Sample records for positron diffusion length

  1. Positron annihilation spectroscopic studies of solvothermally synthesized ZnO nanobipyramids and nanoparticles

    NASA Astrophysics Data System (ADS)

    Ghoshal, Tandra; Biswas, Subhajit; Kar, Soumitra; Chaudhuri, Subhadra; Nambissan, P. M. G.

    2008-02-01

    Zinc oxide (ZnO) samples in the form of hexagonal-based bipyramids and particles of nanometer dimensions were synthesized through solvothermal route and characterized by x-ray diffraction and transmission electron microscopy. Positron annihilation experiments were performed to study the structural defects such as vacancies and surfaces in these nanosystems. From coincidence Doppler broadening measurements, the positron trapping sites were identified as Zn vacancies or Zn-O-Zn trivacancy clusters. The positron lifetimes, their relative intensities, and the Doppler broadened lineshape parameter S all showed characteristic changes across the nanobipyramid size corresponding to the thermal diffusion length of positrons. In large nanobipyramids, vacancies within the crystallites also trapped positrons and the effects of agglomeration of such vacancies due to increased temperatures of synthesis were reflected in the variation of the annihilation parameters with their base diameters. The sizes of the nanoparticles used were all in the limit of thermal diffusion length of positrons and the annihilation characteristics were in accordance with the decreasing contribution from surfaces with increasing particle size.

  2. Positron annihilation spectroscopic studies of solvothermally synthesized ZnO nanobipyramids and nanoparticles.

    PubMed

    Ghoshal, Tandra; Biswas, Subhajit; Kar, Soumitra; Chaudhuri, Subhadra; Nambissan, P M G

    2008-02-21

    Zinc oxide (ZnO) samples in the form of hexagonal-based bipyramids and particles of nanometer dimensions were synthesized through solvothermal route and characterized by x-ray diffraction and transmission electron microscopy. Positron annihilation experiments were performed to study the structural defects such as vacancies and surfaces in these nanosystems. From coincidence Doppler broadening measurements, the positron trapping sites were identified as Zn vacancies or Zn-O-Zn trivacancy clusters. The positron lifetimes, their relative intensities, and the Doppler broadened lineshape parameter S all showed characteristic changes across the nanobipyramid size corresponding to the thermal diffusion length of positrons. In large nanobipyramids, vacancies within the crystallites also trapped positrons and the effects of agglomeration of such vacancies due to increased temperatures of synthesis were reflected in the variation of the annihilation parameters with their base diameters. The sizes of the nanoparticles used were all in the limit of thermal diffusion length of positrons and the annihilation characteristics were in accordance with the decreasing contribution from surfaces with increasing particle size.

  3. Defects in ZnO nanorods prepared by a hydrothermal method.

    PubMed

    Tam, K H; Cheung, C K; Leung, Y H; Djurisić, A B; Ling, C C; Beling, C D; Fung, S; Kwok, W M; Chan, W K; Phillips, D L; Ding, L; Ge, W K

    2006-10-26

    ZnO nanorod arrays were fabricated using a hydrothermal method. The nanorods were studied by scanning electron microscopy, photoluminescence (PL), time-resolved PL, X-ray photoelectron spectroscopy, and positron annihilation spectroscopy before and after annealing in different environments and at different temperatures. Annealing atmosphere and temperature had significant effects on the PL spectrum, while in all cases the positron diffusion length and PL decay times were increased. We found that, while the defect emission can be significantly reduced by annealing at 200 degrees C, the rods still have large defect concentrations as confirmed by their low positron diffusion length and short PL decay time constants.

  4. Diffusion length of positrons and positronium investigated using a positronbeam with longitudinal geometry

    NASA Astrophysics Data System (ADS)

    van Petegem, S.; Dauwe, C.; van Hoecke, T.; de Baerdemaeker, J.; Segers, D.

    2004-09-01

    Positronium emission from single crystalline Al2O3 , MgO and vitreous a-SiO2 surfaces was studied as a function of the positron implantation energy E by means of Doppler broadening spectroscopy and Compton-to-peak ratio analysis. When the Ge-detector is in-line with the positron beam, the emission of para-positronium yields a red-shifted fly-away peak with intensity IpPse . An analysis of IpPse versus E for Al2O3 and MgO where no Ps is formed in the bulk (fPs=0) results in positron diffusion lengths L+(Al2O3)=(18±1)nm and L+(MgO)=(14±1)nm , and efficiencies for the emission of Ps by picking up of a surface electron of fpu(Al2O3)=(0.28±0.2) and fpu(MgO)=(0.24±0.2) . For a-SiO2 the bulk Ps fraction is fPs(a-SiO2)=(0.72±0.01) , fpu(a-SiO2)=(0.12±0.01) and the diffusion lengths of positrons, para-positronium and ortho-positronium are L+(SiO2)=(8±2)nm , LpPs(SiO2)=(14.5±2)nm and LoPs(SiO2)=(11±2)=nm . Depending on the specimen-detector geometry the emission of Ps at low implantation energy may cause either an increase or a decrease of the width of the annihilation line shape at low implantation energies.

  5. Surface sealing using self-assembled monolayers and its effect on metal diffusion in porous low-k dielectrics studied using monoenergetic positron beams

    NASA Astrophysics Data System (ADS)

    Uedono, Akira; Armini, Silvia; Zhang, Yu; Kakizaki, Takeaki; Krause-Rehberg, Reinhard; Anwand, Wolfgang; Wagner, Andreas

    2016-04-01

    Surface sealing effects on the diffusion of metal atoms in porous organosilicate glass (OSG) films were studied by monoenergetic positron beams. For a Cu(5 nm)/MnN(3 nm)/OSG(130 nm) sample fabricated with pore stuffing, C4F8 plasma etch, unstuffing, and a self-assembled monolayer (SAM) sealing process, it was found that pores with cubic pore side lengths of 1.1 and 3.1 nm coexisted in the OSG film. For the sample without the SAM sealing process, metal (Cu and Mn) atoms diffused from the top Cu/MnN layer into the OSG film and were trapped by the pores. As a result, almost all pore interiors were covered with those metals. For the sample damaged by an Ar/C4F8 plasma etch treatment before the SAM sealing process, SAMs diffused into the OSG film, and they were preferentially trapped by larger pores. The cubic pore side length in these pores containing self-assembled molecules was estimated to be 0.7 nm. Through this work, we have demonstrated that monoenergetic positron beams are a powerful tool for characterizing capped porous films and the trapping of atoms and molecules by pores.

  6. Positron annihilation spectroscopy for the determination of thickness and defect profile in thin semiconductor layers

    NASA Astrophysics Data System (ADS)

    Zubiaga, A.; García, J. A.; Plazaola, F.; Tuomisto, F.; Zúñiga-Pérez, J.; Muñoz-Sanjosé, V.

    2007-05-01

    We present a method, based on positron annihilation spectroscopy, to obtain information on the defect depth profile of layers grown over high-quality substrates. We have applied the method to the case of ZnO layers grown on sapphire, but the method can be very easily generalized to other heterostructures (homostructures) where the positron mean diffusion length is small enough. Applying the method to the ratio of W and S parameters obtained from Doppler broadening measurements, W/S plots, it is possible to determine the thickness of the layer and the defect profile in the layer, when mainly one defect trapping positron is contributing to positron trapping at the measurement temperature. Indeed, the quality of such characterization is very important for potential technological applications of the layer.

  7. Structure and sublimation of water ice films grown in vacuo at 120-190 K studied by positron and positronium annihilation.

    PubMed

    Townrow, S; Coleman, P G

    2014-03-26

    The crystalline structure of ∼ 5-20 μm water ice films grown at 165 and 172 K has been probed by measuring the fraction of positrons forming ortho-positronium (ortho-Ps) and decaying into three gamma photons. It has been established that films grown at slower rates (water vapour pressure ≥ 1 mPa) have lower concentrations of lattice defects and closed pores, which act as Ps traps, than those grown at higher rates (vapour pressure ∼ 100 mPa), evidenced by ortho-Ps diffusion lengths being approximately four times greater in the former. By varying the growth temperature between 162 and 182 K it was found that films become less disordered at temperatures above ∼ 172 K, with the ortho-Ps diffusion length rising by ∼ 60%, in this range. The sublimation energy for water ice films grown on copper has been measured to be 0.462(5) eV using the time dependence of positron annihilation parameters from 165 to 195 K, in agreement with earlier studies and with no measurable dependence on growth rate and thermal history.

  8. Slow positrons in single-crystal samples of Al and Al-AlxOy

    NASA Astrophysics Data System (ADS)

    Lynn, K. G.; Lutz, H.

    1980-11-01

    Well-characterized Al(111) and Al(100) samples were studied with monoenergetic positrons before and after exposure to oxygen. Both positronium-formation and positron-emission curves were obtained for various incident positron energies at sample temperatures ranging from 160-900 K. The orthopositronium decay signal provides a unique signature that the positron has emerged from the surface region of a clean metal. In the clean Al crystals part of the positronium formed near the surface is found to be associated with a temperature-activated process described as the thermally activated detrapping of a positron from a surface state. A simple positron diffusion model, including surface and vacancy trapping, is fitted to the positronium data and an estimate of the binding energy of the positron in this trap is made. The positron diffusion constant is found to have a negative temperature dependence before the onset of positron trapping at thermally generated monovacancies (>500 K), in reasonable agreement with theoretical predictions. The depth of the positron surface state is reduced or positronium is formed in the chemisorbed layer as oxygen is adsorbed on both Al sample surfaces, thus increasing the positronium fraction and decreasing the positron emission. At higher oxygen exposures [>500 L (1 L = 10-6 torr sec)] positron or positronium traps are generated in the overlayer and the positronium fraction is reduced. The amorphous-to-crystalline surface transition of AlxOy on Al is observed between 650 and 800 K by the change in the positronium fraction and is interpreted as the removal of trapping centers in the metal-oxide overlayer. At the higher temperatures and incident energies vacancy trapping is observed by the decrease in the positron diffusion length in both the clean and the underlying Al of the oxygen-exposed samples. Similar vacancy formation enthalpies for Al are extracted in both the clean and oxygen-covered samples by a simple model and are in good agreement with those measured by other experimental methods. This technique provides a new experimental means for the study of interfaces and thin films and the vacancy-type defects associated with them.

  9. Slow positron beam production by a 14 MeV C.W. electron accelerator

    NASA Astrophysics Data System (ADS)

    Begemann, M.; Gräff, G.; Herminghaus, H.; Kalinowsky, H.; Ley, R.

    1982-10-01

    A 14 MeV c.w. electron accelerator is used for pair production in a tungsten target of 0.7 radiation lengths thickness. A small fraction of the positrons is thermalized and diffuses out of the surface ofsurface of a well annealed tungsten foil coated with MgO which is positioned immediately behind the target. The slow positrons are extracted from the target region and magnetically guided over a distance of 10 m onto a channelplate multiplier at the end of an S-shaped solenoid. The positrons are identified by their annihilation radiation using two NaI-detectors. The intensity of the slow positrons is proportional to the accelerator electron beam current. The maximum intensity of 2.2 × 10 5 slow positrons per second reaching thedetector at an accelerator current of 15 μA was limited by the power deposited in the uncooled target. The energy of the positrons is concentrated in a small region at about 1 eV and clearly demonstrates the emission of thermal positrons.

  10. Dispersion of nano-nickel into γ-Al 2O 3 studied by positron

    NASA Astrophysics Data System (ADS)

    Jun, Zhu; Wang, S. J.; Luo, X. H.

    2003-10-01

    The positron annihilation lifetime spectra were measured as a function of the content of the nano-nickel, of temperature, as well as of the heating time for the supported nano-nickel catalyst that was prepared by mechanical mixture nano-metal nickel particles with gamma-alumina ( γ-Al 2O 3). The lifetime spectra were well resolved into four lifetime components. The longest lifetime τ4 was assigned to ortho-positronium annihilating in the secondary pore of the γ-Al 2O 3. The results showed that part of the nano-nickel had entered into γ-Al 2O 3 by thermal diffusion at heating above 200°C and had interacted with the face of the γ-Al 2O 3, but the length of diffusion is not very large.

  11. Experimental determination of positron-related surface characteristics of 6H-SiC

    NASA Astrophysics Data System (ADS)

    Nangia, A.; Kim, J. H.; Weiss, A. H.; Brauer, G.

    2002-03-01

    The positron work function of 6H-SiC was determined to be -2.1±0.1 eV from an analysis of the energy spectrum of positrons reemitted from the surface. The positron reemission yield, highest in the sample inserted into vacuum after atmospheric exposure and cleaning with ethanol, was significantly reduced after sputtering with 3 keV, 125 μA min Ne+ ions. The yield was not recovered even after annealing at 900 °C, presumably due to the stability of sputter induced defects. Sputtering at lower energies caused a smaller decrease in the reemission yield that was largely recovered after annealing at 850 °C. Analysis using electron induced Auger electron spectroscopy and positron-annihilation-induced Auger electron spectroscopy indicated that the surface was Si enriched after sputtering and C enriched after subsequent annealing. Values of positron diffusion length and mobility in the unsputtered material were extracted from the dependence of the reemission yield on the beam energy. The application of SiC as a field-assisted positron moderator is discussed.

  12. Emission of positronium in a nanometric PMMA film

    NASA Astrophysics Data System (ADS)

    Palacio, C. A.; De Baerdemaeker, J.; Van Thourhout, D.; Dauwe, C.

    2008-10-01

    Positron beam experiments have been performed for the first time on a self-supporting polymethyl metacrylate (PMMA) film of 310 nm-thick made by spin coating. The positronium (Ps) emission from the PMMA surface is studied as a function of the positron implantation energy by using Doppler profile spectroscopy and Compton-to-peak ratio analysis. When the sample and the Ge-detector are perpendicular to the positron beam, the emission of para-positronium ( p-Ps) is detected as a narrow central peak. By rotating the sample 45° with respect to the beam, the emission of p-Ps is detected as a blue-shifted fly-away peak. The bulk Ps fraction, the efficiency for the emission of Ps by picking up an electron from the surface, and the diffusion lengths of positrons (thermal and or epithermal), p-Ps and ortho-positronium ( o-Ps) are obtained.

  13. Quality of Heusler single crystals examined by depth-dependent positron annihilation techniques

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.; Bauer, A.; Böni, P.; Ceeh, H.; Eijt, S. W. H.; Gigl, T.; Pfleiderer, C.; Piochacz, C.; Neubauer, A.; Reiner, M.; Schut, H.; Weber, J.

    2015-06-01

    Heusler compounds exhibit a wide range of different electronic ground states and are hence expected to be applicable as functional materials in novel electronic and spintronic devices. Since the growth of large and defect-free Heusler crystals is still challenging, single crystals of Fe2TiSn and Cu2MnAl were grown by the optical floating zone technique. Two positron annihilation techniques—angular correlation of annihilation radiation and Doppler broadening spectroscopy (DBS)—were applied in order to study both the electronic structure and lattice defects. Recently, we succeeded to observe clearly the anisotropy of the Fermi surface of Cu2MnAl, whereas the spectra of Fe2TiSn were disturbed by foreign phases. In order to estimate the defect concentration in different samples of Heusler compounds, the positron diffusion length was determined by DBS using a monoenergetic positron beam.

  14. Evaluation of positron-emission-tomography for visualisation of migration processes in geomaterials

    NASA Astrophysics Data System (ADS)

    Kulenkampff, J.; Gründig, M.; Richter, M.; Enzmann, F.

    Positron-emission-tomography (PET) was applied for direct visualisation of solute transport in order to overcome the limitations of conventional methods for measuring advection and diffusion properties. At intervals from minutes to days the 3D-spatial distribution of the PET-tracer is determined. This spatiotemporal evolution of the tracer concentration can be used as experimental basis for clarification of the relevant transport processes, derivation of transport parameters, and model calibration. Here, 18F and 124I in 0.01 M carrier solution of KF and KI, respectively, have been chosen out of the limited number of available PET-tracers, primarily on account of their decay time and the time span of the experiments. The sample is a granite core from the Äspö Hard Rock Laboratory which carries an axial fracture with an aperture of ∼0.5 mm. Therefore, its permeability is high: high injection rates of 0.1 ml/min caused a pressure drop below 100 kPa. The experiments showed that the transport path through the fracture is modulated by the flow rate. The comparison of the experiments with different flow rates indicates diffusion into the matrix material at localized sites. However, the derived diffusion length falls below the resolution limits of the medical PET-scanner. With recently available dedicated high-resolution PET-scanners, which are usually applied in biomedical research, diffusion effects will be clearly resolvable.

  15. Slow positrons in the study of surface and near-surface defects

    NASA Astrophysics Data System (ADS)

    Lynn, K. G.

    A general theoretical model is presented which includes the probability of a positron diffusing back to the surface after implantation, and thermalization in samples containing various defects. This model incorporates surface state and thermal desorption from this state, as well as reflection back into the bulk. With this model vacancy formation enthalpies, activation energies of positrons from surface states, and specific trapping rates are deduced from the positronium fraction data. An amorphous Al/sub x/O/sub y/ overlayer on Al is discussed as an example of trapping in overlayers. In well-annealed single crystal samples, the positron is shown to be freely diffusing at low temperatures, whereas in a neutron-irradiatied Al single crystal sample the positron is localized at low positron binding energy defects presumably created during irradiation.

  16. Slow positron beam generator for lifetime studies

    NASA Technical Reports Server (NTRS)

    Singh, Jag J. (Inventor); Eftekhari, Abe (Inventor); St.clair, Terry L. (Inventor)

    1991-01-01

    A slow positron beam generator uses a conductive source residing between two test films. Moderator pieces are placed next to the test film on the opposite side of the conductive source. A voltage potential is applied between the moderator pieces and the conductive source. Incident energetic positrons: (1) are emitted from the conductive source; (2) are passed through test film; and (3) isotropically strike moderator pieces before diffusing out of the moderator pieces as slow positrons, respectively. The slow positrons diffusing out of moderator pieces are attracted to the conductive source which is held at an appropriate potential below the moderator pieces. The slow positrons have to pass through the test films before reaching the conductive source. A voltage is adjusted so that the potential difference between the moderator pieces and the conductive source forces the positrons to stop in the test films. Measurable annihilation radiation is emitted from the test film when positrons annihilate (combine) with electrons in the test film.

  17. Divacancy complexes induced by Cu diffusion in Zn-doped GaAs

    NASA Astrophysics Data System (ADS)

    Elsayed, M.; Krause-Rehberg, R.; Korff, B.; Ratschinski, I.; Leipner, H. S.

    2013-08-01

    Positron annihilation spectroscopy was applied to investigate the nature and thermal behavior of defects induced by Cu diffusion in Zn-doped p-type GaAs crystals. Cu atoms were intentionally introduced in the GaAs lattice through thermally activated diffusion from a thin Cu capping layer at 1100 °C under defined arsenic vapor pressure. During isochronal annealing of the obtained Cu-diffused GaAs in the temperature range of 450-850 K, vacancy clusters were found to form, grow and finally disappear. We found that annealing at 650 K triggers the formation of divacancies, whereas further increasing in the annealing temperature up to 750 K leads to the formation of divacancy-copper complexes. The observations suggest that the formation of these vacancy-like defects in GaAs is related to the out-diffusion of Cu. Two kinds of acceptors are detected with a concentration of about 1016 - 1017 cm-3, negative ions and arsenic vacancy copper complexes. Transmission electron microscopy showed the presence of voids and Cu precipitates which are not observed by positron measurements. The positron binding energy to shallow traps is estimated using the positron trapping model. Coincidence Doppler broadening spectroscopy showed the presence of Cu in the immediate vicinity of the detected vacancies. Theoretical calculations suggested that the detected defect is VGaVAs-2CuGa.

  18. Effect of the diffusion parameters on the observed γ-ray spectrum of sources and their contribution to the local all-electron spectrum: The EDGE code

    NASA Astrophysics Data System (ADS)

    López-Coto, R.; Hahn, J.; BenZvi, S.; Dingus, B.; Hinton, J.; Nisa, M. U.; Parsons, R. D.; Greus, F. Salesa; Zhang, H.; Zhou, H.

    2018-11-01

    The positron excess measured by PAMELA and AMS can only be explained if there is one or several sources injecting them. Moreover, at the highest energies, it requires the presence of nearby ( ∼ hundreds of parsecs) and middle age (maximum of ∼ hundreds of kyr) sources. Pulsars, as factories of electrons and positrons, are one of the proposed candidates to explain the origin of this excess. To calculate the contribution of these sources to the electron and positron flux at the Earth, we developed EDGE (Electron Diffusion and Gamma rays to the Earth), a code to treat the propagation of electrons and compute their diffusion from a central source with a flexible injection spectrum. Using this code, we can derive the source's gamma-ray spectrum, spatial extension, the all-electron density in space, the electron and positron flux reaching the Earth and the positron fraction measured at the Earth. We present in this paper the foundations of the code and study how different parameters affect the gamma-ray spectrum of a source and the electron flux measured at the Earth. We also studied the effect of several approximations usually performed in these studies. This code has been used to derive the results of the positron flux measured at the Earth in [1].

  19. Structure and Bonding in Noncrystalline Solids Abstracts

    DTIC Science & Technology

    1983-06-02

    displacement cascades are unlikely. Related damage studies as diffuse X- ray scattering, magnetic susceptibility and positron - annihilation lifetime...the positron annihilation lifetime data; diffuse X-ray scattering studies give evidence for "amorphized" clusters in neutron but not in elec-ron...feldspar glasses and glasses in the system CaO- MgO -SiO 2 . These results indicate that the nearest-neighbor and next- nearest-neighbor environments are very

  20. Positron Lifetime Modulation by Electric Field Induced Positronium Formation on a Gold Surface

    DTIC Science & Technology

    2012-03-22

    Angular Momentum (3) ......................................................................... 11 Stopping Power (4...isotope from which it was born, diffused into the material before annihilation occurred. 6 The radioisotope used in this experiment is Na-22 which...that positrons may be useful in studying the internal structure of a wide variety of materials. The radioisotope positron source used in this

  1. Formation of vacancy-impurity complexes in heavily Zn-doped InP

    NASA Astrophysics Data System (ADS)

    Slotte, J.; Saarinen, K.; Salmi, A.; Simula, S.; Aavikko, R.; Hautojärvi, P.

    2003-03-01

    Positron annihilation spectroscopy has been applied to observe the spontaneous formation of vacancy-type defects by annealing of heavily Zn-doped InP at 500 700 K. The defect is identified as the VP-Zn pair by detecting the annihilation of positrons with core electrons. We conclude that the defect is formed through a diffusion process; a phosphorus vacancy migrates until trapped by a Zn impurity and forms a negatively charged VP-Zn pair. The kinetics of the diffusion process is investigated by measuring the average positron lifetime as a function of annealing time and by fitting a diffusion model to the experimental results. We deduce a migration energy of 1.8±0.2 eV for the phosphorus vacancy. Our results explain both the presence of native VP-Zn pairs in Zn-doped InP and their disappearance in post-growth annealings.

  2. Evidence for Enhanced Matrix Diffusion in Geological Environment

    NASA Astrophysics Data System (ADS)

    Sato, Kiminori; Fujimoto, Koichiro; Nakata, Masataka; Shikazono, Naotatsu

    2013-01-01

    Molecular diffusion in rock matrix, called as matrix diffusion, has been appreciated as a static process for elemental migration in geological environment that has been acknowledged in the context of geological disposal of radioactive waste. However, incomprehensible enhancement of matrix diffusion has been reported at a number of field test sites. Here, the matrix diffusion of saline water at Horonobe, Hokkaido, Japan is highlighted directly probing angstrom-scale pores on a field scale up to 1 km by positron--positronium annihilation spectroscopy. The first application of positron--positronium annihilation spectroscopy to field-scale geophysical research reveals the slight variation of angstrom-scale pores influenced by saline water diffusion with complete accuracy. We found widely interconnected 3 Å pores, which offer the pathway of saline water diffusion with the highly enhanced effective matrix diffusion coefficient of 4× 10-6 cm2 s-1. The present findings provide unambiguous evidence that the angstrom-scale pores enhance effective matrix diffusion on a field scale in geological environment.

  3. Damage to the Silicon Substrate by Reactive Ion Etching Detected by a Slow Positron Beam

    NASA Astrophysics Data System (ADS)

    Wei, Long; Tabuki, Yasushi; Tanigawa, Shoichiro

    1993-01-01

    Defects in reactive ion-etched Si have been investigated by means of a slow positron beam. A thin carbon-containing film (<30 Å) was formed on the Si surface after reactive ion etching (RIE). Vacancy-type defects, which were estimated to distribute over 1200 Å in depth by numerical fitting using the positron trapping model, were observed in the damaged subsurface region of Si. Aside from ion bombardment, ultraviolet radiation is also presumed to affect the formation of vacancies, interstitials in oxide and the formation of vacancies in Si substrate. The ionization-enhanced diffusion (IED) mechanism is expected to promote the diffusion of vacancies and interstitials into Si substrate.

  4. Positron transport in solids and the interaction of positrons with surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Yuan.

    1991-01-01

    In studying positron transport in solids, a two-stream model is proposed to account for the epithermal positrons. Thus positron implantation, thermalization, and diffusion processes are completely modeled. Experimentally, positron mobility in thermally grown SiO[sub 2] is measured in a sandwiched structure by using the Doppler broadening technique. Positron drift motion and the electric field configuration in a Si surface buried under overlayers are measured with the positron annihilation [gamma]-ray centroid shift technique. These studies are not only important in measuring positron transport and other properties in complicated systems, they are also of practical significance for material characterizations. In studying positronmore » interactions with surfaces, a multiple-encounter picture is proposed of thermal positrons participating in the surface escape processes. Positron trapping into the surface image potential is also studied, considering the long-range nature of the image potential. Experimentally, the positron annihilation induced Auger electron spectroscopy (PAES) is used to study an ionic insulator surface KCl(100).« less

  5. Positron production by x rays emitted by betatron motion in a plasma wiggler.

    PubMed

    Johnson, D K; Auerbach, D; Blumenfeld, I; Barnes, C D; Clayton, C E; Decker, F J; Deng, S; Emma, P; Hogan, M J; Huang, C; Ischebeck, R; Iverson, R; Joshi, C; Katsouleas, T C; Kirby, N; Krejcik, P; Lu, W; Marsh, K A; Mori, W B; Muggli, P; O'Connell, C L; Oz, E; Siemann, R H; Walz, D; Zhou, M

    2006-10-27

    Positrons in the energy range of 3-30 MeV, produced by x rays emitted by betatron motion in a plasma wiggler of 28.5 GeV electrons from the SLAC accelerator, have been measured. The extremely high-strength plasma wiggler is an ion column induced by the electron beam as it propagates through and ionizes dense lithium vapor. X rays in the range of 1-50 MeV in a forward cone angle of 0.1 mrad collide with a 1.7 mm thick tungsten target to produce electron-positron pairs. The positron spectra are found to be strongly influenced by the plasma density and length as well as the electron bunch length. By characterizing the beam propagation in the ion column these influences are quantified and result in excellent agreement between the measured and calculated positron spectra.

  6. On the nature of the cosmic ray positron spectrum

    NASA Technical Reports Server (NTRS)

    Protheroe, R. J.

    1981-01-01

    A calculation was made of the flux of secondary positrons above 100 MeV expected for various propagation models. The models investigated were the leaky box or homogeneous model, a disk halo diffusion model, a dynamical halo model, and the closed galaxy model. In each case the parameters of these models were adjusted for agreement with the observed secondary or primary ratios and Be 10 abundance. The positron flux predicted for these models was compared with the available data. The possibility of a primary positron component was considered.

  7. Experimental and computational studies of positron-stimulated ion desorption from TiO2(1 1 0) surface

    NASA Astrophysics Data System (ADS)

    Yamashita, T.; Hagiwara, S.; Tachibana, T.; Watanabe, K.; Nagashima, Y.

    2017-11-01

    Experimental and computational studies of the positron-stimulated O+ ion desorption process from a TiO2(1 1 0) surface are reported. The measured data indicate that the O+ ion yields depend on the positron incident energy in the energy range between 0.5 keV and 15 keV. This dependence is closely related to the fraction of positrons which diffuse back to the surface after thermalization in the bulk. Based on the experimental and computational results, we conclude that the ion desorption via positron-stimulation occurs dominantly by the annihilation of surface-trapped positrons with core electrons of the topmost surface atoms.

  8. Oxygen-vacancy behavior in La2-xSrxCuO4-y by positron annihilation and oxygen diffusion

    NASA Astrophysics Data System (ADS)

    Smedskjaer, L. C.; Routbort, J. L.; Flandermeyer, B. K.; Rothman, S. J.; Legnini, D. G.; Baker, J. E.

    1987-09-01

    Oxygen-diffusion and positron-annihilation results for La2-xSrxCuO4-y compounds are reported. A qualitative explanation of the observed results is given on the basis of a model in which the oxygen-vacancy concentration in La2-xSrxCuO4-y is determined by Sr2+ ion clustering on the La sublattice. This model also leads to a maximum in the Cu3+ ion concentration as a function of the Sr2+ ion concentration.

  9. Account of the intratrack radiolytic processes for interpretation of the AMOC spectrum of liquid water

    NASA Astrophysics Data System (ADS)

    Zvezhinskiy, D. S.; Butterling, M.; Wagner, A.; Krause-Rehberg, R.; Stepanov, S. V.

    2013-06-01

    Recent development of the Gamma-induced Positron Spectroscopy (GiPS) setup significantly extends applicability of the Age-Momentum Correlation technique (AMOC) for studies of the bulk samples. It also provides many advantages comparing with conventional positron annihilation experiments in liquids, such as extremely low annihilation fraction in vessel walls, absence of a positron source and positron annihilations in it. We have developed a new approach for processing and interpretation of the AMOC-GiPS data based on the diffusion recombination model of the intratrack radiolytic processes. This approach is verified in case of liquid water, which is considered as a reference medium in the positron and positronium chemistry.

  10. Intense positron beam as a source for production of electron-positron plasma

    NASA Astrophysics Data System (ADS)

    Stoneking, M. R.; Horn-Stanja, J.; Stenson, E. V.; Pedersen, T. Sunn; Saitoh, H.; Hergenhahn, U.; Niemann, H.; Paschkowski, N.; Hugenschmidt, C.; Piochacz, C.

    2016-10-01

    We aim to produce magnetically confined, short Debye length electron-positron plasma and test predicted properties for such systems. A first challenge is obtaining large numbers of positrons; a table-top experiment (system size 5 cm) with a temperature less than 5 eV requires about 1010 positrons to have more than 10 Debye lengths in the system. The NEPOMUC facility at the FRM II research reactor in Germany is one of the world's most intense positron sources. We report on characterization (using a retarding field energy analyzer with magnetic field gradient) of the NEPOMUC beam as delivered to the open beam port at various beam energies and in both the re-moderated and primary beam configurations in order to design optimal trapping (and accumulation) schemes for production of electron-positron plasma. The intensity of the re-moderated (primary) beam is in the range 2 -3 x 107 /s (1 - 5 x 108 /s). The re-moderated beam is currently the most promising for direct injection and confinement experiments; it has a parallel energy spread of 15 - 35% and the transverse energy spread is 6 - 15% of the parallel energy. We report on the implications for injection and trapping in a dipole magnetic field as well as plans for beam development, in situ re-moderation, and accumulation. We also report results demonstrating a difference in phosphor luminescent response to low energy positrons versus electrons.

  11. Electrostatic stability of electron-positron plasmas in dipole geometry

    NASA Astrophysics Data System (ADS)

    Mishchenko, Alexey; Plunk, Gabriel G.; Helander, Per

    2018-04-01

    The electrostatic stability of electron-positron plasmas is investigated in the point-dipole and Z-pinch limits of dipole geometry. The kinetic dispersion relation for sub-bounce-frequency instabilities is derived and solved. For the zero-Debye-length case, the stability diagram is found to exhibit singular behaviour. However, when the Debye length is non-zero, a fluid mode appears, which resolves the observed singularity, and also demonstrates that both the temperature and density gradients can drive instability. It is concluded that a finite Debye length is necessary to determine the stability boundaries in parameter space. Landau damping is investigated at scales sufficiently smaller than the Debye length, where instability is absent.

  12. The assessment of pore connectivity in hierarchical zeolites using positron annihilation lifetime spectroscopy: instrumental and morphological aspects.

    PubMed

    Zubiaga, Asier; Warringham, Robbie; Boltz, Marilyne; Cooke, David; Crivelli, Paolo; Gidley, David; Pérez-Ramírez, Javier; Mitchell, Sharon

    2016-04-07

    Recent studies demonstrated the power of positron annihilation lifetime spectroscopy (PALS) to characterise the connectivity and corresponding effectiveness of hierarchical pore networks in zeolites. This was based on the fractional escape of ortho-positronium (Ps), formed within the micropore framework, to vacuum. To further develop this technique, here we assess the impact of the positron implantation energy and of the zeolite crystal size and the particle morphology. Conventional measurements using fast positrons and beam measurements applying moderated positrons both readily distinguish purely microporous ZSM-5 zeolites comprised of single crystals or crystal aggregates. Unlike beam measurements, however, conventional measurements fail to discriminate model hierarchical zeolites with open or constricted mesopore architectures. Several steps are taken to rationalise these observations. The dominant contribution of Ps diffusion to the PALS response is confirmed by capping the external surface of the zeolite crystals with tetraethylorthosilicate, which greatly enhances the sensitivity to the micropore network. A one-dimensional model is constructed to predict the out-diffusion of Ps from a zeolite crystal, which is validated experimentally by comparing coffin-shaped single crystals of varying size. Calculation of the trends expected on the application of fast or moderated positrons indicates that the distinctions in the initial distribution of Ps at the crystal level cannot explain the limited sensitivity of the former to the mesopore architecture. Instead, we propose that the greater penetration of fast positrons within the sample increases the probability of Ps re-entry from intercrystalline voids into mesopores connected with the external surface of zeolite crystals, thereby reducing their fractional escape.

  13. Diffuse Galactic antimatter from faint thermonuclear supernovae in old stellar populations

    NASA Astrophysics Data System (ADS)

    Crocker, Roland M.; Ruiter, Ashley J.; Seitenzahl, Ivo R.; Panther, Fiona H.; Sim, Stuart; Baumgardt, Holger; Möller, Anais; Nataf, David M.; Ferrario, Lilia; Eldridge, J. J.; White, Martin; Tucker, Brad E.; Aharonian, Felix

    2017-06-01

    Our Galaxy hosts the annihilation of a few 1043 low-energy positrons every second. Radioactive isotopes capable of supplying such positrons are synthesized in stars, stellar remnants and supernovae. For decades, however, there has been no positive identification of a main stellar positron source, leading to suggestions that many positrons originate from exotic sources like the Galaxy's central supermassive black hole or dark matter annihilation. Here we show that a single type of transient source, deriving from stellar populations of age 3-6 Gyr and yielding ∼0.03 M ⊙ of the positron emitter 44Ti, can simultaneously explain the strength and morphology of the Galactic positron annihilation signal and the Solar System abundance of the 44Ti decay product 44Ca. This transient is likely the merger of two low-mass white dwarfs, observed in external galaxies as the sub-luminous, thermonuclear supernova known as SN 1991bg-like.

  14. Apparatus for the analysis of surfaces in gas environments using Positron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Satyal, Suman; Lim, Lawrence; Joglekar, Vibek; Kalaskar, Sushant; Shastry, Karthik; Weiss, Alex

    2010-10-01

    Positron spectroscopy performed with low energy beams can provide highly surface specific information due to the trapping of positrons in an image potential surface state at the time of annihilation. Here we describe a spectrometer that will employ differential pumping to enable us to transport the positrons most of the way from the source to the sample under high vacuum and then to traverse a thin gas layer surrounding the sample. The positrons will be implanted into the sample at energies less than ˜10 keV ensuring that a large fraction will diffuse back to the surface before annihilation. The Elemental content of the surface interacting with the gas environment will then be determined from the Doppler broadened gamma spectra. This system will include a time of flight positron annihilation induced Auger spectrometer (TOF-PAES) which correlates with the Doppler measurements at lower pressures.

  15. Defect characterization in Mg-doped GaN studied using a monoenergetic positron beam

    NASA Astrophysics Data System (ADS)

    Uedono, A.; Ishibashi, S.; Tenjinbayashi, K.; Tsutsui, T.; Nakahara, K.; Takamizu, D.; Chichibu, S. F.

    2012-01-01

    Vacancy-type defects in Mg-doped GaN grown by metalorganic vapor phase epitaxy were probed using a monoenergetic positron beam. For a sample fabricated with a high H2-flow rate, before post-growth annealing the major defect species detected by positrons was identified as vacancy-clusters. Evidence suggested that other donor-type defects such as nitrogen vacancies also existed. The defects increased the Fermi level position, and enhanced the diffusion of positrons toward the surface. The annihilation of positrons at the top surface was suppressed by Mg-doping. This was attributed to the introduction of a subsurface layer (<6 nm) with a low defect concentration, where the Fermi level position was considered to decrease due to partial activation of Mg. For samples after annealing, the trapping of positrons by residual vacancy-type defects was observed, and the sample crystal quality was found to depend on that before annealing.

  16. Studies of high coverage oxidation of the Cu(100) surface using low energy positrons

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Maddox, W. B.; Weiss, A. H.

    2012-02-01

    The study of oxidation of single crystal metal surfaces is important in understanding the corrosive and catalytic processes associated with thin film metal oxides. The structures formed on oxidized transition metal surfaces vary from simple adlayers of chemisorbed oxygen to more complex structures which result from the diffusion of oxygen into subsurface regions. In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. Calculations are performed for various high coverage missing row structures ranging between 0.50 and 1.50 ML oxygen coverage. The results of calculations of positron binding energy, positron work function, and annihilation characteristics of surface trapped positrons with relevant core electrons as function of oxygen coverage are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES).

  17. Study of SiO2-Si and metal-oxide-semiconductor structures using positrons

    NASA Astrophysics Data System (ADS)

    Leung, T. C.; Asoka-Kumar, P.; Nielsen, B.; Lynn, K. G.

    1993-01-01

    Studies of SiO2-Si and metal-oxide-semiconductor (MOS) structures using positrons are summarized and a concise picture of the present understanding of positrons in these systems is provided. Positron annihilation line-shape S data are presented as a function of the positron incident energy, gate voltage, and annealing, and are described with a diffusion-annihilation equation for positrons. The data are compared with electrical measurements. Distinct annihilation characteristics were observed at the SiO2-Si interface and have been studied as a function of bias voltage and annealing conditions. The shift of the centroid (peak) of γ-ray energy distributions in the depletion region of the MOS structures was studied as a function of positron energy and gate voltage, and the shifts are explained by the corresponding variations in the strength of the electric field and thickness of the depletion layer. The potential role of the positron annihilation technique as a noncontact, nondestructive, and depth-sensitive characterization tool for the technologically important, deeply buried interface is shown.

  18. A field-assisted moderator for low-energy positron beams

    NASA Astrophysics Data System (ADS)

    Beling, C. D.; Simpson, R. I.; Charlton, M.; Jacobsen, F. M.; Griffith, T. C.; Moriarty, P.; Fung, S.

    1987-01-01

    A new positron field-assisted (FA) moderator based on the drift of positrons across a cooled silicon crystal is proposed. Using estimates for both the β + implantation profile and attainable drift velocities, the efficiency of drift to a slow e+ emitting surface is calculated using a diffusion equation which incorporates terms describing positron drift and annihilation. It is conjectured that efficiencies of up to 10% can be achieved. The use of epitaxially grown metallic suicide contacts to facilitate the application of the electric field is described and the consequences of using such contacts are fully discussed. Applications of the FA transmission mode moderator described here to produce timed brightness enhanced beams are briefly discussed.

  19. Interchange Instability and Transport in Matter-Antimatter Plasmas

    NASA Astrophysics Data System (ADS)

    Kendl, Alexander; Danler, Gregor; Wiesenberger, Matthias; Held, Markus

    2017-06-01

    Symmetric electron-positron plasmas in inhomogeneous magnetic fields are intrinsically subject to interchange instability and transport. Scaling relations for the propagation velocity of density perturbations relevant to transport in isothermal magnetically confined electron-positron plasmas are deduced, including damping effects when Debye lengths are large compared to Larmor radii. The relations are verified by nonlinear full-F gyrofluid computations. Results are analyzed with respect to planned magnetically confined electron-positron plasma experiments. The model is generalized to other matter-antimatter plasmas. Magnetized electron-positron-proton-antiproton plasmas are susceptible to interchange-driven local matter-antimatter separation, which can impede sustained laboratory magnetic confinement.

  20. Interchange Instability and Transport in Matter-Antimatter Plasmas.

    PubMed

    Kendl, Alexander; Danler, Gregor; Wiesenberger, Matthias; Held, Markus

    2017-06-09

    Symmetric electron-positron plasmas in inhomogeneous magnetic fields are intrinsically subject to interchange instability and transport. Scaling relations for the propagation velocity of density perturbations relevant to transport in isothermal magnetically confined electron-positron plasmas are deduced, including damping effects when Debye lengths are large compared to Larmor radii. The relations are verified by nonlinear full-F gyrofluid computations. Results are analyzed with respect to planned magnetically confined electron-positron plasma experiments. The model is generalized to other matter-antimatter plasmas. Magnetized electron-positron-proton-antiproton plasmas are susceptible to interchange-driven local matter-antimatter separation, which can impede sustained laboratory magnetic confinement.

  1. Probing the defects in nano-semiconductors using positrons

    NASA Astrophysics Data System (ADS)

    Nambissan, P. M. G.

    2011-01-01

    Positron annihilation spectroscopy (PAS) is a very useful tool to study the defect properties of nanoscale materials. The ability of thermalized positrons to diffuse over to the surfaces of nanocrystallites prior to annihilation helps to explore the disordered atomic arrangement over there and is very useful in understanding the structure and properties of nanomaterials. As examples, the results of studies on FeS2 nanorods and ZnS nanoparticles are presented. In semiconductor nanoparticles, there are positron trapping sites within the grains also and these are characterised by using appropriate models on the measured positron lifetimes. We have observed vivid changes in the measured positron lifetimes and Doppler broadened gamma ray spectral lineshapes during structural transformations prompted by substitutional effects in Mn2+-doped ZnS nanorods. Interestingly, the nanoparticles did not exhibit the transformation, implying the morphologies of the nanosystems playing a decisive role. Quantum confinement effect in CdS nanoparticles was another phenomenon that could be seen through positron annihilation experiments. Coincidence Doppler broadening measurements have been useful to identify the elemental environment around the vacancy clusters that trap positrons. Recent studies on nanocrystalline oxide and sulphide semiconductors are also discussed.

  2. A self-consistent model of cosmic-ray fluxes and positron excess: roles of nearby pulsars and a sub-dominant source population

    NASA Astrophysics Data System (ADS)

    Joshi, Jagdish C.; Razzaque, Soebur

    2017-09-01

    The cosmic-ray positron flux calculated using the cosmic-ray nuclei interactions in our Galaxy cannot explain observed data above 10 GeV. An excess in the measured positron flux is therefore open to interpretation. Nearby pulsars, located within sub-kiloparsec range of the Solar system, are often invoked as plausible sources contributing to the excess. We show that an additional, sub-dominant population of sources together with the contributions from a few nearby pulsars can explain the latest positron excess data from the Alpha Magnetic Spectrometer (AMS). We simultaneously model, using the DRAGON code, propagation of cosmic-ray proton, Helium, electron and positron and fit their respective flux data. Our fit to the Boron to Carbon ratio data gives a diffusion spectral index of 0.45, which is close to the Kraichnan turbulent spectrum.

  3. A self-consistent model of cosmic-ray fluxes and positron excess: roles of nearby pulsars and a sub-dominant source population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Jagdish C.; Razzaque, Soebur, E-mail: jjagdish@uj.ac.za, E-mail: srazzaque@uj.ac.za

    The cosmic-ray positron flux calculated using the cosmic-ray nuclei interactions in our Galaxy cannot explain observed data above 10 GeV. An excess in the measured positron flux is therefore open to interpretation. Nearby pulsars, located within sub-kiloparsec range of the Solar system, are often invoked as plausible sources contributing to the excess. We show that an additional, sub-dominant population of sources together with the contributions from a few nearby pulsars can explain the latest positron excess data from the Alpha Magnetic Spectrometer (AMS). We simultaneously model, using the DRAGON code, propagation of cosmic-ray proton, Helium, electron and positron and fitmore » their respective flux data. Our fit to the Boron to Carbon ratio data gives a diffusion spectral index of 0.45, which is close to the Kraichnan turbulent spectrum.« less

  4. Plasma Wakefield Acceleration of an Intense Positron Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blue, B

    2004-04-21

    The Plasma Wakefield Accelerator (PWFA) is an advanced accelerator concept which possess a high acceleration gradient and a long interaction length for accelerating both electrons and positrons. Although electron beam-plasma interactions have been extensively studied in connection with the PWFA, very little work has been done with respect to positron beam-plasma interactions. This dissertation addresses three issues relating to a positron beam driven plasma wakefield accelerator. These issues are (a) the suitability of employing a positron drive bunch to excite a wake; (b) the transverse stability of the drive bunch; and (c) the acceleration of positrons by the plasma wakemore » that is driven by a positron bunch. These three issues are explored first through computer simulations and then through experiments. First, a theory is developed on the impulse response of plasma to a short drive beam which is valid for small perturbations to the plasma density. This is followed up with several particle-in-cell (PIC) simulations which study the experimental parameter (bunch length, charge, radius, and plasma density) range. Next, the experimental setup is described with an emphasis on the equipment used to measure the longitudinal energy variations of the positron beam. Then, the transverse dynamics of a positron beam in a plasma are described. Special attention is given to the way focusing, defocusing, and a tilted beam would appear to be energy variations as viewed on our diagnostics. Finally, the energy dynamics imparted on a 730 {micro}m long, 40 {micro}m radius, 28.5 GeV positron beam with 1.2 x 10{sup 10} particles in a 1.4 meter long 0-2 x 10{sup 14} e{sup -}/cm{sup 3} plasma is described. First the energy loss was measured as a function of plasma density and the measurements are compared to theory. Then, an energy gain of 79 {+-} 15 MeV is shown. This is the first demonstration of energy gain of a positron beam in a plasma and it is in good agreement with the predictions made by the 3-D PIC code. The work presented in this dissertation will show that plasma wakefield accelerators are an attractive technology for future particle accelerators.« less

  5. Chaos of energetic positron orbits in a dipole magnetic field and its potential application to a new injection scheme

    NASA Astrophysics Data System (ADS)

    Saitoh, H.; Yoshida, Z.; Yano, Y.; Nishiura, M.; Kawazura, Y.; Horn-Stanja, J.; Pedersen, T. Sunn

    2016-10-01

    We study the behavior of high-energy positrons emitted from a radioactive source in a magnetospheric dipole field configuration. Because the conservation of the first and second adiabatic invariants is easily destroyed in a strongly inhomogeneous dipole field for high-energy charged particles, the positron orbits are nonintegrable, resulting in chaotic motions. In the geometry of a typical magnetospheric levitated dipole experiment, it is shown that a considerable ratio of positrons from a 22Na source, located at the edge of the confinement region, has chaotic long orbit lengths before annihilation. These particles make multiple toroidal circulations and form a hollow toroidal positron cloud. Experiments with a small 22Na source in the Ring Trap 1 (RT-1) device demonstrated the existence of such long-lived positrons in a dipole field. Such a chaotic behavior of high-energy particles is potentially applicable to the formation of a dense toroidal positron cloud in the strong-field region of the dipole field in future studies.

  6. Positron annihilation studies in the field induced depletion regions of metal-oxide-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Asoka-Kumar, P.; Leung, T. C.; Lynn, K. G.; Nielsen, B.; Forcier, M. P.; Weinberg, Z. A.; Rubloff, G. W.

    1992-06-01

    The centroid shifts of positron annihilation spectra are reported from the depletion regions of metal-oxide-semiconductor (MOS) capacitors at room temperature and at 35 K. The centroid shift measurement can be explained using the variation of the electric field strength and depletion layer thickness as a function of the applied gate bias. An estimate for the relevant MOS quantities is obtained by fitting the centroid shift versus beam energy data with a steady-state diffusion-annihilation equation and a derivative-gaussian positron implantation profile. Inadequacy of the present analysis scheme is evident from the derived quantities and alternate methods are required for better predictions.

  7. A slow positron beam generator for lifetime studies

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, Abe; St.clair, Terry L.

    1989-01-01

    A slow positron beam generator using well-annealed polycrystalline tungsten moderators and a Na-22 positron source was developed. A 250 micro c source, deposited on a 2.54 micron thick aluminized mylar, is sandwiched between two (2.54 cm x 2.54 cm x 0.0127 cm) tungsten pieces. Two (2.54 cm x 2.54 cm x t cm) test polymer films insulate the two tungsten moderator pieces from the aluminized mylar source holder (t=0.00127 to 0.0127). A potential difference of 10 to 100 volts--depending on the test polymer film thickness (t)--is applied between the tungsten pieces and the source foil. Thermalized positrons diffusing out of the moderator pieces are attracted to the source foil held at an appropriate potential below the moderator pieces. These positrons have to pass through the test polymer films before they can reach the source foil. The potential difference between the moderator pieces and the aluminized mylar is so adjusted as to force the positrons to stop in the test polymer films. Thus the new generator becomes an effective source of positrons for assaying thin polymer films for their molecular morphology.

  8. Velocity space scattering coefficients with applications in antihydrogen recombination studies

    NASA Astrophysics Data System (ADS)

    Chang, Yongbin; Ordonez, C. A.

    2000-12-01

    An approach for calculating velocity space friction and diffusion coefficients with Maxwellian field particles is developed based on a kernel function derived in a previous paper [Y. Chang and C. A. Ordonez, Phys. Plasmas 6, 2947 (1999)]. The original fivefold integral expressions for the coefficients are reduced to onefold integrals, which can be used for any value of the Coulomb logarithm. The onefold integrals can be further reduced to standard analytical expressions by using a weak coupling approximation. The integral expression for the friction coefficient is used to predict a time scale that describes the rate at which a reflecting antiproton beam slows down within a positron plasma, while both species are simultaneously confined by a nested Penning trap. The time scale is used to consider the possibility of achieving antihydrogen recombination within the trap. The friction and diffusion coefficients are then used to derive an expression for calculating the energy transfer rate between antiprotons and positrons. The expression is employed to illustrate achieving antihydrogen recombination while taking into account positron heating by the antiprotons. The effect of the presence of an electric field on recombination is discussed.

  9. Correlation of dopaminergic terminal dysfunction and microstructural abnormalities of the basal ganglia and the olfactory tract in Parkinson's disease.

    PubMed

    Scherfler, Christoph; Esterhammer, Regina; Nocker, Michael; Mahlknecht, Philipp; Stockner, Heike; Warwitz, Boris; Spielberger, Sabine; Pinter, Bernadette; Donnemiller, Eveline; Decristoforo, Clemens; Virgolini, Irene; Schocke, Michael; Poewe, Werner; Seppi, Klaus

    2013-10-01

    Signal abnormalities of the substantia nigra and the olfactory tract detected either by diffusion tensor imaging, including measurements of mean diffusivity, a parameter of brain tissue integrity, and fractional anisotropy, a parameter of neuronal fibre integrity, or transcranial sonography, were recently reported in the early stages of Parkinson's disease. In this study, changes in the nigral and olfactory diffusion tensor signal, as well as nigral echogenicity, were correlated with clinical scales of motor disability, odour function and putaminal dopamine storage capacity measured with 6-[(18)F] fluorolevodopa positron emission tomography in early and advanced stages of Parkinson's disease. Diffusion tensor imaging, transcranial sonography and positron emission tomography were performed on 16 patients with Parkinson's disease (mean disease duration 3.7 ± 3.7 years, Hoehn and Yahr stage 1 to 4) and 14 age-matched healthy control subjects. Odour function was measured by the standardized Sniffin' Sticks Test. Mean putaminal 6-[(18)F] fluorolevodopa influx constant, mean nigral echogenicity, mean diffusivity and fractional anisotropy values of the substantia nigra and the olfactory tract were identified by region of interest analysis. When compared with the healthy control group, the Parkinson's disease group showed significant signal changes in the caudate and putamen by 6-[(18)F] fluorolevodopa positron emission tomography, in the substantia nigra by transcranial sonography, mean diffusivity and fractional anisotropy (P < 0.001, P < 0.01, P < 0.05, respectively) and in the olfactory tract by mean diffusivity (P < 0.05). Regional mean diffusivity values of the substantia nigra and the olfactory tract correlated significantly with putaminal 6-[(18)F] fluorolevodopa uptake (r = -0.52, P < 0.05 and r = -0.71, P < 0.01). Significant correlations were also found between nigral mean diffusivity values and the Unified Parkinson's Disease Rating Scale motor score (r = -0.48, P < 0.01) and between mean putaminal 6-[(18)F] fluorolevodopa uptake and the total odour score (r = 0.58; P < 0.05) as well as the Unified Parkinson's Disease Rating Scale motor score (r = -0.53, P < 0.05). This study reports a significant association between increased mean diffusivity signal and decreased 6-[(18)F] fluorolevodopa uptake, indicating that microstructural degradation of the substantia nigra and the olfactory tract parallels progression of putaminal dopaminergic dysfunction in Parkinson's disease. Since increases in nigral mean diffusivity signal also correlated with motor dysfunction, diffusion tensor imaging may serve as a surrogate marker for disease progression in future studies of putative disease modifying therapies.

  10. Effects of Substrate and Post-Growth Treatments on the Microstructure and Properties of ZnO Thin Films Prepared by Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Haseman, Micah; Saadatkia, P.; Winarski, D. J.; Selim, F. A.; Leedy, K. D.; Tetlak, S.; Look, D. C.; Anwand, W.; Wagner, A.

    2016-12-01

    Aluminum-doped zinc oxide (ZnO:Al) thin films were synthesized by atomic layer deposition on silicon, quartz and sapphire substrates and characterized by x-ray diffraction (XRD), high-resolution scanning electron microscopy, optical spectroscopy, conductivity mapping, Hall effect measurements and positron annihilation spectroscopy. XRD showed that the as-grown films are of single-phase ZnO wurtzite structure and do not contain any secondary or impurity phases. The type of substrate was found to affect the orientation and degree of crystallinity of the films but had no effect on the defect structure or the transport properties of the films. High conductivity of 10-3 Ω cm, electron mobility of 20 cm2/Vs and carrier density of 1020 cm-3 were measured in most films. Thermal treatments in various atmospheres induced a large effect on the thickness, structure and electrical properties of the films. Annealing in a Zn and nitrogen environment at 400°C for 1 h led to a 16% increase in the thickness of the film; this indicates that Zn extracts oxygen atoms from the matrix and forms new layers of ZnO. On the other hand, annealing in a hydrogen atmosphere led to the emergence of an Al2O3 peak in the XRD pattern, which implies that hydrogen and Al atoms compete to occupy Zn sites in the ZnO lattice. Only ambient air annealing had an effect on film defect density and electrical properties, generating reductions in conductivity and electron mobility. Depth-resolved measurements of positron annihilation spectroscopy revealed short positron diffusion lengths and high concentrations of defects in all as-grown films. However, these defects did not diminish the electrical conductivity in the films.

  11. DHCAL with minimal absorber: measurements with positrons

    NASA Astrophysics Data System (ADS)

    Freund, B.; Neubüser, C.; Repond, J.; Schlereth, J.; Xia, L.; Dotti, A.; Grefe, C.; Ivantchenko, V.; Berenguer Antequera, J.; Calvo Alamillo, E.; Fouz, M.-C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Brianne, E.; Ebrahimi, A.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Irles, A.; Krivan, F.; Krüger, K.; Kvasnicka, J.; Lu, S.; Lutz, B.; Morgunov, V.; Provenza, A.; Reinecke, M.; Sefkow, F.; Schuwalow, S.; Tran, H. L.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Schroeder, S.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kovalcuk, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; van Doren, B.; Wilson, G. W.; Kawagoe, K.; Hirai, H.; Sudo, Y.; Suehara, T.; Sumida, H.; Takada, S.; Tomita, T.; Yoshioka, T.; Bilokin, S.; Bonis, J.; Cornebise, P.; Pöschl, R.; Richard, F.; Thiebault, A.; Zerwas, D.; Hostachy, J.-Y.; Morin, L.; Besson, D.; Chadeeva, M.; Danilov, M.; Markin, O.; Popova, E.; Gabriel, M.; Goecke, P.; Kiesling, C.; van der Kolk, N.; Simon, F.; Szalay, M.; Corriveau, F.; Blazey, G. C.; Dyshkant, A.; Francis, K.; Zutshi, V.; Kotera, K.; Ono, H.; Takeshita, T.; Ieki, S.; Kamiya, Y.; Ootani, W.; Shibata, N.; Jeans, D.; Komamiya, S.; Nakanishi, H.

    2016-05-01

    In special tests, the active layers of the CALICE Digital Hadron Calorimeter prototype, the DHCAL, were exposed to low energy particle beams, without being interleaved by absorber plates. The thickness of each layer corresponded approximately to 0.29 radiation lengths or 0.034 nuclear interaction lengths, defined mostly by the copper and steel skins of the detector cassettes. This paper reports on measurements performed with this device in the Fermilab test beam with positrons in the energy range of 1 to 10 GeV. The measurements are compared to simulations based on GEANT4 and a standalone program to emulate the detailed response of the active elements.

  12. Study of photoirradiation for YBa 2Cu 3O 6+ x compounds and the electron structure by positron experiment

    NASA Astrophysics Data System (ADS)

    Guosheng, Cheng; Jiaxiang, Shang; Xigui, Li; xianqi, Dai; Xizhong, Wang; Jincang, Zhang

    1997-08-01

    We present positron lifetime data of YBa 2Cu 3O 6+ x (x=0.92, 0.43) compounds for different photo-irradiation time. It is given that change of the local electron density and vacancy concentration with photoirradiation time. It is found that there is transform at the electronic structure of CuO chains. We also have discussed the effect of photoirradiations time on the electronic structure of YBa 2Cu 3O 6+ x systems and their charge reservoir layer and CuO 2 plane conduction.layer. The positron experimental results support the model of photoinduced oxygen-diffusion mechanism.

  13. Positron annihilation in SiO 2-Si studied by a pulsed slow positron beam

    NASA Astrophysics Data System (ADS)

    Suzuki, R.; Ohdaira, T.; Uedono, A.; Kobayashi, Y.

    2002-06-01

    Positron and positronium (Ps) behavior in SiO 2-Si have been studied by means of positron annihilation lifetime spectroscopy (PALS) and age-momentum correlation (AMOC) spectroscopy with a pulsed slow positron beam. The PALS study of SiO 2-Si samples, which were prepared by a dry-oxygen thermal process, revealed that the positrons implanted in the Si substrate and diffused back to the interface do not contribute to the ortho-Ps long-lived component, and the lifetime spectrum of the interface has at least two components. From the AMOC study, the momentum distribution of the ortho-Ps pick-off annihilation in SiO 2, which shows broader momentum distribution than that of crystalline Si, was found to be almost the same as that of free positron annihilation in SiO 2. A varied interface model was proposed to interpret the results of the metal-oxide-semiconductor (MOS) experiments. The narrow momentum distribution found in the n-type MOS with a negative gate bias voltage could be attributed to Ps formation and rapid spin exchange in the SiO 2-Si interface. We have developed a two-dimensional positron lifetime technique, which measures annihilation time and pulse height of the scintillation gamma-ray detector for each event. Using this technique, the positronium behavior in a porous SiO 2 film, grown by a sputtering method, has been studied.

  14. Pleuroperitoneal Mesothelioma: A Rare Entity on 18F-FDG PET/CT

    PubMed Central

    Sahoo, Manas Kumar; Mukherjee, Anirban; Girish; Parida, Kumar; Agarwal, Krishan Kant; Bal, Chandrasekhar; Tripathi, Madhavi; Das, Chandan Jyoti; Shamim, Shamim Ahmed

    2017-01-01

    Pleuroperitoneal mesothelioma is an extremely rare entity. Only few cases are reported worldwide. We hereby represent a case of pleural mesothelioma referred for F-18-Fluorodeoxyglucose positron emission tomography/computed tomography for response evaluation. Diffuse F-18-Fluorodeoxyglucose avid peritoneal and omental thickening noted which subsequently turned out to be mesothelial involvement on peritoneal biopsy. This case demonstrates the role of F-18-Fluorodeoxyglucose positron emission tomography/computed tomography in detecting other sites of involvement in case of malignant mesothelioma. PMID:28242997

  15. Fluorodeoxyglucose Positron Emission Tomography–Computed Tomography in Disseminated Cryptococcosis

    PubMed Central

    Tripathy, Sarthak; Parida, Girish Kumar; Roy, Shambo Guha; Singhal, Abhinav; Mallick, Saumya Ranjan; Tripathi, Madhavi; Shamim, Shamim Ahmed

    2017-01-01

    Disseminated cryptococcosis without pulmonary involvement is a very rare phenomenon. Patterns of organ involvement in cryptococcosis resemble various other infective conditions as well as malignant conditions on fluorodeoxyglucose positron emission tomography–computed tomography. We present a case of a 43-year-old male patient who had disseminated cryptococcosis. The rarity of the case being noninvolvement of lungs and meninges and resembling more like lymphoma due to the diffuse involvement of the lymph nodes on both sides of the diaphragm. PMID:29142368

  16. Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography in Disseminated Cryptococcosis.

    PubMed

    Tripathy, Sarthak; Parida, Girish Kumar; Roy, Shambo Guha; Singhal, Abhinav; Mallick, Saumya Ranjan; Tripathi, Madhavi; Shamim, Shamim Ahmed

    2017-01-01

    Disseminated cryptococcosis without pulmonary involvement is a very rare phenomenon. Patterns of organ involvement in cryptococcosis resemble various other infective conditions as well as malignant conditions on fluorodeoxyglucose positron emission tomography-computed tomography. We present a case of a 43-year-old male patient who had disseminated cryptococcosis. The rarity of the case being noninvolvement of lungs and meninges and resembling more like lymphoma due to the diffuse involvement of the lymph nodes on both sides of the diaphragm.

  17. Theoretical aspects of studies of high coverage oxidation of the Cu(100) surface using low energy positrons

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Maddox, W. B.; Reed, J. A.

    2011-03-01

    The study of adsorption of oxygen on transition metal surface is important for the understanding of oxidation, heterogeneous catalysis, and metal corrosion. The structures formed on transition metal surfaces vary from simple adlayers of chemisorbed oxygen to more complex structures which results from diffusion of oxygen into the sub-surface regions. In this work we present the results of an ab-initio investigation of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the Cu(100) missing row reconstructed surface under conditions of high oxygen coverage. Calculations are performed for various surface and subsurface oxygen coverages ranging from 0.50 to 1.50 monolayers. Calculations are also performed for the on-surface adsorption of oxygen on the unreconstructed Cu(001) surface for coverages up to one monolayer to use for comparison. Estimates of the positron binding energy, positron work function, and annihilation characteristics reveal their sensitivity to atomic structure of the topmost layers of the surface and charge transfer. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy.

  18. Astrophysical signatures of leptonium

    NASA Astrophysics Data System (ADS)

    Ellis, Simon C.; Bland-Hawthorn, Joss

    2018-01-01

    More than 1043 positrons annihilate every second in the centre of our Galaxy yet, despite four decades of observations, their origin is still unknown. Many candidates have been proposed, such as supernovae and low mass X-ray binaries. However, these models are difficult to reconcile with the distribution of positrons, which are highly concentrated in the Galactic bulge, and therefore require specific propagation of the positrons through the interstellar medium. Alternative sources include dark matter decay, or the supermassive black hole, both of which would have a naturally high bulge-to-disc ratio. The chief difficulty in reconciling models with the observations is the intrinsically poor angular resolution of gamma-ray observations, which cannot resolve point sources. Essentially all of the positrons annihilate via the formation of positronium. This gives rise to the possibility of observing recombination lines of positronium emitted before the atom annihilates. These emission lines would be in the UV and the NIR, giving an increase in angular resolution of a factor of 104 compared to gamma ray observations, and allowing the discrimination between point sources and truly diffuse emission. Analogously to the formation of positronium, it is possible to form atoms of true muonium and true tauonium. Since muons and tauons are intrinsically unstable, the formation of such leptonium atoms will be localised to their places of origin. Thus observations of true muonium or true tauonium can provide another way to distinguish between truly diffuse sources such as dark matter decay, and an unresolved distribution of point sources. Contribution to the Topical Issue "Low Energy Positron and Electron Interactions", edited by James Sullivan, Ron White, Michael Bromley, Ilya Fabrikant and David Cassidy.

  19. Applicability of modified effective-range theory to positron-atom and positron-molecule scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idziaszek, Zbigniew; Karwasz, Grzegorz; Instytut Fizyki, Uniwersytet Mikolaja Kopernika, 87-100 Torun

    2006-06-15

    We analyze low-energy scattering of positrons on Ar atoms and N{sub 2} molecules using the modified effective-range theory (MERT) developed by O'Malley, et al. [J. Math. Phys. 2, 491 (1961)]. We use the formulation of MERT based on exact solutions of the Schroedinger equation with polarization potential rather than low-energy expansions of phase shifts into momentum series. We show that MERT describes the experimental data well, provided that effective-range expansion is performed both for s- and p-wave scattering, which dominate in the considered regime of positron energies (0.4-2 eV). We estimate the values of the s-wave scattering length and themore » effective range for e{sup +}-Ar and e{sup +}-N{sub 2} collisions.« less

  20. Impact of oxygen diffusion on superconductivity in YBa2Cu3O7 -δ thin films studied by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Reiner, M.; Gigl, T.; Jany, R.; Hammerl, G.; Hugenschmidt, C.

    2018-04-01

    The oxygen deficiency δ in YBa2Cu3O7 -δ (YBCO) plays a crucial role for affecting high-temperature superconductivity. We apply (coincident) Doppler broadening spectroscopy of the electron-positron annihilation line to study in situ the temperature dependence of the oxygen concentration and its depth profile in single crystalline YBCO film grown on SrTiO3 (STO) substrates. The oxygen diffusion during tempering is found to lead to a distinct depth dependence of δ , which is not accessible using x-ray diffraction. A steady state reached within a few minutes is defined by both, the oxygen exchange at the surface and at the interface to the STO substrate. Moreover, we reveal the depth-dependent critical temperature Tc in the as prepared and tempered YBCO film.

  1. Positron transport studies at the Au - (InP:Fe) interface

    NASA Astrophysics Data System (ADS)

    Au, H. L.; Lee, T. C.; Beling, C. D.; Fung, S.

    1996-03-01

    Positron mobility and lifetime measurements have been carried out on semi-insulating Fe-doped InP samples with Au contacts used for electric field application. The lifetime measurements, with electric fields directed towards the Au - InP:Fe interface, reveal no component associated with interfacial open-volume sites and thus give no evidence of any positron mobility. The mobility measurements, made using the Doppler-shifted annihilation radiation technique, however, reveal a temperature independent positron mobility of about 0953-8984/8/10/012/img1 in the range 150 - 300 K. These observations, together with results from I - V analysis, are discussed with reference to two possible band-bending schemes. The first, which requires an ionized shallow donor region adjacent to the Au - InP interface, seems less plausible on a number of grounds. In the second, however, an 0953-8984/8/10/012/img2 negative space charge produces an adverse diffusion barrier for positrons approaching the interface together with a non-uniform electric field in the samples capable of explaining the observed mobility results.

  2. Investigation of hydrogen interaction with defects in zirconia

    NASA Astrophysics Data System (ADS)

    Melikhova, O.; Kuriplach, J.; Čížek, J.; Procházka, I.; Brauer, G.; Anwand, W.

    2010-04-01

    Defect studies of a ZrO2 + 9 mol. % Y2O3 single crystal were performed in this work using a high resolution positron lifetime spectroscopy combined with slow positron implantation spectroscopy. In order to elucidate the nature of positron trapping sites observed experimentally, the structural relaxations of several types of vacancy-like defects in zirconia were performed and positron characteristics for them were calculated. Relaxed atomic configurations of studied defects were obtained by means of ab initio pseudopotential method within the supercell approach. Theoretical calculations indicated that neither oxygen vacancies nor their neutral complexes with substitute yttrium atoms are capable of positron trapping. On the other hand, zirconium vacancies are deep positron traps and are most probably responsible for the saturated positron trapping observed in yttria stabilized zirconia single crystals. However, the calculated positron lifetime for zirconium vacancy is apparently longer than the experimental value corresponding to a single-component spectrum measured for the cubic ZrO2 + 9 mol. % Y2O3 single crystal. It was demonstrated that this effect can be explained by hydrogen trapped in zirconium vacancies. On the basis of structure relaxations, we found that zirconium vacancy - hydrogen complexes represent deep positron traps with the calculated lifetime close to the experimental one. In zirconium vacancy - hydrogen complexes the hydrogen atom forms an O-H bond with one of the nearest neighbour oxygen atoms. The calculated bond length is close to 1 Å.

  3. Vibrational excitation and vibrationally resolved electronic excitation cross sections of positron-H2 scattering

    NASA Astrophysics Data System (ADS)

    Zammit, Mark; Fursa, Dmitry; Savage, Jeremy; Bray, Igor

    2016-09-01

    Vibrational excitation and vibrationally resolved electronic excitation cross sections of positron-H2 scattering have been calculated using the single-centre molecular convergent close-coupling (CCC) method. The adiabatic-nuclei approximation was utilized to model the above scattering processes and obtain the vibrationally resolved positron-H2 scattering length. As previously demonstrated, the CCC results are converged and accurately account for virtual and physical positronium formation by coupling basis functions with large orbital angular momentum. Here vibrationally resolved integrated and differential cross sections are presented over a wide energy range and compared with previous calculations and available experiments. Los Alamos National Laboratory and Curtin University.

  4. Quantitative experimental monitoring of molecular diffusion in clay with positron emission tomography

    NASA Astrophysics Data System (ADS)

    Kulenkampff, Johannes; Zakhnini, Abdelhamid; Gründig, Marion; Lippmann-Pipke, Johanna

    2016-08-01

    Clay plays a prominent role as barrier material in the geosphere. The small particle sizes cause extremely small pore sizes and induce low permeability and high sorption capacity. Transport of dissolved species by molecular diffusion, driven only by a concentration gradient, is less sensitive to the pore size. Heterogeneous structures on the centimetre scale could cause heterogeneous effects, like preferential transport zones, which are difficult to assess. Laboratory measurements with diffusion cells yield limited information on heterogeneity, and pore space imaging methods have to consider scale effects. We established positron emission tomography (PET), applying a high-resolution PET scanner as a spatially resolved quantitative method for direct laboratory observation of the molecular diffusion process of a PET tracer on the prominent scale of 1-100 mm. Although PET is rather insensitive to bulk effects, quantification required significant improvements of the image reconstruction procedure with respect to Compton scatter and attenuation. The experiments were conducted with 22Na and 124I over periods of 100 and 25 days, respectively. From the images we derived trustable anisotropic diffusion coefficients and, in addition, we identified indications of preferential transport zones. We thus demonstrated the unique potential of the PET imaging modality for geoscientific process monitoring under conditions where other methods fail, taking advantage of the extremely high detection sensitivity that is typical of radiotracer applications.

  5. Photon-induced positron annihilation lifetime spectroscopy using ultrashort laser-Compton-scattered gamma-ray pulses

    NASA Astrophysics Data System (ADS)

    Taira, Y.; Toyokawa, H.; Kuroda, R.; Yamamoto, N.; Adachi, M.; Tanaka, S.; Katoh, M.

    2013-05-01

    High-energy ultrashort gamma-ray pulses can be generated via laser Compton scattering with 90° collisions at the UVSOR-II electron storage ring. As an applied study of ultrashort gamma-ray pulses, a new photon-induced positron annihilation lifetime spectroscopy approach has been developed. Ultrashort gamma-ray pulses with a maximum energy of 6.6 MeV and pulse width of 2.2 ps created positrons throughout bulk lead via pair production. Annihilation gamma rays were detected by a BaF2 scintillator mounted on a photomultiplier tube. A positron lifetime spectrum was obtained by measuring the time difference between the RF frequency of the electron storage ring and the detection time of the annihilation gamma rays. We calculated the response of the BaF2 scintillator and the time jitter caused by the variation in the total path length of the ultrashort gamma-ray pulses, annihilation gamma rays, and scintillation light using a Monte Carlo simulation code. The positron lifetime for bulk lead was successfully measured.

  6. Effect of Crystal Defects on Minority Carrier Diffusion Length in 6H SiC Measured Using the Electron Beam Induced Current Method

    NASA Technical Reports Server (NTRS)

    Tabib-Azar, Massood

    1997-01-01

    We report values of minority carrier diffusion length in n-type 6H SiC measured using a planar Electron Beam Induced Current (EBIC) method. Values of hole diffusion length in defect free regions of n-type 6H SiC, with a doping concentration of 1.7El7 1/cu cm, ranged from 1.46 microns to 0.68 microns. We next introduce a novel variation of the planar method used above. This 'planar mapping' technique measured diffusion length along a linescan creating a map of diffusion length versus position. This map is then overlaid onto the EBIC image of the corresponding linescan, allowing direct visualization of the effect of defects on minority carrier diffusion length. Measurements of the above n-type 6H SiC resulted in values of hole diffusion length ranging from 1.2 micron in defect free regions to below 0.1 gm at the center of large defects. In addition, measurements on p-type 6H SiC resulted in electron diffusion lengths ranging from 1.42 micron to 0.8 micron.

  7. The scattering of low energy positrons by helium

    NASA Technical Reports Server (NTRS)

    Humberston, J. W.

    1973-01-01

    Kohn's variational method is used to calculate the positron-helium scattering length and low energy S-wave phase shifts for a quite realistic Hylleraas type of helium function containing an electron-electron correlation term. The zero energy wavefunction is used to calculate the value of the annihilation rate parameter Z sub eff. All the results are significantly different from those for Drachman's helium model B, but are in better agreement with the available experimental data.

  8. Positron annihilation signatures associated with the outburst of the microquasar V404 Cygni.

    PubMed

    Siegert, Thomas; Diehl, Roland; Greiner, Jochen; Krause, Martin G H; Beloborodov, Andrei M; Bel, Marion Cadolle; Guglielmetti, Fabrizia; Rodriguez, Jerome; Strong, Andrew W; Zhang, Xiaoling

    2016-03-17

    Microquasars are stellar-mass black holes accreting matter from a companion star and ejecting plasma jets at almost the speed of light. They are analogues of quasars that contain supermassive black holes of 10(6) to 10(10) solar masses. Accretion in microquasars varies on much shorter timescales than in quasars and occasionally produces exceptionally bright X-ray flares. How the flares are produced is unclear, as is the mechanism for launching the relativistic jets and their composition. An emission line near 511 kiloelectronvolts has long been sought in the emission spectrum of microquasars as evidence for the expected electron-positron plasma. Transient high-energy spectral features have been reported in two objects, but their positron interpretation remains contentious. Here we report observations of γ-ray emission from the microquasar V404 Cygni during a recent period of strong flaring activity. The emission spectrum around 511 kiloelectronvolts shows clear signatures of variable positron annihilation, which implies a high rate of positron production. This supports the earlier conjecture that microquasars may be the main sources of the electron-positron plasma responsible for the bright diffuse emission of annihilation γ-rays in the bulge region of our Galaxy. Additionally, microquasars could be the origin of the observed megaelectronvolt continuum excess in the inner Galaxy.

  9. Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth

    NASA Astrophysics Data System (ADS)

    Abeysekara, A. U.; Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.; Barber, A. S.; Bautista-Elivar, N.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Berley, D.; Bernal, A.; Braun, J.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño de León, S.; De León, C.; De la Fuente, E.; Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Ellsworth, R. W.; Engel, K.; Enríquez-Rivera, O.; Fiorino, D. W.; Fraija, N.; García-González, J. A.; Garfias, F.; Gerhardt, M.; González Muñoz, A.; González, M. M.; Goodman, J. A.; Hampel-Arias, Z.; Harding, J. P.; Hernández, S.; Hernández-Almada, A.; Hinton, J.; Hona, B.; Hui, C. M.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Kieda, D.; Lara, A.; Lauer, R. J.; Lee, W. H.; Lennarz, D.; Vargas, H. León; Linnemann, J. T.; Longinotti, A. L.; Luis Raya, G.; Luna-García, R.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez, O.; Martinez-Castellanos, I.; Martínez-Castro, J.; Martínez-Huerta, H.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pelayo, R.; Pretz, J.; Pérez-Pérez, E. G.; Ren, Z.; Rho, C. D.; Rivière, C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salazar, H.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Vianello, G.; Weisgarber, T.; Westerhoff, S.; Wisher, I. G.; Wood, J.; Yapici, T.; Yodh, G.; Younk, P. W.; Zepeda, A.; Zhou, H.; Guo, F.; Hahn, J.; Li, H.; Zhang, H.

    2017-11-01

    The unexpectedly high flux of cosmic-ray positrons detected at Earth may originate from nearby astrophysical sources, dark matter, or unknown processes of cosmic-ray secondary production. We report the detection, using the High-Altitude Water Cherenkov Observatory (HAWC), of extended tera–electron volt gamma-ray emission coincident with the locations of two nearby middle-aged pulsars (Geminga and PSR B0656+14). The HAWC observations demonstrate that these pulsars are indeed local sources of accelerated leptons, but the measured tera–electron volt emission profile constrains the diffusion of particles away from these sources to be much slower than previously assumed. We demonstrate that the leptons emitted by these objects are therefore unlikely to be the origin of the excess positrons, which may have a more exotic origin.

  10. Transport Imaging of Multi-Junction and CIGS Solar Cell Materials

    DTIC Science & Technology

    2011-12-01

    solar cells start with the material charge transport parameters, namely the charge mobility, lifetime and diffusion length . It is the goal of...every solar cell manufacturer to maintain high carrier lifetime so as to realize long diffusion lengths . Long diffusion lengths ensure that the charges...Thus, being able to accurately determine the diffusion length of any solar cell material proves advantageous by providing insights

  11. Dependence of Exciton Diffusion Length and Diffusion Coefficient on Photophysical Parameters in Bulk Heterojunction Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Yeboah, Douglas; Singh, Jai

    2017-11-01

    Recently, the dependence of exciton diffusion length (LD ) on some photophysical parameters of organic solids has been experimentally demonstrated, however no systematic theoretical analysis of this phenomenon has been carried out. We have conducted a theoretical study by using the Förster resonance energy transfer and Dexter carrier transfer mechanisms together with the Einstein-Smoluchowski diffusion equation to derive analytical models for the diffusion lengths (LD ) and diffusion coefficients (D) of singlet (S) and triplet (T) excitons in organic solids as functions of spectral overlap integral (J) , photoluminescence (PL) quantum yield (φD ) , dipole moment (μT ) and refractive index (n) of the photoactive material. The exciton diffusion lengths and diffusion coefficients in some selected organic solids were calculated, and we found that the singlet exciton diffusion length (LDS ) increases with φD and J, and decreases with n. Also, the triplet exciton diffusion length (LDT ) increases with φD and decreases with μT . These may be achieved through doping the organic solids into broad optical energy gap host materials as observed in previous experiments. The calculated exciton diffusion lengths are compared with experimental values and a reasonably good agreement is found between them. The results presented are expected to provide insight relevant to the synthesis of new organic solids for fabrication of bulk heterojunction organic solar cells characterized by better power conversion efficiency.

  12. Zn-vacancy related defects in ZnO grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Ling, F. C. C.; Luo, C. Q.; Wang, Z. L.; Anwand, W.; Wagner, A.

    2017-02-01

    Undoped and Ga-doped ZnO (002) films were grown c-sapphire using the pulsed laser deposition (PLD) method. Znvacancy related defects in the films were studied by different positron annihilation spectroscopy (PAS). These included Doppler broadening spectroscopy (DBS) employing a continuous monenergetic positron beam, and positron lifetime spectroscopy using a pulsed monoenergetic positron beam attached to an electron linear accelerator. Two kinds of Znvacancy related defects namely a monovacancy and a divacancy were identified in the films. In as-grown undoped samples grown with relatively low oxygen pressure P(O2)≤1.3 Pa, monovacancy is the dominant Zn-vacancy related defect. Annealing these samples at 900 oC induced Zn out-diffusion into the substrate and converted the monovacancy to divacancy. For the undoped samples grown with high P(O2)=5 Pa irrespective of the annealing temperature and the as-grown degenerate Ga-doped sample (n=1020 cm-3), divacancy is the dominant Zn-vacancy related defect. The clustering of vacancy will be discussed.

  13. Radiation Belts of Antiparticles in Planetary Magnetospheres

    NASA Astrophysics Data System (ADS)

    Pugacheva, G. I.; Gusev, A. A.; Jayanthi, U. B.; Martin, I. M.; Spjeldvik, W. N.

    2007-05-01

    The Earth's radiation belts could be populated, besides with electrons and protons, also by antiparticles, such as positrons (Basilova et al., 1982) and antiprotons (pbar). Positrons are born in the decay of pions that are directly produced in nuclear reactions of trapped relativistic inner zone protons with the residual atmosphere at altitudes in the range of about 500 to 3000 km over the Earth's surface. Antiprotons are born by high energy (E > 6 GeV) cosmic rays in p+p - p+p+p+ pbar and in p+p - p+p+n+nbar reactions. The trapping and storage of these charged anti-particles in the magnetosphere result in radiation belts similar to the classical Van Allen belts of protons and electrons. We describe the mathematical techniques used for numerical simulation of the trapped positron and antiproton belt fluxes. The pion and antiproton yields were simulated on the basis of the Russian nuclear reaction computer code MSDM, a Multy Stage Dynamical Model, Monte Carlo code, (i.e., Dementyev and Sobolevsky, 1999). For estimates of positron flux there we have accounted for ionisation, bremsstrahlung, and synchrotron energy losses. The resulting numerical estimates show that the positron flux with energy >100 MeV trapped into the radiation belt at L=1.2 is of the order ~1000 m-2 s-1 sr-1, and that it is very sensitive to the shape of the trapped proton spectrum. This confined positron flux is found to be greater than that albedo, not trapped, mixed electron/positron flux of about 50 m-2 s-1 sr-1 produced by CR in the same region at the top of the geomagnetic field line at L=1.2. As we show in report, this albedo flux also consists mostly of positrons. The trapped antiproton fluxes produced by CR in the Earth's upper rarified atmosphere were calculated in the energy range from 10 MeV to several GeV. In the simulations we included a mathematic consideration of the radial diffusion process, both an inner and an outer antiproton source, losses of particles due to ionization process, annihilation, and nuclear interactions with the ambient matter. We have found that the Earth's antiproton belt possesses about 6-60 times larger antiproton fluxes compared to the galactic fluxes in interplanetary space during minimum and maximum solar activity at all energies in confinement zone. The radiation belt antiproton fluxes are spread into a wider L-shell range than its generation location around L=1.2. This is due to diffusion processes, and it demonstrates that radial diffusion as a relatively significant process for antimatter, even in the inner magnetosphere. Antimatter accumulated in the magnetospheres of solar system bodies may be of significance for space travel. It could be used as a propulsion for space missions to the outer planets and beyond. Antimatter has an energy density more than ten orders of magnitude higher than the best chemical propellants currently used in rocket systems. References: Basilova, R. N., A.A. Gusev, G.I. Pugacheva , Geom. and Aeronom. V. 22, p. 671-673, 1982.Chen, J., T. Dementyev, A.V., Sobolevsky, N.M. Radiation Measurements, 30, 553, 1999.

  14. Studies Of Oxidation And Thermal Reduction Of The Cu(100) Surface Using Positron Annihilation Induced Auger Electron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Nadesalingam, M. P.; Maddox, W.; Weiss, A. H.

    2011-06-01

    Positron annihilation induced Auger electron spectroscopy (PAES) measurements from the surface of an oxidized Cu(100) single crystal show a large increase in the intensity of the annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 °C. The PAES intensity then decreases monotonically as the annealing temperature is increased to ˜550 °C. Experimental positron annihilation probabilities with Cu 3p and O 1s core electrons are estimated from the measured intensities of the positron annihilation induced Cu M2,3VV and O KLL Auger transitions. PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of the surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface and various surface structures associated with low and high oxygen coverages. The variations in atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface are found to affect localization and spatial extent of the positron surface state wave function. The computed positron binding energy and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface. Theoretical positron annihilation probabilities with Cu 3p and O 1s core electrons computed for the oxidized Cu(100) surface are compared with experimental ones. The obtained results provide a demonstration of thermal reduction of the copper oxide surface after annealing at 300 °C followed by re-oxidation of the Cu(100) surface at higher annealing temperatures presumably due to diffusion of subsurface oxygen to the surface.

  15. Studies Of Oxidation And Thermal Reduction Of The Cu(100) Surface Using Positron Annihilation Induced Auger Electron Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fazleev, N. G.; Department of Physics, Kazan State University, Kazan 420008; Nadesalingam, M. P.

    2011-06-01

    Positron annihilation induced Auger electron spectroscopy (PAES) measurements from the surface of an oxidized Cu(100) single crystal show a large increase in the intensity of the annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 deg. C. The PAES intensity then decreases monotonically as the annealing temperature is increased to {approx}550 deg. C. Experimental positron annihilation probabilities with Cu 3p and O 1s core electrons are estimated from the measured intensities of the positron annihilation induced Cu M{sub 2,3}VV and O KLL Auger transitions. PAESmore » results are analyzed by performing calculations of positron surface states and annihilation probabilities of the surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface and various surface structures associated with low and high oxygen coverages. The variations in atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface are found to affect localization and spatial extent of the positron surface state wave function. The computed positron binding energy and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface. Theoretical positron annihilation probabilities with Cu 3p and O 1s core electrons computed for the oxidized Cu(100) surface are compared with experimental ones. The obtained results provide a demonstration of thermal reduction of the copper oxide surface after annealing at 300 deg. C followed by re-oxidation of the Cu(100) surface at higher annealing temperatures presumably due to diffusion of subsurface oxygen to the surface.« less

  16. Estimating the spin diffusion length and the spin Hall angle from spin pumping induced inverse spin Hall voltages

    NASA Astrophysics Data System (ADS)

    Roy, Kuntal

    2017-11-01

    There exists considerable confusion in estimating the spin diffusion length of materials with high spin-orbit coupling from spin pumping experiments. For designing functional devices, it is important to determine the spin diffusion length with sufficient accuracy from experimental results. An inaccurate estimation of spin diffusion length also affects the estimation of other parameters (e.g., spin mixing conductance, spin Hall angle) concomitantly. The spin diffusion length for platinum (Pt) has been reported in the literature in a wide range of 0.5-14 nm, and in particular it is a constant value independent of Pt's thickness. Here, the key reasonings behind such a wide range of reported values of spin diffusion length have been identified comprehensively. In particular, it is shown here that a thickness-dependent conductivity and spin diffusion length is necessary to simultaneously match the experimental results of effective spin mixing conductance and inverse spin Hall voltage due to spin pumping. Such a thickness-dependent spin diffusion length is tantamount to the Elliott-Yafet spin relaxation mechanism, which bodes well for transitional metals. This conclusion is not altered even when there is significant interfacial spin memory loss. Furthermore, the variations in the estimated parameters are also studied, which is important for technological applications.

  17. Study of submonolayer films of Au/Cu(100) and Pd/Cu(100) using positron annihilation induced auger electron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, K.D.

    1992-01-01

    Positron Annihilation induced Auger Electron Spectroscopy (PAES), electron induced Auger Electron Spectroscopy (EAES), and Low Energy Electron Diffraction (LEED) have been used to study the surface composition, surface alloying and overlayer formation of ultrathin films of Au and Pd on Cu(100). This is the first systematic application of PAES to the study of the surface properties of ultrathin layers of metals on metal substrates. Temperature induced changes in the top layer surface compositions in Au/Cu(100) and Pd/Cu(100) are directly observed using PAES, while EAES spectra indicate only minor changes. The surface alloying of the Au/Cu(100) and Pd/Cu(100) systems are demonstratedmore » using PAES in conjunction with LEED. The PAES intensity measurements also provide evidence for positron trapping at surface defects such as steps, kinks and isolated adatoms. The PAES intensity was found to be strongly dependent on surface effects introduced by ion sputtering. The surface defect dependence of the PAES intensity is interpreted in terms of the surface atomic diffusion and positron trapping at surface defects in Au/Cu(100) and Pd/Cu(100). In both systems the shapes of the PAES intensity versus coverage curves for submonolayer coverages at 173K are quite distinct indicating differences in overlayer growth and diffusion behavior of Au and Pd adatoms on the Cu(100) surface. PAES intensities for both Au and Pd are saturated at 1 monolayer demonstrating the extreme surface selectivity of PAES.« less

  18. Slow positron studies of hydrogen activation/passivation on SiO2/Si(100) interfaces

    NASA Astrophysics Data System (ADS)

    Lynn, K. G.; Asoka-Kumar, P.

    The hydrogen atoms are one of the most common impurity species found in semiconductor systems owing to its large diffusivity, and are easily incorporated either in a controlled process like in ion implantation or in an uncontrolled process like the one at the fabrication stage. Hydrogen can passivate dangling bonds and dislocations in these systems and hence can be used to enhance the electrical properties. In a SiO2/Si system, hydrogen can passivate electronic states at the interface and can alter the fixed or mobile charges in the oxide layer. Since hydrogen is present in almost all of the environments of SiO2/Si wafer fabrication, the activation energy of hydrogen atoms is of paramount importance to a proper understanding of SiO2/Si based devices and has not been measured on the technologically most important Si(100) face. There are no direct, nondestructive methods available to observe hydrogen injection into the oxide layer and subsequent diffusion. The positrons are used as a 'sensitive', nondestructive probe to observe hydrogen interaction in the oxide layer and the interface region. A new way is described of characterizing the changes in the density of the interface states under a low temperature annealing using positrons.

  19. Positron annihilation studies of the AlOx/SiO2/Si interface in solar cell structures

    NASA Astrophysics Data System (ADS)

    Edwardson, C. J.; Coleman, P. G.; Li, T.-T. A.; Cuevas, A.; Ruffell, S.

    2012-03-01

    Film and film/substrate interface characteristics of 30 and 60 nm-thick AlOx films grown on Si substrates by thermal atomic layer deposition (ALD), and 30 nm-thick AlOx films by sputtering, have been probed using variable-energy positron annihilation spectroscopy (VEPAS) and Doppler-broadened spectra ratio curves. All samples were found to have an interface which traps positrons, with annealing increasing this trapping response, regardless of growth method. Thermal ALD creates an AlOx/SiOx/Si interface with positron trapping and annihilation occurring in the Si side of the SiOx/Si boundary. An induced positive charge in the Si next to the interface reduces diffusion into the oxides and increases annihilation in the Si. In this region there is a divacancy-type response (20 ± 2%) before annealing which is increased to 47 ± 2% after annealing. Sputtering seems to not produce samples with this same electrostatic shielding; instead, positron trapping occurs directly in the SiOx interface in the as-deposited sample, and the positron response to it increases after annealing as an SiO2 layer is formed. Annealing the film has the effect of lowering the film oxygen response in all film types. Compared to other structural characterization techniques, VEPAS shows larger sensitivity to differences in film preparation method and between as-deposited and annealed samples.

  20. Nonlinear optical susceptibilities in the diffusion modified AlxGa1-xN/GaN single quantum well

    NASA Astrophysics Data System (ADS)

    Das, T.; Panda, S.; Panda, B. K.

    2018-05-01

    Under thermal treatment of the post growth AlGaN/GaN single quantum well, the diffusion of Al and Ga atoms across the interface is expected to form the diffusion modified quantum well with diffusion length as a quantitative parameter for diffusion. The modification of confining potential and position-dependent effective mass in the quantum well due to diffusion is calculated taking the Fick's law. The built-in electric field which arises from spontaneous and piezoelectric polarizations in the wurtzite structure is included in the effective mass equation. The electronic states are calculated from the effective mass equation using the finite difference method for several diffusion lengths. Since the effective well width decreases with increasing diffusion length, the energy levels increase with it. The intersubband energy spacing in the conduction band decreases with diffusion length due to built-in electric field and reduction of effective well width. The linear susceptibility for first-order and the nonlinear second-order and third-order susceptibilities are calculated using the compact density matrix approach taking only two levels. The calculated susceptibilities are red shifted with increase in diffusion lengths due to decrease in intersubband energy spacing.

  1. Effect of short wavelength illumination on the characteristic bulk diffusion length in ribbon silicon solar cells

    NASA Technical Reports Server (NTRS)

    Ho, C. T.; Mathias, J. D.

    1981-01-01

    The influence of short wavelength light on the characteristic bulk minority carrier diffusion length of the ribbon silicon photovoltaic cell has been investigated. We have measured the intensity and wavelength dependence of the diffusion length in an EFG ribbon cell, and compared it with a standard Czochralski grown silicon cell. While the various short wavelength illuminations have shown no influence on the diffusion length in the CZ cell, the diffusion lengths in the ribbon cell exhibit a strong dependence on the volume generation rate as well as on the wavelength of the superimposed lights. We have concluded that the trap-filling phenomenon at various depths in the bulk neutral region of the cell is consistent with the experimental observation.

  2. Near Field Imaging of Gallium Nitride Nanowires for Characterization of Minority Carrier Diffusion

    DTIC Science & Technology

    2009-12-01

    diffusion length in nanowires is critical to potential applications in solar cells , spectroscopic sensing, and/or lasers and light emitting diodes (LED...technique has been successfully demonstrated with thin film solar cell materials [4, 5]. In these experiments, the diffusion length was measured using a...minority carrier diffusion length . This technique has been used in the near-field collection mode to image the diffusion of holes in n-type GaN

  3. Theoretical aspects of studies of high coverage oxidation of the Cu(100) surface using low energy positrons

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Maddox, W. B.

    2010-10-01

    The study of adsorption of oxygen on transition metal surface is important for the understanding of oxidation, heterogeneous catalysis, and metal corrosion. The structures formed on transition metal surfaces vary from simple adlayers of chemisorbed oxygen to oxygen diffusion into the sub-surface region and the formation of oxides. In this work we present the results of an ab-initio investigation of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. Calculations are performed for various high coverage missing row structures ranging between 0.50 and 1.50 ML oxygen coverage. Calculations are also performed for the on-surface adsorption of oxygen on the unreconstructed Cu(001) surface for coverages up to one monolayer to use for comparison. The geometry of the surfaces with adsorbed oxygen is fully optimized. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy.

  4. Dark matter "transporting" mechanism explaining positron excesses

    NASA Astrophysics Data System (ADS)

    Kim, Doojin; Park, Jong-Chul; Shin, Seodong

    2018-04-01

    We propose a novel mechanism to explain the positron excesses, which are observed by satellite-based telescopes including PAMELA and AMS-02, in dark matter (DM) scenarios. The novelty behind the proposal is that it makes direct use of DM around the Galactic Center where DM populates most densely, allowing us to avoid tensions from cosmological and astrophysical measurements. The key ingredients of this mechanism include DM annihilation into unstable states with a very long laboratory-frame life time and their "retarded" decay near the Earth to electron-positron pair(s) possibly with other (in)visible particles. We argue that this sort of explanation is not in conflict with relevant constraints from big bang nucleosynthesis and cosmic microwave background. Regarding the resultant positron spectrum, we provide a generalized source term in the associated diffusion equation, which can be readily applicable to any type of two-"stage" DM scenarios wherein production of Standard Model particles occurs at completely different places from those of DM annihilation. We then conduct a data analysis with the recent AMS-02 data to validate our proposal.

  5. Progress Towards a Microtrap Array for Positron Storage

    NASA Astrophysics Data System (ADS)

    Narimannezhad, Alireza; Weber, Marc H.; Jennings, Joshah; Minnal, Chandrasekar; Lynn, Kelvin G.

    2014-10-01

    The storage of positrons has been a key for antimatter research and applications. One important goal is the attempt to reach higher densities of confined antimatter particles. Progress in this area is explored through a novel microtrap array with large length to radius aspect ratios and radii of the order of tens of microns. The proposed design consists of microtraps with substantially lower barrier potentials than conventional Penning-Malmberg traps arranged in parallel within a single magnet. Simulations showed positron plasma with 1E10 cm-3 density evolves toward a rigid-rotation phase in each microtrap while 10 V barriers confined the plasma axially. A trap of 4 cm length including more than 20,000 microtubes with 50 micron radii was fabricated and tested. Experiments conducted with electrons in a test structure addressing each microtube with a narrow beam will be described. This will explore the basic physics of the microtraps. Observed results were promising and they open a new avenue for manipulating high-density non-neutral plasmas. This work was supported by the Army Research Laboratory under Contract W9113M-09-C-0075, and the Office of Naval Research under Award #N00014-10-1-0543.

  6. Potassium acceptor doping of ZnO crystals

    NASA Astrophysics Data System (ADS)

    Parmar, Narendra S.; Corolewski, Caleb D.; McCluskey, Matthew D.; Lynn, K. G.

    2015-05-01

    ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ˜1 × 1016 cm-3. IR measurements show a local vibrational mode (LVM) at 3226 cm-1, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O-H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2378 cm-1. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV.

  7. Vacancy clustering and its dissociation process in electroless deposited copper films studied by monoenergetic positron beams

    NASA Astrophysics Data System (ADS)

    Uedono, A.; Yamashita, Y.; Tsutsui, T.; Dordi, Y.; Li, S.; Oshima, N.; Suzuki, R.

    2012-05-01

    Positron annihilation was used to probe vacancy-type defects in electroless deposited copper films. For as-deposited films, two different types of vacancy-type defects were found to coexist; these were identified as vacancy aggregates (V3-V4) and larger vacancy clusters (˜V10). After annealing at about 200 °C, the defects started to diffuse toward the surface and aggregate. The same tendency has been observed for sulfur only, suggesting the formation of complexes between sulfur and vacancies. The defect concentration near the Cu/barrier-metal interface was high even after annealing above 600 °C, and this was attributed to an accumulation of vacancy-impurity complexes. The observed defect reactions were attributed to suppression of the vacancy diffusion to sinks through the formation of impurity-vacancy complexes. It was shown that electroless plating has a high potential to suppress the formation of voids/hillocks caused by defect migration.

  8. Evaluation of (/sup 18/F)-4-fluoroantipyrine as a new blood flow tracer for multiradionuclide autoradiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sako, K.; Diksic, M.; Kato, A.

    This article reports the evaluation of (/sup 18/F)-4-fluoroantipyrine (FAP) as a quantitative blood flow tracer by comparing blood flow measured with (/sup 18/F)FAP to that determined simultaneously with (/sup 14/C)-4-iodoantipyrine (IAP), a standard blood flow tracer, by means of double-tracer autoradiography. The single-pass extraction value (m), which indicates diffusibility of a tracer, was determined according to the procedure described by Crone. The diffusibility of FAP was essentially the same as that of IAP. The brain-blood partition coefficient for FAP was found to be similar to that for IAP, 0.89 +/- 0.01. Values of local cerebral blood flow obtained with FAPmore » agree with those determined with IAP. From these results, we concluded that FAP is indeed as good a blood flow tracer as IAP. Since /sup 18/F is a positron-emitting radionuclide, it might be a useful tracer for blood flow measurement by positron emission tomography.« less

  9. Decaying fermionic dark matter search with CALET

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; Motz, H.; Torii, S.; Asaoka, Y.

    2017-08-01

    The ISS-based CALET (CALorimetric Electron Telescope) detector can play an important role in indirect search for Dark Matter (DM), measuring the electron+positron flux in the TeV region for the first time directly. With its fine energy resolution of approximately 2% and good proton rejection ratio (1:105) it has the potential to search for fine structures in the Cosmic Ray (CR) electron spectrum. In this context we discuss the ability of CALET to discern between signals originating from astrophysical sources and DM decay. We fit a parametrization of the local interstellar electron and positron spectra to current measurements, with either a pulsar or 3-body decay of fermionic DM as the extra source causing the positron excess. The expected CALET data for scenarios in which DM decay explains the excess are calculated and analyzed. The signal from this particular 3-body DM decay which can explain the recent measurements from the AMS-02 experiment is shown to be distinguishable from a single pulsar source causing the positron excess by 5 years of observation with CALET, based on the shape of the spectrum. We also study the constraints from diffuse γ-ray data on this DM-only explanation of the positron excess and show that especially for the possibly remaining parameter space a clearly identifiable signature in the CR electron spectrum exists.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, S.; Torii, S.; Motz, H.

    The ISS-based CALET (CALorimetric Electron Telescope) detector can play an important role in indirect search for Dark Matter (DM), measuring the electron+positron flux in the TeV region for the first time directly. With its fine energy resolution of approximately 2% and good proton rejection ratio (1:10{sup 5}) it has the potential to search for fine structures in the Cosmic Ray (CR) electron spectrum. In this context we discuss the ability of CALET to discern between signals originating from astrophysical sources and DM decay. We fit a parametrization of the local interstellar electron and positron spectra to current measurements, with eithermore » a pulsar or 3-body decay of fermionic DM as the extra source causing the positron excess. The expected CALET data for scenarios in which DM decay explains the excess are calculated and analyzed. The signal from this particular 3-body DM decay which can explain the recent measurements from the AMS−02 experiment is shown to be distinguishable from a single pulsar source causing the positron excess by 5 years of observation with CALET, based on the shape of the spectrum. We also study the constraints from diffuse γ-ray data on this DM-only explanation of the positron excess and show that especially for the possibly remaining parameter space a clearly identifiable signature in the CR electron spectrum exists.« less

  11. Measurement of minority carrier diffusion lengths in GaAs nanowires by a nanoprobe technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darbandi, A.; Watkins, S. P., E-mail: simonw@sfu.ca

    Minority carrier diffusion lengths in both p-type and n-type GaAs nanowires were studied using electron beam induced current by means of a nanoprobe technique without lithographic processing. The diffusion lengths were determined for Au/GaAs rectifying junctions as well as axial p-n junctions. By incorporating a thin lattice-matched InGaP passivating shell, a 2-fold enhancement in the minority carrier diffusion lengths and one order of magnitude reduction in the surface recombination velocity were achieved.

  12. Investigation of diffusion length distribution on polycrystalline silicon wafers via photoluminescence methods

    PubMed Central

    Lou, Shishu; Zhu, Huishi; Hu, Shaoxu; Zhao, Chunhua; Han, Peide

    2015-01-01

    Characterization of the diffusion length of solar cells in space has been widely studied using various methods, but few studies have focused on a fast, simple way to obtain the quantified diffusion length distribution on a silicon wafer. In this work, we present two different facile methods of doing this by fitting photoluminescence images taken in two different wavelength ranges or from different sides. These methods, which are based on measuring the ratio of two photoluminescence images, yield absolute values of the diffusion length and are less sensitive to the inhomogeneity of the incident laser beam. A theoretical simulation and experimental demonstration of this method are presented. The diffusion length distributions on a polycrystalline silicon wafer obtained by the two methods show good agreement. PMID:26364565

  13. Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth.

    PubMed

    Abeysekara, A U; Albert, A; Alfaro, R; Alvarez, C; Álvarez, J D; Arceo, R; Arteaga-Velázquez, J C; Avila Rojas, D; Ayala Solares, H A; Barber, A S; Bautista-Elivar, N; Becerril, A; Belmont-Moreno, E; BenZvi, S Y; Berley, D; Bernal, A; Braun, J; Brisbois, C; Caballero-Mora, K S; Capistrán, T; Carramiñana, A; Casanova, S; Castillo, M; Cotti, U; Cotzomi, J; Coutiño de León, S; De León, C; De la Fuente, E; Dingus, B L; DuVernois, M A; Díaz-Vélez, J C; Ellsworth, R W; Engel, K; Enríquez-Rivera, O; Fiorino, D W; Fraija, N; García-González, J A; Garfias, F; Gerhardt, M; González Muñoz, A; González, M M; Goodman, J A; Hampel-Arias, Z; Harding, J P; Hernández, S; Hernández-Almada, A; Hinton, J; Hona, B; Hui, C M; Hüntemeyer, P; Iriarte, A; Jardin-Blicq, A; Joshi, V; Kaufmann, S; Kieda, D; Lara, A; Lauer, R J; Lee, W H; Lennarz, D; Vargas, H León; Linnemann, J T; Longinotti, A L; Luis Raya, G; Luna-García, R; López-Coto, R; Malone, K; Marinelli, S S; Martinez, O; Martinez-Castellanos, I; Martínez-Castro, J; Martínez-Huerta, H; Matthews, J A; Miranda-Romagnoli, P; Moreno, E; Mostafá, M; Nellen, L; Newbold, M; Nisa, M U; Noriega-Papaqui, R; Pelayo, R; Pretz, J; Pérez-Pérez, E G; Ren, Z; Rho, C D; Rivière, C; Rosa-González, D; Rosenberg, M; Ruiz-Velasco, E; Salazar, H; Salesa Greus, F; Sandoval, A; Schneider, M; Schoorlemmer, H; Sinnis, G; Smith, A J; Springer, R W; Surajbali, P; Taboada, I; Tibolla, O; Tollefson, K; Torres, I; Ukwatta, T N; Vianello, G; Weisgarber, T; Westerhoff, S; Wisher, I G; Wood, J; Yapici, T; Yodh, G; Younk, P W; Zepeda, A; Zhou, H; Guo, F; Hahn, J; Li, H; Zhang, H

    2017-11-17

    The unexpectedly high flux of cosmic-ray positrons detected at Earth may originate from nearby astrophysical sources, dark matter, or unknown processes of cosmic-ray secondary production. We report the detection, using the High-Altitude Water Cherenkov Observatory (HAWC), of extended tera-electron volt gamma-ray emission coincident with the locations of two nearby middle-aged pulsars (Geminga and PSR B0656+14). The HAWC observations demonstrate that these pulsars are indeed local sources of accelerated leptons, but the measured tera-electron volt emission profile constrains the diffusion of particles away from these sources to be much slower than previously assumed. We demonstrate that the leptons emitted by these objects are therefore unlikely to be the origin of the excess positrons, which may have a more exotic origin. Copyright © 2017, American Association for the Advancement of Science.

  14. THE GALACTIC POSITRON ANNIHILATION RADIATION AND THE PROPAGATION OF POSITRONS IN THE INTERSTELLAR MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higdon, J. C.; Lingenfelter, R. E.; Rothschild, R. E.

    2009-06-10

    The ratio of the luminosity of diffuse 511 keV positron annihilation radiation, measured by INTEGRAL in its four years, from a Galactic 'positron bulge' (<1.5 kpc) compared to that of the disk is {approx}1.4. This ratio is roughly 4 times larger than that expected simply from the stellar bulge-to-disk ratio of {approx}0.33 of the Galactic supernovae (SNe), which are thought to be the principal source of the annihilating positrons through the decay of radionuclei made by explosive nucleosynthesis in the SNe. This large discrepancy has prompted a search for new sources. Here, however, we show that the measured 511 keVmore » luminosity ratio can be fully understood in the context of a Galactic SN origin when the differential propagation of these {approx} MeV positrons in the various phases of the interstellar medium is taken into consideration, since these relativistic positrons must first slow down to energies {<=}10 eV before they can annihilate. Moreover, without propagation, none of the proposed positron sources, new or old, can explain the two basic properties on the Galactic annihilation radiation: the fraction of the annihilation that occurs through positronium formation and the ratio of the broad/narrow components of the 511 keV line. In particular, we show that in the neutral phases of the interstellar medium, which fill most of the disk (>3.5 kpc), the cascade of the magnetic turbulence, which scatters the positrons, is damped by ion-neutral friction, allowing positrons to stream along magnetic flux tubes. We find that nearly 1/2 of the positrons produced in the disk escape from it into the halo. On the other hand, we show that within the extended, or interstellar, bulge (<3.5 kpc), essentially all of the positrons are born in the hot plasmas which fill that volume. We find that the diffusion mean free path is long enough that only a negligible fraction annihilate there and {approx}80% of them escape down into the H II and H I envelopes of molecular clouds that lie within 1.5 kpc before they slow down and annihilate, while the remaining {approx}20% escape out into the halo and the disk beyond. This propagation accounts for the low observed annihilation radiation luminosity of the disk compared to the bulge. In addition, we show that the primary annihilation sites of the propagating positrons in both the bulge and the disk are in the warm ionized phases of the interstellar medium. Such annihilation can also account for those two basic properties of the emission, the fraction ({approx}93% {+-} 7%) of annihilation via positronium and the ratio ({approx}0.5) of broad ({approx}5.4 keV) to narrow ({approx}1.3 keV) components of the bulge 511 keV line emission. Moreover, we expect that the bulk of this broad line emission comes from the tilted disk region (0.5 < R < 1.5 kpc) with a very large broad/narrow flux ratio of {approx}6, while much of the narrow line emission comes from the inner bulge (R < 0.5 kpc) with a negligible broad/narrow flux ratio. Separate spectral analyses of the 511 keV line emission from these two regions should be able to test this prediction, and further probe the structure of the interstellar medium. Lastly, we show that the asymmetry in the inner disk annihilation line flux, which has been suggested as added evidence for new sources, can also be fully understood from positron propagation and the asymmetry in the inner spiral arms as viewed from our solar perspective without any additional sources.« less

  15. Measurements of cosmic-ray electrons and positrons by the Wizard/CAPRICE collaboration

    NASA Astrophysics Data System (ADS)

    Boezio, M.; Barbiellini, G.; Bonvicini, V.; Schiavon, P.; Vacchi, A.; Zampa, N.; Bergström, D.; Carlson, P.; Francke, T.; Grinstein, S.; Weber, N.; Suffert, M.; Hof, M.; Kremer, J.; Menn, W.; Simon, M.; Stephens, S. A.; Ambriola, M.; Bellotti, R.; Cafagna, F. S.; Ciacio, F.; Circella, M.; De Marzo, C.; Finetti, N.; Papini, P.; Piccardi, S.; Spillantini, P.; Bartalucci, S.; Ricci, M.; Grimani, C.; Casolino, M.; De Pascale, M. P.; Morselli, A.; Picozza, P.; Sparvoli, R.; Mitchell, J. W.; Ormes, J. F.; Streitmatter, R. E.; Bravar, U.; Stochaj, S. J.

    Two recent ballon-borne experiments have been performed by the WiZard/CAPRICE collaboration in order to study the electron and positron components in the cosmic radiation. On 1994 August 8-9 the CAPRICE94 experiment flew from norther Canada and on 1998 May 28-29 the CAPRICE98 experiment flew from New Mexico, USA at altitudes corresponding to 3.9 and 5.5 g/cm 2 of average residual atmosphere respectively. The apparatus were equipped with a Ring Imaging Cherenkov (RICH) detector, a time-of-flight system, a superconducting magnet spectrometer with a tracking system and a 7-radiation-length silicon-tungsten imaging calorimeter. The RICH used in 1994 had a solid NaF radiator while in 1998 the RICH had a C 4F 10 gaseous radiator. We report on the electron and positron spectra and positron fraction at the top of the atmosphere from few hundred MeV to 40 GeV measured by these two experiments.

  16. Visualisation and Quantification of Transport in Barrier Rocks with Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Kulenkampff, J.; Gajewski, C.; Gründig, M.; Lippmann-Pipke, J.; Mittmann, H.; Richter, M.; Wolf, M.

    2009-04-01

    In tight barrier rocks laboratory observation of radionuclide transport and determination of transport parameters is a demanding and interminable task, because of slow rates, small concentrations, and intricate chemical interactions. The validity of results from common laboratory methods, like flow- and diffusion experiments on small samples, is limited by the heterogeneity of the pathways and adherent upscaling issues, because homogeneous conditions have to be presumed for these input-output investigations. But nano-pores or micro-fractures could be present, which would provide pathways for heterogeneous transport processes. Transport properties of these pathways are most influential boundary conditions for reactions between fluid components and crystal surfaces. We propose Positron Emission Tomography (GEO-PET) as an appropriate method for direct observation of heterogeneous transport of radiotracers in tight material on the laboratory scale. With high-resolution PET scanners, which are common instruments of biomedical research ("small animal PET"), it is possible to determine the spatio-temporal distribution of the tracer activity with a resolution of almost 1 mm during about three periods of the tracer half-life (half-lives of some applicable PET tracers: 18F: 1.8 h, 124I: 4.2 days, 58Co: 70.8 days). The PET tracer is applied as ion in solution or as marker for compounds, like colloids. The most considerable difference between PET applications on geomaterial compared to biological tissue is the stronger attenuation and scattering of radiation because of the higher density of rock material. After travelling the positron attenuation length in dense material (about 1 mm), the positron annihilates in contact with an electron, transmitting two photons with 511 keV, propagating in antiparallel direction. The sample size of geomaterial is limited by the attenuation length of these photons. By applying an appropriate attenuation correction it is possible to investigate transport processes in rock cores with diameters up to 10 cm. Then at least 20% of the initial annihilation events are recorded as coincidences. However, one single photon of the annihilation radiation may be recorded while the other is absorbed; therefore, the signal to noise ratio is degraded by attenuation. Other sources of noise are scattered events, and the loss of one coinciding photon due to gaps between the detectors and other detection probability reasons. Also, the ratio of random coincidences increases with the noise level and impairs the image quality of the tomographic reconstruction. The reduction of these reconstruction artefacts by enhanced data correction methods is an important requirement for the development of the GEO-PET method. An other problem is the development of special methods for the quantitative evaluation of the extensive spatio-temporal data sets. We present results from high-resolution PET for tomographic process observation during transport of colloids and conservative tracers in macroscopic samples of clays, saline rocks, and granites (diameter 5 to 10 cm, length 5 to 20 cm). In most cases we observed localized zones of transport, even in a homogenized compressed clay sample. This reflects the non-representative sample volume, which probably is not achievable for any laboratory method. However, at least the PET tomograms reveal these deviations from representativeness. Up to now, break-through-curve parameters can be determined from spatially resolved tracer concentration measurements at distinct regions of the sample, without mandatory penetration of the complete sample extension. A multiscale model-based inversion scheme for continuous scale-dependent parameter determination is currently developed.

  17. Determination of axial and lateral exciton diffusion length in GaN by electron energy dependent cathodoluminescence

    NASA Astrophysics Data System (ADS)

    Hocker, Matthias; Maier, Pascal; Jerg, Lisa; Tischer, Ingo; Neusser, Gregor; Kranz, Christine; Pristovsek, Markus; Humphreys, Colin J.; Leute, Robert A. R.; Heinz, Dominik; Rettig, Oliver; Scholz, Ferdinand; Thonke, Klaus

    2016-08-01

    We demonstrate the application of low-temperature cathodoluminescence (CL) with high lateral, depth, and spectral resolution to determine both the lateral (i.e., perpendicular to the incident primary electron beam) and axial (i.e., parallel to the electron beam) diffusion length of excitons in semiconductor materials. The lateral diffusion length in GaN is investigated by the decrease of the GaN-related luminescence signal when approaching an interface to Ga(In)N based quantum well stripes. The axial diffusion length in GaN is evaluated from a comparison of the results of depth-resolved CL spectroscopy (DRCLS) measurements with predictions from Monte Carlo simulations on the size and shape of the excitation volume. The lateral diffusion length was found to be (95 ± 40) nm for nominally undoped GaN, and the axial exciton diffusion length was determined to be (150 ± 25) nm. The application of the DRCLS method is also presented on a semipolar (11 2 ¯ 2 ) sample, resulting in a value of (70 ± 10) nm in p-type GaN.

  18. Channeling and radiation of 855 MeV electrons and positrons in straight and bent tungsten (1 1 0) crystals

    NASA Astrophysics Data System (ADS)

    Shen, H.; Zhao, Q.; Zhang, F. S.; Sushko, Gennady B.; Korol, Andrei V.; Solov'yov, Andrey V.

    2018-06-01

    Planar channeling of 855 MeV electrons and positrons in straight and bent tungsten (1 1 0) crystal is simulated by means of the MBN EXPLORER software package. The results of simulations for a broad range of bending radii are analyzed in terms of the channel acceptance, dechanneling length, and spectral distribution of the emitted radiation. Comparison of the results with predictions of other theories as well as with the data for (1 1 0) oriented diamond, silicon and germanium crystals is carried out.

  19. Length distributions of Au-catalyzed III-V nanowires in different regimes of the diffusion-induced growth

    NASA Astrophysics Data System (ADS)

    Berdnikov, Y.; Zhiglinsky, A. A.; Rylkova, M. V.; Dubrovskii, V. G.

    2017-11-01

    We present a model for kinetic broadening effects on the length distributions of Au-catalyzed III-V nanowires obtained in the growth regime with adatom diffusion from the substrate and the nanowire sidewalls to the top. We observe three different regimes for the length distribution evolution with time. For short growth times, the length distribution is sub-Poissonian, converting to broader than Poissonian with increasing the mean length above a certain threshold value. After the diffusion flux from the nanowire sidewalls has stabilized, the length distribution variance increases linearly with the mean length, as in the Poissonian process.

  20. Diffusion length variation and proton damage coefficients for InP/In(x)Ga(1-x)As/GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Jain, R. K.; Weinberg, I.; Flood, D. J.

    1993-01-01

    Indium phosphide solar cells are more radiation resistant than gallium arsenide and silicon solar cells, and their growth by heteroepitaxy offers additional advantages leading to the development of lighter, mechanically strong and cost-effective cells. Changes in heteroepitaxial InP cell efficiency under 0.5 and 3 MeV proton irradiations are explained by the variation in the minority-carrier diffusion length. The base diffusion length versus proton fluence is calculated by simulating the cell performance. The diffusion length damage coefficient K(L) is plotted as a function of proton fluence.

  1. Measurement of N-Type 6H SiC Minority-Carrier Diffusion Lengths by Electron Bombardment of Schottky Barriers

    NASA Technical Reports Server (NTRS)

    Hubbard, S. M.; Tabib-Azar, M.; Balley, S.; Rybickid, G.; Neudeck, P.; Raffaelle, R.

    2004-01-01

    Minority-Carrier diffusion lengths of n-type 6H-SiC were measured using the electron-beam induced current (EBIC) technique. Experimental values of primary beam current, EBIC, and beam voltage were obtained for a variety of SIC samples. This data was used to calculate experimental diode efficiency vs. beam voltage curves. These curves were fit to theoretically calculated efficiency curves, and the diffusion length and metal layer thickness were extracted. The hole diffusion length in n-6H SiC ranged from 0.93 +/- 0.15 microns.

  2. Dusty Pair Plasma—Wave Propagation and Diffusive Transition of Oscillations

    NASA Astrophysics Data System (ADS)

    Atamaniuk, Barbara; Turski, Andrzej J.

    2011-11-01

    The crucial point of the paper is the relation between equilibrium distributions of plasma species and the type of propagation or diffusive transition of plasma response to a disturbance. The paper contains a unified treatment of disturbance propagation (transport) in the linearized Vlasov electron-positron and fullerene pair plasmas containing charged dust impurities, based on the space-time convolution integral equations. Electron-positron-dust/ion (e-p-d/i) plasmas are rather widespread in nature. Space-time responses of multi-component linearized Vlasov plasmas on the basis of multiple integral equations are invoked. An initial-value problem for Vlasov-Poisson/Ampère equations is reduced to the one multiple integral equation and the solution is expressed in terms of forcing function and its space-time convolution with the resolvent kernel. The forcing function is responsible for the initial disturbance and the resolvent is responsible for the equilibrium velocity distributions of plasma species. By use of resolvent equations, time-reversibility, space-reflexivity and the other symmetries are revealed. The symmetries carry on physical properties of Vlasov pair plasmas, e.g., conservation laws. Properly choosing equilibrium distributions for dusty pair plasmas, we can reduce the resolvent equation to: (i) the undamped dispersive wave equations, (ii) and diffusive transport equations of oscillations.

  3. The origins and properties of intrinsic nonradiative recombination centers in wide bandgap GaN and AlGaN

    NASA Astrophysics Data System (ADS)

    Chichibu, S. F.; Uedono, A.; Kojima, K.; Ikeda, H.; Fujito, K.; Takashima, S.; Edo, M.; Ueno, K.; Ishibashi, S.

    2018-04-01

    The nonradiative lifetime (τNR) of the near-band-edge emission in various quality GaN samples is compared with the results of positron annihilation measurement, in order to identify the origin and to determine the capture-cross-section of the major intrinsic nonradiative recombination centers (NRCs). The room-temperature τNR of various n-type GaN samples increased with decreasing the concentration of divacancies composed of a Ga vacancy (VGa) and a N vacancy (VN), namely, VGaVN. The τNR value also increased with increasing the diffusion length of positrons, which is almost proportional to the inverse third root of the gross concentration of all point defects. The results indicate that major intrinsic NRC in n-type GaN is VGaVN. From the relationship between its concentration and τNR, its hole capture-cross-section is estimated to be about 7 × 10-14 cm2. Different from the case of 4H-SiC, the major NRCs in p-type and n-type GaN are different: the major NRCs in Mg-doped p-type GaN epilayers are assigned to multiple vacancies containing a VGa and two (or three) VNs, namely, VGa(VN)n (n = 2 or 3). The ion-implanted Mg-doped GaN films are found to contain larger size vacancy complexes such as (VGa)3(VN)3. In analogy with GaN, major NRCs in Al0.6Ga0.4N alloys are assigned to vacancy complexes containing an Al vacancy or a VGa.

  4. Spectra of Cosmic Ray Electrons and Diffuse Gamma Rays with the Constraints of AMS-02 and HESS Data

    NASA Astrophysics Data System (ADS)

    Chen, Ding; Huang, Jing; Jin, Hong-Bo

    2015-10-01

    Recently, AMS-02 reported their results of cosmic ray (CR) observations. In addition to the AMS-02 data, we add HESS data to estimate the spectra of CR electrons and the diffuse gamma rays above TeV. In the conventional diffusion model, a global analysis is performed on the spectral features of CR electrons and the diffuse gamma rays by the GALRPOP package. The results show that the spectrum structure of the primary component of CR electrons cannot be fully reproduced by a simple power law and that the relevant break is around 100 GeV. At the 99% confidence level (C.L.) the injection indices above the break decrease from 2.54 to 2.35, but the ones below the break are only in the range of 2.746-2.751. The spectrum of CR electrons does not need to add TeV cutoff to also match the features of the HESS data. Based on the difference between the fluxes of CR electrons and their primary components, the predicted excess of CR positrons is consistent with the interpretation that these positrons originate from a pulsar or dark matter. In the analysis of the Galactic diffuse gamma rays with the indirect constraint of AMS-02 and HESS data, it is found that the fluxes of Galactic diffuse gamma rays are consistent with the GeV data of the Fermi-Large Area Telescope (LAT) in the high-latitude regions. The results indicate that inverse Compton scattering is the dominant component in the range of hundreds of GeV to tens of TeV, respectively from the high-latitude regions to the low ones, and in all of the regions of the Galaxy the flux of diffuse gamma rays is less than that of CR electrons at the energy scale of 20 TeV.

  5. SPECTRA OF COSMIC RAY ELECTRONS AND DIFFUSE GAMMA RAYS WITH THE CONSTRAINTS OF AMS-02 AND HESS DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ding; Jin, Hong-Bo; Huang, Jing, E-mail: hbjin@bao.ac.cn

    2015-10-01

    Recently, AMS-02 reported their results of cosmic ray (CR) observations. In addition to the AMS-02 data, we add HESS data to estimate the spectra of CR electrons and the diffuse gamma rays above TeV. In the conventional diffusion model, a global analysis is performed on the spectral features of CR electrons and the diffuse gamma rays by the GALRPOP package. The results show that the spectrum structure of the primary component of CR electrons cannot be fully reproduced by a simple power law and that the relevant break is around 100 GeV. At the 99% confidence level (C.L.) the injectionmore » indices above the break decrease from 2.54 to 2.35, but the ones below the break are only in the range of 2.746–2.751. The spectrum of CR electrons does not need to add TeV cutoff to also match the features of the HESS data. Based on the difference between the fluxes of CR electrons and their primary components, the predicted excess of CR positrons is consistent with the interpretation that these positrons originate from a pulsar or dark matter. In the analysis of the Galactic diffuse gamma rays with the indirect constraint of AMS-02 and HESS data, it is found that the fluxes of Galactic diffuse gamma rays are consistent with the GeV data of the Fermi-Large Area Telescope (LAT) in the high-latitude regions. The results indicate that inverse Compton scattering is the dominant component in the range of hundreds of GeV to tens of TeV, respectively from the high-latitude regions to the low ones, and in all of the regions of the Galaxy the flux of diffuse gamma rays is less than that of CR electrons at the energy scale of 20 TeV.« less

  6. Diffusion lengths of silicon solar cells from luminescence images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wuerfel, P.; Trupke, T.; Puzzer, T.

    A method for spatially resolved measurement of the minority carrier diffusion length in silicon wafers and in silicon solar cells is introduced. The method, which is based on measuring the ratio of two luminescence images taken with two different spectral filters, is applicable, in principle, to both photoluminescence and electroluminescence measurements and is demonstrated experimentally by electroluminescence measurements on a multicrystalline silicon solar cell. Good agreement is observed with the diffusion length distribution obtained from a spectrally resolved light beam induced current map. In contrast to the determination of diffusion lengths from one single luminescence image, the method proposed heremore » gives absolute values of the diffusion length and, in comparison, it is much less sensitive to lateral voltage variations across the cell area as caused by local variations of the series resistance. It is also shown that measuring the ratio of two luminescence images allows distinguishing shunts or surface defects from bulk defects.« less

  7. Diffusion length variation in 0.5- and 3-MeV-proton-irradiated, heteroepitaxial indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Weinberg, Irving; Flood, Dennis J.

    1993-01-01

    Indium phosphide (InP) solar cells are more radiation resistant than gallium arsenide (GaAs) and silicon (Si) solar cells, and their growth by heteroepitaxy offers additional advantages leading to the development of light weight, mechanically strong, and cost-effective cells. Changes in heteroepitaxial InP cell efficiency under 0.5- and 3-MeV proton irradiations have been explained by the variation in the minority-carrier diffusion length. The base diffusion length versus proton fluence was calculated by simulating the cell performance. The diffusion length damage coefficient, K(sub L), was also plotted as a function of proton fluence.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, Mark

    Plasma wakefield acceleration has the potential to dramatically shrink the size and cost of particle accelerators. Research at the SLAC National Accelerator Laboratory has demonstrated that plasmas can provide 1,000 times the acceleration in a given distance compared with current technologies. Developing revolutionary and more efficient acceleration techniques that allow for an affordable high-energy collider is the focus of FACET, a National User Facility at SLAC. The existing FACET National User Facility uses part of SLAC’s two-mile-long linear accelerator to generate high-density beams of electrons and positrons. FACET-II is a new test facility to develop advanced acceleration and coherent radiationmore » techniques with high-energy electron and positron beams. It is the only facility in the world with high energy positron beams. FACET-II provides a major upgrade over current FACET capabilities and the breadth of the potential research program makes it truly unique. It will synergistically pursue accelerator science that is vital to the future of both advanced acceleration techniques for High Energy Physics, ultra-high brightness beams for Basic Energy Science, and novel radiation sources for a wide variety of applications. The design parameters for FACET-II are set by the requirements of the plasma wakefield experimental program. To drive the plasma wakefield requires a high peak current, in excess of 10kA. To reach this peak current, the electron and positron design bunch size is 10μ by 10μ transversely with a bunch length of 10μ. This is more than 200 times better than what has been achieved at the existing FACET. The beam energy is 10 GeV, set by the Linac length available and the repetition rate is up to 30 Hz. The FACET-II project is scheduled to be constructed in three major stages. Components of the project discussed in detail include the following: electron injector, bunch compressors and linac, the positron system, the Sector 20 sailboat and W chicanes, and experimental area and infrastructure.« less

  9. Measurement of Diffusion in Entangled Rod-Coil Triblock Copolymers

    NASA Astrophysics Data System (ADS)

    Olsen, B. D.; Wang, M.

    2012-02-01

    Although rod-coil block copolymers have attracted increasing attention for functional nanomaterials, their dynamics relevant to self-assembly and processing have not been widely investigated. Because the rod and coil blocks have different reptation behavior and persistence lengths, the mechanism by which block copolymers will diffuse is unclear. In order to understand the effect of the rigid block on reptation, tracer diffusion of a coil-rod-coil block copolymer through an entangled coil polymer matrix was experimentally measured. A monodisperse, high molecular weight coil-rod-coil triblock was synthesized using artificial protein engineering to prepare the helical rod and bioconjugaiton of poly(ethylene glycol) coils to produce the final triblock. Diffusion measurements were performed using Forced Rayleigh scattering (FRS), at varying ratios of the rod length to entanglement length, where genetic engineering is used to control the protein rod length and the polymer matrix concentration controls the entanglement length. As compared to PEO homopolymer tracers, the coil-rod-coil triblocks show markedly slower diffusion, suggesting that the mismatch between rod and coil reptation mechanisms results in hindered diffusion of these molecules in the entangled state.

  10. Investigation of microstructural changes in polyetherether-ketone films at cryogenic temperatures by positron lifetime spectroscopy

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, Abe; St.clair, Terry L.; Sprinkle, Danny R.

    1991-01-01

    Microstructural changes in Polyetherether-ketone (PEEK) films were investigated in the temperature ranges of 23 to -196 C, using Positron Lifetime Spectroscopy (PLS) technique. It was determined that the total free volume decreases by about 46 percent in amorphous PEEK samples and about 36 percent in semicrystalline PEEK samples when they are cooled down from room temperature to liquid nitrogen (LN2) temperature. If this trend in reduction in free volume with decreasing temperature continues, as expected, it is surmised that PEEK will be able to withstand cooling down to liquid hydrogen (LH2) temperature without any detrimental effect on its diffusivity for liquid hydrogen.

  11. Dependence of Ion Dynamics on the Polymer Chain Length in Poly(ethylene oxide)-Based Polymer Electrolytes.

    PubMed

    Chattoraj, Joyjit; Knappe, Marisa; Heuer, Andreas

    2015-06-04

    It is known from experiments that in the polymer electrolyte system, which contains poly(ethylene oxide) chains (PEO), lithium-cations (Li(+)), and bis(trifluoromethanesulfonyl)imide-anions (TFSI(-)), the cation and the anion diffusion and the ionic conductivity exhibit a similar chain-length dependence: with increasing chain length, they start dropping steadily, and later, they saturate to constant values. These results are surprising because Li-cations are strongly correlated with the polymer chains, whereas TFSI-anions do not have such bonding. To understand this phenomenon, we perform molecular dynamics simulations of this system for four different polymer chain lengths. The diffusion results obtained from our simulations display excellent agreement with the experimental data. The cation transport model based on the Rouse dynamics can successfully quantify the Li-diffusion results, which correlates Li diffusion with the polymer center-of-mass motion and the polymer segmental motion. The ionic conductivity as a function of the chain length is then estimated based on the chain-length-dependent ion diffusion, which shows a temperature-dependent deviation for short chain lengths. We argue that in the first regime, counterion correlations modify the conductivity, whereas for the long chains, the system behaves as a strong electrolyte.

  12. 18F-FLT Positron Emission Tomography and Diffusion-Weighted Magnetic Resonance Imaging in Planning Surgery and Radiation Therapy and Measuring Response in Patients With Newly Diagnosed Ewing Sarcoma

    ClinicalTrials.gov

    2017-11-16

    Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Ewing Sarcoma of Bone; Extraosseous Ewing Sarcoma; Localized Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Untreated Childhood Supratentorial Primitive Neuroectodermal Tumor

  13. Recent development of a jet-diffuser ejector

    NASA Technical Reports Server (NTRS)

    Alperin, M.; Wu, J. J.

    1980-01-01

    The paper considers thrust augmenting ejectors in which the processes of mixing and diffusion are partly carried out downstream of the ejector solid surfaces. A jet sheet surrounding the periphery of a widely diverging diffuser prevents separation and forms a gaseous, curved surface to provide effective diffuser ratio and additional length for mixing of primary and induced flows. Three-dimensional potential flow methods achieved a large reduction in the length of the associated solid surface; primary nozzle design further reduced the volume required by the jet-diffuser ejectors, resulting in thrust augmentation in excess of two, and an overall length of about 2 1/2 times the throat width.

  14. Potassium acceptor doping of ZnO crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parmar, Narendra S., E-mail: nparmar@wsu.edu; Lynn, K. G.; Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814

    2015-05-15

    ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ∼1 × 10{sup 16} cm{sup −3}. IR measurements show a local vibrational mode (LVM) at 3226 cm{sup −1}, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O–H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observedmore » at 2378 cm{sup −1}. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV.« less

  15. The pinching method for Galactic cosmic ray positrons: Implications in the light of precision measurements

    NASA Astrophysics Data System (ADS)

    Boudaud, M.; Bueno, E. F.; Caroff, S.; Genolini, Y.; Poulin, V.; Poireau, V.; Putze, A.; Rosier, S.; Salati, P.; Vecchi, M.

    2017-09-01

    Context. Two years ago, the Ams-02 collaboration released the most precise measurement of the cosmic ray positron flux. In the conventional approach, in which positrons are considered as purely secondary particles, the theoretical predictions fall way below the data above 10 GeV. One suggested explanation for this anomaly is the annihilation of dark matter particles, the so-called weakly interactive massive particles (WIMPs), into standard model particles. Most analyses have focused on the high-energy part of the positron spectrum, where the anomaly lies, disregarding the complicated GeV low-energy region where Galactic cosmic ray transport is more difficult to model and solar modulation comes into play. Aims: Given the high quality of the latest measurements by Ams-02, it is now possible to systematically re-examine the positron anomaly over the entire energy range, this time taking into account transport processes so far neglected, such as Galactic convection or diffusive re-acceleration. These might impact somewhat on the high-energy positron flux so that a complete and systematic estimate of the secondary component must be performed and compared to the Ams-02 measurements. The flux yielded by WIMPs also needs to be re-calculated more accurately to explore how dark matter might source the positron excess. Methods: We devise a new semi-analytical method to take into account transport processes thus far neglected, but important below a few GeV. It is essentially based on the pinching of inverse Compton and synchrotron energy losses from the magnetic halo, where they take place, inside the Galactic disc. The corresponding energy loss rate is artificially enhanced by the so-called pinching factor, which needs to be calculated at each energy. We have checked that this approach reproduces the results of the Green function method at the per mille level. This new tool is fast and allows one to carry out extensive scans over the cosmic ray propagation parameters. Results: We derive the positron flux from sub-GeV to TeV energies for both gas spallation and dark matter annihilation. We carry out a scan over the cosmic ray propagation parameters, which we strongly constrain by requiring that the secondary component does not overshoot the Ams-02 measurements. We find that only models with large diffusion coefficients are selected by this test. We then add to the secondary component the positron flux yielded by dark matter annihilation. We carry out a scan over WIMP mass to fit the annihilation cross-section and branching ratios, successively exploring the cases of a typical beyond-the-standard-model WIMP and an annihilation through light mediators. In the former case, the best fit yields a p-value of 0.4% for a WIMP mass of 264 GeV, a value that does not allow to reproduce the highest energy data points. If we require the mass to be larger than 500 GeV, the best-fit χ2 per degree of freedom always exceeds a value of 3. The case of light mediators is even worse, with a best-fit χ2 per degree of freedom always larger than 15. Conclusions: We explicitly show that the cosmic ray positron flux is a powerful and independent probe of Galactic cosmic ray propagation. It should be used as a complementary observable to other tracers such as the boron-to-carbon ratio. This analysis shows also that the pure dark matter interpretation of the positron excess is strongly disfavoured. This conclusion is based solely on the positron data, and no other observation, such as the antiproton flux or the CMB anisotropies, needs to be invoked.

  16. Path-length-resolved dynamic light scattering in highly scattering random media: The transition to diffusing wave spectroscopy

    NASA Astrophysics Data System (ADS)

    Bizheva, Kostadinka K.; Siegel, Andy M.; Boas, David A.

    1998-12-01

    We used low coherence interferometry to measure Brownian motion within highly scattering random media. A coherence gate was applied to resolve the optical path-length distribution and to separate ballistic from diffusive light. Our experimental analysis provides details on the transition from single scattering to light diffusion and its dependence on the system parameters. We found that the transition to the light diffusion regime occurs at shorter path lengths for media with higher scattering anisotropy or for larger numerical aperture of the focusing optics.

  17. [Application of medical imaging to general thoracic surgery].

    PubMed

    Oizumi, Hiroyuki

    2014-07-01

    Medical imaging technology is rapidly progressing. Positron emission tomography (PET) has played major role in the staging and choice of treatment modality in lung cancer patients. Magnetic resonance imaging (MRI) is now routinely used for mediastinal tumors and the use of diffusion-weighted images (DWI) may help in the diagnosis of malignancies including lung cancers. The benefits of medical imaging technology are not limited to diagnostics, and include simulation or navigation for complex lung resection and other procedures. Multidetector row computed tomography (MDCT) shortens imaging time to obtain detailed and precise volume data, which improves diagnosis of small-sized lung cancers. 3-dimensional reconstruction of the volume data allows the safe performance of thoracoscopic surgery. For lung lobectomy, identification of the branching structures, diameter, and length of the arteries is useful in selecting the procedure for blood vessel treatment. For lung segmentectomy, visualization of venous branches in the affected segments and intersegmental veins has facilitated the preoperative determination of the anatomical intersegmental plane. Therefore, the application of medical imaging technology is useful in general thoracic surgery.

  18. Cosmic ray electrons, positrons and the synchrotron emission of the Galaxy: consistent analysis and implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernardo, Giuseppe Di; Evoli, Carmelo; Gaggero, Daniele

    2013-03-01

    A multichannel analysis of cosmic ray electron and positron spectra and of the diffuse synchrotron emission of the Galaxy is performed by using the DRAGON code. This study is aimed at probing the interstellar electron source spectrum down to E ∼< 1GeV and at constraining several propagation parameters. We find that above 4GeV the e{sup −} source spectrum is compatible with a power-law of index ∼ 2.5. Below 4GeV instead it must be significantly suppressed and the total lepton spectrum is dominated by secondary particles. The positron spectrum and fraction measured below a few GeV are consistently reproduced only withinmore » low reacceleration models. We also constrain the scale-height z{sub t} of the cosmic-ray distribution using three independent (and, in two cases, original) arguments, showing that values of z{sub t} ∼< 2kpc are excluded. This result may have strong implications for particle dark matter searches.« less

  19. Relativistic shock waves in an electron-positron plasma

    NASA Astrophysics Data System (ADS)

    Tsintsadze, Levan N.

    1995-12-01

    The equations describing the detailed structure of radiation electromagnetic hydrodynamics for a relativistically hot electron-positron plasma are derived. Various discontinuities are studied by these equations. It is shown that the dependence of the electron (positron) mass on the temperature changes the structure of discontinuities, including shock waves, both qualitatively and quantitatively. Steady radiative shocks are considered, which can arise in steady flows, and which also can be used to describe the propagation of shocks when the shock thickness is very small as compared to the characteristic length over which the ambient medium changes significantly. First, the magnetohydrodynamic shock wave is treated as a discontinuity and jump relations, which relate the equilibrium states of the upstream and downstream plasma far from the front, are derived. Then the structure of the front itself is considered and tangential, contact (or entropy) and rotational discontinuities are investigated.

  20. Minimum length Pb/SCIN detector for efficient cosmic ray identification

    NASA Technical Reports Server (NTRS)

    Snyder, H. David

    1989-01-01

    A study was made of the performance of a minimal length cosmic ray shower detector that would be light enough for space flight and would provide efficient identification of positions and protons. Cosmic ray positions are mainly produced in the decay chain of: Pion yields Muon yields Positron and they provide a measure of the matter density traversed by primary protons. Present positron flux measurements are consistent with the Leaky Box and Halo models for sources of cosmic rays. Abundant protons in the space environment are a significant source of background that would wash out the positron signal. Protons and positrons produced very distictive showers of particles when they enter matter; many studies have been published on their behavior on large calorimeter detectors. The challenge is to determine the minimal material necessary (minimal calorimeter depth) for positive particles identification. The primary instrument for the investigation is the Monte Carlo code GEANT, a library of programs from CERN that can be used to model experimental geometry, detector responses and particle interaction processes. The use of the Monte Carlo approach is crucial since statistical fluctuations in shower shape are significant. Studies conducted during the 1988 summer program showed that straightforward approaches to the problem achieved 85 to 90 percent correct identification, but left a residue of 10 to 15 percent misidentified particles. This percentage improved to a few percent when multiple shower-cut criteria were applied to the data. This summer, the same study was extended to employ several physical and statistical methods of identifying response of the calorimeter and the efficiency of the optimal shower cuts to off-normal incidence particle was determined.

  1. Apparent diffusion coefficient evaluation for secondary changes in the cerebellum of rats after middle cerebral artery occlusion

    PubMed Central

    Yang, Yunjun; Gao, Lingyun; Fu, Jun; Zhang, Jun; Li, Yuxin; Yin, Bo; Chen, Weijian; Geng, Daoying

    2013-01-01

    Supratentorial cerebral infarction can cause functional inhibition of remote regions such as the cerebellum, which may be relevant to diaschisis. This phenomenon is often analyzed using positron emission tomography and single photon emission CT. However, these methods are expensive and radioactive. Thus, the present study quantified the changes of infarction core and remote regions after unilateral middle cerebral artery occlusion using apparent diffusion coefficient values. Diffusion-weighted imaging showed that the area of infarction core gradually increased to involve the cerebral cortex with increasing infarction time. Diffusion weighted imaging signals were initially increased and then stabilized by 24 hours. With increasing infarction time, the apparent diffusion coefficient value in the infarction core and remote bilateral cerebellum both gradually decreased, and then slightly increased 3–24 hours after infarction. Apparent diffusion coefficient values at remote regions (cerebellum) varied along with the change of supratentorial infarction core, suggesting that the phenomenon of diaschisis existed at the remote regions. Thus, apparent diffusion coefficient values and diffusion weighted imaging can be used to detect early diaschisis. PMID:25206615

  2. Measurement of Minority Charge Carrier Diffusion Length in Gallium Nitride Nanowires Using Electron Beam Induced Current (EBIC)

    DTIC Science & Technology

    2009-12-01

    MINORITY CHARGE CARRIER DIFFUSION LENGTH IN GALLIUM NITRIDE NANOWIRES USING ELECTRON BEAM INDUCED CURRENT (EBIC) by Chiou Perng Ong December... Gallium Nitride Nanowires Using Electron Beam Induced Current (EBIC) 6. AUTHOR(S) Ong, Chiou Perng 5. FUNDING NUMBERS DMR 0804527 7. PERFORMING...CARRIER DIFFUSION LENGTH IN GALLIUM NITRIDE NANOWIRES USING ELECTRON BEAM INDUCED CURRENT (EBIC) Chiou Perng Ong Major, Singapore Armed Forces B

  3. Near Field Imaging of Charge Transport in Gallium Nitride and Zinc Oxide Nanostructures

    DTIC Science & Technology

    2010-12-01

    distribution of recombination luminescence . While researching the diffusion lengths of these structures, the author also observed that many of these... diffusion length of these structures can be extracted. E. NEAR FIELD IMAGING WITH NEAR FIELD SCANNING OPTICAL MICROSCOPY Near field scanning optical...composite AFM/NSOM images and the slope analysis to extract Ld, the minority carrier diffusion length , as described in Chapter 3. In all cases, excitation

  4. Determination of charge-carrier diffusion length in the photosensing layer of HgCdTe n-on-p photovoltaic infrared focal plane array detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishnyakov, A. V.; Stuchinsky, V. A., E-mail: stuchin@isp.nsc.ru; Brunev, D. V.

    2014-03-03

    In the present paper, we propose a method for evaluating the bulk diffusion length of minority charge carriers in the photosensing layer of photovoltaic focal plane array (FPA) photodetectors. The method is based on scanning a strip-shaped illumination spot with one of the detector diodes at a low level of photocurrents j{sub ph} being registered; such scanning provides data for subsequent analysis of measured spot-scan profiles within a simple diffusion model. The asymptotic behavior of the effective (at j{sub ph} ≠ 0) charge-carrier diffusion length l{sub d} {sub eff} as a function of j{sub ph} for j{sub ph} → 0 inferred frommore » our experimental data proved to be consistent with the behavior of l{sub d} {sub eff} vs j{sub ph} as predicted by the model, while the obtained values of the bulk diffusion length of minority carriers (electrons) in the p-HgCdTe film of investigated HgCdTe n-on-p FPA photodetectors were found to be in a good agreement with the previously reported carrier diffusion-length values for HgCdTe.« less

  5. Quantum primary rainbows in transmission of positrons through very short carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ćosić, M.; Petrović, S.; Nešković, N.

    2016-04-01

    This paper is devoted to a quantum mechanical consideration of the transmission of positrons of a kinetic energy of 1 MeV through very short (11, 9) single-wall chiral carbon nanotubes. The nanotube lengths are between 50 and 320 nm. The transmission process is determined by the rainbow effects. The interaction potential of a positron and the nanotube is deduced from the Molire's interaction potential of the positron and a nanotube atom using the continuum approximation. We solve numerically the time-dependent Schrödinger equation, and calculate the spatial and angular distributions of transmitted positrons. The initial positron beam is assumed to be an ensemble of non-interacting Gaussian wave packets. We generate the spatial and angular distributions using the computer simulation method. The examination is focused on the spatial and angular primary rainbows. It begins with an analysis of the corresponding classical rainbows, and continues with a detailed investigation of the amplitudes and phases of the wave functions of transmitted positrons. These analyses enable one to identify the principal and supernumerary primary rainbows appearing in the spatial and angular distributions. They also result in a detailed explanation of the way of their generation, which includes the effects of wrinkling of each wave packet during its deflection from the nanotube wall, and of its concentration just before a virtual barrier lying close to the corresponding classical rainbow. The wrinkling of the wave packets occurs due to their internal focusing. In addition, the wave packets wrinkle in a mutually coordinated way. This explanation may induce new theoretical and experimental investigations of quantum rainbows occurring in various atomic collision processes.

  6. Measurement of radon diffusion in polyethylene based on alpha detection

    NASA Astrophysics Data System (ADS)

    Rau, Wolfgang

    2012-02-01

    Radon diffusion in different materials has been measured in the past. Usually the diffusion measurements are based on a direct determination of the amount of radon that diffuses through a thin layer of material. Here we present a method based on the measurement of the radon daughter products which are deposited inside the material. Looking at the decay of 210Po allows us to directly measure the exponential diffusion profile characterized by the diffusion length. In addition we can determine the solubility of radon in PE. We also describe a second method to determine the diffusion constant based on the short-lived radon daughter products 218Po and 214Po, using the identical experimental setup. Measurements for regular polyethylene (PE) and High Molecular Weight Polyethylene (HMWPE) yielded diffusion lengths of (1.3±0.3) mm and (0.8±0.2) mm and solubilities of 0.5±0.1 and 0.7±0.2, respectively, for the first method; the diffusion lengths extracted from the second method are noticeably larger which may be caused by different experimental conditions during diffusion.

  7. Fractal Theory and Field Cover Experiments: Implications for the Fractal Characteristics and Radon Diffusion Behavior of Soils and Rocks.

    PubMed

    Tan, Wanyu; Li, Yongmei; Tan, Kaixuan; Duan, Xianzhe; Liu, Dong; Liu, Zehua

    2016-12-01

    Radon diffusion and transport through different media is a complex process affected by many factors. In this study, the fractal theories and field covering experiments were used to study the fractal characteristics of particle size distribution (PSD) of six kinds of geotechnical materials (e.g., waste rock, sand, laterite, kaolin, mixture of sand and laterite, and mixture of waste rock and laterite) and their effects on radon diffusion. In addition, the radon diffusion coefficient and diffusion length were calculated. Moreover, new formulas for estimating diffusion coefficient and diffusion length functional of fractal dimension d of PSD were proposed. These results demonstrate the following points: (1) the fractal dimension d of the PSD can be used to characterize the property of soils and rocks in the studies of radon diffusion behavior; (2) the diffusion coefficient and diffusion length decrease with increasing fractal dimension of PSD; and (3) the effectiveness of final covers in reducing radon exhalation of uranium tailings impoundments can be evaluated on the basis of the fractal dimension of PSD of materials.

  8. Directional Antineutrino Detection

    NASA Astrophysics Data System (ADS)

    Safdi, Benjamin R.; Suerfu, Burkhant

    2015-02-01

    We propose the first event-by-event directional antineutrino detector using inverse beta decay (IBD) interactions on hydrogen, with potential applications including monitoring for nuclear nonproliferation, spatially mapping geoneutrinos, characterizing the diffuse supernova neutrino background and searching for new physics in the neutrino sector. The detector consists of adjacent and separated target and capture scintillator planes. IBD events take place in the target layers, which are thin enough to allow the neutrons to escape without scattering elastically. The neutrons are detected in the thicker boron-loaded capture layers. The location of the IBD event and the momentum of the positron are determined by tracking the positron's trajectory through the detector. Our design is a straightforward modification of existing antineutrino detectors; a prototype could be built with existing technology.

  9. Defects in N/Ge coimplanted GaN studied by positron annihilation

    NASA Astrophysics Data System (ADS)

    Nakano, Yoshitaka; Kachi, Tetsu

    2002-01-01

    We have applied positron annihilation spectroscopy to study the depth distributions and species of defects in N-, Ge-, and N/Ge-implanted GaN at dosages of 1×1015 cm-2. For all the implanted samples, Ga vacancies introduced by ion-implantation are found to diffuse into much deeper regions of the GaN layers during the implantation and to change into some other vacancy-type defects by the annealing at 1300 °C. In particular, markedly different defects turn out to be newly created in the electrically activated regions for both the Ge- and N/Ge-implanted samples after annealing, indicating that these new defects are probably associated with the presence of the implanted Ge dopant atoms.

  10. Electron-hole diffusion lengths >175 μm in solution-grown CH 3NH 3PbI 3 single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Qingfeng; Fang, Yanjun; Shao, Yuchuan

    Long, balanced electron and hole diffusion lengths greater than 100 nanometers in the polycrystalline organolead trihalide compound CH 3NH 3PbI 3 are critical for highly efficient perovskite solar cells. We found that the diffusion lengths in CH 3NH 3PbI 3 single crystals grown by a solution-growth method can exceed 175 micrometers under 1 sun (100 mW cm –2) illumination and exceed 3 millimeters under weak light for both electrons and holes. The internal quantum efficiencies approach 100% in 3-millimeter-thick single-crystal perovskite solar cells under weak light. These long diffusion lengths result from greater carrier mobility, longer lifetime, and much smallermore » trap densities in the single crystals than in polycrystalline thin films. As a result, the long carrier diffusion lengths enabled the use of CH 3NH 3PbI 3 in radiation sensing and energy harvesting through the gammavoltaic effect, with an efficiency of 3.9% measured with an intense cesium-137 source.« less

  11. Electron-hole diffusion lengths >175 μm in solution-grown CH 3NH 3PbI 3 single crystals

    DOE PAGES

    Dong, Qingfeng; Fang, Yanjun; Shao, Yuchuan; ...

    2015-02-27

    Long, balanced electron and hole diffusion lengths greater than 100 nanometers in the polycrystalline organolead trihalide compound CH 3NH 3PbI 3 are critical for highly efficient perovskite solar cells. We found that the diffusion lengths in CH 3NH 3PbI 3 single crystals grown by a solution-growth method can exceed 175 micrometers under 1 sun (100 mW cm –2) illumination and exceed 3 millimeters under weak light for both electrons and holes. The internal quantum efficiencies approach 100% in 3-millimeter-thick single-crystal perovskite solar cells under weak light. These long diffusion lengths result from greater carrier mobility, longer lifetime, and much smallermore » trap densities in the single crystals than in polycrystalline thin films. As a result, the long carrier diffusion lengths enabled the use of CH 3NH 3PbI 3 in radiation sensing and energy harvesting through the gammavoltaic effect, with an efficiency of 3.9% measured with an intense cesium-137 source.« less

  12. Time-frequency analysis of backscattered signals from diffuse radar targets

    NASA Astrophysics Data System (ADS)

    Kenny, O. P.; Boashash, B.

    1993-06-01

    The need for analysis of time-varying signals has led to the formulation of a class of joint time-frequency distributions (TFDs). One of these TFDs, the Wigner-Ville distribution (WVD), has useful properties which can be applied to radar imaging. The authors discuss time-frequency representation of the backscattered signal from a diffuse radar target. It is then shown that for point scatterers which are statistically dependent or for which the reflectivity coefficient has a nonzero mean value, reconstruction using time of flight positron emission tomography on time-frequency images is effective for estimating the scattering function of the target.

  13. Formation of VP-Zn complexes in bulk InP(Zn) by migration of P vacancies from the (110) surface

    NASA Astrophysics Data System (ADS)

    Slotte, J.; Saarinen, K.; Ebert, Ph.

    2006-05-01

    We apply a combination of positron annihilation spectroscopy and scanning tunneling microscopy to show that thermally generated P vacancies diffuse from the InP surface toward the bulk. The defect observed in the bulk can be identified as a complex consisting of a P vacancy and a Zn impurity. We infer that this pair is formed when the diffusing positive P vacancy is trapped at the Zn dopant. A rough estimate for the migration energy of the P vacancy results in a value of 1.3eV .

  14. Probing sub-alveolar length scales with hyperpolarized-gas diffusion NMR

    NASA Astrophysics Data System (ADS)

    Miller, Wilson; Carl, Michael; Mooney, Karen; Mugler, John; Cates, Gordon

    2009-05-01

    Diffusion MRI of the lung is a promising technique for detecting alterations of normal lung microstructure in diseases such as emphysema. The length scale being probed using this technique is related to the time scale over which the helium-3 or xenon-129 diffusion is observed. We have developed new MR pulse sequence methods for making diffusivity measurements at sub-millisecond diffusion times, allowing one to probe smaller length scales than previously possible in-vivo, and opening the possibility of making quantitative measurements of the ratio of surface area to volume (S/V) in the lung airspaces. The quantitative accuracy of simulated and experimental measurements in microstructure phantoms will be discussed, and preliminary in-vivo results will be presented.

  15. Molecular diffusion of stable water isotopes in polar firn as a proxy for past temperatures

    NASA Astrophysics Data System (ADS)

    Holme, Christian; Gkinis, Vasileios; Vinther, Bo M.

    2018-03-01

    Polar precipitation archived in ice caps contains information on past temperature conditions. Such information can be retrieved by measuring the water isotopic signals of δ18O and δD in ice cores. These signals have been attenuated during densification due to molecular diffusion in the firn column, where the magnitude of the diffusion is isotopologue specific and temperature dependent. By utilizing the differential diffusion signal, dual isotope measurements of δ18O and δD enable multiple temperature reconstruction techniques. This study assesses how well six different methods can be used to reconstruct past surface temperatures from the diffusion-based temperature proxies. Two of the methods are based on the single diffusion lengths of δ18O and δD , three of the methods employ the differential diffusion signal, while the last uses the ratio between the single diffusion lengths. All techniques are tested on synthetic data in order to evaluate their accuracy and precision. We perform a benchmark test to thirteen high resolution Holocene data sets from Greenland and Antarctica, which represent a broad range of mean annual surface temperatures and accumulation rates. Based on the benchmark test, we comment on the accuracy and precision of the methods. Both the benchmark test and the synthetic data test demonstrate that the most precise reconstructions are obtained when using the single isotope diffusion lengths, with precisions of approximately 1.0 °C . In the benchmark test, the single isotope diffusion lengths are also found to reconstruct consistent temperatures with a root-mean-square-deviation of 0.7 °C . The techniques employing the differential diffusion signals are more uncertain, where the most precise method has a precision of 1.9 °C . The diffusion length ratio method is the least precise with a precision of 13.7 °C . The absolute temperature estimates from this method are also shown to be highly sensitive to the choice of fractionation factor parameterization.

  16. Measuring charge carrier diffusion in coupled colloidal quantum dot solids.

    PubMed

    Zhitomirsky, David; Voznyy, Oleksandr; Hoogland, Sjoerd; Sargent, Edward H

    2013-06-25

    Colloidal quantum dots (CQDs) are attractive materials for inexpensive, room-temperature-, and solution-processed optoelectronic devices. A high carrier diffusion length is desirable for many CQD device applications. In this work we develop two new experimental methods to investigate charge carrier diffusion in coupled CQD solids under charge-neutral, i.e., undepleted, conditions. The methods take advantage of the quantum-size-effect tunability of our materials, utilizing a smaller-bandgap population of quantum dots as a reporter system. We develop analytical models of diffusion in 1D and 3D structures that allow direct extraction of diffusion length from convenient parametric plots and purely optical measurements. We measure several CQD solids fabricated using a number of distinct methods and having significantly different doping and surface ligand treatments. We find that CQD materials recently reported to achieve a certified power conversion efficiency of 7% with hybrid organic-inorganic passivation have a diffusion length of 80 ± 10 nm. The model further allows us to extract the lifetime, trap density, mobility, and diffusion coefficient independently in each material system. This work will facilitate further progress in extending the diffusion length, ultimately leading to high-quality CQD solid semiconducting materials and improved CQD optoelectronic devices, including CQD solar cells.

  17. Assessment of passive muscle elongation using Diffusion Tensor MRI: Correlation between fiber length and diffusion coefficients.

    PubMed

    Mazzoli, Valentina; Oudeman, Jos; Nicolay, Klaas; Maas, Mario; Verdonschot, Nico; Sprengers, Andre M; Nederveen, Aart J; Froeling, Martijn; Strijkers, Gustav J

    2016-12-01

    In this study we investigated the changes in fiber length and diffusion parameters as a consequence of passive lengthening and stretching of the calf muscles. We hypothesized that changes in radial diffusivity (RD) are caused by changes in the muscle fiber cross sectional area (CSA) as a consequence of lengthening and shortening of the muscle. Diffusion Tensor MRI (DT-MRI) measurements were made twice in five healthy volunteers, with the foot in three different positions (30° plantarflexion, neutral position and 15° dorsiflexion). The muscles of the calf were manually segmented on co-registered high resolution anatomical scans, and maps of RD and axial diffusivity (AD) were reconstructed from the DT-MRI data. Fiber tractography was performed and mean fiber length was calculated for each muscle group. Significant negative correlations were found between the changes in RD and changes in fiber length in the dorsiflexed and plantarflexed positions, compared with the neutral foot position. Changes in AD did not correlate with changes in fiber length. Assuming a simple cylindrical model with constant volume for the muscle fiber, the changes in the muscle fiber CSA were calculated from the changes in fiber length. In line with our hypothesis, we observed a significant positive correlation of the CSA with the measured changes in RD. In conclusion, we showed that changes in diffusion coefficients induced by passive muscle stretching and lengthening can be explained by changes in muscle CSA, advancing the physiological interpretation of parameters derived from skeletal muscle DT-MRI. Copyright © 2016 John Wiley & Sons, Ltd.

  18. THE DIFFUSION LENGTH OF THERMAL NEUTRONS IN PORTLAND CONCRETE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dugdale, R.A.; Healy, E.

    1957-10-01

    A measurement of the diffusion length of thermal neutrons in Portland concrete, originally raade by Salmon two years previously, has been repeated. An apparent decrease from 7.04 cm to 6.61 cm has oocurred. This change, which is only four times the standard deviation of the result, could be due to a small increase in water content. In assessing the amount required, a discrepancy between calculated and measured diffusion length was found. Possible explanations of the discrepancy are discussed. (auth)

  19. Diffusion length measurements using the scanning electron microscope. [in semiconductor devices

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.

    1975-01-01

    A measurement technique employing the scanning electron microscope is described in which values of the true bulk diffusion length are obtained. It is shown that surface recombination effects can be eliminated through the application of highly doped surface field layers. The influence of high injection level effects and low-high junction current generation on the resulting measurement was investigated. Close agreement is found between the diffusion lengths measured by this method and those obtained using a penetrating radiation technique.

  20. Transport Imaging of Spatial Distribution of Mobility-Lifetime (Micro Tau) Product in Bulk Semiconductors for Nuclear Radiation Detection

    DTIC Science & Technology

    2012-06-01

    the diffusion length L and the mobility-lifetime product  from the luminescence distribution using the 2D model for transport imaging in bulk...C. Scandrett, and N. M. Haegel, “Three-dimensional transport imaging for the spatially resolved determination of carrier diffusion length in bulk...that allows measurements of the diffusion length and extraction of the  product in luminescent materials without the need for device processing

  1. Effective defect diffusion lengths in Ar-ion bombarded 3C-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayu Aji, L. B.; Wallace, J. B.; Shao, L.

    Above room temperature, SiC exhibits pronounced processes of diffusion and interaction of radiation-generated point defects. Here, we use the recently developed pulsed ion beam method to measure effective defect diffusion lengths in 3C-SiC bombarded in the temperature range of 25–200 °C with 500 keV Ar ions. Results reveal a diffusion length of ~10 nm, which exhibits a weak temperature dependence, changing from 9 to 13 nm with increasing temperature. Lastly, these results have important implications for understanding and predicting radiation damage in SiC and for the development of radiation-resistant materials via interface-mediated defect reactions.

  2. Effective defect diffusion lengths in Ar-ion bombarded 3C-SiC

    DOE PAGES

    Bayu Aji, L. B.; Wallace, J. B.; Shao, L.; ...

    2016-04-14

    Above room temperature, SiC exhibits pronounced processes of diffusion and interaction of radiation-generated point defects. Here, we use the recently developed pulsed ion beam method to measure effective defect diffusion lengths in 3C-SiC bombarded in the temperature range of 25–200 °C with 500 keV Ar ions. Results reveal a diffusion length of ~10 nm, which exhibits a weak temperature dependence, changing from 9 to 13 nm with increasing temperature. Lastly, these results have important implications for understanding and predicting radiation damage in SiC and for the development of radiation-resistant materials via interface-mediated defect reactions.

  3. Experimental measurement of coil-rod-coil block copolymer tracer diffusion through entangled coil homopolymers

    PubMed Central

    Wang, Muzhou; Timachova, Ksenia; Olsen, Bradley D.

    2014-01-01

    The diffusion of coil-rod-coil triblock copolymers in entangled coil homopolymers is experimentally measured and demonstrated to be significantly slower than rod or coil homopolymers of the same molecular weight. A model coil-rod-coil triblock was prepared by expressing rodlike alanine-rich α-helical polypeptides in E. coli and conjugating coillike poly(ethylene oxide) (PEO) to both ends to form coil-rod-coil triblock copolymers. Tracer diffusion through entangled PEO homopolymer melts was measured using forced Rayleigh scattering at various rod lengths, coil molecular weights, and coil homopolymer concentrations. For rod lengths, L, that are close to the entanglementh length, a, the ratio between triblock diffusivity and coil homopolymer diffusivity decreases monotonically and is only a function of L/a, in quantitative agreement with previous simulation results. For large rod lengths, diffusion follows an arm retraction scaling, which is also consistent with previous theoretical predictions. These experimental results support the key predictions of theory and simulation, suggesting that the mismatch in curvature between rod and coil entanglement tubes leads to the observed diffusional slowing. PMID:25484454

  4. Focusing Electron Beams at SLAC.

    ERIC Educational Resources Information Center

    Taylor, Richard L.

    1993-01-01

    Describes the development of a set of magnets that focus high-energy electron and positron beams causing them to collide, annihilate each other, and generate new particles. Explains how dipoles bend the beam, how quadrupoles focus the beam, how the focal length is calculated, and the superconducting final focus. (MDH)

  5. Diffusion-limited mixing by incompressible flows

    NASA Astrophysics Data System (ADS)

    Miles, Christopher J.; Doering, Charles R.

    2018-05-01

    Incompressible flows can be effective mixers by appropriately advecting a passive tracer to produce small filamentation length scales. In addition, diffusion is generally perceived as beneficial to mixing due to its ability to homogenize a passive tracer. However we provide numerical evidence that, in cases where advection and diffusion are both actively present, diffusion may produce negative effects by limiting the mixing effectiveness of incompressible optimal flows. This limitation appears to be due to the presence of a limiting length scale given by a generalised Batchelor length (Batchelor 1959 J. Fluid Mech. 5 113–33). This length scale limitation may in turn affect long-term mixing rates. More specifically, we consider local-in-time flow optimisation under energy and enstrophy flow constraints with the objective of maximising the mixing rate. We observe that, for enstrophy-bounded optimal flows, the strength of diffusion may not impact the long-term mixing rate. For energy-constrained optimal flows, however, an increase in the strength of diffusion can decrease the mixing rate. We provide analytical lower bounds on mixing rates and length scales achievable under related constraints (point-wise bounded speed and rate-of-strain) by extending the work of Lin et al (2011 J. Fluid Mech. 675 465–76) and Poon (1996 Commun. PDE 21 521–39).

  6. Positron autoradiography for intravascular imaging: feasibility evaluation

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.; Xu, Tong; Ducote, Justin L.; Easwaramoorthy, Balasubramaniam; Mukherjee, Jogeshwar; Molloi, Sabee

    2006-02-01

    Approximately 70% of acute coronary artery disease is caused by unstable (vulnerable) plaques with an inflammation of the overlying cap and high lipid content. A rupturing of the inflamed cap of the plaque results in propagation of the thrombus into the lumen, blockage of the artery and acute ischaemic syndrome or sudden death. Morphological imaging such as angiography or intravascular ultrasound cannot determine inflammation status of the plaque. A radiotracer such as 18F-FDG is accumulated in vulnerable plaques due to higher metabolic activity of the inflamed cap and could be used to detect a vulnerable plaque. However, positron emission tomography (PET) cannot detect the FDG-labelled plaques because of respiratory and heart motions, small size and low activity of the plaques. Plaques can be detected using a miniature particle (positron) detector inserted into the artery. In this work, a new detector concept is investigated for intravascular imaging of the plaques. The detector consists of a storage phosphor tip bound to the end of an intravascular catheter. It can be inserted into an artery, absorb the 18F-FDG positrons from the plaques, withdrawn from the artery and read out. Length and diameter of the storage phosphor tip can be matched to the length and the diameter of the artery. Monte Carlo simulations and experimental evaluations of coronary plaque imaging with the proposed detector were performed. It was shown that the sensitivity of the storage phosphor detector to the positrons of 18F-FDG is sufficient to detect coronary plaques with 1 mm and 2 mm sizes and 590 Bq and 1180 Bq activities in the arteries with 2 mm and 3 mm diameters, respectively. An experimental study was performed using plastic tubes with 2 mm diameter filled with an FDG solution, which simulates blood. FDG spots simulating plaques were placed over the surface of the tube. A phosphor tip was inserted into the tube and imaged the plaques. Exposure time was 1 min in all simulations and experiments. Experiments showed that detecting the coronary plaques using the proposed technique is possible. The proposed technique has the potential for fast and accurate detection of vulnerable coronary and other intravascular plaques.

  7. Exciton diffusion coefficient measurement in ZnO nanowires under electron beam irradiation.

    PubMed

    Donatini, Fabrice; Pernot, Julien

    2018-03-09

    In semiconductor nanowires (NWs) the exciton diffusion coefficient can be determined using a scanning electron microscope fitted with a cathodoluminescence system. High spatial and temporal resolution cathodoluminescence experiments are needed to measure independently the exciton diffusion length and lifetime in single NWs. However, both diffusion length and lifetime can be affected by the electron beam bombardment during observation and measurement. Thus, in this work the exciton lifetime in a ZnO NW is measured versus the electron beam dose (EBD) via a time-resolved cathodoluminescence experiment with a temporal resolution of 50 ps. The behavior of the measured exciton lifetime is consistent with our recent work on the EBD dependence of the exciton diffusion length in similar NWs investigated under comparable SEM conditions. Combining the two results, the exciton diffusion coefficient in ZnO is determined at room temperature and is found constant over the full span of EBD.

  8. Structure of LiPs ground and excited states

    NASA Astrophysics Data System (ADS)

    Bressanini, Dario

    2018-01-01

    The lithium atom in its ground state can bind positronium (Ps) forming LiPs, an electronically stable system. In this study we use the fixed node diffusion Monte Carlo method to perform a detailed investigation of the internal structure of LiPs, establishing to what extent it could be described by smaller interacting subsystems. To study the internal structure of positronic systems we propose a way to analyze the particle distribution functions: We first order the particle-nucleus distances, from the closest to the farthest. We then bin the ordered distances obtaining, for LiPs, five distribution functions that we call sorted distribution functions. We used them to show that Ps is a quite well-defined entity inside LiPs: The positron is forming positronium not only when it is far away from the nucleus, but also when it is in the same region of space occupied by the 2 s electrons. Hence, it is not correct to describe LiPs as positronium "orbiting" around a lithium atom, as sometimes has been done, since the positron penetrates the electronic distribution and can be found close to the nucleus.

  9. Fermi-LAT kills dark matter interpretations of AMS-02 data. Or not?

    NASA Astrophysics Data System (ADS)

    Belotsky, Konstantin; Budaev, Ruslan; Kirillov, Alexander; Laletin, Maxim

    2017-01-01

    A number of papers attempt to explain the positron anomaly in cosmic rays, observed by PAMELA and AMS-02, in terms of dark matter (DM) decays or annihilations. However, the recent progress in cosmic gamma-ray studies challenges these attempts. Indeed, as we show, any rational DM model explaining the positron anomaly abundantly produces final state radiation and Inverse Compton gamma rays, which inevitably leads to a contradiction with Fermi-LAT isotropic diffuse gamma-ray background measurements. Furthermore, the Fermi-LAT observation of Milky Way dwarf satellites, supposed to be rich in DM, revealed no significant signal in gamma rays. We propose a generic approach in which the major contribution to cosmic rays comes from the dark matter disc and prove that the tension between the DM origin of the positron anomaly and the cosmic gamma-ray observations can be relieved. We consider both a simple model, in which DM decay/annihilate into charged leptons, and a model-independent minimal case of particle production, and we estimate the optimal thickness of DM disk. Possible mechanisms of formation and its properties are briefly discussed.

  10. Surface photovoltage method extended to silicon solar cell junction

    NASA Technical Reports Server (NTRS)

    Wang, E. Y.; Baraona, C. R.; Brandhorst, H. W., Jr.

    1974-01-01

    The conventional surface photovoltage (SPV) method is extended to the measurement of the minority carrier diffusion length in diffused semiconductor junctions of the type used in a silicon solar cell. The minority carrier diffusion values obtained by the SPV method agree well with those obtained by the X-ray method. Agreement within experimental error is also obtained between the minority carrier diffusion lengths in solar cell diffusion junctions and in the same materials with n-regions removed by etching, when the SPV method was used in the measurements.

  11. Helium self-trapping and diffusion behaviors in deformed 316L stainless steel exposed to high flux and low energy helium plasma

    NASA Astrophysics Data System (ADS)

    Gong, Yihao; Jin, Shuoxue; Zhu, Te; Cheng, Long; Cao, Xingzhong; You, Li; Lu, Guanghong; Guo, Liping; Wang, Baoyi

    2018-04-01

    A large number of dislocation networks were introduced in to 316L stainless steel by cold rolling. Subsequently, low energy (40 eV) helium ions were implanted by exposing the steel to helium plasma. Thermal desorption and positron annihilation spectroscopy were used to study the behavior of helium in the presence of dislocations, with emphasis on helium self-trapping and migration behaviors. Helium desorption behaviour from different helium trapping states was measured by the thermal desorption spectroscopy. Most of the helium desorbed from the He m V n clusters, and the corresponding desorption peak is located at ~650 K. The desorption peak from helium-dislocation clusters (He m D) is at approximately 805 K. The effect of annealing on the defect evolution was investigated by positron annihilation spectroscopy. For the specimen exposed to helium plasma without displacement damage, the increment of S parameter meant the existence of helium self-trapping behavior (He m V n ). Helium atoms could diffuse two to three orders of magnitude deeper than the implantation depth calculated by SRIM. The diffusing helium atoms were gradually trapped by dislocation lines and formed He m D. Elevated temperatures enhance the self-trapping behavior and cause helium atoms to dissociate/desorb from the He m V n clusters, increasing the S parameters at 473-673 K. The gradual recovery of vacancies in the He m V n clusters decreased the S parameter above 673 K.

  12. Theoretical Interpretation of Pass 8 Fermi -LAT e + + e - Data

    DOE PAGES

    Di Mauro, M.; Manconi, S.; Vittino, A.; ...

    2017-08-17

    The flux of positrons and electrons (e + + e -) has been measured by the Fermi Large Area Telescope (LAT) in the energy range between 7 GeV and 2 TeV. Here, we discuss a number of interpretations of Pass 8 Fermi-LAT e + + e - spectrum, combining electron and positron emission from supernova remnants (SNRs) and pulsar wind nebulae (PWNe), or produced by the collision of cosmic rays (CRs) with the interstellar medium. We also found that the Fermi-LAT spectrum is compatible with the sum of electrons from a smooth SNR population, positrons from cataloged PWNe, and amore » secondary component. If we include in our analysis constraints from the AMS-02 positron spectrum, we obtain a slightly worse fit to the e + + e - Fermi-LAT spectrum, depending on the propagation model. As an additional scenario, we replace the smooth SNR component within 0.7 kpc with the individual sources found in Green's catalog of Galactic SNRs. We find that separate consideration of far and near sources helps to reproduce the e + + e - Fermi-LAT spectrum. However, we show that the fit degrades when the radio constraints on the positron emission from Vela SNR (which is the main contributor at high energies) are taken into account. We find that a break in the power-law injection spectrum at about 100 GeV can also reproduce the measured e + + e -spectrum and, among the CR propagation models that we consider, no reasonable break of the power-law dependence of the diffusion coefficient can modify the electron flux enough to reproduce the observed shape.« less

  13. COSMIC-RAY POSITRONS FROM MILLISECOND PULSARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venter, C.; Kopp, A.; Büsching, I.

    2015-07-10

    Observations by the Fermi Large Area Telescope of γ-ray millisecond pulsar (MSP) light curves imply copious pair production in their magnetospheres, and not exclusively in those of younger pulsars. Such pair cascades may be a primary source of Galactic electrons and positrons, contributing to the observed enhancement in positron flux above ∼10 GeV. Fermi has also uncovered many new MSPs, impacting Galactic stellar population models. We investigate the contribution of Galactic MSPs to the flux of terrestrial cosmic-ray electrons and positrons. Our population synthesis code predicts the source properties of present-day MSPs. We simulate their pair spectra invoking an offset-dipolemore » magnetic field. We also consider positrons and electrons that have been further accelerated to energies of several TeV by strong intrabinary shocks in black widow (BW) and redback (RB) systems. Since MSPs are not surrounded by pulsar wind nebulae or supernova shells, we assume that the pairs freely escape and undergo losses only in the intergalactic medium. We compute the transported pair spectra at Earth, following their diffusion and energy loss through the Galaxy. The predicted particle flux increases for non-zero offsets of the magnetic polar caps. Pair cascades from the magnetospheres of MSPs are only modest contributors around a few tens of GeV to the lepton fluxes measured by the Alpha Magnetic Spectrometer, PAMELA, and Fermi, after which this component cuts off. The contribution by BWs and RBs may, however, reach levels of a few tens of percent at tens of TeV, depending on model parameters.« less

  14. Theoretical Interpretation of Pass 8 Fermi -LAT e + + e - Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Mauro, M.; Manconi, S.; Vittino, A.

    The flux of positrons and electrons (e + + e -) has been measured by the Fermi Large Area Telescope (LAT) in the energy range between 7 GeV and 2 TeV. Here, we discuss a number of interpretations of Pass 8 Fermi-LAT e + + e - spectrum, combining electron and positron emission from supernova remnants (SNRs) and pulsar wind nebulae (PWNe), or produced by the collision of cosmic rays (CRs) with the interstellar medium. We also found that the Fermi-LAT spectrum is compatible with the sum of electrons from a smooth SNR population, positrons from cataloged PWNe, and amore » secondary component. If we include in our analysis constraints from the AMS-02 positron spectrum, we obtain a slightly worse fit to the e + + e - Fermi-LAT spectrum, depending on the propagation model. As an additional scenario, we replace the smooth SNR component within 0.7 kpc with the individual sources found in Green's catalog of Galactic SNRs. We find that separate consideration of far and near sources helps to reproduce the e + + e - Fermi-LAT spectrum. However, we show that the fit degrades when the radio constraints on the positron emission from Vela SNR (which is the main contributor at high energies) are taken into account. We find that a break in the power-law injection spectrum at about 100 GeV can also reproduce the measured e + + e -spectrum and, among the CR propagation models that we consider, no reasonable break of the power-law dependence of the diffusion coefficient can modify the electron flux enough to reproduce the observed shape.« less

  15. Experimental identification of nitrogen-vacancy complexes in nitrogen implanted silicon

    NASA Astrophysics Data System (ADS)

    Adam, Lahir Shaik; Law, Mark E.; Szpala, Stanislaw; Simpson, P. J.; Lawther, Derek; Dokumaci, Omer; Hegde, Suri

    2001-07-01

    Nitrogen implantation is commonly used in multigate oxide thickness processing for mixed signal complementary metal-oxide-semiconductor and System on a Chip technologies. Current experiments and diffusion models indicate that upon annealing, implanted nitrogen diffuses towards the surface. The mechanism proposed for nitrogen diffusion is the formation of nitrogen-vacancy complexes in silicon, as indicated by ab initio studies by J. S. Nelson, P. A. Schultz, and A. F. Wright [Appl. Phys. Lett. 73, 247 (1998)]. However, to date, there does not exist any experimental evidence of nitrogen-vacancy formation in silicon. This letter provides experimental evidence through positron annihilation spectroscopy that nitrogen-vacancy complexes indeed form in nitrogen implanted silicon, and compares the experimental results to the ab initio studies, providing qualitative support for the same.

  16. Adiabatic-nuclei calculations of positron scattering from molecular hydrogen

    DOE PAGES

    Zammit, Mark Christian; Fursa, Dmitry V.; Savage, Jeremy S.; ...

    2017-02-06

    The single-center adiabatic-nuclei convergent close-coupling method is used to investigate positron collisions with molecular hydrogen (H 2) in the ground and first vibrationally excited states. Cross sections are presented over the energy range from 1 to 1000 eV for elastic scattering, vibrational excitation, total ionization, and the grand total cross section. The present adiabatic-nuclei positron- H 2 scattering length is calculated as A = $-$ 2.70 a 0 for the ground state and A = $-$ 3.16 a 0 for the first vibrationally excited state. The present elastic differential cross sections are also used to “correct” the low-energy grand totalmore » cross-section measurements of the Trento group [A. Zecca et al., Phys. Rev. A 80, 032702 (2009)] for the forward-angle-scattering effect. In general, the comparison with experiment is good. In conclusion, by performing convergence studies, we estimate that our R m = 1.448 a 0 fixed-nuclei results are converged to within ± 5 % for the major scattering integrated cross sections.« less

  17. Measuring the Local Diffusion Coefficient with H.E.S.S. Observations of Very High-Energy Electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, Dan; Linden, Tim

    2017-11-20

    The HAWC Collaboration has recently reported the detection of bright and spatially extended multi-TeV gamma-ray emission from Geminga, Monogem, and a handful of other nearby, middle-aged pulsars. The angular profile of the emission observed from these pulsars is surprising, in that it implies that cosmic-ray diffusion is significantly inhibited within ~25 pc of these objects, compared to the expectations of standard Galactic diffusion models. This raises the important question of whether the diffusion coefficient in the local interstellar medium is also low, or whether it is instead better fit by the mean Galactic value. Here, we utilize recent observations ofmore » the cosmic-ray electron spectrum (extending up to ~20 TeV) by the H.E.S.S. Collaboration to show that the local diffusion coefficient cannot be as low as it is in the regions surrounding Geminga and Monogem. Instead, we conclude that cosmic rays efficiently diffuse through the bulk of the local interstellar medium. Among other implications, this further supports the conclusion that pulsars significantly contribute to the observed positron excess.« less

  18. Lifetime and diffusion length measurements on silicon material and solar cells

    NASA Technical Reports Server (NTRS)

    Othmer, S.; Chen, S. C.

    1978-01-01

    Experimental methods were evaluated for the determination of lifetime and diffusion length in silicon intentionally doped with potentially lifetime-degrading impurities found in metallurgical grade silicon, impurities which may be residual in low-cost silicon intended for use in terrestrial flat-plate arrays. Lifetime measurements were made using a steady-state photoconductivity method. Diffusion length determinations were made using short-circuit current measurements under penetrating illumination. Mutual consistency among all experimental methods was verified, but steady-state photoconductivity was found preferable to photoconductivity decay at short lifetimes and in the presence of traps. The effects of a number of impurities on lifetime in bulk material, and on diffusion length in cells fabricated from this material, were determined. Results are compared with those obtained using different techniques. General agreement was found in terms of the hierarchy of impurities which degrade the lifetime.

  19. Effects of superparamagnetic iron oxide nanoparticles on the longitudinal and transverse relaxation of hyperpolarized xenon gas

    NASA Astrophysics Data System (ADS)

    Burant, Alex; Antonacci, Michael; McCallister, Drew; Zhang, Le; Branca, Rosa Tamara

    2018-06-01

    SuperParamagnetic Iron Oxide Nanoparticles (SPIONs) are often used in magnetic resonance imaging experiments to enhance Magnetic Resonance (MR) sensitivity and specificity. While the effect of SPIONs on the longitudinal and transverse relaxation time of 1H spins has been well characterized, their effect on highly diffusive spins, like those of hyperpolarized gases, has not. For spins diffusing in linear magnetic field gradients, the behavior of the magnetization is characterized by the relative size of three length scales: the diffusion length, the structural length, and the dephasing length. However, for spins diffusing in non-linear gradients, such as those generated by iron oxide nanoparticles, that is no longer the case, particularly if the diffusing spins experience the non-linearity of the gradient. To this end, 3D Monte Carlo simulations are used to simulate the signal decay and the resulting image contrast of hyperpolarized xenon gas near SPIONs. These simulations reveal that signal loss near SPIONs is dominated by transverse relaxation, with little contribution from T1 relaxation, while simulated image contrast and experiments show that diffusion provides no appreciable sensitivity enhancement to SPIONs.

  20. New Results from Fermi-LAT and Their Implications for the Nature of Dark Matter and the Origin of Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2009-01-01

    The measured spectrum is compatible with a power law within our current systematic errors. The spectral index (-3.04) is harder than expected from previous experiments and simple theoretical considerations. "Pre-Fermi" diffusive model requires a harder electron injection spectrum (by 0.12) to fit the Fermi data, but inconsistent with positron excess reported by Pamela if it extends to higher energy. Additional component of electron flux from local source(s) may solve the problem; its origin, astrophysical or exotic, is still unclear. Valuable contribution to the calculation of IC component of diffuse gamma radiation.

  1. ‘Double cortex’ sign on FDG-PET/CT in diffuse band heterotopia

    PubMed Central

    Tripathi, Madhavi; Tripathi, Manjari; Kumar, Ganesh; Malhotra, Arun; Bal, Chandra Sekhar

    2013-01-01

    F-18 Fluorodeoxyglucose (FDG) Positron emission tomography/Computed Tomography (PET/CT) has come to play an increasingly important role for the pre-surgical evaluation of drug resistant epilepsy and complements Magnetic Resonance Imaging (MRI) in the evaluation of grey matter heterotopias. This case illustrates the characteristic pattern of metabolic abnormality in diffuse band heterotopia (DBH) which is otherwise called double cortex syndrome. The presence of metabolic activity in the heterotopic inner cortical band and in the overlying true cortex gives rise to the ‘double cortex’ sign on FDG-PET, concurrent CT provides a good anato-metabolic coregistration. PMID:24379541

  2. Sodium doping in ZnO crystals

    NASA Astrophysics Data System (ADS)

    Parmar, N. S.; Lynn, K. G.

    2015-01-01

    ZnO bulk single crystals were doped with sodium by thermal diffusion. Positron annihilations spectroscopy confirms the filling of zinc vacancies, to >6 μm deep in the bulk. Secondary-ion mass spectrometry measurement shows the diffusion of sodium up to 8 μm with concentration (1-3.5) × 1017 cm-3. Broad photoluminescence excitation peak at 3.1 eV, with onset appearance at 3.15 eV in Na:ZnO, is attributed to an electronic transition from a NaZn level at ˜(220-270) meV to the conduction band. Resistivity in Na doped ZnO crystals increases up to (4-5) orders of magnitude at room temperature.

  3. Patterns of human local cerebral glucose metabolism during epileptic seizures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, J. Jr.; Kuhl, D.E.; Phelps, M.E.

    1982-10-01

    Ictal patterns of local cerebral metabolic rate have been studied in epileptic patients by positron computed tomography with /sup 18/F-labeled 2-fluoro-2-deoxy-D-glucose. Partial seizures were associated with activation of anatomic structures unique to each patient studied. Ictal increases and decreases in local cerebral metabolism were observed. Scans performed during generalized convulsions induced by electroshock demonstrated a diffuse ictal increase and postictal decrease in cerebral metabolism. Petit mal absences were associated with a diffuse increase in cerebral metabolic rate. The ictal fluorodeoxyglucose patterns obtained from patients do not resemble autoradiographic patterns obtained from common experimental animal models of epilepsy.

  4. Prediction of an Apparent Flame Length in a Co-Axial Jet Diffusion Flame Combustor.

    DTIC Science & Technology

    1983-04-01

    This report is comprised of two parts. In Part I a predictive model for an apparent flame length in a co-axial jet diffusion flame combustor is...Overall mass transfer coefficient, evaluated from an empirically developed correlation, is employed to predict total flame length . Comparison of the...experimental and predicted data on total flame length shows a reasonable agreement within sixteen percent over the investigated air and fuel flow rate

  5. Investigation of Perforated Convergent-divergent Diffusers with Initial Boundary Layer

    NASA Technical Reports Server (NTRS)

    Weinstein, Maynard I

    1950-01-01

    An experimental investigation was made at Mach number 1.90 of the performance of a series of perforated convergent-divergent supersonic diffusers operating with initial boundary layer, which was induced and controlled by lengths of cylindrical inlets affixed to the diffusers. Supercritical mass-flow and peak total-pressure recoveries were decreased slightly by use of the longest inlets (4 inlet diameters in length). Combinations of cylindrical inlets, perforated diffusers, and subsonic diffuser were evaluated as simulated wind tunnels having second throats. Comparisons with noncontracted configurations of similar scale indicated conservatively computed power reductions of 25 percent.

  6. Study of amyloid-β peptide functional brain networks in AD, MCI and HC.

    PubMed

    Jiang, Jiehui; Duan, Huoqiang; Huang, Zheming; Yu, Zhihua

    2015-01-01

    One medical challenge in studying the amyloid-β (Aβ) peptide mechanism for Alzheimer's disease (AD) is exploring the law of beta toxic oligomers' diffusion in human brains in vivo. One beneficial means of solving this problem is brain network analysis based on graph theory. In this study, the characteristics of Aβ functional brain networks of Healthy Control (HC), Mild Cognitive Impairment (MCI), and AD groups were compared by applying graph theoretical analyses to Carbon 11-labeled Pittsburgh compound B positron emission tomography (11C PiB-PET) data. 120 groups of PiB-PET images from the ADNI database were analyzed. The results showed that the small-world property of MCI and AD were lost as compared to HC. Furthermore, the local clustering of networks was higher in both MCI and AD as compared to HC, whereas the path length was similar among the three groups. The results also showed that there could be four potential Aβ toxic oligomer seeds: Frontal_Sup_Medial_L, Parietal_Inf_L, Frontal_Med_Orb_R, and Parietal_Inf_R. These four seeds are corresponding to Regions of Interests referred by physicians to clinically diagnose AD.

  7. Length of intact plasma membrane determines the diffusion properties of cellular water.

    PubMed

    Eida, Sato; Van Cauteren, Marc; Hotokezaka, Yuka; Katayama, Ikuo; Sasaki, Miho; Obara, Makoto; Okuaki, Tomoyuki; Sumi, Misa; Nakamura, Takashi

    2016-01-11

    Molecular diffusion in a boundary-free medium depends only on the molecular size, the temperature, and medium viscosity. However, the critical determinant of the molecular diffusion property in inhomogeneous biological tissues has not been identified. Here, using an in vitro system and a high-resolution MR imaging technique, we show that the length of the intact plasma membrane is a major determinant of water diffusion in a controlled cellular environment and that the cell perimeter length (CPL) is sufficient to estimate the apparent diffusion coefficient (ADC) of water in any cellular environment in our experimental system (ADC = -0.21 × CPL + 1.10). We used this finding to further explain the different diffusion kinetics of cells that are dying via apoptotic or non-apoptotic cell death pathways exhibiting characteristic changes in size, nuclear and cytoplasmic architectures, and membrane integrity. These results suggest that the ADC value can be used as a potential biomarker for cell death.

  8. Length of intact plasma membrane determines the diffusion properties of cellular water

    PubMed Central

    Eida, Sato; Van Cauteren, Marc; Hotokezaka, Yuka; Katayama, Ikuo; Sasaki, Miho; Obara, Makoto; Okuaki, Tomoyuki; Sumi, Misa; Nakamura, Takashi

    2016-01-01

    Molecular diffusion in a boundary-free medium depends only on the molecular size, the temperature, and medium viscosity. However, the critical determinant of the molecular diffusion property in inhomogeneous biological tissues has not been identified. Here, using an in vitro system and a high-resolution MR imaging technique, we show that the length of the intact plasma membrane is a major determinant of water diffusion in a controlled cellular environment and that the cell perimeter length (CPL) is sufficient to estimate the apparent diffusion coefficient (ADC) of water in any cellular environment in our experimental system (ADC = −0.21 × CPL + 1.10). We used this finding to further explain the different diffusion kinetics of cells that are dying via apoptotic or non-apoptotic cell death pathways exhibiting characteristic changes in size, nuclear and cytoplasmic architectures, and membrane integrity. These results suggest that the ADC value can be used as a potential biomarker for cell death. PMID:26750342

  9. Damage and recovery characteristics of lithium-containing solar cells.

    NASA Technical Reports Server (NTRS)

    Faith, T. J.

    1971-01-01

    Damage and recovery characteristics were measured on lithium-containing solar cells irradiated by 1-MeV electrons. Empirical expressions for cell recovery time, diffusion-length damage coefficient immediately after irradiation, and diffusion-length damage coefficient after recovery were derived using results of short-circuit current, diffusion-length, and reverse-bias capacitance measurements. The damage coefficients were expressed in terms of a single lithium density parameter, the lithium gradient. A fluence dependence was also established, this dependence being the same for both the immediate-post-irradiation and post-recovery cases. Cell recovery rates were found to increase linearly with lithium gradient.

  10. Thermal diffusivity study of aged Li-ion batteries using flash method

    NASA Astrophysics Data System (ADS)

    Nagpure, Shrikant C.; Dinwiddie, Ralph; Babu, S. S.; Rizzoni, Giorgio; Bhushan, Bharat; Frech, Tim

    Advanced Li-ion batteries with high energy and power density are fast approaching compatibility with automotive demands. While the mechanism of operation of these batteries is well understood, the aging mechanisms are still under investigation. Investigation of aging mechanisms in Li-ion batteries becomes very challenging, as aging does not occur due to a single process, but because of multiple physical processes occurring at the same time in a cascading manner. As the current characterization techniques such as Raman spectroscopy, X-ray diffraction, and atomic force microscopy are used independent of each other they do not provide a comprehensive understanding of material degradation at different length (nm 2 to m 2) scales. Thus to relate the damage mechanisms of the cathode at mm length scale to micro/nanoscale, data at an intermediate length scale is needed. As such, we demonstrate here the use of thermal diffusivity analysis by flash method to bridge the gap between different length scales. In this paper we present the thermal diffusivity analysis of an unaged and aged cell. Thermal diffusivity analysis maps the damage to the cathode samples at millimeter scale lengths. Based on these maps we also propose a mechanism leading to the increase of the thermal diffusivity as the cells are aged.

  11. Diffusion length of non-equilibrium minority charge carriers in β-Ga2O3 measured by electron beam induced current

    NASA Astrophysics Data System (ADS)

    Yakimov, E. B.; Polyakov, A. Y.; Smirnov, N. B.; Shchemerov, I. V.; Yang, Jiancheng; Ren, F.; Yang, Gwangseok; Kim, Jihyun; Pearton, S. J.

    2018-05-01

    The spatial distribution of electron-hole pair generation in β-Ga2O3 as a function of scanning electron microscope (SEM) beam energy has been calculated by a Monte Carlo method. This spatial distribution is then used to obtain the diffusion length of charge carriers in high-quality epitaxial Ga2O3 films from the dependence of the electron beam induced current (EBIC) collection efficiency on the accelerating voltage of a SEM. The experimental results show, contrary to earlier theory, that holes are mobile in β-Ga2O3 and to a large extent determine the diffusion length of charge carriers. Diffusion lengths in the range 350-400 nm are determined for the as-grown Ga2O3, while processes like exposing the samples to proton irradiation essentially halve this value, showing the role of point defects in controlling minority carrier transport. The pitfalls related to using other popular EBIC-based methods assuming a point-like excitation function are demonstrated. Since the point defect type and the concentration in currently available Ga2O3 are dependent on the growth method and the doping concentration, accurate methods of diffusion length determination are critical to obtain quantitative comparisons of material quality.

  12. The narrow pulse approximation and long length scale determination in xenon gas diffusion NMR studies of model porous media

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Sen, P. N.; Hurlimann, M. D.; Patz, S.; Cory, D. G.; Walsworth, R. L.

    2002-01-01

    We report a systematic study of xenon gas diffusion NMR in simple model porous media, random packs of mono-sized glass beads, and focus on three specific areas peculiar to gas-phase diffusion. These topics are: (i) diffusion of spins on the order of the pore dimensions during the application of the diffusion encoding gradient pulses in a PGSE experiment (breakdown of the narrow pulse approximation and imperfect background gradient cancellation), (ii) the ability to derive long length scale structural information, and (iii) effects of finite sample size. We find that the time-dependent diffusion coefficient, D(t), of the imbibed xenon gas at short diffusion times in small beads is significantly affected by the gas pressure. In particular, as expected, we find smaller deviations between measured D(t) and theoretical predictions as the gas pressure is increased, resulting from reduced diffusion during the application of the gradient pulse. The deviations are then completely removed when water D(t) is observed in the same samples. The use of gas also allows us to probe D(t) over a wide range of length scales and observe the long time asymptotic limit which is proportional to the inverse tortuosity of the sample, as well as the diffusion distance where this limit takes effect (approximately 1-1.5 bead diameters). The Pade approximation can be used as a reference for expected xenon D(t) data between the short and the long time limits, allowing us to explore deviations from the expected behavior at intermediate times as a result of finite sample size effects. Finally, the application of the Pade interpolation between the long and the short time asymptotic limits yields a fitted length scale (the Pade length), which is found to be approximately 0.13b for all bead packs, where b is the bead diameter. c. 2002 Elsevier Sciences (USA).

  13. The narrow pulse approximation and long length scale determination in xenon gas diffusion NMR studies of model porous media.

    PubMed

    Mair, R W; Sen, P N; Hürlimann, M D; Patz, S; Cory, D G; Walsworth, R L

    2002-06-01

    We report a systematic study of xenon gas diffusion NMR in simple model porous media, random packs of mono-sized glass beads, and focus on three specific areas peculiar to gas-phase diffusion. These topics are: (i) diffusion of spins on the order of the pore dimensions during the application of the diffusion encoding gradient pulses in a PGSE experiment (breakdown of the narrow pulse approximation and imperfect background gradient cancellation), (ii) the ability to derive long length scale structural information, and (iii) effects of finite sample size. We find that the time-dependent diffusion coefficient, D(t), of the imbibed xenon gas at short diffusion times in small beads is significantly affected by the gas pressure. In particular, as expected, we find smaller deviations between measured D(t) and theoretical predictions as the gas pressure is increased, resulting from reduced diffusion during the application of the gradient pulse. The deviations are then completely removed when water D(t) is observed in the same samples. The use of gas also allows us to probe D(t) over a wide range of length scales and observe the long time asymptotic limit which is proportional to the inverse tortuosity of the sample, as well as the diffusion distance where this limit takes effect (approximately 1-1.5 bead diameters). The Padé approximation can be used as a reference for expected xenon D(t) data between the short and the long time limits, allowing us to explore deviations from the expected behavior at intermediate times as a result of finite sample size effects. Finally, the application of the Padé interpolation between the long and the short time asymptotic limits yields a fitted length scale (the Padé length), which is found to be approximately 0.13b for all bead packs, where b is the bead diameter. c. 2002 Elsevier Sciences (USA).

  14. About cosmic gamma ray lines

    NASA Astrophysics Data System (ADS)

    Diehl, Roland

    2017-06-01

    Gamma ray lines from cosmic sources convey the action of nuclear reactions in cosmic sites and their impacts on astrophysical objects. Gamma rays at characteristic energies result from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. The gamma-ray line from the annihilation of positrons at 511 keV falls into the same energy window, although of different origin. We present here the concepts of cosmic gamma ray spectrometry and the corresponding instruments and missions, followed by a discussion of recent results and the challenges and open issues for the future. Among the lessons learned are the diffuse radioactive afterglow of massive-star nucleosynthesis in 26Al and 60Fe gamma rays, which is now being exploited towards the cycle of matter driven by massive stars and their supernovae; large interstellar cavities and superbubbles have been recognised to be of key importance here. Also, constraints on the complex processes making stars explode as either thermonuclear or core-collapse supernovae are being illuminated by gamma-ray lines, in this case from shortlived radioactivities from 56Ni and 44Ti decays. In particular, the three-dimensionality and asphericities that have recently been recognised as important are enlightened in different ways through such gamma-ray line spectroscopy. Finally, the distribution of positron annihilation gamma ray emission with its puzzling bulge-dominated intensity disctribution is measured through spatially-resolved spectra, which indicate that annihilation conditions may differ in different parts of our Galaxy. But it is now understood that a variety of sources may feed positrons into the interstellar medium, and their characteristics largely get lost during slowing down and propagation of positrons before annihilation; a recent microquasar flare was caught as an opportunity to see positrons annihilate at a source.

  15. A nonlinear equation for ionic diffusion in a strong binary electrolyte

    PubMed Central

    Ghosal, Sandip; Chen, Zhen

    2010-01-01

    The problem of the one-dimensional electro-diffusion of ions in a strong binary electrolyte is considered. The mathematical description, known as the Poisson–Nernst–Planck (PNP) system, consists of a diffusion equation for each species augmented by transport owing to a self-consistent electrostatic field determined by the Poisson equation. This description is also relevant to other important problems in physics, such as electron and hole diffusion across semiconductor junctions and the diffusion of ions in plasmas. If concentrations do not vary appreciably over distances of the order of the Debye length, the Poisson equation can be replaced by the condition of local charge neutrality first introduced by Planck. It can then be shown that both species diffuse at the same rate with a common diffusivity that is intermediate between that of the slow and fast species (ambipolar diffusion). Here, we derive a more general theory by exploiting the ratio of the Debye length to a characteristic length scale as a small asymptotic parameter. It is shown that the concentration of either species may be described by a nonlinear partial differential equation that provides a better approximation than the classical linear equation for ambipolar diffusion, but reduces to it in the appropriate limit. PMID:21818176

  16. ANTIMATTER PRODUCTION IN SUPERNOVA REMNANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kachelriess, M.; Ostapchenko, S.; Tomas, R.

    2011-06-01

    We calculate the energy spectra of cosmic rays (CRs) and their secondaries produced in a supernova remnant (SNR) taking into account the time dependence of the SNR shock. We model the trajectories of charged particles as a random walk with a prescribed diffusion coefficient, accelerating the particles at each shock crossing. Secondary production by CRs colliding with gas is included as a Monte Carlo process. We find that SNRs produce less antimatter than suggested previously: the positron/electron ratio F{sub e}{sup +}/F{sub e}{sup +}{sub +e}{sup -} and the antiproton/proton ratio F{sub p-bar/}F{sub p-bar+p} are a few percent and few x 10{supmore » -5}, respectively. Moreover, the obtained positron/electron ratio decreases with energy, while the antiproton/proton ratio rises at most by a factor of two above 10 GeV.« less

  17. Current-induced spin polarization on metal surfaces probed by spin-polarized positron beam

    PubMed Central

    Zhang, H. J.; Yamamoto, S.; Fukaya, Y.; Maekawa, M.; Li, H.; Kawasuso, A.; Seki, T.; Saitoh, E.; Takanashi, K.

    2014-01-01

    Current-induced spin polarization (CISP) on the outermost surfaces of Au, Cu, Pt, Pd, Ta, and W nanoscaled films were studied using a spin-polarized positron beam. The Au and Cu surfaces showed no significant CISP. In contrast, the Pt, Pd, Ta, and W films exhibited large CISP (3~15% per input charge current of 105 A/cm2) and the CISP of Ta and W were opposite to those of Pt and Pd. The sign of the CISP obeys the same rule in spin Hall effect suggesting that the spin-orbit coupling is mainly responsible for the CISP. The magnitude of the CISP is explained by the Rashba-Edelstein mechanism rather than the diffusive spin Hall effect. This settles a controversy, that which of these two mechanisms dominates the large CISP on metal surfaces. PMID:24776781

  18. Exciton Transport Simulations in Phenyl Cored Thiophene Dendrimers

    NASA Astrophysics Data System (ADS)

    Kim, Kwiseon; Erkan Kose, Muhammet; Graf, Peter; Kopidakis, Nikos; Rumbles, Garry; Shaheen, Sean E.

    2009-03-01

    Phenyl cored 3-arm and 4-arm thiophene dendrimers are promising materials for use in photovoltaic devices. It is important to understand the energy transfer mechanisms in these molecules to guide the synthesis of novel dendrimers with improved efficiency. A method is developed to estimate the exciton diffusion lengths for the dendrimers and similar chromophores in amorphous films. The approach exploits Fermi's Golden Rule to estimate the energy transfer rates for an ensemble of bimolecular complexes in random orientations. Using Poisson's equation to evaluate Coulomb integrals led to efficient calculation of excitonic couplings between the transition densities. Monte-Carlo simulations revealed the dynamics of energy transport in the dendrimers. Experimental exciton diffusion lengths of the dendrimers range 10 ˜ 20 nm, increasing with the size of the dendrimer. Simulated diffusion lengths correlate well with experiments. The chemical structure of the chromophore, the shape of the transition densities and the exciton lifetime are found to be the most important factors that determine the exciton diffusion length in amorphous films.

  19. Method and apparatus for determining minority carrier diffusion length in semiconductors

    DOEpatents

    Goldstein, Bernard; Dresner, Joseph; Szostak, Daniel J.

    1983-07-12

    Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon which has a significantly small minority carrier diffusion length using the constant-magnitude surface-photovoltage (SPV) method. An unmodulated illumination provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPV. A vibrating Kelvin method-type probe electrode couples the SPV to a measurement system. The operating optical wavelength of an adjustable monochromator to compensate for the wavelength dependent sensitivity of a photodetector is selected to measure the illumination intensity (photon flux) on the silicon. Measurements of the relative photon flux for a plurality of wavelengths are plotted against the reciprocal of the optical absorption coefficient of the material. A linear plot of the data points is extrapolated to zero intensity. The negative intercept value on the reciprocal optical coefficient axis of the extrapolated linear plot is the diffusion length of the minority carriers.

  20. Deep levels due to hydrogen in ZnO single crystals

    NASA Astrophysics Data System (ADS)

    Parmar, Narendra; Weber, Marc; Lynn, Kelvin

    2009-05-01

    Hydrogen impurities and oxygen vacancies are involved in the ˜0.7 eV shift of the optical absorption edge of ZnO. Deuterium causes a smaller shift. Titanium metal is used to bind hydrogen as it diffuses out of ZnO. Positron annihilation spectroscopy coupled with other techniques point to the presence of oxygen vacancies. Removing hydrogen followed by annealing in oxygen reduces the carrier concentration.

  1. Carrier diffusion as a measure of carrier/exciton transfer rate in InAs/InGaAsP/InP hybrid quantum dot-quantum well structures emitting at telecom spectral range

    NASA Astrophysics Data System (ADS)

    Rudno-Rudziński, W.; Biegańska, D.; Misiewicz, J.; Lelarge, F.; Rousseau, B.; Sek, G.

    2018-01-01

    We investigate the diffusion of photo-generated carriers (excitons) in hybrid two dimensional-zero dimensional tunnel injection structures, based on strongly elongated InAs quantum dots (called quantum dashes, QDashes) of various heights, designed for emission at around 1.5 μm, separated by a 3.5 nm wide barrier from an 8 nm wide In0.64Ga0.36As0.78P0.22 quantum well (QW). By measuring the spectrally filtered real space images of the photoluminescence patterns with high resolution, we probe the spatial extent of the emission from QDashes. Deconvolution with the exciting light spot shape allows us to extract the carrier/exciton diffusion lengths. For the non-resonant excitation case, the diffusion length depends strongly on excitation power, pointing at carrier interactions and phonons as its main driving mechanisms. For the case of excitation resonant with absorption in the adjacent QW, the diffusion length does not depend on excitation power for low excitation levels since the generated carriers do not have sufficient excess kinetic energy. It is also found that the diffusion length depends on the quantum-mechanical coupling strength between QW and QDashes, controlled by changing the dash size. It influences the energy difference between the QDash ground state of the system and the quantum well levels, which affects the tunneling rates. When that QW-QDash level separation decreases, the probability of capturing excitons generated in the QW by QDashes increases, which is reflected by the decreased diffusion length from approx. 5 down to 3 μm.

  2. Study of corrosion-related defects of zirconium alloys with slow positron beam

    NASA Astrophysics Data System (ADS)

    Zhu, Zhejie; Yao, Meiyi; Shi, Jianjian; Yao, Chunlong; Lu, Eryang; Cao, Xingzhong; Wang, Baoyi; Wu, Yichu

    2018-09-01

    The corrosion behavior of Zr-4 and N5 alloy specimens corroded in 0.01 mol/L LiOH aqueous solution at 360 °C/18.6 MPa and in super heated steam at 400 °C/10.3 MPa for 1, 3 and 14 days were investigated by slow positron beam based Doppler broadening spectroscopy. Results showed that there was an evident interfacial layer with pre-existed vacancies and voids in uncorroded Zr-4 specimens, while in uncorroded N5 specimen, the interfacial defect layer can not be identified or a thin interfacial layer was only contained. When the specimens were corroded in super heated steam at 400 °C/10.3 MPa for a few days, the existence of the interface layer in the Zr-4 specimen would delay the diffusion rate of the oxygen atoms and decelerated the oxidation rate of the corrosion process. However, at very early stage of the corrosion, as Zr-4 and N5 specimens were corrded in 0.01 mol/L LiOH aqueous solution at 360 °C/18.6 MPa, the effect of Li+ accelerated the diffusion rate of the oxygen atoms, while the effect of the interface defect layer became a minor effect.

  3. Acid diffusion, standing waves, and information theory: a molecular-scale model of chemically amplified resist

    NASA Astrophysics Data System (ADS)

    Trefonas, Peter, III; Allen, Mary T.

    1992-06-01

    Shannon's information theory is adapted to analyze the photolithographic process, defining the mask pattern as the prior state. Definitions and constraints to the general theory are developed so that the information content at various stages of the lithographic process can be described. Its application is illustrated by exploring the information content within projected aerial images and resultant latent images. Next, a 3-dimensional molecular scale model of exposure, acid diffusion, and catalytic crosslinking in acid-hardened resists (AHR) is presented. In this model, initial positions of photogenerated acids are determined by probability functions generated from the aerial images and the local light intensity in the film. In order to simulate post-exposure baking processes, acids are diffused in a random walk manner, for which the catalytic chain length and the average distance between crosslinks can be set. Crosslink locations are defined in terms of the topologically minimized number required to link different chains. The size and location of polymer chains involved in a larger scale crosslinked network is established and related to polymer solubility. In this manner, the nature of the crosslinked latent image can be established. Good correlation with experimental data is found for the calculated percent insolubilization as a function of dose when the rms acid diffusion length is about 500 angstroms. Information analysis is applied in detail to the specific example of AHR chemistry. The information contained within the 3-D crosslinked latent image is explored as a function of exposure dose, catalytic chain length, average distance between crosslinks. Eopt (the exposure dose which optimizes the information contained within the latent image) was found to vary with catalytic chain length in a manner similar to that observed experimentally in a plot of E90 versus post-exposure bake time. Surprisingly, the information content of the crosslinked latent image remains high even when rms diffusion lengths are as long as 1500 angstroms. The information content of a standing wave is shown to decrease with increasing diffusion length, with essentially all standing wave information being lost at diffusion lengths greater than 450 angstroms. A unique mechanism for self-contrast enhancement and high resolution in AHR resist is proposed.

  4. Acinar cell carcinoma of the pancreas presenting as diffuse pancreatic enlargement: Two case reports and literature review.

    PubMed

    Luo, Yaping; Hu, Guilan; Ma, Yanru; Guo, Ning; Li, Fang

    2017-09-01

    Pancreatic acinar cell carcinoma (ACC) is a rare malignant tumor of exocrine pancreas. It is typically a well-marginated large solid mass arising in a certain aspect of the pancreas. Diffuse involvement of ACC in the pancreas is very rare, and may simulate pancreatitis in radiological findings. We report 2 cases of ACC presenting as diffuse enlargement of the pancreas due to tumor involvement without formation of a distinct mass. The patients consisted of a 41-year-old man with weight loss and a 77-year-old man who was asymptomatic. Computed tomography (CT) and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT showed diffuse enlargement of the pancreas forming a sausage-like shape with homogenously increased FDG activity. Endoscopic ultrasound (EUS)-guided fine needle aspiration (FNA) biopsy of the pancreatic lesion was performed. Histopathology results from the pancreas confirmed the diagnosis of pancreatic ACC. Because diffuse enlargement of the pancreas is a common imaging feature of pancreatitis, recognition of this rare morphologic pattern of ACC is important for radiological diagnosis of this tumor.

  5. Fermi-LAT kills dark matter interpretations of AMS-02 data. Or not?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belotsky, Konstantin; Budaev, Ruslan; Kirillov, Alexander

    2017-01-01

    A number of papers attempt to explain the positron anomaly in cosmic rays, observed by PAMELA and AMS-02, in terms of dark matter (DM) decays or annihilations. However, the recent progress in cosmic gamma-ray studies challenges these attempts. Indeed, as we show, any rational DM model explaining the positron anomaly abundantly produces final state radiation and Inverse Compton gamma rays, which inevitably leads to a contradiction with Fermi-LAT isotropic diffuse gamma-ray background measurements. Furthermore, the Fermi-LAT observation of Milky Way dwarf satellites, supposed to be rich in DM, revealed no significant signal in gamma rays. We propose a generic approachmore » in which the major contribution to cosmic rays comes from the dark matter disc and prove that the tension between the DM origin of the positron anomaly and the cosmic gamma-ray observations can be relieved. We consider both a simple model, in which DM decay/annihilate into charged leptons, and a model-independent minimal case of particle production, and we estimate the optimal thickness of DM disk. Possible mechanisms of formation and its properties are briefly discussed.« less

  6. FDG PET/CT Findings in Primary Diffuse Large B-cell Lymphoma, Leg Type.

    PubMed

    Ni, Chiayi; Lewis, Michael; Berenji, Gholam

    2016-01-01

    A 64-year-old man presented with complaints of worsening left foot pain and swelling. MRI showed a soft tissue mass overlying the dorsolateral aspect of the left foot. Following a 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT), the left foot mass was biopsied and pathology indicated a diagnosis of primary diffuse large B-cell lymphoma, leg type (PDLBCL, LT). Review of the PET/CT images demonstrated hypermetabolic activity associated with the left foot mass, multiple subcutaneous nodules/nodes, sclerotic osseous lesions in the lower extremities, and left external iliac/left inguinal lymphadenopathy. At the moment, the patient is undergoing chemotherapy.

  7. Nanoenergetics and High Hydrogen Content Materials for Space Propulsion

    DTIC Science & Technology

    2012-09-01

    carried out in an effort to determine the mechanisms that account for the effect of catalysts. Diffusion flame lengths , crystal burn times, and...times. The diffusion flame length was found to increase proportionally with the propellant’s burning rate. The findings of this experimental study

  8. Forward and back diffusion through argillaceous formations

    NASA Astrophysics Data System (ADS)

    Yang, Minjune; Annable, Michael D.; Jawitz, James W.

    2017-05-01

    The exchange of solutes between aquifers and lower-permeability argillaceous formations is of considerable interest for solute and contaminant fate and transport. We present a synthesis of analytical solutions for solute diffusion between aquifers and single aquitard systems, validated in well-controlled experiments, and applied to several data sets from laboratory and field-scale problems with diffusion time and length scales ranging from 10-2 to 108 years and 10-2 to 102 m. One-dimensional diffusion models were applied using the method of images to consider the general cases of a finite aquitard bounded by two aquifers at the top and bottom, or a semiinfinite aquitard bounded by an aquifer. The simpler semiinfinite equations are appropriate for all domains with dimensionless relative diffusion length, ZD < 0.7. At dimensionless length scales above this threshold, application of semiinfinite equations to aquitards of finite thickness leads to increasing errors and solutions based on the method of images are required. Measured resident solute concentration profiles in aquitards and flux-averaged solute concentrations in surrounding aquifers were accurately modeled by appropriately accounting for generalized dynamic aquifer-aquitard boundary conditions, including concentration gradient reversals. Dimensionless diffusion length scales were used to illustrate the transferability of these relatively simple models to physical systems with dimensions that spanned 10 orders of magnitude. The results of this study offer guidance on the application of a simplified analytical approach to environmentally important layered problems with one or two diffusion interfaces.

  9. The Effect of Limited Diffusion and Wet-Dry Cycling on Reversible Polymerization Reactions: Implications for Prebiotic Synthesis of Nucleic Acids.

    PubMed

    Higgs, Paul G

    2016-06-08

    A long-standing problem for the origins of life is that polymerization of many biopolymers, including nucleic acids and peptides, is thermodynamically unfavourable in aqueous solution. If bond making and breaking is reversible, monomers and very short oligomers predominate. Recent experiments have shown that wetting and drying cycles can overcome this problem and drive the formation of longer polymers. In the dry phase, bond formation is favourable, but diffusion is restricted, and bonds only form between monomers that are initially close together. In the wet phase, some of the bonds are hydrolyzed. However, repositioning of the molecules allows new bonds to form in the next dry phase, leading to an increase in mean polymer length. Here, we consider a simple theoretical model that explains the effect of cycling. There is an equilibrium length distribution with a high mean length that could be achieved if diffusion occurred freely in the dry phase. This equilibrium is inaccessible without diffusion. A single dry cycle without diffusion leads to mean lengths much shorter than this. Repeated cycling leads to a significant increase in polymerization relative to a single cycle. In the most favourable case, cycling leads to the same equilibrium length distribution as would be achieved if free diffusion were possible in the dry phase. These results support the RNA World scenario by explaining a potential route to synthesis of long RNAs; however, they also imply that cycling would be beneficial to the synthesis of other kinds of polymers, including peptides, where bond formation involves a condensation reaction.

  10. The Effect of Limited Diffusion and Wet–Dry Cycling on Reversible Polymerization Reactions: Implications for Prebiotic Synthesis of Nucleic Acids

    PubMed Central

    Higgs, Paul G.

    2016-01-01

    A long-standing problem for the origins of life is that polymerization of many biopolymers, including nucleic acids and peptides, is thermodynamically unfavourable in aqueous solution. If bond making and breaking is reversible, monomers and very short oligomers predominate. Recent experiments have shown that wetting and drying cycles can overcome this problem and drive the formation of longer polymers. In the dry phase, bond formation is favourable, but diffusion is restricted, and bonds only form between monomers that are initially close together. In the wet phase, some of the bonds are hydrolyzed. However, repositioning of the molecules allows new bonds to form in the next dry phase, leading to an increase in mean polymer length. Here, we consider a simple theoretical model that explains the effect of cycling. There is an equilibrium length distribution with a high mean length that could be achieved if diffusion occurred freely in the dry phase. This equilibrium is inaccessible without diffusion. A single dry cycle without diffusion leads to mean lengths much shorter than this. Repeated cycling leads to a significant increase in polymerization relative to a single cycle. In the most favourable case, cycling leads to the same equilibrium length distribution as would be achieved if free diffusion were possible in the dry phase. These results support the RNA World scenario by explaining a potential route to synthesis of long RNAs; however, they also imply that cycling would be beneficial to the synthesis of other kinds of polymers, including peptides, where bond formation involves a condensation reaction. PMID:27338479

  11. Two Birds with One Stone: Tailoring Singlet Fission for Both Triplet Yield and Exciton Diffusion Length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Tong; Wan, Yan; Guo, Zhi

    2016-06-27

    By direct imaging of singlet and triplet populations with ultrafast microscopy, it is shown that the triplet diffusion length and singlet fission yield can be simultaneously optimized for tetracene and its derivatives, making them ideal structures for application in bilayer solar cells.

  12. Meso and Micro Scale Propulsion Concepts for Small Spacecraft

    DTIC Science & Technology

    2006-07-28

    flame length , QF is the volumetric flow rate of the fuel, D is the binary diffusion coefficient of the fuel in the oxidizer, and YFsoi, is the...R, can yield the same flame length . Most laminar diffusion flames are buoyancy-controlled since a small exit velocity is generally required to

  13. Resonant production of dark photons in positron beam dump experiments

    NASA Astrophysics Data System (ADS)

    Nardi, Enrico; Carvajal, Cristian D. R.; Ghoshal, Anish; Meloni, Davide; Raggi, Mauro

    2018-05-01

    Positrons beam dump experiments have unique features to search for very narrow resonances coupled superweakly to e+e- pairs. Due to the continued loss of energy from soft photon bremsstrahlung, in the first few radiation lengths of the dump a positron beam can continuously scan for resonant production of new resonances via e+ annihilation off an atomic e- in the target. In the case of a dark photon A' kinetically mixed with the photon, this production mode is of first order in the electromagnetic coupling α , and thus parametrically enhanced with respect to the O (α2)e+e-→γ A' production mode and to the O (α3)A' bremsstrahlung in e- -nucleon scattering so far considered. If the lifetime is sufficiently long to allow the A' to exit the dump, A'→e+e- decays could be easily detected and distinguished from backgrounds. We explore the foreseeable sensitivity of the Frascati PADME experiment in searching with this technique for the 17 MeV dark photon invoked to explain the Be 8 anomaly in nuclear transitions.

  14. Spin diffusion in disordered organic semiconductors

    NASA Astrophysics Data System (ADS)

    Li, Ling; Gao, Nan; Lu, Nianduan; Liu, Ming; Bässler, Heinz

    2015-12-01

    An analytical theory for spin diffusion in disordered organic semiconductors is derived. It is based on percolation theory and variable range hopping in a disordered energy landscape with a Gaussian density of states. It describes universally the dependence of the spin diffusion on temperature, carrier density, material disorder, magnetic field, and electric field at the arbitrary magnitude of the Hubbard energy of charge pairs. It is found that, compared to the spin transport carried by carriers hopping, the spin exchange will hinder the spin diffusion process at low carrier density, even under the condition of a weak electric field. Importantly, under the influence of a bias voltage, anomalous spreading of the spin packet will lead to an abnormal temperature dependence of the spin diffusion coefficient and diffusion length. This explains the recent experimental data for spin diffusion length observed in Alq3.

  15. Cylindrical diffuser performance using a truncated plug nozzle

    NASA Technical Reports Server (NTRS)

    Galanga, F. L.; Mueller, T. J.

    1976-01-01

    Cylindrical diffuser performance for a truncated plug nozzle without external flow was tested in a blowdown wind tunnel. The nozzle was designed for an exit Mach number of 1.9 and the plug was conical in shape from the throat and converged to the axis of symmetry at an angle of 10 degrees. The diffuser section was fashioned into two 13.97 cm lengths to facilitate boring of the duct diameter and to allow for testing of two different duct lengths. A slotted hypotube was installed in the base of the diffuser to measure pressure distribution down the centerline of the diffuser. The data obtained included: the typical centerline and sidewall pressure ratio variation along the diffuser, cell pressure ratio vs overall pressure ratio for long and short diffusers and a comparison of minimum experimental cell pressure ratio vs area ratio.

  16. A solution to the cosmic ray anisotropy problem

    NASA Astrophysics Data System (ADS)

    Mertsch, P.; Funk, S.

    2015-10-01

    Observations of the cosmic ray (CR) anisotropy are widely advertised as a means of finding nearby sources. This idea has recently gained currency after the discovery of a rise in the positron fraction and is the goal of current experimental efforts, e.g., with AMS-02 on the International Space Station. Yet, even the anisotropy observed for hadronic CRs is not understood, in the sense that isotropic diffusion models overpredict the dipole anisotropy in the TeV-PeV range by almost two orders of magnitude. Here, we consider two additional effects normally not considered in isotropic diffusion models: anisotropic diffusion due to the presence of a background magnetic field and intermittency effects of the turbulent magnetic fields. We numerically explore these effect by tracking test-particles through individual realisations of the turbulent field. We conclude that a large misalignment between the CR gradient and the background field can explain the observed low level of anisotropy.

  17. Functional Imaging and Related Techniques: An Introduction for Rehabilitation Researchers

    PubMed Central

    Crosson, Bruce; Ford, Anastasia; McGregor, Keith M.; Meinzer, Marcus; Cheshkov, Sergey; Li, Xiufeng; Walker-Batson, Delaina; Briggs, Richard W.

    2010-01-01

    Functional neuroimaging and related neuroimaging techniques are becoming important tools for rehabilitation research. Functional neuroimaging techniques can be used to determine the effects of brain injury or disease on brain systems related to cognition and behavior and to determine how rehabilitation changes brain systems. These techniques include: functional magnetic resonance imaging (fMRI), positron emission tomography (PET), electroencephalography (EEG), magnetoencephalography (MEG), near infrared spectroscopy (NIRS), and transcranial magnetic stimulation (TMS). Related diffusion weighted magnetic resonance imaging techniques (DWI), including diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI), can quantify white matter integrity. With the proliferation of these imaging techniques in rehabilitation research, it is critical that rehabilitation researchers, as well as consumers of rehabilitation research, become familiar with neuroimaging techniques, what they can offer, and their strengths and weaknesses The purpose to this review is to provide such an introduction to these neuroimaging techniques. PMID:20593321

  18. Propagation of Cosmic Rays and Diffuse Galactic Gamma Rays

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.

    2004-01-01

    This paper presents an introduction to the astrophysics of cosmic rays and diffuse gamma-rays and discusses some of the puzzles that have emerged recently due to more precise data and improved propagation models: the excesses in Galactic diffuse gamma-ray emission, secondary antiprotons and positrons, and the flatter than expected gradient of cosmic rays in the Galaxy. These also involve the dark matter, a challenge to modern physics, through its indirect searches in cosmic rays. Though the final solutions are yet to be found, I discuss some ideas and results obtained mostly with the numerical propagation model GALPROP. A fleet of spacecraft and balloon experiments targeting these specific issues is set to lift off in a few years, imparting a feeling of optimism that a new era of exciting discoveries is just around the corner. A complete and comprehensive discussion of all the recent results is not attempted here due to the space limitations.

  19. Interpretation of scanning electron microscope measurements of minority carrier diffusion lengths in semiconductors

    NASA Technical Reports Server (NTRS)

    Flat, A.; Milnes, A. G.

    1978-01-01

    In scanning electron microscope (SEM) injection measurements of minority carrier diffusion lengths some uncertainties of interpretation exist when the response current is nonlinear with distance. This is significant in epitaxial layers where the layer thickness is not large in relation to the diffusion length, and where there are large surface recombination velocities on the incident and contact surfaces. An image method of analysis is presented for such specimens. A method of using the results to correct the observed response in a simple convenient way is presented. The technique is illustrated with reference to measurements in epitaxial layers of GaAs. Average beam penetration depth may also be estimated from the curve shape.

  20. Embedding of electrodes within a microchannel interfacing a permselective medium for sensing and active control of the concentration-polarization layer

    NASA Astrophysics Data System (ADS)

    Yossifon, Gilad; Park, Sinwook

    2016-11-01

    Previously, it has been shown that for a prescribed system, the diffusion length may be affected by any number of mechanisms including natural and forced convection, electroosmotic flow of the second kind and electro-convective instability. In all of the above mentioned cases the length of the diffusion layer is indirectly prescribed by the complicated competition between several mechanisms which are primarily dictated by the various system parameters and applied voltage. In contrast, we suggest that by embedding electrodes/heaters within a microchannel interfacing a permselective medium, the diffusion layer length may be controlled regardless of the dominating overlimiting current mechanism and system parameters. As well as demonstrating that the simple presence of electrodes can enhance mixing via induced-charge electrokinetic effects, we also offer a means of externally activating embedded electrodes and heaters to maintain external, dynamic control of the diffusion length. Such control is particularly important in applications requiring intense ion transport, such as electrodialysis. At the same time, we will also investigate means of suppressing these mechanisms which is of fundamental importance for sensing applications.

  1. Direct determination of minority carrier diffusion lengths at axial GaAs nanowire p-n junctions.

    PubMed

    Gutsche, Christoph; Niepelt, Raphael; Gnauck, Martin; Lysov, Andrey; Prost, Werner; Ronning, Carsten; Tegude, Franz-Josef

    2012-03-14

    Axial GaAs nanowire p-n diodes, possibly one of the core elements of future nanowire solar cells and light emitters, were grown via the Au-assisted vapor-liquid-solid mode, contacted by electron beam lithography, and investigated using electron beam induced current measurements. The minority carrier diffusion lengths and dynamics of both, electrons and holes, were determined directly at the vicinity of the p-n junction. The generated photocurrent shows an exponential decay on both sides of the junction and the extracted diffusion lengths are about 1 order of magnitude lower compared to bulk material due to surface recombination. Moreover, the observed strong diameter-dependence is well in line with the surface-to-volume ratio of semiconductor nanowires. Estimating the surface recombination velocities clearly indicates a nonabrupt p-n junction, which is in essential agreement with the model of delayed dopant incorporation in the Au-assisted vapor-liquid-solid mechanism. Surface passivation using ammonium sulfide effectively reduces the surface recombination and thus leads to higher minority carrier diffusion lengths. © 2012 American Chemical Society

  2. Near-field cathodoluminescence studies on n-doped gallium nitride films

    NASA Astrophysics Data System (ADS)

    Nogales, E.; Joachimsthaler, I.; Heiderhoff, R.; Piqueras, J.; Balk, L. J.

    2002-07-01

    Near-field cathodoluminescence (NFCL) has been used to characterize hydride vapor phase epitaxy grown n-GaN films. This technique can obtain high resolution luminescence images and perform local measurements of the diffusion length for minority carriers in different parts of the sample. NFCL contrast observed in round growth hillocks at the sample surface, with a diameter of less than 10 mum, is compared with that observed by conventional cathodoluminescence in scanning electron microscope (CLSEM) techniques. In particular NFCL images reveal features not detected by CLSEM which is explained by the fact that under near field conditions the signal arises from a depth of only several tens of nanometers and is then directly related to the surface hillocks. Diffusion lengths of about 0.4 and 4 mum have been found for the holes in different regions of the samples at room temperature. The order of magnitude of these minority carriers diffusion lengths is in good agreement with previous measurements performed at different GaN samples with other techniques. The NFCL contrast and the differences in the measured diffusion lengths are discussed and explained by variations in local trap concentrations.

  3. Increase in the diffusion length of minority carriers in Al{sub x}Ga{sub 1–x}N alloys ({sub x} = 0–0.1) fabricated by ammonia molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malin, T. V., E-mail: mal-tv@mail.ru; Gilinsky, A. M.; Mansurov, V. G.

    2015-10-15

    The room-temperature diffusion length of minority carriers in n-Al{sub 0.1}Ga{sub 0.9}N layers grown by ammonia molecular beam epitaxy on sapphire (0001) substrates used in structures for ultraviolet photodetectors is studied. Measurements were performed using the spectral dependence of the photocurrent recorded in a built-in p–n junction for thin samples and using the induced electron-current procedure for films up to 2 µm thick. The results show that the hole diffusion length in n-AlGaN films is 120–150 nm, which is larger than in GaN films grown under similar growth conditions by a factor of 3–4. This result can be associated with themore » larger lateral sizes characteristic of hexagonal columns in AlGaN layers grown by molecular beam epitaxy. No increase in the hole diffusion length is observed for thicker films.« less

  4. Understanding molecular structure dependence of exciton diffusion in conjugated small molecules

    NASA Astrophysics Data System (ADS)

    Li, Zi; Zhang, Xu; Woellner, Cristiano F.; Lu, Gang

    2014-04-01

    First-principles simulations are carried out to understand molecular structure dependence of exciton diffusion in a series of small conjugated molecules arranged in a disordered, crystalline, and blend structure. Exciton diffusion length (LD), lifetime, and diffusivity in four diketopyrrolopyrrole derivatives are calculated and the results compare very well with experimental values. The correlation between exciton diffusion and molecular structure is examined in detail. In the disordered molecule structure, a longer backbone length leads to a shorter exciton lifetime and a higher exciton diffusivity, but it does not change LD substantially. Removal of the end alkyl chains or the extra branch on the side alkyl chains reduces LD. In the crystalline structure, exciton diffusion exhibits a strong anisotropy whose origin can be elucidated from the intermolecular transition density interaction point of view. In the blend structure, LD increases with the crystalline ratios, which are estimated and consistent with the experimental results.

  5. Strongly extended diffusion length for the nonequilibrium magnons in Y 3 F e 5 O 12 by photoexcitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S. H.; Li, G.; Guo, E. J.

    Y 3Fe 5O 12 (YIG) is known for its long magnon diffusion length. Although it has the known lowest damping rate, an even longer diffusion distance is still highly desired since it may lead to a much more efficient information transmission and processing. While most of previous works focused on the generation and detection of magnons in YIG, here we demonstrate how to depress the damping rate during the diffusion of magnon. By selectively exciting the spin state transition of the Fe ions in YIG, we successfully increase magnon diffusion length by one order of magnitude, i.e., from the previousmore » reported ~10 μm up to ~156 μm (for the sample prepared by liquid phase epitaxy) and ~180 μm (for the sample prepared by pulsed laser deposition) at room temperature. The diffusion length, determined by nonlocal geometry, is ~30 μm for the magnons induced by visible light and above 150 μm for the laser of 980 nm. In addition to thermal gradient, light excitation affects the electron configuration of the Fe 3+ ion in YIG. Long-wavelength laser is more effective since it causes a transition of the Fe 3+ ions in FeO 6 octahedron from a high spin to a low spin state and thus causes a magnon softening which favors a long-distance diffusion. Furthermore, the present work paves the way toward an efficient tuning of magnon transport which is crucially important for magnon spintronics.« less

  6. Strongly extended diffusion length for the nonequilibrium magnons in Y 3 F e 5 O 12 by photoexcitation

    DOE PAGES

    Wang, S. H.; Li, G.; Guo, E. J.; ...

    2018-05-09

    Y 3Fe 5O 12 (YIG) is known for its long magnon diffusion length. Although it has the known lowest damping rate, an even longer diffusion distance is still highly desired since it may lead to a much more efficient information transmission and processing. While most of previous works focused on the generation and detection of magnons in YIG, here we demonstrate how to depress the damping rate during the diffusion of magnon. By selectively exciting the spin state transition of the Fe ions in YIG, we successfully increase magnon diffusion length by one order of magnitude, i.e., from the previousmore » reported ~10 μm up to ~156 μm (for the sample prepared by liquid phase epitaxy) and ~180 μm (for the sample prepared by pulsed laser deposition) at room temperature. The diffusion length, determined by nonlocal geometry, is ~30 μm for the magnons induced by visible light and above 150 μm for the laser of 980 nm. In addition to thermal gradient, light excitation affects the electron configuration of the Fe 3+ ion in YIG. Long-wavelength laser is more effective since it causes a transition of the Fe 3+ ions in FeO 6 octahedron from a high spin to a low spin state and thus causes a magnon softening which favors a long-distance diffusion. Furthermore, the present work paves the way toward an efficient tuning of magnon transport which is crucially important for magnon spintronics.« less

  7. Strongly extended diffusion length for the nonequilibrium magnons in Y3F e5O12 by photoexcitation

    NASA Astrophysics Data System (ADS)

    Wang, S. H.; Li, G.; Guo, E. J.; Zhao, Y.; Wang, J. Y.; Zou, L. K.; Yan, H.; Cai, J. W.; Zhang, Z. T.; Wang, M.; Tian, Y. Y.; Zheng, X. L.; Sun, J. R.; Jin, K. X.

    2018-05-01

    Y3F e5O12 (YIG) is known for its long magnon diffusion length. Although it has the known lowest damping rate, an even longer diffusion distance is still highly desired since it may lead to a much more efficient information transmission and processing. While most of previous works focused on the generation and detection of magnons in YIG, here we demonstrate how to depress the damping rate during the diffusion of magnon. By selectively exciting the spin state transition of the Fe ions in YIG, we successfully increase magnon diffusion length by one order of magnitude, i.e., from the previous reported ˜10 μm up to ˜156 μm (for the sample prepared by liquid phase epitaxy) and ˜180 μm (for the sample prepared by pulsed laser deposition) at room temperature. The diffusion length, determined by nonlocal geometry, is ˜30 μm for the magnons induced by visible light and above 150 μm for the laser of 980 nm. In addition to thermal gradient, light excitation affects the electron configuration of the F e3 + ion in YIG. Long-wavelength laser is more effective since it causes a transition of the F e3 + ions in Fe O6 octahedron from a high spin to a low spin state and thus causes a magnon softening which favors a long-distance diffusion. The present work paves the way toward an efficient tuning of magnon transport which is crucially important for magnon spintronics.

  8. High-power diffusing-tip fibers for interstitial photocoagulation

    NASA Astrophysics Data System (ADS)

    Sinofsky, Edward L.; Farr, Norman; Baxter, Lincoln; Weiler, William

    1997-05-01

    A line of optical fiber based diffusing tips has been designed, developed, and tested that are capable of distributing tens of watts of cw laser power over lengths ranging from two millimeters to over 10 cm. The result is a flexible non-stick diffuser capable of coagulating large volumes of tissue in reasonably short exposures of 3 - 5 minutes. Sub-millimeter diameter devices have a distinct effect on reducing the force needed to insert the applicator interstitially into tissue. Utilizing our design approach, we have produced diffusers based on 200 micrometer core fiber that has delivered over 35 watts of Nd:YAG energy over diffusion lengths as short as 4 mm. These applicators are being tested for applications in oncology, cardiology, electrophysiology, urology and gynecology.

  9. Diffusion and scaling during early embryonic pattern formation.

    PubMed

    Gregor, Thomas; Bialek, William; de Ruyter van Steveninck, Rob R; Tank, David W; Wieschaus, Eric F

    2005-12-20

    Development of spatial patterns in multicellular organisms depends on gradients in the concentration of signaling molecules that control gene expression. In the Drosophila embryo, Bicoid (Bcd) morphogen controls cell fate along 70% of the anteroposterior axis but is translated from mRNA localized at the anterior pole. Gradients of Bcd and other morphogens are thought to arise through diffusion, but this basic assumption has never been rigorously tested in living embryos. Furthermore, because diffusion sets a relationship between length and time scales, it is hard to see how patterns of gene expression established by diffusion would scale proportionately as egg size changes during evolution. Here, we show that the motion of inert molecules through the embryo is well described by the diffusion equation on the relevant length and time scales, and that effective diffusion constants are essentially the same in closely related dipteran species with embryos of very different size. Nonetheless, patterns of gene expression in these different species scale with egg length. We show that this scaling can be traced back to scaling of the Bcd gradient itself. Our results, together with constraints imposed by the time scales of development, suggest that the mechanism for scaling is a species-specific adaptation of the Bcd lifetime.

  10. The Rate and Clinical Significance of Incidental Thyroid Uptake as Detected by Gallium-68 DOTATATE Positron Emission Tomography/Computed Tomography

    PubMed Central

    Nockel, Pavel; Millo, Corina; Keutgen, Xavier; Klubo-Gwiezdzinska, Joanna; Shell, Jasmine; Patel, Dhaval; Nilubol, Naris; Herscovitch, Peter; Sadowski, Samira M.

    2016-01-01

    Background: Gallium-68 (Ga-68) DOTATATE is a radiolabeled peptide–imaging modality that targets the somatostatin receptor (SSTR), especially subtype 2 (SSTR2). Benign and malignant thyroid tumors have been observed to express SSTR. The aim of this study was to evaluate the frequency and clinical significance of incidental atypical thyroid uptake as detected by Ga-68 DOTATATE positron emission tomography/computed tomography (PET/CT). Methods: A retrospective analysis was conducted of a prospective study in which 237 patients underwent Ga-68 DOTATATE PET/CT as part of a work-up for metastatic and unknown primary neuroendocrine tumors. The types of uptake in the thyroid gland (focal/diffuse) and maximum standardized uptake value (SUVmax) levels were evaluated and compared with the background uptake in the liver and salivary glands. Results: Of 237 patients, 26 (11%) had atypical thyroid uptake as detected by Ga-68 DOTATATE PET/CT. There were no significant clinical or biochemical variables associated with atypical thyroid uptake. Fourteen (54%) patients had positive focal uptake, and 12 (46%) patients had diffuse uptake. Of the 14 patients with atypical focal uptake, 10 (71%) had thyroid nodules on the corresponding side, as detected by anatomic imaging. Three of 10 patients (21%) were found to have papillary thyroid cancer, and seven (70%) had adenomatoid nodules. Of the 12 patients with diffuse increased uptake, six (50%) had a history of hypothyroidism, five (42%) had chronic lymphocytic thyroiditis, and one (8%) had nontoxic multinodular goiter. Conclusions: Patients with an incidental focal abnormal thyroid uptake on Ga-68 DOTATATE PET/CT scan should have further clinical evaluation to exclude a diagnosis of thyroid cancer. PMID:27094616

  11. Positron Emission Tomography/Computed Tomography Findings During Therapy Predict Outcome in Patients With Diffuse Large B-Cell Lymphoma Treated With Chemotherapy Alone but Not in Those Who Receive Consolidation Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dabaja, Bouthaina S., E-mail: bdabaja@mdanderson.org; Hess, Kenneth; Shihadeh, Ferial

    2014-06-01

    Purpose: To assess the value of mid-therapy positron emission tomography (PET) findings for predicting survival and disease progression in patients with diffuse large B-cell lymphoma, considering type of therapy (chemotherapy with or without radiation therapy). Methods and Materials: We retrospectively evaluated 294 patients with histologically confirmed diffuse large B-cell lymphoma with respect to age, sex, disease stage, International Prognostic Index score, mid-therapy PET findings (positive or negative), and disease status after therapy and at last follow-up. Overall survival (OS) and progression-free survival (PFS) were compared according to mid-therapy PET findings. Results: Of the 294 patients, 163 (55%) were male, 144more » (49%) were age >61 years, 110 (37%) had stage I or II disease, 219 (74%) had International Prognostic Index score ≤2, 216 (73%) received ≥6 cycles of rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone, and 88 (30%) received consolidation radiation therapy. Five-year PFS and OS rates were associated with mid-therapy PET status: PFS was 78% for those with PET-negative (PET−) disease versus 63% for PET-positive (PET+) disease (P=.024), and OS was 82% for PET− versus 62% for PET+ (P<.002). These associations held true for patients who received chemotherapy only (PFS 71% for PET− vs 52% PET+ [P=.012], OS 78% for PET− and 51% for PET+ [P=.0055]) but not for those who received consolidation radiation therapy (PFS 84% PET− vs 81% PET+ [P=.88]; OS 90% PET− vs 81% PET+ [P=.39]). Conclusion: Mid-therapy PET can predict patient outcome, but the use of consolidation radiation therapy may negate the significance of mid-therapy findings.« less

  12. Exciton diffusion in WSe2 monolayers embedded in a van der Waals heterostructure

    NASA Astrophysics Data System (ADS)

    Cadiz, F.; Robert, C.; Courtade, E.; Manca, M.; Martinelli, L.; Taniguchi, T.; Watanabe, K.; Amand, T.; Rowe, A. C. H.; Paget, D.; Urbaszek, B.; Marie, X.

    2018-04-01

    We have combined spatially resolved steady-state micro-photoluminescence with time-resolved photoluminescence to investigate the exciton diffusion in a WSe2 monolayer encapsulated with hexagonal boron nitride. At 300 K, we extract an exciton diffusion length of LX = 0.36 ± 0.02 μm and an exciton diffusion coefficient of DX = 14.5 ± 2 cm2/s. This represents a nearly 10-fold increase in the effective mobility of excitons with respect to several previously reported values on nonencapsulated samples. At cryogenic temperatures, the high optical quality of these samples has allowed us to discriminate the diffusion of the different exciton species: bright and dark neutral excitons, as well as charged excitons. The longer lifetime of dark neutral excitons yields a larger diffusion length of LXD=1.5 ±0.02 μ m.

  13. Production and Extraction of [10C]-CO2 From Proton Bombardment of Molten 10B2O3

    NASA Astrophysics Data System (ADS)

    Schueller, M. J.; Nickles, R. J.; Roberts, A. D.; Jensen, M.

    2003-08-01

    This work describes the production of 10C (t1/2 = 19 s) from an enriched 10B2O3 target using a CTI RDS-112 11 MeV proton cyclotron. Proton beam heating is used to raise the target to a molten state (˜ 1300 °C), enabling the activity to diffuse to the surface of the melt. An infrared thermocouple monitors the melt temperature. Helium sweep gas then transports the activity to flow-through chemistry processing for human inhalation of 10CO2 for blood flow imaging with Positron Emission Tomography. The temperature-related diffusion of activity out of the white-hot molten glass target is discussed.

  14. Chemistry of the metal-polymer interfacial region.

    PubMed

    Leidheiser, H; Deck, P D

    1988-09-02

    In many polymer-metal systems, chemical bonds are formed that involve metal-oxygen-carbon complexes. Infrared and Mössbauer spectroscopic studies indicate that carboxylate groups play an important role in some systems. The oxygen sources may be the polymer, the oxygen present in the oxide on the metal surface, or atmospheric oxygen. Diffusion of metal ions from the substrate into the polymer interphase may occur in some systems that are cured at elevated temperatures. It is unclear whether a similar, less extensive diffusion occurs over long time periods in systems maintained at room temperature. The interfacial region is dynamic, and chemical changes occur with aging at room temperature. Positron annihilation spectroscopy may have application to characterizing the voids at the metal-polymer interface.

  15. Exciton diffusion in disordered small molecules for organic photovoltaics: insights from first-principles simulations.

    PubMed

    Li, Z; Zhang, X; Lu, G

    2014-05-07

    Exciton diffusion in small molecules 3,6-bis(5-(benzofuran-2-yl)thiophen-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4-dione [DPP(TBFu)2] is studied using first-principles simulations. We have examined dependence of exciton diffusion on structure disorder, temperature and exciton energy. We find that exciton diffusion length and diffusivity increase with structural order, temperature and the initial exciton energy. Compared to conjugated polymer poly(3-hexylthiophene) (P3HT), DPP(TBFu)2 small molecules exhibit a much higher exciton diffusivity, but a shorter lifetime. The exciton diffusion length in DPP(TBFu)2 is 50% longer than that in P3HT, yielding a higher exciton harvesting efficiency; the physical origin behind these differences is discussed. The time evolutions of exciton energy, electron-hole distance, and exciton localization are explored, and the widely speculated exciton diffusion mechanism is confirmed theoretically. The connection between exciton diffusion and carrier mobilities is also studied. Finally we point out the possibility to estimate exciton diffusivity by measuring carrier mobilities under AC electric fields.

  16. The effects of intragrain defects on the local photoresponse of polycrystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Inoue, N.; Wilmsen, C. W.; Jones, K. A.

    1981-02-01

    Intragrain defects in Wacker cast and Monsanto zone-refined polycrystalline silicon materials were investigated using the electron-beam-induced current (EBIC) technique. The EBIC response maps were compared with etch pit, local diffusion length and local photoresponse measurements. It was determined that the Wacker polycrystalline silicon has a much lower density of defects than does the Monsanto polycrystalline silicon and that most of the defects in the Wacker material are not active recombination sites. A correlation was found between the recombination site density, as determined by EBIC, and the local diffusion length. It is shown that a large density of intragrain recombination sites greatly reduces the minority carrier diffusion length and thus can significantly reduce the photoresponse of solar cells.

  17. Saturation Length of Erodible Sediment Beds Subject to Shear Flow

    NASA Astrophysics Data System (ADS)

    Casler, D. M.; Kahn, B. P.; Furbish, D. J.; Schmeeckle, M. W.

    2016-12-01

    We examine the initial growth and wavelength selection of sand ripples based on probabilistic formulations of the flux and the Exner equation. Current formulations of this problem as a linear stability analysis appeal to the idea of a saturation length-the lag between the bed stress and the flux-as a key stabilizing influence leading to selection of a finite wavelength. We present two contrasting formulations. The first is based on the Fokker-Planck approximation of the divergence form of the Exner equation, and thus involves particle diffusion associated with variations in particle activity, in addition to the conventionally assumed advective term. The role of a saturation length associated with the particle activity is similar to previous analyses. However, particle diffusion provides an attenuating influence on the growth of small wavelengths, independent of a saturation length, and is thus a sufficient, if not necessary, condition contributing to selection of a finite wavelength. The second formulation is based on the entrainment form of the Exner equation. As a precise, probabilistic formulation of conservation, this form of the Exner equation does not distinguish between advection and diffusion, and, because it directly accounts for all particle motions via a convolution of the distribution of particle hop distances, it pays no attention to the idea of a saturation length. The formulation and resulting description of initial ripple growth and wavelength selection thus inherently subsume the effects embodied in the ideas of advection, diffusion, and a saturation length as used in other formulations. Moreover, the formulation does not distinguish between bed load and suspended load, and is thus broader in application. The analysis reveals that the length scales defined by the distribution of hop distances are more fundamental than the saturation length in determining the initial growth or decay of bedforms. Formulations involving the saturation length coincide with the special case of an exponential distribution of hop distance, where the saturation length is equal to the mean hop distance.

  18. In Vivo Protein Dynamics on the Nanometer Length Scale and Nanosecond Time Scale

    DOE PAGES

    Anunciado, Divina B.; Nyugen, Vyncent P.; Hurst, Gregory B.; ...

    2017-04-07

    Selectively labeled GroEL protein was produced in living deuterated bacterial cells to enhance its neutron scattering signal above that of the intracellular milieu. Quasi-elastic neutron scattering shows that the in-cell diffusion coefficient of GroEL was (4.7 ± 0.3) × 10 –12 m 2/s, a factor of 4 slower than its diffusion coefficient in buffer solution. Furthermore, for internal protein dynamics we see a relaxation time of (65 ± 6) ps, a factor of 2 slower compared to the protein in solution. Comparison to the literature suggests that the effective diffusivity of proteins depends on the length and time scale beingmore » probed. Retardation of in-cell diffusion compared to the buffer becomes more significant with the increasing probe length scale, suggesting that intracellular diffusion of biomolecules is nonuniform over the cellular volume. This approach outlined here enables investigation of protein dynamics within living cells to open up new lines of research using “in-cell neutron scattering” to study the dynamics of complex biomolecular systems.« less

  19. In Vivo Protein Dynamics on the Nanometer Length Scale and Nanosecond Time Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anunciado, Divina B.; Nyugen, Vyncent P.; Hurst, Gregory B.

    Selectively labeled GroEL protein was produced in living deuterated bacterial cells to enhance its neutron scattering signal above that of the intracellular milieu. Quasi-elastic neutron scattering shows that the in-cell diffusion coefficient of GroEL was (4.7 ± 0.3) × 10 –12 m 2/s, a factor of 4 slower than its diffusion coefficient in buffer solution. Furthermore, for internal protein dynamics we see a relaxation time of (65 ± 6) ps, a factor of 2 slower compared to the protein in solution. Comparison to the literature suggests that the effective diffusivity of proteins depends on the length and time scale beingmore » probed. Retardation of in-cell diffusion compared to the buffer becomes more significant with the increasing probe length scale, suggesting that intracellular diffusion of biomolecules is nonuniform over the cellular volume. This approach outlined here enables investigation of protein dynamics within living cells to open up new lines of research using “in-cell neutron scattering” to study the dynamics of complex biomolecular systems.« less

  20. Improved depth profiling with slow positrons of ion implantation-induced damage in silicon

    NASA Astrophysics Data System (ADS)

    Fujinami, M.; Miyagoe, T.; Sawada, T.; Akahane, T.

    2003-10-01

    Variable-energy positron annihilation spectroscopy (VEPAS) has been extensively applied to study defects in near-surface regions and buried interfaces, but there is an inherent limit for depth resolution due to broadening of the positron implantation profile. In order to overcome this limit and obtain optimum depth resolution, iterative chemical etching of the sample surface and VEPAS measurement are employed. This etch-and-measure technique is described in detail and the capabilities are illustrated by investigating the depth profile of defects in Si after B and P implantations with 2×1014/cm2 at 100 keV followed by annealing. Defect tails can be accurately examined and the extracted defect profile is proven to extend beyond the implanted ion range predicted by the Monte Carlo code TRIM. This behavior is more remarkable for P ion implantation than B, and the mass difference of the implanted ions is strongly related to it. No significant difference is recognized in the annealing behavior between B and P implantations. After annealing at 300 °C, the defect profile is hardly changed, but the ratio of the characteristic Doppler broadening, S, a parameter for defects, to that for the bulk Si rises by 0.01, indicating that divacancies, V2, are transformed into V4. Annealing at more than 500 °C causes diffusion of the defects toward the surface and positron traps are annealed out at 800 °C. It is proved that this resolution-enhanced VEPAS can eliminate some discrepancies in defect profiles extracted by conventional means.

  1. Study of fluorescence quenching due to 2, 3, 5, 6-tetrafluoro-7, 7', 8, 8'-tetracyano quinodimethane and its solid state diffusion analysis using photoluminescence spectroscopy.

    PubMed

    Tyagi, Priyanka; Tuli, Suneet; Srivastava, Ritu

    2015-02-07

    In this work, we have studied the fluorescence quenching and solid state diffusion of 2, 3, 5, 6-tetrafluoro-7,  7',  8,  8'-tetracyano quinodimethane (F4-TCNQ) using photoluminescence (PL) spectroscopy. Quenching studies were performed with tris (8-hydroxyquinolinato) aluminum (Alq3) in solid state samples. Thickness of F4-TCNQ was varied in order to realize different concentrations and study the effect of concentration. PL intensity has reduced with the increase in F4-TCNQ thicknesses. Stern-Volmer and bimolecular quenching constants were evaluated to be 13.8 M(-1) and 8.7 × 10(8) M(-1) s(-1), respectively. The quenching mechanism was found to be of static type, which was inferred by the independent nature of excited state life time from the F4-TCNQ thickness. Further, solid state diffusion of F4-TCNQ was studied by placing a spacing layer of α-NPD between F4-TCNQ and Alq3, and its thickness was varied to probe the diffusion length. PL intensity was found to increase with the increase in this thickness. Quenching efficiency was evaluated as a function of distance between F4-TCNQ and Alq3. These studies were performed for the samples having 1, 2.5, and 5.5 nm thicknesses of F4-TCNQ to study the thickness dependence of diffusion length. Diffusion lengths were evaluated to be 12.5, 15, and 20 nm for 1, 2.5, and 5.5 nm thicknesses of F4-TCNQ. These diffusion lengths were found to be very close to that of determined by secondary ion mass spectroscopy technique.

  2. Determination of carrier diffusion length in p- and n-type GaN

    NASA Astrophysics Data System (ADS)

    Hafiz, Shopan; Metzner, Sebastian; Zhang, Fan; Monavarian, Morteza; Avrutin, Vitaliy; Morkoç, Hadis; Karbaum, Christopher; Bertram, Frank; Christen, Jürgen; Gil, Bernard; Özgür, Ümit

    2014-03-01

    Diffusion lengths of photo-excited carriers along the c-direction were determined from photoluminescence (PL) measurements in p- and n-type GaN epitaxial layers grown on c-plane sapphire by metal-organic chemical vapor deposition. The investigated samples incorporate a 6 nm thick In0.15Ga0.85N active layer capped with either 500 nm p- GaN or 1300 nm n-GaN. The top GaN layers were etched in steps and PL from the InGaN active region and the underlying layers was monitored as a function of the top GaN thickness upon photogeneration near the surface region by above bandgap excitation. Taking into consideration the absorption in the active and underlying layers, the diffusion lengths at 295 K and at 15 K were measured to be about 92 ± 7 nm and 68 ± 7 nm for Mg-doped p-type GaN and 432 ± 30 nm and 316 ± 30 nm for unintentionally doped n-type GaN, respectively. Cross-sectional cathodoluminescence line-scan measurement was performed on a separate sample and the diffusion length in n-type GaN was measured to be 280 nm.

  3. How does passive lengthening change the architecture of the human medial gastrocnemius muscle?

    PubMed

    Bolsterlee, Bart; D'Souza, Arkiev; Gandevia, Simon C; Herbert, Robert D

    2017-04-01

    There are few comprehensive investigations of the changes in muscle architecture that accompany muscle contraction or change in muscle length in vivo. For this study, we measured changes in the three-dimensional architecture of the human medial gastrocnemius at the whole muscle level, the fascicle level and the fiber level using anatomical MRI and diffusion tensor imaging (DTI). Data were obtained from eight subjects under relaxed conditions at three muscle lengths. At the whole muscle level, a 5.1% increase in muscle belly length resulted in a reduction in both muscle width (mean change -2.5%) and depth (-4.8%). At the fascicle level, muscle architecture measurements obtained at 3,000 locations per muscle showed that for every millimeter increase in muscle-tendon length above the slack length, average fascicle length increased by 0.46 mm, pennation angle decreased by 0.27° (0.17° in the superficial part and 0.37° in the deep part), and fascicle curvature decreased by 0.18 m -1 There was no evidence of systematic variation in architecture along the muscle's long axis at any muscle length. At the fiber level, analysis of the diffusion signal showed that passive lengthening of the muscle increased diffusion along fibers and decreased diffusion across fibers. Using these measurements across scales, we show that the complex shape changes that muscle fibers, whole muscles, and aponeuroses of the medial gastrocnemius undergo in vivo cannot be captured by simple geometrical models. This justifies the need for more complex models that link microstructural changes in muscle fibers to macroscopic changes in architecture. NEW & NOTEWORTHY Novel MRI and DTI techniques revealed changes in three-dimensional architecture of the human medial gastrocnemius during passive lengthening. Whole muscle belly width and depth decreased when the muscle lengthened. Fascicle length, pennation, and curvature changed uniformly or near uniformly along the muscle during passive lengthening. Diffusion of water molecules in muscle changes in the same direction as fascicle strains. Copyright © 2017 the American Physiological Society.

  4. Theory and Simulation of Attractive Nanoparticle Transport in Polymer Melts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Umi; Carrillo, Jan-Michael Y.; Bocharova, Vera

    We theoretically study the diffusion of a single attractive nanoparticle (NP) in unentangled and entangled polymer melts based on combining microscopic “core–shell” and “vehicle” mechanisms in a dynamic bond percolation theory framework. A physical picture is constructed which addresses the role of chain length (N), degree of entanglement, nanoparticle size, and NP–polymer attraction strength. The nanoparticle diffusion constant is predicted to initially decrease with N due to the dominance of the core–shell mechanism, then to cross over to the vehicle diffusion regime with a weaker N dependence, and eventually plateau at large enough N. This behavior corresponds to decoupling ofmore » NP diffusivity from the macroscopic melt viscosity, which is reminiscent of repulsive NPs in entangled melts, but here it occurs for a distinct physical reason. Specifically, it reflects a crossover to a transport mechanism whereby nanoparticles adsorb on polymer chains and diffuse using them as “vehicles” over a characteristic desorption time scale. Repetition of random desorption events then leads to Fickian long time NP diffusion. Complementary simulations for a range of chain lengths and low to moderate NP–polymer attraction strengths are also performed. They allow testing of the proposed diffusion mechanisms and qualitatively support the theoretically predicted dynamic crossover behavior. In conclusion, when the desorption time is smaller than or comparable to the onset of entangled polymer dynamics, the NP diffusivity becomes almost chain length independent.« less

  5. Theory and Simulation of Attractive Nanoparticle Transport in Polymer Melts

    DOE PAGES

    Yamamoto, Umi; Carrillo, Jan-Michael Y.; Bocharova, Vera; ...

    2018-03-06

    We theoretically study the diffusion of a single attractive nanoparticle (NP) in unentangled and entangled polymer melts based on combining microscopic “core–shell” and “vehicle” mechanisms in a dynamic bond percolation theory framework. A physical picture is constructed which addresses the role of chain length (N), degree of entanglement, nanoparticle size, and NP–polymer attraction strength. The nanoparticle diffusion constant is predicted to initially decrease with N due to the dominance of the core–shell mechanism, then to cross over to the vehicle diffusion regime with a weaker N dependence, and eventually plateau at large enough N. This behavior corresponds to decoupling ofmore » NP diffusivity from the macroscopic melt viscosity, which is reminiscent of repulsive NPs in entangled melts, but here it occurs for a distinct physical reason. Specifically, it reflects a crossover to a transport mechanism whereby nanoparticles adsorb on polymer chains and diffuse using them as “vehicles” over a characteristic desorption time scale. Repetition of random desorption events then leads to Fickian long time NP diffusion. Complementary simulations for a range of chain lengths and low to moderate NP–polymer attraction strengths are also performed. They allow testing of the proposed diffusion mechanisms and qualitatively support the theoretically predicted dynamic crossover behavior. In conclusion, when the desorption time is smaller than or comparable to the onset of entangled polymer dynamics, the NP diffusivity becomes almost chain length independent.« less

  6. Interaction dynamics of two diffusing particles: contact times and influence of nearby surfaces.

    PubMed

    Tränkle, B; Ruh, D; Rohrbach, A

    2016-03-14

    Interactions of diffusing particles are governed by hydrodynamics on different length and timescales. The local hydrodynamics can be influenced substantially by simple interfaces. Here, we investigate the interaction dynamics of two micron-sized spheres close to plane interfaces to mimic more complex biological systems or microfluidic environments. Using scanned line optical tweezers and fast 3D interferometric particle tracking, we are able to track the motion of each bead with precisions of a few nanometers and at a rate of 10 kilohertz. From the recorded trajectories, all spatial and temporal information is accessible. This way, we measure diffusion coefficients for two coupling particles at varying distances h to one or two glass interfaces. We analyze their coupling strength and length by cross-correlation analysis relative to h and find a significant decrease in the coupling length when a second particle diffuses nearby. By analysing the times the particles are in close contact, we find that the influence of nearby surfaces and interaction potentials reduce the diffusivity strongly, although we found that the diffusivity hardly affects the contact times and the binding probability between the particles. All experimental results are compared to a theoretical model, which is based on the number of possible diffusion paths following the Catalan numbers and a diffusion probability, which is biased by the spheres' surface potential. The theoretical and experimental results agree very well and therefore enable a better understanding of hydrodynamically coupled interaction processes.

  7. Dynamics of Phenanthrenequinone on Carbon Nano-Onion Surfaces Probed by Quasielastic Neutron Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anjos, Daniela M; Mamontov, Eugene; Brown, Gilbert M

    We used quasielastic neutron scattering (QENS) to study the dynamics of phenanthrenequinone (PQ) on the surface of onion-like carbon (OLC), or so called carbon onions, as a function of surface coverage and temperature. For both the high- and low-coverage samples, we observed two diffusion processes; a faster process and nearly an order of magnitude slower process. On the high-coverage surface, the slow diffusion process is of long-range translational character, whereas the fast diffusion process is spatially localized on the length scale of ~ 4.7 . On the low-coverage surface, both diffusion processes are spatially localized; on the same length scalemore » of ~ 4.7 for the fast diffusion and a somewhat larger length scale for the slow diffusion. Arrhenius temperature dependence is observed except for the long-range diffusion on the high-coverage surface. We attribute the fast diffusion process to the generic localized in-cage dynamics of PQ molecules, and the slow diffusion process to the long-range translational dynamics of PQ molecules, which, depending on the coverage, may be either spatially restricted, or long-range. On the low-coverage surface, uniform surface coverage is not attained, and the PQ molecules experience the effect of spatial constraints on their long-range translational dynamics. Unexpectedly, the dynamics of PQ molecules on OLC as a function of temperature and surface coverage bears qualitative resemblance to the dynamics of water molecules on oxide surfaces, including practically temperature-independent residence times for the low-coverage surface. The dynamics features that we observed may be universal across different classes of surface adsorbates.« less

  8. Fractal analysis of lateral movement in biomembranes.

    PubMed

    Gmachowski, Lech

    2018-04-01

    Lateral movement of a molecule in a biomembrane containing small compartments (0.23-μm diameter) and large ones (0.75 μm) is analyzed using a fractal description of its walk. The early time dependence of the mean square displacement varies from linear due to the contribution of ballistic motion. In small compartments, walking molecules do not have sufficient time or space to develop an asymptotic relation and the diffusion coefficient deduced from the experimental records is lower than that measured without restrictions. The model makes it possible to deduce the molecule step parameters, namely the step length and time, from data concerning confined and unrestricted diffusion coefficients. This is also possible using experimental results for sub-diffusive transport. The transition from normal to anomalous diffusion does not affect the molecule step parameters. The experimental literature data on molecular trajectories recorded at a high time resolution appear to confirm the modeled value of the mean free path length of DOPE for Brownian and anomalous diffusion. Although the step length and time give the proper values of diffusion coefficient, the DOPE speed calculated as their quotient is several orders of magnitude lower than the thermal speed. This is interpreted as a result of intermolecular interactions, as confirmed by lateral diffusion of other molecules in different membranes. The molecule step parameters are then utilized to analyze the problem of multiple visits in small compartments. The modeling of the diffusion exponent results in a smooth transition to normal diffusion on entering a large compartment, as observed in experiments.

  9. Space γ-observatory GAMMA-400 Current Status and Perspectives

    NASA Astrophysics Data System (ADS)

    Galper, A. M.; Bonvicini, V.; Topchiev, N. P.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bergstrom, L.; Berti, E.; Bigongiari, G.; Bobkov, S. G.; Boezio, M.; Bogomolov, E. A.; Bonechi, S.; Bongi, M.; Bottai, S.; Castellini, G.; Cattaneo, P. W.; Cumani, P.; Dedenko, G. L.; De Donato, C.; Dogiel, V. A.; Gorbunov, M. S.; Gusakov, Yu. V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kaplun, A. A.; Kheymits, M. D.; Korepanov, V. E.; Larsson, J.; Leonov, A. A.; Loginov, V. A.; Longo, F.; Maestro, P.; Marrocchesi, P. S.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Pearce, M.; Picozza, P.; Rappoldi, A.; Ricciarini, S.; Runtso, M. F.; Ryde, F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Taraskin, A. A.; Tiberio, A.; Tyurin, E. M.; Ulanov, M. V.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Yurkin, Yu. T.; Zampa, N.; Zirakashvili, V. N.; Zverev, V. G.

    GAMMA-400 γ-ray telescope is designed to measure fluxes of γ-rays and the electron-positron cosmic ray component possibly generated in annihilation or decay of dark matter particles; to search for and study in detail discrete γ-ray sources, to examine the energy spectra of Galactic and extragalactic diffuse γ-rays, to study γ-ray bursts and γ-rays from the active Sun. GAMMA-400 consists of plastic scintillation anticoincidence top and lateral detectors, converter-tracker, plastic scintillation detectors for the time-of-flight system (TOF), two-part calorimeter (CC1 and CC2), plastic scintillation lateral detectors of calorimeter, plastic scintillation detectors of calorimeter, and neutron detector. The converter-tracker consists of 13 layers of double (x, y) silicon strip coordinate detectors (pitch of 0.08 mm). The first three and final one layers are without tungsten while the middle nine layers are interleaved with nine tungsten conversion foils. The thickness of CC1 and CC2 is 2 X0 (0.1λ0) and 23 X0 (1.1λ0) respectively (where X0 is radiation length and λ0 is nuclear interaction one). The total calorimeter thickness is 25 X0 or 1.2λ0 for vertical incident particles registration and 54 X0 or 2.5λ0 for laterally incident ones. The energy range for γ-rays and electrons (positrons) registration in the main aperture is from ∼0.1 GeV to ∼3.0 TeV. The γ-ray telescope main aperture angular and energy resolutions are respectively ∼0.01 and ∼1% for 102 GeV γ-quanta, the proton rejection factor is ∼5×105. The first three strip layers without tungsten provide the registration of γ-rays down to ∼20 MeV in the main aperture. Also this aperture allows investigating high energy light nuclei fluxes characteristics. Electrons, positrons, light nuclei and gamma-quanta will also register from the lateral directions due to special aperture configuration. Lateral aperture energy resolution is the same as for main aperture for electrons, positrons, light nuclei and gamma-quanta in energy range E>1.0 GeV. But using lateral aperture it is possible to detect low-energy gammas in the ranges 0.2 - 10 MeV and 10 MeV - 1.0 GeV with energy resolution 8% - 2% and 2% correspondingly accordingly to GAMMA-400 "Technical Project" stage results. Angular resolution in the lateral aperture provides only for low-energy gamma-quanta from non-stationary events (GRB, solar flares and so on) due segments of CC2 count rate analysis. GAMMA-400 γ-ray telescope will be installed onboard the Russian Space Observatory GAMMA-400. The lifetime of the space observatory will be at least seven years. The launch of the space observatory is scheduled for the early 2020s.

  10. Differential Microscopic Mobility of Components within a Deep Eutectic Solvent

    DOE PAGES

    Wagle, Durgesh V.; Baker, Gary A.; Mamontov, Eugene

    2015-07-13

    From macroscopic measurements of deep eutectic solvents such as glyceline (1:2 molar ratio of choline chloride to glycerol), the long-range translational diffusion of the larger cation (choline) is known to be slower compared to that of the smaller hydrogen bond donor (glycerol). However, when the diffusion dynamics are analyzed on the subnanometer length scale, we discover that the displacements associated with the localized diffusive motions are actually larger for choline. This counterintuitive diffusive behavior can be understood as follows. The localized diffusive motions confined in the transient cage of neighbor particles, which precede the cage-breaking long-range diffusion jumps, are moremore » spatially constrained for glycerol than for choline because of the stronger hydrogen bonds the former makes with chloride anions. The implications of differential localized mobility of the constituents should be especially important for applications where deep eutectic solvents are confined on the nanometer length scale and their long-range translational diffusion is strongly inhibited (e.g., within microporous media).« less

  11. The dynamics of oceanic fronts. I - The Gulf Stream

    NASA Technical Reports Server (NTRS)

    Kao, T. W.

    1980-01-01

    The establishment and maintenance of the mean hydrographic properties of large-scale density fronts in the upper ocean is considered. The dynamics is studied by posing an initial value problem starting with a near-surface discharge of buoyant water with a prescribed density deficit into an ambient stationary fluid of uniform density; full time dependent diffusion and Navier-Stokes equations are then used with constant eddy diffusion and viscosity coefficients, together with a constant Coriolis parameter. Scaling analysis reveals three independent scales of the problem including the radius of deformation of the inertial length, buoyancy length, and diffusive length scales. The governing equations are then suitably scaled and the resulting normalized equations are shown to depend on the Ekman number alone for problems of oceanic interest. It is concluded that the mean Gulf Stream dynamics can be interpreted in terms of a solution of the Navier-Stokes and diffusion equations, with the cross-stream circulation responsible for the maintenance of the front; this mechanism is suggested for the maintenance of the Gulf Stream dynamics.

  12. Measuring a diffusion coefficient by single-particle tracking: statistical analysis of experimental mean squared displacement curves.

    PubMed

    Ernst, Dominique; Köhler, Jürgen

    2013-01-21

    We provide experimental results on the accuracy of diffusion coefficients obtained by a mean squared displacement (MSD) analysis of single-particle trajectories. We have recorded very long trajectories comprising more than 1.5 × 10(5) data points and decomposed these long trajectories into shorter segments providing us with ensembles of trajectories of variable lengths. This enabled a statistical analysis of the resulting MSD curves as a function of the lengths of the segments. We find that the relative error of the diffusion coefficient can be minimized by taking an optimum number of points into account for fitting the MSD curves, and that this optimum does not depend on the segment length. Yet, the magnitude of the relative error for the diffusion coefficient does, and achieving an accuracy in the order of 10% requires the recording of trajectories with about 1000 data points. Finally, we compare our results with theoretical predictions and find very good qualitative and quantitative agreement between experiment and theory.

  13. Diffusion and scaling during early embryonic pattern formation

    PubMed Central

    Gregor, Thomas; Bialek, William; van Steveninck, Rob R. de Ruyter; Tank, David W.; Wieschaus, Eric F.

    2005-01-01

    Development of spatial patterns in multicellular organisms depends on gradients in the concentration of signaling molecules that control gene expression. In the Drosophila embryo, Bicoid (Bcd) morphogen controls cell fate along 70% of the anteroposterior axis but is translated from mRNA localized at the anterior pole. Gradients of Bcd and other morphogens are thought to arise through diffusion, but this basic assumption has never been rigorously tested in living embryos. Furthermore, because diffusion sets a relationship between length and time scales, it is hard to see how patterns of gene expression established by diffusion would scale proportionately as egg size changes during evolution. Here, we show that the motion of inert molecules through the embryo is well described by the diffusion equation on the relevant length and time scales, and that effective diffusion constants are essentially the same in closely related dipteran species with embryos of very different size. Nonetheless, patterns of gene expression in these different species scale with egg length. We show that this scaling can be traced back to scaling of the Bcd gradient itself. Our results, together with constraints imposed by the time scales of development, suggest that the mechanism for scaling is a species-specific adaptation of the Bcd lifetime. PMID:16352710

  14. Causes and implications of suppressed vesiculation and crystallization in phenocryst embayments

    NASA Astrophysics Data System (ADS)

    Cashman, K. V.; Rust, A.

    2016-12-01

    Recent studies of crystal-hosted melt embayments have modeled water diffusion to estimate rates of magma ascent. Uncertainties in these calculations have been linked primarily to the assumed initial pressure. None of these studies, however, have addressed the conditions under which crystal-hosted clear glass channels form in samples dominated by crystal- and bubble-rich groundmass. Embayments are common in phenocrysts from the 1974 basaltic eruption of Fuego volcano. They are hosted by both plagioclase and olivine phenocrysts where rapid and spatially heterogeneous growth creates a local melt channel. Embayment shapes differ in the two phases, however, depending on the characteristic rapid growth morphologies. Embayment channels are typically 20-50 µm wide and may reach 100-200 µm in length. Interestingly, these length scales are similar to those of melt embayments in plagioclase within the dacitic Mount St. Helens. We suggest that these characteristic length scales are key to embayment preservation as clear glass. We explore two hypotheses: (1) that the space constraints of the embayment inhibit bubble nucleation and growth, or (2) that rapid decompression-driven crystal growth on all sides of the melt channel temporarily increases the melt temperature and water content (and therefore element diffusivity) above ambient. Support for the second hypothesis - that diffusion out of the melt channels is energetically more favorable than nucleation of new bubble and crystal phases - is suggested by observed diffusion profiles of melt components within the embayments. Understanding the origin of melt channels has important implications for diffusion-based studies of magma decompression. First, if the embayments are formed by rapid, syn-eruptive crystal growth, then the effective diffusion length scale must increase with time. Second, if local and temporary heating increase elemental diffusion rates, then characteristic diffusion time scales will be overestimated. By extension, we also note that similar conditions may characterize rapid growth of skeletal and hopper crystals.

  15. Free volumes and gas transport in polymers: amine-modified epoxy resins as a case study.

    PubMed

    Patil, Pushkar N; Roilo, David; Brusa, Roberto S; Miotello, Antonio; Aghion, Stefano; Ferragut, Rafael; Checchetto, Riccardo

    2016-02-07

    The CO2 transport process was studied in a series of amine-modified epoxy resins having different cross-linking densities but the same chemical environment for the penetrant molecules. Positron Annihilation Lifetime Spectroscopy (PALS) was used to monitor the free volume structure of the samples and experimentally evaluate their fractional free volume fh(T) and its temperature evolution. The analysis of the free volume hole size distribution showed that all the holes have a size large enough to accommodate the penetrant molecules at temperatures T above the glass transition temperature Tg. The measured gas diffusion constants at T > Tg have been reproduced in the framework of the free volume theory of diffusion using a novel procedure based on the use of fh(T) as an input experimental parameter.

  16. Measuring the continuity of diffusion barriers on porous films using γ-ray energy spectra of escaping positronium

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Mills, Allen P.; Case, Carlye

    2005-08-01

    Diffusion barriers for capping porous low dielectric constant films are important for preventing metal migration into a semiconductor circuit. Using the fact that positrons implanted into a porous dielectric form ortho-positronium (o-Ps) copiously, Gidley et al. [D. W. Gidley, W. F. Frieze, T. L. Dull, J. Sun, A. F. Yee, C. V. Nguyen, and D. Y. Yoon, Appl. Phys. Lett. 76, 1282 (2000)], have been able to measure open area fractions as low as 10-5 in porous dielectric film barrier layers from the increase in the ortho-positronium lifetime and intensity associated with positronium escape into vacuum. We demonstrate that it is possible to obtain comparable sensitivities by measuring the gamma-ray energy spectrum of the escaping positronium.

  17. Fast oxygen diffusion in bismuth oxide probed by quasielastic neutron scattering

    DOE PAGES

    Mamontov, Eugene

    2016-09-24

    In this paper, we present the first, to our knowledge, study of solid state oxygen translational diffusion by quasielastic neutron scattering. Such studies in the past might have been precluded by relatively low diffusivities of oxygen anions in the temperature range amenable to neutron scattering experiments. To explore the potential of the quasielastic scattering technique, which can deduce atomic diffusion jump length of oxygen anions through the momentum transfer dependence of the scattering signal, we have selected the fastest known oxygen conductor, bismuth oxide. Finally, we have found the oxygen anion jump length in excellent agreement with the nearest oxygen-vacancymore » distance in the anion sublattice of the fluorite-related structure of bismuth oxide.« less

  18. Application of the SEM to the measurement of solar cell parameters

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.; Andrews, C. W.

    1977-01-01

    A pair of techniques are described which make use of the SEM to measure, respectively, the minority carrier diffusion length and the metallurgical junction depth in silicon solar cells. The former technique permits the measurement of the true bulk diffusion length through the application of highly doped field layers to the back surfaces of the cells being investigated. The technique yields an absolute value of the diffusion length from a knowledge of the collected fraction of the injected carriers and the cell thickness. It is shown that the secondary emission contrast observed in the SEM on a reverse-biased diode can depict the location of the metallurgical junction if the diode has been prepared with the proper beveled geometry. The SEM provides the required contrast and the option of high magnification, permitting the measurement of extremely shallow junction depths.

  19. Theoretical Interpretation of Pass 8 Fermi -LAT e {sup +} + e {sup −} Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Mauro, M.; Manconi, S.; Donato, F.

    The flux of positrons and electrons ( e {sup +} + e {sup −}) has been measured by the Fermi Large Area Telescope (LAT) in the energy range between 7 GeV and 2 TeV. We discuss a number of interpretations of Pass 8 Fermi -LAT e {sup +} + e {sup −} spectrum, combining electron and positron emission from supernova remnants (SNRs) and pulsar wind nebulae (PWNe), or produced by the collision of cosmic rays (CRs) with the interstellar medium. We find that the Fermi -LAT spectrum is compatible with the sum of electrons from a smooth SNR population, positronsmore » from cataloged PWNe, and a secondary component. If we include in our analysis constraints from the AMS-02 positron spectrum, we obtain a slightly worse fit to the e {sup +} + e {sup −} Fermi -LAT spectrum, depending on the propagation model. As an additional scenario, we replace the smooth SNR component within 0.7 kpc with the individual sources found in Green’s catalog of Galactic SNRs. We find that separate consideration of far and near sources helps to reproduce the e {sup +} + e {sup −} Fermi -LAT spectrum. However, we show that the fit degrades when the radio constraints on the positron emission from Vela SNR (which is the main contributor at high energies) are taken into account. We find that a break in the power-law injection spectrum at about 100 GeV can also reproduce the measured e {sup +} + e {sup −} spectrum and, among the CR propagation models that we consider, no reasonable break of the power-law dependence of the diffusion coefficient can modify the electron flux enough to reproduce the observed shape.« less

  20. Directional Antineutrino Detection

    NASA Astrophysics Data System (ADS)

    Safdi, B. R.; Suerfu, J.

    2014-12-01

    We propose the first truly directional antineutrino detector for antineutrinos near the threshold for the inverse beta decay (IBD) of hydrogen, with potential applications including the spatial mapping of geo-neutrinos, searches for stellar antineutrinos, and the monitoring of nuclear reactors. The detector consists of adjacent and separated target and neutron-capture layers. The IBD events, which result in a neutron and a positron, take place in the target layers. These layers are thin enough so that the neutrons escape without scattering elastically. The neutrons are detected in the thicker neutron-capture layers. The location of the IBD event is determined from the energy deposited by the positron as it slows in the medium and from the two gamma rays that come from the positron annihilation. Since the neutron recoils in the direction of the antineutrino's motion, a line may then be drawn between the IBD event location and the neutron-capture location to approximate the antineutrino's velocity. In some events, we may even measure the positron's velocity, which further increases our ability to reconstruct the antineutrino's direction of motion. Our method significantly improves upon previous methods by allowing the neutron to freely travel a long distance before diffusing and being captured. Moreover, our design is a straightforward modification of existing antineutrino detectors; a prototype could easily be built with existing technology. We verify our design through Monte Carlo simulations in Geant4, using commercially-available boron-loaded plastic scintillators for the target and neutron-capture layer materials. We are able to discriminate from background using multiple coincidence signatures within a short, ~microsecond time interval. We conclude that the detector could likely operate above ground with minimal shielding.

  1. Pressure from dark matter annihilation and the rotation curve of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Wechakama, M.; Ascasibar, Y.

    2011-05-01

    The rotation curves of spiral galaxies are one of the basic predictions of the cold dark matter paradigm, and their shape in the innermost regions has been hotly debated over the last decades. The present work shows that dark matter annihilation into electron-positron pairs may affect the observed rotation curve by a significant amount. We adopt a model-independent approach, where all the electrons and positrons are injected with the same initial energy E0˜mdmc2 in the range from 1 MeV to 1 TeV and the injection rate is constrained by INTEGRAL, Fermi and HESS data. The pressure of the relativistic electron-positron gas is determined by solving the diffusion-loss equation, considering inverse Compton scattering, synchrotron radiation, Coulomb collisions, bremsstrahlung and ionization. For values of the gas density and magnetic field that are representative of the Milky Way, it is estimated that pressure gradients are strong enough to balance gravity in the central parts if E0 < 1 GeV. The exact value depends somewhat on the astrophysical parameters, and it changes dramatically with the slope of the dark matter density profile. For very steep slopes, as those expected from adiabatic contraction, the rotation curves of spiral galaxies would be affected on ˜kpc scales for most values of E0. By comparing the predicted rotation curves with observations of dwarf and low surface brightness galaxies, we show that the pressure from dark matter annihilation may improve the agreement between theory and observations in some cases, but it also imposes severe constraints on the model parameters (most notably, the inner slope of halo density profile, as well as the mass and the annihilation cross-section of dark matter particles into electron-positron pairs).

  2. Systematic investigation on Cadmium-incorporation in Li₂FeSiO₄/C cathode material for lithium-ion batteries.

    PubMed

    Zhang, Lu-Lu; Duan, Song; Yang, Xue-Lin; Liang, Gan; Huang, Yun-Hui; Cao, Xing-Zhong; Yang, Jing; Ni, Shi-Bing; Li, Ming

    2014-05-27

    Cadmium-incorporated Li2FeSiO4/C composites have been successfully synthesized by a solid-state reaction assisted with refluxing. The effect and mechanism of Cd-modification on the electrochemical performance of Li2FeSiO4/C were investigated in detail by X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, Raman spectra, transmission electron microscopy, positron annihilation lifetime spectroscopy and Doppler broadening spectrum, and electrochemical measurements. The results show that Cd not only exists in an amorphous state of CdO on the surface of LFS particles, but also enters into the crystal lattice of LFS. Positron annihilation lifetime spectroscopy and Doppler broadening spectrum analyses verify that Cd-incorporation increases the defect concentration and the electronic conductivity of LFS, thus improve the Li(+)-ion diffusion process. Furthermore, our electrochemical measurements verify that an appropriate amount of Cd-incorporation can achieve a satisfied electrochemical performance for LFS/C cathode material.

  3. Systematic investigation on Cadmium-incorporation in Li2FeSiO4/C cathode material for lithium-ion batteries

    PubMed Central

    Zhang, Lu-Lu; Duan, Song; Yang, Xue-Lin; Liang, Gan; Huang, Yun-Hui; Cao, Xing-Zhong; Yang, Jing; Ni, Shi-Bing; Li, Ming

    2014-01-01

    Cadmium-incorporated Li2FeSiO4/C composites have been successfully synthesized by a solid-state reaction assisted with refluxing. The effect and mechanism of Cd-modification on the electrochemical performance of Li2FeSiO4/C were investigated in detail by X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, Raman spectra, transmission electron microscopy, positron annihilation lifetime spectroscopy and Doppler broadening spectrum, and electrochemical measurements. The results show that Cd not only exists in an amorphous state of CdO on the surface of LFS particles, but also enters into the crystal lattice of LFS. Positron annihilation lifetime spectroscopy and Doppler broadening spectrum analyses verify that Cd-incorporation increases the defect concentration and the electronic conductivity of LFS, thus improve the Li+-ion diffusion process. Furthermore, our electrochemical measurements verify that an appropriate amount of Cd-incorporation can achieve a satisfied electrochemical performance for LFS/C cathode material. PMID:24860942

  4. Method of incident low-energy gamma-ray direction reconstruction in the GAMMA-400 gamma-ray space telescope

    NASA Astrophysics Data System (ADS)

    Kheymits, M. D.; Leonov, A. A.; Zverev, V. G.; Galper, A. M.; Arkhangelskaya, I. V.; Arkhangelskiy, A. I.; Suchkov, S. I.; Topchiev, N. P.; Yurkin, Yu T.; Bakaldin, A. V.; Dalkarov, O. D.

    2016-02-01

    The GAMMA-400 gamma-ray space-based telescope has as its main goals to measure cosmic γ-ray fluxes and the electron-positron cosmic-ray component produced, theoretically, in dark-matter-particles decay or annihilation processes, to search for discrete γ-ray sources and study them in detail, to examine the energy spectra of diffuse γ-rays — both galactic and extragalactic — and to study gamma-ray bursts (GRBs) and γ-rays from the active Sun. Scientific goals of GAMMA-400 telescope require fine angular resolution. The telescope is of a pair-production type. In the converter-tracker, the incident gamma-ray photon converts into electron-positron pair in the tungsten layer and then the tracks are detected by silicon- strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident-gamma direction reconstruction for energies below several gigaelectronvolts. The method of utilising this process to improve the resolution is proposed in the presented work.

  5. Radiation from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Sol, H.; Medvedev, M.; Zhang, B.; Nordlund, A.; Frederiksen, J. T.; Fishman, G. J.; Preece, R.

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the presence of relativistic jets, instabilities such as the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability create collisionless shocks, which are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons in small-scale magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation, a case of diffusive synchrotron radiation, may be important to understand the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  6. Lumbosacral Radiculoplexopathy as the Initial Presentation of Lymphoma: A Report of 4 Cases.

    PubMed

    Marquardt, Robert J; Li, Yuebing

    2018-06-01

    To evaluate the clinical, laboratory, and radiological features of 4 cases of biopsy-proven lymphomatous lumbosacral radiculoplexopathy. Retrospective chart review. All patients suffered from diffuse large B-cell lymphoma. A mean diagnostic delay of 10 months was encountered. Presenting symptoms in all 4 patients included back pain, radicular leg pain, and leg weakness, similar to spondylotic radiculopathy. Electrodiagnostic study showed axon loss radiculoplexopathy and magnetic resonance imaging of the lumbar spine or pelvis demonstrated nerve or nerve root enhancement. Increased uptake by lumbosacral roots/plexus on fluorodeoxyglucose-positron emission tomography aided diagnosis in 3 cases. Cytology was positive in 1 of 10 cerebrospinal fluid samples. Combined chemotherapy and radiation treatment led to clinicoradiological improvement, with residual neurological symptoms in all patients. Lymphomatous lumbosacral radiculoplexopathy should be considered in patients with progressive lumbosacral radicular symptoms. Magnetic resonance imaging and fluorodeoxyglucose-positron emission tomography, but not cerebrospinal fluid, are helpful in achieving early diagnosis. Treatment responses seem favorable.

  7. Mapping the nanoscale energetic landscape in conductive polymer films with spatially super-resolved exciton dynamics

    NASA Astrophysics Data System (ADS)

    Ginsberg, Naomi

    2015-03-01

    The migration of Frenkel excitons, tightly-bound electron-hole pairs, in polymeric organic semiconducting films is critical to the efficiency of bulk heterojunction solar cells. While these materials exhibit a high degree of structural heterogeneity on the nanoscale, traditional measurements of exciton diffusion lengths are performed on bulk samples. Since both the characteristic length scales of structural heterogeneity and the reported bulk diffusion lengths are smaller than the optical diffraction limit, we adapt far-field super-resolution fluorescence imaging to uncover the correlations between the structural and energetic landscapes that the excitons explore.

  8. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement

    DOE PAGES

    Xiao, Zhengguo; Dong, Qingfeng; Bi, Cheng; ...

    2014-08-26

    Solvent-annealing is found to be an effective method to increase the grain size and carrier diffusion lengths of trihalide perovskite materials. Thus, the carrier diffusion length of MAPbI 3 is increased to over 1 μm. The efficiency remains above 14.5% when the MAPbI 3 thickness changes from 250 nm to 1 μm, with the highest efficiency reaching 15.6%.

  9. Radiation defect dynamics in Si at room temperature studied by pulsed ion beams

    NASA Astrophysics Data System (ADS)

    Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.; Myers, M. T.; Shao, L.; Kucheyev, S. O.

    2015-10-01

    The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length is revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ˜4-13 ms and a diffusion length of ˜15-50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.

  10. Kinetics of Surface-Mediated Fibrillization of Amyloid-β (12-28) Peptides.

    PubMed

    Lin, Yi-Chih; Li, Chen; Fakhraai, Zahra

    2018-04-17

    Surfaces or interfaces are considered to be key factors in facilitating the formation of amyloid fibrils under physiological conditions. In this report, we study the kinetics of the surface-mediated fibrillization (SMF) of an amyloid-β fragment (Aβ 12-28 ) on mica. We employ a spin-coating-based drying procedure to control the exposure time of the substrate to a low-concentration peptide solution and then monitor the fibril growth as a function of time via atomic force microscopy (AFM). The evolution of surface-mediated fibril growth is quantitatively characterized in terms of the length histogram of imaged fibrils and their surface concentration. A two-dimensional (2D) kinetic model is proposed to numerically simulate the length evolution of surface-mediated fibrils by assuming a diffusion-limited aggregation (DLA) process along with size-dependent rate constants. We find that both monomer and fibril diffusion on the surface are required to obtain length histograms as a function of time that resemble those observed in experiments. The best-fit simulated data can accurately describe the key features of experimental length histograms and suggests that the mobility of loosely bound amyloid species is crucial in regulating the kinetics of SMF. We determine that the mobility exponent for the size dependence of the DLA rate constants is α = 0.55 ± 0.05, which suggests that the diffusion of loosely bound surface fibrils roughly depends on the inverse of the square root of their size. These studies elucidate the influence of deposition rate and surface diffusion on the formation of amyloid fibrils through SMF. The method used here can be broadly adopted to study the diffusion and aggregation of peptides or proteins on various surfaces to investigate the role of chemical interactions in two-dimensional fibril formation and diffusion.

  11. Surface effects on exciton diffusion in non polar ZnO/ZnMgO heterostructures

    NASA Astrophysics Data System (ADS)

    Sakr, G.; Sartel, C.; Sallet, V.; Lusson, A.; Patriarche, G.; Galtier, P.; Barjon, J.

    2017-12-01

    The diffusion of excitons injected in ZnO/Zn0.92Mg0.08O quantum well heterostructures grown by metal-organic-vapor-phase-epitaxy on non-polar ZnO substrates is investigated at room temperature. Cathodoluminescence linescans in a field-emission-gun scanning-electron-microscope are performed across cleaved cross-sections. A 55 nm diffusion length is assessed for excitons in bulk ZnMgO. When prepared as small angle bevels using focused ion beam (FIB), the effective diffusion length of excitons is shown to decrease down to 8 nm in the thinner part of the slab. This effect is attributed to non-radiative surface recombinations, with a 7  ×  104 cm s-1 recombination velocity estimated at the FIB-machined ZnMgO surface. The strong reduction of the diffusion extent in such thin lamellae usually used for transmission electron microscopy could be use improve the spatial resolution of cathodoluminescence images, often limited by diffusion processes.

  12. Cervical Gross Tumor Volume Dose Predicts Local Control Using Magnetic Resonance Imaging/Diffusion-Weighted Imaging—Guided High-Dose-Rate and Positron Emission Tomography/Computed Tomography—Guided Intensity Modulated Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyk, Pawel; Jiang, Naomi; Sun, Baozhou

    2014-11-15

    Purpose: Magnetic resonance imaging/diffusion weighted-imaging (MRI/DWI)-guided high-dose-rate (HDR) brachytherapy and {sup 18}F-fluorodeoxyglucose (FDG) — positron emission tomography/computed tomography (PET/CT)-guided intensity modulated radiation therapy (IMRT) for the definitive treatment of cervical cancer is a novel treatment technique. The purpose of this study was to report our analysis of dose-volume parameters predicting gross tumor volume (GTV) control. Methods and Materials: We analyzed the records of 134 patients with International Federation of Gynecology and Obstetrics stages IB1-IVB cervical cancer treated with combined MRI-guided HDR and IMRT from July 2009 to July 2011. IMRT was targeted to the metabolic tumor volume and lymph nodesmore » by use of FDG-PET/CT simulation. The GTV for each HDR fraction was delineated by use of T2-weighted or apparent diffusion coefficient maps from diffusion-weighted sequences. The D100, D90, and Dmean delivered to the GTV from HDR and IMRT were summed to EQD2. Results: One hundred twenty-five patients received all irradiation treatment as planned, and 9 did not complete treatment. All 134 patients are included in this analysis. Treatment failure in the cervix occurred in 24 patients (18.0%). Patients with cervix failures had a lower D100, D90, and Dmean than those who did not experience failure in the cervix. The respective doses to the GTV were 41, 58, and 136 Gy for failures compared with 67, 99, and 236 Gy for those who did not experience failure (P<.001). Probit analysis estimated the minimum D100, D90, and Dmean doses required for ≥90% local control to be 69, 98, and 260 Gy (P<.001). Conclusions: Total dose delivered to the GTV from combined MRI-guided HDR and PET/CT-guided IMRT is highly correlated with local tumor control. The findings can be directly applied in the clinic for dose adaptation to maximize local control.« less

  13. Proton transfer and the diffusion of H+ and OH- ions along water wires.

    PubMed

    Lee, Song Hi; Rasaiah, Jayendran C

    2013-09-28

    Hydrogen and hydroxide ion transport in narrow carbon nanotubes (CNTs) of diameter 8.1 Å and lengths up to 582 Å are investigated by molecular dynamics simulations using a dissociating water model. The diffusion coefficients of the free ions in an open chain are significantly larger than in periodically replicated wires that necessarily contain D or L end defects, and both are higher than they are in bulk water. The free hydroxide ion diffuses faster than the free hydronium ion in short CNTs, unlike diffusion in liquid water, and both coefficients increase and converge to nearly the same value with increasing tube length. The diffusion coefficients of the two ions increase further when the tubes are immersed in a water reservoir and they move easily out of the tube, suggesting an additional pathway for proton transport via OH(-) ions in biological channels.

  14. Fabrication and analysis of cylindrical diffusing optical fiber probe for photodynamic therapy in cancer treatment

    NASA Astrophysics Data System (ADS)

    Park, Gaye; Lee, HyeYeon; Cho, HyungSu; Kim, DaeYoung; Han, JaeWan; Ouh, ChiHwan; Jung, ChangHyun

    2018-02-01

    The treatment using photodynamic therapy (PDT) among cancer treatment methods shows remedial value in various cancers. The optical fiber probe infiltrates into affected parts of the tissues that are difficult to access, such as pancreatic cancer, carcinoma of extrahepatic bile duct, prostate cancer, and bladder cancer by using endoscopic retrograde cholangiopancreatography (ERCP) and endoscopic ultrasonography (EUS) with various types of diffusing tips. In this study, we developed cylindrical diffusing optical fiber probe (CDOFP) for PDT, manufactured ball-shaped end which is easily infiltrated into tissues with diffusing length ranging from 10mm to 40mm through precision laser processing, and conducted beam profile characterization of manufactured CDOFP. Also, chemical reaction between photo-sensitizer and laser in PDT is important, and hence the thermal effect in tissues as per diffusing length of probe was also studied as it was used in a recent study.

  15. Joint project of the international network of agencies for health technology assessment--Part 1: Survey results on diffusion, assessment, and clinical use of positron emission tomography.

    PubMed

    Hastings, John; Adams, Elizabeth J

    2006-01-01

    The International Network of Agencies for Health Technology Assessment (INAHTA) has been tracking activities associated with the clinical use of positron emission tomography (PET) in its members' healthcare systems since 1997 and published its first Joint Project report on PET in 1999. Part 1 of this Joint Project report presents survey results on diffusion, assessment activities, and policy for clinical use related to PET among INAHTA members since 1999. INAHTA members were surveyed in 2003-2004. Twenty-seven INAHTA agencies (69 percent response rate) from nineteen countries responded to the survey. Dedicated PET systems are the most universally installed systems to date. Mobile scanners and modified gamma cameras are used occasionally as lower cost alternatives, and interest in PET-computed tomography hybrid models is rising despite limited assessment of impact on service planning. PET was used and assessed most commonly for managing patients with cancer. All respondents reported having some form of public funding for clinical PET frequently linked to data collection for the purpose of gathering evidence to refine clinical use and guide resource allocation toward indications that maximize clinical and cost-effectiveness. The use of HTA within a continuous quality improvement framework can help optimize scarce resources for evaluation and use of high cost diagnostic technologies such as PET, particularly where potential clinical or cost-effectiveness is considerable but conclusive evidence is lacking.

  16. Influence of annealing temperature on the Dy diffusion process in NdFeB magnets

    NASA Astrophysics Data System (ADS)

    Hu, Sheng-qing; Peng, Kun; Chen, Hong

    2017-03-01

    Sintered NdFeB magnets were coated with a layer of Dy metal using electron beam evaporation method and then annealed at various temperatures to investigate the temperature dependence of Dy diffusion process in NdFeB magnets. A Dy-rich phase was observed along the grain boundaries after the grain boundary diffusion process, the diffusion coefficients of various temperatures were obtained, the diffusion coefficients of Dy along the grain boundaries at 800 °C and 900 °C were determined to be 9.8×10-8 cm2 s-1 and 2.4×10-7 cm2 s-1, respectively. The diffusion length depended on the annealing temperature and the maximum diffusion length of approximately 1.8 mm and 3.0 mm can be obtained after annealing at 800 °C and 900 °C for 8 h. Higher diffusion temperature results in the diffusion not only along the grain boundaries but also into grains and then decrease in magnetic properties. The optimum annealing conditions can be determined as 900 °C for 8 h. The coercivity was improved from 1040 kA/m to 1450 kA/m and its magnetization has no significant reduction after the grain boundary diffusion process at the optimum annealing conditions.

  17. Centimetre-scale electron diffusion in photoactive organic heterostructures

    NASA Astrophysics Data System (ADS)

    Burlingame, Quinn; Coburn, Caleb; Che, Xiaozhou; Panda, Anurag; Qu, Yue; Forrest, Stephen R.

    2018-02-01

    The unique properties of organic semiconductors, such as flexibility and lightness, are increasingly important for information displays, lighting and energy generation. But organics suffer from both static and dynamic disorder, and this can lead to variable-range carrier hopping, which results in notoriously poor electrical properties, with low electron and hole mobilities and correspondingly short charge-diffusion lengths of less than a micrometre. Here we demonstrate a photoactive (light-responsive) organic heterostructure comprising a thin fullerene channel sandwiched between an electron-blocking layer and a blended donor:C70 fullerene heterojunction that generates charges by dissociating excitons. Centimetre-scale diffusion of electrons is observed in the fullerene channel, and this can be fitted with a simple electron diffusion model. Our experiments enable the direct measurement of charge diffusivity in organic semiconductors, which is as high as 0.83 ± 0.07 square centimetres per second in a C60 channel at room temperature. The high diffusivity of the fullerene combined with the extraordinarily long charge-recombination time yields diffusion lengths of more than 3.5 centimetres, orders of magnitude larger than expected for an organic system.

  18. Excess entropy scaling for the segmental and global dynamics of polyethylene melts.

    PubMed

    Voyiatzis, Evangelos; Müller-Plathe, Florian; Böhm, Michael C

    2014-11-28

    The range of validity of the Rosenfeld and Dzugutov excess entropy scaling laws is analyzed for unentangled linear polyethylene chains. We consider two segmental dynamical quantities, i.e. the bond and the torsional relaxation times, and two global ones, i.e. the chain diffusion coefficient and the viscosity. The excess entropy is approximated by either a series expansion of the entropy in terms of the pair correlation function or by an equation of state for polymers developed in the context of the self associating fluid theory. For the whole range of temperatures and chain lengths considered, the two estimates of the excess entropy are linearly correlated. The scaled bond and torsional relaxation times fall into a master curve irrespective of the chain length and the employed scaling scheme. Both quantities depend non-linearly on the excess entropy. For a fixed chain length, the reduced diffusion coefficient and viscosity scale linearly with the excess entropy. An empirical reduction to a chain length-independent master curve is accessible for both dynamic quantities. The Dzugutov scheme predicts an increased value of the scaled diffusion coefficient with increasing chain length which contrasts physical expectations. The origin of this trend can be traced back to the density dependence of the scaling factors. This finding has not been observed previously for Lennard-Jones chain systems (Macromolecules, 2013, 46, 8710-8723). Thus, it limits the applicability of the Dzugutov approach to polymers. In connection with diffusion coefficients and viscosities, the Rosenfeld scaling law appears to be of higher quality than the Dzugutov approach. An empirical excess entropy scaling is also proposed which leads to a chain length-independent correlation. It is expected to be valid for polymers in the Rouse regime.

  19. Modeling the Total Dose Radiation Effects of Hg(1-x)Cd(x)Te Photodiodes Using Numerical Device Simulators

    DTIC Science & Technology

    1994-01-01

    Dosimetry : Analysis of dosimetry in two dewar/liquid nitrogen systems. TIME Estimate: One hour for setup, irradiation and TLD reading/analysis. IV...point indicates both electron and hole trapping at the boundary ........................ 12 3.3 Relationship between current and dose for irradiated...peak value. Carriers are collected across the vertical junction within a diffusion length. Since the electron diffusion length is much larger than for

  20. Minority carrier diffusion length and edge surface-recombination velocity in InP

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak; Bailey, Sheila G.

    1993-01-01

    A scanning electron microscope was used to obtain the electron-beam-induced current (EBIC) profiles in InP specimens containing a Schottky barrier perpendicular to the scanned (edge) surface. An independent technique was used to measure the edge surface-recombination velocity. These values were used in a fit of the experimental EBIC data with a theoretical expression for normalized EBIC (Donolato, 1982) to obtain the electron (minority carrier) diffusion length.

  1. Subdiffusive exciton transport in quantum dot solids.

    PubMed

    Akselrod, Gleb M; Prins, Ferry; Poulikakos, Lisa V; Lee, Elizabeth M Y; Weidman, Mark C; Mork, A Jolene; Willard, Adam P; Bulović, Vladimir; Tisdale, William A

    2014-06-11

    Colloidal quantum dots (QDs) are promising materials for use in solar cells, light-emitting diodes, lasers, and photodetectors, but the mechanism and length of exciton transport in QD materials is not well understood. We use time-resolved optical microscopy to spatially visualize exciton transport in CdSe/ZnCdS core/shell QD assemblies. We find that the exciton diffusion length, which exceeds 30 nm in some cases, can be tuned by adjusting the inorganic shell thickness and organic ligand length, offering a powerful strategy for controlling exciton movement. Moreover, we show experimentally and through kinetic Monte Carlo simulations that exciton diffusion in QD solids does not occur by a random-walk process; instead, energetic disorder within the inhomogeneously broadened ensemble causes the exciton diffusivity to decrease over time. These findings reveal new insights into exciton dynamics in disordered systems and demonstrate the flexibility of QD materials for photonic and optoelectronic applications.

  2. Mechanisms limiting the performance of large grain polycrystalline silicon solar cells

    NASA Technical Reports Server (NTRS)

    Culik, J. S.; Alexander, P.; Dumas, K. A.; Wohlgemuth, J. W.

    1984-01-01

    The open-circuit voltage and short-circuit current of large-grain (1 to 10 mm grain diameter) polycrystalline silicon solar cells is determined by the minority-carrier diffusion length within the bulk of the grains. This was demonstrated by irradiating polycrystalline and single-crystal (Czochralski) silicon solar cells with 1 MeV electrons to reduce their bulk lifetime. The variation of short-circuit current with minority-carrier diffusion length for the polycrystalline solar cells is identical to that of the single-crystal solar cells. The open-circuit voltage versus short-circuit current characteristic of the polycrystalline solar cells for reduced diffusion lengths is also identical to that of the single-crystal solar cells. The open-circuit voltage of the polycrystalline solar cells is a strong function of quasi-neutral (bulk) recombination, and is reduced only slightly, if at all, by grain-boundary recombination.

  3. Mathematical analysis of the Photovoltage Decay (PVD) method for minority carrier lifetime measurements

    NASA Technical Reports Server (NTRS)

    Vonroos, O. H.

    1982-01-01

    When the diffusion length of minority carriers becomes comparable with or larger than the thickness of a p-n junction solar cell, the characteristic decay of the photon-generated voltage results from a mixture of contributions with different time constants. The minority carrier recombination lifetime tau and the time constant l(2)/D, where l is essentially the thickness of the cell and D the minority carrier diffusion length, determine the signal as a function of time. It is shown that for ordinary solar cells (n(+)-p junctions), particularly when the diffusion length L of the minority carriers is larger than the cell thickness l, the excess carrier density decays according to exp (-t/tau-pi(2)Dt/4l(2)), tau being the lifetime. Therefore, tau can be readily determined by the photovoltage decay method once D and L are known.

  4. Multi-GeV electron-positron beam generation from laser-electron scattering.

    PubMed

    Vranic, Marija; Klimo, Ondrej; Korn, Georg; Weber, Stefan

    2018-03-16

    The new generation of laser facilities is expected to deliver short (10 fs-100 fs) laser pulses with 10-100 PW of peak power. This opens an opportunity to study matter at extreme intensities in the laboratory and provides access to new physics. Here we propose to scatter GeV-class electron beams from laser-plasma accelerators with a multi-PW laser at normal incidence. In this configuration, one can both create and accelerate electron-positron pairs. The new particles are generated in the laser focus and gain relativistic momentum in the direction of laser propagation. Short focal length is an advantage, as it allows the particles to be ejected from the focal region with a net energy gain in vacuum. Electron-positron beams obtained in this setup have a low divergence, are quasi-neutral and spatially separated from the initial electron beam. The pairs attain multi-GeV energies which are not limited by the maximum energy of the initial electron beam. We present an analytical model for the expected energy cutoff, supported by 2D and 3D particle-in-cell simulations. The experimental implications, such as the sensitivity to temporal synchronisation and laser duration is assessed to provide guidance for the future experiments.

  5. Ex Vivo Diffusion Tensor Imaging of Spinal Cord Injury in Rats of Varying Degrees of Severity

    PubMed Central

    Jirjis, Michael B.; Kurpad, Shekar N.

    2013-01-01

    Abstract The aim of this study was to characterize magnetic resonance diffusion tensor imaging (DTI) in proximal regions of the spinal cord following a thoracic spinal cord injury (SCI). Sprague–Dawley rats (n=40) were administered a control, mild, moderate, or severe contusion injury at the T8 vertebral level. Six direction diffusion weighted images (DWIs) were collected ex vivo along the length of the spinal cord, with an echo/repetition time of 31.6 ms/14 sec and b=500 sec/mm2. Diffusion metrics were correlated to hindlimb motor function. Significant differences were found for whole cord region of interest (ROI) drawings for fractional anisotropy (FA), mean diffusivity (MD), longitudinal diffusion coefficient (LD), and radial diffusion coefficient (RD) at each of the cervical levels (p<0.01). Motor function correlated with MD in the cervical segments of the spinal cord (r2=0.80). The diffusivity of water significantly decreased throughout “uninjured” portions of the spinal cord following a contusion injury (p<0.05). Diffusivity metrics were found to be altered following SCI in both white and gray matter regions. Injury severity was associated with diffusion changes over the entire length of the cord. This study demonstrates that DTI is sensitive to SCI in regions remote from injury, suggesting that the diffusion metrics may be used as a biomarker for severity of injury. PMID:23782233

  6. Non-local damage rheology and size effect

    NASA Astrophysics Data System (ADS)

    Lyakhovsky, V.

    2011-12-01

    We study scaling relations controlling the onset of transiently-accelerating fracturing and transition to dynamic rupture propagation in a non-local damage rheology model. The size effect is caused principally by growth of a fracture process zone, involving stress redistribution and energy release associated with a large fracture. This implies that rupture nucleation and transition to dynamic propagation are inherently scale-dependent processes. Linear elastic fracture mechanics (LEFM) and local damage mechanics are formulated in terms of dimensionless strain components and thus do not allow introducing any space scaling, except linear relations between fracture length and displacements. Generalization of Weibull theory provides scaling relations between stress and crack length at the onset of failure. A powerful extension of the LEFM formulation is the displacement-weakening model which postulates that yielding is complete when the crack wall displacement exceeds some critical value or slip-weakening distance Dc at which a transition to kinetic friction is complete. Scaling relations controlling the transition to dynamic rupture propagation in slip-weakening formulation are widely accepted in earthquake physics. Strong micro-crack interaction in a process zone may be accounted for by adopting either integral or gradient type non-local damage models. We formulate a gradient-type model with free energy depending on the scalar damage parameter and its spatial derivative. The damage-gradient term leads to structural stresses in the constitutive stress-strain relations and a damage diffusion term in the kinetic equation for damage evolution. The damage diffusion eliminates the singular localization predicted by local models. The finite width of the localization zone provides a fundamental length scale that allows numerical simulations with the model to achieve the continuum limit. A diffusive term in the damage evolution gives rise to additional damage diffusive time scale associated with the structural length scale. The ratio between two time scales associated with damage accumulation and diffusion, the damage diffusivity ratio, reflects the role of the diffusion-controlled delocalization. We demonstrate that localized fracturing occurs at the damage diffusivity ratio below certain critical value leading to a linear scaling between stress and crack length compatible with size effect for failures at crack initiation. A subseuqent quasi-static fracture growth is self-similar with increasing size of the process zone proportional to the fracture length. At a certain stage, controlled by dynamic weakening, the self-similarity breaks down and crack velocity significantly deviates from that predicted by the quasi-static regime, the size of the process zone decreases, and the rate of crack growth ceases to be controlled by the rate of damage increase. Furthermore, the crack speed approaches that predicted by the elasto-dynamic equation. The non-local damage rheology model predicts that the nucleation size of the dynamic fracture scales with fault zone thickness distance of the stress interraction.

  7. Identification of prefrontal cortex (BA10) activation while performing Stroop test using diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Khadka, Sabin; Chityala, Srujan R.; Tian, Fenghua; Liu, Hanli

    2011-03-01

    Stroop test is commonly used as a behavior-testing tool for psychological examinations that are related to attention and cognitive control of the human brain. Studies have shown activations in Broadmann area 10 (BA10) of prefrontal cortex (PFC) during attention and cognitive process. The use of diffuse optical tomography (DOT) for human brain mapping is becoming more prevalent. In this study we expect to find neural correlates between the performed cognitive tasks and hemodynamic signals detected by a DOT system. Our initial observation showed activation of oxy-hemoglobin concentration in BA 10, which is consistent with some results seen by positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). Our study demonstrates the possibility of combining DOT with Stroop test to quantitatively investigate cognitive functions of the human brain at the prefrontal cortex.

  8. Scaling of Magnetic Reconnection in Relativistic Collisionless Pair Plasmas

    NASA Technical Reports Server (NTRS)

    Liu, Yi-Hsin; Guo, Fan; Daughton, William; Li, Hui; Hesse, Michael

    2015-01-01

    Using fully kinetic simulations, we study the scaling of the inflow speed of collisionless magnetic reconnection in electron-positron plasmas from the non-relativistic to ultra-relativistic limit. In the anti-parallel configuration, the inflow speed increases with the upstream magnetization parameter sigma and approaches the speed of light when sigma is greater than O(100), leading to an enhanced reconnection rate. In all regimes, the divergence of the pressure tensor is the dominant term responsible for breaking the frozen-in condition at the x-line. The observed scaling agrees well with a simple model that accounts for the Lorentz contraction of the plasma passing through the diffusion region. The results demonstrate that the aspect ratio of the diffusion region, modified by the compression factor of proper density, remains approximately 0.1 in both the non-relativistic and relativistic limits.

  9. Measuring the continuity of diffusion barriers on porous films using {gamma}-ray energy spectra of escaping positronium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Jun; Mills, Allen P. Jr.; Case, Carlye

    2005-08-01

    Diffusion barriers for capping porous low dielectric constant films are important for preventing metal migration into a semiconductor circuit. Using the fact that positrons implanted into a porous dielectric form ortho-positronium (o-Ps) copiously, Gidley et al. [D. W. Gidley, W. F. Frieze, T. L. Dull, J. Sun, A. F. Yee, C. V. Nguyen, and D. Y. Yoon, Appl. Phys. Lett. 76, 1282 (2000)], have been able to measure open area fractions as low as 10{sup -5} in porous dielectric film barrier layers from the increase in the ortho-positronium lifetime and intensity associated with positronium escape into vacuum. We demonstrate thatmore » it is possible to obtain comparable sensitivities by measuring the gamma-ray energy spectrum of the escaping positronium.« less

  10. Photoactivatable fluorescent probes reveal heterogeneous nanoparticle permeation through biological gels at multiple scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuster, Benjamin S.; Allan, Daniel B.; Kays, Joshua C.

    Diffusion through biological gels is crucial for effective drug delivery using nanoparticles. Here, we demonstrate a new method to measure diffusivity over a large range of length scales – from tens of nanometers to tens of micrometers – using photoactivatable fluorescent nanoparticle probes. We have applied this method to investigate the length-scale dependent mobility of nanoparticles in fibrin gels and in sputum from patients with cystic fibrosis (CF). Nanoparticles composed of poly(lactic-co-glycolic acid), with polyethylene glycol coatings to resist bioadhesion, were internally labeled with caged rhodamine to make the particles photoactivatable. We activated particles within a region of sample usingmore » brief, targeted exposure to UV light, uncaging the rhodamine and causing the particles in that region to become fluorescent. We imaged the subsequent spatiotemporal evolution in fluorescence intensity and observed the collective particle diffusion over tens of minutes and tens of micrometers. We also performed complementary multiple particle tracking experiments on the same particles, extending significantly the range over which particle motion and its heterogeneity can be observed. In fibrin gels, both methods showed an immobile fraction of particles and a mobile fraction that diffused over all measured length scales. In the CF sputum, particle diffusion was spatially heterogeneous and locally anisotropic but nevertheless typically led to unbounded transport extending tens of micrometers within tens of minutes. Lastly, these findings provide insight into the mesoscale architecture of these gels and its role in setting their permeability on physiologically relevant length scales, pointing toward strategies for improving nanoparticle drug delivery.« less

  11. Photoactivatable fluorescent probes reveal heterogeneous nanoparticle permeation through biological gels at multiple scales

    DOE PAGES

    Schuster, Benjamin S.; Allan, Daniel B.; Kays, Joshua C.; ...

    2017-05-31

    Diffusion through biological gels is crucial for effective drug delivery using nanoparticles. Here, we demonstrate a new method to measure diffusivity over a large range of length scales – from tens of nanometers to tens of micrometers – using photoactivatable fluorescent nanoparticle probes. We have applied this method to investigate the length-scale dependent mobility of nanoparticles in fibrin gels and in sputum from patients with cystic fibrosis (CF). Nanoparticles composed of poly(lactic-co-glycolic acid), with polyethylene glycol coatings to resist bioadhesion, were internally labeled with caged rhodamine to make the particles photoactivatable. We activated particles within a region of sample usingmore » brief, targeted exposure to UV light, uncaging the rhodamine and causing the particles in that region to become fluorescent. We imaged the subsequent spatiotemporal evolution in fluorescence intensity and observed the collective particle diffusion over tens of minutes and tens of micrometers. We also performed complementary multiple particle tracking experiments on the same particles, extending significantly the range over which particle motion and its heterogeneity can be observed. In fibrin gels, both methods showed an immobile fraction of particles and a mobile fraction that diffused over all measured length scales. In the CF sputum, particle diffusion was spatially heterogeneous and locally anisotropic but nevertheless typically led to unbounded transport extending tens of micrometers within tens of minutes. Lastly, these findings provide insight into the mesoscale architecture of these gels and its role in setting their permeability on physiologically relevant length scales, pointing toward strategies for improving nanoparticle drug delivery.« less

  12. Performance Characteristics of Plane-Wall Two-Dimensional Diffusers

    NASA Technical Reports Server (NTRS)

    Reid, Elliott G

    1953-01-01

    Experiments have been made at Stanford University to determine the performance characteristics of plane-wall, two-dimensional diffusers which were so proportioned as to insure reasonable approximation of two-dimensional flow. All of the diffusers had identical entrance cross sections and discharged directly into a large plenum chamber; the test program included wide variations of divergence angle and length. During all tests a dynamic pressure of 60 pounds per square foOt was maintained at the diffuser entrance and the boundary layer there was thin and fully turbulent. The most interesting flow characteristics observed were the occasional appearance of steady, unseparated, asymmetric flow - which was correlated with the boundary-layer coalescence - and the rapid deterioration of flow steadiness - which occurred as soon as the divergence angle for maximum static pressure recovery was exceeded. Pressure efficiency was found to be controlled almost exclusively by divergence angle, whereas static pressure recovery was markedly influenced by area ratio (or length) as well as divergence angle. Volumetric efficiency. diminished as area ratio increased, and at a greater rate with small lengths than with large ones. Large values of the static-pressure-recovery coefficient were attained only with long diffusers of large area ratio; under these conditions pressure efficiency was high and. volumetric efficiency low. Auxiliary tests with asymmetric diffusers demonstrated that longitudinal pressure gradient, rather than wall divergence angle, controlled flow separation. Others showed that the addition of even a short exit duct of uniform section augmented pressure recovery. Finally, it was found that the installation of a thin, central, longitudinal partition suppressed flow separation in short diffusers and thereby improved pressure recovery

  13. Multiparametric [18F]Fluorodeoxyglucose/ [18F]Fluoromisonidazole Positron Emission Tomography/ Magnetic Resonance Imaging of Locally Advanced Cervical Cancer for the Non-Invasive Detection of Tumor Heterogeneity: A Pilot Study

    PubMed Central

    Andrzejewski, Piotr; Baltzer, Pascal; Polanec, Stephan H.; Sturdza, Alina; Georg, Dietmar; Helbich, Thomas H.; Karanikas, Georgios; Grimm, Christoph; Polterauer, Stephan; Poetter, Richard; Wadsak, Wolfgang; Mitterhauser, Markus; Georg, Petra

    2016-01-01

    Objectives To investigate fused multiparametric positron emission tomography/magnetic resonance imaging (MP PET/MRI) at 3T in patients with locally advanced cervical cancer, using high-resolution T2-weighted, contrast-enhanced MRI (CE-MRI), diffusion-weighted imaging (DWI), and the radiotracers [18F]fluorodeoxyglucose ([18F]FDG) and [18F]fluoromisonidazol ([18F]FMISO) for the non-invasive detection of tumor heterogeneity for an improved planning of chemo-radiation therapy (CRT). Materials and Methods Sixteen patients with locally advanced cervix were enrolled in this IRB approved and were examined with fused MP [18F]FDG/ [18F]FMISO PET/MRI and in eleven patients complete data sets were acquired. MP PET/MRI was assessed for tumor volume, enhancement (EH)-kinetics, diffusivity, and [18F]FDG/ [18F]FMISO-avidity. Descriptive statistics and voxel-by-voxel analysis of MRI and PET parameters were performed. Correlations were assessed using multiple correlation analysis. Results All tumors displayed imaging parameters concordant with cervix cancer, i.e. type II/III EH-kinetics, restricted diffusivity (median ADC 0.80x10-3mm2/sec), [18F]FDG- (median SUVmax16.2) and [18F]FMISO-avidity (median SUVmax3.1). In all patients, [18F]FMISO PET identified the hypoxic tumor subvolume, which was independent of tumor volume. A voxel-by-voxel analysis revealed only weak correlations between the MRI and PET parameters (0.05–0.22), indicating that each individual parameter yields independent information and the presence of tumor heterogeneity. Conclusion MP [18F]FDG/ [18F]FMISO PET/MRI in patients with cervical cancer facilitates the acquisition of independent predictive and prognostic imaging parameters. MP [18F]FDG/ [18F]FMISO PET/MRI enables insights into tumor biology on multiple levels and provides information on tumor heterogeneity, which has the potential to improve the planning of CRT. PMID:27167829

  14. Multiparametric [18F]Fluorodeoxyglucose/ [18F]Fluoromisonidazole Positron Emission Tomography/ Magnetic Resonance Imaging of Locally Advanced Cervical Cancer for the Non-Invasive Detection of Tumor Heterogeneity: A Pilot Study.

    PubMed

    Pinker, Katja; Andrzejewski, Piotr; Baltzer, Pascal; Polanec, Stephan H; Sturdza, Alina; Georg, Dietmar; Helbich, Thomas H; Karanikas, Georgios; Grimm, Christoph; Polterauer, Stephan; Poetter, Richard; Wadsak, Wolfgang; Mitterhauser, Markus; Georg, Petra

    2016-01-01

    To investigate fused multiparametric positron emission tomography/magnetic resonance imaging (MP PET/MRI) at 3T in patients with locally advanced cervical cancer, using high-resolution T2-weighted, contrast-enhanced MRI (CE-MRI), diffusion-weighted imaging (DWI), and the radiotracers [18F]fluorodeoxyglucose ([18F]FDG) and [18F]fluoromisonidazol ([18F]FMISO) for the non-invasive detection of tumor heterogeneity for an improved planning of chemo-radiation therapy (CRT). Sixteen patients with locally advanced cervix were enrolled in this IRB approved and were examined with fused MP [18F]FDG/ [18F]FMISO PET/MRI and in eleven patients complete data sets were acquired. MP PET/MRI was assessed for tumor volume, enhancement (EH)-kinetics, diffusivity, and [18F]FDG/ [18F]FMISO-avidity. Descriptive statistics and voxel-by-voxel analysis of MRI and PET parameters were performed. Correlations were assessed using multiple correlation analysis. All tumors displayed imaging parameters concordant with cervix cancer, i.e. type II/III EH-kinetics, restricted diffusivity (median ADC 0.80x10-3mm2/sec), [18F]FDG- (median SUVmax16.2) and [18F]FMISO-avidity (median SUVmax3.1). In all patients, [18F]FMISO PET identified the hypoxic tumor subvolume, which was independent of tumor volume. A voxel-by-voxel analysis revealed only weak correlations between the MRI and PET parameters (0.05-0.22), indicating that each individual parameter yields independent information and the presence of tumor heterogeneity. MP [18F]FDG/ [18F]FMISO PET/MRI in patients with cervical cancer facilitates the acquisition of independent predictive and prognostic imaging parameters. MP [18F]FDG/ [18F]FMISO PET/MRI enables insights into tumor biology on multiple levels and provides information on tumor heterogeneity, which has the potential to improve the planning of CRT.

  15. Photonic Devices Based on Surface and Composition-Engineered Infrared Colloidal Nanocrystals

    DTIC Science & Technology

    2012-01-27

    NQD/P3HT solar cells , the need for submicron-phase-separated polymer-NQD blends is therefore expressed by the limiting exciton diffusion length ...P3HT:PbSe are very critical in designing the PM-HJ solar cells : The thickness of P3HT should approximate to the thickness of exciton diffuse length in... cells , luminescent solar concentrators, light emitting diodes, lasers, photonic crystals, CdSe, PbSe, Germanium Jian Xu Pennsylvania State University

  16. Record Charge Carrier Diffusion Length in Colloidal Quantum Dot Solids via Mutual Dot-To-Dot Surface Passivation.

    PubMed

    Carey, Graham H; Levina, Larissa; Comin, Riccardo; Voznyy, Oleksandr; Sargent, Edward H

    2015-06-03

    Through a combination of chemical and mutual dot-to-dot surface passivation, high-quality colloidal quantum dot solids are fabricated. The joint passivation techniques lead to a record diffusion length for colloidal quantum dots of 230 ± 20 nm. The technique is applied to create thick photovoltaic devices that exhibit high current density without losing fill factor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Determination of carrier diffusion length in GaN

    NASA Astrophysics Data System (ADS)

    Hafiz, Shopan; Zhang, Fan; Monavarian, Morteza; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit; Metzner, Sebastian; Bertram, Frank; Christen, Jürgen; Gil, Bernard

    2015-01-01

    Diffusion lengths of photo-excited carriers along the c-direction were determined from photoluminescence (PL) and cross-sectional cathodoluminescence (CL) measurements in p- and n-type GaN epitaxial layers grown on c-plane sapphire by metal-organic chemical vapor deposition. The investigated samples incorporate a 6 nm thick In0.15Ga0.85N active layer capped with either 500 nm p-GaN or 1500 nm n-GaN. The top GaN layers were etched in steps and PL from the InGaN active region and the underlying layers was monitored as a function of the top GaN thickness upon photo-generation near the surface region by above bandgap excitation. Taking into consideration the absorption in the top GaN layer as well as active and underlying layers, the diffusion lengths at 295 K and at 15 K were measured to be 93 ± 7 nm and 70 ± 7 nm for Mg-doped p-type GaN and 432 ± 30 nm and 316 ± 30 nm for unintentionally doped n-type GaN, respectively, at photogenerated carrier densities of 4.2 × 1018 cm-3 using PL spectroscopy. CL measurements of the unintentionally doped n-type GaN layer at much lower carrier densities of 1017 cm-3 revealed a longer diffusion length of 525 ± 11 nm at 6 K.

  18. Radiation defect dynamics in Si at room temperature studied by pulsed ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, J. B.; Myers, M. T.; Charnvanichborikarn, S.

    The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length is revealed by the dependencemore » of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ∼4–13 ms and a diffusion length of ∼15–50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.« less

  19. Radiation defect dynamics in Si at room temperature studied by pulsed ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.

    The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here in this paper, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length ismore » revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ~4–13 ms and a diffusion length of ~15–50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.« less

  20. Radiation defect dynamics in Si at room temperature studied by pulsed ion beams

    DOE PAGES

    Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.; ...

    2015-10-06

    The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here in this paper, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length ismore » revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ~4–13 ms and a diffusion length of ~15–50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.« less

  1. Formation of vacancy clusters and cavities in He-implanted silicon studied by slow-positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Brusa, Roberto S.; Karwasz, Grzegorz P.; Tiengo, Nadia; Zecca, Antonio; Corni, Federico; Tonini, Rita; Ottaviani, Gianpiero

    2000-04-01

    The depth profile of open volume defects has been measured in Si implanted with He at an energy of 20 keV, by means of a slow-positron beam and the Doppler broadening technique. The evolution of defect distributions has been studied as a function of isochronal annealing in two series of samples implanted at the fluence of 5×1015 and 2×1016 He cm-2. A fitting procedure has been applied to the experimental data to extract a positron parameter characterizing each open volume defect. The defects have been identified by comparing this parameter with recent theoretical calculations. In as-implanted samples the major part of vacancies and divacancies produced by implantation is passivated by the presence of He. The mean depth of defects as seen by the positron annihilation technique is about five times less than the helium projected range. During the successive isochronal annealing the number of positron traps decreases, then increases and finally, at the highest annealing temperatures, disappears only in the samples implanted at the lowest fluence. A minimum of open volume defects is reached at the annealing temperature of 250 °C in both series. The increase of open volume defects at temperatures higher than 250 °C is due to the appearance of vacancy clusters of increasing size, with a mean depth distribution that moves towards the He projected range. The appearance of vacancy clusters is strictly related to the out diffusion of He. In the samples implanted at 5×1015 cm-2 the vacancy clusters are mainly four vacancy agglomerates stabilized by He related defects. They disappear starting from an annealing temperature of 700 °C. In the samples implanted at 2×1016 cm-2 and annealed at 850-900 °C the vacancy clusters disappear and only a distribution of cavities centered around the He projected range remains. The role of vacancies in the formation of He clusters, which evolve in bubble and then in cavities, is discussed.

  2. Electrons and Mirror Symmetry

    ScienceCinema

    Kumar, Krishna

    2017-12-09

    The neutral weak force between an electron and a target particle, mediated by the Z boson, can be isolated by measuring the fractional change under a mirror reflection of the scattering probability of relativistic longitudinally polarized electrons off unpolarized targets. This technique yields neutral weak force measurements at a length scale of 1 femtometer, in contrast to high energy collider measurements that probe much smaller length scales. Study of the variation of the weak force over a range of length scales provides a stringent test of theory, complementing collider measurements. We describe a recent measurement of the neutral weak force between two electrons by the E158 experiment at the Stanford Linear Accelerator Center. While the weak force between an electron and positron has been extensively studied, that between two electrons had never directly been measured. We conclude by discussing prospects for even more precise measurements at future facilities.

  3. A Diffusive-Particle Theory of Free Recall

    PubMed Central

    Fumarola, Francesco

    2017-01-01

    Diffusive models of free recall have been recently introduced in the memory literature, but their potential remains largely unexplored. In this paper, a diffusive model of short-term verbal memory is considered, in which the psychological state of the subject is encoded as the instantaneous position of a particle diffusing over a semantic graph. The model is particularly suitable for studying the dependence of free-recall observables on the semantic properties of the words to be recalled. Besides predicting some well-known experimental features (forward asymmetry, semantic clustering, word-length effect), a novel prediction is obtained on the relationship between the contiguity effect and the syllabic length of words; shorter words, by way of their wider semantic range, are predicted to be characterized by stronger forward contiguity. A fresh analysis of archival free-recall data allows to confirm this prediction. PMID:29085521

  4. Effective optical path length for tandem diffuse cubic cavities as gas absorption cell

    NASA Astrophysics Data System (ADS)

    Yu, J.; Gao, Q.; Zhang, Y. G.; Zhang, Z. G.; Wu, S. H.

    2014-12-01

    Tandem diffuse cubic cavities designed by connecting two single diffuse cubic-shaped cavities, A and B, with an aperture (port fraction fap) in the middle of the connecting baffle was developed as a gas absorption cell. The effective optical path length (EOPL) was evaluated by comparing the oxygen absorption signal in the cavity and in air based on tunable diode laser absorption spectroscopy (TDLAS). Experimental results manifested an enhancement of EOPL for the tandem diffuse cubic cavities as the decrease of fap and can be expressed as the sum of EOPL of two single cubic cavities at fap < 0.01, which coincided well with theoretical analysis. The simulating EOPL was smaller than experimental results at fap > 0.01, which indicated that back scattering light from cavity B to cavity A cannot be ignored at this condition.

  5. Dynamics of an Unsteady Diffusion Flame: Effects of Heat Release and Gravity

    DTIC Science & Technology

    1990-09-27

    UNSTEADY DIFFUSION FLAME: EFFECTS OF HEAT RELEASE AND GRAVITY INTRODUCTION Experiments on laminar diffusion flames have shown that gravity affects the flame ... length and width as well as its extinction characteristics (1-4). These studies have been conducted in drop towers and have focused on fuel jets with

  6. Derivation of effective fission gas diffusivities in UO2 from lower length scale simulations and implementation of fission gas diffusion models in BISON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, Anders David Ragnar; Pastore, Giovanni; Liu, Xiang-Yang

    2014-11-07

    This report summarizes the development of new fission gas diffusion models from lower length scale simulations and assessment of these models in terms of annealing experiments and fission gas release simulations using the BISON fuel performance code. Based on the mechanisms established from density functional theory (DFT) and empirical potential calculations, continuum models for diffusion of xenon (Xe) in UO 2 were derived for both intrinsic conditions and under irradiation. The importance of the large X eU3O cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequencemore » of its high mobility and stability. These models were implemented in the MARMOT phase field code, which is used to calculate effective Xe diffusivities for various irradiation conditions. The effective diffusivities were used in BISON to calculate fission gas release for a number of test cases. The results are assessed against experimental data and future directions for research are outlined based on the conclusions.« less

  7. Thirty years since diffuse sound reflection by maximum length

    NASA Astrophysics Data System (ADS)

    Cox, Trevor J.; D'Antonio, Peter

    2005-09-01

    This year celebrates the 30th anniversary of Schroeder's seminal paper on sound scattering from maximum length sequences. This paper, along with Schroeder's subsequent publication on quadratic residue diffusers, broke new ground, because they contained simple recipes for designing diffusers with known acoustic performance. So, what has happened in the intervening years? As with most areas of engineering, the room acoustic diffuser has been greatly influenced by the rise of digital computing technologies. Numerical methods have become much more powerful, and this has enabled predictions of surface scattering to greater accuracy and for larger scale surfaces than previously possible. Architecture has also gone through a revolution where the forms of buildings have become more extreme and sculptural. Acoustic diffuser designs have had to keep pace with this to produce shapes and forms that are desirable to architects. To achieve this, design methodologies have moved away from Schroeder's simple equations to brute force optimization algorithms. This paper will look back at the past development of the modern diffuser, explaining how the principles of diffuser design have been devised and revised over the decades. The paper will also look at the present state-of-the art, and dreams for the future.

  8. Diffusion lengths in irradiated N/P InP-on-Si solar cells

    NASA Technical Reports Server (NTRS)

    Wojtczuk, Steven; Colerico, Claudia; Summers, Geoffrey P.; Walters, Robert J.; Burke, Edward A.

    1996-01-01

    Indium phosphide (InP) solar cells were made on silicon (Si) wafers (InP/Si) by to take advantage of both the radiation-hardness properties of the InP solar cell and the light weight and low cost of Si wafers. The InP/Si cell application is for long duration and/or high radiation orbit space missions. Spire has made N/P InP/Si cells of sizes up to 2 cm by 4 cm with beginning-of-life (BOL) AM0 efficiencies over 13% (one-sun, 28C). These InP/Si cells have higher absolute efficiency and power density after a high radiation dose than gallium arsenide (GaAs) or silicon (Si) solar cells after a fluence of about 2e15 1 MeV electrons/sq. cm. In this work, we investigate the minority carrier (electron) base diffusion lengths in the N/P InP/Si cells. A quantum efficiency model was constructed for a 12% BOL AM0 N/P InP/Si cell which agreed well with the absolutely measured quantum efficiency and the sun-simulator measured AM0 photocurrent (30.1 mA/sq. cm). This model was then used to generate a table of AM0 photocurrents for a range of base diffusion lengths. AM0 photocurrents were then measured for irradiations up to 7.7e16 1 MeV electrons/sq. cm (the 12% BOL cell was 8% after the final irradiation). By comparing the measured photocurrents with the predicted photocurrents, base diffusion lengths were assigned at each fluence level. A damage coefficient K of 4e-8 and a starting (unirradiated) base electron diffusion length of 0.8 microns fits the data well. The quantum efficiency was measured again at the end of the experiment to verify that the photocurrent predicted by the model (25.5 mA/sq. cm) agreed with the simulator-measured photocurrent after irradiation (25.7 mA/sq. cm).

  9. Tracer counterpermeation analysis of diffusivity in finite-length nanopores with and without single-file dynamics

    DOE PAGES

    Ackerman, David M.; Evans, James W.

    2017-01-19

    Here, we perform a tracer counterpermeation (TCP) analysis for a stochastic model of diffusive transport through a narrow linear pore where passing of species within the pore is inhibited or even excluded (single-file diffusion). TCP involves differently labeled but otherwise identical particles from two decoupled infinite reservoirs adsorbing into opposite ends of the pore, and desorbing from either end. In addition to transient behavior, we assess steady-state concentration profiles, spatial correlations, particle number fluctuations, and diffusion fluxes through the pore. From the profiles and fluxes, we determine a generalized tracer diffusion coefficient D tr(x), at various positions x within themore » pore. D tr(x) has a plateau value in the pore center scaling inversely with the pore length, but it is enhanced near the pore openings. The latter feature reflects the effect of fluctuations in adsorption and desorption, and it is also associated with a nontrivial scaling of the concentration profiles near the pore openings.« less

  10. Tracer counterpermeation analysis of diffusivity in finite-length nanopores with and without single-file dynamics

    NASA Astrophysics Data System (ADS)

    Ackerman, David M.; Evans, James W.

    2017-01-01

    We perform a tracer counterpermeation (TCP) analysis for a stochastic model of diffusive transport through a narrow linear pore where passing of species within the pore is inhibited or even excluded (single-file diffusion). TCP involves differently labeled but otherwise identical particles from two decoupled infinite reservoirs adsorbing into opposite ends of the pore, and desorbing from either end. In addition to transient behavior, we assess steady-state concentration profiles, spatial correlations, particle number fluctuations, and diffusion fluxes through the pore. From the profiles and fluxes, we determine a generalized tracer diffusion coefficient Dtr(x ) , at various positions x within the pore. Dtr(x ) has a plateau value in the pore center scaling inversely with the pore length, but it is enhanced near the pore openings. The latter feature reflects the effect of fluctuations in adsorption and desorption, and it is also associated with a nontrivial scaling of the concentration profiles near the pore openings.

  11. Room temperature spin diffusion in (110) GaAs/AlGaAs quantum wells

    PubMed Central

    2011-01-01

    Transient spin grating experiments are used to investigate the electron spin diffusion in intrinsic (110) GaAs/AlGaAs multiple quantum well at room temperature. The measured spin diffusion length of optically excited electrons is about 4 μm at low spin density. Increasing the carrier density yields both a decrease of the spin relaxation time and the spin diffusion coefficient Ds. PMID:21711662

  12. Understanding the presence of vacancy clusters in ZnO from a kinetic perspective

    NASA Astrophysics Data System (ADS)

    Bang, Junhyeok; Kim, Youg-Sung; Park, C. H.; Gao, F.; Zhang, S. B.

    2014-06-01

    Vacancy clusters have been observed in ZnO by positron-annihilation spectroscopy (PAS), but detailed mechanisms are unclear. This is because the clustering happens in non-equilibrium conditions, for which theoretical method has not been well established. Combining first-principles calculation and kinetic Monte Carlo simulation, we determine the roles of non-equilibrium kinetics on the vacancies clustering. We find that clustering starts with the formation of Zn and O vacancy pairs (VZn - Vo), which further grow by attracting additional mono-vacancies. At this stage, vacancy diffusivity becomes crucial: due to the larger diffusivity of VZn compared to VO, more VZn-abundant clusters are formed than VO-abundant clusters. The large dissociation energy barriers, e.g., over 2.5 eV for (VZn - Vo), suggest that, once formed, it is difficult for the clusters to dissociate. By promoting mono-vacancy diffusion, thermal annealing will increase the size of the clusters. As the PAS is insensitive to VO donor defects, our results suggest an interpretation of the experimental data that could not have been made without the in-depth calculations.

  13. Quantitative assessment of the hepatic metabolic volume product in patients with diffuse hepatic steatosis and normal controls through use of FDG-PET and MR imaging: a novel concept.

    PubMed

    Bural, Gonca G; Torigian, Drew A; Burke, Anne; Houseni, Mohamed; Alkhawaldeh, Khaled; Cucchiara, Andrew; Basu, Sandip; Alavi, Abass

    2010-06-01

    The aim of this study was to compare hepatic standardized uptake values (SUVs) and hepatic metabolic volumetric products (HMVP) between patients of diffuse hepatic steatosis and control subjects with normal livers. Twenty-seven subjects were included in the study (13 men and 14 women; age range, 34-72 years). All had 18F-2-fluoro-2-D-deoxyglucose-positron emission tomography (FDG-PET) and magnetic resonance imaging (MRI) scans with an interscan interval of 0-5 months. Twelve of 27 subjects had diffuse hepatic steatosis on MRI. The remaining 15 were selected as age-matched controls based on normal liver parenchyma on MRI. Mean and maximum hepatic SUVs were calculated for both patient groups on FDG-PET images. Hepatic volumes were measured from MRI. HMVP in each subject was subsequently calculated by multiplication of hepatic volume by mean hepatic SUV. HMVPs as well as mean and maximum hepatic SUVs were compared between the two study groups. HMVPs, mean hepatic SUVs, and maximum hepatic SUVs were greater (statistically significant, p < 0.05) in subjects with diffuse hepatic steatosis compared to those in the control group. The increase in HMVP is the result of increased hepatic metabolic activity likely related to the diffuse hepatic steatosis. The active inflammatory process related to the diffuse hepatic steatosis is the probable explanation for the increase in hepatic metabolic activity on FDG-PET study.

  14. Microscopic diffusion processes measured in living planarians

    DOE PAGES

    Mamontov, Eugene

    2018-03-08

    Living planarian flatworms were probed using quasielastic neutron scattering to measure, on the pico-to-nanosecond time scale and nanometer length scale, microscopic diffusion of water and cell constituents in the planarians. Measurable microscopic diffusivities were surprisingly well defined in such a complex system as living animals. The overall variation in the microscopic diffusivity of cell constituents was found to be far lower than the variation in the microscopic diffusivity of water in planarians in a temperature range of 284.5 to 304.1K.

  15. DIFF--A 7090 Fortran Program to Determine Neutron Diffusion Constants Relating to a Six-Group Calculation; DIFF--UN PROGRAMME FOR TRAN 7090 POUR DETERMINER LES CONSTANTES DE DIFFUSION NEUTRONIQUE RELATIVES A UN CALCUL A SIX GROUPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plelnevaux, C.

    The computer program DIFF, in Fortran for the IBM 7090, for calculating the neutron diffusion coefficients and attenuation areas (L/sup 2/) necessary for multigroup diffusion calculations for reactor shielding is described. Diffusion coefficients and values of the inverse attenuation length are given for a six group calculation for several interesting shielding materials. (D.C.W.)

  16. Microscopic diffusion processes measured in living planarians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamontov, Eugene

    Living planarian flatworms were probed using quasielastic neutron scattering to measure, on the pico-to-nanosecond time scale and nanometer length scale, microscopic diffusion of water and cell constituents in the planarians. Measurable microscopic diffusivities were surprisingly well defined in such a complex system as living animals. The overall variation in the microscopic diffusivity of cell constituents was found to be far lower than the variation in the microscopic diffusivity of water in planarians in a temperature range of 284.5 to 304.1K.

  17. Steric effects on diffusion into bituminous coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John W. Larsen; Doyoung Lee

    2006-02-01

    The reactions of maleic anhydride, cis-maleate esters, and acetylenedicarboxylate esters with Pittsburgh No. 8 or Illinois No. 6 coal using o-xylene or o-dichlorobenzene solvent are diffusion controlled. Diffusion is Fickian in all cases. The measured activation energies are between 5.4 and 7.6 kcal/mol. Diffusion rates decrease slowly with increasing alkyl chain length and sharply with branching. Diffusion rates are slightly faster with o-xylene than when o-dichlorobenzene is used. 40 refs., 5 figs., 4 tabs.

  18. Cognitive Reserve–Mediated Modulation of Positron Emission Tomographic Activations During Memory Tasks in Alzheimer Disease

    PubMed Central

    Scarmeas, Nikolaos; Zarahn, Eric; Anderson, Karen E.; Honig, Lawrence S.; Park, Aileen; Hilton, John; Flynn, Joseph; Sackeim, Harold A.; Stern, Yaakov

    2011-01-01

    Background Cognitive reserve (CR) is the ability of an individual to cope with advancing brain pathological abnormalities so that he or she remains free of symptoms. Epidemiological data and evidence from positron emission tomography suggest that it may be mediated through education or IQ. Objective To investigate CR-mediated differential brain activation in Alzheimer disease (AD) subjects compared with healthy elderly persons. Participants Using radioactive water positron emission tomography, we scanned 12 AD patients and 17 healthy elderly persons while performing a serial recognition memory task for nonverbalizable shapes under 2 conditions: low demand, in which one shape was presented in each study trial, and titrated demand, in which the study list length was adjusted so that each subject recognized shapes at approximately 75% accuracy. Positron emission tomographic scan acquisition included the encoding and recognition phases. A CR factor score that summarized years of education, National Adult Reading Test estimated IQ, and Wechsler Adult Intelligence Scale–Revised vocabulary subtest score (explaining 71% of the total variance) was used as an index of CR. Voxel-wise, multiple regression analyses were performed with the “activation” difference (titrated demand–low demand) as the dependent variables and the CR factor score as the independent one. Brain regions where regression slopes differed between the 2 groups were identified. Results The slopes were significantly more positive for the AD patients in the left precentral gyrus and in the left hippocampus and significantly more negative in the right fusiform, right middle occipital, left superior occipital, and left middle temporal gyri. Conclusion Brain regions where systematic relationships (slopes) between subjects’ education-IQ and brain activation differ as a function of disease status may mediate the differential ability to cope with (ie, delay or modify) clinical manifestations of AD. PMID:14732623

  19. Relationship between pretreatment FDG-PET and diffusion-weighted MRI biomarkers in diffuse large B-cell lymphoma

    PubMed Central

    de Jong, Antoinette; Kwee, Thomas C; de Klerk, John MH; Adam, Judit A; de Keizer, Bart; Fijnheer, Rob; Kersten, Marie José; Ludwig, Inge; Jauw, Yvonne WS; Zijlstra, Josée M; den Bos, Indra C Pieters - Van; Stoker, Jaap; Hoekstra, Otto S; Nievelstein, Rutger AJ

    2014-01-01

    The purpose of this study was to determine the correlation between the 18F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) standardized uptake value (SUV) and the diffusion-weighted magnetic resonance imaging (MRI) apparent diffusion coefficient (ADC) in newly diagnosed diffuse large B-cell lymphoma (DLBCL). Pretreatment FDG-PET and diffusion-weighted MRI of 21 patients with histologically proven DLBCL were prospectively analyzed. In each patient, maximum, mean and peak standardized uptake value (SUV) was measured in the lesion with visually highest FDG uptake and in the largest lesion. Mean ADC (ADCmean, calculated with b-values of 0 and 1000 s/mm2) was measured in the same lesions. Correlations between FDG-PET metrics (SUVmax, SUVmean, SUVpeak) and ADCmean were assessed using Pearson’s correlation coefficients. In the lesions with visually highest FDG uptake, no significant correlations were found between the SUVmax, SUVmean, SUVpeak and the ADCmean (P=0.498, P=0.609 and P=0.595, respectively). In the largest lesions, there were no significant correlations either between the SUVmax, SUVmean, SUVpeak and the ADCmean (P=0.992, P=0.843 and P=0.894, respectively). The results of this study indicate that the glycolytic rate as measured by FDG-PET and changes in water compartmentalization and water diffusion as measured by the ADC are independent biological phenomena in newly diagnosed DLBCL. Further studies are warranted to assess the complementary roles of these different imaging biomarkers in the evaluation and follow-up of DLBCL. PMID:24795837

  20. Length distributions of nanowires: Effects of surface diffusion versus nucleation delay

    NASA Astrophysics Data System (ADS)

    Dubrovskii, Vladimir G.

    2017-04-01

    It is often thought that the ensembles of semiconductor nanowires are uniform in length due to the initial organization of the growth seeds such as lithographically defined droplets or holes in the substrate. However, several recent works have already demonstrated that most nanowire length distributions are broader than Poissonian. Herein, we consider theoretically the length distributions of non-interacting nanowires that grow by the material collection from the entire length of their sidewalls and with a delay of nucleation of the very first nanowire monolayer. The obtained analytic length distribution is controlled by two parameters that describe the strength of surface diffusion and the nanowire nucleation rate. We show how the distribution changes from the symmetrical Polya shape without the nucleation delay to a much broader and asymmetrical one for longer delays. In the continuum limit (for tall enough nanowires), the length distribution is given by a power law times an incomplete gamma-function. We discuss interesting scaling properties of this solution and give a recipe for analyzing and tailoring the experimental length histograms of nanowires which should work for a wide range of material systems and growth conditions.

  1. Lateral diffusion in model membranes is independent of the size of the hydrophobic region of molecules.

    PubMed Central

    Balcom, B J; Petersen, N O

    1993-01-01

    We have systematically investigated the probe size and shape dependence of lateral diffusion in model dimyristoyl phosphatidylcholine membranes. Linear hydrophobic polymers, which differ in length by an order of magnitude, were used to explore the effect on the lateral diffusion coefficient of hydrodynamic restrictions in the bilayer interior. The polymers employed are isoprenoid alcohols--citronellol, solanesol, and dolichol. Tracer lateral diffusion coefficients were measured by fluorescence photobleaching recovery. Despite the large difference in lengths, the nitrobenzoxadiazole labelled alcohols all diffuse at the rate of lipid self-diffusion (5.0 x 10(-12) m2 s-1, 29 degrees C) in the liquid crystal phase. Companion measurements in isotropic polymer solution, in gel phase lipid membranes and with nonpolar fluorescent polyaromatic hydrocarbons, show a marked dependence of the lateral diffusion coefficient on the probe molecule size. Our results in the liquid crystal phase are in accord with free area theory which asserts that lateral diffusion in the membrane is restricted by the surface-free area. Probe molecules which are significantly longer than the host phospholipid, seven times longer in the case of dolichol, are still restricted in their lateral motion by the surface properties of the bilayer in the liquid crystal phase. Fluorescence quenching experiments indicate that the nitrobenzoxadiazole label does not reside at the aqueous interface, although it must reside in close proximity according to the diffusion measurements. PMID:8218892

  2. Emergence of an optimal search strategy from a simple random walk

    PubMed Central

    Sakiyama, Tomoko; Gunji, Yukio-Pegio

    2013-01-01

    In reports addressing animal foraging strategies, it has been stated that Lévy-like algorithms represent an optimal search strategy in an unknown environment, because of their super-diffusion properties and power-law-distributed step lengths. Here, starting with a simple random walk algorithm, which offers the agent a randomly determined direction at each time step with a fixed move length, we investigated how flexible exploration is achieved if an agent alters its randomly determined next step forward and the rule that controls its random movement based on its own directional moving experiences. We showed that our algorithm led to an effective food-searching performance compared with a simple random walk algorithm and exhibited super-diffusion properties, despite the uniform step lengths. Moreover, our algorithm exhibited a power-law distribution independent of uniform step lengths. PMID:23804445

  3. Emergence of an optimal search strategy from a simple random walk.

    PubMed

    Sakiyama, Tomoko; Gunji, Yukio-Pegio

    2013-09-06

    In reports addressing animal foraging strategies, it has been stated that Lévy-like algorithms represent an optimal search strategy in an unknown environment, because of their super-diffusion properties and power-law-distributed step lengths. Here, starting with a simple random walk algorithm, which offers the agent a randomly determined direction at each time step with a fixed move length, we investigated how flexible exploration is achieved if an agent alters its randomly determined next step forward and the rule that controls its random movement based on its own directional moving experiences. We showed that our algorithm led to an effective food-searching performance compared with a simple random walk algorithm and exhibited super-diffusion properties, despite the uniform step lengths. Moreover, our algorithm exhibited a power-law distribution independent of uniform step lengths.

  4. Characterizing acid diffusion lengths in chemically amplified resists from measurements of deprotection kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, Abhijit A.; Pandey, Yogendra Narayan; Doxastakis, Manolis

    2014-10-01

    The acid-catalyzed deprotection of glassy poly(4-hydroxystyrene-co-tertbutyl acrylate) films was studied with infrared absorbance spectroscopy and stochastic simulations. Experimental data were interpreted with a simple description of subdiffusive acid transport coupled to second-order acid loss. This model predicts key attributes of observed deprotection rates, such as fast reaction at short times, slow reaction at long times, and a nonlinear dependence on acid loading. Fickian diffusion is approached by increasing the post-exposure bake temperature or adding plasticizing agents to the polymer resin. These findings demonstrate that acid mobility and overall deprotection kinetics are coupled to glassy matrix dynamics. To complement the analysismore » of bulk kinetics, acid diffusion lengths were calculated from the anomalous transport model and compared with nanopattern line widths. The consistent scaling between experiments and simulations suggests that the anomalous diffusion model could be further developed into a predictive lithography tool.« less

  5. Determination of critical diameters for intrinsic carrier diffusion-length of GaN nanorods with cryo-scanning near-field optical microscopy

    PubMed Central

    Chen, Y. T.; Karlsson, K. F.; Birch, J.; Holtz, P. O.

    2016-01-01

    Direct measurements of carrier diffusion in GaN nanorods with a designed InGaN/GaN layer-in-a-wire structure by scanning near-field optical microscopy (SNOM) were performed at liquid-helium temperatures of 10 K. Without an applied voltage, intrinsic diffusion lengths of photo-excited carriers were measured as the diameters of the nanorods differ from 50 to 800 nm. The critical diameter of nanorods for carrier diffusion is concluded as 170 nm with a statistical approach. Photoluminescence spectra were acquired for different positions of the SNOM tip on the nanorod, corresponding to the origins of the well-defined luminescence peaks, each being related to recombination-centers. The phenomenon originated from surface oxide by direct comparison of two nanorods with similar diameters in a single map has been observed and investigated. PMID:26876009

  6. Orthopositronium study of positron-irradiation-induced surface defects in alumina powder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dauwe, C.; Mbungu-Tsumbu

    1992-01-01

    Three-quantum-yield measurements and orthopositronium ({ital o}-Ps)-lifetime spectrometry at low temperatures are used to study the interaction of positronium with the surface in fine powders of aluminum oxide. It is found that electron and/or positron irradiation of the specimen induces surface defects which influence the positronium in three ways: (1) A surface positroniumlike bound state is created, (2) the fraction of {ital o}-Ps escaping from the particles is slightly inhibited, and (3) the escaped {ital o}-Ps is quenched into two-quantum decay upon collisions with the surface defects. It is found that the surface Ps state is not populated at the expensemore » of the interparticle Ps. The most likely surface defects are Al{sup 2+} or Al{sup 0} due to the migration of irradiation-induced interstitials. The techniques of long-lifetime spectrometry and of three-quantum-annihilation-rate measurement could be used to study both the diffusion of bulk defects to the surfaces, and the interactions of {ital o}-Ps to surface defects.« less

  7. [Features of Acquired Immunodeficiency Syndrome-related Lymphoma on (18)F-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography].

    PubMed

    Niu, Na; Zhu, Zhao-hui; Ma, Yan-ru; Xing, Hai-qun; Li, Fang

    2015-10-01

    To analyze the imaging features of (18)F-fluorodeoxyglucose (¹⁸F-FDG) positron emission tomography(PET)/computed tomography (CT) in acquired immune deficiency syndrome-related lymphoma (ARL) patients correlated with their clinical signs, symptoms, and treatments. Five ARL patients underwent ¹⁸F-FDG PET/CT at Peking Union Medical College Hospital from October 2008 to January 2013. Two patients received two additional follow-up studies 6 months later. Among these 5 patients, ¹⁸FDG-PET/CT helped in diagnosis of two patient and changed therapeutic strategy in other two patients. In two patients underwent ¹⁸F-FDG PET/CT brain scans, low-metabolism lesion was newly found in cerebral cortex. Of 4 patients receiving highly active antiretroviral therapy, PET/CT also demonstrated diffusely elevated ¹⁸F-FDG uptake in subcutaneous adipose tissue in two patients. ¹⁸F-FDG PET/CT is a highly useful tool in the diagnosis and treatment of ARL patients, in particular in the identification of associated encephalopathy and lipodystrophy.

  8. Positron annihilation lifetime spectroscopy (PALS) as a characterization technique for nanostructured self-assembled amphiphile systems.

    PubMed

    Dong, Aurelia W; Pascual-Izarra, Carlos; Pas, Steven J; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2009-01-08

    Positron annihilation lifetime spectroscopy (PALS) has potential as a novel rapid characterization method for self-assembly amphiphile systems; however, a lack of systematic correlation of PALS parameters with structural attributes has limited its more widespread application. In this study, using the well-characterized phytantriol/water and the phytantriol/vitamin E acetate/water self-assembly amphiphile systems, the impact of systematic structural changes controlled by changes in composition and temperature on PALS parameters has been studied. The PALS parameters (orthopositronium (oPs) lifetime and intensity signatures) were shown to be sensitive to the molecular packing and mobility of the self-assembled lipid molecules in various lyotropic liquid crystalline phases, enabling differentiation between liquid crystalline structures. The oPs lifetime, related to the molecular packing and mobility, is correlated with rheological properties of the individual mesophases. The oPs lifetime links the lipid chain packing and mobility in the various mesophases to resultant macroscopic properties, such as permeability, which is critical for the use of these mesophase structures as diffusion-controlled release matrices for active liposoluble compounds.

  9. Positron annihilation lifetime spectroscopy (PALS): a probe for molecular organisation in self-assembled biomimetic systems.

    PubMed

    Fong, Celesta; Dong, Aurelia W; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2015-07-21

    Positron annihilation lifetime spectroscopy (PALS) has been shown to be highly sensitive to conformational, structural and microenvironmental transformations arising from subtle geometric changes in molecular geometry in self-assembling biomimetic systems. The ortho-positronium (oPs) may be considered an active probe that can provide information on intrinsic packing and mobility within low molecular weight solids, viscous liquids, and soft matter systems. In this perspective we provide a critical overview of the literature in this field, including the evolution of analysis software and experimental protocols with commentary upon the practical utility of PALS. In particular, we discuss how PALS can provide unique insight into the macroscopic transport properties of several porous biomembrane-like nanostructures and suggest how this insight may provide information on the release of drugs from these matrices to aid in developing therapeutic interventions. We discuss the potentially exciting and fruitful application of this technique to membrane dynamics, diffusion and permeability. We propose that PALS can provide novel molecular level information that is complementary to conventional characterisation techniques.

  10. Geoscientific process monitoring with positron emission tomography (GeoPET)

    NASA Astrophysics Data System (ADS)

    Kulenkampff, Johannes; Gründig, Marion; Zakhnini, Abdelhamid; Lippmann-Pipke, Johanna

    2016-08-01

    Transport processes in geomaterials can be observed with input-output experiments, which yield no direct information on the impact of heterogeneities, or they can be assessed by model simulations based on structural imaging using µ-CT. Positron emission tomography (PET) provides an alternative experimental observation method which directly and quantitatively yields the spatio-temporal distribution of tracer concentration. Process observation with PET benefits from its extremely high sensitivity together with a resolution that is acceptable in relation to standard drill core sizes. We strongly recommend applying high-resolution PET scanners in order to achieve a resolution on the order of 1 mm. We discuss the particularities of PET applications in geoscientific experiments (GeoPET), which essentially are due to high material density. Although PET is rather insensitive to matrix effects, mass attenuation and Compton scattering have to be corrected thoroughly in order to derive quantitative values. Examples of process monitoring of advection and diffusion processes with GeoPET illustrate the procedure and the experimental conditions, as well as the benefits and limits of the method.

  11. Diffusion length measurements of thin GaAs solar cells by means of energetic electrons

    NASA Technical Reports Server (NTRS)

    Vonross, O.

    1980-01-01

    A calculation of the short circuit current density (j sub sc) of a thin GaAs solar cell induced by fast electrons is presented. It is shown that in spite of the disparity in thickness between the N-type portion of the junction and the P-type portion of the junction, the measurement of the bulk diffusion length L sub p of the N-type part of the junction is seriously hampered due to the presence of a sizable contribution to the j sub sc from the P-type region of the junction. Corrections of up to 50% had to be made in order to interpret the data correctly. Since these corrections were not amenable to direct measurements it is concluded that the electron beam method for the determination of the bulk minority carrier diffusion length, which works so well for Si solar cells, is a poor method when applied to thin GaAs cells.

  12. Estimation of Kubo number and correlation length of fluctuating magnetic fields and pressure in BOUT + + edge pedestal collapse simulation

    NASA Astrophysics Data System (ADS)

    Kim, Jaewook; Lee, W.-J.; Jhang, Hogun; Kaang, H. H.; Ghim, Y.-C.

    2017-10-01

    Stochastic magnetic fields are thought to be as one of the possible mechanisms for anomalous transport of density, momentum and heat across the magnetic field lines. Kubo number and Chirikov parameter are quantifications of the stochasticity, and previous studies show that perpendicular transport strongly depends on the magnetic Kubo number (MKN). If MKN is smaller than one, diffusion process will follow Rechester-Rosenbluth model; whereas if it is larger than one, percolation theory dominates the diffusion process. Thus, estimation of Kubo number plays an important role to understand diffusion process caused by stochastic magnetic fields. However, spatially localized experimental measurement of fluctuating magnetic fields in a tokamak is difficult, and we attempt to estimate MKNs using BOUT + + simulation data with pedestal collapse. In addition, we calculate correlation length of fluctuating pressures and Chirikov parameters to investigate variation correlation lengths in the simulation. We, then, discuss how one may experimentally estimate MKNs.

  13. In situ visualization of metallurgical reactions in nanoscale Cu/Sn diffusion couples

    NASA Astrophysics Data System (ADS)

    Yin, Qiyue; Gao, Fan; Gu, Zhiyong; Stach, Eric A.; Zhou, Guangwen

    2015-03-01

    The Cu-Sn metallurgical soldering reaction in two-segmented Cu-Sn nanowires is studied by in situ transmission electron microscopy. By varying the relative lengths of Cu and Sn segments, we show that the metallurgical reaction results in a Cu-Sn solid solution for small Sn/Cu length ratio while Cu-Sn intermetallic compounds (IMCs) for larger Sn/Cu length ratios. Upon heating the nanowires to ~500 °C, two phase transformation pathways occur, η-Cu6Sn5 --> ε-Cu3Sn --> δ-Cu41Sn11 for nanowires with a long Cu segment and η-Cu6Sn5 --> ε-Cu3Sn --> γ-Cu3Sn with a short Cu segment. The evolution of Kirkendall voids in the nanowires demonstrates that Cu diffuses faster than Sn in IMCs. Void growth results in the nanowire breakage that shuts off the inter-diffusion of Cu and Sn and thus leads to changes in the phase transformation pathway in the IMCs.

  14. Diffusion lengths in irradiated N/P InP-on-Si solar cells

    NASA Technical Reports Server (NTRS)

    Wojtczuk, Steven; Colerico, Claudia; Summers, Geoffrey P.; Walters, Robert J.; Burke, Edward A.

    1995-01-01

    Indium phosphide (InP) solar cells are being made on silicon (Si) wafers (InP/Si) to take advantage of both the radiation-hardness properties of the InP solar cell and the light weight and low cost of Si wafers compared to InP or germanium (Ge) wafers. The InP/Si cell application is for long duration and/or high radiation orbit space missions. InP/Si cells have higher absolute efficiency after a high radiation dose than gallium arsenide (GaAs) or silicon (Si) solar cells. In this work, base electron diffusion lengths in the N/P cell are extracted from measured AM0 short-circuit photocurrent at various irradiation levels out to an equivalent 1 MeV fluence of 1017 1 MeV electrons/sq cm for a 1 sq cm 12% BOL InP/Si cell. These values are then checked for consistency by comparing measured Voc data with a theoretical Voc model that includes a dark current term that depends on the extracted diffusion lengths.

  15. Charge transfer fluorescence and 34 nm exciton diffusion length in polymers with electron acceptor end traps

    DOE PAGES

    Zaikowski, Lori; Mauro, Gina; Bird, Matthew; ...

    2014-12-22

    Photoexcitation of conjugated poly-2,7-(9,9-dihexylfluorene) polyfluorenes with naphthylimide (NI) and anthraquinone (AQ) electron-acceptor end traps produces excitons that form charge transfer states at the end traps. Intramolecular singlet exciton transport to end traps was examined by steady state fluorescence for polyfluorenes of 17 to 127 repeat units in chloroform, dimethylformamide (DMF), tetrahydrofuran (THF), and p-xylene. End traps capture excitons and form charge transfer (CT) states at all polymer lengths and in all solvents. The CT nature of the end-trapped states is confirmed by their fluorescence spectra, solvent and trap group dependence and DFT descriptions. Quantum yields of CT fluorescence are asmore » large as 46%. This strong CT emission is understood in terms of intensity borrowing. Energies of the CT states from onsets of the fluorescence spectra give the depths of the traps which vary with solvent polarity. For NI end traps the trap depths are 0.06 (p-xylene), 0.13 (THF) and 0.19 eV (CHCl 3). For AQ, CT fluorescence could be observed only in p-xylene where the trap depth is 0.27 eV. Quantum yields, emission energies, charge transfer energies, solvent reorganization and vibrational energies were calculated. Fluorescence measurements on chains >100 repeat units indicate that end traps capture ~50% of the excitons, and that the exciton diffusion length L D =34 nm, which is much larger than diffusion lengths reported in polymer films or than previously known for diffusion along isolated chains. As a result, the efficiency of exciton capture depends on chain length, but not on trap depth, solvent polarity or which trap group is present.« less

  16. PbCl2-tuned inorganic cubic CsPbBr3(Cl) perovskite solar cells with enhanced electron lifetime, diffusion length and photovoltaic performance

    NASA Astrophysics Data System (ADS)

    Li, Bo; Zhang, Yanan; Zhang, Luyuan; Yin, Longwei

    2017-08-01

    Inorganic CsPbBr3 perovskite is arousing great interest following after organic-inorganic hybrid halide perovskites, and is found as a good candidate for photovoltaic devices for its prominent photoelectric property and stability. Herein, we for the first time report on PbCl2-tuned inorganic Cl-doped CsPbBr3(Cl) perovskite solar cells with adjustable crystal structure and Cl doping for enhanced carrier lifetime, extraction rate and photovoltaic performance. The effect of PbCl2 on the morphologies, structures, optical, and photovoltaic performance of CsPbBr3 perovskite solar cells is investigated systemically. Compared with orthorhombic CsPbBr3, cubic CsPbBr3 demonstrates a significant improvement for electron lifetime (from 6.7 ns to 12.3 ns) and diffusion length (from 69 nm to 197 nm), as well as the enhanced electron extraction rate from CsPbBr3 to TiO2. More importantly, Cl doping benefits the further enhancement of carrier lifetime (14.3 ns) and diffusion length (208 nm). The Cl doped cubic CsPbBr3(Cl) perovskite solar cell exhibits a Jsc of 8.47 mA cm-2 and a PCE of 6.21%, superior to that of pure orthorhombic CsPbBr3 (6.22 mA cm-2 and 3.78%). The improvement of photovoltaic performance can be attributed to enhanced carrier lifetime, diffusion length and extraction rates, as well as suppressed nonradiative recombination.

  17. CEPC-SPPC accelerator status towards CDR

    NASA Astrophysics Data System (ADS)

    Gao, J.

    2017-12-01

    In this paper we will give an introduction to the Circular Electron Positron Collider (CEPC). The scientific background, physics goal, the collider design requirements and the conceptual design principle of the CEPC are described. On the CEPC accelerator, the optimization of parameter designs for the CEPC with different energies, machine lengths, single ring and crab-waist collision partial double ring, advanced partial double ring and fully partial double ring options, etc. have been discussed systematically, and compared. The CEPC accelerator baseline and alternative designs have been proposed based on the luminosity potential in relation with the design goals. The CEPC sub-systems, such as the collider main ring, booster, electron positron injector, etc. have also been introduced. The detector and the MAchine-Detector Interface (MDI) design have been briefly mentioned. Finally, the optimization design of the Super Proton-Proton Collider (SppC), its energy and luminosity potentials, in the same tunnel of the CEPC are also discussed. The CEPC-SppC Progress Report (2015-2016) has been published.

  18. Axisymmetric plasma equilibria in a Kerr metric

    NASA Astrophysics Data System (ADS)

    Elsässer, Klaus

    2001-10-01

    Plasma equilibria near a rotating black hole are considered within the multifluid description. An isothermal two-component plasma with electrons and positrons or ions is determined by four structure functions and the boundary conditions. These structure functions are the Bernoulli function and the toroidal canonical momentum per mass for each species. The quasi-neutrality assumption (no charge density, no toroidal current) allows to solve Maxwell's equations analytically for any axisymmetric stationary metric, and to reduce the fluid equations to one single scalar equation for the stream function \\chi of the positrons or ions, respectively. The basic smallness parameter is the ratio of the skin depth of electrons to the scale length of the metric and fluid quantities, and, in the case of an electron-ion plasma, the mass ratio m_e/m_i. The \\chi-equation can be solved by standard methods, and simple solutions for a Kerr geometry are available; they show characteristic flow patterns, depending on the structure functions and the boundary conditions.

  19. Constraints on Exotic Dipole-Dipole Couplings between Electrons at the Micrometer Scale

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Ozeri, Roee; Kimball, Derek F. Jackson

    2015-08-01

    New constraints on exotic dipole-dipole interactions between electrons at the micrometer scale are established, based on a recent measurement of the magnetic interaction between two trapped 88Sr+ ions. For light bosons (mass≤0.1 eV ) we obtain a 90% confidence interval for an axial-vector-mediated interaction strength of |gAegAe/4 π ℏc | ≤1.2 ×10-17 . Assuming C P T invariance, this constraint is compared to that on anomalous electron-positron interactions, derived from positronium hyperfine spectroscopy. We find that the electron-electron constraint is 6 orders of magnitude more stringent than the electron-positron counterpart. Bounds on pseudoscalar-mediated interaction as well as on torsion gravity are also derived and compared with previous work performed at different length scales. Our constraints benefit from the high controllability of the experimental system which contained only two trapped particles. It therefore suggests a useful new platform for exotic particle searches, complementing other experimental efforts.

  20. Constraints on Exotic Dipole-Dipole Couplings between Electrons at the Micrometer Scale.

    PubMed

    Kotler, Shlomi; Ozeri, Roee; Kimball, Derek F Jackson

    2015-08-21

    New constraints on exotic dipole-dipole interactions between electrons at the micrometer scale are established, based on a recent measurement of the magnetic interaction between two trapped 88Sr(+) ions. For light bosons (mass≤0.1  eV) we obtain a 90% confidence interval for an axial-vector-mediated interaction strength of |g(A)(e)g(A)(e)/4πℏc|≤1.2×10(-17). Assuming CPT invariance, this constraint is compared to that on anomalous electron-positron interactions, derived from positronium hyperfine spectroscopy. We find that the electron-electron constraint is 6 orders of magnitude more stringent than the electron-positron counterpart. Bounds on pseudoscalar-mediated interaction as well as on torsion gravity are also derived and compared with previous work performed at different length scales. Our constraints benefit from the high controllability of the experimental system which contained only two trapped particles. It therefore suggests a useful new platform for exotic particle searches, complementing other experimental efforts.

  1. Surface recombination velocity and diffusion length of minority carriers in heavily doped silicon layers

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Watanabe, M.; Actor, G.

    1977-01-01

    Quantitative analysis of the electron beam-induced current and the dependence of the effective diffusion length of the minority carriers on the penetration depth of the electron beam were employed for the analysis of the carrier recombination characteristics in heavily doped silicon layers. The analysis is based on the concept of the effective excitation strength of the carriers which takes into consideration all possible recombination sources. Two dimensional mapping of the surface recombination velocity of P-diffused Si layers will be presented together with a three dimensional mapping of minority carrier lifetime in ion implanted Si. Layers heavily doped with As exhibit improved recombination characteristics as compared to those of the layers doped with P.

  2. A Theoretical Study of Flow Structure and Radiation for Multiphase Turbulent Diffusion Flames

    DTIC Science & Technology

    1990-03-01

    density function. According to the axial void fraction profile in Fig. 24, the flame length (the total penetration length) extends to x/d=150. By referring...temperature because of subcooling effect. Decreasing liquid temperature will increase condensation which in turn reduces the flame length as defined by

  3. Tortuosity measurement and the effects of finite pulse widths on xenon gas diffusion NMR studies of porous media

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Hurlimann, M. D.; Sen, P. N.; Schwartz, L. M.; Patz, S.; Walsworth, R. L.

    2001-01-01

    We have extended the utility of NMR as a technique to probe porous media structure over length scales of approximately 100-2000 microm by using the spin 1/2 noble gas 129Xe imbibed into the system's pore space. Such length scales are much greater than can be probed with NMR diffusion studies of water-saturated porous media. We utilized Pulsed Gradient Spin Echo NMR measurements of the time-dependent diffusion coefficient, D(t), of the xenon gas filling the pore space to study further the measurements of both the pore surface-area-to-volume ratio, S/V(p), and the tortuosity (pore connectivity) of the medium. In uniform-size glass bead packs, we observed D(t) decreasing with increasing t, reaching an observed asymptote of approximately 0.62-0.65D(0), that could be measured over diffusion distances extending over multiple bead diameters. Measurements of D(t)/D(0) at differing gas pressures showed this tortuosity limit was not affected by changing the characteristic diffusion length of the spins during the diffusion encoding gradient pulse. This was not the case at the short time limit, where D(t)/D(0) was noticeably affected by the gas pressure in the sample. Increasing the gas pressure, and hence reducing D(0) and the diffusion during the gradient pulse served to reduce the previously observed deviation of D(t)/D(0) from the S/V(p) relation. The Pade approximation is used to interpolate between the long and short time limits in D(t). While the short time D(t) points lay above the interpolation line in the case of small beads, due to diffusion during the gradient pulse on the order of the pore size, it was also noted that the experimental D(t) data fell below the Pade line in the case of large beads, most likely due to finite size effects.

  4. Simultaneous whole body 18F-fluorodeoxyglucose positron emission tomography magnetic resonance imaging for evaluation of pediatric cancer: Preliminary experience and comparison with 18F-fluorodeoxyglucose positron emission tomography computed tomography

    PubMed Central

    Pugmire, Brian S; Guimaraes, Alexander R; Lim, Ruth; Friedmann, Alison M; Huang, Mary; Ebb, David; Weinstein, Howard; Catalano, Onofrio A; Mahmood, Umar; Catana, Ciprian; Gee, Michael S

    2016-01-01

    AIM: To describe our preliminary experience with simultaneous whole body 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography and magnetic resonance imaging (PET-MRI) in the evaluation of pediatric oncology patients. METHODS: This prospective, observational, single-center study was Health Insurance Portability and Accountability Act-compliant, and institutional review board approved. To be eligible, a patient was required to: (1) have a known or suspected cancer diagnosis; (2) be under the care of a pediatric hematologist/oncologist; and (3) be scheduled for clinically indicated 18F-FDG positron emission tomography-computed tomography (PET-CT) examination at our institution. Patients underwent PET-CT followed by PET-MRI on the same day. PET-CT examinations were performed using standard department protocols. PET-MRI studies were acquired with an integrated 3 Tesla PET-MRI scanner using whole body T1 Dixon, T2 HASTE, EPI diffusion-weighted imaging (DWI) and STIR sequences. No additional radiotracer was given for the PET-MRI examination. Both PET-CT and PET-MRI examinations were reviewed by consensus by two study personnel. Test performance characteristics of PET-MRI, for the detection of malignant lesions, including FDG maximum standardized uptake value (SUVmax) and minimum apparent diffusion coefficient (ADCmin), were calculated on a per lesion basis using PET-CT as a reference standard. RESULTS: A total of 10 whole body PET-MRI exams were performed in 7 pediatric oncology patients. The mean patient age was 16.1 years (range 12-19 years) including 6 males and 1 female. A total of 20 malignant and 21 benign lesions were identified on PET-CT. PET-MRI SUVmax had excellent correlation with PET-CT SUVmax for both benign and malignant lesions (R = 0.93). PET-MRI SUVmax > 2.5 had 100% accuracy for discriminating benign from malignant lesions using PET-CT reference. Whole body DWI was also evaluated: the mean ADCmin of malignant lesions (780.2 + 326.6) was significantly lower than that of benign lesions (1246.2 + 417.3; P = 0.0003; Student’s t test). A range of ADCmin thresholds for malignancy were evaluated, from 0.5-1.5 × 10-3 mm2/s. The 1.0 × 10-3 ADCmin threshold performed best compared with PET-CT reference (68.3% accuracy). However, the accuracy of PET-MRI SUVmax was significantly better than ADCmin for detecting malignant lesions compared with PET-CT reference (P < 0.0001; two-tailed McNemar’s test). CONCLUSION: These results suggest a clinical role for simultaneous whole body PET-MRI in evaluating pediatric cancer patients. PMID:27028112

  5. Simultaneous whole body (18)F-fluorodeoxyglucose positron emission tomography magnetic resonance imaging for evaluation of pediatric cancer: Preliminary experience and comparison with (18)F-fluorodeoxyglucose positron emission tomography computed tomography.

    PubMed

    Pugmire, Brian S; Guimaraes, Alexander R; Lim, Ruth; Friedmann, Alison M; Huang, Mary; Ebb, David; Weinstein, Howard; Catalano, Onofrio A; Mahmood, Umar; Catana, Ciprian; Gee, Michael S

    2016-03-28

    To describe our preliminary experience with simultaneous whole body (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography and magnetic resonance imaging (PET-MRI) in the evaluation of pediatric oncology patients. This prospective, observational, single-center study was Health Insurance Portability and Accountability Act-compliant, and institutional review board approved. To be eligible, a patient was required to: (1) have a known or suspected cancer diagnosis; (2) be under the care of a pediatric hematologist/oncologist; and (3) be scheduled for clinically indicated (18)F-FDG positron emission tomography-computed tomography (PET-CT) examination at our institution. Patients underwent PET-CT followed by PET-MRI on the same day. PET-CT examinations were performed using standard department protocols. PET-MRI studies were acquired with an integrated 3 Tesla PET-MRI scanner using whole body T1 Dixon, T2 HASTE, EPI diffusion-weighted imaging (DWI) and STIR sequences. No additional radiotracer was given for the PET-MRI examination. Both PET-CT and PET-MRI examinations were reviewed by consensus by two study personnel. Test performance characteristics of PET-MRI, for the detection of malignant lesions, including FDG maximum standardized uptake value (SUVmax) and minimum apparent diffusion coefficient (ADCmin), were calculated on a per lesion basis using PET-CT as a reference standard. A total of 10 whole body PET-MRI exams were performed in 7 pediatric oncology patients. The mean patient age was 16.1 years (range 12-19 years) including 6 males and 1 female. A total of 20 malignant and 21 benign lesions were identified on PET-CT. PET-MRI SUVmax had excellent correlation with PET-CT SUVmax for both benign and malignant lesions (R = 0.93). PET-MRI SUVmax > 2.5 had 100% accuracy for discriminating benign from malignant lesions using PET-CT reference. Whole body DWI was also evaluated: the mean ADCmin of malignant lesions (780.2 + 326.6) was significantly lower than that of benign lesions (1246.2 + 417.3; P = 0.0003; Student's t test). A range of ADCmin thresholds for malignancy were evaluated, from 0.5-1.5 × 10(-3) mm(2)/s. The 1.0 × 10(-3) ADCmin threshold performed best compared with PET-CT reference (68.3% accuracy). However, the accuracy of PET-MRI SUVmax was significantly better than ADCmin for detecting malignant lesions compared with PET-CT reference (P < 0.0001; two-tailed McNemar's test). These results suggest a clinical role for simultaneous whole body PET-MRI in evaluating pediatric cancer patients.

  6. An improved procedure for determining grain boundary diffusion coefficients from averaged concentration profiles

    NASA Astrophysics Data System (ADS)

    Gryaznov, D.; Fleig, J.; Maier, J.

    2008-03-01

    Whipple's solution of the problem of grain boundary diffusion and Le Claire's relation, which is often used to determine grain boundary diffusion coefficients, are examined for a broad range of ratios of grain boundary to bulk diffusivities Δ and diffusion times t. Different reasons leading to errors in determining the grain boundary diffusivity (DGB) when using Le Claire's relation are discussed. It is shown that nonlinearities of the diffusion profiles in lnCav-y6/5 plots and deviations from "Le Claire's constant" (-0.78) are the major error sources (Cav=averaged concentration, y =coordinate in diffusion direction). An improved relation (replacing Le Claire's constant) is suggested for analyzing diffusion profiles particularly suited for small diffusion lengths (short times) as often required in diffusion experiments on nanocrystalline materials.

  7. Steepest Ascent Low/Non-Low-Frequency Ratio in Empirical Mode Decomposition to Separate Deterministic and Stochastic Velocities From a Single Lagrangian Drifter

    NASA Astrophysics Data System (ADS)

    Chu, Peter C.

    2018-03-01

    SOund Fixing And Ranging (RAFOS) floats deployed by the Naval Postgraduate School (NPS) in the California Current system from 1992 to 2001 at depth between 150 and 600 m (http://www.oc.nps.edu/npsRAFOS/) are used to study 2-D turbulent characteristics. Each drifter trajectory is adaptively decomposed using the empirical mode decomposition (EMD) into a series of intrinsic mode functions (IMFs) with corresponding specific scale for each IMF. A new steepest ascent low/non-low-frequency ratio is proposed in this paper to separate a Lagrangian trajectory into low-frequency (nondiffusive, i.e., deterministic) and high-frequency (diffusive, i.e., stochastic) components. The 2-D turbulent (or called eddy) diffusion coefficients are calculated on the base of the classical turbulent diffusion with mixing length theory from stochastic component of a single drifter. Statistical characteristics of the calculated 2-D turbulence length scale, strength, and diffusion coefficients from the NPS RAFOS data are presented with the mean values (over the whole drifters) of the 2-D diffusion coefficients comparable to the commonly used diffusivity tensor method.

  8. Changes in diffusion path length with old age in diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Bonnéry, Clément; Leclerc, Paul-Olivier; Desjardins, Michèle; Hoge, Rick; Bherer, Louis; Pouliot, Philippe; Lesage, Frédéric

    2012-05-01

    Diffuse, optical near infrared imaging is increasingly being used in various neurocognitive contexts where changes in optical signals are interpreted through activation maps. Statistical population comparison of different age or clinical groups rely on the relative homogeneous distribution of measurements across subjects in order to infer changes in brain function. In the context of an increasing use of diffuse optical imaging with older adult populations, changes in tissue properties and anatomy with age adds additional confounds. Few studies investigated these changes with age. Duncan et al. measured the so-called diffusion path length factor (DPF) in a large population but did not explore beyond the age of 51 after which physiological and anatomical changes are expected to occur [Pediatr. Res. 39(5), 889-894 (1996)]. With increasing interest in studying the geriatric population with optical imaging, we studied changes in tissue properties in young and old subjects using both magnetic resonance imaging (MRI)-guided Monte-Carlo simulations and time-domain diffuse optical imaging. Our results, measured in the frontal cortex, show changes in DPF that are smaller than previously measured by Duncan et al. in a younger population. The origin of these changes are studied using simulations and experimental measures.

  9. Positron Emission Tomography Using Fluorine F 18 EF5 to Find Oxygen in Tumor Cells of Patients Who Are Undergoing Surgery or Biopsy for Newly Diagnosed Brain Tumors

    ClinicalTrials.gov

    2013-01-15

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Central Nervous System Germ Cell Tumor; Adult Choroid Plexus Tumor; Adult Craniopharyngioma; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade I Meningioma; Adult Grade II Meningioma; Adult Grade III Meningioma; Adult Medulloblastoma; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Myxopapillary Ependymoma; Adult Oligodendroglioma; Adult Pilocytic Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Subependymoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Meningeal Melanocytoma

  10. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS Fibreoptic diffuse-light irradiators of biological tissues

    NASA Astrophysics Data System (ADS)

    Volkov, Vladimir V.; Loshchenov, V. B.; Konov, Vitalii I.; Kononenko, Vitalii V.

    2010-10-01

    We report techniques for the fabrication of laser radiation diffusers for interstitial photodynamic therapy. Using chemical etching of the distal end of silica fibre with a core diameter of 200 — 600 μm, we have obtained long (up to 40 mm) diffusers with good scattering uniformity. Laser ablation has been used to produce cylindrical diffusers with high emission contrast and a scattering uniformity no worse than ~10 % in their middle part. The maximum length of the diffusers produced by this method is 20 — 25 mm.

  11. Electrical characterization of fluorinated benzothiadiazole based conjugated copolymer - a promising material for high-performance solar cells

    NASA Astrophysics Data System (ADS)

    Toušek, J.; Toušková, J.; Remeš, Z.; Chomutová, R.; Čermák, J.; Helgesen, M.; Carlé, J. E.; Krebs, F. C.

    2015-12-01

    Measurements of electrical conductivity, electron work function, carrier mobility of holes and the diffusion length of excitons were performed on samples of conjugated polymers relevant to polymer solar cells. A state of the art fluorinated benzothiadiazole based conjugated copolymer (PBDTTHD - DTBTff) was studied and benchmarked against the reference polymer poly-3-hexylthiophene (P3HT). We employed, respectively, four electrode conductivity measurements, Kelvin probe work function measurements, carrier mobility using charge extraction by linearly increasing voltage (CELIV) measurements and diffusion length determinaton using surface photovoltage measurements.

  12. Sound propagation in street canyons: comparison between diffusely and geometrically reflecting boundaries

    PubMed

    Kang

    2000-03-01

    This paper systematically compares the sound fields in street canyons with diffusely and geometrically reflecting boundaries. For diffuse boundaries, a radiosity-based theoretical/computer model has been developed. For geometrical boundaries, the image source method has been used. Computations using the models show that there are considerable differences between the sound fields resulting from the two kinds of boundaries. By replacing diffuse boundaries with geometrical boundaries, the sound attenuation along the length becomes significantly less; the RT30 is considerably longer; and the extra attenuation caused by air or vegetation absorption is reduced. There are also some similarities between the sound fields under the two boundary conditions. For example, in both cases the sound attenuation along the length with a given amount of absorption is the highest if the absorbers are arranged on one boundary and the lowest if they are evenly distributed on all boundaries. Overall, the results suggest that, from the viewpoint of urban noise reduction, it is better to design the street boundaries as diffusely reflective rather than acoustically smooth.

  13. Diffusion mechanism of non-interacting Brownian particles through a deformed substrate

    NASA Astrophysics Data System (ADS)

    Arfa, Lahcen; Ouahmane, Mehdi; El Arroum, Lahcen

    2018-02-01

    We study the diffusion mechanism of non-interacting Brownian particles through a deformed substrate. The study is done at low temperature for different values of the friction. The deformed substrate is represented by a periodic Remoissenet-Peyrard potential with deformability parameter s. In this potential, the particles (impurity, adatoms…) can diffuse. We ignore the interactions between these mobile particles consider them merely as non-interacting Brownian particles and this system is described by a Fokker-Planck equation. We solve this equation numerically using the matrix continued fraction method to calculate the dynamic structure factor S(q , ω) . From S(q , ω) some relevant correlation functions are also calculated. In particular, we determine the half-width line λ(q) of the peak of the quasi-elastic dynamic structure factor S(q , ω) and the diffusion coefficient D. Our numerical results show that the diffusion mechanism is described, depending on the structure of the potential, either by a simple jump diffusion process with jump length close to the lattice constant a or by a combination of a jump diffusion model with jump length close to lattice constant a and a liquid-like motion inside the unit cell. It shows also that, for different friction regimes and various potential shapes, the friction attenuates the diffusion mechanism. It is found that, in the high friction regime, the diffusion process is more important through a deformed substrate than through a non-deformed one.

  14. Diffusion of interacting particles in discrete geometries: Equilibrium and dynamical properties

    NASA Astrophysics Data System (ADS)

    Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; Van den Broeck, C.

    2014-11-01

    We expand on a recent study of a lattice model of interacting particles [Phys. Rev. Lett. 111, 110601 (2013), 10.1103/PhysRevLett.111.110601]. The adsorption isotherm and equilibrium fluctuations in particle number are discussed as a function of the interaction. Their behavior is similar to that of interacting particles in porous materials. Different expressions for the particle jump rates are derived from transition-state theory. Which expression should be used depends on the strength of the interparticle interactions. Analytical expressions for the self- and transport diffusion are derived when correlations, caused by memory effects in the environment, are neglected. The diffusive behavior is studied numerically with kinetic Monte Carlo (kMC) simulations, which reproduces the diffusion including correlations. The effect of correlations is studied by comparing the analytical expressions with the kMC simulations. It is found that the Maxwell-Stefan diffusion can exceed the self-diffusion. To our knowledge, this is the first time this is observed. The diffusive behavior in one-dimensional and higher-dimensional systems is qualitatively the same, with the effect of correlations decreasing for increasing dimension. The length dependence of both the self- and transport diffusion is studied for one-dimensional systems. For long lengths the self-diffusion shows a 1 /L dependence. Finally, we discuss when agreement with experiments and simulations can be expected. The assumption that particles in different cavities do not interact is expected to hold quantitatively at low and medium particle concentrations if the particles are not strongly interacting.

  15. Intermode light diffusion in multimode optical waveguides with rough surfaces.

    PubMed

    Stepanov, S; Chaikina, E I; Leskova, T A; Méndez, E R

    2005-06-01

    A theoretical analysis of incoherent intermode light power diffusion in multimode dielectric waveguides with rough (corrugated) surfaces is presented. The correlation length a of the surface-profile variations is assumed to be sufficiently large (a less less than lambda/2pi) to permit light scattering into the outer space only from the modes close to the critical angles of propagation and yet sufficiently small (a less less than d, where d is the average width of the waveguide) to permit direct interaction between a given mode and a large number of neighboring ones. The cases of a one-dimensional (1D) slab waveguide and a two-dimensional cylindrical waveguide (optical fiber) are analyzed, and we find that in both cases the partial differential equations that govern the evolution of the angular light power profile propagating along the waveguide are 1D and of the diffusion type. However, whereas in the former case the effective conductivity coefficient proves to be linearly dependent on the transverse-mode wave number, in the latter one the linear dependence is for the effective diffusion coefficient. The theoretical predictions are in reasonable agreement with experimental results for the intermode power diffusion in multimode (700 x 700) optical fibers with etched surfaces. The characteristic length of dispersion of a narrow angular power profile evaluated from the correlation length and standard deviation of heights of the surface profile proved to be in good agreement with the experimentally observed changes in the output angular power profiles.

  16. Influences of Exciton Diffusion and Exciton-Exciton Annihilation on Photon Emission Statistics of Carbon Nanotubes.

    PubMed

    Ma, Xuedan; Roslyak, Oleskiy; Duque, Juan G; Pang, Xiaoying; Doorn, Stephen K; Piryatinski, Andrei; Dunlap, David H; Htoon, Han

    2015-07-03

    Pump-dependent photoluminescence imaging and second-order photon correlation studies have been performed on individual single-walled carbon nanotubes (SWCNTs) at room temperature. These studies enable the extraction of both the exciton diffusion constant and the Auger recombination coefficient. A linear correlation between these parameters is attributed to the effect of environmental disorder in setting the exciton mean free path and capture-limited Auger recombination at this length scale. A suppression of photon antibunching is attributed to the creation of multiple spatially nonoverlapping excitons in SWCNTs, whose diffusion length is shorter than the laser spot size. We conclude that complete antibunching at room temperature requires an enhancement of the exciton-exciton annihilation rate that may become realizable in SWCNTs allowing for strong exciton localization.

  17. Surface diffusion effects on growth of nanowires by chemical beam epitaxy

    NASA Astrophysics Data System (ADS)

    Persson, A. I.; Fröberg, L. E.; Jeppesen, S.; Björk, M. T.; Samuelson, L.

    2007-02-01

    Surface processes play a large role in the growth of semiconductor nanowires by chemical beam epitaxy. In particular, for III-V nanowires the surface diffusion of group-III species is important to understand in order to control the nanowire growth. In this paper, we have grown InAs-based nanowires positioned by electron beam lithography and have investigated the dependence of the diffusion of In species on temperature, group-III and -V source pressure and group-V source combinations by measuring nanowire growth rate for different nanowire spacings. We present a model which relates the nanowire growth rate to the migration length of In species. The model is fitted to the experimental data for different growth conditions, using the migration length as fitting parameter. The results show that the migration length increases with decreasing temperature and increasing group-V/group-III source pressure ratio. This will most often lead to an increase in growth rate, but deviations will occur due to incomplete decomposition and changes in sticking coefficient for group-III species. The results also show that the introduction of phosphorous precursor for growth of InAs1-xPx nanowires decreases the migration length of the In species followed by a decrease in nanowire growth rate.

  18. The effect of diffusion induced lattice stress on the open-circuit voltage in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.; Godlewski, M. P.

    1984-01-01

    It is demonstrated that diffusion induced stresses in low resistivity silicon solar cells can significantly reduce both the open-circuit voltage and collection efficiency. The degradation mechanism involves stress induced changes in both the minority carrier mobility and the diffusion length. Thermal recovery characteristics indicate that the stresses are relieved at higher temperatures by divacancy flow (silicon self diffusion). The level of residual stress in as-fabricated cells was found to be negligible in the cells tested.

  19. Proton irradiation effects on minority carrier diffusion length and defect introduction in homoepitaxial and heteroepitaxial n-GaN [Proton irradiation effects on minority carrier diffusion length and defect introduction in homoepitaxial n-GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, K. C.; Armstrong, Andrew M.; Allerman, Andrew A.

    Here, inherent advantages of wide bandgap materials make GaN-based devices attractive for power electronics and applications in radiation environments. Recent advances in the availability of wafer-scale, bulk GaN substrates have enabled the production of high quality, low defect density GaN devices, but fundamental studies of carrier transport and radiation hardness in such devices are lacking. Here, we report measurements of the hole diffusion length in low threading dislocation density (TDD), homoepitaxial n-GaN, and high TDD heteroepitaxial n-GaN Schottky diodes before and after irradiation with 2.5 MeV protons at fluences of 4–6 × 10 13 protons/cm 2. We also characterize themore » specimens before and after irradiation using electron beam-induced-current (EBIC) imaging, cathodoluminescence, deep level optical spectroscopy (DLOS), steady-state photocapacitance, and lighted capacitance-voltage (LCV) techniques. We observe a substantial reduction in the hole diffusion length following irradiation (50%–55%) and the introduction of electrically active defects which could be attributed to gallium vacancies and associated complexes (V Ga-related), carbon impurities (C-related), and gallium interstitials (Ga i). EBIC imaging suggests long-range migration and clustering of radiation-induced point defects over distances of ~500 nm, which suggests mobile Ga i. Following irradiation, DLOS and LCV reveal the introduction of a prominent optical energy level at 1.9 eV below the conduction band edge, consistent with the introduction of Ga i.« less

  20. Proton irradiation effects on minority carrier diffusion length and defect introduction in homoepitaxial and heteroepitaxial n-GaN [Proton irradiation effects on minority carrier diffusion length and defect introduction in homoepitaxial n-GaN

    DOE PAGES

    Collins, K. C.; Armstrong, Andrew M.; Allerman, Andrew A.; ...

    2017-12-21

    Here, inherent advantages of wide bandgap materials make GaN-based devices attractive for power electronics and applications in radiation environments. Recent advances in the availability of wafer-scale, bulk GaN substrates have enabled the production of high quality, low defect density GaN devices, but fundamental studies of carrier transport and radiation hardness in such devices are lacking. Here, we report measurements of the hole diffusion length in low threading dislocation density (TDD), homoepitaxial n-GaN, and high TDD heteroepitaxial n-GaN Schottky diodes before and after irradiation with 2.5 MeV protons at fluences of 4–6 × 10 13 protons/cm 2. We also characterize themore » specimens before and after irradiation using electron beam-induced-current (EBIC) imaging, cathodoluminescence, deep level optical spectroscopy (DLOS), steady-state photocapacitance, and lighted capacitance-voltage (LCV) techniques. We observe a substantial reduction in the hole diffusion length following irradiation (50%–55%) and the introduction of electrically active defects which could be attributed to gallium vacancies and associated complexes (V Ga-related), carbon impurities (C-related), and gallium interstitials (Ga i). EBIC imaging suggests long-range migration and clustering of radiation-induced point defects over distances of ~500 nm, which suggests mobile Ga i. Following irradiation, DLOS and LCV reveal the introduction of a prominent optical energy level at 1.9 eV below the conduction band edge, consistent with the introduction of Ga i.« less

  1. A comparative study of quantitative assessment with fluorine-18-fluorodeoxyglucose positron-emission tomography and endoscopic ultrasound in oesophageal cancer.

    PubMed

    Borakati, Aditya; Razack, Abdul; Cawthorne, Chris; Roy, Rajarshi; Usmani, Sharjeel; Ahmed, Najeeb

    2018-07-01

    This study aims to assess the correlation between PET/CT and endoscopic ultrasound (EUS) parameters in patients with oesophageal cancer. All patients who had complete PET/CT and EUS staging performed for oesophageal cancer at our centre between 2010 and 2016 were included. Images were retrieved and analysed for a range of parameters including tumour length, volume and position relative to the aortic arch. Seventy patients were included in the main analysis. A strong correlation was found between EUS and PET/CT in the tumour length, the volume and the position of the tumour relative to the aortic arch. Regression modelling showed a reasonable predictive value for PET/CT in calculating EUS parameters, with r higher than 0.585 in some cases. Given the strong correlation between EUS and PET parameters, fluorine-18 fluorodeoxyglucose (F-FDG) PET can provide accurate information on the length and the volume of tumour in patients who either cannot tolerate EUS or have impassable strictures.

  2. Comparison of Three E-Beam Techniques for Electric Field Imaging and Carrier Diffusion Length Measurement on the Same Nanowires.

    PubMed

    Donatini, F; de Luna Bugallo, Andres; Tchoulfian, Pierre; Chicot, Gauthier; Sartel, Corinne; Sallet, Vincent; Pernot, Julien

    2016-05-11

    Whereas nanowire (NW)-based devices offer numerous advantages compared to bulk ones, their performances are frequently limited by an incomplete understanding of their properties where surface effect should be carefully considered. Here, we demonstrate the ability to spatially map the electric field and determine the exciton diffusion length in NW by using an electron beam as the single excitation source. This approach is performed on numerous single ZnO NW Schottky diodes whose NW radius vary from 42.5 to 175 nm. The dominant impact of the surface on the NW properties is revealed through the comparison of three different physical quantities recorded on the same NW: electron-beam induced current, cathodoluminescence, and secondary electron signal. Indeed, the space charge region near the Schottky contact exhibits an unusual linear variation with reverse bias whatever the NW radius. On the contrary, the exciton diffusion length is shown to be controlled by the NW radius through surface recombination. This systematic comparison performed on a single ZnO NW demonstrates the power of these complementary techniques in understanding NW properties.

  3. Determination of lifetimes and recombination currents in p-n junction solar cells, diodes, and transistors

    NASA Technical Reports Server (NTRS)

    Neugroschel, A.

    1981-01-01

    New methods are presented and illustrated that enable the accurate determination of the diffusion length of minority carriers in the narrow regions of a solar cell or a diode. Other methods now available are inaccurate for the desired case in which the width of the region is less than the diffusion length. Once the diffusion length is determined by the new methods, this result can be combined with measured dark I-V characteristics and with small-signal admittance characteristics to enable determination of the recombination currents in each quasi-neutral region of the cell - for example, in the emitter, low-doped base, and high-doped base regions of the BSF (back-surface-field) cell. This approach leads to values for the effective surface recombination velocity of the high-low junction forming the back-surface field of BSF cells or the high-low emitter junction of HLE cells. These methods are also applicable for measuring the minority-carrier lifetime in thin epitaxial layers grown on substrates with opposite conductivity type.

  4. Enhancing energy transport in conjugated polymers

    NASA Astrophysics Data System (ADS)

    Holmes, Russell J.

    2018-05-01

    The conversion of light into usable chemical energy by plants is enabled by the precise spatial arrangement of light-absorbing photosynthetic systems and associated molecular complexes (1). In organic solar cells, there is also the need to control intermolecular spacing and molecular orientation, as well as thin-film crystallinity and morphology, so as to enable efficient energy migration and photoconversion (2). In an organic solar cell, light absorption creates excitons, tightly bound electron-hole pairs that must be efficiently dissociated into their component charge carriers in order to create an electrical current. Thus, long-range exciton migration must occur from the point of photogeneration to a dissociating site. On page 897 of this issue, Jin et al. (3) report on a conjugated polymer nanofiber system that yields exciton diffusion lengths greater than 200 nm. In comparison, organic solar cells are typically constructed with materials having exciton diffusion lengths one order of magnitude smaller than this value, which limits device thickness and optical absorption. Their approach exploits a sequential synthesis method that enables measurement of this long exciton diffusion length (see the figure).

  5. Method and apparatus for determining minority carrier diffusion length in semiconductors

    DOEpatents

    Moore, Arnold R.

    1984-01-01

    Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon which has a significantly small minority carrier diffusion length using the constant magnitude surface-photovoltage (SPV) method. Steady or modulated illumination at several wavelengths provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPV for each wavelength. A drop of a transparent electrolyte solution containing redox couples (preferably quinhydrone) having an oxidation-reduction potential (E) in the order of +0.6 to -1.65 volts couples the SPV to a measurement system. The drop of redox couple solution functions to create a liquid Schottky barrier at the surface of the material. Illumination light is passed through a transparent rod supported over the surface and through the drop of transparent electrolyte. The drop is held in the gap between the rod and the surface. Steady red light is also used as an optical bias to reduce deleterious space-charge effects that occur in amorphous silicon.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoddard, Ryan J.; Eickemeyer, Felix T.; Katahara, John K.

    High-bandgap mixed-halide hybrid perovskites have higher open-circuit voltage deficits and lower carrier diffusion lengths than their lower-bandgap counterparts. We have developed a ligand-assisted crystallization (LAC) technique that introduces additives in situ during the solvent wash and developed a new method to dynamically measure the absolute intensity steady-state photoluminescence and the mean carrier diffusion length simultaneously. The measurements reveal four distinct regimes of material changes and show that photoluminescence brightening often coincides with losses in carrier transport, such as in degradation or phase segregation. Further, the measurements enabled optimization of LAC on the 1.75 eV bandgap FA 0.83Cs 0.17Pb(I 0.66Br 0.34)more » 3, resulting in an enhancement of the photoluminescence quantum yield (PLQY) of over an order of magnitude, an increase of 80 meV in the quasi-Fermi level splitting (to 1.29 eV), an increase in diffusion length by a factor of 3.5 (to over 1 μm), and enhanced open-circuit voltage and short-circuit current from photovoltaics fabricated from the LAC-treated films.« less

  7. High reflected cubic cavity as long path absorption cell for infrared gas sensing

    NASA Astrophysics Data System (ADS)

    Yu, Jia; Gao, Qiang; Zhang, Zhiguo

    2014-10-01

    One direct and efficient method to improve the sensitivity of infrared gas sensors is to increase the optical path length of gas cells according to Beer-Lambert Law. In this paper, cubic shaped cavities with high reflected inner coating as novel long path absorption cells for infrared gas sensing were developed. The effective optical path length (EOPL) for a single cubic cavity and tandem cubic cavities were investigated based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) measuring oxygen P11 line at 763 nm. The law of EOPL of a diffuse cubic cavity in relation with the reflectivity of the coating, the port fraction and side length of the cavity was obtained. Experimental results manifested an increase of EOPL for tandem diffuse cubic cavities as the decrease of port fraction of the connecting aperture f', and the EOPL equaled to the sum of that of two single cubic cavities at f'<0.01. The EOPL spectra at infrared wavelength range for different inner coatings including high diffuse coatings and high reflected metallic thin film coatings were deduced.

  8. A positive-definite form of bounce-averaged quasilinear velocity diffusion for the parallel inhomogeneity in a tokamak

    NASA Astrophysics Data System (ADS)

    Lee, Jungpyo; Smithe, David; Wright, John; Bonoli, Paul

    2018-02-01

    In this paper, the analytical form of the quasilinear diffusion coefficients is modified from the Kennel-Engelmann diffusion coefficients to guarantee the positive definiteness of its bounce average in a toroidal geometry. By evaluating the parallel inhomogeneity of plasmas and magnetic fields in the trajectory integral, we can ensure the positive definiteness and help illuminate some non-resonant toroidal effects in the quasilinear diffusion. When the correlation length of the plasma-wave interaction is comparable to the magnetic field variation length, the variation becomes important and the parabolic variation at the outer-midplane, the inner-midplane, and trapping tips can be evaluated by Airy functions. The new form allows the coefficients to include both resonant and non-resonant contributions, and the correlations between the consecutive resonances and in many poloidal periods. The positive-definite form is implemented in a wave code TORIC and we present an example for ITER using this form.

  9. Numerical approach to describe complementary drying of banana slices osmotically dehydrated

    NASA Astrophysics Data System (ADS)

    da Silva Júnior, Aluízio Freire; da Silva, Wilton Pereira; de Farias Aires, Juarez Everton; Farias Aires, Kalina Lígia C. A.

    2018-02-01

    In this work, diffusion model was used to describe the water loss in the complementary drying process of cylindrical slices of banana pretreated by osmotic dehydration. A numerical solution has been proposed for the diffusion equation in cylindrical coordinates, which was obtained through the Finite Volume Method. The diffusion equation was discretized assuming that the effective water diffusivity and the dimensions of a finite cylinder may vary; also considering the boundary condition of the third kind. The banana slices were cut in length of about 1.00 cm and average radius 1.70 cm before osmotic pretreatment, and completed the pretreatment with length of about 0.74 cm and average radius 1.40 cm. The complementary drying was carried out in a kiln with circulation and air exchange. Drying temperatures were the same as used in the osmotic pretreatment (40 to 70 °C). The proposed model described well the water loss, with good statistical indicators for all fits.

  10. Excitation-dependent carrier lifetime and diffusion length in bulk CdTe determined by time-resolved optical pump-probe techniques

    NASA Astrophysics Data System (ADS)

    Ščajev, Patrik; Miasojedovas, Saulius; Mekys, Algirdas; Kuciauskas, Darius; Lynn, Kelvin G.; Swain, Santosh K.; JarašiÅ«nas, Kestutis

    2018-01-01

    We applied time-resolved pump-probe spectroscopy based on free carrier absorption and light diffraction on a transient grating for direct measurements of the carrier lifetime and diffusion coefficient D in high-resistivity single crystal CdTe (codoped with In and Er). The bulk carrier lifetime τ decreased from 670 ± 50 ns to 60 ± 10 ns with increase of excess carrier density N from 1016 to 5 × 1018 cm-3 due to the excitation-dependent radiative recombination rate. In this N range, the carrier diffusion length dropped from 14 μm to 6 μm due to lifetime decrease. Modeling of in-depth (axial) and in-plane (lateral) carrier diffusion provided the value of surface recombination velocity S = 6 × 105 cm/s for the untreated surface. At even higher excitations, in the 1019-3 × 1020 cm-3 density range, D increase from 5 to 20 cm2/s due to carrier degeneracy was observed.

  11. Nanoscopic diffusion studies on III-V compound semiconductor structures: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Gonzalez Debs, Mariam

    The electronic structure of multilayer semiconductor heterostructures is affected by the detailed compositional profiles throughout the structure and at critical interfaces. The extent of interdiffusion across these interfaces places limits on both the processing time and temperatures for many applications based on the resultant compositional profile and associated electronic structure. Atomic and phenomenological methods were used in this work through the combination of experiment and theory to understand the nanoscopic mechanisms in complex heterostructures. Two principal studies were conducted. Tin diffusion in GaAs was studied by fitting complex experimental diffusion profiles to a phenomenological model which involved the diffusion of substitutional and interstitial dopant atoms. A methodology was developed combining both the atomistic model and the use of key features within these experimentally-obtained diffusion profiles to determine meaningful values of the transport and defect reaction rate parameters. Interdiffusion across AlSb/GaSb multi-quantum well interfaces was also studied. The chemical diffusion coefficient characterizing the AlSb/GaSb diffusion couple was quantitatively determined by fitting the observed photoluminescence (PL) peak shifts to the solution of the Schrodinger equation using a potential derived from the solution of the diffusion equation to quantify the interband transition energy shifts. First-principles calculations implementing Density Functional Theory were performed to study the thermochemistry of point defects as a function of local environment, allowing a direct comparison of interfacial and bulk diffusion phenomena within these nanoscopic structures. Significant differences were observed in the Ga and Al vacancy formation energies at the AlSb/GaSb interface when compared to bulk AlSb and GaSb with the largest change found for Al vacancies. The AlSb/GaSb structures were further studied using positron annihilation spectroscopy (PAS) to investigate the role of vacancies in the interdiffusion of Al and Ga in the superlattices. The PL and PAS experimental techniques together with the phenomenological and atomistic modeling allowed for the determination of the underlying mass transport mechanisms at the nanoscale.

  12. Forward Osmosis Membranes under Null-Pressure Condition: Do Hydraulic and Osmotic Pressures Have Identical Nature?

    PubMed

    Kook, Seungho; Swetha, Chivukula D; Lee, Jangho; Lee, Chulmin; Fane, Tony; Kim, In S

    2018-03-20

    Forward osmosis (FO) membranes fall into the category of nonporous membranes, based on the assumption that water and solute transport occur solely based on diffusion. The solution-diffusion (S-D) model has been widely used in predicting their performances in the coexistence of hydraulic and osmotic driving forces, a model that postulates the hydraulic and osmotic driving forces have identical nature. It was suggested, however, such membranes may have pores and mass transport could occur both by convection (i.e., volumetric flow) as well as by diffusion assuming that the dense active layer of the membranes is composed of a nonporous structure with defects which induce volumetric flow through the membranes. In addition, the positron annihilation technique has revealed that the active layers can involve relatively uniform porous structures. As such, the assumption of a nonporous active layer in association with hydraulic pressure is questionable. To validate this assumption, we have tested FO membranes under the conditions where hydraulic and osmotic pressures are equivalent yet in opposite directions for water transport, namely the null-pressure condition. We have also established a practically valid characterization method which quantifies the vulnerability of the FO membranes to hydraulic pressure.

  13. Spatio-temporal diffusion of dynamic PET images

    NASA Astrophysics Data System (ADS)

    Tauber, C.; Stute, S.; Chau, M.; Spiteri, P.; Chalon, S.; Guilloteau, D.; Buvat, I.

    2011-10-01

    Positron emission tomography (PET) images are corrupted by noise. This is especially true in dynamic PET imaging where short frames are required to capture the peak of activity concentration after the radiotracer injection. High noise results in a possible bias in quantification, as the compartmental models used to estimate the kinetic parameters are sensitive to noise. This paper describes a new post-reconstruction filter to increase the signal-to-noise ratio in dynamic PET imaging. It consists in a spatio-temporal robust diffusion of the 4D image based on the time activity curve (TAC) in each voxel. It reduces the noise in homogeneous areas while preserving the distinct kinetics in regions of interest corresponding to different underlying physiological processes. Neither anatomical priors nor the kinetic model are required. We propose an automatic selection of the scale parameter involved in the diffusion process based on a robust statistical analysis of the distances between TACs. The method is evaluated using Monte Carlo simulations of brain activity distributions. We demonstrate the usefulness of the method and its superior performance over two other post-reconstruction spatial and temporal filters. Our simulations suggest that the proposed method can be used to significantly increase the signal-to-noise ratio in dynamic PET imaging.

  14. A General Quantum Mechanical Method to Predict Positron Spectroscopy

    DTIC Science & Technology

    2007-06-01

    7 2.1 Positron Annihilation Spectroscopy . . . . . . . . . . . . . 7 2.1.1 Positron Transport and Annihilation in Condensed Matter...8 2.1.2 Traditional Positron Annihilation Spectroscopy . . 10 2.1.3 Vibrational Feshbach Resonances of Positrons with... positron annihilation lifetime spectroscopy system . . . 63 11. Tungsten positron lifetime spectrum . . . . . . . . . . . . . . . . . . 66 12. K2B12H12

  15. Understanding Diffusion in Hierarchical Zeolites with House-of-Cards Nanosheets.

    PubMed

    Bai, Peng; Haldoupis, Emmanuel; Dauenhauer, Paul J; Tsapatsis, Michael; Siepmann, J Ilja

    2016-08-23

    Introducing mesoporosity to conventional microporous sorbents or catalysts is often proposed as a solution to enhance their mass transport rates. Here, we show that diffusion in these hierarchical materials is more complex and exhibits non-monotonic dependence on sorbate loading. Our atomistic simulations of n-hexane in a model system containing microporous nanosheets and mesopore channels indicate that diffusivity can be smaller than in a conventional zeolite with the same micropore structure, and this observation holds true even if we confine the analysis to molecules completely inside the microporous nanosheets. Only at high sorbate loadings or elevated temperatures, when the mesopores begin to be sufficiently populated, does the overall diffusion in the hierarchical material exceed that in conventional microporous zeolites. Our model system is free of structural defects, such as pore blocking or surface disorder, that are typically invoked to explain slower-than-expected diffusion phenomena in experimental measurements. Examination of free energy profiles and visualization of molecular diffusion pathways demonstrates that the large free energy cost (mostly enthalpic in origin) for escaping from the microporous region into the mesopores leads to more tortuous diffusion paths and causes this unusual transport behavior in hierarchical nanoporous materials. This knowledge allows us to re-examine zero-length-column chromatography data and show that these experimental measurements are consistent with the simulation data when the crystallite size instead of the nanosheet thickness is used for the nominal diffusional length.

  16. Cathodoluminescence of stacking fault bound excitons for local probing of the exciton diffusion length in single GaN nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nogues, Gilles, E-mail: gilles.nogues@neel.cnrs.fr; Den Hertog, Martien; Inst. NEEL, CNRS, F-38042 Grenoble

    We perform correlated studies of individual GaN nanowires in scanning electron microscopy combined to low temperature cathodoluminescence, microphotoluminescence, and scanning transmission electron microscopy. We show that some nanowires exhibit well localized regions emitting light at the energy of a stacking fault bound exciton (3.42 eV) and are able to observe the presence of a single stacking fault in these regions. Precise measurements of the cathodoluminescence signal in the vicinity of the stacking fault give access to the exciton diffusion length near this location.

  17. Diffusion length measurement using the scanning electron microscope. [for silicon solar cell

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.

    1975-01-01

    The present work describes a measuring technique employing the scanning electron microscope in which values of the true bulk diffusion length are obtained. It is shown that surface recombination effects can be eliminated through application of highly doped surface field layers. The effects of high injection level and low-high junction current generation are investigated. Results obtained with this technique are compared to those obtained by a penetrating radiation (X-ray) method, and a close agreement is found. The SEM technique is limited to cells that contain a back surface field layer.

  18. Measurement of the minority carrier diffusion length and edge surface-recombination velocity in InP

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Hakimzadeh, Roshanak

    1993-01-01

    A scanning electron microscope (SEM) was used to measure the electron (minority carrier) diffusion length (L(sub n)) and the edge surface-recombination velocity (V(sub s)) in zinc-doped Czochralski-grown InP wafers. Electron-beam-induced current (EBIC) profiles were obtained in specimens containing a Schottky barrier perpendicular to the scanned (edge) surface. An independent technique was used to measure V(sub s), and these values were used in a theoretical expression for normalized EBIC. A fit of the experimental data with this expression enabled us to determine L(sub n).

  19. Silicon solar cell process development, fabrication and analysis

    NASA Technical Reports Server (NTRS)

    Leung, D. C.; Iles, P. A.

    1983-01-01

    Measurements of minority carrier diffusion lengths were made on the small mesa diodes from HEM Si and SILSO Si. The results were consistent with previous Voc and Isc measurements. Only the medium grain SILSO had a distinct advantage for the non grain boundary diodes. Substantial variations were observed for the HEM ingot 4141C. Also a quantitatively scaled light spot scan was being developed for localized diffusion length measurements in polycrystalline silicon solar cells. A change to a more monochromatic input for the light spot scan results in greater sensitivity and in principle, quantitative measurement of local material qualities is now possible.

  20. Anomalous diffusion and dynamics of fluorescence recovery after photobleaching in the random-comb model

    NASA Astrophysics Data System (ADS)

    Yuste, S. B.; Abad, E.; Baumgaertner, A.

    2016-07-01

    We address the problem of diffusion on a comb whose teeth display varying lengths. Specifically, the length ℓ of each tooth is drawn from a probability distribution displaying power law behavior at large ℓ ,P (ℓ ) ˜ℓ-(1 +α ) (α >0 ). To start with, we focus on the computation of the anomalous diffusion coefficient for the subdiffusive motion along the backbone. This quantity is subsequently used as an input to compute concentration recovery curves mimicking fluorescence recovery after photobleaching experiments in comblike geometries such as spiny dendrites. Our method is based on the mean-field description provided by the well-tested continuous time random-walk approach for the random-comb model, and the obtained analytical result for the diffusion coefficient is confirmed by numerical simulations of a random walk with finite steps in time and space along the backbone and the teeth. We subsequently incorporate retardation effects arising from binding-unbinding kinetics into our model and obtain a scaling law characterizing the corresponding change in the diffusion coefficient. Finally, we show that recovery curves obtained with the help of the analytical expression for the anomalous diffusion coefficient cannot be fitted perfectly by a model based on scaled Brownian motion, i.e., a standard diffusion equation with a time-dependent diffusion coefficient. However, differences between the exact curves and such fits are small, thereby providing justification for the practical use of models relying on scaled Brownian motion as a fitting procedure for recovery curves arising from particle diffusion in comblike systems.

  1. Computed tomography-based diagnosis of diffuse compensatory enlargement of coronary arteries using scaling power laws.

    PubMed

    Huo, Yunlong; Choy, Jenny Susana; Wischgoll, Thomas; Luo, Tong; Teague, Shawn D; Bhatt, Deepak L; Kassab, Ghassan S

    2013-04-06

    Glagov's positive remodelling in the early stages of coronary atherosclerosis often results in plaque rupture and acute events. Because positive remodelling is generally diffused along the epicardial coronary arterial tree, it is difficult to diagnose non-invasively. Hence, the objective of the study is to assess the use of scaling power law for the diagnosis of positive remodelling of coronary arteries based on computed tomography (CT) images. Epicardial coronary arterial trees were reconstructed from CT scans of six Ossabaw pigs fed on a high-fat, high-cholesterol, atherogenic diet for eight months as well as the same number of body-weight-matched farm pigs fed on a lean chow (101.9±16.1 versus 91.5±13.1 kg). The high-fat diet Ossabaw pig model showed diffuse positive remodelling of epicardial coronary arteries. Good fit of measured coronary data to the length-volume scaling power law ( where L(c) and V(c) are crown length and volume) were found for both the high-fat and control groups (R(2) = 0.95±0.04 and 0.99±0.01, respectively). The coefficient, K(LV), decreased significantly in the high-fat diet group when compared with the control (14.6±2.6 versus 40.9±5.6). The flow-length scaling power law, however, was nearly unaffected by the positive remodelling. The length-volume and flow-length scaling power laws were preserved in epicardial coronary arterial trees after positive remodelling. K(LV) < 18 in the length-volume scaling relation is a good index of positive remodelling of coronary arteries. These findings provide a clinical rationale for simple, accurate and non-invasive diagnosis of positive remodelling of coronary arteries, using conventional CT scans.

  2. Diffuse-charge dynamics of ionic liquids in electrochemical systems.

    PubMed

    Zhao, Hui

    2011-11-01

    We employ a continuum theory of solvent-free ionic liquids accounting for both short-range electrostatic correlations and steric effects (finite ion size) [Bazant et al., Phys. Rev. Lett. 106, 046102 (2011)] to study the response of a model microelectrochemical cell to a step voltage. The model problem consists of a 1-1 symmetric ionic liquid between two parallel blocking electrodes, neglecting any transverse transport phenomena. Matched asymptotic expansions in the limit of thin double layers are applied to analyze the resulting one-dimensional equations and study the overall charge-time relation in the weakly nonlinear regime. One important conclusion is that our simple scaling analysis suggests that the length scale √(λ*(D)l*(c)) accurately characterizes the double-layer structure of ionic liquids with strong electrostatic correlations where l*(c) is the electrostatic correlation length (in contrast, the Debye screening length λ*(D) is the primary double-layer length for electrolytes) and the response time of λ(D)(*3/2)L*/(D*l(c)(1/2)) (not λ*(D)L*/D* that is the primary charging time of electrolytes) is the correct charging time scale of ionic liquids with strong electrostatic correlations where D* is the diffusivity and L* is the separation length of the cell. With these two new scales, data of both electric potential versus distance from the electrode and the total diffuse charge versus time collapse onto each individual master curve in the presence of strong electrostatic correlations. In addition, the dependance of the total diffuse charge on steric effects, short-range correlations, and driving voltages is thoroughly examined. The results from the asymptotic analysis are compared favorably with those from full numerical simulations. Finally, the absorption of excess salt by the double layer creates a depletion region outside the double layer. Such salt depletion may bring a correction to the leading order terms and break down the weakly nonlinear analysis. A criterion which justifies the weakly nonlinear analysis is verified with numerical simulations.

  3. Hydrogen and hydrocarbon diffusion flames in a weightless environment

    NASA Technical Reports Server (NTRS)

    Haggard, J. B., Jr.; Cochran, T. H.

    1973-01-01

    An experimental investigation was performed on laminar hydrogen-, ethylene-, and propylene-air diffusion burning in a weightless environment. The flames burned on nozzles with radii ranging from 0.051 to 0.186 cm with fuel Reynolds numbers at the nozzle exit from 9 to 410. Steady-state diffusion flames existed in a weightless environment for all the fuels tested. A correlation was obtained for their axial length as a function of Schmidt number, Reynolds numbers, and stoichiometric mole fraction. The maximum flame radii were correlated with the ratio of nozzle radius to average fuel velocity. The flames of ethylene and propylene on nozzles with radii 0.113 or larger appeared to be constantly changing color and/or length throughout the test. No extinguishment was observed for any of the gases tested within the 2.2 seconds of weightlessness.

  4. Reconnection in the Post-impulsive Phase of Solar Flares

    NASA Astrophysics Data System (ADS)

    Forbes, Terry G.; Seaton, Daniel B.; Reeves, Katharine K.

    2018-05-01

    Using a recently developed analytical procedure, we determine the rate of magnetic reconnection in the “standard” model of eruptive solar flares. During the late phase, the neutral line is located near the lower tip of the reconnection current sheet, and the upper region of the current sheet is bifurcated into a pair of Petschek-type shocks. Despite the presence of these shocks, the reconnection rate remains slow if the resistivity is uniform and the flow is laminar. Fast reconnection is achieved only if there is some additional mechanism that can shorten the length of the diffusion region at the neutral line. Observations of plasma flows by the X-ray telescope on Hinode imply that the diffusion region is, in fact, quite short. Two possible mechanisms for reducing the length of the diffusion region are localized resistivity and MHD turbulence.

  5. An Optical Study of Processes in Hydrogen Flame in a Tube

    DTIC Science & Technology

    2002-07-01

    growth of the hydrogen- flame length with the hydrogen flow rate was observed, whereas for a turbulent hydrogen jet (Reynolds number Re > 104 [5]), the... flame length remained almost constant and varied only weakly with the flow rate of hydrogen. For a subsonic jet flow, flame images display an...There are some data in the literature which show how the diffusive- flame length varies with the rate of hydrogen flow [4, 7]. The length of a

  6. Revealing mesoscopic structural universality with diffusion.

    PubMed

    Novikov, Dmitry S; Jensen, Jens H; Helpern, Joseph A; Fieremans, Els

    2014-04-08

    Measuring molecular diffusion is widely used for characterizing materials and living organisms noninvasively. This characterization relies on relations between macroscopic diffusion metrics and structure at the mesoscopic scale commensurate with the diffusion length. Establishing such relations remains a fundamental challenge, hindering progress in materials science, porous media, and biomedical imaging. Here we show that the dynamical exponent in the time dependence of the diffusion coefficient distinguishes between the universality classes of the mesoscopic structural complexity. Our approach enables the interpretation of diffusion measurements by objectively selecting and modeling the most relevant structural features. As an example, the specific values of the dynamical exponent allow us to identify the relevant mesoscopic structure affecting MRI-measured water diffusion in muscles and in brain, and to elucidate the structural changes behind the decrease of diffusion coefficient in ischemic stroke.

  7. Effect of MeV electron irradiation on the free volume of polyimide

    NASA Astrophysics Data System (ADS)

    Alegaonkar, P. S.; Bhoraskar, V. N.

    2004-08-01

    The free volume of the microvoids in the polyimide samples, irradiated with 6 MeV electrons, was measured by the positron annihilation technique. The free volume initially decreased the virgin value from similar to13.70 to similar to10.98 Angstrom(3) and then increased to similar to18.11 Angstrom(3) with increasing the electron fluence, over the range of 5 x 10(14) - 5 x 10(15) e/cm(2). The evolution of gaseous species from the polyimide during electron irradiation was confirmed by the residual gas analysis technique. The polyimide samples irradiated with 6 MeV electrons in AgNO3 solution were studied with the Rutherford back scattering technique. The diffusion of silver in these polyimide samples was observed for fluences >2 x 10(15) e/cm(2), at which microvoids of size greater than or equal to3 Angstrom are produced. Silver atoms did not diffuse in the polyimide samples, which were first irradiated with electrons and then immersed in AgNO3 solution. These results indicate that during electron irradiation, the microvoids with size greater than or equal to3 Angstrom were retained in the surface region through which silver atoms of size similar to2.88 Angstrom could diffuse into the polyimide. The average depth of diffusion of silver atoms in the polyimide was similar to2.5 mum.

  8. Correlation between tissue metabolism and cellularity assessed by standardized uptake value and apparent diffusion coefficient in peritoneal metastasis.

    PubMed

    Yu, Xue; Lee, Elaine Yuen Phin; Lai, Vincent; Chan, Queenie

    2014-07-01

    To evaluate the correlation between standardized uptake value (SUV) (tissue metabolism) and apparent diffusion coefficient (ADC) (water diffusivity) in peritoneal metastases. Patients with peritoneal dissemination detected on (18)F-fluorodeoxyglucose positron emission tomography combined with computed tomography (FDG-PET/CT) were prospectively recruited for MRI examinations with informed consent and the study was approved by the local Institutional Review Board. FDG-PET/CT, diffusion-weighted imaging (DWI), MRI, and DWI/MRI images were independently reviewed by two radiologists based on visual analysis. SUVmax/SUVmean and ADCmin/ADCmean were obtained manually by drawing ROIs over the peritoneal metastases on FDG-PET/CT and DWI, respectively. Diagnostic characteristics of each technique were evaluated. Pearson's coefficient and McNemar and Kappa tests were used for statistical analysis. Eight patients were recruited for this prospective study and 34 peritoneal metastases were evaluated. ADCmean was significantly and negatively correlated with SUVmax (r = -0.528, P = 0.001) and SUVmean (r = -0.548, P = 0.001). ADCmin had similar correlation with SUVmax (r = -0.508, P = 0.002) and SUVmean (r = -0.513, P = 0.002). DWI/MRI had high diagnostic performance (accuracy = 98%) comparable to FDG-PET/CT, in peritoneal metastasis detection. Kappa values were excellent for all techniques. There was a significant inverse correlation between SUV and ADC. © 2013 Wiley Periodicals, Inc.

  9. Effective scattering coefficient of the cerebral spinal fluid in adult head models for diffuse optical imaging

    NASA Astrophysics Data System (ADS)

    Custo, Anna; Wells, William M., III; Barnett, Alex H.; Hillman, Elizabeth M. C.; Boas, David A.

    2006-07-01

    An efficient computation of the time-dependent forward solution for photon transport in a head model is a key capability for performing accurate inversion for functional diffuse optical imaging of the brain. The diffusion approximation to photon transport is much faster to simulate than the physically correct radiative transport equation (RTE); however, it is commonly assumed that scattering lengths must be much smaller than all system dimensions and all absorption lengths for the approximation to be accurate. Neither of these conditions is satisfied in the cerebrospinal fluid (CSF). Since line-of-sight distances in the CSF are small, of the order of a few millimeters, we explore the idea that the CSF scattering coefficient may be modeled by any value from zero up to the order of the typical inverse line-of-sight distance, or approximately 0.3 mm-1, without significantly altering the calculated detector signals or the partial path lengths relevant for functional measurements. We demonstrate this in detail by using a Monte Carlo simulation of the RTE in a three-dimensional head model based on clinical magnetic resonance imaging data, with realistic optode geometries. Our findings lead us to expect that the diffusion approximation will be valid even in the presence of the CSF, with consequences for faster solution of the inverse problem.

  10. Measurements and simulations of MAPS (Monolithic Active Pixel Sensors) response to charged particles - a study towards a vertex detector at the ILC

    NASA Astrophysics Data System (ADS)

    Maczewski, Lukasz

    2010-05-01

    The International Linear Collider (ILC) is a project of an electron-positron (e+e-) linear collider with the centre-of-mass energy of 200-500 GeV. Monolithic Active Pixel Sensors (MAPS) are one of the proposed silicon pixel detector concepts for the ILC vertex detector (VTX). Basic characteristics of two MAPS pixel matrices MIMOSA-5 (17 μm pixel pitch) and MIMOSA-18 (10 μm pixel pitch) are studied and compared (pedestals, noises, calibration of the ADC-to-electron conversion gain, detector efficiency and charge collection properties). The e+e- collisions at the ILC will be accompanied by intense beamsstrahlung background of electrons and positrons hitting inner planes of the vertex detector. Tracks of this origin leave elongated clusters contrary to those of secondary hadrons. Cluster characteristics and orientation with respect to the pixels netting are studied for perpendicular and inclined tracks. Elongation and precision of determining the cluster orientation as a function of the angle of incidence were measured. A simple model of signal formation (based on charge diffusion) is proposed and tested using the collected data.

  11. PET/MR in invasive ductal breast cancer: correlation between imaging markers and histological phenotype

    PubMed Central

    Catalano, Onofrio Antonio; Horn, Gary Lloyd; Signore, Alberto; Iannace, Carlo; Lepore, Maria; Vangel, Mark; Luongo, Angelo; Catalano, Marco; Lehman, Constance; Salvatore, Marco; Soricelli, Andrea; Catana, Ciprian; Mahmood, Umar; Rosen, Bruce Robert

    2017-01-01

    Background: Differences in genetics and receptor expression (phenotypes) of invasive ductal breast cancer (IDC) impact on prognosis and treatment response. Immunohistochemistry (IHC), the most used technique for IDC phenotyping, has some limitations including its invasiveness. We explored the possibility of contrast-enhanced positron emission tomography magnetic resonance (CE-FDG PET/MR) to discriminate IDC phenotypes. Methods: 21 IDC patients with IHC assessment of oestrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor-2 (HER2), and antigen Ki-67 (Ki67) underwent CE-FDG PET/MR. Magnetic resonance-perfusion biomarkers, apparent diffusion coefficient (ADC), and standard uptake value (SUV) were compared with IHC markers and phenotypes, using a Student's t-test and one-way ANOVA. Results: ER/PR− tumours demonstrated higher Kepmean and SUVmax than ER or PR+ tumours. HER2− tumours displayed higher ADCmean, Kepmean, and SUVmax than HER2+tumours. Only ADCmean discriminated Ki67⩽14% tumours (lower ADCmean) from Ki67>14% tumours. PET/MR biomarkers correlated with IHC phenotype in 13 out of 21 patients (62% P=0.001). Conclusions: Positron emission tomography magnetic resonance might non-invasively help discriminate IDC phenotypes, helping to optimise individual therapy options. PMID:28208155

  12. PET/MR in invasive ductal breast cancer: correlation between imaging markers and histological phenotype.

    PubMed

    Catalano, Onofrio Antonio; Horn, Gary Lloyd; Signore, Alberto; Iannace, Carlo; Lepore, Maria; Vangel, Mark; Luongo, Angelo; Catalano, Marco; Lehman, Constance; Salvatore, Marco; Soricelli, Andrea; Catana, Ciprian; Mahmood, Umar; Rosen, Bruce Robert

    2017-03-28

    Differences in genetics and receptor expression (phenotypes) of invasive ductal breast cancer (IDC) impact on prognosis and treatment response. Immunohistochemistry (IHC), the most used technique for IDC phenotyping, has some limitations including its invasiveness. We explored the possibility of contrast-enhanced positron emission tomography magnetic resonance (CE-FDG PET/MR) to discriminate IDC phenotypes. 21 IDC patients with IHC assessment of oestrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor-2 (HER2), and antigen Ki-67 (Ki67) underwent CE-FDG PET/MR. Magnetic resonance-perfusion biomarkers, apparent diffusion coefficient (ADC), and standard uptake value (SUV) were compared with IHC markers and phenotypes, using a Student's t-test and one-way ANOVA. ER/PR- tumours demonstrated higher Kep mean and SUV max than ER or PR+ tumours. HER2- tumours displayed higher ADC mean , Kep mean , and SUV max than HER2+tumours. Only ADC mean discriminated Ki67⩽14% tumours (lower ADC mean ) from Ki67>14% tumours. PET/MR biomarkers correlated with IHC phenotype in 13 out of 21 patients (62%; P=0.001). Positron emission tomography magnetic resonance might non-invasively help discriminate IDC phenotypes, helping to optimise individual therapy options.

  13. Detection of cerebral amyloid angiopathy by 3-T magnetic resonance imaging and amyloid positron emission tomography in a patient with subcortical ischaemic vascular dementia.

    PubMed

    Kida, Hirotaka; Satoh, Masayuki; Ii, Yuichiro; Fukuyama, Hidenao; Maeda, Masayuki; Tomimoto, Hidekazu

    2017-01-01

    The patient was an 81-year-old man who had been treated for hypertension for several decades. In 2012, he developed gait disturbance and mild amnesia. One year later, his gait disturbance worsened, and he developed urinary incontinence. Conventional brain magnetic resonance imaging using T 2 -weighted images and fluid-attenuated inversion recovery showed multiple lacunar infarctions. These findings fulfilled the diagnostic criteria for subcortical ischaemic vascular dementia. However, susceptibility weighted imaging showed multiple lobar microbleeds in the bilateral occipitoparietal lobes, and double inversion recovery and 3-D fluid-attenuated inversion recovery images on 3-T magnetic resonance imaging revealed cortical microinfarctions in the left parietal-temporo-occipito region. Pittsburgh compound B-positron emission tomography revealed diffuse uptake in the cerebral cortex. Therefore, we diagnosed the patient with subcortical ischaemic vascular dementia associated with Alzheimer's disease. The use of the double inversion recovery and susceptibility weighted imaging on 3-T magnetic resonance imaging may be a supplemental strategy for diagnosing cerebral amyloid angiopathy, which is closely associated with Alzheimer's disease. © 2016 The Authors. Psychogeriatrics © 2016 Japanese Psychogeriatric Society.

  14. Exact Solutions of Linear Reaction-Diffusion Processes on a Uniformly Growing Domain: Criteria for Successful Colonization

    PubMed Central

    Simpson, Matthew J

    2015-01-01

    Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction—diffusion process on 0

  15. Exact solutions of linear reaction-diffusion processes on a uniformly growing domain: criteria for successful colonization.

    PubMed

    Simpson, Matthew J

    2015-01-01

    Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction-diffusion process on 0

  16. Onset of anomalous diffusion from local motion rules

    NASA Astrophysics Data System (ADS)

    de Nigris, Sarah; Carletti, Timoteo; Lambiotte, Renaud

    2017-02-01

    Anomalous diffusion processes, in particular superdiffusive ones, are known to be efficient strategies for searching and navigation in animals and also in human mobility. One way to create such regimes are Lévy flights, where the walkers are allowed to perform jumps, the "flights," that can eventually be very long as their length distribution is asymptotically power-law distributed. In our work, we present a model in which walkers are allowed to perform, on a one-dimensional lattice, "cascades" of n unitary steps instead of one jump of a randomly generated length, as in the Lévy case, where n is drawn from a cascade distribution pn. We show that this local mechanism may give rise to superdiffusion or normal diffusion when pn is distributed as a power law. We also introduce waiting times that are power-law distributed as well and therefore the probability distribution scaling is steered by the two local distributions power-law exponents. As a perspective, our approach may engender a possible generalization of anomalous diffusion in context where distances are difficult to define, as in the case of complex networks, and also provide an interesting model for diffusion in temporal networks.

  17. Clinical utility for diffusion MRI sequence in emergency and inpatient spine protocols.

    PubMed

    Hoch, Michael J; Rispoli, Joanne; Bruno, Mary; Wauchope, Mervin; Lui, Yvonne W; Shepherd, Timothy M

    Diffusion imaging of the spine has the potential to change clinical management, but is challenging due to the small size of the cord and susceptibility artifacts from adjacent structures. Reduced field-of-view (rFOV) diffusion can improve image quality by decreasing the echo train length. Over the past 2 years, we have acquired a rFOV diffusion sequence for MRI spine protocols on most inpatients and emergency room patients. We provide selected imaging diagnoses to illustrate the utility of including diffusion spine MRI in clinical practice. Our experiences support using diffusion MRI to improve diagnostic certainty and facilitate prompt treatment or clinical management. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. A theory of growing crystalline nanorods - Mode I

    NASA Astrophysics Data System (ADS)

    Du, Feng; Huang, Hanchen

    2018-08-01

    Nanorods grow in two possible modes during physical vapor deposition (PVD). In mode I, monolayer surface steps dictate the diameter of nanorods. In mode II, multiple-layer surface steps dictate the diameter, which is the smallest possible under physical vapor deposition [5,10]. This paper reports closed-form theories of terrace lengths and nanorod diameter during the growth in mode I, as a function of deposition conditions. The accompanying lattice kinetic Monte Carlo simulations verify these theories. This study reveals that (1) quasi-steady growth exists for each set of nanorod growth conditions, and (2) the characteristic length scales, including terrace lengths and nanorod diameter at the quasi-steady state, depend on the deposition conditions - deposition rate F, substrate temperature T, and incidence angle θ - only as a function of l2D/tan θ, with l2 D = 2(v2 D/Fcosθ) 1/3 as a diffusion-limited length scale and v2D as the atomic diffusion jump rate over monolayer surface steps.

  19. Determination of Diffusion Parameters of Mean Moderation by Means of a Pulsed Neutron Source. I. Dowtherm A at 20 C; DETERMINAZIONE DEI PARAMETRI DI DIFFUSIONE DEI MEZZI MODERANTI CONIL METODO DELLA SORGENTE DI NEUTRONI PULSATA. I.DOWTHERM A (TEMPERATURE 20 C)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demanins, F.; Rado, V.; Vinci, F.

    1963-04-01

    The macroscopic absorption cross section, diffusion constant, diffusion cooling constant, transport mean free patu, extrapolated distance, diffusion length, and mean life for thermal neutrons were determined for Dowtherm A at 20 deg C, using a pulsed neutron source. The experimental assembly and data analysis method are described, and the results are compared with other determinations. (auth)

  20. Thalamic inflammation after brain trauma is associated with thalamo-cortical white matter damage.

    PubMed

    Scott, Gregory; Hellyer, Peter J; Ramlackhansingh, Anil F; Brooks, David J; Matthews, Paul M; Sharp, David J

    2015-12-01

    Traumatic brain injury can trigger chronic neuroinflammation, which may predispose to neurodegeneration. Animal models and human pathological studies demonstrate persistent inflammation in the thalamus associated with axonal injury, but this relationship has never been shown in vivo. Using [(11)C]-PK11195 positron emission tomography, a marker of microglial activation, we previously demonstrated thalamic inflammation up to 17 years after traumatic brain injury. Here, we use diffusion MRI to estimate axonal injury and show that thalamic inflammation is correlated with thalamo-cortical tract damage. These findings support a link between axonal damage and persistent inflammation after brain injury.

  1. Long-range effect of ion irradiation on Cu surface segregation in a Cu sbnd Ni system

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Tang, Guangze; Ma, Xinxin; Russell, F. Michael; Cao, Xingzhong; Wang, Baoyi; Zhang, Peng

    2011-05-01

    Ni films were deposited on one side of single crystal Cu substrate discs of 1.0 and 1.5 mm thickness. These discs were irradiated on the Cu side with argon ions. Evidence for enhanced Cu segregation at the Ni surface was found for both thicknesses. This effect decreased with increasing distance between the diffusion zone and the irradiated surface. Slow positron annihilation results indicate lower vacancy-like defects at the subsurface layer after Ar irradiation on the other surface of Cu disks. Such long-range effect is here interpreted on the basis of a particular type of mobile discrete breather called quodon.

  2. Defect evolution and impurity migration in Na-implanted ZnO

    NASA Astrophysics Data System (ADS)

    Neuvonen, Pekka T.; Vines, Lasse; Venkatachalapathy, Vishnukanthan; Zubiaga, Asier; Tuomisto, Filip; Hallén, Anders; Svensson, Bengt G.; Kuznetsov, Andrej Yu.

    2011-11-01

    Secondary ion mass spectrometry (SIMS) and positron annihilation spectroscopy (PAS) have been applied to study impurity migration and open volume defect evolution in Na+ implanted hydrothermally grown ZnO samples. In contrast to most other elements, the presence of Na tends to decrease the concentration of open volume defects upon annealing and for temperatures above 600∘C, Na exhibits trap-limited diffusion correlating with the concentration of Li. A dominating trap for the migrating Na atoms is most likely Li residing on Zn site, but a systematic analysis of the data suggests that zinc vacancies also play an important role in the trapping process.

  3. A Concept for a High-Energy Gamma-ray Polarimeter

    NASA Technical Reports Server (NTRS)

    Bloser, P. F.; Hunter, S. D.; Depaola, G. O.; Longo, F.

    2003-01-01

    We present a concept for an imaging gamma-ray polarimeter operating from approx. 50 MeV to approx. 1 GeV. Such an instrument would be valuable for the study of high-energy pulsars, active galactic nuclei, supernova remnants, and gamma-ray bursts. The concept makes use of pixelized gas micro-well detectors, under development at Goddard Space Flight Center, to record the electron-positron tracks from pair-production events in a large gas volume. Pixelized micro-well detectors have the potential to form large-volume 3-D track imagers with approx. 100 micron (rms) position resolution at moderate cost. The combination of high spatial resolution and a continuous low-density gas medium permits many thousands of measurements per radiation length, allowing the particle tracks to be imaged accurately before multiple scattering masks their original directions. The polarization of the incoming radiation may then be determined from the azimuthal distribution of the electron-positron pairs. We have performed Geant4 simulations of these processes to estimate the polarization sensitivity as a function of instrument parameters and event selection criteria.

  4. Targeted PET imaging strategy to differentiate malignant from inflamed lymph nodes in diffuse large B-cell lymphoma

    PubMed Central

    Salloum, Darin; Carney, Brandon; Brand, Christian; Kossatz, Susanne; Sadique, Ahmad; Lewis, Jason S.; Weber, Wolfgang A.; Wendel, Hans-Guido; Reiner, Thomas

    2017-01-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma in adults. DLBCL exhibits highly aggressive and systemic progression into multiple tissues in patients, particularly in lymph nodes. Whole-body 18F-fluodeoxyglucose positron emission tomography ([18F]FDG-PET) imaging has an essential role in diagnosing DLBCL in the clinic; however, [18F]FDG-PET often faces difficulty in differentiating malignant tissues from certain nonmalignant tissues with high glucose uptake. We have developed a PET imaging strategy for DLBCL that targets poly[ADP ribose] polymerase 1 (PARP1), the expression of which has been found to be much higher in DLBCL than in healthy tissues. In a syngeneic DLBCL mouse model, this PARP1-targeted PET imaging approach allowed us to discriminate between malignant and inflamed lymph nodes, whereas [18F]FDG-PET failed to do so. Our PARP1-targeted PET imaging approach may be an attractive addition to the current PET imaging strategy to differentiate inflammation from malignancy in DLBCL. PMID:28827325

  5. Contemporary imaging of mild TBI: the journey toward diffusion tensor imaging to assess neuronal damage.

    PubMed

    Fox, W Christopher; Park, Min S; Belverud, Shawn; Klugh, Arnett; Rivet, Dennis; Tomlin, Jeffrey M

    2013-04-01

    To follow the progression of neuroimaging as a means of non-invasive evaluation of mild traumatic brain injury (mTBI) in order to provide recommendations based on reproducible, defined imaging findings. A comprehensive literature review and analysis of contemporary published articles was performed to study the progression of neuroimaging findings as a non-invasive 'biomarker' for mTBI. Multiple imaging modalities exist to support the evaluation of patients with mTBI, including ultrasound (US), computed tomography (CT), single photon emission computed tomography (SPECT), positron emission tomography (PET), and magnetic resonance imaging (MRI). These techniques continue to evolve with the development of fractional anisotropy (FA), fiber tractography (FT), and diffusion tensor imaging (DTI). Modern imaging techniques, when applied in the appropriate clinical setting, may serve as a valuable tool for diagnosis and management of patients with mTBI. An understanding of modern neuroanatomical imaging will enhance our ability to analyse injury and recognize the manifestations of mTBI.

  6. Hydrogen-related complexes in Li-diffused ZnO single crystals

    NASA Astrophysics Data System (ADS)

    Corolewski, Caleb D.; Parmar, Narendra S.; Lynn, Kelvin G.; McCluskey, Matthew D.

    2016-07-01

    Zinc oxide (ZnO) is a wide band gap semiconductor and a potential candidate for next generation white solid state lighting applications. In this work, hydrogen-related complexes in lithium diffused ZnO single crystals were studied. In addition to the well-known Li-OH complex, several other hydrogen defects were observed. When a mixture of Li2O and ZnO is used as the dopant source, zinc vacancies are suppressed and the bulk Li concentration is very high (>1019 cm-3). In that case, the predominant hydrogen complex has a vibrational frequency of 3677 cm-1, attributed to surface O-H species. When Li2CO3 is used, a structured blue luminescence band and O-H mode at 3327 cm-1 are observed at 10 K. These observations, along with positron annihilation measurements, suggest a zinc vacancy-hydrogen complex, with an acceptor level ˜0.3 eV above the valence-band maximum. This relatively shallow acceptor could be beneficial for p-type ZnO.

  7. Method for photon activation positron annihilation analysis

    DOEpatents

    Akers, Douglas W.

    2006-06-06

    A non-destructive testing method comprises providing a specimen having at least one positron emitter therein; determining a threshold energy for activating the positron emitter; and determining whether a half-life of the positron emitter is less than a selected half-life. If the half-life of the positron emitter is greater than or equal to the selected half-life, then activating the positron emitter by bombarding the specimen with photons having energies greater than the threshold energy and detecting gamma rays produced by annihilation of positrons in the specimen. If the half-life of the positron emitter is less then the selected half-life, then alternately activating the positron emitter by bombarding the specimen with photons having energies greater then the threshold energy and detecting gamma rays produced by positron annihilation within the specimen.

  8. Radon Diffusion Measurement in Polyethylene based on Alpha Detection

    NASA Astrophysics Data System (ADS)

    Rau, Wolfgang

    2011-04-01

    We present a method to measure the diffusion of Radon in solid materials based on the alpha decay of the radon daughter products. In contrast to usual diffusion measurements which detect the radon that penetrates a thin barrier, we let the radon diffuse into the material and then measure the alpha decays of the radon daughter products in the material. We applied this method to regular and ultra high molecular weight poly ethylene and find diffusion lengths of order of mm as expected. However, the preliminary analysis shows significant differences between two different approaches we have chosen. These differences may be explained by the different experimental conditions.

  9. Anomalous diffusion of poly(ethylene oxide) in agarose gels.

    PubMed

    Brenner, Tom; Matsukawa, Shingo

    2016-11-01

    We report on the effect of probe size and diffusion time of poly(ethylene) oxide in agarose gels. Time-dependence of the diffusion coefficient, reflecting anomalous diffusion, was observed for poly(ethylene) oxide chains with hydrodynamic radii exceeding about 20nm at an agarose concentration of 2%. The main conclusion is that the pore distribution includes pores that are only several nm across, in agreement with scattering reports in the literature. Interpretation of the diffusion coefficient dependence on the probe size based on a model of entangled rigid rods yielded a rod length of 72nm. Copyright © 2016. Published by Elsevier B.V.

  10. A high 18F-FDOPA uptake is associated with a slow growth rate in diffuse Grade II-III gliomas.

    PubMed

    Isal, Sibel; Gauchotte, Guillaume; Rech, Fabien; Blonski, Marie; Planel, Sophie; Chawki, Mohammad B; Karcher, Gilles; Marie, Pierre-Yves; Taillandier, Luc; Verger, Antoine

    2018-04-01

    In diffuse Grade II-III gliomas, a high 3,4-dihydroxy-6-( 18 F)-fluoro-L-phenylalanine ( 18 F-FDOPA) positron emission tomography (PET) uptake, with a standardized uptake value (SUV max )/contralateral brain tissue ratio greater than 1.8, was previously found to be consistently associated with the presence of an isocitrate dehydrogenase (IDH) mutation, whereas this mutation is typically associated with a better prognosis. This pilot study was aimed to ascertain the prognostic value of this high 18 F-FDOPA uptake in diffuse Grade II-III gliomas with regard to the velocity of diameter expansion (VDE), which represents an established landmark of better prognosis when below 4 mm per year. 20 patients (42 ± 10 years, 10 female) with newly-diagnosed diffuse Grade II-III gliomas (17 with IDH mutation) were retrospectively included. All had a 18 F-FDOPA PET, quantified with SUV max ratio, along with a serial MRI enabling VDE determination. SUV max ratio was above 1.8 in 5 patients (25%) all of whom had a VDE <4 mm/year (100%) and IDH mutation (100%). Moreover, a SUV max ratio above 1.8 was associated with higher rates of VDE <4 mm/year in the overall population (45 vs 0%, p = 0.04) and also in the subgroup of patients with IDH mutation (45 vs 0%, p = 0.10). This pilot study shows that in diffuse Grade II-III gliomas, a high 18 F-FDOPA uptake would be predictive of low tumour growth, with a different prognostic significance than IDH mutation. Advances in knowledge: 18 F-FDOPA PET in a single session imaging could have prognostic value in initial diagnosis of diffuse Grade II-III gliomas.

  11. A multi-resolution analysis of lidar-DTMs to identify geomorphic processes from characteristic topographic length scales

    NASA Astrophysics Data System (ADS)

    Sangireddy, H.; Passalacqua, P.; Stark, C. P.

    2013-12-01

    Characteristic length scales are often present in topography, and they reflect the driving geomorphic processes. The wide availability of high resolution lidar Digital Terrain Models (DTMs) allows us to measure such characteristic scales, but new methods of topographic analysis are needed in order to do so. Here, we explore how transitions in probability distributions (pdfs) of topographic variables such as (log(area/slope)), defined as topoindex by Beven and Kirkby[1979], can be measured by Multi-Resolution Analysis (MRA) of lidar DTMs [Stark and Stark, 2001; Sangireddy et al.,2012] and used to infer dominant geomorphic processes such as non-linear diffusion and critical shear. We show this correlation between dominant geomorphic processes to characteristic length scales by comparing results from a landscape evolution model to natural landscapes. The landscape evolution model MARSSIM Howard[1994] includes components for modeling rock weathering, mass wasting by non-linear creep, detachment-limited channel erosion, and bedload sediment transport. We use MARSSIM to simulate steady state landscapes for a range of hillslope diffusivity and critical shear stresses. Using the MRA approach, we estimate modal values and inter-quartile ranges of slope, curvature, and topoindex as a function of resolution. We also construct pdfs at each resolution and identify and extract characteristic scale breaks. Following the approach of Tucker et al.,[2001], we measure the average length to channel from ridges, within the GeoNet framework developed by Passalacqua et al.,[2010] and compute pdfs for hillslope lengths at each scale defined in the MRA. We compare the hillslope diffusivity used in MARSSIM against inter-quartile ranges of topoindex and hillslope length scales, and observe power law relationships between the compared variables for simulated landscapes at steady state. We plot similar measures for natural landscapes and are able to qualitatively infer the dominant geomorphic processes. Also, we explore the variability in hillslope length scales as a function of hillslope diffusivity coefficients and critical shear stress in natural landscapes and show that we can infer signatures of dominant geomorphic processes by analyzing characteristic topographic length scales present in topography. References: Beven, K. and Kirkby, M. J.: A physically based variable contributing area model of basin hydrology, Hydrol. Sci. Bull., 24, 43-69, 1979 Howard, A. D. (1994). A detachment-limited model of drainage basin evolution.Water resources research, 30(7), 2261-2285. Passalacqua, P., Do Trung, T., Foufoula Georgiou, E., Sapiro, G., & Dietrich, W. E. (2010). A geometric framework for channel network extraction from lidar: Nonlinear diffusion and geodesic paths. Journal of Geophysical. Research: Earth Surface (2003-2012), 115(F1). Sangireddy, H., Passalacqua, P., Stark, C.P.(2012). Multi-resolution estimation of lidar-DTM surface flow metrics to identify characteristic topographic length scales, EP13C-0859: AGU Fall meeting 2012. Stark, C. P., & Stark, G. J. (2001). A channelization model of landscape evolution. American Journal of Science, 301(4-5), 486-512. Tucker, G. E., Catani, F., Rinaldo, A., & Bras, R. L. (2001). Statistical analysis of drainage density from digital terrain data. Geomorphology, 36(3), 187-202.

  12. Determination of carrier lifetime and diffusion length in Al-doped 4H-SiC epilayers by time-resolved optical techniques

    NASA Astrophysics Data System (ADS)

    Liaugaudas, Gediminas; Dargis, Donatas; Kwasnicki, Pawel; Arvinte, Roxana; Zielinski, Marcin; Jarašiūnas, Kęstutis

    2015-01-01

    A series of p-type 4H-SiC epilayers with aluminium concentration ranging from 2  ×  1016 to 8  ×  1019 cm-3 were investigated by time-resolved optical techniques in order to determine the effect of aluminium doping on high-injection carrier lifetime at room temperature and the diffusion coefficient at different injections (from ≈3  ×  1018 to ≈5  ×  1019 cm-3) and temperatures (from 78 to 730 K). We find that the defect limited carrier lifetime τSRH decreases from 20 ns in the low-doped samples down to ≈0.6 ns in the heavily doped epilayers. Accordingly, the ambipolar diffusion coefficient decreases from Da = 3.5 cm2 s-1 down to ≈0.6 cm2 s-1, corresponding to the hole mobility of µh = 70 cm2 Vs-1 and 12 cm2 Vs-1, respectively. In the highly doped epilayers, the injection-induced decrease of the diffusion coefficient, due to the transition from the minority carrier diffusion to the ambipolar diffusion, provided the electron diffusion coefficient of De ≈ 3 cm2 s-1. The Al-doping resulted in the gradual decrease of the ambipolar diffusion length, from LD = 2.7 µm down to LD = 0.25 µm in the epilayers with the lowest and highest aluminium concentrations.

  13. Simulations of eddy kinetic energy transport in barotropic turbulence

    NASA Astrophysics Data System (ADS)

    Grooms, Ian

    2017-11-01

    Eddy energy transport in rotating two-dimensional turbulence is investigated using numerical simulation. Stochastic forcing is used to generate an inhomogeneous field of turbulence and the time-mean energy profile is diagnosed. An advective-diffusive model for the transport is fit to the simulation data by requiring the model to accurately predict the observed time-mean energy distribution. Isotropic harmonic diffusion of energy is found to be an accurate model in the case of uniform, solid-body background rotation (the f plane), with a diffusivity that scales reasonably well with a mixing-length law κ ∝V ℓ , where V and ℓ are characteristic eddy velocity and length scales. Passive tracer dynamics are added and it is found that the energy diffusivity is 75 % of the tracer diffusivity. The addition of a differential background rotation with constant vorticity gradient β leads to significant changes to the energy transport. The eddies generate and interact with a mean flow that advects the eddy energy. Mean advection plus anisotropic diffusion (with reduced diffusivity in the direction of the background vorticity gradient) is moderately accurate for flows with scale separation between the eddies and mean flow, but anisotropic diffusion becomes a much less accurate model of the transport when scale separation breaks down. Finally, it is observed that the time-mean eddy energy does not look like the actual eddy energy distribution at any instant of time. In the future, stochastic models of the eddy energy transport may prove more useful than models of the mean transport for predicting realistic eddy energy distributions.

  14. Effect of the computational domain size and shape on the self-diffusion coefficient in a Lennard-Jones liquid.

    PubMed

    Kikugawa, Gota; Ando, Shotaro; Suzuki, Jo; Naruke, Yoichi; Nakano, Takeo; Ohara, Taku

    2015-01-14

    In the present study, molecular dynamics (MD) simulations on the monatomic Lennard-Jones liquid in a periodic boundary system were performed in order to elucidate the effect of the computational domain size and shape on the self-diffusion coefficient measured by the system. So far, the system size dependence in cubic computational domains has been intensively investigated and these studies showed that the diffusion coefficient depends linearly on the inverse of the system size, which is theoretically predicted based on the hydrodynamic interaction. We examined the system size effect not only in the cubic cell systems but also in rectangular cell systems which were created by changing one side length of the cubic cell with the system density kept constant. As a result, the diffusion coefficient in the direction perpendicular to the long side of the rectangular cell significantly increases more or less linearly with the side length. On the other hand, the diffusion coefficient in the direction along the long side is almost constant or slightly decreases. Consequently, anisotropy of the diffusion coefficient emerges in a rectangular cell with periodic boundary conditions even in a bulk liquid simulation. This unexpected result is of critical importance because rectangular fluid systems confined in nanospace, which are present in realistic nanoscale technologies, have been widely studied in recent MD simulations. In order to elucidate the underlying mechanism for this serious system shape effect on the diffusion property, the correlation structures of particle velocities were examined.

  15. Quantitative observation of tracer transport with high-resolution PET

    NASA Astrophysics Data System (ADS)

    Kulenkampff, Johannes; Gruendig, Marion; Zakhnini, Abdelhamid; Lippmann-Pipke, Johanna

    2016-04-01

    Transport processes in natural porous media are typically heterogeneous over various scales. This heterogeneity is caused by the complexity of pore geometry and molecular processes. Heterogeneous processes, like diffusive transport, conservative advective transport, mixing and reactive transport, can be observed and quantified with quantitative tomography of tracer transport patterns. Positron Emission Tomography (PET) is by far the most sensitive method and perfectly selective for positron-emitting radiotracers, therefore it is suited as reference method for spatiotemporal tracer transport observations. The number of such PET-applications is steadily increasing. However, many applications are afflicted by the low spatial resolution (3 - 5 mm) of the clinical scanners from cooperating nuclear medical departments. This resolution is low in relation to typical sample dimensions of 10 cm, which are restricted by the mass attenuation of the material. In contrast, our GeoPET-method applies a high-resolution scanner with a resolution of 1 mm, which is the physical limit of the method and which is more appropriate for samples of the size of soil columns or drill cores. This higher resolution is achieved at the cost of a more elaborate image reconstruction procedure, especially considering the effects of Compton scatter. The result of the quantitative image reconstruction procedure is a suite of frames of the quantitative tracer distribution with adjustable frame rates from minutes to months. The voxel size has to be considered as reference volume of the tracer concentration. This continuous variable includes contributions from structures far below the spatial resolution, as far as a detection threshold, in the pico-molar range, is exceeded. Examples from a period of almost 10 years (Kulenkampff et al. 2008a, Kulenkampff et al. 2008b) of development and application of quantitative GeoPET-process tomography are shown. These examples include different transport processes, like conservative flow, reative transport, and diffusion (Kulenkampff et al, 2015). Such experimental data are complementary to the outcome of model simulations based upon structural μCT-images. The PET-data can be evaluated with respect to specific process parameters, like effective volume and flow velocity distribution. They can further serve as a basis for establishing intermediate-scale simulation models which directly incorporate the observed specific response functions, without requiring modeling on the pore scale at the highest possible spatial resolution. Kulenkampff, J., Gründig, M., Richter, M., Wolf, M., Dietzel, O.: First applications of a small-animal-PET scanner for process monitoring in rocks and soils. Geophysical Research Abstracts, Vol. 10, EGU2008-A-03727, 2008a. Kulenkampff, J., Gründig, M., Richter, M., and Enzmann, F.: Evaluation of positron emission tomography for visualisation of migration processes in geomaterials, Physics and Chemistry of the Earth, 33, 937-942, 2008b. Kulenkampff, J., Gruendig, M., Zakhnini, A., Gerasch, R., and Lippmann-Pipke, J.: Process tomography of diffusion with PET for evaluating anisotropy and heterogeneity, Clay Minerals, accepted 2015, 2015.

  16. The Effect of Upstream Vane Wakes on Annular Diffuser Flows

    NASA Astrophysics Data System (ADS)

    Cherry, Erica; Padilla, Angelina; Elkins, Christopher; Eaton, John

    2008-11-01

    Experiments were performed to determine the sensitivity to inlet conditions of the flow in two annular diffusers. One of the diffusers was a conservative design typical of a diffuser directly upstream of the combustor in a jet engine. The other had the same length and inlet shape as the first diffuser but a larger area ratio and was meant to operate on the verge of separation. Each diffuser was connected to two different inlets, one containing a fully-developed channel flow, the other containing wakes from a row of airfoils. Three-component velocity measurements were taken on the flow in each inlet/diffuser combination using Magnetic Resonance Velocimetry. Results will be presented on the 3D velocity fields in the two diffusers and the effect of the airfoil wakes on separation and secondary flows.

  17. Revealing mesoscopic structural universality with diffusion

    PubMed Central

    Novikov, Dmitry S.; Jensen, Jens H.; Helpern, Joseph A.; Fieremans, Els

    2014-01-01

    Measuring molecular diffusion is widely used for characterizing materials and living organisms noninvasively. This characterization relies on relations between macroscopic diffusion metrics and structure at the mesoscopic scale commensurate with the diffusion length. Establishing such relations remains a fundamental challenge, hindering progress in materials science, porous media, and biomedical imaging. Here we show that the dynamical exponent in the time dependence of the diffusion coefficient distinguishes between the universality classes of the mesoscopic structural complexity. Our approach enables the interpretation of diffusion measurements by objectively selecting and modeling the most relevant structural features. As an example, the specific values of the dynamical exponent allow us to identify the relevant mesoscopic structure affecting MRI-measured water diffusion in muscles and in brain, and to elucidate the structural changes behind the decrease of diffusion coefficient in ischemic stroke. PMID:24706873

  18. Two-component density functional theory calculations of positron lifetimes for small vacancy clusters in silicon

    NASA Astrophysics Data System (ADS)

    Makhov, D. V.; Lewis, Laurent J.

    2005-05-01

    The positron lifetimes for various vacancy clusters in silicon are calculated within the framework of the two-component electron-positron density functional theory. The effect of the trapped positron on the electron density and on the relaxation of the structure is investigated. Our calculations show that, contrary to the usual assumption, the positron-induced forces do not compensate in general for electronic inward forces. Thus, geometry optimization is required in order to determine positron lifetime accurately. For the monovacancy and the divacancy, the results of our calculations are in good agreement with the experimental positron lifetimes, suggesting that this approach gives good estimates of positron lifetimes for larger vacancy clusters, required for their correct identification with positron annihilation spectroscopy. As an application, our calculations show that fourfold trivacancies and symmetric fourfold tetravacancies have positron lifetimes similar to monovacancies and divacancies, respectively, and can thus be confused in the interpretation of positron annihilation experiments.

  19. Over 95% of large-scale length uniformity in template-assisted electrodeposited nanowires by subzero-temperature electrodeposition.

    PubMed

    Shin, Sangwoo; Kong, Bo Hyun; Kim, Beom Seok; Kim, Kyung Min; Cho, Hyung Koun; Cho, Hyung Hee

    2011-07-23

    In this work, we report highly uniform growth of template-assisted electrodeposited copper nanowires on a large area by lowering the deposition temperature down to subzero centigrade. Even with highly disordered commercial porous anodic aluminum oxide template and conventional potentiostatic electrodeposition, length uniformity over 95% can be achieved when the deposition temperature is lowered down to -2.4°C. Decreased diffusion coefficient and ion concentration gradient due to the lowered deposition temperature effectively reduces ion diffusion rate, thereby favors uniform nanowire growth. Moreover, by varying the deposition temperature, we show that also the pore nucleation and the crystallinity can be controlled.

  20. Microscopic theory of topologically entangled fluids of rigid macromolecules

    NASA Astrophysics Data System (ADS)

    Sussman, Daniel M.; Schweizer, Kenneth S.

    2011-06-01

    We present a first-principles theory for the slow dynamics of a fluid of entangling rigid crosses of zero excluded volume based on a generalization of the dynamic mean-field approach of Szamel for infinitely thin nonrotating rods. The latter theory exactly includes topological constraints at the two-body collision level and self-consistently renormalizes an effective diffusion tensor to account for many-body effects. Remarkably, it predicts scaling laws consistent with the phenomenological reptation-tube predictions of Doi and Edwards for the long-time diffusion and the localization length in the heavily entangled limit. We generalize this approach to a different macromolecular architecture, infinitely thin three-dimensional crosses, and also extend the range of densities over which a dynamic localization length can be calculated for rods. Ideal gases of nonrotating crosses have recently received attention in computer simulations and are relevant as a simple model of both a strong-glass former and entangling star-branched polymers. Comparisons of our theory with these simulations reveal reasonable agreement for the magnitude and reduced density dependence of the localization length and also the self-diffusion constant if the consequences of local density fluctuations are taken into account.

  1. Analysis of the electron-beam-induced current of a polycrystalline p-n junction when the diffusion lengths of the material on either side of a grain boundary differ

    NASA Technical Reports Server (NTRS)

    Von Roos, O.; Luke, K. L.

    1984-01-01

    The short circuit current generated by the electron beam of a scanning electron microscope in p-n junctions is reduced by enhanced recombination at grain boundaries in polycrystalline material. Frequently, grain boundaries separate the semiconductor into regions possessing different minority carrier life times. This markedly affects the short circuit current I(sc) as a function of scanning distance from the grain boundary. It will be shown theoretically that (1) the minimum of the I(sc) in crossing the grain boundary with the scanning electron beam is shifted away from the grain boundary toward the region with smaller life time (shorter diffusion length), (2) the magnitude of the minimum differs markedly from those calculated under the assumption of equal diffusion lengths on either side of the grain boundary, and (3) the minimum disappears altogether for small surface recombination velocities (s less than 10,000 cm/s). These effects become negligible, however, for large recombination velocities s at grain boundaries. For p-type silicon this happens for s not less than 100,000 cm/s.

  2. Quantum efficiency investigations of type-II InAs/GaSb midwave infrared superlattice photodetectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giard, E., E-mail: edouard.giard@onera.fr; Ribet-Mohamed, I.; Jaeck, J.

    2014-07-28

    We present in this paper a comparison between different type-II InAs/GaSb superlattice (T2SL) photodiodes and focal plane array (FPA) in the mid-wavelength infrared domain to understand which phenomenon drives the performances of the T2SL structure in terms of quantum efficiency (QE). Our measurements on test photodiodes suggest low minority carrier diffusion length in the “InAs-rich” design, which penalizes carriers' collection in this structure for low bias voltage and front side illumination. This analysis is completed by a comparison of the experimental data with a fully analytic model, which allows to infer a hole diffusion length shorter than 100 nm. In addition,more » measurements on a FPA with backside illumination are finally presented. Results show an average QE in the 3–4.7 μm window equal to 42% for U{sub bias} = −0.1 V, 77 K operating temperature and no anti-reflection coating. These measurements, completed by modulation transfer function and noise measurements, reveal that the InAs-rich design, despite a low hole diffusion length, is promising for high performance infrared imaging applications.« less

  3. Correlation between Photoluminescence and Carrier Transport and a Simple In Situ Passivation Method for High-Bandgap Hybrid Perovskites

    DOE PAGES

    Stoddard, Ryan J.; Eickemeyer, Felix T.; Katahara, John K.; ...

    2017-06-21

    High-bandgap mixed-halide hybrid perovskites have higher open-circuit voltage deficits and lower carrier diffusion lengths than their lower-bandgap counterparts. We have developed a ligand-assisted crystallization (LAC) technique that introduces additives in situ during the solvent wash and developed a new method to dynamically measure the absolute intensity steady-state photoluminescence and the mean carrier diffusion length simultaneously. The measurements reveal four distinct regimes of material changes and show that photoluminescence brightening often coincides with losses in carrier transport, such as in degradation or phase segregation. Further, the measurements enabled optimization of LAC on the 1.75 eV bandgap FA 0.83Cs 0.17Pb(I 0.66Br 0.34)more » 3, resulting in an enhancement of the photoluminescence quantum yield (PLQY) of over an order of magnitude, an increase of 80 meV in the quasi-Fermi level splitting (to 1.29 eV), an increase in diffusion length by a factor of 3.5 (to over 1 μm), and enhanced open-circuit voltage and short-circuit current from photovoltaics fabricated from the LAC-treated films.« less

  4. Correlation between Photoluminescence and Carrier Transport and a Simple In Situ Passivation Method for High-Bandgap Hybrid Perovskites.

    PubMed

    Stoddard, Ryan J; Eickemeyer, Felix T; Katahara, John K; Hillhouse, Hugh W

    2017-07-20

    High-bandgap mixed-halide hybrid perovskites have higher open-circuit voltage deficits and lower carrier diffusion lengths than their lower-bandgap counterparts. We have developed a ligand-assisted crystallization (LAC) technique that introduces additives in situ during the solvent wash and developed a new method to dynamically measure the absolute intensity steady-state photoluminescence and the mean carrier diffusion length simultaneously. The measurements reveal four distinct regimes of material changes and show that photoluminescence brightening often coincides with losses in carrier transport, such as in degradation or phase segregation. Further, the measurements enabled optimization of LAC on the 1.75 eV bandgap FA 0.83 Cs 0.17 Pb(I 0.66 Br 0.34 ) 3 , resulting in an enhancement of the photoluminescence quantum yield (PLQY) of over an order of magnitude, an increase of 80 meV in the quasi-Fermi level splitting (to 1.29 eV), an increase in diffusion length by a factor of 3.5 (to over 1 μm), and enhanced open-circuit voltage and short-circuit current from photovoltaics fabricated from the LAC-treated films.

  5. How thin barrier metal can be used to prevent Co diffusion in the modern integrated circuits?

    NASA Astrophysics Data System (ADS)

    Dixit, Hemant; Konar, Aniruddha; Pandey, Rajan; Ethirajan, Tamilmani

    2017-11-01

    In modern integrated circuits (ICs), billions of transistors are connected to each other via thin metal layers (e.g. copper, cobalt, etc) known as interconnects. At elevated process temperatures, inter-diffusion of atomic species can occur among these metal layers, causing sub-optimal performance of interconnects, which may lead to the failure of an IC. Thus, typically a thin barrier metal layer is used to prevent the inter-diffusion of atomic species within interconnects. For ICs with sub-10 nm transistors (10 nm technology node), the design rule (thickness scaling) demands the thinnest possible barrier layer. Therefore, here we investigate the critical thickness of a titanium-nitride (TiN) barrier that can prevent the cobalt diffusion using multi-scale modeling and simulations. First, we compute the Co diffusion barrier in crystalline and amorphous TiN with the nudged elastic band method within first-principles density functional theory simulations. Later, using the calculated activation energy barriers, we quantify the Co diffusion length in the TiN metal layer with the help of kinetic Monte Carlo simulations. Such a multi-scale modelling approach yields an exact critical thickness of the metal layer sufficient to prevent the Co diffusion in IC interconnects. We obtain a diffusion length of a maximum of 2 nm for a typical process of thermal annealing at 400 °C for 30 min. Our study thus provides useful physical insights for the Co diffusion in the TiN layer and further quantifies the critical thickness (~2 nm) to which the metal barrier layer can be thinned down for sub-10 nm ICs.

  6. Invariance property of wave scattering through disordered media

    PubMed Central

    Pierrat, Romain; Ambichl, Philipp; Gigan, Sylvain; Haber, Alexander; Carminati, Rémi; Rotter, Stefan

    2014-01-01

    A fundamental insight in the theory of diffusive random walks is that the mean length of trajectories traversing a finite open system is independent of the details of the diffusion process. Instead, the mean trajectory length depends only on the system's boundary geometry and is thus unaffected by the value of the mean free path. Here we show that this result is rooted on a much deeper level than that of a random walk, which allows us to extend the reach of this universal invariance property beyond the diffusion approximation. Specifically, we demonstrate that an equivalent invariance relation also holds for the scattering of waves in resonant structures as well as in ballistic, chaotic or in Anderson localized systems. Our work unifies a number of specific observations made in quite diverse fields of science ranging from the movement of ants to nuclear scattering theory. Potential experimental realizations using light fields in disordered media are discussed. PMID:25425671

  7. Diffusion length measurements in bulk and epitaxially grown 3-5 semiconductors using charge collection microscopy

    NASA Technical Reports Server (NTRS)

    Leon, R. P.

    1987-01-01

    Diffusion lengths and surface recombination velocities were measured in GaAs diodes and InP finished solar cells. The basic techniques used was charge collection microscopy also known as electron beam induced current (EBIC). The normalized currents and distances from the pn junction were read directly from the calibrated curves obtained while using the line scan mode in an SEM. These values were then equated to integral and infinite series expressions resulting from the solution of the diffusion equation with both extended generation and point generation functions. This expands previous work by examining both thin and thick samples. The surface recombination velocity was either treated as an unknown in a system of two equations, or measured directly using low e(-) beam accelerating voltages. These techniques give accurate results by accounting for the effects of surface recombination and the finite size of the generation volume.

  8. Fabricating and Controlling Silicon Zigzag Nanowires by Diffusion-Controlled Metal-Assisted Chemical Etching Method.

    PubMed

    Chen, Yun; Zhang, Cheng; Li, Liyi; Tuan, Chia-Chi; Wu, Fan; Chen, Xin; Gao, Jian; Ding, Yong; Wong, Ching-Ping

    2017-07-12

    Silicon (Si) zigzag nanowires (NWs) have a great potential in many applications because of its high surface/volume ratio. However, fabricating Si zigzag NWs has been challenging. In this work, a diffusion-controlled metal-assisted chemical etching method is developed to fabricate Si zigzag NWs. By tailoring the composition of etchant to change its diffusivity, etching direction, and etching time, various zigzag NWs can be easily fabricated. In addition, it is also found that a critical length of NW (>1 μm) is needed to form zigzag nanowires. Also, the amplitude of zigzag increases as the location approaches the center of the substrate and the length of zigzag nanowire increases. It is also demonstrated that such zigzag NWs can help the silicon substrate for self-cleaning and antireflection. This method may provide a feasible and economical way to fabricate zigzag NWs and novel structures for broad applications.

  9. Positron Emission Tomography - Computed Tomography (PET/CT)

    MedlinePlus

    ... A-Z Positron Emission Tomography - Computed Tomography (PET/CT) Positron emission tomography (PET) uses small amounts of ... What is Positron Emission Tomography – Computed Tomography (PET/CT) Scanning? Positron emission tomography, also called PET imaging ...

  10. Excitation-dependent carrier lifetime and diffusion length in bulk CdTe determined by time-resolved optical pump-probe techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ščajev, Patrik; Miasojedovas, Saulius; Mekys, Algirdas

    We applied time-resolved pump-probe spectroscopy based on free carrier absorption and light diffraction on a transient grating for direct measurements of the carrier lifetime and diffusion coefficient D in high-resistivity single crystal CdTe (codoped with In and Er). The bulk carrier lifetime t decreased from 670 +/-50 ns to 60 +/- 10 ns with increase of excess carrier density N from 10 16 to 5 x 10 18cm -3 due to the excitation-dependent radiative recombination rate. In this N range, the carrier diffusion length dropped from 14 um to 6 um due to lifetime decrease. Modeling of in-depth (axial) andmore » in-plane (lateral) carrier diffusion provided the value of surface recombination velocity S = 6 x 10 5 cm/s for the untreated surface. At even higher excitations, in the 10 19-3 x 10 20 cm -3 density range, D increase from 5 to 20 cm^2/s due to carrier degeneracy was observed.« less

  11. Excitation-dependent carrier lifetime and diffusion length in bulk CdTe determined by time-resolved optical pump-probe techniques

    DOE PAGES

    Ščajev, Patrik; Miasojedovas, Saulius; Mekys, Algirdas; ...

    2018-01-14

    We applied time-resolved pump-probe spectroscopy based on free carrier absorption and light diffraction on a transient grating for direct measurements of the carrier lifetime and diffusion coefficient D in high-resistivity single crystal CdTe (codoped with In and Er). The bulk carrier lifetime t decreased from 670 +/-50 ns to 60 +/- 10 ns with increase of excess carrier density N from 10 16 to 5 x 10 18cm -3 due to the excitation-dependent radiative recombination rate. In this N range, the carrier diffusion length dropped from 14 um to 6 um due to lifetime decrease. Modeling of in-depth (axial) andmore » in-plane (lateral) carrier diffusion provided the value of surface recombination velocity S = 6 x 10 5 cm/s for the untreated surface. At even higher excitations, in the 10 19-3 x 10 20 cm -3 density range, D increase from 5 to 20 cm^2/s due to carrier degeneracy was observed.« less

  12. Needlelike motion of prolate ellipsoids in the sea of spheres

    NASA Astrophysics Data System (ADS)

    Vasanthi, R.; Ravichandran, S.; Bagchi, Biman

    2001-05-01

    Molecular dynamics simulations of translational motion of isolated prolate ellipsoids in the sea of spheres have been carried out for several different values of the aspect ratio (κ), obtained by changing either the length or the diameter of the ellipsoids, at several different solvent densities. The interaction among the spheres is given by the Lennard-Jones pair potential while that between spheres and ellipsoids is given by a modified Gay-Berne potential. Both the mean-square displacements of the center of mass of the ellipsoids and their orientational time correlation function have been calculated. It is found that at short to intermediate times, the motion of ellipsoids is anisotropic and primarily needlelike—the molecules prefer to move parallel to their long axis. The ratio of these two diffusion constants (D∥ and D⊥) approaches κ, suggesting a decoupling of D∥ from the length of the ellipsoid. The diffusion becomes isotropic in the long time with the total diffusion coefficient given by D∥+2D⊥. The crossover from the anisotropic to the isotropic diffusion is surprisingly sharp and clear in most cases.

  13. Silicon solar cell process development, fabrication and analysis

    NASA Technical Reports Server (NTRS)

    Iles, P. A.; Leung, D. C.

    1982-01-01

    For UCP Si, randomly selected wafers and wafers cut from two specific ingots were studied. For the randomly selected wafers, a moderate gettering diffusion had little effect. Moreover, an efficiency up to 14% AMI was achieved with advanced processes. For the two specific UCP ingots, ingot #5848-13C displayed severe impurity effects as shown by lower 3sc in the middle of the ingot and low CFF in the top of the ingot. Also the middle portions of this ingot responded to a series of progressively more severe gettering diffusion. Unexplained was the fact that severely gettered samples of this ingot displayed a negative light biased effect on the minority carrier diffusion length while the nongettered or moderately gettered ones had the more conventional positive light biased effect on diffusion length. On the other hand, ingot C-4-21A did not have the problem of ingot 5848-13C and behaved like to the randomly selected wafers. The top half of the ingot was shown to be slightly superior to the bottom half, but moderate gettering helped to narrow the gap.

  14. Continuous time anomalous diffusion in a composite medium.

    PubMed

    Stickler, B A; Schachinger, E

    2011-08-01

    The one-dimensional continuous time anomalous diffusion in composite media consisting of a finite number of layers in immediate contact is investigated. The diffusion process itself is described with the help of two probability density functions (PDFs), one of which is an arbitrary jump-length PDF, and the other is a long-tailed waiting-time PDF characterized by the waiting-time index β∈(0,1). The former is assumed to be a function of the space coordinate x and the time coordinate t while the latter is a function of x and the time interval. For such an environment a very general form of the diffusion equation is derived which describes the continuous time anomalous diffusion in a composite medium. This result is then specialized to two particular forms of the jump-length PDF, namely the continuous time Lévy flight PDF and the continuous time truncated Lévy flight PDF. In both cases the PDFs are characterized by the Lévy index α∈(0,2) which is regarded to be a function of x and t. It is possible to demonstrate that for particular choices of the indices α and β other equations for anomalous diffusion, well known from the literature, follow immediately. This demonstrates the very general applicability of the derivation and of the resulting fractional differential equation discussed here.

  15. Positron Beam Characteristics at NEPOMUC Upgrade

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.; Ceeh, H.; Gigl, T.; Lippert, F.; Piochacz, C.; Reiner, M.; Schreckenbach, K.; Vohburger, S.; Weber, J.; Zimnik, S.

    2014-04-01

    In 2012, the new neutron induced positron source NEPOMUC upgrade was put into operation at FRMII. Major changes have been made to the source which consists of a neutron-γ-converter out of Cd and a Pt foil structure for electron positron pair production and positron moderation. The new design leads to an improvement of both intensity and brightness of the mono-energetic positron beam. In addition, the application of highly enriched 113Cd as neutron-γ-converter extends the lifetime of the positron source to 25 years. A new switching and remoderation device has been installed in order to allow toggling from the high-intensity primary beam to a brightness enhanced remoderated positron beam. At present, an intensity of more than 109 moderated positrons per second is achieved at NEPOMUC upgrade. The main characteristics are presented which comprise positron yield and beam profile of both the primary and the remoderated positron beam.

  16. Defect dynamics in Li substituted nanocrystalline ZnO: A spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Nambissan, P. M. G.; Thapa, S.; Mandal, K.

    2014-12-01

    Very recently, vacancy-type defects have been found to play a major role in stabilizing d0 ferromagnetism in various low dimensional ZnO systems. In this context, the evolution of vacancy-type defects within the ZnO nanocrystals due to the doping of ZnO by alkali metal lithium (Li) is investigated using X-ray photoelectron (XPS), photoluminescence (PL) and positron annihilation spectroscopy (PAS). Li-doping is found to have significant effects in modifying the vacancy-type defects, especially the Zn vacancy (VZn) defects within the ZnO lattice. XPS measurement indicated that initially the Li1+ ions substitute at Zn2+ sites, but when Li concentration exceeds 7 at%, excess Li starts to move through the interstitial sites. The increase in positron lifetime components and the lineshape S-parameter obtained from coincident Doppler broadening spectra with Li-doping indicated an enhancement of VZn defect concentration within the doped ZnO lattice. The vacancy type defects, initially of the predominant configuration VZn+O+Zn got reduced to neutral ZnO divacancies due to the partial recombination by the doped Li1+ ions but, when the doping concentration exceeded 7 at% and Li1+ ions started migrating to the interstitials, positron diffusion is partly impeded and this results in reduced probability of annihilation. PL spectra have shown intense green and yellow-orange emission due to the stabilization of a large number of VZn defects and Li substitutional (LiZn) defects respectively. Hence Li can be a very useful dopant in stabilizing and modifying significant amount of Zn vacancy-defects which can play a useful role in determining the material behavior.

  17. Compartmental analysis of washout effect in rat brain: in-beam OpenPET measurement using a 11C beam

    NASA Astrophysics Data System (ADS)

    Hirano, Yoshiyuki; Kinouchi, Shoko; Ikoma, Yoko; Yoshida, Eiji; Wakizaka, Hidekazu; Ito, Hiroshi; Yamaya, Taiga

    2013-12-01

    In-beam positron emission tomography (PET) is expected to enable visualization of a dose verification using positron emitters (β+ decay). For accurate dose verification, correction of the washout of the positron emitters should be made. In addition, the quantitative washout rate has a potential usefulness as a diagnostic index, but modeling for this has not been studied yet. In this paper, therefore, we applied compartment analyses to in-beam PET data acquired by our small OpenPET prototype, which has a physically opened field-of-view (FOV) between two detector rings. A rat brain was located at the FOV and was irradiated by a 11C beam. Time activity curves of the irradiated field were measured immediately after the irradiations, and the washout rate was obtained based on two models: the two-washout model (medium decay, k2m; slow decay, k2s) developed in a study of rabbit irradiation; and the two-compartment model used in nuclear medicine, where efflux from tissue to blood (k2), influx (k3) and efflux (k4) from the first to second compartments in tissue were evaluated. The observed k2m and k2s were 0.34 and 0.005 min-1, respectively, which was consistent with the rabbit study. Also k2m was close to the washout rate in cerebral blood flow (CBF) measurements by dynamic PET with 15O-water, while, k2, k3, and k4 were 0.16, 0.15 and 0.007 min-1. Our present work suggested the dynamics of 11C might be relevant to CBF or permeability of a molecule containing 11C atoms might be regulated by a transporter because the k2 was relatively low compared with a simple diffusion tracer.

  18. Investigation of the annealing temperature dependence of the spin pumping in Co20Fe60B20/Pt systems

    NASA Astrophysics Data System (ADS)

    Belmeguenai, M.; Aitoukaci, K.; Zighem, F.; Gabor, M. S.; Petrisor, T.; Mos, R. B.; Tiusan, C.

    2018-03-01

    Co20Fe60B20/Pt systems with variable thicknesses of Co20Fe60B20 and of Pt have been sputtered and then annealed at various temperatures (Ta) up to 300 °C. Microstrip line ferromagnetic resonance (MS-FMR) has been used to investigate Co20Fe60B20 and Pt thickness dependencies of the magnetic damping enhancement due to the spin pumping. Using diffusion and ballistic models for spin pumping, the spin mixing conductance and the spin diffusion length have been deduced from the Co20Fe60B20 and the Pt thickness dependencies of the Gilbert damping parameter α of the Co20Fe60B20/Pt heterostructures, respectively. Within the ballistic simple model, both the spin mixing conductance at the CoFeB/Pt interface and the spin-diffusion length of Pt increase with the increasing annealing temperature and show a strong enhancement at 300 °C annealing temperature. In contrast, the spin mixing conductance, which increases with Ta, shows a different trend to the spin diffusion length when using the diffusion model. Moreover, MS-FMR measurements revealed that the effective magnetization varies linearly with the Co20Fe60B20 inverse thickness due to the perpendicular interface anisotropy, which is found to decrease as the annealing temperature increases. It also revealed that the angular dependence of the resonance field is governed by small uniaxial anisotropy which is found to vary linearly with the Co20Fe60B20 inverse thickness of the annealed films, in contrast to that of the as grown ones.

  19. Diagnosing isopycnal diffusivity in an eddying, idealized midlatitude ocean basin via Lagrangian, in Situ, Global, High-Performance Particle Tracking (LIGHT)

    DOE PAGES

    Wolfram, Phillip J.; Ringler, Todd D.; Maltrud, Mathew E.; ...

    2015-08-01

    Isopycnal diffusivity due to stirring by mesoscale eddies in an idealized, wind-forced, eddying, midlatitude ocean basin is computed using Lagrangian, in Situ, Global, High-Performance Particle Tracking (LIGHT). Simulation is performed via LIGHT within the Model for Prediction across Scales Ocean (MPAS-O). Simulations are performed at 4-, 8-, 16-, and 32-km resolution, where the first Rossby radius of deformation (RRD) is approximately 30 km. Scalar and tensor diffusivities are estimated at each resolution based on 30 ensemble members using particle cluster statistics. Each ensemble member is composed of 303 665 particles distributed across five potential density surfaces. Diffusivity dependence upon modelmore » resolution, velocity spatial scale, and buoyancy surface is quantified and compared with mixing length theory. The spatial structure of diffusivity ranges over approximately two orders of magnitude with values of O(10 5) m 2 s –1 in the region of western boundary current separation to O(10 3) m 2 s –1 in the eastern region of the basin. Dominant mixing occurs at scales twice the size of the first RRD. Model resolution at scales finer than the RRD is necessary to obtain sufficient model fidelity at scales between one and four RRD to accurately represent mixing. Mixing length scaling with eddy kinetic energy and the Lagrangian time scale yield mixing efficiencies that typically range between 0.4 and 0.8. In conclusion, a reduced mixing length in the eastern region of the domain relative to the west suggests there are different mixing regimes outside the baroclinic jet region.« less

  20. Development of an Electron-Positron Source for Positron Annihilation Lifetime Spectroscopy

    DTIC Science & Technology

    2009-12-19

    REPORT Development of an electron- positron source for positron annihilation lifetime spectroscopy : FINAL REPORT 14. ABSTRACT 16. SECURITY...to generate radiation, to accelerate particles, and to produce electrons and positrons from vacuum. From applications using existing high-repetition...theoretical directions. This report reviews work directed toward the application of positron generation from laser interaction with matter 1. REPORT DATE

  1. Polymer diffusion in the interphase between surface and solution.

    PubMed

    Weger, Lukas; Weidmann, Monika; Ali, Wael; Hildebrandt, Marcus; Gutmann, Jochen Stefan; Hoffmann-Jacobsen, Kerstin

    2018-05-22

    Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) is applied to study the self-diffusion of polyethylene glycol solutions in the presence of weakly attractive interfaces. Glass coverslips modified with aminopropyl- and propyl-terminated silanes are used to study the influence of solid surfaces on polymer diffusion. A model of three phases of polymer diffusion allows to describe the experimental fluorescence autocorrelation functions. Besides the two-dimensional diffusion of adsorbed polymer on the substrate and three-dimensional free diffusion in bulk solution, a third diffusion time scale is observed with intermediate diffusion times. This retarded three-dimensional diffusion in solution is assigned to long range effects of solid surfaces on diffusional dynamics of polymers. The respective diffusion constants show Rouse scaling (D~N -1 ) indicating a screening of hydrodynamic interactions by the presence of the surface. Hence, the presented TIR-FCS method proves to be a valuable tool to investigate the effect of surfaces on polymer diffusion beyond the first adsorbed polymer layer on the 100 nm length scale.

  2. Normal and Anomalous Diffusion: An Analytical Study Based on Quantum Collision Dynamics and Boltzmann Transport Theory.

    PubMed

    Mahakrishnan, Sathiya; Chakraborty, Subrata; Vijay, Amrendra

    2016-09-15

    Diffusion, an emergent nonequilibrium transport phenomenon, is a nontrivial manifestation of the correlation between the microscopic dynamics of individual molecules and their statistical behavior observed in experiments. We present a thorough investigation of this viewpoint using the mathematical tools of quantum scattering, within the framework of Boltzmann transport theory. In particular, we ask: (a) How and when does a normal diffusive transport become anomalous? (b) What physical attribute of the system is conceptually useful to faithfully rationalize large variations in the coefficient of normal diffusion, observed particularly within the dynamical environment of biological cells? To characterize the diffusive transport, we introduce, analogous to continuous phase transitions, the curvature of the mean square displacement as an order parameter and use the notion of quantum scattering length, which measures the effective interactions between the diffusing molecules and the surrounding, to define a tuning variable, η. We show that the curvature signature conveniently differentiates the normal diffusion regime from the superdiffusion and subdiffusion regimes and the critical point, η = ηc, unambiguously determines the coefficient of normal diffusion. To solve the Boltzmann equation analytically, we use a quantum mechanical expression for the scattering amplitude in the Boltzmann collision term and obtain a general expression for the effective linear collision operator, useful for a variety of transport studies. We also demonstrate that the scattering length is a useful dynamical characteristic to rationalize experimental observations on diffusive transport in complex systems. We assess the numerical accuracy of the present work with representative experimental results on diffusion processes in biological systems. Furthermore, we advance the idea of temperature-dependent effective voltage (of the order of 1 μV or less in a biological environment, for example) as a dynamical cause of the perpetual molecular movement, which eventually manifests as an ordered motion, called the diffusion.

  3. Electrochemical Impedance Imaging via the Distribution of Diffusion Times

    NASA Astrophysics Data System (ADS)

    Song, Juhyun; Bazant, Martin Z.

    2018-03-01

    We develop a mathematical framework to analyze electrochemical impedance spectra in terms of a distribution of diffusion times (DDT) for a parallel array of random finite-length Warburg (diffusion) or Gerischer (reaction-diffusion) circuit elements. A robust DDT inversion method is presented based on complex nonlinear least squares regression with Tikhonov regularization and illustrated for three cases of nanostructured electrodes for energy conversion: (i) a carbon nanotube supercapacitor, (ii) a silicon nanowire Li-ion battery, and (iii) a porous-carbon vanadium flow battery. The results demonstrate the feasibility of nondestructive "impedance imaging" to infer microstructural statistics of random, heterogeneous materials.

  4. Generalized Hydrodynamic Treatment of the Interplay between Restricted Transport and Catalytic Reactions in Nanoporous Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackerman, David M.; Wang, Jing; Evans, James W.

    2012-05-30

    Behavior of catalytic reactions in narrow pores is controlled by a delicate interplay between fluctuations in adsorption-desorption at pore openings, restricted diffusion, and reaction. This behavior is captured by a generalized hydrodynamic formulation of appropriate reaction-diffusion equations (RDE). These RDE incorporate an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The RDE elucidate the nonexponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth.

  5. Generalized hydrodynamic treatment of the interplay between restricted transport and catalytic reactions in nanoporous materials.

    PubMed

    Ackerman, David M; Wang, Jing; Evans, James W

    2012-06-01

    Behavior of catalytic reactions in narrow pores is controlled by a delicate interplay between fluctuations in adsorption-desorption at pore openings, restricted diffusion, and reaction. This behavior is captured by a generalized hydrodynamic formulation of appropriate reaction-diffusion equations (RDE). These RDE incorporate an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The RDE elucidate the nonexponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth.

  6. Reaction-diffusion systems coupled at the boundary and the Morse-Smale property

    NASA Astrophysics Data System (ADS)

    Broche, Rita de Cássia D. S.; de Oliveira, Luiz Augusto F.

    We study an one-dimensional nonlinear reaction-diffusion system coupled on the boundary. Such system comes from modeling problems of temperature distribution on two bars of same length, jointed together, with different diffusion coefficients. We prove the transversality property of unstable and stable manifolds assuming all equilibrium points are hyperbolic. To this end, we write the system as an equation with noncontinuous diffusion coefficient. We then study the nonincreasing property of the number of zeros of a linearized nonautonomous equation as well as the Sturm-Liouville properties of the solutions of a linear elliptic problem.

  7. Turbulent flow near the wall of a conical diffuser

    NASA Astrophysics Data System (ADS)

    Satyaprakash, B. R.; Azad, R. S.; Nagabushana, K. A.; Kassab, S. Z.

    The turbulent flow in a conical diffuser is predicted adapting the boundary layer calculation method of Bradshaw, Ferris and Atwell. The predicted mean velocity and shear stress profiles, using the experimental data as initial input, agree well with the measured profiles. The universal low of the wall present at the inlet vahishes in the initial region and reappears later, but the width of validity is diminished considerably. The effect of divergence is present in the initial region of the diffuser only. This technique fails to predict beyond one half the total length of the diffuser.

  8. PTV analysis of the entrained air into the diesel spray at high-pressure injection

    NASA Astrophysics Data System (ADS)

    Toda, Naoki; Yamashita, Hayato; Mashida, Makoto

    2014-08-01

    In order to clarify the effect of high-pressure injection on soot reduction in terms of the air entrainment into spray, the air flow surrounding the spray and set-off length indicating the distance from the nozzle tip to the flame region in diffusion diesel combustion were investigated using 300MPa injection of a multi-hole injector. The measurement of the air entrainment flow was carried out at non-evaporating condition using consecutive PTV (particle tracking velocimetry) method with a high-speed camera and a high-frequency pulse YAG laser. The set-off length was measured at highpressure and high-temperature using the combustion bomb of constant volume and optical system of shadow graph method. And the amount of air entrainment into spray until reaching set-off length in diffusion combustion was studied as a factor of soot formation.

  9. Creating and optimizing interfaces for electric-field and photon-induced charge transfer.

    PubMed

    Park, Byoungnam; Whitham, Kevin; Cho, Jiung; Reichmanis, Elsa

    2012-11-27

    We create and optimize a structurally well-defined electron donor-acceptor planar heterojunction interface in which electric-field and/or photon-induced charge transfer occurs. Electric-field-induced charge transfer in the dark and exciton dissociation at a pentacene/PCBM interface were probed by in situ thickness-dependent threshold voltage shift measurements in field-effect transistor devices during the formation of the interface. Electric-field-induced charge transfer at the interface in the dark is correlated with development of the pentacene accumulation layer close to PCBM, that is, including interface area, and dielectric relaxation time in PCBM. Further, we demonstrate an in situ test structure that allows probing of both exciton diffusion length and charge transport properties, crucial for optimizing optoelectronic devices. Competition between the optical absorption length and the exciton diffusion length in pentacene governs exciton dissociation at the interface. Charge transfer mechanisms in the dark and under illumination are detailed.

  10. Microscopic theory for dynamics in entangled polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Yamamoto, Umi

    New microscopic theories for describing dynamics in polymer nanocomposites are developed and applied. The problem is addressed from two distinct perspectives and using two different theoretical approaches. The first half of this dissertation studies the long-time and intermediate-time dynamics of nanoparticles in entangled and unentangled polymer melts for dilute particle concentrations. Using a combination of mode-coupling, Brownian motion, and polymer physics ideas, the nanoparticle long-time diffusion coefficients is formulated in terms of multiple length-scales, packing microstructures, and spatially-resolved polymer density fluctuation dynamics. The key motional mechanism is described via the parallel relaxation of the force exerted on the particle controlled by collective polymer constraint-release and the particle self-motion. A sharp but smooth crossover from the hydrodynamic to the non-hydrodynamic regime is predicted based on the Stokes-Einstein violation ratio as a function of all the system variables. Quantitative predictions are made for the recovery of the Stokes-Einstein law, and the diffusivity in the crossover regime agrees surprisingly well with large-scale molecular dynamics simulations for all particle sizes and chain lengths studied. The approach is also extended to address intermediate-time anomalous transport of a single nanoparticle and two-particle relative diffusion. The second half of this dissertation focuses on developing a novel dynamical theory for a liquid of infinitely-thin rods in the presence of hard spherical obstacles, aiming at a technical and conceptual extension of the existing paradigm for entangled polymer dynamics. As a fundamental theoretical development, the two-component generalization of a first-principles dynamic meanfield approach is presented. The theory enforces inter-needle topological uncrossability and needlesphere impenetrability in a unified manner, leading to a generalized theory of entanglements that includes the sphere excluded volume effect. Coupled self-consistent equations for the generalized diffusion tensors are constructed, and the expressions for the transverse localization lengths and the long-time diffusion coefficients are derived. In the static sphere limit, we find the effective tube diameter is generally reduced as a function of a single confinement parameter that quantifies the number of particles penetrating into the pure-polymer tube. A preliminary extension to treat flexible chain melts has also been achieved, and shown to agree reasonably well with simulations. The anisotropic needle diffusion constants are rich functions of the length-scale ratios, needle concentration and particle volume fraction. We show that the steric blocking of the longitudinal motion causes a literal and simultaneous localization of the two diffusion channels, and entangled needles can diffuse via a modified reptation dynamics over a window of polymer concentration but the compression of the tube and the blocking of the reptation motion must be accounted for. Generalization to treat mobile spheres is also possible and fully formulated.

  11. Self-similar space-time evolution of an initial density discontinuity

    NASA Astrophysics Data System (ADS)

    Rekaa, V. L.; Pécseli, H. L.; Trulsen, J. K.

    2013-07-01

    The space-time evolution of an initial step-like plasma density variation is studied. We give particular attention to formulate the problem in a way that opens for the possibility of realizing the conditions experimentally. After a short transient time interval of the order of the electron plasma period, the solution is self-similar as illustrated by a video where the space-time evolution is reduced to be a function of the ratio x/t. Solutions of this form are usually found for problems without characteristic length and time scales, in our case the quasi-neutral limit. By introducing ion collisions with neutrals into the numerical analysis, we introduce a length scale, the collisional mean free path. We study the breakdown of the self-similarity of the solution as the mean free path is made shorter than the system length. Analytical results are presented for charge exchange collisions, demonstrating a short time collisionless evolution with an ensuing long time diffusive relaxation of the initial perturbation. For large times, we find a diffusion equation as the limiting analytical form for a charge-exchange collisional plasma, with a diffusion coefficient defined as the square of the ion sound speed divided by the (constant) ion collision frequency. The ion-neutral collision frequency acts as a parameter that allows a collisionless result to be obtained in one limit, while the solution of a diffusion equation is recovered in the opposite limit of large collision frequencies.

  12. Nanorod Mobility within Entangled Wormlike Micelle Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jonghun; Grein-Iankovski, Aline; Narayanan, Suresh

    In the semi-dilute regime, wormlike micelles form an isotropic entangled microstructure that is similar to that of an entangled polymer solution with a characteristic, nanometer-scale entanglement mesh size. We report a combined x-ray photon correlation spectroscopy (XPCS) and rheology study to investigate the translational dynamics of gold nanorods in semi-dilute solutions of entangled wormlike micelles formed by the surfactant cetylpyridinium chloride (CPyCl) and the counter-ion sodium salicylate (NaSal). The CPyCl concentration is varied to tune the entanglement mesh size over a range that spans from approximately equal to the nanorod diameter to larger than the nanorod length. The NaSal concentrationmore » is varied along with the CPyCl concentration so that the solutions have the maximum viscosity for given CPyCl concentration. On short time scales the nanorods are localized on a length scale matching that expected from the high-frequency elastic modulus of the solutions as long as the mesh size is smaller than the rod length. On longer time scales, the nanorods undergo free diffusion. At the highest CPyCl concentrations, the nanorod diffusivity approaches the value expected based on the macroscopic viscosity of the solutions, but it increases with decreasing CPyCl concentration more rapidly than expected from the macroscopic viscosity. A recent model by Cai et al. [Cai, L.-H.; Panyukov, S.; Rubinstein, M. Macromolecules 2015, 48, 847-862.] for nanoparticle “hopping” diffusion in entangled polymer solutions accounts quantitatively for this enhanced diffusivity.« less

  13. Multiscale model of light harvesting by photosystem II in plants

    DOE PAGES

    Amarnath, Kapil; Bennett, Doran I. G.; Schneider, Anna R.; ...

    2016-01-19

    The first step of photosynthesis in plants is the absorption of sunlight by pigments in the antenna complexes of photosystem II (PSII), followed by transfer of the nascent excitation energy to the reaction centers, where long-term storage as chemical energy is initiated. Quantum mechanical mechanisms must be invoked to explain the transport of excitation within individual antenna. However, it is unclear how these mechanisms influence transfer across assemblies of antenna and thus the photochemical yield at reaction centers in the functional thylakoid membrane. In this paper, we model light harvesting at the several-hundred-nanometer scale of the PSII membrane, while preservingmore » the dominant quantum effects previously observed in individual complexes. We show that excitation moves diffusively through the antenna with a diffusion length of 50 nm until it reaches a reaction center, where charge separation serves as an energetic trap. The diffusion length is a single parameter that incorporates the enhancing effect of excited state delocalization on individual rates of energy transfer as well as the complex kinetics that arise due to energy transfer and loss by decay to the ground state. The diffusion length determines PSII’s high quantum efficiency in ideal conditions, as well as how it is altered by the membrane morphology and the closure of reaction centers. Finally, we anticipate that the model will be useful in resolving the nonphotochemical quenching mechanisms that PSII employs in conditions of high light stress.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfram, Phillip J.; Ringler, Todd D.; Maltrud, Mathew E.

    Isopycnal diffusivity due to stirring by mesoscale eddies in an idealized, wind-forced, eddying, midlatitude ocean basin is computed using Lagrangian, in Situ, Global, High-Performance Particle Tracking (LIGHT). Simulation is performed via LIGHT within the Model for Prediction across Scales Ocean (MPAS-O). Simulations are performed at 4-, 8-, 16-, and 32-km resolution, where the first Rossby radius of deformation (RRD) is approximately 30 km. Scalar and tensor diffusivities are estimated at each resolution based on 30 ensemble members using particle cluster statistics. Each ensemble member is composed of 303 665 particles distributed across five potential density surfaces. Diffusivity dependence upon modelmore » resolution, velocity spatial scale, and buoyancy surface is quantified and compared with mixing length theory. The spatial structure of diffusivity ranges over approximately two orders of magnitude with values of O(10 5) m 2 s –1 in the region of western boundary current separation to O(10 3) m 2 s –1 in the eastern region of the basin. Dominant mixing occurs at scales twice the size of the first RRD. Model resolution at scales finer than the RRD is necessary to obtain sufficient model fidelity at scales between one and four RRD to accurately represent mixing. Mixing length scaling with eddy kinetic energy and the Lagrangian time scale yield mixing efficiencies that typically range between 0.4 and 0.8. In conclusion, a reduced mixing length in the eastern region of the domain relative to the west suggests there are different mixing regimes outside the baroclinic jet region.« less

  15. Nanorod Mobility within Entangled Wormlike Micelle Solutions

    DOE PAGES

    Lee, Jonghun; Grein-Iankovski, Aline; Narayanan, Suresh; ...

    2016-12-20

    In the semi-dilute regime, wormlike micelles form an isotropic entangled microstructure that is similar to that of an entangled polymer solution with a characteristic, nanometer-scale entanglement mesh size. We report a combined x-ray photon correlation spectroscopy (XPCS) and rheology study to investigate the translational dynamics of gold nanorods in semi-dilute solutions of entangled wormlike micelles formed by the surfactant cetylpyridinium chloride (CPyCl) and the counter-ion sodium salicylate (NaSal). The CPyCl concentration is varied to tune the entanglement mesh size over a range that spans from approximately equal to the nanorod diameter to larger than the nanorod length. The NaSal concentrationmore » is varied along with the CPyCl concentration so that the solutions have the maximum viscosity for given CPyCl concentration. On short time scales the nanorods are localized on a length scale matching that expected from the high-frequency elastic modulus of the solutions as long as the mesh size is smaller than the rod length. On longer time scales, the nanorods undergo free diffusion. At the highest CPyCl concentrations, the nanorod diffusivity approaches the value expected based on the macroscopic viscosity of the solutions, but it increases with decreasing CPyCl concentration more rapidly than expected from the macroscopic viscosity. A recent model by Cai et al. [Cai, L.-H.; Panyukov, S.; Rubinstein, M. Macromolecules 2015, 48, 847-862.] for nanoparticle “hopping” diffusion in entangled polymer solutions accounts quantitatively for this enhanced diffusivity.« less

  16. Slower Perception Followed by Faster Lexical Decision in Longer Words: A Diffusion Model Analysis

    PubMed Central

    Oganian, Yulia; Froehlich, Eva; Schlickeiser, Ulrike; Hofmann, Markus J.; Heekeren, Hauke R.; Jacobs, Arthur M.

    2016-01-01

    Effects of stimulus length on reaction times (RTs) in the lexical decision task are the topic of extensive research. While slower RTs are consistently found for longer pseudo-words, a finding coined the word length effect (WLE), some studies found no effects for words, and yet others reported faster RTs for longer words. Moreover, the WLE depends on the orthographic transparency of a language, with larger effects in more transparent orthographies. Here we investigate processes underlying the WLE in lexical decision in German-English bilinguals using a diffusion model (DM) analysis, which we compared to a linear regression approach. In the DM analysis, RT-accuracy distributions are characterized using parameters that reflect latent sub-processes, in particular evidence accumulation and decision-independent perceptual encoding, instead of typical parameters such as mean RT and accuracy. The regression approach showed a decrease in RTs with length for pseudo-words, but no length effect for words. However, DM analysis revealed that the null effect for words resulted from opposing effects of length on perceptual encoding and rate of evidence accumulation. Perceptual encoding times increased with length for words and pseudo-words, whereas the rate of evidence accumulation increased with length for real words but decreased for pseudo-words. A comparison between DM parameters in German and English suggested that orthographic transparency affects perceptual encoding, whereas effects of length on evidence accumulation are likely to reflect contextual information and the increase in available perceptual evidence with length. These opposing effects may account for the inconsistent findings on WLEs. PMID:26779075

  17. Slower Perception Followed by Faster Lexical Decision in Longer Words: A Diffusion Model Analysis.

    PubMed

    Oganian, Yulia; Froehlich, Eva; Schlickeiser, Ulrike; Hofmann, Markus J; Heekeren, Hauke R; Jacobs, Arthur M

    2015-01-01

    Effects of stimulus length on reaction times (RTs) in the lexical decision task are the topic of extensive research. While slower RTs are consistently found for longer pseudo-words, a finding coined the word length effect (WLE), some studies found no effects for words, and yet others reported faster RTs for longer words. Moreover, the WLE depends on the orthographic transparency of a language, with larger effects in more transparent orthographies. Here we investigate processes underlying the WLE in lexical decision in German-English bilinguals using a diffusion model (DM) analysis, which we compared to a linear regression approach. In the DM analysis, RT-accuracy distributions are characterized using parameters that reflect latent sub-processes, in particular evidence accumulation and decision-independent perceptual encoding, instead of typical parameters such as mean RT and accuracy. The regression approach showed a decrease in RTs with length for pseudo-words, but no length effect for words. However, DM analysis revealed that the null effect for words resulted from opposing effects of length on perceptual encoding and rate of evidence accumulation. Perceptual encoding times increased with length for words and pseudo-words, whereas the rate of evidence accumulation increased with length for real words but decreased for pseudo-words. A comparison between DM parameters in German and English suggested that orthographic transparency affects perceptual encoding, whereas effects of length on evidence accumulation are likely to reflect contextual information and the increase in available perceptual evidence with length. These opposing effects may account for the inconsistent findings on WLEs.

  18. Detection of submicron scale cracks and other surface anomalies using positron emission tomography

    DOEpatents

    Cowan, Thomas E.; Howell, Richard H.; Colmenares, Carlos A.

    2004-02-17

    Detection of submicron scale cracks and other mechanical and chemical surface anomalies using PET. This surface technique has sufficient sensitivity to detect single voids or pits of sub-millimeter size and single cracks or fissures of millimeter size; and single cracks or fissures of millimeter-scale length, micrometer-scale depth, and nanometer-scale length, micrometer-scale depth, and nanometer-scale width. This technique can also be applied to detect surface regions of differing chemical reactivity. It may be utilized in a scanning or survey mode to simultaneously detect such mechanical or chemical features over large interior or exterior surface areas of parts as large as about 50 cm in diameter. The technique involves exposing a surface to short-lived radioactive gas for a time period, removing the excess gas to leave a partial monolayer, determining the location and shape of the cracks, voids, porous regions, etc., and calculating the width, depth, and length thereof. Detection of 0.01 mm deep cracks using a 3 mm detector resolution has been accomplished using this technique.

  19. Simulations of singlet exciton diffusion in organic semiconductors: a review

    DOE PAGES

    Bjorgaard, Josiah A.; Kose, Muhammet Erkan

    2014-12-22

    Our review describes the various aspects of simulation strategies for exciton diffusion in condensed phase thin films of organic semiconductors. Several methods for calculating energy transfer rate constants are discussed along with procedures for how to account for energetic disorder. Exciton diffusion can be modelled by using kinetic Monte-Carlo methods or master equations. Recent literature on simulation efforts for estimating exciton diffusion lengths of various conjugated polymers and small molecules are introduced. Moreover, these studies are discussed in the context of the effects of morphology on exciton diffusion and the necessity of accurate treatment of disorder for comparison of simulationmore » results with those of experiment.« less

  20. The role of FDG-PET in detecting rejection after liver transplantation.

    PubMed

    Watson, Ashley M; Bhutiani, Neal; Philips, Prejesh; Davis, Eric G; Eng, Mary; Cannon, Robert M; Jones, Christopher M

    2018-05-15

    The activation and increased metabolic activity of T cells in acute cellular rejection could allow fluoro-2-deoxyglucose positron emission tomography to be utilized for detection of acute cellular rejection. The objective of this study was to evaluate the effectiveness of fluoro-2-deoxyglucose positron emission tomography in detecting acute cellular rejection in the clinical setting. Fluoro-2-deoxyglucose positron emission tomography studies were performed on 88 orthotopic liver transplant patients at 7 and 17 days postoperatively (first positron emission tomography and second positron emission tomography, respectively). Additional studies were performed if patients had suspicion of rejection and at resolution of rejection (third positron emission tomography and fourth positron emission tomography, respectively). A circular region of interest was placed over the liver for semiquantitative evaluation of fluoro-2-deoxyglucose positron emission tomography images by means of standard uptake values. Eighteen of 88 patients in our study (20.5%) had histologically proven acute cellular rejection during a 16 ± 11 day follow-up. There was no significant difference between the standard uptake values of first positron emission tomography among non-rejecters versus rejecters (2.05 ±0.46 non-rejecters versus 1.82 ± 0.40 rejecters, P = .127). Within the rejection cohort, the standard uptake values from the third positron emission tomography (rejection) were higher compared to the first positron emission tomography (baseline) (2.41 ± 0.48 third positron emission tomography versus 1.82 ± 0.41 first positron emission tomography, P < .001). Increased signal on fluoro-2-deoxyglucose positron emission tomography over baseline is associated with acute cellular rejection in liver transplant recipients. Additional prospective validation studies are essential to define the role of fluoro-2-deoxyglucose positron emission tomography scan as an early marker for acute cellular rejection. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. EGRET Diffuse Gamma Ray Maps Between 30 MeV and 10 GeV

    NASA Technical Reports Server (NTRS)

    Cillis, A, N.; Hartman, R. C.

    2004-01-01

    This paper presents all-sky maps of diffuse gamma radiation in various energy ranges between 30 MeV and 10 GeV, based on data collected by the EGRET instrument on the Compton Gamma Ray Observatory. Although the maps can be used for a variety of applications. the immediate goal is the generation of diffuse gamma-ray maps which can be used as a diffuse background/foreground for point source analysis of the data to be obtained from new high-energy gamma-ray missions like GLAST and AGILE. To generate the diffuse gamma maps from the raw EGRET maps, the point sources in the Third EGRET Catalog were subtracted out using the appropriate point spread function for each energy range. After that, smoothing was performed to minimize the effects of photon statistical noise. A smoothing length of 1 deg vas used for the Galactic plane maps. For the all-sky maps, a procedure was used which resulted in a smoothing length roughly equivalent to 4 deg. The result of this work is 16 maps of different energy intervals for absolute value of b < or equal to 20 deg, and 32 all-sky maps, 16 in equatorial coordinates (J2000) and 16 in Galactic coordinates.

  2. EGRET Diffuse Gamma Ray Maps Between 30 MeV and 10 GeV

    NASA Technical Reports Server (NTRS)

    Cillis, A. N.; Hartman, R. C.

    2004-01-01

    This paper presents all-sky maps of diffuse gamma radiation in various energy ranges between 30 MeV and 10 GeV, based on data collected by the EGRET instrument on the Compton Gamma Ray Observatory. Although the maps can be used for a variety of applications, the immediate goal is the generation of diffuse gamma-ray maps which can be used as a diffuse background/foreground for point source analysis of the data to be obtained from new high-energy gamma-ray missions like GLAST and AGILE. To generate the diffuse gamma maps from the raw EGRET maps, the point sources in the Third EGRET Catalog were subtracted out using the appropriate point spread function for each energy range. After that, smoothing was performed to minimize the effects of photon statistical noise. A smoothing length of 1deg was used for the Galactic plane maps. For the all-sky maps, a procedure was used which resulted in a smoothing length roughly equivalent to 4deg. The result of this work is 16 maps of different energy intervals for [b]less than or equal to 20deg, and 32 all-sky maps, 16 in equatorial coordinates (J2000) and 16 in Galactic coordinates.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makhnovskii, Yurii A.; Berezhkovskii, Alexander M.; Antipov, Anatoly E.

    This paper is devoted to particle transport in a tube formed by alternating wide and narrow sections, in the presence of an external biasing force. The focus is on the effective transport coefficients—mobility and diffusivity, as functions of the biasing force and the geometric parameters of the tube. Dependences of the effective mobility and diffusivity on the tube geometric parameters are known in the limiting cases of no bias and strong bias. The approximations used to obtain these results are inapplicable at intermediate values of the biasing force. To bridge the two limits Brownian dynamics simulations were run to determinemore » the transport coefficients at intermediate values of the force. The simulations were performed for a representative set of tube geometries over a wide range of the biasing force. They revealed that there is a range of the narrow section length, where the force dependence of the mobility has a maximum. In contrast, the diffusivity is a monotonically increasing function of the force. A simple formula is proposed, which reduces to the known dependences of the diffusivity on the tube geometric parameters in both limits of zero and strong bias. At intermediate values of the biasing force, the formula catches the diffusivity dependence on the narrow section length, if the radius of these sections is not too small.« less

  4. Anomalous diffusion on a random comblike structure

    NASA Astrophysics Data System (ADS)

    Havlin, Shlomo; Kiefer, James E.; Weiss, George H.

    1987-08-01

    We have recently studied a random walk on a comblike structure as an analog of diffusion on a fractal structure. In our earlier work, the comb was assumed to have a deterministic structure, the comb having teeth of infinite length. In the present paper we study diffusion on a one-dimensional random comb, the length of whose teeth are random variables with an asymptotic stable law distribution φ(L)~L-(1+γ) where 0<γ<=1. Two mean-field methods are used for the analysis, one based on the continuous-time random walk, and the second a self-consistent scaling theory. Both lead to the same conclusions. We find that the diffusion exponent characterizing the mean-square displacement along the backbone of the comb is dw=4/(1+γ) for γ<1 and dw=2 for γ>=1. The probability of being at the origin at time t is P0(t)~t-ds/2 for large t with ds=(3-γ)/2 for γ<1 and ds=1 for γ>1. When a field is applied along the backbone of the comb the diffusion exponent is dw=2/(1+γ) for γ<1 and dw=1 for γ>=1. The theoretical results are confirmed using the exact enumeration method.

  5. Probing Exciton Diffusion and Dissociation in Single-Walled Carbon Nanotube-C60 Heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowgiallo, Anne-Marie; Mistry, Kevin S.; Johnson, Justin C.

    The efficiency of thin-film organic photovoltaic (OPV) devices relies heavily upon the transport of excitons to type-II heterojunction interfaces, where there is sufficient driving force for exciton dissociation and ultimately the formation of charge carriers. Semiconducting single-walled carbon nanotubes (SWCNTs) are strong near-infrared absorbers that form type-II heterojunctions with fullerenes such as C60. Although the efficiencies of SWCNT-fullerene OPV devices have climbed over the past few years, questions remain regarding the fundamental factors that currently limit their performance. In this study, we determine the exciton diffusion length in the C60 layer of SWCNT-C60 bilayer active layers using femtosecond transient absorptionmore » measurements. We demonstrate that hole transfer from photoexcited C60 molecules to SWCNTs can be tracked by the growth of narrow spectroscopic signatures of holes in the SWCNT 'reporter layer'. In bilayers with thick C60 layers, the SWCNT charge-related signatures display a slow rise over hundreds of picoseconds, reflecting exciton diffusion through the C60 layer to the interface. A model based on exciton diffusion with a Beer-Lambert excitation profile, as well as Monte Carlo simulations, gives the best fit to the data as a function of C60 layer thickness using an exciton diffusion length of approximately 5 nm.« less

  6. Quasielastic neutron scattering studies on glass-forming ionic liquids with imidazolium cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kofu, Maiko; Inamura, Yasuhiro; Miyazaki, Kyoko

    2015-12-21

    Relaxation processes for imidazolium-based ionic liquids (ILs) were investigated by means of an incoherent quasielastic neutron scattering technique. In order to clarify the cation and anion effects on the relaxation processes, ten samples were measured. For all of the samples, we found three relaxations at around 1 ps, 10 ps, and 100 ps-10 ns, each corresponding to the alkyl reorientation, the relaxation related to the imidazolium ring, and the ionic diffusion. The activation energy (E{sub a}) for the alkyl relaxation is insensitive to both anion and alkyl chain lengths. On the other hand, for the imidazolium relaxation and the ionicmore » diffusion processes, E{sub a} increases as the anion size decreases but is almost independent of the alkyl chain length. This indicates that the ionic diffusion and imidazolium relaxation are governed by the Coulombic interaction between the core parts of the cations (imidazolium ring) and the anions. This is consistent with the fact that the imidazolium-based ILs have nanometer scale structures consisting of ionic and neutral (alkyl chain) domains. It is also found that there is a clear correlation between the ionic diffusion and viscosity, indicating that the ionic diffusion is mainly associated with the glass transition which is one of the characteristics of imidazolium-based ILs.« less

  7. Probing Exciton Diffusion and Dissociation in Single-Walled Carbon Nanotube-C(60) Heterojunctions.

    PubMed

    Dowgiallo, Anne-Marie; Mistry, Kevin S; Johnson, Justin C; Reid, Obadiah G; Blackburn, Jeffrey L

    2016-05-19

    The efficiency of thin-film organic photovoltaic (OPV) devices relies heavily upon the transport of excitons to type-II heterojunction interfaces, where there is sufficient driving force for exciton dissociation and ultimately the formation of charge carriers. Semiconducting single-walled carbon nanotubes (SWCNTs) are strong near-infrared absorbers that form type-II heterojunctions with fullerenes such as C60. Although the efficiencies of SWCNT-fullerene OPV devices have climbed over the past few years, questions remain regarding the fundamental factors that currently limit their performance. In this study, we determine the exciton diffusion length in the C60 layer of SWCNT-C60 bilayer active layers using femtosecond transient absorption measurements. We demonstrate that hole transfer from photoexcited C60 molecules to SWCNTs can be tracked by the growth of narrow spectroscopic signatures of holes in the SWCNT "reporter layer". In bilayers with thick C60 layers, the SWCNT charge-related signatures display a slow rise over hundreds of picoseconds, reflecting exciton diffusion through the C60 layer to the interface. A model based on exciton diffusion with a Beer-Lambert excitation profile, as well as Monte Carlo simulations, gives the best fit to the data as a function of C60 layer thickness using an exciton diffusion length of approximately 5 nm.

  8. Correlation of simultaneously acquired diffusion-weighted imaging and 2-deoxy-[18F] fluoro-2-D-glucose positron emission tomography of pulmonary lesions in a dedicated whole-body magnetic resonance/positron emission tomography system.

    PubMed

    Schmidt, Holger; Brendle, Cornelia; Schraml, Christina; Martirosian, Petros; Bezrukov, Ilja; Hetzel, Jürgen; Müller, Mark; Sauter, Alexander; Claussen, Claus D; Pfannenberg, Christina; Schwenzer, Nina F

    2013-05-01

    Hybrid whole-body magnetic resonance/positron emission tomography (MR/PET) systems are a new diagnostic tool enabling the simultaneous acquisition of morphologic and multiple functional data and thus allowing for a diversified characterization of oncological diseases.The aim of this study was to investigate the image and alignment quality of MR/PET in patients with pulmonary lesions and to compare the congruency of the 2 functional measurements of diffusion-weighted imaging (DWI) in MR imaging and 2-deoxy-[18F] fluoro-2-D-glucose (FDG) uptake in PET. A total of 15 patients were examined with a routine positron emission tomography/computer tomography (PET/CT) protocol and, subsequently, in a whole-body MR/PET scanner allowing for simultaneous PET and MR data acquisition. The PET and MR image quality was assessed visually using a 4-point score (1, insufficient; 4, excellent). The alignment quality of the rigidly registered PET/CT and MR/PET data sets was investigated on the basis of multiple anatomic landmarks of the lung using a scoring system from 1 (no alignment) to 4 (very good alignment). In addition, the alignment quality of the tumor lesions in PET/CT and MR/PET as well as for retrospective fusion of PET from PET/CT and MR images was assessed quantitatively and was compared between lesions strongly or less influenced by respiratory motion. The correlation of the simultaneously acquired DWI and FDG uptake in the pulmonary masses was analyzed using the minimum and mean apparent diffusion coefficient (ADC min and ADC mean) as well as the maximum and mean standardized uptake value (SUV max and SUV mean), respectively. In addition, the correlation of SUV max from PET/CT data was investigated as well. On lesions 3 cm or greater, a voxelwise analysis of ADC and SUV was performed. The visual evaluation revealed excellent image quality of the PET images (mean [SD] score, 3.6 [0.5]) and overall good image quality of DWI (mean [SD] score of 2.5 [0.5] for ADC maps and 2.7 [0.5] for diffusion-weighted images, respectively). The alignment quality of the data sets was very good in both MR/PET and PET/CT without significant differences (overall mean [SD] score of MR/PET, 3.8 [0.4]; PET/CT 3.6 [0.5]). Also, the alignment quality of the tumor lesions showed no significant differences between PET/CT and MR/PET (mean cumulative misalignment of MR/PET, 7.7 mm; PET/CT, 7.0 mm; P = 0.705) but between both modalities and a retrospective fusion (mean cumulative misalignment, 17.1 mm; P = 0.002 and P = 0.008 for PET/CT and MR/PET, respectively). Also, the comparison of the lesions strongly or less influenced by respiratory motion showed significant differences only for the retrospective fusion (21.3 mm vs 11.5 mm, respectively; P = 0.043). The ADC min and SUV max as measures of the cell density and glucose metabolism showed a significant reverse correlation (r = -0.80; P = 0.0006). No significant correlation was found between ADC mean and SUV mean (r = -0.42; P = 0.1392). Also, SUV max from the PET/CT data showed significant reverse correlation to ADC min (r = -0.62; P = 0.019). The voxelwise analysis of 5 pulmonary lesions each showed weak but significant negative correlation between ADC and SUV. Examinations of pulmonary lesions in a simultaneous whole-body MR/PET system provide diagnostic image quality in both modalities. Although DWI and FDG-PET reflect different tissue properties, there may very well be an association between the measures of both methods most probably because of increased cellularity and glucose metabolism of FDG-avid pulmonary lesions. A voxelwise DWI and FDG-PET correlation might provide a more sophisticated spatial characterization of pulmonary lesions.

  9. Applications of slow positrons to cancer research: Search for selectivity of positron annihilation to skin cancer

    NASA Astrophysics Data System (ADS)

    Jean, Y. C.; Li, Ying; Liu, Gaung; Chen, Hongmin; Zhang, Junjie; Gadzia, Joseph E.

    2006-02-01

    Slow positrons and positron annihilation spectroscopy (PAS) have been applied to medical research in searching for positron annihilation selectivity to cancer cells. We report the results of positron lifetime and Doppler broadening energy spectroscopies in human skin samples with and without cancer as a function of positron incident energy (up to 8 μm depth) and found that the positronium annihilates at a significantly lower rate and forms at a lower probability in the samples having either basal cell carcinoma (BCC) or squamous cell carcinoma (SCC) than in the normal skin. The significant selectivity of positron annihilation to skin cancer may open a new research area of developing positron annihilation spectroscopy as a novel medical tool to detect cancer formation externally and non-invasively at the early stages.

  10. Non-Gaussian diffusion in static disordered media

    NASA Astrophysics Data System (ADS)

    Luo, Liang; Yi, Ming

    2018-04-01

    Non-Gaussian diffusion is commonly considered as a result of fluctuating diffusivity, which is correlated in time or in space or both. In this work, we investigate the non-Gaussian diffusion in static disordered media via a quenched trap model, where the diffusivity is spatially correlated. Several unique effects due to quenched disorder are reported. We analytically estimate the diffusion coefficient Ddis and its fluctuation over samples of finite size. We show a mechanism of population splitting in the non-Gaussian diffusion. It results in a sharp peak in the distribution of displacement P (x ,t ) around x =0 , that has frequently been observed in experiments. We examine the fidelity of the coarse-grained diffusion map, which is reconstructed from particle trajectories. Finally, we propose a procedure to estimate the correlation length in static disordered environments, where the information stored in the sample-to-sample fluctuation has been utilized.

  11. Manipulation of positron orbits in a dipole magnetic field with fluctuating electric fields

    NASA Astrophysics Data System (ADS)

    Saitoh, H.; Horn-Stanja, J.; Nißl, S.; Stenson, E. V.; Hergenhahn, U.; Pedersen, T. Sunn; Singer, M.; Dickmann, M.; Hugenschmidt, C.; Stoneking, M. R.; Danielson, J. R.; Surko, C. M.

    2018-01-01

    We report the manipulation of positron orbits in a toroidal dipole magnetic field configuration realized with electric fields generated by segmented electrodes. When the toroidal circulation motion of positrons in the dipole field is coupled with time-varying electric fields generated by azimuthally segmented outer electrodes, positrons undergo oscillations of their radial positions. This enables quick manipulation of the spatial profiles of positrons in a dipole field trap by choosing appropriate frequency, amplitude, phase, and gating time of the electric fields. According to numerical orbit analysis, we applied these electric fields to positrons injected from the NEPOMUC slow positron facility into a prototype dipole field trap experiment with a permanent magnet. Measurements with annihilation γ-rays clearly demonstrated the efficient compression effects of positrons into the strong magnetic field region of the dipole field configuration. This positron manipulation technique can be used as one of essential tools for future experiments on the formation of electron-positron plasmas.

  12. Density behavior of spatial birth-and-death stochastic evolution of mutating genotypes under selection rates

    NASA Astrophysics Data System (ADS)

    Finkelshtein, D.; Kondratiev, Yu.; Kutoviy, O.; Molchanov, S.; Zhizhina, E.

    2014-10-01

    We consider birth-and-death stochastic evolution of genotypes with different lengths. The genotypes might mutate, which provides a stochastic changing of lengths by a free diffusion law. The birth and death rates are length dependent, which corresponds to a selection effect. We study an asymptotic behavior of a density for an infinite collection of genotypes. The cases of space homogeneous and space heterogeneous densities are considered.

  13. Diffused junction p(+)-n solar cells in bulk GaAs. II - Device characterization and modelling

    NASA Technical Reports Server (NTRS)

    Keeney, R.; Sundaram, L. M. G.; Rode, H.; Bhat, I.; Ghandhi, S. K.; Borrego, J. M.

    1984-01-01

    The photovoltaic characteristics of p(+)-n junction solar cells fabricated on bulk GaAs by an open tube diffusion technique are presented in detail. Quantum efficiency measurements were analyzed and compared to computer simulations of the cell structure in order to determine material parameters such as diffusion length, surface recombination velocity and junction depth. From the results obtained it is projected that proper optimization of the cell parameters can increase the efficiency of the cells to close to 20 percent.

  14. Matrix Isolation Spectroscopy Applied to Positron Moderatioin in Cryogenic Solids

    DTIC Science & Technology

    2011-07-01

    Current Positron Applications • 2-γ decay exploited in Positron Emission Tomography (PET) scanners. • Positrons localize & annihilate preferentially at...Air Force  Eglin Air Force Base AFRL-RW-EG-TP-2011-024 Matrix Isolation Spectroscopy Applied to Positron Moderation in Cryogenic Solids Distribution... Spectroscopy Applied to Positron Moderation in Cryogenic Solids 5a. CONTRACT NUMBER 5b. GRANT NUMBER 62602F 5c. PROGRAM ELEMENT NUMBER 6

  15. Reflection of Low Energy Positrons from the Surface of Highly Oriented Pyrolytic Graphite and Single Layer Graphene.

    NASA Astrophysics Data System (ADS)

    Imam, S. K.; Chirayath, V. A.; Chrysler, M. D.; Fairchild, A. J.; Gladen, R. W.; Koymen, A. R.; Weiss, A. H.; UT Arlington Positron Surface Laboratory Team

    A time of flight positron annihilation induced Auger electron spectrometer (TOF-PAES) was utilized to measure the reflection of positrons as a function of incident positron energy (0 to 10 eV) from the surface of highly oriented pyrolytic graphite (HOPG) and from a single layer graphene (SLG) on a Cu foil. A NaI scintillation detector was used to measure the annihilation gamma from the reflected positrons as a function of incident positron kinetic energy. The annihilation of the positrons on HOPG and SLG were simultaneously measured using another NaI detector near the sample. The Auger electrons emitted as a result of the annihilation of positrons from the surface of the sample were also measured concurrently. As the positron kinetic energy was increased, the number of reflected positrons calculated from the intensity under the annihilation gamma peak showed a steady decrease. The positronium formation measured at the sample using the gamma spectrum showed a peak at 6 eV. The intensity of the carbon KVV Auger peak showed a dip at the same energy. The correlation of the three signals, intensity of reflected positrons, positrons annihilating at the sample and the Auger intensity are discussed for both samples. This work was supported by NSF Grant No. DMR 1508719 and DMR 1338130.

  16. Deep-level transient spectroscopy studies of Ni- and Zn-diffused vapor-phase-epitaxy n-GaAs

    NASA Technical Reports Server (NTRS)

    Partin, D. L.; Chen, J. W.; Milnes, A. G.; Vassamillet, L. F.

    1979-01-01

    The paper presents deep-level transient spectroscopy studies of Ni- and Zn-diffused vapor-phase epitaxy n-GaAs. Nickel diffused into VPE n-GaAs reduces the hole diffusion length L sub p from 4.3 to 1.1 microns. Deep-level transient spectroscopy was used to identify energy levels in Ni-diffused GaAs; the as-grown VPE GaAs contains traces of these levels and an electron trap. Ni diffusion reduces the concentration of this level by an amount that matches the increase in concentration of each of the two Ni-related levels. A technique for measuring minority-carrier capture cross sections was developed, which indicates that L sub p in Ni-diffused VPE n-GaAs is controlled by the E sub c - 0.39 eV defect level.

  17. Diffusion of isolated DNA molecules: dependence on length and topology.

    PubMed

    Robertson, Rae M; Laib, Stephan; Smith, Douglas E

    2006-05-09

    The conformation and dynamics of circular polymers is a subject of considerable theoretical and experimental interest. DNA is an important example because it occurs naturally in different topological states, including linear, relaxed circular, and supercoiled circular forms. A fundamental question is how the diffusion coefficients of isolated polymers scale with molecular length and how they vary for different topologies. Here, diffusion coefficients D for relaxed circular, supercoiled, and linear DNA molecules of length L ranging from approximately 6 to 290 kbp were measured by tracking the Brownian motion of single molecules. A topology-independent scaling law D approximately L(-nu) was observed with nu(L) = 0.571 +/- 0.014, nu(C) = 0.589 +/- 0.018, and nu(S) = 0.571 +/- 0.057 for linear, relaxed circular, and supercoiled DNA, respectively, in good agreement with the scaling exponent of nu congruent with 0.588 predicted by renormalization group theory for polymers with significant excluded volume interactions. Our findings thus provide evidence in support of several theories that predict an effective diameter of DNA much greater than the Debye screening length. In addition, the measured ratio D(Circular)/D(Linear) = 1.32 +/- 0.014 was closer to the value of 1.45 predicted by using renormalization group theory than the value of 1.18 predicted by classical Kirkwood hydrodynamic theory and agreed well with a value of 1.31 predicted when incorporating a recently proposed expression for the radius of gyration of circular polymers into the Zimm model.

  18. Spin-Hall effect and emergent antiferromagnetic phase transition in n-Si

    NASA Astrophysics Data System (ADS)

    Lou, Paul C.; Kumar, Sandeep

    2018-04-01

    Spin current experiences minimal dephasing and scattering in Si due to small spin-orbit coupling and spin-lattice interactions is the primary source of spin relaxation. We hypothesize that if the specimen dimension is of the same order as the spin diffusion length then spin polarization will lead to non-equilibrium spin accumulation and emergent phase transition. In n-Si, spin diffusion length has been reported up to 6 μm. The spin accumulation in Si will modify the thermal transport behavior of Si, which can be detected with thermal characterization. In this study, we report observation of spin-Hall effect and emergent antiferromagnetic phase transition behavior using magneto-electro-thermal transport characterization. The freestanding Pd (1 nm)/Ni80Fe20 (75 nm)/MgO (1 nm)/n-Si (2 μm) thin film specimen exhibits a magnetic field dependent thermal transport and spin-Hall magnetoresistance behavior attributed to Rashba effect. An emergent phase transition is discovered using self-heating 3ω method, which shows a diverging behavior at 270 K as a function of temperature similar to a second order phase transition. We propose that spin-Hall effect leads to the spin accumulation and resulting emergent antiferromagnetic phase transition. We propose that the length scale for Rashba effect can be equal to the spin diffusion length and two-dimensional electron gas is not essential for it. The emergent antiferromagnetic phase transition is attributed to the site inversion asymmetry in diamond cubic Si lattice.

  19. Shapes of Nonbuoyant Round Luminous Hydrocarbon/Air Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Sunderland, P. B.; Urban, D. L.; Yuan, Z.-G.

    1999-01-01

    The shapes (luminous flame boundaries) of round luminous nonbuoyant soot-containing hydrocarbon/air laminar jet diffusion flames at microgravity were found from color video images obtained on orbit in the Space Shuttle Columbia. Test conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, ambient pressures of 35-130 kPa, initial jet diameters of 1.6 and 2.7 mm, and jet exit Reynolds numbers of 45-170. Present test times were 100-200 s and yielded steady axisymmetric flames that were close to the laminar smoke point (including flames both emitting and not emitting soot) with luminous flame lengths of 15-63 mm. The present soot-containing flames had larger luminous flame lengths than earlier ground-based observations having similar burner configurations: 40% larger than the luminous flame lengths of soot-containing low gravity flames observed using an aircraft (KC-135) facility due to reduced effects of accelerative disturbances and unsteadiness; roughly twice as large as the luminous flame lengths of soot-containing normal gravity flames due to the absence of effects of buoyant mixing and roughly twice as large as the luminous flame lengths of soot-free low gravity flames observed using drop tower facilities due to the presence of soot luminosity and possible reduced effects of unsteadiness. Simplified expressions to estimate the luminous flame boundaries of round nonbuoyant laminar jet diffusion flames were obtained from the classical analysis of Spalding (1979); this approach provided Successful Correlations of flame shapes for both soot-free and soot-containing flames, except when the soot-containing flames were in the opened-tip configuration that is reached at fuel flow rates near and greater than the laminar smoke point fuel flow rate.

  20. Shapes of Nonbuoyant Round Luminous Hydrocarbon/Air Laminar Jet Diffusion Flames. Appendix H

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Sunderland, P. B.; Urban, D. L.; Yuan, Z.-G.; Ross, Howard B. (Technical Monitor)

    2000-01-01

    The shapes (luminous flame boundaries) of round luminous nonbuoyant soot-containing hydrocarbon/air laminar jet diffusion flames at microgravity were found from color video images obtained on orbit in the Space Shuttle Columbia. Test conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K ambient pressures of 35-130 kPa, initial jet diameters of 1.6 and 2.7 mm, and jet exit Reynolds numbers of 45-170. Present test times were 100-200 s and yielded steady axisymmetric flames that were close to the laminar smoke point (including flames both emitting and not emitting soot) with luminous flame lengths of 15-63 mm. The present soot-containing flames had larger luminous flame lengths than earlier ground-based observations having similar burner configurations: 40% larger than the luminous flame lengths of soot-containing low gravity flames observed using an aircraft (KC-135) facility due to reduced effects of accelerative disturbances and unsteadiness; roughly twice as large as the luminous flame lengths of soot-containing normal gravity flames due to the absence of effects of buoyant mixing and roughly twice as large as the luminous flame lengths of soot-free low gravity flames observed using drop tower facilities due to the presence of soot luminosity and possible reduced effects of unsteadiness, Simplified expressions to estimate the luminous flame boundaries of round nonbuoyant laminar jet diffusion flames were obtained from the classical analysis of Spalding; this approach provided successful correlations of flame shapes for both soot-free and soot-containing flames, except when the soot-containing flames were in the opened-tip configuration that is reached at fuel flow rates near and greater than the laminar smoke point fuel flow rate.

  1. Progressive increase in brain glucose metabolism after intrathecal administration of autologous mesenchymal stromal cells in patients with diffuse axonal injury.

    PubMed

    Vaquero, Jesús; Zurita, Mercedes; Bonilla, Celia; Fernández, Cecilia; Rubio, Juan J; Mucientes, Jorge; Rodriguez, Begoña; Blanco, Edelio; Donis, Luis

    2017-01-01

    Cell therapy in neurological disability after traumatic brain injury (TBI) is in its initial clinical stage. We describe our preliminary clinical experience with three patients with diffuse axonal injury (DAI) who were treated with intrathecal administration of autologous mesenchymal stromal cells (MSCs). Three patients with established neurological sequelae due to DAI received intrathecally autologous MSCs. The total number of MSCs administered was 60 × 10 6 (one patient), 100 × 10 6 (one patient) and 300 × 10 6 (one patient). All three patients showed improvement after cell therapy, and subsequent studies with 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) showed a diffuse and progressive increase in brain glucose metabolism. Our present results suggest benefit of intrathecal administration of MSCs in patients with DAI, as well as a relationship between this type of treatment and increase in brain glucose metabolism. These preliminary findings raise the question of convenience of assessing the potential benefit of intrathecal administration of MSCs for brain diseases in which a decrease in glucose metabolism represents a crucial pathophysiological finding, such as Alzheimer's disease (AD) and other dementias. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  2. Joint reconstruction of PET-MRI by exploiting structural similarity

    NASA Astrophysics Data System (ADS)

    Ehrhardt, Matthias J.; Thielemans, Kris; Pizarro, Luis; Atkinson, David; Ourselin, Sébastien; Hutton, Brian F.; Arridge, Simon R.

    2015-01-01

    Recent advances in technology have enabled the combination of positron emission tomography (PET) with magnetic resonance imaging (MRI). These PET-MRI scanners simultaneously acquire functional PET and anatomical or functional MRI data. As function and anatomy are not independent of one another the images to be reconstructed are likely to have shared structures. We aim to exploit this inherent structural similarity by reconstructing from both modalities in a joint reconstruction framework. The structural similarity between two modalities can be modelled in two different ways: edges are more likely to be at similar positions and/or to have similar orientations. We analyse the diffusion process generated by minimizing priors that encapsulate these different models. It turns out that the class of parallel level set priors always corresponds to anisotropic diffusion which is sometimes forward and sometimes backward diffusion. We perform numerical experiments where we jointly reconstruct from blurred Radon data with Poisson noise (PET) and under-sampled Fourier data with Gaussian noise (MRI). Our results show that both modalities benefit from each other in areas of shared edge information. The joint reconstructions have less artefacts and sharper edges compared to separate reconstructions and the ℓ2-error can be reduced in all of the considered cases of under-sampling.

  3. Characteristics of Gaseous Diffusion Flames with High Temperature Combustion Air in Microgravity

    NASA Technical Reports Server (NTRS)

    Ghaderi, M.; Gupta, A. K.

    2003-01-01

    The characteristics of gaseous diffusion flames have been obtained using high temperature combustion air under microgravity conditions. The time resolved flame images under free fall microgravity conditions were obtained from the video images obtained. The tests results reported here were conducted using propane as the fuel and about 1000 C combustion air. The burner included a 0.686 mm diameter central fuel jet injected into the surrounding high temperature combustion air. The fuel jet exit Reynolds number was 63. Several measurements were taken at different air preheats and fuel jet exit Reynolds number. The resulting hybrid color flame was found to be blue at the base of the flame followed by a yellow color flame. The length and width of flame during the entire free fall conditions has been examined. Also the relative flame length and width for blue and yellow portion of the flame has been examined under microgravity conditions. The results show that the flame length decreases and width increases with high air preheats in microgravity condition. In microgravity conditions the flame length is larger with normal temperature combustion air than high temperature air.

  4. In situ visualization of metallurgical reactions in nanoscale Cu/Sn diffusion couples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Qiyue; Stach, Eric A.; Gao, Fan

    2015-02-10

    The Cu–Sn metallurgical soldering reaction in two-segmented Cu–Sn nanowires is visualized by in-situ transmission electron microscopy. By varying the relative lengths of Cu and Sn segments, we show that the metallurgical reaction starts at ~ 200 ° with the formation of a Cu–Sn solid solution for the Sn/Cu length ratio smaller than 1:5 while the formation of Cu–Sn intermetallic compounds (IMCs) for larger Sn/Cu length ratios. Upon heating the nanowires up to ~ 500 °C, two phase transformation pathways occur, η-Cu₆Sn₅ → ε-Cu₃Sn → δ-Cu₄₁Sn₁₁ for nanowires with a long Cu segment and η-Cu₆Sn₅ → ε-Cu₃Sn → γ-Cu₃Sn with amore » short Cu segment. The dynamic in situ TEM visualization of the evolution of Kirkendall voids demonstrates that Cu diffuses faster both in Sn and IMCs than that of Sn in Cu₃ and IMCs, which is the underlying cause of the dependence of the IMC formation and associated phase evolution on the relative lengths of the Cu and Sn segments.« less

  5. Spin relaxation in graphene nanoribbons in the presence of substrate surface roughness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaghazardi, Zahra; Faez, Rahim; Touski, Shoeib Babaee

    2016-08-07

    In this work, spin transport in corrugated armchair graphene nanoribbons (AGNRs) is studied. We survey combined effects of spin-orbit interaction and surface roughness, employing the non-equilibrium Green's function formalism and multi-orbitals tight-binding model. Rough substrate surfaces have been statistically generated and the hopping parameters are modulated based on the bending and distance of corrugated carbon atoms. The effects of surface roughness parameters, such as roughness amplitude and correlation length, on spin transport in AGNRs are studied. The increase of surface roughness amplitude results in the coupling of σ and π bands in neighboring atoms, leading to larger spin flipping ratemore » and therefore reduction of the spin-polarization, whereas a longer correlation length makes AGNR surface smoother and increases spin-polarization. Moreover, spin diffusion length of carriers is extracted and its dependency on the roughness parameters is investigated. In agreement with experimental data, the spin diffusion length for various substrate ranges between 2 and 340 μm. Our results indicate the importance of surface roughness on spin-transport in graphene.« less

  6. Methods and apparatus for producing and storing positrons and protons

    DOEpatents

    Akers, Douglas W [Idaho Falls, ID

    2010-07-06

    Apparatus for producing and storing positrons may include a trap that defines an interior chamber therein and that contains an electric field and a magnetic field. The trap may further include a source material that includes atoms that, when activated by photon bombardment, become positron emitters to produce positrons. The trap may also include a moderator positioned adjacent the source material. A photon source is positioned adjacent the trap so that photons produced by the photon source bombard the source material to produce the positron emitters. Positrons from the positron emitters and moderated positrons from the moderator are confined within the interior chamber of the trap by the electric and magnetic fields. Apparatus for producing and storing protons are also disclosed.

  7. Positron annihilation in a metal-oxide semiconductor studied by using a pulsed monoenergetic positron beam

    NASA Astrophysics Data System (ADS)

    Uedono, A.; Wei, L.; Tanigawa, S.; Suzuki, R.; Ohgaki, H.; Mikado, T.; Ohji, Y.

    1993-12-01

    The positron annihilation in a metal-oxide semiconductor was studied by using a pulsed monoenergetic positron beam. Lifetime spectra of positrons were measured as a function of incident positron energy for a polycrystalline Si(100 nm)/SiO2(400 nm)/Si specimen. Applying a gate voltage between the polycrystalline Si film and the Si substrate, positrons implanted into the specimen were accumulated at the SiO2/Si interface. From the measurements, it was found that the annihilation probability of ortho-positronium (ortho-Ps) drastically decreased at the SiO2/Si interface. The observed inhibition of the Ps formation was attributed to an interaction between positrons and defects at the SiO2/Si interface.

  8. Emittance of positron beams produced in intense laser plasma interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Hui; Hazi, A.; Link, A.

    2013-01-15

    The first measurement of the emittance of intense laser-produced positron beams has been made. The emittance values were derived through measurements of positron beam divergence and source size for different peak positron energies under various laser conditions. For one of these laser conditions, we used a one dimensional pepper-pot technique to refine the emittance value. The laser-produced positrons have a geometric emittance between 100 and 500 mm{center_dot}mrad, comparable to the positron sources used at existing accelerators. With 10{sup 10}-10{sup 12} positrons per bunch, this low emittance beam, which is quasi-monoenergetic in the energy range of 5-20 MeV, may be usefulmore » as an alternative positron source for future accelerators.« less

  9. Conceptual design of an intense positron source based on an LIA

    NASA Astrophysics Data System (ADS)

    Long, Ji-Dong; Yang, Zhen; Dong, Pan; Shi, Jin-Shui

    2012-04-01

    Accelerator based positron sources are widely used due to their high intensity. Most of these accelerators are RF accelerators. An LIA (linear induction accelerator) is a kind of high current pulsed accelerator used for radiography. A conceptual design of an intense pulsed positron source based on an LIA is presented in the paper. One advantage of an LIA is its pulsed power being higher than conventional accelerators, which means a higher amount of primary electrons for positron generations per pulse. Another advantage of an LIA is that it is very suitable to decelerate the positron bunch generated by bremsstrahlung pair process due to its ability to adjustably shape the voltage pulse. By implementing LIA cavities to decelerate the positron bunch before it is moderated, the positron yield could be greatly increased. These features may make the LIA based positron source become a high intensity pulsed positron source.

  10. Positron confinement in embedded lithium nanoclusters

    NASA Astrophysics Data System (ADS)

    van Huis, M. A.; van Veen, A.; Schut, H.; Falub, C. V.; Eijt, S. W.; Mijnarends, P. E.; Kuriplach, J.

    2002-02-01

    Quantum confinement of positrons in nanoclusters offers the opportunity to obtain detailed information on the electronic structure of nanoclusters by application of positron annihilation spectroscopy techniques. In this work, positron confinement is investigated in lithium nanoclusters embedded in monocrystalline MgO. These nanoclusters were created by means of ion implantation and subsequent annealing. It was found from the results of Doppler broadening positron beam analysis that approximately 92% of the implanted positrons annihilate in lithium nanoclusters rather than in the embedding MgO, while the local fraction of lithium at the implantation depth is only 1.3 at. %. The results of two-dimensional angular correlation of annihilation radiation confirm the presence of crystalline bulk lithium. The confinement of positrons is ascribed to the difference in positron affinity between lithium and MgO. The nanocluster acts as a potential well for positrons, where the depth of the potential well is equal to the difference in the positron affinities of lithium and MgO. These affinities were calculated using the linear muffin-tin orbital atomic sphere approximation method. This yields a positronic potential step at the MgO||Li interface of 1.8 eV using the generalized gradient approximation and 2.8 eV using the insulator model.

  11. Performance of an asymmetric short annular diffuser with a nondiverging inner wall using suction. [control of radial profiles of diffuser exit velocity

    NASA Technical Reports Server (NTRS)

    Juhasz, A.

    1974-01-01

    The performance of a short highly asymmetric annular diffuser equipped with wall bleed (suction) capability was evaluated at nominal inlet Mach numbers of 0.188, 0.264, and 0.324 with the inlet pressure and temperature at near ambient values. The diffuser had an area ratio of 2.75 and a length- to inlet-height ratio of 1.6. Results show that the radial profiles of diffuser exit velocity could be controlled from a severely hub peaked to a slightly tip biased form by selective use of bleed. At the same time, other performance parameters were also improved. These results indicate the possible application of the diffuser bleed technique to control flow profiles to gas turbine combustors.

  12. [Fever, atrial fibrillation, and angina pectoris in a 58-year-old man].

    PubMed

    Groebner, M; Südhoff, T; Doering, M; Kirmayer, M; Nitsch, T; Prügl, L; Römer, W; Wolf, H; Tacke, J; Massoudy, P; Nüsse, T; Elsner, D

    2014-05-01

    Primary cardiac lymphoma (PCL) respresents a very rare type of cardiac tumour. This report illustrates a case of PCL in an immunocompetent 58-year-old man presenting with atrial fibrillation and febrile syndrome. Comprehensive imaging [computer tomography (CT), cardiac magnetic resonance imaging (cMRI), 3-dimensional transesophageal echocardiography (3D-TEE)] identified a large right atrial tumour, leading to pericardial effusion. Isolated cardiac involvement was confirmed by positron emission tomography (PET)-CT. A diffuse large B-cell lymphoma (DLBCL) was diagnosed based on the results of a TEE-guided biopsy. A normalized PET scan (PETAL study) indicated complete remission following R-CHOP 14 immunochemotherapy. Thus, an interdisciplinary and multimodal approach avoided unnecessary cardiac surgery.

  13. Normal-pressure hydrocephalus and the saga of the treatable dementias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedland, R.P.

    1989-11-10

    A case study of a 74-year-old woman is presented which illustrates the difficulty of understanding dementing illnesses. A diagnosis of normal-pressure hydrocephalus (NPH) was made because of the development of abnormal gait, with urinary incontinence and severe, diffuse, white matter lesions on the MRI scan. Computed tomographic, MRI scans and positron emission tomographic images of glucose use are presented. The treatable dementias are a large, multifaceted group of illnesses, of which NPH is one. The author proposes a new term for this disorder commonly known as NPH because the problem with the term normal-pressure hydrocephalus is that the cerebrospinal fluidmore » pressure is not always normal in the disease.« less

  14. In vacancies in InN grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Reurings, Floris; Tuomisto, Filip; Gallinat, Chad S.; Koblmüller, Gregor; Speck, James S.

    2010-12-01

    The authors have applied positron annihilation spectroscopy to study the effect of different growth conditions on vacancy formation in In- and N-polar InN grown by plasma-assisted molecular beam epitaxy. The results suggest that the structural quality of the material and limited diffusion of surface adatoms during growth dictate the In vacancy formation in low electron-density undoped epitaxial InN, while growth conditions and thermodynamics have a less important role, contrary to what is observed in, e.g., GaN. Furthermore, the results imply that in high quality InN, the electron mobility is likely limited not by ionized point defect scattering, but rather by threading dislocations.

  15. Comparison of diffusion length measurements from the Flying Spot Technique and the photocarrier grating method in amorphous thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vieira, M.; Fantoni, A.; Martins, R.

    1994-12-31

    Using the Flying Spot Technique (FST) the authors have studied minority carrier transport parallel and perpendicular to the surface of amorphous silicon films (a-Si:H). To reduce slow transients due to charge redistribution in low resistivity regions during the measurement they have applied a strong homogeneously absorbed bias light. The defect density was estimated from Constant Photocurrent Method (CPM) measurements. The steady-state photocarrier grating technique (SSPG) is a 1-dimensional approach. However, the modulation depth of the carrier profile is also dependent on film surface properties, like surface recombination velocity. Both methods yield comparable diffusion lengths when applied to a-Si:H.

  16. Over 95% of large-scale length uniformity in template-assisted electrodeposited nanowires by subzero-temperature electrodeposition

    PubMed Central

    2011-01-01

    In this work, we report highly uniform growth of template-assisted electrodeposited copper nanowires on a large area by lowering the deposition temperature down to subzero centigrade. Even with highly disordered commercial porous anodic aluminum oxide template and conventional potentiostatic electrodeposition, length uniformity over 95% can be achieved when the deposition temperature is lowered down to -2.4°C. Decreased diffusion coefficient and ion concentration gradient due to the lowered deposition temperature effectively reduces ion diffusion rate, thereby favors uniform nanowire growth. Moreover, by varying the deposition temperature, we show that also the pore nucleation and the crystallinity can be controlled. PMID:21781335

  17. Development of a short length combustor for a supersonic cruise turbofan engine using a 90 deg sector of a full annulus

    NASA Technical Reports Server (NTRS)

    Clements, T. R.

    1972-01-01

    A performance development program has been conducted on a short length, double-annular, ram-induction combustor. The combustor was designed for a large augmented turbofan engine capable of sustained flight speeds up to Mach 3.0. Performance tests were conducted at an inlet temperature and Mach number simulating engine sea level takeoff conditions. At the design temperature rise of 1600 F, combustion efficiency was 100%, pattern factor was 0.20, and combined diffuser-combustor pressure loss was 4.4% or 1.12 times the diffuser inlet velocity head. A temperature rise in excess of 2400 F with a combustion efficiency of 94% was demonstrated.

  18. Application of the SEM to the measurement of solar cell parameters

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.; Andrews, C. W.

    1977-01-01

    Techniques are described which make use of the SEM to measure the minority carrier diffusion length and the metallurgical junction depth in silicon solar cells. The former technique permits the measurement of the true bulk diffusion length through the application of highly doped field layers to the back surfaces of the cells being investigated. It is shown that the secondary emission contrast observed in the SEM on a reverse-biased diode can depict the location of the metallurgical junction if the diode has been prepared with the proper beveled geometry. The SEM provides the required contrast and the option of high magnification, permitting the measurement of extremely shallow junction depths.

  19. Effect of 1.5 MeV electron irradiation on β-Ga2O3 carrier lifetime and diffusion length

    NASA Astrophysics Data System (ADS)

    Lee, Jonathan; Flitsiyan, Elena; Chernyak, Leonid; Yang, Jiancheng; Ren, Fan; Pearton, Stephen J.; Meyler, Boris; Salzman, Y. Joseph

    2018-02-01

    The influence of 1.5 MeV electron irradiation on minority transport properties of Si doped β-Ga2O3 vertical Schottky rectifiers was observed for fluences up to 1.43 × 1016 cm-2. The Electron Beam-Induced Current technique was used to determine the minority hole diffusion length as a function of temperature for each irradiation dose. This revealed activation energies related to shallow donors at 40.9 meV and radiation-induced defects with energies at 18.1 and 13.6 meV. Time-resolved cathodoluminescence measurements showed an ultrafast 210 ps decay lifetime and reduction in carrier lifetime with increased irradiation.

  20. Differential effects of black currant anthocyanins on diffuser- or negative lens-induced ocular elongation in chicks.

    PubMed

    Iida, Hiroyuki; Nakamura, Yuko; Matsumoto, Hitoshi; Kawahata, Keiko; Koga, Jinichiro; Katsumi, Osamu

    2013-01-01

    To compare the inhibitory effects of 4 different types of black currant anthocyanins (BCAs) on ocular elongation in 2 different chick myopia models. In the first model, diffusers were used to induce form vision deprivation. In the second model, negative (-8D) spherical lenses were used to create a defocused retinal image. Either the diffusers or the -8D lenses were placed on the right eyes of 8-day-old chicks for 4 days. Ocular biometric components were measured using an A-scan ultrasound instrument on the third day after application of either the diffusers or -8D lenses. Interocular differences (globe component dimensions of the right diffuser or eyes covered with -8D lenses minus those of the open left eyes) were considered to evaluate the effect of BCAs. The BCAs used were cyanidin-3-glucoside (C3G), cyanidin-3-rutinoside (C3R), delphinidin-3-rutinoside (D3R), and delphinidin-3-glucoside (D3G). Each anthocyanin was administered intravenously at a dose of 0.027 μmol/kg once a day for 3 days. Compared to the vehicle treatment, C3G and C3R treatments significantly reduced both differential increases (positive values of interocular differences) of the ocular axial length induced by diffusers or -8D lenses (diffusers; C3G, C3R, and control: 0.32±0.051 mm, P<0.05; 0.25±0.034 mm, P<0.01; and 0.52±0.047 mm, -8D lenses; C3G, C3R, and control: 0.25±0.049 mm, P<0.01; 0.17±0.049 mm, P<0.001; and 0.50±0.056 mm). In contrast, compared to vehicle treatment, D3R treatment significantly decreased the differential increases in the ocular axial length only in chicks with myopia induced by -8D lenses (D3R and control: 0.17±0.049 mm and 0.50±0.056 mm, P<0.001). D3G did not inhibit the differential increase in the ocular axial length induced by either diffusers or -8D lenses. This study showed that the 4 tested BCAs had different effects on the 2 different experimental models of myopia.

  1. Diffusing-wave spectroscopy in a standard dynamic light scattering setup

    NASA Astrophysics Data System (ADS)

    Fahimi, Zahra; Aangenendt, Frank J.; Voudouris, Panayiotis; Mattsson, Johan; Wyss, Hans M.

    2017-12-01

    Diffusing-wave spectroscopy (DWS) extends dynamic light scattering measurements to samples with strong multiple scattering. DWS treats the transport of photons through turbid samples as a diffusion process, thereby making it possible to extract the dynamics of scatterers from measured correlation functions. The analysis of DWS data requires knowledge of the path length distribution of photons traveling through the sample. While for flat sample cells this path length distribution can be readily calculated and expressed in analytical form; no such expression is available for cylindrical sample cells. DWS measurements have therefore typically relied on dedicated setups that use flat sample cells. Here we show how DWS measurements, in particular DWS-based microrheology measurements, can be performed in standard dynamic light scattering setups that use cylindrical sample cells. To do so we perform simple random-walk simulations that yield numerical predictions of the path length distribution as a function of both the transport mean free path and the detection angle. This information is used in experiments to extract the mean-square displacement of tracer particles in the material, as well as the corresponding frequency-dependent viscoelastic response. An important advantage of our approach is that by performing measurements at different detection angles, the average path length through the sample can be varied. For measurements performed on a single sample cell, this gives access to a wider range of length and time scales than obtained in a conventional DWS setup. Such angle-dependent measurements also offer an important consistency check, as for all detection angles the DWS analysis should yield the same tracer dynamics, even though the respective path length distributions are very different. We validate our approach by performing measurements both on aqueous suspensions of tracer particles and on solidlike gelatin samples, for which we find our DWS-based microrheology data to be in good agreement with rheological measurements performed on the same samples.

  2. Confined crystallization, crystalline phase deformation and their effects on the properties of crystalline polymers

    NASA Astrophysics Data System (ADS)

    Wang, Haopeng

    With the recent advances in processing and catalyst technology, novel morphologies have been created in crystalline polymers and they are expected to substantially impact the properties. To reveal the structure-property relationships of some of these novel polymeric systems becomes the primary focus of this work. In the first part, using an innovative layer-multiplying coextrusion process to obtain assemblies with thousands of polymer nanolayers, dominating "in-plane" lamellar crystals were created when the confined poly(ethylene oxide) (PEO) layers were made progressively thinner. When the thickness was confined to 25 nanometers, the PEO crystallized as single, high-aspect-ratio lamellae that resembled single crystals. This crystallization habit imparted more than two orders of magnitude reduction in the gas permeability. The dramatic decrease in gas permeability was attributed to the reduced diffusion coefficient, because of the increase in gas diffusion path length through the in-plane lamellae. The temperature dependence of lamellar orientation and the crystallization kinetics in the confined nanolayers were also investigated. The novel olefinic block copolymer (OBC) studied in the second part consisted of long crystallizable sequences with low comonomer content alternating with rubbery amorphous blocks with high comonomer content. The crystallizable blocks formed lamellae that organized into space-filling spherulites even when the fraction of crystallizable block was so low that the crystallinity was only 7%. These unusual spherulites were highly elastic and recovered from strains as high as 300%. These "elastic spherulites" imparted higher strain recovery and temperature resistance than the conventional random copolymers that depend on isolated, fringed micellar-like crystals to provide the junctions for the elastomeric network. In the third part, positron annihilation lifetime spectroscopy (PALS) was used to obtain the temperature dependence of the free volume hole size in propylene/ethylene copolymers over a range in comonomer content. Above the glass transition temperature (Tg), the reduced free volume hole size and the densification of the amorphous phase were attributed to constraint imposed on rubbery amorphous chain segments by attached chain segments in crystals. However constant free volume fraction was found at Tg, across the crystallinity range of the copolymers, in agreement with the iso-free volume concept of glass transition.

  3. Theoretical survey on positronium formation and ionisation in positron atom scattering

    NASA Technical Reports Server (NTRS)

    Basu, Madhumita; Ghosh, A. S.

    1990-01-01

    The recent theoretical studies are surveyed and reported on the formation of exotic atoms in positron-hydrogen, positron-helium and positron-lithium scattering specially at intermediate energy region. The ionizations of these targets by positron impact was also considered. Theoretical predictions for both the processes are compared with existing measured values.

  4. Development of an Electron-Positron Source for Positron Annihilation Lifetime Spectroscopy

    DTIC Science & Technology

    2007-01-01

    positron source for positron annihilation lifetime spectroscopy Final Report Report Title...Development of an Electron- Positron Source for Position Annihilation Lifetime Spectroscopy DAAD19-03-1-0287 Final Report 2/17/2007... annihilation lifetime spectroscopy REPORT DOCUMENTATION PAGE 18. SECURITY CLASSIFICATION ON THIS PAGE UNCLASSIFIED 2. REPORT DATE: 12b. DISTRIBUTION

  5. Present and future experiments using bright low-energy positron beams

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, Christoph

    2017-01-01

    Bright slow positron beams enable not only experiments with drastically reduced measurement time and improved signal-to-noise ratio but also the realization of novel experimental techniques. In solid state physics and materials science positron beams are usually applied for the depth dependent analysis of vacancy-like defects and their chemical surrounding using positron lifetime and (coincident) Doppler broadening spectroscopy. For surface studies, annihilation induced Auger-electron spectroscopy allows the analysis of the elemental composition in the topmost atomic layer, and the atomic positions at the surface can be determined by positron diffraction with outstanding accuracy. In fundamental research low-energy positron beams are used for the production of e.g. cold positronium or positronium negative ions. All the aforementioned experiments benefit from the high intensity of present positron beam facilities. In this paper, we scrutinize the technical constraints limiting the achievable positron intensity and the available kinetic energy at the sample position. Current efforts and future developments towards the generation of high intensity spin-polarized slow positron beams paving the way for new positron experiments are discussed.

  6. The status of the positron beam facility at NEPOMUC

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.

    2011-01-01

    The NEutron induced POsitron source MUniCh NEPOMUC provides a high intensity positron beam with 9·108 moderated positrons per second with a primary beam energy of 1keV. After remoderation, the positron beam is magnetically guided to five experimental setups: a coincident Doppler-broadening spectrometer (CDBS), a positron annihilation induced Auger-electron spectrometer (PAES), a pulsed low-energy positron system (PLEPS) as well as an interface for providing a pulsed beam with further improved brightness. An apparatus for the production of the negatively charged positronium ion Ps- is currently in operation at the open multi-purpose beam port, where additional experiments can be realized. Within this contribution, an overview of the positron beam facility NEPOMUC with its instrumentation at the research reactor FRMII is given.

  7. PREFACE: The International Workshop on Positron Studies of Defects 2014

    NASA Astrophysics Data System (ADS)

    Sugita, Kazuki; Shirai, Yasuharu

    2016-01-01

    The International Workshop on Positron Studies of Defects 2014 (PSD-14) was held in Kyoto, Japan from 14-19 September, 2014. The PSD Workshop brought together positron scientists interested in studying defects to an international platform for presenting and discussing recent results and achievements, including new experimental and theoretical methods in the field. The workshop topics can be characterized as follows: • Positron studies of defects in semiconductors and oxides • Positron studies of defects in metals • New experimental methods and equipment • Theoretical calculations and simulations of momentum distributions, positron lifetimes and other characteristics for defects • Positron studies of defects in combination with complementary methods • Positron beam studies of defects at surfaces, interfaces, in sub-surface regions and thin films • Nanostructures and amorphous materials

  8. Performance of active feedforward control systems in non-ideal, synthesized diffuse sound fields.

    PubMed

    Misol, Malte; Bloch, Christian; Monner, Hans Peter; Sinapius, Michael

    2014-04-01

    The acoustic performance of passive or active panel structures is usually tested in sound transmission loss facilities. A reverberant sending room, equipped with one or a number of independent sound sources, is used to generate a diffuse sound field excitation which acts as a disturbance source on the structure under investigation. The spatial correlation and coherence of such a synthesized non-ideal diffuse-sound-field excitation, however, might deviate significantly from the ideal case. This has consequences for the operation of an active feedforward control system which heavily relies on the acquisition of coherent disturbance source information. This work, therefore, evaluates the spatial correlation and coherence of ideal and non-ideal diffuse sound fields and considers the implications on the performance of a feedforward control system. The system under consideration is an aircraft-typical double panel system, equipped with an active sidewall panel (lining), which is realized in a transmission loss facility. Experimental results for different numbers of sound sources in the reverberation room are compared to simulation results of a comparable generic double panel system excited by an ideal diffuse sound field. It is shown that the number of statistically independent noise sources acting on the primary structure of the double panel system depends not only on the type of diffuse sound field but also on the sample lengths of the processed signals. The experimental results show that the number of reference sensors required for a defined control performance exhibits an inverse relationship to control filter length.

  9. Characterizing a neurodegenerative syndrome: primary progressive apraxia of speech

    PubMed Central

    Duffy, Joseph R.; Strand, Edythe A.; Machulda, Mary M.; Senjem, Matthew L.; Master, Ankit V.; Lowe, Val J.; Jack, Clifford R.; Whitwell, Jennifer L.

    2012-01-01

    Apraxia of speech is a disorder of speech motor planning and/or programming that is distinguishable from aphasia and dysarthria. It most commonly results from vascular insults but can occur in degenerative diseases where it has typically been subsumed under aphasia, or it occurs in the context of more widespread neurodegeneration. The aim of this study was to determine whether apraxia of speech can present as an isolated sign of neurodegenerative disease. Between July 2010 and July 2011, 37 subjects with a neurodegenerative speech and language disorder were prospectively recruited and underwent detailed speech and language, neurological, neuropsychological and neuroimaging testing. The neuroimaging battery included 3.0 tesla volumetric head magnetic resonance imaging, [18F]-fluorodeoxyglucose and [11C] Pittsburg compound B positron emission tomography scanning. Twelve subjects were identified as having apraxia of speech without any signs of aphasia based on a comprehensive battery of language tests; hence, none met criteria for primary progressive aphasia. These subjects with primary progressive apraxia of speech included eight females and four males, with a mean age of onset of 73 years (range: 49–82). There were no specific additional shared patterns of neurological or neuropsychological impairment in the subjects with primary progressive apraxia of speech, but there was individual variability. Some subjects, for example, had mild features of behavioural change, executive dysfunction, limb apraxia or Parkinsonism. Voxel-based morphometry of grey matter revealed focal atrophy of superior lateral premotor cortex and supplementary motor area. Voxel-based morphometry of white matter showed volume loss in these same regions but with extension of loss involving the inferior premotor cortex and body of the corpus callosum. These same areas of white matter loss were observed with diffusion tensor imaging analysis, which also demonstrated reduced fractional anisotropy and increased mean diffusivity of the superior longitudinal fasciculus, particularly the premotor components. Statistical parametric mapping of the [18F]-fluorodeoxyglucose positron emission tomography scans revealed focal hypometabolism of superior lateral premotor cortex and supplementary motor area, although there was some variability across subjects noted with CortexID analysis. [11C]-Pittsburg compound B positron emission tomography binding was increased in only one of the 12 subjects, although it was unclear whether the increase was actually related to the primary progressive apraxia of speech. A syndrome characterized by progressive pure apraxia of speech clearly exists, with a neuroanatomic correlate of superior lateral premotor and supplementary motor atrophy, making this syndrome distinct from primary progressive aphasia. PMID:22382356

  10. CARS Temperature Measurements in Sooting, Laminar Diffusion Flames.

    DTIC Science & Technology

    1984-07-30

    the flame. In preliminary calculations with coarse axial and radial grids, the flames all reached their respective AFT’s, and flame lengths were just...welded to the outside of the tube. Such rugenerative heat feedback is not part of the K? model. Calculated flame length is seen on Figure 11 to increase...heights in the measurements, Figure 6, and the calculated flame lengths , Figure 11, is seen to be reduced substantially with increasing dilution. When

  11. Positron Annihilation Spectroscopy Characterization of Nanostructural Features in Reactor Steels

    NASA Astrophysics Data System (ADS)

    Glade, Stephen; Wirth, Brian; Asoka-Kumar, Palakkal; Sterne, Philip; Alinger, Matthew; Odette, George

    2004-03-01

    Irradiation embrittlement in nuclear reactor pressure vessel steels results from the formation of a high number density of nanometer sized copper rich precipitates and sub-nanometer defect-solute clusters. We present results of study to characterize the size and compositions of simple binary and ternary Fe-Cu-Mn model alloys and more representative Fe-Cu-Mn-Ni-Si-Mo-C reactor pressure vessel steels using positron annihilation spectroscopy (PAS). Using a recently developed spin-polarized PAS technique, we have also measured the magnetic properties of the nanometer-sized copper rich precipitates. Mn retards the precipitation kinetics and inhibits large vacancy cluster formation, suggesting a strong Mn-vacancy interaction which reduces radiation enhanced diffusion. The spin-polarized PAS measurements reveal the non-magnetic nature of the copper precipitates, discounting the notion that the precipitates contain significant quantities of Fe and providing an upper limit of at most a few percent Fe in the precipitates. PAS results on oxide dispersion-strengthened steel for use in fusion reactors will also be presented. Part of this work was performed under the auspices of the US Department of Energy by the University of California, Lawrence Livermore National Laboratory, under contract No. W-7405-ENG-48 with partial support provided from Basic Energy Sciences, Division of Materials Science.

  12. Benefits and limitations of multimodality imaging in the diagnosis of a primary cardiac lymphoma.

    PubMed

    Nijjar, Prabhjot Singh; Masri, Sofia Carolina; Tamene, Ashenafi; Kassahun, Helina; Liao, Kenneth; Valeti, Uma

    2014-12-01

    Primary cardiac tumors are far rarer than tumors metastatic to the heart. Angiosarcoma is the primary cardiac neoplasm most frequently detected; lymphomas constitute only 1% of primary cardiac tumors. We present the case of a 55-year-old woman with a recently diagnosed intracardiac mass who was referred to our institution for consideration of urgent orthotopic heart transplantation. Initial images suggested an angiosarcoma; however, a biopsy specimen of the mass was diagnostic for diffuse large B-cell lymphoma. The patient underwent chemotherapy rather than surgery, and she was asymptomatic 34 months later. We use our patient's case to discuss the benefits and limitations of multiple imaging methods in the evaluation of cardiac masses. Certain features revealed by computed tomography, cardiac magnetic resonance, and positron emission tomography can suggest a diagnosis of angiosarcoma rather than lymphoma. Cardiac magnetic resonance and positron emission tomography enable reliable distinction between benign and malignant tumors; however, the characteristics of different malignant tumors can overlap. Despite the great usefulness of multiple imaging methods for timely diagnosis, defining the extent of spread and the hemodynamic impact, and monitoring responses to treatment, we think that biopsy analysis is still warranted in order to obtain a correct histologic diagnosis in cases of suspected malignant cardiac tumors.

  13. Interindividual variations of cerebral blood flow, oxygen delivery, and metabolism in relation to hemoglobin concentration measured by positron emission tomography in humans.

    PubMed

    Ibaraki, Masanobu; Shinohara, Yuki; Nakamura, Kazuhiro; Miura, Shuichi; Kinoshita, Fumiko; Kinoshita, Toshibumi

    2010-07-01

    Regional cerebral blood flow (CBF) and oxygen metabolism can be measured by positron emission tomography (PET) with (15)O-labeled compounds. Hemoglobin (Hb) concentration of blood, a primary determinant of arterial oxygen content (C(a)O(2)), influences cerebral circulation. We investigated interindividual variations of CBF, cerebral blood volume (CBV), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO(2)) in relation to Hb concentration in healthy human volunteers (n=17) and in patients with unilateral steno-occlusive disease (n=44). For the patients, data obtained only from the contralateral hemisphere (normal side) were analyzed. The CBF and OEF were inversely correlated with Hb concentration, but CMRO(2) was independent of Hb concentration. Oxygen delivery defined as a product of C(a)O(2) and CBF (C(a)O(2) CBF) increased with a rise of Hb concentration. The analysis with a simple oxygen model showed that oxygen diffusion parameter (L) was constant over the range of Hb concentration, indicating that a homeostatic mechanism controlling CBF is necessary to maintain CMRO(2). The current findings provide important knowledge to understand the control mechanism of cerebral circulation and to interpret the (15)O PET data in clinical practice.

  14. Depth-dependent positron annihilation in different polymers

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zhang, P.; Cheng, G. D.; Li, D. X.; Wu, H. B.; Li, Z. X.; Cao, X. Z.; Jia, Q. J.; Yu, R. S.; Wang, B. Y.

    2013-09-01

    Depth-dependent positron annihilation Doppler broadening measurements were conducted for polymers with different chemical compositions. Variations of the S parameter with respect to incident positron energy were observed. For pure hydrocarbons PP, HDPE and oxygen-containing polymer PC, S parameter rises with increasing positron implantation depth. While for PI and fluoropolymers like PTFE, ETFE and PVF, S parameter decreases with higher positron energy. For chlorine-containing polymer PVDC, S parameter remains nearly constant at all incident positron energies. It is suggested that these three variation trends are resulted from a competitive effect between the depth-dependent positronium formation and the influence of highly electronegative atoms on positron annihilation characteristics.

  15. Elastic and inelastic scattering of positrons in gases and solids

    NASA Technical Reports Server (NTRS)

    Mcgowan, J. W.

    1972-01-01

    Three apparatuses were designed and built: The first, which is now operative, was designed to study the details of positron thermalization in solids and the subsequent emission of the low energy positrons from moderating foils; The second apparatus now under test is a positron bottle similar in design to an electron trap. It was built to store positrons at a fixed energy and to look at the number of stored positrons (storage time) as a function of a scattering gas in the vacuum chamber. The third apparatus is a crossed beam apparatus where positron-, alkali scattering will be studied. Much of the apparatus is now under test with electrons.

  16. Positron studies in catalysis research

    NASA Astrophysics Data System (ADS)

    During the past eight months, the authors have made progress in several areas relevant to the eventual use of positron techniques in catalysis research. They have come closer to the completion of their positron microscope, and at the same time have performed several studies in their non-microscopic positron spectrometer which should ultimately be applicable to catalysis. The current status of the efforts in each of these areas is summarized in the following sections: Construction of the positron microscope (optical element construction, data collection software, and electronic sub-assemblies); Doppler broadening spectroscopy of metal silicide; Positron lifetime spectroscopy of glassy polymers; and Positron lifetime measurements of pore-sizes in zeolites.

  17. Near-field transport imaging applied to photovoltaic materials

    DOE PAGES

    Xiao, Chuanxiao; Jiang, Chun -Sheng; Moseley, John; ...

    2017-05-26

    We developed and applied a new analytical technique - near-field transport imaging (NF-TI or simply TI) - to photovoltaic materials. Charge-carrier transport is an important factor in solar cell performance, and TI is an innovative approach that integrates a scanning electron microscope with a near-field scanning optical microscope, providing the possibility to study luminescence associated with recombination and transport with high spatial resolution. In this paper, we describe in detail the technical barriers we had to overcome to develop the technique for routine application and the data-fitting procedure used to calculate minority-carrier diffusion length values. The diffusion length measured bymore » TI agrees well with the results calculated by time-resolved photoluminescence on well-controlled gallium arsenide (GaAs) thin-film samples. We report for the first time on measurements on thin-film cadmium telluride using this technique, including the determination of effective carrier diffusion length, as well as the first near-field imaging of the effect of a single localized defect on carrier transport and recombination in a GaAs heterostructure. Furthermore, by changing the scanning setup, we were able to demonstrate near-field cathodoluminescence (CL), and correlated the results with standard CL measurements. In conclusion, the TI technique shows great potential for mapping transport properties in solar cell materials with high spatial resolution.« less

  18. Method and apparatus for determining minority carrier diffusion length in semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, A.R.

    1984-02-21

    Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon, which has a significantly small minority carrier diffusion length using the constant magnitude surface-photovoltage (SPV) method. Steady or modulated illumination at several wavelengths provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPB for each wavelength. A probe electrode immersed in an electrolyte solution containing redox couples (preferably quinhydrone) having an oxidation-reduction potential (E) in the order of +0.6 to -1.65 voltsmore » couples the SPV to a measurement system. The redox couple solution functions to create a liquid Schottky barrier at the surface of the material. The Schottky barrier is contacted by merely placing the probe in the solution. The redox solution is placed over and in contact with the material to be tested and light is passed through the solution to generate the SPV. To compensate for colored redox solutions a portion of the redox solution not over the material is also illuminated for determining the color compensated light intensity. Steady red light is also used as an optical bias to reduce deleterious space-charge effects that occur in amorphous silicon.« less

  19. Method and apparatus for determining minority carrier diffusion length in semiconductors

    DOEpatents

    Moore, Arnold R.

    1984-02-21

    Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon, which has a significantly small minority carrier diffusion length using the constant magnitude surface-photovoltage (SPV) method. Steady or modulated illumination at several wavelengths provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPV for each wavelength. A probe electrode immersed in an electrolyte solution containing redox couples (preferably quinhydrone) having an oxidation-reduction potential (E) in the order of +0.6 to -1.65 volts couples the SPV to a measurement system. The redox couple solution functions to create a liquid Schottky barrier at the surface of the material. The Schottky barrier is contacted by merely placing the probe in the solution. The redox solution is placed over and in contact with the material to be tested and light is passed through the solution to generate the SPV. To compensate for colored redox solutions a portion of the redox solution not over the material is also illuminated for determining the color compensated light intensity. Steady red light is also used as an optical bias to reduce deleterious space-charge effects that occur in amorphous silicon.

  20. Diffusing wave spectroscopy in Maxwellian fluids.

    PubMed

    Galvan-Miyoshi, J; Delgado, J; Castillo, R

    2008-08-01

    We present a critical assessment of the diffusing wave spectroscopy (DWS) technique for obtaining the characteristic lengths and for measuring the loss and storage moduli of a reasonable well-known wormlike micelle (WM) system. For this purpose, we tracked the Brownian motion of particles using DWS embedded in a Maxwellian fluid constituted by a wormlike micellar solution made of cetyltrimethylammonium bromide (CTAB), sodium salicylate (NaSal), and water. We found that the motion of particles was governed by the viscosity of the solvent at short times and by the stress relaxation mechanisms of the giant micelles at longer times. From the time evolution of the mean square displacement of particles, we could obtain for the WM solution the cage size where each particle is harmonically bound at short times, the long-time diffusion coefficient, and experimental values for the exponent that accounts for the broad spectrum of relaxation times at the plateau onset time found in the (deltar2(t)) vs. time curves. In addition, from the (deltar2(t)) vs. time curves, we obtained G'(omega) and G"(omega) for the WM solutions. All the DWS microreological information allowed us to estimate the characteristic lengths of the WM network. We compare our DWS microrheological results and characteristic lengths with those obtained with mechanical rheometers at different NaSal/CTAB concentration ratios and temperatures.

Top