Science.gov

Sample records for positron computed tomography

  1. Positron Computed Tomography: Current State, Clinical Results and Future Trends

    DOE R&D Accomplishments Database

    Schelbert, H. R.; Phelps, M. E.; Kuhl, D. E.

    1980-09-01

    An overview is presented of positron computed tomography: its advantages over single photon emission tomography, its use in metabolic studies of the heart and chemical investigation of the brain, and future trends. (ACR)

  2. Therapy response evaluation with positron emission tomography-computed tomography.

    PubMed

    Segall, George M

    2010-12-01

    Positron emission tomography-computed tomography with F-18-fluorodeoxyglucose is widely used for evaluation of therapy response in patients with solid tumors but has not been as readily adopted in clinical trials because of the variability of acquisition and processing protocols and the absence of universal response criteria. Criteria proposed for clinical trials are difficult to apply in clinical practice, and gestalt impression is probably accurate in individual patients, especially with respect to the presence of progressive disease and complete response. Semiquantitative methods of determining tissue glucose metabolism, such as standard uptake value, can be a useful descriptor for levels of tissue glucose metabolism and changes in response to therapy if technical quality control measures are carefully maintained. The terms partial response, complete response, and progressive disease are best used in clinical trials in which the terms have specific meanings and precise definitions. In clinical practice, it may be better to use descriptive terminology agreed upon by imaging physicians and clinicians in their own practice. PMID:21147376

  3. Gliomatosis cerebri mimicking encephalitis evaluated using fluorine-18 fluorodeoxyglucose: Positron emission tomography/computed tomography

    PubMed Central

    Kamaleshwaran, Koramadai Karuppusamy; Krishnan, Vijayan; Mohanan, Vyshakh; Shibu, Deepu; Shinto, Ajit Sugunan

    2015-01-01

    Gliomatosis cerebri (GC) is a rare condition in which an infiltrative glial neoplasm spreads through the brain with preservation of the underlying structure. F-18 fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) has an important role in demonstrating the appropriate metabolism and differentiating pathologies mimicking GC on CT and magnetic resonance imaging. We describe imaging findings of FDG PET/CT in GC in a 9-year-old male child mimicking encephalitis. PMID:25589818

  4. Gliomatosis cerebri mimicking encephalitis evaluated using fluorine-18 fluorodeoxyglucose: Positron emission tomography/computed tomography.

    PubMed

    Kamaleshwaran, Koramadai Karuppusamy; Krishnan, Vijayan; Mohanan, Vyshakh; Shibu, Deepu; Shinto, Ajit Sugunan

    2015-01-01

    Gliomatosis cerebri (GC) is a rare condition in which an infiltrative glial neoplasm spreads through the brain with preservation of the underlying structure. F-18 fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) has an important role in demonstrating the appropriate metabolism and differentiating pathologies mimicking GC on CT and magnetic resonance imaging. We describe imaging findings of FDG PET/CT in GC in a 9-year-old male child mimicking encephalitis.

  5. [Positron emission tomography/computed tomography in follow-up programmes for patients with colorectal cancer].

    PubMed

    Hansen, Anne Fogh; Jensen, Mads Radmer; Nordholm-Carstensen, Andreas

    2016-09-12

    The current follow-up programmes for patients with colorectal cancer (CRC) after curative surgery do not include 18F-fluorodeoxyglucose-positron emission tomography (PET). Several small studies on selected patient populations indicate a high sensitivity of PET/computed tomography (CT) on visualizing relapse in patients with CRC after curative surgery. Therefore, PET/CT could probably be valuable in patients with unexplained increase in carcinoembryonic antigen level or a clinical suspicion of relapse, but PET/CT is not recommended as a standard in follow-up after CRC. PMID:27649583

  6. Acute Calculous Cholecystitis Missed on Computed Tomography and Ultrasound but Diagnosed with Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography

    PubMed Central

    Aparici, Carina Mari; Win, Aung Zaw

    2016-01-01

    We present a case of a 69-year-old patient who underwent ascending aortic aneurysm repair with aortic valve replacement. On postsurgical day 12, he developed leukocytosis and low-grade fevers. The chest computed tomography (CT) showed a periaortic hematoma which represents a postsurgical change from aortic aneurysm repair, and a small pericardial effusion. The abdominal ultrasound showed cholelithiasis without any sign of cholecystitis. Finally, a fluorodeoxyglucose (FDG)-positron emission tomography (PET)/CT examination was ordered to find the cause of fever of unknown origin, and it showed increased FDG uptake in the gallbladder wall, with no uptake in the lumen. FDG-PET/CT can diagnose acute cholecystitis in patients with nonspecific clinical symptoms and laboratory results. PMID:27625897

  7. Acute Calculous Cholecystitis Missed on Computed Tomography and Ultrasound but Diagnosed with Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography.

    PubMed

    Aparici, Carina Mari; Win, Aung Zaw

    2016-01-01

    We present a case of a 69-year-old patient who underwent ascending aortic aneurysm repair with aortic valve replacement. On postsurgical day 12, he developed leukocytosis and low-grade fevers. The chest computed tomography (CT) showed a periaortic hematoma which represents a postsurgical change from aortic aneurysm repair, and a small pericardial effusion. The abdominal ultrasound showed cholelithiasis without any sign of cholecystitis. Finally, a fluorodeoxyglucose (FDG)-positron emission tomography (PET)/CT examination was ordered to find the cause of fever of unknown origin, and it showed increased FDG uptake in the gallbladder wall, with no uptake in the lumen. FDG-PET/CT can diagnose acute cholecystitis in patients with nonspecific clinical symptoms and laboratory results. PMID:27625897

  8. Acute Calculous Cholecystitis Missed on Computed Tomography and Ultrasound but Diagnosed with Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography

    PubMed Central

    Aparici, Carina Mari; Win, Aung Zaw

    2016-01-01

    We present a case of a 69-year-old patient who underwent ascending aortic aneurysm repair with aortic valve replacement. On postsurgical day 12, he developed leukocytosis and low-grade fevers. The chest computed tomography (CT) showed a periaortic hematoma which represents a postsurgical change from aortic aneurysm repair, and a small pericardial effusion. The abdominal ultrasound showed cholelithiasis without any sign of cholecystitis. Finally, a fluorodeoxyglucose (FDG)-positron emission tomography (PET)/CT examination was ordered to find the cause of fever of unknown origin, and it showed increased FDG uptake in the gallbladder wall, with no uptake in the lumen. FDG-PET/CT can diagnose acute cholecystitis in patients with nonspecific clinical symptoms and laboratory results.

  9. Clinical experience with the first combined positron emission tomography/computed tomography scanner in Australia.

    PubMed

    Lau, W F Eddie; Binns, David S; Ware, Robert E; Ramdave, Shakher; Cachin, Florent; Pitman, Alexander G; Hicks, Rodney J

    2005-02-21

    Metabolic imaging with fluorine-18-fluorodeoxyglucose positron emission tomography (FDG-PET) is increasing rapidly worldwide because of superior accuracy compared with conventional non-invasive techniques used for evaluating cancer. Limited anatomical information from FDG-PET images alone dictates that complementary use with structural imaging is required to optimise benefit. Recently, combined positron emission tomography/computed tomography (PET/CT) scanners have overtaken standalone PET scanners as the most commonly purchased PET devices. We describe our experience of over 5500 scans performed since the first PET/CT scanner in Australia was commissioned at the Peter MacCallum Cancer Centre (PMCC), Melbourne, in January 2002. Clinical indications for PET/CT scans performed at PMCC largely reflect current Medicare reimbursement policy. Advantages of PET/CT include greater patient comfort and higher throughput, greater diagnostic certainty and accuracy, improved biopsy methods, and better treatment planning. We believe PET/CT will underpin more effective and efficient imaging paradigms for many common tumours, and lead to a decrease in imaging costs. PMID:15720173

  10. Extramedullary Plasmacytoma of the Gallbladder Detected on Fluorine 18-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography

    PubMed Central

    Fakhri, Asif Ali; Rodrigue, Paul David; Fakhri, Amena Fatima

    2016-01-01

    Extramedullary plasmacytoma is rare in patients with diagnosed multiple myeloma. Soft tissue plasmacytoma of the gallbladder is particularly uncommon and has been described in only a handful of cases. Diagnosis of gallbladder plasmacytoma with fluorine 18-fluorodeoxyglucose (F18-FDG) positron emission tomography/computed tomography (PET/CT) has not previously been reported. We present a 65-year-old female with a history of multiple myeloma who underwent a restaging F18-FDG-PET/CT which showed a focal area of hypermetabolic activity, corresponding to a nodular lesion within the posterior gallbladder wall. The patient underwent successful cholecystectomy, with surgical pathology revealing gallbladder plasmacytoma. A follow-up scan was negative for active malignancy. This is a novel case of gallbladder plasmacytoma diagnosed on whole-body F18-FDG PET/CT – thus demonstrating the clinical value of this imaging modality in staging, restaging, and surveillance for patients with multiple myeloma. PMID:27761300

  11. Unusual case of infantile fibrosarcoma evaluated on F-18 fluorodeoxyglucose positron emission tomography-computed tomography

    PubMed Central

    Bedmutha, Akshay; Singh, Natasha; Shivdasani, Divya; Gupta, Nitin

    2016-01-01

    Infantile fibrosarcoma (IFS) is a rare soft-tissue sarcoma originating from extremities and occasionally from axial soft tissue. The prognosis is good with favorable long-term survival. It is rarely metastasizing tumor, the chances being lesser with IFS originating from extremities. Use of neoadjuvant chemotherapy (NACT) as a treatment regime further reduces the chances of local relapse and distant metastasis. The organs commonly affected in metastatic IFS are lungs and lymph nodes. We report an unusual case of an IFS originating from extremity, which received NACT, yet presented with an early metastatic disease involving soft tissues and sparing lungs and lymph nodes, as demonstrated on fluorodeoxyglucose positron emission tomography-computed tomography. PMID:27385891

  12. A case of sarcoidosis diagnosed by positron emission tomography/computed tomography

    PubMed Central

    Aksoy, Sabire Yilmaz; Özdemir, Elif; Sentürk, Aysegül; Türkölmez, Seyda

    2016-01-01

    Sarcoidosis is a multisystem granulomatous disorder of unknown cause which may affect any organ or system but primarily involve the lungs and the lymphatic system. Extrapulmonary sarcoidosis represents approximately 30-50% of patients. We report the case of a 51-year-old female who presented with increasing complaints of a cough, weakness, weight loss, and chest pain and who was found to have a suspicious lesion on thorax computed tomography(CT). Fluorodeoxyglucose (FDG) positron emission tomography/CT performed for diagnostic purposes demonstrated increased FDG accumulation at the bilateral enlarged parotid and lacrimal gland and in the reticulonodular infiltration area located in the left lung as well as multiple lymphadenopathies with increased FDG accumulation. There were also hepatosplenomegaly and splenic uptake. Skin biopsy showed noncaseating granulomas, and the patient was diagnosed as stage 2 sarcoidosis. PMID:27385890

  13. Combined positron emission tomography and computed tomography to visualize and quantify fluid flow in sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Fernø, M. A.; Gauteplass, J.; Hauge, L. P.; Abell, G. E.; Adamsen, T. C. H.; Graue, A.

    2015-09-01

    Here we show for the first time the combined positron emission tomography (PET) and computed tomography (CT) imaging of flow processes within porous rocks to quantify the development in local fluid saturations. The coupling between local rock structure and displacement fronts is demonstrated in exploratory experiments using this novel approach. We also compare quantification of 3-D temporal and spatial water saturations in two similar CO2 storage tests in sandstone imaged separately with PET and CT. The applicability of each visualization technique is evaluated for a range of displacement processes, and the favorable implementation of combining PET/CT for laboratory core analysis is discussed. We learn that the signal-to-noise ratio (SNR) is over an order of magnitude higher for PET compared with CT for the studied processes.

  14. A case of sarcoidosis diagnosed by positron emission tomography/computed tomography.

    PubMed

    Aksoy, Sabire Yilmaz; Özdemir, Elif; Sentürk, Aysegül; Türkölmez, Seyda

    2016-01-01

    Sarcoidosis is a multisystem granulomatous disorder of unknown cause which may affect any organ or system but primarily involve the lungs and the lymphatic system. Extrapulmonary sarcoidosis represents approximately 30-50% of patients. We report the case of a 51-year-old female who presented with increasing complaints of a cough, weakness, weight loss, and chest pain and who was found to have a suspicious lesion on thorax computed tomography(CT). Fluorodeoxyglucose (FDG) positron emission tomography/CT performed for diagnostic purposes demonstrated increased FDG accumulation at the bilateral enlarged parotid and lacrimal gland and in the reticulonodular infiltration area located in the left lung as well as multiple lymphadenopathies with increased FDG accumulation. There were also hepatosplenomegaly and splenic uptake. Skin biopsy showed noncaseating granulomas, and the patient was diagnosed as stage 2 sarcoidosis. PMID:27385890

  15. Detection of lung cancer in patients with pneumoconiosis by fluorodeoxyglucose-positron emission tomography/computed tomography: four cases.

    PubMed

    Yu, Hua; Zhang, Hua; Wang, Yanli; Cui, Xinjian; Han, Jiankui

    2013-01-01

    We report 4 cases of lung cancer in patients with pneumoconiosis detected by F18-fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT), which could differentiate lung cancer and pneumoconiosis. FDG-PET/CT may be useful in cancer screening for patients with pneumoconiosis.

  16. Simulation study of respiratory-induced errors in cardiac positron emission tomography/computed tomography

    SciTech Connect

    Fitzpatrick, Gianna M.; Wells, R. Glenn

    2006-08-15

    Heart disease is a leading killer in Canada and positron emission tomography (PET) provides clinicians with in vivo metabolic information for diagnosing heart disease. Transmission data are usually acquired with {sup 68}Ge, although the advent of PET/CT scanners has made computed tomography (CT) an alternative option. The fast data acquisition of CT compared to PET may cause potential misregistration problems, leading to inaccurate attenuation correction (AC). Using Monte Carlo simulations and an anthropomorphic dynamic computer phantom, this study determines the magnitude and location of respiratory-induced errors in radioactivity uptake measured in cardiac PET/CT. A homogeneous tracer distribution in the heart was considered. The AC was based on (1) a time-averaged attenuation map (2) CT maps from a single phase of the respiratory cycle, and (3) CT maps phase matched to the emission data. Circumferential profiles of the heart uptake were compared and differences of up to 24% were found between the single-phase CT-AC method and the true phantom values. Simulation results were supported by a PET/CT canine study which showed differences of up to 10% in the heart uptake in the lung-heart boundary region when comparing {sup 68}Ge- to CT-based AC with the CT map acquired at end inhalation.

  17. Pulmonary malignant melanoma with distant metastasis assessed by positron emission tomography-computed tomography.

    PubMed

    Kim, So Ri; Yoon, Ha-Yong; Jin, Gong Yong; Choe, Yeong Hun; Park, Seung Yong; Lee, Yong Chul

    2016-07-01

    Melanoma is a cutaneous malignant neoplasm of melanocytes. Primary malignant melanoma (MM) of the lung is very rare. Although previous reports have described the radiologic features of pulmonary MM, its rarity means that many factors are unknown. Thus, radiologic diagnosis is very difficult. Furthermore, there is little information regarding diagnostic application and/or the usefulness of [(18)F]-fluorine-2-fluoro-2-deoxy-D-glucose positron emission tomography-computed tomography (FDG-PET-CT) for primary pulmonary MM. A 69-year-old patient with a productive cough lasting three weeks was admitted to our hospital. Chest CT showed a large single mass with a multi-lobulated margin and homogeneous enhancement in the right upper lobe, which was subsequently diagnosed as a primary pulmonary MM with multiple metastases. On PET-CT images, the pulmonary mass and multiple bone lesions showed very increased uptakes of FDG. Considering that pulmonary metastasis from a mucocutaneous melanoma is the main differential diagnosis of primary pulmonary MM, systemic assessment of the whole body is more important than for other types of lung malignancies. This report introduces PET-CT as a useful diagnostic modality for pulmonary MM, especially in cases of distant multiple metastases. PMID:27385996

  18. New approaches to gastric cancer staging: Beyond endoscopic ultrasound, computed tomography and positron emission tomography

    PubMed Central

    Yoon, Hyuk; Lee, Dong Ho

    2014-01-01

    Currently, there is no single gold standard modality for staging of gastric cancer and several methods have been used complementarily in the each clinical situation. To make up for the shortcomings of conventional modalities such as endoscopic ultrasound, computed tomography and 18F-fluoro-2-deoxyglucose positron emission tomography, numerous attempts with new approaches have been made for gastric cancer staging. For T staging, magnifying endoscopy with narrow-band was evaluated to differentiate mucosal cancer from submucosal cancer. Single/double contrast-enhanced ultrasound and diffusion-weighted magnetic resonance imaging were also tried to improve diagnostic accuracy of gastric cancer. For intraoperative staging with sentinel node mapping, indocyanine green infrared and fluorescence imaging was introduced. In addition, to detect micrometastasis, real-time reverse transcription-polymerase chain reaction system with multiple markers was studied. Staging laparoscopy using 5-aminolevulinic acid-mediated photodynamic diagnosis and percutaneous diagnostic peritoneal lavage were also evaluated. However, most studies reporting new staging methods is preliminary and further studies for validation in clinical practice are needed. In this mini-review, we discuss new progress in gastric cancer staging. Especially, we focus on new diagnostic approach to gastric cancer staging beyond the conventional modalities and briefly review the remarkable clinical results of the studies published over the past three years. PMID:25320516

  19. Role of positron emission tomography-computed tomography in non-small cell lung cancer

    PubMed Central

    Garg, Pankaj Kumar; Singh, Saurabh Kumar; Prakash, Gaurav; Jakhetiya, Ashish; Pandey, Durgatosh

    2016-01-01

    Lung cancer is the leading cause of cancer-related mortality worldwide. Non-small cell carcinoma and small cell carcinoma are the main histological subtypes and constitutes around 85% and 15% of all lung cancer respectively. Multimodality treatment plays a key role in the successful management of lung cancer depending upon the histological subtype, stage of disease, and performance status. Imaging modalities play an important role in the diagnosis and accurate staging of the disease, in assessing the response to neoadjuvant therapy, and in the follow-up of the patients. Last decade has witnessed voluminous upsurge in the use of positron emission tomography-computed tomography (PET-CT); role of PET-CT has widened exponentially in the management of lung cancer. The present article reviews the role of 18-fluoro-deoxyglucose PET-CT in the management of non small cell lung cancer with emphasis on staging of the disease and the assessment of response to neoadjuvant therapy based on available literature. PMID:27018223

  20. EEG, transmission computed tomography, and positron emission tomography with fluorodeoxyglucose /sup 18/F. Their use in adults with gliomas

    SciTech Connect

    Newmark, M.E.; Theodore, W.H.; Sato, S.; De La Paz, R.; Patronas, N.; Brooks, R.; Jabbari, B.; Di Chiro, G.

    1983-10-01

    We evaluated the relationship between findings from EEG, transmission computed tomography (CT), and positron emission tomography in 23 adults with gliomas. The cortical metabolic rate was suppressed in patients with and without focal slowing. Focal delta activity was not related to involvement of gray or white matter. Rhythmic delta activity and focal attenuation of background amplitude on EEG, however, were correlated with involvement of the thalamus.

  1. Retroperitoneal Endometriosis: A Possible Cause of False Positive Finding at 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography

    PubMed Central

    Maffione, Anna Margherita; Panzavolta, Riccardo; Lisato, Laura Camilla; Ballotta, Maria; D'Isanto, Mariangela Zanforlini; Rubello, Domenico

    2015-01-01

    Endometriosis is a frequent and clinically relevant problem in young women. Laparoscopy is still the gold standard for the diagnosis of endometriosis, but frequently both morphologic and functional imaging techniques are involved in the diagnostic course before achieving a conclusive diagnosis. We present a case of a patient affected by infiltrating retroperitoneal endometriosis falsely interpreted as a malignant mass by contrast-enhanced magnetic resonance imaging and 18F-fluorodeoxyglucose positron emission tomography/computed tomography. PMID:26097425

  2. Combined computed tomography and fluorodeoxyglucose positron emission tomography in the diagnosis of prosthetic valve endocarditis: a case series

    PubMed Central

    2014-01-01

    Background The diagnosis of prosthetic valve endocarditis is challenging. The gold standard for prosthetic valve endocarditis diagnosis is trans-esophageal echocardiography. However, trans-esophageal echocardiography may result in negative findings or yield images difficult to differentiate from thrombus in patients with prosthetic valve endocarditis. Combined computed tomography and fluorodeoxyglucose positron emission tomography is a potentially promising diagnostic tool for several infectious conditions and it has also been employed in patients with prosthetic valve endocarditis but data are still scant. Case presentations We reviewed the charts of 6 patients with prosthetic aortic valves evaluated for suspicion of prosthetic valve endocarditis, at two different hospital, over a 3-year period. We found 3 patients with early-onset PVE cases and blood cultures yielding Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus lugdunensis, respectively; and 3 late-onset cases in the remaining 3 patients with isolation in the blood of Streptococcus bovis, Candida albicans and P. aeruginosa, respectively. Initial trans-esophageal echocardiography was negative in all the patients, while fluorodeoxyglucose positron emission tomography showed images suspicious for prosthetic valve endocarditis. In 4 out of 6 patients valve replacement was done with histology confirming the prosthetic valve endocarditis diagnosis. After an adequate course of antibiotic therapy fluorodeoxyglucose positron emission tomography showed resolution of prosthetic valve endocarditis in all the patients. Conclusion Our experience confirms the potential role of fluoroseoxyglucose positron emission tomography in the diagnosis and follow-up of prosthetic valve endocarditis. PMID:24418206

  3. Mediastinal lymph node staging of non-small-cell lung cancer: a prospective comparison of computed tomography and positron emission tomography.

    PubMed

    Scott, W J; Gobar, L S; Terry, J D; Dewan, N A; Sunderland, J J

    1996-03-01

    We compared the abilities of positron emission tomography and computed tomography to detect N2 or N3 lymph node metastases (N2 or N3) in patients with lung cancer. Positron emission tomography detects increased rates of glucose uptake, characteristic of malignant cells. Patients with peripheral tumors smaller than 2 cm and a normal mediastinum were ineligible. All patients underwent computed tomography, positron emission tomography, and surgical staging. The American Thoracic Society lymph node map was used. Computed and positron emission tomographic scans were read by separate radiologists blinded to surgical staging results. Lymph nodes were "positive" by computed tomography if larger than 1.0 cm in short-axis diameter. Standardized uptake values were recorded from areas on positron emission tomography corresponding to those from which biopsy specimens were taken; if greater than 4.2, they were called "positive." Seventy-five lymph node stations (2.8 per patient) were analyzed in 27 patients. Computed tomography incorrectly staged the mediastinum as positive for metastases in three patients and as negative for metastases in three patients. Sensitivity and specificity of computed tomographic scans were 67% and 83%, respectively. Positron emission tomography correctly staged the mediastinum in all 27 patients. When analyzed by individual node station, there were four false positive and four false negative results by computed tomography (sensitivity = 60%, specificity = 93%, positive predictive value = 60%). Positron emission tomography mislabeled one node station as positive (100% sensitive, 98% specific, positive predictive value 91%). The differences were significant when the data were analyzed both for individual lymph node stations (p = 0.039) and for patients (p = 0.031) (McNemar test). Positron emission tomography and computed tomography are more accurate than computed tomography alone in detecting mediastinal lymph node metastases from non-small-cell lung

  4. Motion management in positron emission tomography/computed tomography for radiation treatment planning.

    PubMed

    Bettinardi, Valentino; Picchio, Maria; Di Muzio, Nadia; Gilardi, Maria Carla

    2012-09-01

    Hybrid positron emission tomography (PET)/computed tomography (CT) scanners combine, in a unique gantry, 2 of the most important diagnostic imaging systems, a CT and a PET tomograph, enabling anatomical (CT) and functional (PET) studies to be performed in a single study session. Furthermore, as the 2 scanners use the same spatial coordinate system, the reconstructed CT and PET images are spatially co-registered, allowing an accurate localization of the functional signal over the corresponding anatomical structure. This peculiarity of the hybrid PET/CT system results in improved tumor characterization for oncological applications, and more recently, it was found to be also useful for target volume definition (TVD) and treatment planning in radiotherapy (RT) applications. In fact, the use of combined PET/CT information has been shown to improve the RT treatment plan when compared with that obtained by a CT alone. A limiting factor to the accuracy of TVD by PET/CT is organ and tumor motion, which is mainly due to patient respiration. In fact, respiratory motion has a degrading effect on PET/CT image quality, and this is also critical for TVD, as it can lead to possible tumor missing or undertreatment. Thus, the management of respiratory motion is becoming an increasingly essential component in RT treatment planning; indeed, it has been recognized that the use of personalized motion information can improve TVD and, consequently, permit increased tumor dosage while sparing surrounding healthy tissues and organs at risk. This review describes the methods used for motion management in PET/CT for radiation treatment planning. The article covers the following: (1) problems caused by organ and lesion motion owing to respiration, and the artifacts generated on CT, PET, and PET/CT images; (2) data acquisition and processing techniques used to manage respiratory motion in PET/CT studies; and (3) the use of personalized motion information for TVD and radiation treatment planning.

  5. Quantitative Assessment of Radionuclide Uptake and Positron Emission Tomography-computed Tomography Image Contrast

    PubMed Central

    Francis, Hasford; Amuasi, John Humphrey; Kwame, Kyere Augustine; Vangu, Mboyo Di Tamba

    2016-01-01

    Radionuclide uptake and contrast for positron emission tomography-computed tomography (PET-CT) images have been assessed in this study using NEMA image quality phantom filled with background activity concentration of 5.3 kBq/mL fluorodeoxyglucose (F-18 FDG). Spheres in the phantom were filled in turns with water to mimic cold lesions and FDG of higher activity concentrations to mimic tumor sites. Transaxial image slices were acquired on the PET-CT system and used for the evaluation of mean standard uptake value (SUVmean) and contrasts for varying sphere sizes at different activity concentrations of 10.6 kBq/mL, 21.2 kBq/mL, and 42.4 kBq/mL. For spheres of same sizes, SUVmean increased with increase in activity concentration. SUVmean was increased by 80.6%, 83.5%, 63.2%, 87.4%, and 63.2% when activity concentrations of spheres with a diameter of 1.3 cm, 1.7 cm, 2.2 cm, 2.8 cm, and 3.7 cm, respectively, were increased from 10.6 kBq/mL to 42.4 kBq/mL. Average percentage contrast between cold spheres (cold lesions) and background activity concentration was estimated to be 89.96% for the spheres. Average contrast for the spheres containing 10.6 kBq/mL, 21.2 kBq/mL, and 42.4 kBq/mL were found to be 110.92%, 134.48%, and 150.52%, respectively. The average background contrast variability was estimated to be 2.97% at 95% confidence interval (P < 0.05). PMID:27650938

  6. Quantitative Assessment of Radionuclide Uptake and Positron Emission Tomography-computed Tomography Image Contrast

    PubMed Central

    Francis, Hasford; Amuasi, John Humphrey; Kwame, Kyere Augustine; Vangu, Mboyo Di Tamba

    2016-01-01

    Radionuclide uptake and contrast for positron emission tomography-computed tomography (PET-CT) images have been assessed in this study using NEMA image quality phantom filled with background activity concentration of 5.3 kBq/mL fluorodeoxyglucose (F-18 FDG). Spheres in the phantom were filled in turns with water to mimic cold lesions and FDG of higher activity concentrations to mimic tumor sites. Transaxial image slices were acquired on the PET-CT system and used for the evaluation of mean standard uptake value (SUVmean) and contrasts for varying sphere sizes at different activity concentrations of 10.6 kBq/mL, 21.2 kBq/mL, and 42.4 kBq/mL. For spheres of same sizes, SUVmean increased with increase in activity concentration. SUVmean was increased by 80.6%, 83.5%, 63.2%, 87.4%, and 63.2% when activity concentrations of spheres with a diameter of 1.3 cm, 1.7 cm, 2.2 cm, 2.8 cm, and 3.7 cm, respectively, were increased from 10.6 kBq/mL to 42.4 kBq/mL. Average percentage contrast between cold spheres (cold lesions) and background activity concentration was estimated to be 89.96% for the spheres. Average contrast for the spheres containing 10.6 kBq/mL, 21.2 kBq/mL, and 42.4 kBq/mL were found to be 110.92%, 134.48%, and 150.52%, respectively. The average background contrast variability was estimated to be 2.97% at 95% confidence interval (P < 0.05).

  7. Relationship of computed tomography perfusion and positron emission tomography to tumour progression in malignant glioma

    SciTech Connect

    Yeung, Timothy P C; Yartsev, Slav; Lee, Ting-Yim; Wong, Eugene; He, Wenqing; Fisher, Barbara; VanderSpek, Lauren L; Macdonald, David; Bauman, Glenn

    2014-02-15

    Introduction: This study aimed to explore the potential for computed tomography (CT) perfusion and 18-Fluorodeoxyglucose positron emission tomography (FDG-PET) in predicting sites of future progressive tumour on a voxel-by-voxel basis after radiotherapy and chemotherapy. Methods: Ten patients underwent pre-radiotherapy magnetic resonance (MR), FDG-PET and CT perfusion near the end of radiotherapy and repeated post-radiotherapy follow-up MR scans. The relationships between these images and tumour progression were assessed using logistic regression. Cross-validation with receiver operating characteristic (ROC) analysis was used to assess the value of these images in predicting sites of tumour progression. Results: Pre-radiotherapy MR-defined gross tumour; near-end-of-radiotherapy CT-defined enhancing lesion; CT perfusion blood flow (BF), blood volume (BV) and permeability-surface area (PS) product; FDG-PET standard uptake value (SUV); and SUV:BF showed significant associations with tumour progression on follow-up MR imaging (P < 0.0001). The mean sensitivity (±standard deviation), specificity and area under the ROC curve (AUC) of PS were 0.64 ± 0.15, 0.74 ± 0.07 and 0.72 ± 0.12 respectively. This mean AUC was higher than that of the pre-radiotherapy MR-defined gross tumour and near-end-of-radiotherapy CT-defined enhancing lesion (both AUCs = 0.6 ± 0.1, P ≤ 0.03). The multivariate model using BF, BV, PS and SUV had a mean AUC of 0.8 ± 0.1, but this was not significantly higher than the PS only model. Conclusion: PS is the single best predictor of tumour progression when compared to other parameters, but voxel-based prediction based on logistic regression had modest sensitivity and specificity.

  8. Quantitative Assessment of Radionuclide Uptake and Positron Emission Tomography-computed Tomography Image Contrast.

    PubMed

    Francis, Hasford; Amuasi, John Humphrey; Kwame, Kyere Augustine; Vangu, Mboyo Di Tamba

    2016-09-01

    Radionuclide uptake and contrast for positron emission tomography-computed tomography (PET-CT) images have been assessed in this study using NEMA image quality phantom filled with background activity concentration of 5.3 kBq/mL fluorodeoxyglucose (F-18 FDG). Spheres in the phantom were filled in turns with water to mimic cold lesions and FDG of higher activity concentrations to mimic tumor sites. Transaxial image slices were acquired on the PET-CT system and used for the evaluation of mean standard uptake value (SUVmean) and contrasts for varying sphere sizes at different activity concentrations of 10.6 kBq/mL, 21.2 kBq/mL, and 42.4 kBq/mL. For spheres of same sizes, SUVmean increased with increase in activity concentration. SUVmean was increased by 80.6%, 83.5%, 63.2%, 87.4%, and 63.2% when activity concentrations of spheres with a diameter of 1.3 cm, 1.7 cm, 2.2 cm, 2.8 cm, and 3.7 cm, respectively, were increased from 10.6 kBq/mL to 42.4 kBq/mL. Average percentage contrast between cold spheres (cold lesions) and background activity concentration was estimated to be 89.96% for the spheres. Average contrast for the spheres containing 10.6 kBq/mL, 21.2 kBq/mL, and 42.4 kBq/mL were found to be 110.92%, 134.48%, and 150.52%, respectively. The average background contrast variability was estimated to be 2.97% at 95% confidence interval (P < 0.05). PMID:27650938

  9. Single-photon emission computed tomography and positron-emission tomography assays for tissue oxygenation.

    PubMed

    Chapman, J D; Schneider, R F; Urbain, J L; Hanks, G E

    2001-01-01

    Radiotherapy prescription can now be customized to target the major mechanism(s) of resistance of individual tumors. In that regard, functional imaging techniques should be exploited to identify the dominant mechanism(s). Tumor biology research has identified several mechanisms of tumor resistance that may be unique to radiation treatments. These fall into 3 broad areas associated with (1) tumor hypoxic fraction, (2) tumor growth rate, (3) and the intrinsic radiosensitivity of tumor clonogens. Imaging research has markers in various stages of development for quantifying relevant information about each of these mechanisms, and those that measure tumor oxygenation and predict for radioresistance are the most advanced. Positron-emission tomography (PET) measurement of oxygen 15 has yielded important information, particularly about brain tissue perfusion, metabolism, and function. Indirect markers of tumor hypoxia have exploited the covalent binding of bioreductive intermediates of azomycin-containing compounds whose uptakes are inversely proportional to intracellular oxygen concentrations. Pilot clinical studies with single-photon emission computed tomography (SPECT) and PET detection of radiolabeled markers to tumor hypoxia have been reported. Recently, other studies have attempted to exploit the reduction properties of both technetium and copper chelates for the selective deposition of radioactive metals in hypoxic tissues. A growing number of potentially useful isotopes are now available for labeling several novel chemicals that could have the appropriate specificity and sensitivity. Preclinical studies with "microSPECT" and "microPET" will be important to define the optimal radiodiagnostic(s) for measuring tissue oxygenation and for determining the time after their administration for optimal hypoxic signal acquisition. Radiolabeled markers of growth kinetics and intrinsic radiosensitivity of cells in solid tumors are also being developed. We conclude that

  10. Enhancement of positron emission tomography-computed tomography image quality using the principle of stochastic resonance

    PubMed Central

    Pandey, Anil Kumar; Sharma, Sanjay Kumar; Sharma, Punit; Singh, Harmandeep; Patel, Chetan; Sarkar, Kaushik; Kumar, Rakesh; Bal, Chandra Sekhar

    2014-01-01

    Purpose: Acquisition of higher counts improves visual perception of positron emission tomography-computed tomography (PET-CT) image. Larger radiopharmaceutical doses (implies more radiation dose) are administered to acquire this count in a short time period. However, diagnostic information does not increase after a certain threshold of counts. This study was conducted to develop a post processing method based on principle of “stochastic resonance” to improve visual perception of the PET-CT image having a required threshold counts. Materials and Methods: PET-CT images (JPEG file format) with low, medium, and high counts in the image were included in this study. The image was corrupted with the addition of Poisson noise. The amplitude of the Poisson noise was adjusted by dividing each pixel by a constant 1, 2, 4, 8, 16, and 32. The best amplitude of the noise that gave best images quality was selected based on high value of entropy of the output image, high value of structural similarity index and feature similarity index. Visual perception of the image was evaluated by two nuclear medicine physicians. Results: The variation in structural and feature similarity of the image was not appreciable visually, but statistically images deteriorated as the noise amplitude increases although maintaining structural (above 70%) and feature (above 80%) similarity of input images in all cases. We obtained the best image quality at noise amplitude “4” in which 88% structural and 95% feature similarity of the input images was retained. Conclusion: This method of stochastic resonance can be used to improve the visual perception of the PET-CT image. This can indirectly lead to reduction of radiation dose. PMID:25400362

  11. Noninvasive measurement of regional myocardial glucose metabolism by positron emission computed tomography. [Dogs

    SciTech Connect

    Schelbert, H.R.; Phelps, M.E.

    1980-06-01

    While the results of regional myocardial glucose metabolism measurements using positron emission computed tomography (/sup 13/N-ammonia) are promising, their utility and value remains to be determined in man. If this technique can be applied to patients with acute myocardial ischemia or infarction it may permit delineation of regional myocardial segments with altered, yet still active metabolism. Further, it may become possible to evaluate the effects of interventions designed to salvage reversibly injured myocardium by this technique.

  12. Role of Positron Emission Tomography-Computed Tomography in the Management of Anal Cancer

    SciTech Connect

    Mistrangelo, Massimiliano; Pelosi, Ettore; Bello, Marilena; Ricardi, Umberto; Milanesi, Enrica; Cassoni, Paola; Baccega, Massimo; Filippini, Claudia; Racca, Patrizia; Lesca, Adriana; Munoz, Fernando H.; Fora, Gianluca; Skanjeti, Andrea; Cravero, Francesca; Morino, Mario

    2012-09-01

    Purpose: Pre- and post-treatment staging of anal cancer are often inaccurate. The role of positron emission tomograpy-computed tomography (PET-CT) in anal cancer is yet to be defined. The aim of the study was to compare PET-CT with CT scan, sentinel node biopsy results of inguinal lymph nodes, and anal biopsy results in staging and in follow-up of anal cancer. Methods and Materials: Fifty-three consecutive patients diagnosed with anal cancer underwent PET-CT. Results were compared with computed tomography (CT), performed in 40 patients, and with sentinel node biopsy (SNB) (41 patients) at pretreatment workup. Early follow-up consisted of a digital rectal examination, an anoscopy, a PET-CT scan, and anal biopsies performed at 1 and 3 months after the end of treatment. Data sets were then compared. Results: At pretreatment assessment, anal cancer was identified by PET-CT in 47 patients (88.7%) and by CT in 30 patients (75%). The detection rates rose to 97.9% with PET-CT and to 82.9% with CT (P=.042) when the 5 patients who had undergone surgery prior to this assessment and whose margins were positive at histological examination were censored. Perirectal and/or pelvic nodes were considered metastatic by PET-CT in 14 of 53 patients (26.4%) and by CT in 7 of 40 patients (17.5%). SNB was superior to both PET-CT and CT in detecting inguinal lymph nodes. PET-CT upstaged 37.5% of patients and downstaged 25% of patients. Radiation fields were changed in 12.6% of patients. PET-CT at 3 months was more accurate than PET-CT at 1 month in evaluating outcomes after chemoradiation therapy treatment: sensitivity was 100% vs 66.6%, and specificity was 97.4% vs 92.5%, respectively. Median follow-up was 20.3 months. Conclusions: In this series, PET-CT detected the primary tumor more often than CT. Staging of perirectal/pelvic or inguinal lymph nodes was better with PET-CT. SNB was more accurate in staging inguinal lymph nodes.

  13. Computed tomography and (18)F-fluorodeoxyglucose positron emission tomography/computed tomography findings in adrenal candidiasis and histoplasmosis: two cases.

    PubMed

    Altinmakas, Emre; Guo, Ming; Kundu, Uma R; Habra, Mouhammed Amir; Ng, Chaan

    2015-01-01

    We report the contrast-enhanced computed tomography (CT) and (18)F-fluorodeoxyglucose positron emission tomography findings in adrenal histoplasmosis and candidiasis. Both demonstrated bilateral hypermetabolic heterogeneous adrenal masses with limited wash-out on delayed CT. Adrenal candidiasis has not been previously reported, nor have the CT wash-out findings in either infection. The adrenal imaging findings are indistinguishable from malignancy, which is more common; but in this setting, physicians should be alert to the differential diagnosis of fungal infections, since it can be equally deadly.

  14. Budget impact from the incorporation of positron emission tomographycomputed tomography for staging lung cancers

    PubMed Central

    Biz, Aline Navega; Caetano, Rosângela

    2015-01-01

    OBJECTIVE To estimate the budget impact from the incorporation of positron emission tomography (PET) in mediastinal and distant staging of non-small cell lung cancer. METHODS The estimates were calculated by the epidemiological method for years 2014 to 2018. Nation-wide data were used about the incidence; data on distribution of the disease´s prevalence and on the technologies’ accuracy were from the literature; data regarding involved costs were taken from a micro-costing study and from Brazilian Unified Health System (SUS) database. Two strategies for using PET were analyzed: the offer to all newly-diagnosed patients, and the restricted offer to the ones who had negative results in previous computed tomography (CT) exams. Univariate and extreme scenarios sensitivity analyses were conducted to evaluate the influence from sources of uncertainties in the parameters used. RESULTS The incorporation of PET-CT in SUS would imply the need for additional resources of 158.1 BRL (98.2 USD) million for the restricted offer and 202.7 BRL (125.9 USD) million for the inclusive offer in five years, with a difference of 44.6 BRL (27.7 USD) million between the two offer strategies within that period. In absolute terms, the total budget impact from its incorporation in SUS, in five years, would be 555 BRL (345 USD) and 600 BRL (372.8 USD) million, respectively. The costs from the PET-CT procedure were the most influential parameter in the results. In the most optimistic scenario, the additional budget impact would be reduced to 86.9 BRL (54 USD) and 103.8 BRL (64.5 USD) million, considering PET-CT for negative CT and PET-CT for all, respectively. CONCLUSIONS The incorporation of PET in the clinical staging of non-small cell lung cancer seems to be financially feasible considering the high budget of the Brazilian Ministry of Health. The potential reduction in the number of unnecessary surgeries may cause the available resources to be more efficiently allocated. PMID:26274871

  15. 18F-fluorodeoxyglucose Positron Emisson Tomography/Computed Tomography Guided Conformal Brachytherapy for Cervical Cancer

    SciTech Connect

    Nam, Heerim; Huh, Seung Jae; Ju, Sang Gyu; Park, Won; Lee, Jeong Eun; Choi, Joon Young; Kim, Byung-Tae; Kim, Chan Kyo; Park, Byung Kwan

    2012-09-01

    Purpose: To evaluate the feasibility of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT)-guided conformal brachytherapy treatment planning in patients with cervical cancer. Methods and Materials: Pretreatment FDG-PET/CT was performed for 12 patients with cervical cancer. Brachytherapy simulation was performed after an external-beam radiation therapy median dose of 4140 cGy. Patients underwent FDG-PET/CT scans with placement of tandem and ovoid applicators. The gross tumor volume (GTV) was determined by adjusting the window and level to a reasonable value and outlining the edge of the enhancing area, which was done in consultation with a nuclear medicine physician. A standardized uptake value profile of the tumor margin was taken for each patient relative to the maximum uptake value of each tumor and analyzed. The plan was designed to deliver 400 cGy to point A (point A plan) or to cover the clinical target volume (CTV) (PET/CT plan). Results: The median dose that encompassed 95% of the target volume (D95) of the CTV was 323.0 cGy for the point A plan vs 399.0 cGy for the PET/CT plan (P=.001). The maximum standardized uptake values (SUV{sub max}) of the tumors were reduced by a median of 57% (range, 13%-80%). All but 1 patient presented with discernable residual uptake within the tumors. The median value of the thresholds of the tumors contoured by simple visual analysis was 41% (range, 23%-71%). Conclusions: In this study, the PET/CT plan was better than the conventional point A plan in terms of target coverage without increasing the dose to the normal tissue, making optimized 3-dimensional brachytherapy treatment planning possible. In comparison with the previously reported study with PET or CT alone, we found that visual target localization was facilitated by PET fusion on indeterminate CT masses. Further studies are needed to characterize the metabolic activity detected during radiation therapy for more reliable targeting.

  16. Spectrum of fluorodeoxyglucose-positron emission tomography/computed tomography and magnetic resonance imaging findings of ovarian tumors.

    PubMed

    Kitajima, Kazuhiro; Ueno, Yoshiko; Maeda, Tetsuo; Murakami, Koji; Kaji, Yasushi; Kita, Masato; Suzuki, Kayo; Sugimura, Kazuro

    2011-11-01

    The purpose of this article is to review fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) and magnetic resonance imaging (MRI) findings in a variety of benign, malignant, and borderline malignant ovarian tumors. It is advantageous to become familiar with the wide variety of FDG-PET/CT findings of this entity. Benign ovarian tumors generally have faint uptake, whereas endometriomas, fibromas, and teratomas show mild to moderate uptake. Malignant ovarian tumors generally have intense uptake, whereas tumors with a small solid component often show minimal uptake.

  17. Metastatic superscan in prostate carcinoma on gallium-68-prostate-specific membrane antigen positron emission tomography/computed tomography scan

    PubMed Central

    Agarwal, Krishan Kant; Tripathi, Madhavi; Kumar, Rajeev; Bal, Chandrasekhar

    2016-01-01

    We describe the imaging features of a metastatic superscan on gallium-68 Glu-NH-CO-NH-Lys-(Ahx)-[Ga-68(HBED-CC)], abbreviated as gallium-68-prostate-specific membrane antigen (68Ga-PSMA) positron emission tomography/computed tomography (PET/CT) imaging. 68Ga-PSMA is novel radiotracer undergoing evaluation for PET/CT imaging of prostate carcinoma. This patient had a superscan of metastases on conventional bone scintigraphy and was referred for 68Ga-PSMA PET/CT to evaluate the feasibility of 177Lu-PSMA therapy. PMID:27095868

  18. Clinical usefulness of post-operative 18F-fluorodeoxyglucose positron emission tomography-computed tomography in canine hemangiosarcoma

    PubMed Central

    Lee, Gahyun; Kwon, Seong Young; Son, Kyuyeol; Park, Seungjo; Lee, Ju-hwan; Cho, Kyoung-Oh; Min, Jung-Joon

    2016-01-01

    This report describes the usefulness of positron emission tomography-computed tomography (PET-CT) for evaluating recurrent or residual tumors following surgery. CT and 18F-fluorodeoxyglucose PET-CT were pre- and post-operatively applied to multiple masses in a dog with hemangiosarcoma. The distinction between the left subcutaneous mass and the peritoneum was clarified on pre-operative CT examination, and malignancy was suspected based on PET-CT. A recurrent or residual tumor in the left subcutaneous region was suspected on post-operative PET-CT, and confirmed through histopathologic examination. PMID:26645332

  19. Positron Emission Tomography.

    PubMed

    Lameka, Katherine; Farwell, Michael D; Ichise, Masanori

    2016-01-01

    Positron emission tomography (PET) is a minimally invasive imaging procedure with a wide range of clinical and research applications. PET allows for the three-dimensional mapping of administered positron-emitting radiopharmaceuticals such as (18)F-fluorodeoxyglucose (for imaging glucose metabolism). PET enables the study of biologic function in both health and disease, in contrast to magnetic resonance imaging (MRI) and computed tomography (CT), that are more suited to study a body's morphologic changes, although functional MRI can also be used to study certain brain functions by measuring blood flow changes during task performance. This chapter first provides an overview of the basic physics principles and instrumentation behind PET methodology, with an introduction to the merits of merging functional PET imaging with anatomic CT or MRI imaging. We then focus on clinical neurologic disorders, and reference research on relevant PET radiopharmaceuticals when applicable. We then provide an overview of PET scan interpretation and findings in several specific neurologic disorders such as dementias, epilepsy, movement disorders, infection, cerebrovascular disorders, and brain tumors. PMID:27432667

  20. Myocardial Blood Flow Quantification for Evaluation of Coronary Artery Disease by Positron Emission Tomography, Cardiac Magnetic Resonance Imaging, and Computed Tomography

    PubMed Central

    Waller, Alfonso H.; Blankstein, Ron; Kwong, Raymond Y.; Di Carli, Marcelo F.

    2014-01-01

    The noninvasive detection of the presence and functional significance of coronary artery stenosis is important in the diagnosis, risk assessment, and management of patients with known or suspected coronary artery disease. Quantitative assessment of myocardial perfusion can provide an objective and reproducible estimate of myocardial ischemia and risk prediction. Positron emission tomography, cardiac magnetic resonance, and cardiac computed tomography perfusion are modalities capable of measuring myocardial blood flow and coronary flow reserve. In this review, we will discuss the technical aspects of quantitative myocardial perfusion imaging with positron emission tomography, cardiac magnetic resonance imaging and computed tomography, and its emerging clinical applications. PMID:24718671

  1. Adult granulosa cell tumor presenting with massive ascites, elevated CA-125 level, and low 18F-fluorodeoxyglucose uptake on positron emission tomography/computed tomography

    PubMed Central

    Tak, Ji Young; Park, Ji Y.; Lee, Seung Jeong; Lee, Yoon Hee; Hong, Dae Gy

    2015-01-01

    Adult granulosa cell tumors (AGCTs) presenting with massive ascites and elevated serum CA-125 levels have rarely been described in the literature. An ovarian mass, massive ascites, and elevated serum CA-125 levels in postmenopausal women generally suggest a malignant ovarian tumor, particularly advanced epithelial ovarian cancer. AGCT has low 18F-fluorodeoxyglucose uptake on positron emission tomography/computed tomography due to its low metabolic activity. In the present report, we describe a case of an AGCT with massive ascites, elevated serum CA-125 level, and low 18F-fluorodeoxyglucose uptake on positron emission tomography/computed tomography. PMID:26430671

  2. Are we ready for positron emission tomography/computed tomography-based target volume definition in lymphoma radiation therapy?

    PubMed

    Yeoh, Kheng-Wei; Mikhaeel, N George

    2013-01-01

    Fluorine-18 fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) has become indispensable for the clinical management of lymphomas. With consistent evidence that it is more accurate than anatomic imaging in the staging and response assessment of many lymphoma subtypes, its utility continues to increase. There have therefore been efforts to incorporate PET/CT data into radiation therapy decision making and in the planning process. Further, there have also been studies investigating target volume definition for radiation therapy using PET/CT data. This article will critically review the literature and ongoing studies on the above topics, examining the value and methods of adding PET/CT data to the radiation therapy treatment algorithm. We will also discuss the various challenges and the areas where more evidence is required.

  3. Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Findings of Post Traumatic Lymphangioma in a Young Adult Male

    PubMed Central

    Kwon, Sang Don; Chun, Kyung Ah; Kong, Eun Jung; Cho, Ihn Ho

    2016-01-01

    The authors report the case of a 34-year-old male, who underwent a fluorine-18 fluoro deoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) scan 7 years after trauma for the evaluation of multifocal masses in the right iliac and right inguinal areas. CT findings showed multifocal low density masses and 18F-FDG PET revealed slightly increased uptake (maximum standardized uptake value [SUVmax] 3.1). These findings did not exclude the possibility of a benign or malignant lesion. To achieve differential diagnosis, partial surgical excision was performed and a pathologic examination subsequently revealed lymphangioma. Here, the authors describe the 18F-FDG PET/CT findings of a rare case of lymphangioma resulting from trauma. PMID:27699163

  4. Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Findings of Post Traumatic Lymphangioma in a Young Adult Male

    PubMed Central

    Kwon, Sang Don; Chun, Kyung Ah; Kong, Eun Jung; Cho, Ihn Ho

    2016-01-01

    The authors report the case of a 34-year-old male, who underwent a fluorine-18 fluoro deoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) scan 7 years after trauma for the evaluation of multifocal masses in the right iliac and right inguinal areas. CT findings showed multifocal low density masses and 18F-FDG PET revealed slightly increased uptake (maximum standardized uptake value [SUVmax] 3.1). These findings did not exclude the possibility of a benign or malignant lesion. To achieve differential diagnosis, partial surgical excision was performed and a pathologic examination subsequently revealed lymphangioma. Here, the authors describe the 18F-FDG PET/CT findings of a rare case of lymphangioma resulting from trauma.

  5. Bilateral Diffuse Fluorodeoxyglucose Uptake in Thyroid Gland Diagnosed by Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography

    PubMed Central

    Win, Aung Zaw; Aparici, Carina Mari

    2014-01-01

    Our patient is a female who was first diagnosed with breast cancer at the age of 23. A follow-up fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) at age 44 revealed diffuse high FDG uptake in an enlarged thyroid gland. Fine-needle aspiration (FNA) of the thyroid mass revealed estrogen receptor/progesterone receptor negative, human epidermal growth factor receptor 2+ breast cancer. To the best of our knowledge, this is the first case to report breast cancer metastasis to the thyroid in a diffuse pattern on FDG-PET/CT. Bilateral diffuse uptake of FDG in thyroid is the most commonly associated with benign conditions. However, FNA biopsies need to be done to rule out metastatic disease in thyroid lesions with diffuse high FDG uptake, especially for patients with history of cancer. PMID:25191131

  6. Are We Ready for Positron Emission Tomography/Computed Tomography-based Target Volume Definition in Lymphoma Radiation Therapy?

    SciTech Connect

    Yeoh, Kheng-Wei; Mikhaeel, N. George

    2013-01-01

    Fluorine-18 fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) has become indispensable for the clinical management of lymphomas. With consistent evidence that it is more accurate than anatomic imaging in the staging and response assessment of many lymphoma subtypes, its utility continues to increase. There have therefore been efforts to incorporate PET/CT data into radiation therapy decision making and in the planning process. Further, there have also been studies investigating target volume definition for radiation therapy using PET/CT data. This article will critically review the literature and ongoing studies on the above topics, examining the value and methods of adding PET/CT data to the radiation therapy treatment algorithm. We will also discuss the various challenges and the areas where more evidence is required.

  7. Evaluation of dosimetry and image of very low-dose computed tomography attenuation correction for pediatric positron emission tomography/computed tomography: phantom study

    NASA Astrophysics Data System (ADS)

    Bahn, Y. K.; Park, H. H.; Lee, C. H.; Kim, H. S.; Lyu, K. Y.; Dong, K. R.; Chung, W. K.; Cho, J. H.

    2014-04-01

    In this study, phantom was used to evaluate attenuation correction computed tomography (CT) dose and image in case of pediatric positron emission tomography (PET)/CT scan. Three PET/CT scanners were used along with acryl phantom in the size for infant and ion-chamber dosimeter. The CT image acquisition conditions were changed from 10 to 20, 40, 80, 100 and 160 mA and from 80 to 100, 120 and 140 kVp, which aimed at evaluating penetrate dose and computed tomography dose indexvolume (CTDIvol) value. And NEMA PET Phantom™ was used to obtain PET image under the same CT conditions in order to evaluate each attenuation-corrected PET image based on standard uptake value (SUV) value and signal-to-noise ratio (SNR). In general, the penetrate dose was reduced by around 92% under the minimum CT conditions (80 kVp and 10 mA) with the decrease in CTDIvol value by around 88%, compared with the pediatric abdomen CT conditions (100 kVp and 100 mA). The PET image with its attenuation corrected according to each CT condition showed no change in SUV value and no influence on the SNR. In conclusion, if the minimum dose CT that is properly applied to body of pediatric patient is corrected for attenuation to ensure that the effective dose is reduced by around 90% or more compared with that for adult patient, this will be useful to reduce radiation exposure level.

  8. Deoxyglucose method for the estimation of local myocardial glucose metabolism with positron computed tomography

    SciTech Connect

    Ratib, O.; Phelps, M.E.; Huang, S.C.; Henze, E.; Selin, C.E.; Schelbert, H.R.

    1981-01-01

    The deoxyglucose method originally developed for measurements of the local cerebral metabolic rate for glucose has been investigated in terms of its application to studies of the heart with positron computed tomography (PCT) and FDG. Studies were performed in dogs to measure the tissue kinetics of FDG with PCT and by direct arterial-venous sampling. The operational equation developed in our laboratory as an extension of the Sokoloff model was used to analyze the data. The FDG method accurately predicted the true MMRGlc even when the glucose metabolic rate was normal but myocardial blood flow (MBF) was elevated 5 times the control value or when metabolism was reduced to 10% of normal and MBF increased 5 times normal. Improvements in PCT resolution are required to improve the accuracy of the estimates of the rate constants and the MMRGlc.

  9. Positron Emission Tomography (PET)

    SciTech Connect

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs.

  10. Positron Emission Tomography (PET)

    DOE R&D Accomplishments Database

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  11. Positron emission tomography-computed tomography in the diagnostic evaluation of smoldering multiple myeloma: identification of patients needing therapy

    PubMed Central

    Siontis, B; Kumar, S; Dispenzieri, A; Drake, M T; Lacy, M Q; Buadi, F; Dingli, D; Kapoor, P; Gonsalves, W; Gertz, M A; Rajkumar, S V

    2015-01-01

    We studied 188 patients with a suspected smoldering multiple myeloma (MM) who had undergone a positron emission tomography-computed tomography (PET-CT) scan as part of their clinical evaluation. PET-CT was positive (clinical radiologist interpretation of increased bone uptake and/or evidence of lytic bone destruction) in 74 patients and negative in 114 patients. Of these, 25 patients with a positive PET-CT and 97 patients with a negative PET-CT were observed without therapy and formed the study cohort (n=122). The probability of progression to MM within 2 years was 75% in patients with a positive PET-CT observed without therapy compared with 30% in patients with a negative PET-CT; median time to progression was 21 months versus 60 months, respectively, P=0.0008. Of 25 patients with a positive PET-CT, the probability of progression was 87% at 2 years in those with evidence of underlying osteolysis (n=16) and 61% in patients with abnormal PET-CT uptake but no evidence of osteolysis (n=9). Patients with positive PET-CT and evidence of underlying osteolysis have a high risk of progression to MM within 2 years when observed without therapy. These observations support recent changes to imaging requirements in the International Myeloma Working Group updated diagnostic criteria for MM. PMID:26495861

  12. Application of positron emission tomography/computed tomography in radiation treatment planning for head and neck cancers

    PubMed Central

    Awan, Musaddiq J; Siddiqui, Farzan; Schwartz, David; Yuan, Jiankui; Machtay, Mitchell; Yao, Min

    2015-01-01

    18-fluorodeoxygluocose positron emission tomography/computed tomography (18FDG-PET/CT) provides significant information in multiple settings in the management of head and neck cancers (HNC). This article seeks to define the additional benefit of PET/CT as related to radiation treatment planning for squamous cell carcinomas (SCCs) of the head and neck through a review of relevant literature. By helping further define both primary and nodal volumes, radiation treatment planning can be improved using PET/CT. Special attention is paid to the independent benefit of PET/CT in targeting mucosal primaries as well as in detecting nodal metastases. The utility of PET/CT is also explored for treatment planning in the setting of SCC of unknown primary as PET/CT may help define a mucosal target volume by guiding biopsies for examination under anesthesia thus changing the treatment paradigm and limiting the extent of therapy. Implications of the use of PET/CT for proper target delineation in patients with artifact from dental procedures are discussed and the impact of dental artifact on CT-based PET attenuation correction is assessed. Finally, comment is made upon the role of PET/CT in the high-risk post-operative setting, particularly in the context of radiation dose escalation. Real case examples are used in these settings to elucidate the practical benefits of PET/CT as related to radiation treatment planning in HNCs. PMID:26644824

  13. 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography/computed tomography imaging in paediatric oncology

    PubMed Central

    Freebody, John; Wegner, Eva A; Rossleigh, Monica A

    2014-01-01

    Positron emission tomography (PET) is a minimally invasive technique which has been well validated for the diagnosis, staging, monitoring of response to therapy, and disease surveillance of adult oncology patients. Traditionally the value of PET and PET/computed tomography (CT) hybrid imaging has been less clearly defined for paediatric oncology. However recent evidence has emerged regarding the diagnostic utility of these modalities, and they are becoming increasingly important tools in the evaluation and monitoring of children with known or suspected malignant disease. Important indications for 2-deoxy-2-(18F)fluoro-D-glucose (FDG) PET in paediatric oncology include lymphoma, brain tumours, sarcoma, neuroblastoma, Langerhans cell histiocytosis, urogenital tumours and neurofibromatosis type I. This article aims to review current evidence for the use of FDG PET and PET/CT in these indications. Attention will also be given to technical and logistical issues, the description of common imaging pitfalls, and dosimetric concerns as they relate to paediatric oncology. PMID:25349660

  14. Prostate cancer nodal oligometastasis accurately assessed using prostate-specific membrane antigen positron emission tomography-computed tomography and confirmed histologically following robotic-assisted lymph node dissection

    PubMed Central

    O’Kane, Dermot B.; Lawrentschuk, Nathan; Bolton, Damien M.

    2016-01-01

    We herein present a case of a 76-year-old gentleman, where prostate-specific membrane antigen positron emission tomography-computed tomography (PSMA PET-CT) was used to accurately detect prostate cancer (PCa), pelvic lymph node (LN) metastasis in the setting of biochemical recurrence following definitive treatment for PCa. The positive PSMA PET-CT result was confirmed with histological examination of the involved pelvic LNs following pelvic LN dissection. PMID:27141207

  15. Review of cardiovascular imaging in the journal of nuclear cardiology in 2015. Part 1 of 2: Plaque imaging, positron emission tomography, computed tomography, and magnetic resonance.

    PubMed

    AlJaroudi, Wael A; Hage, Fadi G

    2016-02-01

    In 2015, many original articles pertaining to cardiovascular imaging with impressive quality were published in the Journal of Nuclear Cardiology. In a set of 2 articles, we provide an overview of these contributions to facilitate for the interested reader a quick review of the advancements that occurred in the field over this year. In this first article, we focus on arterial plaque imaging, cardiac positron emission tomography, computed tomography, and magnetic resonance imaging.

  16. Review of cardiovascular imaging in the journal of nuclear cardiology in 2015. Part 1 of 2: Plaque imaging, positron emission tomography, computed tomography, and magnetic resonance.

    PubMed

    AlJaroudi, Wael A; Hage, Fadi G

    2016-02-01

    In 2015, many original articles pertaining to cardiovascular imaging with impressive quality were published in the Journal of Nuclear Cardiology. In a set of 2 articles, we provide an overview of these contributions to facilitate for the interested reader a quick review of the advancements that occurred in the field over this year. In this first article, we focus on arterial plaque imaging, cardiac positron emission tomography, computed tomography, and magnetic resonance imaging. PMID:26542991

  17. 18F-fluorodeoxyglucose positron emission tomography-computed tomography finding of left gonadal vein thrombosis in a case of renal cell carcinoma.

    PubMed

    Narayan, Ravishwar; Ravishankar, Uma; Natarajan, Savita; Vohra, Sandeep

    2016-01-01

    Tumor thrombus from renal cell carcinoma is commonly reported in renal vein and inferior vena cava with a few reports of gonadal vein involvement. Here, we report a case of an elderly female who underwent fluorodeoxyglucose (FDG) positron emission tomography-computed tomography scan for initial staging of left renal cell carcinoma. Along with an FDG avid left renal mass lesion, scan also revealed FDG avid tumor thrombus in the entire length of the left gonadal vein.

  18. Rare case of isolated splenic metastases from gastric cancer detected with fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography.

    PubMed

    Kamaleshwaran, Koramadai Karuppusamy; Sivanesan, Balasubramanian; Shibu, Deepu; Shinto, Ajit Sugunan

    2013-04-01

    We report a rare case of isolated splenic metastasis from gastric cancer detected with fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography (PET/CT). A 55-year-old man with gastric cancer 1 year post surgery, evaluated with PET/CT showed focal, intense uptake in the spleen, with no other abnormal findings. On splenectomy, the lesion was confirmed as metastasis from gastric cancer pathologically.

  19. Unilateral primary adrenal natural killer/T-cell lymphoma: Role of fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography for staging and interim response assessment

    PubMed Central

    Kabnurkar, Rasika; Agrawal, Archi; Epari, Sridhar; Purandare, Nilendu; Shah, Sneha; Rangarajan, Venkatesh

    2016-01-01

    Primary adrenal lymphoma (PAL) is a rare malignancy often involving bilateral adrenal glands. Diffuse large B-cell is the most common histological type. Unilateral presentation and T-cell/natural killer (T/NK) cell histological type is rarer. We report fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography scan findings in a case of unilateral T/NK cell PAL performed for staging and interim treatment response assessment. PMID:26917897

  20. Contrast-enhanced [18 F] fluorodeoxyglucose-positron emission tomography/computed tomography in clinical oncology: tumor-, site-, and question-based comparison with standard positron emission tomography/computed tomography

    PubMed Central

    2014-01-01

    Background The present study aimed to evaluate the added value of contrast-enhanced computed tomography (ceCT) in comparison to standard, non-enhanced CT in the context of a combined positron emission tomography (PET)/CT examination by means of a tumor-, site-, and clinical question-based approach. Methods Analysis was performed in 202 patients undergoing PET/CT consisting of a multiphase CT protocol followed by a whole-body PET. The Cochran Q test was performed, followed by a multiple comparisons correction (McNemar test and Bonferroni adjustment), to compare standard and contrast-enhanced PET (cePET/CT). Histopathology or clinical-radiologic follow-up greater than 1 year was used as a reference. Results cePET/CT showed significantly different results with respect to standard PET/CT in head and neck and gastrointestinal cancer (P = 0.02 and 0.0002, respectively), in the evaluation of lesions located in the abdomen (P = 0.009), and in the context of disease restaging (P = 0.003). In all these clinical scenarios, adding ceCT resulted in a distinct benefit, by yielding a higher percentage of change in patient management. Conclusion These data strongly underline the importance of strictly selecting patients for the combined exam. In particular, patient selection should not be driven solely by mere tumor classification, but should also account for the clinical question and the anatomical location of the neoplastic disease, which can significantly impact patient management. PMID:25609564

  1. Cardiac Positron Emission Tomography

    PubMed Central

    Geltman, Edward M.

    1985-01-01

    Positron emission tomography (PET) is a new technique for noninvasively assessing myocardial metabolism and perfusion. It has provided new insight into the dynamics of myocardial fatty acid and glucose metabolism in normal subjects, patients with ischemic heart disease and those with cardiomyopathies, documenting regionally depressed fatty acid metabolism during myocardial ischemia and infarction and spatial heterogeneity of fatty acid metabolism in patients with cardiomyopathy. Regional myocardial perfusion has been studied with PET using water, ammonia and rubidium labeled with positron emitters, permitting the noninvasive detection of hypoperfused zones at rest and during vasodilator stress. With these techniques the relationship between perfusion and the metabolism of a variety of substrates has been studied. The great strides that have been made in developing faster high-resolution instruments and producing new labeled intermediates indicate the promise of this technique for facilitating an increase in the understanding of regional metabolism and blood flow under normal and pathophysiologic conditions. ImagesFigure 5.Figure 6.Figure 7.Figure 8.Figure 9. PMID:3879048

  2. Quantitative analysis of pulmonary ventilation scans with N-13 nitrogen gas and positron computed tomography

    SciTech Connect

    Senda, M.; Murata, K.; Itoh, H.; Yonekura, Y.; Saji, H.; Torizuka, K.

    1985-05-01

    The authors developed a quantitative method for the analysis of pulmonary ventilation studies using N-13 labeled nitrogen gas and positron computed tomography (PCT). The subject inhales N-13 nitrogen gas diluted with oxygen gas in a closed circuit. When the count rate comes up to the equilibrium in 2 or 4 minutes, the equilibrium phase scan (EQ) is performed for 3 min. Then the radioactive gas is washed out by the room air, during which the washout phase scan (WO) is performed for 5 min. Because nitrogen gas is almost insoluble in blood or tissue, the activity of the alveolus can be described with single compartment model if the dead space is ignored. The authors integrated the equation during the scanning period of EQ or WO, expressed the pixel count in each scan with V and T, and solved the equations simultaneously to obtain V and T. In clinical studies, poorly ventilated regions, which had decreased counts in EQ images, showed normal value in V images. Fibrotic regions showed normal T and decreased V. The authors method yields not only the distribution of alveolar volume which they cannot evaluate in EQ images, but also more accurate regional T values than Stewart-Hamilton method. Thus it is useful for the evaluation of regional pulmonary ventilatory function.

  3. Pulmonary malignant melanoma with distant metastasis assessed by positron emission tomography‐computed tomography

    PubMed Central

    Yoon, Ha‐Yong; Jin, Gong Yong; Choe, Yeong Hun; Park, Seung Yong

    2016-01-01

    Abstract Melanoma is a cutaneous malignant neoplasm of melanocytes. Primary malignant melanoma (MM) of the lung is very rare. Although previous reports have described the radiologic features of pulmonary MM, its rarity means that many factors are unknown. Thus, radiologic diagnosis is very difficult. Furthermore, there is little information regarding diagnostic application and/or the usefulness of [18F]‐fluorine‐2‐fluoro‐2‐deoxy‐D‐glucose positron emission tomography‐computed tomography (FDG‐PET‐CT) for primary pulmonary MM. A 69‐year‐old patient with a productive cough lasting three weeks was admitted to our hospital. Chest CT showed a large single mass with a multi‐lobulated margin and homogeneous enhancement in the right upper lobe, which was subsequently diagnosed as a primary pulmonary MM with multiple metastases. On PET‐CT images, the pulmonary mass and multiple bone lesions showed very increased uptakes of FDG. Considering that pulmonary metastasis from a mucocutaneous melanoma is the main differential diagnosis of primary pulmonary MM, systemic assessment of the whole body is more important than for other types of lung malignancies. This report introduces PET‐CT as a useful diagnostic modality for pulmonary MM, especially in cases of distant multiple metastases. PMID:27385996

  4. Positron computed tomography studies of cerebral metabolic responses to complex motor tasks

    SciTech Connect

    Phelps, M.E.; Mazziotta, J.C.

    1984-01-01

    Human motor system organization was explored in 8 right-handed male subjects using /sup 18/F-fluorodeoxyglucose and positron computed tomography to measure cerebral glucose metabolism. Five subjects had triple studies (eyes closed) including: control (hold pen in right hand without moving), normal size writing (subject repeatedly writes name) and large (10-15 X normal) name writing. In these studies normal and large size writing had a similar distribution of metabolic responses when compared to control studies. Activations (percent change from control) were in the range of 12-20% and occurred in the striatum bilaterally > contralateral Rolandic cortex > contralateral thalamus. No significant activations were observed in the ipsilateral thalamus, Rolandic cortex or cerebellum (supplementary motor cortex was not examined). The magnitude of the metabolic response in the striatum was greater with the large versus normal sized writing. This differential response may be due to an increased number and topographic distribution of neurons responding with the same average activity between tasks or an increase in the functional activity of the same neuronal population between the two tasks (present spatial resolution inadequate to differentiate). When subjects (N=3) performed novel sequential finger movements, the maximal metabolic response was in the contralateral Rolandic cortex > striatum. Such studies provide a means of exploring human motor system organization, motor learning and provide a basis for examining patients with motor system disorders.

  5. Effects of Respiration-Averaged Computed Tomography on Positron Emission Tomography/Computed Tomography Quantification and its Potential Impact on Gross Tumor Volume Delineation

    SciTech Connect

    Chi, Pai-Chun Melinda; Mawlawi, Osama; Luo Dershan; Liao Zhongxing; Macapinlac, Homer A.; Pan Tinsu

    2008-07-01

    Purpose: Patient respiratory motion can cause image artifacts in positron emission tomography (PET) from PET/computed tomography (CT) and change the quantification of PET for thoracic patients. In this study, respiration-averaged CT (ACT) was used to remove the artifacts, and the changes in standardized uptake value (SUV) and gross tumor volume (GTV) were quantified. Methods and Materials: We incorporated the ACT acquisition in a PET/CT session for 216 lung patients, generating two PET/CT data sets for each patient. The first data set (PET{sub HCT}/HCT) contained the clinical PET/CT in which PET was attenuation corrected with a helical CT (HCT). The second data set (PET{sub ACT}/ACT) contained the PET/CT in which PET was corrected with ACT. We quantified the differences between the two datasets in image alignment, maximum SUV (SUV{sub max}), and GTV contours. Results: Of the patients, 68% demonstrated respiratory artifacts in the PET{sub HCT}, and for all patients the artifact was removed or reduced in the corresponding PET{sub ACT}. The impact of respiration artifact was the worst for lesions less than 50 cm{sup 3} and located below the dome of the diaphragm. For lesions in this group, the mean SUV{sub max} difference, GTV volume change, shift in GTV centroid location, and concordance index were 21%, 154%, 2.4 mm, and 0.61, respectively. Conclusion: This study benchmarked the differences between the PET data with and without artifacts. It is important to pay attention to the potential existence of these artifacts during GTV contouring, as such artifacts may increase the uncertainties in the lesion volume and the centroid location.

  6. Melorheostosis associated with peripheral form spondyloarthropathy: new image with 18-fluoride positron emission tomoscintigraphy coupled to computed tomography

    PubMed Central

    Hassani, Hakim; Slama, Jérôme; Hayem, Gilles; Ben Ali, Khadija; Sarda-Mantel, Laure; Burg, Samuel; Le Guludec, Dominique

    2012-01-01

    Melorheostosis is a rare benign bone pathology which can be responsible for incapacitating pain and bone deformations. Its imaging abnormalities are often typical. We describe here the case of a patient with melorheostosis involving the lower limbs, associated with a peripheral form of inflammatory spondyloarthropathy, who underwent 18FNa positron emission tomography coupled to a computed tomography scan. Our objective is to present this new image, to show the value of this new modality and emphasize its advantages compared to the 99mTechnetium bone scan.

  7. Evaluation of Shoulder Disorders by 2-[F-18]-fluoro-2-deoxy-D-glucose Positron Emission Tomography and Computed Tomography

    PubMed Central

    Lee, Sang Hong; Park, Sung Yong; Yu, Jae Cheol; Gorthi, Venkat

    2010-01-01

    Background Although flourine-18-flourodeoxyglucose (FDG) positron emission tomography (PET) has a limitation for localizing anatomical structures, combining it with computed tomography (CT) has made it more efficient for overcoming such limitations. This study aims to evaluate the efficacy of PET/CT for evaluating diseases of the shoulder. Methods Retrospective examination was performed on 25 patients who underwent FDG-PET/CT scanning. All the patients were over 60 years of age, and they were evaluated both clinically and radiologically for shoulder pain. The study period was from May, 2006 to May, 2008. One of the patients had metastatic lesion in a shoulder and this patient was excluded from the study, so the total number of subjects in the study was finally 24 patients. Results PET/CT showed 67% sensitivity, 73% specificity, a positive predictive value of 60%, a negative predictive value of 79%, 27% false positivity and 33% false negativity concerning shoulder pain. PET/CT showed negative finding in 4 cases that were successfully treated by operative treatment (rotator cuff tear [RCT], 3 cases; impingement syndrome, 1 case). Negative findings were also noted in 6 cases in which the pain subsided after conservative treatment (RCT, 1 case; suspected RCT, 2 cases; impingement syndrome, 3 cases). All the patients with osteoarthritis and rheumatoid arthritis had positive findings on PET/CT scanning. Conclusions PET/CT is a useful adjunct to the existing imaging modalities to assess functional and pathophysiologic processes and at a very early stage, and so PET/CT can help physicians make better preoperative and postoperative decisions on treatment. PMID:20808588

  8. Determination of Internal Target Volume From a Single Positron Emission Tomography/Computed Tomography Scan in Lung Cancer

    SciTech Connect

    Chang Guoping; Chang Tingting; Pan Tinsu; Clark, John W.; Mawlawi, Osama R.

    2012-05-01

    Purpose: The use of four-dimensional computed tomography (4D-CT) to determine the tumor internal target volume (ITV) is usually characterized by high patient radiation exposure. The objective of this study was to propose and evaluate an approach that relies on a single static positron emission tomography (PET)/CT scan to determine the ITV, thereby eliminating the need for 4D-CT and thus reduce patient radiation dose. Methods and Materials: The proposed approach is based on the concept that the observed PET image is the result of a joint convolution of an ideal PET image (free from motion and partial volume effect) with a motion-blurring kernel (MBK) and partial volume effect. In this regard, the MBK and tumor ITV are then estimated from the deconvolution of this joint model. To test this technique, phantom and patient studies were performed using different sphere/tumor sizes and motion trajectories. In all studies, a 4D-CT and a PET/CT image of the sphere/tumor were acquired. The ITV from the proposed technique was then compared to the maximum intensity projection (MIP) volume of the 4D-CT images. A Dice coefficient of the two volumes was calculated to represent the similarity between the two ITVs. Results: The average ITVs of the proposed technique were 97.2% {+-} 0.3% and 81.0% {+-} 16.7% similar to the MIP volume in the phantom and patient studies, respectively. The average dice coefficients were 0.87 {+-} 0.05 and 0.73 {+-} 0.16, respectively, for the two studies. Conclusion: Using the proposed approach, a single static PET/CT scan has the potential to replace a 4D-CT to determine the tumor ITV. This approach has the added advantage of reducing patient radiation exposure and determining the tumor MBK compared to 4D-CT/MIP-CT.

  9. 18F-fluorodeoxyglucose positron emission tomography/computed tomography comparison of gastric lymphoma and gastric carcinoma

    PubMed Central

    Li, Xiao-Feng; Fu, Qiang; Dong, You-Wen; Liu, Jian-Jing; Song, Xiu-Yu; Dai, Dong; Zuo, Cong; Xu, Wen-Gui

    2016-01-01

    AIM To compare 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) features in gastric lymphoma and gastric carcinoma. METHODS Patients with newly diagnosed gastric lymphoma or gastric carcinoma who underwent 18F-FDG PET/CT prior to treatment were included in this study. We reviewed and analyzed the PET/CT features of gastric wall lesions, including FDG avidity, pattern (focal/diffuse), and intensity [maximal standard uptake value: (SUVmax)]. The correlation of SUVmax with gastric clinicopathological variables was investigated by χ2 test, and receiver-operating characteristic (ROC) curve analysis was performed to determine the differential diagnostic value of SUVmax-associated parameters in gastric lymphoma and gastric carcinoma. RESULTS Fifty-two patients with gastric lymphoma and 73 with gastric carcinoma were included in this study. Abnormal gastric FDG accumulation was found in 49 patients (94.23%) with gastric lymphoma and 65 patients (89.04%) with gastric carcinoma. Gastric lymphoma patients predominantly presented with type I and type II lesions, whereas gastric carcinoma patients mainly had type III lesions. The SUVmax (13.39 ± 9.24 vs 8.35 ± 5.80, P < 0.001) and SUVmax/THKmax (maximal thickness) (7.96 ± 4.02 vs 4.88 ± 3.32, P < 0.001) were both higher in patients with gastric lymphoma compared with gastric carcinoma. ROC curve analysis suggested a better performance of SUVmax/THKmax in the evaluation of gastric lesions between gastric lymphoma and gastric carcinoma in comparison with that of SUVmax alone. CONCLUSION PET/CT features differ between gastric lymphoma and carcinoma, which can improve PET/CT evaluation of gastric wall lesions and help differentiate gastric lymphoma from gastric carcinoma. PMID:27678362

  10. Improving 18F-Fluoro-D-Glucose-Positron Emission Tomography/Computed Tomography Imaging in Alzheimer's Disease Studies

    PubMed Central

    Knešaurek, Karin

    2015-01-01

    The goal was to improve Alzheimer's 2-deoxy-2-18F-fluoro-D-glucose (18F FDG)-positron emission tomography (PET)/computed tomography (CT) imaging through application of a novel, hybrid Fourier-wavelet windowed Fourier transform (WFT) restoration technique, in order to provide earlier and more accurate clinical results. General Electric Medical Systems downward-looking sonar PET/CT 16 slice system was used to acquire studies. Patient data were acquired according the Alzheimer's disease Neuroimaging Initiative (ADNI) protocol. Here, we implemented Fourier-wavelet regularized restoration, with a Butterworth low-pass filter, order n = 6 and a cut-off frequency f = 0.35 cycles/pixel and wavelet (Daubechies, order 2) noise suppression. The original (PET-O) and restored (PET-R) ADNI subject PET images were compared using the Alzheimer's discrimination analysis by dedicated software. Forty-two PET/CT scans were used in the study. They were performed on eleven ADNI subjects at intervals of approximately 6 months. The final clinical diagnosis was used as a gold standard. For three subjects, the final clinical diagnosis was mild cognitive impairment and those 13 PET/CT studies were not included in the final comparison, as the result was considered as inconclusive. Using the reminding 29 PET/CT studies (23 AD and 6 normal), the sensitivity and specificity of the PET-O and PET-R were calculated. The sensitivity was 0.65 and 0.96 for PET-O and PET-R, respectively, and the specificity was 0.67 and 0.50 for PET-O and PET-R. The accuracy was 0.66 and 0.86 for PET-O and PET-R, respectively. The results of the study demonstrated that the accuracy of three-dimensional brain F-18 FDG PET images was significantly improved by Fourier-wavelet restoration filtering. PMID:26420987

  11. Improving (18)F-Fluoro-D-Glucose-Positron Emission Tomography/Computed Tomography Imaging in Alzheimer's Disease Studies.

    PubMed

    Knešaurek, Karin

    2015-01-01

    The goal was to improve Alzheimer's 2-deoxy-2-(18)F-fluoro-D-glucose ((18)F FDG)-positron emission tomography (PET)/computed tomography (CT) imaging through application of a novel, hybrid Fourier-wavelet windowed Fourier transform (WFT) restoration technique, in order to provide earlier and more accurate clinical results. General Electric Medical Systems downward-looking sonar PET/CT 16 slice system was used to acquire studies. Patient data were acquired according the Alzheimer's disease Neuroimaging Initiative (ADNI) protocol. Here, we implemented Fourier-wavelet regularized restoration, with a Butterworth low-pass filter, order n = 6 and a cut-off frequency f = 0.35 cycles/pixel and wavelet (Daubechies, order 2) noise suppression. The original (PET-O) and restored (PET-R) ADNI subject PET images were compared using the Alzheimer's discrimination analysis by dedicated software. Forty-two PET/CT scans were used in the study. They were performed on eleven ADNI subjects at intervals of approximately 6 months. The final clinical diagnosis was used as a gold standard. For three subjects, the final clinical diagnosis was mild cognitive impairment and those 13 PET/CT studies were not included in the final comparison, as the result was considered as inconclusive. Using the reminding 29 PET/CT studies (23 AD and 6 normal), the sensitivity and specificity of the PET-O and PET-R were calculated. The sensitivity was 0.65 and 0.96 for PET-O and PET-R, respectively, and the specificity was 0.67 and 0.50 for PET-O and PET-R. The accuracy was 0.66 and 0.86 for PET-O and PET-R, respectively. The results of the study demonstrated that the accuracy of three-dimensional brain F-18 FDG PET images was significantly improved by Fourier-wavelet restoration filtering.

  12. 18F-fluorodeoxyglucose positron emission tomography/computed tomography comparison of gastric lymphoma and gastric carcinoma

    PubMed Central

    Li, Xiao-Feng; Fu, Qiang; Dong, You-Wen; Liu, Jian-Jing; Song, Xiu-Yu; Dai, Dong; Zuo, Cong; Xu, Wen-Gui

    2016-01-01

    AIM To compare 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) features in gastric lymphoma and gastric carcinoma. METHODS Patients with newly diagnosed gastric lymphoma or gastric carcinoma who underwent 18F-FDG PET/CT prior to treatment were included in this study. We reviewed and analyzed the PET/CT features of gastric wall lesions, including FDG avidity, pattern (focal/diffuse), and intensity [maximal standard uptake value: (SUVmax)]. The correlation of SUVmax with gastric clinicopathological variables was investigated by χ2 test, and receiver-operating characteristic (ROC) curve analysis was performed to determine the differential diagnostic value of SUVmax-associated parameters in gastric lymphoma and gastric carcinoma. RESULTS Fifty-two patients with gastric lymphoma and 73 with gastric carcinoma were included in this study. Abnormal gastric FDG accumulation was found in 49 patients (94.23%) with gastric lymphoma and 65 patients (89.04%) with gastric carcinoma. Gastric lymphoma patients predominantly presented with type I and type II lesions, whereas gastric carcinoma patients mainly had type III lesions. The SUVmax (13.39 ± 9.24 vs 8.35 ± 5.80, P < 0.001) and SUVmax/THKmax (maximal thickness) (7.96 ± 4.02 vs 4.88 ± 3.32, P < 0.001) were both higher in patients with gastric lymphoma compared with gastric carcinoma. ROC curve analysis suggested a better performance of SUVmax/THKmax in the evaluation of gastric lesions between gastric lymphoma and gastric carcinoma in comparison with that of SUVmax alone. CONCLUSION PET/CT features differ between gastric lymphoma and carcinoma, which can improve PET/CT evaluation of gastric wall lesions and help differentiate gastric lymphoma from gastric carcinoma.

  13. Prediction of positron emission tomography/computed tomography (PET/CT) positivity in patients with high-risk primary melanoma

    PubMed Central

    Danielsen, Maria; Kjaer, Andreas; Wu, Max; Martineau, Lea; Nosrati, Mehdi; Leong, Stanley PL; Sagebiel, Richard W; III, James R Miller; Kashani-Sabet, Mohammed

    2016-01-01

    Positron emission tomography/computed tomography (PET/CT) is an important tool to identify occult melanoma metastasis. To date, it is controversial which patients with primary cutaneous melanoma should have staging PET/CT. In this retrospective analysis of more than 800 consecutive patients with cutaneous melanoma, we sought to identify factors predictive of PET/CT positivity in the setting of newly-diagnosed high-risk primary melanoma to determine those patients most appropriate to undergo a PET/CT scan as part of their diagnostic work up. 167 patients with newly-diagnosed high-risk primary cutaneous melanoma underwent a PET/CT scan performed as part of their initial staging. Clinical and histologic factors were evaluated as possible predictors of melanoma metastasis identified on PET/CT scanning using both univariate and multivariate logistic regression. In all, 32 patients (19.2%) had a positive PET/CT finding of metastatic melanoma. In more than half of these patients (56.3%), PET/CT scanning identified disease that was not detectable on clinical examination. Mitotic rate, tumor thickness, lymphadenopathy, and bleeding were significantly predictive of PET/CT positivity. A combinatorial index constructed from these factors revealed a significant association between number of high-risk factors observed and prevalence of PET/CT positivity, which increased from 5.8% (with the presence of 0-2 factors) to 100.0%, when all four factors were present. These results indicate that combining clinical and histologic prognostic factors enables the identification of patients with a higher likelihood of a positive PET/CT scan. PMID:27766186

  14. Radiation Dose from Whole-Body F-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography: Nationwide Survey in Korea

    PubMed Central

    2016-01-01

    The purpose of this study was to estimate average radiation exposure from 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) examinations and to analyze possible factors affecting the radiation dose. A nation-wide questionnaire survey was conducted involving all institutions that operate PET/CT scanners in Korea. From the response, radiation doses from injected FDG and CT examination were calculated. A total of 105 PET/CT scanners in 73 institutions were included in the analysis (response rate of 62.4%). The average FDG injected activity was 310 ± 77 MBq and 5.11 ± 1.19 MBq/kg. The average effective dose from FDG was estimated to be 5.89 ± 1.46 mSv. The average CT dose index and dose-length product were 4.60 ± 2.47 mGy and 429.2 ± 227.6 mGy∙cm, which corresponded to 6.26 ± 3.06 mSv. The radiation doses from FDG and CT were significantly lower in case of newer scanners than older ones (P < 0.001). Advanced PET technologies such as time-of-flight acquisition and point-spread function recovery were also related to low radiation dose (P < 0.001). In conclusion, the average radiation dose from FDG PET/CT is estimated to be 12.2 mSv. The radiation dose from FDG PET/CT is reduced with more recent scanners equipped with image-enhancing algorithms. PMID:26908992

  15. Role of 18F-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in the Evaluation of Cytologically Indeterminate Thyroid Nodules

    PubMed Central

    Buyukdereli, Gulgun; Aktar, Yasemin; Kara, Ertan; Uguz, Aysun; Sonmez, Husnu

    2016-01-01

    Background: Thyroid nodules with indeterminate fine-needle aspiration biopsy (FNAB) results remain a diagnostic dilemma, because 70 - 85% of these nodules have been found to be benign after thyroid surgery. Objectives: The purpose of this study was to evaluate the usefulness of 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in the preoperative diagnosis of cytologically indeterminate nodules. Patients and Methods: Forty-six patients were included in this study. These individuals had undergone FDG PET/CTs for the preoperative evaluation of thyroid nodules with indeterminate FNAB results. The results of the preoperative PET/CT scans were compared with the postoperative pathological results and statistically analyzed. Results: Of the 46 patients included in our study, the histopathology of the surgical specimens revealed thyroid cancer in 17 individuals (37%, 17/46). The PET/CT scan showed a positive result in 27 patients. Of these, 16 patients (59.3%) were found to have thyroid carcinomas. In addition, the PET/CT scan was considered to be negative in 19 patients, 18 (94.7%) of whom had benign lesions. For the detection of malignant lesions, the values for the sensitivity and specificity, and the positive predictive and negative predictive values were 94%, 62%, 59%, and 95%, respectively. Conclusion: The FDG PET/CT showed a high sensitivity and a high negative predictive value for identifying malignancies in thyroid nodules with indeterminate FNAB results. Therefore, the FDG PET/CT may be a helpful tool in the clinical management of these nodules. When an FDG positive lesion is detected, further examination is recommended. PMID:27110335

  16. Repeated Positron Emission Tomography-Computed Tomography and Perfusion-Computed Tomography Imaging in Rectal Cancer: Fluorodeoxyglucose Uptake Corresponds With Tumor Perfusion

    SciTech Connect

    Janssen, Marco H.M.; Aerts, Hugo J.W.L.; Buijsen, Jeroen; Lambin, Philippe; Lammering, Guido; Oellers, Michel C.

    2012-02-01

    Purpose: The purpose of this study was to analyze both the intratumoral fluorodeoxyglucose (FDG) uptake and perfusion within rectal tumors before and after hypofractionated radiotherapy. Methods and Materials: Rectal cancer patients, referred for preoperative hypofractionated radiotherapy (RT), underwent FDG-positron emission tomography (PET)-computed tomography (CT) and perfusion-CT (pCT) imaging before the start of hypofractionated RT and at the day of the last RT fraction. The pCT-images were analyzed using the extended Kety model, quantifying tumor perfusion with the pharmacokinetic parameters K{sup trans}, v{sub e}, and v{sub p}. The mean and maximum FDG uptake based on the standardized uptake value (SUV) and transfer constant (K{sup trans}) within the tumor were correlated. Also, the tumor was subdivided into eight subregions and for each subregion the mean and maximum SUVs and K{sup trans} values were assessed and correlated. Furthermore, the mean FDG uptake in voxels presenting with the lowest 25% of perfusion was compared with the FDG uptake in the voxels with the 25% highest perfusion. Results: The mean and maximum K{sup trans} values were positively correlated with the corresponding SUVs ({rho} = 0.596, p = 0.001 and {rho} = 0.779, p < 0.001). Also, positive correlations were found for K{sup trans} values and SUVs within the subregions (mean, {rho} = 0.413, p < 0.001; and max, {rho} = 0.540, p < 0.001). The mean FDG uptake in the 25% highest-perfused tumor regions was significantly higher compared with the 25% lowest-perfused regions (10.6% {+-} 5.1%, p = 0.017). During hypofractionated radiotherapy, stable mean (p = 0.379) and maximum (p = 0.280) FDG uptake levels were found, whereas the mean (p = 0.040) and maximum (p = 0.003) K{sup trans} values were found to significantly increase. Conclusion: Highly perfused rectal tumors presented with higher FDG-uptake levels compared with relatively low perfused tumors. Also, intratumor regions with a high FDG

  17. The role of positron emission tomography/computed tomography in radiation therapy planning for patients with lung cancer.

    PubMed

    Mac Manus, Michael P; Hicks, Rodney J

    2012-09-01

    Positron emission tomography (PET)/computed tomography (CT) has rapidly assumed a critical role in the management of patients with locoregionally advanced lung cancers who are candidates for definitive radiation therapy (RT). Definitive RT is given with curative intent, but can only be successful in patients without distant metastasis and if all gross tumor is contained within the treated volume. An increasing body of evidence supports the use of PET-based imaging for selection of patients for both surgery and definitive RT. Similarly, the use of PET/CT images for accurate target volume definition in lung cancer is a dynamic area of research. Most available evidence on PET staging of lung cancer relates to non-small cell lung cancer (NSCLC). In general clinical use, (18)F-fluorodeoxyglucose (FDG) is the primary radiopharmaceutical useful in NSCLC. Other tracers, including proliferation markers and hypoxia tracers, may have significant roles in future. Much of the FDG-PET literature describing the impact of PET on actual patient management has concerned candidates for surgical resection. In the few prospective studies where PET was used for staging and patient selection in NSCLC candidates for definitive RT, 25%-30% of patients were denied definitive RT, generally because PET detected unsuspected advanced locoregional or distant metastatic disease. PET/CT and CT findings are often discordant in NSCLC but studies with clinical-pathological correlation always show that PET-assisted staging is more accurate than conventional assessment. In all studies in which "PET-defined" and "non-PET-defined" RT target volumes were compared, there were major differences between PET and non-PET volumes. Therefore, in cases where PET-assisted and non-PET staging are different and biopsy confirmation is unavailable, it is rational to use the most accurate modality (namely PET/CT) to define the target volume. The use of PET/CT in patient selection and target volume definition is likely

  18. Pretreatment Staging Positron Emission Tomography/Computed Tomography in Patients With Inflammatory Breast Cancer Influences Radiation Treatment Field Designs

    SciTech Connect

    Walker, Gary V.; Niikura, Naoki; Yang Wei; Rohren, Eric; Valero, Vicente; Woodward, Wendy A.; Alvarez, Ricardo H.; Lucci, Anthony; Ueno, Naoto T.; Buchholz, Thomas A.

    2012-08-01

    Purpose: Positron emission tomography/computed tomography (PET/CT) is increasingly being utilized for staging of inflammatory breast cancer (IBC). The purpose of this study was to define how pretreatment PET/CT studies affected postmastectomy radiation treatment (PMRT) planning decisions for IBC. Methods and Materials: We performed a retrospective analysis of 62 patients diagnosed with IBC between 2004 and 2009, who were treated with PMRT in our institution and who had a staging PET/CT within 3 months of diagnosis. Patients received a baseline physical examination, staging mammography, ultrasonographic examination of breast and draining lymphatics, and chest radiography; most patients also had a bone scan (55 patients), liver imaging (52 patients), breast MRI (46 patients), and chest CT (25 patients). We compared how PET/CT findings affected PMRT, assuming that standard PMRT would target the chest wall, level III axilla, supraclavicular fossa, and internal mammary chain (IMC). Any modification of target volumes, field borders, or dose prescriptions was considered a change. Results: PET/CT detected new areas of disease in 27 of the 62 patients (44%). The areas of additional disease included the breast (1 patient), ipsilateral axilla (1 patient), ipsilateral supraclavicular (4 patients), ipsilateral infraclavicular (1 patient), ipsilateral IMC (5 patients), ipsilateral subpectoral (3 patients), mediastinal (8 patients), other distant/contralateral lymph nodes (15 patients), or bone (6 patients). One patient was found to have a non-breast second primary tumor. The findings of the PET/CT led to changes in PMRT in 11 of 62 patients (17.7%). These changes included additional fields in 5 patients, adjustment of fields in 2 patients, and higher doses to the supraclavicular fossa (2 patients) and IMC (5 patients). Conclusions: For patients with newly diagnosed IBC, pretreatment PET/CT provides important information concerning involvement of locoregional lymph nodes

  19. Active subcutaneous calcinosis demonstrated by fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in a case of limited cutaneous systemic sclerosis.

    PubMed

    Vadrucci, Manuela; Castellani, Massimo; Benti, Riccardo

    2016-01-01

    Systemic sclerosis (SSc) is a rheumatic autoimmune disease of unknown origin causing fibrosis of the skin and the internal organs. The limited cutaneous variant is the most common subtype of SSc, and it is predominantly characterized by skin and soft-tissues involvement. A 72-year-old woman, who had been diagnosed with the limited cutaneous form of SSc 16 years before, underwent fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) examination due to unexplained weight loss and recent onset of fatigue and joint pain. PET/CT images showed widespread soft-tissue calcinosis characterized by elevated glucose uptake. PMID:27095870

  20. The distinctive role of positron emission tomography/computed tomography in breast carcinoma with brown adipose tissue 2-fluoro-2-deoxy-d-glucose uptake.

    PubMed

    Heiba, Sherif I; Bernik, Stephanie; Raphael, Barbara; Sandella, Nick; Cholewinski, Witold; Klein, Paula

    2005-01-01

    The diagnostic power of an integrated positron emission tomography/computed tomography (PET/CT) system for whole-body 2-fluoro-2-deoxy-d-glucose (FDG) imaging is clearly demonstrated in this case report. The precise anatomic localization of FDG uptake with CT in a PET/CT scan of a patient with known breast carcinoma helped identify a contralateral breast tumor with axillary lymph node metastasis despite the presence of extensive physiologic brown fat FDG uptake. Accordingly, the patient received appropriate surgical management and pathologic confirmation of the disease.

  1. Primary neuroendocrine carcinoma of breast with liver and bone metastasis detected with fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography

    PubMed Central

    Kamaleshwaran, Koramadai Karuppusamy; Mohanan, Vyshak; Shibu, Deepu; Radhakrishnan, Edathuruthy Kalarikal; Shinto, Ajit Sugunan

    2014-01-01

    Cases of primary neuroendocrine carcinoma (NEC) of the breast have been reported, though rare. We report the case of a 45-year-old woman presented with jaundice and evaluated to have liver metastasis from neuroendocrine origin. She underwent whole body positron emission tomography/computed tomography, which showed left breast lesion and bone metastasis. Fine-needle aspiration (FNA) of breast revealed a NEC. A diagnosis of a primary NEC of the breast was rendered with hepatic and bone metastasis. She was treated with peptide receptor radionuclide therapy and is on follow-up. PMID:24591780

  2. Image findings of monomorphic non-hogdkin lymphoproliferative disorder in a post renal transplant patient diagnosed with fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography.

    PubMed

    Kamaleshwaran, Koramadai Karuppusamy; Rajasekar, Thirugnanam; Shibu, Deepu; Radhakrishnan, Edathurthy Kalarikal; Shinto, Ajit Sugunan

    2014-07-01

    Post-transplant lymphoproliferative disorder (PTLD) is a heterogeneous group of lymphoid proliferations caused by immunosuppression after solid organ or bone marrow transplantation. PTLD is categorized by early lesion, polymorphic PTLD and monomorphic PTLD. Fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography (F-18 FDG-PET/CT) scans have clinical significance in the evaluation of PTLD following renal transplantation. We report imaging findings of a monomorphic non-Hodgkin lymphoma, post renal transplant seen on FDG PET/CT in a 32-year-old lactating woman. Whole body FDG- ET/CT demonstrated uptake in right external iliac and inguinal lymph nodes.

  3. Primary neuroendocrine carcinoma of breast with liver and bone metastasis detected with fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography.

    PubMed

    Kamaleshwaran, Koramadai Karuppusamy; Mohanan, Vyshak; Shibu, Deepu; Radhakrishnan, Edathuruthy Kalarikal; Shinto, Ajit Sugunan

    2014-01-01

    Cases of primary neuroendocrine carcinoma (NEC) of the breast have been reported, though rare. We report the case of a 45-year-old woman presented with jaundice and evaluated to have liver metastasis from neuroendocrine origin. She underwent whole body positron emission tomography/computed tomography, which showed left breast lesion and bone metastasis. Fine-needle aspiration (FNA) of breast revealed a NEC. A diagnosis of a primary NEC of the breast was rendered with hepatic and bone metastasis. She was treated with peptide receptor radionuclide therapy and is on follow-up.

  4. Image findings of monomorphic non-hogdkin lymphoproliferative disorder in a post renal transplant patient diagnosed with fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography

    PubMed Central

    Kamaleshwaran, Koramadai Karuppusamy; Rajasekar, Thirugnanam; Shibu, Deepu; Radhakrishnan, Edathurthy Kalarikal; Shinto, Ajit Sugunan

    2014-01-01

    Post-transplant lymphoproliferative disorder (PTLD) is a heterogeneous group of lymphoid proliferations caused by immunosuppression after solid organ or bone marrow transplantation. PTLD is categorized by early lesion, polymorphic PTLD and monomorphic PTLD. Fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography (F-18 FDG-PET/CT) scans have clinical significance in the evaluation of PTLD following renal transplantation. We report imaging findings of a monomorphic non-Hodgkin lymphoma, post renal transplant seen on FDG PET/CT in a 32-year-old lactating woman. Whole body FDG- ET/CT demonstrated uptake in right external iliac and inguinal lymph nodes. PMID:25210292

  5. Calcified peritoneal metastasis identified on 18F-fluoride positron emission tomography/computed tomography: Importance of extraosseous uptake of F-18 fluoride

    PubMed Central

    Verma, Priyanka; Chandra, Piyush; Agrawal, Archi; Purandare, Nilendu; Shah, Sneha; Rangarajan, Venkatesh

    2016-01-01

    F-18 NaF positron emission tomography/computed tomography (PET/CT) is used for the evaluation of malignant and nonmalignant osseous disease. Extraosseous uptake of 18 fluoride-NaF has been observed in the arterial vasculature, gastrointestinal tract, and genitourinary tract. We describe a case of a woman with carcinoma of unknown primary in whom F-18 NaF PET/CT showed tracer uptake in the calcified peritoneal metastasis. Extraosseous findings on F-18 NaF PET/CT, though rare, may be visualized and may result in important management changes. PMID:27095869

  6. Late metastatic recurrence of penile carcinoma after 10 years: Demonstration with 18F-fluorodeoxyglucose positron emission tomography/computed tomography

    PubMed Central

    Sharma, Punit

    2016-01-01

    Penile cancer is rare cancer. While inguinal and pelvic nodal metastasis is common, distant metastasis is rare. We here present the interesting case of a 59-year-old male patient with penile carcinoma, previously treated with penectomy and inguinal lymphadenectomy 10 years earlier. He presented with bone pains and given history of malignancy he was referred for an 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT). PET/CT demonstrated multiple 18F-FDG avid bone and lung metastases. No locoregional disease was seen. Biopsy from a lung nodule confirmed the diagnosis, and the patient was started on palliative chemotherapy. PMID:27385892

  7. Hypertrophic pulmonary osteoarthropathy on bone scintigraphy and 18F-fluorodeoxyglucose positron emission tomography/computed tomography in a patient with lung adenocarcinoma

    PubMed Central

    Cengiz, Arzu; Eren, Mine Şencan; Polatli, Mehmet; Yürekli, Yakup

    2015-01-01

    Hypertrophic pulmonary osteoarthropathy (HPOA) is not an uncommon paraneoplastic syndrome that is frequently associated with lung cancer. A 54-year-old male patient with lung adenocarcinoma underwent bone scintigraphy and fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) scanning for initial staging. Bone scintigraphy revealed increased periosteal activity in lower extremities. FDG PET/CT revealed hypermetabolic right lung mass, mediastinal lymph nodes, and mildly increased periosteal FDG uptake in both femurs and tibias. The findings in lower extremities on bone scan and FDG PET/CT were interpreted as HPOA. PMID:26170569

  8. A rare case of extensive skeletal muscle metastases in adenocarcinoma cervix identified by 18F-fluorodeoxyglucose positron emission tomography/computed tomography scan

    PubMed Central

    Vishnoi, Madan Gopal; Jain, Anurag; John, Arun Ravi; Paliwal, Dharmesh

    2016-01-01

    Adenocarcinoma cervix is an uncommon histological subtype of carcinoma cervix; further incidence of skeletal muscle metastases is even rarer. We report the identification of extensive fluorodeoxyglucose (FDG) avid metastatic skeletal muscle deposits in a known case of adenocarcinoma cervix. The largest lesion representative of muscle deposit in the right deltoid was histopathologically confirmed to be metastatic poorly differentiated carcinoma. This report also serves to highlight the importance of 18F-FDG positron emission tomography/computed tomography (CT) as compared to conventional imaging modalities such as CT and ultrasonography and comments better over the description of invasiveness as well as the extent of disease in carcinoma cervix. PMID:27385895

  9. The distinctive role of positron emission tomography/computed tomography in breast carcinoma with brown adipose tissue 2-fluoro-2-deoxy-d-glucose uptake.

    PubMed

    Heiba, Sherif I; Bernik, Stephanie; Raphael, Barbara; Sandella, Nick; Cholewinski, Witold; Klein, Paula

    2005-01-01

    The diagnostic power of an integrated positron emission tomography/computed tomography (PET/CT) system for whole-body 2-fluoro-2-deoxy-d-glucose (FDG) imaging is clearly demonstrated in this case report. The precise anatomic localization of FDG uptake with CT in a PET/CT scan of a patient with known breast carcinoma helped identify a contralateral breast tumor with axillary lymph node metastasis despite the presence of extensive physiologic brown fat FDG uptake. Accordingly, the patient received appropriate surgical management and pathologic confirmation of the disease. PMID:16297092

  10. Multiple pulmonary sclerosing hemangiomas (pneumocytoma) mimicking lung metastasis detected in fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography

    PubMed Central

    Kamaleshwaran, Koramadai Karuppusamy; Rajan, Firoz; Mehta, Sangita; Mohanan, Vyshakh; Shinto, Ajit Sugunan

    2014-01-01

    Pulmonary sclerosing hemangioma (PSH), or the alternative name of “sclerosing pneumocytoma,” is a rare benign neoplasm. PSH is often asymptomatic and presents as a solitary or multiple pulmonary nodules on radiologic imaging studies. Few articles have been reported to describe the fluorodeoxyglucose positron emission tomography (FDG PET) findings about PSH. The authors describe an interesting but uncommonly encountered cause of false positive FDG PET scan in the thorax in a 25-year-old woman, a known case of arteriovenous malformation of oral cavity who underwent embolization and presented with incidental detection of bilateral lung nodules. She is asymptomatic and is on follow-up. PMID:25210285

  11. Multiple pulmonary sclerosing hemangiomas (pneumocytoma) mimicking lung metastasis detected in fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography.

    PubMed

    Kamaleshwaran, Koramadai Karuppusamy; Rajan, Firoz; Mehta, Sangita; Mohanan, Vyshakh; Shinto, Ajit Sugunan

    2014-07-01

    Pulmonary sclerosing hemangioma (PSH), or the alternative name of "sclerosing pneumocytoma," is a rare benign neoplasm. PSH is often asymptomatic and presents as a solitary or multiple pulmonary nodules on radiologic imaging studies. Few articles have been reported to describe the fluorodeoxyglucose positron emission tomography (FDG PET) findings about PSH. The authors describe an interesting but uncommonly encountered cause of false positive FDG PET scan in the thorax in a 25-year-old woman, a known case of arteriovenous malformation of oral cavity who underwent embolization and presented with incidental detection of bilateral lung nodules. She is asymptomatic and is on follow-up.

  12. When to perform positron emission tomography/computed tomography or radionuclide bone scan in patients with recently diagnosed prostate cancer.

    PubMed

    Caldarella, Carmelo; Treglia, Giorgio; Giordano, Alessandro; Giovanella, Luca

    2013-01-01

    Skeletal metastases are very common in prostate cancer and represent the main metastatic site in about 80% of prostate cancer patients, with a significant impact in patients' prognosis. Early detection of bone metastases is critical in the management of patients with recently diagnosed high-risk prostate cancer: radical treatment is recommended in case of localized disease; systemic therapy should be preferred in patients with distant secondary disease. Bone scintigraphy using radiolabeled bisphosphonates is of great importance in the management of these patients; however, its main drawback is its low overall accuracy, due to the nonspecific uptake in sites of increased bone turnover. Positron-emitting radiopharmaceuticals, such as fluorine-18-fluorodeoxyglucose, choline-derived drugs (fluorine-18-fluorocholine and carbon-11-choline) and sodium fluorine-18-fluoride, are increasingly used in clinical practice to detect metastatic spread, and particularly bone involvement, in patients with prostate cancer, to reinforce or substitute information provided by bone scan. Each radiopharmaceutical has a specific mechanism of uptake; therefore, diagnostic performances may differ from one radiopharmaceutical to another on the same lesions, as demonstrated in the literature, with variable sensitivity, specificity, and overall accuracy values in the same patients. Whether bone scintigraphy can be substituted by these new methods is a matter of debate. However, greater radiobiological burden, higher costs, and the necessity of an in-site cyclotron limit the use of these positron emission tomography methods as first-line investigations in patients with prostate cancer: bone scintigraphy remains the mainstay for the detection of bone metastases in current clinical practice. PMID:23861598

  13. Extrapulmonary Small Cell Carcinoma of the Seminal Vesicles and Prostate Demonstrated on 18F-FDG Positron Emission Tomography/Computed Tomography.

    PubMed

    Tabrizipour, Amir Iravani; Shen, Lily; Mansberg, Robert; Chuong, Bui

    2016-02-01

    Extrapulmonary primary small cell carcinomas arising from the urogenital tract is infrequent. It can rarely arise from the prostate and even more rarely from the seminal vesicles. We present a 79-year-old male who was admitted due to acute renal failure with a history of radical radiotherapy for prostate adenocarcinoma 13 years ago. The prostate specific antigen level was not elevated. An abdominopelvic computed tomography (CT) scan showed markedly enlarged seminal vesicles causing bilateral ureteral obstruction and a mildly enlarged prostate. Further evaluation with fluorine-18-fluorodeoxyglucose (18F-FDG) positron emission tomography/CT demonstrated extensive 18F-FDG uptake in the pelvis with diffuse involvement of both seminal vesicles and the prostate without pathologic uptake in the lungs or elsewhere in the body. Core biopsies of the prostate and both seminal vesicles revealed diffuse involvement by small cell carcinoma. Therapy could not be instituted due to a rapid deterioration in the patient's clinical condition.

  14. Gallium-68 DOTA-TATE Positron Emission Tomography/Computed Tomography: Scintigraphic Changes of Adrenal Glands Following Management of Ectopic Cushing's Syndrome by Steroidogenesis Inhibitors.

    PubMed

    Huang, Yu-Ting; Aziz, Shaikh Irfan; Ravi Kumar, Aravind S

    2014-09-01

    In the era of emerging functional imaging techniques, an understanding of the effects of hormonal therapies on the scintigraphic appearance of endocrine organs is desirable to minimize the erroneous scan interpretation. The mechanisms by which changes in the scintigraphic appearance of endocrine organs occur however sometimes remain ambiguous. This case demonstrates the gallium-68 (Ga-68) DOTA-TATE positron emission tomography/computed tomography (CT) appearance of adrenal glands following management with steroidogenesis inhibitors. The potential mechanisms underlying this change are discussed. A 17-year-old boy with adrenocorticotropic hormone (ACTH) dependent Cushing's syndrome secondary to ectopic ACTH secretion underwent pre- and post-metyrapone and dexamethasone treatment Ga-68 DOTA-TATE scans 4 months apart. Pretreatment, both adrenals demonstrated normal symmetrical prominent Ga-68 DOTA-TATE uptake and normal CT appearance. The posttherapy scan revealed marked symmetrical suppression of Ga-68 DOTA-TATE uptake, but with bilateral adrenal hypertrophy on CT.

  15. Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography imaging of an isolated subcutaneous loin metastasis from primary papillary carcinoma of the thyroid

    PubMed Central

    Kamaleshwaran, Koramadai Karuppusamy; Shibu, Deepu; Edathurthy, Radhakrishnan; Shinto, Ajit Sugunan

    2014-01-01

    Differentiated thyroid cancer frequently metastasizes but generally spreads to regional cervical lymph nodes and, in advanced cases, to the lungs and/or skeleton. Metastases to the skin/subcutaneous tissue are rare. We report 45-year-old male patient presented with a loin swelling which on biopsy showed a papillary carcinoma and referred for fluorodeoxyglucose-positron emission tomography/computed tomography (FDG PET/CT) to find out the primary disease. PET/CT showed abnormal FDG uptake within a loin metastasis and right lobe thyroid nodule. Fine-needle aspiration from nodule showed papillary carcinoma. Because thyroid cancer can rarely metastasize to the skin, attention should be given to that region during interpretation of the images. He was advised total thyroidectomy and metastasis excision. PMID:24761062

  16. Spindle cell sarcoma of pulmonary artery mimicking thromboembolism with lung metastasis detected in fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography.

    PubMed

    Kamaleshwaran, Koramadai Karuppusamy; Pattabiraman, Vr; Mehta, Sangita; Mohanan, Vyshakh; Shinto, Ajit Sugunan

    2014-10-01

    Pulmonary artery sarcoma (PAS), although rare, must be considered in the differential diagnosis of pulmonary thromboembolism (PTE). This tumor is highly malignant and the prognosis is very poor. As much as the standardized uptake values (SUVs) at fluorine-18 fluorodeoxyglucose positron emission tomography (18F-FDG PET) have helped in differentiating between benign and malignant tumors, visualization of a low-attenuation filling defect within a pulmonary artery on contrast-enhanced chest computed tomography (CT) can be suggestive of a malignancy, such as PAS, if the lesion shows high FDG uptake at PET. We present a case of PAS that showed high FDG uptake on integrated FDG PET/CT and with lung metastasis. Patient underwent endoscopic bronchial ultrasound-transbronchial needle aspiration (EBUS-TBNA), which confirmed spindle cell sarcoma.

  17. Spindle cell sarcoma of pulmonary artery mimicking thromboembolism with lung metastasis detected in fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography

    PubMed Central

    Kamaleshwaran, Koramadai Karuppusamy; Pattabiraman, VR; Mehta, Sangita; Mohanan, Vyshakh; Shinto, Ajit Sugunan

    2014-01-01

    Pulmonary artery sarcoma (PAS), although rare, must be considered in the differential diagnosis of pulmonary thromboembolism (PTE). This tumor is highly malignant and the prognosis is very poor. As much as the standardized uptake values (SUVs) at fluorine-18 fluorodeoxyglucose positron emission tomography (18F-FDG PET) have helped in differentiating between benign and malignant tumors, visualization of a low-attenuation filling defect within a pulmonary artery on contrast-enhanced chest computed tomography (CT) can be suggestive of a malignancy, such as PAS, if the lesion shows high FDG uptake at PET. We present a case of PAS that showed high FDG uptake on integrated FDG PET/CT and with lung metastasis. Patient underwent endoscopic bronchial ultrasound-transbronchial needle aspiration (EBUS-TBNA), which confirmed spindle cell sarcoma. PMID:25400365

  18. Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography imaging of an isolated subcutaneous loin metastasis from primary papillary carcinoma of the thyroid.

    PubMed

    Kamaleshwaran, Koramadai Karuppusamy; Shibu, Deepu; Edathurthy, Radhakrishnan; Shinto, Ajit Sugunan

    2014-04-01

    Differentiated thyroid cancer frequently metastasizes but generally spreads to regional cervical lymph nodes and, in advanced cases, to the lungs and/or skeleton. Metastases to the skin/subcutaneous tissue are rare. We report 45-year-old male patient presented with a loin swelling which on biopsy showed a papillary carcinoma and referred for fluorodeoxyglucose-positron emission tomography/computed tomography (FDG PET/CT) to find out the primary disease. PET/CT showed abnormal FDG uptake within a loin metastasis and right lobe thyroid nodule. Fine-needle aspiration from nodule showed papillary carcinoma. Because thyroid cancer can rarely metastasize to the skin, attention should be given to that region during interpretation of the images. He was advised total thyroidectomy and metastasis excision.

  19. The role of positron emission tomography-computed tomography and magnetic resonance imaging in diagnosis and follow up of multiple myeloma

    PubMed Central

    Caers, Jo; Withofs, Nadia; Hillengass, Jens; Simoni, Paolo; Zamagni, Elena; Hustinx, Roland; Beguin, Yves

    2014-01-01

    Multiple myeloma is the second most common hematologic malignancy and occurs most commonly in elderly patients. Almost all multiple myeloma patients develop bone lesions in the course of their disease or have evidence of bone loss at initial diagnosis. Whole-body conventional radiography remains the gold standard in the diagnostic evaluation, but computed tomography, magnetic resonance imaging and 18F-fluorodeoxyglucose positron emission tomography are increasingly used as complementary techniques in the detection of bone lesions. Moreover, the number of lesions detected and the presence of extramedullary disease give strong prognostic information. These new techniques may help to assess treatment response in solitary plasmacytoma or in multiple myeloma. In this article, we review recent data on the different imaging techniques used at diagnosis and in the assessment of treatment response, and discuss some current issues. PMID:24688111

  20. Kikuchi Disease with Generalized Lymph Node, Spleen and Subcutaneous Involvement Detected by Fluorine-18-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography.

    PubMed

    Alshammari, Alshaima; Skoura, Evangelia; Kazem, Nafisa; Ashkanani, Rasha

    2016-06-01

    Kikuchi-Fujimoto disease, known as Kikuchi disease, is a rare benign and self-limiting disorder that typically affects the regional cervical lymph nodes. Generalized lymphadenopathy and extranodal involvement are rare. We report a rare case of a 19-year-old female with a history of persistent fever, nausea, and debilitating malaise. Fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) revealed multiple hypermetabolic generalized lymph nodes in the cervical, mediastinum, axillary, abdomen and pelvic regions with diffuse spleen, diffuse thyroid gland, and focal parotid involvement, bilaterally. In addition, subcutaneous lesions were noted in the left upper paraspinal and occipital regions. An excisional lymph node biopsy guided by 18F-FDG PET/CT revealed the patient's diagnosis as Kikuchi syndrome. PMID:27277328

  1. Zolpidem-Induced Arousal by Paradoxical GABAergic Stimulation: A Case Report With F-18 Flumazenil Positron Emission Tomography and Single Photon Emission Computed Tomography Study

    PubMed Central

    Kim, Changjae; Nam, Ki Yeun; Park, Jin Woo; Lee, Ho Jun

    2016-01-01

    Zolpidem is a non-benzodiazepine drug that has selectivity for the gamma-aminobutyric acid (GABA) receptors. We experienced paradoxical effect of zolpidem in a 48-year-old male patient with hypoxic-ischemic brain injury after cardiac arrest. The patient was in stupor and could not communicate. His Glasgow Coma Scale (GCS) was E2M4V2 and Rancho Los Amigos (RLA) was grade III to IV. Zolpidem was prescribed to induce sedation but paradoxically, he became alert (GCS 15, RLA VII) and was able to communicate. The arousal lasted for 2 hours repeatedly following each administration of the medication. While he was alert, electroencephalogram showed the reversal of slow wave into beta range fast activity and F-18 flumazenil positron emission tomography (PET) showed increased GABAergic receptor activity in both frontoparietotemporal cortices. Single photon emission computed tomography (SPECT) also showed increased cerebral perfusion and reversal of cerebellar diaschisis. PMID:26949686

  2. Fluorodeoxyglucose positron emission tomography-computed tomography scan in von Hippel-Lindau syndrome: A case report and review of literature

    PubMed Central

    Solav, Shrikant; Bhandari, Ritu

    2012-01-01

    Von Hippel-Lindau (VHL) syndrome is a hereditary autosomal dominant disorder caused by defective tumor suppression gene at 3p25-p26. The gene for VHL disease is found on chromosome 3, and is inherited in a dominant fashion. The VHL gene is a tumor suppressor gene. This means that its role in a normal cell is to stop the uncontrolled growth and proliferation. It is characterized by abnormal growth of blood vessels. It strikes the eyes, central nervous system, kidneys, endocrine glands, etc. It predisposes the patient to retinal angiomas, central nervous system hemangioblastoma, renal cell carcinoma (RCC), pheochromocytomas, islet cell tumor of the pancreas, endolymphatic sac tumors, renal, pancreatic, epididymal cysts. We present a case of familial VHL syndrome whose Fluorine 18-fluorodeoxyglucose positron emission tomography-computed tomography scan was truly positive for adrenal pheochromocytoma but was falsely negative for RCC. Review of literature related to this entity is made. PMID:23723586

  3. Primary pulmonary lymphoma-role of fluoro-deoxy-glucose positron emission tomography-computed tomography in the initial staging and evaluating response to treatment - case reports and review of literature.

    PubMed

    Agarwal, Krishan Kant; Dhanapathi, Halanaik; Nazar, Aftab Hasan; Kumar, Rakesh

    2016-01-01

    Primary pulmonary lymphoma (PPL) is an uncommon entity of non-Hodgkin lymphoma, which accounts for <1% of all cases of lymphoma. We present two rare cases of PPL of diffuse large B-cell lymphoma, which underwent (18)fluorine fluoro-deoxy-glucose positron emission tomography-computed tomography for initial staging and response evaluation after chemotherapy. PMID:27385889

  4. Primary pulmonary lymphoma-role of fluoro-deoxy-glucose positron emission tomography-computed tomography in the initial staging and evaluating response to treatment - case reports and review of literature

    PubMed Central

    Agarwal, Krishan Kant; Dhanapathi, Halanaik; Nazar, Aftab Hasan; Kumar, Rakesh

    2016-01-01

    Primary pulmonary lymphoma (PPL) is an uncommon entity of non-Hodgkin lymphoma, which accounts for <1% of all cases of lymphoma. We present two rare cases of PPL of diffuse large B-cell lymphoma, which underwent 18fluorine fluoro-deoxy-glucose positron emission tomography-computed tomography for initial staging and response evaluation after chemotherapy. PMID:27385889

  5. Thoracic [18F]fluorodeoxyglucose uptake measured by positron emission tomography/computed tomography in pulmonary hypertension.

    PubMed

    Frille, Armin; Steinhoff, Karen Geva; Hesse, Swen; Grachtrup, Sabine; Wald, Alexandra; Wirtz, Hubert; Sabri, Osama; Seyfarth, Hans-Juergen

    2016-06-01

    Positron emission tomography (PET) visualizes increased cellular [F]fluorodeoxyglucose ([F]FDG) uptake. Pulmonary hypertension (PH) is conceived of a proliferative disease of the lung vessels. Increased glucose uptake can be quantified as pulmonary [F]FDG uptake via PET imaging. Because the angioproliferative mechanisms in PH are still in need of further description, the aim of the present study was to investigate whether [F]FDG PET/CT imaging can elucidate these pathophysiologic mechanisms in different etiologies of PH.Patients (n = 109) with end-stage pulmonary disease being evaluated for lung transplant were included in this observational study. Mean standardized uptake value (SUVmean) of predefined regions of interest in lung parenchyma (LP), left (LV), and right ventricle (RV) of the heart, and SUVmax in pulmonary artery (PA) were determined and normalized to liver uptake. These SUV ratios (SUVRs) were compared with results from right heart catheterization (mean pulmonary artery pressure [mPAP], pulmonary vascular resistance [PVR]), and serum N-terminal pro-brain natriuretic peptide. Group comparisons were performed and Pearson correlation coefficients (r) were calculated.The [F]FDG uptake ratios in LP, RV, RV/LV, and PA, but not in LV, were found to be significantly higher in both patients with mPAP ≥25 mm Hg (P = 0.013, P = 0.006, P = 0.049, P = 0.002, P = 0.68, respectively) and with PVR ≥480 dyn·s/cm (P < 0.001, P = 0.045, P < 0.001, P < 0.001, P = 0.26, respectively). The [F]FDG uptake in these regions positively correlated also with mPAP, PVR, and N-terminal pro-brain natriuretic peptide. The SUVR of PA positively correlated with the SUVR of LP and RV (r = 0.55, r = 0.42, respectively).Pulmonary and cardiac [F]FDG uptake in PET imaging positively correlated with the presence and severity of PH in patients with end-stage pulmonary disease. Increased glucose metabolism in the central PAs seems to

  6. Computed Tomography

    NASA Astrophysics Data System (ADS)

    Castellano, Isabel; Geleijns, Jacob

    After its clinical introduction in 1973, computed tomography developed from an x-ray modality for axial imaging in neuroradiology into a versatile three dimensional imaging modality for a wide range of applications in for example oncology, vascular radiology, cardiology, traumatology and even in interventional radiology. Computed tomography is applied for diagnosis, follow-up studies and screening of healthy subpopulations with specific risk factors. This chapter provides a general introduction in computed tomography, covering a short history of computed tomography, technology, image quality, dosimetry, room shielding, quality control and quality criteria.

  7. The Marinesco-Sjoegren syndrome examined by computed tomography, magnetic resonance, and sup 18 F-2-fluoro-2-deoxy-D-glucose and positron emission tomography

    SciTech Connect

    Bromberg, M.B.; Junck, L.; Gebarski, S.S.; McLean, M.J.; Gilman, S. )

    1990-11-01

    The Marinesco-Sjoegren syndrome is an autosomal recessive degenerative disorder characterized by congenital cataracts, cerebellar ataxia, spasticity, mental deficiency, and skeletal abnormalities. We studied two adult siblings with Marinesco-Sjoegren syndrome using anatomic and metabolic brain imaging techniques to characterize the pattern and nature of abnormalities in the brain. Computed tomographic and magnetic resonance imaging showed diffuse brain atrophy of mild to moderate degree, involving primarily the white matter of the cerebrum, cerebellum, brain stem, and cervical spinal cord. The pattern of atrophy resembled that seen in diffuse leukoencephalopathies. Measurements of local cerebral glucose metabolic rates with positron emission tomography revealed no statistically significant differences from normal control subjects in most regions, but metabolic rate was decreased in the thalamus in one patient. The findings support a diffuse white matter disorder in Marinesco-Sjoegren syndrome.Aut

  8. A rare cause of tube arcing artifact seen in computed tomography image of a positron emission tomography/computed tomography scanner.

    PubMed

    Mithun, Sneha; Jha, Ashish Kumar; Panchal, Ketan; Purandare, Nilendu C; Shah, Sneha; Agrawal, Archi; Rangarajan, Venkatesh

    2016-01-01

    Tube arcing artifact is known to be caused by a temporary short circuit in the X-ray tube causing momentary loss of X-ray output. It is seen as near-parallel and an equidistant streak pattern on transaxial computed tomography (CT) images and as a "horizontal" hypodense band on the coronal and sagittal CT images. This artifact can be a random occurrence and was caused in this particular case due to voltage fluctuations in the high-voltage supply transformer supplying the rotor of the anode in the X-ray tube. This problem was initially corrected by reducing the tube voltage to 120 kV from the original 140 kV and, subsequently, replacing the faulty transformer. This kind of artifact, which is a very rare situation, can affect the image quality, and could also be an early sign of equipment failure. To the authors' knowledge, such an artifact has not been reported till date in a clinical scenario. Hence, we would like to report a rare situation of tube arcing artifact along with a unique remedy. PMID:27081241

  9. The Promise and Pitfalls of Positron Emission Tomography and Single-Photon Emission Computed Tomography Molecular Imaging–Guided Radiation Therapy

    PubMed Central

    Wahl, Richard L.; Herman, Joseph M.; Ford, Eric

    2015-01-01

    External beam radiation therapy procedures have, until recently, been planned almost exclusively using anatomic imaging methods. Molecular imaging using hybrid positron emission tomography (PET)/computed tomography scanning or single-photon emission computed tomography (SPECT) imaging has provided new insights into the precise location of tumors (staging) and the extent and character of the biologically active tumor volume (BTV) and has provided differential response information during and after therapy. In addition to the commonly used radiotracer 18F-fluoro- 2-deoxyD-glucose (FDG), additional radiopharmaceuticals are being explored to image major physiological processes as well as tumor biological properties, such as hypoxia, proliferation, amino acid accumulation, apoptosis, and receptor expression, providing the potential to target or boost the radiation dose to a biologically relevant region within a tumor, such as the most hypoxic or most proliferative area. Imaging using SPECT agents has furthered the possibility of limiting dose to functional normal tissues. PET can also portray the distribution of particle therapy by displaying activated species in situ. With both PET and SPECT imaging, fundamental physical issues of limited spatial resolution relative to the biological process, partial volume effects for quantification of small volumes, image misregistration, motion, and edge delineation must be carefully considered and can differ by agent or the method applied. Molecular imaging–guided radiation therapy (MIGRT) is a rapidly evolving and promising area of investigation and clinical translation. As MIGRT evolves, evidence must continue to be gathered to support improved clinical outcomes using MIGRT versus purely anatomic approaches. PMID:21356477

  10. Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography evaluation of subcutaneous panniculitis-like T cell lymphoma and treatment response

    PubMed Central

    Gorodetskiy, Vadim R; Mukhortova, Olga V; Aslanidis, Irakli P; Klapper, Wolfram; Probatova, Natalya A

    2016-01-01

    Subcutaneous panniculitis-like T cell lymphoma (SPTCL) is a very rare variant of non-Hodgkin’s lymphoma. Currently, there is no standard imaging method for staging of SPTCL nor for assessment of treatment response. Here, we describe our use of fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) for staging and monitoring of treatment response in 3 cases of SPTCL. Primary staging by PET/CT showed that all 3 patients had multiple foci in the subcutaneous fat tissue, with SUVmax from 10.5 to 14.6. Involvement of intra-abdominal fat with high SUVmax was identified in 2 of the patients. Use of the triple drug regimen of gemcitabine, cisplatin and methylprednisolone (commonly known as “GEM-P”) as first-line therapy or second-line therapy facilitated complete metabolic response for all 3 cases. FDG PET/CT provides valuable information for staging and monitoring of treatment response and can reveal occult involvement of the intra-abdominal visceral fat. High FDG uptake on pre-treatment PET can identify patients with aggressive disease and help in selection of first-line therapy. PMID:27672640

  11. Metastasis in urothelial carcinoma mimicking prostate cancer metastasis in Ga-68 prostate-specific membrane antigen positron emission tomography-computed tomography in a case of synchronous malignancy.

    PubMed

    Gupta, Manoj; Choudhury, Partha Sarathi; Gupta, Gurudutt; Gandhi, Jatin

    2016-01-01

    Prostate cancer is the second most common cancer in man. It commonly presents with urinary symptoms, bone pain, or diagnosed with elevated prostate-specific antigen.(PSA) levels. Correct staging and early diagnosis of recurrence by a precise imaging tool are the keys for optimum management. Molecular imaging of prostate cancer with Ga-68 prostate-specific membrane antigen.(PSMA), positron emission tomography-computed tomography.(PET-CT) has recently received significant attention and frequently used with a signature to prostate cancer-specific remark. However, this case will highlight the more cautious use of it. A-72-year-old male treated earlier for synchronous double malignancy.(invasive papillary urothelial carcinoma right ureter and carcinoma prostate) presented with rising PSA.(0.51.ng/ml) and referred for Ga-68 PSMA PET-CT, which showed a positive enlarged left supraclavicular lymph node. Lymph node biopsy microscopic and immunohistochemistry examination revealed metastatic carcinoma favoring urothelial origin. Specificity of PSMA scan to prostate cancer has been seen to be compromised in a certain situation mostly due to neoangiogenesis, and false positives emerged in renal cell cancer, differentiated thyroid cancer, glioblastoma, breast cancer brain metastasis, and paravertebral schwannomas. Understanding the causes of false positive will further enhance the confidence of interpretating PSMA scans. PMID:27385897

  12. Value of Positron Emission Tomography/Computed Tomography (PET-CT) in Suspected Non-small Cell Lung Cancer Recurrence and Impact on Patient Management

    PubMed Central

    Beslic, Nermina; Sadija, Amera; Ceric, Timur; Milardovic, Renata; Ceric, Sejla; Cavaljuga, Semra

    2016-01-01

    Introduction: Positron emission tomography/computed tomography (PET-CT) is very sensitive for diagnosis of recurrent NSCLC and has a significant impact on change of management. Preliminary data suggest superiority of PET-CT comparing to CT alone for lung cancer restaging. Materials and methods: This is a retrospective study which aim is to validate usage of PET-CT in suspected non-small cell lung carcinoma recurrence and its impact on further patient management. Total number of 31 patients with non-small cell lung carcinoma and uncertain diagnosis of recurrent disease or its extent after routine clinical and CT work-up were enrolled in this study. Discussion: We found in our study that PET-CT diagnosed recurrent disease in 65% of patients who were previously presented with an indeterminante CT. In 85% of patients there were change in further management. Conclusion: We suggest that PET should be performed on patients who have suspected relapse after potentially curative treatment, particularly if active treatment is being considered. PET-CT improved the diagnosis of recurrent NSCLC and this resulted in a significant impact and change in further patient management. PMID:27708496

  13. Metastasis in urothelial carcinoma mimicking prostate cancer metastasis in Ga-68 prostate-specific membrane antigen positron emission tomography-computed tomography in a case of synchronous malignancy

    PubMed Central

    Gupta, Manoj; Choudhury, Partha Sarathi; Gupta, Gurudutt; Gandhi, Jatin

    2016-01-01

    Prostate cancer is the second most common cancer in man. It commonly presents with urinary symptoms, bone pain, or diagnosed with elevated prostate-specific antigen.(PSA) levels. Correct staging and early diagnosis of recurrence by a precise imaging tool are the keys for optimum management. Molecular imaging of prostate cancer with Ga-68 prostate-specific membrane antigen.(PSMA), positron emission tomography-computed tomography.(PET-CT) has recently received significant attention and frequently used with a signature to prostate cancer-specific remark. However, this case will highlight the more cautious use of it. A-72-year-old male treated earlier for synchronous double malignancy.(invasive papillary urothelial carcinoma right ureter and carcinoma prostate) presented with rising PSA.(0.51.ng/ml) and referred for Ga-68 PSMA PET-CT, which showed a positive enlarged left supraclavicular lymph node. Lymph node biopsy microscopic and immunohistochemistry examination revealed metastatic carcinoma favoring urothelial origin. Specificity of PSMA scan to prostate cancer has been seen to be compromised in a certain situation mostly due to neoangiogenesis, and false positives emerged in renal cell cancer, differentiated thyroid cancer, glioblastoma, breast cancer brain metastasis, and paravertebral schwannomas. Understanding the causes of false positive will further enhance the confidence of interpretating PSMA scans. PMID:27385897

  14. Tumor Delineation Based on Time-Activity Curve Differences Assessed With Dynamic Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography in Rectal Cancer Patients

    SciTech Connect

    Janssen, Marco Aerts, Hugo; Ollers, Michel C.; Bosmans, Geert; Lee, John A.; Buijsen, Jeroen; Ruysscher, Dirk de; Lambin, Philippe; Lammering, Guido; Dekker, Andre L.A.J.

    2009-02-01

    Purpose: To develop an unsupervised tumor delineation method based on time-activity curve (TAC) shape differences between tumor tissue and healthy tissue and to compare the resulting contour with the two tumor contouring methods mostly used nowadays. Methods and Materials: Dynamic positron emission tomography-computed tomography (PET-CT) acquisition was performed for 60 min starting directly after fluorodeoxyglucose (FDG) injection. After acquisition and reconstruction, the data were filtered to attenuate noise. Correction for tissue motion during acquisition was applied. For tumor delineation, the TAC slope values were k-means clustered into two clusters. The resulting tumor contour (Contour I) was compared with a contour manually drawn by the radiation oncologist (Contour II) and a contour generated using a threshold of the maximum standardized uptake value (SUV; Contour III). Results: The tumor volumes of Contours II and III were significantly larger than the tumor volumes of Contour I, with both Contours II and III containing many voxels showing flat TACs at low activities. However, in some cases, Contour II did not cover all voxels showing upward TACs. Conclusion: Both automated SUV contouring and manual tumor delineation possibly incorrectly assign healthy tissue, showing flat TACs, as being malignant. On the other hand, in some cases the manually drawn tumor contours do not cover all voxels showing steep upward TACs, suspected to be malignant. Further research should be conducted to validate the possible superiority of tumor delineation based on dynamic PET analysis.

  15. A follow-up analysis of positron emission tomography/computed tomography in detecting hidden malignancies at the time of diagnosis of membranous nephropathy

    PubMed Central

    Feng, Zhonglin; Wang, Shuxia; Huang, Yanlin; Liang, Xinling; Shi, Wei; Zhang, Bin

    2016-01-01

    Membranous nephropathy (MN) is the most common kidney disease reported in a variety of malignant diseases. Search for an occult malignancy in MN has presented special challenges. 124 MN patients with a physical examination not suspicious for cancer underwent screening for an occult malignancy with either 18F-Fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) scanning (n = 49) or conventional screening (n = 75) at the time of diagnosis of MN, and were followed up (median,28 months). 154 patients who refused to undergo any screening were followed up (median, 30 months). In FDG-PET/CT cohort, 5 (10.20%) patients were screened and confirmed as malignancy, in contrast, 1 (1.33%) patient in conventional screening cohort. During follow-up, none of malignancy was detected in FDG-PET/CT cohort, 3(4.05%) patients in conventional screening cohort, and 8(5.19%) patients in no-screening cohort. All 6 cases of cancer were detected at early stages and underwent curative resection, and after the resection, proteinuria decreased. In contrast, 11 cases of cancer detected during follow-up died without any remission of proteinuria. These preliminary data provide the first evidence for a potential cancer surveillance that the malignancy screening either through conventional or by PET-CT at the diagnosis of MN led to an early diagnosis and curative treatment. PMID:27009881

  16. Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography evaluation of subcutaneous panniculitis-like T cell lymphoma and treatment response.

    PubMed

    Gorodetskiy, Vadim R; Mukhortova, Olga V; Aslanidis, Irakli P; Klapper, Wolfram; Probatova, Natalya A

    2016-09-16

    Subcutaneous panniculitis-like T cell lymphoma (SPTCL) is a very rare variant of non-Hodgkin's lymphoma. Currently, there is no standard imaging method for staging of SPTCL nor for assessment of treatment response. Here, we describe our use of fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) for staging and monitoring of treatment response in 3 cases of SPTCL. Primary staging by PET/CT showed that all 3 patients had multiple foci in the subcutaneous fat tissue, with SUVmax from 10.5 to 14.6. Involvement of intra-abdominal fat with high SUVmax was identified in 2 of the patients. Use of the triple drug regimen of gemcitabine, cisplatin and methylprednisolone (commonly known as "GEM-P") as first-line therapy or second-line therapy facilitated complete metabolic response for all 3 cases. FDG PET/CT provides valuable information for staging and monitoring of treatment response and can reveal occult involvement of the intra-abdominal visceral fat. High FDG uptake on pre-treatment PET can identify patients with aggressive disease and help in selection of first-line therapy. PMID:27672640

  17. An Extremely Rare Intersection: Neurolymphomatosis in a Patient with Burkitt Lymphoma Detected by 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography

    PubMed Central

    Oner, Ali Ozan; Okuyucu, Kursat; Alagoz, Engin; Battal, Bilal; Arslan, Nuri

    2016-01-01

    Neurolymphomatosis (NL) is a rarely seen neurologic involvement of the systematic lymphoma. Its diagnosis is challenging, and requires biopsy. In cases where biopsy is not appropriate, 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) may aid in diagnosis. Here, we present a 54-year old male patient diagnosed with Burkitt lymphoma who underwent FDG-PET/CT in order to evaluate the treatment response after chemotherapy and radiotherapy. On viewing PET/CT images of the patient who complained of pain and weakness in his upper extremities after therapy, linear FDG uptake was observed in bilateral cervical 5 (C5), left cervical 6 (C6), bilateral cervical 7 (C7), and right lumbar 4 (L4) nerve roots. Magnetic resonance imaging (MRI) revealed dilation and thickening of nerve roots consisted with FDG uptake observed on PET/CT images. Since biopsy was not performed, histopathological diagnosis could not be established. However, overlapping of clinical, PET/CT, and MRI findings strongly suggested the presence of NL. As is the case of this patient, in cases with non-Hodgkin lymphoma, a combined evaluation of FDG-PET/CT and MRI modalities aid in the establishment of the diagnosis of NL. PMID:27651745

  18. Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography evaluation of subcutaneous panniculitis-like T cell lymphoma and treatment response

    PubMed Central

    Gorodetskiy, Vadim R; Mukhortova, Olga V; Aslanidis, Irakli P; Klapper, Wolfram; Probatova, Natalya A

    2016-01-01

    Subcutaneous panniculitis-like T cell lymphoma (SPTCL) is a very rare variant of non-Hodgkin’s lymphoma. Currently, there is no standard imaging method for staging of SPTCL nor for assessment of treatment response. Here, we describe our use of fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) for staging and monitoring of treatment response in 3 cases of SPTCL. Primary staging by PET/CT showed that all 3 patients had multiple foci in the subcutaneous fat tissue, with SUVmax from 10.5 to 14.6. Involvement of intra-abdominal fat with high SUVmax was identified in 2 of the patients. Use of the triple drug regimen of gemcitabine, cisplatin and methylprednisolone (commonly known as “GEM-P”) as first-line therapy or second-line therapy facilitated complete metabolic response for all 3 cases. FDG PET/CT provides valuable information for staging and monitoring of treatment response and can reveal occult involvement of the intra-abdominal visceral fat. High FDG uptake on pre-treatment PET can identify patients with aggressive disease and help in selection of first-line therapy.

  19. An Extremely Rare Intersection: Neurolymphomatosis in a Patient with Burkitt Lymphoma Detected by 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography.

    PubMed

    Oner, Ali Ozan; Okuyucu, Kursat; Alagoz, Engin; Battal, Bilal; Arslan, Nuri

    2016-09-01

    Neurolymphomatosis (NL) is a rarely seen neurologic involvement of the systematic lymphoma. Its diagnosis is challenging, and requires biopsy. In cases where biopsy is not appropriate, 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) may aid in diagnosis. Here, we present a 54-year old male patient diagnosed with Burkitt lymphoma who underwent FDG-PET/CT in order to evaluate the treatment response after chemotherapy and radiotherapy. On viewing PET/CT images of the patient who complained of pain and weakness in his upper extremities after therapy, linear FDG uptake was observed in bilateral cervical 5 (C5), left cervical 6 (C6), bilateral cervical 7 (C7), and right lumbar 4 (L4) nerve roots. Magnetic resonance imaging (MRI) revealed dilation and thickening of nerve roots consisted with FDG uptake observed on PET/CT images. Since biopsy was not performed, histopathological diagnosis could not be established. However, overlapping of clinical, PET/CT, and MRI findings strongly suggested the presence of NL. As is the case of this patient, in cases with non-Hodgkin lymphoma, a combined evaluation of FDG-PET/CT and MRI modalities aid in the establishment of the diagnosis of NL. PMID:27651745

  20. Treatment of advanced solid tumours with NSAIDs: Correlation of quantitative monitoring of circulating tumour cells and positron emission tomography-computed tomography imaging

    PubMed Central

    Willecke-Hochmuth, Regina; Pachmann, Katharina; Drevs, Joachim

    2016-01-01

    The detection and characterisation of tumour-derived circulating epithelial tumor cells (CETCs) or circulating tumor cells (CTCs) have been a main focus of basic oncological research over previous years. Numerous studies in the past decade have shown that CTCs are a promising tool for the estimation of the risk for metastatic relapse. The present observational study describes treatment results using tumour imaging and the quantification of CTCs. A group of 14 patients with advanced carcinomas was followed during their anticancer treatments. CTC numbers were serially detected and treatment success was estimated by positron emission tomography-computed tomography. A connection was found between tumour remission and a decreasing CTC count in 83%, a connection between stable disease and stable CTC numbers in 78% and a connection between progressive disease (PD) and an increase in CTC count in 50% of cases. In the patients with PD, an incomplete response was observed affecting the CTCs, but not the solid region of the tumour. As a result of this study, it may be concluded that patients with solid tumours benefit from serial quantification of CTCs in addition to imaging, as this combination of techniques provides a more sensitive result than imaging alone. PMID:27588120

  1. Detection of bone marrow involvement in newly diagnosed post-transplant lymphoproliferative disorder: (18)F-fluorodeoxyglucose positron emission tomography/computed tomography versus bone marrow biopsy.

    PubMed

    Gheysens, Olivier; Thielemans, Sanne; Morscio, Julie; Boeckx, Nancy; Goffin, Karolien E; Deroose, Christophe M; Sagaert, Xavier; Wlodarska, Iwona; Verhoef, Gregor; Dierickx, Daan; Tousseyn, Thomas

    2016-10-01

    Detecting bone marrow involvement (BMI) in lymphoma is important as it adversely affects stage. Bone marrow biopsy (BMB) remains the standard to detect BMI but is prone to sampling error. We retrospectively investigated whether (18)F-fluorodeoxyglucose positron emission tomography with computed tomography ((18)F-FDG-PET/CT) could identify BMI in patients with post-transplant lymphoproliferative disorder (PTLD) with sufficient accuracy in comparison with staging BMB. Twenty-five patients diagnosed with PTLD who underwent (18)F-FDG-PET/CT and BMB within one month were evaluated. Based on our criteria, six patients (24%) were considered positive for BMI on (18)F-FDG-PET/CT compared to one by BMB. Although we cannot completely exclude false positive results on (18)F-FDG-PET/CT, our data indicate a significantly higher sensitivity of (18)F-FDG-PET/CT compared to BMB (100% vs 17%) but similar specificity. These data confirm the high diagnostic performance of (18)F-FDG-PET/CT for detecting BMI, but prospective studies are needed to determine whether (18)F-FDG-PET/CT could indeed replace staging BMB in PTLD.

  2. An Extremely Rare Intersection: Neurolymphomatosis in a Patient with Burkitt Lymphoma Detected by 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography

    PubMed Central

    Oner, Ali Ozan; Okuyucu, Kursat; Alagoz, Engin; Battal, Bilal; Arslan, Nuri

    2016-01-01

    Neurolymphomatosis (NL) is a rarely seen neurologic involvement of the systematic lymphoma. Its diagnosis is challenging, and requires biopsy. In cases where biopsy is not appropriate, 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) may aid in diagnosis. Here, we present a 54-year old male patient diagnosed with Burkitt lymphoma who underwent FDG-PET/CT in order to evaluate the treatment response after chemotherapy and radiotherapy. On viewing PET/CT images of the patient who complained of pain and weakness in his upper extremities after therapy, linear FDG uptake was observed in bilateral cervical 5 (C5), left cervical 6 (C6), bilateral cervical 7 (C7), and right lumbar 4 (L4) nerve roots. Magnetic resonance imaging (MRI) revealed dilation and thickening of nerve roots consisted with FDG uptake observed on PET/CT images. Since biopsy was not performed, histopathological diagnosis could not be established. However, overlapping of clinical, PET/CT, and MRI findings strongly suggested the presence of NL. As is the case of this patient, in cases with non-Hodgkin lymphoma, a combined evaluation of FDG-PET/CT and MRI modalities aid in the establishment of the diagnosis of NL.

  3. The Accuracy of 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in the Evaluation of Bone Lesions of Undetermined Origin.

    PubMed

    Tamam, Cuneyt; Tamam, Muge; Mulazimoglu, Mehmet

    2016-01-01

    The aim of the current study was to determine the diagnostic accuracy of whole-body fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) in detecting carcinoma of unknown primary (CUP) with bone metastases. We evaluated 87 patients who were referred to FDG-PET/CT imaging and reported to have skeletal lesions with suspicion of malignancy. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were calculated. The median survival rate was measured to evaluate the prognostic value of the FDG-PET/CT findings. In the search for a primary, FDG-PET/CT findings correctly diagnosed lesions as the site of the primary true positive (TP) in 64 (73%) cases, 4 (5%) findings diagnosed no site of a primary, and none were subsequently proven to be true negative (TN); 14 (16%) diagnoses were false positive (FP) and 5 (6%) diagnoses were false negative (FN). Life expectancy was between 2 months and 25 months. Whole-body FDG-PET/CT imaging may be a useful method in assessing the bone lesions with suspicion of bone metastases. PMID:27134563

  4. Positron emission tomography wrist detector

    DOEpatents

    Schlyer, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois

    2006-08-15

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal representing a time-of-occurrence of an annihilation event, generating an address signal representing a channel detecting the annihilation event, and generating a channel signal including the time and address signals. The method also includes generating a composite signal including the channel signal and another similarly generated channel signal concerning another annihilation event. An apparatus that serially transfers annihilation information includes a time signal generator, address signal generator, channel signal generator, and composite signal generator. The time signal is asynchronous and the address signal is synchronous to a clock signal. A PET scanner includes a scintillation array, detection array, front-end array, and a serial encoder. The serial encoders include the time signal generator, address signal generator, channel signal generator, and composite signal generator.

  5. Positron Emission Tomography/Computed Tomography Imaging of Residual Skull Base Chordoma Before Radiotherapy Using Fluoromisonidazole and Fluorodeoxyglucose: Potential Consequences for Dose Painting

    SciTech Connect

    Mammar, Hamid; Kerrou, Khaldoun; Nataf, Valerie; Pontvert, Dominique; Clemenceau, Stephane; Lot, Guillaume; George, Bernard; Polivka, Marc; Mokhtari, Karima; Ferrand, Regis; Feuvret, Loiec; Habrand, Jean-louis; Pouyssegur, Jacques; Mazure, Nathalie; Talbot, Jean-Noeel

    2012-11-01

    Purpose: To detect the presence of hypoxic tissue, which is known to increase the radioresistant phenotype, by its uptake of fluoromisonidazole (18F) (FMISO) using hybrid positron emission tomography/computed tomography (PET/CT) imaging, and to compare it with the glucose-avid tumor tissue imaged with fluorodeoxyglucose (18F) (FDG), in residual postsurgical skull base chordoma scheduled for radiotherapy. Patients and Methods: Seven patients with incompletely resected skull base chordomas were planned for high-dose radiotherapy (dose {>=}70 Gy). All 7 patients underwent FDG and FMISO PET/CT. Images were analyzed qualitatively by visual examination and semiquantitatively by computing the ratio of the maximal standardized uptake value (SUVmax) of the tumor and cerebellum (T/C R), with delineation of lesions on conventional imaging. Results: Of the eight lesion sites imaged with FDG PET/CT, only one was visible, whereas seven of nine lesions were visible on FMISO PET/CT. The median SUVmax in the tumor area was 2.8 g/mL (minimum 2.1; maximum 3.5) for FDG and 0.83 g/mL (minimum 0.3; maximum 1.2) for FMISO. The T/C R values ranged between 0.30 and 0.63 for FDG (median, 0.41) and between 0.75 and 2.20 for FMISO (median,1.59). FMISO T/C R >1 in six lesions suggested the presence of hypoxic tissue. There was no correlation between FMISO and FDG uptake in individual chordomas (r = 0.18, p = 0.7). Conclusion: FMISO PET/CT enables imaging of the hypoxic component in residual chordomas. In the future, it could help to better define boosted volumes for irradiation and to overcome the radioresistance of these lesions. No relationship was founded between hypoxia and glucose metabolism in these tumors after initial surgery.

  6. Scintillators for positron emission tomography

    SciTech Connect

    Moses, W.W.; Derenzo, S.E.

    1995-09-01

    Like most applications that utilize scintillators for gamma detection, Positron Emission Tomography (PET) desires materials with high light output, short decay time, and excellent stopping power that are also inexpensive, mechanically rugged, and chemically inert. Realizing that this ``ultimate`` scintillator may not exist, this paper evaluates the relative importance of these qualities and describes their impact on the imaging performance of PET. The most important PET scintillator quality is the ability to absorb 511 keV photons in a small volume, which affects the spatial resolution of the camera. The dominant factor is a short attenuation length ({le} 1.5 cm is required), although a high photoelectric fraction is also important (> 30% is desired). The next most important quality is a short decay time, which affects both the dead time and the coincidence timing resolution. Detection rates for single 511 keV photons can be extremely high, so decay times {le} 500 ns are essential to avoid dead time losses. In addition, positron annihilations are identified by time coincidence so {le}5 ns fwhm coincidence pair timing resolution is required to identify events with narrow coincidence windows, reducing contamination due to accidental coincidences. Current trends in PET cameras are toward septaless, ``fully-3D`` cameras, which have significantly higher count rates than conventional 2-D cameras and so place higher demands on scintillator decay time. Light output affects energy resolution, and thus the ability of the camera to identify and reject events where the initial 511 keV photon has undergone Compton scatter in the patient. The scatter to true event fraction is much higher in fully-3D cameras than in 2-D cameras, so future PET cameras would benefit from scintillators with a 511 keV energy resolution < 10--12% fwhm.

  7. Evaluation of myocardial metabolism, with /sup 13/N- and /sup 11/C-labeled amino acids and positron computed tomography

    SciTech Connect

    Henze, E.; Schelbert, H.R.; Barrio, J.R.; Egbert, J.E.; Hansen, H.W.; MacDonald, N.S.; Phelps, M.E.

    1982-08-01

    To evaluate the utility of labeled L-amino acids (AA) for imaging regional myocardial AA metabolism by positron computed tomography (PCT), the myocardial uptake and clearance of Ala,* Glu, Gln, Asp, Leu tagged with /sup 13/N, and of /sup 11/C-tagged Asp, and oxaloacetate (Oxal), were examined in 44 experiments at control, during ischemia, and after transaminase inhibition. The myocardial time-activity curves recorded after intracoronary tracer injection had two clearance phases (an early and a late) for all /sup 13/N AA, and three (early, intermediate, late) for the two /sup 11/C compounds, with significantly different clearance half-times of 18.7 +/- 8.0 (s.d.) sec for the early phase, 141.7 +/- 56.5 sec for the intermediate, and 61.2 +/- 43.5 min for the late phase. The residual fractions ranged from 0.07 to 0.23 in normal myocardium, and consistently increased with ischemia by 0.01-0.07 for /sup 13/N-labeled Ala, Glu, Asp, and Leu, but not for /sup 13/N Gln and /sup 11/C compounds. Transaminase inhibition shortened the half-times of the late phases of /sup 13/N-labeled Ala, Glu, Asp, and Leu; had no effect on t1/2 of /sup 13/N Gln and /sup 11/C Oxal; and resulted in a loss of /sup 11/C CO/sub 2/ production and of the intermediate phase for /sup 11/C Asp. On the PCT images, /sup 13/N activity from labeled Ala and Glu was not decreased in an ischemic segment despite a significant flow reduction, as demonstrated by /sup 13/N NH/sub 3/ imaging and labeled microspheres. From the results, a three-compartment tracer kinetic model is proposed for the noninvasive quantification of Krebscycle activity, protein synthesis, and metabolic derangements related to ischemia.

  8. Evaluation of 2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography in rat models with hepatocellular carcinoma with liver cirrhosis.

    PubMed

    Park, S I; Lee, J H; Ham, H J; Jung, Y J; Park, M S; Lee, J; Maeng, L S; Chung, Y A; Jang, K S

    2015-01-01

    Liver cirrhosis is a predominant risk factor for hepatocellular carcinoma (HCC). However, the exact mechanism of the progression from cirrhosis to cancer remains unclear. The uptake of 2-[(18)F]-fluoro-2-deoxy-D-glucose ((18)F-FDG) is widely used as a marker of increased glucose metabolism to monitor the progression of cancer with positron emission tomography (PET)/computed tomography (CT). Here we investigated the feasibility of using (18)F-FDG PET/CT in the diethylnitrosamine (DEN) mediated experimental hepatocellular carcinoma model. Rats received weekly intraperitoneal injections of DEN for 16 weeks for induction of HCC. We recorded starting from 0 days or 0 weeks after the last DEN injection. The weight and survival rate of rats were then measured. Also, an (18)F-FDG PET scan and serum analysis were performed at minus 2, 0, plus 2, and plus 4 weeks after the last DEN injection. The body weight of rats was maintained between 350 g and 370 g during 14 and 20 weeks, and the rats were euthanized at 35 days after the last DEN injection. The serum levels of alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphate (ALP) were significantly higher at zero weeks after the last DEN injection. The (18)F-FDG uptake for the quantitative evaluation of HCC was done by measuring the region of interest (ROI). At minus two weeks after the last DEN injection, the ROI of rats had significantly increased compared to the normal group, in a time-dependent manner. These results suggest that FDG uptake serves as a good screening test to evaluate the feasibility of DEN-induced HCC. PMID:26405933

  9. The Impact of Positron Emission Tomography/Computed Tomography in Edge Delineation of Gross Tumor Volume for Head and Neck Cancers

    SciTech Connect

    Ashamalla, Hani . E-mail: hashamalla@aol.com; Guirgius, Adel; Bieniek, Ewa; Rafla, Sameer; Evola, Alex; Goswami, Ganesh; Oldroyd, Randall; Mokhtar, Bahaa; Parikh, Kapila

    2007-06-01

    Purpose: To study anatomic biologic contouring (ABC), using a previously described distinct halo, to unify volume contouring methods in treatment planning for head and neck cancers. Methods and Materials: Twenty-five patients with head and neck cancer at various sites were planned for radiation therapy using positron emission tomography/computed tomography (PET/CT). The ABC halo was used in all PET/CT scans to contour the gross tumor volume (GTV) edge. The CT-based GTV (GTV-CT) and PET/CT-based GTV (GTV-ABC) were contoured by two independent radiation oncologists. Results: The ABC halo was observed in all patients studied. The halo had a standard unit value of 2.19 {+-} 0.28. The mean halo thickness was 2.02 {+-} 0.21 mm. Significant volume modification ({>=}25%) was seen in 17 of 25 patients (68%) after implementation of GTV-ABC. Concordance among observers was increased with the use of the halo as a guide for GTV determination: 6 patients (24%) had a {<=}10% volume discrepancy with CT alone, compared with 22 (88%) with PET/CT (p < 0.001). Interobserver variability decreased from a mean GTV difference of 20.3 cm{sup 3} in CT-based planning to 7.2 cm{sup 3} in PET/CT-based planning (p < 0.001). Conclusions: Using the 'anatomic biologic halo' to contour GTV in PET/CT improves consistency among observers. The distinctive appearance of the described halo and its presence in all of the studied tumors make it attractive for GTV contouring in head and neck tumors. Additional studies are needed to confirm the correlation of the halo with presence of malignant cells.

  10. Contrast-Enhanced [{sup 18}F]fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography for Staging and Radiotherapy Planning in Patients With Anal Cancer

    SciTech Connect

    Bannas, Peter; Weber, Christoph; Adam, Gerhard; Frenzel, Thorsten; Derlin, Thorsten; Mester, Janos; Klutmann, Susanne

    2011-10-01

    Purpose: The practice of surgical staging and treatment of anal cancer has been replaced by noninvasive staging and combined modality therapy. For appropriate patient management, accurate lymph node staging is crucial. The present study evaluated the feasibility and diagnostic accuracy of contrast-enhanced [{sup 18}F]fluoro-2-deoxy-D-glucose ([{sup 18}F]FDG)-positron emission tomography/computed tomography (PET/CT) for staging and radiotherapy planning of anal cancer. Methods and Materials: A total of 22 consecutive patients (median age, 61 years old) with anal cancer underwent complete staging evaluation including physical examination, biopsy of the primary tumor, and contrast-enhanced (ce)-PET/CT. Patients were positioned as they would be for their subsequent radiotherapy. PET and CT images were evaluated independently for detectability and localization of the primary tumor, pelvic and inguinal lymph nodes, and distant metastasis. The stage, determined by CT or PET alone, and the proposed therapy planning were compared with the stage and management determined by ce-PET/CT. Data from ce-PET/CT were used for radiotherapy planning. Results: ce-PET/CT revealed locoregional lymph node metastasis in 11 of 22 patients (50%). After simultaneous reading of PET and CT data sets by experienced observers, 3 patients (14%) were found to have sites of disease not seen on CT that were identified on PET. Two patients had sites of disease not seen on PET that were identified on CT. In summary, 2 patients were upstaged, and 4 patients were downstaged due to ce-PET/CT. However, radiotherapy fields were changed due to the results from ce-PET/CT in 23% of cases compared to CT or PET results alone. Conclusions: ce-PET/CT is superior to PET or CT alone for staging of anal cancer, with significant impact on therapy planning.

  11. Prognostic value of volumetric metabolic parameters measured by [18F]Fluorodeoxyglucose-positron emission tomography/computed tomography in patients with small cell lung cancer

    PubMed Central

    2014-01-01

    Background We evaluated the prognostic value of volume-based metabolic positron emission tomography (PET) parameters in patients with small cell lung cancer (SCLC) compared with other factors. Methods The subjects were 202 patients with pathologically proven SCLC who underwent pretreatment 18F-fluorodeoxyglucose (FDG) PET/computed tomography (CT). Volumetric metabolic parameters of intrathoracic malignant hypermetabolic lesions, including maximum and average standardized uptake value, sum of metabolic tumor volume (MTV), and sum of total lesion glycolysis (TLG) were measured. Results 164 patients had died during follow-up (median 17.4 months) and median overall survival was 14 months. On univariate survival analysis, age, stage, treatment modality, sum of MTV (cutoff = 100 cm3), and sum of TLG (cutoff = 555) were significant predictors of survival. There was a very high correlation between the sum of MTV and the sum of TLG (r = 0.963, P < 0.001). On multivariate survival analysis, age (HR = 1.04, P < 0.001), stage (HR = 2.442, P < 0.001), and sum of MTV (HR = 1.662, P = 0.002) were independent prognostic factors. On subgroup analysis based on limited disease (LD) and extensive disease (ED), sum of MTV and sum of TLG were significant prognostic factors only in LD. Conclusion Both sum of MTV and sum of TLG of intrathoracic malignant hypermetabolic lesions are important independent prognostic factors for survival in patients with SCLC, in addition to age and clinical stage. However, it may be more useful in limited disease rather than in extensive disease. PMID:25609313

  12. Appropriate indications for positron emission tomography/computed tomography: College of Nuclear Physicians of the Colleges of Medicine of South Africa.

    PubMed

    Sathekge, Mike; Warwick, James M; Doruyter, Alex; Vorster, Mariza

    2015-11-01

    Individualised patient treatment approaches demand precise determination of initial disease extent combined with early, accurate assessment of response to treatment, which is made possible by positron emission tomography/computed tomography (PET/CT). PET is a non-invasive tool that provides tomographic images and quantitative parameters of perfusion, cell viability, and proliferation and/or metabolic activity of tissues. Fusion of the functional information with the morphological detail provided by CT as PET/CT can provide clinicians with a sensitive and accurate one-step whole-body diagnostic and prognostic tool, which directs and changes patient management. Three large-scale national studies published by the National Oncologic PET Registry in the USA have shown that imaging with PET changes the intended patient management strategy in 36.5% to 49% of cases, with consistent results across all cancer types. The proven clinical effectiveness and growing importance of PET/CT have prompted the College of Nuclear Physicians of South Africa, in collaboration with university hospitals, to develop a list of recommendations on the appropriate use of fluorine-18-fluorodeoxyglucose (18F-FDG) and non-18F-FDG PET/CT in oncology, cardiology, neurology and infection/inflammation. It is expected that other clinical situations will be added to these recommendations, provided that they are based upon solid clinical evidence. These recommendations are intended to offer advice regarding contemporary applications of PET/CT, as well as indicating novel developments and potential future indications. The CNP believes that these recommendations will serve an important and relevant role in advising referring physicians on the appropriate use of 18F-FDG and non-18F-FDG PET/CT. More promising clinical applications will be possible in the future, as newer PET tracers become more readily available. PMID:26632309

  13. [{sup 18}F]FDG-Positron Emission Tomography Coregistration With Computed Tomography Scans for Radiation Treatment Planning of Lymphoma and Hematologic Malignancies

    SciTech Connect

    Terezakis, Stephanie A.; Hunt, Margie A.; Kowalski, Alexander; McCann, Patrick; Schmidtlein, C. Ross; Reiner, Anne; Goenen, Mithat; Kirov, Assen S.; Gonzales, Anne Marie; Schoeder, Heiko; Yahalom, Joachim

    2011-11-01

    Purpose: Positron emission-tomography (PET) using 2-[{sup 18}F]fluoro-2-deoxyglucose (FDG-PET) increases sensitivity and specificity of disease detection in lymphoma and thus is standard in lymphoma management. This study examines the effects of coregistering FDG-PET and computed tomography (CT) (PET/CT) scans on treatment planning for lymphoma patients. Methods and Materials: Twenty-nine patients (30 positive PET scans) underwent PET/CT treatment planning from July 2004 to February 2007 and were retrospectively studied. For each patient, gross tumor volume was blindly contoured on the CT-only and PET/CT studies by a radiation oncologist. Treatment plans were generated for both the CT-only and PET/CT planning target volumes (PTVs) for all patients. Normal tissue doses and PTV coverage were evaluated using dose--volume histograms for all sites. Results: Thirty-two treatment sites were evaluated. Twenty-one patients had non-Hodgkin lymphoma, 5 patients had Hodgkin lymphoma, and 3 patients had plasma cell neoplasms. Previously undetected FDG-avid sites were identified in 3 patients during PET/CT simulation, resulting in one additional treatment field. Due to unexpected PET/CT simulation findings, 2 patients did not proceed with radiation treatment. The addition of PET changed the volume of 23 sites (72%). The PTV was increased in 15 sites (47%) by a median of 11% (range, 6-40%) and reduced in 8 sites (25%) by a median of 20% (range, 6%-75%). In six (19%) replanned sites, the CT-based treatment plan would not have adequately covered the PTV defined by PET/CT. Conclusions: Incorporation of FDG-PET into CT-based treatment planning for lymphoma patients resulted in considerable changes in management, volume definition, and normal tissue dosimetry for a significant number of patients.

  14. Comparison of Physical Examination and Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography 4-6 Months After Radiotherapy to Assess Residual Head-and-Neck Cancer

    SciTech Connect

    Zundel, M. Tracy; Michel, Michelle A.; Schultz, Christopher J.; Maheshwari, Mohit; Wong, Stuart J.; Campbell, Bruce H.; Massey, Becky L.; Blumin, Joel; Wilson, J. Frank; Wang, Dian

    2011-12-01

    Purpose: To retrospectively compare fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) and physical examination 4-6 months after radiotherapy for assessing residual head-and-neck cancer (HNC). Methods and Materials: From July 2002 through March 2006, 52 HNC patients underwent definitive radiotherapy or chemoradiotherapy. Categoric assessments of residual tumor by PET/CT and physical examination 4-6 months after therapy were correlated and compared with clinical outcomes. Pretreatment data, including tumor stage and primary site standardized uptake value, were also gathered retrospectively and correlated with clinical outcomes. Median follow-up time was 58 months. Results: Twenty-one patients had either locoregionally 'positive' (17 of 21) or 'equivocal' (4 of 21) PET/CT scans, whereas 31 patients had locoregionally negative scans. Four patients failed treatment and had biopsy-confirmed residual or recurrent local disease. All patients, including patients with locally suspicious scans or examinations who refused biopsies, were followed clinically for a minimum of 29 months after therapy, with no other cases of treatment failure detected during this time. No patient had residual nodal disease after therapy. Sensitivities of PET/CT vs. physical examination for early detection of treatment failure were 100% vs. 50%, whereas the specificities of the two modalities were 64.6% vs. 89.6%, respectively. Higher initial T stage and American Joint Commission on Cancer stage correlated with increased incidence of positive/equivocal PET/CT results and treatment failure. Maximal standardized uptake value was not predictive of any clinical outcome. Conclusions: A negative result on PET/CT obtained 4-6 months after radiotherapy is highly sensitive and correlates with successful locoregional control. Patients with negative scans may reasonably be spared invasive diagnostic procedures, such as biopsy and neck dissection, unless recurrent disease is suspected

  15. Are there radiographic, metabolic, and prognostic differences between cavitary and noncavitary nonsmall cell lung carcinoma? A retrospective fluorodeoxyglucose positron emission tomography/computed tomography study

    PubMed Central

    Nguyen, Nghi C.; Abhishek, Kumar; Nyon, Samuel; Farghaly, Hussein Rabie S.; Osman, Medhat M.; Reimers, Hans-Joachim

    2016-01-01

    AIMS: The prognosis of nonsmall cell lung cancer with cavitation (NSCLC-c) is not well-known. We compared the positron emission tomography/computed tomography (PET/CT) findings and survival data of patients with NSCLC-c patients with those without cavitation (NSCLC-nc). METHODS: Between 7/2004 and 6/2007, cavitary lung lesions were identified in 46/248 patients undergoing fluorodeoxyglucose (FDG) PET/CT for lung nodule characterization or lung cancer staging. Within the same period, 40 of 202 patients with NSCLC-nc were randomly selected for comparison. The primary was assessed by location, size, cell type, and standardized uptake value (SUV). Disease stage was determined according to American Joint Committee on Cancer guidelines for lung cancer. Kaplan–Meier method was used for survival analysis and Cox regression to assess the effect of clinical and imaging variables on survival. RESULTS: NSCLC-c was found in 87% of patients that had a cavitary lung lesion at PET/CT. Squamous cell carcinoma, primary size and primary-to-liver SUV ratio differed significantly between NSCLC-c and NSCLC-nc, whereas age, gender, primary location, primary SUV, type of treatment, and disease stage did not. Median survival and overall 5-year survival were 19 months and 24% for NSCLC-c, and 31 months and 31% for NSCLC-nc, P = 0.23. Disease stage was the only predictor of survival. CONCLUSION: Cavitary lung lesions in patients undergoing FDG PET/CT harbor a significant risk for cancer. NSCLC-c is associated with squamous cell carcinoma, larger size, and greater FDG metabolism compared with NSCLC-nc, although these variables may not be predictive of survival. Nonetheless, PET/CT contributes to accurate staging and has an indirect impact on prognosis. PMID:26933457

  16. 2-(fluorine-18)-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography after breast conserving surgery: Correlation with molecular markers of breast cancer

    PubMed Central

    Ozguven, Salih; Inanir, Sabahat; Turoglu, Halil Turgut; Erdil, Tanju Yusuf; Ugurlu, Mustafa Umit; Gulluoglu, Bahadir

    2016-01-01

    Aim: To investigate the role of 2-(fluorine-18)-fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) early after breast-conserving surgery (BCS) in patients with breast cancer (BC) and whether we can determine which molecular biomarkers of breast carcinoma put the patients at risk. Materials and Methods: This retrospective study involved 88 patients with histologically proven T1 or T2 BC, who were treated with BCS and underwent 18F-FDG PET/CT study. The correlation between biological markers (estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2 [HER2], and Ki-67) of the primary tumor and 18F-FDG PET/CT findings was analyzed. Results: 18F-FDG PET/CT demonstrated the presence of BC disease (locoregional disease [LRD], distant metastases, or contralateral BC) in 26 of 88 patients (29.5%). Regarding immunohistochemical profiles, BC expressing high levels of Ki-67 were associated with an increased percentage of LRD, which was the major recurrence pattern on 18F-FDG PET/CT. Although the BC disease was observed more commonly in patients with HER2 positivity compared to those of HER2 negative, the difference did not reach statistical significance. The patients with T2 tumor or a higher histopathological grade had a higher percentage of BC disease. Conclusions: This study demonstrated that patients with early stage BC treated with BCS have a remarkable risk of the presence of BC even early after surgery, and there was a clinically important relationship between 18F-FDG PET/CT findings and biological markers of BC. These findings suggest that high-risk molecular biomarkers (Ki-67, HER2) can be taken into account in the decision-making the process for both preoperative imaging and planning of the surgical approach. PMID:27385883

  17. Impact of Pretreatment Combined {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Staging on Radiation Therapy Treatment Decisions in Locally Advanced Breast Cancer

    SciTech Connect

    Ng, Sweet Ping; David, Steven; Alamgeer, Muhammad; Ganju, Vinod

    2015-09-01

    Purpose: To assess the diagnostic performance of pretreatment {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography ({sup 18}F-FDG PET/CT) and its impact on radiation therapy treatment decisions in patients with locally advanced breast cancer (LABC). Methods and Materials: Patients with LABC with Eastern Cooperative Oncology Group performance status <2 and no contraindication to neoadjuvant chemotherapy, surgery, and adjuvant radiation therapy were enrolled on a prospective trial. All patients had pretreatment conventional imaging (CI) performed, including bilateral breast mammography and ultrasound, bone scan, and CT chest, abdomen, and pelvis scans performed. Informed consent was obtained before enrolment. Pretreatment whole-body {sup 18}F-FDG PET/CT scans were performed on all patients, and results were compared with CI findings. Results: A total of 154 patients with LABC with no clinical or radiologic evidence of distant metastases on CI were enrolled. Median age was 49 years (range, 26-70 years). Imaging with PET/CT detected distant metastatic disease and/or locoregional disease not visualized on CI in 32 patients (20.8%). Distant metastatic disease was detected in 17 patients (11.0%): 6 had bony metastases, 5 had intrathoracic metastases (pulmonary/mediastinal), 2 had distant nodal metastases, 2 had liver metastases, 1 had pulmonary and bony metastases, and 1 had mediastinal and distant nodal metastases. Of the remaining 139 patients, nodal disease outside conventional radiation therapy fields was detected on PET/CT in 15 patients (10.8%), with involvement of ipsilateral internal mammary nodes in 13 and ipsilateral level 5 cervical nodes in 2. Conclusions: Imaging with PET/CT provides superior diagnostic and staging information in patients with LABC compared with CI, which has significant therapeutic implications with respect to radiation therapy management. Imaging with PET/CT should be considered in all patients undergoing primary

  18. Defining Radiotherapy Target Volumes Using {sup 18}F-Fluoro-Deoxy-Glucose Positron Emission Tomography/Computed Tomography: Still a Pandora's Box?

    SciTech Connect

    Devic, Slobodan; Tomic, Nada; Faria, Sergio; Menard, Sonia; Lisbona, Robert; Lehnert, Shirley

    2010-12-01

    Purpose: We discuss the effect of {sup 18}F-fluoro-deoxy-glucose (FDG) positron emission tomography (PET)/computed tomography (CT) data on target volume definition for radiotherapy planning. We compared the effect of various thresholding methods on the PET-based target volume vs. the standard CT-based tumor volume. Methods and Materials: Different thresholding methods were reviewed and compared to our PET-based gross tumor volume data obtained from a cohort of 31 non-small-cell lung carcinoma patients who had undergone preoperative PET/CT scans for staging. The feasibility and limitations of FDG-based PET/CT data on target volume delineation in radiotherapy planning have been demonstrated with frequently used approaches for target outlining such as the qualitative visual method and the fixed 15% or 40% of the maximal iso-uptake value threshold methods. Results: The relationship between PET-based and CT-based volumes generally suffers from poor correlation between the two image data sets, expressed in terms of a large statistical variation in gross tumor volume ratios, irrespective of the threshold method used. However, we found that the maximal signal/background ratios in non-small-cell lung carcinoma patients correlated well with the pathologic results, with an average ratio for adenocarcinoma, large cell carcinoma, and squamous cell carcinoma of 10.5 {+-} 3.5, 12.6 {+-} 2.8, and 14.1 {+-} 5.9, respectively. Conclusion: The fluctuations in tumor volume using different quantitative PET thresholding approaches did not depend on the thresholding method used. They originated from the nature of functional imaging in general and PET imaging in particular. Functional imaging will eventually be used for biologically tailored target radiotherapy volume definition not as a replacement of CT- or magnetic resonance imaging-based anatomic gross tumor volumes but with the methods complementing each other in a complex mosaic of distinct biologic target volumes.

  19. Positron Emission Tomography of the Heart

    DOE R&D Accomplishments Database

    Schelbert, H. R.; Phelps, M. E.; Kuhl, D. E.

    1979-01-01

    Positron emission computed tomography (PCT) represents an important new tool for the noninvasive evaluation and, more importantly, quantification of myocardial performance. Most currently available techniques permit assessment of only one aspect of cardiac function, i.e., myocardial perfusion by gamma scintillation camera imaging with Thallium-201 or left ventricular function by echocardiography or radionuclide angiocardiography. With PCT it may become possible to study all three major segments of myocardial performance, i.e., regional blood flow, mechanical function and, most importantly, myocardial metabolism. Each of these segments can either be evaluated separately or in combination. This report briefly describes the principles and technological advantages of the imaging device, reviews currently available radioactive tracers and how they can be employed for the assessment of flow, function and metabolism; and, lastly, discusses possible applications of PCT for the study of cardiac physiology or its potential role in the diagnosis of cardiac disease.

  20. Impact of Single-Photon Emission Computed Tomography/Computed Tomography (SPECT/CT) and Positron Emission Tomography/Computed Tomography (PET/CT) in the Diagnosis of Traumatic Brain Injury (TBI): Case Report.

    PubMed

    Molina-Vicenty, Irma L; Santiago-Sánchez, Michelaldemar; Vélez-Miró, Iván; Motta-Valencia, Keryl

    2016-09-01

    Traumatic brain injury (TBI) is defined as damage to the brain resulting from an external force. TBI, a global leading cause of death and disability, is associated with serious social, economic, and health problems. In cases of mild-to-moderate brain damage, conventional anatomical imaging modalities may or may not detect the cascade of metabolic changes that have occurred or are occurring at the intracellular level. Functional nuclear medicine imaging and neurophysiological parameters can be used to characterize brain damage, as the former provides direct visualization of brain function, even in the absence of overt behavioral manifestations or anatomical findings. We report the case of a 30-year-old Hispanic male veteran who, after 2 traumatic brain injury events, developed cognitive and neuropsychological problems with no clear etiology in the presence of negative computed tomography (CT) findings. PMID:27623144

  1. A study on statistically reliable and computationally efficient algorithms for generating local cerebral blood flow parametric images with positron emission tomography

    SciTech Connect

    Feng, Dagan; Wang, Zhizhong . Basser Dept. of Computer Science); Huang, Sung Cheng . Dept. of Radiological Sciences)

    1993-06-01

    With the advent of positron emission tomography (PET), a variety of techniques have been developed to measure local cerebral blood flow (LCBF) noninvasively in humans. It is essential that the techniques developed should be statistically reliable and computationally efficient. A potential class of techniques, which includes linear least squares (LS), linear weighted least squares (WLS), linear generalized least squares (GLS), and linear generalized weighted least squares (GWLS), is proposed. The statistical characteristics of the new methods were examined by computer simulation. The authors present a comparison of these four methods with two other rapid estimation techniques developed by Huang et al. and Alpert, and two classical methods, the unweighted and weighted nonlinear least squares regression which are supposed to have optimal statistical properties. The results show that the new methods can take full advantage of the contribution from the fine temporal sampling data of modern tomographs, and thus provide statistically reliable estimates that are comparable to those obtained from nonlinear least squares regression. The new methods also have high computational efficiency, and the parameters can be estimated directly from operational equations in one single step. Therefore, they can potentially be used in image-wide estimation of local cerebral blood flow and distribution volume with positron emission tomography.

  2. Tumor characteristics of ductal carcinoma in situ of breast visualized on [F-18] fluorodeoxyglucose-positron emission tomography/computed tomography: Results from a retrospective study

    PubMed Central

    Fujioka, Tomoyuki; Kubota, Kazunori; Toriihara, Akira; Machida, Youichi; Okazawa, Kaori; Nakagawa, Tsuyoshi; Saida, Yukihisa; Tateishi, Ukihide

    2016-01-01

    AIM To clarify clinicopathological features of ductal carcinoma in situ (DCIS) visualized on [F-18] fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT). METHODS This study retrospectively reviewed 52 consecutive tumors in 50 patients with pathologically proven pure DCIS who underwent [F-18] FDG-PET/CT before surgery. [F-18] FDG-PET/CT was performed after biopsy in all patients. The mean interval from biopsy to [F-18] FDG-PET/CT was 29.2 d. [F-18] FDG uptake by visual analysis and maximum standardized uptake value (SUVmax) was compared with clinicopathological characteristics. RESULTS [F-18] FDG uptake was visualized in 28 lesions (53.8%) and the mean and standard deviation of SUVmax was 1.63 and 0.90. On univariate analysis, visual analysis and the SUVmax were associated with symptomatic presentation (P = 0.012 and 0.002, respectively), palpability (P = 0.030 and 0.024, respectively), use of core-needle biopsy (CNB) (P = 0.023 and 0.012, respectively), ultrasound-guided biopsy (P = 0.040 and 0.006, respectively), enhancing lesion ≥ 20 mm on magnetic resonance imaging (MRI) (P = 0.001 and 0.010, respectively), tumor size ≥ 20 mm on histopathology (P = 0.002 and 0.008, respectively). However, [F-18] FDG uptake parameters were not significantly associated with age, presence of calcification on mammography, mass formation on MRI, presence of comedo necrosis, hormone status (estrogen receptor, progesterone receptor and human epidermal growth factor receptor-2), and nuclear grade. The factors significantly associated with visual analysis and SUVmax were symptomatic presentation (P = 0.019 and 0.001, respectively), use of CNB (P = 0.001 and 0.031, respectively), and enhancing lesion ≥ 20 mm on MRI (P = 0.001 and 0.049, respectively) on multivariate analysis. CONCLUSION Although DCIS of breast is generally non-avid tumor, symptomatic and large tumors (≥ 20 mm) tend to be visualized on [F-18] FDG-PET/CT. PMID:27648168

  3. Conflicting or complementary role of computed tomography (CT) and positron emission tomography (PET)/CT in the assessment of thymic cancer and thymoma: our experience and literature review

    PubMed Central

    Scagliori, Elena; Evangelista, Laura; Panunzio, Annalori; Calabrese, Fiorella; Nannini, Nazarena; Polverosi, Roberta; Pomerri, Fabio

    2015-01-01

    Background To evaluate the role of computed tomography (CT) and positron emission tomography (PET)/CT in patients with thymic cancer and thymoma at initial staging. Methods We retrospectively reviewed CT and PET/CT scans of 26 patients with a thymic cancer (n = 9) or thymoma (n = 17). Chest CT findings documented were qualitative and quantitative. Both qualitative and semiquantitative data were recovered by PET/CT. The comparisons among histological entities, outcome, and qualitative data from CT and PET/CT were made by non-parametric analysis. Results PET/CT resulted positive in 15/17 patients with thymoma. CT was available in 5/9 (56%) patients with thymic cancer and in 3/17 with thymoma. All quantitative CT parameters were significantly higher in patients with thymic cancer than thymoma (maximum axial diameter: 45 vs. 20 mm, maximum longitudinal diameter: 69 vs. 21 mm and volume: 77.91 vs. 4.52 mL; all P < 0.05). Conversely, only metabolic tumor volume (MTV) and total lesion glycolysis were significantly different in patients with thymic cancer than thymoma (126.53 vs. 6.03 cm3 and 246.05 vs. 20.32, respectively; both P < 0.05). After a median follow-up time of 17.45 months, four recurrences of disease occurred: three in patients with thymic cancer and one with a type B2 thymoma. CT volume in patients with recurrent disease was 102.19 mL versus a median value of 62.5 mL in six disease-free patients. MTV was higher in the recurrent than disease-free patient subset (143.3 vs. 81.13 cm3), although not statistically significant (P = 0.075). Conclusion Our preliminary results demonstrated that both morphological and metabolic volume could be useful from a diagnostic and prognostic point of view in thymic cancer and thymoma patients. A large multi-center clinical trial experience for confirming the findings of this study seems mandatory. PMID:26273398

  4. [18F]-Fluoromisonidazole Positron Emission Tomography/Computed Tomography Visualization of Tumor Hypoxia in Patients With Chordoma of the Mobile and Sacrococcygeal Spine

    SciTech Connect

    Cheney, Matthew D.; Chen, Yen-Lin; Lim, Ruth; Winrich, Barbara K.; Grosu, Anca L.; Trofimov, Alexei V.; Depauw, Nicolas; Shih, Helen A.; Schwab, Joseph H.; Hornicek, Francis J.; DeLaney, Thomas F.

    2014-12-01

    Purpose: To investigate [18F]-fluoromisonidazole positron emission tomography/computed tomography (FMISO-PET/CT) detection of targetable hypoxic subvolumes (HSVs) in chordoma of the mobile or sacrococcygeal spine. Methods and Materials: A prospective, pilot study of 20 patients with primary or locally recurrent chordoma of the mobile or sacrococcygeal spine treated with proton or combined proton/photon radiation therapy (RT) with or without surgery was completed. The FMISO-PET/CT was performed before RT and after 19.8-34.2 GyRBE (relative biologic effectiveness). Gross tumor volumes were delineated and HSVs defined including voxels with standardized uptake values ≥1.4 times the muscle mean. Clinical characteristics and treatments received were compared between patients with and without HSVs. Results: The FMISO-PET/CT detected HSVs in 12 of 20 patients (60%). Baseline and interval HSV spatial concordance varied (0%-94%). Eight HSVs were sufficiently large (≥5 cm{sup 3}) to potentially allow an intensity modulated proton therapy boost. Patients with HSVs had significantly larger gross tumor volumes (median 410.0 cm{sup 3} vs 63.4 cm{sup 3}; P=.02) and were significantly more likely to have stage T2 tumors (5 of 12 vs 0 of 8; P=.04). After a median follow-up of 1.8 years (range, 0.2-4.4 years), a local recurrence has yet to be observed. Three patients developed metastatic disease, 2 with HSVs. Conclusions: Detection of targetable HSVs by FMISO-PET/CT within patients undergoing RT with or without surgery for treatment of chordoma of the mobile and sacrococcygeal spine is feasible. The study's inability to attribute interval HSV changes to treatment, rapidly changing hypoxic physiology, or imaging inconsistencies is a limitation. Further study of double-baseline FMISO-PET/CT and hypoxia-directed RT dose escalation, particularly in patients at high risk for local recurrence, is warranted.

  5. Prognostic Significance of Tumor Response as Assessed by Sequential {sup 18}F-Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography During Concurrent Chemoradiation Therapy for Cervical Cancer

    SciTech Connect

    Oh, Dongryul; Lee, Jeong Eun; Huh, Seung Jae; Park, Won; Nam, Heerim; Choi, Joon Young; Kim, Byung-Tae

    2013-11-01

    Purpose: To investigate the prognostic role of metabolic response by the use of serial sets of positron emission tomography/computed tomography (PET/CT) in patients with cervical cancer who were treated with concurrent chemoradiation therapy (CCRT). Methods and Materials: A total of 60 patients who were treated with CCRT between February 2009 and December 2010 were analyzed. Three sequential PET/CT images were acquired for each patient: pre-CCRT, during-CCRT at 4 weeks of CCRT, and 1 month post-CCRT PET/CT. Metabolic responses were assessed qualitatively. The percentage changes in the maximum values of standardized uptake value (ΔSUV{sub max}%) from the PET/CT images acquired pre-CCRT and during-CCRT were calculated. Receiver operating characteristic (ROC) curve analysis was performed to evaluate whether ΔSUV{sub max}% could predict complete response (CR) on the post-CCRT PET/CT and to identify the best cutoff value. Prognostic factors of progression-free survival (PFS) were analyzed. Results: During-CCRT PET/CT showed that 8 patients (13%) had CR, and the other 52 patients (87%) had partial response (PR). On the post-CCRT PET/CT, 43 patients (73%) had CR, 12 patients (20%) had PR, and 4 patients (7%) had progressive disease. The average SUV{sub max} in primary tumors was 16.3 (range, 6.4-53.0) on the pre-CCRT PET/CT images and 5.3 (range, 0-19.4) on the during-CCRT PET/CT images. According to ROC curve analysis, ΔSUV{sub max}% could predict CR response on post-CCRT PET/CT (P<.001, cutoff value of 59.7%). In all patients, the PFS rate was 71.9% at 2 years. Multivariate analysis showed that ΔSUV{sub max}% ≥60% (P=.045) and CR response on the post-CCRT PET/CT (P=.012) were statistically significant predictors of PFS. Conclusion: Metabolic responses on the during-CCRT images at 4 weeks of treatment and 1-month post-CCRT PET/CT images may predict treatment outcomes in patients with cervical cancer. ΔSUV{sub max}% ≥60% at 4 weeks of CCRT may predict CR response

  6. A comparison study of 11C-methionine and 18F-fluorodeoxyglucose positron emission tomography-computed tomography scans in evaluation of patients with recurrent brain tumors

    PubMed Central

    Sharma, Rajnish; D’Souza, Maria; Jaimini, Abhinav; Hazari, Puja Panwar; Saw, Sanjeev; Pandey, Santosh; Singh, Dinesh; Solanki, Yachna; Kumar, Nitin; Mishra, Anil K.; Mondal, Anupam

    2016-01-01

    Introduction: 11C-methonine ([11C]-MET) positron emission tomography-computed tomography (PET-CT) is a well-established technique for evaluation of tumor for diagnosis and treatment planning in neurooncology. [11C]-MET reflects amino acid transport and has been shown to be more sensitive than magnetic resonance imaging (MRI) in stereotactic biopsy planning. This study compared fluorodeoxyglucose (FDG) PET-CT and MET PET-CT in the detection of various brain tumors. Materials and Methods: Sixty-four subjects of brain tumor treated by surgery, chemotherapy, and/or radiotherapy were subjected to [18F]-FDG, [11C]-MET, and MRI scan. The lesion was analyzed semiquantitatively using tumor to normal contralateral ratio. The diagnosis was confirmed by surgery, stereotactic biopsy, clinical follow-up, MRI, or CT scans. Results: Tumor recurrence was found in 5 out of 22 patients on [F-18] FDG scan while [11C]-MET was able to detect recurrence in 18 out of 22 patients in low-grade gliomas. Two of these patients were false positive for the presence of recurrence of tumor and later found to be harboring necrosis. Among oligodendroglioma, medulloblastoma and high-grade glioma out of 42 patients 39 were found to be concordant MET and FDG scans. On semiquantitative analysis, mean T/NT ratio was found to be 2.96 ± 0.94 for lesions positive for recurrence of tumors and 1.18 ± 0.74 for lesions negative for recurrence of tumor on [11C]-MET scan. While the ratio for FDG scan on semiquantitative analysis was found to be 2.05 ± 1.04 for lesions positive for recurrence of tumors and 0.52 ± 0.15 for lesions negative for recurrence of tumors. Conclusion: The study highlight that [11C]-MET is superior to [18F]-FDG PET scans to detect recurrence in low-grade glioma. A cut-off value of target to nontarget value of 1.47 is a useful parameter to distinguish benign from malignant lesion on an [11C]-MET Scan. Both [18F]-FDG and [11C]-MET scans were found to be useful in high-grade astrocytoma

  7. 99m-Tc-ubiquicidin scintigraphy in diagnosis of knee prosthesis infection and comparison with F-18 fluorodeoxy-glucose positron emission tomography/computed tomography.

    PubMed

    Kamaleshwaran, Koramadai Karuppusamy; Rajkumar, N; Mohanan, Vyshak; Kalarikal, Radhakrishnan; Shinto, Ajit Sugunan

    2015-01-01

    Total knee arthroplasty has witnessed a significant increase in recent years. Despite the advantages of this surgical procedure, it has some complications, the most serious of which is prosthetic infection. The discrimination of bacterial infections from sterile inflammatory processes is of great importance in the management of periprosthetic infection (PPI). Ubiquicidin (UBI) is a synthetic antimicrobial peptide fragment reported to be highly infection-specific. Tc99m-UBI has recently been reported to be a promising radiotracer for infection imaging. We report a case of left knee PPI diagnosed using 99mTc-UBI scintigraphy and compared with F-18 fluorodeoxy-glucose positron emission tomography.

  8. 99m-Tc-ubiquicidin scintigraphy in diagnosis of knee prosthesis infection and comparison with F-18 fluorodeoxy-glucose positron emission tomography/computed tomography

    PubMed Central

    Kamaleshwaran, Koramadai Karuppusamy; Rajkumar, N; Mohanan, Vyshak; Kalarikal, Radhakrishnan; Shinto, Ajit Sugunan

    2015-01-01

    Total knee arthroplasty has witnessed a significant increase in recent years. Despite the advantages of this surgical procedure, it has some complications, the most serious of which is prosthetic infection. The discrimination of bacterial infections from sterile inflammatory processes is of great importance in the management of periprosthetic infection (PPI). Ubiquicidin (UBI) is a synthetic antimicrobial peptide fragment reported to be highly infection-specific. Tc99m-UBI has recently been reported to be a promising radiotracer for infection imaging. We report a case of left knee PPI diagnosed using 99mTc-UBI scintigraphy and compared with F-18 fluorodeoxy-glucose positron emission tomography. PMID:26170572

  9. Positron Emission Tomography: A Basic Analysis

    NASA Astrophysics Data System (ADS)

    Kerbacher, M. E.; Deaton, J. W.; Phinney, L. C.; Mitchell, L. J.; Duggan, J. L.

    2007-10-01

    Positron Emission Tomography is useful in detecting biological abnormalities. The technique involves attaching radiotracers to a material used inside the body, in many cases glucose. Glucose is absorbed most readily in areas of unusual cell growth or uptake of nutrients so through natural processes the treated glucose highlights regions of tumors and other degenerative disorders such as Alzheimer's disease. The higher the concentration of isotopes, the more dynamic the area. Isotopes commonly used as tracers are 11C, 18F, 13N, and 15O due to their easy production and short half-lives. Once the tracers have saturated an area of tissue they are detected using coincidence detectors collinear with individual isotopes. As the isotope decays it emits a positron which, upon annihilating an electron, produces two oppositely directioned gamma rays. The PET machine consists of several pairs of detectors, each 180 degrees from their partner detector. When the oppositely positioned detectors are collinear with the area of the isotope, a computer registers the location of the isotope and can compile an image of the activity of the highlighted area based on the position and strength of the isotopes.

  10. Positron emission tomography - a new approach to brain chemistry

    SciTech Connect

    Jacobson, H.G.

    1988-11-11

    Positron emission tomography permits examination of the chemistry of the brain in living beings. Until recently, positron emission tomography had been considered a research tool, but it is rapidly moving into clinical practice. This report describes the uses and applications of positron emission tomography in examinations of patients with strokes, epilepsy, malignancies, dementias, and schizophrenia and in basic studies of synaptic neurotransmission.

  11. Advanced Instrumentation for Positron Emission Tomography [PET

    DOE R&D Accomplishments Database

    Derenzo, S. E.; Budinger, T. F.

    1985-04-01

    This paper summarizes the physical processes and medical science goals that underlay modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost.

  12. Impact of pretreatment whole-tumor perfusion computed tomography and 18F-fluorodeoxyglucose positron emission tomography/computed tomography measurements on local control of non–small cell lung cancer treated with stereotactic body radiotherapy

    PubMed Central

    Aoki, Masahiko; Akimoto, Hiroyoshi; Sato, Mariko; Hirose, Katsumi; Kawaguchi, Hideo; Hatayama, Yoshiomi; Seino, Hiroko; Kakehata, Shinya; Tsushima, Fumiyasu; Fujita, Hiromasa; Fujita, Tamaki; Fujioka, Ichitaro; Tanaka, Mitsuki; Miura, Hiroyuki; Ono, Shuichi; Takai, Yoshihiro

    2016-01-01

    This study aimed to investigate the correlation between the average iodine density (AID) detected by dual-energy computed tomography (DE-CT) and the maximum standardized uptake value (SUVmax) yielded by [18F] fluorodeoxyglucose positron emission tomography (18F-FDG PET) for non–small cell lung cancer (NSCLC) treated with stereotactic body radiotherapy (SBRT). Seventy-four patients with medically inoperable NSCLC who underwent both DE-CT and 18F-FDG PET/CT before SBRT (50‒60 Gy in 5‒6 fractions) were followed up after a median interval of 24.5 months. Kaplan–Meier analysis was used to determine associations between local control (LC) and variables, including AID, SUVmax, tumor size, histology, and prescribed dose. The median AID and SUVmax were 18.64 (range, 1.18–45.31) (100 µg/cm3) and 3.2 (range, 0.7–17.6), respectively. No correlation was observed between AID and SUVmax. Two-year LC rates were 96.2% vs 75.0% (P = 0.039) and 72.0% vs 96.2% (P = 0.002) for patients classified according to high vs low AID or SUVmax, respectively. Two-year LC rates for patients with adenocarcinoma vs squamous cell carcinoma vs unknown cancer were 96.4% vs 67.1% vs 92.9% (P = 0.008), respectively. Multivariate analysis identified SUVmax as a significant predictor of LC. The 2-year LC rate was only 48.5% in the subgroup of lower AID and higher SUVmax vs >90% (range, 94.4–100%) in other subgroups (P = 0.000). Despite the short follow-up period, a reduction in AID and subsequent increase in SUVmax correlated significantly with local failure in SBRT-treated NSCLC patients. Further studies involving larger populations and longer follow-up periods are needed to confirm these results. PMID:27296251

  13. Imaging atherosclerosis with hybrid [18F]fluorodeoxyglucose positron emission tomography/computed tomography imaging: what Leonardo da Vinci could not see.

    PubMed

    Cocker, Myra S; Mc Ardle, Brian; Spence, J David; Lum, Cheemun; Hammond, Robert R; Ongaro, Deidre C; McDonald, Matthew A; Dekemp, Robert A; Tardif, Jean-Claude; Beanlands, Rob S B

    2012-12-01

    Prodigious efforts and landmark discoveries have led toward significant advances in our understanding of atherosclerosis. Despite significant efforts, atherosclerosis continues globally to be a leading cause of mortality and reduced quality of life. With surges in the prevalence of obesity and diabetes, atherosclerosis is expected to have an even more pronounced impact upon the global burden of disease. It is imperative to develop strategies for the early detection of disease. Positron emission tomography (PET) imaging utilizing [(18)F]fluorodeoxyglucose (FDG) may provide a non-invasive means of characterizing inflammatory activity within atherosclerotic plaque, thus serving as a surrogate biomarker for detecting vulnerable plaque. The aim of this review is to explore the rationale for performing FDG imaging, provide an overview into the mechanism of action, and summarize findings from the early application of FDG PET imaging in the clinical setting to evaluate vascular disease. Alternative imaging biomarkers and approaches are briefly discussed.

  14. Positron emission tomography: An overview

    PubMed Central

    Shukla, A. K.; Kumar, Utham

    2006-01-01

    The rate of glucose utilization in tumor cells is significantly enhanced as compared to normal cells and this biochemical characteristic is utilized in PET imaging using FDG as a major workhorse. The PET systems as well as cyclotrons producing positron emitting radiopharmaceuticals have undergone continuous technological refinements. While PET (CT) systems enable fusion images as well as precise attenuation correction, the self-shielded cyclotrons developed provide dedicated systems for in-house production of a large number of PET radiopharmaceuticals. The application of PET images in oncology includes those of pulmonary, colorectal, breast, lymphoma, head & neck, bone, ovarian and GI cancers. The PET has been recognized as promising diagnostic tool to predict biological and physiological changes at the molecular level and hence offer a potential area for future applications including Stem Cell research. PMID:21206635

  15. Primary central nervous system lymphoma in an human immunodeficiency virus-infected patient mimicking bilateral eye sign in brain seen in fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography

    PubMed Central

    Kamaleshwaran, Koramadai Karuppusany; Thirugnanam, Rajasekar; Shibu, Deepu; Kalarikal, Radhakrishnan Edathurthy; Shinto, Ajit Sugunan

    2014-01-01

    Fluorodeoxyglucose-positron emission tomography/computed tomography (FDG PET/CT) has proven useful in the diagnosis, staging, and detection of metastasis and posttreatment monitoring of several malignancies in human immunodeficiency virus (HIV)-infected patients. It also has the ability to make the important distinction between malignancy and infection in the evaluation of central nervous system (CNS) lesions, leading to the initiation of the appropriate treatment and precluding the need for invasive biopsy. We report an interesting case of HIV positive 35-year-old woman presented with headache, disorientation, and decreased level of consciousness. She underwent whole body PET/CT which showed multiple lesions in the cerebrum which mimics bilateral eye in brain. A diagnosis of a primary CNS lymphoma was made and patient was started on chemotherapy. PMID:24761060

  16. Paget's disease of pelvis mimicking metastasis in a patient with lung cancer evaluated using staging and follow-up imaging with fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography.

    PubMed

    Kamaleshwaran, Koramadai Karuppusamy; Natarajan, Sudhakar; Shibu, Deepu; Malaikkal, Anjali; Shinto, Ajit Sugunan

    2015-01-01

    Paget's disease of bone is a benign disease, of uncertain etiology, characterized by an accelerated turnover, that is, bone resorption and formation. Paget's disease may be present in up to 5% of the population, and the majority of cases are asymptomatic. We report the imaging findings of Paget's disease of pelvis discovered incidentally in patient with lung cancer evaluated by fluorine-18-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) for staging. FDG PET-CT scan showed intense uptake in the right lung lower lobe primary and mediastinal lymph nodes. Furthermore, increased uptake noted in left hemipelvis suggestive of Paget's disease. He underwent follow-up FDG PET-CT after chemotherapy showed decrease in lung mass and mediastinal nodes. However, the uptake in left hemipelvis remains same confirming Paget's disease.

  17. Primary central nervous system lymphoma in an human immunodeficiency virus-infected patient mimicking bilateral eye sign in brain seen in fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography.

    PubMed

    Kamaleshwaran, Koramadai Karuppusany; Thirugnanam, Rajasekar; Shibu, Deepu; Kalarikal, Radhakrishnan Edathurthy; Shinto, Ajit Sugunan

    2014-04-01

    Fluorodeoxyglucose-positron emission tomography/computed tomography (FDG PET/CT) has proven useful in the diagnosis, staging, and detection of metastasis and posttreatment monitoring of several malignancies in human immunodeficiency virus (HIV)-infected patients. It also has the ability to make the important distinction between malignancy and infection in the evaluation of central nervous system (CNS) lesions, leading to the initiation of the appropriate treatment and precluding the need for invasive biopsy. We report an interesting case of HIV positive 35-year-old woman presented with headache, disorientation, and decreased level of consciousness. She underwent whole body PET/CT which showed multiple lesions in the cerebrum which mimics bilateral eye in brain. A diagnosis of a primary CNS lymphoma was made and patient was started on chemotherapy.

  18. Paget's disease of pelvis mimicking metastasis in a patient with lung cancer evaluated using staging and follow-up imaging with fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography

    PubMed Central

    Kamaleshwaran, Koramadai Karuppusamy; Natarajan, Sudhakar; Shibu, Deepu; Malaikkal, Anjali; Shinto, Ajit Sugunan

    2015-01-01

    Paget's disease of bone is a benign disease, of uncertain etiology, characterized by an accelerated turnover, that is, bone resorption and formation. Paget's disease may be present in up to 5% of the population, and the majority of cases are asymptomatic. We report the imaging findings of Paget's disease of pelvis discovered incidentally in patient with lung cancer evaluated by fluorine-18-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) for staging. FDG PET-CT scan showed intense uptake in the right lung lower lobe primary and mediastinal lymph nodes. Furthermore, increased uptake noted in left hemipelvis suggestive of Paget's disease. He underwent follow-up FDG PET-CT after chemotherapy showed decrease in lung mass and mediastinal nodes. However, the uptake in left hemipelvis remains same confirming Paget's disease. PMID:25829736

  19. [TUBERCULOUS CONSTRICTIVE PERICARDITIS DETECTED ON POSITRON EMISSION TOMOGRAPHY].

    PubMed

    Takakura, Hiroki; Sunada, Kouichi; Shimizu, Kunihiko

    2016-02-01

    A 72-year-old man presented with fever, dyspnea, and weight loss. He was referred to our hospital for further examination of the cause of the pleural effusions. Chest computed tomography showed pleural effusions, a pericardial effusion, and enlarged lymph nodes in the carina tracheae. We administered treatment for heart failure and conducted analyses for a malignant tumor. The pericardial effusion improved, but the pericardium was thickened. Positron emission tomography-computed tomography (PET-CT) showed fluorine-18 deoxyglucose accumulation at the superior fovea of the right clavicle, carina tracheae, superior mediastinum lymph nodes, and a thickened pericardium. Because these findings did not suggest malignancy, we assumed this was a tuberculous lesion. Echocardiography confirmed this finding as constrictive pericarditis; therefore, pericardiolysis was performed. Pathological examination showed features of caseous necrosis and granulomatous changes. Hence, the patient was diagnosed with tuberculous constrictive pericarditis. PET-CT serves as a useful tool for the diagnosis of tuberculous pericarditis. PMID:27263228

  20. Positron Emission Tomography: Its 65 years

    NASA Astrophysics Data System (ADS)

    Del Guerra, A.; Belcari, N.; Bisogni, M.

    2016-04-01

    Positron Emission Tomography (PET) is a well-established imaging technique for in vivo molecular imaging. In this review after a brief history of PET there are presented its physical principles and the technology that has been developed for bringing PET from a bench experiment to a clinical indispensable instrument. The limitations and performance of the PET tomographs are discussed, both as for the hardware and software aspects. The status of art of clinical, pre-clinical and hybrid scanners (, PET/CT and PET/MR) is reported. Finally the actual trend and the recent and future technological developments are fully illustrated.

  1. Positron emission tomography tracers for imaging angiogenesis

    PubMed Central

    Beer, Ambros J.; Wang, Hui; Chen, Xiaoyuan

    2013-01-01

    Position emission tomography imaging of angiogenesis may provide non-invasive insights into the corresponding molecular processes and may be applied for individualized treatment planning of antiangiogenic therapies. At the moment, most strategies are focusing on the development of radiolabelled proteins and antibody formats targeting VEGF and its receptor or the ED-B domain of a fibronectin isoform as well as radiolabelled matrix metalloproteinase inhibitors or αvβ3 integrin antagonists. Great efforts are being made to develop suitable tracers for different target structures. All of the major strategies focusing on the development of radiolabelled compounds for use with positron emission tomography are summarized in this review. However, because the most intensive work is concentrated on the development of radiolabelled RGD peptides for imaging αvβ3 expression, which has successfully made its way from bench to bedside, these developments are especially emphasized. PMID:20559632

  2. The measurement of sequential changes in cerebral blood flow and oxygen metabolism by positron computed tomography with continuous inhalation of oxygen-15 labeled gases

    SciTech Connect

    Tanada, S.; Yonekura, Y.; Senda, M.; Nishimura, K.; Tamaki, N.; Saji, H.; Fujita, T.; Kobayashi, A.; Taki, W.; Ishikawa, M.

    1984-01-01

    The use of continuous inhalation of oxygen-15 labeled gases is a widely accepted method to measure regional cerebral blood flow (CBF) and oxygen metabolism (CMRO/sub 2/) with positron computed tomography (PCT). The purpose of this study is to evaluate the feasibility to measure sequential changes in CBF and CMRO/sub 2/ by PCT. The functional images of CBF, oxygen extraction fraction (OEF), and CMRO/sub 2/ were obtained using continuous inhalation of oxygen-15 labeled carbon dioxide and oxygen. The effects of spinal drainage in CBF and CMRO/sub 2/ were studied in patients with hydrocephalus following subarachnoid hemorrhage due to the rupture of intracranial aneurysm. Following the measurement in control state, 20 ml of cerebrospinal fluid (CSF) were withdrawn gradually through lumbar puncture, and sequential PCT scans were performed. CBF and CMRO/sub 2/ were markedly depressed in the case with hydrocephalus. The drainage of CSF significantly improved OEF and CMRO/sub 2/, whereas CBF remained depressed. In patients with chronic cerebrovascular disease, the changes in CBF were studied with inhalation of 5% carbon dioxide (CO/sub 2/). CO/sub 2/ loading demonstrated the increase in CBF, while poor regional increase was observed in ''moyamoya'' disease, which permitted the assessment of vascular response to the elevation of plasma CO/sub 2/. The authors preliminary work indicated the potential usefulness of sequential PCT to study the changes in CBF and CMRO/sub 2/ with various interventions.

  3. Diagnostic importance of contrast enhanced 18F-fluorodeoxyglucose positron emission computed tomography in patients with tumor induced osteomalacia: Our experience

    PubMed Central

    Jain, Avani S.; Shelley, Simon; Muthukrishnan, Indirani; Kalal, Shilpa; Amalachandran, Jaykanth; Chandran, Sureshkumar

    2016-01-01

    Aims and Objectives: To assess the diagnostic utility of contrast-enhanced 18F-fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET-ceCT) in localization of tumors in patients with clinical diagnosis of tumor-induced osteomalacia (TIO), in correlation with histopathological results. Materials and Methods: Eight patients (five male and three female) aged 24–60 (mean 42) years with a clinical diagnosis of TIO were included in this prospective study. They underwent whole body (head to toe) FDG PET-ceCT following a standard protocol on Philips GEMINI TF PET-CT scanner. The FDG PET-ceCT results were correlated with postoperative histology findings and clinical follow-up. Results: All the patients had an abnormal PET-ceCT study. The sensitivity of PET-ceCT was 87.5%, and positive predictive value was 100%. The tumor was located in the craniofacial region in 6/8 patients and in bone in 2/8 patients. Hemangiopericytoma was the most common reported histology. All patients underwent surgery, following which they demonstrated clinical improvement. However, one patient with atypical findings on histology did not show any clinical improvement, hence, underwent 68Gallium-DOTANOC PET-ceCT scan for relocalization of the site of the tumor. Conclusion: The tumors causing TIO are small in size and usually located in obscure sites in the body. Hence, head to toe protocol should be followed for FDG PET-ceCT scans with the inclusion of upper limbs. Once the tumor is localized, regional magnetic resonance imaging can be performed for better characterization of soft tissue lesion. Imaging with FDG PET-ceCT plays an important role in detecting the site of the tumor and thereby facilitating timely management. PMID:26917888

  4. Computed Tomography (CT) - Spine

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Spine Computed tomography (CT) of the spine is a diagnostic imaging ... Spine? What is CT Scanning of the Spine? Computed tomography, more commonly known as a CT or CAT ...

  5. Compact conscious animal positron emission tomography scanner

    DOEpatents

    Schyler, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois; Volkow, Nora

    2006-10-24

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal for an event, generating an address signal representing a detecting channel, generating a detector channel signal including the time and address signals, and generating a composite signal including the channel signal and similarly generated signals. The composite signal includes events from detectors in a block and is serially output. An apparatus that serially transfers annihilation information from a block includes time signal generators for detectors in a block and an address and channel signal generator. The PET scanner includes a ring tomograph that mounts onto a portion of an animal, which includes opposing block pairs. Each of the blocks in a block pair includes a scintillator layer, detection array, front-end array, and a serial encoder. The serial encoder includes time signal generators and an address signal and channel signal generator.

  6. Level Set Method for Positron Emission Tomography

    PubMed Central

    Chan, Tony F.; Li, Hongwei; Lysaker, Marius; Tai, Xue-Cheng

    2007-01-01

    In positron emission tomography (PET), a radioactive compound is injected into the body to promote a tissue-dependent emission rate. Expectation maximization (EM) reconstruction algorithms are iterative techniques which estimate the concentration coefficients that provide the best fitted solution, for example, a maximum likelihood estimate. In this paper, we combine the EM algorithm with a level set approach. The level set method is used to capture the coarse scale information and the discontinuities of the concentration coefficients. An intrinsic advantage of the level set formulation is that anatomical information can be efficiently incorporated and used in an easy and natural way. We utilize a multiple level set formulation to represent the geometry of the objects in the scene. The proposed algorithm can be applied to any PET configuration, without major modifications. PMID:18354724

  7. Positron Emission Tomography with improved spatial resolution

    SciTech Connect

    Drukier, A.K.

    1990-04-01

    Applied Research Corporation (ARC) proposed the development of a new class of solid state detectors called Superconducting Granular Detectors (SGD). These new detectors permit considerable improvements in medical imaging, e.g. Positron Emission Tomography (PET). The biggest impact of this technique will be in imaging of the brain. It should permit better clinical diagnosis of such important diseases as Altzheimer's or schizophrenia. More specifically, we will develop an improved PET-imager; a spatial resolution 2 mm may be achievable with SGD. A time-of-flight capability(t {approx} 100 psec) will permit better contrast and facilitate 3D imaging. In the following, we describe the results of the first 9 months of the development.

  8. Imaging Tumor Metabolism Using Positron Emission Tomography

    PubMed Central

    Lewis, David Y.; Soloviev, Dmitry; Brindle, Kevin M.

    2015-01-01

    Positron emission tomography (PET) is an extraordinarily sensitive clinical imaging modality for interrogating tumor metabolism. Radiolabelled PET substrates can be traced at sub-physiological concentrations, allowing non-invasive imaging of metabolism and intra-tumoral heterogeneity in systems ranging from advanced cancer models to cancer patients in the clinic. There are a wide range of novel and more established PET radiotracers, which can be used to investigate various aspects of tumor metabolism, including carbohydrate, amino acid and fatty acid metabolism. In this review we will briefly discuss the more established metabolic tracers and describe recent work on the development of new tracers. Some of the unanswered questions in tumor metabolism will be considered alongside new technical developments, such as combined PET/MRI machines, that could provide new imaging solutions to some of the outstanding diagnostic challenges facing modern cancer medicine. PMID:25815854

  9. Improved photomultiplier tube for positron emission tomography.

    PubMed

    Woldeselassie, T

    1989-05-01

    The paper describes an investigation in which it is shown that small positive voltage pulses applied to an external conductor placed against the photocathode of a photomultiplier tube can be used to switch the photocathode completely off for the duration of the pulses. This suggests that a photomultiplier tube with a multisegment photocathode can be constructed, the individual cathode segments of which can be switched off independently by means of such pulses. A theoretical explanation for the effect is provided with the aid of a simple circuit model for the photocathode. Analysis of the model also shows that it is possible to identify the particular cathode segment in which a photon is detected when a pulse is recorded at the phototube's anode. A phototube with these characteristics can have important implications for positron emission tomography, as it can provide improved spatial resolution, simultaneous multislice capability and the ability to eliminate distortion due to dead-time effects at high count rates.

  10. Positron emission tomography features of hidradenitis suppurativa

    PubMed Central

    Simpson, R C; Dyer, M J S; Entwisle, J; Harman, K E

    2011-01-01

    A 35-year-old male with classical Hodgkin's lymphoma (nodular sclerosing, grade 1 histology, clinical stage 2A) underwent a positron emission tomography (PET) scan to assess response to treatment. Half body CT PET imaging was obtained using a Siemens Biograph scanner from eyes to thighs. 405 MBq of 18-fluorodeoxyglucose (FDG) was injected with acquisition starting at 60 min. There was unexpected intense focal uptake in the superficial subcutaneous tissues of the abdomen, pelvis and lateral chest wall with overlying skin thickening seen on the CT component. This was initially of concern, but the patient was known to have a history of hidradenitis suppurativa (HS). On further examination, the radiological abnormalities corresponded to the clinical sites of involvement. To the best of our knowledge, this is the first documentation of the appearance of HS on PET scan. PMID:21750134

  11. Positron emission tomography and radiation oncology

    NASA Astrophysics Data System (ADS)

    Fullerton, PhD, Gary D.; Fox, MD, Peter; Phillips, MD, William T.

    2001-10-01

    Medical physics research is providing new avenues for addressing the fundamental problem of radiation therapy-how to provide a tumor-killing dose while reducing the dose to a non-lethal level for critical organs in adjacent portions of the patient anatomy. This talk reviews the revolutionary impact of Positron Emission Tomography on the practice of radiation oncology. The concepts of PET imaging and the development of "tumor" imaging methods using 18F-DG flouro-deoxyglucose are presented to provide the foundation for contemporary research and application to therapy. PET imaging influences radiation therapy decisions in multiple ways. Imaging of occult but viable tumor metastases eliminates misguided therapy attempts. The ability to distinguish viable tumor from scar tissue and necroses allows reduction of treatment portals and more selective treatments. Much research remains before the clinical benefits of these advances are fully realized.

  12. Assessment of patient selection criteria for quantitative imaging with respiratory-gated positron emission tomography.

    PubMed

    Bowen, Stephen R; Pierce, Larry A; Alessio, Adam M; Liu, Chi; Wollenweber, Scott D; Stearns, Charles W; Kinahan, Paul E

    2014-07-01

    The objective of this investigation was to propose techniques for determining which patients are likely to benefit from quantitative respiratory-gated imaging by correlating respiratory patterns to changes in positron emission tomography (PET) metrics. Twenty-six lung and liver cancer patients underwent PET/computed tomography exams with recorded chest/abdominal displacements. Static and adaptive amplitude-gated [[Formula: see text

  13. Whole-body imaging of adoptively transferred T cells using magnetic resonance imaging, single photon emission computed tomography and positron emission tomography techniques, with a focus on regulatory T cells

    PubMed Central

    Leech, J M; Sharif-Paghaleh, E; Maher, J; Livieratos, L; Lechler, R I; Mullen, G E; Lombardi, G; Smyth, L A

    2013-01-01

    Cell-based therapies using natural or genetically modified regulatory T cells (Tregs) have shown significant promise as immune-based therapies. One of the main difficulties facing the further advancement of these therapies is that the fate and localization of adoptively transferred Tregs is largely unknown. The ability to dissect the migratory pathway of these cells in a non-invasive manner is of vital importance for the further development of in-vivo cell-based immunotherapies, as this technology allows the fate of the therapeutically administered cell to be imaged in real time. In this review we will provide an overview of the current clinical imaging techniques used to track T cells and Tregs in vivo, including magnetic resonance imaging (MRI) and positron emission tomography (PET)/single photon emission computed tomography (SPECT). In addition, we will discuss how the finding of these studies can be used, in the context of transplantation, to define the most appropriate Treg subset required for cellular therapy. PMID:23574314

  14. The utility and limitations of (18)F-fluorodeoxyglucose positron emission tomography with computed tomography in patients with primary mediastinal B-cell lymphoma: single institution experience and literature review.

    PubMed

    Cheah, Chan Y; Hofman, Michael S; Seymour, John F; Ritchie, David S; Dickinson, Michael; Wirth, Andrew; Prince, H Miles; Wolf, Max; Januszcewicz, Elchanan H; Carney, Dennis A; Herbert, Kirsten E; Harrison, Simon J; Burbury, Kate L; Tam, Constantine S

    2015-01-01

    There are limited data regarding the role of (18)F-fluorodeoxyglucose positron emission tomography with computed tomography (FDG PET-CT) scanning in primary mediastinal B-cell lymphoma (PMBL). We analyzed 28 patients with PMBL treated with chemotherapy, of whom 25 (89%) also received rituximab and 17 (61%) radiotherapy. PET-CT scans were interpreted using visual analysis and a 5-point scale. After a median follow-up of 2.6 years, four patients relapsed and two died. The 2-year progression-free survival and overall survival were 86% and 94%. PET-CT has excellent negative predictive value (interim, 86-87%; end of treatment, 95%) but limited positive predictive value due to the high frequency of positive scans. Several patients with persistent metabolically active masses underwent biopsies, which showed necrosis but no lymphoma. Thus a negative PET-CT is an excellent predictor of subsequent outcome. However, residual metabolically active masses after treatment should be biopsied to confirm viable lymphoma prior to salvage therapy. PMID:24724780

  15. Radiation Treatment Planning Using Positron Emission and Computed Tomography for Lung and Pharyngeal Cancers: A Multiple-Threshold Method for [{sup 18}F]Fluoro-2-Deoxyglucose Activity

    SciTech Connect

    Okubo, Mitsuru; Nishimura, Yasumasa; Nakamatsu, Kiyoshi; Okumura, Masahiko R.T.; Shibata, Toru; Kanamori, Shuichi; Hanaoka, Kouhei R.T.; Hosono, Makoto

    2010-06-01

    Purpose: Clinical applicability of a multiple-threshold method for [{sup 18}F]fluoro-2-deoxyglucose (FDG) activity in radiation treatment planning was evaluated. Methods and Materials: A total of 32 patients who underwent positron emission and computed tomography (PET/CT) simulation were included; 18 patients had lung cancer, and 14 patients had pharyngeal cancer. For tumors of <=2 cm, 2 to 5 cm, and >5 cm, thresholds were defined as 2.5 standardized uptake value (SUV), 35%, and 20% of the maximum FDG activity, respectively. The cervical and mediastinal lymph nodes with the shortest axial diameter of >=10 mm were considered to be metastatic on CT (LNCT). The retropharyngeal lymph nodes with the shortest axial diameter of >=5 mm on CT and MRI were also defined as metastatic. Lymph nodes showing maximum FDG activity greater than the adopted thresholds for radiation therapy planning were designated LNPET-RTP, and lymph nodes with a maximum FDG activity of >=2.5 SUV were regarded as malignant and were designated LNPET-2.5 SUV. Results: The sizes of gross tumor volumes on PET (GTVPET) with the adopted thresholds in the axial plane were visually well fitted to those of GTV on CT (GTVCT). However, the volumes of GTVPET were larger than those of GTVCT, with significant differences (p < 0.0001) for lung cancer, due to respiratory motion. For lung cancer, the numbers of LNCT, LNPET-RTP, and LNPET-2.5 SUV were 29, 28, and 34, respectively. For pharyngeal cancer, the numbers of LNCT, LNPET-RTP, and LNPET-2.5 SUV were 14, 9, and 15, respectively. Conclusions: Our multiple thresholds were applicable for delineating the primary target on PET/CT simulation. However, these thresholds were inaccurate for depicting malignant lymph nodes.

  16. Newer positron emission tomography radiopharmaceuticals for radiotherapy planning: an overview

    PubMed Central

    Mukherjee, Anirban

    2016-01-01

    Positron emission tomography-computed tomography (PET-CT) has changed cancer imaging in the last decade, for better. It can be employed for radiation treatment planning of different cancers with improved accuracy and outcomes as compared to conventional imaging methods. 18F-fluorodeoxyglucose remains the most widely used though relatively non-specific cancer imaging PET tracer. A wide array of newer PET radiopharmaceuticals has been developed for targeted imaging of different cancers. PET-CT with such new PET radiopharmaceuticals has also been used for radiotherapy planning with encouraging results. In the present review we have briefly outlined the role of PET-CT with newer radiopharmaceuticals for radiotherapy planning and briefly reviewed the available literature in this regard. PMID:26904575

  17. Positron emission tomography for the assessment of myocardial viability

    SciTech Connect

    Schelbert, H.R. )

    1991-09-01

    The detection of viable myocardium or ischemically injured myocardium with a reversible impairment of contractile function remains clinically important but challenging. Detection of reversible dysfunction and distinction from irreversible tissue injury by positron emission tomography is based on identification of preserved or even enhanced glucose metabolism with F-18 2-fluoro 2-deoxyglucose. Regional patterns of myocardial glucose utilization and blood flow, defined as perfusion-metabolism mismatches or matches, on positron emission tomography in patients with chronic or even acute ischemic heart disease are highly accurate in predicting the functional outcome after interventional revascularization. Compared with thallium-201 redistribution scintigraphy, positron emission tomography appears to be diagnostically more accurate, especially in patients with severely impaired left ventricular function. While larger clinical trials are needed for further confirmation, positron emission tomography has already proved clinically useful for stratifying patients with poor left ventricular function to the most appropriate therapeutic approach.

  18. The Role of Chemistry in Positron Emission Tomography.

    ERIC Educational Resources Information Center

    Feliu, Anthony L.

    1988-01-01

    Investigates use of positron emission tomography (PET) to study in-vivo metabolic processes. Discusses methodology of PET and medical uses. Outlines the production of different radioisotopes used in PET radiotracers. Includes selected bibliography. (ML)

  19. Recent Developments in Positron Emission Tomography (PET) Instrumentation

    DOE R&D Accomplishments Database

    Derenzo, S. E.; Budinger, T. F.

    1986-04-01

    This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors.

  20. Positron Emission Tomography Imaging of Atherosclerosis

    PubMed Central

    Orbay, Hakan; Hong, Hao; Zhang, Yin; Cai, Weibo

    2013-01-01

    Atherosclerosis-related cardiovascular events are the leading causes of death in the industrialized world. Atherosclerosis develops insidiously and the initial manifestation is usually sudden cardiac death, stroke, or myocardial infarction. Molecular imaging is a valuable tool to identify the disease at an early stage before fatal manifestations occur. Among the various molecular imaging techniques, this review mainly focuses on positron emission tomography (PET) imaging of atherosclerosis. The targets and pathways that have been investigated to date for PET imaging of atherosclerosis include: glycolysis, cell membrane metabolism (phosphatidylcholine synthesis), integrin αvβ3, low density lipoprotein (LDL) receptors (LDLr), natriuretic peptide clearance receptors (NPCRs), fatty acid synthesis, vascular cell adhesion molecule-1 (VCAM-1), macrophages, platelets, etc. Many PET tracers have been investigated clinically for imaging of atherosclerosis. Early diagnosis of atherosclerotic lesions by PET imaging can help to prevent the premature death caused by atherosclerosis, and smooth translation of promising PET tracers into the clinic is critical to the benefit of patients. PMID:24312158

  1. Positron emission tomography in generalized seizures

    SciTech Connect

    Theodore, W.H.; Brooks, R.; Margolin, R.; Patronas, N.; Sato, S.; Porter, R.J.; Mansi, L.; Bairamian, D.; DiChiro, G.

    1985-05-01

    The authors used /sup 18/F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to study nine patients with clinical absence or generalized seizures. One patient had only absence seizures, two had only generalized tonic-clonic seizures, and six had both seizure types. Interictal scans in eight failed to reveal focal or lateralized hypometabolism. No apparent abnormalities were noted. Two patients had PET scans after isotope injection during hyperventilation-induced generalized spike-wave discharges. Diffusely increased metabolic rates were found in one compared with an interictal scan, and in another compared with control values. Another patient had FDG injected during absence status: EEG showed generalized spike-wave discharges (during which she was unresponsive) intermixed with slow activity accompanied by confusion. Metabolic rates were decreased, compared with the interictal scan, throughout both cortical and subcortical structures. Interictal PET did not detect specific anatomic regions responsible for absence seizure onset in any patient, but the results of the ictal scans did suggest that pathophysiologic differences exist between absence status and single absence attacks.

  2. Resistive plate chambers in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Crespo, Paulo; Blanco, Alberto; Couceiro, Miguel; Ferreira, Nuno C.; Lopes, Luís; Martins, Paulo; Ferreira Marques, Rui; Fonte, Paulo

    2013-07-01

    Resistive plate chambers (RPC) were originally deployed for high energy physics. Realizing how their properties match the needs of nuclear medicine, a LIP team proposed applying RPCs to both preclinical and clinical positron emission tomography (RPC-PET). We show a large-area RPC-PET simulated scanner covering an axial length of 2.4m —slightly superior to the height of the human body— allowing for whole-body, single-bed RPC-PET acquisitions. Simulations following NEMA (National Electrical Manufacturers Association, USA) protocols yield a system sensitivity at least one order of magnitude larger than present-day, commercial PET systems. Reconstruction of whole-body simulated data is feasible by using a dedicated, direct time-of-flight-based algorithm implemented onto an ordered subsets estimation maximization parallelized strategy. Whole-body RPC-PET patient images following the injection of only 2mCi of 18-fluorodesoxyglucose (FDG) are expected to be ready 7 minutes after the 6 minutes necessary for data acquisition. This compares to the 10-20mCi FDG presently injected for a PET scan, and to the uncomfortable 20-30minutes necessary for its data acquisition. In the preclinical field, two fully instrumented detector heads have been assembled aiming at a four-head-based, small-animal RPC-PET system. Images of a disk-shaped and a needle-like 22Na source show unprecedented sub-millimeter spatial resolution.

  3. Performance of principal component analysis and independent component analysis with respect to signal extraction from noisy positron emission tomography data - a study on computer simulated images.

    PubMed

    Razifar, Pasha; Muhammed, Hamid Hamed; Engbrant, Fredrik; Svensson, Per-Edvin; Olsson, Johan; Bengtsson, Ewert; Långström, Bengt; Bergström, Mats

    2009-01-01

    Multivariate image analysis tools are used for analyzing dynamic or multidimensional Positron Emission Tomography, PET data with the aim of noise reduction, dimension reduction and signal separation. Principal Component Analysis is one of the most commonly used multivariate image analysis tools, applied on dynamic PET data. Independent Component Analysis is another multivariate image analysis tool used to extract and separate signals. Because of the presence of high and variable noise levels and correlation in the different PET images which may confound the multivariate analysis, it is essential to explore and investigate different types of pre-normalization (transformation) methods that need to be applied, prior to application of these tools. In this study, we explored the performance of Principal Component Analysis (PCA) and Independent Component Analysis (ICA) to extract signals and reduce noise, thereby increasing the Signal to Noise Ratio (SNR) in a dynamic sequence of PET images, where the features of the noise are different compared with some other medical imaging techniques. Applications on computer simulated PET images were explored and compared. Application of PCA generated relatively similar results, with some minor differences, on the images with different noise characteristics. However, clear differences were seen with respect to the type of pre-normalization. ICA on images normalized using two types of normalization methods also seemed to perform relatively well but did not reach the improvement in SNR as PCA. Furthermore ICA seems to have a tendency under some conditions to shift over information from IC1 to other independent components and to be more sensitive to the level of noise. PCA is a more stable technique than ICA and creates better results both qualitatively and quantitatively in the simulated PET images. PCA can extract the signals from the noise rather well and is not sensitive to type of noise, magnitude and correlation, when the input

  4. Proposal of new expanded selection criteria using total tumor size and 18F-fluorodeoxyglucose - positron emission tomography/computed tomography for living donor liver transplantation in patients with hepatocellular carcinoma: The National Cancer Center Korea criteria

    PubMed Central

    Lee, Seung Duk; Lee, Bora; Kim, Seong Hoon; Joo, Jungnam; Kim, Seok-Ki; Kim, Young-Kyu; Park, Sang-Jae

    2016-01-01

    AIM: To expand the living donor liver transplantation (LT) pool of eligible patients with hepatocellular carcinoma (HCC) using new morphological and biological criteria. METHODS: Patients with HCC who underwent living donor LT (LDLT) from March 2005 to May 2013 at the National Cancer Center Korea (NCCK) were enrolled. We performed the 18F-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) before LDLT. Overall and disease-free survival analysis was done in patients to evaluate the usefulness of new NCCK criteria using PET/CT and total tumor size (10 cm). RESULTS: We enrolled a total of 280 patients who pathologically confirmed to have HCC and performed the PET/CT before transplantation. Among them, 164 (58.6%) patients fulfilled the NCCK criteria and 132 patients (47.1%) met the Milan criteria. Five-year overall and disease-free survival rates for patients who fulfilled the NCCK criteria showed 85.2% and 84.0%, respectively, and were significantly higher than those beyond the NCCK criteria (60.2% and 44.4%, respectively; P < 0.001). The correlation analysis between preoperative imaging tests and pathologic reports using Cohen’s Kappa demonstrated the better results in the NCCK criteria than those in the Milan criteria (0.850 vs 0.583). The comparison of disease-free analysis among the NCCK, Milan, and University of California, San Francisco (UCSF) criteria using the receiver operating characteristics curves revealed the similar area under the curve value criteria (NCCK vs Milan, P = 0.484; NCCK vs UCSF, P = 0.189 at 5-years). CONCLUSION: The NCCK criteria using hybrid concept of both morphological and biological parameters showed an excellent agreement between preoperative imaging and pathological results, and favorable survival outcomes. These new criteria might select the optimal patients with HCC waiting LDLT and expand the selection pool. PMID:27358787

  5. Prognostic impact of primary tumor SUVmax on preoperative 18F-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography in endometrial cancer and uterine carcinosarcoma

    PubMed Central

    Yahata, Tamaki; Yagi, Shigetaka; Mabuchi, Yasushi; Tanizaki, Yuko; Kobayashi, Aya; Yamamoto, Madoka; Mizoguchi, Mika; Nanjo, Sakiko; Shiro, Michihisa; Ota, Nami; Minami, Sawako; Terada, Masaki; Ino, Kazuhiko

    2016-01-01

    The objective of the present study was to investigate the usefulness of the maximum standardized uptake value (SUVmax) of the primary tumor on preoperative 18F-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography and computed tomography (PET/CT) as a prognostic indicator in patients with endometrial neoplasms. A total of 75 patients with endometrial cancer or uterine carcinosarcoma who underwent surgical treatment were included in the present study. All patients underwent preoperative PET/CT, and the correlation between the SUVmax of the primary tumor and clinical outcomes was analyzed. The SUVmax was significantly higher in patients with stage II/III disease, a histology of grade 3 endometrioid adenocarcinoma and carcinosarcoma, a positive lymph node (LN) status, positive lymph-vascular space involvement (LVSI), and deep (≥1/2) myometrial invasion. Receiver operating characteristic curve analysis revealed that the optimal cut-off values of SUVmax for predicting a positive LN, LVSI and deep myometrial invasion were 7.49, 6.45 and 6.45, respectively. The overall survival (OS) and progression-free survival (PFS) of patients with a high SUVmax were significantly lower compared with those of patients with a low SUVmax using the cut-off value of 7.30. However, no significant difference was observed in the OS or PFS between the high and low SUVmax groups when analyzed in carcinosarcoma patients alone. Finally, multivariate analyses demonstrated that the SUVmax of the primary tumor was an independent prognostic factor for impaired PFS in 55 endometrioid adenocarcinoma patients; however, not in all patients, including those with carcinosarcoma. The present findings demonstrated that the SUVmax of the primary tumor may be a useful biomarker for predicting clinical outcomes of patients with endometrial cancer, although its prognostic impact appears to be limited in patients with uterine carcinosarcoma. PMID:27703679

  6. Is early response by 18F-2-fluoro-2-deoxy-D-glucose positron emission tomography-computed tomography a predictor of long-term outcome in patients with metastatic colorectal cancer?

    PubMed Central

    Fanelli, Marcello Ferretti; Dettino, Aldo Lourenço Abadde; Nicolau, Ulisses Ribaldo; Cavicchioli, Marcelo; Lima, Eduardo Nóbrega Pereira; de Mello, Celso Abdon Lopes

    2016-01-01

    Background Identify in advance responder patients to chemotherapy in metastatic colorectal cancer (CRC) would allow prompt interruption of ineffective therapies in non-responder patients. Hence, predictive markers are sought in numerous trials to detect responder patients, including tumor shrinkage measured by imaging methods. Usually, Response Evaluation Criteria in Solid Tumors (RECIST) is used to evaluate tumor response in metastatic CRC, but these criteria are questionable with use of biological agents associated to chemotherapy. Our aim was correlate early metabolic response by 18F-2-fluoro-2-deoxy-D-glucose positron emission tomography-computed tomography (18FDG-PET-CT) with long-term outcome in metastatic CRC in first-line therapy. Methods We prospectively evaluated 36 patients with metastatic CRC in first-line treatment with 5-fluorouracil, leucovorin (folinic acid), oxaliplatin (FOLFOX) or 5-fluorouracil, leucovorin (folinic acid), irinotecan (FOLFIRI) associated with cetuximab or bevacizumab. 18FDG-PET-CT was performed at baseline and after two cycles of chemotherapy. The early metabolic response [standardized uptake value (SUV)] was measured to identify responder and non-responder patients and correlated with overall survival (OS) and progression-free survival (PFS). Results Median age was 58.5 years (range, 41–74 years). PFS was 15.5 months for responder and 13.3 months for non-responder (P=0.42), OS was 55.7 months for responder and not reached for non-responder. There was no correlation between delta-SUV and clinical and pathological variables analyzed. In the subgroup of patients who did not undergo resection of metastasis (45%), PFS was higher for responders (15.3×6.8 months, P=0.02). Conclusions According to our findings, early response by 18FDG-PET-CT was not a predictor of long-term outcome for patients with metastatic CRC treated in the first-line chemotherapy with a monoclonal antibody. PMID:27284468

  7. External ultrasonography of the neck does not add diagnostic value to integrated positron emission tomography-computed tomography (PET-CT) scanning in the diagnosis of cervical lymph node metastases in patients with esophageal carcinoma.

    PubMed

    Blom, R L G M; Vliegen, R F A; Schreurs, W M J; Belgers, H J; Stohr, I; Oostenbrug, L E; Sosef, M N

    2012-08-01

    One of the objectives of preoperative imaging in esophageal cancer patients is the detection of cervical lymph node metastases. Traditionally, external ultrasonography of the neck has been combined with computed tomography (CT) in order to improve the detection of cervical metastases. In general, integrated positron emission tomography-computed tomography (PET-CT) has been shown to be superior to CT or PET regarding staging and therefore may limit the role of external ultrasonography of the neck. The objective of this study was to determine the additional value of external ultrasonography of the neck to PET-CT. This study included all patients referred our center for treatment of esophageal carcinoma. Diagnostic staging was performed to determine treatment plan. Cervical lymph nodes were evaluated by external ultrasonography of the neck and PET-CT. In case of suspect lymph nodes on external ultrasonography or PET-CT, fine needle aspiration (FNA) was performed. Between 2008 and 2010, 170 out of 195 referred patients underwent both external ultrasonography of the neck and PET-CT. Of all patients, 84% were diagnosed with a tumor at or below the distal esophagus. In 140 of 170 patients, the cervical region was not suspect; no FNA was performed. Seven out of 170 patients had suspect nodes on both PET-CT and external ultrasonography. Five out of seven patients had cytologically confirmed malignant lymph nodes, one of seven had benign nodes, in one patient FNA was not performed; exclusion from esophagectomy was based on intra-abdominal metastases. In one out of 170 patients, PET-CT showed suspect nodes combined with a negative external ultrasonography; cytology of these nodes was benign. Twenty-two out of 170 patients had a negative PET-CT with suspect nodes on external ultrasonography. In 18 of 22 patients, cervical lymph nodes were cytologically confirmed benign; in four patients, FNA was not possible or inconclusive. At a median postoperative follow-up of 15 months

  8. Computed body tomography.

    PubMed

    Alfidi, R J; Haaga, J R

    1976-12-01

    Only the surface of the diagnostic possibilities inherent in CT imaging has been scratched. Solic organ pathology is readily visible in most instances by computed tomography. With further extension of present knowledge and development of newer contrast agents, the ability of computed body tomography to image a wide range of diseases appears almost limitless.

  9. Positron emission tomography imaging of prostate cancer

    PubMed Central

    Hong, Hao; Zhang, Yin; Sun, Jiangtao; Cai, Weibo

    2009-01-01

    Prostate cancer (PCa) is the second leading cause of cancer death among men in the United States. Positron emission tomography (PET), a non-invasive, sensitive, and quantitative imaging technique, can facilitate personalized management of PCa patients. There are two critical needs for PET imaging of PCa, early detection of primary lesions and accurate imaging of PCa bone metastasis, the predominant cause of death in PCa. Since the most widely used PET tracer in the clinic, 18F-fluoro-2-deoxy-2-D-glucose (18F-FDG), does not meet these needs, a wide variety of PET tracers have been developed for PCa imaging which span an enormous size range from small molecules to intact antibodies. In this review, we will first summarize small molecule-based PET tracers for PCa imaging, which measure certain biological events such as cell membrane metabolism, fatty acid synthesis, and receptor expression. Next, we will discuss radiolabeled amino acid derivatives (e.g. methionine, leucine, tryptophan, and cysteine analogs), which are primarily based on the increased amino acid transport of PCa cells. Peptide-based tracers for PET imaging of PCa, mostly based on the bombesin peptide and its derivatives which bind to the gastrin-releasing peptide receptor, will then be presented in detail. We will also cover radiolabeled antibodies and antibody fragments (e.g. diabodies and minibodies) for PET imaging of PCa, targeting integrin αvβ3, EphA2, the epidermal growth factor receptor, or the prostate stem cell antigen. Lastly, we will identify future directions for the development of novel PET tracers for PCa imaging, which may eventually lead to personalized management of PCa patients. PMID:19946787

  10. Radiofluorinated carbohydrates for positron emission tomography.

    PubMed

    Mun, Jiyoung

    2013-01-01

    2-Deoxy-2-[(18)F]fluoro-D-glucose (2-(18)FDG) has represented radiofluorinated carbohydrates as the most successful tracer for positron emission tomography (PET). 2-(18)FDG uptake depends on glucose metabolism, which is related to a disease progression. 2-(18)FDG has been widely used in oncology, neurology, cardiology, infectious diseases, and inflammation, to complement anatomical modalities such as CT and MRI. Followed by the success of 2-(18)FDG, various radiofluorinated carbohydrates have been evaluated as PET tracers, which include analogs of D-ribose, D-mannose, D-galactose, D-talose, D-fructose, D-allose, lactose, L-fucose, N-acetylneuraminic acid, and L-ascorbic acid. Among those radiofluorinated carbohydrates, several have implied potential for further development. 2-Deoxy-2-[(18)F]fluoro-D-galactose has been developed to assess liver function and diagnose hepatic carcinoma. 6-Deoxy-6-[(18)F]fluoro-D-fructose showed promising characteristics for diagnosis of breast cancer. Three radiofluorinated analogs of lactose have been designed as the substrates of the overexpressed hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein in peritumoral pancreatic tissue for early diagnosis of pancreatic cancer. The metabolism of 6-[(18)F]fluoro-L-fucose suggested that it is a bioactive analog of L-fucose in the synthesis of glycoconjugate macromolecules. 6-Deoxy-6-[(18)F]fluoro-L-ascorbic acid was evaluated to assess antioxidant function of L-ascorbic acid in rodent models of transient global ischemia and glutathione deficiency.

  11. High-resolution PET (positron emission tomography) for medical science studies

    SciTech Connect

    Budinger, T.F.; Derenzo, S.E.; Huesman, R.H.; Jagust, W.J.; Valk, P.E. )

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging. 6 refs., 21 figs.

  12. High-resolution PET [Positron Emission Tomography] for Medical Science Studies

    DOE R&D Accomplishments Database

    Budinger, T. F.; Derenzo, S. E.; Huesman, R. H.; Jagust, W. J.; Valk, P. E.

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging.

  13. Positron emission tomography provides molecular imaging of biological processes

    PubMed Central

    Phelps, Michael E.

    2000-01-01

    Diseases are biological processes, and molecular imaging with positron emission tomography (PET) is sensitive to and informative of these processes. This is illustrated by detection of biological abnormalities in neurological disorders with no computed tomography or MRI anatomic changes, as well as even before symptoms are expressed. PET whole body imaging in cancer provides the means to (i) identify early disease, (ii) differentiate benign from malignant lesions, (iii) examine all organs for metastases, and (iv) determine therapeutic effectiveness. Diagnostic accuracy of PET is 8–43% higher than conventional procedures and changes treatment in 20–40% of the patients, depending on the clinical question, in lung and colorectal cancers, melanoma, and lymphoma, with similar findings in breast, ovarian, head and neck, and renal cancers. A microPET scanner for mice, in concert with human PET systems, provides a novel technology for molecular imaging assays of metabolism and signal transduction to gene expression, from mice to patients: e.g., PET reporter gene assays are used to trace the location and temporal level of expression of therapeutic and endogenous genes. PET probes and drugs are being developed together—in low mass amounts, as molecular imaging probes to image the function of targets without disturbing them, and in mass amounts to modify the target's function as a drug. Molecular imaging by PET, optical technologies, magnetic resonance imaging, single photon emission tomography, and other technologies are assisting in moving research findings from in vitro biology to in vivo integrative mammalian biology of disease. PMID:10922074

  14. Resolution and Sensitivity in Positron Emission Tomography Imaging:. New Frontiers

    NASA Astrophysics Data System (ADS)

    Sossi, V.

    2004-07-01

    The combination of new detector technologies and rapidly increasing computing power is contributing to major developments in positron emission tomography (PET) imaging. The uniqueness of PET resides in its ability to detect very small concentrations of radioactively labeled tracers specifically designed to investigate selected biological functions. The desire to quantitatively observe increasingly complex biological processes together with the need of furthering research in small animal models of disease are pushing the limits of imaging spatial resolution and sensitivity. Resolution of approximately 10 mm3 is now achievable in human size brain scanners, while 1 mm3 can almost be reached in small animal imaging. Such ability will enable a more detailed exploration of healthy and disease function with the ultimate goal of imaging at a molecular level and of detecting pre-clinical disease induced changes.

  15. [Assessing myocardial perfusion with positron emission tomography].

    PubMed

    vom Dahl, J

    2001-11-01

    Positron emission tomography (PET) of the heart has gained widespread scientific and clinical acceptance with regard to two indications: 1) The detection of perfusion abnormalities by qualitative and semiquantitative analyses of perfusion images at rest and during physical or pharmacological stress using well-validated perfusion tracers, such as N-13 ammonia, Rb-82 rubidium chloride, or O-15 labeled water. 2) Viability imaging of myocardial regions with reduced contractility by combining perfusion measurements with substrate metabolism as assessed from F-18 deoxyglucose utilization. This overview summarizes the use of PET as a perfusion imaging method. With a sensitivity > 90% in combination with high specificity, PET is today the best-validated available nuclear imaging technique for the diagnosis of coronary artery disease (CAD). The short half-life of the perfusion tracers in combination with highly sophisticated hard- and software enables rapid PET studies with high patient throughput. The high diagnostic accuracy and the methological advantages as compared to conventional scintigraphy allows one to use PET perfusion imaging to detect subtle changes in the perfusion reserve for the detection of CAD in high risk but asymptomatic patients as well as in patients with proven CAD undergoing various treatment forms such as risk factor reduction or coronary revascularization. In patients following orthotopic heart transplantation, evolving transplant vasculopathy can be detected at an early stage. Quantitative PET imaging at rest allows for detection of myocardial viability since cellular survival is based on maintenance of a minimal perfusion and structural changes correlate to the degree of perfusion reduction. Furthermore, quantitative assessment of the myocardial perfusion reserve detects the magnitude and competence of collaterals in regions with occluded epicardial collaterals and, thus, imaging of several coronary distribution territories in one noninvasive

  16. Addiction Studies with Positron Emission Tomography

    SciTech Connect

    Joanna Fowler

    2008-10-13

    Brookhaven scientist Joanna Fowler describes Positron Emission Technology (PET) research at BNL which for the past 30 years has focused in the integration of basic research in radiotracer chemistry with the tools of neuroscience to develop new scientific

  17. Addiction Studies with Positron Emission Tomography

    ScienceCinema

    Joanna Fowler

    2016-07-12

    Brookhaven scientist Joanna Fowler describes Positron Emission Technology (PET) research at BNL which for the past 30 years has focused in the integration of basic research in radiotracer chemistry with the tools of neuroscience to develop new scientific

  18. Distinguishing tumor recurrence from irradiation sequelae with positron emission tomography in patients treated for larynx cancer

    SciTech Connect

    Greven, K.M.; Williams, D.W. III; Keyes, J.W. Jr.; McGuirt, W.F.; Harkness, B.A.; Watson, N.E. Jr.; Raben, M.; Frazier, L.C.; Geisinger, K.R.; Capellari, J.O.

    1994-07-01

    Distinguishing persistent or recurrent tumor from postradiation edema, or soft tissue/cartilage necrosis in patients treated for carcinoma of the larynx can be difficult. Because recurrent tumor is often submucosal, multiple deep biopsies may be necessary before a diagnosis can be established. Positron emission tomography with 18F-2-fluro-2-deoxglucose (FDG) was studied for its ability to aid in this problem. Positron emission tomography (18FDG) scans were performed on 11 patients who were suspected of having persistent or recurrent tumor after radiation treatment for carcinoma of the larynx. Patients underwent thorough history and physical examinations, scans with computerized tomography, and pathologic evaluation when indicated. Standard uptake values were used to quantitate the FDG uptake in the larynx. The time between completion of radiation treatment and positron emission tomography examination ranged from 2 to 26 months with a median of 6 months. Ten patients underwent computed tomography (CT) of the larynx, which revealed edema of the larynx (six patients), glottic mass (four patients), and cervical nodes (one patient). Positron emission tomography scans revealed increased FDG uptake in the larynx in five patients and laryngectomy confirmed the presence of carcinoma in these patients. Five patients had positron emission tomography results consistent with normal tissue changes in the larynx, and one patient had increased FDG uptake in neck nodes. This patient underwent laryngectomy, and no cancer was found in the primary site, but nodes were pathologically positive. One patient had slightly elevated FDG uptake and negative biopsy results. The remaining patients have been followed for 11 to 14 months since their positron emission studies and their examinations have remained stable. In patients without tumor, average standard uptake values of the larynx ranged from 2.4 to 4.7, and in patients with tumor, the range was 4.9 to 10.7. 18 refs., 3 figs., 1 tab.

  19. Computed Tomography (CT) -- Head

    MedlinePlus

    ... further information please consult the ACR Manual on Contrast Media and its references. The risk of serious allergic ... Angiography (CTA) Stroke Brain Tumors Computer Tomography (CT) Safety During Pregnancy Head and Neck Cancer X-ray, ...

  20. Computed Tomography (CT) -- Sinuses

    MedlinePlus

    ... further information please consult the ACR Manual on Contrast Media and its references. The risk of serious allergic ... X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to Computed Tomography (CT) - Sinuses About ...

  1. Integrated telemedicine applications and services for oncological positron emission tomography.

    PubMed

    Kontaxakis, George; Visvikis, Dimitris; Ohl, Roland; Sachpazidis, Ilias; Suarez, Juan Pablo; Selby, Peter; Cheze-Le Rest, Catherine; Santos, Andres; Ortega, Fernando; Diaz, Javier; Pan, Leyun; Strauss, Ludwig; Dimitrakopoulou-Strauss, Antonia; Sakas, Georgios; Pozo, Miguel Angel

    2006-01-01

    TENPET (Trans European Network for Positron Emission Tomography) aims to evaluate the provision of integrated teleconsultation and intelligent computer supported cooperative work services for clinical positron emission tomography (PET) in Europe at its current stage, as it is a multi-centre project financially supported by the European Commission (Information Society, eTEN Program). It addresses technological challenges by linking PET centres and developing supporting services that permit remote consultation between professionals in the field. The technological platform (CE-marked) runs on Win2000/NT/XP systems and incorporates advanced techniques for image visualization, analysis and fusion, as well as for interactive communication and message handling for off-line communications. Four PET Centres from Spain, France and Germany participate to the pilot system trials. The performance evaluation of the system is carried out via log files and user-filled questionnaires on the frequency of the teleconsultations, their duration and efficacy, quality of the images received, user satisfaction, as well as on privacy, ethical and security issues. TENPET promotes the co-operation and improved communication between PET practitioners that are miles away from their peers or on mobile units, offering options for second opinion and training and permitting physicians to remotely consult patient data if they are away from their centre. It is expected that TENPET will have a significant impact in the development of new skills by PET professionals and will support the establishment of peripheral PET units. To our knowledge, TENPET is the first telemedicine service specifically designed for oncological PET. This report presents the technical innovations incorporated in the TENPET platform and the initial pilot studies at real and diverse clinical environments in the field of oncology.

  2. Extended Field Intensity Modulated Radiation Therapy With Concomitant Boost for Lymph Node–Positive Cervical Cancer: Analysis of Regional Control and Recurrence Patterns in the Positron Emission Tomography/Computed Tomography Era

    SciTech Connect

    Vargo, John A.; Kim, Hayeon; Choi, Serah; Sukumvanich, Paniti; Olawaiye, Alexander B.; Kelley, Joseph L.; Edwards, Robert P.; Comerci, John T.; Beriwal, Sushil

    2014-12-01

    Purpose: Positron emission tomography/computed tomography (PET/CT) is commonly used for nodal staging in locally advanced cervical cancer; however the false negative rate for para-aortic disease are 20% to 25% in PET-positive pelvic nodal disease. Unless surgically staged, pelvis-only treatment may undertreat para-aortic disease. We have treated patients with PET-positive nodes with extended field intensity modulated radiation therapy (IMRT) to address the para-aortic region prophylactically with concomitant boost to involved nodes. The purpose of this study was to assess regional control rates and recurrence patterns. Methods and Materials: Sixty-one patients with cervical cancer (stage IBI-IVA) diagnosed from 2003 to 2012 with PET-avid pelvic nodes treated with extended field IMRT (45 Gy in 25 fractions with concomitant boost to involved nodes to a median of 55 Gy in 25 fractions) with concurrent cisplatin and brachytherapy were retrospectively analyzed. The nodal location was pelvis-only in 41 patients (67%) and pelvis + para-aortic in 20 patients (33%). There were a total of 179 nodes, with a median number of positive nodes of 2 (range, 1-16 nodes) per patient and a median nodal size of 1.8 cm (range, 0.7-4.5 cm). Response was assessed by PET/CT at 12 to 16 weeks. Results: Complete clinical and imaging response at the first follow-up visit was seen in 77% of patients. At a mean follow-up time of 29 months (range, 3-116 months), 8 patients experienced recurrence. The sites of persistent/recurrent disease were as follows: cervix 10 (16.3%), regional nodes 3 (4.9%), and distant 14 (23%). The rate of para-aortic failure in patients with pelvic-only nodes was 2.5%. There were no significant differences in recurrence patterns by the number/location of nodes, largest node size, or maximum node standardized uptake value. The rate of late grade 3+ adverse events was 4%. Conclusions: Extended field IMRT was well tolerated and resulted in low regional recurrence

  3. Metabolomics of Breast Cancer Using High-Resolution Magic Angle Spinning Magnetic Resonance Spectroscopy: Correlations with 18F-FDG Positron Emission Tomography-Computed Tomography, Dynamic Contrast-Enhanced and Diffusion-Weighted Imaging MRI

    PubMed Central

    Yoon, Haesung; Yoon, Dahye; Yun, Mijin; Choi, Ji Soo; Park, Vivian Youngjean; Kim, Eun-Kyung; Jeong, Joon; Koo, Ja Seung; Yoon, Jung Hyun; Moon, Hee Jung; Kim, Suhkmann; Kim, Min Jung

    2016-01-01

    Purpose Our goal in this study was to find correlations between breast cancer metabolites and conventional quantitative imaging parameters using high-resolution magic angle spinning (HR-MAS) magnetic resonance spectroscopy (MRS) and to find breast cancer subgroups that show high correlations between metabolites and imaging parameters. Materials and methods Between August 2010 and December 2013, we included 53 female patients (mean age 49.6 years; age range 32–75 years) with a total of 53 breast lesions assessed by the Breast Imaging Reporting and Data System. They were enrolled under the following criteria: breast lesions larger than 1 cm in diameter which 1) were suspicious for malignancy on mammography or ultrasound (US), 2) were pathologically confirmed to be breast cancer with US-guided core-needle biopsy (CNB) 3) underwent 3 Tesla MRI with dynamic contrast-enhanced (DCE) and diffusion-weighted imaging (DWI) and positron emission tomography-computed tomography (PET-CT), and 4) had an attainable immunohistochemistry profile from CNB. We acquired spectral data by HR-MAS MRS with CNB specimens and expressed the data as relative metabolite concentrations. We compared the metabolites with the signal enhancement ratio (SER), maximum standardized FDG uptake value (SUV max), apparent diffusion coefficient (ADC), and histopathologic prognostic factors for correlation. We calculated Spearman correlations and performed a partial least squares-discriminant analysis (PLS-DA) to further classify patient groups into subgroups to find correlation differences between HR-MAS spectroscopic values and conventional imaging parameters. Results In a multivariate analysis, the PLS-DA models built with HR-MAS MRS metabolic profiles showed visible discrimination between high and low SER, SUV, and ADC. In luminal subtype breast cancer, compared to all cases, high SER, ADV, and SUV were more closely clustered by visual assessment. Multiple metabolites were correlated with SER and SUV in

  4. {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography-Based Radiotherapy Target Volume Definition in Non-Small-Cell Lung Cancer: Delineation by Radiation Oncologists vs. Joint Outlining With a PET Radiologist?

    SciTech Connect

    Hanna, Gerard G.; Carson, Kathryn J.; Lynch, Tom; McAleese, Jonathan; Cosgrove, Vivian P.; Eakin, Ruth L.; Stewart, David P.; Zatari, Ashraf; O'Sullivan, Joe M.; Hounsell, Alan R.

    2010-11-15

    Purpose: {sup 18}F-Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) has benefits in target volume (TV) definition in radiotherapy treatment planning (RTP) for non-small-cell lung cancer (NSCLC); however, an optimal protocol for TV delineation has not been determined. We investigate volumetric and positional variation in gross tumor volume (GTV) delineation using a planning PET/CT among three radiation oncologists and a PET radiologist. Methods and Materials: RTP PET/CT scans were performed on 28 NSCLC patients (Stage IA-IIIB) of which 14 patients received prior induction chemotherapy. Three radiation oncologists and one PET radiologist working with a fourth radiation oncologist independently delineated the GTV on CT alone (GTV{sub CT}) and on fused PET/CT images (GTV{sub PETCT}). The mean percentage volume change (PVC) between GTV{sub CT} and GTV{sub PETCT} for the radiation oncologists and the PVC between GTV{sub CT} and GTV{sub PETCT} for the PET radiologist were compared using the Wilcoxon signed-rank test. Concordance index (CI) was used to assess both positional and volume change between GTV{sub CT} and GTV{sub PETCT} in a single measurement. Results: For all patients, a significant difference in PVC from GTV{sub CT} to GTV{sub PETCT} exists between the radiation oncologist (median, 5.9%), and the PET radiologist (median, -0.4%, p = 0.001). However, no significant difference in median concordance index (comparing GTV{sub CT} and GTV{sub FUSED} for individual cases) was observed (PET radiologist = 0.73; radiation oncologists = 0.66; p = 0.088). Conclusions: Percentage volume changes from GTV{sub CT} to GTV{sub PETCT} were lower for the PET radiologist than for the radiation oncologists, suggesting a lower impact of PET/CT in TV delineation for the PET radiologist than for the oncologists. Guidelines are needed to standardize the use of PET/CT for TV delineation in RTP.

  5. Should Patient Setup in Lung Cancer Be Based on the Primary Tumor? An Analysis of Tumor Coverage and Normal Tissue Dose Using Repeated Positron Emission Tomography/Computed Tomography Imaging

    SciTech Connect

    Elmpt, Wouter van; Oellers, Michel; Lambin, Philippe; De Ruysscher, Dirk

    2012-01-01

    Purpose: Evaluation of the dose distribution for lung cancer patients using a patient setup procedure based on the bony anatomy or the primary tumor. Methods and materials: For 39 patients with non-small-cell lung cancer, the planning fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) scan was registered to a repeated FDG-PET/CT scan made in the second week of treatment. Two patient setup methods were analyzed based on the bony anatomy or the primary tumor. The original treatment plan was copied to the repeated scan, and target and normal tissue structures were delineated. Dose distributions were analyzed using dose-volume histograms for the primary tumor, lymph nodes, lungs, and spinal cord. Results: One patient showed decreased dose coverage of the primary tumor caused by progressive disease and required replanning to achieve adequate coverage. For the other patients, the minimum dose to the primary tumor did not significantly deviate from the planned dose: -0.2 {+-} 1.7% (p = 0.71) and -0.1 {+-} 1.7% (p = 0.85) for the bony anatomy setup and the primary tumor setup, respectively. For patients (n = 31) with nodal involvement, 10% showed a decrease in minimum dose larger than 5% for the bony anatomy setup and 13% for the primary tumor setup. The mean lung dose exceeded the maximum allowed 20 Gy in 21% of the patients for the bony anatomy setup and in 13% for the primary tumor setup, whereas for the spinal cord this occurred in 10% and 13% of the patients, respectively. Conclusions: In 10% and 13% of patients with nodal involvement, setup based on bony anatomy or primary tumor, respectively, led to important dose deviations in nodal target volumes. Overdosage of critical structures occurred in 10-20% of the patients. In cases of progressive disease, repeated imaging revealed underdosage of the primary tumor. Development of practical ways for setup procedures based on repeated high-quality imaging of all tumor sites during radiotherapy

  6. Metabolic Response of Lymph Nodes Immediately After RT Is Related With Survival Outcome of Patients With Pelvic Node-Positive Cervical Cancer Using Consecutive [{sup 18}F]fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography

    SciTech Connect

    Yoon, Mee Sun; Ahn, Sung-Ja; Nah, Byung-Sik; Chung, Woong-Ki; Song, Ho-Chun; Yoo, Su Woong; Song, Ju-Young; Jeong, Jae-Uk; Nam, Taek-Keun

    2012-11-15

    Purpose: To evaluate the metabolic response of uterine cervix and pelvic lymph nodes (LNs) using consecutive {sup 18}F-fluorodeoxyglucose-positron emission tomography/computed tomography (PET/CT) immediately after RT and to correlate survival outcome with the metabolic response. Methods and Materials: We retrospectively reviewed 48 patients with cervical cancer who had positive pelvic LNs by preradiation therapy (pre-RT) PET/CT. All patients underwent PET/CT scans immediately after RT (inter-RT PET/CT) after median 63 Gy to the gross LNs. The metabolic response of the LNs was assessed quantitatively and semiquantitatively by measurement of the maximal standardized uptake value (SUV{sub max}). Results: Classifying the metabolic response of all nodal lesions, 37 patients (77%) had LNs with complete metabolic response on the inter-RT PET/CT (LNCMRi), and 11 patients had a non-LNCMRi, including 4 patients with progressive metabolic disease. The overall 3-year survival rates were 83% for the patients with LNCMRi and 73% for the non-LNCMRi group (P=.038). The disease-free survival for patients with LNCMRi were significantly better than that for the non-LNCMRi group (71% vs 18%, respectively, P<.001). The 3-year distant metastasis-free survival rates were 79% for the patients with LNCMRi and 27% for the non-LNCMRi group (P<.001). There were no statistically significant differences in overall survival (76% vs 86%, respectively, P=.954) and disease-free survival rates (58% vs 61%, respectively, P=.818) between the CMR of primary cervical tumor and the non-CMR groups. Conclusions: The results showed a significant correlation between survival outcome and the interim metabolic response of pelvic LNs. CMR of nodal lesion on inter-RT PET/CT had excellent overall survival, disease-free survival and distant metastasis-free survival rates. This suggested that PET/CT immediately after RT can be a useful tool for the evaluation of the interim response of the LNs and identify a subset

  7. Microscopic Disease Extension in Three Dimensions for Non-Small-Cell Lung Cancer: Development of a Prediction Model Using Pathology-Validated Positron Emission Tomography and Computed Tomography Features

    SciTech Connect

    Loon, Judith van; Siedschlag, Christian; Stroom, Joep; Blauwgeers, Hans; Suylen, Robert-Jan van; Knegjens, Joost; Rossi, Maddalena; Baardwijk, Angela van; Boersma, Liesbeth; Klomp, Houke; Vogel, Wouter; Burgers, Sjaak; Gilhuijs, Kenneth

    2012-01-01

    Purpose: One major uncertainty in radiotherapy planning of non-small-cell lung cancer concerns the definition of the clinical target volume (CTV), meant to cover potential microscopic disease extension (MDE) around the macroscopically visible tumor. The primary aim of this study was to establish pretreatment risk factors for the presence of MDE. The secondary aim was to establish the impact of these factors on the accuracy of positron emission tomography (PET) and computed tomography (CT) to assess the total tumor-bearing region at pathologic examination (CTV{sub path}). Methods and Materials: 34 patients with non-small-cell lung cancer who underwent CT and PET before lobectomy were included. Specimens were examined microscopically for MDE. The gross tumor volume (GTV) on CT and PET (GTV{sub CT} and GTV{sub PET}, respectively) was compared with the GTV and the CTV at pathologic examination, tissue deformations being taken into account. Using multivariate logistic regression, image-based risk factors for the presence of MDE were identified, and a prediction model was developed based on these factors. Results: MDE was found in 17 of 34 patients (50%). The MDE did not exceed 26 mm in 90% of patients. In multivariate analysis, two parameters (mean CT tumor density and GTV{sub CT}) were significantly associated with MDE. The area under the curve of the two-parameter prediction model was 0.86. Thirteen tumors (38%, 95% CI: 24-55%) were identified as low risk for MDE, being potential candidates for reduced-intensity therapy around the GTV. In the low-risk group, the effective diameter of the GTV{sub CT/PET} accurately represented the CTV{sub path}. In the high-risk group, GTV{sub CT/PET} underestimated the CTV{sub path} with, on average, 19.2 and 26.7 mm, respectively. Conclusions: CT features have potential to predict the presence of MDE. Tumors identified as low risk of MDE show lower rates of disease around the GTV than do high-risk tumors. Both CT and PET accurately

  8. Diagnostic and prognostic evaluation of fluorodeoxyglucose positron emission tomography/computed tomography and its correlation with serum cancer antigen-125 (CA125) in a large cohort of ovarian cancer patients

    PubMed Central

    Evangelista, Laura; Palma, Maurizia Dalla; Gregianin, Michele; Nardin, Margherita; Roma, Anna; Nicoletto, Maria Ornella; Nardelli, Giovanni Battista; Zagonel, Vittorina

    2015-01-01

    Objective We evaluated the efficacy of 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in recurrent disease, response to therapy, and long-term follow-up of ovarian cancer (OC) patients in relation to cancer antigen-125 (CA125) levels and the prognostic meaning of this modality in this subset of subjects. Material and Methods Between 2005 and 2015, we retrospectively evaluated 125 patients affected by OC who underwent FDG PET/CT imaging at our institution. The indications for PET/CT were recurrence of disease in 78 patients, therapy response assessment in 29, and follow-up in 18. The results of FDG PET/CT were compared with those of histopathology and clinical and radiological progression during follow-up for at least 6 months. The median long-term follow-up was 33 months. The diagnostic accuracies for the different clinical settings were evaluated. The relationships among global survival (GS), FDG PET/CT results, and CA125 levels were evaluated by both Kaplan–Meier and Cox regression analysis. Results CA125 results were positive (>35 UI/mL) in 62 patients and negative in 63 (49% vs. 51%). The sensitivity and specificity of CA125 were 72% and 91%, respectively. PET/CT imaging showed a sensitivity of 98.6% and a specificity of 77.8% for the assessment of recurrent disease, and a sensitivity of 72.7% and a specificity of 88.9% for therapy evaluation. Meanwhile, in 18 patients evaluated during follow-up, the specificity was 82.3%. GS was significantly higher in case of negative CA125 values at the time of FDG PET/CT, of a negative PET/CT scan and when no evidence of peritoneum recurrence and distant metastases was determined by PET. Multivariate regression analysis showed that only age and peritoneum recurrence as determined by PET were identified as independent predictors of poor prognosis. Conclusion Metabolic imaging with FDG PET/CT proved useful in patients where OC recurrence was suspected, even when the value of tumor

  9. Exploring spatial overlap of high-uptake regions derived from dual tracer positron emission tomography-computer tomography imaging using 18F-fluorodeoxyglucose and 18F-fluorodeoxythymidine in nonsmall cell lung cancer patients: a prospective pilot study.

    PubMed

    Liu, Jing; Li, Chengqiang; Hu, Man; Lu, Jie; Shi, Xiaorong; Xing, Ligang; Sun, Xindong; Fu, Zheng; Yu, Jinming; Meng, Xue

    2015-05-01

    Interest is growing in radiotherapy to nonuniformly boost radioresistant regions within nonsmall cell lung cancer (NSCLC) using molecular imaging techniques. The complexity of tumor behavior is beyond the ability of any single radiotracer to reveal. We hold dual tracer positron emission tomography-computer tomography (PET/CT) imaging with fluorodeoxyglucose (FDG) and fluorodeoxythymidine (FLT) for NSCLC patients to offer an integrated overlook of tumor biological behaviors quantitatively and localizationally, which may help biological target volume delineation and subvolume boost.Pathological confirmed that NSCLC patients were eligible. FDG and FLT PET/CT were performed for each patient before anticancer treatment and coregistrated for analysis. Maximum and mean standardized uptake values (SUVmax and SUVmean) were calculated automatically. Metabolic volumes (MVs) were delineated by a fixed 50% of SUVmax in FDG PET/CT and proliferative volumes (PVs) were delineated by 50% to 90% of SUVmax with 10% interval in FLT PET/CT. Overlap ratio (OR) were determined as overlapped volume between MV and PV divided PV. Conventional contrast-enhanced CT-based intensity-modulated radiotherapy (IMRT) plans with and without additional PET/CT-guided subtarget boost were made for each of the 5 typical NSCLC patients. Dosimetric parameters derived from dose-volume histogram, tumor control probability (TCP), and normal tissue complication probability (NTCP) of lung, esophagus, heart, and spinal cord were calculated and compared.Thirty-one patients were prospectively included and 23 were selected for analysis. Totally, 23 primary diseases, 41 metastatic lymph nodes, and 15 metastatic lesions were positive in dual PET/CTs and included for analysis. Median ORs increased from 58.61% to 93.12% under thresholds of 50% of SUVmax in FDG PET/CT and increased thresholds from 50% to 90% of SUVmax in FLT PET/CT. Based on conventional IMRT, additional boost to union of high FDG (determined by 50

  10. Imaging Cellular Proliferation During Chemo-Radiotherapy: A Pilot Study of Serial {sup 18}F-FLT Positron Emission Tomography/Computed Tomography Imaging for Non-Small-Cell Lung Cancer

    SciTech Connect

    Everitt, Sarah; Hicks, Rodney J.; Ball, David; Kron, Tomas; Schneider-Kolsky, Michal; Walter, Tania; Binns, David; Mac Manus, Michael

    2009-11-15

    Purpose: To establish whether {sup 18}F-3'-deoxy-3'-fluoro-L-thymidine ({sup 18}F-FLT) can monitor changes in cellular proliferation of non-small-cell lung cancer (NSCLC) during radical chemo-radiotherapy (chemo-RT). Methods and Materials: As part of a prospective pilot study, 5 patients with locally advanced NSCLC underwent serial {sup 18}F-FLT positron emission tomography (PET)/computed tomography (CT) scans during treatment. Baseline {sup 18}F-FLT PET/CT scans were compared with routine staging {sup 18}F-FDG PET/CT scans. Two on-treatment {sup 18}F-FLT scans were performed for each patient on Days 2, 8, 15 or 29, providing a range of time points for response assessment. Results: In all 5 patients, baseline lesional uptake of {sup 18}F-FLT on PET/CT corresponded to staging {sup 18}F-FDG PET/CT abnormalities. {sup 18}F-FLT uptake in tumor was observed on five of nine (55%) on-treatment scans, on Days 2, 8 and 29, but not Day 15. A 'flare' of {sup 18}F-FLT uptake in the primary tumor of one case was observed after 2 Gy of radiation (1.22 x baseline). The remaining eight on-treatment scans demonstrated a mean reduction in {sup 18}F-FLT tumor uptake of 0.58 x baseline. A marked reduction of {sup 18}F-FLT uptake in irradiated bone marrow was observed for all cases. This reduction was observed even after only 2 Gy, and all patients demonstrated a complete absence of proliferating marrow after 10 Gy. Conclusions: This proof of concept study indicates that {sup 18}F-FLT uptake can monitor the distinctive biologic responses of epithelial cancers and highly radiosensitive normal tissue changes during radical chemo-RT. Further studies of {sup 18}F-FLT PET/CT imaging during therapy may suggest that this tracer is useful in developing response-adapted RT for NSCLC.

  11. [Positron emission tomography (PET) in malignant ovarian tumors].

    PubMed

    Fularz, Maciej; Adamiak, Paulina; Czepczyński, Rafał; Jarzabek-Bielecka, Grazyna; Kedzia, Witold; Ruchała, Marek

    2013-08-01

    Accessibility of positron emission tomography integrated with computed tomography (PET/CT) has improved significantly in recent years. PET/CT with the use of 18F-deoxyglucose (FDG) is widely used in patients with ovarian malignancies at different stages of the management. FDG PET/CT shows high diagnostic accuracy in the differentiation of benign and malignant ovarian lesions with the exception of borderline tumors that may cause false negative results. Moreover FDG PET/CT is used in some centers for preoperative staging and determining the prognosis of ovarian cancer However further studies including larger groups of patients are needed to confirm the applicability of FDG PET/CT in case of the two abovementioned indications. Until now, the best documented indication for FDG PET/ CT in patients with ovarian cancer has been the detection of recurrence, especially in subjects with elevated CA 125 marker and negative results of other imaging techniques. This review focuses on the applicability of PET with the use of FDG in ovarian malignancies and points out to the limitations of this method.

  12. Positron Emission Tomography: Human Brain Function and Biochemistry.

    ERIC Educational Resources Information Center

    Phelps, Michael E.; Mazziotta, John C.

    1985-01-01

    Describes the method, present status, and application of positron emission tomography (PET), an analytical imaging technique for "in vivo" measurements of the anatomical distribution and rates of specific biochemical reactions. Measurements and image dynamic biochemistry link basic and clinical neurosciences with clinical findings suggesting…

  13. Application of mathematical removal of positron range blurring in Positron Emission Tomography

    SciTech Connect

    Haber, S.F.; Derenzo, S.E.; Uber, D.

    1990-04-01

    The range of positrons in tissue is an important limitation to the ultimate spatial resolution achievable in Positron Emission Tomography. In this work we applied a Fourier deconvolution technique to remove range blurring in images taken by the Donner 600-Crystal Positron Tomograph. Using phantom data, we found significant improvement in the image quality and the FWHM for both {sup 68}Ga and {sup 82}Rb. These were successfully corrected so that the images and FWHM almost matched those of {sup 18}F which has negligible positron range. However, statistical noise was increased by the deconvolution process and it was not practical to recover the full spatial resolution of the tomograph. 10 refs., 6 figs., 3 tabs.

  14. Application of mathematical removal of positron range blurring in positron emission tomography

    SciTech Connect

    Haber, S.F.; Derenzo, S.E.; Uber, D. )

    1990-06-01

    The range of positrons in tissue is an important limitation to the ultimate spatial resolution achievable in positron emission tomography. In this work the authors have applied a Fourier deconvolution technique to remove range blurring in images taken by the Donner 600-crystal positron tomograph. Using phantom data, the authors have found significant improvement in the image quality and the FWHM for both {sup 68}Ga and {sup 82}Rb. These were successfully corrected so that the images and FWHM almost matched those of {sup 18}F which has negligible positron range. However, statistical noise was increased by the deconvolution process and it was not practical to recover the full spatial resolution of the tomograph.

  15. Orbiting transmission source for positron tomography

    SciTech Connect

    Huesman, R.H.; Derenzo, S.E.; Cahoon, J.L.; Geyer, A.B.; Moses, W.W.; Uber, D.C.; Vuletich, T.; Budinger, T.F.

    1988-02-01

    Accidental suppression and effective data rates have been measured for the orbiting transmission source as implemented in the Donner 600-Crystal Positron Tomograph. A mechanical description of the orbiting source and a description of the electronics used to discard scattered and accidental events is included. Since accidental coincidences were the rate-limiting factor in transmission data acquisition, the new method allows us to acquire sufficient transmission data in a shorter time with a more active transmission source.

  16. Comparisons between glucose analogue 2-deoxy-2-(18F)fluoro-D-glucose and 18F-sodium fluoride positron emission tomography/computed tomography in breast cancer patients with bone lesions

    PubMed Central

    Capitanio, Selene; Bongioanni, Francesca; Piccardo, Arnoldo; Campus, Claudio; Gonella, Roberta; Tixi, Lucia; Naseri, Mehrdad; Pennone, Michele; Altrinetti, Vania; Buschiazzo, Ambra; Bossert, Irene; Fiz, Francesco; Bruno, Andrea; DeCensi, Andrea; Sambuceti, Gianmario; Morbelli, Silvia

    2016-01-01

    AIM: To compare 2-deoxy-2-(18F)fluoro-D-glucose(18F-FDG) and 18F-sodium (18F-NaF) positron emission tomography/computed tomography (PET/CT) accuracy in breast cancer patients with clinically/radiologically suspected or known bone metastases. METHODS: A total of 45 consecutive patients with breast cancer and the presence or clinical/biochemical or radiological suspicion of bone metastatic disease underwent 18F-FDG and 18F-fluoride PET/CT. Imaging results were compared with histopathology when available, or clinical and radiological follow-up of at least 1 year. For each technique we calculated: Sensitivity (Se), specificity (Sp), overall accuracy, positive and negative predictive values, error rate, and Youden’s index. McNemar’s χ2 test was used to test the difference in sensitivity and specificity between the two diagnostic methods. All analyses were computed on a patient basis, and then on a lesion basis, with consideration ofthe density of independent lesions on the co-registered CT (sclerotic, lytic, mixed, no-lesions) and the divergent site of disease (skull, spine, ribs, extremities, pelvis). The impact of adding 18F-NaF PET/CT to the work-up of patients was also measured in terms of change in their management due to 18F-NaF PET/CT findings. RESULTS: The two imaging methods of 18F-FDG and 18F-fluoride PET/CT were significantly different at the patient-based analysis: Accuracy was 86.7% and 84.4%, respectively (McNemar’s χ2 = 6.23, df = 1, P = 0.01). Overall, 244 bone lesions were detected in our analysis. The overall accuracy of the two methods was significantly different at lesion-based analysis (McNemar’s χ2 = 93.4, df = 1, P < 0.0001). In the lesion density-based and site-based analysis, 18F-FDG PET/CT provided more accurate results in the detection of CT-negative metastasis (P < 0.002) and vertebral localizations (P < 0.002); 18F-NaF PET/CT was more accurate in detecting sclerotic (P < 0.005) and rib lesions (P < 0.04). 18F-NaF PET/CT led to a

  17. Single-photon emission computed tomography (SPECT): Applications and potential

    SciTech Connect

    Holman, B.L.; Tumeh, S.S. )

    1990-01-26

    Single-photon emission computed tomography has received increasing attention as radiopharmaceuticals that reflect perfusion, metabolism, and receptor and cellular function have become widely available. Perfusion single-photon emission computed tomography of the brain provides functional information useful for the diagnosis and management of stroke, dementia, and epilepsy. Single-photon emission computed tomography has been applied to myocardial, skeletal, hepatic, and tumor scintigraphy, resulting in increased diagnostic accuracy over planar imaging because background activity and overlapping tissues interfere far less with activity from the target structure when tomographic techniques are used. Single-photon emission computed tomography is substantially less expensive and far more accessible than positron emission tomography and will become an increasingly attractive alternative for transferring the positron emission tomography technology to routine clinical use.

  18. Clinical oncologic positron emission tomography: an introduction.

    PubMed

    Turkington, Timothy G; Coleman, R Edward

    2002-04-01

    PET imaging is a molecular imaging technology that is diffusing into imaging departments quite rapidly. The unique characteristics of positron emitting radionuclides such as fluorine-18 provide high-quality images with reasonable acquisition times. The imaging instrumentation continues to improve with new detector materials and combinations of PET scanners and CT scanners. FDG is now readily available to most hospitals in the United States. Third-party payers now recognize the importance of PET imaging in multiple malignancies. The number of PET scans performed annually will continue to increase as the indications increase and the instrumentation is more available.

  19. Three Dimensional Iterative Reconstruction Techniques in Positron Tomography.

    NASA Astrophysics Data System (ADS)

    Sloka, Scott

    The acquisition of positron tomographic data in three dimensions is an improvement over the two dimensional acquisition of data because the greater the number of measurements taken of a stochastic process, the more accurately determined the desired parameter may be. This research pursues the goal of three dimensional image reconstruction in Positron Tomography using an iterative approach. This thesis has followed a systematic approach to the exploration of a system for three dimensional iterative reconstruction. System design parameters were discussed such as the advantages and disadvantages of iterative vs analytic methods, the implementation of two, three dimensional iterative algorithms, the selection of a ray passing method, and the choice of an analytic method for comparison to the iterative methods. Several qualitative and quantitative tests were used/developed and performed to analyse and compare the results. Three dimensional reconstruction in Positron Tomography using two iterative techniques (ART and ML-EM) was demonstrated. The ML-EM algorithm was adapted to satisfy the objective of equalizing the estimates with the measurements via division of the sampling density. A new multi-objective function methodology was developed for two dimensions and its extension to three dimensions discussed. A smoothly-varying Gaussian phantom was created for comparing artifacts from different ray passing methods. The analysis of voxel trends over many iterations was used. The use of the output from a two dimensional filtered backprojection algorithm as the seed for three dimensional algorithms to accelerate the reconstruction the was explored. The importance of the selection of a good ray ordering in ART and its effects on the total squared error were explored. For the phantoms studied in this thesis, the ML -EM algorithm tended to perform better under most conditions. This algorithm is slower than ART to achieve both a low total squared error and good contrast, but the

  20. Metabolic flare phenomenon on 18 fluoride-fluorodeoxy glucose positron emission tomography-computed tomography scans in a patient with bilateral breast cancer treated with second-line chemotherapy and bevacizumab.

    PubMed

    Balasubramanian Harisankar, Chidambaram Natrajan; Preethi, Rajalakshmi; John, Jijoe

    2015-01-01

    Increase in radiopharmaceutical uptake is an indicator of progression of disease. Paradoxical increase in the radiopharmaceutical uptake also occurs during favorable response to therapy, which is designated as flare phenomenon. Flare phenomenon is well documented on bone scinitgraphy when initially noted lesions show increased radiotracer uptake after therapy is instituted. This happens despite favorable response to the treatment. The osteoblastic activity associated with healing response of bone tumors is the cause of flare phenomenon. Recently, metabolic flare phenomenon has been described in patients with breast cancer who undergo hormonal therapy. Changes in the hormonal level during initial part of the treatment is the cause of metabolic flare. We describe a patient with bilateral breast cancer who underwent second line chemotherapy along with bevacizumab. Serial positron emission tomography scans done showed interesting phenomenon of metabolic flare. PMID:25829734

  1. Metabolic flare phenomenon on 18 fluoride-fluorodeoxy glucose positron emission tomography-computed tomography scans in a patient with bilateral breast cancer treated with second-line chemotherapy and bevacizumab

    PubMed Central

    Balasubramanian Harisankar, Chidambaram Natrajan; Preethi, Rajalakshmi; John, Jijoe

    2015-01-01

    Increase in radiopharmaceutical uptake is an indicator of progression of disease. Paradoxical increase in the radiopharmaceutical uptake also occurs during favorable response to therapy, which is designated as flare phenomenon. Flare phenomenon is well documented on bone scinitgraphy when initially noted lesions show increased radiotracer uptake after therapy is instituted. This happens despite favorable response to the treatment. The osteoblastic activity associated with healing response of bone tumors is the cause of flare phenomenon. Recently, metabolic flare phenomenon has been described in patients with breast cancer who undergo hormonal therapy. Changes in the hormonal level during initial part of the treatment is the cause of metabolic flare. We describe a patient with bilateral breast cancer who underwent second line chemotherapy along with bevacizumab. Serial positron emission tomography scans done showed interesting phenomenon of metabolic flare. PMID:25829734

  2. Simultaneous laser speckle imaging and positron emission tomography

    NASA Astrophysics Data System (ADS)

    Gramer, M.; Feuerstein, D.; Backes, H.; Takagaki, M.; Kumagai, T.; Graf, R.

    2013-06-01

    Complex biological systems often require measurements of multiple parameters with high temporal and spatial resolution. Multimodal approaches and the combination of methods are therefore a powerful tool to address such scientific questions. Laser speckle imaging (LSI) is an optical method that monitors dynamic changes in cortical blood flow (CBF) with high temporal resolution. Positron emission tomography (PET) allows for quantitative imaging of physiological processes and is a gold standard method to determine absolute cerebral blood flow. We developed a setup that allows simultaneous measurement with both modalities. Here, we simultaneously measured CBF with PET and LSI in rats and analyzed how the correlation of PET and LSI is modified when (1) different methods are used for the calculation of speckle inverse correlation time (ICT), (2) speckle data is acquired through thinned or craniectomized skull, (3) influence of surface vessels is removed from the speckle data. For the latter, a method for automated vessel segmentation from LSI data was developed. We obtained the best correlation (R² = 0.890, p<0.001) when correcting for surface vessel structures taking into account the contribution of static scatterers while keeping the coherence factor constant. However, using the originally published relation, which allows a 900 times faster computation of blood flow maps, still provided a good correlation (R2 = 0.879, p<0.001). Given the good correlation between LSI and PET we used our data to calibrate the speckle ICT. Thus, LSI provides CBF in absolute units at high temporal resolution.

  3. Automated identification of the lung contours in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Nery, F.; Silvestre Silva, J.; Ferreira, N. C.; Caramelo, F. J.; Faustino, R.

    2013-03-01

    Positron Emission Tomography (PET) is a nuclear medicine imaging technique that permits to analyze, in three dimensions, the physiological processes in vivo. One of the areas where PET has demonstrated its advantages is in the staging of lung cancer, where it offers better sensitivity and specificity than other techniques such as CT. On the other hand, accurate segmentation, an important procedure for Computer Aided Diagnostics (CAD) and automated image analysis, is a challenging task given the low spatial resolution and the high noise that are intrinsic characteristics of PET images. This work presents an algorithm for the segmentation of lungs in PET images, to be used in CAD and group analysis in a large patient database. The lung boundaries are automatically extracted from a PET volume through the application of a marker-driven watershed segmentation procedure which is robust to the noise. In order to test the effectiveness of the proposed method, we compared the segmentation results in several slices using our approach with the results obtained from manual delineation. The manual delineation was performed by nuclear medicine physicians that used a software routine that we developed specifically for this task. To quantify the similarity between the contours obtained from the two methods, we used figures of merit based on region and also on contour definitions. Results show that the performance of the algorithm was similar to the performance of human physicians. Additionally, we found that the algorithm-physician agreement is similar (statistically significant) to the inter-physician agreement.

  4. Fuzzy-rule-based image reconstruction for positron emission tomography

    NASA Astrophysics Data System (ADS)

    Mondal, Partha P.; Rajan, K.

    2005-09-01

    Positron emission tomography (PET) and single-photon emission computed tomography have revolutionized the field of medicine and biology. Penalized iterative algorithms based on maximum a posteriori (MAP) estimation eliminate noisy artifacts by utilizing available prior information in the reconstruction process but often result in a blurring effect. MAP-based algorithms fail to determine the density class in the reconstructed image and hence penalize the pixels irrespective of the density class. Reconstruction with better edge information is often difficult because prior knowledge is not taken into account. The recently introduced median-root-prior (MRP)-based algorithm preserves the edges, but a steplike streaking effect is observed in the reconstructed image, which is undesirable. A fuzzy approach is proposed for modeling the nature of interpixel interaction in order to build an artifact-free edge-preserving reconstruction. The proposed algorithm consists of two elementary steps: (1) edge detection, in which fuzzy-rule-based derivatives are used for the detection of edges in the nearest neighborhood window (which is equivalent to recognizing nearby density classes), and (2) fuzzy smoothing, in which penalization is performed only for those pixels for which no edge is detected in the nearest neighborhood. Both of these operations are carried out iteratively until the image converges. Analysis shows that the proposed fuzzy-rule-based reconstruction algorithm is capable of producing qualitatively better reconstructed images than those reconstructed by MAP and MRP algorithms. The reconstructed images are sharper, with small features being better resolved owing to the nature of the fuzzy potential function.

  5. Positron Emission Tomography: Principles, Technology, and Recent Developments

    NASA Astrophysics Data System (ADS)

    Ziegler, Sibylle I.

    2005-04-01

    Positron emission tomography (PET) is a nuclear medical imaging technique for quantitative measurement of physiologic parameters in vivo (an overview of principles and applications can be found in [P.E. Valk, et al., eds. Positron Emission Tomography. Basic Science and Clinical Practice. 2003, Springer: Heidelberg]), based on the detection of small amounts of posi-tron-emitter-labelled biologic molecules. Various radiotracers are available for neuro-logical, cardiological, and oncological applications in the clinic and in research proto-cols. This overview describes the basic principles, technology, and recent develop-ments in PET, followed by a section on the development of a tomograph with ava-lanche photodiodes dedicated for small animal imaging as an example of efforts in the domain of high resolution tomographs.

  6. Computed tomography in neurocysticercosis.

    PubMed Central

    Minguetti, G; Ferreira, M V

    1983-01-01

    Neurocysticercosis is a major public health problem in developing countries. Before computed tomography became available its diagnosis was very restricted and the conventional diagnostic methods were unreliable. It also was frequently necessary to submit patients to costly and dangerous surgical procedures to confirm the precise nature of the disease. One hundred and seventy-one patients with neurocysticercosis were evaluated by computed tomography. The diagnostic findings of the different types of lesions produced by the larva of the parasite (Taenia solium) in the central nervous system, and the advantages of CT in the diagnosis of this clinical entity are described, as well as the main signs and symptoms of the patients referred for examination. The effect of corticosteroids in the acute stages of the disease and the changes they provoke in the CT images are described. Images PMID:6644318

  7. Computed tomography status

    SciTech Connect

    Hansche, B.D.

    1983-01-01

    Computed tomography (CT) is a relatively new radiographic technique which has become widely used in the medical field, where it is better known as computerized axial tomographic (CAT) scanning. This technique is also being adopted by the industrial radiographic community, although the greater range of densities, variation in samples sizes, plus possible requirement for finer resolution make it difficult to duplicate the excellent results that the medical scanners have achieved.

  8. Computed Tomography Status

    DOE R&D Accomplishments Database

    Hansche, B. D.

    1983-01-01

    Computed tomography (CT) is a relatively new radiographic technique which has become widely used in the medical field, where it is better known as computerized axial tomographic (CAT) scanning. This technique is also being adopted by the industrial radiographic community, although the greater range of densities, variation in samples sizes, plus possible requirement for finer resolution make it difficult to duplicate the excellent results that the medical scanners have achieved.

  9. Treatment modification of yttrium-90 radioembolization based on quantitative positron emission tomography/CT imaging.

    PubMed

    Chang, Ted T; Bourgeois, Austin C; Balius, Anastasia M; Pasciak, Alexander S

    2013-03-01

    Treatment activity for yttrium-90 ((90)Y) radioembolization when calculated by using the manufacturer-recommended technique is only partially patient-specific and may result in a subtumoricidal dose in some patients. The authors describe the use of quantitative (90)Y positron emission tomography/computed tomography as a tool to provide patient-specific optimization of treatment activity and evaluate this new method in a patient who previously received traditional (90)Y radioembolization. The modified treatment resulted in a 40-Gy increase in absorbed dose to tumor and complete resolution of disease in the treated area within 3 months.

  10. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems.

    PubMed

    Vaquero, Juan José; Kinahan, Paul

    2015-01-01

    Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges.

  11. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems.

    PubMed

    Vaquero, Juan José; Kinahan, Paul

    2015-01-01

    Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges. PMID:26643024

  12. Brain energy metabolism and dopaminergic function in Huntington's disease measured in vivo using positron emission tomography

    SciTech Connect

    Leenders, K.L.; Frackowiak, R.S.; Quinn, N.; Marsden, C.D.

    1986-01-01

    A 48-year-old man with typical Huntington's disease was investigated with computed tomography (CT) and positron emission tomography. Regional cerebral blood flow, oxygen extraction, oxygen and glucose utilization, L-Dopa uptake, and dopamine (D2) receptor binding were measured using several positron-labelled tracers. CT showed slight atrophy of the head of caudate but no cortical atrophy, although distinct frontal lobe dysfunction was present on psychometric testing. Oxygen and glucose metabolism and cerebral blood flow were decreased in the striata and to a lesser extent in frontal cortex. Cerebral blood flow was in the low normal range throughout the remainder of the brain. A normal metabolic ratio was found in all regions, since the changes in glucose utilization paralleled those in oxygen consumption. The capacity of the striatum to store dopamine as assessed by L-( YF)-fluorodopa uptake was normal, but dopamine (D2) receptor binding was decreased when compared to normal subjects.

  13. Quantitative measurement of myocardial blood flow with oxygen-15 water and positron computed tomography: an assessment of potential and problems. [Dogs

    SciTech Connect

    Huang, S.C.; Schwaiger, M.; Carson, R.E.; Carson, J.; Hansen, H.; Selin, C.; Hoffman, E.J.; MacDonald, N.; Schelbert, H.R.; Phelps, M.E.

    1985-06-01

    An in vivo measurement technique using /sup 15/O water and positron CT for quantitation of myocardial blood flow (MBF) was investigated. Oxygen-15 water radioactivity in myocardium was imaged with a NeuroECAT scanner for 10 min, starting at the time of tracer infusion. A separate scan following inhalation of /sup 15/O CO was obtained to label the blood pool and to help remove the contribution of radioactivity in the blood pool during the /sup 15/O water scans. The integrated projection technique was used for calculating MBF. The quantitative microsphere technique for measurement of MBF was performed along with the /sup 15/O water study to provide reference values, with which the MBF values by the in vivo technique were compared. Results of 12 experimental runs (in seven dogs) show the in vivo technique with /sup 15/O water and positron CT can give quantitative flow images of myocardium. The in vivo positron CT measurement was found to correlate well with the in vitro values (by microspheres) over the flow range of 40 to 150 ml/min/100 g.

  14. Clinical positron emission tomography/magnetic resonance imaging applications.

    PubMed

    von Schulthess, Gustav K; Kuhn, Felix Pierre; Kaufmann, Philipp; Veit-Haibach, Patrick

    2013-01-01

    Although clinical positron emission tomography (PET)/computed tomography (CT) applications were obvious and have completely replaced PET in oncology, clinical applications of PET/magnetic resonance (MR) are currently not clearly defined. This is due to the lack of clinical data, which is mainly because PET/MR technology is not clinically mature at this point. Open issues are technical and concern ease of obtaining PET attenuation correction maps, dealing with, for example, MR surface coil metal in the PET field-of-view and appropriate workflows leading to a cost-effective examination. All issues can be circumvented by using a shuttle-connected PET/CT-MR system, but the penalty is that simultaneous PET and MR imaging are not possible and potential motion between examinations may occur. Clinically, some systems installed worldwide start to have a reasonable bulk of clinical data. Preliminary results suggest that in oncology, PET/MR may have advantages over PET/CT in head and neck imaging. In liver imaging, more PET-positive lesions are seen on MR than on CT, but that does not mean that PET/MR is superior to PET/CT. Possibly in some settings where a contrast-enhanced PET/CT is needed to be diagnostic, PET/MR can be done without contrast media. Although PET/CT has virtually no role in brain imaging, this may be an important domain for PET/MR, particularly in dementia imaging. The role of PET/MR in the heart is as yet undefined, and much research will have to be done to elucidate this role. At this point, it is also not clear where the simultaneity afforded by a fully integrated PET/MR is really needed. Sequential data acquisition even on separate systems and consecutive software image fusion may well be appropriate. With the increasing installed base of systems, clinical data will be forthcoming and define more clearly where there is clinical value in PET/MR at an affordable price. PMID:23178084

  15. RPC: from High Energy Physics to Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Belli, G.; DeVecchi, C.; Giroletti, E.; Musitelli, G.; Nardò, R.; Necchi, M. M.; Pagano, D.; Ratti, S. P.; Riccardi, C.; Sani, G.; Torre, P.; Vitulo, P.; Viviani, C.

    2006-05-01

    A low cost gas-based charged particle detector, the Resistive Plate Counter (RPC) intensively used in fixed target and collider high energy experiments, is proposed as basic detector for Positron Emission Tomography. The performance of RPCs in terms of intrinsic space and time resolution and electronic pulse height response, makes it possible to transform standard RPCs into photon detectors and therefore to compensate for the photon sensitivity of scintillating crystals, when the efficiency of the complex crystal + photomultiplier is turned into standard quantum efficiency (q.e). Prototype multigap glass RPCs were developed which optimize γ detection efficiency and thus might substitute the traditional scintillators setups.

  16. [Positron emission tomography: a new modality in Brazilian nuclear medicine].

    PubMed

    Robilotta, Cecil Chow

    2006-01-01

    In nuclear medicine, radioactive substances are used to diagnose and treat disease. This medical specialty, that can provide information about the human body's physiologic and metabolic processes, has become a key diagnostic tool for the early detection of many different disorders, including various types of cancer. The present article describes the historical milestones in nuclear medicine; the basic physical principles underlying positron emission tomography (PET), which is an imaging method used to map the distribution of radiopharmaceuticals in the body for diagnostic and therapeutic purposes, and the current status of this modality in Brazil.

  17. Quantitative simultaneous positron emission tomography and magnetic resonance imaging

    PubMed Central

    Ouyang, Jinsong; Petibon, Yoann; Huang, Chuan; Reese, Timothy G.; Kolnick, Aleksandra L.; El Fakhri, Georges

    2014-01-01

    Abstract. Simultaneous positron emission tomography and magnetic resonance imaging (PET-MR) is an innovative and promising imaging modality that is generating substantial interest in the medical imaging community, while offering many challenges and opportunities. In this study, we investigated whether MR surface coils need to be accounted for in PET attenuation correction. Furthermore, we integrated motion correction, attenuation correction, and point spread function modeling into a single PET reconstruction framework. We applied our reconstruction framework to in vivo animal and patient PET-MR studies. We have demonstrated that our approach greatly improved PET image quality. PMID:26158055

  18. Studying the pulmonary circulation with positron emission tomography

    SciTech Connect

    Schuster, D.P.; Mintun, M.A.

    1988-01-01

    Positron emission tomography and appropriately labeled, short-lived radiopharmaceuticals can be used to study a variety of physiologic processes within the lung. Recently, methods have been developed to measure regional pulmonary blood flow and pulmonary vascular permeability to protein macromolecules. The advantages of these techniques include accurate quantitation, regional data available in an image format, noninvasiveness, and repeatability. These methods have recently been applied to studies of hypoxic vasoconstriction, pulmonary edema, and chronic obstructive lung disease in man and large experimental animals. Although the technology is complex and requires the integration of people from a variety of disciplines, these methods offer a unique opportunity to study in vivo lung physiology.

  19. A Semiconductor-Based Positron Emission Tomography System

    NASA Astrophysics Data System (ADS)

    Oxley, D. C.; Boston, A. J.; Boston, H. C.; Cresswell, J. R.; Grint, A. N.; Harkness, L. J.; Jones, M.; Judson, D. S.; Nolan, P. J.; Slee, M.; Unsworth, C.; Lazarus, I. H.

    2009-12-01

    This paper shall summarize the research conducted employing the high-purity germanium based small animal imaging system, SmartPET (SMall Animal Reconstructive Tomograph for Positron Emission Tomography). Geant4 simulations of the experimental setup were carried out in order to derive novel analysis procedures and quantify the system limitations. In this paper, we will focus on a gamma ray tracking approach devised to overcome germanium's high Compton scattering cross-section and on imaging challenging and complex phantom geometries. The potential of the developed tools and of the system itself will be discussed.

  20. Direct conversion semiconductor detectors in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Cates, Joshua W.; Gu, Yi; Levin, Craig S.

    2015-05-01

    Semiconductor detectors are playing an increasing role in ongoing research to improve image resolution, contrast, and quantitative accuracy in preclinical applications of positron emission tomography (PET). These detectors serve as a medium for direct detection of annihilation photons. Early clinical translation of this technology has shown improvements in image quality and tumor delineation for head and neck cancers, relative to conventional scintillator-based systems. After a brief outline of the basics of PET imaging and the physical detection mechanisms for semiconductor detectors, an overview of ongoing detector development work is presented. The capabilities of semiconductor-based PET systems and the current state of these devices are discussed.

  1. {sup 18}F-Choline Positron Emission Tomography/Computed Tomography–Driven High-Dose Salvage Radiation Therapy in Patients With Biochemical Progression After Radical Prostatectomy: Feasibility Study in 60 Patients

    SciTech Connect

    D'Angelillo, Rolando M.; Sciuto, Rosa; Ramella, Sara; Papalia, Rocco; Jereczek-Fossa, Barbara A.; Trodella, Luca E.; Fiore, Michele; Gallucci, Michele; Maini, Carlo L.; Trodella, Lucio

    2014-10-01

    Purpose: To retrospectively review data of a cohort of patients with biochemical progression after radical prostatectomy, treated according to a uniform institutional treatment policy, to evaluate toxicity and feasibility of high-dose salvage radiation therapy (80 Gy). Methods and Materials: Data on 60 patients with biochemical progression after radical prostatectomy between January 2009 and September 2011 were reviewed. The median value of prostate-specific antigen before radiation therapy was 0.9 ng/mL. All patients at time of diagnosis of biochemical recurrence underwent dynamic {sup 18}F-choline positron emission tomography/computed tomography (PET/CT), which revealed in all cases a local recurrence. High-dose salvage radiation therapy was delivered up to total dose of 80 Gy to 18F-choline PET/CT-positive area. Toxicity was recorded according to the Common Terminology Criteria for Adverse Events, version 3.0, scale. Results: Treatment was generally well tolerated: 54 patients (90%) completed salvage radiation therapy without any interruption. Gastrointestinal grade ≥2 acute toxicity was recorded in 6 patients (10%), whereas no patient experienced a grade ≥2 genitourinary toxicity. No grade 4 acute toxicity events were recorded. Only 1 patient (1.7%) experienced a grade 2 gastrointestinal late toxicity. With a mean follow-up of 31.2 months, 46 of 60 patients (76.6%) were free of recurrence. The 3-year biochemical progression-free survival rate was 72.5%. Conclusions: At early follow-up, {sup 18}F-choline PET/CT-driven high-dose salvage radiation therapy seems to be feasible and well tolerated, with a low rate of toxicity.

  2. Positron Emission Tomography/Computed Tomography Findings During Therapy Predict Outcome in Patients With Diffuse Large B-Cell Lymphoma Treated With Chemotherapy Alone but Not in Those Who Receive Consolidation Radiation

    SciTech Connect

    Dabaja, Bouthaina S.; Hess, Kenneth; Shihadeh, Ferial; Podoloff, Donald A.; Medeiros, L. Jeffrey; Mawlawi, Osama; Arzu, Isidora; Oki, Yasuhiro; Hagemeister, Fredrick B.; Fayad, Luis E.; Rodriguez, Alma

    2014-06-01

    Purpose: To assess the value of mid-therapy positron emission tomography (PET) findings for predicting survival and disease progression in patients with diffuse large B-cell lymphoma, considering type of therapy (chemotherapy with or without radiation therapy). Methods and Materials: We retrospectively evaluated 294 patients with histologically confirmed diffuse large B-cell lymphoma with respect to age, sex, disease stage, International Prognostic Index score, mid-therapy PET findings (positive or negative), and disease status after therapy and at last follow-up. Overall survival (OS) and progression-free survival (PFS) were compared according to mid-therapy PET findings. Results: Of the 294 patients, 163 (55%) were male, 144 (49%) were age >61 years, 110 (37%) had stage I or II disease, 219 (74%) had International Prognostic Index score ≤2, 216 (73%) received ≥6 cycles of rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone, and 88 (30%) received consolidation radiation therapy. Five-year PFS and OS rates were associated with mid-therapy PET status: PFS was 78% for those with PET-negative (PET−) disease versus 63% for PET-positive (PET+) disease (P=.024), and OS was 82% for PET− versus 62% for PET+ (P<.002). These associations held true for patients who received chemotherapy only (PFS 71% for PET− vs 52% PET+ [P=.012], OS 78% for PET− and 51% for PET+ [P=.0055]) but not for those who received consolidation radiation therapy (PFS 84% PET− vs 81% PET+ [P=.88]; OS 90% PET− vs 81% PET+ [P=.39]). Conclusion: Mid-therapy PET can predict patient outcome, but the use of consolidation radiation therapy may negate the significance of mid-therapy findings.

  3. Positron Emission Tomography imaging with the SmartPET system

    NASA Astrophysics Data System (ADS)

    Cooper, R. J.; Boston, A. J.; Boston, H. C.; Cresswell, J. R.; Grint, A. N.; Harkness, L. J.; Nolan, P. J.; Oxley, D. C.; Scraggs, D. P.; Mather, A. R.; Lazarus, I.; Simpson, J.

    2009-07-01

    The Small Animal Reconstruction Tomograph for Positron Emission Tomography (SmartPET) project is the development of a small animal Positron Emission Tomography (PET) demonstrator based on the use of High-Purity Germanium (HPGe) detectors and state of the art digital electronics. The experimental results presented demonstrate the current performance of this unique system. By performing high precision measurements of one of the SmartPET HPGe detectors with a range of finely collimated gamma-ray beams the response of the detector as a function of gamma-ray interaction position has been quantified, facilitating the development of parametric Pulse Shape Analysis (PSA) techniques and algorithms for the correction of imperfections in detector performance. These algorithms have then been applied to data from PET imaging measurements using two such detectors in conjunction with a specially designed rotating gantry. In this paper we show how the use of parametric PSA approaches allows over 60% of coincident events to be processed and how the nature and complexity of an event has direct implications for the quality of the resulting image.

  4. Positron Emission Tomography for the Assessment of Myocardial Viability

    PubMed Central

    2010-01-01

    Executive Summary In July 2009, the Medical Advisory Secretariat (MAS) began work on Non-Invasive Cardiac Imaging Technologies for the Assessment of Myocardial Viability, an evidence-based review of the literature surrounding different cardiac imaging modalities to ensure that appropriate technologies are accessed by patients undergoing viability assessment. This project came about when the Health Services Branch at the Ministry of Health and Long-Term Care asked MAS to provide an evidentiary platform on effectiveness and cost-effectiveness of non-invasive cardiac imaging modalities. After an initial review of the strategy and consultation with experts, MAS identified five key non-invasive cardiac imaging technologies that can be used for the assessment of myocardial viability: positron emission tomography, cardiac magnetic resonance imaging, dobutamine echocardiography, and dobutamine echocardiography with contrast, and single photon emission computed tomography. A 2005 review conducted by MAS determined that positron emission tomography was more sensitivity than dobutamine echocardiography and single photon emission tomography and dominated the other imaging modalities from a cost-effective standpoint. However, there was inadequate evidence to compare positron emission tomography and cardiac magnetic resonance imaging. Thus, this report focuses on this comparison only. For both technologies, an economic analysis was also completed. The Non-Invasive Cardiac Imaging Technologies for the Assessment of Myocardial Viability is made up of the following reports, which can be publicly accessed at the MAS website at: www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.html Positron Emission Tomography for the Assessment of Myocardial Viability: An Evidence-Based Analysis Magnetic Resonance Imaging for the Assessment of Myocardial Viability: An Evidence-Based Analysis Objective The objective of this analysis is to assess the

  5. Computed Tomography Measuring Inside Machines

    NASA Technical Reports Server (NTRS)

    Wozniak, James F.; Scudder, Henry J.; Anders, Jeffrey E.

    1995-01-01

    Computed tomography applied to obtain approximate measurements of radial distances from centerline of turbopump to leading edges of diffuser vanes in turbopump. Use of computed tomography has significance beyond turbopump application: example of general concept of measuring internal dimensions of assembly of parts without having to perform time-consuming task of taking assembly apart and measuring internal parts on coordinate-measuring machine.

  6. An advanced fully 3D OSEM reconstruction for positron emission tomography

    NASA Astrophysics Data System (ADS)

    Yun, Ming-Kai; Liu, Shuang-Quan; Shan, Bao-Gi; Wei, Long

    2010-02-01

    A fully 3D OSEM reconstruction method for positron emission tomography (PET) based on symmetries and sparse matrix technique is described. Great savings in both storage space and computation time were achieved by exploiting the symmetries of scanner and sparseness of the system matrix. More reduction of storage requirement was obtained by introducing the approximation of system matrix. Iteration-filter was performed to restrict image noise in reconstruction. Performances of simulation data and phantom data got from Micro-PET (Type: Epuls-166) demonstrated that similar image quality was achieved using the approximation of the system matrix.

  7. A Review on Segmentation of Positron Emission Tomography Images

    PubMed Central

    Foster, Brent; Bagci, Ulas; Mansoor, Awais; Xu, Ziyue; Mollura, Daniel J.

    2014-01-01

    Positron Emission Tomography (PET), a non-invasive functional imaging method at the molecular level, images the distribution of biologically targeted radiotracers with high sensitivity. PET imaging provides detailed quantitative information about many diseases and is often used to evaluate inflammation, infection, and cancer by detecting emitted photons from a radiotracer localized to abnormal cells. In order to differentiate abnormal tissue from surrounding areas in PET images, image segmentation methods play a vital role; therefore, accurate image segmentation is often necessary for proper disease detection, diagnosis, treatment planning, and follow-ups. In this review paper, we present state-of-the-art PET image segmentation methods, as well as the recent advances in image segmentation techniques. In order to make this manuscript self-contained, we also briefly explain the fundamentals of PET imaging, the challenges of diagnostic PET image analysis, and the effects of these challenges on the segmentation results. PMID:24845019

  8. Central Nervous System Drug Evaluation Using Positron Emission Tomography

    PubMed Central

    Maeda, Jun; Shimada, Hitoshi; Nogami, Tsuyoshi; Arakawa, Ryosuke; Takano, Harumasa; Higuchi, Makoto; Ito, Hiroshi; Okubo, Yoshiro; Suhara, Tetsuya

    2011-01-01

    In conventional pharmacological research in the field of mental disorders, pharmacological effect and dose have been estimated by ethological approach and in vitro data of affinity to the site of action. In addition, the frequency of administration has been estimated from drug kinetics in blood. However, there is a problem regarding an objective index of drug effects in the living body. Furthermore, the possibility that the concentration of drug in blood does not necessarily reflect the drug kinetics in target organs has been pointed out. Positron emission tomography (PET) techniques have made progress for more than 20 years, and made it possible to measure the distribution and kinetics of small molecule components in living brain. In this article, we focused on rational drug dosing using receptor occupancy and proof-of-concept of drugs in the drug development process using PET. PMID:23431048

  9. Brain abnormalities in murderers indicated by positron emission tomography.

    PubMed

    Raine, A; Buchsbaum, M; LaCasse, L

    1997-09-15

    Murderers pleading not guilty by reason of insanity (NGRI) are thought to have brain dysfunction, but there have been no previous studies reporting direct measures of both cortical and subcortical brain functioning in this specific group. Positron emission tomography brain imaging using a continuous performance challenge task was conducted on 41 murderers pleading not guilty by reason of insanity and 41 age- and sex-matched controls. Murderers were characterized by reduced glucose metabolism in the prefrontal cortex, superior parietal gyrus, left angular gyrus, and the corpus callosum, while abnormal asymmetries of activity (left hemisphere lower than right) were also found in the amygdala, thalamus, and medial temporal lobe. These preliminary findings provide initial indications of a network of abnormal cortical and subcortical brain processes that may predispose to violence in murderers pleading NGRI.

  10. Positron emission tomography (PET) advances in neurological applications

    NASA Astrophysics Data System (ADS)

    Sossi, V.

    2003-09-01

    Positron Emission Tomography (PET) is a functional imaging modality used in brain research to map in vivo neurotransmitter and receptor activity and to investigate glucose utilization or blood flow patterns both in healthy and disease states. Such research is made possible by the wealth of radiotracers available for PET, by the fact that metabolic and kinetic parameters of particular processes can be extracted from PET data and by the continuous development of imaging techniques. In recent years great advancements have been made in the areas of PET instrumentation, data quantification and image reconstruction that allow for more detailed and accurate biological information to be extracted from PET data. It is now possible to quantitatively compare data obtained either with different tracers or with the same tracer under different scanning conditions. These sophisticated imaging approaches enable detailed investigation of disease mechanisms and system response to disease and/or therapy.

  11. Studies of the brain cannabinoid system using positron emission tomography

    SciTech Connect

    Gatley, S.J.; Volkow, N.D.

    1995-10-01

    Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies of cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available.

  12. Positron Emission Tomography: state of the art and future developments

    NASA Astrophysics Data System (ADS)

    Pizzichemi, M.

    2016-08-01

    Positron emission tomography (PET) plays a fundamental role in medical imaging, with a wide range of applications covering, among the others, oncology, neurology and cardiology. PET has undergone a steady technological evolution since its introduction in mid 20th century, from the development of 3D PET in the late 1980s, to the invention of PET/CT in the 1990s and more recently with the introduction of PET/MR scanners. The current research topics aiming to develop the next generation of PET scanners are summarized in this paper, focusing on the efforts to increase the sensitivity of the detectors, as long as improving their timing, spatial and energy resolutions, with the final goal of reducing the amount of radioactive dose received by the patients and the duration of the exams while improving at the same time the detectability of lesions.

  13. Differential diagnosis of depression: relevance of positron emission tomography

    SciTech Connect

    Schwartz, J.M.; Baxter, L.R. Jr.; Mazziotta, J.C.; Gerner, R.H.; Phelps, M.E.

    1987-09-11

    The proper differential diagnosis of depression is important. A large body of research supports the division of depressive illness into bipolar and unipolar subtypes with respect to demographics, genetics, treatment response, and neurochemical mechanisms. Optimal treatment is different for unipolar and bipolar depressions. Treating a patient with bipolar depression as one would a unipolar patient may precipitate a serious manic episode or possibly even permanent rapid cycling disorder. The clinical distinction between these disorders, while sometimes difficult, can often be achieved through an increased diagnostic suspicion concerning a personal or family history of mania. Positron emission tomography and the FDG method, which allow in vivo study of the glucose metabolic rates for discrete cerebral structures, provide new evidence that bipolar and unipolar depression are two different disorders.

  14. Chelators for copper radionuclides in positron emission tomography radiopharmaceuticals†

    PubMed Central

    Cai, Zhengxin; Anderson, Carolyn J.

    2014-01-01

    The development of chelating agents for copper radionuclides in positron emission tomography radiopharmaceuticals has been a highly active and important area of study in recent years. The rapid evolution of chelators has resulted in highly specific copper chelators that can be readily conjugated to biomolecules and efficiently radiolabeled to form stable complexes in vivo. Chelators are not only designed for conjugation to monovalent biomolecules but also for incorporation into multivalent targeting ligands such as theranostic nanoparticles. These advancements have strengthened the role of copper radionuclides in the fields of nuclear medicine and molecular imaging. This review emphasizes developments of new copper chelators that have most greatly advanced the field of copper-based radiopharmaceuticals over the past 5 years. PMID:24347474

  15. Positron emission tomography for the evaluation and treatment of cardiomyopathy.

    PubMed

    Shah, Palak; Choi, Brian G; Mazhari, Ramesh

    2011-06-01

    Congestive heart failure accounts for tremendous morbidity and mortality worldwide. There are numerous causes of cardiomyopathy, the most common of which is coronary artery disease. Positron emission tomography (PET) has an established and expanding role in the evaluation of patients with cardiomyopathy. The specific application of PET to hypertrophic cardiomyopathy, cardiac sarcoidosis, and diabetic cardiomyopathy has been studied extensively and promises to be a useful tool for managing these patients. Furthermore, evaluating the efficacy of standard treatments for congestive heart failure is important as health care costs continue to rise. Recently, there have been significant developments in the field of cardiovascular stem cell research. Familiarity with the mechanisms by which stem cells benefit patients with cardiovascular disease is the key to understanding these advances. Molecular imaging techniques including PET/CT imaging play an important role in monitoring stem cell therapy in both animals and humans. These noninvasive imaging techniques will be highlighted in this paper.

  16. Positron emission tomography in the study of hepatic encephalopathy.

    PubMed

    Lockwood, A H

    1998-12-01

    Positron-emission tomography (PET) is a quantitative technique that produces images of biological or physiological processes. The nature of the image depends on the tracer used: common tracers used to study HE include 18F-fluordeoxyglucose, a marker of glucose metabolism; 15O-water, a marker of cerebral blood flow; and 13N-ammonia, a marker of ammonia metabolism. Combined blood flow and ammonia metabolism studies can be used to calculate the permeability surface area product for ammonia at the blood brain barrier. To take full advantage of PET, the data should be analyzed using one of the several sophisticated image processing and analysis techniques that are available. Thus, PET is an ideal technique to evaluate ammonia metabolism and, because of a close linkage of blood flow and glucose metabolism with neural activity, to investigate the neural response to drugs and other treatments and to examine neural systems that mediate specific tasks that are impaired in patients with HE.

  17. Wilson's disease studied with FDG and positron emission tomography

    SciTech Connect

    Hawkins, R.A.; Mazziotta, J.C.; Phelps, M.E.

    1987-11-01

    Four patients with Wilson's disease and eight normal controls were studied with 2-deoxy-2-(/sup 18/F)fluoro-D-glucose (FDG) and positron emission tomography (PET). The patients had diffusely reduced glucose metabolism in all brain regions evaluated compared with controls, with the exception of the thalamus. The ratio of the cerebral metabolic rate for glucose in the lenticular nuclei to hemispheres declined from 1.23 (+/- 0.14 SD) in controls to 1.03 (+/- 0.06) (p less than 0.025) in Wilson's disease patients. Compared with Huntington's disease, the PET FDG results in Wilson's disease indicate relatively less focal involvement of the caudate nucleus, more severe focal changes in the lenticular nuclei, and more significant global changes in glucose metabolism.

  18. The Next Generation of Positron Emission Tomography Radiopharmaceuticals in Oncology

    PubMed Central

    Rice, Samuel L.; Roney, Celeste A.; Daumar, Pierre; Lewis, Jason S.

    2015-01-01

    Although 18F-fluorodeoxyglucose (18F-FDG) is still the most widely used positron emission tomography (PET) radiotracer, there are a few well-known limitations to its use. The last decade has seen the development of new PET probes for in vivo visualization of specific molecular targets, along with important technical advances in the production of positron-emitting radionuclides and their related labeling methods. As such, a broad range of new PET tracers are in preclinical development or have recently entered clinical trials. The topics covered in this review include labeling methods, biological targets, and the most recent preclinical or clinical data of some of the next generation of PET radiopharmaceuticals. This review, which is by no means exhaustive, has been separated into sections related to the PET radionuclide used for radiolabeling: fluorine-18, for the labeling of agents such as FACBC, FDHT, choline, and Galacto-RGD; carbon-11, for the labeling of choline; gallium-68, for the labeling of peptides such as DOTATOC and bombesin analogs; and the long-lived radionuclides iodine-124 and zirconium-89 for the labeling of monoclonal antibodies cG250, and J591 and trastuzumab, respectively. PMID:21624561

  19. The next generation of positron emission tomography radiopharmaceuticals in oncology.

    PubMed

    Rice, Samuel L; Roney, Celeste A; Daumar, Pierre; Lewis, Jason S

    2011-07-01

    Although (18)F-fluorodeoxyglucose ((18)F-FDG) is still the most widely used positron emission tomography (PET) radiotracer, there are a few well-known limitations to its use. The last decade has seen the development of new PET probes for in vivo visualization of specific molecular targets, along with important technical advances in the production of positron-emitting radionuclides and their related labeling methods. As such, a broad range of new PET tracers are in preclinical development or have recently entered clinical trials. The topics covered in this review include labeling methods, biological targets, and the most recent preclinical or clinical data of some of the next generation of PET radiopharmaceuticals. This review, which is by no means exhaustive, has been separated into sections related to the PET radionuclide used for radiolabeling: fluorine-18, for the labeling of agents such as FACBC, FDHT, choline, and Galacto-RGD; carbon-11, for the labeling of choline; gallium-68, for the labeling of peptides such as DOTATOC and bombesin analogs; and the long-lived radionuclides iodine-124 and zirconium-89 for the labeling of monoclonal antibodies cG250, and J591 and trastuzumab, respectively.

  20. Computed tomography of the body

    SciTech Connect

    Lee, J.K.T.; Stanley, R.J.

    1982-01-01

    By the end of the fourth year of clinical use, the number of articles dealing with computed body tomography (CT) had increased exponentially. Over 100 articles were published during this review period. This chapter examines new application of CT in the neck, musculoskeletal system and the breast. The chapter begins with an examination of the technical aspects of the operation and performance of CT scanners during this review period. The anatomy of various regions of the body, such as neck, chest, liver and biliary system, genitourinary tract, and pelvis are examined. Brief discussions of pediatric computed tomography, computed tomography-guided biopsy, and radiation therapy are presented. (KRM)

  1. Positron emission tomography in the study of human tumors.

    PubMed

    Beaney, R P

    1984-10-01

    To increase our understanding of cancer and improve cancer treatment on a rational basis we need to identify both qualitative and quantitative differences between normal and neoplastic tissue. The multimodality approach to cancer treatment includes radiotherapy, chemotherapy, hyperthermia, and immunotherapy. Most of the data on which we base our therapeutic strategies have been derived from in vitro studies or animal tumor models. More information is required on the physiology of in vivo human tumors and their response to therapy. Positron emission tomography allows the regional tissue concentration of a positron emitting radionuclide to be measured in absolute units. If valid tracer models can be formulated that accurately describe the fate of an administered "biological" tracer then the physiological process under investigation can be measured quantitatively. The sequential inhalation of C15O2, 15O2, and 11CO allows regional tissue blood flow, oxygen utilization and blood volume to be measured in absolute units. Tissue perfusion, a measure of nutrient (eg, oxygen) supply, drug delivery, or a means of heat dissipation, is of immense importance to oncologists. The oxygen-15 technique has been used not only to study regional blood flow and oxygen utilization in both tumor and normal tissue but also their response to therapeutic intervention. In those studies were tracer models are thought to be less than complete (eg, due to insufficient biological data) then only a semiquantitative or qualitative assessment of the pathophysiological state may be possible. In this respect, tumor function has been characterized by the rate of uptake of 18F-2-deoxyglucose. This technique has provided a means of tumor grading and differentiating between radiation-induced tissue necrosis and tumor recurrence. Metabolic imaging with labeled amino acids appears particularly useful in the delineation of tumor extent. Blood brain barrier integrity and the pharmacokinetics of cytotoxic drugs

  2. Cervical Gross Tumor Volume Dose Predicts Local Control Using Magnetic Resonance Imaging/Diffusion-Weighted Imaging—Guided High-Dose-Rate and Positron Emission Tomography/Computed Tomography—Guided Intensity Modulated Radiation Therapy

    SciTech Connect

    Dyk, Pawel; Jiang, Naomi; Sun, Baozhou; DeWees, Todd A.; Fowler, Kathryn J.; Narra, Vamsi; Garcia-Ramirez, Jose L.; Schwarz, Julie K.; Grigsby, Perry W.

    2014-11-15

    Purpose: Magnetic resonance imaging/diffusion weighted-imaging (MRI/DWI)-guided high-dose-rate (HDR) brachytherapy and {sup 18}F-fluorodeoxyglucose (FDG) — positron emission tomography/computed tomography (PET/CT)-guided intensity modulated radiation therapy (IMRT) for the definitive treatment of cervical cancer is a novel treatment technique. The purpose of this study was to report our analysis of dose-volume parameters predicting gross tumor volume (GTV) control. Methods and Materials: We analyzed the records of 134 patients with International Federation of Gynecology and Obstetrics stages IB1-IVB cervical cancer treated with combined MRI-guided HDR and IMRT from July 2009 to July 2011. IMRT was targeted to the metabolic tumor volume and lymph nodes by use of FDG-PET/CT simulation. The GTV for each HDR fraction was delineated by use of T2-weighted or apparent diffusion coefficient maps from diffusion-weighted sequences. The D100, D90, and Dmean delivered to the GTV from HDR and IMRT were summed to EQD2. Results: One hundred twenty-five patients received all irradiation treatment as planned, and 9 did not complete treatment. All 134 patients are included in this analysis. Treatment failure in the cervix occurred in 24 patients (18.0%). Patients with cervix failures had a lower D100, D90, and Dmean than those who did not experience failure in the cervix. The respective doses to the GTV were 41, 58, and 136 Gy for failures compared with 67, 99, and 236 Gy for those who did not experience failure (P<.001). Probit analysis estimated the minimum D100, D90, and Dmean doses required for ≥90% local control to be 69, 98, and 260 Gy (P<.001). Conclusions: Total dose delivered to the GTV from combined MRI-guided HDR and PET/CT-guided IMRT is highly correlated with local tumor control. The findings can be directly applied in the clinic for dose adaptation to maximize local control.

  3. Positron emission tomography for measurement of copper fluxes in live organisms.

    PubMed

    Peng, Fangyu

    2014-05-01

    Copper is an essential nutrient for the physiology of live organisms, but excessive copper can be harmful. Copper radioisotopes are used for measurement of copper fluxes in live organisms using a radioactivity assay of body fluids or whole-body positron emission tomography (PET). Hybrid positron emission tomography-computed tomography (PET/CT) is a versatile tool for real-time measurement of copper fluxes combining the high sensitivity and quantification capability of PET and the superior spatial resolution of CT for anatomic localization of radioactive tracer activity. Kinetic analysis of copper metabolism in the liver and extrahepatic tissues of Atp7b(-/-) knockout mice, a mouse model of Wilson's disease, demonstrated the feasibility of measuring copper fluxes in live organisms with PET/CT using copper-64 chloride ((64) CuCl2 ) as a radioactive tracer ((64) CuCl2 -PET/CT). (64) CuCl2 -PET/CT holds potential as a useful tool for the diagnosis of inherited and acquired human copper metabolism disorders and for monitoring the effects of copper-modulating therapy.

  4. Computed tomography of the prostate.

    PubMed

    Van Engelshoven, J M; Kreel, L

    1979-02-01

    The conventional anatomy of the prostate is reviewed and the computed tomography (CT) anatomy described and illustrated. The results of 55 "normal" cases were analyzed for size and relationship to the symphysis pubis, retropubic space, and bladder, as shown on CT sections correlating the features with age and possible urinary symptoms. Attention is also drawn to the differences between phleboliths and prostatic calcification. Computed tomography is an effective method of demonstrating the prostate and surrounding structures and of assessing prostatic enlargement.

  5. Clinical Utility of Positron Emission Tomography Magnetic Resonance Imaging (PET-MRI) in Gastrointestinal Cancers.

    PubMed

    Matthews, Robert; Choi, Minsig

    2016-01-01

    Anatomic imaging utilizing both CT (computed tomography) and MRI (magnetic resonance imaging) limits the assessment of cancer metastases in lymph nodes and distant organs while functional imaging like PET (positron emission tomography) scan has its limitation in spatial resolution capacity. Hybrid imaging utilizing PET-CT and PET-MRI are novel imaging modalities that are changing the current landscape in cancer diagnosis, staging, and treatment response. MRI has shown to have higher sensitivity in soft tissue, head and neck pathology, and pelvic disease, as well as, detecting small metastases in the liver and bone compared to CT. Combining MRI with PET allows for detection of metastases that may have been missed with current imaging modalities. In this review, we will examine the clinical utility of FDG PET-MRI in the diagnosis and staging of gastrointestinal cancers with focus on esophageal, stomach, colorectal, and pancreatic cancers. We will also explore its role in treatment response and future directions associated with it.

  6. [Inflammatory activity in Takayasu arteritis. Detection through positron emission tomography (PET)].

    PubMed

    Alexánderson, Erick; Soto, María Elena; Ricalde, Alejandro; Meave, Aloha; Reyes, Pedro

    2005-01-01

    Takayasu arteritis (TA) is a chronic disease that affects mainly the aorta. Its etiology is still unknown, nevertheless it predominates in women and initiates primarily in the youth. This disease seems to have two different stages, an early stage that is characterized by an inflammatory process and a later stage characterized by vascular occlusion. Unitl now, diagnosis and classification of TA are made clinically, based on ACR; criteria and imaging studies as computed tomography and aorta angiographies. Currently, new imaging, non invasive studies, such as magnetic resonance (MRI) and positron emission tomography (PET) are being used. PET technique could be helpful in the diagnosis and detection of inflammatory activity in patients with TA because of its capacity to detect increased metabolism. We present the case of a female patient with TA diagnosis, which demonstrated clinical inflammatory activity that was corroborated by laboratory studies, MRI and PET. PMID:15909745

  7. 18F-FDG positron emission tomography in oncology: main indications.

    PubMed

    Vercher-Conejero, J L; Gámez Cenzano, C

    2016-01-01

    The development of molecular and functional imaging with new imaging techniques such as computed tomography, magnetic resonance imaging, and positron emission tomography (PET) among others, has greatly improved the detection of tumors, tumor staging, and the detection of possible recurrences. Furthermore, the combination of these different imaging modalities and the continual development of radiotracers for PET have advanced our understanding and knowledge of the different pathophysiological processes in cancer, thereby helping to make treatment more efficacious, improving patients' quality of life, and increasing survival. PET is one of the imaging techniques that has attracted the most interest in recent years for its diagnostic capabilities. Its ability to anatomically locate pathologic foci of metabolic activity has revolutionized the detection and staging of many tumors, exponentially broadening its potential indications not only in oncology but also in other fields such as cardiology, neurology, and inflammatory and infectious diseases. PMID:27184919

  8. 18F-FDG positron emission tomography in oncology: main indications.

    PubMed

    Vercher-Conejero, J L; Gámez Cenzano, C

    2016-01-01

    The development of molecular and functional imaging with new imaging techniques such as computed tomography, magnetic resonance imaging, and positron emission tomography (PET) among others, has greatly improved the detection of tumors, tumor staging, and the detection of possible recurrences. Furthermore, the combination of these different imaging modalities and the continual development of radiotracers for PET have advanced our understanding and knowledge of the different pathophysiological processes in cancer, thereby helping to make treatment more efficacious, improving patients' quality of life, and increasing survival. PET is one of the imaging techniques that has attracted the most interest in recent years for its diagnostic capabilities. Its ability to anatomically locate pathologic foci of metabolic activity has revolutionized the detection and staging of many tumors, exponentially broadening its potential indications not only in oncology but also in other fields such as cardiology, neurology, and inflammatory and infectious diseases.

  9. Hemiballismus: Study of a case using positron emission tomography with 18fluoro-2-deoxyglucose

    SciTech Connect

    Dubinsky, R.M.; Greenberg, M.; Di Chiro, G.; Baker, M.; Hallett, M. )

    1989-01-01

    A 64-year-old man had right-sided persistent hemiballismus. Cerebral computed tomography (CT) and 0.5-T magnetic resonance imaging (MRI) showed no abnormalities, but 1.5-T MRI showed decreased signal intensity of the putamina, greater on the left than on the right. The subthalamic area was normal on CT and MRI. Positron emission tomography with 18fluoro2-deoxyglucose showed marked hypometabolism of the left putamen (60% of the right) and hypermetabolism of the left parietal lobe (138% of the right). The decreased metabolism of the left putamen may indicate a reduction in neuronal firing. The pathophysiology of the hemiballismus in this case may be loss of tonic inhibition of the lateral globus pallidus from the putamen, leading in turn to greater inhibition of the subthalamic nucleus, less excitation of the medial globus pallidus, and less inhibition of the thalamus and motor cortex, and thus allowing expression of the ballistic movements.

  10. Positron emission tomography radiopharmaceuticals for imaging brain Beta-amyloid.

    PubMed

    Vallabhajosula, Shankar

    2011-07-01

    Alzheimer's disease (AD) is defined histologically by the presence of extracellular β-amyloid (Aβ) plaques and intraneuronal neurofibrillary tangles in the cerebral cortex. The diagnosis of dementia, along with the prediction of who will develop dementia, has been assisted by magnetic resonance imaging and positron emission tomography (PET) by using [(18)F]fluorodeoxyglucose (FDG). These techniques, however, are not specific for AD. Based on the chemistry of histologic staining dyes, several Aβ-specific positron-emitting radiotracers have been developed to image neuropathology of AD. Among these, [(11)C]PiB is the most studied Aβ-binding PET radiopharmaceutical in the world. The histologic and biochemical specificity of PiB binding across different regions of the AD brain was demonstrated by showing a direct correlation between Aβ-containing amyloid plaques and in vivo [(11)C]PiB retention measured by PET imaging. Because (11)C is not ideal for commercialization, several (18)F-labeled tracers have been developed. At this time, [(18)F]3'-F-PiB (Flutemetamol), (18)F-AV-45 (Florbetapir), and (18)F-AV-1 (Florbetaben) are undergoing extensive phase II and III clinical trials. This article provides a brief review of the amyloid biology and chemistry of Aβ-specific (11)C and (18)F-PET radiopharmaceuticals. Clinical trials have clearly documented that PET radiopharmaceuticals capable of assessing Aβ content in vivo in the brains of AD subjects and subjects with mild cognitive impairment will be important as diagnostic agents to detect in vivo amyloid brain pathology. In addition, PET amyloid imaging will also help test the amyloid cascade hypothesis of AD and as an aid to assess the efficacy of antiamyloid therapeutics currently under development in clinical trials.

  11. 77 FR 71802 - Guidance on Investigational New Drug Applications for Positron Emission Tomography Drugs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-04

    ... HUMAN SERVICES Food and Drug Administration Guidance on Investigational New Drug Applications for... ``Investigational New Drug Applications for Positron Emission Tomography (PET) Drugs.'' The guidance is intended to assist manufacturers of PET drugs in submitting investigational new drug applications (INDs)....

  12. Positron Emission Tomography for the Assessment of Myocardial Viability

    PubMed Central

    2005-01-01

    ventricular (LV) viability is, therefore, critical in deciding whether a patient with coronary artery disease and severe LV dysfunction should undergo revascularization, receive a heart transplant, or remain on medical therapy. Assessment of Left Ventricular Viability Techniques for assessing myocardial viability depend on the measurement of a specific characteristic of viable myocytes such as cell membrane integrity, preserved metabolism, mitochondria integrity, and preserved contractile reserve. In Ontario, single photon emission computed tomography (SPECT) using radioactive 201thallium is the most commonly used technique followed by dobutamine echocardiography. Newer techniques include SPECT using technetium tracers, cardiac magnetic resonance imaging, and PET, the subject of this review. Positron Emission Tomography PET is a nuclear imaging technique based on the metabolism of radioactive analogs of normal substrates such as glucose and water. The radiopharmaceutical used most frequently in myocardial viability assessment is F18 fluorodeoxyglucose (FDG), a glucose analog. The procedure involves the intravenous administration of FDG under controlled glycemic conditions, and imaging with a PET scanner. The images are reconstructed using computer software and analyzed visually or semi-quantitatively, often in conjunction with perfusion images. Dysfunctional but stunned myocardium is characterized by normal perfusion and normal FDG uptake; hibernating myocardium exhibits reduced perfusion and normal/enhanced FDG uptake (perfusion/metabolism mismatch), whereas scar tissue is characterized by reduction in both perfusion and FDG uptake (perfusion/metabolism match). Review Strategy The Medical Advisory Secretariat used a search strategy similar to that used in the 2001 ICES review to identify English language reports of health technology assessments and primary studies in selected databases, published from January 1, 2001 to April 20, 2005. Patients of interest were those with

  13. Exploring Spatial Overlap of High-Uptake Regions Derived From Dual Tracer Positron Emission Tomography–Computer Tomography Imaging Using 18F-Fluorodeoxyglucose and 18F-Fluorodeoxythymidine in Nonsmall Cell Lung Cancer Patients

    PubMed Central

    Liu, Jing; Li, Chengqiang; Hu, Man; Lu, Jie; Shi, Xiaorong; Xing, Ligang; Sun, Xindong; Fu, Zheng; Yu, Jinming; Meng, Xue

    2015-01-01

    Abstract Interest is growing in radiotherapy to nonuniformly boost radioresistant regions within nonsmall cell lung cancer (NSCLC) using molecular imaging techniques. The complexity of tumor behavior is beyond the ability of any single radiotracer to reveal. We hold dual tracer positron emission tomography–computer tomography (PET/CT) imaging with fluorodeoxyglucose (FDG) and fluorodeoxythymidine (FLT) for NSCLC patients to offer an integrated overlook of tumor biological behaviors quantitatively and localizationally, which may help biological target volume delineation and subvolume boost. Pathological confirmed that NSCLC patients were eligible. FDG and FLT PET/CT were performed for each patient before anticancer treatment and coregistrated for analysis. Maximum and mean standardized uptake values (SUVmax and SUVmean) were calculated automatically. Metabolic volumes (MVs) were delineated by a fixed 50% of SUVmax in FDG PET/CT and proliferative volumes (PVs) were delineated by 50% to 90% of SUVmax with 10% interval in FLT PET/CT. Overlap ratio (OR) were determined as overlapped volume between MV and PV divided PV. Conventional contrast-enhanced CT-based intensity-modulated radiotherapy (IMRT) plans with and without additional PET/CT-guided subtarget boost were made for each of the 5 typical NSCLC patients. Dosimetric parameters derived from dose–volume histogram, tumor control probability (TCP), and normal tissue complication probability (NTCP) of lung, esophagus, heart, and spinal cord were calculated and compared. Thirty-one patients were prospectively included and 23 were selected for analysis. Totally, 23 primary diseases, 41 metastatic lymph nodes, and 15 metastatic lesions were positive in dual PET/CTs and included for analysis. Median ORs increased from 58.61% to 93.12% under thresholds of 50% of SUVmax in FDG PET/CT and increased thresholds from 50% to 90% of SUVmax in FLT PET/CT. Based on conventional IMRT, additional boost to union of high FDG

  14. Semiautomatic Software For Quantitative Analysis Of Cardiac Positron Tomography Studies

    NASA Astrophysics Data System (ADS)

    Ratib, Osman; Bidaut, Luc; Nienaber, Christoph; Krivokapich, Janine; Schelbert, Heinrich R.; Phelps, Michael E.

    1988-06-01

    In order to derive accurate values for true tissue radiotracers concentrations from gated positron emission tomography (PET) images of the heart, which are critical for quantifying noninvasively regional myocardial blood flow and metabolism, appropriate corrections for partial volume effect (PVE) and contamination from adjacent anatomical structures are required. We therefore developed an integrated software package for quantitative analysis of tomographic images which provides for such corrections. A semiautomatic edge detection technique outlines and partitions the myocardium into sectors. Myocardial wall thickness is measured on the images perpendicularly to the detected edges and used to correct for PVE. The programs automatically correct for radioactive decay, activity calibration and cross contaminations for both static and dynamic studies. Parameters derived with these programs include tracer concentrations and their changes over time. They are used for calculating regional metabolic rates and can be further displayed as color coded parametric images. The approach was validated for PET imaging in 11 dog experiments. 2D echocardiograms (Echo) were recorded simultaneously to validate the edge detection and wall thickness measurement techniques. After correction for PVE using automatic WT measurement, regional tissue tracer concentrations derived from PET images correlated well with true tissue concentrations as determined by well counting (r=0.98). These preliminary studies indicate that the developed automatic image analysis technique allows accurate and convenient evaluation of cardiac PET images for the measurement of both, regional tracer tissue concentrations as well as regional myocardial function.

  15. Regulation of the compounding of positron emission tomography drugs.

    PubMed

    Hung, J C

    2001-01-15

    Controversial aspects of the regulatory framework for compounding drug products used in positron emission tomography (PET) are discussed. The Food and Drug Administration Modernization Act of 1997 (FDAMA), which amends the Federal Food, Drug, and Cosmetic Act (FFDCA), required that FDA establish approval (new drug application [NDA] and abbreviated new drug application [ANDA]) procedures and current good manufacturing practice (CGMP) requirements for PET drugs; this seems to conflict with differentiation between manufacturing and compounding in FFDCA. Compounding by pharmacists is implied in the FDAMA section on PET, but specific mention of "pharmacist" needs to be included. Congress apparently did not intend for compounded PET drugs to be regulated differently from other drugs. Although FDA has waived NDA and ANDA fees for three PET radiopharmaceuticals, revision of FDAMA to exempt PET drug products from regulations placed on manufacturing is needed. Without relief from the current regulations, many academic PET centers are likely to close; this would violate FDAMA's stated intent of making PET available to patients at reasonable cost. Also problematic is FDAMA's prohibition of compounding "regularly or in inordinate amounts" a product that is commercially available; the common PET radiopharmaceutical fludeoxyglucose F 18 injection, for example, is commercially available. A sensible alternative to NDA or ANDA and CGMP requirements would be the enforcement of USP standards for PET drugs by state boards of pharmacy.

  16. European health telematics networks for positron emission tomography

    NASA Astrophysics Data System (ADS)

    Kontaxakis, George; Pozo, Miguel Angel; Ohl, Roland; Visvikis, Dimitris; Sachpazidis, Ilias; Ortega, Fernando; Guerra, Pedro; Cheze-Le Rest, Catherine; Selby, Peter; Pan, Leyun; Diaz, Javier; Dimitrakopoulou-Strauss, Antonia; Santos, Andres; Strauss, Ludwig; Sakas, Georgios

    2006-12-01

    A pilot network of positron emission tomography centers across Europe has been setup employing telemedicine services. The primary aim is to bring all PET centers in Europe (and beyond) closer, by integrating advanced medical imaging technology and health telematics networks applications into a single, easy to operate health telematics platform, which allows secure transmission of medical data via a variety of telecommunications channels and fosters the cooperation between professionals in the field. The platform runs on PCs with Windows 2000/XP and incorporates advanced techniques for image visualization, analysis and fusion. The communication between two connected workstations is based on a TCP/IP connection secured by secure socket layers and virtual private network or jabber protocols. A teleconsultation can be online (with both physicians physically present) or offline (via transmission of messages which contain image data and other information). An interface sharing protocol enables online teleconsultations even over low bandwidth connections. This initiative promotes the cooperation and improved communication between nuclear medicine professionals, offering options for second opinion and training. It permits physicians to remotely consult patient data, even if they are away from the physical examination site.

  17. Silicon as an unconventional detector in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Clinthorne, Neal; Brzezinski, Karol; Chesi, Enrico; Cochran, Eric; Grkovski, Milan; Grošičar, Borut; Honscheid, Klaus; Huh, Sam; Kagan, Harris; Lacasta, Carlos; Linhart, Vladimir; Mikuž, Marko; Smith, D. Shane; Stankova, Vera; Studen, Andrej; Weilhammer, Peter; Žontar, Dejan

    2013-01-01

    Positron emission tomography (PET) is a widely used technique in medical imaging and in studying small animal models of human disease. In the conventional approach, the 511 keV annihilation photons emitted from a patient or small animal are detected by a ring of scintillators such as LYSO read out by arrays of photodetectors. Although this has been successful in achieving ˜5 mm FWHM spatial resolution in human studies and ˜1 mm resolution in dedicated small animal instruments, there is interest in significantly improving these figures. Silicon, although its stopping power is modest for 511 keV photons, offers a number of potential advantages over more conventional approaches including the potential for high intrinsic spatial resolution in 3D. To evaluate silicon in a variety of PET "magnifying glass" configurations, an instrument was constructed that consists of an outer partial-ring of PET scintillation detectors into which various arrangements of silicon detectors are inserted to emulate dual-ring or imaging probe geometries. Measurements using the test instrument demonstrated the capability of clearly resolving point sources of 22Na having a 1.5 mm center-to-center spacing as well as the 1.2 mm rods of a 18F-filled resolution phantom. Although many challenges remain, silicon has potential to become the PET detector of choice when spatial resolution is the primary consideration.

  18. Geoscientific process monitoring with positron emission tomography (GeoPET)

    NASA Astrophysics Data System (ADS)

    Kulenkampff, Johannes; Gründig, Marion; Zakhnini, Abdelhamid; Lippmann-Pipke, Johanna

    2016-08-01

    Transport processes in geomaterials can be observed with input-output experiments, which yield no direct information on the impact of heterogeneities, or they can be assessed by model simulations based on structural imaging using µ-CT. Positron emission tomography (PET) provides an alternative experimental observation method which directly and quantitatively yields the spatio-temporal distribution of tracer concentration. Process observation with PET benefits from its extremely high sensitivity together with a resolution that is acceptable in relation to standard drill core sizes. We strongly recommend applying high-resolution PET scanners in order to achieve a resolution on the order of 1 mm. We discuss the particularities of PET applications in geoscientific experiments (GeoPET), which essentially are due to high material density. Although PET is rather insensitive to matrix effects, mass attenuation and Compton scattering have to be corrected thoroughly in order to derive quantitative values. Examples of process monitoring of advection and diffusion processes with GeoPET illustrate the procedure and the experimental conditions, as well as the benefits and limits of the method.

  19. Florbetapir positron emission tomography and cerebrospinal fluid biomarkers

    PubMed Central

    Hake, Ann; Trzepacz, Paula T.; Wang, Shufang; Yu, Peng; Case, Michael; Hochstetler, Helen; Witte, Michael M.; Degenhardt, Elisabeth K.; Dean, Robert A.

    2015-01-01

    Background We evaluated the relationship between florbetapir-F18 positron emission tomography (FBP PET) and cerebrospinal fluid (CSF) biomarkers. Methods Alzheimer’s Disease Neuroimaging Initiative (ADNI)-GO/2 healthy control (HC), mild cognitive impairment (MCI), and Alzheimer’s disease (AD) dementia subjects with clinical measures and CSF collected ±90 days of FBP PET data were analyzed using correlation and logistic regression. Results In HC and MCI subjects, FBP PET anterior and posterior cingulate and composite standard uptake value ratios correlated with CSF amyloid beta (Aβ1-42) and tau/Aβ1-42 ratios. Using logistic regression, Aβ1-42, total tau (t-tau), phosphorylated tau181P (p-tau), and FBP PET composite each differentiated HC versus AD. Aβ1-42 and t-tau distinguished MCI versus AD, without additional contribution by FBP PET. Total tau and p-tau added discriminative power to FBP PET when classifying HC versus AD. Conclusion Based on cross-sectional diagnostic groups, both amyloid and tau measures distinguish healthy from demented subjects. Longitudinal analyses are needed. PMID:25916563

  20. Eyeblink Conditioning in Healthy Adults: A Positron Emission Tomography Study

    PubMed Central

    Andreasen, Nancy C.; Liu, Dawei; Freeman, John H.; Boles Ponto, Laura L.; O’Leary, Daniel S.

    2013-01-01

    Eyeblink conditioning is a paradigm commonly used to investigate the neural mechanisms underlying motor learning. It involves the paired presentation of a toneconditioning stimulus which precedes and co-terminates with an airpuff unconditioned stimulus. Following repeated paired presentations a conditioned eyeblink develops which precedes the airpuff. This type of learning has been intensively studied and the cerebellum is known to be essential in both humans and animals. The study presented here was designed to investigate the role of the cerebellum during eyeblink conditioning in humans using positron emission tomography (PET). The sample includes 20 subjects (10 male and 10 female) with an average age of 29.2 years. PET imaging was used to measure regional cerebral blood flow (rCBF) changes occurring during the first, second, and third blocks of conditioning. In addition, stimuli-specific rCBF to unpaired tones and airpuffs (“pseudoconditioning”) was used as a baseline level that was subtracted from each block. Conditioning was performed using three, 15-trial blocks of classical eyeblink conditioning with the last five trials in each block imaged. As expected, subjects quickly acquired conditioned responses. A comparison between the conditioning tasks and the baseline task revealed that during learning there was activation of the cerebellum and recruitment of several higher cortical regions. Specifically, large peaks were noted in cerebellar lobules IV/V, the frontal lobes, and cingulate gyri. PMID:22430943

  1. Imaging pancreatic islet cells by positron emission tomography

    PubMed Central

    Li, Junfeng; Karunananthan, Johann; Pelham, Bradley; Kandeel, Fouad

    2016-01-01

    It was estimated that every year more than 30000 persons in the United States - approximately 80 people per day - are diagnosed with type 1 diabetes (T1D). T1D is caused by autoimmune destruction of the pancreatic islet (β cells) cells. Islet transplantation has become a promising therapy option for T1D patients, while the lack of suitable tools is difficult to directly evaluate of the viability of the grafted islet over time. Positron emission tomography (PET) as an important non-invasive methodology providing high sensitivity and good resolution, is able to accurate detection of the disturbed biochemical processes and physiological abnormality in living organism. The successful PET imaging of islets would be able to localize the specific site where transplanted islets engraft in the liver, and to quantify the level of islets remain alive and functional over time. This information would be vital to establishing and evaluating the efficiency of pancreatic islet transplantation. Many novel imaging agents have been developed to improve the sensitivity and specificity of PET islet imaging. In this article, we summarize the latest developments in carbon-11, fluorine-18, copper-64, and gallium-68 labeled radioligands for the PET imaging of pancreatic islet cells. PMID:27721939

  2. Positron Emission Tomography Detector Development for Plant Biology

    SciTech Connect

    Weisenberger, A G; McKisson, J; Stolin, A; Zorn, C; Howell, C R; Crowell, A S; Reid, C D; Majewski, S; Smith, M F

    2010-01-01

    There are opportunities for the development of new tools to advance plant biology research through the use of radionuclides. Thomas Jefferson National Accelerator Facility, Duke University, West Virginia University and the University of Maryland are collaborating on the development of radionuclide imaging technologies to facilitate plant biology research. Biological research into optimizing plant productivity under various environmental constraints, biofuel and carbon sequestration research are areas that could potentially benefit from new imaging technologies. Using 11CO2 tracers, the investigators at Triangle University Nuclear Laboratory / Duke University Phytotron are currently researching the dynamical responses of plants to environmental changes forecasted from increasing greenhouse trace gases involved in global change. The biological research primary focus is to investigate the impact of elevated atmospheric CO2 and nutrients limitation on carbon and nitrogen dynamics in plants. We report here on preliminary results of 11CO2 plant imaging experiments involving barley plants using Jefferson Lab dual planar positron emission tomography detectors to image 11CO2 in live barley plants. New detector designs will be developed based on the preliminary studies reported here and further planned.

  3. The methodology of TSPO imaging with positron emission tomography.

    PubMed

    Turkheimer, Federico E; Rizzo, Gaia; Bloomfield, Peter S; Howes, Oliver; Zanotti-Fregonara, Paolo; Bertoldo, Alessandra; Veronese, Mattia

    2015-08-01

    The 18-kDA translocator protein (TSPO) is consistently elevated in activated microglia of the central nervous system (CNS) in response to a variety of insults as well as neurodegenerative and psychiatric conditions. It is therefore a target of interest for molecular strategies aimed at imaging neuroinflammation in vivo. For more than 20 years, positron emission tomography (PET) has allowed the imaging of TSPO density in brain using [(11)C]-(R)-PK11195, a radiolabelled-specific antagonist of the TSPO that has demonstrated microglial activation in a large number pathological cohorts. The significant clinical interest in brain immunity as a primary or comorbid factor in illness has sparked great interest in the TSPO as a biomarker and a surprising number of second generation TSPO radiotracers have been developed aimed at improving the quality of TSPO imaging through novel radioligands with higher affinity. However, such major investment has not yet resulted in the expected improvement in image quality. We here review the main methodological aspects of TSPO PET imaging with particular attention to TSPO genetics, cellular heterogeneity of TSPO in brain tissue and TSPO distribution in blood and plasma that need to be considered in the quantification of PET data to avoid spurious results as well as ineffective development and use of these radiotracers.

  4. Characterization of nontransmural myocardial infarction by positron-emission tomography

    SciTech Connect

    Geltman, E.M.; Biello, D.; Welch, M.J.; Ter-Pogossian, M.M.; Roberts, R.; Sobel, B.E.

    1982-04-01

    The present study was performed to determine whether positron emission tomography (PET) performed after i.v. 11C-palmitate permits detection and characterization of nontransmural myocardial infarction. PET was performed after the i.v. injection of 11C-palmitate in 10 normal subjects, 24 patients with initial nontransmural myocardial infarction (defined electrocardiographically), and 22 patients with transmural infarction. Depressed accumulation of 11C-palmitate was detected with sagittal, coronal and transverse reconstructions, and quantified based on 14 contiguous transaxial reconstructions. Defects with homogeneously intense depression of accumulation of tracer were detected in all 22 patients with transmural infarction (100%). Abnormalities of the distribution of 11C-palmitate in the myocardium were detected in 23 patients with nontransmural infarction (96%). Thallium scintigrams were abnormal in only 11 of 18 patients with nontransmural infarction (61%). Tomographically estimated infarct size was greater among patients with transmural infarction (50.4 +/- 7.8 PET-g-Eq/m2 (+/- SEM SEM)) compared with those with nontransmural infarction (19 +/- 4 PET-g-Eq, p less than 0.01). Residual accumulation of 11C-palmitate within regions of infarction was more intensely depressed among patients with transmural compared to nontransmural infarction (33 +/- 1 vs 39 +/- 1% maximal myocardial radioactivity, p less than 0.01). Thus, PET and metabolic imaging with 11C-palmitate is a sensitive means of detecting, quantifying and characterizing nontransmural and transmural myocardial infarction.

  5. Quantifying the limitations of small animal positron emission tomography

    NASA Astrophysics Data System (ADS)

    Oxley, D. C.; Boston, A. J.; Boston, H. C.; Cooper, R. J.; Cresswell, J. R.; Grint, A. N.; Nolan, P. J.; Scraggs, D. P.; Lazarus, I. H.; Beveridge, T. E.

    2009-06-01

    The application of position sensitive semiconductor detectors in medical imaging is a field of global research interest. The Monte-Carlo simulation toolkit GEANT4 [ http://geant4.web.cern.ch/geant4/] was employed to improve the understanding of detailed γ-ray interactions within the small animal Positron Emission Tomography (PET), high-purity germanium (HPGe) imaging system, SmartPET [A.J. Boston, et al., Oral contribution, ANL, Chicago, USA, 2006]. This system has shown promising results in the field of PET [R.J. Cooper, et al., Nucl. Instr. and Meth. A (2009), accepted for publication] and Compton camera imaging [J.E. Gillam, et al., Nucl. Instr. and Meth. A 579 (2007) 76]. Images for a selection of single and multiple point, line and phantom sources were successfully reconstructed using both a filtered-back-projection (FBP) [A.R. Mather, Ph.D. Thesis, University of Liverpool, 2007] and an iterative reconstruction algorithm [A.R. Mather, Ph.D. Thesis, University of Liverpool, 2007]. Simulated data were exploited as an alternative route to a reconstructed image allowing full quantification of the image distortions introduced in each phase of the data processing. Quantifying the contribution of uncertainty in all system components from detector to reconstruction algorithm allows the areas in need of most attention on the SmartPET project and semiconductor PET to be addressed.

  6. Microfluidics for Positron Emission Tomography (PET) Imaging Probe Development

    PubMed Central

    Wang, Ming-Wei; Lin, Wei-Yu; Liu, Kan; Masterman-Smith, Michael; Shen, Clifton Kwang-Fu

    2012-01-01

    Due to increased needs for Positron Emission Tomography (PET) scanning, high demands for a wide variety of radiolabeled compounds will have to be met by exploiting novel radiochemistry and engineering technologies to improve the production and development of PET probes. The application of microfluidic reactors to perform radiosyntheses is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional labeling systems. Microfluidic-based radiochemistry can lead to the use of smaller quantities of precursors, accelerated reaction rates and easier purification processes with greater yield and higher specific activity of desired probes. Several ‘proof-of-principle’ examples, along with basics of device architecture and operation, and potential limitations of each design are discussed here. Along with the concept of radioisotope distribution from centralized cyclotron facilities to individual imaging centers and laboratories (“decentralized model”), an easy-to-use, standalone, flexible, fully-automated radiochemical microfluidic platform can open up to simpler and more cost-effective procedures for molecular imaging using PET. PMID:20643021

  7. Development of a treatment planning system for BNCT based on positron emission tomography data: preliminary results

    NASA Astrophysics Data System (ADS)

    Cerullo, N.; Daquino, G. G.; Muzi, L.; Esposito, J.

    2004-01-01

    Present standard treatment planning (TP) for glioblastoma multiforme (GBM - a kind of brain tumor), used in all boron neutron capture therapy (BNCT) trials, requires the construction (based on CT and/or MRI images) of a 3D model of the patient head, in which several regions, corresponding to different anatomical structures, are identified. The model is then employed by a computer code to simulate radiation transport in human tissues. The assumption is always made that considering a single value of boron concentration for each specific region will not lead to significant errors in dose computation. The concentration values are estimated "indirectly", on the basis of previous experience and blood sample analysis. This paper describes an original approach, with the introduction of data on the in vivo boron distribution, acquired by a positron emission tomography (PET) scan after labeling the BPA (borono-phenylalanine) with the positron emitter 18F. The feasibility of this approach was first tested with good results using the code CARONTE. Now a complete TPS is under development. The main features of the first version of this code are described and the results of a preliminary study are presented. Significant differences in dose computation arise when the two different approaches ("standard" and "PET-based") are applied to the TP of the same GBM case.

  8. [Computer tomography in acute pyelonephritis].

    PubMed

    Triller, J; Scheidegger, J; Terrier, F

    1983-07-01

    Computer tomography of the kidneys was performed on 30 patients with acute renal infections (acute suppurative pyelonephritis, acute renal abscess, infected cyst, pyelonephrosis, calculus perforation, retroperitoneal abscess). Computer tomography provided more accurate information concerning the extent of the renal and extra-renal inflammatory process than did the urogram or sonogram. This may significantly affect the choice of treatment, particularly concerning the use of drugs or of surgery. Angiography and retrograde pyelography may be used in selected cases, especially where there is a suspicion of acute bacterial nephritis, renal vein thrombosis or ureteric obstruction.

  9. Positron emission tomography: a first-hand experience.

    PubMed

    Traylor, J

    2000-01-01

    In July 1999, the University of Kansas Hospital installed a positron emission tomography (PET) scanner and added PET to the imaging technologies it offers patients and physicians. The new service is managed by the nuclear medicine section in the department of radiology. Plans are being implemented now to install a cyclotron in March 2000. Prior to installation of the scanner, a radiation area survey was performed in the space being considered for the PET unit. We also needed to address other critical considerations, including the manufacturer's requirements for construction of the scanner room, special electrical needs, and how the system would connect to our existing information network. It is important to work closely with your chief financial officer and chief operations officer from the beginning of the purchasing process so that these administrators have up-to-date, supportive information about PET and the progress of the installation. We made use of a variety of promotional techniques to market the new service, including broadcast e-mail, an open house for potential referring physicians, postings on the nuclear medicine Web site and communication through the local media. We also worked with the major insurance providers that utilize our hospital to educate them about PET and its benefits. In addition, we trained our own billing staff about procedures that optimize reimbursement for PET. In March 2000, University of Kansas Hospital will install the first cyclotron in the state, enabling us to generate the drugs used for PET scanning and potentially to add targets for research PET radiopharmaceuticals. PMID:10787761

  10. An anatomically realistic brain phantom for quantification with positron tomography

    SciTech Connect

    Wong, D.F.; Links, J.M.; Molliver, M.E.; Hengst, T.C.; Clifford, C.M.; Buhle, L.; Bryan, M.; Stumpf, M.; Wagner, H.N. Jr.

    1984-01-01

    Phantom studies are useful in assessing and maximizing the accuracy and precision of quantification of absolute activity, assessing errors associated with patient positioning, and dosimetry. Most phantoms are limited by the use of simple shapes, which do not adequately reflect real anatomy. The authors have constructed an anatomically realistic life-size brain phantom for positron tomography studies. The phantom consists of separately fillable R + L caudates, R + L putamens, R + L globus passidus and cerebellum. These structures are contained in proper anatomic orientation within a fillable cerebrum. Solid ventricles are also present. The entire clear vinyl cerebrum is placed in a human skull. The internal brain structures were fabricated from polyester resin, with dimensions, shapes and sizes of the structures obtained from digitized contours of brain slices in the U.C.S.D. computerized brain atlas. The structures were filled with known concentrations of Ga-68 in water and scanned with our NeuroECAT. The phantom was aligned in the scanner for each structure, such that the tomographic slice passed through that structure's center. After calibration of the scanner with a standard phantom for counts/pixel uCi/cc conversion, the measured activity concentrations were compared with the actual concentrations. The ratio of measured to actual activity concentration (''recovery coefficient'') for the caudate was 0.33; for the putamen 0.42. For comparison, the ratio for spheres of diameters 9.5, 16,19 and 25.4 mm was 0.23, 0.54, 0.81, and 0.93. This phantom provides more realistic assessment of performance and allows calculation of correction factors.

  11. Noninvasive imaging of islet grafts using positron-emission tomography

    NASA Astrophysics Data System (ADS)

    Lu, Yuxin; Dang, Hoa; Middleton, Blake; Zhang, Zesong; Washburn, Lorraine; Stout, David B.; Campbell-Thompson, Martha; Atkinson, Mark A.; Phelps, Michael; Gambhir, Sanjiv Sam; Tian, Jide; Kaufman, Daniel L.

    2006-07-01

    Islet transplantation offers a potential therapy to restore glucose homeostasis in type 1 diabetes patients. However, islet transplantation is not routinely successful because most islet recipients gradually lose graft function. Furthermore, serological markers of islet function are insensitive to islet loss until the latter stages of islet graft rejection. A noninvasive method of monitoring islet grafts would aid in the assessment of islet graft survival and the evaluation of interventions designed to prolong graft survival. Here, we show that recombinant adenovirus can engineer isolated islets to express a positron-emission tomography (PET) reporter gene and that these islets can be repeatedly imaged by using microPET after transplantation into mice. The magnitude of signal from engineered islets implanted into the axillary cavity was directly related to the implanted islet mass. PET signals attenuated over the following weeks because of the transient nature of adenovirus-mediated gene expression. Because the liver is the preferred site for islet implantation in humans, we also tested whether islets could be imaged after transfusion into the mouse liver. Control studies revealed that both intrahepatic islet transplantation and hyperglycemia altered the biodistribution kinetics of the PET probe systemically. Although transplanted islets were dispersed throughout the liver, clear signals from the liver region of mice receiving PET reporter-expressing islets were detectable for several weeks. Viral transduction, PET reporter expression, and repeated microPET imaging had no apparent deleterious effects on islet function after implantation. These studies lay a foundation for noninvasive quantitative assessments of islet graft survival using PET. diabetes | transplantation

  12. Muscle use during double poling evaluated by positron emission tomography.

    PubMed

    Bojsen-Møller, Jens; Losnegard, Thomas; Kemppainen, Jukka; Viljanen, Tapio; Kalliokoski, Kari K; Hallén, Jostein

    2010-12-01

    Due to the complexity of movement in cross-country skiing (XCS), the muscle activation patterns are not well elucidated. Previous studies have applied surface electromyography (SEMG); however, recent gains in three-dimensional (3D) imaging techniques such as positron emission tomography (PET) have rendered an alternative approach to investigate muscle activation. The purpose of the present study was to examine muscle use during double poling (DP) at two work intensities by use of PET. Eight male subjects performed two 20-min DP bouts on separate days. Work intensity was ∼ 53 and 74% of peak oxygen uptake (Vo(2peak)), respectively. During exercise 188 ± 8 MBq of [(18)F]fluorodeoxyglucose ([(18)F]FDG) was injected, and subsequent to exercise a full-body PET scan was conducted. Regions of interest (ROI) were defined within 15 relevant muscles, and a glucose uptake index (GUI) was determined for all ROIs. The muscles that span the shoulder and elbow joints, the abdominal muscles, and hip flexors displayed the greatest GUI during DP. Glucose uptake did not increase significantly from low to high intensity in most upper body muscles; however, an increased GUI (P < 0.05) was seen for the knee flexor (27%) and extensor muscles (16%), and for abdominal muscles (21%). The present data confirm previous findings that muscles of the upper limb are the primary working muscles in DP. The present data further suggest that when exercise intensity increases, the muscles that span the lumbar spine, hip, and knee joints contribute increasingly. Finally, PET provides a promising alternative or supplement to existing methods to assess muscle activation in complex human movements.

  13. Computed tomography of intramuscular myxoma

    SciTech Connect

    Ekelund, L.; Herrlin, K.; Rydholm, A.

    1982-11-01

    Computed tomography (CT) was performed in seven patients with intramuscular myxoma. All lesions were well demarcated, of homogeneous appearance and attenuation values ranging from 10 to 60 (HU). The tumor size, as estimated at CT, correlated well with the size of the surgical specimen, which is in contrast to the findings in some high grade malignant sarcomas.

  14. X-ray Computed Tomography.

    ERIC Educational Resources Information Center

    Michael, Greg

    2001-01-01

    Describes computed tomography (CT), a medical imaging technique that produces images of transaxial planes through the human body. A CT image is reconstructed mathematically from a large number of one-dimensional projections of a plane. The technique is used in radiological examinations and radiotherapy treatment planning. (Author/MM)

  15. Computed tomography:the details.

    SciTech Connect

    Doerry, Armin Walter

    2007-07-01

    Computed Tomography (CT) is a well established technique, particularly in medical imaging, but also applied in Synthetic Aperture Radar (SAR) imaging. Basic CT imaging via back-projection is treated in many texts, but often with insufficient detail to appreciate subtleties such as the role of non-uniform sampling densities. Herein are given some details often neglected in many texts.

  16. Change of Maximum Standardized Uptake Value Slope in Dynamic Triphasic [{sup 18}F]-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Distinguishes Malignancy From Postradiation Inflammation in Head-and-Neck Squamous Cell Carcinoma: A Prospective Trial

    SciTech Connect

    Anderson, Carryn M.; Chang, Tangel; Graham, Michael M.; Marquardt, Michael D.; Button, Anna; Smith, Brian J.; Menda, Yusuf; Sun, Wenqing; Pagedar, Nitin A.; Buatti, John M.

    2015-03-01

    Purpose: To evaluate dynamic [{sup 18}F]-fluorodeoxyglucose (FDG) uptake methodology as a post–radiation therapy (RT) response assessment tool, potentially enabling accurate tumor and therapy-related inflammation differentiation, improving the posttherapy value of FDG–positron emission tomography/computed tomography (FDG-PET/CT). Methods and Materials: We prospectively enrolled head-and-neck squamous cell carcinoma patients who completed RT, with scheduled 3-month post-RT FDG-PET/CT. Patients underwent our standard whole-body PET/CT scan at 90 minutes, with the addition of head-and-neck PET/CT scans at 60 and 120 minutes. Maximum standardized uptake values (SUV{sub max}) of regions of interest were measured at 60, 90, and 120 minutes. The SUV{sub max} slope between 60 and 120 minutes and change of SUV{sub max} slope before and after 90 minutes were calculated. Data were analyzed by primary site and nodal site disease status using the Cox regression model and Wilcoxon rank sum test. Outcomes were based on pathologic and clinical follow-up. Results: A total of 84 patients were enrolled, with 79 primary and 43 nodal evaluable sites. Twenty-eight sites were interpreted as positive or equivocal (18 primary, 8 nodal, 2 distant) on 3-month 90-minute FDG-PET/CT. Median follow-up was 13.3 months. All measured SUV endpoints predicted recurrence. Change of SUV{sub max} slope after 90 minutes more accurately identified nonrecurrence in positive or equivocal sites than our current standard of SUV{sub max} ≥2.5 (P=.02). Conclusions: The positive predictive value of post-RT FDG-PET/CT may significantly improve using novel second derivative analysis of dynamic triphasic FDG-PET/CT SUV{sub max} slope, accurately distinguishing tumor from inflammation on positive and equivocal scans.

  17. Patterns of brain activity in normals and schizophrenics with positron emission tomography

    SciTech Connect

    Volkow, N.D.; Wolf, A.P.; Gomez-Mont, F.; Brodie, J.D.; Canero, R.; Van Gelder, P.; Russell, J.A.G.

    1985-05-01

    The authors investigated the functional interaction among brain areas under baseline and upon activation by a visual task to compare the response of normal subjects from the ones of chronic schizophrenics. Cerebral metabolic images were obtained on twelve healthy volunteers an eighteen schizophrenics with positron emission tomography and 11-C-Deoxyglucose. Correlation coefficients among the relative metabolic values (region of interest divided by the average of whole brain gray matter) of 11 brain regions; frontal, parietal, temporal and occipital left and right lobes, left and right basal ganglia and thalamus were computed for the baseline and for the task. Under baseline, normals showed more functional correlations than schizophrenics. Both groups showed a thalamo-occipital (positive) and thalamo-frontal (negative) interaction. The highest correlations among homologous brain areas were the frontal, occipital and basal ganglia.

  18. Evidence for a caudate role in aphasia from FDG positron emission tomography

    SciTech Connect

    Metter, E.J.; Riege, W.H.; Hanson, W.R.; Phelps, M.; Kuhl, D.E.

    1982-01-01

    In a recent study correlations between language function and regional glucose metabolism from FDG positron computed tomography were examined. Caudate metabolism correlated with PICA speaking and comprehension factors, as well as BDAE mean writing and reading scores. To identify the language function implicated with caudate metabolism in these eleven patients, twenty subtests making up these two PICA factors and mean BDAE scores were correlated to caudate metabolism. Also a principle components analysis on the twenty subtests identified three factors, only one of which correlated with caudate metabolism. Evidence was found that the caudate has a functional relationship to recognition or motor planning of simple and overlearned materials. This involved simple syntax, low levels of abstraction, identification or sequencing of phonetic and semantic material. This role appeared related to but independent of Broca and frontal lobe function, and may involve the focusing of cortical functions, by allowing two or more regions to interact together.

  19. Optical Coherence Tomography

    MedlinePlus

    ... Cardiac Magnetic Resonance Imaging (MRI and MRA) Computed Tomography (CT) Scan Diagnostic Tests and Procedures Echocardiography Electrocardiogram ... Ultrasound Nuclear Stress Test Nuclear Ventriculography Positron Emission Tomography (PET) Stress ... Optical Coherence Tomography | ...

  20. Cardiac Computed Tomography (Multidetector CT, or MDCT)

    MedlinePlus

    ... High Blood Pressure Tools & Resources Stroke More Cardiac Computed Tomography (Multidetector CT, or MDCT) Updated:Sep 3,2015 ... facts MDCT is a very fast type of computed tomography (CT) scan. MDCT creates pictures of the healthy ...

  1. Positron Emission Tomography Imaging Using Radiolabeled Inorganic Nanomaterials

    PubMed Central

    Sun, Xiaolian; Cai, Weibo; Chen, Xiaoyuan

    2015-01-01

    CONSPECTUS Positron emission tomography (PET) is a radionuclide imaging technology that plays an important role in preclinical and clinical research. With administration of a small amount of radiotracer, PET imaging can provide a noninvasive, highly sensitive, and quantitative readout of its organ/tissue targeting efficiency and pharmacokinetics. Various radiotracers have been designed to target specific molecular events. Compared with antibodies, proteins, peptides, and other biologically relevant molecules, nanoparticles represent a new frontier in molecular imaging probe design, enabling the attachment of different imaging modalities, targeting ligands, and therapeutic payloads in a single vector. We introduce the radiolabeled nanoparticle platforms that we and others have developed. Due to the fundamental differences in the various nanoparticles and radioisotopes, most radiolabeling methods are designed case-by-case. We focus on some general rules about selecting appropriate isotopes for given types of nanoparticles, as well as adjusting the labeling strategies according to specific applications. We classified these radiolabeling methods into four categories: (1) complexation reaction of radiometal ions with chelators via coordination chemistry; (2) direct bombardment of nanoparticles via hadronic projectiles; (3) synthesis of nanoparticles using a mixture of radioactive and nonradioactive precursors; (4) chelator-free postsynthetic radiolabeling. Method 1 is generally applicable to different nanomaterials as long as the surface chemistry is well-designed. However, the addition of chelators brings concerns of possible changes to the physicochemical properties of nanomaterials and detachment of the radiometal. Methods 2 and 3 have improved radiochemical stability. The applications are, however, limited by the possible damage to the nanocomponent caused by the proton beams (method 2) and harsh synthetic conditions (method 3). Method 4 is still in its infancy

  2. Evaluating Positron Emission Tomography Use in Differentiated Thyroid Cancer

    PubMed Central

    Esfandiari, Nazanene H.; Papaleontiou, Maria; Worden, Francis P.; Haymart, Megan R.

    2015-01-01

    Background: Using the Surveillance, Epidemiology, and End Results—Medicare database, a substantial increase was found in the use of positron emission tomography (PET) scans after 2004 in differentiated thyroid cancer (DTC) patients. The reason for the increased utilization of the PET scan was not clear based on available the data. Therefore, the indications for and outcomes of PET scans performed at an academic institution were evaluated. Methods: A retrospective cohort study was performed of DTC patients who underwent surgery at the University of Michigan Health System from 2006 to 2011. After identifying patients who underwent a PET scan, indications, rate of positive PET scans, and impact on management were evaluated. For positive scans, the location of disease was characterized, and presence of disease on other imaging was determined. Results: Of the 585 patients in the cohort, 111 (19%) patients had 200 PET scans performed for evaluation of DTC. Indications for PET scan included: elevated thyroglobulin and negative radioiodine scan in 52 scans (26.0%), thyroglobulin antibodies in 13 scans (6.5%), rising thyroglobulin in 18 scans (9.0%), evaluation of abnormality on other imaging in 22 scans (11.0%), evaluation of extent of disease in 33 scans (16.5%), follow-up of previous scan in 57 scans (28.5%), other indications in two scans (1.0%), and unclear indications in three scans (1.5%). The PET scan was positive in 124 studies (62.0%); positivity was identified in the thyroid bed on 25 scans, cervical or mediastinal lymph nodes on 105 scans, lung on 28 scans, bone on four scans, and other areas on 14 scans. Therapy following PET scan was surgery in 66 cases (33.0%), chemotherapy or radiation in 23 cases (11.5%), observation in 110 cases (55.0%), and palliative care in one case (0.5%). Disease was identifiable on other imaging in 66% of cases. PET scan results changed management in 59 cases (29.5%). Conclusions: In this academic medical center, the PET scan was

  3. Cerebrospinal fluid analysis detects cerebral amyloid-β accumulation earlier than positron emission tomography

    PubMed Central

    Mattsson, Niklas

    2016-01-01

    See Rabinovici (doi:10.1093/brain/aww025) for a scientific commentary on this article. Cerebral accumulation of amyloid-β is thought to be the starting mechanism in Alzheimer’s disease. Amyloid-β can be detected by analysis of cerebrospinal fluid amyloid-β42 or amyloid positron emission tomography, but it is unknown if any of the methods can identify an abnormal amyloid accumulation prior to the other. Our aim was to determine whether cerebrospinal fluid amyloid-β42 change before amyloid PET during preclinical stages of Alzheimer’s disease. We included 437 non-demented subjects from the prospective, longitudinal Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. All underwent 18F-florbetapir positron emission tomography and cerebrospinal fluid amyloid-β42 analysis at baseline and at least one additional positron emission tomography after a mean follow-up of 2.1 years (range 1.1–4.4 years). Group classifications were based on normal and abnormal cerebrospinal fluid and positron emission tomography results at baseline. We found that cases with isolated abnormal cerebrospinal fluid amyloid-β and normal positron emission tomography at baseline accumulated amyloid with a mean rate of 1.2%/year, which was similar to the rate in cases with both abnormal cerebrospinal fluid and positron emission tomography (1.2%/year, P = 0.86). The mean accumulation rate of those with isolated abnormal cerebrospinal fluid was more than three times that of those with both normal cerebrospinal fluid and positron emission tomography (0.35%/year, P = 0.018). The group differences were similar when analysing yearly change in standardized uptake value ratio of florbetapir instead of percentage change. Those with both abnormal cerebrospinal fluid and positron emission tomography deteriorated more in memory and hippocampal volume compared with the other groups (P < 0.001), indicating that they were closer to Alzheimer’s disease dementia. The results were replicated after

  4. Pediatric cranial computed tomography

    SciTech Connect

    Yamada, H.

    1984-01-01

    The introduction of CT in the investigation of intercranial pathology has revolutionized the approach to clinical neurological and neurosurgical practice. This book applies the advances of cranial CT to the pediatric patient. The test is divided into two sections. The first portion describes the practical methodology, anatomy and normal and abnormal CT scan appearance, including high or low density lesions, cystic lesions and ventricular or subarachnoid space dilation. The characteristic scans for various neurological diseases are presented and discussed. The author has given special attention to the CT diagnosis of congenital malformations and cerebral neoplasms. Partial Contents: Normal Computed Tomographic Anatomy/ High Density Lesions/Low Density Lesions/Cystic Lesions; Supratentorial/Cystic Lesions; Infratentorial/Increased Head Circumference/Increased Ventricular Size/Small Ventricular Size/Cranial Lesions/Spinal Lesions/CT Cisternography/Part II CT in Neonates/Congenital Craniocerebral Malformations/Hydrocephalus/Craniosynostosis/Head Trauma/Cerebrovascular Lesions/Intracranial Lesions/Seizure Disorders/Intracranial and Other Chronic Neurological Disorders.

  5. Positron emission tomography / computerized tomography evaluation of primary Hodgkin's disease of liver.

    PubMed

    Gota, V S; Purandare, N C; Gujral, S; Shah, S; Nair, R; Rangarajan, V

    2009-01-01

    Occurrence of primary Hodgkin's lymphoma (PHL) of the liver is extremely rare. We report on a case of a 60-year-old male who presented with liver mass and B-symptomatology. Hepatoma or hepatic metastasis from a gastrointestinal primary was initially suspected. Tumor markers like AFP, CEA, Total PSA, and CA-19.9 were within normal limits. Positron Emission Tomography / Computerized Tomography (PET/CT) revealed a large hepatic lesion and a nodal mass in the porta hepatis. A liver biopsy was consistent with Hodgkin's lymphoma. There was complete regression of the hepatic lesion and evidence of shrinkage of the nodal mass following four cycles of chemotherapy. 18F Fluro -de-oxy Glucose (FDG) PET / CT in this case helped in establishing a primary hepatic lymphoma by demonstrating the absence of pathologically hypermetabolic foci in any other nodes or organs. PET / CT scan is a useful adjunct to conventional imaging and histopathology, not only to establish the initial diagnosis, but also to monitor treatment response in PHL.

  6. Computed tomography of the abdomen.

    PubMed

    Leslie, E V; Panaro, V A; Alker, G J; Oh, Y S

    1980-01-01

    In a few short years, computed tomography has become an important diagnostic procedure in the examination of the abdomen and pelvis. Its forte lies in its ability to provide cross-sectional views of excellent anatomical detail. Imaging of deep-seated structures such as the pancreas, adrenal glands, and enlarged retroperitoneal lymph nodes is now possible. The ability to distinguish small variations in tissue density enables the radiologist to evaluate the texture of solid structures, and to differentiate them from cysts or abscesses. The addition of contrast enhancement makes it possible to determine the vascularity of a lesson. The major limitation of CT is poorer delineation of structures in thin patients, and in patients in whom voluntary and involuntary motion cannot be interrupted. Computed tomography is compared with other complementary imaging procedures to include sonography, radionuclide imaging, and conventional radiograph procedures. It has replaced invasive diagnostic procedures in many instances. In a given situation, one or more imaging modalities may be appropriate.

  7. Maturational changes in cerebral function in infants determined by /sup 18/FDG positron emission tomography

    SciTech Connect

    Chugani, H.T.; Phelps, M.E.

    1986-02-21

    2-Deoxy-2(/sup 18/F)fluro-D-glucose positron emission tomography performed in human infants during development revealed progressive changes in local cerebral glucose utilization. In infants 5 weeks of age and younger, glucose utilization was highest in the sensorimotor cortex, thalamus, midbrain-brainstem, and cerebellar vermis. By 3 months, glucose metabolic activity had increased in the parietal, temporal, and occipital cortices and the basal ganglia, with subsequent increases in frontal and various association regions occurring by 8 months. These functional changes measured with positron emission tomography are in agreement with behavioral, neurophysiological, and anatomical alterations known to occur during infant development. 32 references, 2 figures, 1 table.

  8. Computed tomography of gynecologic diseases

    SciTech Connect

    Gross, B.H.; Moss, A.A.; Mihara, K.; Goldberg, H.I.; Glazer, G.M.

    1983-10-01

    Although computed tomography (CT) provides superb images of all areas of the body, sonography, because of its lack of ionizing radiation and its real-time and multiplanar capacities, has become the preferred initial method of evaluating the female pelvis. This has resulted in a relative paucity of information in the literature concerning CT features of benign pelvic disorders in particular and prompted the authors to review our experience with third-generation CT scanning of the uterus and ovaries.

  9. Cranial computed tomography and MRI

    SciTech Connect

    Lee, S.H.; Rao, K.C.V.G.

    1987-01-01

    This book appears to be a hybrid between an atlas and a text. The second edition attempts to depict the current status of both computed tomography (CT) and magnetic resonance (MR) imaging in neuroradiology. Although only the final chapter of the book is completely devoted to cranial MR imaging, MR images are scattered throughout various other chapters. There is coverage of the major anatomic and pathophysiologic entities. There are 17 chapters with images, tables, and diagrams.

  10. Hermaphroditism demonstrated by computed tomography

    SciTech Connect

    Gale, M.E.

    1983-07-01

    The categorization of disorders of gender differentiation is based on chromosome analysis, physical examination, gonadal histology, and endocrine evaluation. In most cases of hermaphroditism, radiologic studies have been limited to assessment of associated urinary tract anomalies before surgical revconstruction. Noninvasive evaluation with computed tomography (CT) or sonography is potentially useful for investigation of internal pelvic anatomy in these cases. A case report of a 65-year-old man is reported. (KRM)

  11. Molecular Imaging of Transporters with Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Antoni, Gunnar; Sörensen, Jens; Hall, Håkan

    Positron emission tomography (PET) visualization of brain components in vivo is a rapidly growing field. Molecular imaging with PET is also increasingly used in drug development, especially for the determination of drug receptor interaction for CNS-active drugs. This gives the opportunity to relate clinical efficacy to per cent receptor occupancy of a drug on a certain targeted receptor and to relate drug pharmacokinetics in plasma to interaction with target protein. In the present review we will focus on the study of transporters, such as the monoamine transporters, the P-glycoprotein (Pgp) transporter, the vesicular monoamine transporter type 2, and the glucose transporter using PET radioligands. Neurotransmitter transporters are presynaptically located and in vivo imaging using PET can therefore be used for the determination of the density of afferent neurons. Several promising PET ligands for the noradrenaline transporter (NET) have been labeled and evaluated in vivo including in man, but a really useful PET ligand for NET still remains to be identified. The most promising tracer to date is (S,S)-[18F]FMeNER-D2. The in vivo visualization of the dopamine transporter (DAT) may give clues in the evaluation of conditions related to dopamine, such as Parkinson's disease and drug abuse. The first PET radioligands based on cocaine were not selective, but more recently several selective tracers such as [11C]PE2I have been characterized and shown to be suitable as PET radioligands. Although there are a large number of serotonin transporter inhibitors used today as SSRIs, it was not until very recently, when [11C]McN5652 was synthesized, that this transporter was studied using PET. New candidates as PET radioligands for the SERT have subsequently been developed and [11C]DASB and [11C]MADAM and their analogues are today the most promising ligands. The existing radioligands for Pgp transporters seem to be suitable tools for the study of both peripheral and central drug

  12. Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET)/MRI for Lung Cancer Staging.

    PubMed

    Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Yoshikawa, Takeshi; Sugimura, Kazuro

    2016-07-01

    Tumor, lymph node, and metastasis (TNM) classification of lung cancer is typically performed with the TNM staging system, as recommended by the Union Internationale Contre le Cancer (UICC), the American Joint Committee on Cancer (AJCC), and the International Association for the Study of Lung Cancer (IASLC). Radiologic examinations for TNM staging of lung cancer patients include computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography with 2-[fluorine-18] fluoro-2-deoxy-D-glucose (FDG-PET), and FDG-PET combined with CT (FDG-PET/CT) and are used for pretherapeutic assessments. Recent technical advances in MR systems, application of fast and parallel imaging and/or introduction of new MR techniques, and utilization of contrast media have markedly improved the diagnostic utility of MRI in this setting. In addition, FDG-PET can be combined or fused with MRI (PET/MRI) for clinical practice. This review article will focus on these recent advances in MRI as well as on PET/MRI for lung cancer staging, in addition to a discussion of their potential and limitations for routine clinical practice in comparison with other modalities such as CT, FDG-PET, and PET/CT.

  13. The role of positron emission tomography in the detection of pancreatic disease

    SciTech Connect

    Syrota, A.; Duquesnoy, N.; Paraf, A.; Kellershohn, C.

    1982-04-01

    Positron emission tomography (PET) was used to assess possible pancreatic disease in 100 patients. Following injection of 10-15 mCi (370-740 MBq) of 11C-L-methionine, 4-12 transverse sections 2 cm thick were obtained. In 85 patients with a definite diagnosis (45 normal, 9 acute pancreatitis, 18 chronic pancreatitis, and 13 cancer), PET showed a sensitivity of 85.0%, a specificity of 97.8%, and an accuracy of 91.8%, higher than with transmission computed tomography (CT) or ultrasonography, despite relatively low spatial resolution; this can be explained by the fact that exocrine pancreatic function was altered prior to morphological change. In 22 normal subjects, 0.011 +/- 0.003% (mean +/- S.D). of injected 11C was found in 1 ml of liver tissue and 0.015 +/- 0.005% in 1 ml of pancreatic tissue; the pancreas-to-liver concentration ratio was 1.3 +/- 0.4. Hepatic 11C concentration was identical in the four groups of patients. Pancreatic uptake of 11C-L-methionine was significantly lower in patients with chronic pancreatitis (n . 13) and pancreatic carcinoma (n . 10) (p less than 0.001); however, it was not possible to distinguish cancer from chronic pancreatitis because the same functional alteration occurred in both.

  14. The role of positron emission tomography in the detection of pancreatic disease

    SciTech Connect

    Syrota, A.; Duquesnoy, N.; Paraf, A.; Kellershohn, C.

    1982-04-01

    Positron emission tomography (PET) was used to assess possible pancreatic disease in 100 patients. Following injection of 10-15 mCi (370-740 MBq) of /sup 11/C-L-methionine, 4-12 transverse sections 2 cm thick were obtained. In 85 patients with a definite diagnosis (45 normal, 9 acute pancreatitis, 18 chronic pancreatitis, and 13 cancer), PET showed a sensitivity of 85.0%, a specificity of 97.8%, and an accuracy of 91.8%, higher than with transmission computed tomography (CT) or ultrasonography, despite relatively low spatial resolution; this can be explained by the fact that exocrine pancreatic function was altered prior to morphological change. In 22 normal subjects, 0.011 +/- 0.003% (mean +/- S.D.) of injected /sup 11/C was found in 1 ml of liver tissue and 0.015 +/- 0.005% in 1 ml of pancreatic tissue; the pancreas-to-liver concentration ratio was 1.3 +/- 0.4. Hepatic /sup 11/C concentration was identical in the four groups of patients. Pancreatic uptake of /sup 11/C-L-methionine was significantly lower in patients with chronic pancreatitis (n = 13) and pancreatic carcinoma (n = 10) (p <0.001); however, it was not possible to distinguish cancer from chronic pancreatitis because the same functional alteration occurred in both.

  15. Clinical Utility of Positron Emission Tomography Magnetic Resonance Imaging (PET-MRI) in Gastrointestinal Cancers

    PubMed Central

    Matthews, Robert; Choi, Minsig

    2016-01-01

    Anatomic imaging utilizing both CT (computed tomography) and MRI (magnetic resonance imaging) limits the assessment of cancer metastases in lymph nodes and distant organs while functional imaging like PET (positron emission tomography) scan has its limitation in spatial resolution capacity. Hybrid imaging utilizing PET-CT and PET-MRI are novel imaging modalities that are changing the current landscape in cancer diagnosis, staging, and treatment response. MRI has shown to have higher sensitivity in soft tissue, head and neck pathology, and pelvic disease, as well as, detecting small metastases in the liver and bone compared to CT. Combining MRI with PET allows for detection of metastases that may have been missed with current imaging modalities. In this review, we will examine the clinical utility of FDG PET-MRI in the diagnosis and staging of gastrointestinal cancers with focus on esophageal, stomach, colorectal, and pancreatic cancers. We will also explore its role in treatment response and future directions associated with it. PMID:27618106

  16. A broad overview of positron emission tomography radiopharmaceuticals and clinical applications: what is new?

    PubMed

    Vallabhajosula, Shankar; Solnes, Lilja; Vallabhajosula, Brigitte

    2011-07-01

    Positron emission tomography (PET)/computed tomography (CT) is a rapidly expanding imaging modality, thanks to the availability of compact medical cyclotrons and automated chemistry synthesis modules for the production of PET radiopharmaceuticals. Despite the availability of many radiotracers, [(18)F]fluorodeoxyglucose (FDG) is currently the most widely used radiopharmaceutical in PET, and the field of molecular imaging is anxiously awaiting the introduction of new PET radiopharmaceuticals for routine clinical use. During the last five years, several proprietary PET radiopharmaceuticals have been developed by major companies, and these new agents are in different stages of clinical evaluation. These new PET drugs are designed for imaging brain beta amyloid, myocardial perfusion, amino acid transport, angiogenesis, and tumor antigen expression. In addition, the National Cancer Institute, Society of Nuclear Medicine Clinical Trials Network, and the American College of Radiology Imaging Network have been conducting multicenter clinical trials with several nonproprietary PET drugs such as sodium [(18)F]fluoride, [(18)F]fluorothymidine, [(18)F]fluoromisonidazole, and (64)Cu-labeled diacetyl-bis (N(4)-methylthiosemicarbazone. All new PET radiopharmaceuticals, like any other drugs, must be manufactured under current good manufacturing practices as required by the Food and Drug Administration before clinical evaluation (phases I, II, and III) and submission of new drug application. This review briefly describes the chemistry, mechanisms(s) of localization, and clinical application of both proprietary and nonproprietary new PET drugs under multicenter clinical evaluation.

  17. Imaging Prostate Cancer: An Update on Positron Emission Tomography and Magnetic Resonance Imaging

    PubMed Central

    Turkbey, Baris; Choyke, Peter; Capala, Jacek

    2012-01-01

    Prostate cancer is a common cancer in men and continues to be a major health problem. Imaging plays an essential role in the clinical management of patients. An important goal for prostate cancer imaging is more accurate disease characterization through the synthesis of anatomic, functional, and molecular imaging information. Developments in imaging technologies, specifically magnetic resonance imaging (MRI) and positron emission tomography (PET)/computed tomography (CT), have improved the detection rate of prostate cancer. MRI has improved lesion detection and local staging. Furthermore, MRI allows functional assessment with techniques such as diffusion-weighted MRI, MR spectroscopy, and dynamic contrast-enhanced MRI. The most common PET radiotracer, 18F-fluorodeoxyglucose, is not very useful in prostate cancer. However, in recent years other PET tracers have improved the accuracy of PET/CT imaging of prostate cancer. Among these, choline (labeled with 18F or 11C), 11C-acetate, and 18F-fluoride have demonstrated promising results, and other new radiopharmaceuticals are currently under evaluation in preclinical and clinical studies. PMID:20425625

  18. Clinical Utility of Positron Emission Tomography Magnetic Resonance Imaging (PET-MRI) in Gastrointestinal Cancers.

    PubMed

    Matthews, Robert; Choi, Minsig

    2016-01-01

    Anatomic imaging utilizing both CT (computed tomography) and MRI (magnetic resonance imaging) limits the assessment of cancer metastases in lymph nodes and distant organs while functional imaging like PET (positron emission tomography) scan has its limitation in spatial resolution capacity. Hybrid imaging utilizing PET-CT and PET-MRI are novel imaging modalities that are changing the current landscape in cancer diagnosis, staging, and treatment response. MRI has shown to have higher sensitivity in soft tissue, head and neck pathology, and pelvic disease, as well as, detecting small metastases in the liver and bone compared to CT. Combining MRI with PET allows for detection of metastases that may have been missed with current imaging modalities. In this review, we will examine the clinical utility of FDG PET-MRI in the diagnosis and staging of gastrointestinal cancers with focus on esophageal, stomach, colorectal, and pancreatic cancers. We will also explore its role in treatment response and future directions associated with it. PMID:27618106

  19. Positron emission tomography in aging and dementia: effect of cerebral atrophy

    SciTech Connect

    Chawluk, J.B.; Alavi, A.; Dann, R.; Hurtig, H.I.; Bais, S.; Kushner, M.J.; Zimmerman, R.A.; Reivich, M.

    1987-04-01

    The spatial resolution of current positron emission tomography (PET) scanners does not allow a distinction between cerebrospinal fluid (CSF) containing spaces and contiguous brain tissue. Data analysis strategies which therefore purport to quantify cerebral metabolism per unit mass brain tissue are in fact measuring a value which may be artifactually reduced due to contamination by CSF. We studied cerebral glucose metabolism (CMRglc) in 17 healthy elderly individuals and 24 patients with Alzheimer's dementia using (/sup 18/F)fluorodeoxyglucose and PET. All subjects underwent x-ray computed tomography (XCT) scanning at the time of their PET study. The XCT scans were analyzed volumetrically, in order to determine relative areas for ventricles, sulci, and brain tissue. Global CMRglc was calculated before and after correction for contamination by CSF (cerebral atrophy). A greater increase in global CMRglc after atrophy correction was seen in demented individuals compared with elderly controls (16.9% versus 9.0%, p less than 0.0005). Additional preliminary data suggest that volumetric analysis of proton-NMR images may prove superior to analysis of XCT data in quantifying the degree of atrophy. Appropriate corrections for atrophy should be employed if current PET scanners are to accurately measure actual brain tissue metabolism in various pathologic states.

  20. TOPICAL REVIEW: Biological imaging in radiation therapy: role of positron emission tomography

    NASA Astrophysics Data System (ADS)

    Nestle, Ursula; Weber, Wolfgang; Hentschel, Michael; Grosu, Anca-Ligia

    2009-01-01

    In radiation therapy (RT), staging, treatment planning, monitoring and evaluation of response are traditionally based on computed tomography (CT) and magnetic resonance imaging (MRI). These radiological investigations have the significant advantage to show the anatomy with a high resolution, being also called anatomical imaging. In recent years, so called biological imaging methods which visualize metabolic pathways have been developed. These methods offer complementary imaging of various aspects of tumour biology. To date, the most prominent biological imaging system in use is positron emission tomography (PET), whose diagnostic properties have clinically been evaluated for years. The aim of this review is to discuss the valences and implications of PET in RT. We will focus our evaluation on the following topics: the role of biological imaging for tumour tissue detection/delineation of the gross tumour volume (GTV) and for the visualization of heterogeneous tumour biology. We will discuss the role of fluorodeoxyglucose-PET in lung and head and neck cancer and the impact of amino acids (AA)-PET in target volume delineation of brain gliomas. Furthermore, we summarize the data of the literature about tumour hypoxia and proliferation visualized by PET. We conclude that, regarding treatment planning in radiotherapy, PET offers advantages in terms of tumour delineation and the description of biological processes. However, to define the real impact of biological imaging on clinical outcome after radiotherapy, further experimental, clinical and cost/benefit analyses are required.

  1. Imaging of Tumor Metabolism Using Positron Emission Tomography (PET).

    PubMed

    Apostolova, Ivayla; Wedel, Florian; Brenner, Winfried

    2016-01-01

    Molecular imaging employing PET/CT enables in vivo visualization, characterization, and measurement of biologic processes in tumors at a molecular and cellular level. Using specific metabolic tracers, information about the integrated function of multiple transporters and enzymes involved in tumor metabolic pathways can be depicted, and the tracers can be directly applied as biomarkers of tumor biology. In this review, we discuss the role of F-18-fluorodeoxyglucose (FDG) as an in vivo glycolytic marker which reflects alterations of glucose metabolism in cancer cells. This functional molecular imaging technique offers a complementary approach to anatomic imaging such as computed tomography (CT) and magnetic resonance imaging (MRI) and has found widespread application as a diagnostic modality in oncology to monitor tumor biology, optimize the therapeutic management, and guide patient care. Moreover, emerging methods for PET imaging of further biologic processes relevant to cancer are reviewed, with a focus on tumor hypoxia and aberrant tumor perfusion. Hypoxic tumors are associated with poor disease control and increased resistance to cytotoxic and radiation treatment. In vivo imaging of hypoxia, perfusion, and mismatch of metabolism and perfusion has the potential to identify specific features of tumor microenvironment associated with poor treatment outcome and, thus, contribute to personalized treatment approaches. PMID:27557539

  2. Brain tumor imaging with synthesized /sup 18/F-fluorophenylalanine and positron emission tomography

    SciTech Connect

    Mineura, K.; Kowada, M.; Shishido, F.

    1989-06-01

    Two patients with cerebral gliomas were studied with 18F-fluorophenylalanine, newly synthesized by the electrophilic substitution reaction, using positron emission tomography. The tracer accumulated markedly in the tumor lesion and delineated the extent of the lesion. This new tracer will be promising in the diagnosis of gliomas.

  3. Detection of scalene lymph node metastases from lung cancer. Positron emission tomography.

    PubMed

    Scott, W J; Gobar, L S; Hauser, L G; Sunderland, J J; Dewan, N A; Sugimoto, J T

    1995-04-01

    Preliminary data indicate that positron emission tomography (PET) following injection of fluorodeoxyglucose F18 (FDG) is sensitive and specific for detecting malignant cells in chest tumors and mediastinal lymph nodes. We report a case of non-small cell lung cancer metastatic to clinically normal scalene lymph nodes that was correctly staged by FDG-PET. PMID:7705136

  4. Positron Emission Tomography Methods with Potential for Increased Understanding of Mental Retardation and Developmental Disabilities

    ERIC Educational Resources Information Center

    Sundaram, Senthil K.; Chugani, Harry T.; Chugani, Diane C.

    2005-01-01

    Positron emission tomography (PET) is a technique that enables imaging of the distribution of radiolabeled tracers designed to track biochemical and molecular processes in the body after intravenous injection or inhalation. New strategies for the use of radiolabeled tracers hold potential for imaging gene expression in the brain during development…

  5. Attention Performance in Autism and Regional Brain Metabolic Rate Assessed by Positron Emission Tomography. Brief Report.

    ERIC Educational Resources Information Center

    Buchsbaum, M. S.; And Others

    1992-01-01

    This evaluation of seven high functioning adults with autism utilized positron emission tomography on a visual vigilance task. Although the subjects, as a group, did as well as normal controls on the task, there was a lack of normal hemispheric asymmetry in glucose metabolic rate. A heterogeneous etiology for autism is suggested to explain…

  6. Positron emission tomography detects tissue metabolic activity in myocardial segments with persistent thallium perfusion defects

    SciTech Connect

    Brunken, R.; Schwaiger, M.; Grover-McKay, M.; Phelps, M.E.; Tillisch, J.; Schelbert, H.R.

    1987-09-01

    Positron emission tomography with /sup 13/N-ammonia and /sup 18/F-2-deoxyglucose was used to assess myocardial perfusion and glucose utilization in 51 myocardial segments with a stress thallium defect in 12 patients. Myocardial infarction was defined by a concordant reduction in segmental perfusion and glucose utilization, and myocardial ischemia was identified by preservation of glucose utilization in segments with rest hypoperfusion. Of the 51 segments studied, 36 had a fixed thallium defect, 11 had a partially reversible defect and 4 had a completely reversible defect. Only 15 (42%) of the 36 segments with a fixed defect and 4 (36%) of the 11 segments with a partially reversible defect exhibited myocardial infarction on study with positron tomography. In contrast, residual myocardial glucose utilization was identified in the majority of segments with a fixed (58%) or a partially reversible (64%) thallium defect. All of the segments with a completely reversible defect appeared normal on positron tomography. Apparent improvement in the thallium defect on delayed images did not distinguish segments with ischemia from infarction. Thus, positron emission tomography reveals evidence of persistent tissue metabolism in the majority of segments with a fixed or partially resolving stress thallium defect, implying that markers of perfusion alone may underestimate the extent of viable tissue in hypoperfused myocardial segments.

  7. 77 FR 8262 - Draft Guidance on Investigational New Drug Applications for Positron Emission Tomography Drugs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... HUMAN SERVICES Food and Drug Administration Draft Guidance on Investigational New Drug Applications for Positron Emission Tomography Drugs; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA) is announcing the availability of a draft...

  8. The Neural Correlates of Driving Performance Identified Using Positron Emission Tomography

    ERIC Educational Resources Information Center

    Horikawa, E.; Okamura, N.; Tashiro, M.; Sakurada, Y.; Maruyama, M.; Arai, H.; Yamaguchi, K.; Sasaki, H.; Yanai, K.; Itoh, M.

    2005-01-01

    Driving is a complex behavior involving multiple cognitive domains. To identify neural correlates of driving performance, [^1^5O]H"2O positron emission tomography was performed using a simulated driving task. Compared with the resting condition, simulated driving increased regional cerebral blood flow (rCBF) in the cerebellum, occipital, and…

  9. Positron Emission Tomography in Cochlear Implant and Auditory Brainstem Implant Recipients.

    ERIC Educational Resources Information Center

    Miyamoto, Richard T.; Wong, Donald

    2001-01-01

    Positron emission tomography imaging was used to evaluate the brain's response to auditory stimulation, including speech, in deaf adults (five with cochlear implants and one with an auditory brainstem implant). Functional speech processing was associated with activation in areas classically associated with speech processing. (Contains five…

  10. Positron Emission Tomography - Computed Tomography (PET/CT)

    MedlinePlus

    ... perfusion scan ). evaluate brain abnormalities, such as tumors, memory disorders, seizures and other central nervous system disorders. map normal human brain and heart function. top of page How ...

  11. Manganese-52m, a new short-lived, generator-produced radionuclide: a potential tracer for positron tomography.

    PubMed

    Atcher, R W; Friedman, A M; Huizenga, J R; Rayudu, G V; Silverstein, E A; Turner, D A

    1980-06-01

    A new generator system has been developed using the Fe-52 leads to Mn-52m parent-daughter pair. Fe-52, half-life 8.3 hr, is isolated on an anion-exchange column, and Mn-52m is eluted in hydrochloric acid. Breakthrough is less than 0.01% and the yield is 75%. The 21.1-min half life of Mn-52m is ideal for use in sequential studies, but is long enough to permit radiochemical manipulations to control biodistribution. Animal studies indicate that Mn-52m is an ideal nuclide for myocardial imaging, combining rapid blood clearance and high concentration in the myocardium. An added advantage is that Mn-52m decays 98% by positron emission and is useful for positron computer tomography. PMID:6966681

  12. Computed tomography of fibrous dysplasia

    SciTech Connect

    Daffner, R.H.; Kirks, D.R.; Gehweiler, J.A. Jr.; Heaston, D.K.

    1982-11-01

    Skeletal fibrous dysplasia produces changes that are usually readily recognized on plain radiographs. Occasionally, routine radiography may not demonstrate the characteristic appearance of the disease. The density of abormal bone in craniofacial fibrous dysplasia may preclude adequate assessment of areas where soft-tissue impingement may occur. Computed tomography (CT) is useful in demonstrating the amorphous ''ground-glass'' texture of the lesion and in defining the extent of craniofacial disease including impingement upon orbital structures. CT was useful in five patients with fibrous dysplasia in whom the nature or extent of involvement was not entirely clear.

  13. Dual-energy computed tomography.

    PubMed

    Furlow, Bryant

    2015-01-01

    Dual-energy computed tomography (DECT) yields precise anatomic and functional images by exploiting differences in the interactions of high- and low-energy photon spectra with different tissues' and materials' atomic components to more precisely differentiate the chemistry of tissues and disease processes than is possible with traditional single-energy CT scan acquisitions. This article introduces the history of DECT, its physical basis, scanner designs, radiation dose considerations, and postprocessing techniques. DECT's clinical applications also are described, and this relatively new imaging modality's clinical limitations and future prospects are discussed.

  14. Computed tomography of parosteal osteosarcoma

    SciTech Connect

    Hudson, T.M.; Springfield, D.S.; Benjamin, M.; Bertoni, F.; Present, D.A.

    1985-05-01

    Twelve patients with parosteal osteosarcomas were evaluated by computed tomography (CT). CT accurately defined the extent of the tumors for purposes of surgical planning, although tumor bone often could not be distinguished from thickened host bone. Nine tumors invaded the medullary cavity, a feature that implies a poorer prognosis when the tumor also contains high-grade areas. Six CT studies accurately detected the medullary invasion, but three did not. Lucent areas within dense tumors contained either benign tissue or high- or low-grade tumor; CT did not differentiate among these different tissues. CT also did not reveal small satellite nodules of tumor beyond the main tumor mass.

  15. The aging of the heart and blood vessels: a consideration of anatomy and physiology in the era of computed tomography, magnetic resonance imaging, and positron emission tomographic imaging methods with special consideration of atherogenesis.

    PubMed

    Botvinick, Eli H; Perini, Rodolfo; Bural, Gonca; Chen, Wengen; Chryssikos, Timothy; Houseni, Mohamed; Hernandez-Pampaloni, Miguel; Torigian, Drew A; Alavi, Abass

    2007-03-01

    Physicians have long told their patients that the doctor's job is to help patients "get as old as they can." As physicians, we have been aided in this objective by many other scientists in other disciplines. The entity of aging and its related changes blends imperceptibly with a variety of age-related diseases. However, these entities do appear to be separate though interrelated. Curing disease is important and a goal that we all work toward to add years to life expectancy. Here, we consider aging as it affects the heart and great vessels and as it serves to influence and support, if not cause, age-related cardiac diseases. This relationship is drawn as cardiac mechanics, hemodynamics, perfusion, metabolism and innervation, anatomy, and pathophysiology are each considered. The effects of aging are presented in 2 sections related to the early and recent "spikes" in aging related information. The latter is largely based in recent developments in chemistry, genetic engineering, molecular biology and the new imaging methods. The purpose of this manuscript is to present these new imaging methods, especially PET, and their impact on the second "spike." This is emphasized particularly in the second half of this review. As a method of demonstrating these imaging tools and their finest potential application, we decided to "showcase" atherosclerosis as the age-related disease for which these methods have made their greatest impact, for which yet more is promised, and for which the influence on longevity is most obvious. The application of positron emission tomography and other imaging methods to the characterization and image identification of atherosclerotic plaques and particularly the "vulnerable" plaque is emphasized. Yet, even with the eradication of coronary disease, the potential for very long life would not be likely. Only with the identification and eradication of the causative factors of aging can this possibility have a chance of becoming reality. PMID:17289459

  16. Computed tomography of the genitourinary tract.

    PubMed

    Stanley, R J; Sagel, S S; Fair, W R

    1978-06-01

    Eighteen months of experience with computed body tomography have revealed that this radiologic modality is useful in the diagnostic evaluation and management of urologic patients. Renal masses, perirenal lesions, poorly functioning kidneys, pelvic tumors and associated retroperitoneal nodal spread and other diagnostic problems related to the urinary tract have been imaged successfully with computed body tomography. Accuracy is high in the differentiation of benign renal cysts from renal neoplasms. Tumor staging and computed body tomography is being explored currently.

  17. Iterative reconstruction using a Monte Carlo based system transfer matrix for dedicated breast positron emission tomography

    SciTech Connect

    Saha, Krishnendu; Straus, Kenneth J.; Glick, Stephen J.; Chen, Yu.

    2014-08-28

    To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction.

  18. Iterative reconstruction using a Monte Carlo based system transfer matrix for dedicated breast positron emission tomography

    NASA Astrophysics Data System (ADS)

    Saha, Krishnendu; Straus, Kenneth J.; Chen, Yu.; Glick, Stephen J.

    2014-08-01

    To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction.

  19. Iterative reconstruction using a Monte Carlo based system transfer matrix for dedicated breast positron emission tomography.

    PubMed

    Saha, Krishnendu; Straus, Kenneth J; Chen, Yu; Glick, Stephen J

    2014-08-28

    To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction.

  20. A rare cardiac haemangioma in the right ventricle diagnosed accurately using ¹⁸F-fluorodeoxyglucose-positron emission tomography.

    PubMed

    Matsuba, Tomoyuki; Hisashi, Yosuke; Yotsumoto, Goichi; Imoto, Yutaka

    2015-05-01

    A right ventricular cardiac tumour was incidentally detected in a 61-year-old man during a preoperative examination for coronary artery bypass grafting (CABG). Findings on computed tomography and magnetic resonance imaging suggested the differential diagnoses of myxoma, haemangioma and haemangiosarcoma, and it was difficult to identify whether the tumour was benign or malignant. (18)F-fluorodeoxyglucose-positron emission tomography strongly suggested a benign tumour. We enucleated the tumour, because an intraoperative frozen section also strongly suggested a benign origin. After resection, CABG under cardiopulmonary bypass was performed. Histopathological and immunohistochemical analysis indicated a cavernous haemangioma without evidence of malignant tissue. The patient has survived 20 months after surgery with no evidence of tumour recurrence.

  1. The use of fluorine-18 fluorodeoxyglucose positron emission tomography for imaging human motor neuronal activation in the brain

    PubMed Central

    PAHK, KISOO; PARK, KUN-WOO; PYUN, SUNG BOM; LEE, JAE SUNG; KIM, SUNGEUN; CHOE, JAE GOL

    2015-01-01

    The present study aimed to visualize human motor neuronal activation in the brain using fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET), and to develop an FDG-PET procedure for imaging neuronal activation. A male volunteer underwent 20 min periods of rest and motor activation, whilst being assessed using FDG-PET on two consecutive days. The motor task, which involved repetitively grasping and releasing the right hand, was performed during the initial 5 min of the activation period. Subtraction of the rest period signal from the activation PET images was performed using the subtraction ictal single-photon emission computed tomography co-registered to magnetic resonance imaging method. The subtracted image detected activation of the contralateral (left) primary motor cortex, supplementary motor area, and ipsilateral (right) cerebellum. In the present study, FDG-PET detected significantly increased motor-associated activation of the brain in a subject performing a motor task. PMID:26668604

  2. [Computer tomography of sports injuries].

    PubMed

    Reiser, M; Rupp, N

    1984-01-01

    Computed tomography (CT) provides axial slices plane and shows excellent details of bones and different soft tissues, favoring its use in traumatic lesions caused by sporting activities. Complex anatomical structures such as the shoulder, the vertebral column, the pelvis, the knee, the tarsal and carpal bones are often better recognized in detail than by conventional radiography. Fracture lines, localization of bone fragments and involvement of soft tissues are clearly demonstrated. Luxations and bone changes leading to luxations can be shown. CT arthrography provides for the first time a direct visualization of joint cartilage and of cruciate ligaments in the knee joint, so traumatic lesions such as chondropathia patellae or rupture of the cruciate ligaments are shown with a high degree of reliability.

  3. Single photon emission computed tomography

    SciTech Connect

    Piez, C.W. Jr.; Holman, B.L.

    1985-07-01

    Single photon emission computed tomography (SPECT) is becoming an increasingly important part of routine clinical nuclear medicine. By providing tomographic reconstructions in multiple planes through the patient, SPECT expands the clinical applications in nuclear medicine as well as providing better contrast, edge definition and separation of target from background activities. Imaging techniques have been developed for the evaluation of regional cerebral blood flow using radiolabeled amines. Thus, cerebral functional imaging can be used in the diagnosis of acute cerebral infarction, cerebral vascular disease, dementia and epilepsy. SPECT plays a complementary role in the evaluation of coronary artery disease, particularly when it is coupled with thallium-201 and exercise testing. SPECT extends our diagnostic capabilities in additional areas, such as liver and bone scintigraphy as well as tumor imaging with gallium-67.

  4. Computed tomography of cryogenic cells

    SciTech Connect

    Schneider, Gerd; Anderson, E.; Vogt, S.; Knochel, C.; Weiss, D.; LeGros, M.; Larabell, C.

    2001-08-30

    Due to the short wavelengths of X-rays and low numerical aperture of the Fresnel zone plates used as X-ray objectives, the depth of field is several microns. Within the focal depth, imaging a thick specimen is to a good approximation equivalent to projecting the specimen absorption. Therefore, computed tomography based on a tilt series of X-ray microscopic images can be used to reconstruct the local linear absorption coefficient and image the three-dimensional specimen structure. To preserve the structural integrity of biological objects during image acquisition, microscopy is performed at cryogenic temperatures. Tomography based on X-ray microscopic images was applied to study the distribution of male specific lethal 1 (MSL-1), a nuclear protein involved in dosage compensation in Drosophila melanogaster, which ensures that males with single X chromosome have the same amount of most X-linked gene products as females with two X chromosomes. Tomographic reconstructions of X-ray microscopic images were used to compute the local three-dimensional linear absorption coefficient revealing the arrangement of internal structures of Drosophila melanogaster cells. Combined with labelling techniques, nanotomography is a new technique to study the 3D distribution of selected proteins inside whole cells. We want to improve this technique with respect to resolution and specimen preparation. The resolution in the reconstruction can be significantly improved by reducing the angular step size to collect more viewing angles, which requires an automated data acquisition. In addition, fast-freezing with liquid ethane instead of cryogenic He gas will be applied to improve the vitrification of the hydrated samples. We also plan to apply cryo X-ray nanotomography in order to study different types of cells and their nuclear protein distributions.

  5. Clustering-initiated factor analysis application for tissue classification in dynamic brain positron emission tomography

    PubMed Central

    Boutchko, Rostyslav; Mitra, Debasis; Baker, Suzanne L; Jagust, William J; Gullberg, Grant T

    2015-01-01

    The goal is to quantify the fraction of tissues that exhibit specific tracer binding in dynamic brain positron emission tomography (PET). It is achieved using a new method of dynamic image processing: clustering-initiated factor analysis (CIFA). Standard processing of such data relies on region of interest analysis and approximate models of the tracer kinetics and of tissue properties, which can degrade accuracy and reproducibility of the analysis. Clustering-initiated factor analysis allows accurate determination of the time–activity curves and spatial distributions for tissues that exhibit significant radiotracer concentration at any stage of the emission scan, including the arterial input function. We used this approach in the analysis of PET images obtained using 11C-Pittsburgh Compound B in which specific binding reflects the presence of β-amyloid. The fraction of the specific binding tissues determined using our approach correlated with that computed using the Logan graphical analysis. We believe that CIFA can be an accurate and convenient tool for measuring specific binding tissue concentration and for analyzing tracer kinetics from dynamic images for a variety of PET tracers. As an illustration, we show that four-factor CIFA allows extraction of two blood curves and the corresponding distributions of arterial and venous blood from PET images even with a coarse temporal resolution. PMID:25899294

  6. Four-Dimensional Positron Emission Tomography: Implications for Dose Painting of High-Uptake Regions

    SciTech Connect

    Aristophanous, Michalis; Killoran, Joseph H.; Chen, Aileen B.; Berbeco, Ross I.

    2011-07-01

    Purpose: To investigate the behavior of tumor subvolumes of high [18F]-fluorodeoxyglucose (FDG) uptake as seen on clinical four-dimensional (4D) FDG-positron emission tomography (PET) scans. Methods and Materials: Four-dimensional FDG-PET/computed tomography scans from 13 patients taken before radiotherapy were available. The analysis was focused on regions of high uptake that are potential dose-painting targets. A total of 17 lesions (primary tumors and lymph nodes) were analyzed. On each one of the five phases of the 4D scan a classification algorithm was applied to obtain the region of highest uptake and segment the tumor volume. We looked at the behavior of both the high-uptake subvolume, called 'Boost,' and the segmented tumor volume, called 'Target.' We measured several quantities that characterize the Target and Boost volumes and quantified correlations between them. Results: The behavior of the Target could not always predict the behavior of the Boost. The shape deformation of the Boost regions was on average 133% higher than that of the Target. The gross to internal target volume expansion was on average 27.4% for the Target and 64% for the Boost, a statistically significant difference (p < 0.05). Finally, the inhale-to-exhale phase (20%) had the highest shape deformation for the Boost regions. Conclusions: A complex relationship between the measured quantities for the Boost and Target volumes is revealed. The results suggest that in cases in which advanced therapy techniques such as dose painting are being used, a close examination of the 4D PET scan should be performed.

  7. Digital contrast enhancement of 18Fluorine-fluorodeoxyglucose positron emission tomography images in hepatocellular carcinoma

    PubMed Central

    Pandey, Anil Kumar; Sharma, Sanjay Kumar; Agarwal, Krishan Kant; Sharma, Punit; Bal, Chandrasekhar; Kumar, Rakesh

    2016-01-01

    Purpose: The role of 18fluorodeoxyglucose positron emission tomography (PET) is limited for detection of primary hepatocellular carcinoma (HCC) due to low contrast to the tumor, and normal hepatocytes (background). The aim of the present study was to improve the contrast between the tumor and background by standardizing the input parameters of a digital contrast enhancement technique. Materials and Methods: A transverse slice of PET image was adjusted for the best possible contrast, and saved in JPEG 2000 format. We processed this image with a contrast enhancement technique using 847 possible combinations of input parameters (threshold “m” and slope “e”). The input parameters which resulted in an image having a high value of 2nd order entropy, and edge content, and low value of absolute mean brightness error, and saturation evaluation metrics, were considered as standardized input parameters. The same process was repeated for total nine PET-computed tomography studies, thus analyzing 7623 images. Results: The selected digital contrast enhancement technique increased the contrast between the HCC tumor and background. In seven out of nine images, the standardized input parameters “m” had values between 150 and 160, and for other two images values were 138 and 175, respectively. The value of slope “e” was 4 in 4 images, 3 in 3 images and 1 in 2 images. It was found that it is important to optimize the input parameters for the best possible contrast for each image; a particular value was not sufficient for all the HCC images. Conclusion: The use of above digital contrast enhancement technique improves the tumor to background ratio in PET images of HCC and appears to be useful. Further clinical validation of this finding is warranted. PMID:26917889

  8. Positron emission tomography (PET) for assessing aerosol deposition of orally inhaled drug products.

    PubMed

    Dolovich, Myrna B; Bailey, Dale L

    2012-12-01

    The topical distribution of inhaled therapies in the lung can be viewed using radionuclides and imaging. Positron emission tomography (PET) is a three-dimensional functional imaging technique providing quantitatively accurate localization of the quantity and distribution of an inhaled or injected PET radiotracer in the lung. A series of transaxial slices through the lungs are obtained, comparable to an X-ray computed tomography (CT) scan. Subsequent reformatting allows coronal and sagittal images of the distribution of radioactivity to be viewed. This article describes procedures for administering [(18)F]-fluorodeoxyglucose aerosol to human subjects for the purpose of determining dose and distribution following inhalation from an aerosol drug delivery device (ADDD). The advantages of using direct-labeled PET drugs in the ADDD are discussed with reference to the literature. The methods for designing the inhalation system, determining proper radiation shielding, calibration, and validation of administered radioactivity, scanner setup, and data handling procedures are described. Obtaining an X-ray CT or radionuclide transmission scan to provide accurate geometry of the lung and also correct for tissue attenuation of the PET radiotracer is discussed. Protocols for producing accurate images, including factors that need to be incorporated into the data calibration, are described, as well as a proposed standard method for partitioning the lung into regions of interest. Alternate methods are described for more detailed assessments. Radiation dosimetry/risk calculations for the procedures are appended, as well as a sample data collection form and spreadsheet for calculations. This article should provide guidance for those interested in using PET to determine quantity and distribution of inhaled therapeutics. PMID:23215847

  9. Role of (18F) 2-fluoro-2-deoxyglucose positron emission tomography in upper gastrointestinal malignancies

    PubMed Central

    Smyth, Elizabeth C; Shah, Manish A

    2011-01-01

    The role of whole-body FDG [(18F) 2-fluoro-2-deoxyglucose] positron emission tomography (PET) scanning as an imaging modality in the management of patients with malignancy has evolved enormously over the past two decades. FDG-PET has demonstrated significant efficacy in the staging, prognostication and detection of occult metastatic disease in malignancies of the gastrointestinal tract, in addition to assessment of the response to cytotoxic chemotherapy in a more timely manner than has traditionally been possible by more conventional imaging tools. The sensitivity and specificity of FDG-PET for the detection and staging of malignancy depend not only on the site and size of the primary tumor and metastases, but also on histological cell type, reflecting underlying disparities in glucose metabolism. The metabolic response to neo-adjuvant chemotherapy or to chemo-radiotherapy in cancers of the gastro-esophageal junction or stomach has been demonstrated in several prospective studies to correlate significantly with both the histological tumor response to treatment and with consequent improvements in overall survival. This may offer a future paradigm of personalized treatment based on the PET response to chemotherapy. FDG-PET has been less successful in efforts to screen for and detect recurrent upper gastrointestinal malignancies, and in the detection of low volume metastatic peritoneal disease. Efforts to improve the accuracy of PET include the use of novel radiotracers such as (18F) FLT (3-deoxy-3-fluorothymidine) or 11C-choline, or fusion PET-CT with concurrent high-resolution computed tomography. This review focuses on the role of FDG-PET scanning in staging and response assessment in malignancies of the upper gastrointestinal tract, specifically gastric, esophageal and pancreas carcinoma. PMID:22171140

  10. Positron emission tomography as a diagnostic tool in infection: present role and future possibilities.

    PubMed

    Basu, Sandip; Chryssikos, Timothy; Moghadam-Kia, Siamak; Zhuang, Hongming; Torigian, Drew A; Alavi, Abass

    2009-01-01

    The past decade has witnessed the emergence of yet another promising application of (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) imaging in the detection and management of patients with infection and inflammatory disorders. This phenomenon is quite evident when the peer-reviewed scientific literature is searched for on this topic. Among these scientific communications, the 6 conditions in which FDG-PET has demonstrated its greatest utility include (1) chronic osteomyelitis, (2) complicated lower-limb prostheses, (3) complicated diabetic foot, (4) fever of unknown origin, (5) acquired immunodeficiency syndrome (ie, AIDS), and (6) vascular graft infection and fistula. On the basis of published literature, orthopedic infections, particularly those related to implanted prostheses and osteomyelitis (including that occurring in the setting of a complicated diabetic foot), can be detected successfully by the use of FDG-PET and, therefore, this modality has great promise for becoming the study of choice in these complex settings. Increasingly, this technique is being used to detect infection in soft tissues, including those representing the sources of fever of unknown origin. The ability of FDG-PET to diagnose vascular graft infection and fistula, even when the anatomical imaging modalities are inconclusive, is of considerable interest to practitioners of vascular surgery. Combined PET/computed tomography (CT) imaging has the potential to determine the sites of infection or inflammation with high precision. The data on the role of PET/CT imaging in the assessment of infection and inflammation is sparse, but this combined modality approach may prove to be the study of choice in foreseeable future for precise localization of involved sites. However, the role of PET/CT may be limited in the presence of metallic artifacts (such as those caused by prostheses) adjacent to the sites of infection. PMID:19038599

  11. Occupational Exposure to Veterinary Workers from the Positron Emission Tomography Imaging Agent 64Cu-ATSM.

    PubMed

    Hetrick, Lucas D; Kraft, Susan L; Johnson, Thomas E

    2015-11-01

    Cu-ATSM is an emerging radiopharmaceutical for diagnostic use in positron emission tomography (PET), but to date there are no studies that assess the potential occupational doses to workers in either human or veterinary medicine. This study was aimed at determining the external radiation dose to veterinary workers from clinical PET/CT (PET combined with computed tomography) procedures using Cu-ATSM. To determine the dose to the workers, each worker was assigned two Electronic Personal Dosimeters (EPDs) to be worn on the chest and waist during the entirety of each procedure. The workers monitored during this study included a radiobiologist, a nuclear medicine technologist, an anesthesiologist, and a veterinary surgeon. Seven canine patients were imaged with an average mass of 33.7 kg (a range of 20.0-55.1 kg) with an average injected activity of 5 MBq kg. The dose range for the radiobiologist was 2-17 μSv (mean of 7.1 μSv), for the nuclear medicine technologist 0-14 μSv (mean of 5.6 μSv), for the anesthesiologist 0-12 μSv (mean of 4.0 μSv), and for the surgeon 0-10 μSv (mean of 3.6 μSv). In a comparison between the results of this study and published literature on occupational exposures from veterinary FDG PET/CT procedures, Cu-ATSM veterinary PET/CT procedures, on a per patient bias, exposed workers to less radiation. PMID:26425985

  12. Positron Emission Tomography and Magnetic Resonance Imaging of Cellular Inflammation in Patients with Abdominal Aortic Aneurysms

    PubMed Central

    McBride, O.M.B.; Joshi, N.V.; Robson, J.M.J.; MacGillivray, T.J.; Gray, C.D.; Fletcher, A.M.; Dweck, M.R.; van Beek, E.J.R.; Rudd, J.H.F.; Newby, D.E.; Semple, S.I.

    2016-01-01

    Objectives Inflammation is critical in the pathogenesis of abdominal aortic aneurysm (AAA) disease. Combined 18F-fludeoxyglucose (18F-FDG) positron emission tomography with computed tomography (PET-CT) and ultrasmall superparamagnetic particles of iron oxide (USPIO)-enhanced magnetic resonance imaging (MRI) are non-invasive methods of assessing tissue inflammation. The aim of this study was to compare these techniques in patients with AAA. Materials and methods Fifteen patients with asymptomatic AAA with diameter 46 ± 7 mm underwent PET-CT with 18F-FDG, and T2*-weighted MRI before and 24 hours after administration of USPIO. The PET-CT and MRI data were then co-registered. Standardised uptake values (SUVs) were calculated to measure 18F-FDG activity, and USPIO uptake was determined using the change in R2*. Comparisons between the techniques were made using a quadrant analysis and a voxel-by-voxel evaluation. Results When all areas of the aneurysm were evaluated, there was a modest correlation between the SUV on PET-CT and the change in R2* on USPIO-enhanced MRI (n = 70,345 voxels; r = .30; p < .0001). Although regions of increased 18F-FDG and USPIO uptake co-localised on occasion, this was infrequent (kappa statistic 0.074; 95% CI 0.026–0.122). 18F-FDG activity was commonly focused in the shoulder region whereas USPIO uptake was more apparent in the main body of the aneurysm. Maximum SUV was lower in patients with mural USPIO uptake. Conclusions Both 18F-FDG PET-CT and USPIO-MRI uptake identify vascular inflammation associated with AAA. Although they demonstrate a modest correlation, there are distinct differences in the pattern and distribution of uptake, suggesting a differential detection of macrophage glycolytic and phagocytic activity respectively. PMID:26919936

  13. A novel image reconstruction methodology based on inverse Monte Carlo analysis for positron emission tomography

    NASA Astrophysics Data System (ADS)

    Kudrolli, Haris A.

    2001-04-01

    A three dimensional (3D) reconstruction procedure for Positron Emission Tomography (PET) based on inverse Monte Carlo analysis is presented. PET is a medical imaging modality which employs a positron emitting radio-tracer to give functional images of an organ's metabolic activity. This makes PET an invaluable tool in the detection of cancer and for in-vivo biochemical measurements. There are a number of analytical and iterative algorithms for image reconstruction of PET data. Analytical algorithms are computationally fast, but the assumptions intrinsic in the line integral model limit their accuracy. Iterative algorithms can apply accurate models for reconstruction and give improvements in image quality, but at an increased computational cost. These algorithms require the explicit calculation of the system response matrix, which may not be easy to calculate. This matrix gives the probability that a photon emitted from a certain source element will be detected in a particular detector line of response. The ``Three Dimensional Stochastic Sampling'' (SS3D) procedure implements iterative algorithms in a manner that does not require the explicit calculation of the system response matrix. It uses Monte Carlo techniques to simulate the process of photon emission from a source distribution and interaction with the detector. This technique has the advantage of being able to model complex detector systems and also take into account the physics of gamma ray interaction within the source and detector systems, which leads to an accurate image estimate. A series of simulation studies was conducted to validate the method using the Maximum Likelihood - Expectation Maximization (ML-EM) algorithm. The accuracy of the reconstructed images was improved by using an algorithm that required a priori knowledge of the source distribution. Means to reduce the computational time for reconstruction were explored by using parallel processors and algorithms that had faster convergence rates

  14. Persistence of cerebral metabolic abnormalities in chronic schizophrenia as determined by positron emission tomography

    SciTech Connect

    Wolkin, A.; Jaeger, J.; Brodie, J.D.; Wolf, A.P.; Fowler, J.; Rotrosen, J.; Gomez-Mont, F.; Cancro, R.

    1985-05-01

    Local cerebral metabolic rates were determined by positron emission tomography and the deoxyglucose method in a group of 10 chronic schizophrenic subjects before and after somatic treatment and in eight normal subjects. Before treatment, schizophrenic subjects had markedly lower absolute metabolic activity than did normal controls in both frontal and temporal regions and a trend toward relative hyperactivity in the basal ganglia area. After treatment, their metabolic rates approached those seen in normal subjects in nearly all regions except frontal. Persistence of diminished frontal metabolism was manifested as significant relative hypofrontality. These findings suggest specific loci of aberrant cerebral functioning in chronic schizophrenia and the utility of positron emission tomography in characterizing these abnormalities.

  15. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography

    SciTech Connect

    Rumsey, J.M.; Duara, R.; Grady, C.; Rapoport, J.L.; Margolin, R.A.; Rapoport, S.I.; Cutler, N.R.

    1985-05-01

    The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic rates (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions.

  16. [Computed tomography and cranial paleoanthropology].

    PubMed

    Cabanis, Emmanuel Alain; Badawi-Fayad, Jackie; Iba-Zizen, Marie-Thérèse; Istoc, Adrian; de Lumley, Henry; de Lumley, Marie-Antoinette; Coppens, Yves

    2007-06-01

    Since its invention in 1972, computed tomography (C.T.) has significantly evolved. With the advent of multi-slice detectors (500 times more sensitive than conventional radiography) and high-powered computer programs, medical applications have also improved. CT is now contributing to paleoanthropological research. Its non-destructive nature is the biggest advantage for studying fossil skulls. The second advantage is the possibility of image analysis, storage, and transmission. Potential disadvantages include the possible loss of files and the need to keep up with rapid technological advances. Our experience since the late 1970s, and a recent PhD thesis, led us to describe routine applications of this method. The main contributions of CT to cranial paleoanthropology are five-fold: --Numerical anatomy with rapid acquisition and high spatial resolution (helicoidal and multidetector CT) offering digital storage and stereolithography (3D printing). --Numerical biometry (2D and 3D) can be used to create "normograms" such as the 3D craniofacial reference model used in maxillofacial surgery. --Numerical analysis offers thorough characterization of the specimen and its state of conservation and/or restoration. --From "surrealism" to virtual imaging, anatomical structures can be reconstructed, providing access to hidden or dangerous zones. --The time dimension (4D imaging) confers movement and the possibility for endoscopic simulation and internal navigation (see Iconography). New technical developments will focus on data processing and networking. It remains our duty to deal respectfully with human fossils. PMID:18402165

  17. High uptake in schneiderian papillomas of the maxillary sinus on positron-emission tomography using fluorodeoxyglucose.

    PubMed

    Lin, F Y; Genden, E M; Lawson, W L; Som, P; Kostakoglu, L

    2009-02-01

    Schneiderian papillomas are benign tumors of the nasal cavity and paranasal sinuses often asymptomatic in their early stages. We report a case of a maxillary sinus oncocytic schneiderian papilloma first detected by positron-emission tomography by using fluorodeoxyglucose (FDG). Schneiderian papillomas demonstrate increased FDG uptake, similar to that of other oncocytic tumors, making it important for otolaryngologists and radiologists to realize that high uptake of FDG does not necessarily indicate a malignant lesion. PMID:18768722

  18. Brain dopamine metabolism in patients with Parkinson's disease measured with positron emission tomography.

    PubMed Central

    Leenders, K L; Palmer, A J; Quinn, N; Clark, J C; Firnau, G; Garnett, E S; Nahmias, C; Jones, T; Marsden, C D

    1986-01-01

    L-[18F] fluorodopa was administered in trace amounts intravenously to healthy control subjects and to patients with Parkinson's disease. Striatal uptake of radioactivity was measured using positron emission tomography. The capacity of the striatum to retain tracer was severely impaired in patients compared to controls. This may reflect a reduction of striatal dopamine storage in Parkinson's disease. Patients showing the "on/off" phenomenon had an even greater decrease of striatal storage capacity. Images PMID:3091770

  19. Bimedial rectus hypermetabolism in convergence spasm as observed on positron emission tomography.

    PubMed

    Jeong, Seong-Hae; Oh, Young-Mi; Kim, Chae-Yong; Kim, Ji Soo

    2008-09-01

    A 52-year-old man developed vertical gaze palsy, convergence spasm, and convergence-retraction nystagmus due to glioblastoma of the right thalamus. 18F-fluorodeoxyglucose positron emission tomography (PET) inadvertently demonstrated markedly increased metabolism in the medial rectus muscles. The hypermetabolism indicates active contraction of these extraocular muscles due to excessive convergence drive attributed to inappropriate activation or disrupted inhibition of convergence neurons by the diencephalic lesion.

  20. Radiological protection in computed tomography and cone beam computed tomography.

    PubMed

    Rehani, M M

    2015-06-01

    The International Commission on Radiological Protection (ICRP) has sustained interest in radiological protection in computed tomography (CT), and ICRP Publications 87 and 102 focused on the management of patient doses in CT and multi-detector CT (MDCT) respectively. ICRP forecasted and 'sounded the alarm' on increasing patient doses in CT, and recommended actions for manufacturers and users. One of the approaches was that safety is best achieved when it is built into the machine, rather than left as a matter of choice for users. In view of upcoming challenges posed by newer systems that use cone beam geometry for CT (CBCT), and their widened usage, often by untrained users, a new ICRP task group has been working on radiological protection issues in CBCT. Some of the issues identified by the task group are: lack of standardisation of dosimetry in CBCT; the false belief within the medical and dental community that CBCT is a 'light', low-dose CT whereas mobile CBCT units and newer applications, particularly C-arm CT in interventional procedures, involve higher doses; lack of training in radiological protection among clinical users; and lack of dose information and tracking in many applications. This paper provides a summary of approaches used in CT and MDCT, and preliminary information regarding work just published for radiological protection in CBCT.

  1. Stable confinement of positron emission tomography and magnetic resonance agents within carbon nanotubes for bimodal imaging

    PubMed Central

    Cisneros, Brandon T; Law, Justin J; Matson, Michael L; Azhdarinia, Ali; Sevick-Muraca, Eva M; Wilson, Lon J

    2014-01-01

    Aims Simultaneous positron emission tomography/MRI has recently been introduced to the clinic and dual positron emission tomography/MRI probes are rare and of growing interest. We have developed a strategy for producing multimodal probes based on a carbon nanotube platform without the use of chelating ligands. Materials & methods Gd3+ and 64Cu2+ ions were loaded into ultra-short single-walled carbon nanotubes by sonication. Normal, tumor-free athymic nude mice were injected intravenously with the probe and imaged over 48 h. Results & conclusion The probe was stable for up to 24 h when challenged with phosphate-buffered saline and mouse serum. Positron emission tomography imaging also confirmed the stability of the probe in vivo for up to 48 h. The probe was quickly cleared from circulation, with enhanced accumulation in the lungs. Stable encapsulation of contrast agents within ultra-short single-walled carbon nanotubes represents a new strategy for the design of advanced imaging probes with variable multimodal imaging capabilities. PMID:24628687

  2. Positron Emission Tomography in Prostate Cancer: Summary of Systematic Reviews and Meta-Analysis

    PubMed Central

    Jadvar, Hossein

    2015-01-01

    Prostate cancer is a prevalent public health problem worldwide. Over the past decade, there has been tremendous research activity in the potential use of positron emission tomography with a number of radiotracers targeted to various biological aspects of this complex tumor. Systematic reviews and meta-analysis are important contributions to the relevant literature that summarize the evidence while reducing the effect of various sources of bias in the published data. The accumulation of relevant data in this clinical setting has recently provided the opportunity for systematic reviews. In this brief article, I summarize the published systematic reviews and meta-analysis of positron emission tomography in prostate cancer. Most robust evidence suggests a probable role for first-line use of positron emission tomography with radiolabeled choline in restating patients with biochemical relapse of prostate cancer with the diagnostic performance that appears to be positively associated with the serum prostate specific antigen level and velocity. Future systematic reviews will be needed for other emerging radiotracers such as those based on prostate specific membrane antigen and gastrin-releasing peptide receptor. PMID:26726317

  3. Targeted positron emission tomography imaging of CXCR4 expression in patients with acute myeloid leukemia

    PubMed Central

    Herhaus, Peter; Habringer, Stefan; Philipp-Abbrederis, Kathrin; Vag, Tibor; Gerngross, Carlos; Schottelius, Margret; Slotta-Huspenina, Julia; Steiger, Katja; Altmann, Torben; Weißer, Tanja; Steidle, Sabine; Schick, Markus; Jacobs, Laura; Slawska, Jolanta; Müller-Thomas, Catharina; Verbeek, Mareike; Subklewe, Marion; Peschel, Christian; Wester, Hans-Jürgen; Schwaiger, Markus; Götze, Katharina; Keller, Ulrich

    2016-01-01

    Acute myeloid leukemia originates from leukemia-initiating cells that reside in the protective bone marrow niche. CXCR4/CXCL12 interaction is crucially involved in recruitment and retention of leukemia-initiating cells within this niche. Various drugs targeting this pathway have entered clinical trials. To evaluate CXCR4 imaging in acute myeloid leukemia, we first tested CXCR4 expression in patient-derived primary blasts. Flow cytometry revealed that high blast counts in patients with acute myeloid leukemia correlate with high CXCR4 expression. The wide range of CXCR4 surface expression in patients was reflected in cell lines of acute myeloid leukemia. Next, we evaluated the CXCR4-specific peptide Pentixafor by positron emission tomography imaging in mice harboring CXCR4 positive and CXCR4 negative leukemia xenografts, and in 10 patients with active disease. [68Ga]Pentixafor-positron emission tomography showed specific measurable disease in murine CXCR4 positive xenografts, but not when CXCR4 was knocked out with CRISPR/Cas9 gene editing. Five of 10 patients showed tracer uptake correlating well with leukemia infiltration assessed by magnetic resonance imaging. The mean maximal standard uptake value was significantly higher in visually CXCR4 positive patients compared to CXCR4 negative patients. In summary, in vivo molecular CXCR4 imaging by means of positron emission tomography is feasible in acute myeloid leukemia. These data provide a framework for future diagnostic and theranostic approaches targeting the CXCR4/CXCL12-defined leukemia-initiating cell niche. PMID:27175029

  4. Positron Emission Tomography (PET) for Imaging Body Chemistry

    SciTech Connect

    Krohn, Ken

    2001-04-25

    PET is a nuclear medicine technology for imaging chemical processes as they are occurring in the human body. This distinguishes it from conventional radiographic and NMR imaging, which depict anatomic changes that generally occur secondary to chemical changes. As our knowledge about human genomics and molecular biology increases and as we develop new approaches to therapy based on this biochemical information, it becomes increasingly important to be able to image important chemical processes occurring in vivo. Methods exist for imaging metabolic rates for energy utilization, cellular proliferation, and protein synthesis. The sending and receiving function of neurotransmitters can be imaged to test for mismatch in their communication function. Gene transfection can be imaged with PET reporters. All of these approaches allow the physician to better select the appropriate treatment for an individual patient, rather than basing treatment on historical experience for a population of similar patients. The technology for PET requires synthesis of positron emitting radioactive molecules, most commonly labeled with C-11 (20.4m) and F-18 (109.8 m) which are made on site with an accelerator. FNAL was involved in developing new RFQ technology for making PET isotopes. The technology also requires better imaging technology, including scintillators, and more robust algorithms for image reconstruction and data analysis.

  5. Signal transduction images in human brain by positron emission tomography

    SciTech Connect

    Imahori, Y.; Fujii, R.; Ueda, S.

    1994-05-01

    Analysis of changes in intracellular signal transduction will provide clear images of the projected target neurons. We have recently developed a technique which allows second-messenger imaging of changes in intracellular signal transduction which is activated in parallel with phosphoinositide (PI) turnover. Using carbon-11-labeled 1,2-diacylglycerol (DAG), we have recently succeeded in making an image of intracellular signal transduction during the course of synaptic transmission in human brains. When five healthy volunteers were examined by this technique, they had high activity in the associate field, in particular the prefrontal area. In the absence of paradigm loading, the associate field was unilaterally active, and human subjects showed predominant activity in the right prefrontal area. Activation of the ipsilateral supraorbital region and the superior temporal area was also seen at the same time. In conclusion, no previous study has directly demonstrated the unilateral predominance of the activity in the associate fields (projected target area) and the accompanying areas. Unlike the conventional positron-labeled compounds which did not permit visualization of activation of the associate fields, our technique can measure the PI turnover, as a postsynaptic response, and thus provide clear images of the projected target nerve cells in relation to higher cortical function in human brain.

  6. Imaging local brain function with emission computed tomography

    SciTech Connect

    Kuhl, D.E.

    1984-03-01

    Positron emission tomography (PET) using /sup 18/F-fluorodeoxyglucose (FDG) was used to map local cerebral glucose utilization in the study of local cerebral function. This information differs fundamentally from structural assessment by means of computed tomography (CT). In normal human volunteers, the FDG scan was used to determine the cerebral metabolic response to conrolled sensory stimulation and the effects of aging. Cerebral metabolic patterns are distinctive among depressed and demented elderly patients. The FDG scan appears normal in the depressed patient, studded with multiple metabolic defects in patients with multiple infarct dementia, and in the patients with Alzheimer disease, metabolism is particularly reduced in the parietal cortex, but only slightly reduced in the caudate and thalamus. The interictal FDG scan effectively detects hypometabolic brain zones that are sites of onset for seizures in patients with partial epilepsy, even though these zones usually appear normal on CT scans. The future prospects of PET are discussed.

  7. Computed tomography using synchrotron radiation

    SciTech Connect

    Thompson, A.C.; Llacer, J.; Finman, L.C.; Hughes, E.B.; Otis, J.N.; Wilson, S.; Zeman, H.D.

    1983-09-01

    X-ray computed tomography (CT) is a widely used method of obtaining cross-sectional views of objects. The high intensity, natural collimation, monochromaticity and energy tunability of synchrotron x-ray sources could potentially be used to provide CT images of improved quality. The advantages of these systems would be that images could be produced more rapidly with better spatial resolution and reduced beam artifacts. In addition, images, in some cases, could be acquired with elemental sensitivity. As a demonstration of the capability of such a system, CT images were obtained of four slices of an excised pig heart in which the arteries and the cardiac chambers were filled with an iodinated medium. Images were taken with incident x-rays tuned successively to energies just above and below the iodine K edge. Iodine specific images were obtained by logarithmically subtracting the low energy image data from the high energy data and then reconstructing the image. CT imaging using synchrotron radiation may become a convenient and non-destructive method of imaging samples difficult to study by other methods.

  8. Direct coronal body computed tomography.

    PubMed

    van Waes, P F; Zonneveld, F W

    1982-02-01

    Three patient positioning technique have been developed for direct coronal computed tomography (CT) of the body, covering the complete torso: position A, to study pelvis, including retroperitoneal space and lower abdomen; position B, to study upper abdomen and lower chest; and position C, to study upper chest, including neck and posterior fossa. In comparison with multiplanar reformatting (MPR), direct coronal CT has three basic advantages: (a) image quality is improved as a result of a lack of partial volume averaging and patient motion disturbance; (b) the direct coronal planes can be truly parallel to the spinal axis, due to stretching of the lordotic segments of the spine; and (c) examination time is reduced, since a large number of overlapping slices and time consuming MPR effort are not required. Direct coronal CT of the body has been carried out in more than 600 cases and was often uniquely informative. In our institution, use of MPR CT is now restricted to small volumes and/or disabled patients.

  9. Interlaced X-ray diffraction computed tomography

    PubMed Central

    Vamvakeros, Antonios; Jacques, Simon D. M.; Di Michiel, Marco; Senecal, Pierre; Middelkoop, Vesna; Cernik, Robert J.; Beale, Andrew M.

    2016-01-01

    An X-ray diffraction computed tomography data-collection strategy that allows, post experiment, a choice between temporal and spatial resolution is reported. This strategy enables time-resolved studies on comparatively short timescales, or alternatively allows for improved spatial resolution if the system under study, or components within it, appear to be unchanging. The application of the method for studying an Mn–Na–W/SiO2 fixed-bed reactor in situ is demonstrated. Additionally, the opportunities to improve the data-collection strategy further, enabling post-collection tuning between statistical, temporal and spatial resolutions, are discussed. In principle, the interlaced scanning approach can also be applied to other pencil-beam tomographic techniques, like X-ray fluorescence computed tomography, X-ray absorption fine structure computed tomography, pair distribution function computed tomography and tomographic scanning transmission X-ray microscopy. PMID:27047305

  10. Nondestructive computed tomography for pit inspections

    SciTech Connect

    Martz, H.; Logan, C.; Haskins, J.; Johansson, E.; Perkins, D.; Hernandez, J.M.; Schneberk, D.; Dolan, K.

    1997-02-07

    Objective is to develop new approaches to electronically capture digital radiography and computed tomography images at high x-ray energies to satisfy spatial and contrast requirements for inspection of high-density weapons components.

  11. Computed tomography of the rectosigmoid region.

    PubMed

    Dixon, A K

    1996-05-01

    Knowledge of the anatomy and embryology of the rectosigmoid region is useful for the correct interpretation of computed tomography in this region. The appearances and differential diagnoses of some of the common conditions affecting this region are presented and discussed.

  12. Single Photon Emission Computed Tomography (SPECT)

    MedlinePlus

    ... High Blood Pressure Tools & Resources Stroke More Single Photon Emission Computed Tomography (SPECT) Updated:Sep 11,2015 ... Persantine) or dobutamine. The tests may take between 2 and 2 1/2 hours. What happens after ...

  13. Aspects of positron emission tomography radiochemistry as relevant for food chemistry.

    PubMed

    Wuest, F

    2005-12-01

    Positron emission tomography (PET) is a medical imaging technique using compounds labelled with short-lived positron emitting radioisotopes to obtain functional information of physiological, biochemical and pharmacological processes in vivo. The need to understand the potential link between the ingestion of individual dietary agents and the effect of health promotion or health risk requires the exact metabolic characterization of food ingredients in vivo. This exciting but rather new research field of PET would provide new insights and perspectives on food chemistry by assessing quantitative information on pharmocokinetics and pharmacodynamics of food ingredients and dietary agents. To fully exploit PET technology in food chemistry appropriately radiolabelled compounds as relevant for food sciences are needed. The most widely used short-lived positron emitters are (11)C (t(1/2) = 20.4 min) and (18)F (t(1/2) = 109.8 min). Longer-lived radioisotopes are available by using (76)Br (t(1/2) = 16.2 h) and (124)I (t(1/2) = 4.12 d). The present review article tries to discuss some aspects for the radiolabelling of food ingredients and dietary agents either by means of isotopic labelling with (11)C or via prosthetic group labelling approaches using the positron emitting halogens (18)F, (76)Br and (124)I.

  14. Computed Tomography For Internal Inspection Of Castings

    NASA Technical Reports Server (NTRS)

    Hanna, Timothy L.

    1995-01-01

    Computed tomography used to detect internal flaws in metal castings before machining and otherwise processing them into finished parts. Saves time and money otherwise wasted on machining and other processing of castings eventually rejected because of internal defects. Knowledge of internal defects gained by use of computed tomography also provides guidance for changes in foundry techniques, procedures, and equipment to minimize defects and reduce costs.

  15. Computed Tomography of Pancreatitis and Pancreatic Cancer.

    PubMed

    Furlow, Bryant

    2015-01-01

    Pancreatic disease often is asymptomatic until tissue damage and complications occur or until malignancies have reached advanced stages and have metastasized. Contrast-enhanced multidetector computed tomography plays a central role in diagnosing, staging, and treatment planning for pancreatitis and pancreatic cancer. This article introduces the functional anatomy of the pancreas and common bile duct and the epidemiology, pathobiology, and computed tomography imaging of pancreatitis, calculi, and pancreatic cancer.

  16. New techniques for positron emission tomography in the study of human neurological disorders

    SciTech Connect

    Kuhl, D.E.

    1993-01-01

    This progress report describes accomplishments of four programs. The four programs are entitled (1) Faster,simpler processing of positron-computing precursors: New physicochemical approaches, (2) Novel solid phase reagents and methods to improve radiosynthesis and isotope production, (3) Quantitative evaluation of the extraction of information from PET images, and (4) Optimization of tracer kinetic methods for radioligand studies in PET.

  17. Enhancement of molecular sensitivity in positron emission tomography with quantum correlation of γ-ray photons

    SciTech Connect

    Sato, K.; Kobayashi, Y.

    2015-05-15

    Enhancement of molecular sensitivity in positron emission tomography (PET) has long been discussed with respect to imaging instrumentation and algorithms for data treatment. Here, the molecular sensitivity in PET is discussed on the basis of 2-dimensional coincident measurements of 511 keV γ ray photons resultant from two-photon annihilation. Introduction of an additional selection window based on the energy sum and difference of the coincidently measured γ ray photons, without any significant instrumental and algorithmic changes, showed an improvement in the signal-to-noise ratio (SNR) by an order of magnitude. Improvement of performance characteristics in the PET imaging system was demonstrated by an increase in the noise equivalent count rate (NECR) which takes both the SNR and the detection efficiency into consideration. A further improvement of both the SNR and the NECR is expected for the present system in real clinical and in-vivo environments, where much stronger positron sources are employed.

  18. Enhancement of molecular sensitivity in positron emission tomography with quantum correlation of γ-ray photons.

    PubMed

    Sato, K; Kobayashi, Y

    2015-05-01

    Enhancement of molecular sensitivity in positron emission tomography (PET) has long been discussed with respect to imaging instrumentation and algorithms for data treatment. Here, the molecular sensitivity in PET is discussed on the basis of 2-dimensional coincident measurements of 511 keV γ ray photons resultant from two-photon annihilation. Introduction of an additional selection window based on the energy sum and difference of the coincidently measured γ ray photons, without any significant instrumental and algorithmic changes, showed an improvement in the signal-to-noise ratio (SNR) by an order of magnitude. Improvement of performance characteristics in the PET imaging system was demonstrated by an increase in the noise equivalent count rate (NECR) which takes both the SNR and the detection efficiency into consideration. A further improvement of both the SNR and the NECR is expected for the present system in real clinical and in-vivo environments, where much stronger positron sources are employed.

  19. [Development of analysis software package for the two kinds of Japanese fluoro-d-glucose-positron emission tomography guideline].

    PubMed

    Matsumoto, Keiichi; Endo, Keigo

    2013-06-01

    Two kinds of Japanese guidelines for the data acquisition protocol of oncology fluoro-D-glucose-positron emission tomography (FDG-PET)/computed tomography (CT) scans were created by the joint task force of the Japanese Society of Nuclear Medicine Technology (JSNMT) and the Japanese Society of Nuclear Medicine (JSNM), and published in Kakuigaku-Gijutsu 27(5): 425-456, 2007 and 29(2): 195-235, 2009. These guidelines aim to standardize PET image quality among facilities and different PET/CT scanner models. The objective of this study was to develop a personal computer-based performance measurement and image quality processor for the two kinds of Japanese guidelines for oncology (18)F-FDG PET/CT scans. We call this software package the "PET quality control tool" (PETquact). Microsoft Corporation's Windows(™) is used as the operating system for PETquact, which requires 1070×720 image resolution and includes 12 different applications. The accuracy was examined for numerous applications of PETquact. For example, in the sensitivity application, the system sensitivity measurement results were equivalent when comparing two PET sinograms obtained from the PETquact and the report. PETquact is suited for analysis of the two kinds of Japanese guideline, and it shows excellent spec to performance measurements and image quality analysis. PETquact can be used at any facility if the software package is installed on a laptop computer. PMID:23782777

  20. [Development of analysis software package for the two kinds of Japanese fluoro-d-glucose-positron emission tomography guideline].

    PubMed

    Matsumoto, Keiichi; Endo, Keigo

    2013-06-01

    Two kinds of Japanese guidelines for the data acquisition protocol of oncology fluoro-D-glucose-positron emission tomography (FDG-PET)/computed tomography (CT) scans were created by the joint task force of the Japanese Society of Nuclear Medicine Technology (JSNMT) and the Japanese Society of Nuclear Medicine (JSNM), and published in Kakuigaku-Gijutsu 27(5): 425-456, 2007 and 29(2): 195-235, 2009. These guidelines aim to standardize PET image quality among facilities and different PET/CT scanner models. The objective of this study was to develop a personal computer-based performance measurement and image quality processor for the two kinds of Japanese guidelines for oncology (18)F-FDG PET/CT scans. We call this software package the "PET quality control tool" (PETquact). Microsoft Corporation's Windows(™) is used as the operating system for PETquact, which requires 1070×720 image resolution and includes 12 different applications. The accuracy was examined for numerous applications of PETquact. For example, in the sensitivity application, the system sensitivity measurement results were equivalent when comparing two PET sinograms obtained from the PETquact and the report. PETquact is suited for analysis of the two kinds of Japanese guideline, and it shows excellent spec to performance measurements and image quality analysis. PETquact can be used at any facility if the software package is installed on a laptop computer.

  1. Fluorodeoxyglucose Positron Emission Tomography Response and Normal Tissue Regeneration After Stereotactic Body Radiotherapy to Liver Metastases

    SciTech Connect

    Stinauer, Michelle A.; Diot, Quentin; Westerly, David C.; Schefter, Tracey E.; Kavanagh, Brian D.

    2012-08-01

    Purpose: To characterize changes in standardized uptake value (SUV) in positron emission tomography (PET) scans and determine the pace of normal tissue regeneration after stereotactic body radiation therapy (SBRT) for solid tumor liver metastases. Methods and Materials: We reviewed records of patients with liver metastases treated with SBRT to {>=}40 Gy in 3-5 fractions. Evaluable patients had pretreatment PET and {>=}1 post-treatment PET. Each PET/CT scan was fused to the planning computed tomography (CT) scan. The maximum SUV (SUV{sub max}) for each lesion and the total liver volume were measured on each PET/CT scan. Maximum SUV levels before and after SBRT were recorded. Results: Twenty-seven patients with 35 treated liver lesions were studied. The median follow-up was 15.7 months (range, 1.5-38.4 mo), with 5 PET scans per patient (range, 2-14). Exponential decay curve fitting (r=0.97) showed that SUV{sub max} declined to a plateau of 3.1 for controlled lesions at 5 months after SBRT. The estimated SUV{sub max} decay half-time was 2.0 months. The SUV{sub max} in controlled lesions fluctuated up to 4.2 during follow-up and later declined; this level is close to 2 standard deviations above the mean normal liver SUV{sub max} (4.01). A failure cutoff of SUV{sub max} {>=}6 is twice the calculated plateau SUV{sub max} of controlled lesions. Parenchymal liver volume decreased by 20% at 3-6 months and regenerated to a new baseline level approximately 10% below the pretreatment level at 12 months. Conclusions: Maximum SUV decreases over the first months after SBRT to plateau at 3.1, similar to the median SUV{sub max} of normal livers. Transient moderate increases in SUV{sub max} may be observed after SBRT. We propose a cutoff SUV{sub max} {>=}6, twice the baseline normal liver SUV{sub max}, to score local failure by PET criteria. Post-SBRT values between 4 and 6 would be suspicious for local tumor persistence or recurrence. The volume of normal liver reached nadir 3

  2. A Gaussian mixture model for definition of lung tumor volumes in positron emission tomography

    SciTech Connect

    Aristophanous, Michalis; Penney, Bill C.; Martel, Mary K.; Pelizzari, Charles A.

    2007-11-15

    The increased interest in {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in radiation treatment planning in the past five years necessitated the independent and accurate segmentation of gross tumor volume (GTV) from FDG-PET scans. In some studies the radiation oncologist contours the GTV based on a computed tomography scan, while incorporating pertinent data from the PET images. Alternatively, a simple threshold, typically 40% of the maximum intensity, has been employed to differentiate tumor from normal tissue, while other researchers have developed algorithms to aid the PET based GTV definition. None of these methods, however, results in reliable PET tumor segmentation that can be used for more sophisticated treatment plans. For this reason, we developed a Gaussian mixture model (GMM) based segmentation technique on selected PET tumor regions from non-small cell lung cancer patients. The purpose of this study was to investigate the feasibility of using a GMM-based tumor volume definition in a robust, reliable and reproducible way. A GMM relies on the idea that any distribution, in our case a distribution of image intensities, can be expressed as a mixture of Gaussian densities representing different classes. According to our implementation, each class belongs to one of three regions in the image; the background (B), the uncertain (U) and the target (T), and from these regions we can obtain the tumor volume. User interaction in the implementation is required, but is limited to the initialization of the model parameters and the selection of an 'analysis region' to which the modeling is restricted. The segmentation was developed on three and tested on another four clinical cases to ensure robustness against differences observed in the clinic. It also compared favorably with thresholding at 40% of the maximum intensity and a threshold determination function based on tumor to background image intensities proposed in a recent paper. The parts of

  3. Spatiotemporal Stability of Cu-ATSM and FLT Positron Emission Tomography Distributions During Radiation Therapy

    SciTech Connect

    Bradshaw, Tyler J.; Yip, Stephen; Jallow, Ngoneh; Forrest, Lisa J.; Jeraj, Robert

    2014-06-01

    Purpose: In dose painting, in which functional imaging is used to define biological targets for radiation therapy dose escalation, changes in spatial distributions of biological properties during treatment can compromise the quality of therapy. The goal of this study was to assess the spatiotemporal stability of 2 potential dose painting targets—hypoxia and proliferation—in canine tumors during radiation therapy. Methods and Materials: Twenty-two canine patients with sinonasal tumors (14 carcinoma and 8 sarcoma) were imaged before hypofractionated radiation therapy with copper(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) positron emission tomography/computed tomography (PET/CT) for hypoxia and 3′-deoxy-3′-{sup 18}F-fluorothymidine (FLT) PET/CT for proliferation. The FLT scans were repeated after 2 fractions and the Cu-ATSM scans after 3 fractions. Midtreatment PET/CT images were deformably registered to pretreatment PET/CT images. Voxel-based Spearman correlation coefficients quantified the spatial stability of Cu-ATSM and FLT uptake distributions between pretreatment and midtreatment scans. Paired t tests determined significant differences between the patients' respective Cu-ATSM and FLT correlations coefficients. Standardized uptake value measures were also compared between pretreatment and midtreatment scans by use of paired t tests. Results: Spatial distributions of Cu-ATSM and FLT uptake were stable through midtreatment for both sarcomas and carcinomas: the population mean ± standard deviation in Spearman correlation coefficient was 0.88 ± 0.07 for Cu-ATSM and 0.79 ± 0.13 for FLT. The patients' Cu-ATSM correlation coefficients were significantly higher than their respective FLT correlation coefficients (P=.001). Changes in Cu-ATSM SUV measures from pretreatment to midtreatment were histology dependent: carcinomas experienced significant decreases in Cu-ATSM uptake (P<.05), whereas sarcomas did not (P>.20). Both histologies

  4. Positron Emission Tomography (PET): Towards Time of Flight

    SciTech Connect

    Karp, Joel

    2004-09-29

    PET is a powerful imaging tool that is being used to study cancer, using a variety of tracers to measure physiological processes including glucose metabolism, cell proliferation, and hypoxia in tumor cells. As the utilization of PET has grown in the last several years, it has become clear that improved lesion detection and quantification are critical goals for cancer studies. Although physical performance of the current generation of PET scanners has improved recently, there are limitations especially for heavy patients where attenuation and scatter effects are increased. We are investigating new scintillation detectors, scanner designs, and image processing algorithms in order to overcome these limitations and improve performance. In particular, we are studying scanner designs that would incorporate scintillators with improved energy and timing resolution. Improved energy resolution helps to reduce scattered radiation, and improved timing resolution makes it feasible to incorporate the time-of-flight information between the two coincident gamma rays into the image reconstruction algorithm, a technique that improves signal-to-noise. Results of recent experiments and computer simulations will be shown to demonstrate these potential improvements.

  5. Distributed microprocessor automation network for synthesizing radiotracers used in positron emission tomography

    SciTech Connect

    Russell, J.A.G.; Alexoff, D.L.; Wolf, A.P.

    1984-09-01

    This presentation describes an evolving distributed microprocessor network for automating the routine production synthesis of radiotracers used in Positron Emission Tomography. We first present a brief overview of the PET method for measuring biological function, and then outline the general procedure for producing a radiotracer. The paper identifies several reasons for our automating the syntheses of these compounds. There is a description of the distributed microprocessor network architecture chosen and the rationale for that choice. Finally, we speculate about how this network may be exploited to extend the power of the PET method from the large university or National Laboratory to the biomedical research and clinical community at large. 20 refs. (DT)

  6. Clinical correlates of decreased anteroposterior metabolic gradients in positron emission tomography (PET) of schizophrenic patients

    SciTech Connect

    DeLisi, L.E.; Buchsbaum, M.S.; Holcomb, H.H.; Dowling-Zimmerman, S.; Pickar, D.; Boronow, J.; Morihisa, J.M.; van Kammen, D.P.; Carpenter, W.; Kessler, R.

    1985-01-01

    The finding in schizophrenic patients of a reversal of the normal frontal to posterior pattern of brain metabolic activity with positron emission tomography (PET) is of interest, but its relevance to psychopathology is unknown. Using PET, the authors studied 21 patients with chronic schizophrenia and 21 age- and sex-matched control subjects. Although eight of the 21 patients and only one of the control subjects showed a relatively lower anteroposterior metabolic gradient, no clinical correlates of this finding were noted. In addition, cerebral atrophy, as determined by CAT scan, was not associated with this aberrant metabolic pattern.

  7. Radiolabeled Phosphonium Salts as Mitochondrial Voltage Sensors for Positron Emission Tomography Myocardial Imaging Agents.

    PubMed

    Kim, Dong-Yeon; Min, Jung-Joon

    2016-09-01

    Despite substantial advances in the diagnosis of cardiovascular disease, (18)F-labeled positron emission tomography (PET) radiopharmaceuticals remain necessary to diagnose heart disease because clinical use of current PET tracers is limited by their short half-life. Lipophilic cations such as phosphonium salts penetrate the mitochondrial membranes and accumulate in mitochondria of cardiomyocytes in response to negative inner-transmembrane potentials. Radiolabeled tetraphenylphosphonium cation derivatives have been developed as myocardial imaging agents for PET. In this review, a general overview of these radiotracers, including their radiosynthesis, in vivo characterization, and evaluation is provided and clinical perspectives are discussed. PMID:27540422

  8. Distributed Microprocessor Automation Network for Synthesizing Radiotracers Used in Positron Emission Tomography [PET

    DOE R&D Accomplishments Database

    Russell, J. A. G.; Alexoff, D. L.; Wolf, A. P.

    1984-09-01

    This presentation describes an evolving distributed microprocessor network for automating the routine production synthesis of radiotracers used in Positron Emission Tomography. We first present a brief overview of the PET method for measuring biological function, and then outline the general procedure for producing a radiotracer. The paper identifies several reasons for our automating the syntheses of these compounds. There is a description of the distributed microprocessor network architecture chosen and the rationale for that choice. Finally, we speculate about how this network may be exploited to extend the power of the PET method from the large university or National Laboratory to the biomedical research and clinical community at large. (DT)

  9. Using Positron Emission Tomography to Study Transporter-Mediated Drug–Drug Interactions in Tissues

    PubMed Central

    Wulkersdorfer, B; Wanek, T; Bauer, M; Zeitlinger, M; Müller, M; Langer, O

    2014-01-01

    Drug disposition is highly regulated by membrane transporters. Some transporter-mediated drug–drug interactions (DDIs) may not manifest themselves in changes in systemic exposure but rather in changes in tissue exposure of drugs. To better assess the impact of transporter-mediated DDIs in tissues, positron emission tomography (PET)—a noninvasive imaging method—plays an increasingly important role. In this article, we provide examples of how PET can be used to assess transporter-mediated DDIs in different organs. PMID:24682030

  10. [18F]-fluoride positron emission tomography for imaging condylar hyperplasia.

    PubMed

    Laverick, S; Bounds, G; Wong, Wai Lup

    2009-04-01

    The management of condylar hyperplasia depends on the diagnosis of continued growth in the affected condyle, and there is currently no satisfactory way of imaging it. [(18)F]-fluoride positron emission tomography (PET) was included in the investigation of 5 patients who were suspected of having condylar hyperplasia, and the results were correlated with the operative findings. The technique correctly identified condylar hyperplasia in all patients. Our results suggest that [(18)F]-fluoride PET is a valid way of assessing patients with condylar hyperplasia. PMID:18926607

  11. Positron Emission Tomography-Scanner at Children`s Hospital of Michigan at Detroit, Michigan

    SciTech Connect

    Not Available

    1992-12-31

    The Department of Energy has prepared an environmental assessment (EA), DOE/EA-0795, to support the DOE decision to provide a grant of $7,953,600 to be used in support of a proposed Positron Emission Tomography Scanner at Children`s Hospital of Michigan at Detroit, Michigan. Based upon the analysis in the EA, DOE has determined that the proposed action is not a major Federal action significantly affected the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

  12. Florbetapir (18F) for brain amyloid positron emission tomography: highlights on the European marketing approval.

    PubMed

    Cortes-Blanco, Anabel; Prieto-Yerro, Concha; Martinez-Lazaro, Raul; Zamora, Javier; Jiménez-Huete, Adolfo; Haberkamp, Marion; Pohly, Johannes; Enzmann, Harald; Zinserling, Jörg; Strassmann, Valerie; Broich, Karl

    2014-10-01

    Florbetapir (18F) for brain amyloid positron emission tomography (PET) imaging has been recently approved in Europe to estimate β-amyloid neuritic plaque density in the brain when the subject is still alive. Such density is one of the key issues for the definitive diagnosis of Alzheimer's disease (AD) at autopsy. This capability of florbetapir (18F) is regarded as a significant improvement in the diagnostic procedures for adult patients with cognitive impairment who are being evaluated for AD and other causes of cognitive impairment. The current paper highlights the specific characteristics of the European marketing authorization of florbetapir (18F).

  13. Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings.

    PubMed Central

    Tulving, E; Kapur, S; Craik, F I; Moscovitch, M; Houle, S

    1994-01-01

    Data are reviewed from positron emission tomography studies of encoding and retrieval processes in episodic memory. These data suggest a hemispheric encoding/retrieval asymmetry model of prefrontal involvement in encoding and retrieval of episodic memory. According to this model, the left and right prefrontal lobes are part of an extensive neuronal network that subserves episodic remembering, but the two prefrontal hemispheres play different roles. Left prefrontal cortical regions are differentially more involved in retrieval of information from semantic memory and in simultaneously encoding novel aspects of the retrieved information into episodic memory. Right prefrontal cortical regions, on the other hand, are differentially more involved in episodic memory retrieval. PMID:8134342

  14. In vivo measurement of regional cerebral haematocrit using positron emission tomography

    SciTech Connect

    Lammertsma, A.A.; Brooks, D.J.; Beaney, R.P.; Turton, D.R.; Kensett, M.J.; Heather, J.D.; Marshall, J.; Jones, T.

    1984-09-01

    A method is described for measuring the regional cerebral-to-large vessel haematocrit ratio using inhalation of carbon-11-labelled carbon monoxide and the intravenous injection of carbon-11-labelled methyl-albumin in combination with positron emission tomography. The mean value in a series of nine subjects was 0.69. This is approximately 20% lower than the value of 0.85 previously reported. It is concluded that previous measurements of regional cerebral blood volume using a haematocrit ratio of 0.85 will have underestimated the value of regional cerebral blood volume by 20%.

  15. Clinical and research applications of simultaneous positron emission tomography and MRI

    PubMed Central

    Fraioli, F

    2014-01-01

    Abstract Evaluation of the molecular processes responsible for disease pathogenesis and progression represents the new frontier of clinical radiology. Multimodality imaging lies at the cutting edge, combining the power of MRI for tissue characterization, microstructural appraisal and functional assessment together with new positron emission tomography (PET) tracers designed to target specific metabolic processes. The recent commercial availability of an integrated clinical whole-body PET-MRI provides a hybrid platform for exploring and exploiting the synergies of multimodal imaging. First experiences on the clinical and research application of hybrid PET-MRI are emerging. This article reviews the rapidly evolving field and speculates on the potential future direction. PMID:24234585

  16. Positron emission tomography of lung tumors and mediastinal lymph nodes using [18F]fluorodeoxyglucose. The Members of the PET-Lung Tumor Study Group.

    PubMed

    Scott, W J; Schwabe, J L; Gupta, N C; Dewan, N A; Reeb, S D; Sugimoto, J T

    1994-09-01

    Positron emission tomography detects increased glucose uptake in malignant tissue using the glucose analogue [2-18F]fluoro-2-deoxy-D-glucose. We reviewed the scans obtained in 62 patients with lung tumors. All had undergone computed tomography and had tissue-based diagnoses: 22 had adenocarcinomas, 12 had squamous cell carcinomas, 13 had other malignancies, 1 had organizing pneumonia, 1 had a hamartoma, and 13 had granulomas. Positron emission tomography with [2-18F]fluoro-2-deoxy-D-glucose identified 44 of 47 malignancies. Two of three false-negative findings were tumors that were 1 cm2 or less and the other was a bronchioloalveolar carcinoma. All three false-positive findings were granulomas. The sensitivity and specificity of the technique were 93.6% and 80%, respectively, and the positive and negative predictive values were 93.6% and 80%, respectively. The differential uptake ratio was determined in all 62 patients. The mean differential uptake ratio (+/- the standard error of the mean) for malignant tumors was 6.4 +/- 0.56 and that for benign tumors was 1.14 +/- 0.26 (p < 0.0001, t test). Twenty-five of the patients had N2 lymph nodes evaluated pathologically. Positron emission tomography with [2-18F]fluoro-2-deoxy-D-glucose identified negative N2 nodes in 19 of 22 patients (86%) with negative nodes and positive N2 nodes in 2 of 3 patients (66%) with positive nodes, including one instance missed by computed tomography.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7944691

  17. Panoramic cone beam computed tomography

    SciTech Connect

    Chang Jenghwa; Zhou Lili; Wang Song; Clifford Chao, K. S.

    2012-05-15

    Purpose: Cone-beam computed tomography (CBCT) is the main imaging tool for image-guided radiotherapy but its functionality is limited by a small imaging volume and restricted image position (imaged at the central instead of the treatment position for peripheral lesions to avoid collisions). In this paper, the authors present the concept of ''panoramic CBCT,'' which can image patients at the treatment position with an imaging volume as large as practically needed. Methods: In this novel panoramic CBCT technique, the target is scanned sequentially from multiple view angles. For each view angle, a half scan (180 deg. + {theta}{sub cone} where {theta}{sub cone} is the cone angle) is performed with the imaging panel positioned in any location along the beam path. The panoramic projection images of all views for the same gantry angle are then stitched together with the direct image stitching method (i.e., according to the reported imaging position) and full-fan, half-scan CBCT reconstruction is performed using the stitched projection images. To validate this imaging technique, the authors simulated cone-beam projection images of the Mathematical Cardiac Torso (MCAT) thorax phantom for three panoramic views. Gaps, repeated/missing columns, and different exposure levels were introduced between adjacent views to simulate imperfect image stitching due to uncertainties in imaging position or output fluctuation. A modified simultaneous algebraic reconstruction technique (modified SART) was developed to reconstruct CBCT images directly from the stitched projection images. As a gold standard, full-fan, full-scan (360 deg. gantry rotation) CBCT reconstructions were also performed using projection images of one imaging panel large enough to encompass the target. Contrast-to-noise ratio (CNR) and geometric distortion were evaluated to quantify the quality of reconstructed images. Monte Carlo simulations were performed to evaluate the effect of scattering on the image quality and

  18. FEASIBILITY OF POSITRON EMISSION TOMOGRAPHY OF DOSE DISTRIBUTION IN PROTON BEAM CANCER THERAPY.

    SciTech Connect

    BEEBE - WANG,J.J.; DILMANIAN,F.A.; PEGGS,S.G.; SCHLYEER,D.J.; VASKA,P.

    2002-06-03

    Proton therapy is a treatment modality of increasing utility in clinical radiation oncology mostly because its dose distribution conforms more tightly to the target volume than x-ray radiation therapy. One important feature of proton therapy is that it produces a small amount of positron-emitting isotopes along the beam-path through the non-elastic nuclear interaction of protons with target nuclei such as {sup 12}C, {sup 14}N, and {sup 16}O. These radioisotopes, mainly {sup 11}C, {sup 13}N and {sup 15}O, allow imaging the therapy dose distribution using positron emission tomography (PET). The resulting PET images provide a powerful tool for quality assurance of the treatment, especially when treating inhomogeneous organs such as the lungs or the head-and-neck, where the calculation of the dose distribution for treatment planning is more difficult. This paper uses Monte Carlo simulations to predict the yield of positron emitters produced by a 250 MeV proton beam, and to simulate the productions of the image in a clinical PET scanner.

  19. Measurement of human cerebral blood flow with (15O)butanol and positron emission tomography

    SciTech Connect

    Berridge, M.S.; Adler, L.P.; Nelson, A.D.; Cassidy, E.H.; Muzic, R.F.; Bednarczyk, E.M.; Miraldi, F. )

    1991-09-01

    Although H2(15)O is widely used for CBF measurement by positron tomography, it underestimates CBF, especially at elevated flow rates. Several tracers, including butanol, overcome this problem, but the short half-life of 15O provides advantages that cause water to remain the tracer of choice. The authors report the first use and evaluation of 15O-labeled butanol for CBF measurement. Flow measurements made in a similar fashion with water and butanol at 10-min intervals were compared in normal volunteers under resting and hypercapnic conditions. Regional analysis showed good agreement between the tracers at low flows, and significant underestimation of flow by water relative to butanol in regions of elevated flow. The observed relationship between the tracers and the curve-fitted permeability-surface area product for water (133 ml.100 g-1.min-1) follow the known relationship between water and true flow. These observations indicate that (15O)-butanol provided accurate measurements of human regional CBF under conditions of elevated perfusion. They conclude that butanol is a convenient and accurate method for routine CBF determination by positron emission tomography.

  20. Catecholamine stimulation, substrate competition, and myocardial glucose uptake in conscious dogs assessed with positron emission tomography.

    PubMed

    Merhige, M E; Ekas, R; Mossberg, K; Taegtmeyer, H; Gould, K L

    1987-11-01

    Uptake of radiolabelled deoxyglucose out of proportion to reduced coronary flow demonstrated by positron emission tomography has been used to identify reversibly ischemic, viable myocardium. For this concept to be applied reliably in the clinical setting, factors that may depress glucose availability independent of tissue viability, such as adrenergic stimulation and substrate competition, must be examined. Accordingly, we studied the effect of catecholamine stimulation by dopamine on myocardial glucose uptake in vivo using chronically instrumented, intact dogs and positron emission tomography. We measured myocardial activity of [2-18F]-2-deoxyglucose (FDG) and 82Rb in glucose-loaded animals randomly studied during dopamine infusion, during insulin infusion, and then during their combined infusion. Myocardial FDG uptake was significantly decreased when animals were treated with dopamine, compared with treatment in the same animals with insulin. When insulin was added to the dopamine infusion, myocardial FDG uptake was restored. In contrast, myocardial activity of 82Rb, which is taken up in proportion to coronary flow, was similar under all three experimental conditions. Plasma glucose, free fatty acid, and lactate concentrations were determined before and during each infusion. The depression of myocardial FDG activity seen during dopamine infusion and its reversal with addition of insulin can be explained on the basis of effects of these hormones on substrate availability and competition.

  1. Positron emission tomography and [18F]BPA: a perspective application to assess tumour extraction of boron in BNCT.

    PubMed

    Menichetti, L; Cionini, L; Sauerwein, W A; Altieri, S; Solin, O; Minn, H; Salvadori, P A

    2009-07-01

    Positron emission tomography (PET) has become a key imaging tool in clinical practice and biomedical research to quantify and study biochemical processes in vivo. Physiologically active compounds are tagged with positron emitters (e.g. (18)F, (11)C, (124)I) while maintaining their biological properties, and are administered intravenously in tracer amounts (10(-9)-10(-12)M quantities). The recent physical integration of PET and computed tomography (CT) in hybrid PET/CT scanners allows a combined anatomical and functional imaging: nowadays PET molecular imaging is emerging as powerful pharmacological tool in oncology, neurology and for treatment planning as guidance for radiation therapy. The in vivo pharmacokinetics of boron carrier for BNCT and the quantification of (10)B in living tissue were performed by PET in the late nineties using compartmental models based on PET data. Nowadays PET and PET/CT have been used to address the issue of pharmacokinetic, metabolism and accumulation of BPA in target tissue. The added value of the use of L-[(18)F]FBPA and PET/CT in BNCT is to provide key data on the tumour extraction of (10)B-BPA versus normal tissue and to predict the efficacy of the treatment based on a single-study patient analysis. Due to the complexity of a binary treatment like BNCT, the role of PET/CT is currently to design new criteria for patient enrolment in treatment protocols: the L-[(18)F]BPA/PET methodology could be considered as an important tool in newly designed clinical trials to better estimate the concentration ratio of BPA in the tumour as compared to neighbouring normal tissues. Based on these values for individual patients the decision could be made whether BNCT treatment could be advantageous due to a selective accumulation of BPA in an individual tumour. This approach, applicable in different tumour entities like melanoma, glioblastoma and head and neck malignancies, make this methodology as reliable prognostic and therapeutic indicator for

  2. SINGLE-PHOTON EMISSION COMPUTED TOMOGRAPHY: COMPENSATION FOR CONSTANT ATTENUATION

    SciTech Connect

    Gullberg, Grant T.; Budinger, Thomas F.

    1980-06-01

    A back-projection of filtered projection (BKFIL) reconstruction algorithm is presented that is applicable to single-photon emission computed tomography (ECT) in the presence of a constant attenuating medium such as the brain. The filters used in transmission computed tomography (TCT) - comprised of a ramp multiplied by window functions - are modified so that the single-photon ECT filter is a function of the constant attenuation coefficient. The filters give good reconstruction results with sufficient angular and lateral sampling. With continuous samples the BKFIL algorithm has a point spread function that is the Hankel transform of the window function. The resolution and s tistical properties of the filters are demonstrated by various simulations. Statistical formulas for the reconstructed image show that the square of the percent-root-mean square uncertainty (%RMS) of the reconstruction is inversely proportional to the total measured counts. The results indicate that constant attenuation can be compensated for in single-photon ECT by using an attenuation-dependent filter that reconstructs the transverse section reliably. Computer time requirements are two times that of conventional TCT or positron ECT and there is no increase in memory requirements.

  3. Computed Tomography: Image and Dose Assessment

    NASA Astrophysics Data System (ADS)

    Valencia-Ortega, F.; Ruiz-Trejo, C.; Rodríguez-Villafuerte, M.; Buenfil, A. E.; Mora-Hernández, L. A.

    2006-09-01

    In this work an experimental evaluation of image quality and dose imparted during a computed tomography study in a Public Hospital in Mexico City is presented; The measurements required the design and construction of two phantoms at the Institute of Physics, UNAM, according to the recommendations of American Association of Physicists in Medicine (AAPM). Image assessment was performed in terms the spatial resolution and image contrast. Dose measurements were carried out using LiF: Mg,Ti (TLD-100) dosemeters and pencil-shaped ionisation chamber; The results for a computed tomography head study in single and multiple detector modes are presented.

  4. 18F-fluorodeoxyglucose positron emission tomography imaging in brain tumours: the Western Australia positron emission tomography/cyclotron service experience.

    PubMed

    McCarthy, M; Yuan, J B; Campbell, A; Lenzo, N P; Butler-Henderson, K

    2008-12-01

    (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) scans in the first 49 patients referred with either possible brain tumour or brain tumour recurrence were reviewed. FDG-PET imaging was reported with reference to anatomical imaging. Based on the report the FDG study was classified as either positive or negative for the presence of tumour. Thirty-eight cases were included in the analysis, 21 having pathological data and 17 with diagnostic clinical follow up. Eleven were excluded, as they had inadequate follow-up data. Of the 21 cases with pathology, 18 were shown to have tumour. In this group there were five false-negative scans and two false-positive PET scans. Seventeen cases were assessed by clinical follow up, nine were considered to have been tumour. There were two false negatives with one false positive. The overall sensitivity, specificity and positive and negative predictive values were 74, 73, 87 and 53% respectively. This is similar to figures previously quoted in published work. Despite relatively limited numbers, the utility of FDG PET imaging in our hands is similar to published reports. With a positive predictive value of 87%, a positive FDG study indicates a high likelihood that there is brain tumour present. A negative study does not exclude the presence of tumour.

  5. Brain positron emission tomography in splenectomized adults with β-thalassemia intermedia: uncovering yet another covert abnormality.

    PubMed

    Musallam, Khaled M; Nasreddine, Wassim; Beydoun, Ahmad; Hourani, Roula; Hankir, Ahmed; Koussa, Suzanne; Haidar, Mohamad; Taher, Ali T

    2012-02-01

    Covert brain infarction is an emerging concern in patients with β-thalassemia intermedia (TI). We have recently observed a high prevalence (60%) of silent brain infarction on brain magnetic resonance imaging (MRI) in 30 splenectomized adults with TI. In this work, we further evaluate cerebral involvement in the same 30 patients using fluorodeoxyglucose positron emission tomography-computed tomography (PET-CT) scanning. The median age was 32 years (range, 18-54 years) with a male to female ratio of 13:17. Nineteen patients (63.3%) had evidence of decreased neuronal function on PET-CT. Involvement was mostly left sided, multiple, and most commonly in the temporal and parietal lobes. Elevated liver iron concentration, beyond 15 mg Fe/g dry weight, characterized patients with decreased neuronal function. The concordance rate between brain MRI and PET-CT for the detection of brain abnormality was only 36.7% (Kappa 0.056, P = 0.757), highlighting that both modalities reveal different types of brain pathology. Decreased neuronal function is a common finding in patients with TI and is associated with iron overload. Moreover, the addition of PET-CT to MRI identifies a greater proportion of TI patients with silent neuroimaging abnormalities.

  6. (18) F-labeled folic acid derivatives for imaging of the folate receptor via positron emission tomography.

    PubMed

    Schieferstein, Hanno; Ross, Tobias L

    2013-01-01

    The folate receptor (FR) is already known as a proven target in diagnostics and therapy of cancer. Furthermore, the FR is involved in inflammatory and autoimmune diseases. The major advantage as a valuable target is its strongly limited expression in healthy tissues. Over the past two decades, several folic acid-based radiopharmaceuticals addressing the FR have been developed, and some of them show great potential for applications in clinical routine. However, most of these radiofolates were developed for single photon emission computed tomography imaging, and only a few can be used for positron emission tomography (PET) imaging. The development of suitable (18) F-labeled derivatives for PET imaging of the FR has aroused great interest and recent studies revealed very promising candidates for further development and translation into human applications. In this review, we focus on the development of (18) F-labeled folic acid derivatives for PET imaging of the FR and discuss various radiochemical strategies and approaches towards (18) F-folates. Besides radiochemistry and (18) F-labeling, we briefly look into the crucial pharmacological parameters and the preclinical in vivo performance of those (18) F-folates.

  7. Anti-3-[18F]FACBC Positron Emission Tomography-Computerized Tomography and 111In-Capromab Pendetide Single Photon Emission Computerized Tomography-Computerized Tomography for Recurrent Prostate Carcinoma: Results of a Prospective Clinical Trial

    PubMed Central

    Schuster, David M.; Nieh, Peter T.; Jani, Ashesh B.; Amzat, Rianot; Bowman, F. DuBois; Halkar, Raghuveer K.; Master, Viraj A.; Nye, Jonathon A.; Odewole, Oluwaseun A.; Osunkoya, Adeboye O.; Savir-Baruch, Bital; Alaei-Taleghani, Pooneh; Goodman, Mark M.

    2014-01-01

    Purpose We prospectively evaluated the amino acid analogue positron emission tomography radiotracer anti-3-[18F]FACBC compared to ProstaScint® (111In-capromab pendetide) single photon emission computerized tomography-computerized tomography to detect recurrent prostate carcinoma. Materials and Methods A total of 93 patients met study inclusion criteria who underwent anti-3-[18F]FACBC positron emission tomography-computerized tomography plus 111In-capromab pendetide single photon emission computerized tomography-computerized tomography for suspected recurrent prostate carcinoma within 90 days. Reference standards were applied by a multidisciplinary board. We calculated diagnostic performance for detecting disease. Results In the 91 of 93 patients with sufficient data for a consensus on the presence or absence of prostate/bed disease anti-3-[18F]FACBC had 90.2% sensitivity, 40.0% specificity, 73.6% accuracy, 75.3% positive predictive value and 66.7% negative predictive value compared to 111In-capromab pendetide with 67.2%, 56.7%, 63.7%, 75.9% and 45.9%, respectively. In the 70 of 93 patients with a consensus on the presence or absence of extraprostatic disease anti-3-[18F]FACBC had 55.0% sensitivity, 96.7% specificity, 72.9% accuracy, 95.7% positive predictive value and 61.7% negative predictive value compared to 111In-capromabpendetide with10.0%, 86.7%, 42.9%, 50.0% and 41.9%, respectively. Of 77 index lesions used to prove positivity histological proof was obtained in 74 (96.1%). Anti-3-[18F]FACBC identified 14 more positive prostate bed recurrences (55 vs 41) and 18 more patients with extraprostatic involvement (22 vs 4). Anti-3-[18F]FACBC positron emission tomography-computerized tomography correctly up-staged 18 of 70 cases (25.7%) in which there was a consensus on the presence or absence of extraprostatic involvement. Conclusions Better diagnostic performance was noted for anti-3-[18F]FACBC positron emission tomography-computerized tomography than for 111In

  8. Computed Tomography Analysis of NASA BSTRA Balls

    SciTech Connect

    Perry, R L; Schneberk, D J; Thompson, R R

    2004-10-12

    Fifteen 1.25 inch BSTRA balls were scanned with the high energy computed tomography system at LLNL. This system has a resolution limit of approximately 210 microns. A threshold of 238 microns (two voxels) was used, and no anomalies at or greater than this were observed.

  9. Radiologist, computed tomography, and radiation therapy

    SciTech Connect

    Goitein, M.; Meyer, J.

    1982-06-01

    The use of computed tomography (CT) in planning radiation therapy is discussed. The three major issues that involve collaboration between the diagnostic radiologist and the radiation therapist are identified as selection of equipment, logistics, and conduct of individual CT studies. The importance of cooperation between the diagnostic and therapeutic radiologist is stressed.

  10. Cerebral computed tomography, 3rd Edition

    SciTech Connect

    Weisberg, L.; Nice, C.

    1988-01-01

    This book is an introduction to the utilization of computed tomography in evaluating patients with intracranial and orbital disorders. It features clinical correlations and provides an overview of general principles, performance, and normal anatomy of CT. It covers evaluation of specific neurologic signs and symptoms, including stroke, metastatic disease, increased intracranial pressure, head injury, pediatric conditions, and more.

  11. Computed tomography demonstration of cholecystogastric fistula.

    PubMed

    Chou, Chung Kuao

    2016-06-01

    Cholecystogastric fistula is a rare complication of chronic cholecystitis or long-standing cholelithiasis. It results from the gradual erosion of the approximated, chronically inflamed wall of the gall bladder and stomach with fistulous tract formation. The present case describes the direct visualization of a cholecystogastric fistula by computed tomography in a patient without prior biliary system complaints. PMID:27257453

  12. Computed tomography in the evaluation of trauma

    SciTech Connect

    Federle, M.P.; Brant-Zawadzki, M.

    1982-01-01

    This book is intended to be the current standard for computed tomography in the evaluation of trauma. It summarizes two years of experience at San Francisco General Hospital. The book is organized into seven chapters, covering head, maxillofacial, laryngeal, spinal, chest, abdominal, acetabular, and pelvic trauma. Extremity trauma is not discussed.

  13. Computed tomography in trauma: An atlas approach

    SciTech Connect

    Toombs, B.D.; Sandler, C.

    1986-01-01

    This book discussed computed tomography in trauma. The text is organized according to mechanism of injury and site of injury. In addition to CT, some correlation with other imaging modalities is included. Blunt trauma, penetrating trauma, complications and sequelae of trauma, and use of other modalities are covered.

  14. Diagnosis of juvenile angiofibroma by computed tomography.

    PubMed

    Weinstein, M A; Levine, H; Duchesneau, P M; Tucker, H M

    1978-03-01

    Computed tomography (CT) accurately localized juvenile angiofibromata in 3 patients. The expanded pterygopalatine fossa and canal were visualized by CT in all three cases. Because of the hemorrhagic tendency of these tumors, a noninvasive modality such as CT is especially valuable in planning therapy.

  15. [Computer tomography of retroperitoneal trauma (author's transl)].

    PubMed

    Fischedick, A R; Müller, R P; Kramps, H; Cramer, B

    1982-01-01

    Computer tomography changes after retroperitoneal trauma are described on the basis of 19 patients seen by the authors. It appears that this method is superior to conventional techniques, both as a screening method and for carrying out follow-ups. The indications for angiography are thereby reduced.

  16. Co-registration of glucose metabolism with positron emission tomography and vascularity with fluorescent diffuse optical tomography in mouse tumors

    PubMed Central

    2012-01-01

    Background Bimodal molecular imaging with fluorescence diffuse optical tomography (fDOT) and positron emission tomography (PET) has the capacity to provide multiple molecular information of mouse tumors. The objective of the present study is to co-register fDOT and PET molecular images of tumors in mice automatically. Methods The coordinates of bimodal fiducial markers (FM) in regions of detection were automatically detected in planar optical images (x, y positions) in laser pattern optical surface images (z position) and in 3-D PET images. A transformation matrix was calculated from the coordinates of the FM in fDOT and in PET and applied in order to co-register images of mice bearing neuroendocrine tumors. Results The method yielded accurate non-supervised co-registration of fDOT and PET images. The mean fiducial registration error was smaller than the respective voxel sizes for both modalities, allowing comparison of the distribution of contrast agents from both modalities in mice. Combined imaging depicting tumor metabolism with PET-[18 F]2-deoxy-2-fluoro-d-glucose and blood pool with fDOT demonstrated partial overlap of the two signals. Conclusions This automatic method for co-registration of fDOT with PET and other modalities is efficient, simple and rapid, opening up multiplexing capacities for experimental in vivo molecular imaging. PMID:22564761

  17. Integration of Quantitative Positron Emission Tomography Absolute Myocardial Blood Flow Measurements in the Clinical Management of Coronary Artery Disease.

    PubMed

    Gewirtz, Henry; Dilsizian, Vasken

    2016-05-31

    In the >40 years since planar myocardial imaging with(43)K-potassium was introduced into clinical research and management of patients with coronary artery disease (CAD), diagnosis and treatment have undergone profound scientific and technological changes. One such innovation is the current state-of-the-art hardware and software for positron emission tomography myocardial perfusion imaging, which has advanced it from a strictly research-oriented modality to a clinically valuable tool. This review traces the evolving role of quantitative positron emission tomography measurements of myocardial blood flow in the evaluation and management of patients with CAD. It presents methodology, currently or soon to be available, that offers a paradigm shift in CAD management. Heretofore, radionuclide myocardial perfusion imaging has been primarily qualitative or at best semiquantitative in nature, assessing regional perfusion in relative terms. Thus, unlike so many facets of modern cardiovascular practice and CAD management, which depend, for example, on absolute values of key parameters such as arterial and left ventricular pressures, serum lipoprotein, and other biomarker levels, the absolute levels of rest and maximal myocardial blood flow have yet to be incorporated into routine clinical practice even in most positron emission tomography centers where the potential to do so exists. Accordingly, this review focuses on potential value added for improving clinical CAD practice by measuring the absolute level of rest and maximal myocardial blood flow. Physiological principles and imaging fundamentals necessary to understand how positron emission tomography makes robust, quantitative measurements of myocardial blood flow possible are highlighted.

  18. Integration of Quantitative Positron Emission Tomography Absolute Myocardial Blood Flow Measurements in the Clinical Management of Coronary Artery Disease.

    PubMed

    Gewirtz, Henry; Dilsizian, Vasken

    2016-05-31

    In the >40 years since planar myocardial imaging with(43)K-potassium was introduced into clinical research and management of patients with coronary artery disease (CAD), diagnosis and treatment have undergone profound scientific and technological changes. One such innovation is the current state-of-the-art hardware and software for positron emission tomography myocardial perfusion imaging, which has advanced it from a strictly research-oriented modality to a clinically valuable tool. This review traces the evolving role of quantitative positron emission tomography measurements of myocardial blood flow in the evaluation and management of patients with CAD. It presents methodology, currently or soon to be available, that offers a paradigm shift in CAD management. Heretofore, radionuclide myocardial perfusion imaging has been primarily qualitative or at best semiquantitative in nature, assessing regional perfusion in relative terms. Thus, unlike so many facets of modern cardiovascular practice and CAD management, which depend, for example, on absolute values of key parameters such as arterial and left ventricular pressures, serum lipoprotein, and other biomarker levels, the absolute levels of rest and maximal myocardial blood flow have yet to be incorporated into routine clinical practice even in most positron emission tomography centers where the potential to do so exists. Accordingly, this review focuses on potential value added for improving clinical CAD practice by measuring the absolute level of rest and maximal myocardial blood flow. Physiological principles and imaging fundamentals necessary to understand how positron emission tomography makes robust, quantitative measurements of myocardial blood flow possible are highlighted. PMID:27245647

  19. Parallel Computing for the Computed-Tomography Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon

    2008-01-01

    This software computes the tomographic reconstruction of spatial-spectral data from raw detector images of the Computed-Tomography Imaging Spectrometer (CTIS), which enables transient-level, multi-spectral imaging by capturing spatial and spectral information in a single snapshot.

  20. Positron emission tomography in the quantification of cellular and biochemical responses to intrapulmonary particulates

    SciTech Connect

    Jones, Hazel A. . E-mail: hazel.jones@imperial.ac.uk; Hamacher, Kurt; Clark, John C.; Schofield, John B.; Krausz, Thomas; Haslett, Christopher; Boobis, Alan R.

    2005-09-01

    Inhaled mineral dusts and fibres can cause chronic pulmonary inflammation, often leading to permanent scarring with loss of function, but the mechanisms involved remain obscure. There are currently no good methods for monitoring inflammatory processes in situ. Positron emission tomography (PET) of suitable intravenously injected radiolabelled markers provides non-invasive and repeatable methods of quantifying biochemical and cellular responses. We have developed animal models of fibrotic and non-fibrotic pulmonary response to particulate instillation and characterised these by histology. Different components of the inflammatory response have been investigated by PET: (1) [{sup 18}F]-labelled fluoro-deoxyglucose, a positron emitting glucose analogue, accumulates in cells in proportion to their glucose uptake; ex vivo microautoradiography indicates that neutrophils are the cells responsible for an increased signal during pulmonary inflammation; a persistently high uptake is associated with lung scarring. (2) The radioligand [{sup 11}C]-R-PK11195 binds to benzodiazepine-like receptors abundant in macrophages; following particulate instillation, the [{sup 11}C]-R-PK11195 PET signal tracks with lung macrophage accumulation and also localises to regions consistent with macrophage clearance; poor macrophage clearance is associated with fibrosis. (3) [{sup 18}F]-fluoroproline is likely a substrate for extracellular matrix production, especially proline-rich collagen; during active scarring, the rate of lung uptake of fluoroproline is elevated. Localisation of radioactivity in the lung has been validated ex vivo by microautoradiography of tritium analogues of each of the positron emitting tracers. The use of PET to monitor different inflammatory processes by repeated scanning of the same animal or individual is helping to identify key events in the fibrotic process.

  1. The Use and Misuse of Positron Emission Tomography in Lung Cancer Evaluation

    PubMed Central

    Chang, Ching-Fei; Rashtian, Afshin; Gould, Michael K.

    2011-01-01

    Synopsis Positron emission tomography (PET) has been studied for a variety of indications in patients with known or suspected non-small cell lung cancer (NSCLC). In this review, we discuss the potential benefits and limitations of PET for characterizing lung nodules, staging the mediastinum, identifying occult distant metastasis, determining prognosis and treatment response, guiding plans for radiation therapy, restaging during and after treatment, and selecting targets for tissue sampling. (Table 1) Evidence from randomized, controlled trials supports the use of PET for initial staging in NSCLC, while lower quality evidence from studies of diagnostic accuracy and modeling studies supports the use of PET for characterizing lung nodules. For most other indications in NSCLC, additional studies are required to clarify the role of PET and determine who is most likely to benefit. PMID:22054883

  2. The Australian government's review of positron emission tomography: evidence-based policy-making in action.

    PubMed

    Ware, Robert E; Francis, Hilton W; Read, Kenneth E

    2004-06-21

    The Commonwealth Government constituted the Medicare Services Advisory Committee (MSAC) to implement its commitment to entrench the principles of evidence-based medicine in Australian clinical practice. With its recent review of positron emission tomography (PETReview), the Commonwealth intervened in an established MSAC process, and sanctioned the stated objective to restrict expenditure on the technology. In our opinion: The evaluation of evidence by PETReview was fundamentally compromised by a failure to meet the terms of reference, poor science, poor process and unique decision-making benchmarks. By accepting the recommendations of PETReview, the Commonwealth is propagating information which is not of the highest quality. The use of inferior-quality information for decision-making by doctors, patients and policy-makers is likely to harm rather than enhance healthcare outcomes. PMID:15200360

  3. An Application of Micro-channel Plate Photomultiplier Tube to Positron Emission Tomography.

    PubMed

    Kim, H; Chen, C-T; Frisch, H; Tang, F; Kao, C-M

    2012-01-01

    We are developing a Time-of-Flight Positron Emission Tomography detector using flat panel micro-channel plate photomultiplier tubes (MCP PMT). The high-speed waveform sampling data acquisition is adopted to exploit the fast time response of MCP PMT efficiently by using transmission-line readout scheme. To demonstrate the feasibility of the proposed detector, prototype detector modules were built using Photonis XP85022 MCP PMT, transmission-line board (TL), and high-speed waveform sampling electronics equipped with DRS4 chips. The MCP/TL module was coupled to single LYSO crystal, and experimental tests have been conducted in a coincidence setup to measure the responses to 511 keV annihilation photon. The details of the prototype module, experimental setup, and the preliminary results are presented and discussed.

  4. An Application of Micro-channel Plate Photomultiplier Tube to Positron Emission Tomography

    PubMed Central

    Kim, H.; Chen, C.-T.; Frisch, H.; Tang, F.; Kao, C.-M.

    2012-01-01

    We are developing a Time-of-Flight Positron Emission Tomography detector using flat panel micro-channel plate photomultiplier tubes (MCP PMT). The high-speed waveform sampling data acquisition is adopted to exploit the fast time response of MCP PMT efficiently by using transmission-line readout scheme. To demonstrate the feasibility of the proposed detector, prototype detector modules were built using Photonis XP85022 MCP PMT, transmission-line board (TL), and high-speed waveform sampling electronics equipped with DRS4 chips. The MCP/TL module was coupled to single LYSO crystal, and experimental tests have been conducted in a coincidence setup to measure the responses to 511 keV annihilation photon. The details of the prototype module, experimental setup, and the preliminary results are presented and discussed. PMID:23227135

  5. Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography

    SciTech Connect

    Buchsbaum, M.S.; Wu, J.; Hazlett, E.; Sicotte, N.; Bunney, W.E. Jr. ); Gillin, J.C. )

    1989-01-01

    The cerebral metabolic rate of glucose was measured during nighttime sleep in 36 normal volunteers using positron emission tomography and fluorine-18-labeled 2-deoxyglucose (FDG). In comparison to waking controls, subjects given FDG during non-rapid eye movement (NREM) sleep showed about a 23% reduction in metabolic rate across the entire brain. This decrease was greater for the frontal than temporal or occipital lobes, and greater for basal ganglia and thalamus than cortex. Subjects in rapid eye movement (REM) sleep tended to have higher cortical metabolic rates than walking subjects. The cingulate gyrus was the only cortical structure to show a significant increase in glucose metabolic rate in REM sleep in comparison to waking. The basal ganglia were relatively more active on the right in REM sleep and symmetrical in NREM sleep.

  6. Receptor-specific positron emission tomography radiopharmaceuticals: /sup 75/Br-labeled butyrophenone neuroleptics

    SciTech Connect

    Moerlein, S.M.; Stoecklin, G.; Weinhard, K.; Pawlik, G.; Heiss, W.D.

    1985-11-01

    Cerebral dopaminergic D/sub 2/ receptors are involved in several common disease states, such as schizophrenia, Parkinson's disease, and Huntington's chorea. The use of radiolabeled D/sub 2/ receptor-binding ligands with positron emission tomography (PET) to noninvasively quantitate D/sub 2/ receptor densities thus has potential application in medicine. Butyrophenone neuroleptics have a high in vitro and in vivo binding affinity for cerebral D/sub 2/ receptors, and due to the useful chemical and nuclear decay properties of /sup 74/Br (76% ..beta../sup +/, half-life = 1.6 h), the authors have evaluated radiobrominated bromospiperone (BSP), brombenperidol (BBP), and bromperidol (BP) as radiopharmaceuticals for use with PET.

  7. Caffeine and human cerebral blood flow: A positron emission tomography study

    SciTech Connect

    Cameron, O.G.; Modell, J.G.; Hariharan, M. )

    1990-01-01

    Positron emission tomography (PET) was used to quantify the effect of caffeine on whole brain and regional cerebral blood flow (CBF) in humans. A mean dose of 250 mg of caffeine produced approximately a 30% decrease in whole brain CBF; regional differences in caffeine effect were not observed. Pre-caffeine CBF strongly influenced the magnitude of the caffeine-induced decrease. Caffeine decreased p{sub a}CO{sub 2} and increased systolic blood pressure significantly; the change in p{sub a}CO{sub 2} did not account for the change in CBF. Smaller increases in diastolic blood pressure, heart rate, plasma epinephrine and norepinephrine, and subjectively reported anxiety were also observed.

  8. Myelin imaging with C-11 labeled diphenylmethanol and positron emission tomography

    SciTech Connect

    Herscovitch, P.; Dischino, D.D.; Kilbourn, M.R.; Welch, M.J.; Raichle, M.E.

    1985-05-01

    The authors have recently studied several C-11-labeled radiopharmaceuticals for their suitability as myelin imaging agents with positron emission tomography (PET). C-11 diphenylmethanol (DPM) was selected on the basis of its in vivo metabolic stability and high extraction and lipophilicity. PET studies were performed in three normal subjects and in one patient with multiple sclerosis (MS). Myelin distribution was imaged following the bolus intravenous administration of 25-30 mCi of C-11 DPM. Sequential scans were obtained after radiotracer administration to measure the DPM distribution as a function of time. In addition, regional cerebral blood flow was measured after the bolus intravenous injection of 0-15 water. A tomographic slice through the centrum semiovale was used to obtain regional data for gray matter (GM) and white matter (WM).

  9. Initial characterization of a position-sensitive photodiode/BGO detector for PET (positron emission tomography)

    SciTech Connect

    Derenzo, S.E.; Moses, W.W.; Jackson, H.G.; Turko, B.T.; Cahoon, J.L.; Geyer, A.B.; Vuletich, T.

    1988-11-01

    We present initial results of a position-sensitive photodiode/BGO detector for high resolution, multi-layer positron emission tomography (PET). Position sensitivity is achieved by dividing the 3 mm /times/ 20 mm rectangular photosensitive area along the diagonal to form two triangular segments. Each segment was individually connected to a low-noise amplifier. The photodiodes and crystals were cooled to /minus/100/degree/C to reduce dark current and increase the BGO signal. With an amplifier peaking time of 17 ..mu..sec, the sum of the signals (511 keV photopeak) was 3200 electrons with a full width at half maximum (fwhm) of 750 electrons. The ratio of one signal to the sum determined the depth of interaction with a resolution of 11 mm fwhm. 27 refs., 7 figs.

  10. The nigrostriatal dopaminergic pathway in Wilson's disease studied with positron emission tomography.

    PubMed Central

    Snow, B J; Bhatt, M; Martin, W R; Li, D; Calne, D B

    1991-01-01

    Movement disorders, including Parkinsonism, are prominent features of neurological Wilson's disease (WD). This suggests there may be dysfunction of the nigrostriatal dopaminergic pathway. To explore this possibility, five patients were studied using positron emission tomography (PET) with 18F-6-fluorodopa (6FD), and magnetic resonance imaging (MRI). We calculated striatal 6FD uptake rate constants by a graphical method and compared the results with those of 18 normal subjects. It was found that four patients with symptoms all had abnormally low 6FD uptake, and the one asymptomatic patient had normal uptake. PET evidence for nigrostriatal dopaminergic dysfunction was present even after many years of penicillamine treatment. It is concluded that the nigrostriatal dopaminergic pathway is involved in neurological WD. Images PMID:1901347

  11. An 8×8 Row-Column Summing Readout Electronics for Preclinical Positron Emission Tomography Scanners.

    PubMed

    Shih, Y C; Sun, F W; Macdonald, L R; Otis, B P; Miyaoka, R S; McDougald, W; Lewellen, T K

    2009-10-24

    This work presents a row/column summing readout electronics for an 8×8 silicon photomultiplier array. The summation circuit greatly reduces the number of electronic channels, which is desirable for pursuing higher resolution positron emission tomography scanners. By using a degenerated common source topology in the summation circuit, more fan-in is possible and therefore a greater reduction in the number of electronic channels can be achieved. The timing signal is retrieved from a common anode, which allows the use of a single fast-sampling analog to digital converter (ADC) for the timing channel and slower, lower power ADCs for the 64 spatial channels. Preliminary results of one row summation of the 8×8 readout electronics exhibited FWHM energy resolution of 17.8% and 18.3% with and without multiplexing, respectively. The measured timing resolution is 2.9ns FWHM.

  12. Nicotine Blocks Brain Estrogen Synthase (Aromatase): In Vivo Positron Emission Tomography Studies in Female Baboons

    SciTech Connect

    Biegon, A.; Biegon, A.; Kim, S.-W.; Logan, J.; Hooker, J.M.; Muench, L.; Fowler, J.S.

    2010-01-12

    Cigarette smoking and nicotine have complex effects on human physiology and behavior, including some effects similar to those elicited by inhibition of aromatase, the last enzyme in estrogen biosynthesis. We report the first in vivo primate study to determine whether there is a direct effect of nicotine administration on brain aromatase. Brain aromatase availability was examined with positron emission tomography and the selective aromatase inhibitor [{sup 11}C]vorozole in six baboons before and after exposure to IV nicotine at .015 and .03 mg/kg. Nicotine administration produced significant, dose-dependent reductions in [{sup 11}C]vorozole binding. The amygdala and preoptic area showed the largest reductions. Plasma levels of nicotine and its major metabolite cotinine were similar to those found in cigarette smokers. Nicotine interacts in vivo with primate brain aromatase in regions involved in mood, aggression, and sexual behavior.

  13. Measurement of blood-brain barrier permeability with positron emission tomography and (68Ga)EDTA

    SciTech Connect

    Kessler, R.M.; Goble, J.C.; Bird, J.H.; Girton, M.E.; Doppman, J.L.; Rapoport, S.I.; Barranger, J.A.

    1984-09-01

    Positron emission tomography (PET) was employed to examine time-dependent changes in blood-brain barrier (BBB) permeability to (68Ga)ethylenediaminetetraacetate (EDTA) in the rhesus monkey, following reversible barrier opening by intracarotid infusion of a hypertonic mannitol solution. The PET technique, when combined with measurements of plasma radioactivity, provided a quantitative measure of the cerebrovascular permeability-area product (PA) at different times following mannitol infusion. Hypertonic mannitol treatment reversibly increased PA to (68Ga)EDTA more than 10-fold; much of the barrier effect was over by 10 min after mannitol treatment. The results show that PET can be used to measure transient changes in BBB integrity in specific brain regions, under in vivo, noninvasive conditions.

  14. Cerebral blood volume measured with inhaled C/sup 15/O and positron emission tomography

    SciTech Connect

    Martin, W.R.; Powers, W.J.; Raichle, M.E.

    1987-08-01

    Local cerebral blood volume (CBV) has been measured previously with inhaled /sup 11/CO and positron emission tomography (PET). The model used assumes that equilibrium in tracer concentration has occurred between arterial and systemic venous blood before the PET measurement is made. To verify that this model may be used with the much shorter half-lived C/sup 15/O, we have simultaneously measured arterial and venous blood radioactivity following C/sup 15/O inhalation. Equilibrium occurred 95 +/- 39 s after inhalation (n = 7). If the PET measurement is commenced prior to arteriovenous equilibrium, significant errors occur in calculated CBV. These data indicate that C/sup 15/O may be used as a tracer for CBV measurement provided that emission data collection commences at approximately 120 s after inhalation. Strict quality control measures must be maintained to minimize the contamination of administered C/sup 15/O with /sup 15/O-labeled CO/sub 2/.

  15. Sparse representation and dictionary learning penalized image reconstruction for positron emission tomography

    NASA Astrophysics Data System (ADS)

    Chen, Shuhang; Liu, Huafeng; Shi, Pengcheng; Chen, Yunmei

    2015-01-01

    Accurate and robust reconstruction of the radioactivity concentration is of great importance in positron emission tomography (PET) imaging. Given the Poisson nature of photo-counting measurements, we present a reconstruction framework that integrates sparsity penalty on a dictionary into a maximum likelihood estimator. Patch-sparsity on a dictionary provides the regularization for our effort, and iterative procedures are used to solve the maximum likelihood function formulated on Poisson statistics. Specifically, in our formulation, a dictionary could be trained on CT images, to provide intrinsic anatomical structures for the reconstructed images, or adaptively learned from the noisy measurements of PET. Accuracy of the strategy with very promising application results from Monte-Carlo simulations, and real data are demonstrated.

  16. An 8×8 Row-Column Summing Readout Electronics for Preclinical Positron Emission Tomography Scanners

    PubMed Central

    Shih, Y. C.; Sun, F. W.; MacDonald, L. R.; Otis, B. P.; Miyaoka, R. S.; McDougald, W.; Lewellen, T. K.

    2010-01-01

    This work presents a row/column summing readout electronics for an 8×8 silicon photomultiplier array. The summation circuit greatly reduces the number of electronic channels, which is desirable for pursuing higher resolution positron emission tomography scanners. By using a degenerated common source topology in the summation circuit, more fan-in is possible and therefore a greater reduction in the number of electronic channels can be achieved. The timing signal is retrieved from a common anode, which allows the use of a single fast-sampling analog to digital converter (ADC) for the timing channel and slower, lower power ADCs for the 64 spatial channels. Preliminary results of one row summation of the 8×8 readout electronics exhibited FWHM energy resolution of 17.8% and 18.3% with and without multiplexing, respectively. The measured timing resolution is 2.9ns FWHM. PMID:20729983

  17. Clinical use of amyloid-positron emission tomography neuroimaging: Practical and bioethical considerations.

    PubMed

    Witte, Michael M; Foster, Norman L; Fleisher, Adam S; Williams, Monique M; Quaid, Kimberly; Wasserman, Michael; Hunt, Gail; Roberts, J Scott; Rabinovici, Gil D; Levenson, James L; Hake, Ann Marie; Hunter, Craig A; Van Campen, Luann E; Pontecorvo, Michael J; Hochstetler, Helen M; Tabas, Linda B; Trzepacz, Paula T

    2015-09-01

    Until recently, estimation of β-amyloid plaque density as a key element for identifying Alzheimer's disease (AD) pathology as the cause of cognitive impairment was only possible at autopsy. Now with amyloid-positron emission tomography (amyloid-PET) neuroimaging, this AD hallmark can be detected antemortem. Practitioners and patients need to better understand potential diagnostic benefits and limitations of amyloid-PET and the complex practical, ethical, and social implications surrounding this new technology. To complement the practical considerations, Eli Lilly and Company sponsored a Bioethics Advisory Board to discuss ethical issues that might arise from clinical use of amyloid-PET neuroimaging with patients being evaluated for causes of cognitive decline. To best address the multifaceted issues associated with amyloid-PET neuroimaging, we recommend this technology be used only by experienced imaging and treating physicians in appropriately selected patients and only in the context of a comprehensive clinical evaluation with adequate explanations before and after the scan. PMID:27239516

  18. Positron emission tomography imaging as a key enabling technology in drug development.

    PubMed

    McCarthy, T J

    2007-01-01

    The use of positron emission tomography (PET) in drug development has become more common in the pharmaceutical industry in recent years. One of the biggest challenges to gaining acceptance of this technology is for project teams to understand when to use PET. This chapter reviews the usage of PET in drug development in the context of target, mechanism and efficacy biomarkers. Examples are drawn from a number of therapeutic areas, but we also show that the relative penetration of this technology beyond CNS and oncology applications has been relatively small. However, with the increasing availability of PET and development of novel radiotracers it is expected that the utilization will be much broader in future years, with the additional expectation that the use of PET as an efficacy biomarker will also become more evident. PMID:17172162

  19. Positron emission tomography radioligands for in vivo imaging of Aβ plaques

    PubMed Central

    Mason, N. Scott; Mathis, Chester A.; Klunk, William E.

    2014-01-01

    The development of positron emission tomography (PET) radioligands for the non-invasive imaging of amyloid-β plaque burden has been the focus of intense research efforts over the last decade. A variety of structural backbones have been investigated and several radiolabeled molecules have been evaluated in phase I (and later) clinical studies. These efforts have been driven by the desire not only to develop a suitable diagnostic imaging agent but also to develop a means to evaluate potential therapies for Alzheimer’s disease. This review focuses on the development of these ligands, as well as the radiochemistry and current regulatory status of these PET radioligands. Particular attention is given to those ligands that have progressed to the later stages of drug development (phase II/III clinical trial studies) or approved New Drug Application status. PMID:24285314

  20. Optical imaging of reporter gene expression using a positron-emission-tomography probe

    NASA Astrophysics Data System (ADS)

    Liu, Hongguang; Ren, Gang; Liu, Shuanglong; Zhang, Xiaofen; Chen, Luxi; Han, Peizhen; Cheng, Zhen

    2010-11-01

    Reporter gene/reporter probe technology is one of the most important techniques in molecular imaging. Lately, many reporter gene/reporter probe systems have been coupled to different imaging modalities such as positron emission tomography (PET) and optical imaging (OI). It has been recently found that OI techniques could be used to monitor radioactive tracers in vitro and in living subjects. In this study, we further demonstrate that a reporter gene/nuclear reporter probe system [herpes simplex virus type-1 thymidine kinase (HSV1-tk) and 9-(4-18F-fluoro-3-[hydroxymethyl] butyl) guanine ([18F]FHBG)] could be successfully imaged by OI in vitro and in vivo. OI with radioactive reporter probes will facilitate and broaden the applications of reporter gene/reporter probe techniques in medical research.

  1. Greater left cerebral hemispheric metabolism in bulimia assessed by positron emission tomography

    SciTech Connect

    Wu, J.C.; Hagman, J.; Buchsbaum, M.S.; Blinder, B.; Derrfler, M.; Tai, W.Y.; Hazlett, E.; Sicotte, N. )

    1990-03-01

    Eight women with bulimia and eight age- and sex-matched normal control subjects were studied with positron emission tomography using (18F)-fluorodeoxyglucose (FDG) as a tracer of brain metabolic rate. Subjects performed a visual vigilance task during FDG uptake. In control subjects, the metabolic rate was higher in the right hemisphere than in the left, but patients with bulimia did not have this normal asymmetry. Lower metabolic rates in the basal ganglia, found in studies of depressed subjects, and higher rates in the basal ganglia, reported in a study of anorexia nervosa, were not found. This is consistent with the suggestion that bulimia is a diagnostic grouping distinct from these disorders.

  2. Sensitivity estimation in time-of-flight list-mode positron emission tomography

    SciTech Connect

    Herraiz, J. L.; Sitek, A.

    2015-11-15

    Purpose: An accurate quantification of the images in positron emission tomography (PET) requires knowing the actual sensitivity at each voxel, which represents the probability that a positron emitted in that voxel is finally detected as a coincidence of two gamma rays in a pair of detectors in the PET scanner. This sensitivity depends on the characteristics of the acquisition, as it is affected by the attenuation of the annihilation gamma rays in the body, and possible variations of the sensitivity of the scanner detectors. In this work, the authors propose a new approach to handle time-of-flight (TOF) list-mode PET data, which allows performing either or both, a self-attenuation correction, and self-normalization correction based on emission data only. Methods: The authors derive the theory using a fully Bayesian statistical model of complete data. The authors perform an initial evaluation of algorithms derived from that theory and proposed in this work using numerical 2D list-mode simulations with different TOF resolutions and total number of detected coincidences. Effects of randoms and scatter are not simulated. Results: The authors found that proposed algorithms successfully correct for unknown attenuation and scanner normalization for simulated 2D list-mode TOF-PET data. Conclusions: A new method is presented that can be used for corrections for attenuation and normalization (sensitivity) using TOF list-mode data.

  3. A routine, automated synthesis of oxygen-15-labeled butanol for positron tomography

    SciTech Connect

    Berridge, M.S.; Cassidy, E.H.; Terris, A.H. )

    1990-10-01

    The use of labeled butanol for autoradiographic and positron tomographic measurement of cerebral blood flow has been well established using radiocarbon labels. The advantages of the short half-life of oxygen-15 ({sup 15}O) in doing sequential flow studies are also recognized. An automated procedure has been developed for the routine rapid and sequential synthesis of {sup 15}O-labeled butanol in amounts and with purity suitable for use in positron tomography. Butanol can now replace {sup 15}O-labeled water, which is commonly used for routine applications. The 14N(d,n){sup 15}O reaction is used, with 8 MeV deuterons on a nitrogen target containing 0.2% oxygen. Labeled oxygen is reacted with tri-n-butyl-borane by passing the gas over an alumina support which holds the reagent. Washing with water through small C18-bonded phase silica cartridges eliminates labeled water and the majority of boron-containing impurities. Injectable labeled butanol is collected at 2.5 min after the end of bombardment. The yield is 6 mCi per microampere of saturated bombardment, measured at the end of synthesis. Injectable product up to 250 mCi can be obtained at 10-min intervals.

  4. Clinical evaluation of a high-resolution (2. 6-mm) positron emission tomography

    SciTech Connect

    Valk, P.E.; Jagust, W.J.; Derenzo, S.E.; Huesman, R.H.; Geyer, A.B.; Budinger, T.F. )

    1990-09-01

    The intrinsic resolution of the Donner 600-crystal positron emission tomograph (PET 600) is 2.6 mm full width at half maximum (FWHM) in-plane and 6 mm FWHM axially. More than 100 patients with glioma, radiation necrosis, Alzheimer disease, or epilepsy have been studied with this system. Approximately 1 million events are acquired in 15 minutes, starting 1 hour after injection of 10 mCi (370 MBq) of fluorine-18-fluorodeoxyglucose. Normal structures as small as the superior colliculi and the external capsule have been resolved. Improved separation of the cortical ribbon from adjacent white matter has allowed more accurate determination of cortical metabolic rate. In two of 15 patients undergoing evaluation for recurrent glioma, the PET 600 images showed tumor uptake that was not apparent on a lower-resolution study. A high-activity orbiting transmission source with electronic collimation allows accurate, short-duration transmission measurements to be made after radiopharmaceutical administration. The anatomic detail seen on the transmission images can be used for reproducible patient positioning with an accuracy of 1-2 mm perpendicular to the image plane. These findings demonstrate the practicality and clinical effectiveness of high-resolution positron emission tomography.

  5. Changes in myocardial perfusion reserve after PTCA: noninvasive assessment with positron tomography.

    PubMed

    Goldstein, R A; Kirkeeide, R L; Smalling, R W; Nishikawa, A; Merhige, M E; Demer, L L; Mullani, N A; Gould, K L

    1987-08-01

    The effect of percutaneous transluminal coronary angioplasty (PTCA) on myocardial perfusion reserve has not been previously determined. Accordingly, 11 patients underwent positron imaging with [13N]ammonia or 82Rb at rest and following dipyridamole + handgrip stress before and after PTCA. The ratio of stress to rest activity (S:R) was determined for each region of interest. Relative myocardial perfusion reserve by positron tomography (RMPR) was calculated by dividing S:R of the stenotic area by a corresponding value from a normal reference area of the same patient. Automated quantitative coronary arteriography was used to objectively measure the percent diameter (%D) and the percent area narrowing (%A) of the stenoses. In nine patients with successful PTCA, %D and %A improved (68 +/- 10 to 49 +/- 15% and 92 +/- 3 to 72 +/- 5%) and RMPR increased from 0.79 +/- 0.07 to 0.96 +/- 0.05. In the two patients in whom PTCA was unsuccessful, RMPR was unchanged. Changes in RMPR correlated inversely with changes in %D (r = -0.68) and %A (r = -0.92) and directly with improved coronary flow reserve derived from all stenosis measurements (r = 0.73, p less than 0.001 for each). This study suggests that dipyridamole + handgrip stress imaging with PET can be used to assess changes in myocardial perfusion reserve before and after PTCA with the potential for determining restenosis noninvasively.

  6. Positron Emission Tomography Imaging of Cancer Biology: Current Status and Future Prospects

    PubMed Central

    Chen, Kai; Chen, Xiaoyuan

    2011-01-01

    Positron emission tomography (PET) is one of the most rapidly growing areas of medical imaging, with many applications in the clinical management of patients with cancer. The principal goal of PET imaging is to visualize, characterize, and measure biological processes at the cellular, subcellular, and molecular levels in living subjects using noninvasive procedures. PET imaging takes advantage of the traditional diagnostic imaging techniques and introduces positron-emitting probes to determine the expression of indicative molecular targets at different stages of cancer progression. Although [18F]fluorodeoxyglucose ([18F]FDG)-PET has been widely utilized for staging and restaging of cancer, evaluation of response to treatment, differentiation of post-therapy alterations from residual or recurrent tumor, and assessment of prognosis, [18F]FDG is not a target-specific PET tracer. Over the last decade, numerous target-specific PET tracers have been developed and evaluated in preclinical and clinical studies. This review provides an overview of the current status and trends in the development of non-[18F]FDG PET probes in oncology and their application in the investigation of cancer biology. PMID:21362517

  7. Preparation of gallium-68 radiopharmaceuticals for positron tomography. Progress report, November 1, 1977-October 31, 1980

    SciTech Connect

    Welch, M.J.

    1980-06-01

    Although the germanium-68 ..-->.. gallium-68 generator is probably the only source of positron-emitting radionuclides that could enable the widespread application of positron tomography, the commercially available /sup 68/Ga//sup 68/Ge generator system suffers from several major disadvantages. The most important of these is that the generator is eluted with EDTA, which forms a very strong chelate with gallium. In order to produce radiopharmaceuticals other than /sup 68/Ga-EDTA, it is first necessary to break the stable EDTA complex and remove all traces of EDTA. This procedure adds several steps and a significant amount of time to procedures for preparing /sup 68/Ga-radiopharmaceuticals. We have developed a new generator using a solvent extraction system which will produce /sup 68/Ga-oxine (8-hydroxyquinoline), a weak chelate. Using this agent we have synthesized several /sup 68/Ga-radiopharmaceuticals and tested them in vitro and in vivo. We have also carried out some preliminary studies to compare generator systems which produce /sup 68/Ga in an ionic form. Attempts have been made using polarographic and chromatographic techniques, and in vivo distribution data to investigate the stability of radiogallium complexes with a series of potentially lipophilic complexing agents.

  8. Changes in myocardial perfusion reserve after PTCA: noninvasive assessment with positron tomography

    SciTech Connect

    Goldstein, R.A.; Kirkeeide, R.L.; Smalling, R.W.; Nishikawa, A.; Merhige, M.E.; Demer, L.L.; Mullani, N.A.; Gould, K.L.

    1987-08-01

    The effect of percutaneous transluminal coronary angioplasty (PTCA) on myocardial perfusion reserve has not been previously determined. Accordingly, 11 patients underwent positron imaging with (/sup 13/N)ammonia or /sup 82/Rb at rest and following dipyridamole + handgrip stress before and after PTCA. The ratio of stress to rest activity (S:R) was determined for each region of interest. Relative myocardial perfusion reserve by positron tomography (RMPR) was calculated by dividing S:R of the stenotic area by a corresponding value from a normal reference area of the same patient. Automated quantitative coronary arteriography was used to objectively measure the percent diameter (%D) and the percent area narrowing (%A) of the stenoses. In nine patients with successful PTCA, %D and %A improved (68 +/- 10 to 49 +/- 15% and 92 +/- 3 to 72 +/- 5%) and RMPR increased from 0.79 +/- 0.07 to 0.96 +/- 0.05. In the two patients in whom PTCA was unsuccessful, RMPR was unchanged. Changes in RMPR correlated inversely with changes in %D (r = -0.68) and %A (r = -0.92) and directly with improved coronary flow reserve derived from all stenosis measurements (r = 0.73, p less than 0.001 for each). This study suggests that dipyridamole + handgrip stress imaging with PET can be used to assess changes in myocardial perfusion reserve before and after PTCA with the potential for determining restenosis noninvasively.

  9. Computed tomography of the spine

    SciTech Connect

    Haughton, V.M.; Williams, A.L.

    1982-01-01

    The book describes the computed tomographic (CT) techniques for imaging the different elements comprising the spinal column and canal. The use of intravenous and intrathecal contrast enhancement and of xenon enhancement is briefly mentioned. Reconstruction techniques and special problems regarding CT of the spine are presented. CT of the spinal cord, meninges and subarachnoid space, epidural space, intervertebral discs, facet joints, and vertebrae present normal anatomy, and several common pathologic conditions. (KRM)

  10. Metabolic Activity of the Tongue in Obstructive Sleep Apnea. A Novel Application of FDG Positron Emission Tomography Imaging

    PubMed Central

    Kim, Andrew M.; Keenan, Brendan T.; Jackson, Nicholas; Chan, Eugenia L.; Staley, Bethany; Torigian, Drew A.; Alavi, Abass

    2014-01-01

    Rationale: The metabolic activity of the tongue is unknown in patients with obstructive sleep apnea (OSA). Tongue electromyographic (EMG) activity is increased in patients with OSA. This increase in tongue EMG activity is thought to be related to either increased neuromuscular compensation or denervation with subsequent reinnervation of the muscle fibers. Increased glucose uptake in the tongue would support increased neuromuscular compensation, whereas decreased glucose uptake in the tongue would support denervation with subsequent reinnervation of the muscle fibers. Objectives: To investigate the metabolic activity of the genioglossus and control upper airway muscles in obese patients with sleep apnea compared with obese control subjects. Methods: Obese subjects with and without OSA underwent a standard overnight sleep study to determine an apnea–hypopnea index. Each subject had a positron emission tomography with [18F]-2-fluoro-2-deoxy-d-glucose scan in addition to noncontrast computed tomography or magnetic resonance imaging. Glucose uptake was quantified within upper airway tissues with the standardized uptake value. Measurements and Main Results: We recruited 30 obese control subjects (apnea–hypopnea index, 4.7 ± 3.1 events per hour) and 72 obese patients with sleep apnea (apnea–hypopnea index, 43.5 ± 28.0 events per hour). Independent of age, body mass index, sex, and race, patients with OSA had significantly reduced glucose uptake in the genioglossus (P = 0.03) in comparison with obese normal subjects. No differences in standardized uptake value were found in the control muscles (masseter [P = 0.38] and pterygoid [P = 0.70]) and subcutaneous fat deposits (neck [P = 0.44] and submental [P = 0.95]) between patients with OSA and control subjects. Conclusions: There was significantly reduced glucose uptake in the genioglossus of patients with sleep apnea in comparison with obese normal subjects with [18F]-2-fluoro-2-deoxy-d-glucose positron emission

  11. Positron Emission Tomography of Brain β-Amyloid and Tau Levels in Adults With Down Syndrome

    PubMed Central

    Nelson, Linda D.; Siddarth, Prabha; Kepe, Vladimir; Scheibel, Kevin E.; Huang, S. C.; Barrio, Jorge R.; Small, Gary W.

    2012-01-01

    Objectives To determine the neuropathological load in the living brain of nondemented adults with Down syndrome using positron emission tomography with 2-(1-{6-[(2-fluorine 18–labeled fluoroethyl)methylamino]-2-napthyl}ethylidene) malononitrile ([18F]FDDNP) and to assess the influence of age and cognitive and behavioral functioning. For reference, [18F]FDDNP binding values and patterns were compared with those from patients with Alzheimer disease and cognitively intact control participants. Design Cross-sectional clinical study. Participants Volunteer sample of 19 persons with Down syndrome without dementia (mean age, 36.7 years), 10 patients with Alzheimer disease (mean age, 66.5 years), and 10 controls (mean age, 43.8 years). Main Outcome Measures Binding of [18F]FDDNP in brain regions of interest, including the parietal, medial temporal, lateral temporal, and frontal lobes and posterior cingulate gyrus, and the average of all regions (global binding). Results The [18F]FDDNP binding values were higher in all brain regions in the Down syndrome group than in controls. Compared with the Alzheimer disease group, the Down syndrome group had higher [18F]FDDNP binding values in the parietal and frontal regions, whereas binding levels in other regions were comparable. Within the Down syndrome group, age correlated with [18F]FDDNP binding values in all regions except the posterior cingulate, and several measures of behavioral dysfunction showed positive correlations with global, frontal, parietal, and posterior cingulate [18F]FDDNP binding. Conclusions Consistent with neuropathological findings from postmortem studies, [18F]FDDNP positron emission tomography shows high binding levels in Down syndrome comparable to Alzheimer disease and greater levels than in members of a control group. The positive associations between [18F]FDDNP binding levels and age as well as behavioral dysfunction in Down syndrome are consistent with the age-related progression of Alzheimer

  12. Predicting Outcome in Patients with Rhabdomyosarcoma: Role of [{sup 18}F]Fluorodeoxyglucose Positron Emission Tomography

    SciTech Connect

    Casey, Dana L.; Wexler, Leonard H.; Fox, Josef J.; Dharmarajan, Kavita V.; Schoder, Heiko; Price, Alison N.; Wolden, Suzanne L.

    2014-12-01

    Purpose: To evaluate whether [{sup 18}F]fluorodeoxyglucose positron emission tomography (FDG-PET) response of the primary tumor after induction chemotherapy predicts outcomes in rhabdomyosarcoma (RMS). Methods and Materials: After excluding those with initial tumor resection, 107 patients who underwent FDG-PET after induction chemotherapy at Memorial Sloan Kettering Cancer Center from 2002 to 2013 were reviewed. Local control (LC), progression-free survival (PFS), and overall survival (OS) were calculated according to FDG-PET response and maximum standardized uptake value (SUV) at baseline (PET1/SUV1), after induction chemotherapy (PET2/SUV2), and after local therapy (PET3/SUV3). Receiver operator characteristic curves were used to determine the optimal cutoff for dichotomization of SUV1 and SUV2 values. Results: The SUV1 (<9.5 vs ≥9.5) was predictive of PFS (P=.02) and OS (P=.02), but not LC. After 12 weeks (median) of induction chemotherapy, 45 patients had negative PET2 scans and 62 had positive scans: 3-year PFS was 72% versus 44%, respectively (P=.01). The SUV2 (<1.5 vs ≥1.5) was similarly predictive of PFS (P=.005) and was associated with LC (P=.02) and OS (P=.03). A positive PET3 scan was predictive of worse PFS (P=.0009), LC (P=.05), and OS (P=.03). Conclusions: [{sup 18}F]fluorodeoxyglucose positron emission tomography is an early indicator of outcomes in patients with RMS. Future prospective trials may incorporate FDG-PET response data for risk-adapted therapy and early assessment of new treatment regimens.

  13. Positron emission tomography demonstrates that coronary sinus retroperfusion can restore regional myocardial perfusion and preserve metabolism

    SciTech Connect

    O'Byrne, G.T.; Nienaber, C.A.; Miyazaki, A.; Araujo, L.; Fishbein, M.C.; Corday, E.; Schelbert, H.R. )

    1991-07-01

    Positron emission tomography was used to image blood flow and metabolic tracers in risk zone myocardium after left anterior descending coronary artery occlusion during synchronized coronary venous retroperfusion. Six control and seven intervention open chest dogs had occlusion of the mid left anterior descending coronary artery. Synchronized retroperfusion commenced 25 min later. Flow tracers (rubidium-82 and nitrogen-13 ammonia) were injected retrogradely. Three hours after coronary occlusion, fluorine-18 (F-18) deoxyglucose uptake in the control and treatment groups was compared. At 200 min of occlusion, infarct size was assessed. Retrograde flow tracer uptake was observed in the risk zone in the seven intervention dogs. Fluorine-18 deoxyglucose uptake in the risk zone was increased in five of the six intervention dogs but was reduced in five of the six control dogs. The risk zone to normal zone F-18 deoxyglucose count ratio was higher in the intervention than the control group (1.13 {plus minus} 0.39 vs. 0.59 {plus minus} 0.51; p less than 0.05). The endocardial subsegment risk zone to normal zone F-18 deoxyglucose count ratio was also significantly higher in the intervention group. Percent infarction in the risk zone was 70% lower in the group treated with synchronized retroperfusion than in the control group (18.4 {plus minus} 22.6% vs. 61.2 {plus minus} 25.4%; p less than 0.02). Thus, positron emission tomography revealed that retroperfusion could deliver oxygenated blood and maintain metabolism in risk zone myocardium. Infarct size was limited to 30% of that of control. In acute closure of the left anterior descending coronary artery, synchronized retroperfusion might be considered for maintaining viability of the jeopardized myocardium if the artery cannot be reopened rapidly.

  14. Regional myocardial metabolism in patients with acute myocardial infarction assessed by positron emission tomography

    SciTech Connect

    Schwaiger, M.; Brunken, R.; Grover-McKay, M.; Krivokapich, J.; Child, J.; Tillisch, J.H.; Phelps, M.E.; Schelbert, H.R.

    1986-10-01

    Positron emission tomography has been shown to distinguish between reversible and irreversible ischemic tissue injury. Using this technique, 13 patients with acute myocardial infarction were studied within 72 hours of onset of symptoms to evaluate regional blood flow and glucose metabolism with nitrogen (N)-13 ammonia and fluorine (F)-18 deoxyglucose, respectively. Serial noninvasive assessment of wall motion was performed to determine the prognostic value of metabolic indexes for functional tissue recovery. Segmental blood flow and glucose utilization were evaluated using a circumferential profile technique and compared with previously established semiquantitative criteria. Relative N-13 ammonia uptake was depressed in 32 left ventricular segments. Sixteen segments demonstrated a concordant decrease in flow and glucose metabolism. Regional function did not change over time in these segments. In contrast, 16 other segments with reduced blood flow revealed maintained F-18 deoxyglucose uptake consistent with remaining viable tissue. The average wall motion score improved significantly in these segments (p less than 0.01), yet the degree of recovery varied considerably among patients. Coronary anatomy was defined in 9 of 13 patients: patent infarct vessels supplied 8 of 10 segments with F-18 deoxyglucose uptake, while 10 of 13 segments in the territory of an occluded vessel showed concordant decreases in flow and metabolism (p less than 0.01). Thus, positron emission tomography reveals a high incidence of residual tissue viability in ventricular segments with reduced flow and impaired function during the subacute phase of myocardial infarction. Absence of residual tissue metabolism is associated with irreversible injury, while preservation of metabolic activity identifies segments with a variable outcome.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Quantitative evaluation of benzodiazepine receptors in live Papio papio baboons using positron emission tomography

    SciTech Connect

    Brouillet, E.; Chavoix, C.; Khalili-Varasteh, M.; Bottlaender, M.; Hantraye, P.; Yorke, J.C.; Maziere, M. )

    1990-10-01

    The binding of the 11C-labeled benzodiazepine antagonist Ro 15-1788 (flumazenil) was measured in the neocortex of live Papio papio baboons by positron emission tomography. This allowed us to calculate in vivo (i.e., at physiological temperature, neurotransmitters concentrations, and ionic environment) the apparent density of available benzodiazepine receptors (B'max) and the dissociation constant of Ro 15-1788 (Kd). By coadministering increasing doses of unlabeled Ro 15-1788 with (11C)Ro 15-1788 and assuming that nonsaturable radioactivity indicated the free ligand concentration, we were able to obtain saturation isotherms. We showed that a state of quasiequilibrium was reached 50 min after the administration of the radioligand. Linear Scatchard plots allowed us to calculate B'max at 78 and 50 pmol/ml of cerebral tissue in the occipital and frontal cortices, respectively. In both these areas, Kd is on the order of 6 nM, with a Hill number very close to unity. This indicates that Ro 15-1788 binds in vivo with high affinity to an homogeneous population of saturable sites. A similar measurement was carried out on a naturally photosensitive P. papio baboon. Absolute values of B'max, Kd, and Hill number were similar to those of the control baboons. Although results concerning this baboon can only be considered as a case report, this similarity may suggest that its epileptic syndrome is not related to a large change in B'max or Kd, at least in occipital and frontal cortices. Our results showed that quantitative estimation by positron emission tomography of some characteristics of benzodiazepine receptors is possible in live baboons and may represent a supplementary tool for investigating further the molecular mechanisms of benzodiazepine receptor function in physiological and physiopathological conditions.

  16. Computed tomography of the medulla

    SciTech Connect

    Daniels, D.L.; Williams, A.L.; Haughton, V.M.

    1982-10-01

    The medulla was studied in cadavers and in 100 patients both with and without the intrathecal administration of contrast material. The computed tomographic (CT) anatomy was correlated with the appearance on anatomic dissections. The pyramids, olives, and inferior cerebellar peduncles produced characteristic contours on cross sections of the medulla. The hypoglossal nerve by its location and course in the medullary cistern could be distinguished from the glossopharyngeal, vagal, and spinal accessory nerves. For optimal evaluation of the medulla, intrathecal administration of metrizamide and 5- and/or 1.5-mm-thick axial and coronal sections are recommended.

  17. Introducing Seismic Tomography with Computational Modeling

    NASA Astrophysics Data System (ADS)

    Neves, R.; Neves, M. L.; Teodoro, V.

    2011-12-01

    Learning seismic tomography principles and techniques involves advanced physical and computational knowledge. In depth learning of such computational skills is a difficult cognitive process that requires a strong background in physics, mathematics and computer programming. The corresponding learning environments and pedagogic methodologies should then involve sets of computational modelling activities with computer software systems which allow students the possibility to improve their mathematical or programming knowledge and simultaneously focus on the learning of seismic wave propagation and inverse theory. To reduce the level of cognitive opacity associated with mathematical or programming knowledge, several computer modelling systems have already been developed (Neves & Teodoro, 2010). Among such systems, Modellus is particularly well suited to achieve this goal because it is a domain general environment for explorative and expressive modelling with the following main advantages: 1) an easy and intuitive creation of mathematical models using just standard mathematical notation; 2) the simultaneous exploration of images, tables, graphs and object animations; 3) the attribution of mathematical properties expressed in the models to animated objects; and finally 4) the computation and display of mathematical quantities obtained from the analysis of images and graphs. Here we describe virtual simulations and educational exercises which enable students an easy grasp of the fundamental of seismic tomography. The simulations make the lecture more interactive and allow students the possibility to overcome their lack of advanced mathematical or programming knowledge and focus on the learning of seismological concepts and processes taking advantage of basic scientific computation methods and tools.

  18. The application of positron emission tomography (PET/CT) in diagnosis of breast cancer. Part II. Diagnosis after treatment initiation, future perspectives.

    PubMed

    Jodłowska, Elżbieta; Czepczyński, Rafał; Czarnywojtek, Agata; Rewers, Amanda; Jarząbek, Grażyna; Kędzia, Witold; Ruchała, Marek

    2016-01-01

    Similarly to the applications described in the first part of this publication, positron emission tomography with computed tomography (PET/CT) is also gaining importance in monitoring a tumour's response to therapy and diagnosing breast cancer recurrences. This is additionally caused by the fact that many new techniques (dual-time point imaging, positron emission tomography with magnetic resonance PET/MR, PET/CT mammography) and radiotracers (16α-18F-fluoro-17β-estradiol, 18F-fluorothymidine) are under investigation. The highest sensitivity and specificity when monitoring response to treatment is achieved when the PET/CT scan is made after one or two chemotherapy courses. Response to anti-hormonal treatment can also be monitored, also when new radiotracers, such as FES, are used. When monitoring breast cancer recurrences during follow-up, PET/CT has higher sensitivity than conventional imaging modalities, making it possible to monitor the whole body simultaneously. New techniques and radiotracers enhance the sensitivity and specificity of PET and this is why, despite relatively high costs, it might become more widespread in monitoring response to treatment and breast cancer recurrences. PMID:27647983

  19. The application of positron emission tomography (PET/CT) in diagnosis of breast cancer. Part II. Diagnosis after treatment initiation, future perspectives

    PubMed Central

    Jodłowska, Elżbieta; Czarnywojtek, Agata; Rewers, Amanda; Jarząbek, Grażyna; Kędzia, Witold; Ruchała, Marek

    2016-01-01

    Similarly to the applications described in the first part of this publication, positron emission tomography with computed tomography (PET/CT) is also gaining importance in monitoring a tumour's response to therapy and diagnosing breast cancer recurrences. This is additionally caused by the fact that many new techniques (dual-time point imaging, positron emission tomography with magnetic resonance PET/MR, PET/CT mammography) and radiotracers (16α-18F-fluoro-17β-estradiol, 18F-fluorothymidine) are under investigation. The highest sensitivity and specificity when monitoring response to treatment is achieved when the PET/CT scan is made after one or two chemotherapy courses. Response to anti-hormonal treatment can also be monitored, also when new radiotracers, such as FES, are used. When monitoring breast cancer recurrences during follow-up, PET/CT has higher sensitivity than conventional imaging modalities, making it possible to monitor the whole body simultaneously. New techniques and radiotracers enhance the sensitivity and specificity of PET and this is why, despite relatively high costs, it might become more widespread in monitoring response to treatment and breast cancer recurrences. PMID:27647983

  20. The application of positron emission tomography (PET/CT) in diagnosis of breast cancer. Part II. Diagnosis after treatment initiation, future perspectives

    PubMed Central

    Jodłowska, Elżbieta; Czarnywojtek, Agata; Rewers, Amanda; Jarząbek, Grażyna; Kędzia, Witold; Ruchała, Marek

    2016-01-01

    Similarly to the applications described in the first part of this publication, positron emission tomography with computed tomography (PET/CT) is also gaining importance in monitoring a tumour's response to therapy and diagnosing breast cancer recurrences. This is additionally caused by the fact that many new techniques (dual-time point imaging, positron emission tomography with magnetic resonance PET/MR, PET/CT mammography) and radiotracers (16α-18F-fluoro-17β-estradiol, 18F-fluorothymidine) are under investigation. The highest sensitivity and specificity when monitoring response to treatment is achieved when the PET/CT scan is made after one or two chemotherapy courses. Response to anti-hormonal treatment can also be monitored, also when new radiotracers, such as FES, are used. When monitoring breast cancer recurrences during follow-up, PET/CT has higher sensitivity than conventional imaging modalities, making it possible to monitor the whole body simultaneously. New techniques and radiotracers enhance the sensitivity and specificity of PET and this is why, despite relatively high costs, it might become more widespread in monitoring response to treatment and breast cancer recurrences.

  1. 18F-fluorodeoxyglucose and 18F-flumazenil positron emission tomography in patients with refractory epilepsy

    PubMed Central

    Topakian, Raffi; Pichler, Robert

    2016-01-01

    Abstract Background Epilepsy is a neurological disorder characterized by epileptic seizures as a result of excessive neuronal activity in the brain. Approximately 65 million people worldwide suffer from epilepsy; 20–40% of them are refractory to medication therapy. Early detection of disease is crucial in the management of patients with epilepsy. Correct localization of the ictal onset zone is associated with a better surgical outcome. The modern non-invasive techniques used for structural-functional localization of the seizure focus includes electroencephalography (EEG) monitoring, magnetic resonance imaging (MRI), single photon emission tomography/computed tomography (SPECT/CT) and positron emission tomography/computed tomography (PET/CT). PET/CT can predict surgical outcome in patients with refractory epilepsy. The aim of the article is to review the current role of routinely used tracer 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) as well as non routinely used 18F-Flumazenil (18F-FMZ) tracers PET/CT in patients with refractory epilepsy. Conclusions Functional information delivered by PET and the morphologic information delivered by CT or MRI are essential in presurgical evaluation of epilepsy. Nowadays 18F-FDG PET/CT is a routinely performed imaging modality in localization of the ictal onset zone in patients with refractory epilepsy who are unresponsive to medication therapy. Unfortunately, 18F-FDG is not an ideal PET tracer regarding the management of patients with epilepsy: areas of glucose hypometabolism do not correlate precisely with the proven degree of change within hippocampal sclerosis, as observed by histopathology or MRI. Benzodiazepine-receptor imaging is a promising alternative in nuclear medicine imaging of epileptogenic focus. The use of 11C-FMZ in clinical practice has been limited by its short half-life and necessitating an on-site cyclotron for production. Therefore, 18F-FMZ might be established as one of the tracers of choice for patients

  2. 18F-fluorodeoxyglucose and 18F-flumazenil positron emission tomography in patients with refractory epilepsy

    PubMed Central

    Topakian, Raffi; Pichler, Robert

    2016-01-01

    Abstract Background Epilepsy is a neurological disorder characterized by epileptic seizures as a result of excessive neuronal activity in the brain. Approximately 65 million people worldwide suffer from epilepsy; 20–40% of them are refractory to medication therapy. Early detection of disease is crucial in the management of patients with epilepsy. Correct localization of the ictal onset zone is associated with a better surgical outcome. The modern non-invasive techniques used for structural-functional localization of the seizure focus includes electroencephalography (EEG) monitoring, magnetic resonance imaging (MRI), single photon emission tomography/computed tomography (SPECT/CT) and positron emission tomography/computed tomography (PET/CT). PET/CT can predict surgical outcome in patients with refractory epilepsy. The aim of the article is to review the current role of routinely used tracer 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) as well as non routinely used 18F-Flumazenil (18F-FMZ) tracers PET/CT in patients with refractory epilepsy. Conclusions Functional information delivered by PET and the morphologic information delivered by CT or MRI are essential in presurgical evaluation of epilepsy. Nowadays 18F-FDG PET/CT is a routinely performed imaging modality in localization of the ictal onset zone in patients with refractory epilepsy who are unresponsive to medication therapy. Unfortunately, 18F-FDG is not an ideal PET tracer regarding the management of patients with epilepsy: areas of glucose hypometabolism do not correlate precisely with the proven degree of change within hippocampal sclerosis, as observed by histopathology or MRI. Benzodiazepine-receptor imaging is a promising alternative in nuclear medicine imaging of epileptogenic focus. The use of 11C-FMZ in clinical practice has been limited by its short half-life and necessitating an on-site cyclotron for production. Therefore, 18F-FMZ might be established as one of the tracers of choice for patients

  3. [Pneumothorax revealed by postoperative computed tomography].

    PubMed

    Ikeda, Shizuka; Katori, Kiyoshi; Fujimoto, Minoru; Nitahara, Keiichi; Higa, Kazuo

    2005-11-01

    We report a case of pneumothorax revealed by postoperative computed tomography. A 39-year-old obese woman (height 153 cm, weight 70 kg) with fractures of the radius, ulna, clavicle, and femur in a traffic accident, was scheduled for osteosynthesis. Anesthesia was induced with thiopental and maintained with 50% nitrous oxide in oxygen and sevoflurane. The Spo2 decreased from 99% to 94% during the surgery. Bilateral chest sounds were symmetrical. The Spo2 increased to 100% after discontinuation of nitrous oxide. Pneumothorax was not evident on a postoperative chest X-ray, but computed tomography of the chest demonstrated right-sided pneumothorax. An ECG electrode had overlapped the fractured rib on the preoperative chest X-ray.

  4. Computed tomography of the postoperative abdominal aorta

    SciTech Connect

    Hilton, S.; Megibow, A.J.; Naidich, D.P.; Bosniak, M.A.

    1982-11-01

    Computed tomography (CT) of the abdomen was performed on 46 patients who had undergone graft replacement of abdominal aortic aneurysms. Twelve post-operative complications were found in nine patients. They included hemorrhage, infection, anastomotic pseudoaneurysms, major vessel occlusion, postoperative pancreatitis, and others. The varied apperance of the normal postoperative graft is also presented. It is concluded that CT is a rapid, sensitive, and noninvasive method for detecting or excluding postoperative complications of abdominal aortic surgery.

  5. Computed tomography of hamstring muscle strains.

    PubMed

    Garrett, W E; Rich, F R; Nikolaou, P K; Vogler, J B

    1989-10-01

    Acute hamstring muscle strains occurring in ten college athletes were evaluated using computed tomography to identify the location and characteristics of these common injuries. Acute muscle strains appeared as areas of hypodensity within the muscle 1-2 d following injury. This suggests that inflammation and edema are the major component of injury, not bleeding as commonly assumed. Injuries were seen most commonly in the proximal and lateral portions of the hamstring muscle group, particularly in the biceps femoris.

  6. Computed tomography of ancient Egyptian mummies.

    PubMed

    Harwood-Nash, D C

    1979-12-01

    This first report of the application of computed tomography (CT) to the study of ancient mummies, the desiccated brain of a boy and the body of a young woman within her cartonnage, shows that CT is uniquely suitable for the study of such antiquities, a study that does not necessitate destruction of the mummy or its cartonnage. Exquisite images result that are of great paleoanatomical, paleopathological, and archeological significance.

  7. Computed tomography of the eye and orbit

    SciTech Connect

    Hammerschlag, S.B.; Hesselink, J.R.; Weber, A.L.

    1982-01-01

    This book is the product of the evolution of computed tomography (CT) into subspecialization and the need for one source of information for the busy radiologist. The authors have succeeded in providing a readable overview of orbital CT as well as a reference book. The book is divided into seven major catagories of pathology (Neurofibromatosis, Primary Orbital Neoplasms, Secondary and Metastic Tumors of the Orbit, Vascular Disorders, Inflammatory Disease, Occular Lesions, and Trauma) after separate discussions of anatomy and technique.

  8. Pharyngitis of infectious mononucleosis: computed tomography findings.

    PubMed

    Kutuya, Naoki; Kurosaki, Yoshihisa; Suzuki, Kazuhiro; Takata, Koremochi; Shiraihshi, Akihiko

    2008-05-01

    Two women presented with sore throat and fever. Their symptoms were not alleviated by antibiotics. Cervical computed tomography (CT) with contrast enhancement demonstrated enlargement of predominant posterior cervical lymph nodes and streaky heterogeneous tonsils with interspersed low attenuation. They were diagnosed as having infectious mononucleosis by their laboratory data. Thus, when radiologists encounter these CT findings of pharyngitis that is not alleviated by antibiotic therapy, infectious mononucleosis should be considered in the differential diagnosis.

  9. The Utility of Positron Emission Tomography in the Treatment Planning of Image-Guided Radiotherapy for Non-Small Cell Lung Cancer

    PubMed Central

    Chi, Alexander; Nguyen, Nam P.

    2014-01-01

    In the thorax, the extent of tumor may be more accurately defined with the addition of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to computed tomography (CT). This led to the increased utility of FDG-PET or PET/CT in the treatment planning of radiotherapy for non-small cell lung cancer (NSCLC). The inclusion of FDG-PET information in target volume delineation not only improves tumor localization but also decreases the amount of normal tissue included in the planning target volume (PTV) in selected patients. Therefore, it has a critical role in image-guided radiotherapy (IGRT) for NSCLC. In this review, the impact of FDG-PET on target volume delineation in radiotherapy for NSCLC, which may increase the possibility of safe dose escalation with IGRT, the commonly used methods for tumor target volume delineation FDG-PET for NSCLC, and its impact on clinical outcome will be discussed. PMID:25340040

  10. Computer simulation of electron-positron pair production by channeling radiation in amorphous converter

    NASA Astrophysics Data System (ADS)

    Abdrashitov, S. V.; Bogdanov, O. V.; Dabagov, S. B.; Pivovarov, Yu L.; Tukhfatullin, T. A.

    2016-07-01

    We consider the radiator-converter approach at 200 MeV channeled electrons (the SPARC_LAB LNF facility energies) for the case of using W crystalline radiator and W amorphous converter. A comparison of the positron production by the axial channeling radiation and the bremsstrahlung is performed. The positron stopping in the convertor is studied by means of computer simulations. It is shown that for the maximum yield of positrons the thickness of the W amorphous converter should be taken 0.35 cm in the case of using the axial channeling radiation resulting to total yield of positrons 5 10-3 e+/e- and 0.71 cm in the case of using the bremsstrahlung resulting to total yield of positrons 3.3 10-3 e+/e-.

  11. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... location and distribution of gamma ray- and positron-emitting radionuclides in the body and produce cross-sectional images through computer reconstruction of the data. This generic type of device may include...

  12. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... location and distribution of gamma ray- and positron-emitting radionuclides in the body and produce cross-sectional images through computer reconstruction of the data. This generic type of device may include...

  13. Vision 20/20: Positron emission tomography in radiation therapy planning, delivery, and monitoring

    SciTech Connect

    Parodi, Katia

    2015-12-15

    Positron emission tomography (PET) is increasingly considered as an effective imaging method to support several stages of radiation therapy. The combined usage of functional and morphological imaging in state-of-the-art PET/CT scanners is rapidly emerging to support the treatment planning process in terms of improved tumor delineation, and to assess the tumor response in follow-up investigations after or even during the course of fractionated therapy. Moreover, active research is being pursued on new tracers capable of providing different insights into tumor function, in order to identify areas of the planning volume which may require additional dosage for improved probability of tumor control. In this respect, major progresses in the next years will likely concern the development and clinical investigation of novel tracers and image processing techniques for reliable thresholding and segmentation, of treatment planning and beam delivery approaches integrating the PET imaging information, as well as improved multimodal clinical instrumentation such as PET/MR. But especially in the rapidly emerging case of ion beam therapy, the usage of PET is not only limited to the imaging of external tracers injected to the patient. In fact, a minor amount of positron emitters is formed in nuclear fragmentation reactions between the impinging ions and the tissue, bearing useful information for confirmation of the delivered treatment during or after therapeutic irradiation. Different implementations of unconventional PET imaging for therapy monitoring are currently being investigated clinically, and major ongoing research aims at new dedicated detector technologies and at challenging applications such as real-time imaging and time-resolved in vivo verification of motion compensated beam delivery. This paper provides an overview of the different areas of application of PET in radiation oncology and discusses the most promising perspectives in the years to come for radiation therapy

  14. 1999 ICP Distinguished Scientist Award. The history of positron emission tomography.

    PubMed

    Nutt, Ronald

    2002-01-01

    The history of Positron Emission Tomography (PET) is rich in technological achievements and advancements. The advancements that have benchmarked PET progress are the result of key components that include human intellect and passion for PET technology, relentless persuasion of key political forces to eliminate the barriers precluding PET usage, tireless efforts to raise awareness about PET and a crucial network of support throughout the PET community. This article sets forth a timeline of significant events that have contributed to the development of PET as it is known today. It introduces the earliest physicist and physician, for instance, who were responsible for the first medical applications for positron emitting radioisotopes using a simple brain probe that utilized coincidence to localize brain tumors. Additionally, it identifies landmark technological achievements that have helped pave the way to modern PET. This study includes historical accounts surrounding the use of the first human PET tomograph, discovery of the Bismuth Germanate (BGO) scintillator, development of the Fluorodeoxyglucose (FDG) PET method, the design of the first PET medical cyclotron with automated chemistry and operated by a PC and a technologist, Food and Drug Administration's approval of FDG, HCFA reimbursement, and the capacity of Lutetium Oxyorthosilicate (LSO) to produce a revolutionary advance in PET scanners. The main thrust of this article is to recognize via a timeline of PET accomplishments the noteworthy work of scientists, physicians and others who have been key players in various aspects of the continuous activity to move PET technology forward from invention to research, and to become a major clinical imaging modality.

  15. A Conway-Maxwell-Poisson (CMP) model to address data dispersion on positron emission tomography.

    PubMed

    Santarelli, Maria Filomena; Della Latta, Daniele; Scipioni, Michele; Positano, Vincenzo; Landini, Luigi

    2016-10-01

    Positron emission tomography (PET) in medicine exploits the properties of positron-emitting unstable nuclei. The pairs of γ- rays emitted after annihilation are revealed by coincidence detectors and stored as projections in a sinogram. It is well known that radioactive decay follows a Poisson distribution; however, deviation from Poisson statistics occurs on PET projection data prior to reconstruction due to physical effects, measurement errors, correction of deadtime, scatter, and random coincidences. A model that describes the statistical behavior of measured and corrected PET data can aid in understanding the statistical nature of the data: it is a prerequisite to develop efficient reconstruction and processing methods and to reduce noise. The deviation from Poisson statistics in PET data could be described by the Conway-Maxwell-Poisson (CMP) distribution model, which is characterized by the centring parameter λ and the dispersion parameter ν, the latter quantifying the deviation from a Poisson distribution model. In particular, the parameter ν allows quantifying over-dispersion (ν<1) or under-dispersion (ν>1) of data. A simple and efficient method for λ and ν parameters estimation is introduced and assessed using Monte Carlo simulation for a wide range of activity values. The application of the method to simulated and experimental PET phantom data demonstrated that the CMP distribution parameters could detect deviation from the Poisson distribution both in raw and corrected PET data. It may be usefully implemented in image reconstruction algorithms and quantitative PET data analysis, especially in low counting emission data, as in dynamic PET data, where the method demonstrated the best accuracy. PMID:27522237

  16. Computed tomography to quantify tooth abrasion

    NASA Astrophysics Data System (ADS)

    Kofmehl, Lukas; Schulz, Georg; Deyhle, Hans; Filippi, Andreas; Hotz, Gerhard; Berndt-Dagassan, Dorothea; Kramis, Simon; Beckmann, Felix; Müller, Bert

    2010-09-01

    Cone-beam computed tomography, also termed digital volume tomography, has become a standard technique in dentistry, allowing for fast 3D jaw imaging including denture at moderate spatial resolution. More detailed X-ray images of restricted volumes for post-mortem studies in dental anthropology are obtained by means of micro computed tomography. The present study evaluates the impact of the pipe smoking wear on teeth morphology comparing the abraded tooth with its contra-lateral counterpart. A set of 60 teeth, loose or anchored in the jaw, from 12 dentitions have been analyzed. After the two contra-lateral teeth were scanned, one dataset has been mirrored before the two datasets were registered using affine and rigid registration algorithms. Rigid registration provides three translational and three rotational parameters to maximize the overlap of two rigid bodies. For the affine registration, three scaling factors are incorporated. Within the present investigation, affine and rigid registrations yield comparable values. The restriction to the six parameters of the rigid registration is not a limitation. The differences in size and shape between the tooth and its contra-lateral counterpart generally exhibit only a few percent in the non-abraded volume, validating that the contralateral tooth is a reasonable approximation to quantify, for example, the volume loss as the result of long-term clay pipe smoking. Therefore, this approach allows quantifying the impact of the pipe abrasion on the internal tooth morphology including root canal, dentin, and enamel volumes.

  17. Bitemporal hypometabolism in Creutzfeldt-Jakob Disease measured by positron emission tomography with (F-18)2-fluorodeoxyglucose

    SciTech Connect

    Friedland, R.P.; Budinger, T.F.; Prusiner, S.B.; Jagust, W.J.

    1984-01-01

    It is well established that Creutzfeldt-Jakob Disease (CJD) is caused by a slow infectious agent similar to the scrapie prion. However, the pathogenesis of this infection is poorly understood. Positron emission tomography (PET) was performed on a 54 year old male subject with autopsy confirmed CJD using (F-18)2-fluorodeoxyglucose (FDG) and the Donner 280-crystal tomograph. An x-ray computed tomographic study of the brain performed 4 days prior to PET was normal. In the PET study the frontal to temporal cortex difference of activity densities was 30% on the left and 12% on the right, reflecting temporal hypometabolism. The left-right temporal cortex difference of activity density was 25%, documenting marked hemispheric asymmetry. These findings are similar to those previously obtained in PET-FDG studies of patients with clinically defined Alzheimer's Disease (AD) and are distinctly different from PET-FDG finding in patients with other dementing illnesses or in healthy aged subjects. Recent work has demonstrated extensive biological similarities between CJD, scrapie and AD. The similarities in the regional metabolic alterations between CJD and AD provide additional evidence for the hypothesis that AD is caused by a slow infectious (prion-like) pathogen.

  18. Vascular endothelial growth factor C complements the ability of positron emission tomography to predict nodal disease in lung cancer

    PubMed Central

    Farjah, Farhood; Madtes, David K.; Wood, Douglas E.; Flum, David R.; Zadworny, Megan E.; Waworuntu, Rachel; Hwang, Billanna; Mulligan, Michael S.

    2016-01-01

    Objective Vascular endothelial growth factors (VEGFs) C and D are biologically rational markers of nodal disease that could improve the accuracy of lung cancer staging. We hypothesized that these biomarkers would improve the ability of positron emission tomography (PET) to predict nodal disease among patients with suspected or confirmed non–small cell lung cancer (NSCLC). Methods A cross-sectional study (2010–2013) was performed of patients prospectively enrolled in a lung nodule biorepository, staged by computed tomography (CT) and PET, and who underwent pathologic nodal evaluation. Enzyme-linked immunosorbent assay was used to measure biomarker levels in plasma from blood drawn before anesthesia. Likelihood ratio testing was used to compare the following logistic regression prediction models: ModelPET, ModelPET/VEGF-C, ModelPET/VEGF-D, and ModelPET/VEGF-C/VEGF-D. To account for 5 planned pairwise comparisons, P values<.01 were considered significant. Results Among 62 patients (median age, 67 years; 48% men; 87% white; and 84% NSCLC), 58% had fluorodeoxyglucose uptake in hilar and/or mediastinal lymph nodes. The prevalence of pathologically confirmed lymph node metastases was 40%. Comparisons of prediction models revealed the following: ModelPET/VEGF-C versus ModelPET (P = .0069), ModelPET/VEGF-D versus ModelPET (P = .1886), ModelPET/VEGF-C/VEGF-D versus ModelPET (P = .0146), ModelPET/VEGF-C/VEGF-D versus ModelPET/VEGF-C (P = .2818), and ModelPET/VEGF-C/VEGF-D versus ModelPET/VEGF-D (P = .0095). In ModelPET/VEGF-C, higher VEGF-C levels were associated with an increased risk of nodal disease (odds ratio, 2.96; 95% confidence interval, 1.26–6.90). Conclusions Plasma levels of VEGF-C complemented the ability of PET to predict nodal disease among patients with suspected or confirmed NSCLC. VEGF-D did not improve prediction. PMID:26320776

  19. Influence of [{sup 18}F] fluorodeoxyglucose positron emission tomography on salvage treatment decision making for locally persistent nasopharyngeal carcinoma

    SciTech Connect

    Zheng Xiaojang . E-mail: zkn1268@fimmu.com; Chen Longhua; Wang Quanshi; Wu Fubing

    2006-07-15

    Purpose: The purpose of this study was to evaluate the role of [{sup 18}F] fluorodeoxyglucose positron emission tomography (FDG-PET) in influencing salvage treatment decision making for locally persistent nasopharyngeal carcinoma (NPC). Methods and Materials: A total of 33 NPC patients with histologic persistence at nasopharynx 1 to 6 weeks after a full course of radiotherapy underwent both computed tomography (CT) and FDG-PET/CT simulation at the same treatment position. The salvage treatment decisions, with regard to the decision to offer salvage treatment and the definition of gross tumor volume (GTV), were made before knowledge of the FDG-PET findings. Subsequently the salvage treatment decisions were made again based on the FDG-PET findings and compared with the pre-FDG-PET decisions. Results: All 33 patients were referred for salvage treatment in the pre-FDG-PET decision. After knowledge of the FDG-PET results, the decision to offer salvage treatment was withdrawn in 4 of 33 patients (12.1%), as no abnormal uptake of FDG was found at nasopharynx. Spontaneous remission was observed in repeat biopsies and no local recurrence was found in these 4 cases. For the remaining 29 patients, GTV based on FDG-PET was smaller than GTV based on CT in 24 (82.8%) cases and was greater in 5 (17.2%) cases, respectively. The target volume had to be significantly modified in 9 of 29 patients (31%), as GTV based on FDG-PET images failed to be enclosed by the treated volume in the salvage treatment plan performed based on GTV based on CT simulation images. Conclusion: Use of FDG-PET was found to influence the salvage treatment decision making for locally persistent NPC by identifying patients who were not likely to benefit from additional treatment and by improving accuracy of GTV definition in salvage treatment planning.

  20. Correlation of Positron Emission Tomography Standard Uptake Value and Pathologic Specimen Size in Cancer of the Head and Neck

    SciTech Connect

    Burri, Ryan J. Rangaswamy, Balasubramanya; Kostakoglu, Lale; Hoch, Benjamin; Genden, Eric M.; Som, Peter M.; Kao, Johnny

    2008-07-01

    Purpose: To correlate positron emission tomography (PET) standard uptake value (SUV) with pathologic specimen size in patients with head-and-neck cancers. Methods and Materials: Eighteen patients with Stage II-IVB head-and-neck cancer with 27 tumors who underwent PET and computed tomography (CT) imaging of the head and neck followed by surgical resection were selected for this study. Various SUV thresholds were examined, including the software default (SUV{sub def}), narrowing the window by 1 standard deviation (SD) of the maximum (SUV-1SD), and SUV cutoff values of 2.5 or greater (SUV2.5) and 40% or greater maximum (SUV40). Volumetric pathologic data were available for 12 patients. Tumor volumes based on pathologic examination (gold standard), CT, SUV{sub def}, SUV-1SD, SUV2.5, and SUV40 were analyzed. Results: PET identified five tumors not seen on CT. The sensitivity of PET for identifying primary tumors was 94% (17 of 18). The Sensitivity of PET for staging the neck was 90% (9 of 10), whereas the specificity was 78% (7 of 9). The SUV2.5 method was most likely to overestimate tumor volume, whereas SUV{sub def} and SUV-1SD were most likely to underestimate tumor volume. Conclusions: The PET scan provides more accurate staging of primary tumors and nodal metastases for patients with advanced head-and-neck cancer than CT alone. Compared with the gold standard, significant variability exists in volumes obtained by using various SUV thresholds. A combination of clinical, CT, and PET data should continue to be used for optimal treatment planning. The SUV40 method appears to offer the best compromise between accuracy and reducing the risk of underestimating tumor extent.

  1. Optimization and Reproducibility of Aortic Valve 18F-Fluoride Positron Emission Tomography in Patients With Aortic Stenosis

    PubMed Central

    Cartlidge, Timothy R.G.; Jenkins, William S.A.; Adamson, Philip D.; Robson, Phillip; Lucatelli, Christophe; Van Beek, Edwin J.R.; Prendergast, Bernard; Denison, Alan R.; Forsyth, Laura; Rudd, James H.F.; Fayad, Zahi A.; Fletcher, Alison; Tuck, Sharon; Newby, David E.; Dweck, Marc R.

    2016-01-01

    Background— 18F-Fluoride positron emission tomography (PET) and computed tomography (CT) can measure disease activity and progression in aortic stenosis. Our objectives were to optimize the methodology, analysis, and scan–rescan reproducibility of aortic valve 18F-fluoride PET-CT imaging. Methods and Results— Fifteen patients with aortic stenosis underwent repeated 18F-fluoride PET-CT. We compared nongated PET and noncontrast CT, with a modified approach that incorporated contrast CT and ECG-gated PET. We explored a range of image analysis techniques, including estimation of blood-pool activity at differing vascular sites and a most diseased segment approach. Contrast-enhanced ECG-gated PET-CT permitted localization of 18F-fluoride uptake to individual valve leaflets. Uptake was most commonly observed at sites of maximal mechanical stress: the leaflet tips and the commissures. Scan–rescan reproducibility was markedly improved using enhanced analysis techniques leading to a reduction in percentage error from ±63% to ±10% (tissue to background ratio MDS mean of 1.55, bias −0.05, limits of agreement −0·20 to +0·11). Conclusions— Optimized 18F-fluoride PET-CT allows reproducible localization of calcification activity to different regions of the aortic valve leaflet and commonly to areas of increased mechanical stress. This technique holds major promise in improving our understanding of the pathophysiology of aortic stenosis and as a biomarker end point in clinical trials of novel therapies. Clinical Trial Registration— URL: http://www.clinicaltrials.gov. Unique identifier: NCT02132026. PMID:27733431

  2. External validation of a prediction model for pathologic N2 among patients with a negative mediastinum by positron emission tomography

    PubMed Central

    Backhus, Leah M.; Varghese, Thomas K.; Manning, James P.; Cheng, Aaron M.; Mulligan, Michael S.; Wood, Douglas E.

    2015-01-01

    Background A prediction model for pathologic N2 (pN2) among lung cancer patients with a negative mediastinum by positron emission tomography (PET) was recently internally validated. Our study sought to determine the external validity of that model. Methods A cohort study [2005-2013] was performed of lung cancer patients with a negative mediastinum by PET. Previously published model coefficients were used to estimate the probability of pN2 based on tumor location and size, nodal enlargement by computed tomography (CT), maximum standardized uptake value (SUVmax) of the primary tumor, N1 disease by PET, and pretreatment histology. Results Among 239 patients, 18 had pN2 [7.5%, 95% confidence interval (CI): 4.5-12%]. Model discrimination was excellent (c-statistic 0.80, 95% CI: 0.75-0.85) and the model fit the data well (P=0.191). The accuracy of the model was as follows: sensitivity 100%, 95% CI: 81-100%; specificity 49%, 95% CI: 42-56%; positive predictive value (PPV) 14%, 95% CI: 8-21%, and negative predictive value (NPV) 100%, 95% CI: 97-100%. CI inspection revealed a significantly higher c-statistic in this external validation cohort compared to the internal validation cohort. The model’s apparently poor specificity for patient selection is in fact significantly better than usual care (i.e., aggressive but allowable guideline concordant staging) and minimum guideline mandated selection criteria for invasive staging. Conclusions A prediction model for pN2 is externally valid. The high NPV of this model may allow pulmonologists and thoracic surgeons to more comfortably minimize the number of invasive procedures performed among patients with a negative mediastinum by PET. PMID:25973222

  3. Hybrid Positron Emission Tomography/Magnetic Resonance Imaging: Challenges, Methods, and State of the Art of Hardware Component Attenuation Correction.

    PubMed

    Paulus, Daniel H; Quick, Harald H

    2016-10-01

    Attenuation correction (AC) is an essential step in the positron emission tomography (PET) data reconstruction process to provide accurate and quantitative PET images. The introduction of PET/magnetic resonance (MR) hybrid systems has raised new challenges but also possibilities regarding PET AC. While in PET/computed tomography (CT) imaging, CT images can be converted to attenuation maps, MR images in PET/MR do not provide a direct relation to attenuation. For the AC of patient tissues, new methods have been suggested, for example, based on image segmentation, atlas registration, or ultrashort echo time MR sequences. Another challenge in PET/MR hybrid imaging is AC of hardware components that are placed in the PET/MR field of view, such as the patient table or various radiofrequency (RF) coils covering the body of the patient for MR signal detection. Hardware components can be categorized into 4 different groups: (1) patient table, (2) RF receiver coils, (3) radiation therapy equipment, and (4) PET and MR imaging phantoms. For rigid and stationary objects, such as the patient table and some RF coils like the head/neck coil, predefined CT-based attenuation maps stored on the system can be used for automatic AC. Flexible RF coils are not included into the AC process till now because they can vary in position as well as in shape and are not accurately detectable with the PET/MR system.This work summarizes challenges, established methods, new concepts, and the state of art in hardware component AC in the context of PET/MR hybrid imaging. The work also gives an overview of PET/MR hardware devices, their attenuation properties, and their effect on PET quantification. PMID:27175550

  4. 18F-fluorodeoxyglucose positron emission tomography and the risk of subsequent aortic complications in giant-cell arteritis

    PubMed Central

    de Boysson, Hubert; Liozon, Eric; Lambert, Marc; Parienti, Jean-Jacques; Artigues, Nicolas; Geffray, Loïk; Boutemy, Jonathan; Ollivier, Yann; Maigné, Gwénola; Ly, Kim; Huglo, Damien; Hachulla, Eric; Hatron, Pierre-Yves; Aouba, Achille; Manrique, Alain; Bienvenu, Boris

    2016-01-01

    Abstract Previous studies reported a 2- to 17-fold higher risk of aortic complications (dilation or dissection) in patients with giant-cell arteritis (GCA). We aimed to determine whether or not GCA patients with large-vessel involvement demonstrated by positron emission tomography with 18F-fluorodeoxyglucose combined with computed tomography (FDG-PET/CT) have a higher risk of aortic complications. We conducted a retrospective multicenter study between 1995 and 2014. Patients were included if they fulfilled at least 3 American College of Rheumatology criteria for GCA, or 2 criteria associated with extratemporal biopsy-proven giant-cell vasculitis; they underwent at least 1 FDG-PET/CT scan at diagnosis or during follow-up; and the morphology of the aorta was assessed by medical imaging at diagnosis. Patients with an aortic complication at the time of diagnosis were excluded. Of the 130 patients included [85 women (65%), median age 70 (50–86)], GCA was biopsy proven in 77 (59%). FDG-PET/CT was performed at diagnosis in 63 (48%) patients and during the follow-up period in the 67 (52%) remaining patients. FDG-PET/CT was positive in 38/63 (60%) patients at diagnosis and in 31/67 (46%) patients when performed during follow-up (P = NS). One hundred four patients (80%) underwent at least 1 morphological assessment of the aorta during follow-up. Nine (9%) patients developed aortic complications (dilation in all and dissection in 1) at a median time of 33 (6–129) months after diagnosis. All of them displayed large-vessel inflammation on previous FDG-PET/CT. A positive FDG-PET/CT was significantly associated with a higher risk of aortic complications (P = 0.004). In our study, a positive FDG-PET/CT was associated with an increased risk of aortic complications at 5 years. PMID:27367985

  5. Hybrid Positron Emission Tomography/Magnetic Resonance Imaging: Challenges, Methods, and State of the Art of Hardware Component Attenuation Correction.

    PubMed

    Paulus, Daniel H; Quick, Harald H

    2016-10-01

    Attenuation correction (AC) is an essential step in the positron emission tomography (PET) data reconstruction process to provide accurate and quantitative PET images. The introduction of PET/magnetic resonance (MR) hybrid systems has raised new challenges but also possibilities regarding PET AC. While in PET/computed tomography (CT) imaging, CT images can be converted to attenuation maps, MR images in PET/MR do not provide a direct relation to attenuation. For the AC of patient tissues, new methods have been suggested, for example, based on image segmentation, atlas registration, or ultrashort echo time MR sequences. Another challenge in PET/MR hybrid imaging is AC of hardware components that are placed in the PET/MR field of view, such as the patient table or various radiofrequency (RF) coils covering the body of the patient for MR signal detection. Hardware components can be categorized into 4 different groups: (1) patient table, (2) RF receiver coils, (3) radiation therapy equipment, and (4) PET and MR imaging phantoms. For rigid and stationary objects, such as the patient table and some RF coils like the head/neck coil, predefined CT-based attenuation maps stored on the system can be used for automatic AC. Flexible RF coils are not included into the AC process till now because they can vary in position as well as in shape and are not accurately detectable with the PET/MR system.This work summarizes challenges, established methods, new concepts, and the state of art in hardware component AC in the context of PET/MR hybrid imaging. The work also gives an overview of PET/MR hardware devices, their attenuation properties, and their effect on PET quantification.

  6. Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease

    SciTech Connect

    Stewart, R.E.; Schwaiger, M.; Molina, E.; Popma, J.; Gacioch, G.M.; Kalus, M.; Squicciarini, S.; al-Aouar, Z.R.; Schork, A.; Kuhl, D.E. )

    1991-06-15

    The diagnostic performance of rubidium-82 (Rb-82) positron emission tomography (PET) and thallium-201 (Tl-201) single-photon emission-computed tomography (SPECT) for detecting coronary artery disease was investigated in 81 patients (52 men, 29 women). PET studies using 60 mCi of Rb-82 were performed at baseline and after intravenous infusion of 0.56 mg/kg dipyridamole in conjunction with handgrip stress. Tl-201 SPECT was performed after dipyridamole-handgrip stress and, in a subset of patients, after treadmill exercise. Sensitivity, specificity and overall diagnostic accuracy were assessed using both visually and quantitatively interpreted coronary angiograms. The overall sensitivity, specificity and accuracy of PET for detection of coronary artery disease (greater than 50% diameter stenosis) were 84, 88 and 85%, respectively. In comparison, the performance of SPECT revealed a sensitivity of 84%, specificity of 53% (p less than 0.05 vs PET) and accuracy of 79%. Similar results were obtained using either visual or quantitative angiographic criteria for severity of coronary artery disease. In 43 patients without prior myocardial infarction, the sensitivity for detection of disease was 71 and 73%, respectively, similar for both PET and SPECT. There was no significant difference in diagnostic performance between imaging modalities when 2 different modes of stress (exercise treadmill vs intravenous dipyridamole plus handgrip) were used with SPECT imaging. Thus, Rb-82 PET provides improved specificity compared with Tl-201 SPECT for identifying coronary artery disease, most likely due to the higher photon energy of Rb-82 and attenuation correction provided by PET. However, post-test referral cannot be entirely excluded as a potential explanation for the lower specificity of Tl-201 SPECT.

  7. Computer tomography imaging of fast plasmachemical processes

    SciTech Connect

    Denisova, N. V.; Katsnelson, S. S.; Pozdnyakov, G. A.

    2007-11-15

    Results are presented from experimental studies of the interaction of a high-enthalpy methane plasma bunch with gaseous methane in a plasmachemical reactor. The interaction of the plasma flow with the rest gas was visualized by using streak imaging and computer tomography. Tomography was applied for the first time to reconstruct the spatial structure and dynamics of the reagent zones in the microsecond range by the maximum entropy method. The reagent zones were identified from the emission of atomic hydrogen (the H{sub {alpha}} line) and molecular carbon (the Swan bands). The spatiotemporal behavior of the reagent zones was determined, and their relation to the shock-wave structure of the plasma flow was examined.

  8. Injectable silver nanosensors: in vivo dosimetry for external beam radiotherapy using positron emission tomography

    NASA Astrophysics Data System (ADS)

    Christensen, A. N.; Rydhög, J. S.; Søndergaard, R. V.; Andresen, T. L.; Holm, S.; Munck Af Rosenschöld, P.; Conradsen, K.; Jølck, R. I.

    2016-05-01

    Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive 106Ag, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The silver-nanosensor was investigated in a tissue equivalent thorax phantom using clinical settings and workflow for both standard fractionated radiotherapy (2 Gy) and stereotactic radiotherapy (10- and 22 Gy) in a high-energy beam setting (18 MV). The developed silver-nanosensor provided high radiopacity on the planning CT-scans sufficient for patient positioning in image-guided radiotherapy and provided dosimetric information about the absorbed dose with a 10% and 8% standard deviation for the stereotactic regimens, 10 and 22 Gy, respectively.Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive 106Ag, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The

  9. High-speed digitization readout of silicon photomultipliers for time of flight positron emission tomography

    SciTech Connect

    Ronzhin, A.; Los, S.; Martens, M.; Ramberg, E.; Kim, H.; Chen, C.; Kao, C.; Niessen, K.; Zatserklyaniy, A.; Mazzillo, M.; Carbone, B.; /SGS Thomson, Catania

    2011-02-01

    We report on work to develop a system with about 100 picoseconds (ps) time resolution for time of flight positron emission tomography [TOF-PET]. The chosen photo detectors for the study were Silicon Photomultipliers (SiPM's). This study was based on extensive experience in studying timing properties of SiPM's. The readout of these devices used the commercial high speed digitizer DRS4. We applied different algorithms to get the best time resolution of 155 ps Guassian (sigma) for a LYSO crystal coupled to a SiPM. We consider the work as a first step in building a prototype TOF-PET module. The field of positron-emission-tomography (PET) has been rapidly developing. But there are significant limitations in how well current PET scanners can reconstruct images, related to how fast data can be acquired, how much volume they can image, and the spatial and temporal resolution of the generated photons. Typical modern scanners now include multiple rings of detectors, which can image a large volume of the patient. In this type of scanner, one can treat each ring as a separate detector and require coincidences only within the ring, or treat the entire region viewed by the scanner as a single 3 dimensional volume. This 3d technique has significantly better sensitivity since more photon pair trajectories are accepted. However, the scattering of photons within the volume of the patient, and the effect of random coincidences limits the technique. The advent of sub-nanosecond timing resolution detectors means that there is potentially much better rejection of scattered photon events and random coincidence events in the 3D technique. In addition, if the timing is good enough, then the origin of photons pairs can be determined better, resulting in improved spatial resolution - so called 'Time-of-Flight' PET, or TOF-PET. Currently a lot of activity has occurred in applications of SiPMs for TOF-PET. This is due to the devices very good time resolution, low profile, lack of high voltage

  10. An introduction to the physics and instrumentation of positron emission tomography

    SciTech Connect

    Bennett, G.W.

    1986-06-01

    Positron-emitting radionuclides permit the use of electronic collimation and thus achieve higher resolution and better sensitivity than can be obtained with gamma-emitting radiotracers. The evolution of PET imaging systems can be traced from the use of opposed collimated scanning detectors, which had all the limitations of traditional single photon imaging devices, to the present systems which surround the subject with a large volume of detector material. The improvements in system resolution now approach the theoretical limitation imposed by positron-range, and angular deviation. The use of coding permits the use of shared electronics for reading our multiple detectors, which promises to decrease the cost of PET imaging devices, at some penalty of degraded performance. Improvements in computer architectures and capabilities permit faster reconstruction of the multiple planes imaged by multi-slice imaging systems. Software for distortion correction and image processing are still under development, and the ability to map between different devices requires the coordination of efforts between different groups in the same institution. The development and validation of the mathematical models for tracer kinetic analyses will continue to occupy the attention of clinicians and scientists involved in these developments. The desire to make these devices simple and cheap enough to be used in routine patient care is occupying the attention of industry and pioneering users, but this goal has not yet been achieved. 17 refs., 15 figs., 3 tabs.

  11. Cone Beam Computed Tomography - Know its Secrets

    PubMed Central

    Kumar, Mohan; Shanavas, Muhammad; Sidappa, Ashwin; Kiran, Madhu

    2015-01-01

    Cone-beam computed tomography (CBCT) is an advanced imaging modality that has high clinical applications in the field of dentistry. CBCT proved to be a successful investigative modality that has been used for dental and maxillofacial imaging. Radiation exposure dose from CBCT is 10 times less than from conventional CT scans during maxillofacial exposure. Furthermore, CBCT is highly accurate and can provide a three-dimensional volumetric data in axial, sagittal and coronal planes. This article describes the basic technique, difference in CBCT from CT and main clinical applications of CBCT. PMID:25859112

  12. Emerging clinical applications of computed tomography

    PubMed Central

    Liguori, Carlo; Frauenfelder, Giulia; Massaroni, Carlo; Saccomandi, Paola; Giurazza, Francesco; Pitocco, Francesca; Marano, Riccardo; Schena, Emiliano

    2015-01-01

    X-ray computed tomography (CT) has recently been experiencing remarkable growth as a result of technological advances and new clinical applications. This paper reviews the essential physics of X-ray CT and its major components. Also reviewed are recent promising applications of CT, ie, CT-guided procedures, CT-based thermometry, photon-counting technology, hybrid PET-CT, use of ultrafast-high pitch scanners, and potential use of dual-energy CT for material differentiations. These promising solutions and a better knowledge of their potentialities should allow CT to be used in a safe and effective manner in several clinical applications. PMID:26089707

  13. Perforated Appendicitis: Assessment With Multidetector Computed Tomography.

    PubMed

    Iacobellis, Francesca; Iadevito, Isabella; Romano, Federica; Altiero, Michele; Bhattacharjee, Bikram; Scaglione, Mariano

    2016-02-01

    Appendicitis is one of the most common abdominal surgical emergencies. In some cases, the correct diagnosis may be challenging, owing to different conditions that can mimic this pathology. In this context, abdominal computed tomography (CT) is the imaging modality of choice, leading to an accurate diagnosis and to a reduction in unnecessary laparotomies. The diagnosis of perforated appendix is crucial, but the detection of the perforation signs by CT may not be so simple in the early process. The aim of this article is to review the multiple detector CT signs of perforated appendicitis.

  14. Computed tomography of infantile hepatic hemangioendothelioma

    SciTech Connect

    Lucaya, J.; Enriquez, G.; Amat, L.; Gonzalez-Rivero, M.A.

    1985-04-01

    Computed tomography (CT) was performed on five infants with hepatic hemangioendothelioma. Precontrast scans showed solitary or multiple, homogeneous, circumscribed areas with reduced attenuation values. Tiny tumoral calcifications were identified in two patients. Serial scans, after injection of a bolus of contrast material, showed early massive enhancement, which was either diffuse or peripheral. On delayed scans, multinocular tumors became isodense with surrounding liver, while all solitary ones showed varied degrees of centripetal enhancement and persistent central cleftlike unenhanced areas. The authors believe that these CT features are characteristic and obviate arteriographic confirmation.

  15. Advances in computed tomography imaging technology.

    PubMed

    Ginat, Daniel Thomas; Gupta, Rajiv

    2014-07-11

    Computed tomography (CT) is an essential tool in diagnostic imaging for evaluating many clinical conditions. In recent years, there have been several notable advances in CT technology that already have had or are expected to have a significant clinical impact, including extreme multidetector CT, iterative reconstruction algorithms, dual-energy CT, cone-beam CT, portable CT, and phase-contrast CT. These techniques and their clinical applications are reviewed and illustrated in this article. In addition, emerging technologies that address deficiencies in these modalities are discussed.

  16. Computed tomography and sialography: 2. Pathology.

    PubMed

    Carter, B L; Karmody, C S; Blickman, J R; Panders, A K

    1981-02-01

    Computed tomography (CT) has added a significant amount of diagnostic information to the imaging of the salivary glands. Two groups of patients were evaluated at two institutions to determine the impact of CT on the diagnosis of various diseases and to evaluate the contribution of CT versus conventional sialography, respectively. Patients were studied by each modality alone and in combination. Emphasis has been placed on the group that had CT combined with sialography, since benign and malignant tumors were found to be better evaluated by the two techniques together.

  17. Modelling Random Coincidences in Positron Emission Tomography by Using Singles and Prompts: A Comparison Study.

    PubMed

    Oliver, Josep F; Rafecas, M

    2016-01-01

    Random coincidences degrade the image in Positron Emission Tomography, PET. To compensate for their degradation effects, the rate of random coincidences should be estimated. Under certain circumstances, current estimation methods fail to provide accurate results. We propose a novel method, "Singles-Prompts" (SP), that includes the information conveyed by prompt coincidences and models the pile-up. The SP method has the same structure than the well-known "Singles Rate" (SR) approach. Hence, SP can straightforwardly replace SR. In this work, the SP method has been extensively assessed and compared to two conventional methods, SR and the delayed window (DW) method, in a preclinical PET scenario using Monte-Carlo simulations. SP offers accurate estimates for the randoms rates, while SR and DW tend to overestimate the rates (∼10%, and 5%, respectively). With pile-up, the SP method is more robust than SR (but less than DW). At the image level, the contrast is overestimated in SR-corrected images, +16%, while SP produces the correct value. Spill-over is slightly reduced using SP instead of SR. The DW images values are similar to those of SP except for low-statistic scenarios, where DW behaves as if randoms were not compensated for. In particular, the contrast is reduced, -16%. In general, the better estimations of SP translate into better image quality. PMID:27603143

  18. An interior-point method for total variation regularized positron emission tomography image reconstruction

    NASA Astrophysics Data System (ADS)

    Bai, Bing

    2012-03-01

    There has been a lot of work on total variation (TV) regularized tomographic image reconstruction recently. Many of them use gradient-based optimization algorithms with a differentiable approximation of the TV functional. In this paper we apply TV regularization in Positron Emission Tomography (PET) image reconstruction. We reconstruct the PET image in a Bayesian framework, using Poisson noise model and TV prior functional. The original optimization problem is transformed to an equivalent problem with inequality constraints by adding auxiliary variables. Then we use an interior point method with logarithmic barrier functions to solve the constrained optimization problem. In this method, a series of points approaching the solution from inside the feasible region are found by solving a sequence of subproblems characterized by an increasing positive parameter. We use preconditioned conjugate gradient (PCG) algorithm to solve the subproblems directly. The nonnegativity constraint is enforced by bend line search. The exact expression of the TV functional is used in our calculations. Simulation results show that the algorithm converges fast and the convergence is insensitive to the values of the regularization and reconstruction parameters.

  19. Modelling Random Coincidences in Positron Emission Tomography by Using Singles and Prompts: A Comparison Study

    PubMed Central

    2016-01-01

    Random coincidences degrade the image in Positron Emission Tomography, PET. To compensate for their degradation effects, the rate of random coincidences should be estimated. Under certain circumstances, current estimation methods fail to provide accurate results. We propose a novel method, “Singles–Prompts” (SP), that includes the information conveyed by prompt coincidences and models the pile–up. The SP method has the same structure than the well-known “Singles Rate” (SR) approach. Hence, SP can straightforwardly replace SR. In this work, the SP method has been extensively assessed and compared to two conventional methods, SR and the delayed window (DW) method, in a preclinical PET scenario using Monte–Carlo simulations. SP offers accurate estimates for the randoms rates, while SR and DW tend to overestimate the rates (∼10%, and 5%, respectively). With pile-up, the SP method is more robust than SR (but less than DW). At the image level, the contrast is overestimated in SR-corrected images, +16%, while SP produces the correct value. Spill–over is slightly reduced using SP instead of SR. The DW images values are similar to those of SP except for low-statistic scenarios, where DW behaves as if randoms were not compensated for. In particular, the contrast is reduced, −16%. In general, the better estimations of SP translate into better image quality. PMID:27603143

  20. Future imaging of atherosclerosis: molecular imaging of coronary atherosclerosis with 18F positron emission tomography

    PubMed Central

    Psaltis, Peter J.

    2016-01-01

    Atherosclerosis is characterized by the formation of complex atheroma lesions (plaques) in arteries that pose risk by their flow-limiting nature and propensity for rupture and thrombotic occlusion. It develops in the context of disturbances to lipid metabolism and immune response, with inflammation underpinning all stages of plaque formation, progression and rupture. As the primary disease process responsible for myocardial infarction, stroke and peripheral vascular disease, atherosclerosis is a leading cause of morbidity and mortality on a global scale. A precise understanding of its pathogenic mechanisms is therefore critically important. Integral to this is the role of vascular wall imaging. Over recent years, the rapidly evolving field of molecular imaging has begun to revolutionize our ability to image beyond just the anatomical substrate of vascular disease, and more dynamically assess its pathobiology. Nuclear imaging by positron emission tomography (PET) can target specific molecular and biological pathways involved in atherosclerosis, with the application of 18Fluoride PET imaging being widely studied for its potential to identify plaques that are vulnerable or high risk. In this review, we discuss the emergence of 18Fluoride PET as a promising modality for the assessment of coronary atherosclerosis, focusing on the strengths and limitations of the two main radionuclide tracers that have been investigated to date: 2-deoxy-2-(18F)fluoro-D-glucose (18F-FDG) and sodium 18F-fluoride (18F-NaF). PMID:27500093