dimensional coincidence Doppler broadening spectroscopy (CDBS) spectra. A projected Newton algorithm is employed to solve the generalized least-square problem. The algorithm has been tested on Monte Carlo generated spectra to find the best regularization parameters for different simulated experimental conditions. Good retrieval of the underlying positron-electron momentum distributions in the low momentum region is demonstrated. The algorithm has been successfully used to deconvolute experimental CDBS data from aluminum.

  8. Simultaneous existence of defects and mesopores in nanosized ZSM-5 zeolite studied by positron annihilation and X-ray diffraction spectroscopies

    NASA Astrophysics Data System (ADS)

    Anh Tuyen, L.; Quang Hung, N.; Chi Cuong, L.; Duy Khiem, D.; Trong Phuc, P.; Ly Nguyen, L.; Ngoc Hue, N. T.; Thi Hue, P.; Van Phuc, D.

    2017-02-01

    Crystallization, formation, and accumulation of defects and mesopores in the ZSM-5 zeolite samples, which are synthesized from the gel composition of 1.2Na2O 0.1Al2O3 0.8 tetra-propylammonium hydroxide (TPAOH) 6SiO2 400H2O at a temperature of 140 degree Celsius (°C) in 10, 15, and 18 h, are studied by using the Positron annihilation lifetime (PALS) and X-ray diffraction (XRD) spectroscopies. The XRD is used for investigating the crystalline concentration and nano-crystal size of ZSM-5 during the crystallizing process, whereas the PALS is performed in order to determine the presence of templates, defects, and mesopores in the zeolite samples. The latter are calcined in air during 1, 2, and 3 h at a temperature of 600 °C before being measured. The results obtained indicate that there exist clusters of small crystals in the early crystalline stages of the samples. The size of these crystals increases with time and reaches approximately 100 nm after 18 h of reaction. In addition, the template (TPAOH) is found to exist not only in the channels inside the framework but also in the mesopores outside it. Finally, by analyzing the Positron lifetime spectra, we have found for the first time the simultaneous existence of defects and mesopores, which are formatted and accumulated during the crystallization of ZSM-5. Those important results contribute significantly to our understanding of the internal structure of the synthetic zeolite ZSM-5 as well as the synthetic processes for producing zeolites with special features.

  9. Characterization of free volume during vulcanization of styrene butadiene rubber by means of positron annihilation lifetime spectroscopy and dynamic mechanical test.

    PubMed

    Marzocca, A J; Cerveny, S; Salgueiro, W; Somoza, A; Gonzalez, L

    2002-02-01

    An experimental investigation was performed to study the effect on the free volume of the advance of the cross-linking reaction in a copolymer of styrene butadiene rubber by sulfur vulcanization. The dynamic modulus and loss tangent were evaluated over samples cured for different times at 433 K by dynamic mechanical tests over a range of frequencies between 5 and 80 Hz at temperatures between 200 and 300 K. Using the William-Landel-Ferry relationship, master curves were obtained at a reference temperature of 298 K and the coefficients c(0)(1) and c(0)(2) were evaluated. From these parameters the dependence of the free volume on the cure time is obtained. Positron annihilation lifetime spectroscopy was also used to estimate the size and number density of free volume sites in the material. The spectra were analyzed in terms of continuous distributions of free volume size. The results suggest an increase of the lower free volume size when cross linking takes place. Both techniques give similar results for the dependence of free volume on the time of cure of the polymer.

  10. Correlation of polycrystalline Cu(In,Ga)Se{sub 2} device efficiency with homojunction depth and interfacial structure: X-ray photoemission and positron annihilation spectroscopic characterization

    SciTech Connect

    Nelson, A.J.; Sobol, P.E.; Gabor, A.M.; Contreras, M.A.; Asoka-Kumar, P.; Lynn, K.G.

    1994-06-01

    Angled-resolved high resolution photoemission measurements on valence band electronic structure and Cu 2p, In 3d, Ga 2p, and Se 3d core lines were used to evaluate surface and near-surface chemistry of CuInSe{sub 2} and Cu(In,Ga)Se{sub 2} device grade thin films. XPS compositional depth profiles were also acquired from the near-surface region, and bonding of the Cu, In, Ga, and Se was determined as a function of depth. A Cu-poor region was found, indicating CuIn{sub 5}Se{sub 8} or a CuIn{sub 3}Se{sub 5}-In{sub 2}Se{sub 3} mixture. Correlation between the depth of the Cu-poor region/bulk interface and device efficiency showed that the depth was 115 {angstrom} for a 16.4% CIGS device, 240 {angstrom} for a 15.0% CIGS, and 300 {angstrom} for 14.0% CIGS, with similar trends for CIS films. The surface region is n-type, the bulk is p-type, with a 0.5 eV valence band offset. Depth of homojunction may be the determining factor in device performance. Positron annihilation spectroscopy gave similarly illuminating results.

  11. Microstructure variation in fused silica irradiated by different fluence of UV laser pulses with positron annihilation lifetime and Raman scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Chunhong; Zheng, Wanguo; Zhu, Qihua; Chen, Jun; Wang, B. Y.; Ju, Xin

    2016-10-01

    We present an original study on the non-destructive evaluation of the microstructure evolution of fused silica induced by pulsed UV laser irradiation at low fluence (less than 50% Fth). Positron annihilation spectroscopy discloses that the spatial size of the vacancy cluster is increased exponentially with the linearly elevated laser fluence. Particularly, the vacancy cluster size in bulk silica is significantly increased by 14.5% after irradiated by pulsed 355 nm laser at F = 14 J/cm2 (50% Fth), while the void size varies only ∼2%. UV laser-excited Raman results suggest that the bond length and average bond angle of Sisbnd Osbnd Si bridging bond are both slightly reduced. Results reveals that the rearrangement process of (Sisbnd O)n fold rings and breakage of the Sisbnd O bridging bond in bulk silica occurred during pulsed UV laser irradiation. The micro-structural changes were taken together to clarify the effect of sub-threshold laser fluence on material stability of silica glass. The obtained data provide important information for studying material stability and controlling the lifetime of fused silica optics for high power laser system.

  12. Effect of vacuum annealing on the surface chemistry of electrodeposited copper(I) oxide layers as probed by positron annihilation induced auger electron spectroscopy.

    PubMed

    Nadesalingam, M P; Mukherjee, S; Somasundaram, S; Chenthamarakshan, C R; de Tacconi, Norma R; Rajeshwar, Krishnan; Weiss, A H

    2007-02-13

    Vacuum anneal induced changes in the surface layers of electrodeposited copper(I) oxide (Cu2O) were probed by time-of-flight positron annihilation induced Auger electron spectroscopy (TOF-PAES) and by electron induced Auger electron spectroscopy (EAES). Large changes in the intensity of the Cu PAES intensity resulting from isochronal in situ vacuum anneals made at increasing temperatures indicated that, before thermal treatment, the surface was completely covered by a carbonaceous overlayer and that this layer was removed, starting at a temperature between 100 and 200 degrees C, to expose an increasing amount of Cu in the top layer as the anneal temperature was increased. The thickness of this overlayer was estimated to be approximately 4 A based on analysis of the EAES data, and its variation with the thermal anneal temperature was mapped. This study demonstrated the order-of-magnitude enhancement in the sensitivity of PAES to the topmost surface layer in Cu2O relative to the EAES counterpart; factors underlying this contrast are discussed. Finally, the implications of ultrathin carbon layers on semiconductor surfaces are discussed.

  13. Application of positron annihilation lifetime spectroscopy (PALS) to study the nanostructure in amphiphile self-assembly materials: phytantriol cubosomes and hexosomes.

    PubMed

    Dong, Aurelia W; Fong, Celesta; Waddington, Lynne J; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2015-01-21

    Self-assembled amphiphile nanostructures of colloidal dimensions such as cubosomes and hexosomes are of interest as delivery vectors in pharmaceutical and nanomedicine applications. Translation would be assisted through a better of understanding of the effects of drug loading on the internal nanostructure, and the relationship between this nanostructure and drug release profile. Positron annihilation lifetime spectroscopy (PALS) is sensitive to local microviscosity and is used as an in situ molecular probe to examine the Q2 (cubosome) → H2 (hexosome) → L2 phase transitions of the pharmaceutically relevant phytantriol-water system in the presence of a model hydrophobic drug, vitamin E acetate (VitEA). It is shown that the ortho-positronium lifetime (τ) is sensitive to molecular packing and mobility and this has been correlated with the rheological properties of individual lyotropic liquid crystalline mesophases. Characteristic PALS lifetimes for L2 (τ4∼ 4 ns) ∼ H2 (τ4∼ 4 ns) > Q(2 Pn3m) (τ4∼ 2.2 ns) are observed for the phytantriol-water system, with the addition of VitEA yielding a gradual increase in τ from τ∼ 2.2 ns for cubosomes to τ∼ 3.5 ns for hexosomes. The dynamic chain packing at higher temperatures and in the L2 and H2 phases is qualitatively less "viscous", consistent with rheological measurements. This information offers increased understanding of the relationship between internal nanostructure and species permeability.

  14. Positron Annihilation Spectroscopy and Small Angle Neutron Scattering Characterization of the Effect of Mn on the Nanostructural Features formed in Irradiated Fe-Cu-Mn Alloys

    SciTech Connect

    Glade, S C; Wirth, B D; Asoka-Kumar, P; Odette, G R; Sterne, P A; Howell, R H

    2003-02-27

    The size, number density and composition of the nanometer defects responsible for the hardening and embrittlement in irradiated Fe-0.9wt.% Cu and Fe-0.9wt.% Cu-1.0wt% Mn model reactor pressure vessel alloys were measured using small angle neutron scattering and positron annihilation spectroscopy. These alloys were irradiated at 290 C to relatively low neutron fluences (E > 1 MeV, 6.0 x 10{sup 20} to 4.0 x 10{sup 21} n/m{sup 2}) in order to study the effect of manganese on the nucleation and growth of copper rich precipitates and secondary defect features. Copper rich precipitates were present in both alloys following irradiation. The Fe-Cu-Mn alloy had smaller precipitates and a larger number density of precipitates, suggesting Mn segregation at the iron matrix-precipitate interface which reduces the interfacial energy and in turn the driving force for coarsening. Mn also retards the precipitation kinetics and inhibits large vacancy cluster formation, suggesting a strong Mn-vacancy interaction which reduces radiation enhanced diffusion.

  15. ESR, thermoelectrical and positron annihilation Doppler broadening studies of CuZnFe2O4-BaTiO3 composite

    NASA Astrophysics Data System (ADS)

    Hemeda, O. M.; Mahmoud, K. R.; Sharshar, T.; Elsheshtawy, M.; Hamad, Mahmoud A.

    2017-05-01

    Composite materials of Cu0.6Zn0.4Fe2O4 (CZF) and barium titanate (BT) with different concentrations were prepared by high energy ball milling method. The composite samples of CZF and BT were studied using Infrared, ESR and positron annihilation Doppler broadening (PADB) spectroscopy techniques as well as thermo-electric power measurements. The results confirm formation of the composite, and presence of two ferrimagnetic and ferroelectric phases, simultaneously. In addition, Fe-O bond for both tetrahedral and octahedral sites, population and distribution of cations at A and B sites are varied with BT content. The values of resonance field, line width of ESR spectrum and charge carrier concentration increase by increasing BT content. The value of the g factor for our samples with low BT content is greater than g-factor value of the isolated free electron. On the contrary, the g-factor values for samples with high BT content are smaller than the free isolated electron. PADB line-shape S-parameter suggests that there are increases of the density of the delocalized electrons, defect size and concentration caused by highly adding BT phase. In addition, PADB results confirm the homogeneity of composite phases and same structure of defects in BT-CZF composite samples.

  16. Investigation of free volume and the interfacial, and toughening behavior for epoxy resin/rubber composites by positron annihilation

    NASA Astrophysics Data System (ADS)

    Minfeng, Zeng; Xudong, Sun; Huiquan, Xiao; Genzhong, Ji; Xuewen, Jiang; Baoyi, Wang; Chenze, Qi

    2008-03-01

    An epoxy resin (EP) matrix has been modified with carboxyl-randomized butadiene-acrylonitrile (CRBN) rubber and hydroxyl-terminated butadiene-acrylonitrile rubber (HTBN). When the rubber content was low (⩽5%), the free volume size varied slowly, meanwhile, the free volume size of EP/HTBN system was smaller than EP/CRBN system. With further addition of rubber component (⩾7%), the free volume size of the composite increased quickly. In this case, the free volume size of EP/HTBN system was larger than EP/CRBN system. The intermediate positron lifetime component ( I2) was affected by the structure of the interface layer between rubber particles and EP matrix. The different free volume properties could be attributed to the compatibility between rubber and EP.

  17. Positron annihilation studies on the behaviour of vacancies in LaAlO3/SrTiO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Yuan, Guoliang; Li, Chen; Yin, Jiang; Liu, Zhiguo; Wu, Di; Uedono, Akira

    2012-11-01

    The formation and diffusion of vacancies are studied in LaAlO3/SrTiO3 heterostructures. Oxygen vacancies (VOS) appear easily in the SrTiO3 substrate during LaAlO3 film growth at 700 °C and 10-4 Pa oxygen pressure rather than at 10-3-10-1 Pa, thus the latter two-dimensional electron gas should come from the polarity discontinuity at the (LaO)+/(TiO2)0 interface. For SrTiO3-δ/LaAlO3/SrTiO3, high-density VOS of the SrTiO3-δ film can pass through the LaAlO3 film and then diffuse to 1.7 µm depth in the SrTiO3 substrate, suggesting that LaAlO3 has VOS at its middle-deep energy levels within the band gap. Moreover, high-density VOS may combine with a strontium/titanium vacancy (VSr/Ti) to form VSr/Ti-O complexes in the SrTiO3 substrate at 700 °C.

  18. Oxygen-Atom Defects In 6H Silicon Carbide Implanted Using 24- MeV O{sup 3+} Ions Measured Using Three-Dimensional Positron Annihilation Spectroscopy System (3DPASS)

    SciTech Connect

    Williams, Christopher S.; Petrosky, James C.; Burggraf, Larry W.

    2011-06-01

    Three dimensional electron-positron (e{sup -}-e{sup +}) momentum distributions were measured for single crystal 6H silicon carbide (SiC); both virgin and having implanted oxygen-atom defects. 6H SiC samples were irradiated by 24- MeV O{sup 3+} ions at 20 particle-nanoamps at the Sandia National Laboratory's Ion Beam Facility. O{sup 3+} ions were implanted 10.8 {mu}m deep normal to the (0001) face of one side of the SiC samples. During positron annihilation measurements, the opposite face of the 254.0-{mu}m thick SiC samples was exposed to positrons from a {sup 22}Na source. This technique reduced the influence on the momentum measurements of vacancy-type defects resulting from knock-on damage by the O{sup 3+} ions. A three-dimensional positron annihilation spectroscopy system (3DPASS) was used to measure e{sup -}-e{sup +} momentum distributions for virgin and irradiated 6H SiC crystal both before and following annealing. 3DPASS simultaneously measures coincident Doppler-broadening (DBAR) and angular correlation of annihilation radiation (ACAR) spectra. DBAR ratio plots and 2D ACAR spectra are presented. Changes in the momentum anisotropies relative to crystal orientation observed in 2D ACAR spectra for annealed O-implanted SiC agree with the local structure of defect distortion predicted using Surface Integrated Molecular Orbital/Molecular Mechanics (SIMOMM). Oxygen atoms insert between Si and C atoms increasing their separation by 0.9 A forming a Si-O-C bond angle of {approx}150 deg.

  19. SMM observations of gamma-ray transients. 3: A search for a broadened, redshifted positron annihilation line from the direction of the Galactic center

    NASA Technical Reports Server (NTRS)

    Harris, Michael J.; Share, Gerald H.; Leising, Mark D.

    1994-01-01

    We have searched for 1980-1988 Solar Maximum Mission gamma-ray spectrometer data for transient emission on timescales from hours to approximately 12 days of broad gamma-ray lines at energies approximately 400 keV, which were reported by the High Energy Astronomy Observatory (HEAO) 1 and SIGMA experiments from two sources lying toward the Galactic center. The lines have been interpreted as the product of the annihilation of positrons in pair plasmas surrounding the black hole candidate 1E 1740.7-2942 and the X-ray binary 1H 1822-371. Our results from a combined exposure of approximately 1.5 x 10(exp 7)s provide no convincing evidence for transient emission of this line on any timescale between approximately 9 hr and approximately 1 yr. Our 3 sigma upper limits on the line flux during approximately 12 day intervals are characteristically 4.8 x 10(exp -3) photon/sq cm/s, while for approximately 1 day intervals our 3 sigma upper limits are characteristically 4.9 x 10(exp -3) photon/sq cm/s. These results imply a duty cycle of less than 1.3% for the transient line measured from 1H 1822-371 during a approximately 3 week interval in 1977 by HEAO 1, and a duty cycle of less than or = 0.8% for the transient line detected in 1990 and 1992 from 1E 1740.7-2942 on approximately 1 day timescales by SIGMA.

  20. Comparison of three-jet and radiative two-jet events in electron-positron annihilation at 29 GeV

    SciTech Connect

    Sheldon, P.D.

    1986-11-01

    By comparing 3-jet (e/sup +/e/sup -/ ..-->.. q anti q g) and radiative 2-jet (e/sup +/e/sup -/ ..-->.. q anti q ..gamma..) events from electron-positron annihilation, we have studied the local and global effects of the presence of a hard bremsstrahlung gluon in hadronic events. Detector and event selection efficiencies and biases affect these two kinds of events almost equally because they have very similar kinematics and topologies. Accurate comparisons of q anti q g and q anti q ..gamma.. events can therefore be made. Globally, we observe a depletion of hadrons in q anti q g events relative to q anti q ..gamma.. events on the opposite side of the event plane from the gluon, in the angular region between the q and anti q jets. This depletion is shown to be in agreement with the predictions of Quantum Chromodynamics (QCD). The existence of this effect demonstrates that the presence of a gluon significantly alters the color forces and hence the fragmentation process in hadronic events. We also use these q anti q ..gamma.. and q anti q g events to compare low energy (4.5 GeV) gluon and quark jets. Our data indicate that gluon jets have softer x/sub p/ distributions than quark jets, while the transverse momentum distributions of these two types of jets are identical within our errors. Although we are unable to determine if the multiplicities of gluon (n/sub /) and quark (n/sub q/) jets are different, the ratio n/sub g//n/sub q/ = 9/4 predicted asymptotically in QCD would not be consistent with our data.

  1. Optical and positron annihilation spectroscopic studies on PMMA polymer doped by rhodamine B/chloranilic acid charge transfer complex: Special relevance to the effect of γ-ray irradiation

    NASA Astrophysics Data System (ADS)

    Hassan, H. E.; Refat, Moamen S.; Sharshar, T.

    2016-04-01

    Polymeric sheets of poly (methylmethaclyerate) (PMMA) containing charge transfer (CT) complex of rhodamine B/chloranilic acid (Rho B/CHA) were synthesized in methanol solvent at room temperature. The systematic analysis done on the Rho B and its CT complex in the form of powder or polymeric sheets confirmed their structure and thermal stability. The IR spectra interpreted the charge transfer mode of interaction between the CHA central positions and the terminal carboxylic group. The polymer sheets were irradiated with 70 kGy of γ radiation using 60Co source to study the enhanced changes in the structure and optical parameters. The microstructure changes of the PMMA sheets caused by γ-ray irradiation were analyzed using positron annihilation lifetime (PAL) and positron annihilation Doppler broadening (PADB) techniques. The positron life time components (τi) and their corresponding intensities (Ii) as well as PADB line-shape parameters (S and W) were found to be highly sensitive to the enhanced disorder occurred in the organic chains of the polymeric sheets due to γ-irradiation.

  2. Optical and positron annihilation spectroscopic studies on PMMA polymer doped by rhodamine B/chloranilic acid charge transfer complex: Special relevance to the effect of γ-ray irradiation.

    PubMed

    Hassan, H E; Refat, Moamen S; Sharshar, T

    2016-04-15

    Polymeric sheets of poly (methylmethaclyerate) (PMMA) containing charge transfer (CT) complex of rhodamine B/chloranilic acid (Rho B/CHA) were synthesized in methanol solvent at room temperature. The systematic analysis done on the Rho B and its CT complex in the form of powder or polymeric sheets confirmed their structure and thermal stability. The IR spectra interpreted the charge transfer mode of interaction between the CHA central positions and the terminal carboxylic group. The polymer sheets were irradiated with 70 kGy of γ radiation using (60)Co source to study the enhanced changes in the structure and optical parameters. The microstructure changes of the PMMA sheets caused by γ-ray irradiation were analyzed using positron annihilation lifetime (PAL) and positron annihilation Doppler broadening (PADB) techniques. The positron life time components (τ(i)) and their corresponding intensities (I(i)) as well as PADB line-shape parameters (S and W) were found to be highly sensitive to the enhanced disorder occurred in the organic chains of the polymeric sheets due to γ-irradiation.

  3. Influence of O-Co-O layer thickness on the thermal conductivity of Na{sub x}Co{sub 2}O{sub 4} studied by positron annihilation

    SciTech Connect

    Li, H. Q.; Zhao, B.; Zhang, T.; Li, X. F.; He, H. F.; Chen, Z. Q.; Su, X. L.; Tang, X. F.

    2015-07-21

    Nominal stoichiometric Na{sub x}Co{sub 2}O{sub 4} (x = 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0) polycrystals were synthesized by a solid-state reaction method. They were further pressed into pellets by the spark plasma sintering. The crystal structure and morphology of Na{sub x}Co{sub 2}O{sub 4} samples were characterized by X-ray diffraction and scanning electron microscopy measurements. Good crystallinity and layered structures were observed for all the samples. Positron annihilation measurements were performed for Na{sub x}Co{sub 2}O{sub 4} as a function of Na content. Two lifetime components are resolved. τ{sub 1} is attributed mainly to positron annihilation in the O-Co-O layers and shifts to Na layers only in the H3 phase. The second lifetime τ{sub 2} is due to positron annihilation in vacancy clusters which may exist in the Na layers or grain boundary region. The size of vacancy clusters grow larger but their concentration decreases with increasing Na content in the range of 1.0 < x < 1.8. The thickness of O-Co-O layer also shows continuous increase with increasing Na content, which is reflected by the increase of τ{sub 1}. The thermal conductivity κ, on the other hand, shows systematic decrease with increasing Na content. This suggests that the increasing spacing of O-Co-O layer could effectively reduce the thermal conductivity of Na{sub x}Co{sub 2}O{sub 4}.

  4. Positron annihilation spectroscopic studies of Mn substitution-induced cubic to tetragonal transformation in ZnFe2-xMnxO4 (x = 0.0-2.0) spinel nanocrystallites

    NASA Astrophysics Data System (ADS)

    Cyriac, Jincemon; Mundiyaniyil Thankachan, Rahul; Raneesh, B.; Nambissan, P. M. G.; Sanyal, D.; Kalarikkal, Nandakumar

    2015-12-01

    The replacement of cations at the B-sites in the spinel ferrite ZnFe2O4 by Mn3+ ions brings in several interesting changes, the most striking among them being a transformation from the spinel cubic structure to a body-centered tetragonal one. Concomitantly, there are variations in the nanocrystallite sizes and also in the lattice parameters. These are examined through high-precision X-ray diffraction measurements and transmission electron microscopic analysis. A more interesting aspect is the success of positron annihilation spectroscopy comprising of the measurements of positron lifetime and coincidence Doppler broadening measurements in understanding the effects of cation replacement and the resultant generation of vacancy-type defects. There are definite changes in the positron lifetimes and intensities which show positron trapping in trivacancy-type defect clusters and the nanocrystallite surfaces. The presence of ortho-positronium atoms within the extended intercrystallite region is also identified, although in small concentrations. The cubic to tetragonal transformation is indicated through definite decrease in the values of the positron lifetimes. We also performed a model analysis to predict the expected effect of substitution on the positron lifetime in the bulk of the sample and the experimentally obtained positron lifetimes significantly differed, indirectly hinting at the possibility of a structural transformation. Finally, Mössbauer spectroscopic studies have indicated a ferromagnetic nature for one of the samples, i.e. the one with Mn3+ doping concentration x = 0.4, which incidentally had the lowest crystallite size ~10 nm.

  5. Bulk Materials Analysis Using High-Energy Positron Beams

    SciTech Connect

    Glade, S C; Asoka-Kumar, P; Nieh, T G; Sterne, P A; Wirth, B D; Dauskardt, R H; Flores, K M; Suh, D; Odette, G R

    2002-11-11

    This article reviews some recent materials analysis results using high-energy positron beams at Lawrence Livermore National Laboratory. We are combining positron lifetime and orbital electron momentum spectroscopic methods to provide electron number densities and electron momentum distributions around positron annihilation sites. Topics covered include: correlation of positron annihilation characteristics with structural and mechanical properties of bulk metallic glasses, compositional studies of embrittling features in nuclear reactor pressure vessel steel, pore characterization in Zeolites, and positron annihilation characteristics in alkali halides.

  6. Defect evolution and its impact on the ferromagnetism of Cu-doped ZnO nanocrystals upon thermal treatment: A positron annihilation study

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Yuan; Chen, Yuqian; Zhang, Q. K.; Qi, N.; Chen, Z. Q.; Wang, S. J.; Li, P. H.; Mascher, P.

    2017-01-01

    CuO/ZnO nanocomposites with 4 at. % CuO were annealed in air at various temperatures between 100 and 1200 °C to produce Cu-doped ZnO nanocrystals. X-ray diffraction shows that a CuO phase can be observed in the CuO/ZnO nanocomposites annealed at different temperatures, and the Cu-doped ZnO nanocrystals are identified to be of wurtzite structure. The main peak (101) appears at slightly lower diffraction angles with increasing annealing temperature from 400 up to 1200 °C, which confirms the successful doping of Cu into the ZnO lattice above 400 °C. Scanning electron microscopy indicates that most particles in the CuO/ZnO nanocomposites are isolated when annealing at 100-400 °C, but these particles have a tendency to form clusters or aggregates as the annealing temperature increases from 700 to 1000 °C. Positron annihilation measurements reveal a large number of vacancy defects in the interface region of the nanocomposites, and they are gradually recovered with increasing annealing temperature up to 1000 °C. Room-temperature ferromagnetism can be observed in the CuO/ZnO nanocomposites, and the magnetization decreases continuously with increasing annealing temperature. However, there may be several different origins of ferromagnetism in the CuO/ZnO nanocomposites. At low annealing temperatures, the ferromagnetism originates from the CuO nanograins, and the ferromagnetism of CuO nanograins decreases with an increase in the grain size after subsequent higher temperature annealing, which leads to the weakening of ferromagnetism in the CuO/ZnO nanocomposites. After annealing from 400 to 1000 °C, the ferromagnetism gradually vanishes. The ferromagnetism is probably induced by Cu substitution but is mediated by vacancy defects in the CuO/ZnO nanocomposites. The disappearance of ferromagnetism coincides well with the recovery of vacancy defects. It can be inferred that the ferromagnetism is mediated by vacancy defects that are distributed in the interface region.

  7. Annihilation in Gases and Galaxies

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J. (Editor)

    1990-01-01

    This publication contains most of the papers, both invited and contributed, that were presented at the Workshop of Annihilation in Gases and Galaxies. This was the fifth in a biennial series associated with the International Conference on the Physics of Electronic and Atomic Collisions. Subjects covered included the scattering and annihilation of positrons and positronium atoms in various media, including those of astrophysical interest. In addition, the topics of antimatter and dark matter were covered.

  8. First-cycle defect evolution of Li1-xNi1/3Mn1/3Co1/3O2 lithium ion battery electrodes investigated by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Seidlmayer, Stefan; Buchberger, Irmgard; Reiner, Markus; Gigl, Thomas; Gilles, Ralph; Gasteiger, Hubert A.; Hugenschmidt, Christoph

    2016-12-01

    In this study the structure and evolution of vacancy type defects in lithium ion batteries are investigated in respect of crystallographic properties. The relation between positron annihilation and electronic structure is discussed in terms of structural dynamics during the lithiation process. Samples of Li1-xNi1/3Mn1/3Co1/3O2 (NMC-111) electrodes with decreasing lithium content (x = 0-0.7) covering the whole range of state of charge were electrochemically prepared for the non-destructive analysis using positron coincidence Doppler broadening spectroscopy (CDBS). The positron measurements allowed us to observe the evolution of the defect structure caused by the delithiation process in the NMC-111 electrodes. The combination of CDBS with X-ray diffraction for the characterization of the lattice structures enabled the analysis of the well-known kinetic-hindrance-effect in the first charge-discharge cycle and possible implications of vacancy ordering. In particular, CDBS revealed the highest degree of relithiation after discharge to 3.0 V at 55 °C. For the first time, we report on the successful application of CDBS on NMC-111 electrodes yielding new insights in the important role of defects caused by the delithiation process and the kinetic hindrance effect.

  9. Correlation of Gas Permeability in a Metal-Organic Framework MIL-101(Cr)–Polysulfone Mixed-Matrix Membrane with Free Volume Measurements by Positron Annihilation Lifetime Spectroscopy (PALS)

    PubMed Central

    Jeazet, Harold B. Tanh; Koschine, Tönjes; Staudt, Claudia; Raetzke, Klaus; Janiak, Christoph

    2013-01-01

    Hydrothermally stable particles of the metal-organic framework MIL-101(Cr) were incorporated into a polysulfone (PSF) matrix to produce mixed-matrix or composite membranes with excellent dispersion of MIL-101 particles and good adhesion within the polymer matrix. Pure gas (O2, N2, CO2 and CH4) permeation tests showed a significant increase of gas permeabilities of the mixed-matrix membranes without any loss in selectivity. Positron annihilation lifetime spectroscopy (PALS) indicated that the increased gas permeability is due to the free volume in the PSF polymer and the added large free volume inside the MIL-101 particles. The trend of the gas transport properties of the composite membranes could be reproduced by a Maxwell model. PMID:24957061

  10. Spectroscopic, Elemental and Thermal Analysis, and Positron Annihilation Studies on Ca(II), Sr(II), Ba(II), Pb(II), and Fe(III) Penicillin G Potassium Complexes

    NASA Astrophysics Data System (ADS)

    Refat, M. S.; Sharshara, T.

    2015-11-01

    The [Pb(Pin)2] · 3H2O, [M(Pin)(H2O)2(Cl)] · nH2O (M = SrII, CaII or BaII; n = 0-1), and [Fe(Pin)2(Cl)(H2O)] · H2O penicillin G potassium (Pin) complexes were synthesized and characterized using elemental analyses, molar conductivity, thermal analysis and electronic spectroscopy techniques. The positron annihilation lifetime (PAL) and Doppler broadening (DB) techniques have been employed to probe the defects and structural changes of Pin ligand and its complexes. The PAL and DB line-shape parameters were discussed in terms of the structure, molecular weight, ligand-metal molar ratio, and other properties of the Pin complexes.

  11. Correlation between ferromagnetism and the concentration of interfacial defects in multiferroic Bi7Fe2.75Co0.25Ti3O21 studied by positron annihilation

    NASA Astrophysics Data System (ADS)

    Ge, W. N.; Li, X. N.; Xu, J. P.; Huang, S. J.; Liu, J. D.; Zhu, Z.; Fu, Z. P.; Lu, Y. L.; Ye, B. J.

    2017-03-01

    This paper investigated the effect of the annealing temperature on the interfacial defects and the magnetization of a single-phase multiferroic Bi7Fe2.75Co0.25Ti3O21. With the increase of annealing temperature, the average thickness of the nonaplates increased from 80 to 180 nm. But the magnetic property measurement shows that the saturation magnetization gradually decreases with the increase of the annealing temperature correspondingly. Positron annihilation measurements reveal that the interfacial defects disappear obviously when the annealing temperature increased, which is found to agree well with the variation of saturation magnetization. The results suggest that with the higher concentration of interfacial defects may bring about higher saturation magnetization for the Aurivillius phase material, opening a window to improve the magnetic performance through controlling the concentration of interfacial defects.

  12. Correlation of Gas Permeability in a Metal-Organic Framework MIL-101(Cr)-Polysulfone Mixed-Matrix Membrane with Free Volume Measurements by Positron Annihilation Lifetime Spectroscopy (PALS).

    PubMed

    Jeazet, Harold B Tanh; Koschine, Tönjes; Staudt, Claudia; Raetzke, Klaus; Janiak, Christoph

    2013-10-25

    Hydrothermally stable particles of the metal-organic framework MIL-101(Cr) were incorporated into a polysulfone (PSF) matrix to produce mixed-matrix or composite membranes with excellent dispersion of MIL-101 particles and good adhesion within the polymer matrix. Pure gas (O2, N2, CO2 and CH4) permeation tests showed a significant increase of gas permeabilities of the mixed-matrix membranes without any loss in selectivity. Positron annihilation lifetime spectroscopy (PALS) indicated that the increased gas permeability is due to the free volume in the PSF polymer and the added large free volume inside the MIL-101 particles. The trend of the gas transport properties of the composite membranes could be reproduced by a Maxwell model.

  13. Defects in virgin and N+ -implanted ZnO single crystals studied by positron annihilation, Hall effect, and deep-level transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Brauer, G.; Anwand, W.; Skorupa, W.; Kuriplach, J.; Melikhova, O.; Moisson, C.; von Wenckstern, H.; Schmidt, H.; Lorenz, M.; Grundmann, M.

    2006-07-01

    High-quality single crystals of ZnO in the as-grown and N+ ion-implanted states have been investigated using a combination of three experimental techniques—namely, positron lifetime/slow positron implantation spectroscopy accompanied by theoretical calculations of the positron lifetime for selected defects, temperature-dependent Hall (TDH) measurements, and deep level transient spectroscopy (DLTS). The positron lifetime in bulk ZnO is measured to be (151±2)ps and that for positrons trapped in defects (257±2)ps . On the basis of theoretical calculations the latter is attributed to Zn+O divacancies, existing in the sample in neutral charge state, and not to the Zn vacancy proposed in previous experimental work. Their concentration is estimated to be 3.7×1017cm-3 . From TDH measurements the existence of negatively charged intrinsic defects acting as compensating acceptors is concluded which are invisible to positrons—maybe interstitial oxygen. This view is supported from TDH results in combination with DLTS which revealed the creation of the defect E1 , and an increase in concentration of the defect E3 after N+ ion implantation, and peculiarities in the observation of the defect E4 .

  14. Constraints on dark matter annihilation by Planck

    NASA Astrophysics Data System (ADS)

    Muanglay, Chalit; Wechakama, Maneenate; Cantlay, Brandon K.

    2017-08-01

    We investigate the production of electrons and positrons in the Milky Way within the context of dark matter annihilation. Upper limits on the relevant cross-section are obtained by Planck data at different wavelengths with recent measurements of the positron spectra in the solar neighbourhood by AMS02. We consider synchrotron emission in the microwave bands. According to our results, the dark matter annihilation cross-section into electron-positron pairs should not be higher than the canonical value for a thermal relic if the mass of the dark matter candidate is smaller than a few GeV.

  15. Positron annihilation study of Sr Doping in La{sub 2-x}Sr{sub x}CuO{sub 4}

    SciTech Connect

    Sterne, P.A. |; Howell, R.H.; Fluss, M.J.; Kaiser, J.H.; Kitazawa, K.; Kojima, H.

    1993-04-22

    We present a combined experimental and threshold study of effects of Sr doping on electronic structure of La{sub 2-x}Sr{sub x}CuO{sub 4}. Electron-positron momentum distributions have been measured to high statistical precision (> 4 {times} 10{sup 8} counts) at room temperature for samples with Sr concentrations of x = 0.0, 0.1, 0.13 and 0.2. Analysis of all four spectra reveal strong features due to electron-positron wavefunction overlap, in quantitative agreement with theoretical calculations. The Sr doped samples show discontinuities consistent with presence of a Fermi surface. The form and position of these features are in general agreement with the predictions of band theory. Correspondence between theory and experiment, as well as some differences, are revealed by a detailed study of the changes in electron-position momentum density with increasing Sr doping.

  16. Voids and other neutron-produced microstructure in Mo and Mo-0. 5 at. % Ti as studied by positron-annihilation techniques

    SciTech Connect

    Snead, Jr, C L; Lynn, K G; Jean, Y; Wiffen, F W; Schultz, P

    1980-01-01

    Specimens of Mo and Mo-0.5 at. % Ti which have been irradiated with neutrons (approx. 10/sup 22/ n/cm/sup 2/, E > 0.1 MeV) at temperatures between 425 and 1500/sup 2/C have been studied using both lifetime and Doppler-broadening measurements. Both the shape parameter and the intensity of the lifetime component from positrons trapped at voids define swelling as a function of temperature in a way that is independent of the neutron fluence. The relative swelling as a function of irradiation temperature and the swelling peak (approx. 750/sup 0/C) are well defined, but no information on the magnitude of the void volume is obtainable. In the determination of the shape and peak of the derived swelling curve, the positron analysis is more definitive than similar determinations using transmission electron microscopy.

  17. Precise Determination of the Strong Coupling Constant at NNLO in QCD from the Three-Jet Rate in Electron-Positron Annihilation at LEP

    SciTech Connect

    Dissertori, G.; Gehrmann-DeRidder, A.; Gehrmann, T.; Glover, E. W. N.; Heinrich, G.; Stenzel, H.

    2010-02-19

    We present the first determination of the strong coupling constant from the three-jet rate in e{sup +}e{sup -} annihilation at LEP, based on a next-to-next-to-leading-order (NNLO) perturbative QCD prediction. More precisely, we extract {alpha}{sub s}(M{sub Z}) by fitting perturbative QCD predictions at O({alpha}{sub s}{sup 3}) to data from the ALEPH experiment at LEP. Over a large range of the jet-resolution parameter y{sub cut}, this observable is characterized by small nonperturbative corrections and an excellent stability under renormalization scale variation. We find {alpha}{sub s}(M{sub Z})=0.1175+-0.0020(expt)+-0.0015(theor), which is more accurate than the values of {alpha}{sub s}(M{sub Z}) from e{sup +}e{sup -} event-shape data currently used in the world average.

  18. Portable Positron Measurement System (PPMS)

    SciTech Connect

    2011-01-01

    Portable Positron Measurement System (PPMS) is an automated, non-destructive inspection system based on positron annihilation, which characterizes a material's in situatomic-level properties during the manufacturing processes of formation, solidification, and heat treatment. Simultaneous manufacturing and quality monitoring now are possible. Learn more about the lab's project on our facebook site http://www.facebook.com/idahonationallaboratory.

  19. Portable Positron Measurement System (PPMS)

    ScienceCinema

    None

    2016-07-12

    Portable Positron Measurement System (PPMS) is an automated, non-destructive inspection system based on positron annihilation, which characterizes a material's in situatomic-level properties during the manufacturing processes of formation, solidification, and heat treatment. Simultaneous manufacturing and quality monitoring now are possible. Learn more about the lab's project on our facebook site http://www.facebook.com/idahonationallaboratory.

  20. Studies of positron induced luminescence from polymers

    SciTech Connect

    Xu, J.; Hulett, L.D. Jr.; Lewis, T.A.; Tolk, N.H.

    1994-06-01

    Light emission from polymers (anthracene dissolved in polystryrene) induced by low-energy positrons and electrons has been studied. Results indicate a clear difference between optical emissions under positron and electron bombardment. The positron-induced luminescence spectrum is believed to be generated by both collisional and annihilation processes.

  1. Effects of post-irradiation annealing and re-irradiation on microstructure in surveillance test specimens of the Loviisa-1 reactor studied by atom probe tomography and positron annihilation

    NASA Astrophysics Data System (ADS)

    Toyama, T.; Kuramoto, A.; Nagai, Y.; Inoue, K.; Nozawa, Y.; Shimizu, Y.; Matsukawa, Y.; Hasegawa, M.; Valo, M.

    2014-06-01

    This paper presents a microstructural study of a surveillance test specimen from the Loviisa-1 reactor in Finland, which is a Russian-type pressurized water reactor (VVER-440), after initial irradiation to a neutron fluence of 2.5 × 1019 n/cm2 (E > 1 MeV), post-irradiation annealing at 475 °C for 100 h and re-irradiation to three different fluences up to 2.7 × 1019 n/cm2. Atom probe tomography (APT) and positron annihilation spectroscopy (PAS) were used to characterize the test specimens. APT results showed the formation of Cu-rich solute clusters (SCs) during the initial irradiation and their subsequent coarsening during annealing. After re-irradiation, a small number of SCs formed once again. The hardening due to the SCs was estimated using the Russell-Brown model based on the APT results, and was in good agreement with the measured hardening after the initial irradiation and post-irradiation annealing. In contrast, during the first-step of re-irradiation, the estimated hardening due to the SCs was smaller than the measured hardening. This suggested that the hardening after re-irradiation was due to some microstructure other than the observed SCs. This difference was attributed to newly-formed matrix defects during re-irradiation, which was supported by the PAS results. However in subsequent steps of re-irradiation, the hardening was almost constant.

  2. A calorimetric measurement of the strong coupling constant in electron-positron annihilation at a center-of-mass energy of 91.6 GeV

    SciTech Connect

    Martirena, Saul Gonzalez

    1994-04-01

    In this work, a measurement of the strong coupling constant αs in e+e- annihilation at a center-of-mass energy of 91.6 GeV is presented. The measurement was performed with the SLD at the Stanford Linear Collider facility located at the Stanford Linear Accelerator Center in California. The procedure used consisted of measuring the rate of hard gluon radiation from the primary quarks in a sample of 9,878 hadronic events. After defining the asymptotic manifestation of partons as `jets`, various phenomenological models were used to correct for the hadronization process. A value for the QCD scale parameter Λ$\\bar{MS}$, defined in the $\\bar{MS}$ renormalization convention with 5 active quark flavors, was then obtained by a direct fit to O(αs2) calculations. The value of αs obtained was αs (M) = 0.122 ± 0.004 $+0.008\\atop{-0.007}$ where the uncertainties are experimental (combined statistical and systematic) and theoretical (systematic) respectively. Equivalently, Λ$\\bar{MS}$ = 0.28 $+0.16\\atop{0.10}$ GeV where the experimental and theoretical uncertainties have been combined.

  3. Defect-induced magnetism in liquid sodium-exposed stainless steel as studied by Mössbauer and positron annihilation spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Panda, Alaka; Herojit Singh, L.; Govindaraj, R.; Abhaya, S.; Yadav, R. Kumar; Rajagopalan, S.; Venugopal Rao, G.; Ragunathan, V.; Amarendra, G.

    2017-03-01

    Detailed Mössbauer studies carried out in liquid sodium (Na)-exposed austenitic stainless steel (SS-316) show that there is a partial formation of ferromagnetically (FM)-ordered ferritic zones in the paramagnetic austenitic matrix. Results of low energy positron beam-based Doppler broadening studies imply the occurrence of vacancy kind of defects in the liquid Na-exposed SS-316. Correlating these results, the partial occurrence of FM-ordered zones in the liquid Na-exposed SS-316 is understood to be due to open volume defects, predominantly that of Ni vacancies occurring at the surface and upto a certain depth of liquid Na-exposed stainless steel. These results are elucidated in terms of hyperfine parameters associated with ferritic zones.

  4. Position annihilation radiation from neutron stars

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Borner, G. A.; Cohen, J. M.

    1972-01-01

    Matter accreted on the surfaces of neutron stars consists of energetic particles of a few tens to a couple hundred MeV/nucleon, depending on the neutron star mass. In addition to heat, such particles produce nuclear reactions with the surface material. It is proposed that the recently observed 473 + or - 30 keV spectral feature from the galactic center is gravitationally red-shifted positron annihilation radiation produced at the surfaces of old neutron stars. The principal observational tests of the model would be the detection of nuclear gamma ray lines from the galactic center and red-shifted positron annihilation radiation from the galactic disk.

  5. Method of processing positron lifetime spectra

    SciTech Connect

    Valuev, N.P.; Klimov, A.B.; Zhikharev, A.N.

    1985-05-01

    This paper describes a method for the processing of spectra of positron annihilation which permits a much more relaible determination of the lifetime during numerical processing of spectra by computer.

  6. High intensity positron program at LLNL

    SciTech Connect

    Asoka-Kumar, P.; Howell, R.H.; Stoeffl, W.

    1998-09-23

    Lawrence Livermore National Laboratory (LLNL) is the home of the world's highest current beam of keV positrons. The potential for establishing a national center for materials analysis using positron annihilation techniques around this capability is being actively pursued. The high LLNL beam current will enable investigations in several new areas. We are developing a positron microprobe that will produce a pulsed, focused positron beam for 3-dimensional scans of defect size and concentration with submicron resolution. Below we summarize the important design features of this microprobe. Several experimental end stations will be available that can utilize the high current beam with a time distribution determined by the electron linac pulse structure, quasi-continuous, or bunched at 20 MHz, and can operate in an electrostatic or (and) magnetostatic environment. Some of the planned early experiments are: two-dimensional angular correlation of annihilation radiation of thin films and buried interfaces, positron diffraction holography, positron induced desorption, and positron induced Auger spectra.

  7. Slow positron beam generator for lifetime studies

    NASA Technical Reports Server (NTRS)

    Singh, Jag J. (Inventor); Eftekhari, Abe (Inventor); St.clair, Terry L. (Inventor)

    1991-01-01

    A slow positron beam generator uses a conductive source residing between two test films. Moderator pieces are placed next to the test film on the opposite side of the conductive source. A voltage potential is applied between the moderator pieces and the conductive source. Incident energetic positrons: (1) are emitted from the conductive source; (2) are passed through test film; and (3) isotropically strike moderator pieces before diffusing out of the moderator pieces as slow positrons, respectively. The slow positrons diffusing out of moderator pieces are attracted to the conductive source which is held at an appropriate potential below the moderator pieces. The slow positrons have to pass through the test films before reaching the conductive source. A voltage is adjusted so that the potential difference between the moderator pieces and the conductive source forces the positrons to stop in the test films. Measurable annihilation radiation is emitted from the test film when positrons annihilate (combine) with electrons in the test film.

  8. Positrons in surface physics

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, Christoph

    2016-12-01

    Within the last decade powerful methods have been developed to study surfaces using bright low-energy positron beams. These novel analysis tools exploit the unique properties of positron interaction with surfaces, which comprise the absence of exchange interaction, repulsive crystal potential and positron trapping in delocalized surface states at low energies. By applying reflection high-energy positron diffraction (RHEPD) one can benefit from the phenomenon of total reflection below a critical angle that is not present in electron surface diffraction. Therefore, RHEPD allows the determination of the atom positions of (reconstructed) surfaces with outstanding accuracy. The main advantages of positron annihilation induced Auger-electron spectroscopy (PAES) are the missing secondary electron background in the energy region of Auger-transitions and its topmost layer sensitivity for elemental analysis. In order to enable the investigation of the electron polarization at surfaces low-energy spin-polarized positrons are used to probe the outermost electrons of the surface. Furthermore, in fundamental research the preparation of well defined surfaces tailored for the production of bound leptonic systems plays an outstanding role. In this report, it is envisaged to cover both the fundamental aspects of positron surface interaction and the present status of surface studies using modern positron beam techniques.

  9. Positron emission tomography wrist detector

    DOEpatents

    Schlyer, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois

    2006-08-15

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal representing a time-of-occurrence of an annihilation event, generating an address signal representing a channel detecting the annihilation event, and generating a channel signal including the time and address signals. The method also includes generating a composite signal including the channel signal and another similarly generated channel signal concerning another annihilation event. An apparatus that serially transfers annihilation information includes a time signal generator, address signal generator, channel signal generator, and composite signal generator. The time signal is asynchronous and the address signal is synchronous to a clock signal. A PET scanner includes a scintillation array, detection array, front-end array, and a serial encoder. The serial encoders include the time signal generator, address signal generator, channel signal generator, and composite signal generator.

  10. Positron confinement in embedded lithium nanoclusters

    NASA Astrophysics Data System (ADS)

    van Huis, M. A.; van Veen, A.; Schut, H.; Falub, C. V.; Eijt, S. W.; Mijnarends, P. E.; Kuriplach, J.

    2002-02-01

    Quantum confinement of positrons in nanoclusters offers the opportunity to obtain detailed information on the electronic structure of nanoclusters by application of positron annihilation spectroscopy techniques. In this work, positron confinement is investigated in lithium nanoclusters embedded in monocrystalline MgO. These nanoclusters were created by means of ion implantation and subsequent annealing. It was found from the results of Doppler broadening positron beam analysis that approximately 92% of the implanted positrons annihilate in lithium nanoclusters rather than in the embedding MgO, while the local fraction of lithium at the implantation depth is only 1.3 at. %. The results of two-dimensional angular correlation of annihilation radiation confirm the presence of crystalline bulk lithium. The confinement of positrons is ascribed to the difference in positron affinity between lithium and MgO. The nanocluster acts as a potential well for positrons, where the depth of the potential well is equal to the difference in the positron affinities of lithium and MgO. These affinities were calculated using the linear muffin-tin orbital atomic sphere approximation method. This yields a positronic potential step at the MgO||Li interface of 1.8 eV using the generalized gradient approximation and 2.8 eV using the insulator model.

  11. The multilayer Fe/Hf studied with slow positron beam

    NASA Astrophysics Data System (ADS)

    Murashige, Y.; Tashiro, M.; Nakajyo, T.; Koizumi, T.; Kanazawa, I.; Komori, F.; Ito, Y.

    1997-04-01

    The positron annihilation parameter versus the incident positron energy is measured in the thin Fe films and the Fe/Hf bilayer on silica substrate, by means of the variable energetic slow-positron beam technique. We have analyzed the change in open-volume spaces and vacancy-type defects among the Fe microcrystals in these thin films with the deposition temperature.

  12. Magnetic Enhancements to Dark Matter Annihilation

    NASA Astrophysics Data System (ADS)

    Gardner, William G.; Tinsley, Todd

    2017-01-01

    The rate of dark matter annihilation should be greatest where the dark matter density is maximal. This is typically in the gravity wells of large stars where it also happens to be true that magnetic fields can be very large. In this poster we present an examination of how these intense magnetic fields can alter the cross section for dark matter annihilation into electron-positron pairs. We work within the framework of the minimally supersymmetric extension to the Standard Model (MSSM), and we choose its lightest neutralino as our dark matter candidate. Within this theory, dark matter can annihilate into many different final-state particles through several channels. We restrict our analysis to an electron-positron pair final state because of the low mass and reasonable detection signature. Since strong magnetic fields change how momentum is conserved for charged particles, this calculation investigates the relationship between the annihilation cross section and the electron's and positron's landau level. This is work is supported by NASA/Arkansas Space Grant Consortium and the Hendrix College Odyssey Program.

  13. Positron spectroscopy for materials characterization

    SciTech Connect

    Schultz, P.J.; Snead, C.L. Jr.

    1988-01-01

    One of the more active areas of research on materials involves the observation and characterization of defects. The discovery of positron localization in vacancy-type defects in solids in the 1960's initiated a vast number of experimental and theoretical investigations which continue to this day. Traditional positron annihilation spectroscopic techniques, including lifetime studies, angular correlation, and Doppler broadening of annihilation radiation, are still being applied to new problems in the bulk properties of simple metals and their alloys. In addition new techniques based on tunable sources of monoenergetic positron beams have, in the last 5 years, expanded the horizons to studies of surfaces, thin films, and interfaces. In the present paper we briefly review these experimental techniques, illustrating with some of the important accomplishments of the field. 40 refs., 19 figs.

  14. Diffuse galactic annihilation radiation from supernova nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Higdon, J. C.

    1985-01-01

    The propagation of MeV positrons in the outer ejecta of type I supernovae was investigated. It was found that the positrons created at times of approx 100 days propagated along magnetic field lines in the outer ejecta without any appreciable pitch-angle scattering or excitation of hydromagnetic waves. The lack of significant pitch-angle scattering is well consistent with models of wave excitation and scattering by resonant interactions. This occurs because time periods to scatter the particles or to excite waves are significantly longer than escape times. Thus it is expected that, when positrons are not coupled to the ejecta by Coulomb collisions, they escape from the relatively cold, dense ejecta and reside predominantly in the tenuous, hotter, shock-heated interstellar gas. In the tenuous shock-heated gas the positron lifetime against annihilation is much greater than lifetimes in the dense ejectra. Thus the production of steady-state diffuse annihilation radiation by some fraction of these escaped positrons seems probable.

  15. What is the fate of runaway positrons in tokamaks?

    DOE PAGES

    Liu, Jian; Qin, Hong; Fisch, Nathaniel J.; ...

    2014-06-19

    In this study, massive runaway positrons are generated by runaway electrons in tokamaks. The fate of these positrons encodes valuable information about the runaway dynamics. The phase space dynamics of a runaway position is investigated using a Lagrangian that incorporates the tokamak geometry, loop voltage, radiation and collisional effects. It is found numerically that runaway positrons will drift out of the plasma to annihilate on the first wall, with an in-plasma annihilation possibility less than 0.1%. The dynamics of runaway positrons provides signatures that can be observed as diagnostic tools.

  16. Antiproton annihilation in quantum chromodynamics

    SciTech Connect

    Brodsky, S.J.

    1988-10-01

    Anti-proton annihilation has a number of important advantages as a probe of QCD in the low energy domain. Exclusive reaction in which complete annihilation of the valance quarks occur. There are a number of exclusive and inclusive /bar p/ reactions in the intermediate momentum transfer domain which provide useful constraints on hadron wavefunctions or test novel features of QCD involving both perturbative and nonperturbative dynamics. Inclusive reactions involving antiprotons have the advantage that the parton distributions are well understood. In these lectures, I will particularly focus on lepton pair production /bar p/A ..-->.. /ell//bar /ell//X as a means to understand specific nuclear features in QCD, including collision broadening, breakdown of the QCD ''target length condition''. Thus studies of low to moderate energy antiproton reactions with laboratory energies under 10 GeV could give further insights into the full structure of QCD. 112 refs., 40 figs.

  17. Annihilation physics of exotic galactic dark matter particles

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1990-01-01

    Various theoretical arguments make exotic heavy neutral weakly interacting fermions, particularly those predicted by supersymmetry theory, attractive candidates for making up the large amount of unseen gravitating mass in galactic halos. Such particles can annihilate with each other, producing secondary particles of cosmic-ray energies, among which are antiprotons, positrons, neutrinos, and gamma-rays. Spectra and fluxes of these annihilation products can be calculated, partly by making use of positron electron collider data and quantum chromodynamic models of particle production derived therefrom. These spectra may provide detectable signatures of exotic particle remnants of the big bang.

  18. Unthermalized positrons in gamma ray burst sources

    NASA Technical Reports Server (NTRS)

    Tkaczyk, W.; Karakula, S.

    1992-01-01

    The spectra of the broadening 0.511 MeV annihilation line produced by high temperatures was calculated in the case of unthermalized plasma; i.e., T sub e(+) is not = T sub e(-). The flattening in the spectrum of the annihilation lines for large differences of electron and positron temperatures is a strong indication that the observed features of the hard tailed spectrum of the gamma bursts can be well described by annihilation of unthermalized positrons. It is proposed that the charge separation occurring in Eddington limited accretion onto a neutron star or the one photon pair production in strong magnetic fields as a mechanism for the production of unthermalized positrons in the sources of gamma bursts. From the best fit of experimental spectra by the model, the parameters of sources for which the regions with different plasma temperatures can exist is evaluated.

  19. The Sub 0.1 fm Experimental Value of the Electron Radius, the Inability to Create or Annihilate an Electron even by TeV Energies, the Impossibility of Kinetic Energy Transfer to an Electron from a Particle of a 10^5 Times Smaller Mass, the Belief in Mass-Energy Equivalence (MEE) and the Electron Positron Lattice (EPOLA) Model of Space

    NASA Astrophysics Data System (ADS)

    Simhony, Menahem

    2003-04-01

    Scientists would not believe that the appearance and disappearance of rabbits in a magic box means their creation and annihilation by energy signals. However the belief in MEE made the results of the Anderson Experiment (1932) be accepted as creation and annihilation of particles out of and into energy, though never since was there a single electron created or annihilated in empy space, even now with muli TeV energies, and though phenomena obtain simple physical explanations as due to the epola structure of space,1, while the MEE fails. E.g., MEE yields the 2.82 fm value for the "classical electron radius" while scattering of fast electron beams proves (since the 1980's) that the electron radius must be below 0.1fm, and the value obtained then in the epola model is 0.094fm. Thus the density of matter in the electron is 3 10^17 kg/m^3, as in all stable nuclear particles known on earth. Another crush of MEE is the physically impossible direct transfer of kinetic energy from a several eV photon to a free electron of 511,000 eV MEE, as in Einstein's 1905 interpretation of the photo-electric effect. The solution is that the acting particle is an epola electron or positron that momentarily carries the photon energy and is thus able to transfer it to a nuclear particle of comparable mass. See:1.M.Simhony, Invitation to the Natural Physics of Matter, Space, and Radiation, World Scientific, 1994, ISBN 981-02-1649-1. Website: www.word1.co.il/physics

  20. Resolvability of positron decay channels

    SciTech Connect

    Fluss, M.J.; Howell, R.H.; Rosenberg, I.J.; Meyer, P.

    1985-03-07

    Many data analysis treatments of positron experiments attempt to resolve two or more positron decay or exist channels which may be open simultaneously. Examples of the need to employ such treatments of the experimental results can be found in the resolution of the constituents of a defect ensemble, or in the analysis of the complex spectra which arise from the interaction of slow positrons at or near the surfaces of solids. Experimental one- and two-dimensional angular correlation of annihilation radiation experiments in Al single crystals have shown that two defect species (mono- and divacancies) can be resolved under suitable conditions. Recent experiments at LLNL indicate that there are a variety of complex exit channels open to positrons interacting at surfaces, and ultimely these decay channels must also be suitably resolved from one another. 6 refs., 4 figs.

  1. Positron-acoustic shock waves associated with cold viscous positron fluid in superthermal electron-positron-ion plasmas

    SciTech Connect

    Uddin, M. J. Alam, M. S.; Mamun, A. A.

    2015-06-15

    A theoretical investigation is made on the positron-acoustic (PA) shock waves (SHWs) in an unmagnetized electron-positron-ion plasma containing immobile positive ions, cold mobile positrons, and hot positrons and electrons following the kappa (κ) distribution. The cold positron kinematic viscosity is taken into account, and the reductive perturbation method is used to derive the Burgers equation. It is found that the viscous force acting on cold mobile positron fluid is a source of dissipation and is responsible for the formation of the PA SHWs. It is also observed that the fundamental properties of the PA SHWs are significantly modified by the effects of different parameters associated with superthermal (κ distributed) hot positrons and electrons.

  2. Positron implantation in solids

    SciTech Connect

    Ghosh, V.J.; Lynn, K.G.; Welch, D.O.

    1993-12-31

    The Monte Carlo technique for modeling positron prior to annihilation and electron implantation in semi-infinite metals is described. Particle implantation is modelled as a multistep process, a series of collisions with the atoms of the host material. In elastic collisions with neutral atoms there is no transfer of energy. The particle loses energy by several different channels, excitation of the electron gas, ionization of the ion cores, or, at low energies, by phonon excitation. These competing scattering mechanisms have been incorporated into the Monte Carlo framework and several different models are being used. Brief descriptions of these Monte Carlo schemes, as well as an analytic model for positron implantation are included. Results of the Monte Carlo simulations are presented and compared with expermental data. Problems associated with modeling positron implantation are discuss and the need for more expermental data on energy-loss in different materials is stressed. Positron implantation in multilayers of different metals is briefly described and extensions of this work to include a study of multilayers and heterostructures is suggested.

  3. Positronics of radiation-induced effects in chalcogenide glassy semiconductors

    SciTech Connect

    Shpotyuk, O.; Kozyukhin, S. A.; Shpotyuk, M.; Ingram, A.; Szatanik, R.

    2015-03-15

    Using As{sub 2}S{sub 3} and AsS{sub 2} glasses as an example, the principal possibility of using positron annihilation spectroscopy methods for studying the evolution of the free volume of hollow nanoobjects in chalcogenide glassy semiconductors exposed to radiation is shown. The results obtained by measurements of the positron annihilation lifetime and Doppler broadening of the annihilation line in reverse chronological order are in full agreement with the optical spectroscopy data in the region of the fundamental absorption edge, being adequately described within coordination defect-formation and physical-aging models.

  4. Radiative proton-antiproton annihilation to a lepton pair

    SciTech Connect

    Ahmadov, A. I.; Bytev, V. V.; Kuraev, E. A.; Tomasi-Gustafsson, E.

    2010-11-01

    The annihilation of proton and antiproton to an electron-positron pair, including radiative corrections due to the emission of virtual and real photons is considered. The results are generalized to leading and next-to leading approximations. The relevant distributions are derived and numerical applications are given in the kinematical range accessible to the PANDA experiment at the FAIR facility.

  5. Recent Developments in Positron Emission Tomography (PET) Instrumentation

    DOE R&D Accomplishments Database

    Derenzo, S. E.; Budinger, T. F.

    1986-04-01

    This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors.

  6. Recent developments in positron emission tomography (PET) instrumentation

    SciTech Connect

    Derenzo, S.E.; Budinger, T.F.

    1986-04-01

    This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors. 117 refs., 4 figs., 4 tabs.

  7. Positron microscopy

    SciTech Connect

    Hulett, L.D. Jr.; Xu, J.

    1995-02-01

    The negative work function property that some materials have for positrons make possible the development of positron reemission microscopy (PRM). Because of the low energies with which the positrons are emitted, some unique applications, such as the imaging of defects, can be made. The history of the concept of PRM, and its present state of development will be reviewed. The potential of positron microprobe techniques will be discussed also.

  8. Positrons in the Galaxy: Their Births, Marriages and Deaths

    NASA Technical Reports Server (NTRS)

    Skinner, Gerald K.

    2010-01-01

    High energy (approximately GeV) positrons are seen within cosmic rays and observation of a narrow line at 511 keV shows that positrons are annihilating in the galaxy after slowing down to approximately keV energies or less. Our state of knowledge of the origin of these positrons, of the formation of positronium 'atoms', and of the circumstances of their annihilation or escape from the galaxy are reviewed and the question of whether the two phenomena are linked is discussed.

  9. Nuclear annihilation by antinucleons

    SciTech Connect

    Lee, Teck-Ghee; Wong, Cheuk-Yin

    2016-01-25

    We examine the momentum dependence of $\\bar{p}$p and $\\bar{n}$p annihilation cross sections by considering the transmission through a nuclear potential and the $\\bar {p}$p Coulomb interaction. Compared to the $\\bar{n}$p annihilation cross section, the $\\bar{p}$p annihilation cross section is significantly enhanced by the Coulomb interaction for projectile momenta below plab < 500 MeV/c, and the two annihilation cross sections approach the Pomeranchuk's equality limit [JETP 30, 423 (1956)] at plab ~500 MeV/c. Using these elementary cross sections as the basic input data, the extended Glauber model is employed to evaluate the annihilation cross sections for $\\bar{n}$ and $\\bar{p}$ interaction with nuclei and the results compare well with experimental data.

  10. Nuclear annihilation by antinucleons

    DOE PAGES

    Lee, Teck-Ghee; Wong, Cheuk-Yin

    2016-01-25

    We examine the momentum dependence ofmore » $$\\bar{p}$$p and $$\\bar{n}$$p annihilation cross sections by considering the transmission through a nuclear potential and the $$\\bar {p}$$p Coulomb interaction. Compared to the $$\\bar{n}$$p annihilation cross section, the $$\\bar{p}$$p annihilation cross section is significantly enhanced by the Coulomb interaction for projectile momenta below plab < 500 MeV/c, and the two annihilation cross sections approach the Pomeranchuk's equality limit [JETP 30, 423 (1956)] at plab ~500 MeV/c. Using these elementary cross sections as the basic input data, the extended Glauber model is employed to evaluate the annihilation cross sections for $$\\bar{n}$$ and $$\\bar{p}$$ interaction with nuclei and the results compare well with experimental data.« less

  11. Positron affinity in Zn1-xCdxSe

    NASA Astrophysics Data System (ADS)

    Benosman, N.; Amrane, N.; Méçabih, S.; Aourag, H.

    2000-11-01

    The independent particle model (IPM) coupled with the use of the virtual crystal approximation (VCA) which incorporates compositional disorder as an effective potential was used to compute the positron charge distribution in the cubic structured ternary alloy Zn1-xCdxSe. The positron charge density with respect to the variation of the mole fraction is discussed. The results show that positrons have a strong affinity for the anion than for the cation. This relative positron affinity should lead to the positron preferentially annihilating with the anion rather than the cation.

  12. 2D ACAR momentum density study of the nature of the positron surface state on Al(100)

    SciTech Connect

    Berko, S.; Canter, K.F.; Lynn, K.G.; Mills, A.P.; Roellig, L.O.; West, R.N.

    1985-01-01

    The two-dimensional angular correlation of the 2..gamma.. annihilation radiation (2D ACAR) has been measured from an Al(100) surface bombarded by 200-eV positrons. After removing the contribution of fast para-positronium annihilation, the spectrum from positrons annihilating at the surface exhibits a nearly isotropic conical shape with a (7.1 +- 0.5) mrad FWHM. 5 refs., 6 figs.

  13. Nonplanar positron-acoustic Gardner solitary waves in electron-positron-ion plasmas with superthermal electrons and positrons

    NASA Astrophysics Data System (ADS)

    Uddin, M. J.; Alam, M. S.; Mamun, A. A.

    2015-02-01

    Nonplanar (cylindrical and spherical) positron-acoustic (PA) Gardner solitary waves (SWs) in an unmagnetized plasma system consisting of immobile positive ions, mobile cold positrons, and superthermal (kappa distributed) hot positrons and electrons are investigated. The modified Gardner equation is derived by using the reductive perturbation technique. The effects of cylindrical and spherical geometries, superthermal parameter of hot positrons and electrons, relative temperature ratios, and relative number density ratios on the PA Gardner SWs are studied by using the numerical simulations. The implications of our results in various space and laboratory plasma environments are briefly discussed.

  14. Nonplanar positron-acoustic Gardner solitary waves in electron-positron-ion plasmas with superthermal electrons and positrons

    SciTech Connect

    Uddin, M. J. Alam, M. S.; Mamun, A. A.

    2015-02-15

    Nonplanar (cylindrical and spherical) positron-acoustic (PA) Gardner solitary waves (SWs) in an unmagnetized plasma system consisting of immobile positive ions, mobile cold positrons, and superthermal (kappa distributed) hot positrons and electrons are investigated. The modified Gardner equation is derived by using the reductive perturbation technique. The effects of cylindrical and spherical geometries, superthermal parameter of hot positrons and electrons, relative temperature ratios, and relative number density ratios on the PA Gardner SWs are studied by using the numerical simulations. The implications of our results in various space and laboratory plasma environments are briefly discussed.

  15. The Buffer-Gas Positron Accumulator and Resonances in Positron-Molecule Interactions

    NASA Technical Reports Server (NTRS)

    Surko, C.M.

    2007-01-01

    This is a personal account of the development of our buffer-gas positron trap and the new generation of cold beams that these traps enabled. Dick Drachman provided much appreciated advice to us from the time we started the project. The physics underlying trap operation is related to resonances (or apparent resonances) in positron-molecule interactions. Amusingly, experiments enabled by the trap allowed us to understand these processes. The positron-resonance "box score" to date is one resounding "yes," namely vibrational Feshbach resonances in positron annihilation on hydrocarbons; a "probably" for positron-impact electronic excitation of CO and NZ;an d a "maybe" for vibrational excitation of selected molecules. Two of these processes enabled the efficient operation of the trap, and one almost killed it in infancy. We conclude with a brief overview of further applications of the trapping technology discussed here, such as "massive" positron storage and beams with meV energy resolution.

  16. Gamma-Ray background spectrum and annihilation rate in the baryon-symmetric big-bang cosmology

    NASA Technical Reports Server (NTRS)

    Puget, J. L.

    1973-01-01

    An attempt was made to extract experimental data on baryon symmetry by observing annihilation products. Specifically, gamma rays and neutrons with long mean free paths were analyzed. Data cover absorption cross sections and radiation background of the 0.511 MeV gamma rays from positron annihilations and the 70 MeV gamma rays from neutral pion decay.

  17. Gamma-Ray background spectrum and annihilation rate in the baryon-symmetric big-bang cosmology

    NASA Technical Reports Server (NTRS)

    Puget, J. L.

    1973-01-01

    An attempt was made to extract experimental data on baryon symmetry by observing annihilation products. Specifically, gamma rays and neutrons with long mean free paths were analyzed. Data cover absorption cross sections and radiation background of the 0.511 MeV gamma rays from positron annihilations and the 70 MeV gamma rays from neutral pion decay.

  18. Sgr A* as Source of the Positrons Observed in the Galactic Center Region

    NASA Astrophysics Data System (ADS)

    Jean, Pierre; Guessoum, Nidhal; Ferrière, Katia

    2017-01-01

    We explore the possibility that a substantial fraction of the positrons observed to annihilate in the central region of our Galaxy come from the supermassive black hole Sgr A* that lies at the center. This idea was proposed by several authors, but the propagation of the emitted positrons into the bulge and beyond remained a serious problem for models of the origin of GC positrons. We assume models of positron production with different energies. The propagation of positrons from their production site is followed in detail with Monte-Carlo simulations, taking into account the physical conditions of the propagation regions as well as various physical interactions. Using the known physics of positron annihilation in astrophysical environments, we calculate the properties of the annihilation emission (time evolution and spatial distribution) for the different models under consideration. We present the results of these simulations and the conclusions/constraints that can be inferred from them.

  19. Speciation of uranium and doping induced defects in Gd1.98U0.02Zr2O7: Photoluminescence, X-ray photoelectron and positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Gupta, Santosh K.; Reghukumar, C.; Pathak, Nimai; Sudarshan, K.; Tyagi, D.; Mohapatra, M.; Pujari, P. K.; Kadam, R. M.

    2017-02-01

    Based on photoluminescence spectroscopy it was inferred that uranium stabilizes as both U(IV) as well as U(VI) in Gd2Zr2O7 which was also corroborated using X-ray photo electron spectroscopy (XPS). Absence of equidistant vibronic structure in emission spectrum of Gd1.98U0.02Zr2O7 confirmed that U(VI) stabilizes in the form of UO66-. Based on luminescence lifetime it was inferred that majority of UO66- stabilizes at both Gd3+/Zr4+ whereas U4+ stabilizes only at Zr4+ sites. The positron lifetime doesn't change on uranium doping indicating the formation of antisite defect. Infact it is this antisite defect in Gd1.98U0.02Zr2O7 which favours the stabilization of its fluorite phase.

  20. Dark matter annihilation and the PAMELA, FERMI, and ATIC anomalies

    SciTech Connect

    El Zant, A. A.; Okada, H.; Khalil, S.

    2010-06-15

    If dark matter annihilation accounts for the tantalizing excess of cosmic ray electron/positrons, as reported by the PAMELA, ATIC, HESS, and FERMI observatories, then the implied annihilation cross section must be relatively large. This results, in the context of standard cosmological models, in very small relic dark matter abundances that are incompatible with astrophysical observations. We explore possible resolutions to this apparent conflict in terms of nonstandard cosmological scenarios; plausibly allowing for large cross sections, while maintaining relic abundances in accord with current observations.

  1. Low energy positrons at the Ga-rich (100) surface of GaAs

    NASA Astrophysics Data System (ADS)

    Fazleev, Nail G.; Fry, John L.; Starnes, Shannon G.; Weiss, Alex H.

    2000-03-01

    We present results of theoretical studies of positron surface states and annihilation characteristics at the Ga-rich (100) surface of GaAs with different reconstructions. Calculations are based on a treatment of a positron as a single charged particle trapped in a "correlation well" in the proximity of surface atoms. Positron surface and bulk states are calculated numerically by solving the positron Schrödinger equation using the finite-difference method. The Hartree part of the positron potential is constructed taking into consideration the electronic reorganization due to interatomic bondings and surface stoichoimetry effects. Estimates of positron surface-state binding energies and work functions are provided. Computed positron surface-state characteristics and annihilation probabilities with relevant core electrons are used to analyze positron annihilation induced Auger-electron spectroscopy (PAES) spectrum from the Ga-rich GaAs (100) surface. The effect of deposition of Al on the (100) surface of GaAs on the localization of the positron surface state and on positron annihilation probabilities is also discussed.

  2. Positron-attachment to small molecules: Vibrational enhancement of positron affinities with configuration interaction level of multi-component molecular orbital approach

    SciTech Connect

    Tachikawa, Masanori

    2015-12-31

    To theoretically demonstrate the binding of a positron to small polarized molecules, we have calculated the vibrational averaged positron affinity (PA) values along the local vibrational contribution with the configuration interaction level of multi-component molecular orbital method. This method can take the electron-positron correlation contribution into account through single electronic - single positronic excitation configurations. The PA values are enhanced by including the local vibrational contribution from vertical PA values due to the anharmonicity of the potential.

  3. Constraining annihilating dark matter by x-ray data

    NASA Astrophysics Data System (ADS)

    Chan, Man Ho

    2017-09-01

    In the past decade, gamma-ray observations and radio observations put strong constraints on the parameters of dark matter annihilation. In this article, we suggest another robust way to constrain the parameters of dark matter annihilation. We expect that the electrons and positrons produced from dark matter annihilation would scatter with the cosmic microwave background photons and boost the photon energy to ˜ keV order. Based on the x-ray data from the Draco dwarf galaxy, the new constraints for some of the annihilation channels are generally tighter than the constraints obtained from 6 years of Fermi Large Area Telescope (Fermi-LAT) gamma-ray observations of the Milky Way dwarf spheroidal satellite galaxies. The lower limits of dark matter mass annihilating via e+e-, μ+μ-, τ+τ-, gg, u\\bar{u} and b\\bar{b} channels are 40 GeV, 28 GeV, 30 GeV, 57 GeV, 58 GeV and 66 GeV respectively with the canonical thermal relic cross section. This method is particularly useful to constrain dark matter annihilating via e+e-, μ+μ-, gg, u\\bar{u} and b\\bar{b} channels.

  4. Electroweak fragmentation functions for dark matter annihilation

    SciTech Connect

    Cavasonza, Leila Ali; Krämer, Michael; Pellen, Mathieu

    2015-02-18

    Electroweak corrections can play a crucial role in dark matter annihilation. The emission of gauge bosons, in particular, leads to a secondary flux consisting of all Standard Model particles, and may be described by electroweak fragmentation functions. To assess the quality of the fragmentation function approximation to electroweak radiation in dark matter annihilation, we have calculated the flux of secondary particles from gauge-boson emission in models with Majorana fermion and vector dark matter, respectively. For both models, we have compared cross sections and energy spectra of positrons and antiprotons after propagation through the galactic halo in the fragmentation function approximation and in the full calculation. Fragmentation functions fail to describe the particle fluxes in the case of Majorana fermion annihilation into light fermions: the helicity suppression of the lowest-order cross section in such models cannot be lifted by the leading logarithmic contributions included in the fragmentation function approach. However, for other classes of models like vector dark matter, where the lowest-order cross section is not suppressed, electroweak fragmentation functions provide a simple, model-independent and accurate description of secondary particle fluxes.

  5. Positron-molecule bound states and positive ion production

    NASA Technical Reports Server (NTRS)

    Leventhal, M.; Passner, A.; Surko, C. M.

    1990-01-01

    The interaction was studied of low energy positrons with large molecules such as alkanes. These data provide evidencce for the existence of long lived resonances and bound states of positrons with neutral molecules. The formation process and the nature of these resonances are discussed. The positive ions produced when a positron annihilates with an electron in one of these resonances were observed and this positive ion formation process is discussed. A review is presented of the current state of the understanding of these positron-molecule resonances and the resulting positive ion formation. A number of outstanding issues in this area is also discussed.

  6. Directional Dependence for Dark Matter Annihilation in Extreme Astrophysical Environments

    NASA Astrophysics Data System (ADS)

    Valadie, O. Grahm; Tinsley, Todd

    2017-01-01

    This research explores the directional dependence that extreme magnetic fields have on the annihilation of dark matter into electron-positron pairs. We take the neutralino of the Minimally Supersymmetric Standard Model (MSSM) as our dark matter candidate and assume magnetic field strengths on the order of the critical field (Bc 1013 G). This is characteristic of extreme astrophysical environments in which dark matter may accumulate. We will present the results for the annihilation cross section at varying incoming particle direction. In addition, we will present how these results differ with neutralino mass and energy, as well as with the magnetic field strength. Our goal is to demonstrate the ways that the direction of the magnetic field affects the states of the final electron and positron. This work is supported by NASA/Arkansas Space Grant Consortium and the Hendrix Odyssey Program.

  7. Development of spin-polarized slow positron beam using a 68Ge-68Ga positron source

    NASA Astrophysics Data System (ADS)

    Maekawa, Masaki; Fukaya, Yuki; Yabuuchi, Atsushi; Mochizuki, Izumi; Kawasuso, Atsuo

    2013-08-01

    A 68Ge-68Ga positron source was produced from the 69Ga(p, 2n)68Ge nuclear reaction by irradiating a GaN substrate with 20 MeV protons. Fast positrons from the source were converted to slow positrons using tungsten meshes and foils and were then electrostatically transported to the sample chamber. The spin polarization of the positron beam was determined as 47 ± 8% from the magnetic field dependence of the para-positronium intensity in fused silica. The Doppler broadening of the annihilation radiation spectra of polycrystalline Fe showed asymmetry upon field reversal. The spin-polarized positron beam generated by the 68Ge-68Ga source may be applicable to study the magnetic properties associated with surfaces, interfaces, and thin films.

  8. Positron kinetics in an idealized PET environment

    NASA Astrophysics Data System (ADS)

    Robson, R. E.; Brunger, M. J.; Buckman, S. J.; Garcia, G.; Petrović, Z. Lj.; White, R. D.

    2015-08-01

    The kinetic theory of non-relativistic positrons in an idealized positron emission tomography PET environment is developed by solving the Boltzmann equation, allowing for coherent and incoherent elastic, inelastic, ionizing and annihilating collisions through positronium formation. An analytic expression is obtained for the positronium formation rate, as a function of distance from a spherical source, in terms of the solutions of the general kinetic eigenvalue problem. Numerical estimates of the positron range - a fundamental limitation on the accuracy of PET, are given for positrons in a model of liquid water, a surrogate for human tissue. Comparisons are made with the ‘gas-phase’ assumption used in current models in which coherent scattering is suppressed. Our results show that this assumption leads to an error of the order of a factor of approximately 2, emphasizing the need to accurately account for the structure of the medium in PET simulations.

  9. Electron capture from solids by positrons

    SciTech Connect

    Howell, R.

    1987-08-01

    The capture of electrons in solids is modified from that in gasses by several factors. The most important is the collective interaction of the electrons which results in a density of electron states in the solid in wide bands. Also the high density of electrons in many solids gives a high frequency of interaction as compared to gasses, and quickly destroys any electron-positron states in the metal matrix. Consequently, most positrons implanted in a metal will rapidly thermalize, and unless they reach the surface will annihilate with an electron in an uncorrelated state. Positronium formation from positrons scattered at a metal surface is analogous to ion neutralization however, most of the positronium comes from positrons passing through the surface from the bulk. The dominant motivation for studying positronium formation has been the hope that the distribution of the electrons at the surface would be obtained through the annihilation properties of positrons trapped at the surface or through analysis of the energy and angular distributions of the positronium emitted into the vacuum. These distributions have been measured and are included in this paper. 17 refs.

  10. CALET's sensitivity to Dark Matter annihilation in the galactic halo

    SciTech Connect

    Motz, H.; Asaoka, Y.; Torii, S.; Bhattacharyya, S. E-mail: yoichi.asaoka@aoni.waseda.jp E-mail: saptashwab@ruri.waseda.jp

    2015-12-01

    CALET (Calorimetric Electron Telescope), installed on the ISS in August 2015, directly measures the electron+positron cosmic rays flux up to 20 TeV. With its proton rejection capability of 1 : 10{sup 5} and an aperture of 1200 cm{sup 2·} sr, it will provide good statistics even well above one TeV, while also featuring an energy resolution of 2%, which allows it to detect fine structures in the spectrum. Such structures may originate from Dark Matter annihilation or decay, making indirect Dark Matter search one of CALET's main science objectives among others such as identification of signatures from nearby supernova remnants, study of the heavy nuclei spectra and gamma astronomy. The latest results from AMS-02 on positron fraction and total electron+positron flux can be fitted with a parametrization including a single pulsar as an extra power law source with exponential cut-off, which emits an equal amount of electrons and positrons. This single pulsar scenario for the positron excess is extrapolated into the TeV region and the expected CALET data for this case are simulated. Based on this prediction for CALET data, the sensitivity of CALET to Dark Matter annihilation in the galactic halo has been calculated. It is shown that CALET could significantly improve the limits compared to current data, especially for those Dark Matter candidates that feature a large fraction of annihilation directly into e{sup +} + e{sup −}, such as the LKP (Lightest Kaluza-Klein particle)

  11. A method to detect positron anisotropies with Pamela data

    NASA Astrophysics Data System (ADS)

    Panico, B.; Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Boezio, M.; Bogomolov, E. A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carbone, R.; Carlson, P.; Casolino, M.; Castellini, G.; De Donato, C.; De Santis, C.; De Simone, N.; Di Felice, V.; Formato, V.; Galper, A. M.; Giaccari, U.; Karelin, A. V.; Koldashov, S. V.; Koldobskiy, S.; Krutkov, S. Y.; Kvashnin, A. N.; Leonov, A.; Malakhov, V.; Marcelli, L.; Martucci, M.; Mayorov, A. G.; Menn, W.; Merge, M.; Mikhailov, V. V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Munini, R.; Osteria, G.; Palma, F.; Papini, P.; Pearce, M.; Picozza, P.; Pizzolotto, C.; Ricci, M.; Ricciarini, S. B.; Sarkar, R.; Scotti, V.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Y. I.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.; Zverev, V. G.

    2014-11-01

    The PAMELA experiment is collecting data since 2006; its results indicate the presence of a large flux of positron with respect to electrons in the CR spectrum above 10 GeV. This excess might also be originated in objects such as pulsars and microquasars or through dark matter annihilation. Here the electrons and positrons events collected by PAMELA have been analized searching for anisotropies. The analysis is performed at different angular scales and results will be presented at the conference.

  12. The Isotropic Radio Background and Annihilating Dark Matter

    SciTech Connect

    Hooper, Dan; Belikov, Alexander V.; Jeltema, Tesla E.; Linden, Tim; Profumo, Stefano; Slatyer, Tracy R.

    2012-11-01

    Observations by ARCADE-2 and other telescopes sensitive to low frequency radiation have revealed the presence of an isotropic radio background with a hard spectral index. The intensity of this observed background is found to exceed the flux predicted from astrophysical sources by a factor of approximately 5-6. In this article, we consider the possibility that annihilating dark matter particles provide the primary contribution to the observed isotropic radio background through the emission of synchrotron radiation from electron and positron annihilation products. For reasonable estimates of the magnetic fields present in clusters and galaxies, we find that dark matter could potentially account for the observed radio excess, but only if it annihilates mostly to electrons and/or muons, and only if it possesses a mass in the range of approximately 5-50 GeV. For such models, the annihilation cross section required to normalize the synchrotron signal to the observed excess is sigma v ~ (0.4-30) x 10^-26 cm^3/s, similar to the value predicted for a simple thermal relic (sigma v ~ 3 x 10^-26 cm^3/s). We find that in any scenario in which dark matter annihilations are responsible for the observed excess radio emission, a significant fraction of the isotropic gamma ray background observed by Fermi must result from dark matter as well.

  13. Positron Physics

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J.

    2003-01-01

    I will give a review of the history of low-energy positron physics, experimental and theoretical, concentrating on the type of work pioneered by John Humberston and the positronics group at University College. This subject became a legitimate subfield of atomic physics under the enthusiastic direction of the late Sir Harrie Massey, and it attracted a diverse following throughout the world. At first purely theoretical, the subject has now expanded to include high brightness beams of low-energy positrons, positronium beams, and, lately, experiments involving anti-hydrogen atoms. The theory requires a certain type of persistence in its practitioners, as well as an eagerness to try new mathematical and numerical techniques. I will conclude with a short summary of some of the most interesting recent advances.

  14. Positron Physics

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J.

    2003-01-01

    I will give a review of the history of low-energy positron physics, experimental and theoretical, concentrating on the type of work pioneered by John Humberston and the positronics group at University College. This subject became a legitimate subfield of atomic physics under the enthusiastic direction of the late Sir Harrie Massey, and it attracted a diverse following throughout the world. At first purely theoretical, the subject has now expanded to include high brightness beams of low-energy positrons, positronium beams, and, lately, experiments involving anti-hydrogen atoms. The theory requires a certain type of persistence in its practitioners, as well as an eagerness to try new mathematical and numerical techniques. I will conclude with a short summary of some of the most interesting recent advances.

  15. Fluxes and spectra of quasimonochromatic annihilation photons for studying E1 giant resonances in nuclei

    SciTech Connect

    Dzhilavyan, L. Z.

    2014-12-15

    The fluxes and spectra of quasimonochromatic photons originating from the in-flight annihilation of positrons interacting with electrons of targets are analyzed in the energy region characteristic of the excitation of E1 giant resonances in nuclei. Targets of small thickness and low atomic number are used. The dependences of the spectra on the energy and angle (and their scatter) for positrons incident to the target, on the collimation angle for photons, and on the target thickness are studied.

  16. PhytoBeta imager: a positron imager for plant biology

    SciTech Connect

    Weisenberger, Andrew G; Lee, Seungjoon; McKisson, John; McKisson, J E; Xi, Wenze; Zorn, Carl; Reid, Chantal D; Howell, Calvin R; Crowell, Alexander S; Cumberbatch, Laurie; Fallin, Brent; Stolin, Alexander; Smith, Mark F

    2012-06-01

    Several positron emitting radioisotopes such as 11C and 13N can be used in plant biology research. The 11CO2 tracer is used to facilitate plant biology research toward optimization of plant productivity, biofuel development and carbon sequestration in biomass. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using 11CO2. Because plants typically have very thin leaves, little medium is present for the emitted positrons to undergo an annihilation event. The emitted positrons from 11C (maximum energy 960 keV) could require up to approximately 4 mm of water equivalent material for positron annihilation. Thus many of the positrons do not annihilate inside the leaf, resulting in limited sensitivity for PET imaging. To address this problem we have developed a compact beta-positive, beta-minus particle imager (PhytoBeta imager) for 11CO2 leaf imaging. The detector is based on a Hamamatsu H8500 position sensitive photomultiplier tube optically coupled via optical grease to a 0.5 mm thick Eljen EJ-212 plastic scintillator. The detector is equipped with a flexible arm to allow its placement and orientation over or under the leaf to be studied while maintaining the leaf's original orientation. To test the utility of the system the detector was used to measure carbon translocation in a leaf of the spicebush (Lindera benzoin) under two transient light conditions.

  17. Models of pair annihilation in 1E 1740.7-2942 and the HEAO 1 A-4 annihilation source

    NASA Technical Reports Server (NTRS)

    Maciolek-Niedzwiecki, Andrzej; Zdziarski, Andrzej

    1994-01-01

    We study possible models of two Galactic sources of transient pair annihilation radiation, 1E 1740.7-2942 and a source observed by High Energy Astronomy Observatory (HEAO) 1 A-4. We fit the observed spectral features by thermal annihilation spectra and find that the redshifts obtained by us are much larger than those obtained from fitting Caussian lines centered on 511 keV. This effect, which is due to the net blueshift (with respect to 511 keV) of the annihilation spectrum due to the thermal energies of pairs, puts strong constraints on models of sources. We consider those constraints first without considering the mechanism of positron production. From the shape of the observed spectra, we are able to rule out both spherical clouds and layers above cold matter as possible source geometries. The observed spectra are compatible with two source geometries: (1) a nearly face-on disk in the Kerr metric and (2) a jet close to a black hole. We consider, then, the origin of the pairs. Theories of both thermal and nonthermal pair equilibria predict that photon-pair production is unable to produce annihilation features that contain as much as half of the bolometric luminosity, which is observed. A possible solution to this problem is obscuration of a nonthermal source (in which pairs are produced by photon-photon collisions) and an outflow of pairs to an unobscured region. This makes annihilation in a jet the most likely model of the considered sources.

  18. Antiproton annihilations in nuclei

    SciTech Connect

    McGaughey, P.L.; Bol, K.D.; Clover, M.R.; DeVries, R.M.; DiGiacomo, N.J.; Kapustinsky, J.S.; Smith, G.R.; Sunier, J.W.; Sondheim, W.E.; Yariv, Y.

    1985-01-01

    Recent results from LEAR experiment PS187 are presented. Preliminary data for the inclusive production of ..pi../sup +/, K/sup +/, and p from the annihilation of 180 MeV antiprotpns in /sup 28/Si and /sup 238/U are compared with predictions of intranuclear cascade calculations. Proton and pion production data are well reproduced by the calculations, but kaon yields at low momenta appear to be strongly suppressed in the experimental data. 8 refs., 5 figs.

  19. First platinum moderated positron beam based on neutron capture

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.; Kögel, G.; Repper, R.; Schreckenbach, K.; Sperr, P.; Triftshäuser, W.

    2002-12-01

    A positron beam based on absorption of high energy prompt γ-rays from thermal neutron capture in 113Cd was installed at a neutron guide of the high flux reactor at the ILL in Grenoble. Measurements were performed for various source geometries, dependent on converter mass, moderator surface and extraction voltages. The results lead to an optimised design of the in-pile positron source which will be implemented at the Munich research reactor FRM-II. The positron source consists of platinum foils acting as γ-e +e --converter and positron moderator. Due to the negative positron work function moderation in heated platinum leads to emission of monoenergetic positrons. The positron work function of polycrystalline platinum was determined to 1.95(5) eV. After acceleration to several keV by four electrical lenses the beam was magnetically guided in a solenoid field of 7.5 mT leading to a NaI-detector in order to detect the 511 keV γ-radiation of the annihilating positrons. The positron beam with a diameter of less than 20 mm yielded an intensity of 3.1×10 4 moderated positrons per second. The total moderation efficiency of the positron source was about ɛ=1.06(16)×10 -4. Within the first 20 h of operation a degradation of the moderation efficiency of 30% was observed. An annealing procedure at 873 K in air recovers the platinum moderator.

  20. Positron and positronium interactions with Cu

    SciTech Connect

    Bromley, M.W.J.; Mitroy, J.

    2002-12-01

    The configuration-interaction (CI) method is used to investigate the interactions of positrons and positronium with copper at low energies. The calculations were performed within the framework of the fixed-core approximation with semiempirical polarization potentials used to model dynamical interactions between the active particles and the (1s-3d) core. Initially, calculations upon the e{sup +}Li system were used to refine the numerical procedures and highlighted the extreme difficulties of using an orthodox CI calculation to describe the e{sup +} Li system. The positron binding energy of e{sup +}Cu derived from a CI calculation which included electron and positron orbitals with l{<=}18 was 0.005 12 hartree while the spin-averaged annihilation rate was 0.507x10{sup 9} s{sup -1}. The configuration basis used for the bound-state calculation was also used as a part of the trial wave function for a Kohn variational calculation of positron-copper scattering. The positron-copper system has a scattering length of about 13.1a{sub 0} and the annihilation parameter Z{sub eff} at threshold was 72.9. The dipole polarizability of the neutral copper ground state was computed and found to be 41.6a{sub 0}{sup 3}. The structure of CuPs was also studied with the CI method and it was found to have a binding energy of 0.0143 hartree and an annihilation rate of {approx}2x10{sup 9} s{sup -1}.

  1. Apparatus for the analysis of surfaces in gas environments using Positron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Satyal, Suman; Lim, Lawrence; Joglekar, Prasad; Kalaskar, Sushant; Shastry, Karthik; Weiss, Alexander

    2011-03-01

    Positron spectroscopy performed with low energy beams can provide highly surface specific information due to the trapping of positrons in an image potential surface state at the time of annihilation. Here we present design details of a new positron beam system for the analysis of surfaces gas environments. The new system will employ differential pumping to transport the positrons most of the way from the source to the sample under high vacuum. The positrons will then be transported through a thin gas layer surrounding the sample. The positrons will be implanted into the sample at energies less than ~ 10 keV ensuring that a large fraction will diffuse back to the surface before annihilation. The Elemental content of the surface interacting with the gas environment will then be determined from the Doppler broadened gamma spectra. Welch Y1100, NSF DMR 0907679.

  2. Effect of magnetic field on positron lifetimes of Fe, Co and Ni.

    PubMed

    Li, H; Maekawa, M; Kawasuso, A; Tanimura, N

    2015-06-24

    Positron lifetime spectra of Fe, Co and Ni were measured under magnetic field using a (22)Na source. Very small but distinguishable difference of positron lifetime upon magnetic field reversal was observed suggesting the existence of two bulk lifetimes associated with majority and minority spin electrons. Using two spin-dependent Fe bulk lifetimes, the difference Doppler broadening of annihilation radiation spectra between majority and minority spin electrons were also examined. Agreement between experiment and theory indicates that spin-polarized positron annihilation spectroscopy may have potential in investigation of spin-aligned electron momentum distribution.

  3. A constraint on the pair-density ratio (Z+) in an electron-positron pair wind

    NASA Technical Reports Server (NTRS)

    Moscoso, M. D.; Wheeler, J. C.

    1994-01-01

    We derive a constraint on the pair density ratio, z(sub +) = n(sub +)/n(sub p), in an electron-positron pair wind flowing away from the central region of an accretion disk around a compact object under the assumption of a coupling between electrons, positrons, and protons. The minimum rate at which positrons are injected into the annihilation volume is given by the observed annihilation flux per unit volume. This rate is then used to determine a minimum mass loss rate per unit area, M(dot)(sub *) for a given pair density ratio at the base of the streamline. The requirement that M(dot)(sub *) less than M(dot)(sub *)(sub Edd) (the mean Eddington mass loss rate per unit area) then places a lower limit on the pair density ratio, z(sub +,)(sub min). A positron annihilation line was observed in Nova Muscae 1991 by GRANAT/SIGMA. The narrow width and redshift of the line suggest that the pair production and annihilation regions are physically distinct. We hypothesize that an electron-positron pair wind transports the pairs from the production to the annihilation region and calculate z(sub +),(sub min). We then determine constraints on the physical parameters on the pair production region by comparing z(sub +),(sub min) with previous studies of two-temperature and one-temperature accretion disks with electron-positron pairs.

  4. Advances in defect characterizations of semiconductors using positrons

    SciTech Connect

    Lynn, K.G.; Asoka-Kumar, P.

    1996-12-31

    Positron Annihilation Spectroscopy (PAS) is a sensitive probe for studying the electronic structure of defects in solids. The authors summarize recent developments in defect characterization of semiconductors using depth-resolved PAS. The progress achieved in extending the capabilities of the PAS method is also described.

  5. Resonances in Positron-molecule Interactions

    NASA Astrophysics Data System (ADS)

    Surko, C. M.

    2006-05-01

    The development of cold, trap-based beams has enabled high-resolution, energy-resolved studies of positron scattering and annihilation processes [1]. This talk focuses on three topics in this area. For hydrocarbon molecules such as alkanes (CnH2n+2), giant enhancements in annihilation rates are observed due to vibrational Feshbach resonances. The dependence of the rates on positron energy provides evidence that positrons bind to these molecules and a measure of the binding energies [1]. Recent results include evidence for a second, ``positronically excited'' bound state and new data for the methane series, CH3X, where X is a halogen. Other ``resonance-like features'' are sharp increases in the near-threshold electronic excitation cross sections for CO and N2 [2], and in the vibrational excitation cross sections for CO, CO2 and CH4 [3, 4]. Outstanding questions and the relationship of these observations to available theoretical predictions will be discussed.1. C. M. Surko, G. F. Gribakin, and S. J. Buckman, J. Phys. B 38, R57 (2005).2. J. P. Marler and C. M. Surko, Phys. Rev. A 72, 062713 (2005).3. J. P. Marler and C. M. Surko, Phys. Rev. A 72, 062702 (2005).4. J. P. Marler, G. F. Gribakin and C. M. Surko, Nuclear Instrum. and Meth. B, in press (2006).

  6. Compact Beta Particle/Positron Imager for Plant Biology

    SciTech Connect

    Weisenberger, Andrew; Lee, Seung Joon; McKisson, John; Xi, Wenze; Zorn, Carl; Stolin, Alexander; Majewski, Stan; Majewski, Stanislaw; Howell, Calvin; Crowell, Alec; Smith, Mark

    2011-06-01

    The 11CO2 tracer is used to facilitate plant biology research towards optimization of plant productivity, biofuel development and carbon sequestration in biomass. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using 11CO2. Plants typically have very thin leaves resulting in little medium for the emitted positrons to undergo an annihilation event. For the emitted positron from 11C decay approximately 1mm of water equivalent material is needed for positron annihilation. Thus most of the positrons do not annihilate inside the leaf, resulting in limited sensitivity for PET imaging. To address this problem we have developed a compact beta-positive beta-minus particle (BPBM) imager for 11CO2 leaf imaging. The detector is based on a Hamamatsu H8500 position sensitive photomultiplier tube optically coupled via optical grease and a 3mm thick glass plate to a 0.5mm thick Eljin EJ-212 plastic scintillator. The detector is equipped with a flexible arm to allow its placement and orientation on the leaf of the plant of interest while maintaining the leaf's original orientation. We are planning to utilize the imaging device at the Duke University Phytotron to investigate dynamic carbon transport differences between invasive and native species.

  7. Quark flavor identification in electron-positron annihilation

    SciTech Connect

    Kaye, H.S.

    1983-09-01

    The theoretical issues relevant to inclusive muon analysis, the MAC detector and its data flow structure, the identification of muons in hadronic events and the measurement of their momenta, and the selection of events so as to minimize background are described. Experimental results are presented describing the fragmentation of heavy quarks into hadrons, the semimuonic branching fractions of the heavy quarks, the asymmetry in the angular distribution of the heavy quarks, and the invariant mass and charged multiplicity of heavy quark jets. In addition, lower limits are set on the masses of certain proposed particles that are expected to decay semileptonically. Finally, events containing two muons are analyzed in order to investigate the possibility of mixing in the B-B system and whether the b might form its own SU(2) singlet.

  8. Positron Annihilation Gamma Ray Lineshape Studies of Defects in Solids.

    DTIC Science & Technology

    1980-06-24

    parameter of the hvdride ( Wollan , Cable and Koehler 1963) would be enough to produce plastic strain and hence dislocations. The hydride is unstable and...will decompose to Ni and hydrogen gas which is highly immobile in Ni. Wollan et al. (1963) found the hydride to be completely decomposed in cathodi

  9. Some Annihilating Particle Systems.

    NASA Astrophysics Data System (ADS)

    Balding, David

    Available from UMI in association with The British Library. Requires signed TDF. Systems of annihilating and coalescing particles on both infinite and periodic one-dimensional state spaces are studied. These systems have various applications in the physical sciences, in particular they are useful as simple models of diffusion-limited reactions. A unified approach to computing properties of the systems using duality methods is presented and it is shown that many results in the scientific literature, derived using diverse techniques, are readily obtained in this general framework. The transition distributions of the processes with arbitrary initial configurations are characterized in terms of two-particle annihilation processes. Further, a concise expression for the distribution of the cardinality of the processes with finite initial configurations is given and particular cases of interest from the applications perspective are described in detail. Asymptotic site occupancies, previously known for certain classes of initial configurations, are derived for all spatially stationary configurations. The asymptotic spatial structure is described for many cases by showing convergence to point processes whose properties are given.

  10. Analytical positron range modelling in heterogeneous media for PET Monte Carlo simulation.

    PubMed

    Lehnert, Wencke; Gregoire, Marie-Claude; Reilhac, Anthonin; Meikle, Steven R

    2011-06-07

    Monte Carlo simulation codes that model positron interactions along their tortuous path are expected to be accurate but are usually slow. A simpler and potentially faster approach is to model positron range from analytical annihilation density distributions. The aims of this paper were to efficiently implement and validate such a method, with the addition of medium heterogeneity representing a further challenge. The analytical positron range model was evaluated by comparing annihilation density distributions with those produced by the Monte Carlo simulator GATE and by quantitatively analysing the final reconstructed images of Monte Carlo simulated data. In addition, the influence of positronium formation on positron range and hence on the performance of Monte Carlo simulation was investigated. The results demonstrate that 1D annihilation density distributions for different isotope-media combinations can be fitted with Gaussian functions and hence be described by simple look-up-tables of fitting coefficients. Together with the method developed for simulating positron range in heterogeneous media, this allows for efficient modelling of positron range in Monte Carlo simulation. The level of agreement of the analytical model with GATE depends somewhat on the simulated scanner and the particular research task, but appears to be suitable for lower energy positron emitters, such as (18)F or (11)C. No reliable conclusion about the influence of positronium formation on positron range and simulation accuracy could be drawn.

  11. Positron accumulation effect in particles embedded in a low-density matrix

    SciTech Connect

    Dryzek, Jerzy; Siemek, Krzysztof

    2015-02-07

    Systematic studies of the so-called positron accumulation effect for samples with particles embedded in a matrix are reported. This effect is related to energetic positrons which penetrate inhomogeneous medium. Due to differences in the linear absorption coefficient, different amounts of positrons are accumulated and annihilate in the identical volume of both materials. Positron lifetime spectroscopy and Doppler broadening of the annihilation line using Na-22 positrons were applied to the studies of the epoxy resin samples with embedded micro-sized particles of transition metals, i.e., Ni, Sn, Mo, W, and nonmetal particles, i.e., Si and NaF. The significant difference between the determined fraction of positrons annihilating in the particles and the particle volume fraction indicates the positron accumulation effect. The simple phenomenological model and Monte Carlo simulations are able to describe the main features of the obtained dependencies. The aluminum alloy with embedded Sn nanoparticles is also considered for demonstration differences between the accumulation and another related effect, i.e., the positron affinity.

  12. Pair annihilation into neutrinos in strong magnetic fields.

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Fassio-Canuto, L.

    1973-01-01

    Among the processes that are of primary importance for the thermal history of a neutron star is electron-positron annihilation into neutrinos and photoneutrinos. These processes are computed in the presence of a strong magnetic field typical of neutron stars, and the results are compared with the zero-field case. It is shown that the neutrino luminosity Q(H) is greater than Q(O) for temperatures up to T about equal to 3 x 10 to the 8th power K and densities up to 1,000,000 g/cu cm.

  13. Pair annihilation into neutrinos in strong magnetic fields.

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Fassio-Canuto, L.

    1973-01-01

    Among the processes that are of primary importance for the thermal history of a neutron star is electron-positron annihilation into neutrinos and photoneutrinos. These processes are computed in the presence of a strong magnetic field typical of neutron stars, and the results are compared with the zero-field case. It is shown that the neutrino luminosity Q(H) is greater than Q(O) for temperatures up to T about equal to 3 x 10 to the 8th power K and densities up to 1,000,000 g/cu cm.

  14. An intra-operative positron probe with background rejection capability for FDG-guided surgery.

    PubMed

    Yamamoto, Seiichi; Matsumoto, Keiichi; Sakamoto, Setsu; Tarutani, Kazumasa; Minato, Kotaro; Senda, Michio

    2005-02-01

    For radio-guided surgery on tumors using F-18-FDG, detection of annihilation gamma photons emanating from other parts of the body produces background radiation counts and limits its use in clinical situations. To overcome this limitation, we have developed an intra-operative positron probe with background-rejection capability. The positron probe uses a phoswich detector composed of a plastic scintillator and a bismuth germinate (BGO). A positron from a positron emitter such as F-18 is detected by the plastic scintillator and emits annihilation photons. The BGO detects one of the annihilation photons while a photo-multiplier tube (PMT) detects scintillation photons from both scintillators. The decay time differences of these two scintillators are used to distinguish whether the event is a true event where a positron and a following annihilation photon are detected simultaneously, or a background event. In this configuration, only positrons can be selectively detected, even in an environment of high background gamma photon flux. Spatial resolution was 11-mm full width at half maximum (FWHM) 5 mm from the detector surface. Measured sensitivity for the F-18 point source was 2.6 cps/kBq 5 mm from the detector surface. The background count rate was less than 0.5 cps for a 20-cm diameter cylindrical phantom containing 37 MBq of F-18 solution measured on the phantom surface, while the positron count rate was almost linear over a range of approximately 6 kcps. These results indicate that our developed intra-operative positron probe is valuable for radio-guided surgery on tumors using F-18-FDG in a high flux of background annihilation gamma photons.

  15. Quantum dynamics study on the binding of a positron to vibrationally excited states of hydrogen cyanide molecule

    NASA Astrophysics Data System (ADS)

    Takayanagi, Toshiyuki; Suzuki, Kento; Yoshida, Takahiko; Kita, Yukiumi; Tachikawa, Masanori

    2017-05-01

    We present computational results of vibrationally enhanced positron annihilation in the e+ + HCN/DCN collisions within a local complex potential model. Vibrationally elastic and inelastic cross sections and effective annihilation rates were calculated by solving a time-dependent complex-potential Schrödinger equation under the ab initio potential energy surface for the positron attached HCN molecule, [HCN; e+], with multi-component configuration interaction level (Kita and Tachikawa, 2014). We discuss the effect of vibrational excitation on the positron affinities from the obtained vibrational resonance features.

  16. Studies of defects in the near-surface region and at interfaces using low energy positron beams

    SciTech Connect

    Asoka-Kumar, P.

    1995-11-01

    Positron Annihilation Spectroscopy (PAS) is a powerful probe to study open-volume defects in solids. Its success is due to the propensity of positrons to seek out low-density regions of a solid, such as vacancies and voids, and the emissions of gamma rays from their annihilations that carry information about the local electronic environment. The development of low-energy positron beams allows probing of defects to depths of few microns, and can successfully characterize defects in the near-surface and interface regions of several technologically important systems. This review focuses on recent studies conducted on semiconductor-based systems.

  17. Compact conscious animal positron emission tomography scanner

    DOEpatents

    Schyler, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois; Volkow, Nora

    2006-10-24

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal for an event, generating an address signal representing a detecting channel, generating a detector channel signal including the time and address signals, and generating a composite signal including the channel signal and similarly generated signals. The composite signal includes events from detectors in a block and is serially output. An apparatus that serially transfers annihilation information from a block includes time signal generators for detectors in a block and an address and channel signal generator. The PET scanner includes a ring tomograph that mounts onto a portion of an animal, which includes opposing block pairs. Each of the blocks in a block pair includes a scintillator layer, detection array, front-end array, and a serial encoder. The serial encoder includes time signal generators and an address signal and channel signal generator.

  18. Positrons and Antiprotons in Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Cowsik, R.

    2016-10-01

    I consider the impact of recent measurements of positron and antiproton spectra in cosmic rays on our understanding of the origins and propagation of cosmic rays, as well as on the annihilation and decay characteristics of particles of Galactic dark matter, from the perspective of current models postulating energy-dependent leakage of cosmic rays from the Galaxy and of the nested leaky-box model, in which the leakage from the Galaxy is independent of energy. The nested leaky-box model provides a straightforward and consistent explanation of the observed spectral intensities, and finds no compelling need for a contribution from the annihilation or decay of Galactic dark matter. Improved observations and modeling efforts are needed to probe the properties of dark matter deeply enough to be significant to particle physics and cosmology.

  19. Positronium Annihilation Gamma Ray Laser

    DTIC Science & Technology

    2009-07-01

    estimate of the ignition threshold for DT fuel heated by a burst from an annihilation gamma ray laser; and (IV) A new concept for more rapid laser...distribution; (III) A theoretical estimate of the ignition threshold for DT fuel heated by a burst from an annihilation gamma ray laser; and (IV) A new ...II. Development of Laser systems 26 III. Preliminary estimate of DT ignition 31 IV. New method for cooling positronium 34 CONCLUSIONS

  20. Enhanced positron trapping by Ag nanoclusters at low temperatures: A challenge of positron sensitivity to quantum dots

    NASA Astrophysics Data System (ADS)

    Zou, B.; Qi, N.; Liu, Z. W.; Chen, Z. Q.; Liu, H. Q.; Yi, D. Q.; Tang, Z.

    2017-03-01

    Microstructure evolution of three Al-Ag alloys with different Ag contents (1 wt. % Ag, 5 wt. % Ag, and 15 wt. % Ag) was studied by positron annihilation spectroscopy during the aging process. In situ measurements of the positron lifetime and Doppler broadening of annihilation radiation indicate the fast formation of Ag-rich clusters during natural aging of the alloys. The formation of Ag-rich clusters was further confirmed by coincidence Doppler broadening measurements. The Ag signal reflected by the Coincidence Doppler broadening spectrum increases with increasing Ag content and is further enhanced after subsequent artificial aging at 140 °C. This might be due to the increase in the size of Ag clusters. The temperature dependence of the Doppler broadening spectra between 10 K and 290 K was measured for the Al-Ag alloys after natural and artificial aging. Detrapping of positrons from Ag clusters with increasing temperature was observed for all the three Al-Ag alloys after natural aging and for the Al-1 wt. % Ag after artificial aging. This indicates that Ag clusters act as shallow positron trapping centers. The thermal detrapping of positrons becomes ambiguous with increasing Ag content in the alloy and is nearly invisible in the artificially aged Al-5 wt. % Ag and Al-15 wt. % Ag. The positron binding energy of the Ag cluster is roughly estimated to be about 18.8 meV and 50 meV in the Al-1 wt. % Ag sample after natural aging and artificial aging at 140 °C, respectively, which suggests that the confinement of positrons in the quantum-dot like state depends on the size or chemical composition of clusters. Theoretical calculations confirm positron trapping by Ag nanoclusters, and the confinement of positrons is enhanced with increasing Ag cluster size.

  1. Positronic complexes with unnatural parity

    SciTech Connect

    Bromley, M. W. J.; Mitroy, J.; Varga, K.

    2007-06-15

    The structure of the unnatural parity states of PsH, LiPs, NaPs, and KPs are investigated with the configuration interaction and stochastic variational methods. The binding energies (in hartree) are found to be 8.17x10{sup -4}, 4.42x10{sup -4}, 15.14x10{sup -4}, and 21.80x10{sup -4}, respectively. These states are constructed by first coupling the two electrons into a configuration which is predominantly {sup 3}P{sup e}, and then adding a p-wave positron. All the active particles are in states in which the relative angular momentum between any pair of particles is at least L=1. The LiPs state is Borromean since there are no three-body bound subsystems (of the correct symmetry) of the (Li{sup +}, e{sup -}, e{sup -}, e{sup +}) particles that make up the system. The dominant decay mode of these states will be radiative decay into a configuration that autoionizes or undergoes positron annihilation.

  2. Leptophilic dark matter confronts AMS-02 cosmic-ray positron flux

    NASA Astrophysics Data System (ADS)

    Cao, Qing-Hong; Chen, Chuan-Ren; Gong, Ti

    2017-02-01

    With the measurement of positron flux published recently by AMS-02 collaboration, we show how the leptophilic dark matter fits the observation. We obtain the percentages of different products of dark matter annihilation that can best describe the flux of high energy positrons observed by AMS. We show that dark matter annihilates predominantly into $\\tau\\tau$ pair, while both $ee$ and $\\mu\\mu$ final states should be less than $20\\%$. When gauge boson final states are included, the best branching ratio of needed $\\tau\\tau$ mode reduces.

  3. Probing of Unembedded Metallic Quantum Dots with Positrons

    SciTech Connect

    Fischer, C G; Denison, A B; Weber, M H; Wilcoxon, J P; Woessner, S; Lynn, K G

    2003-08-01

    We employed the two detector coincident Doppler Broadening Technique (coPAS) to investigate Ag, Au and Ag/Au alloy quantum dots of varying sizes which were deposited in thin layers on glass slides. The Ag quantum dots range from 2 to 3 nm in diameter, while the Ag/Au alloy quantum dots exhibit Ag cores of 2 nm and 3 nm and Au shells of varying thickness. We investigate the possibility of positron confinement in the Ag core due to positron affinity differences between Ag and Au. We describe the results and their significance to resolving the issue of whether positrons annihilate within the quantum dot itself or whether surface and positron escape effects play an important role.

  4. Cold Positrons from Decaying Dark Matter

    SciTech Connect

    Boubekeur, Lotfi; Dodelson, Scott; Vives, Oscar

    2012-11-01

    Many models of dark matter contain more than one new particle beyond those in the Standard Model. Often heavier particles decay into the lightest dark matter particle as the Universe evolves. Here we explore the possibilities that arise if one of the products in a (Heavy Particle) $\\rightarrow$ (Dark Matter) decay is a positron, and the lifetime is shorter than the age of the Universe. The positrons cool down by scattering off the cosmic microwave background and eventually annihilate when they fall into Galactic potential wells. The resulting 511 keV flux not only places constraints on this class of models but might even be consistent with that observed by the INTEGRAL satellite.

  5. Four-dimensional positron age-momentum correlation

    NASA Astrophysics Data System (ADS)

    Ackermann, Ulrich; Löwe, Benjamin; Dickmann, Marcel; Mitteneder, Johannes; Sperr, Peter; Egger, Werner; Reiner, Markus; Dollinger, Günther

    2016-11-01

    We have performed first four-dimensional age-momentum correlation (4D-AMOC) measurements at a pulsed high intensity positron micro beam and determined the absolute value of the three-dimensional momentum of the electrons annihilating with the positrons in coincidence with the positron age in the sample material. We operated two position sensitive detectors in coincidence to measure the annihilation radiation: a pixelated HPGe-detector and a microchannel plate image intensifier with a CeBr3 scintillator pixel array. The transversal momentum resolution of the 4D-AMOC setup was measured to be about 17 × 10-3 {m}0c (FWHM) and was circa 3.5 times larger than the longitudinal momentum resolution. The total time resolution was 540 ps (FWHM). We measured two samples: a gold foil and a carbon tape at a positron implantation energy of 2 keV. For each sample discrete electron momentum states and their respective positron lifetimes were extracted.

  6. A new look at the cosmic ray positron fraction

    NASA Astrophysics Data System (ADS)

    Boudaud, M.; Aupetit, S.; Caroff, S.; Putze, A.; Belanger, G.; Genolini, Y.; Goy, C.; Poireau, V.; Poulin, V.; Rosier, S.; Salati, P.; Tao, L.; Vecchi, M.

    2015-03-01

    Context. The positron fraction in cosmic rays has recently been measured with improved accuracy up to 500 GeV, and it was found to be a steadily increasing function of energy above ~10 GeV. This behaviour contrasts with standard astrophysical mechanisms, in which positrons are secondary particles, produced in the interactions of primary cosmic rays during their propagation in the interstellar medium. The observed anomaly in the positron fraction triggered a lot of excitement, as it could be interpreted as an indirect signature of the presence of dark matter species in the Galaxy, the so-called weakly interacting massive particles (WIMPs). Alternatively, it could be produced by nearby sources, such as pulsars. Aims: These hypotheses are probed in light of the latest AMS-02 positron fraction measurements. As regards dark matter candidates, regions in the annihilation cross section to mass plane, which best fit the most recent data, are delineated and compared to previous measurements. The explanation of the anomaly in terms of a single nearby pulsar is also explored. Methods: The cosmic ray positron transport in the Galaxy is described using a semi-analytic two-zone model. Propagation is described with Green functions as well as with Bessel expansions. For consistency, the secondary and primary components of the positron flux are calculated together with the same propagation model. The above mentioned explanations of the positron anomaly are tested using χ2 fits. The numerical package MicrOMEGAs is used to model the positron flux generated by dark matter species. The description of the positron fraction from conventional astrophysical sources is based on the pulsar observations included in the Australia Telescope National Facility (ATNF) catalogue. Results: The masses of the favoured dark matter candidates are always larger than 500 GeV, even though the results are very sensitive to the lepton flux. The Fermi measurements point systematically to much heavier

  7. Positron emission tomography: the conceptual idea using a multidisciplinary approach.

    PubMed

    Paans, Anne M J; van Waarde, Aren; Elsinga, Philip H; Willemsen, Antoon T M; Vaalburg, Willem

    2002-07-01

    Positron emission tomography (PET) is a method for quantitatively measuring biochemical and physiological processes in vivo by using radiopharmaceuticals labeled with positron-emitting radionuclides such as 11C, 13N, 15O, and 18F and by measuring the annihilation radiation using a coincidence technique. This technique is also used for measurement of the pharmacokinetics of labeled drugs and measurement of the effects of drugs on metabolism. Deviations from normal metabolism can be measured and insight into biological processes responsible for diseases can be obtained.

  8. Development of an Electron-Positron Source for Positron Annihilation Lifetime Spectroscopy

    DTIC Science & Technology

    2009-12-19

    coherent processes were sponsored by the NSF Quasi- monoenergetic MeV electron spectra emitted by an SiO2 plasma with (red) and without...adhering to the target surface. Aspects of this work that were directed toward neutron production were sponsored by the NRL. High-order

  9. Reduced explicitly correlated Hartree-Fock approach within the nuclear-electronic orbital framework: applications to positronic molecular systems.

    PubMed

    Sirjoosingh, Andrew; Pak, Michael V; Swalina, Chet; Hammes-Schiffer, Sharon

    2013-07-21

    In the application of the nuclear-electronic orbital (NEO) method to positronic systems, all electrons and the positron are treated quantum mechanically on the same level. Explicit electron-positron correlation can be included using Gaussian-type geminal functions within the variational self-consistent-field procedure. In this paper, we apply the recently developed reduced explicitly correlated Hartree-Fock (RXCHF) approach to positronic molecular systems. In the application of RXCHF to positronic systems, only a single electronic orbital is explicitly correlated to the positronic orbital. We apply NEO-RXCHF to three systems: positron-lithium, lithium positride, and positron-lithium hydride. For all three of these systems, the RXCHF approach provides accurate two-photon annihilation rates, average contact densities, electronic and positronic single-particle densities, and electron-positron contact densities. Moreover, the RXCHF approach is significantly more accurate than the original XCHF approach, in which all electronic orbitals are explicitly correlated to the positronic orbital in the same manner, because the RXCHF wavefunction is optimized to produce a highly accurate description of the short-ranged electron-positron interaction that dictates the annihilation rates and other local properties. Furthermore, RXCHF methods that neglect or approximate the electronic exchange interactions between the geminal-coupled electronic orbital and the regular electronic orbitals lead to virtually identical annihilation rates and densities as the fully antisymmetric RXCHF method but offer substantial advantages in computational tractability. Thus, NEO-RXCHF is a promising, computationally practical approach for studying larger positron-containing systems.

  10. Elastic positron-cadmium scattering at low energies

    SciTech Connect

    Bromley, M. W. J.; Mitroy, J.

    2010-05-15

    The elastic and annihilation cross sections for positron-cadmium scattering are reported up to the positronium-formation threshold (at 2.2 eV). The low-energy phase shifts for the elastic scattering of positrons from cadmium were derived from the bound and pseudostate energies of a very large basis configuration-interaction calculation of the e{sup +}-Cd system. The s-wave binding energy is estimated to be 126{+-}42 meV, with a scattering length of A{sub scat}=(14.2{+-}2.1)a{sub 0}, while the threshold annihilation parameter, Z{sub eff}, was 93.9{+-}26.5. The p-wave phase shift exhibits a weak shape resonance that results in a peak Z{sub eff} of 91{+-}17 at a collision energy of about 490{+-}50 meV.

  11. To the problem of positron states in metal-insulator nanosandwiches

    NASA Astrophysics Data System (ADS)

    Babich, A. V.; Vakula, P. V.; Pogosov, V. V.

    2015-01-01

    The potential profiles, wave functions, energies of surface subbands, and lifetimes of positrons in aluminum nanofilms bordering insulators (solid inert gases and SiO2) have been calculated self-consistently in the previously proposed models. The size effects and the influence of the effective masses of electrons and positrons on the energy and annihilation characteristics in systems with double potential wells formed by image potentials have been investigated. The possibility of localizing a positronium atom in nanosandwiches has been discussed.

  12. Characteristics of a new automated blood sampling system for positron emission tomography

    SciTech Connect

    Eriksson, L.; Ingvar, M.; Rosenqvist, G.; Ekdahl, T.; Kappel, P.

    1995-08-01

    A new commercially available automated blood sampling system (ABSS) for positron emission tomography has been evaluated. The system uses a single BGO crystal and detects with high efficiency the annihilation radiation from tracers, labelled with positron emitting isotopes, in arterial blood. In addition the possibilities to use the ABSS as a detector in the analysis of the plasma samples with liquid chromatography techniques under flow conditions has been explored.

  13. Precise tests of QCD in e{sup +}e{sup {minus}} annihilation

    SciTech Connect

    Burrows, P.N.

    1997-03-01

    A pedagogical review is given of precise tests of QCD in electron-positron annihilation. Emphasis is placed on measurements that have served to establish QCD as the correct theory of strong interactions, as well as measurements of the coupling parameter {alpha}{sub s}. An outlook is given for future important tests at a high-energy e{sup +}e{sup {minus}} collider.

  14. Roles of superthermal electrons and positrons on positron-acoustic solitary waves and double layers in electron-positron-ion plasmas.

    PubMed

    Alam, M S; Uddin, M J; Masud, M M; Mamun, A A

    2014-09-01

    Positron-acoustic (PA) solitary waves (SWs) and double layers (DLs) in four-component plasmas consisting of immobile positive ions, mobile cold positrons, and superthermal (kappa distributed) hot positrons and electrons are investigated both numerically and analytically by deriving Korteweg-de Vries (K-dV), modified K-dV (mK-dV), and Gardner equations along with their DLs solutions using the reductive perturbation method. It is examined that depending on the plasma parameters, the K-dV SWs, Gardner SWs, and DLs support either compressive or rarefactive structures, whereas mK-dV SWs support only compressive structure. It is also found that the presence of superthermal (kappa distributed) hot positrons and hot electrons significantly modify the basic features of PA SWs as well as PA DLs. Besides, the critical number density ratio of hot positrons and cold positrons play an important role in the polarity of PA SWs and DLs. The implications of our results in different space as well as laboratory plasma environments are briefly discussed.

  15. Induced Positron Annihiliation Investigation of Cadmium Zinc Telluride Crystal Microstructures

    SciTech Connect

    D. W. Akers

    2005-06-01

    Cadmium-Zinc-Telluride (CZT) crystals are used in semiconductor radiation detectors for the detection of x-ray and gamma radiation. However, production of detector grade crystals is difficult as small variations in compositional uniformity and primarily the zinc content can significantly affect the ability of the CZT crystal to function as a radiation detector. Currently there are no known nondestructive methods that can be used to identify detector grade crystals. The current test method is to fabricate and test the detector to determine if the crystal is sufficiently uniform and of the correct composition to be considered a detector grade crystal. Consequently, nondestructive detection methods are needed to identify detector grade crystals prior to the fabrication process. The purpose of this feasibility study was to perform a preliminary assessment of the ability of several new, nondestructive technologies based on Induced Positron Annihilation (IPA) to determine if detector grade CZT crystals can be identified. Results of measurements performed on specimens from Fisk University and EV Products, Inc. indicate that both the near surface Distributed Source Positron Annihilation (up to 3 mm penetration) and the volumetric Photon Induced Positron Annihilation methods may be suitable for determining CZT crystal quality. Further work on CZT crystals with a broader range of compositions and detector characteristics is needed to provide a well defined, calibrated, method for assessing CZT crystal quality.

  16. Extracting the Size of the Cosmic Electron-Positron Anomaly

    NASA Astrophysics Data System (ADS)

    Auchettl, Katie; Balazs, C.

    2011-09-01

    Over the last few decades, numerous observations have hinted at an excess of high energy positrons in our locality. The most recent of these experiments has been the positron fraction measured by the PAMELA satellite and the electron plus positron spectrum as measured by the Fermi-LAT satellite. Since the release of these measurements, there have been a plethora of papers where authors invoke new physics ranging from, modification of the cosmic ray propagation, supernova remnants and dark matter annihilation. Using a Bayesian likelihood analysis, we isolate the anomalous contribution of the cosmic electron-positron flux. A significant tension was found between the electron positron related data and non-electron-positron cosmic ray fluxes. Using 219 recent cosmic ray datum, we extracted the preferred values of the selected cosmic ray propagation parameters from the non-electron-positron related measurements. Based on these parameter values we calculated background predictions with uncertainties for PAMELA and Fermi-LAT. We found a deviation between the PAMELA and Fermi-LAT data and the predicted background even when uncertainties, including systematics, were taken into account. Interpreting this as a hint of new physics, we subtracted the background from the data extracting the size, shape and uncertainty of the anomalous contribution in a model independent fashion. We briefly compared the extracted signal to some theoretical results predicting such an anomaly.

  17. Selection Rule for Enhanced Dark Matter Annihilation.

    PubMed

    Das, Anirban; Dasgupta, Basudeb

    2017-06-23

    We point out a selection rule for enhancement (suppression) of odd (even) partial waves of dark matter coannihilation or annihilation using the Sommerfeld effect. Using this, the usually velocity-suppressed p-wave annihilation can dominate the annihilation signals in the present Universe. The selection mechanism is a manifestation of the exchange symmetry of identical incoming particles, and generic for multistate DM with off-diagonal long-range interactions. As a consequence, the relic and late-time annihilation rates are parametrically different and a distinctive phenomenology, with large but strongly velocity-dependent annihilation rates, is predicted.

  18. Selection Rule for Enhanced Dark Matter Annihilation

    NASA Astrophysics Data System (ADS)

    Das, Anirban; Dasgupta, Basudeb

    2017-06-01

    We point out a selection rule for enhancement (suppression) of odd (even) partial waves of dark matter coannihilation or annihilation using the Sommerfeld effect. Using this, the usually velocity-suppressed p -wave annihilation can dominate the annihilation signals in the present Universe. The selection mechanism is a manifestation of the exchange symmetry of identical incoming particles, and generic for multistate DM with off-diagonal long-range interactions. As a consequence, the relic and late-time annihilation rates are parametrically different and a distinctive phenomenology, with large but strongly velocity-dependent annihilation rates, is predicted.

  19. The sky distribution of positronium annihilation continuum emission measured with SPI/INTEGRAL

    NASA Astrophysics Data System (ADS)

    Weidenspointner, G.; Shrader, C. R.; Knödlseder, J.; Jean, P.; Lonjou, V.; Guessoum, N.; Diehl, R.; Gillard, W.; Harris, M. J.; Skinner, G. K.; von Ballmoos, P.; Vedrenne, G.; Roques, J.-P.; Schanne, S.; Sizun, P.; Teegarden, B. J.; Schönfelder, V.; Winkler, C.

    2006-05-01

    We present a measurement of the sky distribution of positronium (Ps) annihilation continuum emission obtained with the SPI spectrometer on board ESA's INTEGRAL observatory. The only sky region from which significant Ps continuum emission is detected is the Galactic bulge. The Ps continuum emission is circularly symmetric about the Galactic centre, with an extension of about 8° FWHM. Within measurement uncertainties, the sky distribution of the Ps continuum emission is consistent with that found by us for the 511 keV electron-positron annihilation line using SPI. Assuming that 511 keV line and Ps continuum emission follow the same spatial distribution, we derive a Ps fraction of 0.92±0.09. These results strengthen our conclusions regarding the origin of positrons in our Galaxy based on observations of the 511 keV line. In particular, they suggest that the main source of Galactic positrons is associated with an old stellar population, such as Type Ia supernovae, classical novae, or low-mass X-ray binaries. Light dark matter is a possible alternative source of positrons.

  20. Positrons from quantum evaporation of primordial black-holes

    NASA Technical Reports Server (NTRS)

    Durouchoux, P.; Wallyn, P.; Dubus, G.

    1997-01-01

    The unconfirmed prediction of quantum evaporation of primordial black holes (PBHs) is considered together with the related unanswered questions of whether PBHs ever existed and whether any could still exist. The behavior of the positrons from PHBs is modeled in relation to three facts. Firstly, the integrated emitted number spectrum of positrons is six to eight times larger than that of photons. Secondly, positrons emitted from PBHs lose energy and annihilate, producing a prominent line at 511 keV which is redshifted by the expansion of the universe. Thirdly, these photons may be detectable in the X-ray and low gamma ray energy ranges. The model predicts a flux which is significantly inferior to the instrument sensitivities of the foreseeable future.

  1. Multiple gamma lines from semi-annihilation

    NASA Astrophysics Data System (ADS)

    D'Eramo, Francesco; McCullough, Matthew; Thaler, Jesse

    2013-04-01

    Hints in the Fermi data for a 130 GeV gamma line from the galactic center have ignited interest in potential gamma line signatures of dark matter. Explanations of this line based on dark matter annihilation face a parametric tension since they often rely on large enhancements of loop-suppressed cross sections. In this paper, we pursue an alternative possibility that dark matter gamma lines could arise from ''semi-annihilation'' among multiple dark sector states. The semi-annihilation reaction ψiψj → ψkγ with a single final state photon is typically enhanced relative to ordinary annihilation ψibar psii → γγ into photon pairs. Semi-annihilation allows for a wide range of dark matter masses compared to the fixed mass value required by annihilation, opening the possibility to explain potential dark matter signatures at higher energies. The most striking prediction of semi-annihilation is the presence of multiple gamma lines, with as many as order N3 lines possible for N dark sector states, allowing for dark sector spectroscopy. A smoking gun signature arises in the simplest case of degenerate dark matter, where a strong semi-annihilation line at 130 GeV would be accompanied by a weaker annihilation line at 173 GeV. As a proof of principle, we construct two explicit models of dark matter semi-annihilation, one based on non-Abelian vector dark matter and the other based on retrofitting Rayleigh dark matter.

  2. Intense low energy positron beams

    SciTech Connect

    Lynn, K.G.; Jacobsen, F.M.

    1993-12-31

    Intense positron beams are under development or being considered at several laboratories. Already today a few accelerator based high intensity, low brightness e{sup +} beams exist producing of the order of 10{sup 8} {minus} 10{sup 9} e{sup +}/sec. Several laboratories are aiming at high intensity, high brightness e{sup +} beams with intensities greater than 10{sup 9} e{sup +}/sec and current densities of the order of 10{sup 13} {minus} 10{sup 14} e{sup +} sec{sup {minus}} {sup 1}cm{sup {minus}2}. Intense e{sup +} beams can be realized in two ways (or in a combination thereof) either through a development of more efficient B{sup +} moderators or by increasing the available activity of B{sup +} particles. In this review we shall mainly concentrate on the latter approach. In atomic physics the main trust for these developments is to be able to measure differential and high energy cross-sections in e{sup +} collisions with atoms and molecules. Within solid state physics high intensity, high brightness e{sup +} beams are in demand in areas such as the re-emission e{sup +} microscope, two dimensional angular correlation of annihilation radiation, low energy e{sup +} diffraction and other fields. Intense e{sup +} beams are also important for the development of positronium beams, as well as exotic experiments such as Bose condensation and Ps liquid studies.

  3. Positron surface state as a spectroscopic probe for characterizing surfaces of topological insulator materials

    NASA Astrophysics Data System (ADS)

    Callewaert, Vincent; Shastry, K.; Saniz, Rolando; Makkonen, Ilja; Barbiellini, Bernardo; Assaf, Badih A.; Heiman, Donald; Moodera, Jagadeesh S.; Partoens, Bart; Bansil, Arun; Weiss, A. H.

    2016-09-01

    Topological insulators are attracting considerable interest due to their potential for technological applications and as platforms for exploring wide-ranging fundamental science questions. In order to exploit, fine-tune, control, and manipulate the topological surface states, spectroscopic tools which can effectively probe their properties are of key importance. Here, we demonstrate that positrons provide a sensitive probe for topological states and that the associated annihilation spectrum provides a technique for characterizing these states. Firm experimental evidence for the existence of a positron surface state near Bi2Te2Se with a binding energy of Eb=2.7 ±0.2 eV is presented and is confirmed by first-principles calculations. Additionally, the simulations predict a significant signal originating from annihilation with the topological surface states and show the feasibility to detect their spin texture through the use of spin-polarized positron beams.

  4. Dark matter with multiannihilation channels and the AMS-02 positron excess and antiproton data

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Heng; Cheung, Kingman; Tseng, Po-Yan

    2016-01-01

    AMS-02 provided the unprecedented statistics in the measurement of the positron fraction from cosmic rays. That may offer a unique opportunity to distinguish the positron spectrum coming from various dark matter (DM) annihilation channels, if DM is the source of this positron excess. Therefore, we consider the scenario that the DM can annihilate into leptonic, quark, and massive gauge-boson channels simultaneously with floating branching ratios to test this hypothesis. We also study the impacts from MAX, MED, MIN, and DC diffusion models as well as from isothermal, NFW, and Einasto DM density profiles on our results. We found two parameter regions that can satisfy both AMS-02 e/+ e++e- and p ¯/p data sets at 95% C.L.: (i) under the NFW-MIN combination with Mχ⊂[10 ,30 ] TeV , and (ii) under the Einasto-DC combination with Mχ⊂[500 ,1500 ] GeV .

  5. Determination of interfacial states in solid heterostructures using a variable-energy positron beam

    DOEpatents

    Asoka kumar, Palakkal P. V.; Lynn, Kelvin G.

    1993-01-01

    A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO.sub.2 /Si, MOS or other semiconductor devices.

  6. Determination of interfacial states in solid heterostructures using a variable-energy positron beam

    DOEpatents

    Asokakumar, P.P.V.; Lynn, K.G.

    1993-04-06

    A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO[sub 2]/Si, MOS or other semiconductor devices.

  7. Positron-electron autocorrelation function study of E-center in silicon

    NASA Astrophysics Data System (ADS)

    Ho, K. F.; Ching, H. M.; Beling, C. D.; Fung, S.; Ng, K. P.; Biasini, M.; Ferro, G.; Gong, M.

    2003-11-01

    Two-dimensional angular correlation of annihilation radiation (2D-ACAR) spectra have been taken for 1019cm-3 phosphorus-doped Si in the as-grown state after having been subjected to 1.8 MeV electron fluences of 1×1018 and 2×1018 cm-2. Positron annihilation lifetime spectroscopy confirms, in accordance with previous works, that positrons are saturation trapping into (VSi:P) pair defect (E-center) monovacancy sites in the electron irradiated samples. In the as-grown case, the positron-electron autocorrelation functions along the [111] and [1-10] directions, obtained through Fourier transformation of the 2D-ACAR data, reveal zero-crossings that deviate only slightly from the lattice points, in a manner consistent with positron-electron correlation effects. Conversely, in the spectra of the irradiated samples, the zero-crossing points are observed to move outward further by between 0.15 and 0.50 Å. This displacement is associated with positron annihilation with electrons in localized orbitals at the defect site. An attempt is made to extract just the component of the defect's positron-electron autocorrelation function that relates to the localized defect orbitals. In doing this features are found that correspond to the expected atomic positions at the vacancy defect site suggesting that this real-space function may provide a convenient means for obtaining a mapping of localized orbitals. The observed approximate separability of positron and electron wave-function autocorrelates leads to an estimate of 0.22 eV for the positron binding energy to the E-center.

  8. Positron-rubidium scattering

    NASA Technical Reports Server (NTRS)

    Mceachran, R. P.; Horbatsch, M.; Stauffer, A. D.

    1990-01-01

    A 5-state close-coupling calculation (5s-5p-4d-6s-6p) was carried out for positron-Rb scattering in the energy range 3.7 to 28.0 eV. In contrast to the results of similar close-coupling calculations for positron-Na and positron-K scattering the (effective) total integrated cross section has an energy dependence which is contrary to recent experimental measurements.

  9. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons

    SciTech Connect

    Xu, Tongjun; Shen, Baifei Xu, Jiancai Li, Shun; Yu, Yong; Li, Jinfeng; Lu, Xiaoming; Wang, Cheng; Wang, Xinliang; Liang, Xiaoyan; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2016-03-15

    Experimental generation of ultrashort MeV positron beams with high intensity and high density using a compact laser-driven setup is reported. A high-density gas jet is employed experimentally to generate MeV electrons with high charge; thus, a charge-neutralized MeV positron beam with high density is obtained during laser-accelerated electrons irradiating high-Z solid targets. It is a novel electron–positron source for the study of laboratory astrophysics. Meanwhile, the MeV positron beam is pulsed with an ultrashort duration of tens of femtoseconds and has a high peak intensity of 7.8 × 10{sup 21} s{sup −1}, thus allows specific studies of fast kinetics in millimeter-thick materials with a high time resolution and exhibits potential for applications in positron annihilation spectroscopy.

  10. Secondary electron spectra of Au and Cu under bombardment by very low energy positrons

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Weiss, A. H.; Nadesalingam, M. P.; Guagliardo, P.; Sergeant, A.; Williams, J.

    2008-03-01

    Measurements of the secondary electron energy spectra resulting from very low energy positron bombardment of a polycrystalline Au and Cu (100) surfaces are presented. The low energy part of the secondary spectra contain significant contributions from two processes: 1. annihilation induced Auger electrons that have lost energy before leaving the surface and 2. secondary electrons resulting from direct energy exchange with an incident positron. Our data indicate that the second process (direct energy exchange with the primary positron) is still important at and below 3 eV incident beam energy. Since energy conservation precludes secondary electron generation below an incident beam energy equal to the difference between the electron and positron work functions (˜3eV), the fact that we still observe significant secondary electron emission at energies at or below this value provides strong evidence that the incident positrons are falling directly into the surface state and transferring all of the energy difference to an outgoing secondary electron.

  11. Anapole dark matter annihilation into photons

    NASA Astrophysics Data System (ADS)

    Latimer, David C.

    2017-05-01

    In models of anapole dark matter (DM), the DM candidate is a Majorana fermion whose primary interaction with standard model (SM) particles is through an anapole coupling to off-shell photons. As such, at tree-level, anapole DM undergoes p-wave annihilation into SM charged fermions via a virtual photon. But, generally, Majorana fermions are polarizable, coupling to two real photons. This fact admits the possibility that anapole DM can annihilate into two photons in an s-wave process. Using an explicit model, we compute both the tree-level and diphoton contributions to the anapole DM annihilation cross section. Depending on model parameters, the s-wave process can either rival or be dwarfed by the p-wave contribution to the total annihilation cross section. Subjecting the model to astrophysical upper bounds on the s-wave annihilation mode, we rule out the model with large s-wave annihilation.

  12. Annihilation of Antiprotons in Heavy Nuclei.

    DTIC Science & Technology

    1986-04-01

    Consideration of matter- antimatter annihilation as an energy source for space propulsion has been taking place over the last several years. For details of...Journal of the British Interplanetary Society. Matter- antimatter annihilation produces the greatest amount of energy per unit mass of propellant of...any known possible means of propulsion. The form of antimatter most often considered for annihilation consists of antiprotons, which are the

  13. On the use of positrons to probe magnetic versus electrostatic turbulence

    SciTech Connect

    Stambaugh, R.D.

    1990-10-01

    Kwon, et al. have shown that runaway electron (positron) diffusion is produced by magnetic turbulence and unaffected by electrostatic turbulence. By measuring the diffusion coefficient of positrons at runaway energies (0.1-2 MeV) as a function of radius for two discrete positron energies, the radial correlation length W of the turbulence can be extracted. Then if the thermal electrons are in a weak turbulence regime, the thermal electron diffusion coefficient from magnetic fluctuations alone can be calculated and compared to values from other techniques. We propose to inject charged energetic positrons (100--2000 keV) in few msec bursts from radioactive sources by means of their curvature drift when trapped in toroidal field ripples. The energetic positrons will diffuse over 60--600 msec time scales. At any time the radial profile of the positrons can be sampled by injecting a small solid pellet. A fraction of all the positrons on a flux surface will annihilate in the pellet as it passes that flux surface. The time dependent 0.511 MeV {gamma}-ray signal then can be unfolded into the positron radial profile and the positron diffusion coefficient determined from the time evolution of those profiles. 8 refs.

  14. Present and future experiments using bright low-energy positron beams

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, Christoph

    2017-01-01

    Bright slow positron beams enable not only experiments with drastically reduced measurement time and improved signal-to-noise ratio but also the realization of novel experimental techniques. In solid state physics and materials science positron beams are usually applied for the depth dependent analysis of vacancy-like defects and their chemical surrounding using positron lifetime and (coincident) Doppler broadening spectroscopy. For surface studies, annihilation induced Auger-electron spectroscopy allows the analysis of the elemental composition in the topmost atomic layer, and the atomic positions at the surface can be determined by positron diffraction with outstanding accuracy. In fundamental research low-energy positron beams are used for the production of e.g. cold positronium or positronium negative ions. All the aforementioned experiments benefit from the high intensity of present positron beam facilities. In this paper, we scrutinize the technical constraints limiting the achievable positron intensity and the available kinetic energy at the sample position. Current efforts and future developments towards the generation of high intensity spin-polarized slow positron beams paving the way for new positron experiments are discussed.

  15. Positrons for linear colliders

    SciTech Connect

    Ecklund, S.

    1987-11-01

    The requirements of a positron source for a linear collider are briefly reviewed, followed by methods of positron production and production of photons by electromagnetic cascade showers. Cross sections for the electromagnetic cascade shower processes of positron-electron pair production and Compton scattering are compared. A program used for Monte Carlo analysis of electromagnetic cascades is briefly discussed, and positron distributions obtained from several runs of the program are discussed. Photons from synchrotron radiation and from channeling are also mentioned briefly, as well as positron collection, transverse focusing techniques, and longitudinal capture. Computer ray tracing is then briefly discussed, followed by space-charge effects and thermal heating and stress due to showers. (LEW)

  16. The source and distribution of Galactic positrons

    NASA Technical Reports Server (NTRS)

    Purcell, W. R.; Dixon, D. D.; Cheng, L.-X.; Leventhal, M.; Kinzer, R. L.; Kurfess, J. D.; Skibo, J. G.; Smith, D. M.; Tueller, J.

    1997-01-01

    The oriented scintillation spectrometer experiment (OSSE) observations of the Galactic plane and the Galactic center region were combined with observations acquired with other instruments in order to produce a map of the Galactic 511 keV annihilation radiation. Two mapping techniques were applied to the data: the maximum entropy method, and the basis pursuit inversion method. The resulting maps are qualitatively similar and show evidence for a central bulge and a weak galactic disk component. The weak disk is consistent with that expected from positrons produced by the decay of radioactive Al-26 in the interstellar medium. Both maps suggest an enhanced region of emission near l = -4 deg, b = 7 deg, with a flux of approximately 50 percent of that of the bulge. The existence of this emission appears significant, although the location is not well determined. The source of this enhanced emission is presently unknown.

  17. CONSTRAINTS ON DARK MATTER ANNIHILATION IN CLUSTERS OF GALAXIES FROM DIFFUSE RADIO EMISSION

    SciTech Connect

    Storm, Emma; Jeltema, Tesla E.; Profumo, Stefano; Rudnick, Lawrence

    2013-05-10

    Annihilation of dark matter can result in the production of stable Standard Model particles including electrons and positrons that, in the presence of magnetic fields, lose energy via synchrotron radiation, observable as radio emission. Galaxy clusters are excellent targets to search for or to constrain the rate of dark matter annihilation, as they are both massive and dark matter dominated. In this study, we place limits on dark matter annihilation in a sample of nearby clusters using upper limits on the diffuse radio emission, low levels of observed diffuse emission, or detections of radio mini-halos. We find that the strongest limits on the annihilation cross section are better than limits derived from the non-detection of clusters in the gamma-ray band by a factor of {approx}3 or more when the same annihilation channel and substructure model, but different best-case clusters, are compared. The limits on the cross section depend on the assumed amount of substructure, varying by as much as two orders of magnitude for increasingly optimistic substructure models as compared to a smooth Navarro-Frenk-White profile. In our most optimistic case, using the results of the Phoenix Project, we find that the derived limits reach below the thermal relic cross section of 3 Multiplication-Sign 10{sup -26} cm{sup 3} s{sup -1} for dark matter masses as large as 400 GeV, for the b b-bar annihilation channel. We discuss uncertainties due to the limited available data on the magnetic field structure of individual clusters. We also report the discovery of diffuse radio emission from the central 30-40 kpc regions of the groups M49 and NGC 4636.

  18. Qualitative analysis of the positron-acoustic waves in electron-positron-ion plasmas with κ deformed Kaniadakis distributed electrons and hot positrons

    NASA Astrophysics Data System (ADS)

    Saha, Asit; Tamang, Jharna

    2017-08-01

    Qualitative analysis of the positron acoustic (PA) waves in a four-component plasma system consisting of static positive ions, mobile cold positron, and Kaniadakis distributed hot positrons and electrons is investigated. Using the reductive perturbation technique, the Korteweg-de Vries (K-dV) equation and the modified KdV equation are derived for the PA waves. Variations of the total energy of the conservative systems corresponding to the KdV and mKdV equations are presented. Applying numerical computations, effect of parameter (κ), number density ratio (μ1) of electrons to ions and number density (μ2) of hot positrons to ions, and speed (U) of the traveling wave are discussed on the positron acoustic solitary wave solutions of the KdV and mKdV equations. Furthermore, it is found that the parameter κ has no effect on the solitary wave solution of the KdV equation, whereas it has significant effect on the solitary wave solution of the modified KdV equation. Considering an external periodic perturbation, the perturbed dynamical systems corresponding to the KdV and mKdV equations are analyzed by employing three dimensional phase portrait analysis, time series analysis, and Poincare section. Chaotic motions of the perturbed PA waves occur through the quasiperiodic route to chaos.

  19. Variable position annihilation radiation from the galactic center region

    SciTech Connect

    Riegler, G.R.; Ling, J.C.; Mahoney, W.A.; Wheaton, W.A.; Willett, J.B.; Jacobson, A.S.; Prince, T.A.

    1981-08-15

    The HEAO 3 Cosmic Gamma-Ray Spectrometer performed the first high spectral resolution survey of the entire sky at gamma-ray energies from 50 keV to 10 MeV. Studies of 511 keV positron annihilation radiation from the vicinity of the galactic center are reported here, based on data which were recorded during 1979 September/October and 1980 March/April. The 1979 fall data show unshifted, narrow 511 keV line emission of intensity (1.85 +- 0.21) x 10/sup -3/ photons cm/sup -2/ s/sup -1/, consistent with earlier measurments. The 1980 spring measurement showed a statistically significant reduction in 511 keV emission from this region, thus requiring that a significant fraction of the flux originate in one or more compact sources of size < or =10/sup 18/ cm. While distribution of sources within approx.22/sup 0/ (at 90% confidence level) of the direction of the galactic center are allowed by the observations, the data rule out most extended models for positron production, such as by cosmic ray interaction in the interstellar medium or by distributions of many supernovae, novae, or pulsars. The data are well satisfied by assuming that the emission originates in a single compact source at the galactic center.

  20. Gamma-induced Positron Spectroscopy (GiPS) at a superconducting electron linear accelerator

    NASA Astrophysics Data System (ADS)

    Butterling, Maik; Anwand, Wolfgang; Cowan, Thomas E.; Hartmann, Andreas; Jungmann, Marco; Krause-Rehberg, Reinhard; Krille, Arnold; Wagner, Andreas

    2011-11-01

    A new and unique setup for Positron Annihilation Spectroscopy has been established and optimized at the superconducting linear electron accelerator ELBE at Helmholtz-Zentrum Dresden-Rossendorf (Germany). The intense, pulsed (26 MHz) photon source (bremsstrahlung with energies up to 16 MeV) is used to generate positrons by means of pair production throughout the entire sample volume. Due to the very short gamma bunches (< 5 ps temporal length), the facility for Gamma-induced Positron Spectroscopy (GiPS) is suitable for positron lifetime spectroscopy using the accelerator's radiofrequency as time reference. Positron lifetime and Doppler broadening Spectroscopy are employed by a coincident measurement (Age-Momentum Correlation) of the time-of-arrival and energy of the annihilation photons which in turn significantly reduces the background of scattered photons resulting in spectra with high signal to background ratios. Simulations of the setup using the GEANT4 framework have been performed to yield optimum positron generation rates for various sample materials and improved background conditions.

  1. Static pairwise annihilation in complex networks

    NASA Astrophysics Data System (ADS)

    Laguna, M. F.; Aldana, M.; Larralde, H.; Parris, P. E.; Kenkre, V. M.

    2005-08-01

    We study static annihilation on complex networks, in which pairs of connected particles annihilate at a constant rate during time. Through a mean-field formalism, we compute the temporal evolution of the distribution of surviving sites with an arbitrary number of connections. This general formalism, which is exact for disordered networks, is applied to Kronecker, Erdös-Rényi (i.e., Poisson), and scale-free networks. We compare our theoretical results with extensive numerical simulations obtaining excellent agreement. Although the mean-field approach applies in an exact way neither to ordered lattices nor to small-world networks, it qualitatively describes the annihilation dynamics in such structures. Our results indicate that the higher the connectivity of a given network element, the faster it annihilates. This fact has dramatic consequences in scale-free networks, for which, once the “hubs” have been annihilated, the network disintegrates and only isolated sites are left.

  2. Skyrmion creation and annihilation by spin waves

    SciTech Connect

    Liu, Yizhou Yin, Gen; Lake, Roger K.; Zang, Jiadong; Shi, Jing

    2015-10-12

    Single skyrmion creation and annihilation by spin waves in a crossbar geometry are theoretically analyzed. A critical spin-wave frequency is required both for the creation and the annihilation of a skyrmion. The minimum frequencies for creation and annihilation are similar, but the optimum frequency for creation is below the critical frequency for skyrmion annihilation. If a skyrmion already exists in the cross bar region, a spin wave below the critical frequency causes the skyrmion to circulate within the central region. A heat assisted creation process reduces the spin-wave frequency and amplitude required for creating a skyrmion. The effective field resulting from the Dzyaloshinskii-Moriya interaction and the emergent field of the skyrmion acting on the spin wave drive the creation and annihilation processes.

  3. Relativistic description of pair production of doubly heavy baryons in e{sup +}e{sup −} annihilation

    SciTech Connect

    Martynenko, A. P.; Trunin, A. M.

    2015-05-15

    Relativistic corrections in the pair production of S-wave doubly heavy diquarks in electron-positron annihilation were calculated on the basis of perturbative QCD and the quark model. The relativistic corrections to the wave functions for quark bound states were taken into account with the aid of the Breit potential in QCD. Relativistic effects change substantially the nonrelativistic cross sections for pair diquark production. The yield of pairs of (ccq) doubly heavy baryons at B factories was estimated.

  4. Multiple gamma lines from semi-annihilation

    SciTech Connect

    D'Eramo, Francesco; McCullough, Matthew; Thaler, Jesse E-mail: mccull@mit.edu

    2013-04-01

    Hints in the Fermi data for a 130 GeV gamma line from the galactic center have ignited interest in potential gamma line signatures of dark matter. Explanations of this line based on dark matter annihilation face a parametric tension since they often rely on large enhancements of loop-suppressed cross sections. In this paper, we pursue an alternative possibility that dark matter gamma lines could arise from ''semi-annihilation'' among multiple dark sector states. The semi-annihilation reaction ψ{sub i}ψ{sub j} → ψ{sub k}γ with a single final state photon is typically enhanced relative to ordinary annihilation ψ{sub i}ψ-bar {sub i} → γγ into photon pairs. Semi-annihilation allows for a wide range of dark matter masses compared to the fixed mass value required by annihilation, opening the possibility to explain potential dark matter signatures at higher energies. The most striking prediction of semi-annihilation is the presence of multiple gamma lines, with as many as order N{sup 3} lines possible for N dark sector states, allowing for dark sector spectroscopy. A smoking gun signature arises in the simplest case of degenerate dark matter, where a strong semi-annihilation line at 130 GeV would be accompanied by a weaker annihilation line at 173 GeV. As a proof of principle, we construct two explicit models of dark matter semi-annihilation, one based on non-Abelian vector dark matter and the other based on retrofitting Rayleigh dark matter.

  5. Diffuse Inverse Compton and Synchrotron Emission from Dark Matter Annihilations in Galactic Satellites

    SciTech Connect

    Baltz, E

    2004-04-09

    Annihilating dark matter particles produce roughly as much power in electrons and positrons as in gamma ray photons. The charged particles lose essentially all of their energy to inverse Compton and synchrotron processes in the galactic environment. We discuss the diffuse signature of dark matter annihilations in satellites of the Milky Way (which may be optically dark with few or no stars), providing a tail of emission trailing the satellite in its orbit. Inverse Compton processes provide X-rays and gamma rays, and synchrotron emission at radio wavelengths might be seen. We discuss the possibility of detecting these signals with current and future observations, in particular EGRET and GLAST for the gamma rays.

  6. Plasmon annihilation into Kaluza-Klein gravitons: New astrophysical constraints on large extra dimensions?

    SciTech Connect

    Das, Prasanta Kumar; Satheeshkumar, V. H.; Suresh, P. K.

    2008-09-15

    In the large extra dimensional Kaluza-Klein (KK) scenario, where the usual standard model (SM) matter is confined to a 3+1-dimensional hypersurface called the 3-brane and gravity can propagate to the bulk (D=4+d, d being the number of extra spatial dimensions), the light graviton KK modes can be produced inside the supernova core due to the usual nucleon-nucleon bremstrahlung, electron-positron, and photon-photon annihilations. This photon inside the supernova becomes a plasmon due to the plasma effect. In this paper, we study the energy-loss rate of SN 1987A due to the KK gravitons produced from the plasmon-plasmon annihilation. We find that the SN 1987A cooling rate leads to the conservative bound M{sub D}>22.9 TeV and 1.38 TeV for the case of two and three spacelike extra dimensions.

  7. Positrons as imaging agents and probes in nanotechnology

    NASA Astrophysics Data System (ADS)

    Smith, Suzanne V.

    2009-09-01

    Positron emission tomography (PET) tracks a positron emitting radiopharmaceutical injected into the body and generates a 3-dimensional image of its location. Introduced in the early 70s, it has now developed into a powerful medical diagnostic tool for routine clinical use as well as in drug development. Unrivalled as a highly sensitive, specific and non-invasive imaging tool, PET unfortunately lacks the resolution of Computer Tomography (CT) and Magnetic Resonance Imaging (MRI). As the resolution of PET depends significantly on the energy of the positron incorporated in the radiopharmaceutical and its interaction with its surrounding tissue, there is growing interest in expanding our understanding of how positrons interact at the atomic and molecular level. A better understanding of these interactions will contribute to improving the resolution of PET and assist in the design of better imaging agents. Positrons are also used in Positron Annihilation Lifetime Spectroscopy (PALS) to determine electron density and or presence and incidence of micro- and mesopores (0.1 to 10 nm) in materials. The control of porosity in engineered materials is crucial for applications such as controlled release or air and water resistant films. Equally important to the design of nano and microtechnologies, is our understanding of the microenvironments within these pores and on surfaces. Hence as radiopharmaceuticals are designed to track disease, nuclear probes (radioactive molecules) are synthesized to investigate the chemical properties within these pores. This article will give a brief overview of the present role of positrons in imaging as well as explore its potential to contribute in the engineering of new materials to the marketplace.

  8. The possibilities of simultaneous detection of gamma rays, cosmic-ray electrons and positrons on the GAMMA-400 space observatory

    NASA Astrophysics Data System (ADS)

    Galper, A. M.; Aptekar, R. L.; Arkhangelskaya, I. V.; Boezio, M.; Bonvicini, V.; Dolgoshein, B. A.; Farber, M. O.; Fradkin, M. I.; Gecha, V. Ya.; Kachanov, V. A.; Kaplin, V. A.; Mazets, E. P.; Menshenin, A. L.; Picozza, P.; Prilutskii, O. F.; Rodin, V. G.; Runtso, M. F.; Spillantini, P.; Suchkov, S. I.; Topchiev, N. P.; Vacchi, A.; Yurkin, Yu. T.; Zampa, N.; Zverev, V. G.

    2011-02-01

    The GAMMA-400 space observatory will provide precise measurements of gamma rays, electrons, and positrons in the energy range 0.1-3000 GeV. The good angular and energy resolutions, as well as identification capabilities (angular resolution ~0.01°, energy resolution ~1%, and proton rejection factor ~106) will allow us to study the main galactic and extragalactic sources, diffuse gamma-ray background, gamma-ray bursts, and to measure electron and positron fluxes. The peculiar characteristics of the experiment is simultaneous detection of gamma rays and cosmic-ray electrons and positrons, which can be connected with annihilation or decay of dark matter particles.

  9. Inverse Compton Gamma Rays from Dark Matter Annihilation in the Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Medhi, Jayashri; Duorah, H. L.; Barua, A. G.; Duorah, K.

    2016-09-01

    Dwarf spheroidal (dSph) galaxies are thought to be good candidates for dark matter search due to their high mass-to-light (M/L) ratio. One of the most favored dark matter candidates is the lightest neutralino (neutral χ particle) as predicted in the Minimal Supersymmetric Standard Model (MSSM). In this study, we model the gamma ray emission from dark matter annihilation coming from the nearby dSph galaxies Draco, Segue 1, Ursa Minor and Willman 1, taking into account the contribution from prompt photons and photons produced from inverse Compton scattering off starlight and Cosmic Microwave Background (CMB) photons by the energetic electrons and positrons from dark matter annihilation. We also compute the energy spectra of electrons and positrons from the decay of dark matter annihilation products. Gamma ray spectra and fluxes for both prompt and inverse Compton emission have been calculated for neutralino annihilation over a range of masses and found to be in agreement with the observed data. It has been found that the ultra faint dSph galaxy Segue 1 gives the largest gamma ray flux limits while the lowest gamma ray flux limits has been obtained from Ursa Minor. It is seen that for larger M/L ratio of dwarf galaxies the intensity pattern originating from e + e - pairs scattering off CMB photons is separated by larger amount from that off the starlight photons for the same neutralino mass. As the e + e - energy spectra have an exponential cut off at high energies, this may allow to discriminate some dark matter scenarios from other astrophysical sources. Finally, some more detailed study about the effect of inverse Compton scattering may help constrain the dark matter signature in the dSph galaxies.

  10. Positron diffusion in Si

    SciTech Connect

    Nielsen, B.; Lynn, K.G.; Vehanen, A.; Schultz, P.J.

    1985-06-01

    Positron diffusion in Si(100) and Si(111) has been studied using a variable energy positron beam. The positron diffusion coefficient is found to be D/sub +/ = 2.7 +- 0.3 cm/sup 2//sec using a Makhov-type positron implantation profile, which is demonstrated to fit the data more reliably than the more commonly applied exponential profile. The diffusion related parameter, E/sub 0/, which results from the exponential profile, is found to be 4.2 +- 0.2 keV, significantly longer than previously reported values. A drastic reduction in E/sub 0/ is found after annealing the sample at 1300 K, showing that previously reported low values of E/sub 0/ are probably associated with the thermal history of the sample.

  11. Electron-positron pair equilibrium in strongly magnetized plasmas

    SciTech Connect

    Harding, A.K.

    1984-11-01

    Steady states of thermal electron-positron pair plasmas at mildly relativistic temperatures and in strong magnetic fields are investigated. The pair density in steady-state equilibrium, where pair production balances annihilation, is found as a function of temperature, magnetic field strength and source size, by a numerical calculation which includes pair production attenuation and Compton scattering of the photons. It is found that there is a maximum pair density for each value of temperature and field strength, and also a source size above which optically thin equilibrium states do not exist. (ESA)

  12. Direct conversion semiconductor detectors in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Cates, Joshua W.; Gu, Yi; Levin, Craig S.

    2015-05-01

    Semiconductor detectors are playing an increasing role in ongoing research to improve image resolution, contrast, and quantitative accuracy in preclinical applications of positron emission tomography (PET). These detectors serve as a medium for direct detection of annihilation photons. Early clinical translation of this technology has shown improvements in image quality and tumor delineation for head and neck cancers, relative to conventional scintillator-based systems. After a brief outline of the basics of PET imaging and the physical detection mechanisms for semiconductor detectors, an overview of ongoing detector development work is presented. The capabilities of semiconductor-based PET systems and the current state of these devices are discussed.

  13. ELECTRON-POSITRON FLOWS AROUND MAGNETARS

    SciTech Connect

    Beloborodov, Andrei M.

    2013-11-10

    The twisted magnetospheres of magnetars must sustain a persistent flow of electron-positron plasma. The flow dynamics is controlled by the radiation field around the hot neutron star. The problem of plasma motion in the self-consistent radiation field is solved using the method of virtual beams. The plasma and radiation exchange momentum via resonant scattering and self-organize into the 'radiatively locked' outflow with a well-defined, decreasing Lorentz factor. There is an extended zone around the magnetar where the plasma flow is ultra-relativistic; its Lorentz factor is self-regulated so that it can marginally scatter thermal photons. The flow becomes slow and opaque in an outer equatorial zone, where the decelerated plasma accumulates and annihilates; this region serves as a reflector for the thermal photons emitted by the neutron star. The e {sup ±} flow carries electric current, which is sustained by a moderate induced electric field. The electric field maintains a separation between the electron and positron velocities, against the will of the radiation field. The two-stream instability is then inevitable, and the induced turbulence can generate low-frequency emission. In particular, radio emission may escape around the magnetic dipole axis of the star. Most of the flow energy is converted to hard X-ray emission, which is examined in an accompanying paper.

  14. Positron Emission Tomography: A Basic Analysis

    NASA Astrophysics Data System (ADS)

    Kerbacher, M. E.; Deaton, J. W.; Phinney, L. C.; Mitchell, L. J.; Duggan, J. L.

    2007-10-01

    Positron Emission Tomography is useful in detecting biological abnormalities. The technique involves attaching radiotracers to a material used inside the body, in many cases glucose. Glucose is absorbed most readily in areas of unusual cell growth or uptake of nutrients so through natural processes the treated glucose highlights regions of tumors and other degenerative disorders such as Alzheimer's disease. The higher the concentration of isotopes, the more dynamic the area. Isotopes commonly used as tracers are 11C, 18F, 13N, and 15O due to their easy production and short half-lives. Once the tracers have saturated an area of tissue they are detected using coincidence detectors collinear with individual isotopes. As the isotope decays it emits a positron which, upon annihilating an electron, produces two oppositely directioned gamma rays. The PET machine consists of several pairs of detectors, each 180 degrees from their partner detector. When the oppositely positioned detectors are collinear with the area of the isotope, a computer registers the location of the isotope and can compile an image of the activity of the highlighted area based on the position and strength of the isotopes.

  15. Electron-Positron Flows around Magnetars

    NASA Astrophysics Data System (ADS)

    Beloborodov, Andrei M.

    2013-11-01

    The twisted magnetospheres of magnetars must sustain a persistent flow of electron-positron plasma. The flow dynamics is controlled by the radiation field around the hot neutron star. The problem of plasma motion in the self-consistent radiation field is solved using the method of virtual beams. The plasma and radiation exchange momentum via resonant scattering and self-organize into the "radiatively locked" outflow with a well-defined, decreasing Lorentz factor. There is an extended zone around the magnetar where the plasma flow is ultra-relativistic; its Lorentz factor is self-regulated so that it can marginally scatter thermal photons. The flow becomes slow and opaque in an outer equatorial zone, where the decelerated plasma accumulates and annihilates; this region serves as a reflector for the thermal photons emitted by the neutron star. The e ± flow carries electric current, which is sustained by a moderate induced electric field. The electric field maintains a separation between the electron and positron velocities, against the will of the radiation field. The two-stream instability is then inevitable, and the induced turbulence can generate low-frequency emission. In particular, radio emission may escape around the magnetic dipole axis of the star. Most of the flow energy is converted to hard X-ray emission, which is examined in an accompanying paper.

  16. Characterization of a transmission positron/positronium converter for antihydrogen production

    NASA Astrophysics Data System (ADS)

    Aghion, S.; Amsler, C.; Ariga, T.; Bonomi, G.; Brusa, R. S.; Caccia, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Ereditato, A.; Evans, C.; Ferragut, R.; Fesel, J.; Fontana, A.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Guatieri, F.; Haider, S.; Hinterberger, A.; Holmestad, H.; Kellerbauer, A.; Krasnický, D.; Lagomarsino, V.; Lansonneur, P.; Lebrun, P.; Malbrunot, C.; Mariazzi, S.; Matveev, V.; Mazzotta, Z.; Müller, S. R.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pacifico, N.; Pagano, D.; Penasa, L.; Petracek, V.; Povolo, L.; Prelz, F.; Prevedelli, M.; Ravelli, L.; Resch, L.; Rienäcker, B.; Robert, J.; Røhne, O. M.; Rotondi, A.; Sacerdoti, M.; Sandaker, H.; Santoro, R.; Scampoli, P.; Simon, M.; Smestad, L.; Sorrentino, F.; Testera, G.; Tietje, I. C.; Widmann, E.; Yzombard, P.; Zimmer, C.; Zmeskal, J.; Zurlo, N.; Andersen, S. L.; Chevallier, J.; Uggerhøj, U. I.; Lyckegaard, F.

    2017-09-01

    In this work a characterization study of forward emission from a thin, meso-structured silica positron/positronium (Ps) converter following implantation of positrons in light of possible antihydrogen production is presented. The target consisted of a ∼1 μm thick ultraporous silica film e-gun evaporated onto a 20 nm carbon foil. The Ps formation and emission was studied via Single Shot Positron Annihilation Lifetime Spectroscopy measurements after implantation of pulses with 3 - 4 ·107 positrons and 10 ns temporal width. The forward emission of implanted positrons and secondary electrons was investigated with a micro-channel plate - phosphor screen assembly, connected either to a CCD camera for imaging of the impinging particles, or to a fast photomultiplier tube to extract information about their time of flight. The maximum Ps formation fraction was estimated to be ∼10%. At least 10% of the positrons implanted with an energy of 3.3 keV are forward-emitted with a scattering angle smaller than 50° and maximum kinetic energy of 1.2 keV. At least 0.1-0.2 secondary electrons per implanted positron were also found to be forward-emitted with a kinetic energy of a few eV. The possible application of this kind of positron/positronium converter for antihydrogen production is discussed.

  17. Inflation from D-D¯ brane annihilation

    NASA Astrophysics Data System (ADS)

    Alexander, Stephon H.

    2002-01-01

    We demonstrate that the initial conditions for inflation are met when a D5-D¯5 brane annihilates. This scenario uses Sen's conjecture that a codimension two vortex forms on the worldvolume of the annihilated 5-brane system. Analogous to a ``big bang,'' when the five branes annihilate, a vortex localized on a 3-brane forms and its false vacuum energy generates an inflationary space-time. We also provide two possible mechanisms for ending inflation via the decay of a metastable vortex, or radiation of the cosmological constant into the bulk space-time.

  18. Dynamics of Kinks: Nucleation, Diffusion, and Annihilation

    SciTech Connect

    Habib, Salman; Lythe, Grant

    2000-02-07

    We investigate the nucleation, annihilation, and dynamics of kinks in a classical (1+1)-dimensional {phi}{sup 4} field theory at finite temperature. From large scale Langevin simulations, we establish that the nucleation rate is proportional to the square of the equilibrium density of kinks. We identify two annihilation time scales: one due to kink-antikink pair recombination after nucleation, the other from nonrecombinant annihilation. We introduce a mesoscopic model of diffusing kinks based on ''paired'' and ''survivor'' kinks and antikinks. Analytical predictions for the dynamical time scales, as well as the corresponding length scales, are in good agreement with the simulations. (c) 2000 The American Physical Society.

  19. High-field penning-malmberg trap: confinement properties and use in positron accumulation

    SciTech Connect

    Hartley, J.H.

    1997-09-01

    This dissertation reports on the development of the 60 kG cryogenic positron trap at Lawrence Livermore National Laboratory, and compares the trap`s confinement properties with other nonneutral plasma devices. The device is designed for the accumulation of up to 2{times}10{sup 9} positrons from a linear-accelerator source. This positron plasma could then be used in Bhabha scattering experiments. Initial efforts at time-of-flight accumulation of positrons from the accelerator show rapid ({approximately}100 ms) deconfinement, inconsistent with the long electron lifetimes. Several possible deconfinement mechanisms have been explored, including annihilation on residual gas, injection heating, rf noise from the accelerator, magnet field curvature, and stray fields. Detailed studies of electron confinement demonstrate that the empirical scaling law used to design the trap cannot be extrapolated into the parameter regime of this device. Several possible methods for overcoming these limitations are presented.

  20. A high intensity slow positron facility for the Advanced Neutron Source

    SciTech Connect

    Hulett, L.D. Jr.; Eberle, C.C.

    1994-07-01

    A slow positron spectroscopy facility, based on {sup 64}Cu activation, has been designed for incorporation in the Advanced Neutron Source (ANS). The ANS is a reactor-based research center planned for construction at Oak Ridge, Tennessee, USA. Multiple sources of slow positron beams will be available. One-half mm diameter, copper-coated aluminum microspheres will be activated and transported to a positron spectroscopy building, where they will be dispersed over the surfaces of horizontal pans, 0.1 m{sup 2} in area, located in source chambers. Fast positions from the pans will be intercepted by cylinders coated inside with inert gas moderators. Yields will approach 10{sup 12} positrons per second before brightness enhancement. Beams will be transported to multiple experiment stations, which will include a 50 meter diameter, 20-detector angular correlation of annihilation radiation (ACAR) spectrometer, and other equipment for materials analysis and fundamental science.

  1. SECONDARY PRODUCTION AS THE ORIGIN OF THE COSMIC-RAY POSITRON EXCESS

    SciTech Connect

    Kruskal, M.; Ahlen, S. P.; Tarlé, G.

    2016-02-10

    The Alpha Magnetic Spectrometer has released high-precision data for cosmic rays, and has verified an excess of positrons relative to expectations from cosmic-ray interactions in the interstellar medium. An exciting and well-known possibility for the excess is production of electron–positron pairs by annihilating dark matter particles in the halo of the Galaxy. We have constructed a new scenario for the propagation of cosmic rays, based on the 2000 SMILI results and various other astrophysical observations and measurements in which the positron excess is due to secondary production. The scenario is studied from a simple heuristic perspective, and also within the constraints of a diffusion-reacceleration model using GALPROP. The conclusions of each approach agree with one another, showing that the scenario agrees well with the observed positron flux, without any need for dark matter or other exotic production mechanisms.

  2. Branching and annihilating random walks: exact results at low branching rate.

    PubMed

    Benitez, Federico; Wschebor, Nicolás

    2013-05-01

    We present some exact results on the behavior of branching and annihilating random walks, both in the directed percolation and parity conserving universality classes. Contrary to usual perturbation theory, we perform an expansion in the branching rate around the nontrivial pure annihilation (PA) model, whose correlation and response function we compute exactly. With this, the nonuniversal threshold value for having a phase transition in the simplest system belonging to the directed percolation universality class is found to coincide with previous nonperturbative renormalization group (RG) approximate results. We also show that the parity conserving universality class has an unexpected RG fixed point structure, with a PA fixed point which is unstable in all dimensions of physical interest.

  3. Study of Positronium in Low-k Dielectric Films by means of 2D-Angular Correlation Experiments at a High-Intensity Slow-Positron Beam

    SciTech Connect

    Gessmann, T; Petkov, M P; Weber, M H; Lynn, K G; Rodbell, K P; Asoka-Kumar, P; Stoeffl, W; Howell, R H

    2001-06-20

    Depth-resolved measurements of the two-dimensional angular correlation of annihilation radiation (2D-ACAR) were performed at the high-intensity slow-positron beam of Lawrence Livermore National Laboratory. We studied the formation of positronium in thin films of methyl-silsesquioxane (MSSQ) spin-on glass containing open-volume defects in the size of voids. Samples with different average void sizes were investigated and positronium formation could be found in all cases. The width of the angular correlation related to the annihilation of parapositronium increased with the void size indicating the annihilation of non-thermalized parapositronium.

  4. Synchrotron Emission from Dark Matter Annihilation: Predictions for Constraints from Non-detections of Galaxy Clusters with New Radio Surveys

    NASA Astrophysics Data System (ADS)

    Storm, Emma; Jeltema, Tesla E.; Splettstoesser, Megan; Profumo, Stefano

    2017-04-01

    The annihilation of dark matter particles is expected to yield a broad radiation spectrum via the production of Standard Model particles in astrophysical environments. In particular, electrons and positrons from dark matter annihilation produce synchrotron radiation in the presence of magnetic fields. Galaxy clusters are the most massive collapsed structures in the universe, and are known to host ˜μG-scale magnetic fields. They are therefore ideal targets to search for, or to constrain the synchrotron signal from dark matter annihilation. In this work, we use the expected sensitivities of several planned surveys from the next generation of radio telescopes to predict the constraints on dark matter annihilation models which will be achieved in the case of non-detections of diffuse radio emission from galaxy clusters. Specifically, we consider the Tier 1 survey planned for the Low Frequency Array (LOFAR) at 120 MHz, the Evolutionary Map of the Universe (EMU) survey planned for the Australian Square Kilometre Array Pathfinder (ASKAP) at 1.4 GHz, and planned surveys for Aperture Tile in Focus (APERTIF) at 1.4 GHz. We find that, for massive clusters and dark matter masses ≲ 100 {GeV}, the predicted limits on the annihilation cross section would rule out vanilla thermal relic models for even the shallow LOFAR Tier 1, ASKAP, and APERTIF surveys.

  5. Element specificity of ortho-positronium annihilation for alkali-metal loaded SiO{sub 2} glasses

    SciTech Connect

    Sato, K.; Hatta, T.

    2015-03-07

    Momentum distributions associated with ortho-positronium (o-Ps) pick-off annihilation photon are often influenced by light elements, as, e.g., carbon, oxygen, and fluorine. This phenomenon, so-called element specificity of o-Ps pick-off annihilation, has been utilized for studying the elemental environment around the open spaces. To gain an insight into the element specificity of o-Ps pick-off annihilation, the chemical shift of oxygen 1s binding energy and the momentum distributions associated with o-Ps pick-off annihilation were systematically investigated for alkali-metal loaded SiO{sub 2} glasses by means of X-ray photoelectron spectroscopy and positron-age-momentum correlation spectroscopy, respectively. Alkali metals introduced into the open spaces surrounded by oxygen atoms cause charge transfer from alkali metals to oxygen atoms, leading to the lower chemical shift for the oxygen 1s binding energy. The momentum distribution of o-Ps localized into the open spaces is found to be closely correlated with the oxygen 1s chemical shift. This correlation with the deepest 1s energy level evidences that the element specificity of o-Ps originates from pick-off annihilation with orbital electrons, i.e., dominantly with oxygen 2p valence electrons and s electrons with lower probability.

  6. RADIOACTIVE POSITRON EMITTER PRODUCTION BY ENERGETIC ALPHA PARTICLES IN SOLAR FLARES

    SciTech Connect

    Murphy, R. J.; Kozlovsky, B.; Share, G. H. E-mail: benz@wise.tau.ac.il

    2015-01-01

    Measurements of the 0.511 MeV positron-annihilation line from solar flares are used to explore the flare process in general and ion acceleration in particular. In flares, positrons are produced primarily by the decay of radioactive positron-emitting isotopes resulting from nuclear interactions of flare-accelerated ions with ambient solar material. Kozlovsky et al. provided ion-energy-dependent production cross sections for 67 positron emitters evaluated from their threshold energies (some <1 MeV nucleon{sup –1}) to a GeV nucleon{sup –1}, incorporating them into a computer code for calculating positron-emitter production. Adequate cross-section measurements were available for proton reactions, but not for α-particle reactions where only crude estimates were possible. Here we re-evaluate the α-particle cross sections using new measurements and nuclear reaction codes. In typical large gamma-ray line flares, proton reactions dominate positron production, but α-particle reactions will dominate for steeper accelerated-ion spectra because of their relatively low threshold energies. With the accelerated-{sup 3}He reactions added previously, the code is now reliable for calculating positron production from any distribution of accelerated-ion energies, not just those of typical flares. We have made the code available in the online version of the Journal. We investigate which reactions, projectiles, and ion energies contribute to positron production. We calculate ratios of the annihilation-line fluence to fluences of other gamma-ray lines. Such ratios can be used in interpreting flare data and in determining which nuclear radiation is most sensitive for revealing acceleration of low-energy ions at the Sun.

  7. Imaging the attenuation coefficients of magnetically constrained positron beams in matter

    NASA Astrophysics Data System (ADS)

    Watson, Charles C.

    2016-09-01

    This paper describes a method for tomographically imaging the linear attenuation coefficients (LACs) of positron beams in heterogeneous materials. A β+ ray emitter such as 68Ga, placed in a uniform 3T static magnetic field, generates a well-defined positron beam that maintains its spatial coherence over an attenuation of more than 10-3 while signaling its intensity via the annihilation radiation it generates. A positron emission tomography (PET) system embedded in the magnetic field measures the positron-electron annihilation distribution within objects illuminated by the beam. It's shown that this image can be decomposed into maps of the positron beam's flux and its material-dependent LACs without need for auxiliary measurements or transmission of the beam completely through the object. The initial implementation employs a hybrid PET/magnetic resonance imaging (MRI) scanner developed for medical applications. Mass thicknesses up to 0.55 g/cm2 at a spatial resolution of a few millimeters have been imaged.

  8. Low energy positron beam system for the investigation of 2D and porous materials

    NASA Astrophysics Data System (ADS)

    Chrysler, M. D.; Chirayath, V. A.; Mcdonald, A. D.; Gladen, R. W.; Fairchild, A. J.; Koymen, A. R.; Weiss, A. H.

    2017-01-01

    An advanced variable energy positron beam (~2 eV to 20 keV) has been designed, tested and utilized for coincidence Doppler broadening (CDB) measurements at the University of Texas at Arlington (UTA). A high efficiency solidified rare gas (Neon) moderator was used for the generation of a slow positron beam. The gamma rays produced as a result of the annihilation of positrons with the sample electrons are measured using a high purity Germanium (HPGe) detector in coincidence with a NaI(Tl) detector. Modifications to the system, currently underway, permits simultaneous measurements utilizing Positron annihilation induced Auger Electron Spectroscopy (PAES) and CDB. The tendency of positrons to become trapped in an image potential well at the surface will allow the new system to be used in measurements of the chemical structure of surfaces, internal or external and interfaces. The system will utilize a time of flight (TOF) technique for electron energy measurements. A 3m flight path from the sample to a micro-channel plate (MCP) in the new system will give it superior energy resolution at higher electron energies as compared to previous TOF systems utilizing shorter flight paths.

  9. Accelerating an iterative process by explicit annihilation

    NASA Technical Reports Server (NTRS)

    Jespersen, D. C.; Buning, P. G.

    1983-01-01

    A slowly convergent stationary iterative process can be accelerated by explicitly annihilating (i.e., eliminating) the dominant eigenvector component of the error. The dominant eigenvalue or complex pair of eigenvalues can be estimated from the solution during the iteration. The corresponding eigenvector or complex pair of eigenvectors can then be annihilated by applying an explicit Richardson process over the basic iterative method. This can be done entirely in real arithmetic by analytically combining the complex conjugate annihilation steps. The technique is applied to an implicit algorithm for the calculation of two dimensional steady transonic flow over a circular cylinder using the equations of compressible inviscid gas dynamics. This demonstrates the use of explicit annihilation on a nonlinear problem.

  10. The solution of the positron diffusion trapping model tested for profiling of defects induced by proton implanted in stainless steel

    NASA Astrophysics Data System (ADS)

    Dryzek, Jerzy; Horodek, Paweł

    2015-10-01

    The exact analytical solution of the diffusion trapping model for defect profiling using the variable energy positron beam is reported. The solution is based on the Green's function valid for the case of a discreet step-like vacancy distribution. The solution is applied to the description of experimental data from slow positron beam measurements for samples of stainless steel exposed to high-energy proton multi-implantation. This implantation ensured to obtain an approximate step-like vacancy distribution. The measured annihilation line shape parameter versus positron incident energy is well described by this solution. The determined positron trapping rate, which is proportional to the concentration of vacancies induced during proton implantation, increases linearly with the total dose. The comparison with the commonly used VEPFIT numerical code is also performed. The presented solution can be an alternative to other numerical codes commonly used for evaluation of data from positron beam experiments.

  11. Constraints on the dark matter annihilation from Fermi-LAT observation of M31

    NASA Astrophysics Data System (ADS)

    Li, Zhengwei; Huang, Xiaoyuan; Yuan, Qiang; Xu, Yupeng

    2016-12-01

    Gamma-ray is a good probe of dark matter (DM) particles in the Universe. We search for the DM annihilation signals in the direction of the Andromeda galaxy (M31) using 7.5 year Fermi-LAT pass 8 data. Similar to Pshirkov et al. (2016), we find that there is residual excess emission from the direction of M31 if only the galactic disk as traced by the far infrared emission is considered. Adding a point-like source will improve the fitting effectively, although additional slight improvements can be found if an extended component such as a uniform disk or two bubbles is added instead. Taking the far infrared disk plus a point source as the background model, we search for the DM annihilation signals in the data. We find that there is strong degeneracy between the emission from the galaxy and that from 10s GeV mass DM annihilation in the main halo with quark final state. However, the required DM annihilation cross section is about 10-25-10-24 cm3s-1, orders of magnitude larger than the constraints from observations of dwarf spheroidal galaxies, indicating a non-DM origin of the emission. If DM subhalos are taken into account, the degeneracy is broken. When considering the enhancement from DM subhalos, the constraints on DM model parameters are comparable to (or slightly weaker than) those from the population of dwarf spheroidal galaxies. We also discuss the inverse Compton scattering component from DM annihilation induced electrons/positrons. For the first time we include an energy dependent template of the inverse Compton emission (i.e., a template cube) in the data analysis to take into account the effect of diffusion of charged particles. We find a significant improvement of the constraints in the high mass range of DM particles after considering the inverse Compton emission.

  12. Testing astrophysical models for the PAMELA positron excess with cosmic ray nuclei.

    PubMed

    Mertsch, Philipp; Sarkar, Subir

    2009-08-21

    The excess in the positron fraction measured by PAMELA has been interpreted as due to annihilation or decay of dark matter in the Galaxy. More prosaically it has been ascribed to direct production of positrons by nearby pulsars or due to pion production during diffusive shock acceleration of hadronic cosmic rays in nearby sources. We point out that measurements of secondary cosmic ray nuclei can discriminate between these possibilities. New data on the titanium-to-iron ratio support the hadronic source model above and enable a prediction for the boron-to-carbon ratio at energies above 100 GeV.

  13. Positron age-momentum correlation studies of free volumes in polymers

    NASA Astrophysics Data System (ADS)

    Sato, K.; Murakami, H.; Ito, K.; Hirata, K.; Kobayashi, Y.

    2009-12-01

    Positron age-momentum correlation (AMOC) spectroscopy, which can sensitively probe momentum distributions of positrons and positronium (Ps), was conducted for studying the pick-off process of the triplet bound state ortho-Ps ( o-Ps) with electrons at the walls of the free volumes in polymers. Influences of different chemical elements forming free volume were investigated. It was found that the momentum distribution of o-Ps pick-off annihilation sensitively depends on the electronic state in the free volumes. The feasibility of the chemical analysis relevant to the free volume in polymers is discussed.

  14. Non-invasive studies of multiphase flow in process equipment. Positron emission particle tracking technique

    NASA Astrophysics Data System (ADS)

    Balakin, B. V.; Adamsen, T. C. H.; Chang, Y.-F.; Kosinski, P.; Hoffmann, A. C.

    2017-01-01

    Positron emission particle tracking (PEPT) is a novel experimental technique for non-invasive inspection of industrial fluid/particle flows. The method is based on the dynamic positioning of a positron-emitting, flowing object (particle) performed through the sensing of annihilation events and subsequent numerical treatment to determine the particle position. The present paper shows an integrated overview of PEPT studies which were carried out using a new PET scanner in the Bergen University Hospital to study multiphase flows in different geometric configurations.

  15. OSSE observations of galactic 511 keV annihilation radiation

    NASA Technical Reports Server (NTRS)

    Purcell, W. R.; Grabelsky, D. A.; Johnson, W. N.; Jung, G. V.; Kinzer, R. L.; Kurfess, J. D.; Strickman, M. S.; Ulmer, M. P.

    1992-01-01

    The Oriented Scintillation Spectrometer Experiment (OSSE) on the Compton Gamma-Ray Observatory has performed several observations of the galactic plane and galactic center region to measure the distribution of galactic 511 keV positron annihilation radiation. Preliminary analysis of data collected during the observation of the galactic center region over the period 13-24 Jun. 1991, indicates the presence of a 511 keV line and positronium continuum superimposed on a power-law continuum. The line of flux was found to be (2.7 +/- 0.5) x 10(exp -4) gamma/sq cm sec, with a positronium fraction of (0.9 +/- 0.2). The 3(sigma) upper limit to daily variations in the 511 keV line flux from the mean during the observation interval is 3 x 10(exp -4) gamma/sq cm sec. If all of the observed annihilation radiation is assumed to originate from the x-ray source 1E 1740.7-2942, the corresponding 511 keV line flux would be (3.0 +/- 0.6) x 10(exp -4) gamma/sq cm sec. The 3(sigma) upper limit for 511 keV line emission from the x-ray binary GX1+4 is 6 x 10(exp -4) gamma/sq cm sec. Results from the galactic plane observations at galactic longitudes of 25 degrees (16-21 Aug. 1991) and 339 degrees (6-11 Sep. 1991) suggest that the emission is concentrated near the galactic center. The observations and the preliminary results are described.

  16. Indirect constraints on the dark matter interpretation of excess positrons seen by AMS-02

    NASA Astrophysics Data System (ADS)

    Chan, Man Ho

    2015-10-01

    Recently, an excess of high-energy positrons in our Galaxy has been observed by AMS-02. The spectrum obtained can be best fitted with the annihilation of ˜TeV dark matter particles. However, recent analysis of dwarf galaxies by Fermi/LAT observations highly constrains the TeV dark matter annihilation cross section and rules out the b b ¯ and all the leptophilic channels except the 4 -μ channel. In this article, I show that the remaining possible 4 -μ channel is also ruled out by using the observational data from cool-core clusters. Therefore, all the leptophilic channels that can account for the excess positrons seen in AMS-02, HEAT, and PAMELA are ruled out.

  17. Theoretical Formalism To Estimate the Positron Scattering Cross Section.

    PubMed

    Singh, Suvam; Dutta, Sangita; Naghma, Rahla; Antony, Bobby

    2016-07-21

    A theoretical formalism is introduced in this article to calculate the total cross sections for positron scattering. This method incorporates positron-target interaction in the spherical complex optical potential formalism. The study of positron collision has been quite subtle until now. However, recently, it has emerged as an interesting area due to its role in atomic and molecular structure physics, astrophysics, and medicine. With the present method, the total cross sections for simple atoms C, N, and O and their diatomic molecules C2, N2, and O2 are obtained and compared with existing data. The total cross section obtained in the present work gives a more consistent shape and magnitude than existing theories. The characteristic dip below 10 eV is identified due to the positronium formation. The deviation of the present cross section with measurements at energies below 10 eV is attributed to the neglect of forward angle-discrimination effects in experiments, the inefficiency of additivity rule for molecules, empirical treatment of positronium formation, and the neglect of annihilation reactions. In spite of these deficiencies, the present results show consistent behavior and reasonable agreement with previous data, wherever available. Besides, this is the first computational model to report positron scattering cross sections over the energy range from 1 to 5000 eV.

  18. Initial results on positron confinement in a magnetospheric configuration

    NASA Astrophysics Data System (ADS)

    Saitoh, Haruhiko; Yoshida, Zensho; Yano, Yoshihisa; Morikawa, Junji

    2011-10-01

    Creation of positron-electron plasma in a laboratory is an interesting and challenging subject, which may open many scientific applications. Although single-component plasma is stably confined in linear traps, for example Penning-Malmberg trap, it is not straightforward to simultaneously confine electrons and positrons as plasma. Toroidal geometries have advantages for solving this problem. For this purpose, studies on toroidal non-neutral plasma have been conducted in the levitated magnetospheric configuration, RT-1. Stable confinement and self-organization of toroidal non-neutral plasma was realized in RT-1; rigid-rotating pure electron plasma is confined for more than 300s [Z. Yoshida et al., PRL 104, 235004 (2010)]. As the initial step toward the formation of magnetospheric antimatter plasmas, we installed a 1MBq Na-22 radiation source in RT-1. Annihilation gamma-rays were observed by a NaI(TI) scintillator detector, for the estimation of basic injection and confinement properties of positrons in the magnetospheric configuration. Numerical analysis of positron orbits in RT-1 and the initial experimental results will be presented. Work funded by MEXT of Japan (23224014, 23654201).

  19. Convergence of configuration-interaction single-center calculations of positron-atom interactions

    SciTech Connect

    Mitroy, J.; Bromley, M. W. J.

    2006-05-15

    The configuration interaction (CI) method using orbitals centered on the nucleus has recently been applied to calculate the interactions of positrons interacting with atoms. Computational investigations of the convergence properties of binding energy, phase shift, and annihilation rate with respect to the maximum angular momentum of the orbital basis for the e{sup +}Cu and PsH bound states, and the e{sup +}-H scattering system were completed. The annihilation rates converge very slowly with angular momentum, and moreover the convergence with radial basis dimension appears to be slower for high angular momentum. A number of methods of completing the partial wave sum are compared; an approach based on a {delta}X{sub J}=a(J+(1/2)){sup -n}+b(J+(1/2)){sup -(n+1)} form [with n=4 for phase shift (or energy) and n=2 for the annihilation rate] seems to be preferred on considerations of utility and underlying physical justification.

  20. Resolving Nuclear Reactor Lifetime Extension Questions: A Combined Multiscale Modeling and Positron Characterization approach

    SciTech Connect

    Wirth, B; Asoka-Kumar, P; Denison, A; Glade, S; Howell, R; Marian, J; Odette, G; Sterne, P

    2004-04-06

    The objective of this work is to determine the chemical composition of nanometer precipitates responsible for irradiation hardening and embrittlement of reactor pressure vessel steels, which threaten to limit the operating lifetime of nuclear power plants worldwide. The scientific approach incorporates computational multiscale modeling of radiation damage and microstructural evolution in Fe-Cu-Ni-Mn alloys, and experimental characterization by positron annihilation spectroscopy and small angle neutron scattering. The modeling and experimental results are