Science.gov

Sample records for positrones pet al

  1. Positron Emission Tomography (PET)

    SciTech Connect

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs.

  2. Positron Emission Tomography (PET)

    DOE R&D Accomplishments Database

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  3. Positron Emission Tomography - Computed Tomography (PET/CT)

    MedlinePlus

    ... Index A-Z Positron Emission Tomography - Computed Tomography (PET/CT) Positron emission tomography (PET) uses small amounts of ... CT)? What is Positron Emission Tomography – Computed Tomography (PET/CT) Scanning? Positron emission tomography, also called PET imaging ...

  4. Positron emission tomography (PET) for cholangiocarcinoma

    PubMed Central

    Breitenstein, S.; Apestegui, C.

    2008-01-01

    The combination of positron emission tomography (PET) with computed tomography (PET-CT) provides simultaneous metabolic and anatomic information on tumors in the same imaging session. Sensitivity of PET/PET-CT is higher for intrahepatic (>90%) than for extrahepatic cholangiocarcinoma (CCA) (about 60%). The detection rate of distant metastasis is 100%. PET, and particularly PET-CT, improves the results and impacts on the oncological management in CCA compared with other imaging modalities. Therefore, PET-CT is recommended in the preoperative staging of intrahepatic (strength of recommendation: moderate) and extrahepatic (strength of recommendation: low) CCA. PMID:18773069

  5. Positron kinetics in an idealized PET environment

    NASA Astrophysics Data System (ADS)

    Robson, R. E.; Brunger, M. J.; Buckman, S. J.; Garcia, G.; Petrović, Z. Lj.; White, R. D.

    2015-08-01

    The kinetic theory of non-relativistic positrons in an idealized positron emission tomography PET environment is developed by solving the Boltzmann equation, allowing for coherent and incoherent elastic, inelastic, ionizing and annihilating collisions through positronium formation. An analytic expression is obtained for the positronium formation rate, as a function of distance from a spherical source, in terms of the solutions of the general kinetic eigenvalue problem. Numerical estimates of the positron range - a fundamental limitation on the accuracy of PET, are given for positrons in a model of liquid water, a surrogate for human tissue. Comparisons are made with the ‘gas-phase’ assumption used in current models in which coherent scattering is suppressed. Our results show that this assumption leads to an error of the order of a factor of approximately 2, emphasizing the need to accurately account for the structure of the medium in PET simulations.

  6. Recent Developments in Positron Emission Tomography (PET) Instrumentation

    DOE R&D Accomplishments Database

    Derenzo, S. E.; Budinger, T. F.

    1986-04-01

    This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors.

  7. Recent developments in positron emission tomography (PET) instrumentation

    SciTech Connect

    Derenzo, S.E.; Budinger, T.F.

    1986-04-01

    This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors. 117 refs., 4 figs., 4 tabs.

  8. Positron emission tomography (PET) attenuation correction artefacts in PET/CT and PET/MRI

    PubMed Central

    Hartung-Knemeyer, V; Forsting, M; Antoch, G; Heusner, T A

    2013-01-01

    Objective: To compare the effect of implanted medical materials on 18F-fludeoxyglucose (18F-FDG) positron emission tomography (PET)/MRI using a Dixon-based segmentation method for MRI-based attenuation correction (MRAC), PET/CT and CT-based attenuation-corrected PET (PETCTAC). Methods: 12 patients (8 males and 4 females; age 58±11 years) with implanted medical materials prospectively underwent whole-body 18F-FDG PET/CT and PET/MRI. CT, MRI and MRAC maps as well as PETCTAC and PETMRAC images were reviewed for the presence of artefacts. Their morphology and effect on the estimation of the 18F-FDG uptake (no effect, underestimation, overestimation compared with non-corrected images) were compared. In PETMRAC images, a volume of interest was drawn in the area of the artefact and in a reference site (contralateral body part); the mean and maximum standardised uptake values (SUVmean; SUVmax) were measured. Results: Of 27 implanted materials (20 dental fillings, 3 injection ports, 3 hip prostheses and 1 sternal cerclage), 27 (100%) caused artefacts in CT, 19 (70%) in T1 weighted MRI and 17 (63%) in MRAC maps. 20 (74%) caused a visual overestimation of the 18F-FDG uptake in PETCTAC, 2 (7%) caused an underestimation and 5 (19%) had no effect. In PETMRAC, 19 (70%) caused spherical extinctions and 8 (30%) had no effect. Mean values for SUVmean and SUVmax were significantly decreased in artefact-harbouring sites (p<0.001). Conclusion: Contrary to PET attenuation correction artefacts in PET/CT, which often show an overestimation of the 18F-FDG uptake, MRAC artefacts owing to implanted medical materials in most cases cause an underestimation. Advances in knowledge: Being aware of the morphology of artefacts owing to implanted medical materials avoids interpretation errors when reading PET/MRI. PMID:23580397

  9. Positron Emission Tomography (PET) for benign and malignant disease

    PubMed Central

    Visioni, Anthony; Kim, Julian

    2011-01-01

    Synopsis Functional imaging using radiolabeled probes which specifically bind and accumulate in target tissues has improved the sensitivity and specificity of conventional imaging. Positron Emission Tomography using modified glucose probes (FDG-PET) has demonstrated improved diagnostic accuracy in differentiating benign from malignant lesions in the setting of solitary pulmonary nodules. In addition, FDG-PET has become a useful modality in pre-operative staging of patients with lung cancer and is being tested with many other malignancies for its ability to change patient management. This article provides an overview of the current status of FDG-PET and presents the challenges of moving towards routine use. PMID:21184913

  10. Iodine-124: a promising positron emitter for organic PET chemistry.

    PubMed

    Koehler, Lena; Gagnon, Katherine; McQuarrie, Steve; Wuest, Frank

    2010-04-13

    The use of radiopharmaceuticals for molecular imaging of biochemical and physiological processes in vivo has evolved into an important diagnostic tool in modern nuclear medicine and medical research. Positron emission tomography (PET) is currently the most sophisticated molecular imaging methodology, mainly due to the unrivalled high sensitivity which allows for the studying of biochemistry in vivo on the molecular level. The most frequently used radionuclides for PET have relatively short half-lives (e.g. 11C: 20.4 min; 18F: 109.8 min) which may limit both the synthesis procedures and the time frame of PET studies. Iodine-124 (124I, t1/2 = 4.2 d) is an alternative long-lived PET radionuclide attracting increasing interest for long term clinical and small animal PET studies. The present review gives a survey on the use of 124I as promising PET radionuclide for molecular imaging. The first part describes the production of 124I. The second part covers basic radiochemistry with 124I focused on the synthesis of 124I-labeled compounds for molecular imaging purposes. The review concludes with a summary and an outlook on the future prospective of using the long-lived positron emitter 124I in the field of organic PET chemistry and molecular imaging.

  11. Advanced Instrumentation for Positron Emission Tomography [PET

    DOE R&D Accomplishments Database

    Derenzo, S. E.; Budinger, T. F.

    1985-04-01

    This paper summarizes the physical processes and medical science goals that underlay modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost.

  12. Positron Emission Tomography (PET) in Oncology

    PubMed Central

    Gallamini, Andrea; Zwarthoed, Colette; Borra, Anna

    2014-01-01

    Since its introduction in the early nineties as a promising functional imaging technique in the management of neoplastic disorders, FDG-PET, and subsequently FDG-PET/CT, has become a cornerstone in several oncologic procedures such as tumor staging and restaging, treatment efficacy assessment during or after treatment end and radiotherapy planning. Moreover, the continuous technological progress of image generation and the introduction of sophisticated software to use PET scan as a biomarker paved the way to calculate new prognostic markers such as the metabolic tumor volume (MTV) and the total amount of tumor glycolysis (TLG). FDG-PET/CT proved more sensitive than contrast-enhanced CT scan in staging of several type of lymphoma or in detecting widespread tumor dissemination in several solid cancers, such as breast, lung, colon, ovary and head and neck carcinoma. As a consequence the stage of patients was upgraded, with a change of treatment in 10%–15% of them. One of the most evident advantages of FDG-PET was its ability to detect, very early during treatment, significant changes in glucose metabolism or even complete shutoff of the neoplastic cell metabolism as a surrogate of tumor chemosensitivity assessment. This could enable clinicians to detect much earlier the effectiveness of a given antineoplastic treatment, as compared to the traditional radiological detection of tumor shrinkage, which usually takes time and occurs much later. PMID:25268160

  13. Tau Positron Emission Tomography (PET) Imaging: Past, Present, and Future.

    PubMed

    Ariza, Manuela; Kolb, Hartmuth C; Moechars, Dieder; Rombouts, Frederik; Andrés, José Ignacio

    2015-06-11

    Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the most common cause of dementia among the elderly population. The good correlation of the density and neocortical spread of neurofibrillary tangles (NFTs) with clinical AD disease progression offers an opportunity for the early diagnosis and staging using a noninvasive imaging technique such as positron emission tomography (PET). Thus, PET imaging of NFTs not only holds promise as a diagnostic tool but also may enable the development of disease modifying therapeutics for AD. In this review, we focus on the structural diversity of tau PET tracers, the challenges related to the identification of high affinity and highly selective NFT ligands, and recent progress in the clinical development of tau PET radioligands.

  14. Geoscientific process monitoring with positron emission tomography (GeoPET)

    NASA Astrophysics Data System (ADS)

    Kulenkampff, Johannes; Gründig, Marion; Zakhnini, Abdelhamid; Lippmann-Pipke, Johanna

    2016-08-01

    Transport processes in geomaterials can be observed with input-output experiments, which yield no direct information on the impact of heterogeneities, or they can be assessed by model simulations based on structural imaging using µ-CT. Positron emission tomography (PET) provides an alternative experimental observation method which directly and quantitatively yields the spatio-temporal distribution of tracer concentration. Process observation with PET benefits from its extremely high sensitivity together with a resolution that is acceptable in relation to standard drill core sizes. We strongly recommend applying high-resolution PET scanners in order to achieve a resolution on the order of 1 mm. We discuss the particularities of PET applications in geoscientific experiments (GeoPET), which essentially are due to high material density. Although PET is rather insensitive to matrix effects, mass attenuation and Compton scattering have to be corrected thoroughly in order to derive quantitative values. Examples of process monitoring of advection and diffusion processes with GeoPET illustrate the procedure and the experimental conditions, as well as the benefits and limits of the method.

  15. [Principles and applications of positron emission tomography (PET) in cardiology. PET in Mexico: a reality].

    PubMed

    Alexanderson Rosas, Erick; Kerik, Nora E; Unzek Freiman, Samuel; Fermon Schwaycer, Salomón

    2002-01-01

    Positron emission tomography (PET) offers the unique capability of measuring non-invasive by the regional myocardial substrate flow and the biochemical reaction index in millimol per minute per gram of myocardial tissue. PET also allows for the assessment or quantification of regional myocardial blood flow, cardiac metabolism, ventricular function, myocardial viability, as well as autonomous nervous system, research and evaluating of dilated myocardiopathy and of ventricular hypertrophy. PET's success is based on the radioisotopes properties, their very short half-life allows for the administration of large doses.

  16. [Positron-emission tomography (PET)--basic considerations].

    PubMed

    von Schulthess, G K; Westera, G; Schubiger, P A

    1993-08-24

    A PET installation is a technically complex system composed essentially of two parts. The first consists in isotope production and synthesis of labeled biochemical compounds, the second in measuring the distribution of radioactivity in the body with the PET camera and the generation of image data. The specific advantage of PET lies on one hand in the use of positron emitters that are isotopes of ubiquitous elements in biologic matter, i.e. exact analogs of biomolecules can be produced and utilized and on the other hand quantification is possible. (= enable quantitative...?) Theoretically there are no limits for the synthesis of radioactive compounds and the method therefore provides unlimited test designs. The short half-life of the employed isotopes is advantageous for radioprotection reasons but the production of labeled compounds necessitates a cyclotron accelerator and a special laboratory for the handling of radioactive compounds rendering the production of the test substances relatively expensive. Measurements take place in a PET camera with a large number of coincidence detectors. The best available cameras have a spatial resolution of 5 mm in all three axes with an axial window of about 15 cm diameter. Evaluation of PET images is done in a qualitative way by superposition on anatomic images (CT, MRI) by image fusion. Quantitative determinations require elaborate computer modeling.

  17. Novel targets for positron emission tomography (PET) radiopharmaceutical tracers for visualization of neuroinflammation

    NASA Astrophysics Data System (ADS)

    Shchepetkin, I.; Shvedova, M.; Anfinogenova, Y.; Litvak, M.; Atochin, D.

    2017-08-01

    Non-invasive molecular imaging techniques can enhance diagnosis of neurological diseases to achieve their successful treatment. Positron emission tomography (PET) imaging can identify activated microglia and provide detailed functional information based on molecular biology. This imaging modality is based on detection of isotope labeled tracers, which emit positrons. The review summarizes the developments of various radiolabeled ligands for PET imaging of neuroinflammation.

  18. Microfluidics for Positron Emission Tomography (PET) Imaging Probe Development

    PubMed Central

    Wang, Ming-Wei; Lin, Wei-Yu; Liu, Kan; Masterman-Smith, Michael; Shen, Clifton Kwang-Fu

    2012-01-01

    Due to increased needs for Positron Emission Tomography (PET) scanning, high demands for a wide variety of radiolabeled compounds will have to be met by exploiting novel radiochemistry and engineering technologies to improve the production and development of PET probes. The application of microfluidic reactors to perform radiosyntheses is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional labeling systems. Microfluidic-based radiochemistry can lead to the use of smaller quantities of precursors, accelerated reaction rates and easier purification processes with greater yield and higher specific activity of desired probes. Several ‘proof-of-principle’ examples, along with basics of device architecture and operation, and potential limitations of each design are discussed here. Along with the concept of radioisotope distribution from centralized cyclotron facilities to individual imaging centers and laboratories (“decentralized model”), an easy-to-use, standalone, flexible, fully-automated radiochemical microfluidic platform can open up to simpler and more cost-effective procedures for molecular imaging using PET. PMID:20643021

  19. Positron emitting magnetic nanoconstructs for PET/MR imaging.

    PubMed

    Aryal, Santosh; Key, Jaehong; Stigliano, Cinzia; Landis, Melissa D; Lee, Daniel Y; Decuzzi, Paolo

    2014-07-09

    Hybrid PET/MRI scanners have the potential to provide fundamental molecular, cellular, and anatomic information essential for optimizing therapeutic and surgical interventions. However, their full utilization is currently limited by the lack of truly multi-modal contrast agents capable of exploiting the strengths of each modality. Here, we report on the development of long-circulating positron-emitting magnetic nanoconstructs (PEM) designed to image solid tumors for combined PET/MRI. PEMs are synthesized by a modified nano-precipitation method mixing poly(lactic-co-glycolic acid) (PLGA), lipids, and polyethylene glycol (PEG) chains with 5 nm iron oxide nanoparticles (USPIOs). PEM lipids are coupled with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and subsequently chelated to (64)Cu. PEMs show a diameter of 140 ± 7 nm and a transversal relaxivity r2 of 265.0 ± 10.0 (mM × s)(-1), with a r2/r1 ratio of 123. Using a murine xenograft model bearing human breast cancer cell line (MDA-MB-231), intravenously administered PEMs progressively accumulate in tumors reaching a maximum of 3.5 ± 0.25% ID/g tumor at 20 h post-injection. Correlation of PET and MRI signals revealed non-uniform intratumoral distribution of PEMs with focal areas of accumulation at the tumor periphery. These long-circulating PEMs with high transversal relaxivity and tumor accumulation may allow for detailed interrogation over multiple scales in a clinically relevant setting.

  20. Positron emission tomography (PET) and macromolecular delivery in vivo.

    PubMed

    Strauss, Ludwig G; Dimitrakopoulou-Strauss, Antonia

    2009-01-01

    Positron emission tomography (PET) examinations with F-18-fluorodeoxyglucose (FDG) provide detailed information about the glucose-like metabolism in tissue. It is generally accepted that FDG reflects the viability of tumour cells. The kinetics of FDG is modulated by several genes, besides the glucose transporters and hexokinases. Additional specific information can be obtained non-invasively by using other tracers specific for cell membrane receptors. PET studies with radiolabelled peptides have emerged as a new diagnostic tool for imaging of certain tumour entities, like neuroendocrine tumours (NETs) and gastrointestinal stromal tumours (GISTs). This application is based on certain properties of these tumours, like the overexpression of somatostatin receptors, which can be visualised by somatostatin analogues, like 1,4,7,10-tetraazacyclododecane-N, N', N'', N'''-tetraacetic-acid-D: -Phe1-Tyr3 octreotide (DOTATOC) in NET. The overexpression of gastrin-releasing peptide (GRP) receptors can be visualised in GIST by using bombesin analogues. These peptides can be labelled by (68)Ga, which is a generator product and therefore more cost-effective than cyclotron products. (68)Ga-DOTATOC is a peptide that binds primarily to somatostatin receptor subtype 2 (SSTR2). PET studies with (68)Ga-DOTATOC are performed in patients with NET and some other tumours. (68)Ga-BZH3 ((68)Ga-Bombesin) is a peptide that binds to at least three bombesin receptor subtypes: the BB1 (also known as neuromedin B), the BB2 (also known as GRP), and the BB3 (bombesin receptor subtype 3). This bombesin analogue, (68)Ga-BZH3, is used in patients with GIST.

  1. Early-Dynamic Positron Emission Tomography (PET)/Computed Tomography and PET Angiography for Endoleak Detection After Endovascular Aneurysm Repair.

    PubMed

    Drescher, Robert; Gühne, Falk; Freesmeyer, Martin

    2017-06-01

    To propose a positron emission tomography (PET)/computed tomography (CT) protocol including early-dynamic and late-phase acquisitions to evaluate graft patency and aneurysm diameter, detect endoleaks, and rule out graft or vessel wall inflammation after endovascular aneurysm repair (EVAR) in one examination without intravenous contrast medium. Early-dynamic PET/CT of the endovascular prosthesis is performed for 180 seconds immediately after intravenous injection of F-18-fluorodeoxyglucose. Data are reconstructed in variable time frames (time periods after tracer injection) to visualize the arterial anatomy and are displayed as PET angiography or fused with CT images. Images are evaluated in view of vascular abnormalities, graft configuration, and tracer accumulation in the aneurysm sac. Whole-body PET/CT is performed 90 to 120 minutes after tracer injection. This protocol for early-dynamic PET/CT and PET angiography has the potential to evaluate vascular diseases, including the diagnosis of complications after endovascular procedures.

  2. Positron range in PET imaging: an alternative approach for assessing and correcting the blurring

    NASA Astrophysics Data System (ADS)

    Jødal, L.; Le Loirec, C.; Champion, C.

    2012-06-01

    Positron range impairs resolution in PET imaging, especially for high-energy emitters and for small-animal PET. De-blurring in image reconstruction is possible if the blurring distribution is known. Furthermore, the percentage of annihilation events within a given distance from the point of positron emission is relevant for assessing statistical noise. This paper aims to determine the positron range distribution relevant for blurring for seven medically relevant PET isotopes, 18F, 11C, 13N, 15O, 68Ga, 62Cu and 82Rb, and derive empirical formulas for the distributions. This paper focuses on allowed-decay isotopes. It is argued that blurring at the detection level should not be described by the positron range r, but instead the 2D projected distance δ (equal to the closest distance between decay and line of response). To determine these 2D distributions, results from a dedicated positron track-structure Monte Carlo code, Electron and POsitron TRANsport (EPOTRAN), were used. Materials other than water were studied with PENELOPE. The radial cumulative probability distribution G2D(δ) and the radial probability density distribution g2D(δ) were determined. G2D(δ) could be approximated by the empirical function 1 - exp(-Aδ2 - Bδ), where A = 0.0266 (Emean)-1.716 and B = 0.1119 (Emean)-1.934, with Emean being the mean positron energy in MeV and δ in mm. The radial density distribution g2D(δ) could be approximated by differentiation of G2D(δ). Distributions in other media were very similar to water. The positron range is important for improved resolution in PET imaging. Relevant distributions for the positron range have been derived for seven isotopes. Distributions for other allowed-decay isotopes may be estimated with the above formulas.

  3. Positron range in PET imaging: an alternative approach for assessing and correcting the blurring.

    PubMed

    Jødal, L; Le Loirec, C; Champion, C

    2012-06-21

    Positron range impairs resolution in PET imaging, especially for high-energy emitters and for small-animal PET. De-blurring in image reconstruction is possible if the blurring distribution is known. Furthermore, the percentage of annihilation events within a given distance from the point of positron emission is relevant for assessing statistical noise. This paper aims to determine the positron range distribution relevant for blurring for seven medically relevant PET isotopes, (18)F, (11)C, (13)N, (15)O, (68)Ga, (62)Cu and (82)Rb, and derive empirical formulas for the distributions. This paper focuses on allowed-decay isotopes. It is argued that blurring at the detection level should not be described by the positron range r, but instead the 2D projected distance δ (equal to the closest distance between decay and line of response). To determine these 2D distributions, results from a dedicated positron track-structure Monte Carlo code, Electron and POsitron TRANsport (EPOTRAN), were used. Materials other than water were studied with PENELOPE. The radial cumulative probability distribution G(2D)(δ) and the radial probability density distribution g(2D)(δ) were determined. G(2D)(δ) could be approximated by the empirical function 1 - exp(-Aδ(2) - Bδ), where A = 0.0266 (E(mean))(-1.716) and B = 0.1119 (E(mean))(-1.934), with E(mean) being the mean positron energy in MeV and δ in mm. The radial density distribution g(2D)(δ) could be approximated by differentiation of G(2D)(δ). Distributions in other media were very similar to water. The positron range is important for improved resolution in PET imaging. Relevant distributions for the positron range have been derived for seven isotopes. Distributions for other allowed-decay isotopes may be estimated with the above formulas.

  4. Positron Emission Tomography (PET) Evaluation After Initial Chemotherapy and Radiation Therapy Predicts Local Control in Rhabdomyosarcoma

    SciTech Connect

    Dharmarajan, Kavita V.; Wexler, Leonard H.; Gavane, Somali; Fox, Josef J.; Schoder, Heiko; Tom, Ashlyn K.; Price, Alison N.; Meyers, Paul A.; Wolden, Suzanne L.

    2012-11-15

    Purpose: 18-fluorodeoxyglucose positron emission tomography (PET) is already an integral part of staging in rhabdomyosarcoma. We investigated whether primary-site treatment response characterized by serial PET imaging at specific time points can be correlated with local control. Patients and Methods: We retrospectively examined 94 patients with rhabdomyosarcoma who received initial chemotherapy 15 weeks (median) before radiotherapy and underwent baseline, preradiation, and postradiation PET. Baseline PET standardized uptake values (SUVmax) and the presence or absence of abnormal uptake (termed PET-positive or PET-negative) both before and after radiation were examined for the primary site. Local relapse-free survival (LRFS) was calculated according to baseline SUVmax, PET-positive status, and PET-negative status by the Kaplan-Meier method, and comparisons were tested with the log-rank test. Results: The median patient age was 11 years. With 3-year median follow-up, LRFS was improved among postradiation PET-negative vs PET-positive patients: 94% vs 75%, P=.02. By contrast, on baseline PET, LRFS was not significantly different for primary-site SUVmax {<=}7 vs >7 (median), although the findings suggested a trend toward improved LRFS: 96% for SUVmax {<=}7 vs 79% for SUVmax >7, P=.08. Preradiation PET also suggested a statistically insignificant trend toward improved LRFS for PET-negative (97%) vs PET-positive (81%) patients (P=.06). Conclusion: Negative postradiation PET predicted improved LRFS. Notably, 77% of patients with persistent postradiation uptake did not experience local failure, suggesting that these patients could be closely followed up rather than immediately referred for intervention. Negative baseline and preradiation PET findings suggested statistically insignificant trends toward improved LRFS. Additional study may further understanding of relationships between PET findings at these time points and outcome in rhabdomyosarcoma.

  5. J-PET detector system for studies of the electron-positron annihilations

    NASA Astrophysics Data System (ADS)

    Pawlik-Niedźwiecka, M.; Khreptak, O.; Gajos, A.; Wieczorek, A.; Alfs, D.; Bednarski, T.; Białas, P.; Curceanu, C.; Czerwiński, E.; Dulski, K.; Głowacz, B.; Gupta-Sharma, N.; Gorgol, M.; Hiesmayr, B. C.; Jasińska, B.; Kamińska, D.; Korcyl, G.; Kowalski, P.; Krzmień, W.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Niedźwiecki, Sz.; Raczyński, L.; Rudy, Z.; Silarski, M.; Wiślicki, W.; Zgardzińska, B.; Zieliński, M.; Moskal, P.

    2016-11-01

    Jagiellonian Positron Emission Tomograph (J-PET) has been recently constructed at the Jagiellonian University as a prototype of a cost-effective scanner for the metabolic imaging of the whole human body. J-PET detector is optimized for the measurement of momentum and polarization of photons from the electron-positron annihilations. It is built out of strips of plastic scintillators, forming three cylindrical layers. As detector of gamma quanta it will be used for studies of discrete symmetries and multiparticle entanglement of photons originating from the decays of ortho-positronium atoms.

  6. Positron range in tissue-equivalent materials: experimental microPET studies.

    PubMed

    Alva-Sánchez, H; Quintana-Bautista, C; Martínez-Dávalos, A; Ávila-Rodríguez, M A; Rodríguez-Villafuerte, M

    2016-09-07

    In this work an experimental investigation was carried out to study the effect that positron range has over positron emission tomography (PET) scans through measurements of the line spread function (LSF) in tissue-equivalent materials. Line-sources consisted of thin capillary tubes filled with (18)F, (13)N or (68)Ga water-solution inserted along the axis of symmetry of cylindrical phantoms constructed with the tissue-equivalent materials: lung (inhale and exhale), adipose tissue, solid water, trabecular and cortical bone. PET scans were performed with a commercial small-animal PET scanner and image reconstruction was carried out with filtered-backprojection. Line-source distributions were analyzed using radial profiles taken on axial slices from which the spatial resolution was determined through the full-width at half-maximum, tenth-maximum, twentieth-maximum and fiftieth-maximum. A double-Gaussian model of the LSFs was used to fit experimental data which can be incorporated into iterative reconstruction methods. In addition, the maximum activity concentration in the line-sources was determined from reconstructed images and compared to the known values for each case. The experimental data indicates that positron range in different materials has a strong effect on both spatial resolution and activity concentration quantification in PET scans. Consequently, extra care should be taken when computing standard-uptake values in PET scans, in particular when the radiopharmaceutical is taken up by different tissues in the body, and more even so with high-energy positron emitters.

  7. Positron range in tissue-equivalent materials: experimental microPET studies

    NASA Astrophysics Data System (ADS)

    Alva-Sánchez, H.; Quintana-Bautista, C.; Martínez-Dávalos, A.; Ávila-Rodríguez, M. A.; Rodríguez-Villafuerte, M.

    2016-09-01

    In this work an experimental investigation was carried out to study the effect that positron range has over positron emission tomography (PET) scans through measurements of the line spread function (LSF) in tissue-equivalent materials. Line-sources consisted of thin capillary tubes filled with 18F, 13N or 68Ga water-solution inserted along the axis of symmetry of cylindrical phantoms constructed with the tissue-equivalent materials: lung (inhale and exhale), adipose tissue, solid water, trabecular and cortical bone. PET scans were performed with a commercial small-animal PET scanner and image reconstruction was carried out with filtered-backprojection. Line-source distributions were analyzed using radial profiles taken on axial slices from which the spatial resolution was determined through the full-width at half-maximum, tenth-maximum, twentieth-maximum and fiftieth-maximum. A double-Gaussian model of the LSFs was used to fit experimental data which can be incorporated into iterative reconstruction methods. In addition, the maximum activity concentration in the line-sources was determined from reconstructed images and compared to the known values for each case. The experimental data indicates that positron range in different materials has a strong effect on both spatial resolution and activity concentration quantification in PET scans. Consequently, extra care should be taken when computing standard-uptake values in PET scans, in particular when the radiopharmaceutical is taken up by different tissues in the body, and more even so with high-energy positron emitters.

  8. Positron emission tomography (PET) imaging with 18F-based radiotracers

    PubMed Central

    Alauddin, Mian M

    2012-01-01

    Positron Emission Tomography (PET) is a nuclear medicine imaging technique that is widely used in early detection and treatment follow up of many diseases, including cancer. This modality requires positron-emitting isotope labeled biomolecules, which are synthesized prior to perform imaging studies. Fluorine-18 is one of the several isotopes of fluorine that is routinely used in radiolabeling of biomolecules for PET; because of its positron emitting property and favorable half-life of 109.8 min. The biologically active molecule most commonly used for PET is 2-deoxy-2-18F-fluoro-β-D-glucose (18F-FDG), an analogue of glucose, for early detection of tumors. The concentrations of tracer accumulation (PET image) demonstrate the metabolic activity of tissues in terms of regional glucose metabolism and accumulation. Other tracers are also used in PET to image the tissue concentration. In this review, information on fluorination and radiofluorination reactions, radiofluorinating agents, and radiolabeling of various compounds and their application in PET imaging is presented. PMID:23133802

  9. The diagnostic possibilities of positron emission tomography (PET): applications in oral and maxillofacial buccal oncology.

    PubMed

    Carranza-Pelegrina, Daniela; Lomeña-Caballero, Francisco; Soler-Peter, Marina; Berini-Aytés, Leonardo; Gay-Escoda, Cosme

    2005-01-01

    The principles of positron emission tomography (PET), recently introduced as a diagnostic procedure into the health sciences, are described. The principle clinical applications apply to a particular group of specialties: cardiology, neurology, psychiatry, and above all oncology. Positron emission tomography is a non-invasive diagnostic imaging technique with clinical applications. It is an excellent tool for the study of the stage and possible malignancy of tumors of head and neck, the detection of otherwise clinically indeterminate metastases and lymphadenopathies, and likewise for the diagnosis of relapses. The only tracer with any practical clinical application is fluor-desoxyglucosa-F18 (FDG). PET detects the intense accumulation of FDG produced in malignant tumors due to the increased glycolytic rate of the neoplastic cells. With the introduction of hybrid systems that combine computerized tomography or magnetic resonance with positron emission tomography, important advances are being made in the diagnosis and follow-up of oncologic pathology of head and neck.

  10. Clinical Utility of Positron Emission Tomography Magnetic Resonance Imaging (PET-MRI) in Gastrointestinal Cancers.

    PubMed

    Matthews, Robert; Choi, Minsig

    2016-09-09

    Anatomic imaging utilizing both CT (computed tomography) and MRI (magnetic resonance imaging) limits the assessment of cancer metastases in lymph nodes and distant organs while functional imaging like PET (positron emission tomography) scan has its limitation in spatial resolution capacity. Hybrid imaging utilizing PET-CT and PET-MRI are novel imaging modalities that are changing the current landscape in cancer diagnosis, staging, and treatment response. MRI has shown to have higher sensitivity in soft tissue, head and neck pathology, and pelvic disease, as well as, detecting small metastases in the liver and bone compared to CT. Combining MRI with PET allows for detection of metastases that may have been missed with current imaging modalities. In this review, we will examine the clinical utility of FDG PET-MRI in the diagnosis and staging of gastrointestinal cancers with focus on esophageal, stomach, colorectal, and pancreatic cancers. We will also explore its role in treatment response and future directions associated with it.

  11. Al18F-Labeling Of Heat-Sensitive Biomolecules for Positron Emission Tomography Imaging

    PubMed Central

    Cleeren, Frederik; Lecina, Joan; Ahamed, Muneer; Raes, Geert; Devoogdt, Nick; Caveliers, Vicky; McQuade, Paul; Rubins, Daniel J; Li, Wenping; Verbruggen, Alfons; Xavier, Catarina; Bormans, Guy

    2017-01-01

    Positron emission tomography (PET) using radiolabeled biomolecules is a translational molecular imaging technology that is increasingly used in support of drug development. Current methods for radiolabeling biomolecules with fluorine-18 are laborious and require multistep procedures with moderate labeling yields. The Al18F-labeling strategy involves chelation in aqueous medium of aluminum mono[18F]fluoride ({Al18F}2+) by a suitable chelator conjugated to a biomolecule. However, the need for elevated temperatures (100-120 °C) required for the chelation reaction limits its widespread use. Therefore, we designed a new restrained complexing agent (RESCA) for application of the AlF strategy at room temperature. Methods. The new chelator RESCA was conjugated to three relevant biologicals and the constructs were labeled with {Al18F}2+ to evaluate the generic applicability of the one-step Al18F-RESCA-method. Results. We successfully labeled human serum albumin with excellent radiochemical yields in less than 30 minutes and confirmed in vivo stability of the Al18F-labeled protein in rats. In addition, we efficiently labeled nanobodies targeting the Kupffer cell marker CRIg, and performed µPET studies in healthy and CRIg deficient mice to demonstrate that the proposed radiolabeling method does not affect the functional integrity of the protein. Finally, an affibody targeting HER2 (PEP04314) was labeled site-specifically, and the distribution profile of (±)-[18F]AlF(RESCA)-PEP04314 in a rhesus monkey was compared with that of [18F]AlF(NOTA)-PEP04314 using whole-body PET/CT. Conclusion. This generic radiolabeling method has the potential to be a kit-based fluorine-18 labeling strategy, and could have a large impact on PET radiochemical space, potentially enabling the development of many new fluorine-18 labeled protein-based radiotracers. PMID:28824726

  12. Al(18)F-Labeling Of Heat-Sensitive Biomolecules for Positron Emission Tomography Imaging.

    PubMed

    Cleeren, Frederik; Lecina, Joan; Ahamed, Muneer; Raes, Geert; Devoogdt, Nick; Caveliers, Vicky; McQuade, Paul; Rubins, Daniel J; Li, Wenping; Verbruggen, Alfons; Xavier, Catarina; Bormans, Guy

    2017-01-01

    Positron emission tomography (PET) using radiolabeled biomolecules is a translational molecular imaging technology that is increasingly used in support of drug development. Current methods for radiolabeling biomolecules with fluorine-18 are laborious and require multistep procedures with moderate labeling yields. The Al(18)F-labeling strategy involves chelation in aqueous medium of aluminum mono[(18)F]fluoride ({Al(18)F}(2+)) by a suitable chelator conjugated to a biomolecule. However, the need for elevated temperatures (100-120 °C) required for the chelation reaction limits its widespread use. Therefore, we designed a new restrained complexing agent (RESCA) for application of the AlF strategy at room temperature. Methods. The new chelator RESCA was conjugated to three relevant biologicals and the constructs were labeled with {Al(18)F}(2+) to evaluate the generic applicability of the one-step Al(18)F-RESCA-method. Results. We successfully labeled human serum albumin with excellent radiochemical yields in less than 30 minutes and confirmed in vivo stability of the Al(18)F-labeled protein in rats. In addition, we efficiently labeled nanobodies targeting the Kupffer cell marker CRIg, and performed µPET studies in healthy and CRIg deficient mice to demonstrate that the proposed radiolabeling method does not affect the functional integrity of the protein. Finally, an affibody targeting HER2 (PEP04314) was labeled site-specifically, and the distribution profile of (±)-[(18)F]AlF(RESCA)-PEP04314 in a rhesus monkey was compared with that of [(18)F]AlF(NOTA)-PEP04314 using whole-body PET/CT. Conclusion. This generic radiolabeling method has the potential to be a kit-based fluorine-18 labeling strategy, and could have a large impact on PET radiochemical space, potentially enabling the development of many new fluorine-18 labeled protein-based radiotracers.

  13. EM reconstruction of dual isotope PET using staggered injections and prompt gamma positron emitters

    PubMed Central

    Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna

    2014-01-01

    Purpose: The aim of dual isotope positron emission tomography (DIPET) is to create two separate images of two coinjected PET radiotracers. DIPET shortens the duration of the study, reduces patient discomfort, and produces perfectly coregistered images compared to the case when two radiotracers would be imaged independently (sequential PET studies). Reconstruction of data from such simultaneous acquisition of two PET radiotracers is difficult because positron decay of any isotope creates only 511 keV photons; therefore, the isotopes cannot be differentiated based on the detected energy. Methods: Recently, the authors have proposed a DIPET technique that uses a combination of radiotracer A which is a pure positron emitter (such as 18F or 11C) and radiotracer B in which positron decay is accompanied by the emission of a high-energy (HE) prompt gamma (such as 38K or 60Cu). Events that are detected as triple coincidences of HE gammas with the corresponding two 511 keV photons allow the authors to identify the lines-of-response (LORs) of isotope B. These LORs are used to separate the two intertwined distributions, using a dedicated image reconstruction algorithm. In this work the authors propose a new version of the DIPET EM-based reconstruction algorithm that allows the authors to include an additional, independent estimate of radiotracer A distribution which may be obtained if radioisotopes are administered using a staggered injections method. In this work the method is tested on simple simulations of static PET acquisitions. Results: The authors’ experiments performed using Monte-Carlo simulations with static acquisitions demonstrate that the combined method provides better results (crosstalk errors decrease by up to 50%) than the positron-gamma DIPET method or staggered injections alone. Conclusions: The authors demonstrate that the authors’ new EM algorithm which combines information from triple coincidences with prompt gammas and staggered injections improves

  14. A Study of a GEM Tracking Detector for Imaging Positrons from PET Radioisotopes in Plants

    NASA Astrophysics Data System (ADS)

    Cao, T.; Azmoun, B.; Babst, B.; Blatnik, M.; Purschke, M. L.; Stoll, S.; Vaska, P.; Woody, C.

    2014-10-01

    Positron Emission Tomography is a powerful imaging technique used for humans and animals that can also be used to study plant biology. However, since many of the structures found on plants (e.g., leaves) are very thin, a large portion of the positrons emitted from PET isotopes escape before annihilation, leading to low efficiency and quantification inaccuracies. In this study, a gas tracking detector was used to measure escaping positrons from PET radiotracer isotopes which has the ability to reconstruct three dimensional tracks that can be used to form an image of the emitting object. This device uses a triple GEM detector with a short drift region and an XY strip readout plane to measure a vector for positrons passing through a drift gap. By projecting each particle track back to the object surface, a 2-D image of the spatial distribution of the positrons that escaped from that surface can be reconstructed. In this paper, we will describe the basic principle of the GEM detector and present results on its performance using various types of phantoms and actual plant specimens. Monte Carlo simulations are also used to better understand the detector performance and compare to actual measurements.

  15. Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET)/MRI for Lung Cancer Staging.

    PubMed

    Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Yoshikawa, Takeshi; Sugimura, Kazuro

    2016-07-01

    Tumor, lymph node, and metastasis (TNM) classification of lung cancer is typically performed with the TNM staging system, as recommended by the Union Internationale Contre le Cancer (UICC), the American Joint Committee on Cancer (AJCC), and the International Association for the Study of Lung Cancer (IASLC). Radiologic examinations for TNM staging of lung cancer patients include computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography with 2-[fluorine-18] fluoro-2-deoxy-D-glucose (FDG-PET), and FDG-PET combined with CT (FDG-PET/CT) and are used for pretherapeutic assessments. Recent technical advances in MR systems, application of fast and parallel imaging and/or introduction of new MR techniques, and utilization of contrast media have markedly improved the diagnostic utility of MRI in this setting. In addition, FDG-PET can be combined or fused with MRI (PET/MRI) for clinical practice. This review article will focus on these recent advances in MRI as well as on PET/MRI for lung cancer staging, in addition to a discussion of their potential and limitations for routine clinical practice in comparison with other modalities such as CT, FDG-PET, and PET/CT.

  16. PET imaging with the non-pure positron emitters: 55Co, 86Y and 124I

    NASA Astrophysics Data System (ADS)

    Braad, P. E. N.; Hansen, S. B.; Thisgaard, H.; Høilund-Carlsen, P. F.

    2015-05-01

    PET/CT with non-pure positron emitters is a highly valuable tool in immuno-PET and for pretherapeutic dosimetry. However, imaging is complicated by prompt gamma coincidences (PGCs) that add an undesired background activity to the images. Time-of-flight (TOF) reconstruction improves lesion detectability in 18F-PET and can potentially also improve the signal-to-noise ratio in images acquired with non-pure positron emitters. Using the GE Discovery 690 PET/CT system, we evaluated the image quality with 55Co, 86Y and 124I, and the effect of PGC-correction and TOF-reconstruction on image quality and quantitation in a series of phantom studies. PET image quality and quantitation for all isotopes were significantly affected by PGCs. The effect was most severe with 86Y, and less, but comparable, with 55Co and 124I. PGC-correction improved the image quality and the quantitation accuracy dramatically for all isotopes, especially when the activity was limited to a few hot lesions in a warm background. In imaging situations, where high levels of activity were present in the background, activity concentrations were overestimated. TOF-reconstruction improved image quality in isolated lesions but worsened the accuracy of quantitation and uniformity in homogeneous activity distributions. Better modelling of PGCs in the scatter correction can potentially improve the situation.

  17. Experimental validation of gallium production and isotope-dependent positron range correction in PET

    NASA Astrophysics Data System (ADS)

    Fraile, L. M.; Herraiz, J. L.; Udías, J. M.; Cal-González, J.; Corzo, P. M. G.; España, S.; Herranz, E.; Pérez-Liva, M.; Picado, E.; Vicente, E.; Muñoz-Martín, A.; Vaquero, J. J.

    2016-04-01

    Positron range (PR) is one of the important factors that limit the spatial resolution of positron emission tomography (PET) preclinical images. Its blurring effect can be corrected to a large extent if the appropriate method is used during the image reconstruction. Nevertheless, this correction requires an accurate modelling of the PR for the particular radionuclide and materials in the sample under study. In this work we investigate PET imaging with 68Ga and 66Ga radioisotopes, which have a large PR and are being used in many preclinical and clinical PET studies. We produced a 68Ga and 66Ga phantom on a natural zinc target through (p,n) reactions using the 9-MeV proton beam delivered by the 5-MV CMAM tandetron accelerator. The phantom was imaged in an ARGUS small animal PET/CT scanner and reconstructed with a fully 3D iterative algorithm, with and without PR corrections. The reconstructed images at different time frames show significant improvement in spatial resolution when the appropriate PR is applied for each frame, by taking into account the relative amount of each isotope in the sample. With these results we validate our previously proposed PR correction method for isotopes with large PR. Additionally, we explore the feasibility of PET imaging with 68Ga and 66Ga radioisotopes in proton therapy.

  18. Distributed Microprocessor Automation Network for Synthesizing Radiotracers Used in Positron Emission Tomography [PET

    DOE R&D Accomplishments Database

    Russell, J. A. G.; Alexoff, D. L.; Wolf, A. P.

    1984-09-01

    This presentation describes an evolving distributed microprocessor network for automating the routine production synthesis of radiotracers used in Positron Emission Tomography. We first present a brief overview of the PET method for measuring biological function, and then outline the general procedure for producing a radiotracer. The paper identifies several reasons for our automating the syntheses of these compounds. There is a description of the distributed microprocessor network architecture chosen and the rationale for that choice. Finally, we speculate about how this network may be exploited to extend the power of the PET method from the large university or National Laboratory to the biomedical research and clinical community at large. (DT)

  19. High-resolution PET [Positron Emission Tomography] for Medical Science Studies

    DOE R&D Accomplishments Database

    Budinger, T. F.; Derenzo, S. E.; Huesman, R. H.; Jagust, W. J.; Valk, P. E.

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging.

  20. High-resolution PET (positron emission tomography) for medical science studies

    SciTech Connect

    Budinger, T.F.; Derenzo, S.E.; Huesman, R.H.; Jagust, W.J.; Valk, P.E. )

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging. 6 refs., 21 figs.

  1. Fluorodeoxyglucose positron emission tomography (FDG-PET) for monitoring lymphadenopathy in the autoimmune lymphoproliferative syndrome (ALPS).

    PubMed

    Rao, V Koneti; Carrasquillo, Jorge A; Dale, Janet K; Bacharach, Stephen L; Whatley, Millie; Dugan, Faith; Tretler, Jean; Fleisher, Thomas; Puck, Jennifer M; Wilson, Wyndham; Jaffe, Elaine S; Avila, Nilo; Chen, Clara C; Straus, Stephen E

    2006-02-01

    Autoimmune lymphoproliferative syndrome (ALPS) is associated with mutations that impair the activity of lymphocyte apoptosis proteins, leading to chronic lymphadenopathy, hepatosplenomegaly, autoimmunity, and an increased risk of lymphoma. We investigated the utility of fluorodeoxyglucose positron emission tomography (FDG-PET) in discriminating benign from malignant lymphadenopathy in ALPS. We report that FDG avidity of benign lymph nodes in ALPS can be high and, hence, by itself does not imply presence of lymphoma; but FDG-PET can help guide the decision for selecting which of many enlarged nodes in ALPS patients to biopsy when lymphoma is suspected.

  2. Clinical correlates of decreased anteroposterior metabolic gradients in positron emission tomography (PET) of schizophrenic patients

    SciTech Connect

    DeLisi, L.E.; Buchsbaum, M.S.; Holcomb, H.H.; Dowling-Zimmerman, S.; Pickar, D.; Boronow, J.; Morihisa, J.M.; van Kammen, D.P.; Carpenter, W.; Kessler, R.

    1985-01-01

    The finding in schizophrenic patients of a reversal of the normal frontal to posterior pattern of brain metabolic activity with positron emission tomography (PET) is of interest, but its relevance to psychopathology is unknown. Using PET, the authors studied 21 patients with chronic schizophrenia and 21 age- and sex-matched control subjects. Although eight of the 21 patients and only one of the control subjects showed a relatively lower anteroposterior metabolic gradient, no clinical correlates of this finding were noted. In addition, cerebral atrophy, as determined by CAT scan, was not associated with this aberrant metabolic pattern.

  3. Final Report Summary: Radiation dosimetry of Cu-64-labeled radiotherapy agents using PET [Positron Emission Tomography

    SciTech Connect

    Anderson, Carolyn J.; Cutler, P.D.

    2002-09-01

    This project began in 1996, and was completed in July 2001. The overall goals were to compare various methods of dosimetry of PET imaging agents, as well as develop more optimal methods. One of the major accomplishments of this grant was the human PET imaging studies of a positron-emitting radiopharmaceutical for somatostatin-receptor imaging, and subsequent dosimetry calculations resulting from this study. In addition, we collaborated with Darrell Fisher and Edmund Hui to develop a MIRD-hamster program for calculating hamster organ and tumor dosimetry in hamster models. Progress was made towards a point kernel approach to more accurately determining absorbed doses to normal organs, as well as towards co-registration of PET and MRI images. This report focuses on the progress made in the last 15 months of the grant, which in general is a summary of the progress over the 5 years the project was ongoing.

  4. Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) Correlation of Histopathology and MRI in Prion Disease.

    PubMed

    Mente, Karin P; O'Donnell, James K; Jones, Stephen E; Cohen, Mark L; Thompson, Nicolas R; Bizzi, Alberto; Gambetti, Pierluigi; Safar, Jiri G; Appleby, Brian S

    2017-01-01

    Creutzfeldt-Jakob disease (CJD) and other prion diseases are rapidly progressive spongiform encephalopathies that are invariably fatal. Clinical features and magnetic resonance imaging, electroencephalogram, and cerebrospinal fluid abnormalities may suggest prion disease, but a definitive diagnosis can only be made by means of neuropathologic examination. Fluorodeoxyglucose positron emission tomography (FDG-PET) is not routinely used to evaluate patients with suspected prion disease. This study includes 11 cases of definite prion disease in which FDG-PET scans were obtained. There were 8 sporadic CJD cases, 2 genetic CJD cases, and 1 fatal familial insomnia case. Automated FDG-PET analysis revealed parietal region hypometabolism in all cases. Surprisingly, limbic and mesolimbic hypermetabolism were also present in the majority of cases. When FDG-PET hypometabolism was compared with neuropathologic changes (neuronal loss, astrocytosis, spongiosis), hypometabolism was predictive of neuropathology in 80.6% of cortical regions versus 17.6% of subcortical regions. The odds of neuropathologic changes were 2.1 times higher in cortical regions than subcortical regions (P=0.0265). A similar discordance between cortical and subcortical regions was observed between FDG-PET hypometabolism and magnetic resonance imaging diffusion weighted imaging hyperintensity. This study shows that there may be a relationship between FDG-PET hypometabolism and neuropathology in cortical regions in prion disease but it is unlikely to be helpful for diagnosis.

  5. Recovering the triple coincidence of non-pure positron emitters in preclinical PET

    NASA Astrophysics Data System (ADS)

    Lin, Hsin-Hon; Chuang, Keh-Shih; Chen, Szu-Yu; Jan, Meei-Ling

    2016-03-01

    Non-pure positron emitters, with their long half-lives, allow for the tracing of slow biochemical processes which cannot be adequately examined by the commonly used short-lived positron emitters. Most of these isotopes emit high-energy cascade gamma rays in addition to positron decay that can be detected and create a triple coincidence with annihilation photons. Triple coincidence is discarded in most scanners, however, the majority of the triple coincidence contains true photon pairs that can be recovered. In this study, we propose a strategy for recovering triple coincidence events to raise the sensitivity of PET imaging for non-pure positron emitters. To identify the true line of response (LOR) from a triple coincidence, a framework utilizing geometrical, energy and temporal information is proposed. The geometrical criterion is based on the assumption that the LOR with the largest radial offset among the three sub pairs of triple coincidences is least likely to be a true LOR. Then, a confidence time window is used to test the valid LOR among those within triple coincidence. Finally, a likelihood ratio discriminant rule based on the energy probability density distribution of cascade and annihilation gammas is established to identify the true LOR. An Inveon preclinical PET scanner was modeled with GATE (GEANT4 application for tomographic emission) Monte Carlo software. We evaluated the performance of the proposed method in terms of identification fraction, noise equivalent count rates (NECR), and image quality on various phantoms. With the inclusion of triple coincidence events using the proposed method, the NECR was found to increase from 11% to 26% and 19% to 29% for I-124 and Br-76, respectively, when 7.4-185 MBq of activity was used. Compared to the reconstructed images using double coincidence, this technique increased the SNR by 5.1-7.3% for I-124 and 9.3-10.3% for Br-76 within the activity range of 9.25-74 MBq, without compromising the spatial resolution or

  6. Clinical Utility of Positron Emission Tomography Magnetic Resonance Imaging (PET-MRI) in Gastrointestinal Cancers

    PubMed Central

    Matthews, Robert; Choi, Minsig

    2016-01-01

    Anatomic imaging utilizing both CT (computed tomography) and MRI (magnetic resonance imaging) limits the assessment of cancer metastases in lymph nodes and distant organs while functional imaging like PET (positron emission tomography) scan has its limitation in spatial resolution capacity. Hybrid imaging utilizing PET-CT and PET-MRI are novel imaging modalities that are changing the current landscape in cancer diagnosis, staging, and treatment response. MRI has shown to have higher sensitivity in soft tissue, head and neck pathology, and pelvic disease, as well as, detecting small metastases in the liver and bone compared to CT. Combining MRI with PET allows for detection of metastases that may have been missed with current imaging modalities. In this review, we will examine the clinical utility of FDG PET-MRI in the diagnosis and staging of gastrointestinal cancers with focus on esophageal, stomach, colorectal, and pancreatic cancers. We will also explore its role in treatment response and future directions associated with it. PMID:27618106

  7. Positron emission tomography (PET): expanding the horizons of oncology drug development.

    PubMed

    Hammond, Lisa A; Denis, Louis; Salman, Umber; Jerabek, Paul; Thomas, Charles R; Kuhn, John G

    2003-08-01

    Positron emission tomography (PET) allows three-dimensional quantitative determination of the distribution of radioactivity permitting measurement of physiological, biochemical, and pharmacological functions at the molecular level. Until recently, no method existed to directly and noninvasively assess transport and metabolism of neoplastic agents as a function of time in various organs as well as in the tumor. Standard preclinical evaluation of potential anticancer agents entails radiolabeling the agent, usually with tritium or 14C, sacrifice experiments, and high-performance liquid chromatography (HPLC) analysis to determine the biodistribution and metabolism in animals. Radiolabeling agents with positron-emitting radionuclides allows the same information to be obtained as well as in vivo pharmacokinetic (PK) data by animal tissue and plasma sampling in combination with PET scanning. In phase I/II human studies, classic PK measurements can be coupled with imaging measurements to define an optimal dosing schedule and help formulate the design of phase III studies that are essential for drug licensure [1]. Many of the novel agents currently in development are cytostatic rather than cytotoxic and therefore, the traditional standard endpoints in phase I and II studies may no longer be relevant. The use of a specialized imaging modality that allows PK and pharmacodynamic (PD) evaluation of a drug of interest has been proposed to permit rapid and sensitive assessment of the biological effects of novel anticancer agents. The progress to date and the challenges of incorporating PET technology into oncology drug development from the preclinical to clinical setting are reviewed in this article.

  8. Short-lived positron emitters in beam-on PET imaging during proton therapy.

    PubMed

    Dendooven, P; Buitenhuis, H J T; Diblen, F; Heeres, P N; Biegun, A K; Fiedler, F; van Goethem, M-J; van der Graaf, E R; Brandenburg, S

    2015-12-07

    The only method for in vivo dose delivery verification in proton beam radiotherapy in clinical use today is positron emission tomography (PET) of the positron emitters produced in the patient during irradiation. PET imaging while the beam is on (so called beam-on PET) is an attractive option, providing the largest number of counts, the least biological washout and the fastest feedback. In this implementation, all nuclides, independent of their half-life, will contribute. As a first step towards assessing the relevance of short-lived nuclides (half-life shorter than that of (10)C, T1/2  =  19 s) for in vivo dose delivery verification using beam-on PET, we measured their production in the stopping of 55 MeV protons in water, carbon, phosphorus and calcium The most copiously produced short-lived nuclides and their production rates relative to the relevant long-lived nuclides are: (12)N (T1/2  =  11 ms) on carbon (9% of (11)C), (29)P (T1/2  =  4.1 s) on phosphorus (20% of (30)P) and (38m)K (T1/2  =  0.92 s) on calcium (113% of (38g)K). No short-lived nuclides are produced on oxygen. The number of decays integrated from the start of an irradiation as a function of time during the irradiation of PMMA and 4 tissue materials has been determined. For (carbon-rich) adipose tissue, (12)N dominates up to 70 s. On bone tissue, (12)N dominates over (15)O during the first 8-15 s (depending on carbon-to-oxygen ratio). The short-lived nuclides created on phosphorus and calcium provide 2.5 times more beam-on PET counts than the long-lived ones produced on these elements during a 70 s irradiation. From the estimated number of (12)N PET counts, we conclude that, for any tissue, (12)N PET imaging potentially provides equal to superior proton range information compared to prompt gamma imaging with an optimized knife-edge slit camera. The practical implementation of (12)N PET imaging is discussed.

  9. Short-lived positron emitters in beam-on PET imaging during proton therapy

    NASA Astrophysics Data System (ADS)

    Dendooven, P.; Buitenhuis, H. J. T.; Diblen, F.; Heeres, P. N.; Biegun, A. K.; Fiedler, F.; van Goethem, M.-J.; van der Graaf, E. R.; Brandenburg, S.

    2015-12-01

    The only method for in vivo dose delivery verification in proton beam radiotherapy in clinical use today is positron emission tomography (PET) of the positron emitters produced in the patient during irradiation. PET imaging while the beam is on (so called beam-on PET) is an attractive option, providing the largest number of counts, the least biological washout and the fastest feedback. In this implementation, all nuclides, independent of their half-life, will contribute. As a first step towards assessing the relevance of short-lived nuclides (half-life shorter than that of 10C, T1/2  =  19 s) for in vivo dose delivery verification using beam-on PET, we measured their production in the stopping of 55 MeV protons in water, carbon, phosphorus and calcium The most copiously produced short-lived nuclides and their production rates relative to the relevant long-lived nuclides are: 12N (T1/2  =  11 ms) on carbon (9% of 11C), 29P (T1/2  =  4.1 s) on phosphorus (20% of 30P) and 38mK (T1/2  =  0.92 s) on calcium (113% of 38gK). No short-lived nuclides are produced on oxygen. The number of decays integrated from the start of an irradiation as a function of time during the irradiation of PMMA and 4 tissue materials has been determined. For (carbon-rich) adipose tissue, 12N dominates up to 70 s. On bone tissue, 12N dominates over 15O during the first 8-15 s (depending on carbon-to-oxygen ratio). The short-lived nuclides created on phosphorus and calcium provide 2.5 times more beam-on PET counts than the long-lived ones produced on these elements during a 70 s irradiation. From the estimated number of 12N PET counts, we conclude that, for any tissue, 12N PET imaging potentially provides equal to superior proton range information compared to prompt gamma imaging with an optimized knife-edge slit camera. The practical implementation of 12N PET imaging is discussed.

  10. A self-normalization reconstruction technique for PET scans using the positron emission data.

    PubMed

    Salomon, André; Goldschmidt, Benjamin; Botnar, René; Kiessling, Fabian; Schulz, Volkmar

    2012-12-01

    Positron emission tomography (PET) image quality in both clinical and preclinical environments highly depends on an accurate knowledge of the detector hardware to correct for image quality degrading effects like gain, temperature, and photon detection efficiency variations of the individual crystals. In conventional PET systems some of these variations are typically corrected using a dedicated calibration scan in which the scanner performance for a well-known activity source is measured. We propose an alternative method for estimating the relative sensitivity of each detector pixel using the coincidences as well as the singles emission data of each PET scan. The overall idea is to compare the total sum of all measured single photons before coincidence processing in each crystal with a steadily low-frequent distribution that can normally be expected. Both the estimated activity and the estimated detector sensitivity are simultaneously improved by using an extended iterative reconstruction scheme. This way we ensure the use of an optimal calibration correction (with the exception of a global factor) for each data set, even if the scanner performance has changed between two scans. Data measured with a preclinical PET scanner (HYPERIon-I) which uses analog silicon photomultipliers in combination with a custom-made ASIC shows a significant increase of image quality and homogeneity using the proposed method.

  11. Photo-detectors for time of flight positron emission tomography (ToF-PET).

    PubMed

    Spanoudaki, Virginia Ch; Levin, Craig S

    2010-01-01

    We present the most recent advances in photo-detector design employed in time of flight positron emission tomography (ToF-PET). PET is a molecular imaging modality that collects pairs of coincident (temporally correlated) annihilation photons emitted from the patient body. The annihilation photon detector typically comprises a scintillation crystal coupled to a fast photo-detector. ToF information provides better localization of the annihilation event along the line formed by each detector pair, resulting in an overall improvement in signal to noise ratio (SNR) of the reconstructed image. Apart from the demand for high luminosity and fast decay time of the scintillation crystal, proper design and selection of the photo-detector and methods for arrival time pick-off are a prerequisite for achieving excellent time resolution required for ToF-PET. We review the two types of photo-detectors used in ToF-PET: photomultiplier tubes (PMTs) and silicon photo-multipliers (SiPMs) with a special focus on SiPMs.

  12. Physics of pure and non-pure positron emitters for PET: a review and a discussion.

    PubMed

    Conti, Maurizio; Eriksson, Lars

    2016-12-01

    With the increased interest in new PET tracers, gene-targeted therapy, immunoPET, and theranostics, other radioisotopes will be increasingly used in clinical PET scanners, in addition to (18)F. Some of the most interesting radioisotopes with prospective use in the new fields are not pure short-range β(+) emitters but can be associated with gamma emissions in coincidence with the annihilation radiation (prompt gamma), gamma-gamma cascades, intense Bremsstrahlung radiation, high-energy positrons that may escape out of the patient skin, and high-energy gamma rays that result in some e (+)/e (-) pair production. The high level of sophistication in data correction and excellent quantitative accuracy that has been reached for (18)F in recent years can be questioned by these effects. In this work, we review the physics and the scientific literature and evaluate the effect of these additional phenomena on the PET data for each of a series of radioisotopes: (11)C, (13)N, (15)O, (18)F, (64)Cu, (68)Ga, (76)Br, (82)Rb, (86)Y, (89)Zr, (90)Y, and (124)I. In particular, we discuss the present complications arising from the prompt gammas, and we review the scientific literature on prompt gamma correction. For some of the radioisotopes considered in this work, prompt gamma correction is definitely needed to assure acceptable image quality, and several approaches have been proposed in recent years. Bremsstrahlung photons and (176)Lu background were also evaluated.

  13. Optimization of pentadentate bispidines as bifunctional chelators for 64Cu positron emission tomography (PET).

    PubMed

    Comba, Peter; Hunoldt, Sebastian; Morgen, Michael; Pietzsch, Jens; Stephan, Holger; Wadepohl, Hubert

    2013-07-15

    Pentadentate bispidine ligands (3,7-diazabicyclo[3.3.1]nonanes) are optimized for maximum complex stability and facile functionalization with respect to their coupling to biological vector molecules and/or fluorescence markers for PET (positron emission tomography) and multimodal imaging (i.e., PET and optical imaging). The pentadentate ligand with two tertiary amine donors, two p-methoxy substituted pyridines, and one unsubsituted pyridine group is shown to best fulfill important conditions for PET applications, i.e., fast complexation with Cu(II) and high in vivo stability, and this was predicted from the solution chemistry, in particular the Cu(II/I) redox potentials. Also, solvent partition experiments to model the lipophilicity of the Cu(II) complexes indicate that the bis p-methoxy substituted ligand leads to cationic complexes with an appreciable lipophilicity. This is supported by the biodistribution experiments that show that the complex with the p-methoxy substituted ligand is excreted very quickly and primarily via the renal route and therefore is ideally suited for the development of PET tracers with ligands of this type coupled to biomolecules.

  14. Photo-Detectors for Time of Flight Positron Emission Tomography (ToF-PET)

    PubMed Central

    Spanoudaki, Virginia Ch.; Levin⋆, Craig S.

    2010-01-01

    We present the most recent advances in photo-detector design employed in time of flight positron emission tomography (ToF-PET). PET is a molecular imaging modality that collects pairs of coincident (temporally correlated) annihilation photons emitted from the patient body. The annihilation photon detector typically comprises a scintillation crystal coupled to a fast photo-detector. ToF information provides better localization of the annihilation event along the line formed by each detector pair, resulting in an overall improvement in signal to noise ratio (SNR) of the reconstructed image. Apart from the demand for high luminosity and fast decay time of the scintillation crystal, proper design and selection of the photo-detector and methods for arrival time pick-off are a prerequisite for achieving excellent time resolution required for ToF-PET. We review the two types of photo-detectors used in ToF-PET: photomultiplier tubes (PMTs) and silicon photo-multipliers (SiPMs) with a special focus on SiPMs. PMID:22163482

  15. In vivo positron emission tomography (PET) imaging of mesenchymal-epithelial transition (MET) receptor.

    PubMed

    Wu, Chunying; Tang, Zhe; Fan, Weiwen; Zhu, Wenxia; Wang, Changning; Somoza, Edurado; Owino, Norbert; Li, Ruoshi; Ma, Patrick C; Wang, Yanming

    2010-01-14

    We report the radiosynthesis and evaluation of 3-[3,5-dimethyl-4-(4-[11C]methylpiperazinecarbonyl)-1H-pyrrol-2-ylmethylene]-2-oxo-2,3-dihydro-1H-indole-5-sulfonic acid (3-chlorophenyl)methylamide, termed [11C]SU11274 ([11C]14) for in vivo imaging of mesenchymal-epithelial transition (MET) receptor by positron emission tomography (PET). Following the synthesis of the precursor (13) that was achieved in 10 steps with a total yield of 9.7%, [11C]14 was obtained through radiomethylation in a range of 5-10% radiochemical yield and over 95% radiochemical purity. For in vivo PET studies, two human lung cancer xenograft models were established using MET-positive NCI-H1975 and MET-negative NCI-H520 cell lines. Quantitative [11C]14-PET studies showed that the tumor uptake of [11C]14 in the NCI-H1975 xenografts was significantly higher than that in the NCI-H520 xenografts, which is consistent with their corresponding immunohistochemical tissue staining patterns of MET receptors from the same animals. These studies demonstrated that [11C]14-PET is an appropriate imaging marker for quantification of MET receptor in vivo, which can facilitate efficacy evaluation in the clinical development of MET-targeted cancer therapeutics.

  16. Orbital positron emission tomography/computed tomography (PET/CT) imaging findings in graves ophthalmopathy

    PubMed Central

    2013-01-01

    Background We aimed to describe orbital positron emission tomography/computed tomography (PET/CT) imaging findings, both structural and metabolic, in different clinical stages of Graves ophthalmopathy (GO). This prospective, observational, cross-sectional study examined 32 eyes of 16 patients with GO. Methods Patients were assessed with a complete ophthalmological evaluation and assigned a VISA classification for GO. All patients underwent serum thyroid hormone measurement, antibody profile, and 18-fluorodeoxyglucose positron emission tomography/computed tomography (18-FDG PET/CT) of the orbits. The 18-FDG uptake on PET images was expressed in terms of maximum standard uptake value (SUVmax). CT images were analyzed, and orbital structures were measured in millimeters. Vision, inflammation, strabismus, and overall appearance were assessed according to the VISA classification system, thyroid hormone levels, antibody values, 18-FDG uptake, and thickness of orbital structures. Results Altogether, 32 eyes of 16 patients (10 women, 6 men; mean age 44.31 ± 13 years, range 20–71 years) were included. Three patients were hypothyroid, seven were euthyroid, and six were hyperthyroid. CT measurements of extraocular muscle diameter were elevated (P < 0.05), and muscle 18-FDG uptake values were increased. Eyes with a clinical VISA inflammation score of ≤ 4 had an average extraocular muscle SUVmax of 3.09, and those with a score of ≥ 5 had an average SUVmax of 3.92 (P = 0.09), showing no clear correlation between clinically observed inflammation and 18-FDG uptake. 18-FDG uptake values also did not show a correlation with extraocular muscle diameter as measured by CT (R2 = 0.0755, P > 0.05). Conclusions We demonstrated a lack of correlation between 18-FDG extraocular muscle uptake and either clinical inflammation score or muscle diameter. Although 18-FDG uptake has been used as an inflammation marker in other pathologies, inflammation in GO may

  17. The Discovery of a Novel Phosphodiesterase (PDE) 4B-preferring Radioligand for Positron Emission Tomography (PET) Imaging.

    PubMed

    Zhang, Lei; Chen, Laigao; Beck, Elizabeth M; Chappie, Thomas A; Coelho, Richard V; Doran, Shawn D; Fan, Kuo-Hsien; Humphrey, John M; Hughes, Zoe; Kuszpit, Kyle; Lachapelle, Erik A; Lazzaro, John T; Mather, Robert J; Patel, Nandini C; Skaddan, Marc B; Sciabola, Simone; Verhoest, Patrick R; Young, Joseph Michael; Zasadny, Kenneth; Villalobos, Anabella

    2017-09-28

    As part of our effort in identifying PDE4B-preferring inhibitors for the treatment of central nervous system (CNS) disorders, we sought to identify a positron emission tomography (PET) ligand to enable target occupancy measurement in vivo. Through a systematic and cost-effective PET discovery process, involving expression level (Bmax) and bio-distribution determination, a PET-specific structure-activity relationship (SAR) effort, and specific binding assessment using a LC-MS/MS "cold tracer" method, we have identified 8 (PF-06445974) as a promising PET lead. Compound 8 has exquisite potency at PDE4B, good selectivity over PDE4D, excellent brain permeability, and a high level of specific binding in the "cold tracer" study. In subsequent non-human primate (NHP) PET imaging studies, [18F]8 showed rapid brain uptake and high target specificity, indicating that [18F]8 is a promising PDE4B-preferring radioligand for clinical PET imaging.

  18. Evaluation of a positron emission tomography (PET)-compatible field-cycled MRI (FCMRI) scanner.

    PubMed

    Gilbert, Kyle M; Scholl, Timothy J; Handler, William B; Alford, Jamu K; Chronik, Blaine A

    2009-10-01

    Field-cycled MRI (FCMRI) uses two independent, actively controlled resistive magnets to polarize a sample and to provide the magnetic field environment during data acquisition. This separation of tasks allows for novel forms of contrast, reduction of susceptibility artifacts, and a versatility in design that facilitates the integration of a second imaging modality. A 0.3T/4-MHz FCMRI scanner was constructed with a 9-cm-wide opening through the side for the inclusion of a photomultiplier-tube-based positron emission tomography (PET) system. The performance of the FCMRI scanner was evaluated prior to integrating PET detectors. Quantitative measurements of the system's signal, phase, and temperature were recorded. The polarizing and readout magnets could be operated continuously at 100 A without risk of damage to the system. Transient instabilities in the readout magnet, caused by the pulsing of the polarizing magnet, dissipated in 50 ms; this resulted in a steady-state homogeneity of 32 Hz over a 7-cm-diameter volume. The short- and long-term phase behaviors of the readout field were sufficiently stable to prevent visible readout or phase-encode artifacts during imaging. Preliminary MR images demonstrated the potential of the FCMRI scanner and the efficacy of integrating a PET system. (c) 2009 Wiley-Liss, Inc.

  19. [Positron emission tomography and computed tomography (PET/CT) in lung cancer].

    PubMed

    Altamirano-Ley, Javier; Estrada-Sánchez, Gisela Rocío; Ochoa-Carrillo, Francisco Javier

    2007-01-01

    Lung cancer is the most frequent cause of death due to neoplasm in Western populations, with >660,000 new diagnoses of lung cancer per year according to the World Health Organization. We undertook this study to emphasize the role of positron emission tomography to all health care professionals involved in lung cancer diagnosis. There are false negatives with PET-(18)FDG in carcinoids and broncheoalveolar carcinoma in almost 40% of the cases. One relatively common cause of false positives is the vocal cord and adjacent muscles contralateral and compensatory to the lung lesion that show an increased uptake of (18)FDG because of lesions in the laryngeal nerve by the tumor or secondary to surgery. It should not be confounded with metastases. There is sufficient scientific evidence pointing to the usefulness of PET studies and its evolution to PET/CT, especially in patients with lung cancer. This can resolve doubts by the oncologist and patient when there is a suspicious malignant lesion by the following: characterizing solitary pulmonary nodules (benign or malignant), localizing the optimal site for the biopsy, diagnosis of the primary tumor for initial staging, evaluation of mediastinal involvement and distant metastasis, evaluate and restage residual tumor, assessment of recurrence, monitoring response, prognostic prediction and radiotherapy planning.

  20. Evoked Potentials and Neuropsychological Tests Validate Positron Emission Topography (PET) Brain Metabolism in Cognitively Impaired Patients

    PubMed Central

    Braverman, Eric R.; Blum, Kenneth; Damle, Uma J.; Kerner, Mallory; Dushaj, Kristina; Oscar-Berman, Marlene

    2013-01-01

    Fluorodeoxyglucose (FDG) Positron Emission Topography (PET) brain hypometabolism (HM) correlates with diminished cognitive capacity and risk of developing dementia. However, because clinical utility of PET is limited by cost, we sought to determine whether a less costly electrophysiological measure, the P300 evoked potential, in combination with neuropsychological test performance, would validate PET HM in neuropsychiatric patients. We found that patients with amnestic and non-amnestic cognitive impairment and HM (n = 43) evidenced significantly reduced P300 amplitudes, delayed latencies, and neuropsychological deficits, compared to patients with normal brain metabolism (NM; n = 187). Data from patients with missing cognitive test scores (n = 57) were removed from the final sample, and logistic regression modeling was performed on the modified sample (n = 173, p = .000004). The logistic regression modeling, based on P300 and neuropsychological measures, was used to validate membership in the HM vs. NM groups. It showed classification validation in 13/25 HM subjects (52.0%) and in 125/148 NM subjects (84.5%), correlating with total classification accuracy of 79.8%. In this paper, abnormal P300 evoked potentials coupled with cognitive test impairment validates brain metabolism and mild/moderate cognitive impairment (MCI). To this end, we cautiously propose incorporating electrophysiological and neuropsychological assessments as cost-effective brain metabolism and MCI indicators in primary care. Final interpretation of these results must await required additional studies confirming these interesting results. PMID:23526928

  1. Positron Emission Tomography (PET) and Graphical Kinetic Data Analysis of the Dopamine Neurotransmitter System: An Exercise for an Undergraduate Laboratory Course

    PubMed Central

    Mirrione, Martine M.; Ruth, Nora; Alexoff, David; Logan, Jean; Fowler, Joanna; Kernan, Maurice

    2014-01-01

    Neuroimaging techniques, including positron emission tomography (PET), are widely used in clinical settings and in basic neuroscience research. Education in these methods and their applications may be incorporated into curricula to keep pace with this expanding field. Here, we have developed pedagogical materials on the fundamental principles of PET that incorporate a hands-on laboratory activity to view and analyze human brain scans. In this activity, students will use authentic PET brain scans generated from original research at Brookhaven National Laboratory (Volkow et al., 2009) to explore the neurobiological effects of a drug on the dopamine system. We provide lecture and assignment materials (including a 50-minute PowerPoint presentation introducing PET concepts), written background information for students and instructors, and explicit instructions for a 4-hour, computer-based laboratory to interested educators. Also, we discuss our experience implementing this exercise as part of an advanced undergraduate laboratory course at Stony Brook University in 2010 and 2011. Observing the living human brain is intriguing, and this laboratory is designed to illustrate how PET neuroimaging techniques are used to directly probe biological processes occurring in the living brain. Laboratory course modules on imaging techniques such as PET can pique the interest of students potentially interested in neuroscience careers, by exposing them to current research methods. This activity provides practical experience analyzing PET data using a graphical analysis method known as the Logan plot, and applies core neuropharmacology concepts. We hope that this manuscript inspires college instructors to incorporate education in PET neuroimaging into their courses. PMID:24693258

  2. ACR-SPR-STR Practice Parameter for the Performance of Cardiac Positron Emission Tomography - Computed Tomography (PET/CT) Imaging.

    PubMed

    Subramaniam, Rathan M; Janowitz, Warren R; Johnson, Geoffrey B; Lodge, Martin A; Parisi, Marguerite T; Ferguson, Mark R; Hellinger, Jeffrey C; Gladish, Gregory W; Gupta, Narainder K

    2017-09-15

    This clinical practice parameter has been developed collaboratively by the American College of Radiology (ACR), the Society for Pediatric Radiology (SPR), and the Society of Thoracic Radiology (STR). This document is intended to act as a guide for physicians performing and interpreting positron emission tomography-computed tomography (PET/CT) of cardiac diseases in adults and children. The primary value of cardiac PET/CT imaging include evaluation of perfusion, function, viability, inflammation, anatomy, and risk stratification for cardiac-related events such as myocardial infarction and death. Optimum utility of cardiac PET/CT is achieved when images are interpreted in conjunction with clinical information and laboratory data. Measurement of myocardial blood flow, coronary flow reserve and detection of balanced ischemia are significant advantages of cardiac PET perfusion studies. Increasingly cardiac PET/CT is used in diagnosis and treatment response assessment for cardiac sarcoidosis.

  3. Initial characterization of a position-sensitive photodiode/BGO detector for PET (positron emission tomography)

    SciTech Connect

    Derenzo, S.E.; Moses, W.W.; Jackson, H.G.; Turko, B.T.; Cahoon, J.L.; Geyer, A.B.; Vuletich, T.

    1988-11-01

    We present initial results of a position-sensitive photodiode/BGO detector for high resolution, multi-layer positron emission tomography (PET). Position sensitivity is achieved by dividing the 3 mm /times/ 20 mm rectangular photosensitive area along the diagonal to form two triangular segments. Each segment was individually connected to a low-noise amplifier. The photodiodes and crystals were cooled to /minus/100/degree/C to reduce dark current and increase the BGO signal. With an amplifier peaking time of 17 ..mu..sec, the sum of the signals (511 keV photopeak) was 3200 electrons with a full width at half maximum (fwhm) of 750 electrons. The ratio of one signal to the sum determined the depth of interaction with a resolution of 11 mm fwhm. 27 refs., 7 figs.

  4. F-18-fluoro-2-deoxyglucose positron emission tomography (PET) and PET/computed tomography imaging in primary staging of patients with malignant melanoma: a systematic review

    PubMed Central

    2012-01-01

    Purpose The aim of this systematic review was to systematically assess the potential patient-relevant benefit (primary aim) and diagnostic and prognostic accuracy (secondary aim) of positron emission tomography (PET) and PET/computed tomography (CT) in primary staging of malignant melanoma. This systematic review updates the previous evidence for PET(/CT) in malignant melanoma. Materials and methods For the first aim, randomized controlled trials (RCTs) investigating patient-relevant outcomes and comparing PET and PET(/CT) with each other or with conventional imaging were considered. For the secondary aim, a review of reviews was conducted, which was amended by an update search for primary studies. MEDLINE, EMBASE and four databases of the Cochrane Library were searched. The risk of bias was assessed using a modified QUADAS tool. Results No RCTs investigating the patient-relevant benefit of PET(/CT) and no prognostic accuracy studies were found. Seventeen diagnostic accuracy studies of varying quality were identified. For patients with American Joint Committee on Cancer (AJCC) stages I and II, sensitivity mostly ranged from 0 to 67%. Specificity ranged from 77 to 100%. For AJCC stages III and IV, sensitivity ranged from 68 to 87% and specificity from 92 to 98%. Conclusion There is currently no evidence of a patient-relevant benefit of PET(/CT) in the primary staging of malignant melanoma. RCTs investigating patient-relevant outcomes are therefore required. The diagnostic accuracy of PET(/CT) appears to increase with higher AJCC stages. PMID:23237499

  5. Rapid production of positron emitting labeled compounds for use in cardiology PET studies

    NASA Astrophysics Data System (ADS)

    Bolomey, Leonard

    1985-05-01

    Large scale clinical application of positron emission tomography requires a variety of short-lived positron emitting radionuclides to be produced in Curie quantities up to 20 times per day. Rapid routine production of these radiopharmaceuticals requires the collaboration of engineers and chemists to achieve production targetry compatible with high beam current (up to 100 μA) and radionuclide production in a chemical form compatible with the rapid radiochemical synthesis. Chemical processing is further complicated by the need to repeat the procedures several times per day and maintain sterility within the shielded area. At our cyclotron facility primary production targets for 11C, 13N, 15O, and 18F (half lives from 2 min to 2 h) are mounted on a vertical gantr that indexes to position the required target on the beam line. Target changes are handled under microprocessor control remotely from the control room such that all valves, cooling, evacuation of target manifold, and testing of interlocks are handled automatically. This system enables us to change targets, energy and particles in less than five minutes. Since the installation of the cyclotron up to fifteen batches of routine radiopharmaceuticals have been produced per day with very low radiation doses to all personnel involved. These radiopharmaceuticals will be used to measure perfusion, metabolism and other biochemical functions in man non invasively with PET.

  6. Simultaneous acquisition of magnetic resonance spectroscopy (MRS) data and positron emission tomography (PET) images with a prototype MR-compatible, small animal PET imager

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond R.; Majewski, Stan; Velan, S. Sendhil; Lemieux, Susan; Kross, Brian; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.

    2007-06-01

    Multi-modality imaging (such as PET-CT) is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET, fused with anatomical images created by MRI, allow the correlation of form with function. Perhaps more exciting than the combination of anatomical MRI with PET, is the melding of PET with MR spectroscopy (MRS). Thus, two aspects of physiology could be combined in novel ways to produce new insights into the physiology of normal and pathological processes. Our team is developing a system to acquire MRI images and MRS spectra, and PET images contemporaneously. The prototype MR-compatible PET system consists of two opposed detector heads (appropriate in size for small animal imaging), operating in coincidence mode with an active field-of-view of ˜14 cm in diameter. Each detector consists of an array of LSO detector elements coupled through a 2-m long fiber optic light guide to a single position-sensitive photomultiplier tube. The use of light guides allows these magnetic field-sensitive elements of the PET imager to be positioned outside the strong magnetic field of our 3T MRI scanner. The PET scanner imager was integrated with a 12-cm diameter, 12-leg custom, birdcage coil. Simultaneous MRS spectra and PET images were successfully acquired from a multi-modality phantom consisting of a sphere filled with 17 brain relevant substances and a positron-emitting radionuclide. There were no significant changes in MRI or PET scanner performance when both were present in the MRI magnet bore. This successful initial test demonstrates the potential for using such a multi-modality to obtain complementary MRS and PET data.

  7. Exploring the nature of atheroma and cardiovascular inflammation in vivo using positron emission tomography (PET).

    PubMed

    Buscombe, J R

    2015-09-01

    Positron emission tomography (PET) has become widely established in oncology. Subsequently, a whole new “toolbox” of tracers have become available to look at different aspects of cancer cell function and dysfunction, including cell protein production, DNA synthesis, hypoxia and angiogenesis. In the past 5 years, these tools have been used increasingly to look at the other great killer of the developed world: cardiovascular disease. For example, inflammation of the unstable plaque can be imaged with 18-fludeoxyglucose (18F-FDG), and this uptake can be quantified to show the effect that statins have in reducing inflammation and explains how these drugs can reduce the risk of stroke. 18F-FDG has also become established in diagnosing and monitoring large-vessel vasculitis and has now entered routine practice. Other agents such as gallium-68 (68Ga) octreotide have been shown to identify vascular inflammation possibly more specifically than 18FFDG.Hypoxia within the plaque can be imaged with 18F-fluoromisonidazole and resulting angiogenesis with 18F-RGD peptides. Active calcification such as that found in unstable atheromatous plaques can be imaged with 18F-NaF. PET imaging enables us to understand the mechanisms by which cardiovascular disease, including atheroma, leads tomorbidity and death and thus increases the chance of finding new and effective treatments.

  8. Positron Emission Tomography (PET) Quantification of GABAA Receptors in the Brain of Fragile X Patients.

    PubMed

    D'Hulst, Charlotte; Heulens, Inge; Van der Aa, Nathalie; Goffin, Karolien; Koole, Michel; Porke, Kathleen; Van De Velde, Marc; Rooms, Liesbeth; Van Paesschen, Wim; Van Esch, Hilde; Van Laere, Koen; Kooy, R Frank

    2015-01-01

    Over the last several years, evidence has accumulated that the GABAA receptor is compromised in animal models for fragile X syndrome (FXS), a common hereditary form of intellectual disability. In mouse and fly models, agonists of the GABAA receptor were able to rescue specific consequences of the fragile X mutation. Here, we imaged and quantified GABAA receptors in vivo in brain of fragile X patients using Positron Emission Topography (PET) and [11C]flumazenil, a known high-affinity and specific ligand for the benzodiazepine site of GABAA receptors. We measured regional GABAA receptor availability in 10 fragile X patients and 10 control subjects. We found a significant reduction of on average 10% in GABAA receptor binding potential throughout the brain in fragile X patients. In the thalamus, the brain region showing the largest difference, the GABAA receptor availability was even reduced with 17%. This is one of the first reports of a PET study of human fragile X brain and directly demonstrates that the GABAA receptor availability is reduced in fragile X patients. The study reinforces previous hypotheses that the GABAA receptor is a potential target for rational pharmacological treatment of fragile X syndrome.

  9. Radiolabelling diverse positron emission tomography (PET) tracers using a single digital microfluidic reactor chip.

    PubMed

    Chen, Supin; Javed, Muhammad Rashed; Kim, Hee-Kwon; Lei, Jack; Lazari, Mark; Shah, Gaurav J; van Dam, R Michael; Keng, Pei-Yuin; Kim, Chang-Jin C J

    2014-03-07

    Radiotracer synthesis is an ideal application for microfluidics because only nanogram quantities are needed for positron emission tomography (PET) imaging. Thousands of radiotracers have been developed in research settings but only a few are readily available, severely limiting the biological problems that can be studied in vivo via PET. We report the development of an electrowetting-on-dielectric (EWOD) digital microfluidic chip that can synthesize a variety of (18)F-labeled tracers targeting a range of biological processes by confirming complete syntheses of four radiotracers: a sugar, a DNA nucleoside, a protein labelling compound, and a neurotransmitter. The chip employs concentric multifunctional electrodes that are used for heating, temperature sensing, and EWOD actuation. All of the key synthesis steps for each of the four (18)F-labeled tracers are demonstrated and characterized with the chip: concentration of fluoride ion, solvent exchange, and chemical reactions. The obtained fluorination efficiencies of 90-95% are comparable to, or greater than, those achieved by conventional approaches.

  10. Use of positron emission tomography (PET) for the diagnosis of large-vessel vasculitis.

    PubMed

    Loricera, J; Blanco, R; Hernández, J L; Martínez-Rodríguez, I; Carril, J M; Lavado, C; Jiménez, M; González-Vela, C; González-Gay, M Á

    2015-01-01

    The term vasculitis encompasses a heterogeneous group of diseases that share the presence of inflammatory infiltrates in the vascular wall. The diagnosis of large-vessel vasculitis is often a challenge because the presenting clinical features are nonspecific in many cases and they are often shared by different types of autoimmune and inflammatory diseases including other systemic vasculitides. Moreover, the pathogenesis of large-vessel vasculitis is not fully understood. Nevertheless, the advent of new imaging techniques has constituted a major breakthrough to establish an early diagnosis and a promising tool to monitor the follow-up of patients with largevessel vasculitis. This is the case of the molecular imaging with the combination of positron emission tomography with computed tomography (PET/CT) using different radiotracers, especially the (18)F-fluordeoxyglucose ((18)F-FDG). In this review we have focused on the contribution of (18)F-FDG PET in the diagnosis of large-vessel vasculitis. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  11. Positron emission tomography (PET) studies of dopaminergic/cholinergic interactions in the baboon brain

    SciTech Connect

    Dewey, S.L.; Brodie, J.D.; Fowler, J.S.; MacGregor, R.R.; Schlyer, D.J.; King, P.T.; Alexoff, D.L.; Volkow, N.D.; Shiue, C.Y.; Wolf, A.P. )

    1990-01-01

    Interactions between the dopaminergic D2 receptor system and the muscarinic cholinergic system in the corpus striatum of adult female baboons (Papio anubis) were examined using positron emission tomography (PET) combined with (18F)N-methylspiroperidol (( 18F)NMSP) (to probe D2 receptor availability) and (N-11C-methyl)benztropine (to probe muscarinic cholinergic receptor availability). Pretreatment with benztropine, a long-lasting anticholinergic drug, bilaterally reduced the incorporation of radioactivity in the corpus striatum but did not alter that observed in the cerebellum or the rate of metabolism of (18F)NMSP in plasma. Pretreatment with unlabelled NMSP, a potent dopaminergic antagonist, reduced the incorporation of (N-11C-methyl)benztropine in all brain regions, with the greatest effect being in the corpus striatum greater than cortex greater than thalamus greater than cerebellum, but did not alter the rate of metabolism of the labelled benztropine in the plasma. These reductions in the incorporation of either (18F)NMSP or (N-11C-methyl)benztropine exceeded the normal variation in tracer incorporation in repeated studies in the same animal. This study demonstrates that PET can be used as a tool for investigating interactions between neurochemically different yet functionally linked neurotransmitters systems in vivo and provides insight into the consequences of multiple pharmacologic administration.

  12. Development of a PET/OMRI combined system for simultaneous imaging of positron and free radical probes for small animals.

    PubMed

    Yamamoto, Seiichi; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Ichikawa, Kazuhiro; Nakao, Motonao; Kato, Katsuhiko; Hatazawa, Jun

    2016-10-01

    Positron emission tomography (PET) has high sensitivity for imaging radioactive tracer distributions in subjects. However, it is not possible to image free radical distribution in a subject by PET. Since free radicals are quite reactive, they are related to many diseases, including but not limited to cancer, inflammation, strokes, and heart disease. The Overhauser enhanced magnetic resonance imaging (OMRI) is so far the only method that images free radical distribution in vivo. By combining PET and OMRI, a new hybrid imaging modality might be developed that can simultaneously image the radioactive tracer and free radical distributions. For this purpose, the authors developed a PET/OMRI combined system for small animals. The developed PET/OMRI system used an optical fiber-based PET system combined with a permanent magnet-based OMRI system. The optical fiber-based PET system uses flexible optical fiber bundles. Eight optical fiber-based block detectors were arranged in a 56 mm diameter ring to form a PET system. The LGSO blocks were located inside the field-of-view (FOV) of the OMRI, and the position sensitive photomultiplier tubes were positioned behind the OMRI to minimize the interference between the PET and the OMRI. The OMRI system used a 0.0165 T permanent magnet. The system has an electron spin resonance coil to enhance the MRI signal using the Overhauser effect to image the free radical in the FOV of the PET/OMRI system. The spatial resolution and sensitivity of the optical fiber-based PET system were 1.2 mm FWHM and 1.2% at the central FOV, respectively. The OMRI system imaged the distribution of a nitroxyl radical (NXR) solution. The interference between PET and OMRI was small. Simultaneous imaging of the positron radiotracer and the NXR solution was successfully conducted with the developed PET/OMRI system for phantom and small animal studies. The authors developed a PET/OMRI combined system with the potential to provide interesting new results in

  13. Early Stages of Precipitation Process in Al-(Mn-)Sc-Zr Alloy Characterized by Positron Annihilation

    NASA Astrophysics Data System (ADS)

    Vlach, Martin; Cizek, Jakub; Melikhova, Oksana; Stulikova, Ivana; Smola, Bohumil; Kekule, Tomas; Kudrnova, Hana; Gemma, Ryota; Neubert, Volkmar

    2015-04-01

    Thermal effects on the precipitation stages in as-cast Al-0.70 at. pct Mn-0.15 at. pct Sc-0.05 at. pct Zr alloy were studied. The role of lattice defects was elucidated by positron annihilation spectroscopy (lifetime and coincidence Doppler broadening) enabling investigation of solutes clustering at the atomic scale. This technique has never been used in the Al-Sc- and/or Al-Zr-based alloys so far. Studies by positron annihilation were combined with resistometry, hardness measurements, and microstructure observations. Positrons trapped at defects are preferentially annihilated by Sc electrons. Lifetime of trapped positrons indicates that Sc atoms segregate at dislocations. Maximum fraction of positrons annihilated by Sc electrons occurring at 453 K (180 °C) suggests that clustering of Sc bound with vacancies takes place. It is followed by peak of this fraction at 573 K (300 °C). A rise of the contribution of trapped positrons annihilated by Zr electrons starting at 513 K (240 °C) and attaining maximum also at 573 K (300 °C) confirms that Zr participates in precipitation of the Al3Sc particles already at these temperatures. The pronounced hardening at 573 K (300 °C) has its nature in the precipitation of the Al3Sc particles with a Zr-rich shell. The contribution of trapped positrons annihilated by Mn electrons was found to be negligible.

  14. Prediction of positron emission tomography/computed tomography (PET/CT) positivity in patients with high-risk primary melanoma.

    PubMed

    Danielsen, Maria; Kjaer, Andreas; Wu, Max; Martineau, Lea; Nosrati, Mehdi; Leong, Stanley Pl; Sagebiel, Richard W; Iii, James R Miller; Kashani-Sabet, Mohammed

    2016-01-01

    Positron emission tomography/computed tomography (PET/CT) is an important tool to identify occult melanoma metastasis. To date, it is controversial which patients with primary cutaneous melanoma should have staging PET/CT. In this retrospective analysis of more than 800 consecutive patients with cutaneous melanoma, we sought to identify factors predictive of PET/CT positivity in the setting of newly-diagnosed high-risk primary melanoma to determine those patients most appropriate to undergo a PET/CT scan as part of their diagnostic work up. 167 patients with newly-diagnosed high-risk primary cutaneous melanoma underwent a PET/CT scan performed as part of their initial staging. Clinical and histologic factors were evaluated as possible predictors of melanoma metastasis identified on PET/CT scanning using both univariate and multivariate logistic regression. In all, 32 patients (19.2%) had a positive PET/CT finding of metastatic melanoma. In more than half of these patients (56.3%), PET/CT scanning identified disease that was not detectable on clinical examination. Mitotic rate, tumor thickness, lymphadenopathy, and bleeding were significantly predictive of PET/CT positivity. A combinatorial index constructed from these factors revealed a significant association between number of high-risk factors observed and prevalence of PET/CT positivity, which increased from 5.8% (with the presence of 0-2 factors) to 100.0%, when all four factors were present. These results indicate that combining clinical and histologic prognostic factors enables the identification of patients with a higher likelihood of a positive PET/CT scan.

  15. Prediction of positron emission tomography/computed tomography (PET/CT) positivity in patients with high-risk primary melanoma

    PubMed Central

    Danielsen, Maria; Kjaer, Andreas; Wu, Max; Martineau, Lea; Nosrati, Mehdi; Leong, Stanley PL; Sagebiel, Richard W; III, James R Miller; Kashani-Sabet, Mohammed

    2016-01-01

    Positron emission tomography/computed tomography (PET/CT) is an important tool to identify occult melanoma metastasis. To date, it is controversial which patients with primary cutaneous melanoma should have staging PET/CT. In this retrospective analysis of more than 800 consecutive patients with cutaneous melanoma, we sought to identify factors predictive of PET/CT positivity in the setting of newly-diagnosed high-risk primary melanoma to determine those patients most appropriate to undergo a PET/CT scan as part of their diagnostic work up. 167 patients with newly-diagnosed high-risk primary cutaneous melanoma underwent a PET/CT scan performed as part of their initial staging. Clinical and histologic factors were evaluated as possible predictors of melanoma metastasis identified on PET/CT scanning using both univariate and multivariate logistic regression. In all, 32 patients (19.2%) had a positive PET/CT finding of metastatic melanoma. In more than half of these patients (56.3%), PET/CT scanning identified disease that was not detectable on clinical examination. Mitotic rate, tumor thickness, lymphadenopathy, and bleeding were significantly predictive of PET/CT positivity. A combinatorial index constructed from these factors revealed a significant association between number of high-risk factors observed and prevalence of PET/CT positivity, which increased from 5.8% (with the presence of 0-2 factors) to 100.0%, when all four factors were present. These results indicate that combining clinical and histologic prognostic factors enables the identification of patients with a higher likelihood of a positive PET/CT scan. PMID:27766186

  16. Preclinical assessment of dopaminergic system in rats by MicroPET using three positron-emitting radiopharmaceuticals

    SciTech Connect

    Lara-Camacho, V. M. Ávila-García, M. C. Ávila-Rodríguez, M. A.

    2014-11-07

    Different diseases associated with dysfunction of dopaminergic system such as Parkinson, Alzheimer, and Schizophrenia are being widely studied with positron emission tomography (PET) which is a noninvasive method useful to assess the stage of these illnesses. In our facility we have recently implemented the production of [{sup 11}C]-DTBZ, [{sup 11}C]-RAC, and [{sup 18}F]-FDOPA, which are among the most common PET radiopharmaceuticals used in neurology applications to get information about the dopamine pathways. In this study two healthy rats were imaged with each of those radiotracers in order to confirm selective striatum uptake as a proof of principle before to release them for human use.

  17. Preclinical assessment of dopaminergic system in rats by MicroPET using three positron-emitting radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Lara-Camacho, V. M.; Ávila-García, M. C.; Ávila-Rodríguez, M. A.

    2014-11-01

    Different diseases associated with dysfunction of dopaminergic system such as Parkinson, Alzheimer, and Schizophrenia are being widely studied with positron emission tomography (PET) which is a noninvasive method useful to assess the stage of these illnesses. In our facility we have recently implemented the production of [11C ]-DTBZ, [11C ]-RAC, and [18F ]-FDOPA, which are among the most common PET radiopharmaceuticals used in neurology applications to get information about the dopamine pathways. In this study two healthy rats were imaged with each of those radiotracers in order to confirm selective striatum uptake as a proof of principle before to release them for human use.

  18. Positron follow-up in liquid water: II. Spatial and energetic study for the most important radioisotopes used in PET.

    PubMed

    Champion, C; Le Loirec, C

    2007-11-21

    With the increasing development of positron emission tomography (PET), beta(+)-emitters are more and more regularly used in nuclear medicine. Therefore, today it is of prime importance to have a reliable description of their behavior in living matter in order to quantify the full spectra of the molecular damages potentially radio-induced and then to access a cellular dosimetry. In this work, we present a detailed inter-comparison of the main isotopes commonly used in PET: (18)F, (11)C, (13)N, (15)O, (68)Ga and (82)Rb. We have used an event-by-event Monte Carlo code recently developed for positron tracking in water (Champion and Le Loirec 2006 Phys. Med. Biol. 51 1707-23) which consists in simulating step-by-step, interaction after interaction, the history of each ionizing particle created during the irradiation of the biological matter. This simulation has been finally adapted for describing the decays of medically important positron emitters. Quantitative information about positron penetrations, Positronium formation, annihilation event distributions, energy deposit patterns and dose profiles is then accessible and compared to published measurements and/or calculations.

  19. Flexible PET/Al/PZT/Al/PET multi-layered composite for low frequency energy harvesting

    NASA Astrophysics Data System (ADS)

    Seveno, R.; Carbajo, J.; Dufay, T.; Guiffard, B.; Thomas, J. C.

    2017-04-01

    A flexible piezoelectric device has been realized by depositing lead zirconate titanate (PZT) thin films by chemical solution deposition (CSD) onto very thin aluminium foil (16 µm) and using a polyethylene terephthalate (PET) laminated film (150 µm) as encapsulation. A ruthenium dioxide layer has been used in order to enhance the quality of the PZT/Al interface, improving the dielectric, ferroelectric and piezoelectric properties of the PZT film. The obtained piezoelectric generators have been subjected to large bending motions at low frequencies ranging from 0.1 to 8 Hz and the experimental values of the output voltage, output current and harvested power have been compared to the theoretical values (derived from the electrokinetic model of the piezoelectric material) with very good agreement. Due to the increase of the permittivity of the PZT film by the use of RuO2 interlayer, a moderate decrease of the harvested power at the optimal load resistance is found (from 185 nW to 143 nW at 4.4 Hz), despite the enhancement of the piezoelectric properties. This type of very flexible film, able to withstand a small radius of curvature (1 cm), may yield a promising avenue in the field of low frequency mechanical energy harvesting.

  20. The Effect of Magnetic Field on Positron Range and Spatial Resolution in an Integrated Whole-Body Time-Of-Flight PET/MRI System

    PubMed Central

    Huang, Shih-ying; Savic, Dragana; Yang, Jaewon; Shrestha, Uttam; Seo, Youngho

    2014-01-01

    Simultaneous imaging systems combining positron emission tomography (PET) and magnetic resonance imaging (MRI) have been actively investigated. A PET/MR imaging system (GE Healthcare) comprised of a time-of-flight (TOF) PET system utilizing silicon photomultipliers (SiPMs) and 3-tesla (3T) MRI was recently installed at our institution. The small-ring (60 cm diameter) TOF PET subsystem of this PET/MRI system can generate images with higher spatial resolution compared with conventional PET systems. We have examined theoretically and experimentally the effect of uniform magnetic fields on the spatial resolution for high-energy positron emitters. Positron emitters including 18F, 124I, and 68Ga were simulated in water using the Geant4 Monte Carlo toolkit in the presence of a uniform magnetic field (0, 3, and 7 Tesla). The positron annihilation position was tracked to determine the 3D spatial distribution of the 511-keV gammy ray emission. The full-width at tenth maximum (FWTM) of the positron point spread function (PSF) was determined. Experimentally, 18F and 68Ga line source phantoms in air and water were imaged with an investigational PET/MRI system and a PET/CT system to investigate the effect of magnetic field on the spatial resolution of PET. The full-width half maximum (FWHM) of the line spread function (LSF) from the line source was determined as the system spatial resolution. Simulations and experimental results show that the in-plane spatial resolution was slightly improved at field strength as low as 3 Tesla, especially when resolving signal from high-energy positron emitters in the air-tissue boundary. PMID:27076778

  1. The Effect of Magnetic Field on Positron Range and Spatial Resolution in an Integrated Whole-Body Time-Of-Flight PET/MRI System.

    PubMed

    Huang, Shih-Ying; Savic, Dragana; Yang, Jaewon; Shrestha, Uttam; Seo, Youngho

    2014-11-01

    Simultaneous imaging systems combining positron emission tomography (PET) and magnetic resonance imaging (MRI) have been actively investigated. A PET/MR imaging system (GE Healthcare) comprised of a time-of-flight (TOF) PET system utilizing silicon photomultipliers (SiPMs) and 3-tesla (3T) MRI was recently installed at our institution. The small-ring (60 cm diameter) TOF PET subsystem of this PET/MRI system can generate images with higher spatial resolution compared with conventional PET systems. We have examined theoretically and experimentally the effect of uniform magnetic fields on the spatial resolution for high-energy positron emitters. Positron emitters including (18)F, (124)I, and (68)Ga were simulated in water using the Geant4 Monte Carlo toolkit in the presence of a uniform magnetic field (0, 3, and 7 Tesla). The positron annihilation position was tracked to determine the 3D spatial distribution of the 511-keV gammy ray emission. The full-width at tenth maximum (FWTM) of the positron point spread function (PSF) was determined. Experimentally, (18)F and (68)Ga line source phantoms in air and water were imaged with an investigational PET/MRI system and a PET/CT system to investigate the effect of magnetic field on the spatial resolution of PET. The full-width half maximum (FWHM) of the line spread function (LSF) from the line source was determined as the system spatial resolution. Simulations and experimental results show that the in-plane spatial resolution was slightly improved at field strength as low as 3 Tesla, especially when resolving signal from high-energy positron emitters in the air-tissue boundary.

  2. A New Positron Emission Tomography (PET) Radioligand for Imaging Sigma-1 Receptors in Living Subjects

    PubMed Central

    Zavaleta, Cristina L.; Nielsen, Carsten H.; Mesangeau, Christophe; Vuppala, Pradeep K.; Chan, Carmel; Avery, Bonnie A.; Fishback, James A.; Matsumoto, Rae R.; Gambhir, Sanjiv S.; McCurdy, Christopher R.; Chin, Frederick T.

    2014-01-01

    Sigma-1 receptor (S1R) radioligands have the potential to detect and monitor various neurological diseases. Herein we report the synthesis, radiofluorination and evaluation of a new S1R ligand 6-(3-fluoropropyl)-3-(2-(azepan-1-yl)ethyl)benzo[d]thiazol-2(3H)-one ([18F]FTC-146, [18F]13). [18F]13 was synthesized by nucleophilic fluorination, affording a product with >99% radiochemical purity (RCP) and specific activity (SA) of 2.6 ± 1.2 Ci/Amol (n = 13) at end of synthesis (EOS). Positron emission tomography (PET) and ex vivo autoradiography studies of [18F]13 in mice showed high uptake of the radioligand in S1R rich regions of the brain. Pre treatment with 1 mg/kg haloperidol (2), non radioactive 13, or BD1047 (18) reduced the binding of [18F]13 in the brain at 60 min by 80%, 82% and 81% respectively, suggesting that [18F]13 accumulation in mouse brain represents specific binding to S1Rs. These results indicate that [18F]13 is a promising candidate radiotracer for further evaluation as a tool for studying S1Rs in living subjects. PMID:22853801

  3. Future laser-accelerated proton beams at ELI-Beamlines as potential source of positron emitters for PET

    NASA Astrophysics Data System (ADS)

    Amato, E.; Italiano, A.; Margarone, D.; Pagano, B.; Baldari, S.; Korn, G.

    2016-04-01

    The development of novel compact PET radionuclide production systems is of great interest to promote the diffusion of PET diagnostics, especially in view of the continuous development of novel, fast and efficient, radiopharmaceutical methods of labeling. We studied the feasibility to produce clinically-relevant amounts of PET isotopes by means of laser-accelerated proton sources expected at the ELI-Beamlines facility where a PW, 30 fs, 10 Hz laser system will be available. The production yields of several positron emitters were calculated through the TALYS software, by taking into account three possible scenarios of broad proton spectra expected, with maximum energies ranging from about 8 MeV to 100 MeV. With the hypothesized proton fluencies, clinically-relevant amounts of radionuclides can be obtained, suitable to prepare single doses of radiopharmaceuticals exploiting modern fast and efficient labeling systems.

  4. Development and Design of Next-Generation Head-Mounted Ambulatory Microdose Positron-Emission Tomography (AM-PET) System.

    PubMed

    Melroy, Samantha; Bauer, Christopher; McHugh, Matthew; Carden, Garret; Stolin, Alexander; Majewski, Stan; Brefczynski-Lewis, Julie; Wuest, Thorsten

    2017-05-19

    Several applications exist for a whole brain positron-emission tomography (PET) brain imager designed as a portable unit that can be worn on a patient's head. Enabled by improvements in detector technology, a lightweight, high performance device would allow PET brain imaging in different environments and during behavioral tasks. Such a wearable system that allows the subjects to move their heads and walk-the Ambulatory Microdose PET (AM-PET)-is currently under development. This imager will be helpful for testing subjects performing selected activities such as gestures, virtual reality activities and walking. The need for this type of lightweight mobile device has led to the construction of a proof of concept portable head-worn unit that uses twelve silicon photomultiplier (SiPM) PET module sensors built into a small ring which fits around the head. This paper is focused on the engineering design of mechanical support aspects of the AM-PET project, both of the current device as well as of the coming next-generation devices. The goal of this work is to optimize design of the scanner and its mechanics to improve comfort for the subject by reducing the effect of weight, and to enable diversification of its applications amongst different research activities.

  5. Translocator Protein-18 kDa (TSPO) Positron Emission Tomography (PET) Imaging and Its Clinical Impact in Neurodegenerative Diseases

    PubMed Central

    Dupont, Anne-Claire; Largeau, Bérenger; Santiago Ribeiro, Maria Joao; Guilloteau, Denis; Tronel, Claire; Arlicot, Nicolas

    2017-01-01

    In vivo exploration of activated microglia in neurodegenerative diseases is achievable by Positron Emission Tomography (PET) imaging, using dedicated radiopharmaceuticals targeting the translocator protein-18 kDa (TSPO). In this review, we emphasized the major advances made over the last 20 years, thanks to TSPO PET imaging, to define the pathophysiological implication of microglia activation and neuroinflammation in neurodegenerative diseases, including Parkinson’s disease, Huntington’s disease, dementia, amyotrophic lateral sclerosis, multiple sclerosis, and also in psychiatric disorders. The extent and upregulation of TSPO as a molecular biomarker of activated microglia in the human brain is now widely documented in these pathologies, but its significance, and especially its protective or deleterious action regarding the disease’s stage, remains under debate. Thus, we exposed new and plausible suggestions to enhance the contribution of TSPO PET imaging for biomedical research by exploring microglia’s role and interactions with other cells in brain parenchyma. Multiplex approaches, associating TSPO PET radiopharmaceuticals with other biomarkers (PET imaging of cellular metabolism, neurotransmission or abnormal protein aggregates, but also other imaging modalities, and peripheral cytokine levels measurement and/or metabolomics analysis) was considered. Finally, the actual clinical impact of TSPO PET imaging as a routine biomarker of neuroinflammation was put into perspective regarding the current development of diagnostic and therapeutic strategies for neurodegenerative diseases. PMID:28387722

  6. Development and Design of Next-Generation Head-Mounted Ambulatory Microdose Positron-Emission Tomography (AM-PET) System

    PubMed Central

    Melroy, Samantha; Bauer, Christopher; McHugh, Matthew; Carden, Garret; Stolin, Alexander; Majewski, Stan; Brefczynski-Lewis, Julie; Wuest, Thorsten

    2017-01-01

    Several applications exist for a whole brain positron-emission tomography (PET) brain imager designed as a portable unit that can be worn on a patient’s head. Enabled by improvements in detector technology, a lightweight, high performance device would allow PET brain imaging in different environments and during behavioral tasks. Such a wearable system that allows the subjects to move their heads and walk—the Ambulatory Microdose PET (AM-PET)—is currently under development. This imager will be helpful for testing subjects performing selected activities such as gestures, virtual reality activities and walking. The need for this type of lightweight mobile device has led to the construction of a proof of concept portable head-worn unit that uses twelve silicon photomultiplier (SiPM) PET module sensors built into a small ring which fits around the head. This paper is focused on the engineering design of mechanical support aspects of the AM-PET project, both of the current device as well as of the coming next-generation devices. The goal of this work is to optimize design of the scanner and its mechanics to improve comfort for the subject by reducing the effect of weight, and to enable diversification of its applications amongst different research activities. PMID:28534848

  7. Translocator Protein-18 kDa (TSPO) Positron Emission Tomography (PET) Imaging and Its Clinical Impact in Neurodegenerative Diseases.

    PubMed

    Dupont, Anne-Claire; Largeau, Bérenger; Santiago Ribeiro, Maria Joao; Guilloteau, Denis; Tronel, Claire; Arlicot, Nicolas

    2017-04-07

    In vivo exploration of activated microglia in neurodegenerative diseases is achievable by Positron Emission Tomography (PET) imaging, using dedicated radiopharmaceuticals targeting the translocator protein-18 kDa (TSPO). In this review, we emphasized the major advances made over the last 20 years, thanks to TSPO PET imaging, to define the pathophysiological implication of microglia activation and neuroinflammation in neurodegenerative diseases, including Parkinson's disease, Huntington's disease, dementia, amyotrophic lateral sclerosis, multiple sclerosis, and also in psychiatric disorders. The extent and upregulation of TSPO as a molecular biomarker of activated microglia in the human brain is now widely documented in these pathologies, but its significance, and especially its protective or deleterious action regarding the disease's stage, remains under debate. Thus, we exposed new and plausible suggestions to enhance the contribution of TSPO PET imaging for biomedical research by exploring microglia's role and interactions with other cells in brain parenchyma. Multiplex approaches, associating TSPO PET radiopharmaceuticals with other biomarkers (PET imaging of cellular metabolism, neurotransmission or abnormal protein aggregates, but also other imaging modalities, and peripheral cytokine levels measurement and/or metabolomics analysis) was considered. Finally, the actual clinical impact of TSPO PET imaging as a routine biomarker of neuroinflammation was put into perspective regarding the current development of diagnostic and therapeutic strategies for neurodegenerative diseases.

  8. In vitro positron emission tomography (PET): use of positron emission tracers in functional imaging in living brain slices.

    PubMed

    Matsumura, K; Bergström, M; Onoe, H; Takechi, H; Westerberg, G; Antoni, G; Bjurling, P; Jacobson, G B; Långström, B; Watanabe, Y

    1995-05-01

    Positron-emitting radionuclides have short half-lives and high radiation energies compared with radioisotopes generally used in biomedical research. We examined the possibility of applying positron emitter-labeled compounds to functional imaging in brain slices kept viable in an oxygenated buffer solution. Brain slices (300 microns thick) containing the striatum were incubated with positron emitter-labeled tracers for 30-45 min. The slices were then rinsed and placed on the bottom of a Plexiglas chamber filled with oxygenated Krebs-Ringer solution. The bottom of the chamber consisted of a thin polypropylene film to allow good penetration of beta+ particles from the brain slices. The chamber was placed on a storage phosphor screen, which has a higher sensitivity and a wider dynamic range than X-ray films. After an exposure period of 15-60 min, the screen was scanned by the analyzer and radioactivity images of brain slices were obtained within 20 min. We succeeded in obtaining quantitative images of (1) [18F]fluorodeoxyglucose uptake, (2) dopamine D2 receptor binding, (3) dopa-decarboxylase activity, and (4) release of [11C]dopamine preloaded as L-[11C]DOPA in the brain slice preparation. These results demonstrate that positron emitter-labeled tracers in combination with storage phosphor screens are useful for functional imaging of living brain slices as a novel neuroscience technique.

  9. Brain FDG-PET changes in ALS and ALS-FTD.

    PubMed

    Renard, Dimitri; Collombier, Laurent; Castelnovo, Giovanni; Fourcade, Genevieve; Kotzki, Pierre-Olivier; LaBauge, Pierre

    2011-12-01

    FDG-PET in ALS most typically demonstrates a primary (and sometimes also supplementary) motor cortex hypometabolism, often associated with more diffuse cortical hypometabolism involving mostly the dorsolateral prefrontal cortex, the medial and lateral premotor cortices, and the bilateral insular cortex involvement. In ALS-FTD, extensive temporal hypometabolism is seen in addition to severe diffuse frontal hypometabolism. This study analyses FDG-PET findings in 6 ALS patients and 4 ALS-FTD patients. In addition to earlier described areas of hypometabolism in ALS, we found also reduced FDG-PET metabolism in the medial frontal cortex, the orbitofrontal cortex, and the anterior temporal lobe in our ALS patients. The anterolateral area was the best preserved part of the frontal lobe in ALS patients. In ALS-FTD, frontal and temporal hypometabolism was severe (and parietal hypometabolism was often also present) with relatively preserved perirolandic metabolism. In ALS, more diffuse frontal and temporal FDG-PET hypometabolism was seen than earlier reported, with the anterolateral area as the best preserved part of the frontal lobe. In ALS-FTD, relatively preserved perirolandic metabolism was seen, associated with severe frontal and temporal hypometabolism.

  10. Transconvolution and the virtual positron emission tomograph-A new method for cross calibration in quantitative PET/CT imaging

    SciTech Connect

    Prenosil, George A.; Weitzel, Thilo; Hentschel, Michael; Klaeser, Bernd; Krause, Thomas

    2013-06-15

    Purpose: Positron emission tomography (PET)/computed tomography (CT) measurements on small lesions are impaired by the partial volume effect, which is intrinsically tied to the point spread function of the actual imaging system, including the reconstruction algorithms. The variability resulting from different point spread functions hinders the assessment of quantitative measurements in clinical routine and especially degrades comparability within multicenter trials. To improve quantitative comparability there is a need for methods to match different PET/CT systems through elimination of this systemic variability. Consequently, a new method was developed and tested that transforms the image of an object as produced by one tomograph to another image of the same object as it would have been seen by a different tomograph. The proposed new method, termed Transconvolution, compensates for differing imaging properties of different tomographs and particularly aims at quantitative comparability of PET/CT in the context of multicenter trials. Methods: To solve the problem of image normalization, the theory of Transconvolution was mathematically established together with new methods to handle point spread functions of different PET/CT systems. Knowing the point spread functions of two different imaging systems allows determining a Transconvolution function to convert one image into the other. This function is calculated by convolving one point spread function with the inverse of the other point spread function which, when adhering to certain boundary conditions such as the use of linear acquisition and image reconstruction methods, is a numerically accessible operation. For reliable measurement of such point spread functions characterizing different PET/CT systems, a dedicated solid-state phantom incorporating {sup 68}Ge/{sup 68}Ga filled spheres was developed. To iteratively determine and represent such point spread functions, exponential density functions in combination

  11. Positron emission tomography in ovarian cancer: 18F-deoxy-glucose and 16α-18F-fluoro-17β-estradiol PET

    PubMed Central

    Yoshida, Yoshio; Kurokawa, Tetsuji; Tsujikawa, Tetuya; Okazawa, Hidehiko; Kotsuji, Fumikazu

    2009-01-01

    The most frequently used molecular imaging technique is currently 18F-deoxy-glucose (FDG) positron emission tomography (PET). FDG-PET holds promise in the evaluation of recurrent or residual ovarian cancer when CA125 levels are rising and conventional imaging, such as ultrasound, CT, or MRI, is inconclusive or negative. Recently, integrated PET/CT, in which a full-ring-detector clinical PET scanner and a multidetector helical CT scanner are combined, has enabled the acquisition of both metabolic and anatomic imaging data using one device in a single diagnostic session. This can also provide precise anatomic localization of suspicious areas of increased FDG uptake and rule out false-positive PET findings. FDG-PET/CT is an accurate modality for assessing primary and recurrent ovarian cancer and may affect management. FDG-PET/CT may provide benefits for detection of recurrent of ovarian cancer and improve surgical planning. And FDG-PET has been shown to predict response to neoadjuvant chemotherapy and survival in advanced ovarian cancer. This review focuses on the role of FDG-PET and FDG-PET/CT in the management of patients with ovarian cancer. Recently, we have evaluated 16α-18F-fluoro-17β-estradiol (FES)-PET, which detects estrogen receptors. In a preliminary study we reported that FES-PET provides information useful for assessing ER status in advanced ovarian cancer. This new information may expand treatment choice for such patients. PMID:19527525

  12. Prospective use of serial questionnaires to evaluate the therapeutic efficacy of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in suspected lung cancer

    PubMed Central

    Herder, G; van Tinteren, H; Comans, E; Hoekstra, O; Teule, G; Postmus, P; Joshi, U; Smit, E

    2003-01-01

    Background: A study was undertaken to study the effect of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) on the diagnosis and management of clinically problematic patients with suspected non-small cell lung cancer (NSCLC). Methods: A prospective before-after study was performed in a cohort of all 164 patients (university/community settings) referred for PET between August 1997 and July 1999. PET was restricted to cases where non-invasive tests had failed to solve clinical problems. The impact on diagnostic understanding and management was assessed using questionnaires (intended treatment without PET, actual treatment choice after PET, post hoc clinical assessment). Results: Diagnostic problems especially pertained to unclear radiological findings (n=112; 63%), mediastinal staging (n=36; 20%), and distant staging issues (n=16; 9%). PET findings were validated by reviewing medical records. PET had a positive influence on diagnostic understanding in 84%. Improved diagnostic understanding solely based on PET was reported in 26%. According to referring physicians, PET resulted in beneficial change of treatment in 50%. Cancelled surgery was the most frequent change in treatment after PET (35%). Conclusion: FDG PET applied as "add on" technology in patients with these clinical problems appears to be a clinically useful tool, directly improving treatment choice in 25% of patients. The value of increased confidence induced by PET scanning requires further evaluation. PMID:12511720

  13. A Novel Positron Emission Tomography (PET) Approach to Monitor Cardiac Metabolic Pathway Remodeling in Response to Sunitinib Malate

    PubMed Central

    Silvola, Johanna M. U.; Miller, Ian S.; Conroy, Emer; Hector, Suzanne; Cary, Maurice; Murray, David W.; Jarzabek, Monika A.; Maratha, Ashwini; Alamanou, Marina; Udupi, Girish Mallya; Shiels, Liam; Pallaud, Celine; Saraste, Antti; Liljenbäck, Heidi; Jauhiainen, Matti; Oikonen, Vesa; Ducret, Axel; Cutler, Paul; McAuliffe, Fionnuala M.; Rousseau, Jacques A.; Lecomte, Roger; Gascon, Suzanne; Arany, Zoltan; Ky, Bonnie; Force, Thomas; Knuuti, Juhani; Gallagher, William M.; Roivainen, Anne; Byrne, Annette T.

    2017-01-01

    Sunitinib is a tyrosine kinase inhibitor approved for the treatment of multiple solid tumors. However, cardiotoxicity is of increasing concern, with a need to develop rational mechanism driven approaches for the early detection of cardiac dysfunction. We sought to interrogate changes in cardiac energy substrate usage during sunitinib treatment, hypothesising that these changes could represent a strategy for the early detection of cardiotoxicity. Balb/CJ mice or Sprague-Dawley rats were treated orally for 4 weeks with 40 or 20 mg/kg/day sunitinib. Cardiac positron emission tomography (PET) was implemented to investigate alterations in myocardial glucose and oxidative metabolism. Following treatment, blood pressure increased, and left ventricular ejection fraction decreased. Cardiac [18F]-fluorodeoxyglucose (FDG)-PET revealed increased glucose uptake after 48 hours. [11C]Acetate-PET showed decreased myocardial perfusion following treatment. Electron microscopy revealed significant lipid accumulation in the myocardium. Proteomic analyses indicated that oxidative metabolism, fatty acid β-oxidation and mitochondrial dysfunction were among the top myocardial signalling pathways perturbed. Sunitinib treatment results in an increased reliance on glycolysis, increased myocardial lipid deposition and perturbed mitochondrial function, indicative of a fundamental energy crisis resulting in compromised myocardial energy metabolism and function. Our findings suggest that a cardiac PET strategy may represent a rational approach to non-invasively monitor metabolic pathway remodeling following sunitinib treatment. PMID:28129334

  14. Neurobehavioural dysfunction following mild traumatic brain injury in childhood: a case report with positive findings on positron emission tomography (PET).

    PubMed

    Roberts, M A; Manshadi, F F; Bushnell, D L; Hines, M E

    1995-07-01

    The present case study describes the neurobehavioural, neurodiagnostic, and positron emission tomography (PET) scan findings in a child who sustained a whiplash-type injury in a motor vehicle accident. Although neck and back pain were reported immediately, neurobehavioural symptoms, such as staring spells, gradually increased in frequency over a 2-year period following the accident. At 4 years after the accident the patient's symptoms persisted, as reported by teachers and parents, and more extensive diagnostic work-up was initiated. Standard EEG was normal while two ambulatory EEGs were abnormal and interpreted as epileptiform. A PET scan showed evidence of marked hypometabolism in both temporal lobes. Neuropsychological findings were consistent with PET findings and reflected verbal and visual memory deficits in the context of high average intelligence. Treatment with carbamazepine, verapamil, and fluoxetine greatly improved the patient's symptoms. The present case illustrates an example of a poor outcome in a paediatric case of mild traumatic brain injury, the importance of PET in demonstrating definitive evidence of brain dysfunction, and the child's positive response to anticonvulsant medication.

  15. Performance of coincidence imaging with long-lived positron emitters as an alternative to dedicated PET and SPECT

    NASA Astrophysics Data System (ADS)

    Sandström, Mattias; Tolmachev, Vladimir; Kairemo, Kalevi; Lundqvist, Hans; Lubberink, Mark

    2004-12-01

    An important application of quantitative imaging in nuclear medicine is the estimation of absorbed doses in radionuclide therapy. Depending on the radionuclide used for therapy, quantitative imaging of the kinetics of the therapeutic radiopharmaceutical could be done using planar imaging, SPECT or PET. Since many nuclear medicine departments have a gamma camera system that is also suitable for coincidence imaging, the performance of these systems with respect to quantitative imaging of PET isotopes that could be of use in radionuclide dosimetry is of interest. We investigated the performance of a gamma camera with coincidence imaging capabilities with 99mTc, 111In, 18F and 76Br and a dedicated PET system with 18F and 76Br, using a single standard set of phantom measurements. Here, 76Br was taken as a typical example of prompt gamma-emitting PET isotopes that are applicable in radionuclide therapy dosimetry such as 86Y and 124I. Image quality measurements show comparable image contrasts for 76Br coincidence imaging and 111In SPECT. Although the spatial resolution of coincidence imaging is better than single photon imaging, the contrast obtained with 76Br is not better than that with 99mTc or 111In because of the prompt gamma involved. Additional improvements are necessary to allow for quantitative coincidence imaging of long-lived, prompt gamma producing positron emitters.

  16. Analytical positron range modelling in heterogeneous media for PET Monte Carlo simulation.

    PubMed

    Lehnert, Wencke; Gregoire, Marie-Claude; Reilhac, Anthonin; Meikle, Steven R

    2011-06-07

    Monte Carlo simulation codes that model positron interactions along their tortuous path are expected to be accurate but are usually slow. A simpler and potentially faster approach is to model positron range from analytical annihilation density distributions. The aims of this paper were to efficiently implement and validate such a method, with the addition of medium heterogeneity representing a further challenge. The analytical positron range model was evaluated by comparing annihilation density distributions with those produced by the Monte Carlo simulator GATE and by quantitatively analysing the final reconstructed images of Monte Carlo simulated data. In addition, the influence of positronium formation on positron range and hence on the performance of Monte Carlo simulation was investigated. The results demonstrate that 1D annihilation density distributions for different isotope-media combinations can be fitted with Gaussian functions and hence be described by simple look-up-tables of fitting coefficients. Together with the method developed for simulating positron range in heterogeneous media, this allows for efficient modelling of positron range in Monte Carlo simulation. The level of agreement of the analytical model with GATE depends somewhat on the simulated scanner and the particular research task, but appears to be suitable for lower energy positron emitters, such as (18)F or (11)C. No reliable conclusion about the influence of positronium formation on positron range and simulation accuracy could be drawn.

  17. Effect of increased axial field of view of on the performance of a volume PET scanner. [Positron Emission Tomography (PET)

    SciTech Connect

    Karp, J.S.; Kinahan, P.E. . Dept. of Radiology); Muehllehner, G.; Countryman, P. )

    1991-01-01

    The performance of the PENN-PET 240H scanner from UGM Medical Systems is tested and compared to the prototype PENN-PET scanner built at the University of Pennsylvania. The UGM PENN-PET scanner consists of six continuous position-sensitive NaI(Tl) detectors, which results in a 50-cm transverse field-of-view and a 12.8-cm axial field-of-view. The fine spatial sampling in the axial direction allows the data to be sorted into as many as 64 transverse planes, each 2-mm thick. A large axial acceptance angle, without interplane septa, results in a high sensitivity, with a low scatter and randoms fraction, due to the use of a narrow photopeak energy window. This paper emphasizes those performance measurements that illustrate the special characteristics of a volume imaging scanner and how they change as the axial length is increased.

  18. Increased activation of the human cerebellum during pitch discrimination: a positron emission tomography (PET) study.

    PubMed

    Petacchi, Augusto; Kaernbach, Christian; Ratnam, Rama; Bower, James M

    2011-12-01

    Recent years have seen a growing debate concerning the function of the cerebellum. Here we used a pitch discrimination task and PET to test for cerebellar involvement in the active control of sensory data acquisition. Specifically, we predicted greater cerebellar activity during active pitch discrimination compared to passive listening, with the greatest activity when pitch discrimination was most difficult. Ten healthy subjects were trained to discriminate deviant tones presented with a slightly higher pitch than a standard tone, using a Go/No Go paradigm. To ensure that discrimination performance was matched across subjects, individual psychometric curves were assessed beforehand using a two-step psychoacoustic procedure. Subjects were scanned while resting in the absence of any sounds, while passively listening to standard tones, and while detecting deviant tones slightly higher in pitch among these standard tones at four different performance levels. Consistent with our predictions, 1) passive listening alone elicited cerebellar activity (lobule IX), 2) cerebellar activity increased during pitch discrimination as compared to passive listening (crus I and II, lobules VI, VIIB, and VIIIB), and 3) this increase was correlated with the difficulty of the discrimination task (lobules V, VI, and IX). These results complement recent findings showing pitch discrimination deficits in cerebellar patients (Parsons et al., 2009) and further support a role for the cerebellum in sensory data acquisition. The data are discussed in the light of anatomical and physiological evidence functionally connecting auditory system and cerebellum.

  19. PET imaging of thin objects: measuring the effects of positron range and partial-volume averaging in the leag of Nicotiana Tabacum

    SciTech Connect

    Alexoff, D.L.; Alexoff, D.L.; Dewey, S.L.; Vaska, P.; Krishnamoorthy, S.; Ferrieri, R.; Schueller, M.; Schlyer, D.; Fowler, J.S.

    2011-03-01

    PET imaging in plants is receiving increased interest as a new strategy to measure plant responses to environmental stimuli and as a tool for phenotyping genetically engineered plants. PET imaging in plants, however, poses new challenges. In particular, the leaves of most plants are so thin that a large fraction of positrons emitted from PET isotopes ({sup 18}F, {sup 11}C, {sup 13}N) escape while even state-of-the-art PET cameras have significant partial-volume errors for such thin objects. Although these limitations are acknowledged by researchers, little data have been published on them. Here we measured the magnitude and distribution of escaping positrons from the leaf of Nicotiana tabacum for the radionuclides {sup 18}F, {sup 11}C and {sup 13}N using a commercial small-animal PET scanner. Imaging results were compared to radionuclide concentrations measured from dissection and counting and to a Monte Carlo simulation using GATE (Geant4 Application for Tomographic Emission). Simulated and experimentally determined escape fractions were consistent. The fractions of positrons (mean {+-} S.D.) escaping the leaf parenchyma were measured to be 59 {+-} 1.1%, 64 {+-} 4.4% and 67 {+-} 1.9% for {sup 18}F, {sup 11}C and {sup 13}N, respectively. Escape fractions were lower in thicker leaf areas like the midrib. Partial-volume averaging underestimated activity concentrations in the leaf blade by a factor of 10 to 15. The foregoing effects combine to yield PET images whose contrast does not reflect the actual activity concentrations. These errors can be largely corrected by integrating activity along the PET axis perpendicular to the leaf surface, including detection of escaped positrons, and calculating concentration using a measured leaf thickness.

  20. Development of a Novel PET Tracer [18F]AlF-NOTA-C6 Targeting MMP2 for Tumor Imaging.

    PubMed

    Liu, Qinghua; Pan, Donghui; Cheng, Chao; Zhang, Dazhi; Zhang, Anyu; Wang, Lizhen; Jiang, Hongdie; Wang, Tao; Liu, Hongrui; Xu, Yuping; Yang, Runlin; Chen, Fei; Yang, Min; Zuo, Changjing

    2015-01-01

    The overexpression of gelatinases, that is, matrix metalloproteinase MMP2 and MMP9, has been associated with tumor progression, invasion, and metastasis. To image MMP2 in tumors, we developed a novel ligand termed [18F]AlF-NOTA-C6, with consideration that: c(KAHWGFTLD)NH2 (herein, C6) is a selective gelatinase inhibitor; Cy5.5-C6 has been visualized in many in vivo tumor models; positron emission tomography (PET) has a higher detection sensitivity and a wider field of view than optical imaging; fluorine-18 (18F) is the optimal PET radioisotope, and the creation of a [18F]AlF-peptide complex is a simple procedure. C6 was conjugated to the bifunctional chelator NOTA (1, 4, 7-triazacyclononanetriacetic acid) for radiolabeling [18F]AlF conjugation. The MMP2-binding characteristics and tumor-targeting efficacy of [18F]AlF-NOTA-C6 were tested in vitro and in vivo. The non-decay corrected yield of [18F]AlF-NOTA-C6 was 46.2-64.2%, and the radiochemical purity exceeded 95%. [18F]AlF-NOTA-C6 was favorably retained in SKOV3 and PC3 cells, determined by cell uptake. Using NOTA-C6 as a competitive ligand, the uptake of [18F]AlF-NOTA-C6 in SKOV3 cells decreased in a dose-dependent manner. In biodistribution and PET imaging studies, higher radioactivity concentrations were observed in tumors. Pre-injection of C6 caused a marked reduction in tumor tissue uptake. Immunohistochemistry showed MMP2 in tumor tissues. [18F]AlF-NOTA-C6 was easy to synthesize and has substantial potential as an imaging agent that targets MMP2 in tumors.

  1. Development of a Novel PET Tracer [18F]AlF-NOTA-C6 Targeting MMP2 for Tumor Imaging

    PubMed Central

    Cheng, Chao; Zhang, Dazhi; Zhang, Anyu; Wang, Lizhen; Jiang, Hongdie; Wang, Tao; Liu, Hongrui; Xu, Yuping; Yang, Runlin; Chen, Fei; Yang, Min; Zuo, Changjing

    2015-01-01

    Background and Objective The overexpression of gelatinases, that is, matrix metalloproteinase MMP2 and MMP9, has been associated with tumor progression, invasion, and metastasis. To image MMP2 in tumors, we developed a novel ligand termed [18F]AlF-NOTA-C6, with consideration that: c(KAHWGFTLD)NH2 (herein, C6) is a selective gelatinase inhibitor; Cy5.5-C6 has been visualized in many in vivo tumor models; positron emission tomography (PET) has a higher detection sensitivity and a wider field of view than optical imaging; fluorine-18 (18F) is the optimal PET radioisotope, and the creation of a [18F]AlF-peptide complex is a simple procedure. Methods C6 was conjugated to the bifunctional chelator NOTA (1, 4, 7-triazacyclononanetriacetic acid) for radiolabeling [18F]AlF conjugation. The MMP2-binding characteristics and tumor-targeting efficacy of [18F]AlF-NOTA-C6 were tested in vitro and in vivo. Results The non-decay corrected yield of [18F]AlF-NOTA-C6 was 46.2–64.2%, and the radiochemical purity exceeded 95%. [18F]AlF-NOTA-C6 was favorably retained in SKOV3 and PC3 cells, determined by cell uptake. Using NOTA-C6 as a competitive ligand, the uptake of [18F]AlF-NOTA-C6 in SKOV3 cells decreased in a dose-dependent manner. In biodistribution and PET imaging studies, higher radioactivity concentrations were observed in tumors. Pre-injection of C6 caused a marked reduction in tumor tissue uptake. Immunohistochemistry showed MMP2 in tumor tissues. Conclusions [18F]AlF-NOTA-C6 was easy to synthesize and has substantial potential as an imaging agent that targets MMP2 in tumors. PMID:26540114

  2. Detection of Mg17Al12 precipitates in deformed thermal-aged AZ91 alloy by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Ortega, Y.; Del Río, J.

    2004-02-01

    Positron-annihilation lifetime measurements are used to study the influence of Mg17Al12 precipitates in mechanical properties of deformed magnesium alloys containing 9 wt% Al and 1wt% Zn. Deformations are performed at room temperature on untreated and thermal-aged samples, and the response of the positron lifetime to the deformation degree is studied. Measurements reveal that changes in the average positron lifetime are very small on both samples. The slight increase of positron lifetime in deformed samples, seems to be related with the unfavourable orientation of Mg17Al12 precipitates in the magnesium matrix to produce work hardening, as it has shown by other authors through TEM observations. Further isothermal annealing experiments, on samples that are previously deformed, illustrate almost a complete recovery of the positron lifetime on untreated samples at 375 K and on age-hardened samples at 433 K.

  3. FDG-PET response-adapted therapy: is 18F-fluorodeoxyglucose positron emission tomography a safe predictor for a change of therapy?

    PubMed

    Hutchings, Martin

    2014-02-01

    Fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) is the most accurate tool for staging, treatment monitoring, and response evaluation in Hodgkin lymphoma (HL). Early determination of treatment sensitivity by FDG-PET is the best tool to guide individualized, response-adapted treatment. Several ongoing or recently completed trials have investigated the use of FDG-PET/CT for early response-adapted HL therapy. The results are encouraging, but the data are immature, and PET response-adapted HL therapy is discouraged outside the setting of clinical trials. PET/CT looks promising for selection of therapy in relapsed and refractory disease, but the role in this setting is still unclear.

  4. SU-D-201-06: Random Walk Algorithm Seed Localization Parameters in Lung Positron Emission Tomography (PET) Images

    SciTech Connect

    Soufi, M; Asl, A Kamali; Geramifar, P

    2015-06-15

    Purpose: The objective of this study was to find the best seed localization parameters in random walk algorithm application to lung tumor delineation in Positron Emission Tomography (PET) images. Methods: PET images suffer from statistical noise and therefore tumor delineation in these images is a challenging task. Random walk algorithm, a graph based image segmentation technique, has reliable image noise robustness. Also its fast computation and fast editing characteristics make it powerful for clinical purposes. We implemented the random walk algorithm using MATLAB codes. The validation and verification of the algorithm have been done by 4D-NCAT phantom with spherical lung lesions in different diameters from 20 to 90 mm (with incremental steps of 10 mm) and different tumor to background ratios of 4:1 and 8:1. STIR (Software for Tomographic Image Reconstruction) has been applied to reconstruct the phantom PET images with different pixel sizes of 2×2×2 and 4×4×4 mm{sup 3}. For seed localization, we selected pixels with different maximum Standardized Uptake Value (SUVmax) percentages, at least (70%, 80%, 90% and 100%) SUVmax for foreground seeds and up to (20% to 55%, 5% increment) SUVmax for background seeds. Also, for investigation of algorithm performance on clinical data, 19 patients with lung tumor were studied. The resulted contours from algorithm have been compared with nuclear medicine expert manual contouring as ground truth. Results: Phantom and clinical lesion segmentation have shown that the best segmentation results obtained by selecting the pixels with at least 70% SUVmax as foreground seeds and pixels up to 30% SUVmax as background seeds respectively. The mean Dice Similarity Coefficient of 94% ± 5% (83% ± 6%) and mean Hausdorff Distance of 1 (2) pixels have been obtained for phantom (clinical) study. Conclusion: The accurate results of random walk algorithm in PET image segmentation assure its application for radiation treatment planning and

  5. Evaluation of cancer detection with whole-body positron emission tomography (PET) and 2-[F-18]fluoro-2-deoxy-D-glucose

    NASA Astrophysics Data System (ADS)

    Hoh, Carl K.; Hawkins, Randall A.; Glaspy, John A.; Dahlbom, Magnus; Tse, Nielson Y.; Hoffman, Edward T.; Schiepers, Christiaan; Choi, Yong; Rege, Sheila; Nitzsche, Egbert U.; Maddahi, Jamshid; Phelps, Michael E.

    1993-08-01

    Until recently, positron emission tomography (PET) has been acquired and displayed in a standard transaxial image format. The development of whole body PET has allowed biochemical and physiologic imaging of the entire body, expanding the limited axial field of view of the conventional PET scanner. In this study, the application of whole body PET studies with 2-[F-18]fluoro-2-deoxy-D-glucose (FDG) for tumor imaging was evaluated. Whole body PET studies were positive (presence of focal FDG uptake relative to surrounding tissue activity) in 61 of 70 patients (87%) with biopsy confirmed malignant tumors. PET images failed to reveal focal hypermetabolism in 9 of the 70 patients. Of the 17 patients with benign biopsies lesions, 13 patients had whole body PET studies without focal areas of FDG uptake. Because of the high glycolytic rate of malignant tissue, the whole body PET FDG technique has promise in the detection of a wide variety of both primary and metastatic malignancies. The presence of FDG uptake in benign inflammatory conditions may limit the specificity of the technique. The true positive rates for the characterization of known lesions was 87% in this series, and the PET FDG method is promising both in determining both the nature of a localized lesion, and in defining the systemic extent of malignant disease.

  6. Design and Construction of a Positron Emission Tomography (PET) Unit and Medical Applications with GEANT Detector Simulation Package

    SciTech Connect

    Karagoz, Muge

    1998-01-01

    In order to investigate the possibility of the construction of a sample PET coincidence unit in our HEP laboratory, a setup with two face to face PMTs and two 2x8 Csi(Tl) scintillator matrices has been constructed. In this setup, 1-D projections of a pointlike 22 Na positron source at different angles have been measured. Using these projections a 2-D image has been formed. Monte Carlo studies of this setup have been implemented using the detector simulation tool in CERN program library, GEANT. Again with GEANT a sample human body is created to study the effects of proton therapy. Utilization of the simulation as a pretherapy tool is also investigated.

  7. The application of positron emission tomography (PET/CT) in diagnosis of breast cancer. Part II. Diagnosis after treatment initiation, future perspectives

    PubMed Central

    Jodłowska, Elżbieta; Czarnywojtek, Agata; Rewers, Amanda; Jarząbek, Grażyna; Kędzia, Witold; Ruchała, Marek

    2016-01-01

    Similarly to the applications described in the first part of this publication, positron emission tomography with computed tomography (PET/CT) is also gaining importance in monitoring a tumour's response to therapy and diagnosing breast cancer recurrences. This is additionally caused by the fact that many new techniques (dual-time point imaging, positron emission tomography with magnetic resonance PET/MR, PET/CT mammography) and radiotracers (16α-18F-fluoro-17β-estradiol, 18F-fluorothymidine) are under investigation. The highest sensitivity and specificity when monitoring response to treatment is achieved when the PET/CT scan is made after one or two chemotherapy courses. Response to anti-hormonal treatment can also be monitored, also when new radiotracers, such as FES, are used. When monitoring breast cancer recurrences during follow-up, PET/CT has higher sensitivity than conventional imaging modalities, making it possible to monitor the whole body simultaneously. New techniques and radiotracers enhance the sensitivity and specificity of PET and this is why, despite relatively high costs, it might become more widespread in monitoring response to treatment and breast cancer recurrences. PMID:27647983

  8. (68)Ga-BPAMD: PET-imaging of bone metastases with a generator based positron emitter.

    PubMed

    Fellner, M; Biesalski, B; Bausbacher, N; Kubícek, V; Hermann, P; Rösch, F; Thews, O

    2012-10-01

    Bone metastases are a serious aggravation for patients suffering from cancer. Therefore, early recognition of bone metastases is of great interest for further treatment of patients. Bisphosphonates are widely used for scintigraphy of bone lesions with (99m)Tc. Using the (68)Ge/(68)Ga generator together with a macroyclic bisphosphonate a comparable PET-tracer comes into focus. The bisphosphonate DOTA-conjugated ligand BPAMD was labelled with (68)Ga. [(68)Ga]BPAMD was evaluated in vitro concerning binding to hydroxyapatite and stability. The tracer's in vivo accumulation was determined on healthy rats and bone metastases bearing animals by μ-PET. BPAMD was labelled efficiently with (68)Ga after 10 min at 100°C. [(68)Ga]BPAMD showed high in vitro stability within 3h and high binding to hydroxyapatite. Consequently, μ-PET experiments revealed high accumulation of [(68)Ga]BPAMD in regions of pronounced remodelling activity like bone metastases. (68)Ga BPAMD reveals great potential for diagnosis of bone metastases via PET/CT. The straight forward (68)Ga-labelling could be transferred to a kit-preparation of a cyclotron-independent PET tracer instantaneously available in many clinical sites using the (68)Ge/(68)Ga generator. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Fluorine-18 labeled rare-earth nanoparticles for positron emission tomography (PET) imaging of sentinel lymph node.

    PubMed

    Sun, Yun; Yu, Mengxiao; Liang, Sheng; Zhang, Yingjian; Li, Chenguang; Mou, Tiantian; Yang, Wenjiang; Zhang, Xianzhong; Li, Biao; Huang, Chunhui; Li, Fuyou

    2011-04-01

    Rare-earth-based nanoparticles have attracted increasing attention for their unique optical and magnetic properties. However, their application in bioimaging has been limited to photoluminescence bioimaging and magnetic resonance imaging. To facilitate their use in other bioimaging techniques, we developed a simple, rapid, efficient and general synthesis strategy for (18)F-labeled rare-earth nanoparticles through a facile inorganic reaction between rare-earth cations and fluoride ions. The (18)F-labeling process based on rare-earth elements was achieved efficiently in water at room temperature with an (18)F-labeling yield of >90% and completed within 5 min, with only simple purification by aqueous washing and centrifugation, and without the use of organic agents. The effectiveness of (18)F-labeled rare-earth nanoparticles was further evaluated by positron emission tomography (PET) imaging of their in vivo distribution and application in lymph monitoring. In addition, this strategy is proposed for the creation of a dual-model bioimaging technique, combining upconversion luminescence bioimaging and PET imaging.

  10. A Novel Method to Label Solid Lipid Nanoparticles (SLNs) with 64Cu for Positron Emission Tomography (PET) Imaging

    PubMed Central

    Andreozzi, Erica; Seo, Jai Woong; Ferrara, Katherine; Louie, Angelique

    2011-01-01

    Solid lipid nanoparticles (SLNs) are sub-micron (1–1000 nm) colloidal carriers developed in the last decade as an alternative system to traditional carriers (emulsions, liposomes and polymeric nanoparticles) for intravenous applications.(1) Because of their potential as drug carriers, there is much interest in understanding the in vivo biodistribution of SLNs following intravenous (i.v) injection. Positron Emission Tomography (PET) is an attractive method for investigating biodistribution but requires a radiolabeled compound. In this work, we describe a method to radiolabel SLN for in vivo PET studies. A copper specific chelator, 6-[p-(bromoacetamido)benzyl]-1,4,8,11-tetraazacyclotetradecane-N,N′,N″,N‴-tetraacetic acid (BAT), conjugated with a synthetic lipid,(2) was incorporated into the SLN. Following incubation with 64CuCl2 for 1 hr at 25 °C in 0.1 M NH4OAc buffer (pH 5.5), the SLNs (~150 nm) were successfully radiolabeled with 64Cu (66.5% radiolabeling yield), exhibiting >95% radiolabeled particles following purification. The 64Cu-SLNs were delivered intravenously to mice and imaged with PET at 0.5, 3, 20, and 48 hr post injection. Gamma counting was utilized post imaging to confirm organ distributions. Tissue radioactivity (% injected dose/gram, %ID/g) obtained by quantitative analysis of the images suggests that the 64Cu-SLNs are circulating in the bloodstream after 3 hr (blood half life ~1.4 hr), but are almost entirely cleared by 48 hr. PET and gamma counting confirm approximately 5–7 %ID/g 64Cu-SLNs remaining in the liver at 48 hr post injection. Stability assays confirm that copper remains associated with the SLN over the 48 hr time period and that the biodistribution patterns observed are not from free, dissociated copper. Our results indicate that SLNs can be radiolabeled with 64Cu and their biodistribution can be quantitatively evaluated by in vivo PET imaging and ex vivo gamma counting. PMID:21388194

  11. [Diagnosis of fever of unknown origin (FUO). Positron emission tomography/computed tomography (PET-CT)].

    PubMed

    Gratz, S; Kemke, B; Kaiser, W; Hahn, U; Erdtmann, B; Schilling, M; Schneider, B; Behr, T M

    2009-10-01

    Nuclear medicine imaging is now well accepted for the localization of septic foci. But in patients the results of infection scintigraphy, radiology and ultrasound remain unsatisfactory in the diagnosis of fever of unknown origin (FUO). In contrast to septic infections, patients with FUO - mostly in elderly patients - tend to have such conditions as occult tumours, atypical pneumonia, hematoblastosis, malignant lymphomas. (18)F(Fluor-18)-Fluordeoxyglucose-PET ((18)F-FDG PET) has made it possible to localize symptomatically occult changes with a high diagnostic accuracy and to achieve differentiation between benign and malignant changes. Copyright Georg Thieme Verlag KG Stuttgart . New York.

  12. (-)-N-[(11)C]propyl-norapomorphine: a positron-labeled dopamine agonist for PET imaging of D(2) receptors.

    PubMed

    Hwang, D R; Kegeles, L S; Laruelle, M

    2000-08-01

    Imaging neuroreceptors with radiolabeled agonists might provide valuable information on the in vivo agonist affinity states of receptors of interest. We report here the radiosynthesis, biodistribution in rodents, and imaging studies in baboons of [(11)C]-labeled (-)-N-propyl-norapomorphine [(-)-NPA]. (-)-[(11)C]NPA was prepared by reacting norapomorphine with [(11)C]propionyl chloride and a lithium aluminum hydride reduction. [(11)C]Propionyl chloride was prepared by reacting [(11)C]CO(2) with ethylmagnesium bromide, followed by reacting with phthaloyl chloride. The radiochemical yield of (-)-[(11)C]NPA was 2.5% at end of synthesis (EOS), and the synthesis time was 60 min. The specific activity was 1700+/-1900 mCi/micromol ( N=7; ranged 110-5200 mCi/micromol at EOS). Rodent biodistribution studies showed high uptake of [(11)C](-)-NPA in D(2) receptor-rich areas, and the striatum/cerebellum ratios were 1.7, 3.4, and 4.4 at 5 min, 30 min, and 60 min postinjection, respectively. Pretreating the animals with haloperidol (1 mg/kg) decreased the striatum/cerebellum ratio at 30 min postinjection to 1.3. (-)-[(11)C]NPA was also evaluated via baboon positron emission tomography (PET) studies. Under control conditions ( N=4), rapid uptake of the tracer was observed and the striatum/cerebellum ratio reached 2.86+/-0.15 at 45 min postinjection. Following haloperidol pretreatment (0.2 mg/kg IV), the striatum/cerebellum ratio was 1.29 at 45 min postinjection. The result demonstrated the existence of specific binding of this new tracer to the D(2) receptor. To our knowledge, the current finding of a striatum/cerebellum ratio of 2.8 in baboon was the highest reported with a radiolabeled D(2) agonist. (-)-[(11)C]NPA is a promising new D(2) agonist PET tracer for probing D(2) receptors in vivo using PET.

  13. Positron emission tomography (PET) imaging of nicotine-induced dopamine release in squirrel monkeys using [(18)F]Fallypride.

    PubMed

    Naylor, Jennifer E; Hiranita, Takato; Matazel, Katelin S; Zhang, Xuan; Paule, Merle G; Goodwin, Amy K

    2017-10-01

    Nicotine, the principal psychoactive tobacco constituent, is thought to produce its reinforcing effects via actions within the mesolimbic dopamine (DA) system. The objective of the current study was to examine the effect of nicotine on DA D2/D3 receptor availability in the nonhuman primate brain with the use of the radioligand [(18)F]fallypride and positron emission tomography (PET). Ten adult male squirrel monkeys were used in the current study. Each subject underwent two PET scans, one with an injection (IV) of saline and subsequently one with an injection of nicotine (0.032mg/kg). The DA D2/D3 antagonist, [(18)F]fallypride, was delivered IV at the beginning of each scan, and nicotine or saline was delivered at 45min into the scan. Regions of interest (ROI) were drawn on specific brain regions and these were used to quantify standard uptake values (SUVs). The SUV is defined as the average concentration of radioactivity in the ROI x body weight/injected dose. Using the cerebellum as a reference region, SUV ratios (SUVROI/SUVcerebellum) were calculated to compare saline and nicotine effects in each ROI. Two-way repeated ANOVA revealed a significant decrease of SUV ratios in both striatal and extrastriatal regions following an injection of nicotine during the PET scans. Like other drugs of abuse, these results indicate that nicotine administration may produce DA release, as suggested by the decrease in [(18)F]fallypride signal in striatal regions. These findings from a nonhuman primate model provide further evidence that the mesolimbic DA system is affected by the use of products that contain nicotine. Published by Elsevier B.V.

  14. One-step radiosynthesis of ¹⁸F-AlF-NOTA-RGD₂ for tumor angiogenesis PET imaging.

    PubMed

    Liu, Shuanglong; Liu, Hongguang; Jiang, Han; Xu, Yingding; Zhang, Hong; Cheng, Zhen

    2011-09-01

    One of the major obstacles of the clinical translation of (18)F-labeled arginine-glycine-aspartic acid (RGD) peptides has been the laborious multistep radiosynthesis. In order to facilitate the application of RGD-based positron emission tomography (PET) probes in the clinical setting we investigated in this study the feasibility of using the chelation reaction between Al(18)F and a macrocyclic chelator-conjugated dimeric RGD peptide as a simple one-step (18)F labeling strategy for development of a PET probe for tumor angiogenesis imaging. Dimeric cyclic peptide E[c(RGDyK)](2) (RGD(2)) was first conjugated with a macrocyclic chelator, 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA), and the resulting bioconjugate NOTA-RGD(2) was then radiofluorinated via Al(18)F intermediate to synthesize (18)F-AlF-NOTA-RGD(2). Integrin binding affinities of the peptides were assessed by a U87MG cell-based receptor binding assay using (125)I-echistatin as the radioligand. The tumor targeting efficacy and in vivo profile of (18)F-AlF-NOTA-RGD(2) were further evaluated in a subcutaneous U87MG glioblastoma xenograft model by microPET and biodistribution. NOTA-RGD(2) was successfully (18)F-fluorinated with good yield within 40 min using the Al(18)F intermediate. The IC(50) of (19)F-AlF-NOTA-RGD(2) was determined to be 46 ± 4.4 nM. Quantitative microPET studies demonstrated that (18)F-AlF-NOTA-RGD(2) showed high tumor uptake, fast clearance from the body, and good tumor to normal organ ratios. NOTA-RGD(2) bioconjugate has been successfully prepared and labeled with Al(18)F in one single step of radiosynthesis. The favorable in vivo performance and the short radiosynthetic route of (18)F-AlF-NOTA-RGD(2) warrant further optimization of the probe and the radiofluorination strategy to accelerate the clinical translation of (18)F-labeled RGD peptides.

  15. One-step radiosynthesis of 18F-AlF-NOTA-RGD2 for tumor angiogenesis PET imaging

    PubMed Central

    Liu, Shuanglong; Liu, Hongguang; Jiang, Han; Xu, Yingding; Zhang, Hong

    2014-01-01

    Purpose One of the major obstacles of the clinical translation of 18F-labeled arginine-glycine-aspartic acid (RGD) peptides has been the laborious multistep radiosynthesis. In order to facilitate the application of RGD-based positron emission tomography (PET) probes in the clinical setting we investigated in this study the feasibility of using the chelation reaction between Al18F and a macrocyclic chelator-conjugated dimeric RGD peptide as a simple one-step 18F labeling strategy for development of a PET probe for tumor angiogenesis imaging. Methods Dimeric cyclic peptide E[c(RGDyK)]2 (RGD2) was first conjugated with a macrocyclic chelator, 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA), and the resulting bioconjugate NOTA-RGD2 was then radiofluorinated via Al18F intermediate to synthesize 18F-AlF-NOTA-RGD2. Integrin binding affinities of the peptides were assessed by a U87MG cell-based receptor binding assay using 125I-echistatin as the radioligand. The tumor targeting efficacy and in vivo profile of 18F-AlF-NOTA-RGD2 were further evaluated in a subcutaneous U87MG glioblastoma xenograft model by microPET and biodistribution. Results NOTA-RGD2 was successfully 18F-fluorinated with good yield within 40 min using the Al18F intermediate. The IC50 of 19F-AlF-NOTA-RGD2 was determined to be 46±4.4 nM. Quantitative microPET studies demonstrated that 18F-AlF-NOTA-RGD2 showed high tumor uptake, fast clearance from the body, and good tumor to normal organ ratios. Conclusion NOTA-RGD2 bioconjugate has been successfully prepared and labeled with Al18F in one single step of radiosynthesis. The favorable in vivo performance and the short radiosynthetic route of 18F-AlF-NOTA-RGD2 warrant further optimization of the probe and the radiofluorination strategy to accelerate the clinical translation of 18F-labeled RGD peptides. PMID:21617974

  16. Dynamic Positron Emission Tomography [PET] in Man Using Small Bismuth Germanate Crystals

    DOE R&D Accomplishments Database

    Derenzo, S. E.; Budinger, T. F.; Huesman, R. H.; Cahoon, J. L.

    1982-04-01

    Primary considerations for the design of positron emission tomographs for medical studies in humans are the need for high imaging sensitivity, whole organ coverage, good spatial resolution, high maximum data rates, adequate spatial sampling with minimum mechanical motion, shielding against out of plane activity, pulse height discrimination against scattered photons, and timing discrimination against accidental coincidences. We discuss the choice of detectors, sampling motion, shielding, and electronics to meet these objectives.

  17. 3D image reconstruction for PET by multi-slice rebinning and axial filtering. [Positron Emission Tomography (PET)

    SciTech Connect

    Lewitt, R.M. Pennsylvania Univ., Philadelphia, PA . Dept. of Radiology); Muehllehner, G. ); Karp, J.S. . Dept. of Radiology)

    1991-01-01

    Two different approaches are used at present to reconstruct from 3D coincidence data in PET. We refer to these approaches as the single-slice rebinning approach and the fully-3D approach. The single-slice rebinning approach involves geometrical approximations, but it requires the least possible amount of computation. Fully-3D reconstruction algorithms, both iterative and non-iterative, do not make such approximations, but require much more computation. Multi-slice rebinning with axial filtering is a new approach which attempts to achieve the geometrical accuracy of the fully-3D approach with the simplicity and modest amount of computation of the single-slice rebinning approach. The first step (multi-slice rebinning) involves rebinning of coincidence lines into a stack of 2D sinograms, where multiple sinograms are incremented for each oblique coincidence line. This operation is followed by an axial filtering operation, either before or after slice-by-slice reconstruction, to reduce the blurring in the axial direction. Tests with simulated and experimental data indicate that the new method has better geometrical accuracy than single-slice rebinning, at the cost of only a modest increase in computation. 11 refs.

  18. Clinical application of in vivo treatment delivery verification based on PET/CT imaging of positron activity induced at high energy photon therapy.

    PubMed

    Janek Strååt, Sara; Andreassen, Björn; Jonsson, Cathrine; Noz, Marilyn E; Maguire, Gerald Q; Näfstadius, Peder; Näslund, Ingemar; Schoenahl, Frederic; Brahme, Anders

    2013-08-21

    The purpose of this study was to investigate in vivo verification of radiation treatment with high energy photon beams using PET/CT to image the induced positron activity. The measurements of the positron activation induced in a preoperative rectal cancer patient and a prostate cancer patient following 50 MV photon treatments are presented. A total dose of 5 and 8 Gy, respectively, were delivered to the tumors. Imaging was performed with a 64-slice PET/CT scanner for 30 min, starting 7 min after the end of the treatment. The CT volume from the PET/CT and the treatment planning CT were coregistered by matching anatomical reference points in the patient. The treatment delivery was imaged in vivo based on the distribution of the induced positron emitters produced by photonuclear reactions in tissue mapped on to the associated dose distribution of the treatment plan. The results showed that spatial distribution of induced activity in both patients agreed well with the delivered beam portals of the treatment plans in the entrance subcutaneous fat regions but less so in blood and oxygen rich soft tissues. For the preoperative rectal cancer patient however, a 2 ± (0.5) cm misalignment was observed in the cranial-caudal direction of the patient between the induced activity distribution and treatment plan, indicating a beam patient setup error. No misalignment of this kind was seen in the prostate cancer patient. However, due to a fast patient setup error in the PET/CT scanner a slight mis-position of the patient in the PET/CT was observed in all three planes, resulting in a deformed activity distribution compared to the treatment plan. The present study indicates that the induced positron emitters by high energy photon beams can be measured quite accurately using PET imaging of subcutaneous fat to allow portal verification of the delivered treatment beams. Measurement of the induced activity in the patient 7 min after receiving 5 Gy involved count rates which were about

  19. Clinical application of in vivo treatment delivery verification based on PET/CT imaging of positron activity induced at high energy photon therapy

    NASA Astrophysics Data System (ADS)

    Janek Strååt, Sara; Andreassen, Björn; Jonsson, Cathrine; Noz, Marilyn E.; Maguire, Gerald Q., Jr.; Näfstadius, Peder; Näslund, Ingemar; Schoenahl, Frederic; Brahme, Anders

    2013-08-01

    The purpose of this study was to investigate in vivo verification of radiation treatment with high energy photon beams using PET/CT to image the induced positron activity. The measurements of the positron activation induced in a preoperative rectal cancer patient and a prostate cancer patient following 50 MV photon treatments are presented. A total dose of 5 and 8 Gy, respectively, were delivered to the tumors. Imaging was performed with a 64-slice PET/CT scanner for 30 min, starting 7 min after the end of the treatment. The CT volume from the PET/CT and the treatment planning CT were coregistered by matching anatomical reference points in the patient. The treatment delivery was imaged in vivo based on the distribution of the induced positron emitters produced by photonuclear reactions in tissue mapped on to the associated dose distribution of the treatment plan. The results showed that spatial distribution of induced activity in both patients agreed well with the delivered beam portals of the treatment plans in the entrance subcutaneous fat regions but less so in blood and oxygen rich soft tissues. For the preoperative rectal cancer patient however, a 2 ± (0.5) cm misalignment was observed in the cranial-caudal direction of the patient between the induced activity distribution and treatment plan, indicating a beam patient setup error. No misalignment of this kind was seen in the prostate cancer patient. However, due to a fast patient setup error in the PET/CT scanner a slight mis-position of the patient in the PET/CT was observed in all three planes, resulting in a deformed activity distribution compared to the treatment plan. The present study indicates that the induced positron emitters by high energy photon beams can be measured quite accurately using PET imaging of subcutaneous fat to allow portal verification of the delivered treatment beams. Measurement of the induced activity in the patient 7 min after receiving 5 Gy involved count rates which were about

  20. Ambient radiation levels in positron emission tomography/computed tomography (PET/CT) imaging center

    PubMed Central

    Santana, Priscila do Carmo; de Oliveira, Paulo Marcio Campos; Mamede, Marcelo; Silveira, Mariana de Castro; Aguiar, Polyanna; Real, Raphaela Vila; da Silva, Teógenes Augusto

    2015-01-01

    Objective To evaluate the level of ambient radiation in a PET/CT center. Materials and Methods Previously selected and calibrated TLD-100H thermoluminescent dosimeters were utilized to measure room radiation levels. During 32 days, the detectors were placed in several strategically selected points inside the PET/CT center and in adjacent buildings. After the exposure period the dosimeters were collected and processed to determine the radiation level. Results In none of the points selected for measurements the values exceeded the radiation dose threshold for controlled area (5 mSv/year) or free area (0.5 mSv/year) as recommended by the Brazilian regulations. Conclusion In the present study the authors demonstrated that the whole shielding system is appropriate and, consequently, the workers are exposed to doses below the threshold established by Brazilian standards, provided the radiation protection standards are followed. PMID:25798004

  1. [The impact of detecting endothelial dysfunction in atherosclerosis: Role of positron emission tomography (PET)].

    PubMed

    Alexánderson-Rosas, Erick; Calleja-Torres, Rodrigo; Martínez-García, Alfonso; Lamothe-Molina, Pedro Alberto; Ochoa-López, Juan Manuel; Meléndez, Gabriela; Kimura-Hayama, Eric; Meave-González, Aloha

    2010-01-01

    The endothelium plays an important role in the regulation of the intracellular fluid, vascular permeability, and modulation of vascular focal tone and angiogenesis. Endothelial dysfunction is manifested by the loss of the endothelium ability to modulate physiology changes in its vascular bed, and actually it is considered a prognostic marker of coronary artery disease. The relevance of assessing endothelial dysfunction relies in that it has been observed in different pathologies like DM, dyslipidemia, hypertension, tabaquism and in immunologic diseases like antiphospholipid syndrome and systemic lupus. PET is a non invasive method that allows the absolute quantification of myocardial blood flow during rest, stress and adrenergic stimulation, which allows to asses endothelial function. Therefore PET is a useful diagnostic technique to identify patients with endothelial dysfunction, and in the assessment of its response to administered therapy, allowing an optimal control and prevention of secondary adverse events of these diseases.

  2. Mathematical modeling of positron emission tomography (PET) data to assess radiofluoride transport in living plants following petiolar administration

    DOE PAGES

    Converse, Alexander K.; Ahlers, Elizabeth O.; Bryan, Tom W.; ...

    2015-03-15

    Background: Ion transport is a fundamental physiological process that can be studied non-invasively in living plants with radiotracer imaging methods. Fluoride is a known phytotoxic pollutant and understanding its transport in plants after leaf absorption is of interest to those in agricultural areas near industrial sources of airborne fluoride. Here we report the novel use of a commercial, high-resolution, animal positron emission tomography (PET) scanner to trace a bolus of [¹⁸F]fluoride administered via bisected petioles of Brassica oleracea, an established model species, to simulate whole plant uptake of atmospheric fluoride. This methodology allows for the first time mathematical compartmental modelingmore » of fluoride transport in the living plant. Radiotracer kinetics in the stem were described with a single-parameter free- and trapped-compartment model and mean arrival times at different stem positions were calculated from the free-compartment time-activity curves. Results: After initiation of administration at the bisected leaf stalk, [¹⁸F] radioactivity climbed for approximately 10 minutes followed by rapid washout from the stem and equilibration within leaves. Kinetic modeling of transport in the stem yielded a trapping rate of 1.5 +/- 0.3%/min (mean +/- s.d., n = 3), velocity of 2.2 +/- 1.1 cm/min, and trapping fraction of 0.8 +/- 0.5%/cm. Conclusion: Quantitative assessment of physiologically meaningful transport parameters of fluoride in living plants is possible using standard positron emission tomography in combination with petiolar radiotracer administration. Movement of free fluoride was observed to be consistent with bulk flow in xylem, namely a rapid and linear change in position with respect to time. Trapping, likely in the apoplast, was observed. Future applications of the methods described here include studies of transport of other ions and molecules of interest in plant physiology.« less

  3. Mathematical modeling of positron emission tomography (PET) data to assess radiofluoride transport in living plants following petiolar administration

    SciTech Connect

    Converse, Alexander K.; Ahlers, Elizabeth O.; Bryan, Tom W.; Hetue, Jackson D.; Lake, Katherine A.; Ellison, Paul A.; Engle, Jonathan W.; Barnhart, Todd E.; Nickles, Robert J.; Williams, Paul H.; DeJesus, Onofre T.

    2015-03-15

    Background: Ion transport is a fundamental physiological process that can be studied non-invasively in living plants with radiotracer imaging methods. Fluoride is a known phytotoxic pollutant and understanding its transport in plants after leaf absorption is of interest to those in agricultural areas near industrial sources of airborne fluoride. Here we report the novel use of a commercial, high-resolution, animal positron emission tomography (PET) scanner to trace a bolus of [¹⁸F]fluoride administered via bisected petioles of Brassica oleracea, an established model species, to simulate whole plant uptake of atmospheric fluoride. This methodology allows for the first time mathematical compartmental modeling of fluoride transport in the living plant. Radiotracer kinetics in the stem were described with a single-parameter free- and trapped-compartment model and mean arrival times at different stem positions were calculated from the free-compartment time-activity curves. Results: After initiation of administration at the bisected leaf stalk, [¹⁸F] radioactivity climbed for approximately 10 minutes followed by rapid washout from the stem and equilibration within leaves. Kinetic modeling of transport in the stem yielded a trapping rate of 1.5 +/- 0.3%/min (mean +/- s.d., n = 3), velocity of 2.2 +/- 1.1 cm/min, and trapping fraction of 0.8 +/- 0.5%/cm. Conclusion: Quantitative assessment of physiologically meaningful transport parameters of fluoride in living plants is possible using standard positron emission tomography in combination with petiolar radiotracer administration. Movement of free fluoride was observed to be consistent with bulk flow in xylem, namely a rapid and linear change in position with respect to time. Trapping, likely in the apoplast, was observed. Future applications of the methods described here include studies of transport of other ions and molecules of interest in plant physiology.

  4. Brain ¹⁸F-FDG and ¹¹C-PiB PET findings in two siblings with FTD/ALS associated with the C9ORF72 repeat expansion.

    PubMed

    Martikainen, Mika H; Gardberg, Maria; Jansson, Lilja; Röyttä, Matias; Rinne, Juha O; Kaasinen, Valtteri

    2014-04-01

    The C9ORF72 hexanucleotide expansion is a major pathological expansion pattern found in patients with frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (C9FTD/ALS). We describe a patient in whom early clinical evaluation, MRI and fluorodeoxyglucose (FDG) positron emission tomography (PET) findings failed to definitively differentiate between FTD and Alzheimer's disease (AD), whereas (11)C-Pittsburgh compound B (PiB) PET was negative for amyloid pathology. He later developed ALS symptoms, and post mortem neuropathological findings were diagnostic of FTD-ALS, while no findings suggested AD. His sister was diagnosed with FTD, and the C9ORF72 expansion was detected in both siblings. We conclude that ¹¹C-PiB PET imaging may help the early differential diagnosis between AD and FTD, including C9FTD/ALS.

  5. Cross section measurements for production of positron emitters for PET imaging in carbon therapy

    NASA Astrophysics Data System (ADS)

    Salvador, S.; Colin, J.; Cussol, D.; Divay, C.; Fontbonne, J.-M.; Labalme, M.

    2017-04-01

    In light ion beam therapy, positron (β+) emitters are produced by the tissue nuclei through nuclear interactions with the beam ions. They can be used for the verification of the delivered dose using positron emission tomography by comparing the spatial distribution of the β+ emitters activity to a computer simulation taking into account the patient morphology and the treatment plan. However, the accuracy of the simulation greatly depends on the method used to generate the nuclear interactions producing these emitters. In the case of Monte Carlo (MC) simulations, the nuclear interaction models still lack the required accuracy due to insufficient experimental cross section data. This is particularly true for carbon therapy where literature data on fragmentation cross sections of a carbon beam with targets of medical interest are very scarce. Therefore, we performed at GANIL in July 2016 measurements on β+ emitter production cross sections with a carbon beam at 25, 50, and 95 MeV/nucleon on thin targets (C, N, O, and PMMA). We extracted the production cross section of C,1110, 13N, and O,1514 that are essential to constrain or develop MC nuclear fragmentation models.

  6. 2D ACAR momentum density study of the nature of the positron surface state on Al(100)

    SciTech Connect

    Berko, S.; Canter, K.F.; Lynn, K.G.; Mills, A.P.; Roellig, L.O.; West, R.N.

    1985-01-01

    The two-dimensional angular correlation of the 2..gamma.. annihilation radiation (2D ACAR) has been measured from an Al(100) surface bombarded by 200-eV positrons. After removing the contribution of fast para-positronium annihilation, the spectrum from positrons annihilating at the surface exhibits a nearly isotropic conical shape with a (7.1 +- 0.5) mrad FWHM. 5 refs., 6 figs.

  7. Fabrication of thermally evaporated Al thin film on cylindrical PET monofilament for wearable computing devices

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Kim, Eunju; Han, Jeong In

    2016-01-01

    During the initial development of wearable computing devices, the conductive fibers of Al thin film on cylindrical PET monofilament were fabricated by thermal evaporation. Their electrical current-voltage characteristics curves were excellent for incorporation into wearable devices such as fiber-based cylindrical capacitors or thin film transistors. Their surfaces were modified by UV exposure and dip coating of acryl or PVP to investigate the surface effect. The conductive fiber with PVP coating showed the best conductivities because the rough surface of the PET substrate transformed into a smooth surface. The conductivities of PET fiber with and without PVP were 6.81 × 103 Ω-1cm-1 and 5.62 × 103 Ω-1cm-1, respectively. In order to understand the deposition process of Al thin film on cylindrical PET, Al thin film on PET fiber was studied using SEM (Scanning Electron Microscope), conductivities and thickness measurements. Hillocks on the surface of conductive PET fibers were observed and investigated by AFM on the surface. Hillocks were formed and grown during Al thermal evaporation because of severe compressive strain and plastic deformation induced by large differences in thermal expansion between PET substrate and Al thin film. From the analysis of hillock size distribution, it turns out that hillocks grew not transversely but longitudinally. [Figure not available: see fulltext.

  8. An experimental approach to improve the Monte Carlo modelling of offline PET/CT-imaging of positron emitters induced by scanned proton beams

    NASA Astrophysics Data System (ADS)

    Bauer, J.; Unholtz, D.; Kurz, C.; Parodi, K.

    2013-08-01

    We report on the experimental campaign carried out at the Heidelberg Ion-Beam Therapy Center (HIT) to optimize the Monte Carlo (MC) modelling of proton-induced positron-emitter production. The presented experimental strategy constitutes a pragmatic inverse approach to overcome the known uncertainties in the modelling of positron-emitter production due to the lack of reliable cross-section data for the relevant therapeutic energy range. This work is motivated by the clinical implementation of offline PET/CT-based treatment verification at our facility. Here, the irradiation induced tissue activation in the patient is monitored shortly after the treatment delivery by means of a commercial PET/CT scanner and compared to a MC simulated activity expectation, derived under the assumption of a correct treatment delivery. At HIT, the MC particle transport and interaction code FLUKA is used for the simulation of the expected positron-emitter yield. For this particular application, the code is coupled to externally provided cross-section data of several proton-induced reactions. Studying experimentally the positron-emitting radionuclide yield in homogeneous phantoms provides access to the fundamental production channels. Therefore, five different materials have been irradiated by monoenergetic proton pencil beams at various energies and the induced β+ activity subsequently acquired with a commercial full-ring PET/CT scanner. With the analysis of dynamically reconstructed PET images, we are able to determine separately the spatial distribution of different radionuclide concentrations at the starting time of the PET scan. The laterally integrated radionuclide yields in depth are used to tune the input cross-section data such that the impact of both the physical production and the imaging process on the various positron-emitter yields is reproduced. The resulting cross-section data sets allow to model the absolute level of measured β+ activity induced in the investigated

  9. PET-Guided Surgery - High Correlation between Positron Emission Tomography with 11C-5-Hydroxytryptophane (5-HTP) and Surgical Findings in Abdominal Neuroendocrine Tumours.

    PubMed

    Orlefors, Håkan; Sundin, Anders; Eriksson, Barbro; Skogseid, Britt; Oberg, Kjell; Akerström, Göran; Hellman, Per

    2012-02-08

    Positron emission tomography (PET) with 11C-labeled 5-hydroxytryptophane (5-HTP) is a sensitive technique to visualize neuroendocrine tumours (NETs), due to high intracellular uptake of amine-precursors like L-dihydroxyphenylalanine (L-DOPA) and 5-HTP. NETs are often small and difficult to localize in spite of overt clinical symptoms due to hormonal excess. In our study, 38 consecutive NET patients underwent 11C-5-HTP-PET and morphological imaging by CT within 12 weeks prior to surgery. Surgical, histopathological and 5-HTP PET findings were correlated. 11C-5-HTP-PET corresponded to the surgical findings in 31 cases, was false negative in six, and true negative in one case resulting in 83.8% sensitivity and 100% specificity. Positive predicted value was 100%. In 11 patients 11C-5-HTP-PET was the only imaging method applied to localize the tumour. Thus, we could demonstrate that functional imaging by 11C-5-HTP-PET in many cases adds vital preoperative diagnostic information and in more than every fourth patient was the only imaging method that will guide the surgeon in finding the NET-lesion. Although the present results demonstrates that 11C-5-HTP may be used as an universal NET tracer, the sensitivity to visualize benign insulinomas and non functioning pancreatic NETs was lower.

  10. PET-Guided Surgery — High Correlation between Positron Emission Tomography with 11C-5-Hydroxytryptophane (5-HTP) and Surgical Findings in Abdominal Neuroendocrine Tumours

    PubMed Central

    Örlefors, Håkan; Sundin, Anders; Eriksson, Barbro; Skogseid, Britt; Öberg, Kjell; Åkerström, Göran; Hellman, Per

    2012-01-01

    Positron emission tomography (PET) with 11C-labeled 5-hydroxytryptophane (5-HTP) is a sensitive technique to visualize neuroendocrine tumours (NETs), due to high intracellular uptake of amine-precursors like L-dihydroxyphenylalanine (L-DOPA) and 5-HTP. NETs are often small and difficult to localize in spite of overt clinical symptoms due to hormonal excess. In our study, 38 consecutive NET patients underwent 11C-5-HTP-PET and morphological imaging by CT within 12 weeks prior to surgery. Surgical, histopathological and 5-HTP PET findings were correlated. 11C-5-HTP-PET corresponded to the surgical findings in 31 cases, was false negative in six, and true negative in one case resulting in 83.8% sensitivity and 100% specificity. Positive predicted value was 100%. In 11 patients 11C-5-HTP-PET was the only imaging method applied to localize the tumour. Thus, we could demonstrate that functional imaging by 11C-5-HTP-PET in many cases adds vital preoperative diagnostic information and in more than every fourth patient was the only imaging method that will guide the surgeon in finding the NET-lesion. Although the present results demonstrates that 11C-5-HTP may be used as an universal NET tracer, the sensitivity to visualize benign insulinomas and non functioning pancreatic NETs was lower. PMID:24213229

  11. Can diffusion tensor imaging (DTI) identify epileptogenic tubers in tuberous sclerosis complex? Correlation with α-[11C]methyl-L-tryptophan ([11C] AMT) positron emission tomography (PET).

    PubMed

    Tiwari, Vijay Narayan; Kumar, Ajay; Chakraborty, Pulak K; Chugani, Harry T

    2012-05-01

    In this study, we determined whether diffusion tensor imaging (DTI), a more widely available imaging modality, is as effective as α-[(11)C]methyl-l-tryptophan (AMT)-positron emission tomography (PET) in localizing epileptogenic tubers in tuberous sclerosis complex. Following that, coregistration of AMT-PET and diffusion tensor imaging scans apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were measured in all tubers using a region-of-interest approach and were compared with AMT-PET tuber/cortex uptake ratios, which were used to differentiate between epileptogenic and nonepileptogenic tubers. Forty-three tubers, out of a total of 320 tubers, had AMT-PET uptake ratios greater than 1 and hence were classified as potentially epileptogenic. FA in epileptogenic tubers was reduced compared with the other tubers (P = .03). A significant negative correlation was observed between AMT-PET uptake ratio of epileptogenic tubers and FA values (r = -.45; P = .003). Tubers with higher AMT-PET uptake ratios corresponded well with lower FA values in tuberous sclerosis complex patients.

  12. 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis.

    PubMed

    Nestle, U; Walter, K; Schmidt, S; Licht, N; Nieder, C; Motaref, B; Hellwig, D; Niewald, M; Ukena, D; Kirsch, C M; Sybrecht, G W; Schnabel, K

    1999-06-01

    18F-deoxyglucose positron emission tomography (FDG-PET) is increasingly applied in the staging of lung cancer (LC). This study analyzes the potential contribution of PET in radiotherapy planning for LC with special respect to tumor-associated atelectasis. Thirty-four patients with histologically confirmed LC, who had been examined by PET during pretreatment staging, were included. All were irradiated after CT-based therapy planning with anterior/posterior (AP) portals encompassing the primary tumor and the mediastinum (CT portals, CP). The result of the PET examination was unknown in treatment planning. In retrospect, a PET portal (PP) was delineated and compared with the CP. In 12/34 cases, the shape and/or size of the portals were changed, primarily (n = 10) the size of the fields was reduced. The median area of CP was 182 cm2 versus 167 cm2 of PP. Seventeen of 34 patients had dys- or atelectasis caused by a central primary tumor. In these cases, differences between CP and PP were significantly more frequent than in the other patients (8/17 vs. 3/17, p = 0.03). In this retrospective analysis, the information provided by FDG-PET would have contributed to a substantial reduction of the size of radiotherapy portals. This applies particularly for patients with tumor-associated dys- or atelectasis.

  13. Long-lived positron emitters zirconium-89 and iodine-124 for scouting of therapeutic radioimmunoconjugates with PET.

    PubMed

    Verel, Iris; Visser, Gerard W M; Boerman, Otto C; van Eerd, Julliette E M; Finn, Ron; Boellaard, Ronald; Vosjan, Maria J W D; Stigter-van Walsum, Marijke; Snow, Gordon B; van Dongen, Guus A M S

    2003-08-01

    Antibody-PET imaging might be of value for the selection of radioimmunotherapy (RIT) candidates to confirm tumor targeting and to estimate radiation doses to tumor and normal tissues. One of the requirements to be set for such a scouting procedure is that the biodistributions of the diagnostic and therapeutic radioimmunoconjugates should be similar. In the present study we evaluated the potential of the positron emitters zirconium-89 ((89)Zr) and iodine-124 ((124)I) for this approach, as these radionuclides have a relatively long half-life that matches with the kinetics of MAbs in vivo (t(1/2) 3.27 and 4.18 days, respectively). After radiolabeling of the head and neck squamous cell carcinoma (HNSCC)-selective chimeric antibody (cMAb) U36, the biodistribution of two diagnostic (cMAb U36-N-sucDf-(89)Zr and cMAb U36-(124)I) and three therapeutic radioimmunoconjugates (cMAb U36-p-SCN-Bz-DOTA-(88)Y-with (88)Y being substitute for (90)Y, cMAb U36-(131)I, and cMAb U36-MAG3-(186)Re) was assessed in mice with HNSCC-xenografts, at 24, 48, and 72 hours after injection. Two patterns of biodistribution were observed, one pattern matching for (89)Zr- and (88)Y-labeled cMAb U36 and one pattern matching for (124)I-, (131)I-, and (186)Re-cMAb U36. The most remarkable differences between both patterns were observed for uptake in tumor and liver. Tumor uptake levels were 23.2 +/- 0.5 and 24.1 +/- 0.7%ID/g for the (89)Zr- and (88)Y-cMAb U36 and 16.0 +/- 0.8, 15.7 +/- 0.79 and 17.1 +/- 1.6%ID/g for (124)I-, (131)I-, and (186)Re-cMAb U36-conjugates, respectively, at 72 hours after injection. For liver these values were 6.9 +/- 0.8 ((89)Zr), 6.2 +/- 0.8 ((88)Y), 1.7 +/- 0.1 ((124)I), 1.6 +/- 0.1 ((131)I), and 2.3 +/- 0.1 ((186)Re), respectively. These preliminary data justify the further development of antibody-PET with (89)Zr-labeled MAbs for scouting of therapeutic doses of (90)Y-labeled MAbs. In such approach (124)I-labeled MAbs are most suitable for scouting of (131)I- and (186)Re

  14. Increased (18)F-fluorodeoxyglucose uptake in benign, nonphysiologic lesions found on whole-body positron emission tomography/computed tomography (PET/CT): accumulated data from four years of experience with PET/CT.

    PubMed

    Metser, Ur; Even-Sapir, Einat

    2007-05-01

    The use of (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG-PET) in the field of oncology is rapidly evolving; however, (18)F-FDG is not tumor specific. Aside from physiological uptake (18)F-FDG also may accumulate in benign processes. Knowledge of these (18)F-FDG-avid nonmalignant lesions is essential for accurate PET interpretation in oncologic patients to avoid a false-positive interpretation. Through the systematic review of the reports of PET/computed tomography (CT) studies performed in oncologic patients during a 6-month period, we found benign nonphysiological uptake of (18)F-FDG in more than 25% of studies. In half of these, (18)F-FDG uptake was moderate or marked in intensity, similar to that of malignant sites. A total of 73% of benign lesions were inflammatory in nature, with post-traumatic bone and soft-tissue abnormalities (including iatrogenic injury) and benign tumors accounting for the remainder. The differentiation of benign from malignant uptake of (18)F-FDG on PET alone may be particularly challenging as a result of the low anatomical resolution of PET and paucity of anatomical landmarks. Fusion imaging, namely PET/CT, has been shown to improve not only the sensitivity of PET interpretation but also its specificity. Aside from better anatomical localization of lesions on PET/CT, morphological characterization of lesions on CT often may improve the diagnostic accuracy of nonspecific (18)F-FDG uptake. Correlation with CT on fused PET/CT data may obviate the need for further evaluation or biopsy in more than one-third of scintigraphic equivocal lesions. Familiarity with (18)F-FDG-avid nonmalignant lesions also may extend the use of (18)F-FDG-PET imaging beyond the field of oncology. We have tabulated our experience with benign entities associated with increased (18)F-FDG uptake on whole-body PET/CT from 12,000 whole-body (18)F-FDG-PET/CT studies performed during a 4-year period.

  15. [{sup 18}F]Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (PET/CT) Physiologic Imaging of Choroidal Melanoma: Before and After Ophthalmic Plaque Radiation Therapy

    SciTech Connect

    Finger, Paul T.; Chin, Kimberly J.

    2011-01-01

    Purpose: To evaluate changes in [{sup 18}F]fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) standardized uptake values (SUV) in uveal melanoma before and after plaque brachytherapy. Methods and Materials: A cohort of 217 patients diagnosed with uveal melanoma and eligible for ophthalmic plaque brachytherapy underwent preoperative PET/CT to evaluate their intraocular tumor and screen for metastasis. Subsequent to undergoing plaque brachytherapy, patients' PET/CT SUV were periodically reevaluated over 42 months. Results: In this series, 37 (17%) choroidal melanoma patients were found to have an SUV of >2.0. Of these, 18 patients were able to undergo interval follow-up PET/CT scanning. There were 3 patients with T2, 11 patients with T3, and 4 patients with T4 melanomas according to 7th edition AJCC-UICC criteria. Mean apical thickness was 8.8 mm (range, 3-12.3 mm), and the largest mean tumor diameter was 15.1 mm (range, 12-19.9 mm). The mean initial SUV was 3.7 (range, 2.1-7.3). Patients were followed for a median 16 months (range, 6-42 months). The median time to a tumor SUV of 0 was 8.0 months (range, 6-18 months). There was one case of one interval increase in SUV that diminished after circumferential laser treatment. Conclusions: Intraocular PET/CT imaging provides a physiological assessment of tumor metabolism that can be used to evaluate changes after treatment. In this study, ophthalmic plaque radiation therapy was associated with extinguished tumor PET/CT SUV over time. PET/CT imaging can be used to assess choroidal melanomas for their response to treatment.

  16. Coregistered whole body magnetic resonance imaging-positron emission tomography (MRI-PET) versus PET-computed tomography plus brain MRI in staging resectable lung cancer: comparisons of clinical effectiveness in a randomized trial.

    PubMed

    Yi, Chin A; Lee, Kyung Soo; Lee, Ho Yun; Kim, Seonwoo; Kwon, O Jung; Kim, Hojoong; Choi, Joon Young; Kim, Byung-Tae; Hwang, Hye Sun; Shim, Young Mog

    2013-05-15

    The objective of this study was to assess whether coregistered whole brain (WB) magnetic resonance imaging-positron emission tomography (MRI-PET) would increase the number of correctly upstaged patients compared with WB PET-computed tomography (PET-CT) plus dedicated brain MRI in patients with nonsmall cell lung cancer (NSCLC). From January 2010 through November 2011, patients with NSCLC who had resectable disease based on conventional staging were assigned randomly either to coregistered MRI-PET or WB PET-CT plus brain MRI (ClinicalTrials.gov trial NCT01065415). The primary endpoint was correct upstaging (the identification of lesions with higher tumor, lymph node, or metastasis classification, verified with biopsy or other diagnostic test) to have the advantage of avoiding unnecessary thoracotomy, to determine appropriate treatment, and to accurately predict patient prognosis. The secondary endpoints were over staging and under staging compared with pathologic staging. Lung cancer was correctly upstaged in 37 of 143 patients (25.9%) in the MRI-PET group and in 26 of 120 patients (21.7%) in the PET-CT plus brain MRI group (4.2% difference; 95% confidence interval, -6.1% to 14.5%; P = .426). Lung cancer was over staged in 26 of 143 patients (18.2%) in the MRI-PET group and in 7 of 120 patients (5.8%) in the PET-CT plus brain MRI group (12.4% difference; 95% confidence interval, 4.8%-20%; P = .003), whereas lung cancer was under staged in 18 of 143 patients (12.6%) and in 28 of 120 patients (23.3%), respectively (-10.7% difference; 95% confidence interval, -20.1% to -1.4%; P = .022). Although both staging tools allowed greater than 20% correct upstaging compared with conventional staging methods, coregistered MRI-PET did not appear to help identify significantly more correctly upstaged patients than PET-CT plus brain MRI in patients with NSCLC. Copyright © 2013 American Cancer Society.

  17. A Novel Method to Evaluate Local Control of Lung Cancer in Stereotactic Body Radiation Therapy (SBRT) Treatment Using 18F-FDG Positron Emission Tomography (PET)

    NASA Astrophysics Data System (ADS)

    Kathriarachchi, Vindu Wathsala

    An improved method is introduced for prediction of local tumor control following lung stereotactic body radiation therapy (SBRT) for early stage non-small cell lung cancer (NSCLC) patients using 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET). A normalized background-corrected tumor maximum Standard Uptake Value (SUVcmax) is introduced using the mean uptake of adjacent aorta (SUVref), instead of the maximum uptake of lung tumor (SUVmax). This method minimizes the variations associated with SUVmax and objectively demonstrates a strong correlation between the low SUVcmax (< 2.5-3.0) and local control of post lung SBRT. The false positive rates of both SUVmax and SUVcmax increase with inclusion of early (<6 months) PET scans, therefore such inclusion is not recommended for assessing local tumor control of post lung SBRT.

  18. Isolated thymic Langerhans cell histiocytosis discovered on F-18 fluorodeoxyglucose positron emission tomography/computed tomography (F-18 FDG PET/CT).

    PubMed

    Turpin, Sophie; Carret, Anne-Sophie; Dubois, Josée; Buteau, Chantal; Patey, Natalie

    2015-11-01

    The thymic infiltration in young patients with multisystemic Langerhans cell histiocytosis and its radiologic features are well known. However, isolated thymic disease has seldom been reported in the literature. We report the case of a 10-month-old child admitted for fever of unknown origin. Whole-body F-18 fluorodeoxyglucose positron emission tomography/computed tomography (F-18 FDG PET/CT) was performed to identify a focus of infection. It demonstrated an unusual aspect of the thymus, which led to further investigation and revealed isolated infiltration of the thymus by Langerhans cell histiocytosis. The patient was treated accordingly and is now disease free. As evaluation of Langerhans cell histiocytosis patients with F-18 FDG PET/CT is becoming more frequent, it is important to be aware of the scintigraphical characteristics of thymic Langerhans cell histiocytosis.

  19. PET imaging of angiogenesis after myocardial infarction/reperfusion using a one-step labeled integrin-targeted tracer 18F-AlF-NOTA-PRGD2.

    PubMed

    Gao, Haokao; Lang, Lixin; Guo, Ning; Cao, Feng; Quan, Qimeng; Hu, Shuo; Kiesewetter, Dale O; Niu, Gang; Chen, Xiaoyuan

    2012-04-01

    The α(v)β(3) integrin represents a potential target for noninvasive imaging of angiogenesis. The purpose of this study was to evaluate a novel one-step labeled integrin α(v)β(3)-targeting positron emission tomography (PET) probe, (18)F-AlF-NOTA-PRGD2, for angiogenesis imaging in a myocardial infarction/reperfusion (MI/R) animal model. Male Sprague-Dawley rats underwent 45-min transient left coronary artery occlusion followed by reperfusion. The myocardial infarction was confirmed by ECG, (18)F-fluorodeoxyglucose (FDG) imaging, and cardiac ultrasound. In vivo PET imaging was used to determine myocardial uptake of (18)F-AlF-NOTA-PRGD2 at different time points following reperfusion. The control peptide RAD was labeled with a similar procedure and used to confirm the specificity. Ex vivo autoradiographic analysis and CD31/CD61 double immunofluorescence staining were performed to validate the PET results. Myocardial origin of the (18)F-AlF-NOTA-PRGD2 accumulation was confirmed by (18)F-FDG and autoradiography. PET imaging demonstrated increased focal accumulation of (18)F-AlF-NOTA-PRGD2 in the infarcted area which started at day 3 (0.28 ± 0.03%ID/g, p < 0.05) and peaked between 1 and 3 weeks (0.59 ± 0.16 and 0.55 ± 0.13%ID/g, respectively). The focal accumulation decreased but still kept at a higher level than the sham group after 4 months of reperfusion (0.31 ± 0.01%ID/g, p < 0.05). Pretreatment with unlabeled arginine-glycine-aspartic acid (RGD) peptide significantly decreased tracer uptake, indicating integrin specificity of this tracer. At 1 week after MI/R, uptake of the control tracer (18)F-AlF-NOTA-RAD that does not bind to integrin, in the infarcted area, was only 0.21 ± 0.01%ID/g. Autoradiographic imaging showed the same trend of uptake in the myocardial infarction area. The time course of focal tracer uptake was consistent with the pattern of vascular density and integrin β(3) expression as measured by CD31 and CD61 immunostaining analysis. PET

  20. Technical Note: Transconvolution based equalization of positron energy effects for the use of (68) Ge/(68) Ga phantoms in determining (18) F PET recovery.

    PubMed

    Prenosil, George A; Hentschel, Michael; Fürstner, Markus; Krause, Thomas; Weitzel, Thilo; Klaeser, Bernd

    2017-07-01

    Avoiding measurement variability from (18) F phantom preparation by using (68) Ge/(68) Ga phantoms for the determination of (18) F recovery curves (RC) in clinical quality assurance measurements and for PET/CT site qualification in multicentre clinical trials. RCs were obtained from PET/CT measurements of seven differently sized phantom spheres filled either with (18) F or with (68) Ga. RCs for the respective other isotope were then determined by two different methods: In the first method, images were convolved with positron range transconvolution functions derived from positron annihilation distributions found in literature. This method generated recasted images matching images using the respective other isotope. In the second method, the PET/CT system's isotope independent (intrinsic) point spread function was determined from said phantom measurements and convolved with numerical representations simulating hot spheres filled with the respective other isotope. These simulations included the isotope specific positron annihilation distributions. Recovered activity concentrations were compared between recasted images, simulated images, and the originally acquired images. (18) F and (68) Ga recovery was successfully determined from image acquisitions of the respective opposite isotope as well as from the simulations. (68) Ga RCs derived from (18) F data had a normalized root-mean-square deviation (NRMSD) from real (68) Ga measurements of 0.019% when using the first method and of 0.008% when using the second method. (18) F RCs derived from (68) Ga data had a NRMSD from real (18) F measurements of 0.036% when using the first method and of 0.038% when using the second method. Applying the principles of transconvolution, (18) F RCs can be recalculated from (68) Ga phantom measurements with excellent accuracy. The maximal additionally introduced error was below 0.4% of the error currently accepted for RCs in the site qualification of multicentre clinical trials by the EARL

  1. Increased Utilization of Positron Emission Tomography/Computed Tomography (PET/CT) Imaging and Its Economic Impact for Patients Diagnosed With Bladder Cancer.

    PubMed

    Huo, Jinhai; Chu, Yiyi; Chamie, Karim; Smaldone, Marc C; Boorjian, Stephen A; Baillargeon, Jacques G; Kuo, Yong-Fang; Kerr, Preston; O'Malley, Padraic; Orihuela, Eduardo; Tyler, Douglas S; Freedland, Stephen J; Giordano, Sharon H; Vikram, Raghu; Kamat, Ashish M; Williams, Stephen B

    2017-07-26

    The purpose of this study was to examine temporal nationwide utilization patterns and predictors for use of positron emission tomography/computed tomography (PET/CT) in comparison with magnetic resonance imaging (MRI) and computed tomography (CT) among patients diagnosed with bladder cancer. A total of 36,855 patients aged 66 years or older diagnosed with clinical stage TI-IV, N0M0 bladder cancer from 2004 to 2011 were analyzed. We used multivariable logistic regression analyses to discern factors associated with receipt of imaging within 12 months from diagnosis. The Cochran-Armitage test for trend was used to determine changes in the proportion of patients receiving imaging after cancer diagnosis. Independent of clinical stage, there was marked increase in use of PET/CT throughout the study period (2011 vs. 2004: odds ratio, 17.55; 95% confidence interval, 10.14-30.38; P < .001). Although use of CT imaging remained stable during the study period, there was significantly decreased utilization of MRI (odds ratio, 0.60; 95% confidence interval, 0.49-0.75; P < .001) in 2011 versus 2004. The mean incremental cost of PET/CT versus CT and MRI was $1040 and $612 (in 2016 dollars), respectively. Extrapolating these findings to the patients with bladder cancer in the United States results in excess spending of $11.6 million for PET/CT imaging. We identified rapid adoption of PET/CT imaging independent of clinical stage, resulting in excess national spending of $11.6 million for this imaging modality alone. Further value-based research discerning the clinical versus economic benefits of advanced imaging among patients with bladder cancer are needed. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The positron emission mammography/tomography breast imaging and biopsy system (PEM/PET): design, construction and phantom-based measurements.

    PubMed

    Raylman, Raymond R; Majewski, Stan; Smith, Mark F; Proffitt, James; Hammond, William; Srinivasan, Amarnath; McKisson, John; Popov, Vladimir; Weisenberger, Andrew; Judy, Clifford O; Kross, Brian; Ramasubramanian, Srikanth; Banta, Larry E; Kinahan, Paul E; Champley, Kyle

    2008-02-07

    Tomographic breast imaging techniques can potentially improve detection and diagnosis of cancer in women with radiodense and/or fibrocystic breasts. We have developed a high-resolution positron emission mammography/tomography imaging and biopsy device (called PEM/PET) to detect and guide the biopsy of suspicious breast lesions. PET images are acquired to detect suspicious focal uptake of the radiotracer and guide biopsy of the area. Limited-angle PEM images could then be used to verify the biopsy needle position prior to tissue sampling. The PEM/PET scanner consists of two sets of rotating planar detector heads. Each detector consists of a 4 x 3 array of Hamamatsu H8500 flat panel position sensitive photomultipliers (PSPMTs) coupled to a 96 x 72 array of 2 x 2 x 15 mm(3) LYSO detector elements (pitch = 2.1 mm). Image reconstruction is performed with a three-dimensional, ordered set expectation maximization (OSEM) algorithm parallelized to run on a multi-processor computer system. The reconstructed field of view (FOV) is 15 x 15 x 15 cm(3). Initial phantom-based testing of the device is focusing upon its PET imaging capabilities. Specifically, spatial resolution and detection sensitivity were assessed. The results from these measurements yielded a spatial resolution at the center of the FOV of 2.01 +/- 0.09 mm (radial), 2.04 +/- 0.08 mm (tangential) and 1.84 +/- 0.07 mm (axial). At a radius of 7 cm from the center of the scanner, the results were 2.11 +/- 0.08 mm (radial), 2.16 +/- 0.07 mm (tangential) and 1.87 +/- 0.08 mm (axial). Maximum system detection sensitivity of the scanner is 488.9 kcps microCi(-1) ml(-1) (6.88%). These promising findings indicate that PEM/PET may be an effective system for the detection and diagnosis of breast cancer.

  3. Combined positron emission tomography/computed tomography (PET/CT) for imaging of orbital tumours and tumours extending into the orbit.

    PubMed

    Klingenstein, Annemarie; Mueller-Lisse, Gerd-Ullrich; Haug, Alexander R; Garip-Kuebler, Aylin; Miller, Christina V; Hintschich, Christoph R

    2016-10-01

    To assess clinical and radiological performance of combined positron emission tomography/computed tomography (PET/CT) in patients with secondary and primary intraorbital tumours. 14 adults with secondary and 1 child with primary orbital masses underwent combined whole-body PET/CT. Radiopharmaceutical tracers applied were (18F)-fluorodeoxyglucose, (18F)-fluoroethylcholine (FEC) and (68Ga)-DOTATATE. Histopathology and/or all conventional radiographic work-up and clinical course served as standard of reference. Descriptive statistics and Fisher's exact test were used for analysis. PET/CT detected all orbital masses. All 15 patients had malignant disease. Local osseous infiltration was correctly identified in 11 patients. Lymph node metastases were present in two of eight patients (25%) with haematogenous orbital metastases and in five of six patients (83%) with infiltrative carcinoma (p=0.05). Further distant metastases were present in all eight patients suffering from orbital metastases, but only one patient with infiltrative carcinoma (17%) presented with disseminated disease (p=0.003). In one metastasis, PET/CT excluded vital orbital tumour tissue after radiation therapy. Local recurrence was detected in another patient suffering from prostate cancer. PET/CT is a sensitive tool for the detection and localisation of orbital masses, enabling assessment of both morphology and cell metabolism. Detailed imaging of the head and neck region with a small field-of-view should be performed when suspecting lymphatic metastases. As metastatic disease to the orbit is associated with advanced disease, focus should be laid on whole-body imaging for staging of these patients. Different radiopharmaceutical tracers can be applied to distinguish the origin of orbital metastases. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  4. In vivo quantitative imaging of photoassimilate transport dynamics and allocation in large plants using a commercial positron emission tomography (PET) scanner

    DOE PAGES

    Karve, Abhijit A.; Alexoff, David; Kim, Dohyun; ...

    2015-11-09

    Although important aspects of whole-plant carbon allocation in crop plants (e.g., to grain) occur late in development when the plants are large, techniques to study carbon transport and allocation processes have not been adapted for large plants. Positron emission tomography (PET), developed for dynamic imaging in medicine, has been applied in plant studies to measure the transport and allocation patterns of carbohydrates, nutrients, and phytohormones labeled with positron-emitting radioisotopes. However, the cost of PET and its limitation to smaller plants has restricted its use in plant biology. Here we describe the adaptation and optimization of a commercial clinical PET scannermore » to measure transport dynamics and allocation patterns of 11C-photoassimilates in large crops. Based on measurements of a phantom, we optimized instrument settings, including use of 3-D mode and attenuation correction to maximize the accuracy of measurements. To demonstrate the utility of PET, we measured 11C-photoassimilate transport and allocation in Sorghum bicolor, an important staple crop, at vegetative and reproductive stages (40 and 70 days after planting; DAP). The 11C-photoassimilate transport speed did not change over the two developmental stages. However, within a stem, transport speeds were reduced across nodes, likely due to higher 11C-photoassimilate unloading in the nodes. Photosynthesis in leaves and the amount of 11C that was exported to the rest of the plant decreased as plants matured. In young plants, exported 11C was allocated mostly (88 %) to the roots and stem, but in flowering plants (70 DAP) the majority of the exported 11C (64 %) was allocated to the apex. Our results show that commercial PET scanners can be used reliably to measure whole-plant C-allocation in large plants nondestructively including, importantly, allocation to roots in soil. This capability revealed extreme changes in carbon allocation in sorghum plants, as they advanced to maturity

  5. In vivo quantitative imaging of photoassimilate transport dynamics and allocation in large plants using a commercial positron emission tomography (PET) scanner

    SciTech Connect

    Karve, Abhijit A.; Alexoff, David; Kim, Dohyun; Schueller, Michael J.; Ferrieri, Richard A.; Babst, Benjamin A.

    2015-11-09

    Although important aspects of whole-plant carbon allocation in crop plants (e.g., to grain) occur late in development when the plants are large, techniques to study carbon transport and allocation processes have not been adapted for large plants. Positron emission tomography (PET), developed for dynamic imaging in medicine, has been applied in plant studies to measure the transport and allocation patterns of carbohydrates, nutrients, and phytohormones labeled with positron-emitting radioisotopes. However, the cost of PET and its limitation to smaller plants has restricted its use in plant biology. Here we describe the adaptation and optimization of a commercial clinical PET scanner to measure transport dynamics and allocation patterns of 11C-photoassimilates in large crops. Based on measurements of a phantom, we optimized instrument settings, including use of 3-D mode and attenuation correction to maximize the accuracy of measurements. To demonstrate the utility of PET, we measured 11C-photoassimilate transport and allocation in Sorghum bicolor, an important staple crop, at vegetative and reproductive stages (40 and 70 days after planting; DAP). The 11C-photoassimilate transport speed did not change over the two developmental stages. However, within a stem, transport speeds were reduced across nodes, likely due to higher 11C-photoassimilate unloading in the nodes. Photosynthesis in leaves and the amount of 11C that was exported to the rest of the plant decreased as plants matured. In young plants, exported 11C was allocated mostly (88 %) to the roots and stem, but in flowering plants (70 DAP) the majority of the exported 11C (64 %) was allocated to the apex. Our results show that commercial PET scanners can be used reliably to measure whole-plant C-allocation in large plants nondestructively including, importantly, allocation to roots in soil. This capability revealed extreme changes in

  6. 18F-FLT Positron Emission Tomography (PET) is a Pharmacodynamic Marker for EWS-FLI1 Activity and Ewing Sarcoma

    PubMed Central

    Osgood, Christy L.; Tantawy, Mohammed N.; Maloney, Nichole; Madaj, Zachary B.; Peck, Anderson; Boguslawski, Elissa; Jess, Jennifer; Buck, Jason; Winn, Mary E.; Manning, H. Charles; Grohar, Patrick J.

    2016-01-01

    Ewing sarcoma is a bone and soft-tissue tumor that depends on the activity of the EWS-FLI1 transcription factor for cell survival. Although a number of compounds have been shown to inhibit EWS-FLI1 in vitro, a clinical EWS-FLI1-directed therapy has not been achieved. One problem plaguing drug development efforts is the lack of a suitable, non-invasive, pharmacodynamic marker of EWS-FLI1 activity. Here we show that 18F-FLT PET (18F- 3′-deoxy-3′-fluorothymidine positron emission tomography) reflects EWS-FLI1 activity in Ewing sarcoma cells both in vitro and in vivo. 18F-FLT is transported into the cell by ENT1 and ENT2, where it is phosphorylated by TK1 and trapped intracellularly. In this report, we show that silencing of EWS-FLI1 with either siRNA or small-molecule EWS-FLI1 inhibitors suppressed the expression of ENT1, ENT2, and TK1 and thus decreased 18F-FLT PET activity. This effect was not through a generalized loss in viability or metabolic suppression, as there was no suppression of 18F-FDG PET activity and no suppression with chemotherapy. These results provide the basis for the clinical translation of 18F-FLT as a companion biomarker of EWS-FLI1 activity and a novel diagnostic imaging approach for Ewing sarcoma. PMID:27671553

  7. The potential of positron emission tomography/computerized tomography (PET/CT) scanning as a detector of high-risk patients with oral infection during preoperative staging.

    PubMed

    Yamashiro, Keisuke; Nakano, Makoto; Sawaki, Koichi; Okazaki, Fumihiko; Hirata, Yasuhisa; Takashiba, Shogo

    2016-08-01

    It is sometimes difficult to determine during the preoperative period whether patients have oral infections; these patients need treatment to prevent oral infection-related complications from arising during medical therapies, such as cancer therapy and surgery. One of the reasons for this difficulty is that basic medical tests do not identify oral infections, including periodontitis and periapical periodontitis. In this report, we investigated the potential of positron emission tomography/computerized tomography (PET/CT) as a diagnostic tool in these patients. We evaluated eight patients during the preoperative period. All patients underwent PET/CT scanning and were identified as having the signs of oral infection, as evidenced by (18)F-fludeoxyglucose (FDG) localization in the oral regions. Periodontal examination and orthopantomogram evaluation showed severe infection or bone resorption in the oral regions. (18)F-FDG was localized in oral lesions, such as severe periodontitis, apical periodontitis, and pericoronitis of the third molar. The densities of (18)F-FDG were proportional to the degree of inflammation. PET/CT is a potential diagnostic tool for oral infections. It may be particularly useful in patients during preoperative staging, as they frequently undergo scanning at this time, and those identified as having oral infections at this time require treatment before cancer therapy or surgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. 77 FR 71802 - Guidance on Investigational New Drug Applications for Positron Emission Tomography Drugs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-04

    ... ``Investigational New Drug Applications for Positron Emission Tomography (PET) Drugs.'' The guidance is intended to assist manufacturers of PET drugs in submitting investigational new drug applications (INDs). DATES... guidance entitled ``Investigational New Drug Applications for Positron Emission Tomography (PET) Drugs...

  9. Organizing Hematoma of the Maxillary Sinus Mimicking Malignancy Diagnosed by Fluorodeoxyglucose Positron-Emission Tomography (FDG PET/CT): A Case Report

    PubMed Central

    Park, Yong Kyun; Kim, Kyung Soo

    2015-01-01

    Organizing hematoma of the paranasal sinuses is a diagnostic dilemma clinically and radiographically, mimicking benign or malignant neoplastic processes. Although the diagnostic rate of this disease has increased as characteristic imaging findings are somewhat elucidated, endoscopic examination, preoperative biopsy, and computed tomography (CT) imaging do not give helpful information in differentiating these lesions from malignant neoplastic processes. A 55-year-old man presented with a 4-month history of recurrent nasal bleeding. He also complained of a left-sided nasal obstruction. CT findings were highly suggestive of a malignant tumor of the maxillary sinus. However, based on fluorodeoxyglucose F18 positron-emission tomography (PET/CT) and magnetic resonance imaging (MRI), the provisional diagnosis of benign tumor rather than malignancy was made. Complete resection of the mass was achieved by simple transnasal endoscopic surgery using the Caldwell-Luc approach. Organizing hematoma of the maxillary sinus was diagnosed by histopathologic evaluation. The clinical, radiological, and histopathologic findings of the patient are presented. In this report, we have presented 18FDG-PET findings of organized hematoma of the maxillary sinus (OHMS) that showed an increased FDG uptake in the peripheral rim of the mass with central photopenia. To our knowledge, this is the first case report in the literature reporting FDG-PET/CT findings of OHMS. Careful interpretation of metabolic (FDG-PET/CT) and anatomic (CT and MRI) images should be performed to accurately characterize the expansile lesion of the maxillary sinus in order to increase specificity and reduce equivocal findings significantly. PMID:26587203

  10. Performance of a block detector PET scanner in imaging non-pure positron emitters—modelling and experimental validation with 124I

    NASA Astrophysics Data System (ADS)

    Robinson, S.; Julyan, P. J.; Hastings, D. L.; Zweit, J.

    2004-12-01

    The key performance measures of resolution, count rate, sensitivity and scatter fraction are predicted for a dedicated BGO block detector patient PET scanner (GE Advance) in 2D mode for imaging with the non-pure positron-emitting radionuclides 124I, 55Co, 61Cu, 62Cu, 64Cu and 76Br. Model calculations including parameters of the scanner, decay characteristics of the radionuclides and measured parameters in imaging the pure positron-emitter 18F are used to predict performance according to the National Electrical Manufacturers Association (NEMA) NU 2-1994 criteria. Predictions are tested with measurements made using 124I and show that, in comparison with 18F, resolution degrades by 1.2 mm radially and tangentially throughout the field-of-view (prediction: 1.2 mm), count-rate performance reduces considerably and in close accordance with calculations, sensitivity decreases to 23.4% of that with 18F (prediction: 22.9%) and measured scatter fraction increases from 10.0% to 14.5% (prediction: 14.7%). Model predictions are expected to be equally accurate for other radionuclides and may be extended to similar scanners. Although performance is worse with 124I than 18F, imaging is not precluded in 2D mode. The viability of 124I imaging and performance in a clinical context compared with 18F is illustrated with images of a patient with recurrent thyroid cancer acquired using both [124I]-sodium iodide and [18F]-2-fluoro-2-deoxyglucose.

  11. PET imaging of prostate tumors with 18F-Al-NOTA-MATBBN.

    PubMed

    Pan, Donghui; Yan, Yongjun; Yang, Ronghua; Xu, Yu Ping; Chen, Fei; Wang, Lizhen; Luo, Shineng; Yang, Min

    2014-01-01

    Overexpression of the gastrin-releasing peptide receptor (GRPR) in prostate cancer provides a promising target for detection the disease. MATBBN is a new bombesin analog originating from the GRPR antagonists with a hydrophilic linker. In this study NOTA-conjugated MATBBN was labeled by the Al(18)F method and the potential of (18)F-Al-NOTA-MATBBN for prostate tumor PET imaging was also evaluated. NOTA-MATBBN was radiolabeled with (18) F using Al(18)F complexes. Partition coefficient, in vitro stability and GRPR binding affinity were also determined. PET studies were performed with (18)F-Al-NOTA-MATBBN in PC-3 tumor-bearing mice. (18)F-Al-NOTA-MATBBN can be produced within 30 min with a decay-corrected yield of 62.5 ± 2.1% and a radiochemical purity of >98%. The logP octanol-water value for the Al(18)F-labeled BBN analog was -2.40 ± 0.07 and the radiotracer was stable in phosphate-buffered saline and human serum for 2 h. The IC50 values of displacement for the (18)F-Al-NOTA-MATBBN with MATBBN was 126.9 ± 2.75 nm. The PC-3 tumors were clearly visible with high contrast after injection of the labeled peptide. At 60 min post-injection, the tumor uptakes for (18)F-Al-NOTA-MATBBN and (18)F-FDG were 4.59 ± 0.43 and 1.98 ± 0.35% injected dose/g, and tumor to muscle uptake radios for two tracers were 6.77 ± 1.10 and 1.78 ± 0.32, respectively. Dynamic PET revealed that (18) F-Al-NOTA-MATBBN was excreted mainly through the kidneys. GRPR-binding specificity was also demonstrated by reduced tumor uptake of (18)F-Al-NOTA-MATBBN after coinjection with excess unlabeled MATBBN peptide at 1 h post-injection. NOTA- MATBBN could be labeled rapidly with (18)F using one step method. (18)F-Al-NOTA-MATBBN may be a promising PET imaging agent for prostate cancer. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Estimation of usefulness of positron emission tomography (PET) in the diagnosis of post-traumatic stress disorders--preliminary report.

    PubMed

    Wojtłowska-Wiechetek, D; Tworus, R; Dziuk, M; Petrovic, A; Szymańska, S; Zbyszewski, M; Ilnicki, S; Krzesiński, P

    2013-01-01

    The aim of this study was to evaluate the possibility of using PET both in assessing the susceptibility to stress and in the diagnosis of post-traumatic stress disorders. Mentally and somatically healthy soldiers were subjected to PET-CT head scan examinations before and after virtual reality stimulation with warfare scenarios. Despite stimulation of peripheral nervous system after 10 minutes, VR exposure in any of the examined soldiers simulation did not cause changes in any brain structure that was visualized in PET. PET-CT head scan was also performed in patients with typical symptoms of acute PTSD according to the criteria of DSM IV TR. In those patients no changes in any brain structure was found. Initially it was found that VR exposure techniques like clinically typical acute symptoms of PTSD do not leave changes in CNS, which could be visualized in PET. The preliminary hypothesis was put forward that exposure to stimuli like symptoms of PTSD must remain long enough to induce permanent damage of brain structure.

  13. Positron emission tomography (PET) analysis of the effects of auditory stimulation on the distribution of /sup 11/C-N-methylchlorphentermine in the brain

    SciTech Connect

    Paschal, C.B.

    1986-06-01

    This experimental work was launched to study how auditory stimulation effects blood flow in the brain. The technique used was Positron Emission Tomography (PET) with /sup 11/C-N-methylchlorphentermine (/sup 11/C-NMCP) as the tracer. /sup 11/C-NMCP acts as a molecular microsphere and thus measures blood flow. The objectives of this work were: to develop, test, and refine an experimental procedure, to design and construct a universally applicable positioning device, and to develop and test a synthesis for a radiopure solution of /sup 11/C-NMCP; all were accomplished. PET was used to observe the brain distribution of /sup 11/C-NMCP during binaural and monaural stimulation states. The data was analyzed by finding the signal intensity in regions of the image that represented the left and right interior colliculi (IC's), brain structures dedicated to the processing of auditory signals. The binaural tests indicated a statistically significant tendency for slightly higher concentration of the tracer in the left IC than in the right IC. The monaural tests combined with those of the binaural state were not solidly conclusive, however, three of the four cases showed a decrease in tracer uptake in the IC opposite the zero-stimulus ear, as expected. There is some indication that the anesthesia used in the majority of this work may have interferred with blood flow response to auditory stimulation. 39 refs., 17 figs., 3 tabs.

  14. Positron Annihilation Studies of Defects in Ti-6Al-4 V Subjected to Heat Treatments and Rolling

    NASA Astrophysics Data System (ADS)

    Sultana, Nashrin; Nambissan, P. M. G.; Datta, S.; Banerjee, M. K.

    Positron lifetime and coincidence Doppler broadening (CDBS) measurements were made on samples of Ti-6Al-4 V alloy subjected to different mechanical and thermal treatments. The results indicated the presence of point defects in moderate concentrations. The as-received sample was initially heat treated at 1343K for 30 minutes and slow-cooled to extract reference values. Even when subjected to heat treatment at 1343K and fast-quenched, the inherent defect structures did not show substantial reconfiguration in size or concentration. Yet in a separate case of heat treatment at the same temperature and duration followed by hot-rolling to 50% deformation, the deformation-induced defects were found retained in it on quenching. Soaking at the elevated temperature did not produce any significant difference. In another sample, when cold-rolling was performed after heat-treatment and fast-quenching, we found the retention followed by room-temperature migration and coalescence of the generated defects with the existing ones. The measured positron lifetimes suggested the existence of defects of smaller sizes and/or dislocations. In another sample of the alloy with identical treatments at 1248K (below the α to β transition), the positron lifetimes were slightly larger in magnitude.

  15. In vivo evaluation of medical device-associated inflammation using a macrophage-specific Positron Emission Tomography (PET) imaging probe

    PubMed Central

    Zhou, Jun; Hao, Guiyang; Weng, Hong; Tsai, Yi-Ting; Baker, David W.; Sun, Xiankai; Tang, Liping

    2013-01-01

    To image implant-surrounding activated macrophages, a macrophage-specific PET probe was prepared by conjugating folic acid (FA) and 2,2′,2″,2‴-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl) tetracetic acid (DOTA) to polyethylene glycol (PEG) and then labeling the conjugate with Ga-68. In vivo PET imaging evaluations demonstrate that the probe is able to detect foreign body reactions, and more importantly, quantify the degree of inflammatory responses to an implanted medical device. These results were further validated by histological analysis. PMID:23481649

  16. Synthesis and Biological Evaluation of Two Agents for Imaging Estrogen Receptor β by Positron Emission Tomography: Challenges in PET Imaging of a Low Abundance Target

    PubMed Central

    HakLee, Jae; Peters, Olaf; Lehmann, Lutz; Dence, Carmen S.; Sharp, Terry L.; Carlson, Kathryn E.; Zhou, Dong; Jeyakumar, M.; Welch, Michael J.; Katzenellenbogen, John A.

    2012-01-01

    Introduction Independent measurement of the levels of both the estrogen receptors, ERα and ERβ, in breast cancer could improve prediction of benefit from endocrine therapies. While ERα levels can be measured by positron emission tomography (PET) using 16α-[18F]fluoroestradiol (FES), no effective agent for imaging ERβ by PET has yet been reported. Methods We have prepared the fluorine-18 labeled form of 8β-(2-fluoroethyl)estradiol(8BFEE2), an analog of an ERβ-selective steroidal estrogen, 8β-vinylestradiol; efficient incorporation of fluorine-18 was achieved, but required very vigorous conditions. We have examined the biodistribution of this compound, as well as ofBr-041, an analog of a known non-steroidal ERβ-selective ligand (ERB-041), labeled with bromine-76. Studies were done in immature female rodents, with various pharmacological and endocrine perturbations to assess ERβ selectivity of uptake. Results Little evidence of ERβ-mediated uptake was observedwith either [18F]8BFEE2 or [76Br]Br-041. Attempts to increase the ERβ content of target tissues were not effective and failed to improve biodistribution selectivity. Conclusions Because on an absolute level, ERβ levels are low in all target tissues, these studies have highlighted the need to develop improved in vivo models for evaluating ERβ-selective radiopharmaceuticals for use in PET imaging. Genetically engineered breast cancer cells that are being developed to express either ERα or ERβ in a regulated manner, grown as xenografts in immune-compromised mice, could prove useful for future studies to develop ER subtype-selective radiopharmaceuticals. PMID:22749433

  17. Evaluation of 18-F-fluoro-2-deoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) as a staging and monitoring tool for dogs with stage-2 splenic hemangiosarcoma – A pilot study

    PubMed Central

    Winter, Amber L.; Stuebner, Kathleen; Scott, Ruth; Ober, Christopher P.; Anderson, Kari L.; Feeney, Daniel A.; Vallera, Daniel A.; Koopmeiners, Joseph S.; Modiano, Jaime F.; Froelich, Jerry

    2017-01-01

    Positron Emission Tomography-Computed Tomography (PET-CT) is routinely used for staging and monitoring of human cancer patients and is becoming increasingly available in veterinary medicine. In this study, 18-fluorodeoxyglucose (18FDG)-PET-CT was used in dogs with naturally occurring splenic hemangiosarcoma (HSA) to assess its utility as a staging and monitoring modality as compared to standard radiography and ultrasonography. Nine dogs with stage-2 HSA underwent 18FDG-PET-CT following splenectomy and prior to commencement of chemotherapy. Routine staging (thoracic radiography and abdominal ultrasonography) was performed prior to 18FDG-PET-CT in all dogs. When abnormalities not identified on routine tests were noted on 18FDG-PET-CT, owners were given the option to repeat a PET-CT following treatment with eBAT. A PET-CT scan was repeated on Day 21 in three dogs. Abnormalities not observed on conventional staging tools, and most consistent with malignant disease based on location, appearance, and outcome, were detected in two dogs and included a right atrial mass and a hepatic nodule, respectively. These lesions were larger and had higher metabolic activity on the second scans. 18FDG-PET-CT has potential to provide important prognostic information and influence treatment recommendations for dogs with stage-2 HSA. Additional studies will be needed to precisely define the value of this imaging tool for staging and therapy monitoring in dogs with this and other cancers. PMID:28222142

  18. Impact of 18-fluorodeoxyglucose positron emission tomography on computed tomography defined target volumes in radiation treatment planning of esophageal cancer: reduction in geographic misses with equal inter-observer variability: PET/CT improves esophageal target definition.

    PubMed

    Schreurs, L M A; Busz, D M; Paardekooper, G M R M; Beukema, J C; Jager, P L; Van der Jagt, E J; van Dam, G M; Groen, H; Plukker, J Th M; Langendijk, J A

    2010-08-01

    Target volume definition in modern radiotherapy is based on planning computed tomography (CT). So far, 18-fluorodeoxyglucose positron emission tomography (FDG-PET) has not been included in planning modality in volume definition of esophageal cancer. This study evaluates fusion of FDG-PET and CT in patients with esophageal cancer in terms of geographic misses and inter-observer variability in volume definition. In 28 esophageal cancer patients, gross, clinical and planning tumor volumes (GTV; CTV; PTV) were defined on planning CT by three radiation oncologists. After software-based emission tomography and computed tomography (PET/CT) fusion, tumor delineations were redefined by the same radiation-oncologists. Concordance indexes (CCI's) for CT and PET/CT based GTV, CTV and PTV were calculated for each pair of observers. Incorporation of PET/CT modified tumor delineation in 17/28 subjects (61%) in cranial and/or caudal direction. Mean concordance indexes for CT-based CTV and PTV were 72 (55-86)% and 77 (61-88)%, respectively, vs. 72 (47-99)% and 76 (54-87)% for PET/CT-based CTV and PTV. Paired analyses showed no significant difference in CCI between CT and PET/CT. Combining FDG-PET and CT may improve target volume definition with less geographic misses, but without significant effects on inter-observer variability in esophageal cancer.

  19. The Role of Chemistry in Positron Emission Tomography.

    ERIC Educational Resources Information Center

    Feliu, Anthony L.

    1988-01-01

    Investigates use of positron emission tomography (PET) to study in-vivo metabolic processes. Discusses methodology of PET and medical uses. Outlines the production of different radioisotopes used in PET radiotracers. Includes selected bibliography. (ML)

  20. The Role of Chemistry in Positron Emission Tomography.

    ERIC Educational Resources Information Center

    Feliu, Anthony L.

    1988-01-01

    Investigates use of positron emission tomography (PET) to study in-vivo metabolic processes. Discusses methodology of PET and medical uses. Outlines the production of different radioisotopes used in PET radiotracers. Includes selected bibliography. (ML)

  1. Intractable gelastic seizures during infancy: ictal positron emission tomography (PET) demonstrating epileptiform activity within the hypothalamic hamartoma.

    PubMed

    Shahar, Eli; Goldsher, Dorit; Genizi, Jacob; Ravid, Sarit; Keidar, Zohar

    2008-02-01

    Gelastic seizures comprise a very rare form of epilepsy. They present with recurrent bursts of laughter voices without mirth and are most commonly associated with the evolution of a hypothalamic hamartoma. The purpose of this article is to describe the second reported ictal fluorodeoxyglucose-positron emission tomography study in a unique case of an infant with intractable gelastic seizures since the neonatal period associated with a hypothalamic hamartoma. The patient presented at 4 months old with recurrent, almost persistent, gelastic seizures consisting of laughter bouts without mirth. The seizures were noticeable at the first week of life and increased in frequency to last up to 12 hours, namely status gelasticus. These gelastic fits were accompanied with focal motor seizures, including unilateral right-eye blinking and mouth twitching. Developmental mile-stones were intact for age. Magnetic resonance imaging of the cortex demonstrated a large hypothalamic hamartoma within the third ventricle, hampering cerebrovascular fluid drainage of the lateral ventricles. An electroencephalography was nondiagnostic. Ictal fluorodeoxyglucose-positron emission tomography demonstrated a large circumscribed hypermetabolic region within the location of the hypothalamic hamartoma, representing localized intense epileptiform activity. The infant became instantly free of all seizure types given minute doses of oral benzodiazepine (clonazepam) and remains completely controlled after 12 months. Her overall development remains intact. This ictal fluorodeoxyglucose-positron emission tomography is the second reported study verifying that the main source of the epileptic activity inducing gelastic seizures originates from the hypothalamic hamartoma itself; therefore, a complementary fluorodeoxyglucose-positron emission tomography study should be considered in any patient presenting with intractable gelastic seizures, especially in those associated with hypothalamic hamartoma, in order

  2. Imaging Keratitis-Icthyosis-Deafness (KID) syndrome with FDG-PET (F18-fluorodeoxiglucose-Positron Emission Tomography).

    PubMed

    Aparici, Carina Mari; Arcienega, Daniela; Cho, Eric; Hawkins, Randy

    2010-01-01

    Keratitis-Icthyosis-Deafness (KID) syndrome is a rare dysplasia characterized by vascularizing keratitis, congenital sensorineural hearing-loss, and progressive erythrokeratoderma. To our knowledge, this is the first KID syndrome imaged with FDG-PET in the literature. This paper is intended to help familiarize with the FDG abnormalities related to this rare entity.

  3. The serotonin-dopamine interaction measured with positron emission tomography (PET) and C-11 raclopride in normal human subjects

    SciTech Connect

    Smith, G.S.; Dewey, S.L.; Logan, J.

    1994-05-01

    Our previous studies have shown that the interaction between serotonin and dopamine can be measured with C-11 raclopride and PET in the baboon brain. A series of studies was undertaken to extend dim findings to the normal human brain. PET studies were conducted in male control subjects (n=8) using the CTI 931 tomograph. Two C-11 raclopride scans were performed, prior to and 180 minutes following administration of the selective serotonin releasing agent, fenfluramine (60mg/PO). The neuroendocrine response to fenfluramine challenge is commonly used in psychiatric research as an index of serotonin activity. The C-11 raclopride data were analyzed with the distribution volume method. For the group of subjects, an increase was observed in the striatum to cerebellum ratio (specific to non-specific binding ratio), in excess of the test-retest variability of the ligand. Variability in response was observed across subjects. These results are consistent with our previous findings in the baboon that citalopram administration increased C-11 raclopride binding, consistent with a decrease in endogenous dopamine. In vivo microdialysis studies in freely moving rats confirmed that citalopram produces a time-dependent decrease in extracellular dopamine levels, consistent with the PET results. In vivo PET studies of the serotonin-dopamine interaction are relevant to the evaluation of etiologic and therapeutic mechanisms in schizophrenia and affective disorder.

  4. Early and late stage positron emission tomography (PET) studies on the haemocirculation and metabolism of seemingly normal brain tissue in patients with gliomas following radiochemotherapy.

    PubMed

    Mineura, K; Suda, Y; Yasuda, T; Kowada, M; Ogawa, T; Shishido, F; Uemura, K

    1988-01-01

    Haemocirculatory and metabolic changes in seemingly normal brain tissue following radiochemotherapy including nimustine hydrochloride (ACNU) and tegafur (FT) were analyzed using oxygen-15 and fluorine-18 positron emission tomography (PET) in seven patients with gliomas. At an early stage (within one month) after radiochemotherapy, marginal increases in regional cerebral blood flow (rCBF) and cerebral blood volume (rCBV) were found contralateral to the tumour in gray matter which was apparently normal brain structure, as seen on computerized tomography (CT). The oxygen extraction fraction (rOEF) decreased significantly (p less than 0.05 by a paired-t test) from that of the pretreatment study, due to surgical decompression and radiochemotherapy. At the late stage (three to thirty-one months with a mean of thirteen months), rCBF decreased significantly from the early stage study (p less than 0.05); oxygen consumption (rCMRO2) fell in all cases significantly from the pretreatment study (p less than 0.01) and from the early stage study (p less than 0.05); consequently, rOEF remained unchanged at a level similar to the early stage study. Glucose consumption (rCMRG1) increased slightly as compared with the early stage study but failed to be restored to the level of the pretreatment study. Noteworthy was a coupling reduction of rCBF and rCMRO2--presumably, a late delayed effect of radiochemotherapy. These preliminary results indicate that with PET studies it may be possible to predict damage to normal brain tissue after radiochemotherapy.

  5. Imaging opiate receptors by positron tomography (PET): Evaluation by displacement of 3-Acetyl-6-Deoxy-6-Beta-/sup 18/F-flouronaltrexone with active and inactive naloxone

    SciTech Connect

    Larson, S.M.; Channing, M.A.; Rice, K.R.; Pert, C.B.; Eckelman, W.C.; Burke, T.R.; Bennett, J.M.; Carson, R.E.; Di Chiro, G.

    1985-05-01

    We recently reported the development of a new radiopharmaceutical for in vivo PET imaging of opiate receptors, 3-acetyl-6-deoxy-6-Beta-/sup 18/F-fluoronaltrexone: 3-acetylcyclofoxy, or /sup 18/F-ACF. These studies involved displacement of /sup 18/F-ACF from sites of uptake in the baboon sub-cortical gray matter, and provided strong proof of the opiate receptor specificity of the tracer. We now report on the anatomic localization of /sup 18/F-ACF in the sub-cortical grapy matter of baboon, and the kinetics of uptake and displacement of the tracer. /sup 18/F-ACF was prepared from the known 3-acetyl-6-alpha-naltrexol via the triflate, using /sup 18/F produced by neutron bombardment of /sup 6/Li/sub 2/CO/sub 3/. Anesthetized baboons were imaged after injection of /sup 18/F-ACF (sp.ac.=20Ci/mmol), using the NIH NEUROPET, a high resolution PET scanner. After bolus injection, the initial distribution to brain was rapid with peak uptake at 6 minutes post-injection. Clearance from opiate receptor rich regions of thalamus and basal ganglia was gradual, but after injection of active (but not after inactive), naloxone, clearance from these regions more than doubled. In non-opiate rich regions, (e.g. cerebellum), the predominant component of clearance was equally rapid with or without the active naloxone. Displacement studies of positron labelled ligands provide a powerful tool for non-invasive study of opiate receptor in living primates.

  6. Somatostatin receptor positron emission tomography/computed tomography (PET/CT) in the evaluation of opsoclonus-myoclonus ataxia syndrome

    PubMed Central

    Joshi, Prathamesh; Lele, Vikram

    2013-01-01

    Opsoclonus-myoclonus ataxia (OMA) syndrome is the most common paraneoplastic neurological syndrome of childhood, associated with occult neuroblastoma in 20%-50% of all cases. OMA is the initial presentation of neuroblastoma in 1%-3% of children. Conventional radiological imaging approaches include chest radiography and abdominal computed tomography (CT). Nuclear medicine techniques, in form of 123I/131I-metaiodobenzylguanidine (MIBG) scintigraphy have been incorporated in various diagnostic algorithms for evaluation of OMA. We describe use of somatostatin receptor PET/CT with 68Gallium- DOTA-DPhe1, Tyr3-octreotate (DOTATATE) in diagnosis of neuroblastoma in two cases of OMA. PMID:24163518

  7. An updated synthesis of [(11) C]carfentanil for positron emission tomography (PET) imaging of the μ-opioid receptor.

    PubMed

    Blecha, Joseph E; Henderson, Bradford D; Hockley, Brian G; VanBrocklin, Henry F; Zubieta, Jon-Kar; DaSilva, Alexandre F; Kilbourn, Michael R; Koeppe, Robert A; Scott, Peter J H; Shao, Xia

    2017-06-30

    [(11) C]Carfentanil ([(11) C]CFN) is a selective radiotracer for in vivo positron emission tomography imaging studies of the μ-opioid system that, in our laboratories, is synthesized by methylation of the corresponding carboxylate precursor with [(11) C]MeOTf, and purified using a C2 solid-phase extraction cartridge. Changes in the commercial availability of common C2 cartridges have necessitated future proofing the synthesis of [(11) C]CFN to maintain reliable delivery of the radiotracer for clinical imaging studies. An updated synthesis of [(11) C]CFN is reported that replaces a now obsolete purification cartridge with a new commercially available version and also substitutes the organic solvents used in traditional production methods with ethanol. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Pain activation of human supraspinal opioid pathways as demonstrated by [11C]-carfentanil and positron emission tomography (PET).

    PubMed

    Bencherif, B; Fuchs, P N; Sheth, R; Dannals, R F; Campbell, J N; Frost, J J

    2002-10-01

    The role of the supraspinal endogenous opioid system in pain processing has been investigated in this study using positron emission tomography imaging of [11C]-carfentanil, a synthetic, highly specific mu opioid receptor (mu-OR) agonist. Eight healthy volunteers were studied during a baseline imaging session and during a session in which subjects experienced pain induced by applying capsaicin topically to the dorsal aspect of the left hand. A pain-related decrease in brain mu-OR binding was observed in the contralateral thalamus consistent with competitive binding between [11C]-carfentanil and acutely released endogenous opioid peptides. This decrease varied directly with ratings of pain intensity. These results suggest that the supraspinal mu-opioid system is activated by acute pain and thus may play a substantial role in pain processing and modulation in pain syndromes.

  9. Evaluation of novel genetic algorithm generated schemes for positron emission tomography (PET)/magnetic resonance imaging (MRI) image fusion.

    PubMed

    Baum, K G; Schmidt, E; Rafferty, K; Krol, A; Helguera, María

    2011-12-01

    The use and benefits of a multimodality approach in the context of breast cancer imaging are discussed. Fusion techniques that allow multiple images to be viewed simultaneously are discussed. Many of these fusion techniques rely on the use of color tables. A genetic algorithm that generates color tables that have desired properties such as satisfying the order principle, the rows, and columns principle, have perceivable uniformity and have maximum contrast is introduced. The generated 2D color tables can be used for displaying fused datasets. The advantage the proposed method has over other techniques is the ability to consider a much larger set of possible color tables, ensuring that the best one is found. We asked radiologists to perform a set of tasks reading fused PET/MRI breast images obtained using eight different fusion techniques. This preliminary study clearly demonstrates the need and benefit of a joint display by estimating the inaccuracies incurred when using a side-by-side display. The study suggests that the color tables generated by the genetic algorithm are good choices for fusing MR and PET images. It is interesting to note that popular techniques such as the Fire/Gray and techniques based on the HSV color space, which are prevalent in the literature and clinical practice, appear to give poorer performance.

  10. Cyclotrons and positron emitting radiopharmaceuticals

    SciTech Connect

    Wolf, A.P.; Fowler, J.S.

    1984-01-01

    The state of the art of Positron Emission Tomography (PET) technology as related to cyclotron use and radiopharmaceutical production is reviewed. The paper discusses available small cyclotrons, the positron emitters which can be produced and the yields possible, target design, and radiopharmaceutical development and application. 97 refs., 12 tabs. (ACR)

  11. Clinical impact of 2-deoxy-2-[18F]fluoro-D-glucose (FDG)-positron emission tomography (PET) on treatment choice in recurrent cancer of the cervix uteri.

    PubMed

    Bjurberg, Maria; Brun, Eva

    2013-11-01

    The superiority of positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-D-glucose (FDG) over computed tomography and magnetic resonance imaging in detecting recurrent cervical cancer and determining the extent of the disease has been demonstrated in several clinical trials. However, there is a lack of data concerning the clinical impact of the extra findings. We report here a prospective clinical study aimed at investigating the clinical impact of FDG-PET findings on the treatment plans in recurrent cervical cancer. Thirty-six patients with suspected recurrent cervical cancer underwent FDG-PET. Relapses were confirmed in 26 cases, and one case of primary lung cancer was found. The clinical impact of the FDG-PET results was assessed using a systematic scoring system with a 4-grade scale. Median follow-up time after FDG-PET was 33.1 months (range, 5-83 months) for all patients and 22.4 months (range, 5-83 months) for patients with positive PET results. More sites of metastases were detected with FDG-PET in 56% of the patients compared to the findings by conventional imaging. The results of FDG-PET led to a change in treatment modality for 33% of the patients; and for 22%, a change in dose or deliverance of treatment was recorded. Treatment intention was changed in 30%, in all but one patient, from curative to palliative. In 48% of the patients, the initially planned treatment was reduced regarding dose or extent, or was withheld. In recurrent cervical cancer, FDG-PET provides clinically valuable information with a high impact on treatment decisions.

  12. Positron Emission Tomography (PET) Experience with 2-[18F]Fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-[18F]FA) in the Living Human Brain of Smokers with Paranoid Schizophrenia

    PubMed Central

    BRAŠIĆ, JAMES ROBERT; CASCELLA, NICOLA; KUMAR, ANIL; ZHOU, YUN; HILTON, JOHN; RAYMONT, VANESSA; CRABB, ANDREW; GUEVARA, MARIA RITA; HORTI, ANDREW G.; WONG, DEAN FOSTER

    2012-01-01

    Utilizing postmortem data (Breese, et al., 2000), we hypothesized that the densities of high-affinity neuronal α4β2 nicotinic acetylcholine receptors (nAChRs) in the brain exist in a continuum from highest to lowest as follows: smokers without schizophrenia > smokers with schizophrenia > nonsmokers without schizophrenia > nonsmokers with schizophrenia. Application of the Kruskal-Wallis Test (Stata, 2003) to the postmortem data (Breese, et al., 2000) confirmed the hypothesized order in the cortex and the hippocampus and attained significance in the caudate and the thalamus. Positron emission tomography (PET) was performed for 60 minutes at 6 hours after the intravenous administration of 444 megabequerels [MBq] (12 mCi) 2-[18F]fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-[18F]FA), a radiotracer for high-affinity neuronal α4β2 nAChRs, as a bolus plus continuous infusion to 10 adults (7 men and 3 women) (6 smokers including 5 with paranoid schizophrenia and 4 nonsmokers) ranging in age from 22 to 56 years (mean 40.1, standard deviation 13.6). The thalamic nondisplaceable binding potential (BPND) was 1.32 ± 0.19 (mean ± standard deviation) for healthy control nonsmokers; 0.50 ± 0.19 for smokers with paranoid schizophrenia; and 0.51 for the single smoker without paranoid schizophrenia. The thalamic BPNDs of nonsmokers were significantly higher than those of smokers who smoked cigarettes a few hours before the scans (P = 0.0105) (StataCorp, 2003), which was likely due to occupancy of nAChRs by inhaled nicotine in smokers. Further research is needed to rule out the effects of confounding variables. PMID:22169936

  13. A comparison of the doppler-broadened positron annihilation spectra of neutron irradiated Al 2O 3 and MgAl 2O 3

    NASA Astrophysics Data System (ADS)

    Jones, P. L.; Schaffer, J. P.; Cocks, F. H.; Clinard, F. W.; Hurley, G. F.

    1985-01-01

    Radiation damage studies of oxides and ceramics have become of increasing importance due to the projected use of these materials in thermonuclear fusion reactors as electronic insulators and first wall materials. In addition these materials are important in RAD waste disposal. As part of a study of the defect structure in radiation damaged ceramics Doppler-broadened positron annihilation spectra have been obtained for a series of single crystal sapphire (α-Al 2O 3) and polycrystal (1:1) and (1:2) magnesium aluminate spinel (MgO·Al 2O 3 and MgO-2Al 2O 3) samples. These samples were irradiated in EBR-II to a fluence of 3 × 10 25 n/m 2 (E > 0.1 MeV) at 740°C, and 2 × 10 26 n/m 2 (E > 0.1 MeV) at ~ 550°C respectively. Positron annihilation spectra lineshapes for the irradiated, annealed, and as-received samples of both materials were compared using S parameter analysis. These calculations were made on deconvoluted gamma ray spectra that were free of any instrumental broadening effects. In this way, absolute S parameter changes could be calculated. The observed changes in the S parameter are consistent with independent volume swelling measurements for both the α-A1 2O 3 and the (1:2) MgAl 2O 4 samples. However, the change in S parameter measured for the (1:1) spinel is contrary to the measured volume change. This apparent anomaly indicates a predominence of interstitial as opposed to vacancy type defects in this material.

  14. {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography-Based Radiotherapy Target Volume Definition in Non-Small-Cell Lung Cancer: Delineation by Radiation Oncologists vs. Joint Outlining With a PET Radiologist?

    SciTech Connect

    Hanna, Gerard G.; Carson, Kathryn J.; Lynch, Tom; McAleese, Jonathan; Cosgrove, Vivian P.; Eakin, Ruth L.; Stewart, David P.; Zatari, Ashraf; O'Sullivan, Joe M.; Hounsell, Alan R.

    2010-11-15

    Purpose: {sup 18}F-Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) has benefits in target volume (TV) definition in radiotherapy treatment planning (RTP) for non-small-cell lung cancer (NSCLC); however, an optimal protocol for TV delineation has not been determined. We investigate volumetric and positional variation in gross tumor volume (GTV) delineation using a planning PET/CT among three radiation oncologists and a PET radiologist. Methods and Materials: RTP PET/CT scans were performed on 28 NSCLC patients (Stage IA-IIIB) of which 14 patients received prior induction chemotherapy. Three radiation oncologists and one PET radiologist working with a fourth radiation oncologist independently delineated the GTV on CT alone (GTV{sub CT}) and on fused PET/CT images (GTV{sub PETCT}). The mean percentage volume change (PVC) between GTV{sub CT} and GTV{sub PETCT} for the radiation oncologists and the PVC between GTV{sub CT} and GTV{sub PETCT} for the PET radiologist were compared using the Wilcoxon signed-rank test. Concordance index (CI) was used to assess both positional and volume change between GTV{sub CT} and GTV{sub PETCT} in a single measurement. Results: For all patients, a significant difference in PVC from GTV{sub CT} to GTV{sub PETCT} exists between the radiation oncologist (median, 5.9%), and the PET radiologist (median, -0.4%, p = 0.001). However, no significant difference in median concordance index (comparing GTV{sub CT} and GTV{sub FUSED} for individual cases) was observed (PET radiologist = 0.73; radiation oncologists = 0.66; p = 0.088). Conclusions: Percentage volume changes from GTV{sub CT} to GTV{sub PETCT} were lower for the PET radiologist than for the radiation oncologists, suggesting a lower impact of PET/CT in TV delineation for the PET radiologist than for the oncologists. Guidelines are needed to standardize the use of PET/CT for TV delineation in RTP.

  15. Syntheses and preliminary evaluation of [(18) F]AlF-NOTA-G-TMTP1 for PET imaging of high aggressive hepatocellular carcinoma.

    PubMed

    Li, Yesen; Zhang, Deliang; Shi, Ying; Guo, Zhide; Wu, Xinying; Ren, Jian-Lin; Zhang, Xianzhong; Wu, Hua

    2016-07-01

    The goal of this study is to evaluate a new (18) F-labeled imaging agent for diagnosing high metastatic (aggressive) hepatocellular carcinoma using positron emission tomography (PET). The new (18) F-labeled imaging agent [(18) F]AlF-NOTA-G-TMTP1 was synthesized and radiolabeled with (18) F using NOTA-AlF chelation method. The tumor-targeting characteristics of [(18) F]AlF-NOTA-G-TMTP1 was assessed in HepG2, SMCC-7721, HCC97L and HCCLM3 xenografts. The total synthesis time was about 20 min with radiochemical yield of 25 ± 6%. The specific activity was about 11.1-14.8 GBq/µmol at the end of synthesis based on the amount of peptide used and the amount of radioactivity trapped on the C18 column. The log P value of [(18) F]AlF-NOTA-G-TMTP1 was -3.166 ± 0.022. [(18) F]AlF-NOTA-G-TMTP1 accumulated in SMCC-7721 and HCCLM3 tumors (high metastatic potential) in vivo and result in tumor/muscle (T/M) ratios of 4.5 ± 0.3 and 4.7 ± 0.2 (n = 4) as measured by PET at 40 min post-injection (p.i.). Meanwhile, the tumor/muscle (T/M) ratios of HepG2 and HCC97L tumors (low metastatic potential) were1.6 ± 0.3 and 1.8 ± 0.4. The tumor uptake of [(18) F]AlF-NOTA-G-TMTP1 could be inhibited 61.9% and 57.6% by unlabeled G-TMTP1 in SMCC-7721 and HCCLM3 xenografts at 40 min p.i., respectively. Furthermore, [(18) F]AlF-NOTA-G-TMTP1 showed pretty low activity in the liver and intestines in all tumor bearing mice, such in vivo distribution pattern would be advantageous for the detection of hepatic carcinoma. Overall, [(18) F]AlF-NOTA-G-TMTP1 may specifically target high metastatic or/and aggressive hepatocellular carcinoma with low background activity and, therefore, holds the potential to be used as an imaging agent for detecting tumor lesions within the liver area. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Comparison of 2D and 3D qualitative whole body positron emission tomography (PET) without attenuation or scatter correction

    SciTech Connect

    Kohlmyer, S.G.; Mankoff, D.A.; Lewellen, T.K.; Kaplan, M.S.

    1996-12-31

    The increased sensitivity of 3D PET reduces image noise but can also result in a loss of contrast due to higher scatter fractions. Phantom studies were performed to compare tumor detectability in 2D and 3D qualitative whole body PET without scatter or attenuation correction. Lesion detectability was defined as: detectability = contrast/noise = (-) / {sigma}liver, where and are the average of lesion and liver regions of interest (ROIs), respectively. Liver, heart, and soft tissue sections of a Data Spectrum torso phantom containing a Teflon spine insert were filled with F-18 to match relative concentrations found in clinical FDG studies. Spherical lesions of 1.2 and 2.2 cm diameter were placed in the liver with a lesion to liver activity concentration ratio of 2 : 1. Resulting 2D and 3D images were compared for equivalent whole body acquisition times. Circular ROIs, half the diameter of the lesions, were placed on the tumors and the surrounding background. Background ROIs were normalized to account for the spatially variant bias caused by the absence of the scatter and attenuation corrections. Detectability was greater in the 3D images over the range of count densities and lesion sizes studied, although the difference in detectability between 2D and 3D decreases with decreasing lesion size. These results suggest that 3D imaging is preferable to 2D imaging for clinical qualitative whole body scanning without scatter or attenuation correction. Further studies representing a larger range of clinical applications are required.

  17. Validation of FDG uptake in the arterial wall as an imaging biomarker of atherosclerotic plaques with 18F-fluorodeoxyglucose positron emission tomography-computed tomography (FDG-PET/CT).

    PubMed

    Bucci, Monica; Aparici, Carina Mari; Hawkins, Randy; Bacharach, Steve; Schrek, Carole; Cheng, Suchun; Tong, Elizabeth; Arora, Sandeep; Parati, Eugenio; Wintermark, Max

    2014-01-01

    From the literature, the prevalence of fluorodeoxyglucose (FDG) uptake in large artery atherosclerotic plaques shows great heterogeneity. We retrospectively reviewed 100 consecutive patients who underwent FDG-positron emission tomography-computed tomography (PET/CT) imaging of their whole body, to evaluate FDG uptake in the arterial wall. We retrospectively evaluated 100 whole-body PET-CT scans. The PET images coregistered with CT were reviewed for abnormal 18F-FDG uptake. The mean standard uptake value (SUV) was measured in regions of interest (ROIs). The prevalence of PET+ plaques was determined based on the qualitative PET review, used as the gold standard in a receiver-operating characteristic (ROC) curve analysis to determine an optimal threshold for the quantitative PET analysis. The qualitative, visual assessment demonstrated FDG uptake in the arterial walls of 26 patients. A total of 85 slices exhibited FDG uptake within the arterial wall of 37 artery locations. 11, 17, and 2 patients exhibited FDG uptake within the wall of carotid arteries, of the aorta, and of the iliac arteries, respectively. Only 4 of the 26 patients had positive FDG uptake in more than one artery location. In terms of quantitative analysis, a threshold of 2.8 SUV was associated with a negative predictive value of 99.4% and a positive predictive value of 100% to predict qualitative PET+ plaques. A threshold of 1.8 SUV was associated with a negative predictive value of 100% and a positive predictive value of 99.4%. Area under the ROC curve was .839. The prevalence of PET uptake in arterial walls in a consecutive population of asymptomatic patients is low and usually confined to one type of artery, and its clinical relevance in terms of vulnerability to ischemic events remains to be determined. Copyright © 2012 by the American Society of Neuroimaging.

  18. Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) Combined with Positron Emission Tomography-Computed Tomography (PET-CT) and Video-Electroencephalography (VEEG) Have Excellent Diagnostic Value in Preoperative Localization of Epileptic Foci in Children with Epilepsy

    PubMed Central

    Wang, Gui-Bin; Long, Wei; Li, Xiao-Dong; Xu, Guang-Yin; Lu, Ji-Xiang

    2017-01-01

    Background To investigate the effect that dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has on surgical decision making relative to video-electroencephalography (VEEG) and positron emission tomography-computed tomography (PET-CT), and if the differences in these variables translates to differences in surgical outcomes. Material/Methods A total of 166 children with epilepsy undergoing preoperative DCE-MRI, VEEG, and PET-CT examinations, surgical resection of epileptic foci, and intraoperative electrocorticography (ECoG) monitoring were enrolled. All children were followed up for 12 months and grouped by Engles prognostic classification for epilepsy. Based on intraoperative ECoG as gold standard, the diagnostic values of DCE-MRI, VEEG, PET-CT, DCE-MRI combined with VEEG, DCE-MRI combined with PET-CT, and combined application of DCE-MRI, VEEG, and PET-CT in preoperative localization for epileptic foci were evaluated. Results The sensitivity of DCE-MRI, VEEG, and PET-CT was 59.64%, 76.51%, and 93.98%, respectively; the accuracy of DCE-MRI, VEEG, PET-CT, DCE-MRI combined with VEEG, and DCE-MRI combined with PET-CT was 57.58%, 67.72%, 91.03%, 91.23%, and 96.49%, respectively. Localization accuracy rate of the combination of DCE-MRI, VEEG, and PET-CT was 98.25% (56/57), which was higher than that of DCE-MRI combined with VEEG and of DCE-MRI combined with PET-CT. No statistical difference was found in the accuracy rate of localization between these three combined techniques. During the 12-month follow-up, children were grouped into Engles grade I (n=106), II (n=31), III (n=21), and IV (n=8) according to postoperative conditions. Conclusions All DCE-MRI combined with VEEG, DCE-MRI combined with PET-CT, and DCE-MRI combined with VEEG and PET-CT examinations have excellent accuracy in preoperative localization of epileptic foci and present excellent postoperative efficiency, suggesting that these combined imaging methods are suitable for serving as the

  19. Synthesis and biological evaluation of fluorine-18-labeled estrogens and progestins as positron emission tomography (PET) imaging agents

    SciTech Connect

    VanBrocklin, H.F.

    1990-01-01

    Seven new estrogen receptor-based radiopharmaceuticals, 16[alpha]-[[sup 18]F]-fluoro-17[alpha]-ethynyl-estradiol, (FEES), 15, 11[beta]-methoxy-FEES, 16, 11[beta]-ethyl-FEES, 17, 16[beta]-[[sup 18]F]-fluoroestradiol, (16[beta]-FES), 19, 11[beta]-methoxy-16[beta]-FES, 20, 16[beta]-[[sup 18]F]-fluoro-17[alpha]-ethynyl-estradiol, (16[beta]FEES), 21, and 11[beta]-methoxy-16[beta]-FEES, 22, have been prepared and evaluated as potential PET imaging agents for estrogen receptor-rich breast tumors. Radiolabeling was achieved by nucleophilic displacement of the appropriate 16[beta]- or 16[alpha]-trifluoromethanesulfonate(triflate)-estrone-3-triflate derivative with nBu[sub 4]N[sup 18]F. Subsequent hydride reduction or nucleophilic attack by lithium-trimethylsilylacetylide followed by HPLC purification yielded the FES or FEES analogs, respectively. These compounds can be prepared in 90-120 minutes from [sup 18]F-fluoride with radiochemical yields of 1-40% (decay corrected) and effective specific activities ranging from 50-4,000 Ci/mmol. The relative binding affinities (RBA) ranged from 0.5 to 309. Biological distribution was performed in 25 day old Sprague-Dawley female rats. Uterine uptake ranged from 5-16 percent of the injected dose. These fluorestrogens were highly selective in vivo as evidenced by the high uterus-to-blood (range 10-170) and uterus-to-muscle (range 25-80) ratios. The FEES analogs, 15,16, and 17, had the highest uterus to blood ratios ever seen amongst estrogen radiopharmaceuticals; 154, 145 and 169, respectively. The dose to critical clearance organs (liver and kidneys) was less than 3% of the injected dose per gram of tissue. Metabolic defluorination did not occur with these compounds. These new analogs exhibited an array of desirable characteristics for the optimal PET imaging of estrogen receptor-positive human mammary tumors.

  20. [Tumor targeting efficacy of a novel PET radiotracer (1)8F-AlF-NOTA-PRGD2 in mice].

    PubMed

    Wu, Hubing; Wang, Quanshi; Han, Yanjiang; Zhou, Wenlan; Li, Hongsheng; Tian, Ying; Wang, Qiaoyu

    2014-01-01

    To investigate the tumor targeting efficacy of (18)F-AlF-NOTA-PRGD2, a novel radiotracer of Arginine-glycine-aspartic acid (RGD) peptides. (18)F-AlF-NOTA-PRGD2 was synthesized in one-step by conjugating NOTA-PRGD2 with (18)F-AlF at 100 degrees celsius;. The tumor targeting efficacy and in vivo biodistribution profile of (18)F-AlF-NOTA-PRGD2, following intravenous injection via the tail vein, were evaluated in a nude mouse model bearing subcutaneous U87MG glioblastoma xenograft by radioactivity biodistribution assessment, PET/CT and microPET/CT. NOTA-PRGD2 was (18)F-fluorinated successfully in one-step with a yield of 17%-25% within 15-20 min. Radioactivity biodistribution study confirmed the tumor-targeting ability of (18)F-AlF-NOTA-PRGD2 in the tumor-bearing mice. At 1 and 2 h following injection, (18)F-AlF-NOTA-PRGD2 uptake in the tumor reached 4.14∓1.44 and 2.80∓1.18 % ID/g (t=1.910, P=0.070) with tumor/brain ratios of 2.95∓0.61 and 5.21∓2.62, respectively (t=-1.686, P=0.167). Both PET/CT and microPET/CT were capable of showing the radioactivity biodistribution of (18)F-AlF-NOTA-PRGD2 in the mouse model and clearly displayed the tumor, but microPET/CT showed a much better image quality. (18)F-AlF-NOTA-PRGD2 prepared by one-step radiosynthesis can selectively target to the tumor, demonstrating its potential as a good radiotracer for tumor imaging.

  1. ROC (Receiver Operating Characteristics) study of maximum likelihood estimator human brain image reconstructions in PET (Positron Emission Tomography) clinical practice

    SciTech Connect

    Llacer, J.; Veklerov, E.; Nolan, D. ); Grafton, S.T.; Mazziotta, J.C.; Hawkins, R.A.; Hoh, C.K.; Hoffman, E.J. )

    1990-10-01

    This paper will report on the progress to date in carrying out Receiver Operating Characteristics (ROC) studies comparing Maximum Likelihood Estimator (MLE) and Filtered Backprojection (FBP) reconstructions of normal and abnormal human brain PET data in a clinical setting. A previous statistical study of reconstructions of the Hoffman brain phantom with real data indicated that the pixel-to-pixel standard deviation in feasible MLE images is approximately proportional to the square root of the number of counts in a region, as opposed to a standard deviation which is high and largely independent of the number of counts in FBP. A preliminary ROC study carried out with 10 non-medical observers performing a relatively simple detectability task indicates that, for the majority of observers, lower standard deviation translates itself into a statistically significant detectability advantage in MLE reconstructions. The initial results of ongoing tests with four experienced neurologists/nuclear medicine physicians are presented. Normal cases of {sup 18}F -- fluorodeoxyglucose (FDG) cerebral metabolism studies and abnormal cases in which a variety of lesions have been introduced into normal data sets have been evaluated. We report on the results of reading the reconstructions of 90 data sets, each corresponding to a single brain slice. It has become apparent that the design of the study based on reading single brain slices is too insensitive and we propose a variation based on reading three consecutive slices at a time, rating only the center slice. 9 refs., 2 figs., 1 tab.

  2. A positron study of the defect structures in the D0{sub 3} and B2 phases in the Fe-Al system

    SciTech Connect

    Diego, N. de . E-mail: nievesd@fis.ucm.es; Plazaola, F.; Jimenez, J.A.; Rio, J. del

    2005-01-03

    The positron annihilation technique was used to identify the nature of the vacancy-type defects in the D0{sub 3} and B2 phases of the Fe-Al system. Seven alloys with Al concentrations in the range 22.7-48 at.% Al and with different thermal treatments were examined. Positron lifetime calculations for the expected defects in the two phases were also performed in order to facilitate the defect identification. In the B2 phase, two types of defects were identified: a thermal complex formed by a Fe-divacancy and an Al antisite, and a Fe-vacancy. No constitutional vacancies were found in the D0{sub 3} phase.

  3. Radiofluorination of a pre-formed gallium(III) aza-macrocyclic complex: towards next-generation positron emission tomography (PET) imaging agents.

    PubMed

    Bhalla, Rajiv; Levason, William; Luthra, Sajinder K; McRobbie, Graeme; Sanderson, George; Reid, Gillian

    2015-03-16

    As part of a study to investigate the factors influencing the development of new, more effective metal-complex-based positron emission tomography (PET) imaging agents, the distorted octahedral complex, [GaCl(L)]⋅2 H2O has been prepared by reaction of 1-benzyl-1,4,7-triazacyclononane-4,7-dicarboxylic acid hydrochloride (H2L⋅HCl) with Ga(NO3)3⋅9 H2O, which is a convenient source of Ga(III) for reactions in water. Spectroscopic and crystallographic data for [GaCl(L)]⋅2 H2O are described, together with the crystal structure of [GaCl(L)]⋅MeCN. Fluorination of this complex by Cl(-)/F(-) exchange was achieved in high yield by treatment with KF in water at room temperature over 90 minutes, although the reaction was complete in approximately 30 minutes if heated to 80 °C, giving [GaF(L)]⋅2 H2O in good yield. The same complex was obtained by hydrothermal synthesis from GaF3⋅3 H2O and Li2L, and has been characterised by single-crystal X-ray analysis, IR, (1)H and (19)F{(1)H} NMR spectroscopy and ESI(+) MS. Radiofluorination of the pre-formed [GaCl(L)]⋅2 H2O has been demonstrated on a 210 nanomolar scale in aqueous NaOAc at pH 4 by using carrier-free (18)F(-), leading to 60-70% (18)F-incorporation after heating to 80 °C for 30 minutes. The resulting radioproduct was purified easily by using a solid-phase extraction (SPE) cartridge, leading to 98-99% radiochemical purity. The [Ga(18)F(L)] is stable for at least 90 minutes in 10% EtOH/NaOAc solution at pH 6, but defluorinates over this time scale at pH of approximately 7.5 in phosphate buffered saline (PBS) or human serum albumin (HSA). The subtle role of the Group 13 metal ion and co-ligand donor set in influencing the pH dependence of this system is discussed in the context of developing potential new imaging agents for PET. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. An Assessment of Early Response to Targeted Therapy via Molecular Imaging: A Pilot Study of 3'-deoxy-3'[(18)F]-Fluorothymidine Positron Emission Tomography (18)F-FLT PET/CT in Prostate Adenocarcinoma.

    PubMed

    Kairemo, Kalevi; Ravizzini, Gregory C; Macapinlac, Homer A; Subbiah, Vivek

    2017-04-04

    Fluorothymidine is a thymidine analog labeled with fluorine-18 fluorothymidine for positron emission tomography ((18)F-FLT-PET) imaging. Thymidine is a nucleic acid that is used to build DNA. Fluorine-18 fluorothymidine ((18)F-FLT) utilizes the same metabolic pathway as does thymidine but has a very low incidence of being incorporated into the DNA (<1%). (18)F-FLT-PET could have a role in the evaluation of response to targeted therapy. We present here a pilot study where we investigated cellular metabolism and proliferation in patients with prostate cancer before and after targeted therapy. Seven patients with Stage IV prostate adenocarcinoma, candidates for targeted therapy inhibiting the hepatocyte growth factor/tyrosine-protein kinase Met (HGF/C-MET) pathway, were included in this study. The HGF/C-MET pathway is implicated in prostate cancer progression, and an evaluation of the inhibition of this pathway could be valuable. (18)F-FLT was performed at baseline and within four weeks post-therapy. Tumor response was assessed semi-quantitatively and using visual response criteria. The range of SUVmax for (18)F-FLT at baseline in the prostate varied from 2.5 to 4.2. This study demonstrated that (18)F-FLT with positron emission tomography/computerized tomography ((18)F-FLT PET/CT) had only limited applications in the early response evaluation of prostate cancer. (18)F-FLT PET/CT may have some utility in the assessment of response in lymph node disease. However, (18)F-FLT PET/CT was not found to be useful in the evaluation of the prostate bed, metastatic skeletal disease, and liver disease.

  5. Imaging dopamine release with Positron Emission Tomography (PET) and (11)C-raclopride in freely moving animals.

    PubMed

    Patel, Vinal D; Lee, Dianne E; Alexoff, David L; Dewey, Stephen L; Schiffer, Wynne K

    2008-07-01

    We investigated an imaging strategy that provides simultaneous measurements of radiotracer binding and behavior in awake, freely moving animals. In this strategy, animals are injected intravenously (i.v.) through a catheterized line and permitted to move freely for 30 min during uptake of the imaging agent, in this case 11C-raclopride. After this Awake Uptake period, animals are anesthetized and scanned for 25 min. We tested the utility of this strategy for measuring changes in striatal 11C-raclopride binding under control conditions (awake and freely moving in the home cage) and with several drug challenges: a loading dose of unlabeled raclopride, pretreatment with methamphetamine (METH) or pretreatment with gamma-vinyl-GABA [S+-GVG] followed by METH. An additional group of animals underwent a stress paradigm that we have previously shown increases brain dopamine. For drug challenge experiments, the change in 11C-raclopride binding was compared to data from animals that were anesthetized for the uptake period ("Anesthetized Uptake") and full time activity curves were used to calculate 11C-raclopride binding. Regardless of the drug treatment protocol, there was no difference in 11C-raclopride striatum to cerebellum ratio between the Awake versus the Anesthetized Uptake conditions. Awake and Anesthetized groups demonstrated over 90% occupancy of dopamine receptors with a loading dose of cold raclopride, both groups demonstrated approximately 30% reduction in 11C-raclopride binding from METH pretreatment and this effect was modulated to the same degree by GVG under both uptake conditions. Restraint during Awake Uptake decreased 11C-raclopride binding by 29%. These studies support a unique molecular imaging strategy in which radiotracer uptake occurs in freely moving animals, after which they are anesthetized and scanned. This imaging strategy extends the applicability of small animal PET to include functional neurotransmitter imaging and the neurochemical correlates

  6. External ultrasonography of the neck does not add diagnostic value to integrated positron emission tomography-computed tomography (PET-CT) scanning in the diagnosis of cervical lymph node metastases in patients with esophageal carcinoma.

    PubMed

    Blom, R L G M; Vliegen, R F A; Schreurs, W M J; Belgers, H J; Stohr, I; Oostenbrug, L E; Sosef, M N

    2012-08-01

    One of the objectives of preoperative imaging in esophageal cancer patients is the detection of cervical lymph node metastases. Traditionally, external ultrasonography of the neck has been combined with computed tomography (CT) in order to improve the detection of cervical metastases. In general, integrated positron emission tomography-computed tomography (PET-CT) has been shown to be superior to CT or PET regarding staging and therefore may limit the role of external ultrasonography of the neck. The objective of this study was to determine the additional value of external ultrasonography of the neck to PET-CT. This study included all patients referred our center for treatment of esophageal carcinoma. Diagnostic staging was performed to determine treatment plan. Cervical lymph nodes were evaluated by external ultrasonography of the neck and PET-CT. In case of suspect lymph nodes on external ultrasonography or PET-CT, fine needle aspiration (FNA) was performed. Between 2008 and 2010, 170 out of 195 referred patients underwent both external ultrasonography of the neck and PET-CT. Of all patients, 84% were diagnosed with a tumor at or below the distal esophagus. In 140 of 170 patients, the cervical region was not suspect; no FNA was performed. Seven out of 170 patients had suspect nodes on both PET-CT and external ultrasonography. Five out of seven patients had cytologically confirmed malignant lymph nodes, one of seven had benign nodes, in one patient FNA was not performed; exclusion from esophagectomy was based on intra-abdominal metastases. In one out of 170 patients, PET-CT showed suspect nodes combined with a negative external ultrasonography; cytology of these nodes was benign. Twenty-two out of 170 patients had a negative PET-CT with suspect nodes on external ultrasonography. In 18 of 22 patients, cervical lymph nodes were cytologically confirmed benign; in four patients, FNA was not possible or inconclusive. At a median postoperative follow-up of 15 months

  7. The influence of tumor oxygenation on 18F-FDG (Fluorine-18 Deoxyglucose) uptake: A mouse study using positron emission tomography (PET)

    PubMed Central

    Chan, Linda W; Hapdey, Sebastien; English, Sean; Seidel, Jurgen; Carson, Joann; Sowers, Anastasia L; Krishna, Murali C; Green, Michael V; Mitchell, James B; Bacharach, Stephen L

    2006-01-01

    Background This study investigated whether changing a tumor's oxygenation would alter tumor metabolism, and thus uptake of 18F-FDG (fluorine-18 deoxyglucose), a marker for glucose metabolism using positron emission tomography (PET). Results Tumor-bearing mice (squamous cell carcinoma) maintained at 37°C were studied while breathing either normal air or carbogen (95% O2, 5% CO2), known to significantly oxygenate tumors. Tumor activity was measured within an automatically determined volume of interest (VOI). Activity was corrected for the arterial input function as estimated from image and blood-derived data. Tumor FDG uptake was initially evaluated for tumor-bearing animals breathing only air (2 animals) or only carbogen (2 animals). Subsequently, 5 animals were studied using two sequential 18F-FDG injections administered to the same tumor-bearing mouse, 60 min apart; the first injection on one gas (air or carbogen) and the second on the other gas. When examining the entire tumor VOI, there was no significant difference of 18F-FDG uptake between mice breathing either air or carbogen (i.e. air/carbogen ratio near unity). However, when only the highest 18F-FDG uptake regions of the tumor were considered (small VOIs), there was a modest (21%), but significant increase in the air/carbogen ratio suggesting that in these potentially most hypoxic regions of the tumor, 18F-FDG uptake and hence glucose metabolism, may be reduced by increasing tumor oxygenation. Conclusion Tumor 18F-FDG uptake may be reduced by increases in tumor oxygenation and thus may provide a means to further enhance 18F-FDG functional imaging. PMID:16722588

  8. Active cyamemazine metabolites in patients treated with cyamemazine (Tercian®): influence on cerebral dopamine D2 and serotonin 5-HT (2A) receptor occupancy as measured by positron emission tomography (PET).

    PubMed

    Hodé, Yann; Benyamina, Amine; Arbus, Christophe; Reimold, Matthias

    2011-10-01

    Cyamemazine (Tercian®) is an antipsychotic agent blocking central dopamine D(2) receptors, which induces few extrapyramidal adverse effects, due to a potent antagonistic action at serotonin 5-HT(2A) receptors. In vitro studies showed that the desmethyl metabolite of cyamemazine (N-desmethyl cyamemazine) has similar affinity for 5-HT(2A) receptors as cyamemazine, whereas its D(2) receptor affinity is eight times lower (Benyamina et al. in Eur J Pharmacol 578(2-3):142-147, 2008). Moreover, cyamemazine sulfoxide showed modest affinity for 5-HT(2A) receptors. The objective of this study is to measure steady-state plasma levels of N-desmethyl cyamemazine and cyamemazine sulfoxide in patients treated with clinically relevant doses of cyamemazine and correlate them with dopamine D(2) and serotonin 5-HT(2A) receptor occupancies (RO) assessed by positron emission tomography (PET). Eight patients received Tercian® 37.5, 75, 150, or 300 mg/day according to their symptoms. Dopamine D(2) and serotonin 5-HT(2A) RO were assessed at steady-state cyamemazine plasma levels using [(11)C]raclopride and [(11)C]N-methyl-spiperone, respectively, for PET. Plasma levels of cyamemazine metabolites were determined using a validated high-performance liquid chromatography (PerkinElmer) associated with a mass spectrometry detection (API 365, PE SCIEX). The apparent equilibrium inhibition constant (K (i)) was estimated by fitting RO with plasma levels of cyamemazine metabolites at the time of the PET scan. After 6 days of cyamemazine administration, plasma N-desmethyl cyamemazine reached steady-state levels at 2 to 12 times higher than those previously found for cyamemazine (Hode et al. in Psychopharmacology (Berl) 180:377-384, 2005). Plasma levels of N-desmethyl cyamemazine were closely related to striatal D(2) RO (r (2) = 0.942) and extrastriatal 5-HT(2A) RO (r (2) = 0.901). The estimated K (i(app)) value of N-desmethyl cyamemazine for striatal D(2) receptors was about fivefold

  9. Trends in PET imaging

    SciTech Connect

    Moses, William W.

    2000-11-01

    Positron Emission Tomography (PET) imaging is a well established method for obtaining information on the status of certain organs within the human body or in animals. This paper presents an overview of recent trends PET instrumentation. Significant effort is being expended to develop new PET detector modules, especially those capable of measuring depth of interaction. This is aided by recent advances in scintillator and pixellated photodetector technology. The other significant area of effort is development of special purpose PET cameras (such as for imaging breast cancer or small animals) or cameras that have the ability to image in more than one modality (such as PET / SPECT or PET / X-Ray CT).

  10. Positron Emission Tomography: Principles, Technology, and Recent Developments

    NASA Astrophysics Data System (ADS)

    Ziegler, Sibylle I.

    2005-04-01

    Positron emission tomography (PET) is a nuclear medical imaging technique for quantitative measurement of physiologic parameters in vivo (an overview of principles and applications can be found in [P.E. Valk, et al., eds. Positron Emission Tomography. Basic Science and Clinical Practice. 2003, Springer: Heidelberg]), based on the detection of small amounts of posi-tron-emitter-labelled biologic molecules. Various radiotracers are available for neuro-logical, cardiological, and oncological applications in the clinic and in research proto-cols. This overview describes the basic principles, technology, and recent develop-ments in PET, followed by a section on the development of a tomograph with ava-lanche photodiodes dedicated for small animal imaging as an example of efforts in the domain of high resolution tomographs.

  11. Heart PET scan

    MedlinePlus

    Heart nuclear medicine scan; Heart positron emission tomography; Myocardial PET scan ... Udelson JE, Dilsizian V, Bonow RO. Nuclear cardiology. In: Mann DL, ... A Textbook of Cardiovascular Medicine . 10th ed. Philadelphia, ...

  12. Hypermetabolism in the left thalamus and right inferior temporal area on positron emission tomography-statistical parametric mapping (PET-SPM) in a patient with Charles Bonnet syndrome resolving after treatment with valproic acid.

    PubMed

    Jang, Jae-Won; Youn, Young Chul; Seok, Ju-Won; Ha, Sam-Yeol; Shin, Hae-Won; Ahan, Suk-Won; Park, Kwang-Yeol; Kwon, Oh-Sang

    2011-08-01

    Charles Bonnet syndrome (CBS) is characterized by the occurrence of complex visual hallucinations in visually impaired patients who understand that what they see is unreal. The pathophysiologic mechanism of CBS is poorly understood. However, hypermetabolism of the thalamocortical pathway as a result of deafferentation was recently proposed as a possible mechanism. A 69-year-old patient with CBS presented with a 5-year history of visual hallucinations after bilateral visual impairment, which had progressed to troublesome images of many unreal people and animals. Positron emission tomography-statistical parametric mapping (PET-SPM) imaging studies initially revealed hypermetabolism in the right inferior temporal area and left thalamus, which disappeared after treatment with valproic acid. This case, using PET-SPM analysis, supports the thalamic hypermetabolism theory of CBS.

  13. Synthesis and Preclinical Evaluation of Folate-NOTA-Al(18)F for PET Imaging of Folate-Receptor-Positive Tumors.

    PubMed

    Chen, Qingshou; Meng, Xiangjun; McQuade, Paul; Rubins, Daniel; Lin, Shu-An; Zeng, Zhizhen; Haley, Hyking; Miller, Patricia; González Trotter, Dinko; Low, Philip S

    2016-05-02

    Folate-receptor-targeted PET radiotracers can potentially serve as versatile imaging agents for the diagnosis, staging, and prediction of response to therapy of patients with folate-receptor (FR)-expressing cancers. Because current FR-targeted PET reagents can be compromised by complex labeling procedures, low specific activities, poor radiochemical yields, or unwanted accumulation in FR negative tissues, we have undertaken to design an improved folate-PET agent that might be more amenable for clinical development. For this purpose, we have synthesized a folate-NOTA-Al(18)F radiotracer and examined its properties both in vitro and in vivo. Radiochemical synthesis of folate-NOTA-Al(18)F was achieved by incubating (18)F(-) with AlCl3 for 2 min followed by heating in the presence of folate-NOTA for 15 min at 100 °C. Binding of folate-NOTA-Al(18)F to FR was quantitated in homogenates of KB and Cal51 tumor xenografts in the presence and absence of excess folic acid as a competitor. In vivo imaging was performed on nu/nu mice bearing either FR+ve (KB cell) or FR-ve (A549 cell) tumor xenografts, and specific accumulation of the radiotracer in tumor and other tissues was assessed by high-resolution micro-PET and ex vivo biodistribution in the presence and absence of excess folic acid. Image quality of folate-NOTA-Al(18)F was compared with that of (99m)Tc-EC20, a clinically established folate-targeted SPECT imaging agent. Total radiochemical synthesis and purification of folate-NOTA-Al(18)F was completed within 37 min, yielding a specific activity of 68.82 ± 18.5 GBq/μmol, radiochemical yield of 18.6 ± 4.5%, and radiochemical purity of 98.3 ± 2.9%. Analysis of FR binding revealed a Kd of ∼1.0 nM, and micro-PET imaging together with ex vivo biodistribution analyses demonstrated high FR-mediated uptake in an FR+ tumor and the kidneys. Folate-NOTA-Al(18)F constitutes an easily prepared FR-targeted PET imaging agent with improved radiopharmaceutical properties and high

  14. Characteristics of AZO thin films prepared at various Al target input current deposited on PET substrate

    NASA Astrophysics Data System (ADS)

    Kim, Yun-Hae; Park, Chang-Wook; Lee, Jin-Woo; Lee, Dong Myung

    2015-03-01

    Transparent conductive oxide is a thin film to be used in numerous applications throughout the industry in general. Transparent electrode materials used in these industries are in need of light transmittance with excellent high and low electrical characteristics, substances showing the most excellent physical properties while satisfying all the characteristics such as indium tin oxide film. However, reserves of indium are very small, there is an environmental pollution problem. So the study of zinc oxide (ZnO) is actively carried out in an alternative material. This study analyzed the characteristics by using a direct current (DC) magnetron sputtering system. The electric and optical properties of these films were studied by Hall measurement and optical spectroscopy, respectively. When the Al target input current is 2 mA and 4 mA, it demonstrates about 80% transmittance in the range of the visible spectrum. Also, when Al target input current was 6 mA, sheet resistance was the smallest on PET substrate. The minimum resistivity is 3.96×10-3 ohm/sq.

  15. Cardiac positron emission tomography

    SciTech Connect

    Geltman, E.M.

    1985-12-01

    Positron emission tomography (PET) is a new technique for noninvasively assessing myocardial metabolism and perfusion. It has provided new insight into the dynamics of myocardial fatty acid and glucose metabolism in normal subjects, patients with ischemic heart disease and those with cardiomyopathies, documenting regionally depressed fatty acid metabolism during myocardial ischemia and infarction and spatial heterogeneity of fatty acid metabolism in patients with cardiomyopathy. Regional myocardial perfusion has been studied with PET using water, ammonia and rubidium labeled with positron emitters, permitting the noninvasive detection of hypoperfused zones at rest and during vasodilator stress. With these techniques the relationship between perfusion and the metabolism of a variety of substrates has been studied. The great strides that have been made in developing faster high-resolution instruments and producing new labeled intermediates indicate the promise of this technique for facilitating an increase in the understanding of regional metabolism and blood flow under normal and pathophysiologic conditions. 16 references, 9 figures, 2 tables.

  16. Mobile PET Center Project

    NASA Astrophysics Data System (ADS)

    Ryzhikova, O.; Naumov, N.; Sergienko, V.; Kostylev, V.

    2017-01-01

    Positron emission tomography is the most promising technology to monitor cancer and heart disease treatment. Stationary PET center requires substantial financial resources and time for construction and equipping. The developed mobile solution will allow introducing PET technology quickly without major investments.

  17. WE-G-BRF-06: Positron Emission Tomography (PET)-Guided Dynamic Lung Tumor Tracking for Cancer Radiotherapy: First Patient Simulations

    SciTech Connect

    Yang, J; Loo, B; Graves, E; Yamamoto, T; Keall, P

    2014-06-15

    Purpose: PET-guided dynamic tumor tracking is a novel concept of biologically targeted image guidance for radiotherapy. A dynamic tumor tracking algorithm based on list-mode PET data has been developed and previously tested on dynamic phantom data. In this study, we investigate if dynamic tumor tracking is clinically feasible by applying the method to lung cancer patient PET data. Methods: PET-guided tumor tracking estimates the target position of a segmented volume in PET images reconstructed continuously from accumulated coincidence events correlated with external respiratory motion, simulating real-time applications, i.e., only data up to the current time point is used to estimate the target position. A target volume is segmented with a 50% threshold, consistently, of the maximum intensity in the predetermined volume of interest. Through this algorithm, the PET-estimated trajectories are quantified from four lung cancer patients who have distinct tumor location and size. The accuracy of the PET-estimated trajectories is evaluated by comparing to external respiratory motion because the ground-truth of tumor motion is not known in patients; however, previous phantom studies demonstrated sub-2mm accuracy using clinically derived 3D tumor motion. Results: The overall similarity of motion patterns between the PET-estimated trajectories and the external respiratory traces implies that the PET-guided tracking algorithm can provide an acceptable level of targeting accuracy. However, there are variations in the tracking accuracy between tumors due to the quality of the segmentation which depends on target-to-background ratio, tumor location and size. Conclusion: For the first time, a dynamic tumor tracking algorithm has been applied to lung cancer patient PET data, demonstrating clinical feasibility of real-time tumor tracking for integrated PET-linacs. The target-to-background ratio is a significant factor determining accuracy: screening during treatment planning would

  18. An Educational PET Camera Model

    ERIC Educational Resources Information Center

    Johansson, K. E.; Nilsson, Ch.; Tegner, P. E.

    2006-01-01

    Positron emission tomography (PET) cameras are now in widespread use in hospitals. A model of a PET camera has been installed in Stockholm House of Science and is used to explain the principles of PET to school pupils as described here.

  19. An Educational PET Camera Model

    ERIC Educational Resources Information Center

    Johansson, K. E.; Nilsson, Ch.; Tegner, P. E.

    2006-01-01

    Positron emission tomography (PET) cameras are now in widespread use in hospitals. A model of a PET camera has been installed in Stockholm House of Science and is used to explain the principles of PET to school pupils as described here.

  20. Positron Emission Tomography: Its 65 years

    NASA Astrophysics Data System (ADS)

    Del Guerra, A.; Belcari, N.; Bisogni, M.

    2016-04-01

    Positron Emission Tomography (PET) is a well-established imaging technique for in vivo molecular imaging. In this review after a brief history of PET there are presented its physical principles and the technology that has been developed for bringing PET from a bench experiment to a clinical indispensable instrument. The limitations and performance of the PET tomographs are discussed, both as for the hardware and software aspects. The status of art of clinical, pre-clinical and hybrid scanners (, PET/CT and PET/MR) is reported. Finally the actual trend and the recent and future technological developments are fully illustrated.

  1. Positron emission tomography study on pancreatic somatostatin receptors in normal and diabetic rats with {sup 68}Ga-DOTA-octreotide: A potential PET tracer for beta cell mass measurement

    SciTech Connect

    Sako, Takeo; Hasegawa, Koki; Nishimura, Mie; Kanayama, Yousuke; Wada, Yasuhiro; Hayashinaka, Emi; Cui, Yilong; Kataoka, Yosky; Senda, Michio; Watanabe, Yasuyoshi

    2013-12-06

    Highlights: •PET images showed high uptake of {sup 68}Ga-DOTA-octreotide in the normal pancreas. •{sup 68}Ga-DOTA-octreotide specifically binds to somatostatin receptors in the pancreas. •The pancreatic uptake of {sup 68}Ga-DOTA-octreotide was decreased in the diabetic rats. •{sup 68}Ga-DOTA-octreotide could be a candidate PET probe to measure the beta cell mass. -- Abstract: Diabetes mellitus (DM) is a metabolic disorder characterized by hyperglycemia, and the loss or dysfunction of pancreatic beta cells has been reported before the appearance of clinical symptoms and hyperglycemia. To evaluate beta cell mass (BCM) for improving the detection and treatment of DM at earlier stages, we focused on somatostatin receptors that are highly expressed in the pancreatic beta cells, and developed a positron emission tomography (PET) probe derived from octreotide, a metabolically stable somatostatin analog. Octreotide was conjugated with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), a chelating agent, and labeled with {sup 68}Gallium ({sup 68}Ga). After intravenous injection of {sup 68}Ga-DOTA-octreotide, a 90-min emission scan of the abdomen was performed in normal and DM model rats. The PET studies showed that {sup 68}Ga-DOTA-octreotide radioactivity was highly accumulated in the pancreas of normal rats and that the pancreatic accumulation was significantly reduced in the rats administered with an excess amount of unlabeled octreotide or after treatment with streptozotocin, which was used for the chemical induction of DM in rats. These results were in good agreement with the ex vivo biodistribution data. These results indicated that the pancreatic accumulation of {sup 68}Ga-DOTA-octreotide represented specific binding to the somatostatin receptors and reflected BCM. Therefore, PET imaging with {sup 68}Ga-DOTA-octreotide could be a potential tool for evaluating BCM.

  2. Addiction Studies with Positron Emission Tomography

    ScienceCinema

    Joanna Fowler

    2016-07-12

    Brookhaven scientist Joanna Fowler describes Positron Emission Technology (PET) research at BNL which for the past 30 years has focused in the integration of basic research in radiotracer chemistry with the tools of neuroscience to develop new scientific

  3. Addiction Studies with Positron Emission Tomography

    SciTech Connect

    Joanna Fowler

    2008-10-13

    Brookhaven scientist Joanna Fowler describes Positron Emission Technology (PET) research at BNL which for the past 30 years has focused in the integration of basic research in radiotracer chemistry with the tools of neuroscience to develop new scientific

  4. Influence of argon plasma on the deposition of Al2O3 film onto the PET surfaces by atomic layer deposition.

    PubMed

    Edy, Riyanto; Huang, Xiaojiang; Guo, Ying; Zhang, Jing; Shi, Jianjun

    2013-02-15

    In this paper, polyethyleneterephthalate (PET) films with and without plasma pretreatment were modified by atomic layer deposition (ALD) and plasma-assisted atomic layer deposition (PA-ALD). It demonstrates that the Al2O3 films are successfully deposited onto the surface of PET films. The cracks formed on the deposited Al2O3 films in the ALD, plasma pretreated ALD, and PA-ALD were attributed to the energetic ion bombardment in plasmas. The surface wettability in terms of water contact angle shows that the deposited Al2O3 layer can enhance the wetting property of modified PET surface. Further characterizations of the Al2O3 films suggest that the elevated density of hydroxyl -OH group improve the initial growth of ALD deposition. Chemical composition of the Al2O3-coated PET film was characterized by X-ray photoelectron spectroscopy, which shows that the content of C 1s reduces with the growing of O 1s in the Al2O3-coated PET films, and the introduction of plasma in the ALD process helps the normal growth of Al2O3 on PET in PA-ALD.

  5. Whole-body diffusion-weighted magnetic resonance imaging (WB-DW-MRI) vs choline-positron emission tomography-computed tomography (choline-PET/CT) for selecting treatments in recurrent prostate cancer.

    PubMed

    Conde-Moreno, A J; Herrando-Parreño, G; Muelas-Soria, R; Ferrer-Rebolleda, J; Broseta-Torres, R; Cozar-Santiago, M P; García-Piñón, F; Ferrer-Albiach, C

    2017-05-01

    To determine the effectiveness of whole-body diffusion-weighted magnetic resonance imaging (WB-DW-MRI) in detecting metastases by comparing the results with those from choline-positron emission tomography-computed tomography (choline-PET/CT) in patients with biochemical relapse after primary treatment, and no metastases in bone scintigraphy, CT and/or pelvic MRI, or metastatic/oligometastatic prostate cancer (PCa). Patients with this disease profile who could benefit from treatment with stereotactic body radiation therapy (SBRT) were selected and their responses to these techniques were rated. This was a prospective, controlled, unicentric study, involving 46 consecutive patients from our centre who presented biochemical relapse after adjuvant, salvage or radical treatment with external beam radiotherapy, or brachytherapy. After initial tests (bone scintigraphy, CT, pelvic MRI), 35 patients with oligometastases or without them were selected. 11 patients with multiple metastases were excluded from the study. WB-DW-MRI and choline-PET/CT was then performed on each patient within 1 week. The results were interpreted by specialists in nuclear medicine and MRI. If they were candidates for treatment with ablative SBRT (SABR), they were then evaluated every three months with both tests. Choline-PET/CT detected lesions in 16 patients that were not observable using WB-DW-MRI. The results were consistent in seven patients and in three cases, a lesion was observed using WB-DW-MRI that was not detected with choline-PET/CT. The Kappa value obtained was 0.133 (p = 0.089); the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of WB-DW-MRI were estimated at 44.93, 64.29, 86.11, and 19.15%, respectively. For choline-PET/CT patients, the sensitivity, specificity, PPV, and NPV were 97.10, 58.33, 93.06, and 77.78%, respectively. Choline-PET/CT has a high global sensitivity while WB-DW-MRI has a high specificity, and so they are

  6. Positron microscopy

    SciTech Connect

    Hulett, L.D. Jr.; Xu, J.

    1995-02-01

    The negative work function property that some materials have for positrons make possible the development of positron reemission microscopy (PRM). Because of the low energies with which the positrons are emitted, some unique applications, such as the imaging of defects, can be made. The history of the concept of PRM, and its present state of development will be reviewed. The potential of positron microprobe techniques will be discussed also.

  7. Systemic and vascular inflammation in patients with moderate to severe psoriasis as measured by [18F]-fluorodeoxyglucose positron emission tomography-computed tomography (FDG-PET/CT): a pilot study.

    PubMed

    Mehta, Nehal N; Yu, YiDing; Saboury, Babak; Foroughi, Negar; Krishnamoorthy, Parasuram; Raper, Anna; Baer, Amanda; Antigua, Jules; Van Voorhees, Abby S; Torigian, Drew A; Alavi, Abass; Gelfand, Joel M

    2011-09-01

    To evaluate the feasibility of using [18F]-fluorodeoxyglucose positron emission tomography-computed tomography (FDG-PET/CT) to detect and quantify systemic inflammation in patients with psoriasis. Case series with a nested case-control study. Referral dermatology and preventive cardiology practices. Six patients with psoriasis affecting more than 10% of their body surface area and 4 controls age and sex matched to 4 of the patients with psoriasis for a nested case-control study. The FDG uptake in the liver, musculoskeletal structures, and aorta measured by mean standardized uptake value, a measure of FDG tracer uptake by macrophages and other inflammatory cells. FDG-PET/CT identified numerous foci of inflammation in 6 patients with psoriasis within the skin, liver, joints, tendons, and aorta. Inflammation in the joints was observed in a patient with psoriatic arthritis as well as in 1 patient with no history of joint disease or joint symptoms. In a nested case-control study, FDG-PET/CT imaging demonstrated increased vascular inflammation in multiple segments of the aorta compared with controls. These findings persisted after adjustment for traditional cardiovascular risk factors in multivariate analysis (mean β = 0.33; P < .001). Patients with psoriasis further demonstrated increased hepatic inflammation after adjusting for cardiovascular risk factors (β = 0.18; P < .001), but the association was no longer significant when adjusted for alcohol intake (β = -0.25; P = .07). FDG-PET/CT is a sensitive tool for identifying inflammation and can be used to identify clinically observed inflammation in the skin and subclinical inflammation in the blood vessels, joints, and liver of patients with psoriasis.

  8. Validation of [18F]fluorodeoxyglucose and positron emission tomography (PET) for the measurement of intestinal metabolism in pigs, and evidence of intestinal insulin resistance in patients with morbid obesity.

    PubMed

    Honka, H; Mäkinen, J; Hannukainen, J C; Tarkia, M; Oikonen, V; Teräs, M; Fagerholm, V; Ishizu, T; Saraste, A; Stark, C; Vähäsilta, T; Salminen, P; Kirjavainen, A; Soinio, M; Gastaldelli, A; Knuuti, J; Iozzo, P; Nuutila, P

    2013-04-01

    The role of the intestine in the pathogenesis of metabolic diseases is gaining much attention. We therefore sought to validate, using an animal model, the use of positron emission tomography (PET) in the estimation of intestinal glucose uptake (GU), and thereafter to test whether intestinal insulin-stimulated GU is altered in morbidly obese compared with healthy human participants. In the validation study, pigs were imaged using [(18)F]fluorodeoxyglucose ([(18)F]FDG) and the image-derived data were compared with corresponding ex vivo measurements in tissue samples and with arterial-venous differences in glucose and [(18)F]FDG levels. In the clinical study, GU was measured in different regions of the intestine in lean (n = 8) and morbidly obese (n = 8) humans at baseline and during euglycaemic hyperinsulinaemia. PET- and ex vivo-derived intestinal values were strongly correlated and most of the fluorine-18-derived radioactivity was accumulated in the mucosal layer of the gut wall. In the gut wall of pigs, insulin promoted GU as determined by PET, the arterial-venous balance or autoradiography. In lean human participants, insulin increased GU from the circulation in the duodenum (from 1.3 ± 0.6 to 3.1 ± 1.1 μmol [100 g](-1) min(-1), p < 0.05) and in the jejunum (from 1.1 ± 0.7 to 3.0 ± 1.5 μmol [100 g](-1) min(-1), p < 0.05). Obese participants failed to show any increase in insulin-stimulated GU compared with fasting values (NS). Intestinal GU can be quantified in vivo by [(18)F]FDG PET. Intestinal insulin resistance occurs in obesity before the deterioration of systemic glucose tolerance.

  9. Outcome of Hodgkin Lymphoma Patients With a Posttreatment 18F-Fluoro-2-Deoxy-d-Glucose Positron Emission Tomography (FDG-PET)-Negative Residual Mass: Systematic Review and Meta-analysis.

    PubMed

    Adams, Hugo J A; Nievelstein, Rutger A J; Kwee, Thomas C

    2015-01-01

    To systematically review and meta-analyze the outcome of Hodgkin lymphoma patients with a posttreatment (18)F-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET)-negative residual mass. A systematic PubMed/MEDLINE database search was performed. The methodological quality of included studies was assessed. The number of patients with a posttreatment non-FDG-avid residual mass and the number of these patients who developed disease relapse during follow-up were extracted from each included study. Heterogeneity in disease relapse proportions across individual studies was assessed using the I2 test, with heterogeneity defined as I(2) > 50%. Using a Freeman-Tukey transformation, the disease relapse proportions from each individual study were then meta-analyzed with either a fixed-effects model (if I2 ≤ 50 %) or a random-effects model (if I2 > 50 %). A total of 5 studies comprising a total of 727 Hodgkin lymphoma patients with an FDG-PET-negative residual mass after first-line therapy were included. The overall quality of included studies was moderate. The proportion of patients with a posttreatment non-FDG-avid residual mass who experienced disease relapse during follow-up ranged between 0% and 13.8%. There was heterogeneity in disease relapse proportions across individual studies (I2 = 61.4%). Pooled disease relapse proportion (random effects) was 6.8% (95% confidence interval: 2.6%-12.5%). The disease relapse rate in Hodgkin lymphoma patients with a FDG-PET-negative residual mass after first-line therapy is approximately 6.8%. Considering the existing literature, the presence of a non-FDG-avid residual mass has not been proven yet to be associated with a worse outcome than a posttreatment FDG-PET-based complete remission status without a residual mass.

  10. Development of a cell permeable red-shifted CHEF-based chemosensor for Al(3+) ion by controlling PET.

    PubMed

    Mukherjee, Manjira; Sen, Buddhadeb; Pal, Siddhartha; Maji, Abhishek; Budhadev, Darshita; Chattopadhyay, Pabitra

    2016-03-15

    A structurally modified quinazoline derivative (L) acts as highly selective chemosensor for Al(3+) ions in DMSO-H2O (1:9, v/v) over the other competitive metal ions. L shows a red shifted fluorescence after the addition of Al(3+) ions and later the further fluorescence enhancement is due to chelation enhanced fluorescence (CHEF) through inhibition of photoinduced electron transfer (PET). This probe (L) detects Al(3+) ions as low as 9nM in DMSO-H2O (1:9, v/v) at biological pH. The non-cytotoxic probe (L) can efficiently detect the intercellular distribution of Al(3+) ions in living cells under a fluorescence microscope to exhibit its sensible applications in the biological systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Cranial neuronavigation with direct integration of (11)C methionine positron emission tomography (PET) data -- results of a pilot study in 32 surgical cases.

    PubMed

    Braun, V; Dempf, S; Weller, R; Reske, S-N; Schachenmayr, W; Richter, H P

    2002-08-01

    MRI detects small intracranial lesions, but has difficulties in differentiating between tumour, gliosis and edema. (11)C methionine-PET may help to overcome this problem. For its appropriate intra-operative use, it must be integrated into neuronavigation. We present the results of our pilot study with this method. 32 patients with 34 intracranial lesions detected by MRI underwent additional (11)C methionine-PET, because the pathophysiological behaviour or the tumour delineation was unclear. All lesions were treated surgically. In 25 patients PET data could be integrated directly into cranial neuronavigation. (11)C methionine uptake was observed in 27/34 lesions, 26 of them were tumours: 14 malignant and 7 benign gliomas, 3 gliomas without further histological typing, one Ewing sarcoma and one non-Hodgkin lymphoma. Only one (11)C methionine positive lesion was non-tumourous: it was staged as post-irradiation necrosis in a patient operated on for a malignant glioma. 3/7 (11)C-methionine negative lesions were classified as gliosis (n=2) and M. Whipple (n=1), but 4/7 were tumours: 2 astrocytomas WHO(degrees)II, 1 DNT and one astrocytoma WHO(degrees)III. The sensitivity of (11)C methionine-PET was 87%, the specificity 75%, the positive predictive value 96% and the negative predictive value 43%. In all tumourous cases with positive tracer uptake the borderline area of the tumour was better defined by (11)C methionine-PET than by MRI. A positive (11)C methionine-PET is highly suspicious of a tumour, a negative one does not exclude it. (11)C methionine-PET seems to be more sensitive than MRI for differentiating between tumour and edema or gliosis. Simultaneous integration MRI and (11)C methionine-PET into cranial neuronavigation can facilitate cross total tumour removal in glioma surgery.

  12. Ferret Thoracic Anatomy by 2-Deoxy-2-(18F)Fluoro-D-Glucose (18F-FDG) Positron Emission Tomography/Computed Tomography (18F-FDG PET/CT) Imaging

    PubMed Central

    Wu, Albert; Zheng, Huaiyu; Kraenzle, Jennifer; Biller, Ashley; Vanover, Carol D.; Proctor, Mary; Sherwood, Leslie; Steffen, Marlene; Ng, Chin; Mollura, Daniel J.; Jonsson, Colleen B.

    2013-01-01

    The domestic ferret (Mustela putorius furo) has been a long-standing animal model used in the evaluation and treatment of human diseases. Molecular imaging techniques such as 2-deoxy-2-(18F)fluoro-D-glucose (18F-FDG) positron emission tomography (PET) would be an invaluable method of tracking disease in vivo, but this technique has not been reported in the literature. Thus, the aim of this study was to establish baseline imaging characteristics of PET/computed tomography (CT) with 18F-FDG in the ferret model. Twelve healthy female ferrets were anesthetized and underwent combined PET/CT scanning. After the images were fused, volumes of interest (VOIs) were generated in the liver, heart, thymus, and bilateral lung fields. For each VOI, standardized uptake values (SUVs) were calculated. Additional comparisons were made between radiotracer uptake periods (60, 90, and >90 minutes), intravenous and intraperitoneal injections of 18F-FDG, and respiratory gated and ungated acquisitions. Pulmonary structures and the surrounding thoracic and upper abdominal anatomy were readily identified on the CT scans of all ferrets and were successfully fused with PET. VOIs were created in various tissues with the following SUV calculations: heart (maximum standardized uptake value [SUVMax] 8.60, mean standardized uptake value [SUVMean] 5.42), thymus (SUVMax 3.86, SUVMean 2.59), liver (SUVMax 1.37, SUVMean 0.99), right lung (SUVMax 0.92, SUVMean 0.56), and left lung (SUVMax 0.88, SUVMean 0.51). Sixty- to 90-minute uptake periods were sufficient to separate tissues based on background SUV activity. No gross differences in image quality were seen between intraperitoneal and intravenous injections of 18F-FDG. Respiratory gating also did not have a significant impact on image quality of lung parenchyma. The authors concluded that 18F-FDG PET and CT imaging can be performed successfully in normal healthy ferrets with the parameters identified in this study. They obtained similar imaging

  13. Ferret thoracic anatomy by 2-deoxy-2-(18F)fluoro-D-glucose (18F-FDG) positron emission tomography/computed tomography (18F-FDG PET/CT) imaging.

    PubMed

    Wu, Albert; Zheng, Huaiyu; Kraenzle, Jennifer; Biller, Ashley; Vanover, Carol D; Proctor, Mary; Sherwood, Leslie; Steffen, Marlene; Ng, Chin; Mollura, Daniel J; Jonsson, Colleen B

    2012-01-01

    The domestic ferret (Mustela putorius furo) has been a long-standing animal model used in the evaluation and treatment of human diseases. Molecular imaging techniques such as 2-deoxy-2-((18)F)fluoro-D-glucose ((18)F-FDG) positron emission tomography (PET) would be an invaluable method of tracking disease in vivo, but this technique has not been reported in the literature. Thus, the aim of this study was to establish baseline imaging characteristics of PET/computed tomography (CT) with (18)F-FDG in the ferret model. Twelve healthy female ferrets were anesthetized and underwent combined PET/CT scanning. After the images were fused, volumes of interest (VOIs) were generated in the liver, heart, thymus, and bilateral lung fields. For each VOI, standardized uptake values (SUVs) were calculated. Additional comparisons were made between radiotracer uptake periods (60, 90, and >90 minutes), intravenous and intraperitoneal injections of (18)F-FDG, and respiratory gated and ungated acquisitions. Pulmonary structures and the surrounding thoracic and upper abdominal anatomy were readily identified on the CT scans of all ferrets and were successfully fused with PET. VOIs were created in various tissues with the following SUV calculations: heart (maximum standardized uptake value [SUV(Max)] 8.60, mean standardized uptake value [SUV(Mean)] 5.42), thymus (SUV(Max) 3.86, SUV(Mean) 2.59), liver (SUV(Max) 1.37, SUV(Mean) 0.99), right lung (SUV(Max) 0.92, SUV(Mean) 0.56), and left lung (SUV(Max) 0.88, SUV(Mean) 0.51). Sixty- to 90-minute uptake periods were sufficient to separate tissues based on background SUV activity. No gross differences in image quality were seen between intraperitoneal and intravenous injections of (18)F-FDG. Respiratory gating also did not have a significant impact on image quality of lung parenchyma. The authors concluded that (18)F-FDG PET and CT imaging can be performed successfully in normal healthy ferrets with the parameters identified in this study. They

  14. Current and future technological trends in positron emission tomography.

    PubMed

    Karp, J S; Freifelder, R

    1992-04-01

    Current trends in positron emission tomography (PET) instrumentation are examined, with an emphasis on providing information suitable to the prospective PET user. Basic principles underlying PET are explained and information on performance measurements, techniques, and quantitation are given in order to allow the user to compare and contrast different types of PET scanners. These scanner designs are described. Specific examples are given and the combination of PET with other modalities is discussed.

  15. Modelling Positron Interactions with Matter

    NASA Astrophysics Data System (ADS)

    Garcia, G.; Petrovic, Z.; White, R.; Buckman, S.

    2011-05-01

    In this work we link fundamental measurements of positron interactions with biomolecules, with the development of computer codes for positron transport and track structure calculations. We model positron transport in a medium from a knowledge of the fundamental scattering cross section for the atoms and molecules comprising the medium, combined with a transport analysis based on statistical mechanics and Monte-Carlo techniques. The accurate knowledge of the scattering is most important at low energies, a few tens of electron volts or less. The ultimate goal of this work is to do this in soft condensed matter, with a view to ultimately developing a dosimetry model for Positron Emission Tomography (PET). The high-energy positrons first emitted by a radionuclide in PET may well be described by standard formulas for energy loss of charged particles in matter, but it is incorrect to extrapolate these formulas to low energies. Likewise, using electron cross-sections to model positron transport at these low energies has been shown to be in serious error due to the effects of positronium formation. Work was supported by the Australian Research Council, the Serbian Government, and the Ministerio de Ciencia e Innovación, Spain.

  16. A compact and high sensitivity positron detector using dual-layer thin GSO scintillators for a small animal PET blood sampling system.

    PubMed

    Yamamoto, Seiichi; Imaizumi, Masao; Shimosegawa, Eku; Kanai, Yasukazu; Sakamoto, Yusuke; Minato, Kotaro; Shimizu, Keiji; Senda, Michio; Hatazawa, Jun

    2010-07-07

    For quantitative measurements of small animals such as mice or rats, a compact and high sensitivity continuous blood sampling detector is required because their blood sampling volume is limited. For this purpose we have developed and tested a new positron detector. The positron detector uses a pair of dual-layer thin gadolinium orthosilicate (GSO) scintillators with different decay times. The front layer detects the positron and the background gamma photons, and the back layer detects the background gamma photons. By subtracting the count rate of the latter from that of the former, the count rate of the positrons can be estimated. The GSO for the front layer has a Ce concentration of 1.5 mol% (decay time of 35 ns), and that for the back layer has a Ce concentration of 0.5 mol% (decay time of 60 ns). By using the pulse shape analysis, the count rate of these two GSOs can be discriminated. The thickness is 0.5 mm, which is thick enough to detect positrons while minimizing the detection of the background gamma photons. These two types of thin GSOs were optically coupled to each other and connected to a metal photomultiplier tube (PMT) through triangular light guides. The signal from the PMT was digitized by 100 MHz free-running A-D converters in the data acquisition system and digitally integrated at two different integration times for the pulse shape analysis. We obtained good separation of the pulse shape distributions of these two GSOs. The energy threshold level was decreased to 80 keV, increasing the sensitivity of the detector. The sensitivity of a small diameter plastic tube was 8.6% and 24% for the F-18 and C-11 positrons, respectively. The count rate performance was linear up to approximately 50 kcps. The background counts from the gamma photons could be precisely corrected. The time-activity curve (TAC) of the rat artery blood was successfully obtained and showed a good correlation with that measured using a well counter. With these results, we confirmed

  17. A compact and high sensitivity positron detector using dual-layer thin GSO scintillators for a small animal PET blood sampling system

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Imaizumi, Masao; Shimosegawa, Eku; Kanai, Yasukazu; Sakamoto, Yusuke; Minato, Kotaro; Shimizu, Keiji; Senda, Michio; Hatazawa, Jun

    2010-07-01

    For quantitative measurements of small animals such as mice or rats, a compact and high sensitivity continuous blood sampling detector is required because their blood sampling volume is limited. For this purpose we have developed and tested a new positron detector. The positron detector uses a pair of dual-layer thin gadolinium orthosilicate (GSO) scintillators with different decay times. The front layer detects the positron and the background gamma photons, and the back layer detects the background gamma photons. By subtracting the count rate of the latter from that of the former, the count rate of the positrons can be estimated. The GSO for the front layer has a Ce concentration of 1.5 mol% (decay time of 35 ns), and that for the back layer has a Ce concentration of 0.5 mol% (decay time of 60 ns). By using the pulse shape analysis, the count rate of these two GSOs can be discriminated. The thickness is 0.5 mm, which is thick enough to detect positrons while minimizing the detection of the background gamma photons. These two types of thin GSOs were optically coupled to each other and connected to a metal photomultiplier tube (PMT) through triangular light guides. The signal from the PMT was digitized by 100 MHz free-running A-D converters in the data acquisition system and digitally integrated at two different integration times for the pulse shape analysis. We obtained good separation of the pulse shape distributions of these two GSOs. The energy threshold level was decreased to 80 keV, increasing the sensitivity of the detector. The sensitivity of a small diameter plastic tube was 8.6% and 24% for the F-18 and C-11 positrons, respectively. The count rate performance was linear up to ~50 kcps. The background counts from the gamma photons could be precisely corrected. The time-activity curve (TAC) of the rat artery blood was successfully obtained and showed a good correlation with that measured using a well counter. With these results, we confirmed that the

  18. Metabotropic Glutamate Receptor Type 5 (mGluR5) Cortical Abnormalities in Focal Cortical Dysplasia Identified In Vivo With [11C]ABP688 Positron-Emission Tomography (PET) Imaging

    PubMed Central

    DuBois, Jonathan M.; Rousset, Olivier G.; Guiot, Marie-Christine; Hall, Jeffery A.; Reader, Andrew J.; Soucy, Jean-Paul; Rosa-Neto, Pedro; Kobayashi, Eliane

    2016-01-01

    Metabotropic glutamate receptor type 5 (mGluR5) abnormalities have been described in tissue resected from epilepsy patients with focal cortical dysplasia (FCD). To determine if these abnormalities could be identified in vivo, we investigated mGluR5 availability in 10 patients with focal epilepsy and an MRI diagnosis of FCD using positron-emission tomography (PET) and the radioligand [11C]ABP688. Partial volume corrected [11C]ABP688 binding potentials (BPND) were computed using the cerebellum as a reference region. Each patient was compared to homotopic cortical regions in 33 healthy controls using region-of-interest (ROI) and vertex-wise analyses. Reduced [11C]ABP688 BPND in the FCD was seen in 7/10 patients with combined ROI and vertex-wise analyses. Reduced FCD BPND was found in 4/5 operated patients (mean follow-up: 63 months; Engel I), of whom surgical specimens revealed FCD type IIb or IIa, with most balloon cells showing negative or weak mGluR5 immunoreactivity as compared to their respective neuropil and normal neurons at the border of resections. [11C]ABP688 PET shows for the first time in vivo evidence of reduced mGluR5 availability in FCD, indicating focal glutamatergic alterations in malformations of cortical development, which cannot be otherwise clearly demonstrated through resected tissue analyses. PMID:27578494

  19. Subacute cardiac rubidium-82 positron emission tomography ((82)Rb-PET) to assess myocardial area at risk, final infarct size, and myocardial salvage after STEMI.

    PubMed

    Ghotbi, Adam Ali; Kjaer, Andreas; Nepper-Christensen, Lars; Ahtarovski, Kiril Aleksov; Lønborg, Jacob Thomsen; Vejlstrup, Niels; Kyhl, Kasper; Christensen, Thomas Emil; Engstrøm, Thomas; Kelbæk, Henning; Holmvang, Lene; Bang, Lia E; Ripa, Rasmus Sejersten; Hasbak, Philip

    2016-10-14

    Determining infarct size and myocardial salvage in patients with ST-segment elevation myocardial infarction (STEMI) is important when assessing the efficacy of new reperfusion strategies. We investigated whether rest (82)Rb-PET myocardial perfusion imaging can estimate area at risk, final infarct size, and myocardial salvage index when compared to cardiac SPECT and magnetic resonance (CMR). Twelve STEMI patients were injected with (99m)Tc-Sestamibi intravenously immediate prior to reperfusion. SPECT, (82)Rb-PET, and CMR imaging were performed post-reperfusion and at a 3-month follow-up. An automated algorithm determined area at risk, final infarct size, and hence myocardial salvage index. SPECT, CMR, and PET were performed 2.2 ± 0.5, 34 ± 8.5, and 32 ± 24.4 h after reperfusion, respectively. Mean (± SD) area at risk were 35.2 ± 16.6%, 34.7 ± 11.3%, and 28.1 ± 16.1% of the left ventricle (LV) in SPECT, CMR, and PET, respectively, P = 0.04 for difference. Mean final infarct size estimates were 12.3 ± 15.4%, 13.7 ± 10.4%, and 11.9 ± 14.6% of the LV in SPECT, CMR, and PET imaging, respectively, P = .72. Myocardial salvage indices were 0.64 ± 0.33 (SPECT), 0.65 ± 0.20 (CMR), and 0.63 ± 0.28 (PET), (P = .78). (82)Rb-PET underestimates area at risk in patients with STEMI when compared to SPECT and CMR. However, our findings suggest that PET imaging seems feasible when assessing the clinical important parameters of final infarct size and myocardial salvage index, although with great variability, in a selected STEMI population with large infarcts. These findings should be confirmed in a larger population.

  20. An overview of PET/MR, focused on clinical applications.

    PubMed

    Catalano, Onofrio Antonio; Masch, William Roger; Catana, Ciprian; Mahmood, Umar; Sahani, Dushyant Vasudeo; Gee, Michael Stanley; Menezes, Leon; Soricelli, Andrea; Salvatore, Marco; Gervais, Debra; Rosen, Bruce Robert

    2017-02-01

    Hybrid PET/MR scanners are innovative imaging devices that simultaneously or sequentially acquire and fuse anatomical and functional data from magnetic resonance (MR) with metabolic information from positron emission tomography (PET) (Delso et al. in J Nucl Med 52:1914-1922, 2011; Zaidi et al. in Phys Med Biol 56:3091-3106, 2011). Hybrid PET/MR scanners have the potential to greatly impact not only on medical research but also, and more importantly, on patient management. Although their clinical applications are still under investigation, the increased worldwide availability of PET/MR scanners, and the growing published literature are important determinants in their rising utilization for primarily clinical applications. In this manuscript, we provide a summary of the physical features of PET/MR, including its limitations, which are most relevant to clinical PET/MR implementation and to interpretation. Thereafter, we discuss the most important current and emergent clinical applications of such hybrid technology in the abdomen and pelvis, both in the field of oncologic and non-oncologic imaging, and we provide, when possible, a comparison with clinically consolidated imaging techniques, like for example PET/CT.

  1. Mathematical removal of positron range blurring in high resolution tomography

    SciTech Connect

    Derenzo, S.E.

    1985-10-01

    Positron range blurring can be removed from PET projection data by Fourier deconvolution. The method uses previously measured positron range spread functions whose 'cusp-like' shape retains some of the higher spatial frequency information. Although the deconvolution process amplifies the statistical noise, especially for narrow projection bins and for isotopes with high positron energy, it can significantly improve the ability to estimate the amount of positron activity in each region of quantitation. 16 refs., 6 figs., 2 tabs.

  2. Positron emission tomography neuroimaging in amyotrophic lateral sclerosis: what is new?

    PubMed

    Quartuccio, N; Van Weehaeghe, D; Cistaro, A; Jonsson, C; Van Laere, K; Pagani, M

    2014-12-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease involving upper and lower motor neurons, extra-motor neurons, microglia and astrocytes. The neurodegenerative process results in progressive muscle paralysis and even in cognitive impairment. Within the complex diagnostic work-up, positron emission tomography (PET) represents a valuable imaging tool in the assessment of patients with ALS. PET, by means of different radiotracers (i.e. 18F-fluorodeoxyglucose, 6-[18F]fluoro-L-dopa, [11C]flumazenil) can assess the status of the wide range of brain regions and neural circuits, which can be affected by ALS. Furthermore, experimental radiocompounds have been developed for the evaluation of white matter, which plays a role in the progression of the disease. Here we present a comprehensive review including in different sections the most relevant PET studies: studies investigating ALS and ALS-mimicking conditions (especially primary lateral sclerosis and other neurodegenerative diseases), articles selecting specific subsets of patients (with bulbar or spinal onset), studies investigating patients with familial type of ALS, studies evaluating the role of the white matter in ALS and papers evaluating the diagnostic sensitivity of PET in ALS patients.

  3. Test-retest variability of high resolution positron emission tomography (PET) imaging of cortical serotonin (5HT2A) receptors in older, healthy adults

    PubMed Central

    2009-01-01

    Background Position emission tomography (PET) imaging using [18F]-setoperone to quantify cortical 5-HT2A receptors has the potential to inform pharmacological treatments for geriatric depression and dementia. Prior reports indicate a significant normal aging effect on serotonin 5HT2A receptor (5HT2AR) binding potential. The purpose of this study was to assess the test-retest variability of [18F]-setoperone PET with a high resolution scanner (HRRT) for measuring 5HT2AR availability in subjects greater than 60 years old. Methods: Six healthy subjects (age range = 65–78 years) completed two [18F]-setoperone PET scans on two separate occasions 5–16 weeks apart. Results The average difference in the binding potential (BPND) as measured on the two occasions in the frontal and temporal cortical regions ranged between 2 and 12%, with the lowest intraclass correlation coefficient in anterior cingulate regions. Conclusion We conclude that the test-retest variability of [18F]-setoperone PET in elderly subjects is comparable to that of [18F]-setoperone and other 5HT2AR radiotracers in younger subject samples. PMID:19580676

  4. Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography (FDG PET/CT) Findings in an Unusual Case of Multiple Myeloma Presenting with a Large Extra-Axial Intracranial Mass

    PubMed Central

    Ayaz, Sevin; Ayaz, Ümit Yaşar

    2016-01-01

    Summary Background We aimed to present unusual cranial FDG PET/CT findings of a 56-year-old female with multiple myeloma (MM). Case Report Plain CT images revealed a lytic lesion in the right parietal bone, filled with an oval-shaped, large, extra-axial, extradural, intracranial mass which measured 75×75×40 mm and had smooth borders. The right parietal lobe was compressed by the mass. The maximum standardized uptake value (SUVmax) of the mass lesion was 8.94 on FDG PET/CT images. Multiple lytic lesions with an increased uptake were also detected in other calvarial bones, in several vertebras and in the proximal left femur. After seven months, a control FDG PET/CT following radiotherapy and chemotherapy revealed almost complete regression of the right parietal extra-axial mass lesion. The number, size and metabolism of lytic lesions in other bones also decreased. Conclusions FDG PET/CT was useful for an initial evaluation of MM lesions and was effective in monitoring the response of these lesions to therapy. PMID:28058074

  5. Initial Fludeoxyglucose (18F) Positron Emission Tomography-Computed Tomography (FDG-PET/CT) Imaging of Breast Cancer – Correlations with the Primary Tumour and Locoregional Metastases

    PubMed Central

    Ayaz, Sevin; Gültekin, Salih Sinan; Ayaz, Ümit Yaşar; Dilli, Alper

    2017-01-01

    Summary Backround We aimed to evaluate initial PET/CT features of primary tumour and locoregional metastatic lymph nodes (LNs) in breast cancer and to look for potential relationships between several parameters from PET/CT. Material/Methods Twenty-three women (mean age; 48.66±12.23 years) with a diagnosis of primary invasive ductal carcinoma were included. They underwent PET/CT imaging for the initial tumour staging and had no evidence of distant metastates. Patients were divided into two groups. The LABC (locally advanced breast cancer) group included 17 patients with ipsilateral axillary lymph node (LN) metastases. The Non-LABC group consisted of six patients without LN metastases. PET/CT parameters including tumour size, axillary LN size, SUVmax of ipsilateral axillary LNs (SUVmax-LN), SUVmax of primary tumour (SUVmax-T) and NT ratios (SUVmax-LN/SUVmax-T) were compared between the groups. Correlations between the above-mentioned PET/CT parameters in the LABC group as well as the correlation between tumour size and SUVmax-T within each group were evaluated statistically. Results The mean values of the initial PET/CT parameters in the LABC group were significantly higher than those of the non-LABC group (p<0.05). The correlation between tumour size and SUVmax-T value within both LABC and non-LABC groups was statistically significant (p<0.05). In the LABC group, the correlations between the size and SUVmax-LN values of metastatic axillary LNs, between tumour size and metastatic axillary LN size, between SUVmax-T values and metastatic axillary LN size, between SUVmax-T and SUVmax-LN values, and between tumour size and SUVmax-LN values were all significant (p<0.05). Conclusions We found significant correlations between PET/CT parameters of the primary tumour and those of metastatic axillary LNs. Patients with LN metastases had relatively larger primary tumours and higher SUVmax values. PMID:28105247

  6. [Positron emission tomography (PET) with [18F]-FDG in bronchopulmonary cancer and its impact on medical decision at the time of diagnosis, staging, or recurrence evaluation].

    PubMed

    Grahek, D; Montravers, F; Mayaud, C; Regnard, J F; Kerrou, K; Younsi, N; Talbot, J N

    2001-12-01

    Clinical usefulness of [18F]-FDG imaging, performed by means of a dedicated or a "hybrid" PET machine, has been recognised in France since November 1998. Among the clinical indications, three major clinical settings of lung cancer have been included: characterisation, staging and detection of recurrences. After a brief presentation of the PET scintigraphic imaging modality, authors report on the experience of the nuclear medicine team of Hôspital Tenon and summarise the results in literature. For tumour characterisation, a recent meta-analysis obtained a 96% sensitivity, a 73% specificity, a 91% positive predictive value and a 90% negative predictive value, the performances being better for lesions greater than 1 cm. For staging, an increase greater than 15% both in sensitivity and specificity has been observed with dedicated or "hybrid" PET versus CT for N staging. Detection of distant metastases was also more accurate using [18F]-FDG. A similar increase was observed in the detection of recurrence, in accordance with our study; some authors described even better results. A better anatomical delineation of the lesions detected with FDG can be achieved by means of image fusion with CT; this technique is likely to develop as a routine tool in the near future. Finally, FDG imaging led to modification of patient's management in 37% of the cases according to a recent meta-analysis versus 53% of the cases in our retrospective survey concerning the first year of installation of a dedicated PET machine. This rate was equal with dedicated PET and with CDET. In 46% of the cases an inter-modality change occurred, and in 7% an intra-modality change consisting mainly in adaptation of the surgical procedure. As soon as the FDG examination became available, its clinical impact, in the French medical context, appeared to reach the highest values that were published internationally.

  7. Evaluation of treatment response and resistance in metastatic renal cell cancer (mRCC) using integrated (18)F-Fluorodeoxyglucose ((18)F-FDG) positron emission tomography/magnetic resonance imaging (PET/MRI); The REMAP study.

    PubMed

    Kelly-Morland, Christian; Rudman, Sarah; Nathan, Paul; Mallett, Susan; Montana, Giovanni; Cook, Gary; Goh, Vicky

    2017-06-02

    Tyrosine kinase inhibitors are the first line standard of care for treatment of metastatic renal cell carcinoma (RCC). Accurate response assessment in the setting of antiangiogenic therapies remains suboptimal as standard size-related response criteria do not necessarily accurately reflect clinical benefit, as they may be less pronounced or occur later in therapy than devascularisation. The challenge for imaging is providing timely assessment of disease status allowing therapies to be tailored to ensure ongoing clinical benefit. We propose that combined assessment of morphological, physiological and metabolic imaging parameters using 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging ((18)F-FDG PET/MRI) will better reflect disease behaviour, improving assessment of response/non-response/relapse. The REMAP study is a single-centre prospective observational study. Eligible patients with metastatic renal cell carcinoma, planned for systemic therapy, with at least 2 lesions will undergo an integrated (18)F-FDG PET and MRI whole body imaging with diffusion weighted and contrast-enhanced multiphasic as well as standard anatomical MRI sequences at baseline, 12 weeks and 24 weeks of systemic therapy allowing (18)F-FDG standardised uptake value (SUV), apparent diffusion co-efficient (ADC) and normalised signal intensity (SI) parameters to be obtained. Standard of care contrast-enhanced computed tomography CT scans will be performed at equivalent time-points. CT response categorisation will be performed using RECIST 1.1 and alternative (modified)Choi and MASS criteria. The reference standard for disease status will be by consensus panel taking into account clinical, biochemical and conventional imaging parameters. Intra- and inter-tumoural heterogeneity in vascular, diffusion and metabolic response/non-response will be assessed by image texture analysis. Imaging will also inform the development of computational methods for automated disease

  8. [11C]MADAM Used as a Model for Understanding the Radiometabolism of Diphenyl Sulfide Radioligands for Positron Emission Tomography (PET)

    PubMed Central

    Gourand, Fabienne; Amini, Nahid; Jia, Zhisheng; Stone-Elander, Sharon; Guilloteau, Denis; Barré, Louisa; Halldin, Christer

    2015-01-01

    In quantitative PET measurements, the analysis of radiometabolites in plasma is essential for determining the exact arterial input function. Diphenyl sulfide compounds are promising PET and SPECT radioligands for in vivo quantification of the serotonin transporter (SERT) and it is therefore important to investigate their radiometabolism. We have chosen to explore the radiometabolic profile of [11C]MADAM, one of these radioligands widely used for in vivo PET-SERT studies. The metabolism of [11C]MADAM/MADAM was investigated using rat and human liver microsomes (RLM and HLM) in combination with radio-HPLC or UHPLC/Q-ToF-MS for their identification. The effect of carrier on the radiometabolic rate of the radioligand [11C]MADAM in vitro and in vivo was examined by radio-HPLC. RLM and HLM incubations were carried out at two different carrier concentrations of 1 and 10 μM. Urine samples after perfusion of [11C]MADAM/MADAM in rats were also analysed by radio-HPLC. Analysis by UHPLC/Q-ToF-MS identified the metabolites produced in vitro to be results of N-demethylation, S-oxidation and benzylic hydroxylation. The presence of carrier greatly affected the radiometabolism rate of [11C]MADAM in both RLM/HLM experiments and in vivo rat studies. The good concordance between the results predicted by RLM and HLM experiments and the in vivo data obtained in rat studies indicate that the kinetics of the radiometabolism of the radioligand [11C]MADAM is dose-dependent. This issue needs to be addressed when the diarylsulfide class of compounds are used in PET quantifications of SERT. PMID:26367261

  9. [11C]MADAM Used as a Model for Understanding the Radiometabolism of Diphenyl Sulfide Radioligands for Positron Emission Tomography (PET).

    PubMed

    Gourand, Fabienne; Amini, Nahid; Jia, Zhisheng; Stone-Elander, Sharon; Guilloteau, Denis; Barré, Louisa; Halldin, Christer

    2015-01-01

    In quantitative PET measurements, the analysis of radiometabolites in plasma is essential for determining the exact arterial input function. Diphenyl sulfide compounds are promising PET and SPECT radioligands for in vivo quantification of the serotonin transporter (SERT) and it is therefore important to investigate their radiometabolism. We have chosen to explore the radiometabolic profile of [11C]MADAM, one of these radioligands widely used for in vivo PET-SERT studies. The metabolism of [11C]MADAM/MADAM was investigated using rat and human liver microsomes (RLM and HLM) in combination with radio-HPLC or UHPLC/Q-ToF-MS for their identification. The effect of carrier on the radiometabolic rate of the radioligand [11C]MADAM in vitro and in vivo was examined by radio-HPLC. RLM and HLM incubations were carried out at two different carrier concentrations of 1 and 10 μM. Urine samples after perfusion of [11C]MADAM/MADAM in rats were also analysed by radio-HPLC. Analysis by UHPLC/Q-ToF-MS identified the metabolites produced in vitro to be results of N-demethylation, S-oxidation and benzylic hydroxylation. The presence of carrier greatly affected the radiometabolism rate of [11C]MADAM in both RLM/HLM experiments and in vivo rat studies. The good concordance between the results predicted by RLM and HLM experiments and the in vivo data obtained in rat studies indicate that the kinetics of the radiometabolism of the radioligand [11C]MADAM is dose-dependent. This issue needs to be addressed when the diarylsulfide class of compounds are used in PET quantifications of SERT.

  10. High time-resolution photodetectors for PET applications

    SciTech Connect

    Ronzhin, Anatoly

    2016-02-01

    This paper describes recent developments aiming at the improvement of the time resolution of photodetectors used in positron emission tomography (PET). Promising photodetector candidates for future PET-time-of-flight (TOF) applications are also discussed.

  11. Brown adipose tissue in humans: detection and functional analysis using PET (positron emission tomography), MRI (magnetic resonance imaging), and DECT (dual energy computed tomography).

    PubMed

    Borga, Magnus; Virtanen, Kirsi A; Romu, Thobias; Leinhard, Olof Dahlqvist; Persson, Anders; Nuutila, Pirjo; Enerbäck, Sven

    2014-01-01

    If the beneficial effects of brown adipose tissue (BAT) on whole body metabolism, as observed in nonhuman experimental models, are to be translated to humans, tools that accurately measure how BAT influences human metabolism will be required. This chapter discusses such techniques, how they can be used, what they can measure and also some of their limitations. The focus is on detection and functional analysis of human BAT and how this can be facilitated by applying advanced imaging technology such as positron emission tomography, magnetic resonance imaging, and dual energy computed tomography. © 2014 Elsevier Inc. All rights reserved.

  12. Clinical oncologic positron emission tomography: an introduction.

    PubMed

    Turkington, Timothy G; Coleman, R Edward

    2002-04-01

    PET imaging is a molecular imaging technology that is diffusing into imaging departments quite rapidly. The unique characteristics of positron emitting radionuclides such as fluorine-18 provide high-quality images with reasonable acquisition times. The imaging instrumentation continues to improve with new detector materials and combinations of PET scanners and CT scanners. FDG is now readily available to most hospitals in the United States. Third-party payers now recognize the importance of PET imaging in multiple malignancies. The number of PET scans performed annually will continue to increase as the indications increase and the instrumentation is more available.

  13. Dynamic neurotransmitter interactions measured with PET

    SciTech Connect

    Schiffer, W.K.; Dewey, S.L.

    2001-04-02

    Positron emission tomography (PET) has become a valuable interdisciplinary tool for understanding physiological, biochemical and pharmacological functions at a molecular level in living humans, whether in a healthy or diseased state. The utility of tracing chemical activity through the body transcends the fields of cardiology, oncology, neurology and psychiatry. In this, PET techniques span radiochemistry and radiopharmaceutical development to instrumentation, image analysis, anatomy and modeling. PET has made substantial contributions in each of these fields by providing a,venue for mapping dynamic functions of healthy and unhealthy human anatomy. As diverse as the disciplines it bridges, PET has provided insight into an equally significant variety of psychiatric disorders. Using the unique quantitative ability of PET, researchers are now better able to non-invasively characterize normally occurring neurotransmitter interactions in the brain. With the knowledge that these interactions provide the fundamental basis for brain response, many investigators have recently focused their efforts on an examination of the communication between these chemicals in both healthy volunteers and individuals suffering from diseases classically defined as neurotransmitter specific in nature. In addition, PET can measure the biochemical dynamics of acute and sustained drug abuse. Thus, PET studies of neurotransmitter interactions enable investigators to describe a multitude of specific functional interactions in the human brain. This information can then be applied to understanding side effects that occur in response to acute and chronic drug therapy, and to designing new drugs that target multiple systems as opposed to single receptor types. Knowledge derived from PET studies can be applied to drug discovery, research and development (for review, see (Fowler et al., 1999) and (Burns et al., 1999)). Here, we will cover the most substantial contributions of PET to understanding

  14. Technology related parameters affecting quantification in positron emission tomography imaging.

    PubMed

    Visvikis, D; Turzo, A; Bizais, Y; Cheze-Le Rest, C

    2004-07-01

    Some of the issues associated with positron emission tomography (PET) technology which still pose challenges for the recovery of quantitative images are discussed. Through these issues reference to what is today considered as the 'gold standard' in quantitative PET imaging is also presented. A brief comparison of 2-D and 3-D PET is given, together with a short discussion of combined PET/CT imaging devices.

  15. The feasibility of prostate-specific membrane antigen positron emission tomography(PSMA PET/CT)-guided radiotherapy in oligometastatic prostate cancer patients.

    PubMed

    Guler, O C; Engels, B; Onal, C; Everaert, H; Van den Begin, R; Gevaert, T; de Ridder, M

    2017-08-09

    To investigate the efficacy and toxicity of 68Ga-PSMA-HBED-CC ((68)Ga-PSMA) PET-CT-guided RT in the treatment of oligometastatic prostate cancer retrospectively. A total of 23 prostate cancer patients with biochemical relapse, of which 13 were castration sensitive (CS) and 10 castration resistant (CR), were treated with intensity-modulated and image-guided RT (IMRT-IGRT) on ≤3 metastases detected by (68)Ga PSMA PET-CT. Androgen deprivation therapy was continued in CR patients. A total of 38 metastases were treated. The involved sites were pelvic bone (n = 16), pelvic lymph nodes (n = 11), paraaortic lymph nodes (n = 6), ribs (n = 3) and vertebral body (n = 2). The median PSA prior to RT was 1.1 ng/mL (range 0.1-29.0 ng/mL). A median dose of 43.5 Gy (range 30-64 Gy) was delivered by IMRT-IGRT in 12-27 fractions. At a median follow-up of 7 months (range 2-17 months), 19 patients (83%) were in remission. Four patients (17%) developed distant recurrences. The actuarial 1-year LC, PFS and OS rates were 100, 51 (95% CI 8-83%) and 100%. Univariate analysis demonstrated a statistically significantly better PFS in CS patients as compared to CR patients (1-year PFS 67 vs. 0%, p < 0.01). One patient experienced grade 2 acute gastrointestinal toxicity. Grade 3 or more toxicity events were not observed. By providing optimal LC, low toxicity and a promising PFS in CS patients, the current retrospective study illustrated that (68)Ga PSMA PET-CT-guided RT may be an attractive treatment strategy in patients with oligometastatic prostate cancer. Validation by randomized trials is eagerly awaited.

  16. [18F]ASEM, a radiolabeled antagonist for imaging the α7-nicotinic acetylcholine receptor (α7-nAChR) with positron emission tomography (PET)

    PubMed Central

    Horti, Andrew G.; Gao, Yongjun; Kuwabara, Hiroto; Wang, Yuchuan; Abazyan, Sofya; Yasuda, Robert P.; Tran, Thao; Xiao, Yingxian; Sahibzada, Niaz; Holt, Daniel P.; Kellar, Kenneth J.; Pletnikov, Mikhail V.; Pomper, Martin G.; Wong, Dean F.; Dannals, Robert F.

    2014-01-01

    The α7-nicotinic cholinergic receptor (α7-nAChR) is a key mediator of brain communication and has been implicated in a wide variety of central nervous system disorders. None of the currently available PET radioligands for α7-nAChR are suitable for quantitative PET imaging, mostly due to insufficient specific binding. The goal of this study was to evaluate the potential of [18F]ASEM ([18F]JHU82132) as an α7-nAChR radioligand for PET. Methods Inhibition binding assay and receptor functional properties of ASEM were assessed in vitro. The brain regional distribution of [18F]ASEM in baseline and blockade were evaluated in DISC1 mice (dissection) and baboons (PET). Results ASEM is an antagonist for the α7-nAChR with high binding affinity (Ki = 0.3 nM). [18F]ASEM readily entered the baboon brain and specifically labeled α7-nAChR. The in vivo specific binding of [18F]ASEM in the brain regions enriched with α7-nAChRs was 80–90%. SSR180711, an α7-nAChR selective partial agonist, blocked [18F]ASEM binding in the baboon brain in a dose-dependent manner, suggesting that the binding of [18F]ASEM was mediated by α7-nAChRs and the radioligand was suitable for drug evaluation studies. In the baboon baseline studies, the brain regional volume of distribution (VT) values for [18F]ASEM were 23 (thalamus), 22 (insula), 18 (hippocampus) and 14 (cerebellum), whereas in the binding selectivity (blockade) scan, all regional VT values were reduced to less than 4. The range of regional binding potential (BPND) values in the baboon brain was from 3.9 to 6.6. In vivo cerebral binding of [18F]ASEM and α7-nAChR expression in mutant DISC1 mice, a rodent model of schizophrenia, was significantly lower than in control animals, which is in agreement with previous post-mortem human data. Conclusion [18F]ASEM holds promise as a radiotracer with suitable imaging properties for quantification of α7-nAChR in the human brain. PMID:24556591

  17. Can the combined administration of labelled fluoro-2 deoxy d glucose and insulin or chrome increase the diagnostic sensitivity of Positron Emission Tomography (PET)?

    PubMed

    Aydin, Suleyman

    2017-07-01

    In this letter to editor I hypothesize that administering insulin or chrome along with fluoro-2 deoxy d-glucose (FDG) to enhance its uptake in malignant lesions that are known to have low levels of tumor glycolysis, and therefore, improve the sensitivity of PET imaging in this setting. The logic behind this idea stems from the known fact that there is substantial increase in uptake of d-glucose following administration of insülin/chrome in many tissues, and as such, the same pattern would apply to FDG. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Oncocytic carcinoid tumor of the lung with intense F-18 fluorodeoxyglucose (FDG) uptake in positron emission tomography-computed tomography (PET/CT).

    PubMed

    Tanabe, Yuki; Sugawara, Yoshifumi; Nishimura, Rieko; Hosokawa, Kohei; Kajihara, Makoto; Shimizu, Teruhiko; Takahashi, Tadaaki; Sakai, Shinya; Sawada, Shigeki; Yamashita, Motohiro; Ohtani, Haruhiko

    2013-10-01

    The present report describes a case of typical carcinoid tumor with intense fluorodeoxyglucose (FDG) uptake. The most of tumor cells were characterized by eosinophilic cytoplasm resulting from accumulation of mitochondria, which was called an oncocytic carcinoid tumor. Glucose transporter type 1 (GLUT-1) was expressed in a membranous pattern in the oncocytic component. Oncocytic carcinoid tumors could show intense FDG uptake due to the numerous intracellular mitochondria and the membranous overexpression of GLUT-1. Thus, it could be a potential pitfall of interpreting FDG-PET/CT image.

  19. Preliminary evaluation of [18F]AlF-NOTA-MAL-Cys39-exendin-4 in insulinoma with PET.

    PubMed

    Xu, Qing; Zhu, Chen; Xu, Yuping; Pan, Donghui; Liu, Ping; Yang, Runlin; Wang, Lizhen; Chen, Fei; Sun, Xinchen; Luo, Shineng; Yang, Min

    2015-01-01

    High expression of glucagon-like peptide-1 receptor (GLP-1R) in insulinoma supplies a potential drug target for tumor imaging. Exendin-4 can specifically bind to GLP-1R as an agonist and its analogs are extensively used in receptor imaging studies. A new GLP-1R imaging agent, [(18)F]AlF-NOTA-MAL-Cys(39)-exendin-4, was designed and prepared for insulinoma imaging. Cys(39)-exendin-4 was conjugated with NOTA-MAL, then the compound was radiolabeled with [(18)F]AlF complex to obtained [(18)F]AlF-NOTA-MAL-Cys(39)-exendin-4. The tumor-targeting characters of the tracer were evaluated in INS-1 cells and BALB/c nude mice models. [(18)F]AlF-NOTA-MAL-Cys(39)-exendin-4 can be efficiently produced with a yield of 17.5 ± 3.2% (non-decay corrected) and radiochemical purity of >95%. The IC50 value of displacement [(18)F]AlF-NOTA-MAL-Cys(39)-exendin-4 with Cys(39)-exendin-4 was 13.52 ± 1.36 nM. PET images showed excellent tumor visualization with high uptake (9.15 ± 1.6%ID/g at 30 min and 7.74 ± 0.87%ID/g at 60 min). The tumor to muscle, pancreas and liver ratios were 63.25, 3.85 and 7.29 at 60 min after injection. GLP-1R binding specificity was demonstrated by co-injection with an excess of unlabeled Cys(39)-exendin-4 and the tumor uptake was found to be reduced significantly. [(18)F]AlF-NOTA-MAL-Cys(39)-exendin-4 shows favorable characteristics for insulinoma imaging and may be translated to clinical studies.

  20. Positron annihilation study on the effect of Si-content on the recovery of deformed cast Al-Si alloys

    NASA Astrophysics Data System (ADS)

    El-Gamal, S.

    2013-09-01

    Isochronal annealing of Al-1100 and cast Al-Si alloys (Si-content 2, 4, 6 and 8 wt%) after deformation of 66% thickness reduction was investigated between room temperature (RT) and 500 °C. The annealing of defects was studied using Doppler Broadening Spectroscopy (DBS), Total Strain (εT) and Scanning Electron Microscope (SEM). It was found that; (i) three annealing stages of microstructure have been identified for Al-1100 and Al-Si alloys which are related to recovery, partial recrystallization and complete recrystallization (ii) the interaction between Si-precipitates and dislocations in Al-Si alloys leads to higher values of normalized line shape parameter (Snor) and lower values of εT than those for Al-1100 alloy also, it retarded the recovery and recrystallization with temperature (iii) the S-W plot revealed the presence of one type of defects in Al-1100 alloy but in Al-Si alloys the slope of the trajectory changes, which may indicate the occurrence of another defect type (Si-dislocation interaction) (iv) a negative correlation is observed between εT and Snor while a positive correlation between εT and normalized wing parameter (Wnor) is obvious.

  1. Clinical applications with the HIDAC positron camera

    NASA Astrophysics Data System (ADS)

    Frey, P.; Schaller, G.; Christin, A.; Townsend, D.; Tochon-Danguy, H.; Wensveen, M.; Donath, A.

    1988-06-01

    A high density avalanche chamber (HIDAC) positron camera has been used for positron emission tomographic (PET) imaging in three different human studies, including patients presenting with: (I) thyroid diseases (124 cases); (II) clinically suspected malignant tumours of the pharynx or larynx (ENT) region (23 cases); and (III) clinically suspected primary malignant and metastatic tumours of the liver (9 cases, 19 PET scans). The positron emitting radiopharmaceuticals used for the three studies were Na 124I (4.2 d half-life) for the thyroid, 55Co-bleomycin (17.5 h half-life) for the ENT-region and 68Ga-colloid (68 min half-life) for the liver. Tomographic imaging was performed: (I) 24 h after oral Na 124I administration to the thyroid patients, (II) 18 h after intraveneous administration of 55Co-bleomycin to the ENT patients and (III) 20 min following the intraveneous injection of 68Ga-colloid to the liver tumour patients. Three different imaging protocols were used with the HIDAC positron camera to perform appropriate tomographic imaging in each patient study. Promising results were obtained in all three studies, particularly in tomographic thyroid imaging, where a significant clinical contribution is made possible for diagnosis and therapy planning by the PET technique. In the other two PET studies encouraging results were obtained for the detection and precise localisation of malignant tumour disease including an estimate of the functional liver volume based on the reticulo-endothelial-system (RES) of the liver, obtained in vivo, and the three-dimensional display of liver PET data using shaded graphics techniques. The clinical significance of the overall results obtained in both the ENT and the liver PET study, however, is still uncertain and the respective role of PET as a new imaging modality in these applications is not yet clearly established. To appreciate the clinical impact made by PET in liver and ENT malignant tumour staging needs further investigation

  2. Comparison of FDG PET and positron coincidence detection imaging using a dual-head gamma camera with 5/8-inch NaI(Tl) crystals in patients with suspected body malignancies.

    PubMed

    Boren, E L; Delbeke, D; Patton, J A; Sandler, M P

    1999-04-01

    The purpose of this study was to compare the diagnostic accuracy of fluorine-18 fluorodeoxyglucose (FDG) images obtained with (a) a dual-head coincidence gamma camera (DHC) equipped with 5/8-inch-thick NaI(Tl) crystals and parallel slit collimators and (b) a dedicated positron emission tomograph (PET) in a series of 28 patients with known or suspected malignancies. Twenty-eight patients with known or suspected malignancies underwent whole-body FDG PET imaging (Siemens, ECAT 933) after injection of approximately 10 mCi of 18F-FDG. FDG DHC images were then acquired for 30 min over the regions of interest using a dual-head gamma camera (VariCam, Elscint). The images were reconstructed in the normal mode, using photopeak/photopeak, photopeak/Compton, and Compton/photopeak coincidence events. FDG PET imaging found 45 lesions ranging in size from 1 cm to 7 cm in 28 patients. FDG DHC imaging detected 35/45 (78%) of these lesions. Among the ten lesions not seen with FDG DHC imaging, eight were less than 1.5 cm in size, and two were located centrally within the abdomen suffering from marked attenuation effects. The lesions were classified into three categories: thorax (n=24), liver (n=12), and extrahepatic abdominal (n=9). FDG DHC imaging identified 100% of lesions above 1.5 cm in the thorax group and 78% of those below 1.5 cm, for an overall total of 83%. FDG DHC imaging identified 100% of lesions above 1.5 cm, in the liver and 43% of lesions below 1.5 cm, for an overall total of 67%. FDG DHC imaging identified 78% of lesions above 1.5 cm in the extrahepatic abdominal group. There were no lesions below 1.5 cm in this group. FDG coincidence imaging using a dual-head gamma camera detected 90% of lesions greater than 1.5 cm. These data suggest that DHC imaging can be used clinically in well-defined diagnostic situations to differentiate benign from malignant lesions.

  3. Using positron emission tomography (PET) response criteria in solid tumours (PERCIST) 1.0 for evaluation of 2'-deoxy-2'-[18F] fluoro-D-glucose-PET/CT scans to predict survival early during treatment of locally advanced non-small cell lung cancer (NSCLC).

    PubMed

    Fledelius, Joan; Khalil, Azza Ahmed; Hjorthaug, Karin; Frøkiaer, Jørgen

    2016-04-01

    The demand for early-response evaluation with 2'-deoxy-2'-[18F] fluoro-D-glucose (F-18-FDG) positron emission tomography combined with whole body CT (PET/CT) is rapidly growing. This study was initiated to evaluate the applicability of the PET response criteria in solid tumours (PERCIST 1.0) for response evaluation. We performed a retrospective study of 21 patients with locally advanced non-small cell lung cancer (NSCLC), who had undergone both a baseline and a follow-up F-18-FDG-PET/CT scan during their treatments. The scans were performed at our institution in the period September 2009 and March 2011 and were analysed visually and according to PERCIST 1.0 by one board-certified nuclear medicine physician. The response was compared with overall survival (OS) and progression-free survival (PFS). The variation in key parameters affecting the F-18-FDG uptake was assessed. A kappa of 0.94 corresponding to an almost perfect agreement was found for the comparison of the visual evaluation with PERCIST. Patients with partial metabolic response and stable metabolic disease (as evaluated by PERCIST 1.0) had statistically significant longer median time to progression: 8.4 months (confidence interval (CI) 5.1-11.8 months) as compared with 2.7 months (CI 0-5.6 months) in patients classified with progression. The variation in uptake time between baseline and follow-up scans was more than the recommended 15 min in 48% of patients. PERCIST 1.0 is readily implementable and highly comparable with visual evaluation of response using early F-18-FDG-PET/CT scanning for locally advanced NSCLC patients. In spite of variations in parameters affecting F-18-FDG uptake, evaluation of F-18-FDG-PET/CT during treatment with PERCIST 1.0 is shown to separate non-responders from responders, each with statistically significant differences in both OS and PFS. © 2015 The Royal Australian and New Zealand College of Radiologists.

  4. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.

    1987-05-22

    This invention involved a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide in activators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography. 2 figs.

  5. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, Joanna S.; MacGregor, Robert R.; Wolf, Alfred P.; Langstrom, Bengt

    1990-01-01

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

  6. Positron emitter labeled enzyme inhibitors

    SciTech Connect

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-04-03

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

  7. Functional evaluation of myocardial viability by 99mTc tetrofosmin gated SPECT--a quantitative comparison with 18F fluorodeoxyglucose positron emission CT (18F FDG PET).

    PubMed

    Kuwabara, Y; Watanabe, S; Nakaya, J; Fujiwara, M; Hasegawa, R; Matsuno, K; Kuroda, T; Mikami, Y; Fujii, K; Himi, T; Masuda, Y

    1999-06-01

    To validate functional analysis of gated SPECT in detecting myocardial viability, seventeen patients (male 15, female 2, mean age 58) with angiographically proven chronic ischemic heart disease (RCA 6, LAD 10, LCX 1) and eight normal volunteers (all male) were studied. All patients underwent 18F FDG PET and 99mTc tetrofosmin (TF) gated SPECT within a week. After being displayed in a polar map, myocardial perfusion was regionally determined by the mean count in 9 segments at end diastole (ED) and end systole (ES) in gated SPECT. Systolic function was determined by the count increase ratio from ED to ES (WTI: ES - ED/ED). Glucose metabolism was assessed by 18F FDG PET in the segments correspondent to those defined for SPECT. TF %uptake of < 60% was defined as hypoperfusion, and FDG %uptake of < 50% was defined as reduced glucose metabolism. The myocardial segments were classified into 3 categories: "normal" perfusion (n = 85), "mismatch" (reduced perfusion with reserved FDG uptake, n = 25) and "matched" reduced perfusion and metabolic reduction (n = 26). Mean WTI in "mismatch" segment was 0.38 +/- 0.21, and was significantly greater than that in "matched reduced" segments, 0.15 +/- 0.20 (p < 0.001). It was also greater than that in "normal" segments, 0.27 +/- 0.16. Regression analysis showed that association between WTI and FDG %uptake was significant (r = 0.57, p < 0.0005) for the ischemic segments ("mismatch" + "matched", n = 51), but the association was weak for the entire segments although it was statistically significant (r = 0.26, p = 0.02, n = 136). For the segments determined as infarct by perfusion image, systolic functional analysis by gated SPECT is helpful in differentiation of a viable myocardial region or artifact from a scar. Nevertheless, further clinical and technical assessment is required for ECG gating to eliminate overestimation of viability and to warrant clinical use.

  8. Positron Physics

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J.

    2003-01-01

    I will give a review of the history of low-energy positron physics, experimental and theoretical, concentrating on the type of work pioneered by John Humberston and the positronics group at University College. This subject became a legitimate subfield of atomic physics under the enthusiastic direction of the late Sir Harrie Massey, and it attracted a diverse following throughout the world. At first purely theoretical, the subject has now expanded to include high brightness beams of low-energy positrons, positronium beams, and, lately, experiments involving anti-hydrogen atoms. The theory requires a certain type of persistence in its practitioners, as well as an eagerness to try new mathematical and numerical techniques. I will conclude with a short summary of some of the most interesting recent advances.

  9. Positron Physics

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J.

    2003-01-01

    I will give a review of the history of low-energy positron physics, experimental and theoretical, concentrating on the type of work pioneered by John Humberston and the positronics group at University College. This subject became a legitimate subfield of atomic physics under the enthusiastic direction of the late Sir Harrie Massey, and it attracted a diverse following throughout the world. At first purely theoretical, the subject has now expanded to include high brightness beams of low-energy positrons, positronium beams, and, lately, experiments involving anti-hydrogen atoms. The theory requires a certain type of persistence in its practitioners, as well as an eagerness to try new mathematical and numerical techniques. I will conclude with a short summary of some of the most interesting recent advances.

  10. Positron annihilation studies on the behaviour of vacancies in LaAlO3/SrTiO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Yuan, Guoliang; Li, Chen; Yin, Jiang; Liu, Zhiguo; Wu, Di; Uedono, Akira

    2012-11-01

    The formation and diffusion of vacancies are studied in LaAlO3/SrTiO3 heterostructures. Oxygen vacancies (VOS) appear easily in the SrTiO3 substrate during LaAlO3 film growth at 700 °C and 10-4 Pa oxygen pressure rather than at 10-3-10-1 Pa, thus the latter two-dimensional electron gas should come from the polarity discontinuity at the (LaO)+/(TiO2)0 interface. For SrTiO3-δ/LaAlO3/SrTiO3, high-density VOS of the SrTiO3-δ film can pass through the LaAlO3 film and then diffuse to 1.7 µm depth in the SrTiO3 substrate, suggesting that LaAlO3 has VOS at its middle-deep energy levels within the band gap. Moreover, high-density VOS may combine with a strontium/titanium vacancy (VSr/Ti) to form VSr/Ti-O complexes in the SrTiO3 substrate at 700 °C.

  11. Pilot study of positron emission tomography (PET) brain glucose metabolism to assess the efficacy of tongue and body acupuncture in cerebral palsy.

    PubMed

    Wong, Virginia C N; Sun, Jie-Guang; Yeung, David W C

    2006-06-01

    We aimed to assess the efficacy of tongue and body acupuncture with clinical function and brain glucose metabolism in children with a severe type of cerebral palsy. Four children were recruited. The motor function belonged to grade 5 of the Gross Motor Function Measure (i.e., completely nonambulatory). Daily tongue and body acupuncture was applied for 5 days a week for 8 weeks. The Functional Independence Scale for Children (WeeFIM), Clinical Global Impression Scale (CGIS), and positron emission tomography of the brain with [18F]fluorodeoxyglucose (FDG) were performed at baseline and after acupuncture. None of the children had any significant change in the Functional Independence Scale for Children score, despite the fact that all mothers scored 3 on the Clinical Global Impression Scale (i.e., 25% in improvement) in overall function. The brain glucose metabolism, however, showed a >10% increase in the frontal, parietal, temporal, and occipital cortices and cerebellum. Thus, a short course of tongue and body acupuncture was shown to increase brain glucose metabolism, despite lacking any clinical functional improvement seen during the eight-week course, possibly owing to the severity of the motor dysfunction and the short duration of treatment. The objective increase in brain glucose metabolism might serve as a surrogate marker for assessing the subclinical efficacy of an alternative treatment before any objective clinical improvement is evident. A larger-scale study for different degrees of severity of cerebral palsy and an impairment model should be undertaken to correlate clinical with neurometabolic change.

  12. Clinical impact and diagnostic accuracy of 2-[(18)F]-fluoro-2-deoxy-d-glucose positron-emission tomography/computed tomography (PET/CT) brain imaging in patients with cognitive impairment: a tertiary centre experience in the UK.

    PubMed

    Motara, H; Olusoga, T; Russell, G; Jamieson, S; Ahmed, S; Brindle, N; Pillai, A; Scarsbrook, A F; Patel, C N; Chowdhury, F U

    2017-01-01

    To evaluate the clinical impact of combined 2-[(18)F]-fluoro-2-deoxy-d-glucose (FDG) positron-emission tomography/computed tomography (PET/CT) brain imaging performed in selected patients with cognitive impairment at a tertiary referral centre in the UK, and to assess the accuracy of FDG PET/CT to correctly establish the diagnosis of Alzheimer's dementia (AD) in "real-world" clinical practice. Using an institutional radiology database, 136 patients were identified for inclusion in the study. FDG PET/CT was performed using a standard technique and interpreted by dual-trained radiologists and nuclear medicine physicians. Standardised questionnaires were sent to the referring clinicians to establish the final clinical diagnosis and to obtain information about the clinical impact of FDG PET/CT. There was a 72% questionnaire return (98/136), with mean patient follow-up of 471 (standard deviation 205) days. FDG PET/CT had an impact on patient management in 81%, adding confidence to the pre-test diagnosis in 43%, changing the pre-test diagnosis in 35%, reducing the need for further investigations in 42%, and resulting in a change in therapy in 32%. There was substantial correlation between the PET/CT diagnosis and final clinical diagnosis with a correlation (k) coefficient of 0.78 (p<0.0001). The accuracy of FDG PET/CT in diagnosis of AD was 94% (95% confidence interval [CI]: 87-99), with a sensitivity of 87% (95% CI: 75-92) and a specificity of 97% (95% CI: 87-99). FDG PET/CT brain imaging has a significant clinical impact when performed selectively in patients with cognitive impairment and shows high accuracy in the diagnosis of AD in "real-world" clinical practice. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  13. Positron emission tomography: physics, instrumentation, and image analysis.

    PubMed

    Porenta, G

    1994-01-01

    Positron emission tomography (PET) is a noninvasive diagnostic technique that permits reconstruction of cross-sectional images of the human body which depict the biodistribution of PET tracer substances. A large variety of physiological PET tracers, mostly based on isotopes of carbon, nitrogen, oxygen, and fluorine is available and allows the in vivo investigation of organ perfusion, metabolic pathways and biomolecular processes in normal and diseased states. PET cameras utilize the physical characteristics of positron decay to derive quantitative measurements of tracer concentrations, a capability that has so far been elusive for conventional SPECT (single photon emission computed tomography) imaging techniques. Due to the short half lives of most PET isotopes, an on-site cyclotron and a radiochemistry unit are necessary to provide an adequate supply of PET tracers. While operating a PET center in the past was a complex procedure restricted to few academic centers with ample resources, PET technology has rapidly advanced in recent years and has entered the commercial nuclear medicine market. To date, the availability of compact cyclotrons with remote computer control, automated synthesis units for PET radiochemistry, high-performance PET cameras, and user-friendly analysis workstations permits installation of a clinical PET center within most nuclear medicine facilities. This review provides simple descriptions of important aspects concerning physics, instrumentation, and image analysis in PET imaging which should be understood by medical personnel involved in the clinical operation of a PET imaging center.

  14. Radiosynthesis and evaluation of an 18F-labeled positron emission tomography (PET) radioligand for metabotropic glutamate receptor subtype 4 (mGlu4).

    PubMed

    Kil, Kun-Eek; Poutiainen, Pekka; Zhang, Zhaoda; Zhu, Aijun; Choi, Ji-Kyung; Jokivarsi, Kimmo; Brownell, Anna-Liisa

    2014-11-13

    Four 4-phthalimide derivatives of N-(3-chlorophenyl)-2-picolinamide were synthesized as potential ligands for the PET imaging of mGlu4 in the brain. Of these compounds, N-(3-chloro-4-(4-fluoro-1,3-dioxoisoindolin-2-yl)phenyl)-2-picolinamide (3, KALB001) exhibited improved binding affinity (IC50 = 5.1 nM) compared with ML128 (1) and was subsequently labeled with (18)F. When finally formulated in 0.1 M citrate buffer (pH 4) with 10% ethanol, the specific activity of [(18)F]3 at the end of synthesis (EOS) was 233.5 ± 177.8 GBq/μmol (n = 4). The radiochemical yield of [(18)F]3 was 16.4 ± 4.8% (n = 4), and the purity was over 98%. In vivo imaging studies in a monkey showed that the radiotracer quickly penetrated the brain with the highest accumulation in the brain areas known to express mGlu4. Despite some unfavorable radiotracer properties like fast washout in rodent studies, [(18)F]3 is the first (18)F-labeled mGlu4 radioligand, which can be further modified to improve pharmacokinetics and brain penetrability for future human studies.

  15. Radiosynthesis and Evaluation of an 18F-Labeled Positron Emission Tomography (PET) Radioligand for Metabotropic Glutamate Receptor Subtype 4 (mGlu4)

    PubMed Central

    2015-01-01

    Four 4-phthalimide derivatives of N-(3-chlorophenyl)-2-picolinamide were synthesized as potential ligands for the PET imaging of mGlu4 in the brain. Of these compounds, N-(3-chloro-4-(4-fluoro-1,3-dioxoisoindolin-2-yl)phenyl)-2-picolinamide (3, KALB001) exhibited improved binding affinity (IC50 = 5.1 nM) compared with ML128 (1) and was subsequently labeled with 18F. When finally formulated in 0.1 M citrate buffer (pH 4) with 10% ethanol, the specific activity of [18F]3 at the end of synthesis (EOS) was 233.5 ± 177.8 GBq/μmol (n = 4). The radiochemical yield of [18F]3 was 16.4 ± 4.8% (n = 4), and the purity was over 98%. In vivo imaging studies in a monkey showed that the radiotracer quickly penetrated the brain with the highest accumulation in the brain areas known to express mGlu4. Despite some unfavorable radiotracer properties like fast washout in rodent studies, [18F]3 is the first 18F-labeled mGlu4 radioligand, which can be further modified to improve pharmacokinetics and brain penetrability for future human studies. PMID:25330258

  16. [Tau Positron Emission Tomography].

    PubMed

    Higuchi, Makoto

    2017-07-01

    Accumulation of fibrillar tau protein aggregates is a neuropathological hallmark of Alzheimer's disease (AD) and related neurodegenerative dementias, including a subgroup of frontotemporal lobar degeneration (FTLD). Visualization of tau lesions in the brains of living subjects enables a pathology-based diagnosis of dementing illnesses in the prodromal stage, and offers objective measures of disease progression and outcomes of disease-modifying therapies. With this rationale, diverse classes of low-molecular-weight chemicals capable of binding to a β-pleated sheet structure have been developed to be used for in vivo positron emission tomography (PET) of tau pathologies. Clinical PET studies of AD patients with such tau probes have provided the following insights: (1) Tau fibrils accumulate in the hippocampal formation in an age-dependent manner that is independent of amyloid-beta peptide (Aβ) pathology; (2) The deposition of Aβ may trigger a spatial expansion of tau pathology, in transition from normal aging to advanced AD; and (3) Tau accumulation is intimately associated with local neuronal loss, leading to cortical atrophy and focal symptoms. In contrast, studies of FTLD have shown a limited performance of first-generation PET probes in capturing non-AD-type tau lesions. New compounds have accordingly been developed and clinically tested, proving to yield a high contrast for tau deposits with high specificity. These second-generation probes are being evaluated primarily by pharmaceutical companies, in line with their growing demands for neuroimaging-based biomarkers serving for clinical trials of anti-Aβ and anti-tau therapies. Meanwhile, a consortium flexibly linking academia and industry to facilitate the utilization of research tools, including tau PET probes, has been established in Japan, for the ultimate purpose of elucidating the molecular etiology of tauopathies and creating diagnostic and therapeutic agents based on such an understanding.

  17. PET Imaging of Angiogenesis after Myocardial Infarction/Reperfusion using a One-Step Labeled Integrin Targeted Tracer 18F-AlF-NOTA-PRGD2

    PubMed Central

    Gao, Haokao; Lang, Lixin; Guo, Ning; Cao, Feng; Quan, Qimeng; Hu, Shuo; Kiesewetter, Dale O.; Niu, Gang; Chen, Xiaoyuan

    2012-01-01

    Objective The αvβ3 integrin represents a potential target for noninvasive imaging of angiogenesis. The purpose of this study was to evaluate a novel one-step labeled integrin αvβ3 targeting PET probe, 18F-AlF-NOTA-PRGD2, for angiogenesis imaging in a myocardial infract/reperfusion (MI/R) animal model. Methods Male SD rats underwent 45 min transient left coronary artery occlusion followed by reperfusion. The myocardial infarction was confirmed by ECG, 18F-FDG imaging and cardiac ultrasound. In vivo PET imaging were used to determine myocardial uptake of 18F-AlF-NOTA-PRGD2 at different time points following reperfusion. The control peptide RAD was labeled with a similar procedure and used to confirm the specificity. Ex vivo autoradiographic analysis and CD31/CD61 double immunofluoresence staining were performed to validate the PET results. Results Myocardial origin of the 18F-AlF-NOTA-PRGD2 accumulation was confirmed by 18F-FDG and autoradiography. PET imaging demonstrated increased focal accumulation of 18F-AlF-NOTA-PRGD2 in the infarcted area started at day 3 (0.28 ± 0.03 %ID/g, p < 0.05), peaked between 1 and 3 weeks (0.59 ± 0.16 and 0.55 ± 0.13 %ID/g, respectively). The focal accumulation decreased but still kept at a higher level than the sham group after 4 months of reperfusion (0.31 ± 0.01 %ID/g, p < 0.05). Pretreatment with unlabeled RGD peptide significantly decreased tracer uptake, indicating integrin specificity of this tracer. At 1 week after MI/R, uptake of the control tracer 18F-AlF-NOTA-RAD that does not bind to integrin, in the infarcted area, was only 0.21 ± 0.01 %ID/g. Autoradiographic imaging showed the same trend of uptake in myocardial infarction area. The time course of focal tracer uptake was consistent with the pattern of vascular density and integrin β3 expression as measured by CD31 and CD61 immunostaining analysis. Conclusion PET imaging using one-step labeled 18F-AlF-NOTA-PRGD2 allows noninvasive visualization of ischemia

  18. Role of positron emission tomography in urological oncology.

    PubMed

    Rioja, Jorge; Rodríguez-Fraile, Macarena; Lima-Favaretto, Ricardo; Rincón-Mayans, Anibal; Peñuelas-Sánchez, Iván; Zudaire-Bergera, Juan Javier; Parra, Raul O

    2010-12-01

    • Positron emission tomography (PET) is a diagnostic tool using radiotracers to show changes in metabolic activities in tissues. We analysed the role of PET and PET/computed tomography (CT) in the diagnosis, staging, and follow-up of urological tumours. • A critical, non-structured review of the literature of the role of PET and PET/CT in urological oncology was conducted. • PET and PET/CT can play a role in the management of urological malignancies. For prostate cancer, the advances in radiotracers seems promising, with novel radiotracers yielding better diagnostic and staging results than 18F-fluorodeoxyglucose (18F-FDG). In kidney cancer, PET and PET/CT allow a proper diagnosis before the pathological examination of the surgical specimen. For testis cancer, PET and PET/CT have been shown to be useful in the management of seminoma tumours. In bladder cancer, these scans allow a better initial diagnosis for invasive cancer, while detecting occult metastases. • PET and its combined modality PET/CT have shown their potential in the diagnosis of urological malignancies. However, further studies are needed to establish the role of PET in the management of these diseases. Future applications of PET may involve fusion techniques such as magnetic resonance imaging with PET.

  19. The value of ultrasound-guided biopsy of fluorodeoxy-glucose positron emission tomography (FDG-PET)-positive supraclavicular lymph nodes in patients with suspected lung cancer.

    PubMed

    Werner, Lennart; Keller, Franziska Aebersold; Bhure, Ujwal; Roos, Justus Egidius; Tornquist, Katharina; Del Sol Pèrez-Lago, Maria; Gautschi, Oliver; Strobel, Klaus

    2017-07-11

    Accurate lymph node staging is essential for adequate prognostication and therapy planning in patients with non-small cell lung cancer (NSCLC). FDG-PET/CT is a sensitive tool for the detection of metastases, including non-palpable supraclavicular lymph node (SCLN) metastases. Histological proof of metastatic spread and mutation analysis is crucial for optimal staging and therapy. The aim of this study was to investigate the value of ultrasound-guided fine needle aspiration cytology (FNAC) and core biopsy (CB) of FDG active, non-palpable SCLN's in patients with suspicion for lung cancer. Twelve consecutive patients with suspected lung cancer and FDG-positive SCLN underwent FNAC (n = 11) and/or CB (n = 10) and were included and evaluated retrospectively in this study. Cytologic and/or histologic evaluation was performed to confirm initially suspected diagnosis (lung cancer), to confirm N3 stage, and to screen for driver mutations in lung adenocarcinoma. FNAC alone showed diagnostic success in 11/11 cases (100%), CB alone in 9/10 patients (90%), and the combination of both procedures was successful in 12/12 cases (100%). Lymph node metastases from NSCLC (7 adenocarcinoma, 2 squamous cell carcinoma) could be confirmed in 9 patients. Other diagnoses were small cell lung cancer (SCLC), breast cancer and sarcoidosis. There was enough material for immunhistochemistry in all patients. For molecular testing, material from this lymph node biopsies and lung biopsy was used. In two patients with adenocarcinoma of the lung driver mutations were detected (EGFR Exon 19 deletion and ALK rearrangement) out of the lymph node metastasis. US-guided combined FNAC and CB of FDG positive supraclavicular lymph nodes in patients with suspected lung cancer is a safe and effective procedure to confirm N3-stage and to obtain representative material for molecular testing.

  20. Monte Carlo investigation of positron annihilation in medical positron emission tomography

    NASA Astrophysics Data System (ADS)

    Chin, P. W.; Spyrou, N. M.

    2007-09-01

    A number of Monte Carlo codes are available for simulating positron emission tomography (PET), however, physics approximations differ. A number of radiation processes are deemed negligible, some without rigorous investigation. Some PET literature quantify approximations to be valid, without citing the data source. The radiation source is the first step in Monte Carlo simulations, for some codes this is 511 keV photons 180° apart, not polyenergetic positrons with radiation histories of their own. Without prior assumptions, we investigated electron-positron annihilation under clinical PET conditions. Just before annihilation, we tallied the positron energy and position. Right after annihilation, we tallied the energy and separation angle of photon pairs. When comparing PET textbooks with theory, PENELOPE and EGSnrc, only the latter three agreed. From 10 6 radiation histories, a positron source of 15O in a chest phantom annihilated at as high as 1.58 MeV, producing photons with energies 0.30-2.20 MeV, 79-180° apart. From 10 6 radiation histories, an 18F positron source in a head phantom annihilated at energies as high as 0.56 MeV, producing 0.33-1.18 MeV photons 109-180° apart. 2.5% and 0.8% annihilation events occurred inflight in the chest and the head phantoms, respectively. PET textbooks typically either do not mention any deviation from 180°, or state a deviation of 0.25° or 0.5°. Our findings are founded on the well-established Heitler cross-sections and relativistic kinematics, both adopted unanimously by PENELOPE, EGSnrc and GEANT4. Our results highlight the effects of annihilation in-flight, a process sometimes forgotten within the PET community.

  1. Positron emission mammography imaging

    SciTech Connect

    Moses, William W.

    2003-10-02

    This paper examines current trends in Positron Emission Mammography (PEM) instrumentation and the performance tradeoffs inherent in them. The most common geometry is a pair of parallel planes of detector modules. They subtend a larger solid angle around the breast than conventional PET cameras, and so have both higher efficiency and lower cost. Extensions to this geometry include encircling the breast, measuring the depth of interaction (DOI), and dual-modality imaging (PEM and x-ray mammography, as well as PEM and x-ray guided biopsy). The ultimate utility of PEM may not be decided by instrument performance, but by biological and medical factors, such as the patient to patient variation in radiotracer uptake or the as yet undetermined role of PEM in breast cancer diagnosis and treatment.

  2. The functional neuroanatomy of verbal memory in Alzheimer's disease: [(18)F]-Fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) correlates of recency and recognition memory.

    PubMed

    Staffaroni, Adam M; Melrose, Rebecca J; Leskin, Lorraine P; Riskin-Jones, Hannah; Harwood, Dylan; Mandelkern, Mark; Sultzer, David L

    2017-09-01

    The objective of this study was to distinguish the functional neuroanatomy of verbal learning and recognition in Alzheimer's disease (AD) using the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) Word Learning task. In 81 Veterans diagnosed with dementia due to AD, we conducted a cluster-based correlation analysis to assess the relationships between recency and recognition memory scores from the CERAD Word Learning Task and cortical metabolic activity measured using [(18)F]-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET). AD patients (Mini-Mental State Examination, MMSE mean = 20.2) performed significantly better on the recall of recency items during learning trials than of primacy and middle items. Recency memory was associated with cerebral metabolism in the left middle and inferior temporal gyri and left fusiform gyrus (p < .05 at the corrected cluster level). In contrast, recognition memory was correlated with metabolic activity in two clusters: (a) a large cluster that included the left hippocampus, parahippocampal gyrus, entorhinal cortex, anterior temporal lobe, and inferior and middle temporal gyri; (b) the bilateral orbitofrontal cortices (OFC). The present study further informs our understanding of the disparate functional neuroanatomy of recency memory and recognition memory in AD. We anticipated that the recency effect would be relatively preserved and associated with temporoparietal brain regions implicated in short-term verbal memory, while recognition memory would be associated with the medial temporal lobe and possibly the OFC. Consistent with our a priori hypotheses, list learning in our AD sample was characterized by a reduced primacy effect and a relatively spared recency effect; however, recency memory was associated with cerebral metabolism in inferior and lateral temporal regions associated with the semantic memory network, rather than regions associated with short-term verbal memory. The correlates of

  3. Methods and applications of positron-based medical imaging

    NASA Astrophysics Data System (ADS)

    Herzog, H.

    2007-02-01

    Positron emission tomography (PET) is a diagnostic imaging method to examine metabolic functions and their disorders. Dedicated ring systems of scintillation detectors measure the 511 keV γ-radiation produced in the course of the positron emission from radiolabelled metabolically active molecules. A great number of radiopharmaceuticals labelled with 11C, 13N, 15O, or 18F positron emitters have been applied both for research and clinical purposes in neurology, cardiology and oncology. The recent success of PET with rapidly increasing installations is mainly based on the use of [ 18F]fluorodeoxyglucose (FDG) in oncology where it is most useful to localize primary tumours and their metastases.

  4. Synthesis and positron emission tomographic (PET) baboon studies of [{sup 11}C]methadone and R-(-)-[{sup 11}C]methandone

    SciTech Connect

    Ding, Y.S.; Fowler, J.S.; Volkow, N.D.

    1996-05-01

    Methadone (MET) maintenance has been used successfully for many years in the rehabilitation of heroin addicts. MET, a typical m{mu}-opioid receptor agonist, exists as two enantiomers and is used clinically as the racemic mixture. However, R-(-)-MET has a 10-fold higher affinity for m{mu} receptors than S-(+)-MET (IC{sub 50}: 3.0 nM and 26.4 nM, respectively) and R-(-)-MET is almost entirely responsible for the therapeutic actions of the racemate. In order to examine the pharmacokinetics and stereoselectivity of the drug, we have synthesized both [{sup 11}C]MET and R-(-)-[{sup 11}C]MET. Preparing the precursor by one-step approach to the N-demethylated methadone was precluded as other investigators cited problems with intramolecular cyclization. Therefore, a four-step synthesis using MET (or R-(-)-MET) as starting material was required to obtain the precursor, followed by a two-step radiolabeling synthesis (N-methylation followed by oxidation) to obtain [{sup 11}C]MET (or R-(-)-[{sup 11}C]MET). Comparative PET studies in the same baboon showed peak striatal uptake was 0.022%/cc at 5 minutes with a half time of clearance from peak of 100 minutes for R-(-)-[{sup 11}C]MET and a peak uptake of 0.013%/cc with a half time of 90 min for [{sup 11}C]MET. R-(-)-[{sup 11}C]MET also showed a slower disappearance in plasma. Both tracers showed higher C-11 in basal ganglia (BG), thalamus and midbrain relative to the cerebellum (CB) and occipital cortex (OC) but the BG/OC ratio was higher for R-(-)-[{sup 11}C]MET (1.3 vs 1.1). Pretreatment with naloxone (1 mg/kg, iv) increased R-(-)-[{sup 11}C]MET uptake in all brain regions whereas unlabeled MET slightly increased C-11 clearance in BG, OC and CB. These initial results show higher brain concentration and specificity of the pharmacologically active enantiomer of methadone along with significant non-specific binding.

  5. Positron emission tomography in the evaluation of subdural hematomas

    SciTech Connect

    Ericson, K.; Bergstroem, M.; Eriksson, L.

    1980-12-01

    Fifteen patients with 21 subdural effusions were investigated both with transmission computer assisted tomography (CAT) and positron emission tomography (PET). The tracer in the emission studies was /sup 68/Ga-EDTA. Twelve lesions were visualized both with CAT and PET. Five lesions that were negative or doubtful on CAT were visualized with PET, whereas four lesions negative or doubtful on PET were demonstrated by CAT. The two methods complement each other due to the fact that they are based on different mechanisms: CAT mainly on attenuation of the fluid collection. PET on isotope accumulation, particularly in the hematoma membranes.

  6. Quantitative simultaneous positron emission tomography and magnetic resonance imaging

    PubMed Central

    Ouyang, Jinsong; Petibon, Yoann; Huang, Chuan; Reese, Timothy G.; Kolnick, Aleksandra L.; El Fakhri, Georges

    2014-01-01

    Abstract. Simultaneous positron emission tomography and magnetic resonance imaging (PET-MR) is an innovative and promising imaging modality that is generating substantial interest in the medical imaging community, while offering many challenges and opportunities. In this study, we investigated whether MR surface coils need to be accounted for in PET attenuation correction. Furthermore, we integrated motion correction, attenuation correction, and point spread function modeling into a single PET reconstruction framework. We applied our reconstruction framework to in vivo animal and patient PET-MR studies. We have demonstrated that our approach greatly improved PET image quality. PMID:26158055

  7. Positron trapping at grain boundaries

    SciTech Connect

    Dupasquier, A. ); Romero, R.; Somoza, A. )

    1993-10-01

    The standard positron trapping model has often been applied, as a simple approximation, to the interpretation of positron lifetime spectra in situations of diffusion-controlled trapping. This paper shows that this approximation is not sufficiently accurate, and presents a model based on the correct solution of the diffusion equation, in the version appropriate for studying positron trapping at grain boundaries. The model is used for the analysis of new experimental data on positron lifetime spectra in a fine-grained Al-Ca-Zn alloy. Previous results on similar systems are also discussed and reinterpreted. The analysis yields effective diffusion coefficients not far from the values known for the base metals of the alloys.

  8. Resolvability of positron decay channels

    SciTech Connect

    Fluss, M.J.; Howell, R.H.; Rosenberg, I.J.; Meyer, P.

    1985-03-07

    Many data analysis treatments of positron experiments attempt to resolve two or more positron decay or exist channels which may be open simultaneously. Examples of the need to employ such treatments of the experimental results can be found in the resolution of the constituents of a defect ensemble, or in the analysis of the complex spectra which arise from the interaction of slow positrons at or near the surfaces of solids. Experimental one- and two-dimensional angular correlation of annihilation radiation experiments in Al single crystals have shown that two defect species (mono- and divacancies) can be resolved under suitable conditions. Recent experiments at LLNL indicate that there are a variety of complex exit channels open to positrons interacting at surfaces, and ultimely these decay channels must also be suitably resolved from one another. 6 refs., 4 figs.

  9. Guidelines for brain radionuclide imaging. Perfusion single photon computed tomography (SPECT) using Tc-99m radiopharmaceuticals and brain metabolism positron emission tomography (PET) using F-18 fluorodeoxyglucose. The Belgian Society for Nuclear Medicine.

    PubMed

    Vander Borght, T; Laloux, P; Maes, A; Salmon, E; Goethals, I; Goldman, S

    2001-12-01

    The purpose of these guidelines is to assist nuclear medicine practitioners in recommending, performing, interpreting, and reporting the results of brain perfusion SPECT studies using Tc-99m radiopharmaceuticals and brain metabolism PET studies using F-18 fluorodeoxyglucose (FDG). These guidelines have been adapted and extended from those produced by the Society of Nuclear Medicine (Juni et al., 1998) and the European Association of Nuclear Medicine by a Belgian group of experts in the field trained in neurology and/or nuclear medicine. Some indications are not universally approved (e.g. brain death), but largely supported by the literature. They have been included in these guidelines in order to provide recommendations and a standardised protocol.

  10. Value of sequential 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) in prediction of the overall survival of esophageal cancer patients treated with chemoradiotherapy.

    PubMed

    Li, Yimin; Lin, Qin; Luo, Zuoming; Zhao, Long; Zhu, Luchao; Sun, Long; Wu, Hua

    2015-01-01

    This study is to investigate the value of the metabolic parameters measured by sequential FDG PET/CT in predicting the overall survival of patients with esophageal squamous cell carcinoma (ESCC). A total of 160 patients who were newly diagnosed as ESCC patients and treated with chemoradiotherapy were included in this study. The FDG PET/CT was carried out prior to radiotherapy (PET1), when the cumulative dose of radiotherapy reached 50 Gy (PET2), at the end of radiotherapy (PET3) and 1 month after radiotherapy (PET4). The max of the standard uptake value (SUVmax) of the primary tumor, the metabolic tumor volume (MTV) and the total lesion glycolisis (TLG) prior to treatment were measured. The correlation of the measured parameters and the derived parameters of SUVmax with the overall survival was analyzed. The relatively reduced percentage of the SUVmax of PET3 and PET4 to the SUVmax of PET1 and PET2, had predictive value for the overall survival. The area under researcher operation curve (ROC) was between 0.62 and 0.73 (P < 0.01). The MTV and TLG prior to treatment might be used to predict the overall survival, and the area under ROC were both 0.69 (P < 0.001). Sequential FDG PET/CT scanning is useful to predict the overall survival of chemoradiotherapy for ESCC. The metabolic parameters and the derived parameters of FDG PET/CT have predictive values for overall survival.

  11. Value of sequential 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) in prediction of the overall survival of esophageal cancer patients treated with chemoradiotherapy

    PubMed Central

    Li, Yimin; Lin, Qin; Luo, Zuoming; Zhao, Long; Zhu, Luchao; Sun, Long; Wu, Hua

    2015-01-01

    This study is to investigate the value of the metabolic parameters measured by sequential FDG PET/CT in predicting the overall survival of patients with esophageal squamous cell carcinoma (ESCC). A total of 160 patients who were newly diagnosed as ESCC patients and treated with chemoradiotherapy were included in this study. The FDG PET/CT was carried out prior to radiotherapy (PET1), when the cumulative dose of radiotherapy reached 50 Gy (PET2), at the end of radiotherapy (PET3) and 1 month after radiotherapy (PET4). The max of the standard uptake value (SUVmax) of the primary tumor, the metabolic tumor volume (MTV) and the total lesion glycolisis (TLG) prior to treatment were measured. The correlation of the measured parameters and the derived parameters of SUVmax with the overall survival was analyzed. The relatively reduced percentage of the SUVmax of PET3 and PET4 to the SUVmax of PET1 and PET2, had predictive value for the overall survival. The area under researcher operation curve (ROC) was between 0.62 and 0.73 (P < 0.01). The MTV and TLG prior to treatment might be used to predict the overall survival, and the area under ROC were both 0.69 (P < 0.001). Sequential FDG PET/CT scanning is useful to predict the overall survival of chemoradiotherapy for ESCC. The metabolic parameters and the derived parameters of FDG PET/CT have predictive values for overall survival. PMID:26379889

  12. Current good manufacturing practice for positron emission tomography drugs.

    PubMed

    2009-12-10

    The Food and Drug Administration (FDA) is issuing regulations on current good manufacturing practice (CGMP) for positron emission tomography (PET) drugs. The regulations are intended to ensure that PET drugs meet the requirements of the Federal Food, Drug, and Cosmetic Act (the act) regarding safety, identity, strength, quality, and purity. In this final rule, we are establishing CGMP regulations for approved PET drugs. For investigational and research PET drugs, the final rule states that the requirement to follow CGMP may be met by complying with these regulations or by producing PET drugs in accordance with the United States Pharmacopeia (USP) general chapter on compounding PET radiopharmaceuticals. We are establishing these CGMP requirements for PET drugs under the provisions of the Food and Drug Administration Modernization Act of 1997 (the Modernization Act). Elsewhere in this issue of the Federal Register, we are announcing the availability of a guidance entitled "PET Drugs--Current Good Manufacturing Practice (CGMP)."

  13. Cyclotrons and positron emission tomography radiopharmaceuticals for clinical imaging.

    PubMed

    Saha, G B; MacIntyre, W J; Go, R T

    1992-07-01

    Positron emission tomography (PET) requires positron-emitting radionuclides that emit 511-keV photons detectable by PET imagers. Positron-emitting radionuclides are commonly produced in charged particle accelerators, eg, linear accelerators or cyclotrons. The most widely available radiopharmaceuticals for PET imaging are carbon-11-, nitrogen-13-, and oxygen-15-labeled compounds, many of which, either in their normal state or incorporated in other compounds, serve as physiological tracers. Other useful PET radiopharmaceuticals include fluorine-18-, bromine-75-, gallium-68 (68Ga)-, rubidium-82 (82Rb)-, and copper-62 (62Cu)-labeled compounds. Many positron emitters have short half-lives and thus require on-site cyclotrons for application, and others (68Ga, 82Rb, and 62Cu) are available from radionuclides generators using relatively long-lived parent radionuclides. This review is divided into two sections: cyclotrons and PET radiopharmaceuticals for clinical imaging. In the cyclotron section, the principle of operation of the cyclotron, types of cyclotrons, medical cyclotrons, and production of radionuclides are discussed. In the section on PET radiopharmaceuticals, the synthesis and clinical use of PET radiopharmaceuticals are described.

  14. Positron annihilation induced Auger electron spectroscopy

    NASA Technical Reports Server (NTRS)

    Weiss, Alex; Koymen, A. R.; Mehl, David; Jensen, K. O.; Lei, Chun; Lee, K. H.

    1990-01-01

    Recently, Weiss et al. have demonstrated that it is possible to excite Auger transitions by annihilating core electrons using a low energy (less than 30eV) beam of positrons. This mechanism makes possible a new electron spectroscopy, Positron annihilation induced Auger Electron Spectroscopy (PAES). The probability of exciting an Auger transition is proportional to the overlap of the positron wavefunction with atomic core levels. Since the Auger electron energy provides a signature of the atomic species making the transition, PAES makes it possible to determine the overlap of the positron wavefunction with a particular element. PAES may therefore provide a means of detecting positron-atom complexes. Measurements of PAES intensities from clean and adsorbate covered Cu surfaces are presented which indicate that approx. 5 percent of positrons injected into CU at 25eV produce core annihilations that result in Auger transitions.

  15. Positron emission tomography wrist detector

    DOEpatents

    Schlyer, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois

    2006-08-15

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal representing a time-of-occurrence of an annihilation event, generating an address signal representing a channel detecting the annihilation event, and generating a channel signal including the time and address signals. The method also includes generating a composite signal including the channel signal and another similarly generated channel signal concerning another annihilation event. An apparatus that serially transfers annihilation information includes a time signal generator, address signal generator, channel signal generator, and composite signal generator. The time signal is asynchronous and the address signal is synchronous to a clock signal. A PET scanner includes a scintillation array, detection array, front-end array, and a serial encoder. The serial encoders include the time signal generator, address signal generator, channel signal generator, and composite signal generator.

  16. PET with radiolabeled aminoacid.

    PubMed

    Crippa, F; Alessi, A; Serafini, G L

    2012-04-01

    Since the clinical introduction of FDG, neuroimaging has been the first area of PET application in oncology. Later, while FDG-PET became progressively a key imaging modality in the management of the majority of malignancies outside the brain, its neuro-oncologic indications faced some limitations because of the unfavourable characteristics of FDG as brain tumor-seeking agent. PET applications in neuro-oncology have received new effectiveness by the advent of positron-emission labelled amino acids, so that it has been coined the term "Amino acid PET" to differentiate this imaging tool from FDG-PET. Radiolabeled amino acids are a very interesting class of PET tracers with great diagnostic potential in neuro-oncology because of their low uptake in normal brain and, conversely, high uptake in most brain tumors including low-grade gliomas. The present article surveys the results obtained using L-[methyl-11C]Methionine (MET), that has been the ancestor of PET amino acid tracers and is still the most popular amino acid imaging modality in oncology, and stresses the important role that this diagnostic modality can play in the evaluation of brain tumors. However, the use of MET is restricted to PET centers with an in-house cyclotron and radiochemistry facility, because of the short half-life (20 min) of 11C. The promising results of MET have stimulated the development of 18F-labelled aminoacid tracers, particularly O-(2-18F-fluoeoethyl1)-L-tyrosine (FET), that has the same properties of MET and, thanks to the longer half-life of 18F (about 110 min), allows a distribution strategy from a production tracer site to user satellite PET centers. Considering a more widespread use of Amino acid PET, together with the recent development of integrated PET-MRI imaging systems, and the oncoming clinical validation of other interesting PET tracers, i.e. FMISO or 18F-FAZA for hypoxia imaging and FLT for tumor proliferation imaging, it can be reasonably expected that metabolic imaging

  17. The feasibility of 18F-AlF-NOTA-PRGD2 PET/CT for monitoring early response of Endostar antiangiogenic therapy in human nasopharyngeal carcinoma xenograft model compared with 18F-FDG.

    PubMed

    Cui, Yanfen; Liu, Huanhuan; Liang, Sheng; Zhang, Caiyuan; Cheng, Weiwei; Hai, Wangxi; Yin, Bing; Wang, Dengbin

    2016-05-10

    Radiolabeled arginine-glycine-aspartic acid (RGD) peptides have been developed for PET imaging of integrin avβ3 in the tumor vasculature, leading to great potential for noninvasively evaluating tumor angiogenesis and monitoring antiangiogenic treatment. The aim of this study was to investigate a novel one-step labeled integrin-targeted tracer, 18F-AlF-NOTA-PRGD2, for PET/CT for detecting tumor angiogenesis and monitoring the early therapeutic efficacy of antiangiogenic agent Endostar in human nasopharyngeal carcinoma (NPC) xenograft model. Mice bearing NPC underwent 18F-AlF-NOTA-PRGD2 PET/CT at baseline and after 2, 4, 7, and 14 days of consecutive treatment with Endostar or PBS, compared with 18F-FDG PET/CT. Tumors were harvested at all imaging time points for histopathological analysis with H & E and microvessel density (MVD) and integrin avβ3 immunostaining. The maximum percent injected dose per gram of body weight (%ID/gmax) tumor uptake of 18F-AlF-NOTA-PRGD2 PET/CT was significantly lower than that in the control group starting from day 2 (p < 0.01), much earlier and more accurately than that of 18F-FDG PET/CT. Moreover, a moderate linear correlation was observed between tumor MVD and the corresponding tumor uptake of 18F-AlF-NOTA-PRGD2 PET/CT (r = 0.853, p < 0.01). 18F-AlF-NOTA-PRGD2 PET/CT can be used for in vivo angiogenesis imaging and monitoring early response to Endostar antiangiogenic treatment in NPC xenograft model, favoring its potential clinical translation.

  18. Quantitative positron emission tomography in brain research.

    PubMed

    Heurling, Kerstin; Leuzy, Antoine; Jonasson, My; Frick, Andreas; Zimmer, Eduardo R; Nordberg, Agneta; Lubberink, Mark

    2017-09-01

    The application of positron emission tomography (PET) in brain research has increased substantially during the past 20years, and is still growing. PET provides a unique insight into physiological and pathological processes in vivo. In this article we introduce the fundamentals of PET, and the methods available for acquiring quantitative estimates of the parameters of interest. A short introduction to different areas of application is also given, including basic research of brain function and in neurology, psychiatry, drug receptor occupancy studies, and its application in diagnostics of neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Our aim is to inform the unfamiliar reader of the underlying basics and potential applications of PET, hoping to inspire the reader into considering how the technique could be of benefit for his or her own research. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. [Positron emission tomography: diagnostic imaging on a molecular level].

    PubMed

    Allemann, K; Wyss, M; Wergin, M; Bley, C Rohrer; Ametamay, S; Bruehlmeier, M; Kaser-Hotz, B

    2004-08-01

    In human medicine positron emission tomography (PET) is a modern diagnostic imaging method. In the present paper we outline the physical principles of PET and give an overview over the main clinic fields where PET is being used, such as neurology, cardiology and oncology. Moreover, we present a current project in veterinary medicine (in collaboration with the Paul Scherrer Institute and the University Hospital Zurich), where a hypoxia tracer is applied to dogs and cats suffering from spontaneous tumors. Finally new developments in the field of PET were discussed.

  20. Beam-on imaging of short-lived positron emitters during proton therapy

    NASA Astrophysics Data System (ADS)

    Buitenhuis, H. J. T.; Diblen, F.; Brzezinski, K. W.; Brandenburg, S.; Dendooven, P.

    2017-06-01

    In vivo dose delivery verification in proton therapy can be performed by positron emission tomography (PET) of the positron-emitting nuclei produced by the proton beam in the patient. A PET scanner installed in the treatment position of a proton therapy facility that takes data with the beam on will see very short-lived nuclides as well as longer-lived nuclides. The most important short-lived nuclide for proton therapy is 12N (Dendooven et al 2015 Phys. Med. Biol. 60 8923-47), which has a half-life of 11 ms. The results of a proof-of-principle experiment of beam-on PET imaging of short-lived 12N nuclei are presented. The Philips Digital Photon Counting Module TEK PET system was used, which is based on LYSO scintillators mounted on digital SiPM photosensors. A 90 MeV proton beam from the cyclotron at KVI-CART was used to investigate the energy and time spectra of PET coincidences during beam-on. Events coinciding with proton bunches, such as prompt gamma rays, were removed from the data via an anti-coincidence filter with the cyclotron RF. The resulting energy spectrum allowed good identification of the 511 keV PET counts during beam-on. A method was developed to subtract the long-lived background from the 12N image by introducing a beam-off period into the cyclotron beam time structure. We measured 2D images and 1D profiles of the 12N distribution. A range shift of 5 mm was measured as 6  ±  3 mm using the 12N profile. A larger, more efficient, PET system with a higher data throughput capability will allow beam-on 12N PET imaging of single spots in the distal layer of an irradiation with an increased signal-to-background ratio and thus better accuracy. A simulation shows that a large dual panel scanner, which images a single spot directly after it is delivered, can measure a 5 mm range shift with millimeter accuracy: 5.5  ±  1.1 mm for 1  ×  108 protons and 5.2  ±  0.5 mm for 5  ×  108 protons. This makes

  1. Latest achievements in PET techniques

    NASA Astrophysics Data System (ADS)

    Del Guerra, Alberto; Belcari, Nicola; Motta, Alfonso; Di Domenico, Giovanni; Sabba, Nicola; Zavattini, Guido

    2003-11-01

    Positron emission tomography (PET) has moved from a distinguished research tool in physiology, cardiology and neurology to become a major tool for clinical investigation in oncology, in cardiac applications and in neurological disorders. Much of the PET accomplishments is due to the remarkable improvements in the last 10 years both in hardware and software aspects. Nowadays a similar effort is made by many research groups towards the construction of dedicated PET apparatus in new emerging fields such as molecular medicine, gene therapy, breast cancer imaging and combined modalities. This paper reports on some recent results we have obtained in small animal imaging and positron emission mammography, based on the use of advanced technology in the field of scintillators and photodetectors, such as Position-Sensitive Detectors coupled to crystal matrices, combined use of scintillating fibers and Hybrid-Photo-Diodes readout, and Hamamatsu flat panels. New ideas and future developments are discussed.

  2. 68Ga-prostate-specific Membrane Antigen Positron Emission Tomography/Computed Tomography for Prostate Cancer Imaging: A Narrative Literature Review

    PubMed Central

    Oliveira, Jose M.; Gomes, Catarina; Faria, Diogo B.; Vieira, Tiago S.; Silva, Fernando A.; Vale, Joana; Pimentel, Francisco L.

    2017-01-01

    The 68Ga-prostate-specific membrane antigen ( 68Ga-PSMA) has been recently developed to be used, as a ligand, in positron emission tomography/computed tomography (PET/CT) prostate cancer imaging, to detect prostate disease. The main objective of this review was to collect data and findings from other studies and articles to assess, theoretically, if 68GA-PSMA PET/CT is a more appropriate prostate cancer diagnostic technique in comparison with others available such as CT, 18F-fluoro-2-deoxyglucose PET/CT, or 18F-fluoromethylcholine ( 18F-choline) PET/CT. For that purpose, PubMed, the online scientific articles’ database, was consulted where the keywords “PSMA” and “PET” were used to find relevant articles. The clinicaltrials.gov, clinical trials’ database, was also consulted where the keywords “68Ga-PSMA” and “prostate” were used to search clinical trials. Based on the reviewed scientific literature, several studies were conducted to assess and compare the 68Ga-PSMA PET/CT detection rate in prostate cancer with other available techniques. One of those studies, conducted by Giesel et al., concluded, within study sample, that 75% of patients with lymph nodes detected by 68Ga-PSMA PET/CT would have not been identified using other conventional morphological criteria based techniques. In Eiber et al.'s study, 68Ga-PSMA PET detected prostatic disease findings in 67% of patients with prostate-specific antigen levels <1 ng/mL, when compared with choline-based PET that presented detection rates between 19% and 36%. In Bluemel et al.'s study, 68Ga-PSMA identified positive prostatic disease in 43.8% of the patients with negative findings in F-choline PET/CT. Findings from this review demonstrate that 68Ga-PSMA PET/C is more effective in detecting metastases, lymph nodes, and recurrent prostate cancer when compared to 18F-choline-based PET/CT and CT. 68Ga-PSMA PET/CT presents also more imaging contrast and can be more cost-effective. 68Ga-PSMA has already

  3. Positron Emission Tomography Imaging of Hypoxia

    PubMed Central

    Lapi, Suzanne E.; Voller, Thomas F.; Welch, Michael J.

    2009-01-01

    Synopsis Hypoxia imaging has applications in functional recovery in ischemic events such as stroke and myocardial ischemia, but especially in tumors in which hypoxia can be predictive of treatment response and overall prognosis. Recently there has been development of imaging agents utilizing positron emission tomography for non-invasive imaging of hypoxia. Many of these PET agents have come to the forefront of hypoxia imaging. Halogenated PET nitroimidazole imaging agents labeled with 18F (t1/2 = 110 m) and 124I (t1/2 = 110 m) have been under investigation for the last 25 years, with radiometal agents (64Cu-ATSM) being developed more recently. This review focuses on these positron emission tomography imaging agents for hypoxia. PMID:20046923

  4. Resistive plate chambers in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Crespo, Paulo; Blanco, Alberto; Couceiro, Miguel; Ferreira, Nuno C.; Lopes, Luís; Martins, Paulo; Ferreira Marques, Rui; Fonte, Paulo

    2013-07-01

    Resistive plate chambers (RPC) were originally deployed for high energy physics. Realizing how their properties match the needs of nuclear medicine, a LIP team proposed applying RPCs to both preclinical and clinical positron emission tomography (RPC-PET). We show a large-area RPC-PET simulated scanner covering an axial length of 2.4m —slightly superior to the height of the human body— allowing for whole-body, single-bed RPC-PET acquisitions. Simulations following NEMA (National Electrical Manufacturers Association, USA) protocols yield a system sensitivity at least one order of magnitude larger than present-day, commercial PET systems. Reconstruction of whole-body simulated data is feasible by using a dedicated, direct time-of-flight-based algorithm implemented onto an ordered subsets estimation maximization parallelized strategy. Whole-body RPC-PET patient images following the injection of only 2mCi of 18-fluorodesoxyglucose (FDG) are expected to be ready 7 minutes after the 6 minutes necessary for data acquisition. This compares to the 10-20mCi FDG presently injected for a PET scan, and to the uncomfortable 20-30minutes necessary for its data acquisition. In the preclinical field, two fully instrumented detector heads have been assembled aiming at a four-head-based, small-animal RPC-PET system. Images of a disk-shaped and a needle-like 22Na source show unprecedented sub-millimeter spatial resolution.

  5. Positron emission tomographic imaging of tumors using monoclonal antibodies

    SciTech Connect

    Zalutsky, M.R.

    1992-08-01

    This research project is developing methods for utilizing positron emission tomography (PET) to increase the clinical potential of radiolabeled monoclonal antibodies (MAbs). This report describes the development of methods for labeling MAbs and their fragments with positron-emitting halogen nuclides, fluorine-18 and iodine-124. These nulides were selected because of the widespread availability of F-18 and because of our extensive experience in the development of new protein radiohalogenation methods.

  6. Proton Therapy Verification with PET Imaging

    PubMed Central

    Zhu, Xuping; Fakhri, Georges El

    2013-01-01

    Proton therapy is very sensitive to uncertainties introduced during treatment planning and dose delivery. PET imaging of proton induced positron emitter distributions is the only practical approach for in vivo, in situ verification of proton therapy. This article reviews the current status of proton therapy verification with PET imaging. The different data detecting systems (in-beam, in-room and off-line PET), calculation methods for the prediction of proton induced PET activity distributions, and approaches for data evaluation are discussed. PMID:24312147

  7. Modification of a medical PET scanner for PEPT studies

    NASA Astrophysics Data System (ADS)

    Sadrmomtaz, Alireza; Parker, D. J.; Byars, L. G.

    2007-04-01

    Over the last 20 years, positron emission tomography (PET) has developed as the most powerful functional imaging modality in medicine. Over the same period the University of Birmingham Positron Imaging Centre has applied PET to study engineering processes and developed the alternative technique of positron emission particle tracking (PEPT) in which a single radioactively labelled tracer particle is tracked by detecting simultaneously the pairs of back-to-back photons arising from positron/electron annihilation. Originally PEPT was performed using a pair of multiwire detectors, and more recently using a pair of digital gamma camera heads. In 2002 the Positron Imaging Centre acquired a medical PET scanner, an ECAT 931/08, previously used at Hammersmith Hospital. This scanner has been rebuilt in a flexible geometry for use in PEPT studies. This paper presents initial results from this system. Fast moving tracer particles can be rapidly and accurately located.

  8. Studies of the brain cannabinoid system using positron emission tomography

    SciTech Connect

    Gatley, S.J.; Volkow, N.D.

    1995-10-01

    Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies of cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available.

  9. A Review on Segmentation of Positron Emission Tomography Images

    PubMed Central

    Foster, Brent; Bagci, Ulas; Mansoor, Awais; Xu, Ziyue; Mollura, Daniel J.

    2014-01-01

    Positron Emission Tomography (PET), a non-invasive functional imaging method at the molecular level, images the distribution of biologically targeted radiotracers with high sensitivity. PET imaging provides detailed quantitative information about many diseases and is often used to evaluate inflammation, infection, and cancer by detecting emitted photons from a radiotracer localized to abnormal cells. In order to differentiate abnormal tissue from surrounding areas in PET images, image segmentation methods play a vital role; therefore, accurate image segmentation is often necessary for proper disease detection, diagnosis, treatment planning, and follow-ups. In this review paper, we present state-of-the-art PET image segmentation methods, as well as the recent advances in image segmentation techniques. In order to make this manuscript self-contained, we also briefly explain the fundamentals of PET imaging, the challenges of diagnostic PET image analysis, and the effects of these challenges on the segmentation results. PMID:24845019

  10. Positron Emission Tomography: state of the art and future developments

    NASA Astrophysics Data System (ADS)

    Pizzichemi, M.

    2016-08-01

    Positron emission tomography (PET) plays a fundamental role in medical imaging, with a wide range of applications covering, among the others, oncology, neurology and cardiology. PET has undergone a steady technological evolution since its introduction in mid 20th century, from the development of 3D PET in the late 1980s, to the invention of PET/CT in the 1990s and more recently with the introduction of PET/MR scanners. The current research topics aiming to develop the next generation of PET scanners are summarized in this paper, focusing on the efforts to increase the sensitivity of the detectors, as long as improving their timing, spatial and energy resolutions, with the final goal of reducing the amount of radioactive dose received by the patients and the duration of the exams while improving at the same time the detectability of lesions.

  11. Newer positron emission tomography radiopharmaceuticals for radiotherapy planning: an overview

    PubMed Central

    Mukherjee, Anirban

    2016-01-01

    Positron emission tomography-computed tomography (PET-CT) has changed cancer imaging in the last decade, for better. It can be employed for radiation treatment planning of different cancers with improved accuracy and outcomes as compared to conventional imaging methods. 18F-fluorodeoxyglucose remains the most widely used though relatively non-specific cancer imaging PET tracer. A wide array of newer PET radiopharmaceuticals has been developed for targeted imaging of different cancers. PET-CT with such new PET radiopharmaceuticals has also been used for radiotherapy planning with encouraging results. In the present review we have briefly outlined the role of PET-CT with newer radiopharmaceuticals for radiotherapy planning and briefly reviewed the available literature in this regard. PMID:26904575

  12. Utility of [18F] Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (FDG PET/CT) in the Initial Staging and Response Assessment of Locally Advanced Breast Cancer Patients Receiving Neoadjuvant Chemotherapy.

    PubMed

    Hulikal, Narendra; Gajjala, Sivanath Reddy; Kalawat, Teck Chand; Kottu, Radhika; Amancharla Yadagiri, Lakshmi

    2015-12-01

    In India up to 50 % of breast cancer patients still present as locally advanced breast cancer (LABC). The conventional methods of metastatic work up include physical examination, bone scan, chest & abdominal imaging, and biochemical tests. It is likely that the conventional staging underestimates the extent of initial spread and there is a need for more sophisticated staging procedure. The PET/CT can detect extra-axillary and occult distant metastases and also aid in predicting response to chemotherapy at an early point in time. To evaluate the utility of FDG PET/CT in initial staging and response assessment of patients with LABC receiving NACT. A prospective study of all biopsy confirmed female patients diagnosed with LABC receiving NACT from April 2013 to May 2014. The conventional work up included serum chemistry, CECT chest and abdomen and bone scan. A baseline whole body PET/CT was done in all patients. A repeat staging evaluation and a whole body PET/CT was done after 2/3rd cycle of NACT in non-responders and after 3/4 cycles in clinical responders. The histopathology report of the operative specimen was used to document the pathological response. The FDG PET/CT reported distant metastases in 11 of 38 patients, where as conventional imaging revealed metastases in only 6. Almost all the distant lesions detected by conventional imaging were detected with PET/CT, which showed additional sites of metastasis in 3 patients. In 2 patients, PET/CT detected osteolytic bone metastasis which were not detected by bone scan. In 5 patients PET CT detected N3 disease which were missed on conventional imaging. A total of 14 patients had second PET/CT done to assess the response to NACT and 11 patients underwent surgery. Two patients had complete pathological response. Of these 1 patient had complete metabolic and morphologic response and other had complete metabolic and partial morphologic response on second PET/CT scan. The 18 FDG PET/CT can detect more number of

  13. Magnetic resonance imaging and positron emission tomography of band heterotopia.

    PubMed

    Miura, K; Watanabe, K; Maeda, N; Matsumoto, A; Kumagai, T; Ito, K; Kato, T

    1993-01-01

    A case of band heterotopia was reported with findings of positron emission tomography (PET). The patient was an 8-year-old girl who had mild mental retardation and intractable partial epilepsy. Her MRI showed another diffuse layer of gray matter underlying the normal-looking cortex and separated from it by an apparently normal layer of white matter. PET scan with [18F]fluorodeoxyglucose revealed that band heterotopia had the same degree of glucose metabolism as that of the overlying cortex.

  14. Principles and clinical applications of positron emission tomography.

    PubMed

    Gardner, S F; Green, J A; Bednarczyk, E M; Farnett, L; Miraldi, F

    1992-06-01

    The basics of positron emission tomography (PET) are presented, including the physics, instrumentation, and radiopharmaceuticals involved; the clinical and research applications; and the cost. In PET, organic molecules labeled with positron-emitting radionuclides are injected or inhaled, and the high-energy photons produced by annihilation events are detected by paired, integrated crystal detectors. A computer uses the lines of origin of these photons to reconstruct a three-dimensional map of a functioning organ system. The positron-emitting radionuclides most often used are carbon 11, oxygen 15, nitrogen 13, fluorine 18, and rubidium 82. PET imaging centers usually consist of a cyclotron facility, a radiochemistry facility, a PET scanner, and computers for image reconstruction. Radiopharmaceuticals used in PET may be divided into blood flow-imaging agents, metabolic imaging agents, and drug receptor-imaging agents. Although PET is still primarily a research tool, it has shown diagnostic potential in neurology, cardiology, and oncology. It has also shown promise as a tool for pharmacologic assessment, as in studies of the effects of the fluorinated quinolones on cerebral blood flow and glucose metabolism. PET may become important in drug development because it yields specific information relatively noninvasively. A single study carries an average break-even price tag of $1500-$2000; rigorous cost-benefit analyses should be conducted before society is asked to subsidize such costs. Positron emission tomography is a frontier technology for which valuable clinical applications are being discovered. Pharmacists can contribute enormously to PET applications and at the same time establish a unique subspecialty for the profession.

  15. Are positron emission tomography-computed tomography (PET-CT) scans useful in preoperative assessment of patients with peritoneal disease before cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC)?

    PubMed

    Wang, Weining; Tan, Grace Hwei Ching; Chia, Claramae Shulyn; Skanthakumar, Thakshayeni; Soo, Khee Chee; Teo, Melissa Ching Ching

    2017-08-31

    CRS and HIPEC confer survival benefit in selected patients with peritoneal metatases (PM). Accurate preoperative assessment of disease burden and exclusion of distant metastases are crucial in selecting the appropriate patient. We evaluate the utility of PET-CT scans in comparison with CT and MRI scans in patients considered for CRS and HIPEC. Data were retrospectively collected from patients who had been discussed for CRS and HIPEC between January 2011 and December 2015, at our institutional multidisciplinary tumour board. Patients who underwent PET-CT scan were included. Results of PET-CT were compared against traditional imaging. Patient and tumour factors were analysed to identify those who were most likely to benefit from PET imaging. Four hundred and seven patients were considered for CRS and HIPEC. PET-CT was performed for 128(31.4%) patients: being the only imaging modality in 37 and used as an adjunct in 91. In the latter group, it was not beneficial in 58 patients as it provided no additional information (n = 33) or showed lesions of minimal FDG uptake (n = 25). In 33 patients, PET-CT provided definitive answers for indeterminate lesions seen on CT and MRI, confirmed the diagnosis of peritoneal disease in 10 patients (30.3%), identified extra-peritoneal disease and/or nodal metastases in 15 (45.5%) and excluded peritoneal disease in 8 (24.2%). The usefulness of PET-CT was predicted by tumour histology (p = .009), with non-mucinous tumours benefitting the most. Our results suggest that PET-CT can be used as an adjunct to CT and/or MRI scans, when lesions on the CT/MRI scans are indeterminate, and that it is most useful in patients with non-mucinous tumours.

  16. Tumor Quantification in Clinical Positron Emission Tomography

    PubMed Central

    Bai, Bing; Bading, James; Conti, Peter S

    2013-01-01

    Positron emission tomography (PET) is used extensively in clinical oncology for tumor detection, staging and therapy response assessment. Quantitative measurements of tumor uptake, usually in the form of standardized uptake values (SUVs), have enhanced or replaced qualitative interpretation. In this paper we review the current status of tumor quantification methods and their applications to clinical oncology. Factors that impede quantitative assessment and limit its accuracy and reproducibility are summarized, with special emphasis on SUV analysis. We describe current efforts to improve the accuracy of tumor uptake measurements, characterize overall metabolic tumor burden and heterogeneity of tumor uptake, and account for the effects of image noise. We also summarize recent developments in PET instrumentation and image reconstruction and their impact on tumor quantification. Finally, we offer our assessment of the current development needs in PET tumor quantification, including practical techniques for fully quantitative, pharmacokinetic measurements. PMID:24312151

  17. Positrons as imaging agents and probes in nanotechnology

    NASA Astrophysics Data System (ADS)

    Smith, Suzanne V.

    2009-09-01

    Positron emission tomography (PET) tracks a positron emitting radiopharmaceutical injected into the body and generates a 3-dimensional image of its location. Introduced in the early 70s, it has now developed into a powerful medical diagnostic tool for routine clinical use as well as in drug development. Unrivalled as a highly sensitive, specific and non-invasive imaging tool, PET unfortunately lacks the resolution of Computer Tomography (CT) and Magnetic Resonance Imaging (MRI). As the resolution of PET depends significantly on the energy of the positron incorporated in the radiopharmaceutical and its interaction with its surrounding tissue, there is growing interest in expanding our understanding of how positrons interact at the atomic and molecular level. A better understanding of these interactions will contribute to improving the resolution of PET and assist in the design of better imaging agents. Positrons are also used in Positron Annihilation Lifetime Spectroscopy (PALS) to determine electron density and or presence and incidence of micro- and mesopores (0.1 to 10 nm) in materials. The control of porosity in engineered materials is crucial for applications such as controlled release or air and water resistant films. Equally important to the design of nano and microtechnologies, is our understanding of the microenvironments within these pores and on surfaces. Hence as radiopharmaceuticals are designed to track disease, nuclear probes (radioactive molecules) are synthesized to investigate the chemical properties within these pores. This article will give a brief overview of the present role of positrons in imaging as well as explore its potential to contribute in the engineering of new materials to the marketplace.

  18. Waste polyethylene terephthalate (PET) materials as sustainable precursors for the synthesis of nanoporous MOFs, MIL-47, MIL-53(Cr, Al, Ga) and MIL-101(Cr).

    PubMed

    Lo, Sheng-Han; Senthil Raja, Duraisamy; Chen, Chia-Wei; Kang, Yu-Hao; Chen, Jiun-Jen; Lin, Chia-Her

    2016-06-21

    In our novel green approach, the waste polyethylene terephthalate (PET) bottle material has effectively been used as the starting precursor instead of terephthalic acid for the synthesis of five terephthalate based nanoporous trivalent metal-organic frameworks (MOFs) namely MIL-47, MIL-53(Cr), MIL-53(Al), MIL-53(Ga), and MIL-101(Cr). The optimum reaction parameters to achieve the green synthesis were studied. These MOFs were structurally identified by using powder X-ray diffraction (PXRD) measurements. Scanning electron microscopy (SEM) images confirm the particle nature and size of the synthesized MOFs. Nitrogen gas sorption measurements have been done for some of the MOFs to check their porous properties. All the characterization techniques strongly supported that the synthesized MOFs using PET are similar to their literature reports. The gas adsorption studies for the synthesized MIL-53(Cr) and MIL-101(Cr) showed their significant gas uptake capability towards CO2 and H2 gases. Further, the synthesized MIL-47 and MIL-101(Cr) have been tested for their catalytic ability in chemical fixation of CO2 gas through the conversion of CO2 and epoxides to the corresponding cyclic carbonates which shows promising results to use them as catalysts.

  19. Fundamental Limits of Spatial Resolution in PET

    PubMed Central

    Moses, William W.

    2010-01-01

    The fundamental limits of spatial resolution in positron emission tomography (PET) have been understood for many years. The physical size of the detector element usually plays the dominant role in determining resolution, but the combined contributions from acollinearity, positron range, penetration into the detector ring, and decoding errors in the detector modules often combine to be of similar size. In addition, the sampling geometry and statistical noise further degrade the effective resolution. This paper describes quantitatively describes these effects, discusses potential methods for reducing the magnitude of these effects, and computes the ultimately achievable spatial resolution for clinical and pre-clinical PET cameras. PMID:21804677

  20. Higher breast cancer conspicuity on dbPET compared to WB-PET/CT.

    PubMed

    Nishimatsu, Kayo; Nakamoto, Yuji; Miyake, Kanae K; Ishimori, Takayoshi; Kanao, Shotaro; Toi, Masakazu; Togashi, Kaori

    2017-05-01

    The purpose of this study was to evaluate lesion detectability of a dedicated breast positron-emission tomography (dbPET) scanner for breast cancers with an updated reconstruction mode, comparing it to whole-body positron-emission tomography/computed tomography (WB-PET/CT). A total of 179 histologically-proven breast cancer lesions in 150 females who underwent both WB-PET/CT and dbPET with (18)F-fluorodeoxyglucose were retrospectively analyzed. The patient/breast/lesion-based sensitivities based on visual analysis were compared between dbPET and WB-PET/CT. For lesions visible on both PET images, SUVmax values of the tumors were measured, and tumor-to-background ratios (T/B ratios) of SUVmax were compared between the two scans. Subgroup analyses according to clinical tumor stage, histopathology and histological grade were also performed. Patient/breast/lesion-based sensitivities were 95%, 95%, and 92%, respectively, for dbPET, and 95%, 94%, and 88%, respectively, for WB-PET/CT. Mean±standard deviation SUVmax values of FDG-avid tumors were 13.0±9.7 on dbPET and 6.4±4.8 on WB-PET. T/B ratios were also significantly higher in dbPET than in WB-PET/CT (8.1±7.1 vs. 5.1±4.5). In the subgroup analysis, no significant differences in sensitivities between dbPET and WB-PET/CT were found. However, T/B ratios of dbPET were significantly higher than those of WB-PET/CT in cT1c, cT2, cT3, invasive cancer, invasive carcinoma of no special type, mucinous carcinoma and Grades 1-3. No significant differences in sensitivities were identified between dbPET using an updated reconstruction mode and WB-PET/CT; however, T/B ratios of dbPET were significantly higher than those of WB-PET/CT, indicating higher tumor conspicuity on dbPET. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Study of the production yields of 18F, 11C, 13N and 15O positron emitters from plasma-laser proton sources at ELI-Beamlines for labeling of PET radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Amato, Ernesto; Italiano, Antonio; Margarone, Daniele; Pagano, Benedetta; Baldari, Sergio; Korn, Georg

    2016-03-01

    The development of novel compact PET radionuclide production systems is of great interest to promote the diffusion of PET diagnostics, especially in view of the continuous development of microfluidics labeling approaches. We studied the feasibility to produce clinically-relevant amounts of PET isotopes by means of laser-accelerated proton sources such that expected at the ELI-Beamlines facility. 18F, 11C, 13N and 15O production yields were calculated through the TALYS software, by taking into account the broad proton spectra expected. With the hypothesized proton fluencies, clinically-relevant amounts of radionuclides can be obtained, suitable to prepare single doses of 18F-, 11C- and 13N-labeled radiopharmaceuticals exploiting fast and efficient microfluidic labeling systems.

  2. Direct conversion semiconductor detectors in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Cates, Joshua W.; Gu, Yi; Levin, Craig S.

    2015-05-01

    Semiconductor detectors are playing an increasing role in ongoing research to improve image resolution, contrast, and quantitative accuracy in preclinical applications of positron emission tomography (PET). These detectors serve as a medium for direct detection of annihilation photons. Early clinical translation of this technology has shown improvements in image quality and tumor delineation for head and neck cancers, relative to conventional scintillator-based systems. After a brief outline of the basics of PET imaging and the physical detection mechanisms for semiconductor detectors, an overview of ongoing detector development work is presented. The capabilities of semiconductor-based PET systems and the current state of these devices are discussed.

  3. Positron emission tomography for use in microdosing studies.

    PubMed

    Wagner, Claudia Christina; Müller, Markus; Lappin, Graham; Langer, Oliver

    2008-01-01

    Positron emission tomography (PET) imaging using microdoses of radiolabeled drug tracers is gaining increasing acceptance in modern clinical drug development. This approach is unique in that it allows for direct quantitative assessment of drug concentrations in the tissues targeted for treatment, thereby bridging the gap between pharmacokinetics and pharmacodynamics. Current applications of PET in anticancer, anti-infective and central nervous system drug research are reviewed herein. Situated at the interface of preclinical and clinical drug testing, PET microdosing is a powerful and highly innovative tool for pharmaceutical development.

  4. Variation in Positron Emission Tomography Use After Colon Cancer Resection

    PubMed Central

    Bailey, Christina E.; Hu, Chung-Yuan; You, Y. Nancy; Kaur, Harmeet; Ernst, Randy D.; Chang, George J.

    2015-01-01

    Purpose: Colon cancer surveillance guidelines do not routinely include positron emission tomography (PET) imaging; however, its use after surgical resection has been increasing. We evaluated the secular patterns of PET use after surgical resection of colon cancer among elderly patients and identified factors associated with its increasing use. Patients and Methods: We used the SEER-linked Medicare database (July 2001 through December 2009) to establish a retrospective cohort of patients age ≥ 66 years who had undergone surgical resection for colon cancer. Postoperative PET use was assessed with the test for trends. Patient, tumor, and treatment characteristics were analyzed using univariable and multivariable logistic regression analyses. Results: Of the 39,221 patients with colon cancer, 6,326 (16.1%) had undergone a PET scan within 2 years after surgery. The use rate steadily increased over time. The majority of PET scans had been performed within 2 months after surgery. Among patients who had undergone a PET scan, 3,644 (57.6%) had also undergone preoperative imaging, and 1,977 (54.3%) of these patients had undergone reimaging with PET within 2 months after surgery. Marriage, year of diagnosis, tumor stage, preoperative imaging, postoperative visit to a medical oncologist, and adjuvant chemotherapy were significantly associated with increased PET use. Conclusion: PET use after colon cancer resection is steadily increasing, and further study is needed to understand the clinical value and effectiveness of PET scans and the reasons for this departure from guideline-concordant care. PMID:25852143

  5. New techniques for positron emission tomography in the study of human neurological disorders

    SciTech Connect

    Kuhl, D.E.

    1993-01-01

    This progress report describes accomplishments of four programs. The four programs are entitled (1) Faster,simpler processing of positron-computing precursors: New physicochemical approaches, (2) Novel solid phase reagents and methods to improve radiosynthesis and isotope production, (3) Quantitative evaluation of the extraction of information from PET images, and (4) Optimization of tracer kinetic methods for radioligand studies in PET.

  6. Monitoring liver tumor therapy with ( sup 18 F)FDG positron emission tomography

    SciTech Connect

    Nagata, Y.; Yamamoto, K.; Hiraoka, M.; Abe, M.; Takahashi, M.; Akuta, K.; Nishimura, Y.; Jo, S.; Masunaga, S.; Kubo, S. )

    1990-05-01

    Positron emission tomography (PET) with (18F)-2-flurodeoxy-glucose (FDG) can be utilized as a functional imaging modality for monitoring liver tumor therapy. We report three cases in which PET-FDG was more useful for this purpose than other imaging methods and tumor markers.

  7. Comparative Oncology: Evaluation of 2-Deoxy-2-[18F]fluoro-D-glucose (FDG) Positron Emission Tomography/Computed Tomography (PET/CT) for the Staging of Dogs with Malignant Tumors

    PubMed Central

    Beer, Ambros J.; Brühschwein, Andreas; Kreutzmann, Nina; Laberke, Silja; Wergin, Melanie C.; Meyer-Lindenberg, Andrea; Brandl, Johanna; von Thaden, Anne-Kathrin; Farrell, Eliane

    2015-01-01

    Introduction 2-Deoxy-2-[18F]fluoro-D-glucose PET/CT is a well-established imaging method for staging, restaging and therapy-control in human medicine. In veterinary medicine, this imaging method could prove to be an attractive and innovative alternative to conventional imaging in order to improve staging and restaging. The aim of this study was both to evaluate the effectiveness of this image-guided method in canine patients with spontaneously occurring cancer as well as to illustrate the dog as a well-suited animal model for comparative oncology. Methods Ten dogs with various malignant tumors were included in the study and underwent a whole body FDG PET/CT. One patient has a second PET-CT 5 months after the first study. Patients were diagnosed with histiocytic sarcoma (n = 1), malignant lymphoma (n = 2), mammary carcinoma (n = 4), sertoli cell tumor (n = 1), gastrointestinal stromal tumor (GIST) (n = 1) and lung tumor (n = 1). PET/CT data were analyzed with the help of a 5-point scale in consideration of the patients’ medical histories. Results In seven of the ten dogs, the treatment protocol and prognosis were significantly changed due to the results of FDG PET/CT. In the patients with lymphoma (n = 2) tumor extent could be defined on PET/CT because of increased FDG uptake in multiple lymph nodes. This led to the recommendation for a therapeutic polychemotherapy as a treatment. In one of the dogs with mammary carcinoma (n = 4) and in the patient with the lung tumor (n = 1), surgery was cancelled due to the discovery of multiple metastasis. Consequently no treatment was recommended. Conclusion FDG PET/CT offers additional information in canine patients with malignant disease with a potential improvement of staging and restaging. The encouraging data of this clinical study highlights the possibility to further improve innovative diagnostic and staging methods with regard to comparative oncology. In the future, performing PET/CT not only for staging but also in

  8. Radiopharmaceuticals in PET, Progress and Promise

    DOE R&D Accomplishments Database

    Wolf, A. P.; Fowler, J. S.

    1988-11-01

    It is the intention of this presentation to focus on the current state of radiopharmaceuticals for PET and where this is leading us. PET radiopharmaceuticals can be broken down into perhaps seven categories at present with each being applicable to a different aspect of human biochemistry. These are: metabolic probes, neurochemical probes, enzyme probes, ion channel blockers, blood flow agents, ethical drugs and other positron emitters.

  9. Radiopharmaceuticals in PET, progress and promise

    SciTech Connect

    Wolf, A.P.; Fowler, J.S.

    1988-11-01

    It is the intention of this presentation to focus on the current state of radiopharmaceuticals for PET and where this is leading us. PET radiopharmaceuticals can be broken down into perhaps seven categories at present with each being applicable to a different aspect of human biochemistry. These are: metabolic probes, neurochemical probes, enzyme probes, ion channel blockers, blood flow agents, ethical drugs and other positron emitters. 7 refs.

  10. Industrial positron-based imaging: Principles and applications

    NASA Astrophysics Data System (ADS)

    Parker, D. J.; Hawkesworth, M. R.; Broadbent, C. J.; Fowles, P.; Fryer, T. D.; McNeil, P. A.

    1994-09-01

    Positron Emission Tomography (PET) has great potential as a non-invasive flow imaging technique in engineering, since 511 keV gamma-rays can penetrate a considerable thickness of (e.g.) steel. The RAL/Birmingham multiwire positron camera was constructed in 1984, with the initial goal of observing the lubricant distribution in operating aero-engines, automotive engines and gearboxes, and has since been used in a variety of industrial fields. The major limitation of the camera for conventional tomographic PET studies is its restricted logging rate, which limits the frequency with which images can be acquired. Tracking a single small positron-emitting tracer particle provides a more powerful means of observing high speed motion using such a camera. Following a brief review of the use of conventional PET in engineering, and the capabilities of the Birmingham camera, this paper describes recent developments in the Positron Emission Particle Tracking (PEPT) technique, and compares the results obtainable by PET and PEPT using, as an example, a study of axial diffusion of particles in a rolling cylinder.

  11. Investigational study of iodine-124 with a positron camera

    SciTech Connect

    Lambrecht, R.M.; Woodhouse, N.; Phillips, R.; Wolczak, D.; Qureshi, A.; Reyes, E.D.; Graser, C.; Al-Yanbawi, S.; Al-Rabiah, A.; Meyer, W.

    1988-01-01

    A case is presented where I-124 produced by a clinical cyclotron was used with a positron emission tomography camera for clinical usage. This represents the first report of the utilization of this modality with this radionuclide. We feel the increased spatial resolution of PET should be of value in looking at thyroid disease.

  12. Positron Emission Tomography: Human Brain Function and Biochemistry.

    ERIC Educational Resources Information Center

    Phelps, Michael E.; Mazziotta, John C.

    1985-01-01

    Describes the method, present status, and application of positron emission tomography (PET), an analytical imaging technique for "in vivo" measurements of the anatomical distribution and rates of specific biochemical reactions. Measurements and image dynamic biochemistry link basic and clinical neurosciences with clinical findings…

  13. Positron Emission Tomography: Human Brain Function and Biochemistry.

    ERIC Educational Resources Information Center

    Phelps, Michael E.; Mazziotta, John C.

    1985-01-01

    Describes the method, present status, and application of positron emission tomography (PET), an analytical imaging technique for "in vivo" measurements of the anatomical distribution and rates of specific biochemical reactions. Measurements and image dynamic biochemistry link basic and clinical neurosciences with clinical findings…

  14. Motion correction using anatomical information in PET/CT and PET/MR hybrid imaging.

    PubMed

    Fayad, Hadi; Lamare, Frederic; Merlin, Thibaut; Visvikis, Dimitris

    2016-03-01

    Respiratory and cardiac motion causes qualitative and quantitative inaccuracies in whole body multi-modality imaging such as positron emission tomography coupled with computed tomography (PET/CT) and positron emission tomography/magnetic resonance imaging (PET/MRI). Solutions presented to date include motion synchronized PET and corresponding anatomical acquisitions (four dimensional [4D] PET/CT, 4D PET/MR), frequently referred to as the gating approach. This method is based on the acquisition of an external surrogate using an external device (pressure belt, optical monitoring system, spirometer etc.), subsequently used to bin PET and CT or MR anatomical data into a number of gates. A first limitation of this method is the low signal to noise ratio (SNR) of the resulting motion synchronized PET frames, given that every reconstructed frame contains only part of the count statistics available throughout a motion average PET acquisition. Another limitation is that the complex motion of internal organs cannot be fully estimated, characterized and modelled using a mono-dimensional motion signal. In order to resolve such issues, many advanced techniques have been proposed which include three consecutive major steps. These are based on firstly acquiring an external or internal motion surrogate, estimating or modelling the internal motion using anatomical information extracted from 4D anatomical images (CT and/or MR) and finally correcting for motion either in the PET raw data space, the image space or incorporate it within the PET image reconstruction which is the most optimal based motion correction method in PET/CT and in PET/MR imaging. Current research efforts are concentrating on combining the last two steps within a joint motion estimation/motion correction approach, the exploitation of MRI specific motion characterization sequences and the combination of both respiratory and cardiac motion corrections. The goal of this review is to present and discuss the different

  15. Minicyclotron-based technology for the production of positron-emitting labelled radiopharmaceuticals

    SciTech Connect

    Barrio, J.R.; Bida, G.; Satyamurthy, N.; Padgett, H.C.; MacDonald, N.S.; Phelps, M.E.

    1983-01-01

    The use of short-lived positron emitters such as carbon 11, fluorine 18, nitrogen 13, and oxygen 15, together with positron-emission tomography (PET) for probing the dynamics of physiological and biochemical processes in the normal and diseased states in man is presently an active area of research. One of the pivotal elements for the continued growth and success of PET is the routine delivery of the desired positron emitting labelled compounds. To date, the cyclotron remains the accelerator of choice for production of medically useful radionuclides. The development of the technology to bring the use of cyclotrons to a clinical setting is discussed. (ACR)

  16. Role of positron emission tomography in thyroid and neuroendocrine tumours.

    PubMed

    Treglia, Giorgio; Kroiss, Alexander S; Piccardo, Arnoldo; Lococo, Filippo; Santhanam, Prasanna; Imperiale, Alessio

    2017-09-25

    Positron emission tomography (PET) is an established imaging method in oncology. PET/computed tomography (PET/CT) and PET/magnetic resonance imaging (PET/MRI) are hybrid techniques which combine morphological information obtained by CT and MRI with functional data provided by PET. Several radiotracers evaluating different metabolic pathways or receptor status can be used as PET radiotracers to assess endocrine tumours such as thyroid tumours or neuroendocrine neoplasms (NENs). This review is focused to describe the role of PET imaging using different radiotracers in patients with thyroid tumours and NENs. The role of PET imaging with different radiotracers in several endocrine tumours including thyroid tumours, gastroenteropancreatic neoplasms (GEP-NENs), lung neuroendocrine neoplasms (LNENs), pheochromocytomas (PCC) and paragangliomas (PGL), and multiple endocrine neoplasia (MEN) syndromes has been described. Fluorine-18 fluorodeoxyglucose (18F-FDG) PET evaluating the glucose metabolism provides useful diagnostic and prognostic information in patients with thyroid tumours. Iodine-124 (124I) assessing the iodine metabolism (124I) PET may be used for dosimetry and diagnostic purposes in thyroid tumours. In patients with NENs specific radiotracers can be used for diagnostic purposes such as somatostatin analogues labeled with gallium-68 (68Ga-DOTA-peptides) evaluating somatostatin receptor expression and fluorine-18 fluorodihydroxyphenylalanine (18F- FDOPA) assessing the uptake, decarboxylation and storage of amine precursors. One advantage of 68Ga-DOTA-peptides PET is to select patients with well-differentiated and inoperable NENs for peptide receptor radionuclide therapy (PRRT). 18F-FDG PET may provide useful prognostic information in patients with high-grade NENs. PET imaging with different radiotracers is a useful functional imaging technique in the work-up of several endocrine tumours.

  17. Solitary sternal metastasis from hepatocellular carcinoma detected by F-18 FDG PET/CT.

    PubMed

    Kamaleshwaran, Koramadai Karuppusamy; Kashyap, Raghava; Bhattacharya, Anish; Mittal, Bhagwant Rai

    2013-01-01

    Fluorine-18 fluoro-deoxy-glucose positron emission tomography (F-18 FDG PET) is not sensitive modality for the diagnosis of primary hepatocellular carcinoma (HCC). However, FDG-PET imaging may be useful in the identification of extrahepatic metastases. We report an interesting image of HCC with solitary metastasis to sternum detected by F-18 FDG PET/CT.

  18. PET/CT alignment calibration with a non-radioactive phantom and the intrinsic 176Lu radiation of PET detector

    NASA Astrophysics Data System (ADS)

    Wei, Qingyang; Ma, Tianyu; Wang, Shi; Liu, Yaqiang; Gu, Yu; Dai, Tiantian

    2016-11-01

    Positron emission tomography/computed tomography (PET/CT) is an important tool for clinical studies and pre-clinical researches which provides both functional and anatomical images. To achieve high quality co-registered PET/CT images, alignment calibration of PET and CT scanner is a critical procedure. The existing methods reported use positron source phantoms imaged both by PET and CT scanner and then derive the transformation matrix from the reconstructed images of the two modalities. In this paper, a novel PET/CT alignment calibration method with a non-radioactive phantom and the intrinsic 176Lu radiation of the PET detector was developed. Firstly, a multi-tungsten-alloy-sphere phantom without positron source was designed and imaged by CT and the PET scanner using intrinsic 176Lu radiation included in LYSO. Secondly, the centroids of the spheres were derived and matched by an automatic program. Lastly, the rotation matrix and the translation vector were calculated by least-square fitting of the centroid data. The proposed method was employed in an animal PET/CT system (InliView-3000) developed in our lab. Experimental results showed that the proposed method achieves high accuracy and is feasible to replace the conventional positron source based methods.

  19. Recent development in PET instrumentation.

    PubMed

    Peng, By Hao; Levin, Craig S

    2010-09-01

    Positron emission tomography (PET) is used in the clinic and in vivo small animal research to study molecular processes associated with diseases such as cancer, heart disease, and neurological disorders, and to guide the discovery and development of new treatments. This paper reviews current challenges of advancing PET technology and some of newly developed PET detectors and systems. The paper focuses on four aspects of PET instrumentation: high photon detection sensitivity; improved spatial resolution; depth-of-interaction (DOI) resolution and time-of-flight (TOF). Improved system geometry, novel non-scintillator based detectors, and tapered scintillation crystal arrays are able to enhance the photon detection sensitivity of a PET system. Several challenges for achieving high resolution with standard scintillator-based PET detectors are discussed. Novel detectors with 3-D positioning capability have great potential to be deployed in PET for achieving spatial resolution better than 1 mm, such as cadmium-zinc-telluride (CZT) and position-sensitive avalanche photodiodes (PSAPDs). DOI capability enables a PET system to mitigate parallax error and achieve uniform spatial resolution across the field-of-view (FOV). Six common DOI designs, as well as advantages and limitations of each design, are discussed. The availability of fast scintillation crystals such as LaBr(3), and the silicon photomultiplier (SiPM) greatly advances TOF-PET development. Recent instrumentation and initial results of clinical trials are briefly presented. If successful, these technology advances, together with new probe molecules, will substantially enhance the molecular sensitivity of PET and thus increase its role in preclinical and clinical research as well as evaluating and managing disease in the clinic.

  20. Recent Developments in PET Instrumentation

    PubMed Central

    Peng, Hao; Levin, Craig S.

    2013-01-01

    Positron emission tomography (PET) is used in the clinic and in vivo small animal research to study molecular processes associated with diseases such as cancer, heart disease, and neurological disorders, and to guide the discovery and development of new treatments. This paper reviews current challenges of advancing PET technology and some of newly developed PET detectors and systems. The paper focuses on four aspects of PET instrumentation: high photon detection sensitivity; improved spatial resolution; depth-of-interaction (DOI) resolution and time-of-flight (TOF). Improved system geometry, novel non-scintillator based detectors, and tapered scintillation crystal arrays are able to enhance the photon detection sensitivity of a PET system. Several challenges for achieving high resolution with standard scintillator-based PET detectors are discussed. Novel detectors with 3-D positioning capability have great potential to be deployed in PET for achieving spatial resolution better than 1 mm, such as cadmium-zinc-telluride (CZT) and position-sensitive avalanche photodiodes (PSAPDs). DOI capability enables a PET system to mitigate parallax error and achieve uniform spatial resolution across the field-of-view (FOV). Six common DOI designs, as well as advantages and limitations of each design, are discussed. The availability of fast scintillation crystals such as LaBr3, and the silicon photomultiplier (SiPM) greatly advances TOF-PET development. Recent instrumentation and initial results of clinical trials are briefly presented. If successful, these technology advances, together with new probe molecules, will substantially enhance the molecular sensitivity of PET and thus increase its role in preclinical and clinical research as well as evaluating and managing disease in the clinic. PMID:20497121

  1. Positron emission tomography in CNS drug discovery and drug monitoring.

    PubMed

    Piel, Markus; Vernaleken, Ingo; Rösch, Frank

    2014-11-26

    Molecular imaging methods such as positron emission tomography (PET) are increasingly involved in the development of new drugs. Using radioactive tracers as imaging probes, PET allows the determination of the pharmacokinetic and pharmacodynamic properties of a drug candidate, via recording target engagement, the pattern of distribution, and metabolism. Because of the noninvasive nature and quantitative end point obtainable by molecular imaging, it seems inherently suited for the examination of a pharmaceutical's behavior in the brain. Molecular imaging, most especially PET, can therefore be a valuable tool in CNS drug research. In this Perspective, we present the basic principles of PET, the importance of appropriate tracer selection, the impact of improved radiopharmaceutical chemistry in radiotracer development, and the different roles that PET can fulfill in CNS drug research.

  2. Positron emission tomography image on evaluating intraperitoneal dissemination of malignant gastrointestinal stromal tumor.

    PubMed

    Kobayashi, Yoshinao; Nakao, Makoto; Konishi, Masayshi; Urawa, Naohito; Iwasa, Motoh; Kaito, Masahiko; Adachi, Yukihiko

    2008-01-01

    Herein is a report of a patient with gastrointestinal stromal tumor (GIST) possibly arising from greater omentum accompanying diffuse peritoneal disseminatation. Positron emission tomography (PET) with 18F-fluorodeoxyglucose (18F-FDG) revealed that 18F-FDG uptake was widely spreading in the abdomen. In this case, the PET image was more useful than computed tomography (CT) for understanding tumor distribution rather. PET provides important information on tumor distribution and has an impact on evaluating clinical stage in GIST patients.

  3. PhytoBeta imager: a positron imager for plant biology

    SciTech Connect

    Weisenberger, Andrew G; Lee, Seungjoon; McKisson, John; McKisson, J E; Xi, Wenze; Zorn, Carl; Reid, Chantal D; Howell, Calvin R; Crowell, Alexander S; Cumberbatch, Laurie; Fallin, Brent; Stolin, Alexander; Smith, Mark F

    2012-06-01

    Several positron emitting radioisotopes such as 11C and 13N can be used in plant biology research. The 11CO2 tracer is used to facilitate plant biology research toward optimization of plant productivity, biofuel development and carbon sequestration in biomass. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using 11CO2. Because plants typically have very thin leaves, little medium is present for the emitted positrons to undergo an annihilation event. The emitted positrons from 11C (maximum energy 960 keV) could require up to approximately 4 mm of water equivalent material for positron annihilation. Thus many of the positrons do not annihilate inside the leaf, resulting in limited sensitivity for PET imaging. To address this problem we have developed a compact beta-positive, beta-minus particle imager (PhytoBeta imager) for 11CO2 leaf imaging. The detector is based on a Hamamatsu H8500 position sensitive photomultiplier tube optically coupled via optical grease to a 0.5 mm thick Eljen EJ-212 plastic scintillator. The detector is equipped with a flexible arm to allow its placement and orientation over or under the leaf to be studied while maintaining the leaf's original orientation. To test the utility of the system the detector was used to measure carbon translocation in a leaf of the spicebush (Lindera benzoin) under two transient light conditions.

  4. Role of positron emission tomography/computed tomography in breast cancer.

    PubMed

    Bourgeois, Austin C; Warren, Lance A; Chang, Ted T; Embry, Scott; Hudson, Kathleen; Bradley, Yong C

    2013-09-01

    Although positron emission tomography (PET) imaging may not be used in the diagnosis of breast cancer, the use of PET/computed tomography is imperative in all aspects of breast cancer staging, treatment, and follow-up. PET will continue to be relevant in personalized medicine because accurate tumor status will be even more critical during and after the transition from a generic metabolic agent to receptor imaging. Positron emission mammography is an imaging proposition that may have benefits in lower doses, but its use is limited without new radiopharmaceuticals. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Development of a PET Scanner for Simultaneously Imaging Small Animals with MRI and PET

    PubMed Central

    Thompson, Christopher J; Goertzen, Andrew L; Thiessen, Jonathan D; Bishop, Daryl; Stortz, Greg; Kozlowski, Piotr; Retière, Fabrice; Zhang, Xuezhu; Sossi, Vesna

    2014-01-01

    Recently, positron emission tomography (PET) is playing an increasingly important role in the diagnosis and staging of cancer. Combined PET and X-ray computed tomography (PET-CT) scanners are now the modality of choice in cancer treatment planning. More recently, the combination of PET and magnetic resonance imaging (MRI) is being explored in many sites. Combining PET and MRI has presented many challenges since the photo-multiplier tubes (PMT) in PET do not function in high magnetic fields, and conventional PET detectors distort MRI images. Solid state light sensors like avalanche photo-diodes (APDs) and more recently silicon photo-multipliers (SiPMs) are much less sensitive to magnetic fields thus easing the compatibility issues. This paper presents the results of a group of Canadian scientists who are developing a PET detector ring which fits inside a high field small animal MRI scanner with the goal of providing simultaneous PET and MRI images of small rodents used in pre-clinical medical research. We discuss the evolution of both the crystal blocks (which detect annihilation photons from positron decay) and the SiPM array performance in the last four years which together combine to deliver significant system performance in terms of speed, energy and timing resolution. PMID:25120157

  6. Competitive advantage of PET/MRI.

    PubMed

    Jadvar, Hossein; Colletti, Patrick M

    2014-01-01

    Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Comparison of dosimetry between PET/CT and PET alone using (11)C-ITMM.

    PubMed

    Ito, Kimiteru; Sakata, Muneyuki; Oda, Keiichi; Wagatsuma, Kei; Toyohara, Jun; Ishibashi, Kenji; Ishii, Kenji; Ishiwata, Kiichi

    2016-03-01

    We used a new tracer, N-[4-[6-(isopropylamino) pyrimidin-4-yl]-1,3-thiazol-2-yl]-4-(11)C-methoxy-N-methylbenzamide ((11)C-ITMM), to compare radiation doses from positron emission tomography (PET)/computed tomography (CT) with previously published doses from PET alone. Twelve healthy volunteers [six males (mean age ± SD, 27.7 ± 6.7 years) and six females (31.8 ± 14.5 years)] in 12 examinations were recruited. Dose estimations from PET/CT were compared with those from PET alone. Regions of interest (ROIs) in PET/CT were delineated on the basis of low-dose CT (LD-CT) images acquired during PET/CT. Internal and external radiation doses were estimated using OLINDA/EXM 1.0 and CT-Expo software. The effective dose (ED) for (11)C-ITMM calculated from PET/CT was estimated to be 4.7 ± 0.5 μSv/MBq for the male subjects and 4.1 ± 0.7 μSv/MBq for the female subjects. The mean ED for (11)C-ITMM calculated from PET alone in a previous report was estimated to be 4.6 ± 0.3 μSv/MBq (males, n = 3). The ED values for (11)C-ITMM calculated from PET/CT in the male subjects were almost identical to those from PET alone. The absorbed doses (ADs) of the gallbladder, stomach, red bone marrow, and spleen calculated from PET/CT were significantly different from those calculated from PET alone. The EDs of (11)C-ITMM calculated from PET/CT were almost identical to those calculated from PET alone. The ADs in several organs calculated from PET/CT differed from those from PET alone. LD-CT images acquired during PET/CT may facilitate organ identification.

  8. Quantitative observation of tracer transport with high-resolution PET

    NASA Astrophysics Data System (ADS)

    Kulenkampff, Johannes; Gruendig, Marion; Zakhnini, Abdelhamid; Lippmann-Pipke, Johanna

    2016-04-01

    Transport processes in natural porous media are typically heterogeneous over various scales. This heterogeneity is caused by the complexity of pore geometry and molecular processes. Heterogeneous processes, like diffusive transport, conservative advective transport, mixing and reactive transport, can be observed and quantified with quantitative tomography of tracer transport patterns. Positron Emission Tomography (PET) is by far the most sensitive method and perfectly selective for positron-emitting radiotracers, therefore it is suited as reference method for spatiotemporal tracer transport observations. The number of such PET-applications is steadily increasing. However, many applications are afflicted by the low spatial resolution (3 - 5 mm) of the clinical scanners from cooperating nuclear medical departments. This resolution is low in relation to typical sample dimensions of 10 cm, which are restricted by the mass attenuation of the material. In contrast, our GeoPET-method applies a high-resolution scanner with a resolution of 1 mm, which is the physical limit of the method and which is more appropriate for samples of the size of soil columns or drill cores. This higher resolution is achieved at the cost of a more elaborate image reconstruction procedure, especially considering the effects of Compton scatter. The result of the quantitative image reconstruction procedure is a suite of frames of the quantitative tracer distribution with adjustable frame rates from minutes to months. The voxel size has to be considered as reference volume of the tracer concentration. This continuous variable includes contributions from structures far below the spatial resolution, as far as a detection threshold, in the pico-molar range, is exceeded. Examples from a period of almost 10 years (Kulenkampff et al. 2008a, Kulenkampff et al. 2008b) of development and application of quantitative GeoPET-process tomography are shown. These examples include different transport processes

  9. The application of PET imaging in psychoneuroimmunology research.

    PubMed

    Hannestad, Jonas

    2012-01-01

    Positron emission tomography (PET) imaging is a research tool that allows in vivo measurements of brain metabolism and specific target molecules. PET imaging can be used to measure these brain variables in a variety of species, including human and non-human primates, and rodents. PET imaging can therefore be combined with various experimental and clinical model systems that are commonly used in psychoneuroimmunology research.

  10. Advanced Tracers in PET Imaging of Cardiovascular Disease

    PubMed Central

    Zhang, Wei; Wu, Hua; Liu, Gang

    2014-01-01

    Cardiovascular disease is the leading cause of death worldwide. Molecular imaging with targeted tracers by positron emission tomography (PET) allows for the noninvasive detection and characterization of biological changes at the molecular level, leading to earlier disease detection, objective monitoring of therapies, and better prognostication of cardiovascular diseases progression. Here we review, the current role of PET in cardiovascular disease, with emphasize on tracers developed for PET imaging of cardiovascular diseases. PMID:25389529

  11. Amorphous silicon detectors in positron emission tomography

    SciTech Connect

    Conti, M. Lawrence Berkeley Lab., CA ); Perez-Mendez, V. )

    1989-12-01

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters {epsilon}{sup 2}{tau}'s are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs.

  12. Positron-rubidium scattering

    NASA Technical Reports Server (NTRS)

    Mceachran, R. P.; Horbatsch, M.; Stauffer, A. D.

    1990-01-01

    A 5-state close-coupling calculation (5s-5p-4d-6s-6p) was carried out for positron-Rb scattering in the energy range 3.7 to 28.0 eV. In contrast to the results of similar close-coupling calculations for positron-Na and positron-K scattering the (effective) total integrated cross section has an energy dependence which is contrary to recent experimental measurements.

  13. Respiratory motion correction of PET using MR-constrained PET-PET registration.

    PubMed

    Balfour, Daniel R; Marsden, Paul K; Polycarpou, Irene; Kolbitsch, Christoph; King, Andrew P

    2015-09-18

    Respiratory motion in positron emission tomography (PET) is an unavoidable source of error in the measurement of tracer uptake, lesion position and lesion size. The introduction of PET-MR dual modality scanners opens a new avenue for addressing this issue. Motion models offer a way to estimate motion using a reduced number of parameters. This can be beneficial for estimating motion from PET, which can otherwise be difficult due to the high level of noise of the data. We propose a novel technique that makes use of a respiratory motion model, formed from initial MR scan data. The motion model is used to constrain PET-PET registrations between a reference PET gate and the gates to be corrected. For evaluation, PET with added FDG-avid lesions was simulated from real, segmented, ultrashort echo time MR data obtained from four volunteers. Respiratory motion was included in the simulations using motion fields derived from real dynamic 3D MR volumes obtained from the same volunteers. Performance was compared to an MR-derived motion model driven method (which requires constant use of the MR scanner) and to unconstrained PET-PET registration of the PET gates. Without motion correction, a median drop in uncorrected lesion [Formula: see text] intensity to [Formula: see text] and an increase in median head-foot lesion width, specified by a minimum bounding box, to [Formula: see text] was observed relative to the corresponding measures in motion-free simulations. The proposed method corrected these values to [Formula: see text] ([Formula: see text]) and [Formula: see text] ([Formula: see text]) respectively, with notably improved performance close to the diaphragm and in the liver. Median lesion displacement across all lesions was observed to be [Formula: see text] without motion correction, which was reduced to [Formula: see text] ([Formula: see text]) with motion correction. This paper presents a novel technique for respiratory motion correction of PET data in PET-MR imaging

  14. Pet Health

    MedlinePlus

    ... Before getting a pet, think carefully about which animal is best for your family. What is each ... Does anyone have pet allergies? What type of animal suits your lifestyle and budget? Once you own ...

  15. Probing the effect of point defects on the leakage blocking capability of Al0.1Ga0.9N/Si structures using a monoenergetic positron beam

    NASA Astrophysics Data System (ADS)

    Uedono, Akira; Zhao, Ming; Simoen, Eddy

    2016-12-01

    Vacancy-type defects in Al0.1Ga0.9N were probed using a monoenergetic positron beam. Al0.1Ga0.9N layers with different carbon doping concentrations ([C] = 5 × 1017-8 × 1019 cm-3) were grown on Si substrates by metalorganic vapor phase epitaxy. The major defect species in Al0.1Ga0.9N was determined to be a cation vacancy (or cation vacancies) coupled with nitrogen vacancies and/or with carbon atoms at nitrogen sites (CNs). The charge state of the vacancies was positive because of the electron transfer from the defects to CN-related acceptors. The defect charge state was changed from positive to neutral when the sample was illuminated with photon energy above 1.8 eV, and this energy range agreed with the yellow and blue luminescence. For the sample with high [C], the charge transition of the vacancies under illumination was found to be suppressed, which was attributed to the trapping of emitted electrons by CN-related acceptors. With increasing [C], the breakdown voltage under the reverse bias condition increased. This was explained by the trapping of the injected electrons by the positively charged vacancies and CN-related acceptors.

  16. Positron emission tomography: a financial and operational analysis.

    PubMed

    Conti, P S; Keppler, J S; Halls, J M

    1994-06-01

    Positron emission tomography (PET) is an emerging clinical imaging technique that is facing the challenges of expansion in a period of imminent health care contraction and reform. Although PET began showing utility in clinical medicine in the mid-1980s [1], its proliferation into mainstream medical practice has not matched that of other new imaging technologies such as MR imaging. Many factors have contributed to this, including the changing health care economy, the high cost of PET, the length of time it takes to develop a PET facility, and its inherent complexity. In part because of the proliferation of the use of other technologies and the general explosion of costs, insurance carriers are now holding diagnostic techniques, including PET, to stricter standards of efficacy. New techniques must show improvement in long-term outcome of patients, a difficult task for diagnostic tools. In addition to these issues, PET is an expensive technology that requires highly trained multidisciplinary personnel. Questions have also been raised about the most appropriate mechanism for regulation of PET isotope preparation, leading to speculation about future regulatory requirements. The current pioneers of PET must meet these challenges in order for it to become a routine imaging technique. Because of its clinical value, PET will probably survive despite the challenges. For many reasons, though, not every hospital should necessarily develop PET services. Conversely, many hospitals without this technology should consider acquiring PET. The purpose of this article is to identify the financial, operational, and clinical challenges facing PET centers today, describe potential organizational configurations that may enable PET to survive in an antitechnology environment, and delineate which institutions should consider this new technology.

  17. PET Imaging of Skull Base Neoplasms.

    PubMed

    Mittra, Erik S; Iagaru, Andrei; Quon, Andrew; Fischbein, Nancy

    2007-10-01

    The utility of 18-F-fluorodeoxyglucose-positron emission tomography (PET) and PET/CT for the evaluation of skull base tumors is incompletely investigated, as a limited number of studies specifically focus on this region with regard to PET imaging. Several patterns can be ascertained, however, by synthesizing the data from various published reports and cases of primary skull base malignancies, as well as head and neck malignancies that extend secondarily to the skull base, including nasopharyngeal carcinoma, nasal cavity and paranasal sinus tumors, parotid cancers, and orbital tumors.

  18. Novel detector technology for clinical PET.

    PubMed

    Lecomte, Roger

    2009-03-01

    Positron emission tomography (PET) is the most sensitive of all medical imaging modalities for quantitatively probing biologic processes at the molecular level. However, spatial resolution in PET is significantly inferior to that of other imaging modalities that can provide exquisite images of the anatomy, such as X-ray computed tomography (CT) or magnetic resonance (MR) imaging. It has been one of the outstanding challenges of the last decade to combine PET with these complementary imaging modalities in order to synergistically exploit the benefits of each modality and to enhance the role of PET in pre-clinical research as well as in clinical routine and research. The simple juxtaposition of tomographs around a common axial bed, such as with current PET/CT technology, is very successful in allowing sequential acquisition of PET and anatomical data. However, novel imaging combinations are being considered that would enable simultaneous, or at least concurrent, dual-modality imaging through combined PET/MR or PET/CT. The development of these new integrated instruments creates new bewildering challenges for PET detection systems, which, in addition to the ability to measure annihilation radiation in PET, must satisfy several other critical requirements.

  19. Positron Emission Tomography for the Assessment of Myocardial Viability

    PubMed Central

    2010-01-01

    effectiveness and safety of positron emission tomography (PET) imaging using F-18-fluorodeoxyglucose (FDG) for the assessment of myocardial viability. To evaluate the effectiveness of FDG PET viability imaging, the following outcomes are examined: the diagnostic accuracy of FDG PET for predicting functional recovery; the impact of PET viability imaging on prognosis (mortality and other patient outcomes); and the contribution of PET viability imaging to treatment decision making and subsequent patient outcomes. Clinical Need: Condition and Target Population Left Ventricular Systolic Dysfunction and Heart Failure Heart failure is a complex syndrome characterized by the heart’s inability to maintain adequate blood circulation through the body leading to multiorgan abnormalities and, eventually, death. Patients with heart failure experience poor functional capacity, decreased quality of life, and increased risk of morbidity and mortality. In 2005, more than 71,000 Canadians died from cardiovascular disease, of which, 54% were due to ischemic heart disease. Left ventricular (LV) systolic dysfunction due to coronary artery disease (CAD)1 is the primary cause of heart failure accounting for more than 70% of cases. The prevalence of heart failure was estimated at one percent of the Canadian population in 1989. Since then, the increase in the older population has undoubtedly resulted in a substantial increase in cases. Heart failure is associated with a poor prognosis: one-year mortality rates were 32.9% and 31.1% for men and women, respectively in Ontario between 1996 and 1997. Treatment Options In general, there are three options for the treatment of heart failure: medical treatment, heart transplantation, and revascularization for those with CAD as the underlying cause. Concerning medical treatment, despite recent advances, mortality remains high among treated patients, while, heart transplantation is affected by the limited availability of donor hearts and consequently has long

  20. Joint PET-MR respiratory motion models for clinical PET motion correction

    NASA Astrophysics Data System (ADS)

    Manber, Richard; Thielemans, Kris; Hutton, Brian F.; Wan, Simon; McClelland, Jamie; Barnes, Anna; Arridge, Simon; Ourselin, Sébastien; Atkinson, David

    2016-09-01

    Patient motion due to respiration can lead to artefacts and blurring in positron emission tomography (PET) images, in addition to quantification errors. The integration of PET with magnetic resonance (MR) imaging in PET-MR scanners provides complementary clinical information, and allows the use of high spatial resolution and high contrast MR images to monitor and correct motion-corrupted PET data. In this paper we build on previous work to form a methodology for respiratory motion correction of PET data, and show it can improve PET image quality whilst having minimal impact on clinical PET-MR protocols. We introduce a joint PET-MR motion model, using only 1 min per PET bed position of simultaneously acquired PET and MR data to provide a respiratory motion correspondence model that captures inter-cycle and intra-cycle breathing variations. In the model setup, 2D multi-slice MR provides the dynamic imaging component, and PET data, via low spatial resolution framing and principal component analysis, provides the model surrogate. We evaluate different motion models (1D and 2D linear, and 1D and 2D polynomial) by computing model-fit and model-prediction errors on dynamic MR images on a data set of 45 patients. Finally we apply the motion model methodology to 5 clinical PET-MR oncology patient datasets. Qualitative PET reconstruction improvements and artefact reduction are assessed with visual analysis, and quantitative improvements are calculated using standardised uptake value (SUVpeak and SUVmax) changes in avid lesions. We demonstrate the capability of a joint PET-MR motion model to predict respiratory motion by showing significantly improved image quality of PET data acquired before the motion model data. The method can be used to incorporate motion into the reconstruction of any length of PET acquisition, with only 1 min of extra scan time, and with no external hardware required.

  1. Positrons in surface physics

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, Christoph

    2016-12-01

    Within the last decade powerful methods have been developed to study surfaces using bright low-energy positron beams. These novel analysis tools exploit the unique properties of positron interaction with surfaces, which comprise the absence of exchange interaction, repulsive crystal potential and positron trapping in delocalized surface states at low energies. By applying reflection high-energy positron diffraction (RHEPD) one can benefit from the phenomenon of total reflection below a critical angle that is not present in electron surface diffraction. Therefore, RHEPD allows the determination of the atom positions of (reconstructed) surfaces with outstanding accuracy. The main advantages of positron annihilation induced Auger-electron spectroscopy (PAES) are the missing secondary electron background in the energy region of Auger-transitions and its topmost layer sensitivity for elemental analysis. In order to enable the investigation of the electron polarization at surfaces low-energy spin-polarized positrons are used to probe the outermost electrons of the surface. Furthermore, in fundamental research the preparation of well defined surfaces tailored for the production of bound leptonic systems plays an outstanding role. In this report, it is envisaged to cover both the fundamental aspects of positron surface interaction and the present status of surface studies using modern positron beam techniques.

  2. PET Metabolic Biomarkers for Cancer

    PubMed Central

    Croteau, Etienne; Renaud, Jennifer M.; Richard, Marie Anne; Ruddy, Terrence D.; Bénard, François; deKemp, Robert A.

    2016-01-01

    The body’s main fuel sources are fats, carbohydrates (glucose), proteins, and ketone bodies. It is well known that an important hallmark of cancer cells is the overconsumption of glucose. Positron emission tomography (PET) imaging using the glucose analog 18F-fluorodeoxyglucose (18F-FDG) has been a powerful cancer diagnostic tool for many decades. Apart from surgery, chemotherapy and radiotherapy represent the two main domains for cancer therapy, targeting tumor proliferation, cell division, and DNA replication—all processes that require a large amount of energy. Currently, in vivo clinical imaging of metabolism is performed almost exclusively using PET radiotracers that assess oxygen consumption and mechanisms of energy substrate consumption. This paper reviews the utility of PET imaging biomarkers for the detection of cancer proliferation, vascularization, metabolism, treatment response, and follow-up after radiation therapy, chemotherapy, and chemotherapy-related side effects. PMID:27679534

  3. PET Imaging of Inflammation Biomarkers

    PubMed Central

    Wu, Chenxi; Li, Fang; Niu, Gang; Chen, Xiaoyuan

    2013-01-01

    Inflammation plays a significant role in many disease processes. Development in molecular imaging in recent years provides new insight into the diagnosis and treatment evaluation of various inflammatory diseases and diseases involving inflammatory process. Positron emission tomography using 18F-FDG has been successfully applied in clinical oncology and neurology and in the inflammation realm. In addition to glucose metabolism, a variety of targets for inflammation imaging are being discovered and utilized, some of which are considered superior to FDG for imaging inflammation. This review summarizes the potential inflammation imaging targets and corresponding PET tracers, and the applications of PET in major inflammatory diseases and tumor associated inflammation. Also, the current attempt in differentiating inflammation from tumor using PET is also discussed. PMID:23843893

  4. PET Imaging in Huntington's Disease.

    PubMed

    Roussakis, Andreas-Antonios; Piccini, Paola

    2015-01-01

    To date, little is known about how neurodegeneration and neuroinflammation propagate in Huntington's disease (HD). Unfortunately, no treatment is available to cure or reverse the progressive decline of function caused by the disease, thus considering HD a fatal disease. Mutation gene carriers typically remain asymptomatic for many years although alterations in the basal ganglia and cortex occur early on in mutant HD gene-carriers. Positron Emission Tomography (PET) is a functional imaging technique of nuclear medicine which enables in vivo visualization of numerous biological molecules expressed in several human tissues. Brain PET is most powerful to study in vivo neuronal and glial cells function as well as cerebral blood flow in a plethora of neurodegenerative disorders including Parkinson's disease, Alzheimer's and HD. In absence of HD-specific biomarkers for monitoring disease progression, previous PET studies in HD were merely focused on the study of dopaminergic terminals, cerebral blood flow and glucose metabolism in manifest and premanifest HD-gene carriers. More recently, research interest has been exploring novel PET targets in HD including the state of phosphodiesterse expression and the role of activated microglia. Hence, a better understanding of the HD pathogenesis mechanisms may lead to the development of targeted therapies. PET imaging follow-up studies with novel selective PET radiotracers such as 11C-IMA-107 and 11C-PBR28 may provide insight on disease progression and identify prognostic biomarkers, elucidate the underlying HD pathology and assess novel pharmaceutical agents and over time.

  5. Positrons for linear colliders

    SciTech Connect

    Ecklund, S.

    1987-11-01

    The requirements of a positron source for a linear collider are briefly reviewed, followed by methods of positron production and production of photons by electromagnetic cascade showers. Cross sections for the electromagnetic cascade shower processes of positron-electron pair production and Compton scattering are compared. A program used for Monte Carlo analysis of electromagnetic cascades is briefly discussed, and positron distributions obtained from several runs of the program are discussed. Photons from synchrotron radiation and from channeling are also mentioned briefly, as well as positron collection, transverse focusing techniques, and longitudinal capture. Computer ray tracing is then briefly discussed, followed by space-charge effects and thermal heating and stress due to showers. (LEW)

  6. Flow-metabolism uncoupling in the cervical spinal cord of ALS patients.

    PubMed

    Yamashita, Toru; Hatakeyama, Tetsuhiro; Sato, Kota; Fukui, Yusuke; Hishikawa, Nozomi; Ohta, Yasuyuki; Nishiyama, Yoshihiro; Kawai, Nobuyuki; Tamiya, Takashi; Abe, Koji

    2017-04-01

    Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease. In ALS, both glucose consumption and neuronal intensity reportedly decrease in the cerebral motor cortex when measured by positron emission tomography (PET). In this study, we evaluated cervical spinal glucose metabolism, blood flow, and neuronal intensity of 10 ALS patients with upper extremity (U/E) atrophy both with (18)F-2-fluoro-2-deoxy-D-glucose ((18)F-FDG) PET and (11)C-flumazenil ((11)C-FMZ) PET. On the ipsilateral side of C5 and T1 levels, (18)F-FDG uptake increased significantly (*p < 0.05), and was correlated with the rate of progression of the ALS FRS-R-U/E score (R = 0.645, *p = 0.041). Despite this hyperglucose metabolism, the (11)C-FMZ PET study did not show a coupled increase of spinal blood flow even though neuronal intensity did not decrease. These results indicate a strong correlation between hyperglucose metabolism and ALS progression alongside the uncoupling of flow-metabolism. This mechanism, which could result in subsequent motor neuronal death, may be a potential therapeutic target for ALS.

  7. Kinetic modeling in PET imaging of hypoxia

    PubMed Central

    Li, Fan; Joergensen, Jesper T; Hansen, Anders E; Kjaer, Andreas

    2014-01-01

    Tumor hypoxia is associated with increased therapeutic resistance leading to poor treatment outcome. Therefore the ability to detect and quantify intratumoral oxygenation could play an important role in future individual personalized treatment strategies. Positron Emission Tomography (PET) can be used for non-invasive mapping of tissue oxygenation in vivo and several hypoxia specific PET tracers have been developed. Evaluation of PET data in the clinic is commonly based on visual assessment together with semiquantitative measurements e.g. standard uptake value (SUV). However, dynamic PET contains additional valuable information on the temporal changes in tracer distribution. Kinetic modeling can be used to extract relevant pharmacokinetic parameters of tracer behavior in vivo that reflects relevant physiological processes. In this paper, we review the potential contribution of kinetic analysis for PET imaging of hypoxia. PMID:25250200

  8. Imaging corn plants with PhytoPET, a modular PET system for plant biology

    SciTech Connect

    Lee, S.; Kross, B.; McKisson, J.; McKisson, J. E.; Weisenberger, A. G.; Xi, W.; Zorn, C.; Bonito, G.; Howell, C. R.; Reid, C. D.; Crowell, A.; Cumberbatch, L. C.; Topp, C.; Smith, M. F.

    2013-11-01

    PhytoPET is a modular positron emission tomography (PET) system designed specifically for plant imaging. The PhytoPET design allows flexible arrangements of PET detectors based on individual standalone detector modules built from single Hamamatsu H8500 position sensitive photomultiplier tubes and pixelated LYSO arrays. We have used the PhytoPET system to perform preliminary corn plant imaging studies at the Duke University Biology Department Phytotron. Initial evaluation of the PhytoPET system to image the biodistribution of the positron emitting tracer {sup 11}C in corn plants is presented. {sup 11}CO{sub 2} is loaded into corn seedlings by a leaf-labeling cuvette and translocation of {sup 11}C-sugars is imaged by a flexible arrangement of PhytoPET modules on each side. The PhytoPET system successfully images {sup 11}C within corn plants and allows for the dynamic measurement of {sup 11}C-sugar translocation from the leaf to the roots.

  9. Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results.

    PubMed

    Schäfer, Jürgen F; Gatidis, Sergios; Schmidt, Holger; Gückel, Brigitte; Bezrukov, Ilja; Pfannenberg, Christina A; Reimold, Matthias; Ebinger, Martin; Fuchs, Jörg; Claussen, Claus D; Schwenzer, Nina F

    2014-10-01

    To compare positron emission tomography (PET)/magnetic resonance (MR) imaging and PET/computed tomography (CT) for lesion detection and interpretation, quantification of fluorine 18 ((18)F) fluorodeoxyglucose (FDG) uptake, and accuracy of MR-based PET attenuation correction in pediatric patients with solid tumors. Materials and Methods This prospective study had local ethics committee and German Federal Institute for Drugs and Medical Devices approval. Written informed consent was obtained from all patients and legal guardians. Twenty whole-body (18)F-FDG PET/CT and (18)F-FDG PET/MR examinations were performed in 18 pediatric patients (median age, 14 years; range, 11-17 years). (18)F-FDG PET/CT and (18)F-FDG PET/MR data were acquired sequentially on the same day for all patients. PET standardized uptake values (SUVs) were quantified with volume of interest measurements in lesions and healthy tissues. MR-based PET attenuation correction was compared with CT-derived attenuation maps (µ-maps). Lesion detection was assessed with separate reading of PET/CT and PET/MR data. Estimates of radiation dose were derived from the applied doses of (18)F-FDG and CT protocol parameters. Descriptive statistical analyses were performed to report correlation coefficients and relative deviations for comparison of SUVs, rates of lesion detection, and percentage reductions in radiation dose. PET SUVs showed strong correlations between PET of PET/CT (PETCT) and PET of PET/MR (PETMR) (r > 0.85 for most tissues). Apart from drawbacks of MR-based PET attenuation correction in osseous structures and lungs, similar SUVs were found on PET images corrected with CT-based µ-maps (13.1% deviation of SUVs for bone marrow and <5% deviation for other tissues). Lesion detection rate with PET/MR imaging was equivalent to that with PET/CT (61 areas of focal uptake on PETMR images vs 62 areas on PETCT images). Advantages of PET/MR were observed especially in soft-tissue regions. Furthermore, PET

  10. Compact conscious animal positron emission tomography scanner

    DOEpatents

    Schyler, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois; Volkow, Nora

    2006-10-24

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal for an event, generating an address signal representing a detecting channel, generating a detector channel signal including the time and address signals, and generating a composite signal including the channel signal and similarly generated signals. The composite signal includes events from detectors in a block and is serially output. An apparatus that serially transfers annihilation information from a block includes time signal generators for detectors in a block and an address and channel signal generator. The PET scanner includes a ring tomograph that mounts onto a portion of an animal, which includes opposing block pairs. Each of the blocks in a block pair includes a scintillator layer, detection array, front-end array, and a serial encoder. The serial encoder includes time signal generators and an address signal and channel signal generator.

  11. Positron Emission Tomography with improved spatial resolution

    SciTech Connect

    Drukier, A.K.

    1990-04-01

    Applied Research Corporation (ARC) proposed the development of a new class of solid state detectors called Superconducting Granular Detectors (SGD). These new detectors permit considerable improvements in medical imaging, e.g. Positron Emission Tomography (PET). The biggest impact of this technique will be in imaging of the brain. It should permit better clinical diagnosis of such important diseases as Altzheimer's or schizophrenia. More specifically, we will develop an improved PET-imager; a spatial resolution 2 mm may be achievable with SGD. A time-of-flight capability(t {approx} 100 psec) will permit better contrast and facilitate 3D imaging. In the following, we describe the results of the first 9 months of the development.

  12. Imaging tumour hypoxia with positron emission tomography

    PubMed Central

    Fleming, I N; Manavaki, R; Blower, P J; West, C; Williams, K J; Harris, A L; Domarkas, J; Lord, S; Baldry, C; Gilbert, F J

    2015-01-01

    Hypoxia, a hallmark of most solid tumours, is a negative prognostic factor due to its association with an aggressive tumour phenotype and therapeutic resistance. Given its prominent role in oncology, accurate detection of hypoxia is important, as it impacts on prognosis and could influence treatment planning. A variety of approaches have been explored over the years for detecting and monitoring changes in hypoxia in tumours, including biological markers and noninvasive imaging techniques. Positron emission tomography (PET) is the preferred method for imaging tumour hypoxia due to its high specificity and sensitivity to probe physiological processes in vivo, as well as the ability to provide information about intracellular oxygenation levels. This review provides an overview of imaging hypoxia with PET, with an emphasis on the advantages and limitations of the currently available hypoxia radiotracers. PMID:25514380

  13. Instrumentation optimization for positron emission mammography

    SciTech Connect

    Moses, William W.; Qi, Jinyi

    2003-06-05

    The past several years have seen designs for PET cameras optimized to image the breast, commonly known as Positron Emission Mammography or PEM cameras. The guiding principal behind PEM instrumentation is that a camera whose field of view is restricted to a single breast has higher performance and lower cost than a conventional PET camera. The most common geometry is a pair of parallel planes of detector modules, although geometries that encircle the breast have also been proposed. The ability of the detector modules to measure the depth of interaction (DOI) is also a relevant feature. This paper finds that while both the additional solid angle coverage afforded by encircling the breast and the decreased blurring afforded by the DOI measurement improve performance, the ability to measure DOI is more important than the ability to encircle the breast.

  14. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems

    PubMed Central

    Vaquero, Juan José; Kinahan, Paul

    2017-01-01

    Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges. PMID:26643024

  15. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems.

    PubMed

    Vaquero, Juan José; Kinahan, Paul

    2015-01-01

    Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges.

  16. Comparison of PET template-based and MRI-based image processing in the quantitative analysis of C11-raclopride PET.

    PubMed

    Kuhn, Felix P; Warnock, Geoffrey I; Burger, Cyrill; Ledermann, Katharina; Martin-Soelch, Chantal; Buck, Alfred

    2014-01-22

    Quantitative measures of 11C-raclopride receptor binding can be used as a correlate of postsynaptic D2 receptor density in the striatum, allowing 11C-raclopride positron emission tomography (PET) to be used for the differentiation of Parkinson's disease from atypical parkinsonian syndromes. Comparison with reference values is recommended to establish a reliable diagnosis. A PET template specific to raclopride may facilitate direct computation of parametric maps without the need for an additional MR scan, aiding automated image analysis. Sixteen healthy volunteers underwent a dynamic 11C-raclopride PET and a high-resolution T1-weighted MR scan of the brain. PET data from eight healthy subjects was processed to generate a raclopride-specific PET template normalized to standard space. Subsequently, the data processing based on the PET template was validated against the standard magnetic resonance imaging (MRI)-based method in 8 healthy subjects and 20 patients with suspected parkinsonian syndrome. Semi-quantitative image analysis was performed in Montreal Neurological Institute (MNI) and in original image space (OIS) using VOIs derived from a probabilistic brain atlas previously validated by Hammers et al. (Hum Brain Mapp, 15:165-174, 2002). The striatal-to-cerebellar ratio (SCR) of 11C-raclopride uptake obtained using the PET template was in good agreement with the MRI-based image processing method, yielding a Lin's concordance coefficient of 0.87. Bland-Altman analysis showed that all measurements were within the ±1.96 standard deviation range. In all 20 patients, the PET template-based processing was successful and manual volume of interest optimization had no further impact on the diagnosis of PD in this patient group. A maximal difference of <5% was found between the measured SCR in MNI space and OIS. The PET template-based method for automated quantification of postsynaptic D2 receptor density is simple to implement and facilitates rapid, robust and reliable

  17. PET/CT in paediatric malignancies - An update

    PubMed Central

    Padma, Subramanyam; Sundaram, Palaniswamy Shanmuga; Tewari, Anshu

    2016-01-01

    18F-fluorodeoxyglucose positron emission tomography (FDG-PET) is a well-established imaging modality in adult oncological practice. Its role in childhood malignancies needs to be discussed as paediatric malignancies differ from adults in tumor subtypes and they have different tumor biology and FDG uptake patterns. This is also compounded by smaller body mass, dosimetric restrictions, and physiological factors that can affect the FDG uptake. It calls for careful planning of the PET study, preparing the child, the parents, and expertise of nuclear physicians in reporting pediatric positron emission tomography/computed tomography (PET/CT) studies. In a broad perspective, FDG-PET/CT has been used in staging, assessment of therapy response, identifying metastases and as a follow-up tool in a wide variety of pediatric malignancies. This review outlines the role of PET/CT in childhood malignancies other than hematological malignancies such as lymphoma and leukemia. PMID:27688605

  18. [Methods and clinical applications of positron emission tomography in endocrinology].

    PubMed

    De Landsheere, C; Lamotte, D

    1990-01-01

    Positron emission tomography (PET) allows to detect in coincidence photons issued from annihilation between positrons and electrons nearby situated. Tomographic detection (plane by plane) and tomographic reconstruction will lead to the quantitation of radioactive distribution per voxel, in the organ of interest. Recent tomographs can acquire simultaneously several transaxial slices, with a high sensitivity and a spatial resolution of 3-5 mm. Commonly used positron emitters have a short half-life: 2, 10, 20 and 110 min for 150, 13N, 11C and 18F, respectively. The use of these isotopes requires on line production of radionuclides and synthesis of selected molecules. In endocrinology, PET allows among others to study noninvasively the receptor density of hormone-dependent neoplasms such as breast, uterus, prostate tumors and prolactinomas. These last tumors represent a particular entity because of several combined characteristics: high turnover rate of amino acids, high density of dopaminergic receptors and response to bromocriptine (analogue of dopamine inhibiting the secretion of prolactin) in relation to the level of receptors. Because PET permits to evaluate the density of dopaminergic receptors and the metabolism of amino acids, theoretical response of the prolactinoma to bromocriptine can be predicted, the achieved therapeutic efficacy can be estimated and the long-term follow up of tumor growth can be assessed. This example illustrates the clinical value of PET in endocrinology.

  19. Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain

    SciTech Connect

    Jung, Jin Ho; Choi, Yong Jung, Jiwoong; Kim, Sangsu; Lim, Hyun Keong; Im, Ki Chun; Oh, Chang Hyun; Park, Hyun-wook; Kim, Kyung Min; Kim, Jong Guk

    2015-05-15

    Purpose: The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. Methods: The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. The PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. Results: No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was

  20. Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain.

    PubMed

    Jung, Jin Ho; Choi, Yong; Jung, Jiwoong; Kim, Sangsu; Lim, Hyun Keong; Im, Ki Chun; Oh, Chang Hyun; Park, Hyun-wook; Kim, Kyung Min; Kim, Jong Guk

    2015-05-01

    The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. The PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was maintained. The change of gain of

  1. Radiopharmaceutical chemistry with iodine-124: a non-standard radiohalogen for positron emission tomography.

    PubMed

    Chacko, Ann-Marie; Divgi, Chaitanya R

    2011-09-01

    Positron emission tomography (PET) is a powerful molecular imaging technology with the ability to image and monitor molecular events in vivo and in real time. With the increased application of PET radiopharmaceuticals for imaging physiological and pathological processes in vivo, there is a demand for versatile positron emitters with longer physical and biological half-lives. Traditional PET radionuclides, such as carbon-11 ((11)C) and fluorine-18 ((18)F), have relatively short half-lives (20 min and 110 min, respectively). Among the currently available positron emitters, the non-standard radiohalogen iodine-124 ((124)I) has the longest physical half-life at 4.2 d. This, combined with the well characterized radiochemistry of radioiodine, is contributing to the increasing utility of (124)I in investigating slow and complex pharmacokinetic processes in clinical nuclear medicine and small animal PET imaging studies. This review will summarize the progress to date on the potential of (124)I as a positron emitting nuclide for molecular imaging purposes, beginning with the production of (124)I. Particular emphasis will be placed on the basic radiochemistry as it applies to the production of various (124)I-labeled compounds, from small molecules, to biomolecules such as peptides and proteins, and finally to macromolecules like nanoparticles. The review will conclude by highlighting promising future directions in using (124)I as a positron emitter in PET radiochemistry and molecular imaging.

  2. Compact Beta Particle/Positron Imager for Plant Biology

    SciTech Connect

    Weisenberger, Andrew; Lee, Seung Joon; McKisson, John; Xi, Wenze; Zorn, Carl; Stolin, Alexander; Majewski, Stan; Majewski, Stanislaw; Howell, Calvin; Crowell, Alec; Smith, Mark

    2011-06-01

    The 11CO2 tracer is used to facilitate plant biology research towards optimization of plant productivity, biofuel development and carbon sequestration in biomass. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using 11CO2. Plants typically have very thin leaves resulting in little medium for the emitted positrons to undergo an annihilation event. For the emitted positron from 11C decay approximately 1mm of water equivalent material is needed for positron annihilation. Thus most of the positrons do not annihilate inside the leaf, resulting in limited sensitivity for PET imaging. To address this problem we have developed a compact beta-positive beta-minus particle (BPBM) imager for 11CO2 leaf imaging. The detector is based on a Hamamatsu H8500 position sensitive photomultiplier tube optically coupled via optical grease and a 3mm thick glass plate to a 0.5mm thick Eljin EJ-212 plastic scintillator. The detector is equipped with a flexible arm to allow its placement and orientation on the leaf of the plant of interest while maintaining the leaf's original orientation. We are planning to utilize the imaging device at the Duke University Phytotron to investigate dynamic carbon transport differences between invasive and native species.

  3. Positron emission tomography: a first-hand experience.

    PubMed

    Traylor, J

    2000-01-01

    In July 1999, the University of Kansas Hospital installed a positron emission tomography (PET) scanner and added PET to the imaging technologies it offers patients and physicians. The new service is managed by the nuclear medicine section in the department of radiology. Plans are being implemented now to install a cyclotron in March 2000. Prior to installation of the scanner, a radiation area survey was performed in the space being considered for the PET unit. We also needed to address other critical considerations, including the manufacturer's requirements for construction of the scanner room, special electrical needs, and how the system would connect to our existing information network. It is important to work closely with your chief financial officer and chief operations officer from the beginning of the purchasing process so that these administrators have up-to-date, supportive information about PET and the progress of the installation. We made use of a variety of promotional techniques to market the new service, including broadcast e-mail, an open house for potential referring physicians, postings on the nuclear medicine Web site and communication through the local media. We also worked with the major insurance providers that utilize our hospital to educate them about PET and its benefits. In addition, we trained our own billing staff about procedures that optimize reimbursement for PET. In March 2000, University of Kansas Hospital will install the first cyclotron in the state, enabling us to generate the drugs used for PET scanning and potentially to add targets for research PET radiopharmaceuticals.

  4. Enhanced positron trapping by Ag nanoclusters at low temperatures: A challenge of positron sensitivity to quantum dots

    NASA Astrophysics Data System (ADS)

    Zou, B.; Qi, N.; Liu, Z. W.; Chen, Z. Q.; Liu, H. Q.; Yi, D. Q.; Tang, Z.

    2017-03-01

    Microstructure evolution of three Al-Ag alloys with different Ag contents (1 wt. % Ag, 5 wt. % Ag, and 15 wt. % Ag) was studied by positron annihilation spectroscopy during the aging process. In situ measurements of the positron lifetime and Doppler broadening of annihilation radiation indicate the fast formation of Ag-rich clusters during natural aging of the alloys. The formation of Ag-rich clusters was further confirmed by coincidence Doppler broadening measurements. The Ag signal reflected by the Coincidence Doppler broadening spectrum increases with increasing Ag content and is further enhanced after subsequent artificial aging at 140 °C. This might be due to the increase in the size of Ag clusters. The temperature dependence of the Doppler broadening spectra between 10 K and 290 K was measured for the Al-Ag alloys after natural and artificial aging. Detrapping of positrons from Ag clusters with increasing temperature was observed for all the three Al-Ag alloys after natural aging and for the Al-1 wt. % Ag after artificial aging. This indicates that Ag clusters act as shallow positron trapping centers. The thermal detrapping of positrons becomes ambiguous with increasing Ag content in the alloy and is nearly invisible in the artificially aged Al-5 wt. % Ag and Al-15 wt. % Ag. The positron binding energy of the Ag cluster is roughly estimated to be about 18.8 meV and 50 meV in the Al-1 wt. % Ag sample after natural aging and artificial aging at 140 °C, respectively, which suggests that the confinement of positrons in the quantum-dot like state depends on the size or chemical composition of clusters. Theoretical calculations confirm positron trapping by Ag nanoclusters, and the confinement of positrons is enhanced with increasing Ag cluster size.

  5. Evaluation of basal ganglia and thalamic inflammation in children with pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection and tourette syndrome: a positron emission tomographic (PET) study using 11C-[R]-PK11195.

    PubMed

    Kumar, Ajay; Williams, Mitchel T; Chugani, Harry T

    2015-05-01

    We applied PET scanning with (11)C-[R]-PK11195 (PK) to evaluate neuroinflammatory changes in basal ganglia and thalamus in children with clinically diagnosed pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection (PANDAS) and Tourette syndrome. Seventeen children with PANDAS (mean age: 11.4 ± 2.6 years; 13 males), 12 with Tourette syndrome (mean age: 11.0 ± 3.0 years; 10 males), and 15 normal adults (mean age: 28.7 ± 7.9 years; 8 males) underwent dynamic PK PET imaging and binding potential, a measure of ligand-TSPO receptor (expressed by activated microglia) binding, was calculated for basal ganglia and thalamus. Binding potential values, suggesting underlying activated microglia-mediated neuroinflammation, were found to be increased in bilateral caudate and bilateral lentiform nucleus in the PANDAS group and in bilateral caudate nuclei only in the Tourette syndrome group, compared to control group. These differences in the pattern and extent of neuroinflammation also signify a possible difference in pathophysiological etiology between PANDAS and Tourette syndrome patients. © The Author(s) 2014.

  6. Polyaspartic acid coated iron oxide nanoprobes for PET/MRI imaging.

    PubMed

    Cowger, Taku; Xie, Jin

    2013-01-01

    Iron oxide nanoparticles, due to their exceptional magnetic property, biocompatibility, and biodegradability, have long been studied as contrast agents for magnetic resonance imaging (Xie et al., Curr Med Chem 16(10):1278-1294, 2009; Xie et al., Adv Drug deliv Rev 62(11):1064-1079, 2010). While previous applications mostly target reticuloendothelial system (RES) organs such as liver and lymph nodes, recent efforts have been made to impart targeting peptides or antibodies onto particle surface to enable site-specific targeting after systemic administration (Xie et al., Adv Drug Deliv Rev 62(11):1064-1079, 2010; Cai and Chen, Small 3(11):1840-1854, 2007; Corot et al., Adv Drug Deliv Rev 58 (14):1471-1504, 2006; Xie et al., Acc Chem Res 44(10):883-892). Moreover, other imaging functionalities can be loaded onto nanoparticles to achieve multimodality imaging probes (Cai and Chen, Small 3(11):1840-1854, 2007; Lee et al., J Nucl Med Soc Nucl Med 49(8):1371-1379, 2008). In this protocol, we describe the procedure of constructing an iron oxide nanoparticle (IONP)-based probe with high affinity towards integrin αvβ3 for positron emission tomography (PET) and magnetic resonance imaging (MRI) dual modality imaging. The related characterizations and validation experiments, including particle concentration determination, Prussian blue staining, animal model preparation, and in vivo PET/MRI imaging will also be discussed.

  7. Implementing fluid dynamics obtained from GeoPET in reactive transport models

    NASA Astrophysics Data System (ADS)

    Lippmann-Pipke, Johanna; Eichelbaum, Sebastian; Kulenkampff, Johannes

    2016-04-01

    Flow and transport simulations in geomaterials are commonly conducted on high-resolution tomograms (μCT) of the pore structure or stochastic models that are calibrated with measured integral quantities, like break through curves (BTC). Yet, there existed virtually no method for experimental verification of the simulated velocity distribution results. Positron emission tomography (PET) has unrivaled sensitivity and robustness for non-destructive, quantitative, spatio-temporal measurement of tracer concentrations in body tissue. In the past decade, we empowered PET for its applicability in opaque/geological media - GeoPET (Kulenkampff et al.; Kulenkampff et al., 2008; Zakhnini et al., 2013) and have developed detailed correction schemes to bring the images into sharp focus. Thereby it is the appropriate method for experimental verification and calibration of computer simulations of pore-scale transport by means of the observed propagation of a tracer pulse, c_PET(x,y,z,t). In parallel, we aimed at deriving velocity and porosity distributions directly from our concentration time series of fluid flow processes in geomaterials. This would allow us to directly benefit from lab scale observations and to parameterize respective numerical transport models. For this we have developed a robust spatiotemporal (3D+t) parameter extraction algorithm. Here, we will present its functionality, and demonstrate the use of obtained velocity distributions in finite element simulations of reactive transport processes on drill core scale. Kulenkampff, J., Gruendig, M., Zakhnini, A., Gerasch, R., and Lippmann-Pipke, J.: Process tomography of diffusion with PET for evaluating anisotropy and heterogeneity, Clay Minerals, in press. Kulenkampff, J., Gründig, M., Richter, M., and Enzmann, F.: Evaluation of positron emission tomography for visualisation of migration processes in geomaterials, Physics and Chemistry of the Earth, 33, 937-942, 2008. Zakhnini, A., Kulenkampff, J., Sauerzapf, S

  8. Positron emission tomography: the conceptual idea using a multidisciplinary approach.

    PubMed

    Paans, Anne M J; van Waarde, Aren; Elsinga, Philip H; Willemsen, Antoon T M; Vaalburg, Willem

    2002-07-01

    Positron emission tomography (PET) is a method for quantitatively measuring biochemical and physiological processes in vivo by using radiopharmaceuticals labeled with positron-emitting radionuclides such as 11C, 13N, 15O, and 18F and by measuring the annihilation radiation using a coincidence technique. This technique is also used for measurement of the pharmacokinetics of labeled drugs and measurement of the effects of drugs on metabolism. Deviations from normal metabolism can be measured and insight into biological processes responsible for diseases can be obtained.

  9. Dual-modality PET/CT instrumentation-today and tomorrow.

    PubMed

    Lonsdale, Markus Nowak; Beyer, Thomas

    2010-03-01

    Positron emission tomography (PET) has proven to be a clinically valuable imaging modality, particularly for oncology staging and therapy follow-up. The introduction of combined PET/CT imaging has helped address challenging imaging situations when anatomical information on PET-only was inadequate for accurate lesion localization. After a decade of PET/CT these combined systems have matured technically. Today, whole-body oncology staging is available with PET/CT in 15 min, or less. This review details recent developments in combined PET/CT instrumentation and points to implications for major applications in clinical oncology. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  10. Use of PET/CT scanning in cancer patients: technical and practical considerations

    PubMed Central

    2005-01-01

    This overview of the oncologic applications of positron emission tomography (PET) focuses on the technical aspects and clinical applications of a newer technique: the combination of a PET scanner and a computed tomography (CT) scanner in a single (PET/CT) device. Examples illustrate how PET/CT contributes to patient care and improves upon the previous state-of-the-art method of comparing a PET scan with a separate CT scan. Finally, the author presents some of the results from studies of PET/CT imaging that are beginning to appear in the literature. PMID:16252023

  11. Clinical Utility and Future Applications of PET/CT and PET/CMR in Cardiology

    PubMed Central

    Pan, Jonathan A.; Salerno, Michael

    2016-01-01

    Over the past several years, there have been major advances in cardiovascular positron emission tomography (PET) in combination with either computed tomography (CT) or, more recently, cardiovascular magnetic resonance (CMR). These multi-modality approaches have significant potential to leverage the strengths of each modality to improve the characterization of a variety of cardiovascular diseases and to predict clinical outcomes. This review will discuss current developments and potential future uses of PET/CT and PET/CMR for cardiovascular applications, which promise to add significant incremental benefits to the data provided by each modality alone. PMID:27598207

  12. Bringing New PET drugs to clinical practice - a regulatory perspective.

    PubMed

    Hung, Joseph C

    2013-11-01

    The regulatory framework for radioactive drugs, in particular those used in positron emission tomography (PET) scans, has been gradually established since the release of the Food and Drug Administration Modernization Act in 1997. Various guidances specially tailored to accommodate special properties of PET drugs have been issued by the Food and Drug Administration (FDA) in order to ensure this valuable technology (i.e., PET molecular imaging) will continue to be available to patients and yet the safety and efficacy of PET drugs are well regulated so that public health will be protected. This article presents several key elements of this regulatory framework for PET drugs. New regulatory avenues proposed by the FDA to facilitate the research and development process to bring more new PET drugs to clinical practice, as well as to foster the opportunity of using "orphan" PET drugs in clinical practice are also discussed in this paper.

  13. Bringing New PET Drugs to Clinical Practice - A Regulatory Perspective

    PubMed Central

    Hung, Joseph C.

    2013-01-01

    The regulatory framework for radioactive drugs, in particular those used in positron emission tomography (PET) scans, has been gradually established since the release of the Food and Drug Administration Modernization Act in 1997. Various guidances specially tailored to accommodate special properties of PET drugs have been issued by the Food and Drug Administration (FDA) in order to ensure this valuable technology (i.e., PET molecular imaging) will continue to be available to patients and yet the safety and efficacy of PET drugs are well regulated so that public health will be protected. This article presents several key elements of this regulatory framework for PET drugs. New regulatory avenues proposed by the FDA to facilitate the research and development process to bring more new PET drugs to clinical practice, as well as to foster the opportunity of using “orphan” PET drugs in clinical practice are also discussed in this paper. PMID:24312157

  14. Utility of positron emission tomography/CT in the evaluation of small bowel pathology.

    PubMed

    Cronin, C G; Scott, J; Kambadakone, A; Catalano, O A; Sahani, D; Blake, M A; McDermott, S

    2012-09-01

    We describe the management principles and different roles of positron emission tomography (PET)/CT in the evaluation of patients with small bowel tumours (adenocarcinoma, gastrointestinal stromal tumour, lymphoma, metastases) from initial staging, monitoring response to treatment, to detection of recurrent disease. We also discuss the various non-malignant aetiologies of small bowel fludeoxyglucose (FDG) PET uptake, and other pitfalls in FDG PET/CT interpretation. Awareness of the imaging appearances of small bowel tumours, patterns of disease spread and potential PET/CT interpretation pitfalls are of paramount importance to optimise diagnostic accuracy.

  15. New techniques for positron emission tomography in the study of human neurological disorders. Progress report, June 1990--June 1993

    SciTech Connect

    Kuhl, D.E.

    1993-06-01

    This progress report describes accomplishments of four programs. The four programs are entitled (1) Faster,simpler processing of positron-computing precursors: New physicochemical approaches, (2) Novel solid phase reagents and methods to improve radiosynthesis and isotope production, (3) Quantitative evaluation of the extraction of information from PET images, and (4) Optimization of tracer kinetic methods for radioligand studies in PET.

  16. 76 FR 54473 - Guidance on Positron Emission Tomography Drug Applications-Content and Format for New Drug...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ...The Food and Drug Administration (FDA) is announcing the availability of a guidance for industry entitled ``PET Drug Applications--Content and Format for NDAs and ANDAs.'' This document is intended to assist manufacturers of certain positron emission tomography (PET) drugs in submitting new drug applications (NDAs) or abbreviated new drug applications (ANDAs) in accordance with the Federal......

  17. 76 FR 6143 - Draft Guidance on Positron Emission Tomography Drug Applications-Content and Format for New Drug...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-03

    ...The Food and Drug Administration (FDA) is announcing the availability of a draft guidance entitled ``PET Drug Applications-- Content and Format for NDAs and ANDAs.'' The draft guidance is intended to assist manufacturers of certain positron emission tomography (PET) drugs in submitting new drug applications (NDAs) or abbreviated new drug applications (ANDAs) in accordance with the Federal......

  18. Serotonin transporter in attention-deficit hyperactivity disorder--preliminary results from a positron emission tomography study.

    PubMed

    Karlsson, Linnea; Tuominen, Lauri; Huotarinen, Antti; Leppämäki, Sami; Sihvola, Elina; Helin, Semi; Sipilä, Maria; Tani, Pekka; Hirvonen, Jussi; Hietala, Jarmo; Karlsson, Hasse

    2013-05-30

    The serotonin transporter (SERT) in attention-deficit hyperactivity disorder (ADHD) patients has not been explored by earlier positron emission tomography (PET) studies. We measured SERT availability in female ADHD patients (n=8) and healthy controls (n=14) with PET and [11C]MADAM as a tracer. No significant group differences in [11C]MADAM binding potential were noted.

  19. MO-AB-206-01: PET Physics.

    PubMed

    Turkington, T

    2016-06-01

    This education session will cover the physics and operation principles of gamma cameras and PET scanners. The first talk will focus on PET imaging. An overview of the principles of PET imaging will be provided, including positron decay physics, and the transition from 2D to 3D imaging. More recent advances in hardware and software will be discussed, such as time-of-flight imaging, and improvements in reconstruction algorithms that provide for options such as depth-of-interaction corrections. Quantitative applications of PET will be discussed, as well as the requirements for doing accurate quantitation. Relevant performance tests will also be described.

  20. Appropriateness criteria of FDG PET/CT in oncology

    PubMed Central

    Agrawal, Archi; Rangarajan, Venkatesh

    2015-01-01

    18Fluorine-2-fluoro-2-Deoxy-d-glucose (18F-FDG) positron emission tomography/computerized tomography (PET/CT) is a well-established functional imaging method widely used in oncology. In this article, we have incorporated the various indications for 18FDG PET/CT in oncology based on available evidence and current guidelines. Growing body of evidence for use of 18FDG PET/CT in select tumors is also discussed. This article attempts to give the reader an overview of the appropriateness of using 18F-FDG PET/CT in various malignancies. PMID:25969632

  1. (18)F-fluoromisonidazole (FMISO) PET may have the potential to detect cardiac sarcoidosis.

    PubMed

    Manabe, Osamu; Hirata, Kenji; Shozo, Okamoto; Shiga, Tohru; Uchiyama, Yuko; Kobayashi, Kentaro; Watanabe, Shiro; Toyonaga, Takuya; Kikuchi, Hisaya; Oyama-Manabe, Noriko; Tamaki, Nagara

    2017-02-01

    (18)F-fluoromisonidazole (FMISO) is a positron emission tomography (PET) tracer that accumulates in hypoxic tissues. We here present a case of suspected cardiac sarcoidosis which was detected with increased FMISO uptake.

  2. Positron diffusion in Si

    SciTech Connect

    Nielsen, B.; Lynn, K.G.; Vehanen, A.; Schultz, P.J.

    1985-06-01

    Positron diffusion in Si(100) and Si(111) has been studied using a variable energy positron beam. The positron diffusion coefficient is found to be D/sub +/ = 2.7 +- 0.3 cm/sup 2//sec using a Makhov-type positron implantation profile, which is demonstrated to fit the data more reliably than the more commonly applied exponential profile. The diffusion related parameter, E/sub 0/, which results from the exponential profile, is found to be 4.2 +- 0.2 keV, significantly longer than previously reported values. A drastic reduction in E/sub 0/ is found after annealing the sample at 1300 K, showing that previously reported low values of E/sub 0/ are probably associated with the thermal history of the sample.

  3. The next generation of positron emission tomography radiopharmaceuticals in oncology.

    PubMed

    Rice, Samuel L; Roney, Celeste A; Daumar, Pierre; Lewis, Jason S

    2011-07-01

    Although (18)F-fluorodeoxyglucose ((18)F-FDG) is still the most widely used positron emission tomography (PET) radiotracer, there are a few well-known limitations to its use. The last decade has seen the development of new PET probes for in vivo visualization of specific molecular targets, along with important technical advances in the production of positron-emitting radionuclides and their related labeling methods. As such, a broad range of new PET tracers are in preclinical development or have recently entered clinical trials. The topics covered in this review include labeling methods, biological targets, and the most recent preclinical or clinical data of some of the next generation of PET radiopharmaceuticals. This review, which is by no means exhaustive, has been separated into sections related to the PET radionuclide used for radiolabeling: fluorine-18, for the labeling of agents such as FACBC, FDHT, choline, and Galacto-RGD; carbon-11, for the labeling of choline; gallium-68, for the labeling of peptides such as DOTATOC and bombesin analogs; and the long-lived radionuclides iodine-124 and zirconium-89 for the labeling of monoclonal antibodies cG250, and J591 and trastuzumab, respectively. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. The Next Generation of Positron Emission Tomography Radiopharmaceuticals in Oncology

    PubMed Central

    Rice, Samuel L.; Roney, Celeste A.; Daumar, Pierre; Lewis, Jason S.

    2015-01-01

    Although 18F-fluorodeoxyglucose (18F-FDG) is still the most widely used positron emission tomography (PET) radiotracer, there are a few well-known limitations to its use. The last decade has seen the development of new PET probes for in vivo visualization of specific molecular targets, along with important technical advances in the production of positron-emitting radionuclides and their related labeling methods. As such, a broad range of new PET tracers are in preclinical development or have recently entered clinical trials. The topics covered in this review include labeling methods, biological targets, and the most recent preclinical or clinical data of some of the next generation of PET radiopharmaceuticals. This review, which is by no means exhaustive, has been separated into sections related to the PET radionuclide used for radiolabeling: fluorine-18, for the labeling of agents such as FACBC, FDHT, choline, and Galacto-RGD; carbon-11, for the labeling of choline; gallium-68, for the labeling of peptides such as DOTATOC and bombesin analogs; and the long-lived radionuclides iodine-124 and zirconium-89 for the labeling of monoclonal antibodies cG250, and J591 and trastuzumab, respectively. PMID:21624561

  5. Exercises in PET Image Reconstruction

    NASA Astrophysics Data System (ADS)

    Nix, Oliver

    These exercises are complementary to the theoretical lectures about positron emission tomography (PET) image reconstruction. They aim at providing some hands on experience in PET image reconstruction and focus on demonstrating the different data preprocessing steps and reconstruction algorithms needed to obtain high quality PET images. Normalisation, geometric-, attenuation- and scatter correction are introduced. To explain the necessity of those some basics about PET scanner hardware, data acquisition and organisation are reviewed. During the course the students use a software application based on the STIR (software for tomographic image reconstruction) library 1,2 which allows them to dynamically select or deselect corrections and reconstruction methods as well as to modify their most important parameters. Following the guided tutorial, the students get an impression on the effect the individual data precorrections have on image quality and what happens if they are forgotten. Several data sets in sinogram format are provided, such as line source data, Jaszczak phantom data sets with high and low statistics and NEMA whole body phantom data. The two most frequently used reconstruction algorithms in PET image reconstruction, filtered back projection (FBP) and the iterative OSEM (ordered subset expectation maximation) approach are used to reconstruct images. The exercise should help the students gaining an understanding what the reasons for inferior image quality and artefacts are and how to improve quality by a clever choice of reconstruction parameters.

  6. Positron annihilation in solid and liquid Ni

    SciTech Connect

    Fluss, M.J.; Smedskjaer, L.C.; Chakraborty, B.; Chason, M.K.

    1982-03-01

    New techniques have been developed for the study of metals via positron annihilation which provide for the in-situ melting of the samples and subsequent measurements via Doppler broadening of positron-annihilation radiation. Here we report these metods currently in use at our laboratory; ion implantation of /sup 58/Co and the use of Al/sub 2/O/sub 3/ crucibles for in-situ melting followed by the decomposition of the Doppler-broadened spectrum into a parabolic and a Gaussian component. Our earliest results obtained for pure Ni in the polycrystalline solid and in the liquid state are compared. An interesting similarity is reported for the distributions of the high-momentum (Gaussian) component for positrons annihilating in vacancies at high temperatures and those annihilating in liquid Ni.

  7. A useful PET probe [(11)C]BU99008 with ultra-high specific radioactivity for small animal PET imaging of I2-imidazoline receptors in the hypothalamus.

    PubMed

    Kawamura, Kazunori; Shimoda, Yoko; Yui, Joji; Zhang, Yiding; Yamasaki, Tomoteru; Wakizaka, Hidekatsu; Hatori, Akiko; Xie, Lin; Kumata, Katsushi; Fujinaga, Masayuki; Ogawa, Masanao; Kurihara, Yusuke; Nengaki, Nobuki; Zhang, Ming-Rong

    2017-02-01

    A positron emission tomography (PET) probe with ultra-high specific radioactivity (SA) enables measuring high receptor specific binding in brain regions by avoiding mass effect of the PET probe itself. It has been reported that PET probe with ultra-high SA can detect small change caused by endogenous or exogenous ligand. Recently, Kealey et al. developed [(11)C]BU99008, a more potent PET probe for I2-imidazoline receptors (I2Rs) imaging, with a conventional SA (mean 76GBq/μmol) showed higher specific binding in the brain. Here, to detect small change of specific binding for I2Rs caused by endogenous or exogenous ligand in an extremely small region, such as hypothalamus in the brain, we synthesized and evaluated [(11)C]BU99008 with ultra-high SA as a useful PET probe for small-animal PET imaging of I2Rs. [(11)C]BU99008 was prepared by [(11)C]methylation of N-desmethyl precursor with [(11)C]methyl iodide. Biodistribution, metabolite analysis, and brain PET studies were conducted in rats. [(11)C]BU99008 with ultra-high SA in the range of 5400-16,600GBq/μmol were successfully synthesized (n=7), and had appropriate radioactivity for in vivo study. In the biodistribution study, the mean radioactivity levels in all investigated tissues except for the kidney did not show significant difference between [(11)C]BU99008 with ultra-high SA and that with conventional SA. In the metabolite analysis, the percentage of unchanged [(11)C]BU99008 at 30min after the injection of probes with ultra-high and conventional SA was similar in rat brain and plasma. In the PET study of rats' brain, radioactivity level (AUC30-60 min) in the hypothalamus of rats injected with [(11)C]BU99008 with ultra-high SA (64 [SUV ∙ min]) was significantly higher than that observed for that with conventional SA (50 [SUV ∙ min]). The specific binding of [(11)C]BU99008 with ultra-high SA (86% of total binding) for I2R was higher than that of conventional SA (76% of total binding). A PET study using [(11)C

  8. From PET/CT to PET/MRI: advances in instrumentation and clinical applications.

    PubMed

    Hu, Zhenhua; Yang, Weidong; Liu, Haixiao; Wang, Kun; Bao, Chengpeng; Song, Tianming; Wang, Jing; Tian, Jie

    2014-11-03

    Multimodality imaging of positron emission tomography/computed tomography (PET/CT) provides both metabolic information and the anatomic structure, which is significantly superior to either PET or CT alone and has greatly improved its clinical applications. Because of the higher soft-tissue contrast of magnetic resonance imaging (MRI) and no extra ionizing radiation, PET/MRI imaging is the hottest topic currently. PET/MRI is swiftly making its way into clinical practice. However, it has many technical difficulties to overcome, such as photomultiplier tubes, which cannot work properly in a magnetic field, and the inability to provide density information on the object for attenuation correction. This paper introduces the technique process of PET/MRI and summarizes its clinical applications, including imaging in oncology, neurology, and cardiology.

  9. Personalizing NSCLC therapy by characterizing tumors using TKI-PET and immuno-PET.

    PubMed

    Bahce, I; Yaqub, M; Smit, E F; Lammertsma, A A; van Dongen, G A M S; Hendrikse, N H

    2016-05-31

    Non-small cell lung cancer (NSCLC) therapy has entered a rapidly advancing era of precision medicine with an ever increasing number of drugs directed against a variety of specific tumor targets. Amongst these new agents, tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAbs) are most frequently used. However, as only a sensitive subgroup of patients benefits from targeting drugs, predictive biomarkers are needed. Positron emission tomography (PET) may offer such a biomarker for predicting therapy efficacy. Some of the TKIs and mAbs that are in clinical use can be radioactively labeled and used as tracers. PET can visualize and quantify tumor specific uptake of radiolabeled targeting drugs, allowing for characterization of their pharmacokinetic behavior. In this review, the clinical potential of PET using radiolabeled TKIs (TKI-PET) and mAbs (immuno-PET) in NSCLC is discussed, and an overview is provided of the most relevant preclinical and clinical studies.

  10. Ictal onset zone and seizure propagation delineated on ictal F-18 fluorodeoxyglucose positron emission tomography/computed tomography.

    PubMed

    Tripathi, Madhavi; Tripathi, Manjari; Garg, Ajay; Damle, Nishikant; Bal, Chandrasekhar

    2016-01-01

    The present case highlights the utility of ictal F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) in delineating the seizure onset zone in a child with complex partial seizures. Although F-18 FDG PET has been successfully used to delineate interictal hypometabolism, planned ictal FDG PET, in cases with prolonged seizure activity, can provide better spatial resolution than single-photon emission CT by delineating the seizure onset zone and propagation pathway.

  11. Investigation of partial volume correction methods for brain FDG PET studies

    NASA Astrophysics Data System (ADS)

    Yang, J.; Huang, S. C.; Mega, M.; Lin, K. P.; Toga, A. W.; Small, G. W.; Phelps, M. E.

    1996-12-01

    The use of positron emission tomography (PET) in quantitative fluorodeoxyglucose (FDG) studies of aging and dementia has been limited by partial volume effects. A general method for correction of partial volume effects (PVE) in PET involves the following common procedures: segmentation of MRI brain images into gray matter (GM), white matter (WM), cerebral spinal fluid (CSF), and muscle (MS) components: MRI PET registration; and generation of simulated PET images. Afterward, two different approaches can be taken. The first approach derives first a pixel-by-pixel correction map as the ratio of the measured image to the simulated image [with realistic full-width at half-maximum (FWHM)]. The correction map was applied to the MRI segmentation image. Regions of interest (ROI's) can then be applied to give results free of partial volume effects. The second approach uses the ROI values of the simulated "pure" image (with negligible FWHM) and those of the simulated and the measured PET images to correct for the PVE effect. By varying the ratio of radiotracer concentrations for different tissue components, the in-plane FWHM's of a three-dimensional point spread function, and the ROI size, the authors evaluated the performance of these two approaches in terms of their accuracy and sensitivity to different simulation configurations. The results showed that both approaches are more robust than the approach developed by Muller-Gartner et al. (1992), and the second approach is more accurate and more robust than the first. In conclusion, the authors recommend that the second approach should be used on FDG PET images to correct for partial volume effects and to determine whether an apparent change in GM radiotracer concentration is truly due to metabolic changes.

  12. Investigation of partial volume correction methods for brain FDG PET studies

    SciTech Connect

    Yang, J.; Huang, S.C.; Mega, M.; Toga, A.W.; Small, G.W.; Phelps, M.E.; Lin, K.P.

    1996-12-01

    The use of positron emission tomography (PET) in quantitative fluorodeoxyglucose (FDG) studies of aging and dementia has been limited by partial volume effects. A general method for correction of partial volume effects (PVE) in PET involves the following common procedures; segmentation of MRI brain images into gray matter (GM), white matter (WM), cerebral spinal fluid (CSF), and muscle (MS) components; MRI PET registration; and generation of simulated PET images. Afterward, two different approaches can be taken. The first approach derives first a pixel-by-pixel correction map as the ratio of the measured image to the simulated image [with realistic full-width at half-maximum (FWHM)]. The correction map was applied to the MRI segmentation image. Regions of interest (ROI`s) can then be applied to give results free of partial volume effects. The second approach uses the ROI values of the simulated ``pure`` image (with negligible FWHM) and those of the simulated and the measured PET images to correct for the PVE effect. By varying the ratio of radiotracer concentrations for different tissue components, the in-plane FWHM`s of a three-dimensional point spread function, and the ROI size, the authors evaluated the performance of these two approaches in terms of their accuracy and sensitivity to different simulation configurations. The results showed that both approaches are more robust than the approach developed by Muller-Gartner et al., and the second approach is more accurate and more robust than the first. In conclusion, the authors recommend that the second approach should be used on FDG PET images to correct for partial volume effects and to determine whether an apparent change in GM radiotracer concentration is truly due to metabolic changes.

  13. Reproducibility of 18F-FDG PET uptake measurements in head and neck squamous cell carcinoma on both PET/CT and PET/MR

    PubMed Central

    Fischer, B M; Aznar, M C; Hansen, A E; Vogelius, I R; Löfgren, J; Andersen, F L; Loft, A; Kjaer, A; Højgaard, L; Specht, L

    2015-01-01

    Objective: To investigate reproducibility of fluorine-18 fludeoxyglucose (18F-FDG) uptake on 18F-FDG positron emission tomography (PET)/CT and 18F-FDG PET/MR scans in patients with head and neck squamous cell carcinoma (HNSCC). Methods: 30 patients with HNSCC were included in this prospective study. The patients were scanned twice before radiotherapy treatment with both PET/CT and PET/MR. Patients were scanned on the same scanners, 3 days apart and according to the same protocol. Metabolic tumour activity was measured by the maximum and peak standardized uptake value (SUVmax and SUVpeak, respectively), and total lesion glycolysis from the metabolic tumour volume defined from ≥50% SUVmax. Bland–Altman analysis with limits of agreement, coefficient of variation (CV) from the two modalities were performed in order to test the reproducibility. Furthermore, CVs from SUVmax and SUVpeak were compared. The area under the curve from cumulative SUV–volume histograms were measured and tested for reproducibility of the distribution of 18F-FDG uptake. Results: 24 patients had two pre-treatment PET/CT scans and 21 patients had two pre-treatment PET/MR scans available for further analyses. Mean difference for SUVmax, peak and mean was approximately 4% for PET/CT and 3% for PET/MR, with 95% limits of agreement less than ±20%. CV was small (5–7%) for both modalities. There was no significant difference in CVs between PET/CT and PET/MR (p = 0.31). SUVmax was not more reproducible than SUVpeak (p = 0.09). Conclusion: 18F-FDG uptake in PET/CT and PET/MR is highly reproducible and we found no difference in reproducibility between PET/CT and PET/MR. Advances in knowledge: This is the first report to test reproducibility of PET/CT and PET/MR. PMID:25634069

  14. [Innovation and Future Technologies for PET Scanners].

    PubMed

    Yamaya, Taiga

    2015-01-01

    Positron emission tomography (PET) plays important roles in cancer diagnosis, neuroimaging and molecular imaging research; but potential points remain for which big improvements could be made, including spatial resolution, sensitivity and manufacturing costs. Higher spatial resolution is essential to enable earlier diagnosis, and improved sensitivity results in reduced radiation exposure and shortened measurement time. Therefore, research on next generation PET technologies remains a hot topic worldwide. In this paper, innovation and future technologies for the next generation PET scanners, such as time-of-flight measurement and simultaneous PET/MRI measurement, are described. Among them, depth-of-interaction (DOI) measurement in the radiation sensor will be a key technology to get any significant improvement in sensitivity while maintaining high spatial resolution. DOI measurement also has a potential to expand PET application fields because it allows for more flexible detector arrangement. As an example, the world's first, open-type PET geometry "OpenPET", which is expected to lead to PET imaging during treatment, is under development. The DOI detector itself continues to evolve with the help of recently developed semiconductor photodetectors, often referred to as silicon photomultipliers.

  15. Recent developments in PET detector technology

    PubMed Central

    Lewellen, Tom K

    2010-01-01

    Positron emission tomography (PET) is a tool for metabolic imaging that has been utilized since the earliest days of nuclear medicine. A key component of such imaging systems is the detector modules—an area of research and development with a long, rich history. Development of detectors for PET has often seen the migration of technologies, originally developed for high energy physics experiments, into prototype PET detectors. Of the many areas explored, some detector designs go on to be incorporated into prototype scanner systems and a few of these may go on to be seen in commercial scanners. There has been a steady, often very diverse development of prototype detectors, and the pace has accelerated with the increased use of PET in clinical studies (currently driven by PET/CT scanners) and the rapid proliferation of pre-clinical PET scanners for academic and commercial research applications. Most of these efforts are focused on scintillator-based detectors, although various alternatives continue to be considered. For example, wire chambers have been investigated many times over the years and more recently various solid-state devices have appeared in PET detector designs for very high spatial resolution applications. But even with scintillators, there have been a wide variety of designs and solutions investigated as developers search for solutions that offer very high spatial resolution, fast timing, high sensitivity and are yet cost effective. In this review, we will explore some of the recent developments in the quest for better PET detector technology. PMID:18695301

  16. Clinical oncologic applications of PET/MRI: a new horizon

    PubMed Central

    Partovi, Sasan; Kohan, Andres; Rubbert, Christian; Vercher-Conejero, Jose Luis; Gaeta, Chiara; Yuh, Roger; Zipp, Lisa; Herrmann, Karin A; Robbin, Mark R; Lee, Zhenghong; Muzic, Raymond F; Faulhaber, Peter; Ros, Pablo R

    2014-01-01

    Positron emission tomography/magnetic resonance imaging (PET/MRI) leverages the high soft-tissue contrast and the functional sequences of MR with the molecular information of PET in one single, hybrid imaging technology. This technology, which was recently introduced into the clinical arena in a few medical centers worldwide, provides information about tumor biology and microenvironment. Studies on indirect PET/MRI (use of positron emission tomography/computed tomography (PET/CT) images software fused with MRI images) have already generated interesting preliminary data to pave the ground for potential applications of PET/MRI. These initial data convey that PET/MRI is promising in neuro-oncology and head & neck cancer applications as well as neoplasms in the abdomen and pelvis. The pediatric and young adult oncology population requiring frequent follow-up studies as well as pregnant woman might benefit from PET/MRI due to its lower ionizing radiation dose. The indication and planning of therapeutic interventions and specifically radiation therapy in individual patients could be and to a certain extent are already facilitated by performing PET/MRI. The objective of this article is to discuss potential clinical oncology indications of PET/MRI. PMID:24753986

  17. Positron-emitting radioligands for imaging neuroleptic receptors

    SciTech Connect

    Arnett, C.D.; Fowler, J.S.; Wolf, A.P.; Shiue, C.Y.; Logan, J.

    1985-01-01

    A series of /sup 18/F-labeled butyrophenones (benperidol, haloperidol, spiroperidol and N-methylspiroperidol) were evaluated in baboons and rats with respect to potential utility as radioligands for studying neuroleptic receptors in the living human brain by positron emission tomography. These compounds were administered to baboons, and the radioactivity distributions to the striatum, and to the cerebellum were determined by PET at times up to 8 hours after isotope injection. 4 refs. (DT)

  18. [Al

    PubMed

    Purath; Köppe; Schnöckel

    1999-10-04

    A "naked" aluminum atom links two aluminum tetrahedra in the [Al(7){N(SiMe(3))(2)}(6)](-) ion (see picture), which results from the reaction of a metastable AlCl solution with LiN(SiMe(3))(2) and crystallizes with [Li(OEt(2))(3)](+) as cation. This unique structure among molecular metal atom clusters represents a small but characteristic section of cubic close-packed aluminum.

  19. Kinetic analysis of dynamic PET data

    SciTech Connect

    Knittel, B.

    1983-12-01

    Our goal is to quantify regional physiological processes such as blood flow and metabolism by means of tracer kinetic modeling and positron emission tomography (PET). Compartmental models are one way of characterizing the behavior of tracers in physiological systems. This paper describes a general method of estimating compartmental model rate constants from measurements of the concentration of tracers in blood and tissue, taken at multiple time intervals. A computer program which applies the method is described, and examples are shown for simulated and actual data acquired from the Donner 280-Crystal Positron Tomograph.

  20. Effect of α-Methyl versus α-Hydrogen Substitution on Brain Availability and Tumor Imaging Properties of Heptanoic [F-18]Fluoroalkyl Amino Acids for Positron Emission Tomography (PET).

    PubMed

    Bouhlel, Ahlem; Alyami, Wadha; Li, Aixiao; Yuan, Liya; Rich, Keith; McConathy, Jonathan

    2016-04-14

    Two [(18)F]fluoroalkyl substituted amino acids differing only by the presence or absence of a methyl group on the α-carbon, (S)-2-amino-7-[(18)F]fluoro-2-methylheptanoic acid ((S)-[(18)F]FAMHep, (S)-[(18)F]14) and (S)-2-amino-7-[(18)F]fluoroheptanoic acid ((S)-[(18)F]FAHep, (S)-[(18)F]15), were developed for brain tumor imaging and compared to the well-established system L amino acid tracer, O-(2-[(18)F]fluoroethyl)-l-tyrosine ([(18)F]FET), in the delayed brain tumor (DBT) mouse model of high-grade glioma. Cell uptake, biodistribution, and PET/CT imaging studies showed differences in amino acid transport of these tracer by DBT cells. Recognition of (S)-[(18)F]15 but not (S)-[(18)F]14 by system L amino acid transporters led to approximately 8-10-fold higher uptake of the α-hydrogen substituted analogue (S)-[(18)F]15 in normal brain. (S)-[(18)F]15 had imaging properties similar to those of (S)-[(18)F]FET in the DBT tumor model while (S)-[(18)F]14 afforded higher tumor to brain ratios due to much lower uptake by normal brain. These results have important implications for the future development of α-alkyl and α,α-dialkyl substituted amino acids for brain tumor imaging.

  1. Integrated telemedicine applications and services for oncological positron emission tomography.

    PubMed

    Kontaxakis, George; Visvikis, Dimitris; Ohl, Roland; Sachpazidis, Ilias; Suarez, Juan Pablo; Selby, Peter; Cheze-Le Rest, Catherine; Santos, Andres; Ortega, Fernando; Diaz, Javier; Pan, Leyun; Strauss, Ludwig; Dimitrakopoulou-Strauss, Antonia; Sakas, Georgios; Pozo, Miguel Angel

    2006-01-01

    TENPET (Trans European Network for Positron Emission Tomography) aims to evaluate the provision of integrated teleconsultation and intelligent computer supported cooperative work services for clinical positron emission tomography (PET) in Europe at its current stage, as it is a multi-centre project financially supported by the European Commission (Information Society, eTEN Program). It addresses technological challenges by linking PET centres and developing supporting services that permit remote consultation between professionals in the field. The technological platform (CE-marked) runs on Win2000/NT/XP systems and incorporates advanced techniques for image visualization, analysis and fusion, as well as for interactive communication and message handling for off-line communications. Four PET Centres from Spain, France and Germany participate to the pilot system trials. The performance evaluation of the system is carried out via log files and user-filled questionnaires on the frequency of the teleconsultations, their duration and efficacy, quality of the images received, user satisfaction, as well as on privacy, ethical and security issues. TENPET promotes the co-operation and improved communication between PET practitioners that are miles away from their peers or on mobile units, offering options for second opinion and training and permitting physicians to remotely consult patient data if they are away from their centre. It is expected that TENPET will have a significant impact in the development of new skills by PET professionals and will support the establishment of peripheral PET units. To our knowledge, TENPET is the first telemedicine service specifically designed for oncological PET. This report presents the technical innovations incorporated in the TENPET platform and the initial pilot studies at real and diverse clinical environments in the field of oncology.

  2. Positron imaging techniques for process engineering: recent developments at Birmingham

    NASA Astrophysics Data System (ADS)

    Parker, D. J.; Leadbeater, T. W.; Fan, X.; Hausard, M. N.; Ingram, A.; Yang, Z.

    2008-09-01

    For over 20 years the University of Birmingham has been using positron-emitting radioactive tracers to study engineering processes. The imaging technique of positron emission tomography (PET), widely used for medical applications, has been adapted for these studies, and the complementary technique of positron emission particle tracking (PEPT) has been developed. The radioisotopes are produced using the Birmingham MC40 cyclotron, and a variety of techniques are employed to produce suitable tracers in a wide range of forms. Detectors originally designed for medical use have been modified for engineering applications, allowing measurements to be made on real process equipment, at laboratory or pilot plant scale. This paper briefly reviews the capability of the techniques and introduces a few of the many processes to which they have been applied.

  3. Positron emission tomography scanning is coming to a hospital near you soon!

    PubMed

    Bashir, Humayun; Shabo, Gregory; Nunan, T O

    2008-04-01

    Positron emission tomography (PET) is still generally not available in the UK; however, there are plans to introduce a national service in England from April 2008. Plans are also at an advanced stage in Scotland and Wales. The main uses of PET are in preoperative staging of lung cancer, detection of recurrent colorectal cancer, and management of patients with lymphoma. Although these provide the bulk of the referral base, PET is also of use in specific situations in patients with less common cancers, such as head and neck cancer, gynaecological cancer, and melanoma. In its more common uses, PET has been shown to be cost effective. Positron emission tomography will play an increasing role in the evaluation of response to treatment to enable early separation of patients who are responding well to chemotherapy from those who are not responding and need to be transferred to another therapy.

  4. Positron emission tomographic imaging of cardiac sympathetic innervation and function

    SciTech Connect

    Goldstein, D.S.; Chang, P.C.; Eisenhofer, G.; Miletich, R.; Finn, R.; Bacher, J.; Kirk, K.L.; Bacharach, S.; Kopin, I.J. )

    1990-05-01

    Sites of uptake, storage, and metabolism of ({sup 18}F)fluorodopamine and excretion of ({sup 18}F)fluorodopamine and its metabolites were visualized using positron emission tomographic (PET) scanning after intravenous injection of the tracer into anesthetized dogs. Radioactivity was concentrated in the renal pelvis, heart, liver, spleen, salivary glands, and gall bladder. Uptake of 18F by the heart resulted in striking delineation of the left ventricular myocardium. Pretreatment with desipramine markedly decreased cardiac positron emission, consistent with dependence of the heart on neuronal uptake (uptake-1) for removal of circulating catecholamines. In reserpinized animals, cardiac positron emission was absent within 30 minutes after injection of ({sup 18}F)-6-fluorodopamine, demonstrating that the emission in untreated animals was from radioactive labeling of the sympathetic storage vesicles. Decreased positron emission from denervated salivary glands confirmed that the tracer was concentrated in sympathetic neurons. Radioactivity in the gall bladder and urinary system depicted the hepatic and renal excretion of the tracer and its metabolites. Administration of tyramine or nitroprusside increased and ganglionic blockade with trimethaphan decreased the rate of loss of myocardial radioactivity. The results show that PET scanning after administration of ({sup 18}F)fluorodopamine can be used to visualize sites of sympathetic innervation, follow the metabolism and renal and hepatic excretion of catecholamines, and examine cardiac sympathetic function.

  5. Flourodeoxyglucose positron emission tomography scan may be helpful in the case of ductal variant prostate cancer when prostate specific membrane antigen ligand positron emission tomography scan is negative.

    PubMed

    McEwan, Louise M; Wong, David; Yaxley, John

    2017-03-28

    Gallium-68 prostate specific membrane antigen ligand (Ga-68 PSMA) positron emission tomography/computed tomography (PET/CT) scanning is emerging as a useful imaging modality for the staging of suspected and known recurrent or metastatic prostate cancer and in staging of newly diagnosed higher grade prostate cancer. However, we have observed at our institution that in some cases of the more aggressive ductal variant, Ga-68 PSMA uptake has sometimes been poor compared with prominent 18-flourodeoxyglucose (F-18 FDG) avidity seen in F-18 FDG PET/CT, which would suggest that FDG PET/CT scans are important in staging of ductal pattern prostate cancer.

  6. Data acquisition with a positron emission tomograph

    SciTech Connect

    Freifelder, R.; Karp, J.S.

    1997-12-31

    Positron Emission Tomography (PET) is a clinical imaging modality used in Nuclear Medicine. PET measures functionality rather than anatomical features and is therefore invaluable in the treatment of diseases which are characterized by functional changes in organs rather than anatomical changes. Typical diseases for which PET is used are cancer, epilepsy, and heart disease. While the scanners are not very complex, the performance demands on the devices are high. Excellent spatial resolution, 4-5 mm, and high sensitivity are key to maintaining high image quality. Compensation or suppression of scattered radiation is also necessary for good image quality. The ability to acquire data under high counting rates is also necessary in order to minimize the injected dose to the patient, minimize the patient`s time in the scanner, and finally to minimize blurring due to patient motion. We have adapted various techniques in our data acquisition system which will be reported on in this talk. These include pulse clipping using lumped delay lines, flash ADCs with short sampling time, the use of a local positioning algorithm to limit the number of data words being used in subsequent second level software triggers and calculations, and finally the use of high speed dedicated calculator boards for on-line rebinning and reduction of the data. Modifications to the system to allow for transmission scanning will also be discussed.

  7. Positron emission tomography in generalized seizures

    SciTech Connect

    Theodore, W.H.; Brooks, R.; Margolin, R.; Patronas, N.; Sato, S.; Porter, R.J.; Mansi, L.; Bairamian, D.; DiChiro, G.

    1985-05-01

    The authors used /sup 18/F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to study nine patients with clinical absence or generalized seizures. One patient had only absence seizures, two had only generalized tonic-clonic seizures, and six had both seizure types. Interictal scans in eight failed to reveal focal or lateralized hypometabolism. No apparent abnormalities were noted. Two patients had PET scans after isotope injection during hyperventilation-induced generalized spike-wave discharges. Diffusely increased metabolic rates were found in one compared with an interictal scan, and in another compared with control values. Another patient had FDG injected during absence status: EEG showed generalized spike-wave discharges (during which she was unresponsive) intermixed with slow activity accompanied by confusion. Metabolic rates were decreased, compared with the interictal scan, throughout both cortical and subcortical structures. Interictal PET did not detect specific anatomic regions responsible for absence seizure onset in any patient, but the results of the ictal scans did suggest that pathophysiologic differences exist between absence status and single absence attacks.

  8. Hypoxia imaging agents labeled with positron emitters.

    PubMed

    Hoigebazar, Lathika; Jeong, Jae Min

    2013-01-01

    Imaging hypoxia using positron emission tomography (PET) is of great importance for therapy of cancer. [(18)F]Fluoromisonidazole (FMISO) was the first PET agent for hypoxia imaging, and various radiolabeled nitroimidazole derivatives such as [(18)F]fluoroerythronitroimidazole (FETNIM), [(18)F]1-α-D: -(2-deoxy-2-fluoroarabinofuranosyl)-2-nitroimidazole (FAZA), [(18)F]2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl) acetamide (EF-5), and [(18)F]fluoroetanidazole (FETA) have been developed successively. To overcome the high cost of cyclotron installation, (68)Ga-labeled nitroimidazole derivatives also have been developed. Another important hypoxia imaging agent is (64)Cu-diacetyl-bis(N (4)-methylthiosemicarbazone) ((64)Cu-ATSM), which can distribute in cancer tissue rapidly due to high lipophilicity. However, its application is limited due to high cost of radionuclide production. Although various hypoxia imaging agents have been reported and tested, hypoxia PET images still have to be improved, because of the low blood flow in hypoxic tissues and resulting low uptake of the agents.

  9. Update on advances in molecular PET in urological oncology

    PubMed Central

    Yamamoto, Shingo; Fukushima, Kazuhito; Minamimoto, Ryogo; Kamai, Takao; Jadvar, Hossein

    2017-01-01

    Integrated positron emission tomography/computed tomography (PET/CT) with 2-[18F]fluoro-2-deoxy-D-glucose (18F-FDG) has emerged as a powerful tool for the combined metabolic and anatomic evaluation of many cancers. In urological oncology, however, the use of 18F-FDG has been limited by a generally low tumor uptake, and physiological excretion of FDG through the urinary system. 18F-FDG PET/CT is useful when applied to specific indications in selected patients with urological malignancy. New radiotracers and positron emission tomography/magnetic resonance imaging (PET/MRI) are expected to further improve the performance of PET in uro-oncology. PMID:27222021

  10. Positron emission tomography

    SciTech Connect

    Cohen, R.M.; Semple, W.E.; Gross, M.

    1986-03-01

    PET is a unique tool for the direct in vivo evaluation of physiologic processes within discrete areas of the brain. Thus far, its application to the study of schizophrenia has served to confirm the subtleties of this illness. However, PET does promise to increase our knowledge of the neurochemical anatomy of the normal and abnormal mind with respect to goal-directed behavior.22 references.

  11. The impact of positron emission tomography imaging on the clinical management of patients with epilepsy.

    PubMed

    Juhász, Csaba

    2012-06-01

    Clinical positron emission tomography (PET) imaging of human epilepsy has a 30-year history, but it is still searching for its exact role among rapidly advancing neuroimaging techniques. The vast majority of epilepsy PET studies used this technique to improve detection of epileptic foci for surgical resection. Here, we review the main trends emerging from three decades of PET research in epilepsy, with a particular emphasis on how PET imaging has impacted on the clinical management of patients with intractable epilepsy. While reviewing the latest studies, we also present an argument for a changing role of PET and molecular imaging in the future, with an increasing focus on epileptogenesis and newly discovered molecular mechanisms of epilepsy. These new applications will be facilitated by technological advances, such as the use of integrated PET/MRI systems and utilization of novel radiotracers, which may also enhance phenotype-genotype correlations and assist rational, individualized treatment strategies.

  12. Active transport of C-11-Methyl-D-Glucose and 3-F-18-Deoxyglucose in acute ischemic brain disease and Huntington's chorea, studied by positron-emission-tomography (PET)

    SciTech Connect

    Vyska, K.; Magloire, R.; Schuier, F.; Machulla, H.J.; Knust, E.J.; Lange, W.; Becker, V.; Spohr, G.; Notohamiprodjo, G.; Feinendegen, L.E.

    1984-01-01

    C-11-Methyl-D-Glucose (CMG) and 3-F-18-Deoxyglucose (3FDG) were demonstrated to be non-metabolizable glucose analogues which are transported across the blood-brain-barrier into and out of tissue via the glucose carrier system (GCS). These two substances were used as indicators for determining the perfusion-independent rate constant of GCS in the brain. Five normals with informed consent, 12 patients with acute ischemic brain disease and 9 patients with initial and advanced Huntington's chorea were examined by PET after i.v. application of 5 mCi of GMG or 3FDG. In each patient 30 transaxial images were registered in 1 selected plane, image collection time being 1 min. Time-activity curves were created from different regions of interest. The slope to tracer steady state between tissue and blood yields the perfusion-independent rate constant of GCS from tissue to blood (k/sub 2/). In normals k/sub 2/ for CMG was 0.235 +- 0.03/min, as expected, and for 3FDG 0.47 +- 0.07/min indicating a higher affinity to GCS for 3FDG than CMG. In acute ischemic brain disease k/sub 2/ was normal or reduced at the site of insult for both CMG and 3FDG. In Huntington's chorea, k/sub 2/ was reduced in the basal ganglia but normal or occasionally significantly increased in frontal or occipital cortical areas, for CMG and 3FDG. The authors conclude that CMG permits noninvasive analysis of the perfusion-independent rate constant of CCS. 3FDG shows a higher affinity for CCS than CMC but gives comparable information.

  13. One-step ¹⁸F-labeling of carbohydrate-conjugated octreotate-derivatives containing a silicon-fluoride-acceptor (SiFA): in vitro and in vivo evaluation as tumor imaging agents for positron emission tomography (PET).

    PubMed

    Wängler, Carmen; Waser, Beatrice; Alke, Andrea; Iovkova, Ljuba; Buchholz, Hans-Georg; Niedermoser, Sabrina; Jurkschat, Klaus; Fottner, Christian; Bartenstein, Peter; Schirrmacher, Ralf; Reubi, Jean-Claude; Wester, Hans-Jürgen; Wängler, Björn

    2010-12-15

    The synthesis, radiolabeling, and initial evaluation of new silicon-fluoride acceptor (SiFA) derivatized octreotate derivatives is reported. So far, the main drawback of the SiFA technology for the synthesis of PET-radiotracers is the high lipophilicity of the resulting radiopharmaceutical. Consequently, we synthesized new SiFA-octreotate analogues derivatized with Fmoc-NH-PEG-COOH, Fmoc-Asn(Ac₃AcNH-β-Glc)-OH, and SiFA-aldehyde (SIFA-A). The substances could be labeled in high yields (38 ± 4%) and specific activities between 29 and 56 GBq/μmol in short synthesis times of less than 30 min (e.o.b.). The in vitro evaluation of the synthesized conjugates displayed a sst2 receptor affinity (IC₅₀ = 3.3 ± 0.3 nM) comparable to that of somatostatin-28. As a measure of lipophilicity of the conjugates, the log P(ow) was determined and found to be 0.96 for SiFA-Asn(AcNH-β-Glc)-PEG-Tyr³-octreotate and 1.23 for SiFA-Asn(AcNH-β-Glc)-Tyr³-octreotate, which is considerably lower than for SiFA-Tyr³-octreotate (log P(ow) = 1.59). The initial in vivo evaluation of [¹⁸F]SiFA-Asn(AcNH-β-Glc)-PEG-Tyr³-octreotate revealed a significant uptake of radiotracer in the tumor tissue of AR42J tumor-bearing nude mice of 7.7% ID/g tissue weight. These results show that the high lipophilicity of the SiFA moiety can be compensated by applying hydrophilic moieties. Using this approach, a tumor-affine SiFA-containing peptide could successfully be used for receptor imaging for the first time in this proof of concept study.

  14. Alternative positron-target design for electron-positron colliders

    SciTech Connect

    Donahue, R.J. ); Nelson, W.R. )

    1991-04-01

    Current electron-positron linear colliders are limited in luminosity by the number of positrons which can be generated from targets presently used. This paper examines the possibility of using an alternate wire-target geometry for the production of positrons via an electron-induced electromagnetic cascade shower. 39 refs., 38 figs., 5 tabs.

  15. AAPM Task Group 108: PET and PET/CT shielding requirements.

    PubMed

    Madsen, Mark T; Anderson, Jon A; Halama, James R; Kleck, Jeff; Simpkin, Douglas J; Votaw, John R; Wendt, Richard E; Williams, Lawrence E; Yester, Michael V

    2006-01-01

    The shielding of positron emission tomography (PET) and PET/CT (computed tomography) facilities presents special challenges. The 0.511 MeV annihilation photons associated with positron decay are much higher energy than other diagnostic radiations. As a result, barrier shielding may be required in floors and ceilings as well as adjacent walls. Since the patient becomes the radioactive source after the radiopharmaceutical has been administered, one has to consider the entire time that the subject remains in the clinic. In this report we present methods for estimating the shielding requirements for PET and PET/CT facilities. Information about the physical properties of the most commonly used clinical PET radionuclides is summarized, although the report primarily refers to fluorine-18. Typical PET imaging protocols are reviewed and exposure rates from patients are estimated including self-attenuation by body tissues and physical decay of the radionuclide. Examples of barrier calculations are presented for controlled and noncontrolled areas. Shielding for adjacent rooms with scintillation cameras is also discussed. Tables and graphs of estimated transmission factors for lead, steel, and concrete at 0.511 MeV are also included. Meeting the regulatory limits for uncontrolled areas can be an expensive proposition. Careful planning with the equipment vendor, facility architect, and a qualified medical physicist is necessary to produce a cost effective design while maintaining radiation safety standards.

  16. PhytoPET: Design and initial results of modular PET for plant biology

    SciTech Connect

    Lee, Seung Joon; Kross, Brian J.; McKisson, John E.; Weisenberger, Andrew G.; Xi, Wenze; Zorn, Carl J.; Howell, C. R.; Reid, C. D.; Smith, M. P.

    2012-11-01

    We have developed a positron emission tomography (PET) system designed specifically for plant imaging in Phytotron at Duke University. Initial evaluation of a PhytoPET system to image the biodistribution of the positron emitting tracer {sup 11}C in live plants is presented. The mechanical arrangement of the detectors is designed to accommodate the unpredictable and random distribution in space of the plant parts such as stems, leaves, and roots. Prototyping such a system requires a completely new PET system design strategy different from preclinical and clinical applications. This PhytoPET design allows flexible arrangements of PET detectors based on individual standalone detector modules built from single 5 cm × 5 cm Hamamatsu H8500 position sensitive photomultiplier tubes. Each H8500 is coupled to a L YSO:Ce scintillator array composed of 48 × 48 elements that are 10 mm thick with a 1 mm pitch. Initial results provide planar PET images from two different arrangements (1 × 4 or 2 × 2) for flexible imaging capability.

  17. Integrated Whole Body MR/PET: Where Are We?

    PubMed Central

    Yoo, Hye Jin; Lee, Jae Sung

    2015-01-01

    Whole body integrated magnetic resonance imaging (MR)/positron emission tomography (PET) imaging systems have recently become available for clinical use and are currently being used to explore whether the combined anatomic and functional capabilities of MR imaging and the metabolic information of PET provide new insight into disease phenotypes and biology, and provide a better assessment of oncologic diseases at a lower radiation dose than a CT. This review provides an overview of the technical background of combined MR/PET systems, a discussion of the potential advantages and technical challenges of hybrid MR/PET instrumentation, as well as collection of possible solutions. Various early clinical applications of integrated MR/PET are also addressed. Finally, the workflow issues of integrated MR/PET, including maximizing diagnostic information while minimizing acquisition time are discussed. PMID:25598673

  18. WHOLE BODY NONRIGID CT-PET REGISTRATION USING WEIGHTED DEMONS

    PubMed Central

    Suh, J.W.; Kwon, Oh -K.; Scheinost, D.; Sinusas, A.J.; Cline, Gary W.; Papademetris, X.

    2011-01-01

    We present a new registration method for whole-body rat computed tomography (CT) image and positron emission tomography (PET) images using a weighted demons algorithm. The CT and PET images are acquired in separate scanners at different times and the inherent differences in the imaging protocols produced significant nonrigid changes between the two acquisitions in addition to heterogeneous image characteristics. In this situation, we utilized both the transmission-PET and the emission-PET images in the deformable registration process emphasizing particular regions of the moving transmission-PET image using the emission-PET image. We validated our results with nine rat image sets using M-Hausdorff distance similarity measure. We demonstrate improved performance compared to standard methods such as Demons and normalized mutual information-based non-rigid FFD registration. PMID:23377533

  19. WHOLE BODY NONRIGID CT-PET REGISTRATION USING WEIGHTED DEMONS.

    PubMed

    Suh, J W; Kwon, Oh-K; Scheinost, D; Sinusas, A J; Cline, Gary W; Papademetris, X

    2011-03-30

    We present a new registration method for whole-body rat computed tomography (CT) image and positron emission tomography (PET) images using a weighted demons algorithm. The CT and PET images are acquired in separate scanners at different times and the inherent differences in the imaging protocols produced significant nonrigid changes between the two acquisitions in addition to heterogeneous image characteristics. In this situation, we utilized both the transmission-PET and the emission-PET images in the deformable registration process emphasizing particular regions of the moving transmission-PET image using the emission-PET image. We validated our results with nine rat image sets using M-Hausdorff distance similarity measure. We demonstrate improved performance compared to standard methods such as Demons and normalized mutual information-based non-rigid FFD registration.

  20. PET and SPECT in the management of lung cancer.

    PubMed

    Sarinas, Priscilla S A; Chitkara, Rajinder K

    2002-07-01

    Lung cancer is the leading cause of cancer deaths in men and women. Most recently in 2001, the Health Care Financing Administration has expanded Medicare coverage for positron emission tomography (PET) to include the diagnosis, staging, and restaging of lung cancer. This review discusses the current metabolic imaging techniques, including the role of PET, single-photon emission computed tomography (SPECT), and the new hybrid PET in the diagnosis, staging, and treatment of lung cancer. The technological advantages, disadvantages, and benefits are compared. PET has the highest detection efficiency than gamma camera based devices. PET when merged with computed tomography (CT) forms the powerful hybrid PET-CT system, capable both of metabolic and anatomic imaging. Clinical imaging pathways based on these newer modalities for the management of lung cancer are proposed. Technological advances in metabolic imaging linked with therapy driven protocols and outcomes may further provide cutting edge modalities that positively impact on dismal lung cancer mortality statistics.

  1. PET scan

    MedlinePlus

    ... The PET detects signals from the tracer. A computer changes the signals into 3D pictures. The images ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  2. Senior Pets

    MedlinePlus

    ... does a pet become “old”? It varies, but cats and small dogs are generally considered “senior” at ... at roughly the same rate as humans, while cats have a somewhat lower rate. Contrary to popular ...

  3. Modular Strategies for PET Imaging Agents

    PubMed Central

    Hooker, Jacob M

    2009-01-01

    Summary of Recent Advances In recent years, modular and simplified chemical and biological strategies have been developed for the synthesis and implementation of positron emission tomography (PET) radiotracers. New developments in bioconjugation and synthetic methodologies, in combination with advances in macromolecular delivery systems and gene-expression imaging, reflect a need to reduce radiosynthesis burden in order to accelerate imaging agent development. These new approaches, which are often mindful of existing infrastructure and available resources, are anticipated to provide a more approachable entry point for researchers interested in using PET to translate in vitro research to in vivo imaging. PMID:19880343

  4. Simulation of triple coincidences in PET.

    PubMed

    Cal-González, J; Lage, E; Herranz, E; Vicente, E; Udias, J M; Moore, S C; Park, M-A; Dave, S R; Parot, V; Herraiz, J L

    2015-01-07

    Although current PET scanners are designed and optimized to detect double coincidence events, there is a significant amount of triple coincidences in any PET acquisition. Triple coincidences may arise from causes such as: inter-detector scatter (IDS), random triple interactions (RT), or the detection of prompt gamma rays in coincidence with annihilation photons when non-pure positron-emitting radionuclides are used (β(+)γ events). Depending on the data acquisition settings of the PET scanner, these triple events are discarded or processed as a set of double coincidences if the energy of the three detected events is within the scanner's energy window. This latter option introduces noise in the data, as at most, only one of the possible lines-of-response defined by triple interactions corresponds to the line along which the decay occurred. Several novel works have pointed out the possibility of using triple events to increase the sensitivity of PET scanners or to expand PET imaging capabilities by allowing differentiation between radiotracers labeled with non-pure and pure positron-emitting radionuclides. In this work, we extended the Monte Carlo simulator PeneloPET to assess the proportion of triple coincidences in PET acquisitions and to evaluate their possible applications. We validated the results of the simulator against experimental data acquired with a modified version of a commercial preclinical PET/CT scanner, which was enabled to acquire and process triple-coincidence events. We used as figures of merit the energy spectra for double and triple coincidences and the triples-to-doubles ratio for different energy windows and radionuclides. After validation, the simulator was used to predict the relative quantity of triple-coincidence events in two clinical scanners assuming different acquisition settings. Good agreement between simulations and preclinical experiments was found, with differences below 10% for most of the observables considered. For clinical

  5. [82 Rubidium PET to replace myocardial scintigraphy].

    PubMed

    Hasbak, Philip; Kjær, Andreas

    2011-02-21

    Since the 1970's nuclear cardiology has mainly been based on the use of gamma camera technology. While gamma cameras have undergone a rapid development, the number of perfusion tracers has been limited. In parallel, cardiac positron emission tomography (PET) has only been performed with short-lived isotopes at centres with access to a cyclotron, and only including a very limited number of patients. The number of PET scanners has increased markedly in Denmark and with the introduction of generator-produced 82-Rubidium, this modality may replace the traditional cardial single photon emission computed tomography (SPECT).

  6. (68)Ga-DOTATATE-positron emission tomography imaging in spinal meningioma.

    PubMed

    Slotty, Philipp Jörg; Behrendt, Florian Friedrich; Langen, Karl-Josef; Cornelius, Jan Frederick

    2014-01-01

    Imaging with positron emission tomography (PET) and (68)Ga-DOTA peptides is a promising method in intracranial meningiomas. Especially in recurrent meningioma discrimination between scar tissue and recurrent tumor tissue in magnetic resonance imaging (MRI) is often difficult. We report the first case of (68)Ga-DOTATATE-PET/computed tomography (PET/CT) imaging in recurrent spinal meningioma. A 64-year-old Caucasian female patient was referred to our department with the second recurrence of thoracic meningothelial meningioma. In MRI, it remained unclear if the multiple enhancements seen represented scar tissue or vital tumor. We offered (68)Ga-DOTATATE-PET/CT imaging in order to evaluate the best strategy. (68)Ga-DOTATATE-PET/CT imaging revealed strong tracer uptake in parts of the lesions. The pattern did distinctly differ from MRI enhancement. Multiple biopsies were performed in the PET-positive and PET-negative regions. Histological results confirmed the prediction of (68)Ga-DOTATATE-PET with vital tumor in PET-positive regions and scar tissue in PET-negative regions. Differentiating scar tissue from tumor can be challenging in recurrent spinal meningioma with MRI alone. In the presented case, (68)Ga-DOTATATE-PET imaging was able to differentiate noninvasively between tumor and scar.

  7. Pet rabbits.

    PubMed

    Hillyer, E V

    1994-01-01

    Pet rabbits are becoming more common, and rabbit owners are demanding quality veterinary care. This article provides a broad overview of pet rabbit medicine, which is a relatively new field compared to laboratory and farm rabbit medicine. The most common differential diagnoses for presenting complaints are summarized in table form. Disease conditions are reviewed individually in the text. Sources of further information on veterinary care of rabbits are listed throughout the text, in an appendix, and in the references.

  8. Learning Nuclear Chemistry through Practice: A High School Student Project Using PET in a Clinical Setting

    ERIC Educational Resources Information Center

    Liguori, Lucia; Adamsen, Tom Christian Holm

    2013-01-01

    Practical experience is vital for promoting interest in science. Several aspects of chemistry are rarely taught in the secondary school curriculum, especially nuclear and radiochemistry. Therefore, we introduced radiochemistry to secondary school students through positron emission tomography (PET) associated with computer tomography (CT). PET-CT…

  9. Learning Nuclear Chemistry through Practice: A High School Student Project Using PET in a Clinical Setting

    ERIC Educational Resources Information Center

    Liguori, Lucia; Adamsen, Tom Christian Holm

    2013-01-01

    Practical experience is vital for promoting interest in science. Several aspects of chemistry are rarely taught in the secondary school curriculum, especially nuclear and radiochemistry. Therefore, we introduced radiochemistry to secondary school students through positron emission tomography (PET) associated with computer tomography (CT). PET-CT…

  10. PET studies of the striatal dopaminergic system in Parkinson's disease (PD).

    PubMed

    Piccini, P; Turjanski, N; Brooks, D J

    1995-01-01

    Positron emission tomography (PET) is a functional imaging technique which allows detection of biochemical and pharmacological dysfunction of the nigrostriatal dopaminergic system and provides the opportunity to investigate living patients with PD. This paper reviews the contribution of PET studies to the understanding of neurochemical changes underlying Parkinson's disease.

  11. Positron sources for Linear Colliders

    SciTech Connect

    Gai Wei; Liu Wanming

    2009-09-02

    Positron beams have many applications and there are many different concepts for positron sources. In this paper, only positron source techniques for linear colliders are covered. In order to achieve high luminosity, a linear collider positron source should have a high beam current, high beam energy, small emittance and, for some applications, a high degree of beam polarization. There are several different schemes presently being developed around the globe. Both the differences between these schemes and their common technical challenges are discussed.

  12. The Alzheimer's Disease Neuroimaging Initiative positron emission tomography core.

    PubMed

    Jagust, William J; Bandy, Dan; Chen, Kewei; Foster, Norman L; Landau, Susan M; Mathis, Chester A; Price, Julie C; Reiman, Eric M; Skovronsky, Daniel; Koeppe, Robert A

    2010-05-01

    This is a progress report of the Alzheimer's Disease Neuroimaging Initiative (ADNI) positron emission tomography (PET) Core. The Core has supervised the acquisition, quality control, and analysis of longitudinal [(18)F]fluorodeoxyglucose PET (FDG-PET) data in approximately half of the ADNI cohort. In an "add on" study, approximately 100 subjects also underwent scanning with [(11)C] Pittsburgh compound B PET for amyloid imaging. The Core developed quality control procedures and standardized image acquisition by developing an imaging protocol that has been widely adopted in academic and pharmaceutical industry studies. Data processing provides users with scans that have identical orientation and resolution characteristics despite acquisition on multiple scanner models. The Core labs have used many different approaches to characterize differences between subject groups (Alzheimer's disease, mild cognitive impairment, controls), to examine longitudinal change over time in glucose metabolism and amyloid deposition, and to assess the use of FDG-PET as a potential outcome measure in clinical trials. ADNI data indicate that FDG-PET increases statistical power over traditional cognitive measures, might aid subject selection, and could substantially reduce the sample size in a clinical trial. Pittsburgh compound B PET data showed expected group differences, and identified subjects with significant annual increases in amyloid load across the subject groups. The next activities of the PET core in ADNI will entail developing standardized protocols for amyloid imaging using the [(18)F]-labeled amyloid imaging agent AV45, which can be delivered to virtually all ADNI sites. ADNI has demonstrated the feasibility and utility of multicenter PET studies and is helping to clarify the role of biomarkers in the study of aging and dementia. Copyright 2010 The Alzheimer

  13. Comprehensive Oncologic Imaging in Infants and Preschool Children With Substantially Reduced Radiation Exposure Using Combined Simultaneous ¹⁸F-Fluorodeoxyglucose Positron Emission Tomography/Magnetic Resonance Imaging: A Direct Comparison to ¹⁸F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography.

    PubMed

    Gatidis, Sergios; Schmidt, Holger; Gücke, Brigitte; Bezrukov, Ilja; Seitz, Guido; Ebinger, Martin; Reimold, Matthias; Pfannenberg, Christina A; Nikolaou, Konstantin; Schwenzer, Nina F; Schäfer, Jürgen F

    2016-01-01

    The aim of this study was to evaluate the clinical applicability and technical feasibility of fluorodeoxyglucose (FDG) positron emission tomography (PET)/magnetic resonance imaging (MRI) compared with FDG PET/computed tomography (CT) in young children focusing on lesion detection, PET quantification, and potential savings in radiation exposure. Twenty examinations (10 PET/CT and 10 PET/MRI examinations) were performed prospectively in 9 patients with solid tumors (3 female, 6 male; mean age, 4.8 [1-6] years). Fluorodeoxyglucose PET/CT and FDG PET/MRI were performed sequentially after a single tracer injection. Lesion detection and analysis were performed independently in PET/CT and PET/MRI. Potential changes in diagnostic or therapeutic patient management were recorded. Positron emission tomography quantification in PET/MRI was evaluated by comparing standardized uptake values resulting from MRI-based and CT-based attenuation correction. Effective radiation doses of PET and CT were estimated. Twenty-one PET-positive lesions were found congruently in PET/CT and PET/MRI. Magnetic resonance imaging enabled significantly better detection of morphologic PET correlates compared with CT. Eight suspicious PET-negative lesions were identified by MRI, of which one was missed in CT. Sensitivity, specificity, and accuracy for correct lesion classification were not significantly different (90%, 47%, and 62% in PET/CT; 100%, 68%, and 79% in PET/MRI, respectively). In 4 patients, the use of PET/MRI resulted in a potential change in diagnostic management compared with PET/CT, as local and whole-body staging could be performed within 1 single examination. In 1 patient, PET/MRI initiated a change in therapeutic management. Positron emission tomography quantification using MRI-based attenuation correction was accurate compared with CT-based attenuation correction. Higher standardized uptake value deviations of about 18% were observed in the lungs due to misclassification in MRI

  14. Dual-Modality PET/Ultrasound imaging of the Prostate

    SciTech Connect

    Huber, Jennifer S.; Moses, William W.; Pouliot, Jean; Hsu, I.C.

    2005-11-11

    Functional imaging with positron emission tomography (PET)will detect malignant tumors in the prostate and/or prostate bed, as well as possibly help determine tumor ''aggressiveness''. However, the relative uptake in a prostate tumor can be so great that few other anatomical landmarks are visible in a PET image. Ultrasound imaging with a transrectal probe provides anatomical detail in the prostate region that can be co-registered with the sensitive functional information from the PET imaging. Imaging the prostate with both PET and transrectal ultrasound (TRUS) will help determine the location of any cancer within the prostate region. This dual-modality imaging should help provide better detection and treatment of prostate cancer. LBNL has built a high performance positron emission tomograph optimized to image the prostate.Compared to a standard whole-body PET camera, our prostate-optimized PET camera has the same sensitivity and resolution, less backgrounds and lower cost. We plan to develop the hardware and software tools needed for a validated dual PET/TRUS prostate imaging system. We also plan to develop dual prostate imaging with PET and external transabdominal ultrasound, in case the TRUS system is too uncomfortable for some patients. We present the design and intended clinical uses for these dual imaging systems.

  15. Combined MRI-PET scanner: A Monte Carlo evaluation of the improvements in PET resolution due to the effects of a static homogeneous magnetic field

    SciTech Connect

    Raylman, R.R.; Hammer, B.E.; Christensen, N.L.

    1996-08-01

    Positron emission tomography (PET) relies upon the detection of photons resulting from the annihilation of positrons emitted by a radiopharmaceutical. The combination of images obtained with PET and magnetic resonance imaging (MRI) have begun to greatly enhance the study of many physiological processes. A combined MRI-PET scanner could alleviate much of the spatial and temporal coregistration difficulties currently encountered in utilizing images from these complementary imaging modalities. In addition, the resolution of the PET scanner could be improved by the effects of the magnetic field. In this computer study, the utilization of a strong static homogeneous magnetic field to increase PET resolution by reducing the effects of positron range and photon noncollinearity was investigated. The results reveal that significant enhancement of resolution can be attained. For example, an approximately 27% increase in resolution is predicted for a PET scanner incorporating a 10-Tesla magnetic field. Most of this gain in resolution is due to magnetic confinement of the emitted positrons. Although the magnetic field does mix some positronium states resulting in slightly less photon noncollinearity, this reduction does not significantly affect resolution. Photon noncollinearity remains as the fundamental limiting factor of large PET scanner resolution.

  16. MR Guided PET Image Reconstruction

    PubMed Central

    Bai, Bing; Li, Quanzheng; Leahy, Richard M.

    2013-01-01

    The resolution of PET images is limited by the physics of positron-electron annihilation and instrumentation for photon coincidence detection. Model based methods that incorporate accurate physical and statistical models have produced significant improvements in reconstructed image quality when compared to filtered backprojection reconstruction methods. However, it has often been suggested that by incorporating anatomical information, the resolution and noise properties of PET images could be improved, leading to better quantitation or lesion detection. With the recent development of combined MR-PET scanners, it is possible to collect intrinsically co-registered MR images. It is therefore now possible to routinely make use of anatomical information in PET reconstruction, provided appropriate methods are available. In this paper we review research efforts over the past 20 years to develop these methods. We discuss approaches based on the use of both Markov random field priors and joint information or entropy measures. The general framework for these methods is described and their performance and longer term potential and limitations discussed. PMID:23178087

  17. Positron emission tomography/computed tomography in melanoma.

    PubMed

    Bourgeois, Austin C; Chang, Ted T; Fish, Lindsay M; Bradley, Yong C

    2013-09-01

    Fludeoxyglucose F 18 positron emission tomography/computed tomography (PET/CT) has been invaluable in the assessment of melanoma throughout the course of the disease. As with any modality, the studies are incomplete and more information will be gleaned as our experience progresses. Additionally, it is hoped that a newer PET agent in the pipeline will give us even greater success in the identification and subsequent treatment of melanoma. This article aims to examine the utilization of PET/CT in the staging, prognostication, and follow-up of melanoma while providing the physicians who order and interpret these studies practical guidelines and interpretive pitfalls. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. History and future technical innovation in positron emission tomography.

    PubMed

    Jones, Terry; Townsend, David

    2017-01-01

    Instrumentation for positron emission tomography (PET) imaging has experienced tremendous improvements in performance over the past 60 years since it was first conceived as a medical imaging modality. Spatial resolution has improved by a factor of 10 and sensitivity by a factor of 40 from the early designs in the 1970s to the high-performance scanners of today. Multimodality configurations have emerged that combine PET with computed tomography (CT) and, more recently, with MR. Whole-body scans for clinical purposes can now be acquired in under 10 min on a state-of-the-art PET/CT. This paper will review the history of these technical developments over 40 years and summarize the important clinical research and healthcare applications that have been made possible by these technical advances. Some perspectives for the future of this technology will also be presented that promise to bring about new applications of this imaging modality in clinical research and healthcare.

  19. Positron emission tomographic findings in a tuberculous brain abscess.

    PubMed

    Kang, Kyusik; Lim, Ilhan; Roh, Jae-Kyu

    2007-07-01

    Several case reports and studies have described the positron emission tomographic (PET) findings of intracranial tuberculomas and bacterial brain abscesses. However, to our knowledge, the PET pattern of a tuberculous brain abscess has not been previously described. We report the case of a diabetic heavy drinker with a left parietal tuberculous abscess. (18)F-fluoro-2-deoxyglucose (FDG)-PET scans showed intense FDG uptake at the abscess periphery, where contrast enhancement was observed on a magnetic resonance image. FDG uptake was reduced within the abscess cavity and in the adjacent cerebral cortex. The possibility of a tuberculous brain abscess should be considered when FDG accumulates at the periphery of a ring-enhancing lesion in a chronically ill or immunocompromised patient.

  20. Microdosing studies in humans: the role of positron emission tomography.

    PubMed

    Bauer, Martin; Wagner, Claudia Christina; Langer, Oliver

    2008-01-01

    Positron emission tomography (PET)-microdosing comprises the administration of a carbon-11- or fluorine-18-labelled drug candidate to human subjects in order to describe the drug's concentration-time profile in body tissues targeted for treatment. As PET microdosing involves the administration of only microgram amounts of unlabelled drug, the potential toxicological risk to human subjects is very limited. Consequently, regulatory authorities require reduced preclinical safety testing as compared with conventional phase 1 studies. Microdose studies are gaining increasing importance in clinical drug research as they have the potential to shorten time-lines and cut costs along the critical path of drug development. Current applications of PET in anticancer, anti-infective and CNS system drug research are reviewed.

  1. A study of artefacts in simultaneous PET and MR imaging using a prototype MR compatible PET scanner.

    PubMed

    Slates, R B; Farahani, K; Shao, Y; Marsden, P K; Taylor, J; Summers, P E; Williams, S; Beech, J; Cherry, S R

    1999-08-01

    We have assessed the possibility of artefacts that can arise in attempting to perform simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI) using a small prototype MR compatible PET scanner (McPET). In these experiments, we examine MR images for any major artefacts or loss in image quality due to inhomogeneities in the magnetic field, radiofrequency interference or susceptibility effects caused by operation of the PET system inside the MR scanner. In addition, possible artefacts in the PET images caused by the static and time-varying magnetic fields or radiofrequency interference from the MR system were investigated. Biological tissue and a T2-weighted spin echo sequence were used to examine susceptibility artefacts due to components of the McPET scanner (scintillator, optical fibres) situated in the MR field of view. A range of commonly used MR pulse sequences was studied while acquiring PET data to look for possible artefacts in either the PET or MR images. Other than a small loss in signal-to-noise using gradient echo sequences, there was no significant interaction between the two imaging systems. Simultaneous PET and MR imaging of simple phantoms was also carried out in different MR systems with field strengths ranging from 0.2 to 4.7 T. The results of these studies demonstrate that it is possible to acquire PET and MR images simultaneously, without any significant artefacts or loss in image quality, using our prototype MR compatible PET scanner.

  2. Florbetapir positron emission tomography and cerebrospinal fluid biomarkers

    PubMed Central

    Hake, Ann; Trzepacz, Paula T.; Wang, Shufang; Yu, Peng; Case, Michael; Hochstetler, Helen; Witte, Michael M.; Degenhardt, Elisabeth K.; Dean, Robert A.

    2015-01-01

    Background We evaluated the relationship between florbetapir-F18 positron emission tomography (FBP PET) and cerebrospinal fluid (CSF) biomarkers. Methods Alzheimer’s Disease Neuroimaging Initiative (ADNI)-GO/2 healthy control (HC), mild cognitive impairment (MCI), and Alzheimer’s disease (AD) dementia subjects with clinical measures and CSF collected ±90 days of FBP PET data were analyzed using correlation and logistic regression. Results In HC and MCI subjects, FBP PET anterior and posterior cingulate and composite standard uptake value ratios correlated with CSF amyloid beta (Aβ1-42) and tau/Aβ1-42 ratios. Using logistic regression, Aβ1-42, total tau (t-tau), phosphorylated tau181P (p-tau), and FBP PET composite each differentiated HC versus AD. Aβ1-42 and t-tau distinguished MCI versus AD, without additional contribution by FBP PET. Total tau and p-tau added discriminative power to FBP PET when classifying HC versus AD. Conclusion Based on cross-sectional diagnostic groups, both amyloid and tau measures distinguish healthy from demented subjects. Longitudinal analyses are needed. PMID:25916563

  3. Quantitative Cardiac Positron Emission Tomography: The Time Is Coming!

    PubMed Central

    Sciagrà, Roberto

    2012-01-01

    In the last 20 years, the use of positron emission tomography (PET) has grown dramatically because of its oncological applications, and PET facilities are now easily accessible. At the same time, various groups have explored the specific advantages of PET in heart disease and demonstrated the major diagnostic and prognostic role of quantitation in cardiac PET. Nowadays, different approaches for the measurement of myocardial blood flow (MBF) have been developed and implemented in user-friendly programs. There is large evidence that MBF at rest and under stress together with the calculation of coronary flow reserve are able to improve the detection and prognostication of coronary artery disease. Moreover, quantitative PET makes possible to assess the presence of microvascular dysfunction, which is involved in various cardiac diseases, including the early stages of coronary atherosclerosis, hypertrophic and dilated cardiomyopathy, and hypertensive heart disease. Therefore, it is probably time to consider the routine use of quantitative cardiac PET and to work for defining its place in the clinical scenario of modern cardiology. PMID:24278760

  4. Usefulness of Positron Emission Tomographic Studies for Gliomas

    PubMed Central

    MIYAKE, Keisuke; OGAWA, Daisuke; OKADA, Masaki; HATAKEYAMA, Tetsuhiro; TAMIYA, Takashi

    2016-01-01

    Non-invasive positron emission tomography (PET) enables the measurement of metabolic and molecular processes with high sensitivity. PET plays a significant role in the diagnosis, prognosis, and treatment of brain tumors and predominantly detects brain tumors by detecting their metabolic alterations, including energy metabolism, amino acids, nucleic acids, and hypoxia. Glucose metabolic tracers are related to tumor cell energy and exhibit good sensitivity but poor specificity for malignant tumors. Amino acid metabolic tracers provide a better delineation of tumors and cellular proliferation. Nucleic acid metabolic tracers have a high sensitivity for malignant tumors and cellular proliferation. Hypoxic metabolism tracers are useful for detecting resistance to radiotherapy and chemotherapy. Therefore, PET imaging techniques are useful for detecting biopsy-targeting points, deciding on tumor resection, radiotherapy planning, monitoring therapy, and distinguishing brain tumor recurrence or progression from post-radiotherapy effects. However, it is not possible to use only one PET tracer to make all clinical decisions because each tracer has both advantages and disadvantages. This study focuses on the different kinds of PET tracers and summarizes their recent applications in patients with gliomas. Combinational uses of PET tracers are expected to contribute to differential diagnosis, prognosis, treatment targeting, and monitoring therapy. PMID:27250577

  5. Positron emission tomographic scans in lymphoma: convention and controversy.

    PubMed

    Ansell, Stephen M; Armitage, James O

    2012-06-01

    The use of sensitive and specific imaging techniques for accurate initial staging and evaluation of response to therapy in patients with lymphoma is essential for their optimal management. Fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) integrated with computed tomography (CT) has emerged as a powerful imaging tool and is being routinely used in staging, response evaluation, and posttreatment surveillance in patients with non-Hodgkin lymphoma and Hodgkin lymphoma. PET/CT is currently widely used in clinical practice, but the established clinical benefit is currently restricted to the posttreatment evaluation of Hodgkin lymphoma, diffuse large B-cell lymphoma, and follicular lymphoma. Although used in other histologic subtypes and in other clinical situations including response assessment, its impact on patient outcome remains to be demonstrated. We performed a literature search of PubMed from 1999 to 2011 using the following keywords: PET scan, FDG-PET, PET/CT, lymphoma. This review addresses the challenges and controversies in the use of PET/CT scans in the management of patients with lymphoma. Copyright © 2012 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  6. Positron excitation of neon

    NASA Technical Reports Server (NTRS)

    Parcell, L. A.; Mceachran, R. P.; Stauffer, A. D.

    1990-01-01

    The differential and total cross section for the excitation of the 3s1P10 and 3p1P1 states of neon by positron impact were calculated using a distorted-wave approximation. The results agree well with experimental conclusions.

  7. Positron implantation in solids

    SciTech Connect

    Ghosh, V.J.; Lynn, K.G.; Welch, D.O.

    1993-12-31

    The Monte Carlo technique for modeling positron prior to annihilation and electron implantation in semi-infinite metals is described. Particle implantation is modelled as a multistep process, a series of collisions with the atoms of the host material. In elastic collisions with neutral atoms there is no transfer of energy. The particle loses energy by several different channels, excitation of the electron gas, ionization of the ion cores, or, at low energies, by phonon excitation. These competing scattering mechanisms have been incorporated into the Monte Carlo framework and several different models are being used. Brief descriptions of these Monte Carlo schemes, as well as an analytic model for positron implantation are included. Results of the Monte Carlo simulations are presented and compared with expermental data. Problems associated with modeling positron implantation are discuss and the need for more expermental data on energy-loss in different materials is stressed. Positron implantation in multilayers of different metals is briefly described and extensions of this work to include a study of multilayers and heterostructures is suggested.

  8. The Japanese Positron Factory

    NASA Astrophysics Data System (ADS)

    Okada, S.; Sunaga, H.; Kaneko, H.; Takizawa, H.; Kawasuso, A.; Yotsumoto, K.; Tanaka, R.

    1999-06-01

    The Positron Factory has been planned at Japan Atomic Energy Research Institute (JAERI). The factory is expected to produce linac-based monoenergetic positron beams having world-highest intensities of more than 1010e+/sec, which will be applied for R&D of materials science, biotechnology and basic physics & chemistry. In this article, results of the design studies are demonstrated for the following essential components of the facilities: 1) Conceptual design of a high-power electron linac with 100 MeV in beam energy and 100 kW in averaged beam power, 2) Performance tests of the RF window in the high-power klystron and of the electron beam window, 3) Development of a self-driven rotating electron-to-positron converter and the performance tests, 4) Proposal of multi-channel beam generation system for monoenergetic positrons, with a series of moderator assemblies based on a newly developed Monte Carlo simulation and the demonstrative experiment, 5) Proposal of highly efficient moderator structures, 6) Conceptual design of a local shield to suppress the surrounding radiation and activation levels.

  9. Radioisotope generators for short-lived positron emitters applicable to positron emission tomography

    NASA Astrophysics Data System (ADS)

    Yano, Y.

    1989-04-01

    Radioisotope generators provide short-lived positron emitters for positron emission tomography (PET) without the need for an on-site cyclotron. These generators consist of a long-lived parent radionuclide, generally produced on an accelerator, from which the short-lived daughter radionuclide is separated and used as needed. Generators developed and applied to PET studies include 288 d 68Ge for 68 min 68Ga, 25 d 82Sr for 76 s 82Rb and 20.1 h 122Xe for 3.6 min 122I. These radiotracers have been used for the assessment of myocardial and brain blood flow in patient studies. Additionally, 82Rb has been used to determine the breakdown in the blood brain barrier in brain tumor patients who have undergone radiation therapy. When used in conjunction with 18F-fluorodeoxylucose produced on a regional cyclotron for the measurement of glucose utilization in brain tumors, differential diagnosis can be made between tumor regrowth and radiation therapy necrosis. Other possible applications include the detection of vascular lesions with 68Ga labeled platelets or porphyrins.

  10. An Alternative Approach to Understanding the Observed Positron Fraction

    NASA Astrophysics Data System (ADS)

    Israel, Martin H.

    2014-10-01

    Space-based observations by PAMELA (Adriani et al., Nature 458, 607, 2009), Fermi-LAT (Ackerman et al., Phys. Rev. Lett. 105, 01103, 2012), and AMS (Aguilar et al., Phys. Rev. Lett. 110, 141102, 2013) have demonstrated that the positron fraction (e+/total-e) increases with increasing energy above about 10 GeV. According to the propagation model for Galactic cosmic rays in widespread use (Moskalenko & Strong, Astrophys. J. 493, 693, 1998), the production of secondary positrons from interaction of cosmic-ray protons and heavier nuclei with the interstellar medium gives a generally falling positron fraction between 10 and 100 GeV, with secondary positrons accounting for only ˜20 % of the observed positron fraction at 100 GeV; so some other physical phenomena have been proposed to explain the data. An alternative approach to interpreting the positron observations is to consider these data as presenting an opportunity for re-examining models of Galactic cosmic-ray propagation. Following release of the PAMELA data, three groups published propagation models (Shaviv, et al., Phys. Rev. Lett. 103, 111302, 2009, Cowsik and Burch, Phys. Rev. D. 82, 023009, 2010, Katz et al., Mon. Not. R. Aston. Soc. 405, 1458 2010) in which the observed positron fraction is explained entirely by secondary positrons produced in the interstellar medium. In May of this year, stimulated by the AMS extension of the positron data to higher energy with excellent statistics, two of those groups presented further development of their calculations (Cowsik et al. 2013, Blum et al. 2013), again concluding that the observed positrons can be understood as secondaries. None of the authors of these five papers was registered for the 33rd International Cosmic Ray Conference (ICRC). Although I am not an author of any of these papers, I have some close familiarity with one of these recent papers, so the conference organizers invited me to bring this alternative approach to the attention of the conference. The

  11. MR-Based PET Motion Correction Procedure for Simultaneous MR-PET Neuroimaging of Human Brain

    PubMed Central

    Weirich, Christoph; Rota Kops, Elena; Celik, Abdullah; Tellmann, Lutz; Stöcker, Tony; Herzog, Hans; Shah, Nadim Jon

    2012-01-01

    Positron Emission Tomography (PET) images are prone to motion artefacts due to the long acquisition time of PET measurements. Recently, simultaneous magnetic resonance imaging (MRI) and PET have become available in the first generation of Hybrid MR-PET scanners. In this work, the elimination of artefacts due to head motion in PET neuroimages is achieved by a new approach utilising MR-based motion tracking in combination with PET list mode data motion correction for simultaneous MR-PET acquisitions. The method comprises accurate MR-based motion measurements, an intra-frame motion minimising and reconstruction time reducing temporal framing algorithm, and a list mode based PET reconstruction which utilises the Ordinary Poisson Algorithm and avoids axial and transaxial compression. Compared to images uncorrected for motion, an increased image quality is shown in phantom as well as in vivo images. In vivo motion corrected images show an evident increase of contrast at the basal ganglia and a good visibility of uptake in tiny structures such as superior colliculi. PMID:23189127

  12. MR-based PET motion correction procedure for simultaneous MR-PET neuroimaging of human brain.

    PubMed

    Ullisch, Marcus Görge; Scheins, Jürgen Johann; Weirich, Christoph; Rota Kops, Elena; Celik, Abdullah; Tellmann, Lutz; Stöcker, Tony; Herzog, Hans; Shah, Nadim Jon

    2012-01-01

    Positron Emission Tomography (PET) images are prone to motion artefacts due to the long acquisition time of PET measurements. Recently, simultaneous magnetic resonance imaging (MRI) and PET have become available in the first generation of Hybrid MR-PET scanners. In this work, the elimination of artefacts due to head motion in PET neuroimages is achieved by a new approach utilising MR-based motion tracking in combination with PET list mode data motion correction for simultaneous MR-PET acquisitions. The method comprises accurate MR-based motion measurements, an intra-frame motion minimising and reconstruction time reducing temporal framing algorithm, and a list mode based PET reconstruction which utilises the Ordinary Poisson Algorithm and avoids axial and transaxial compression. Compared to images uncorrected for motion, an increased image quality is shown in phantom as well as in vivo images. In vivo motion corrected images show an evident increase of contrast at the basal ganglia and a good visibility of uptake in tiny structures such as superior colliculi.

  13. Simultaneous trimodal PET-MR-EEG imaging: Do EEG caps generate artefacts in PET images?

    PubMed Central

    Rota Kops, Elena; Mauler, Jörg; Tellmann, Lutz; Lerche, Christoph; Herzog, Hans; Shah, N. Jon; Neuner, Irene

    2017-01-01

    Trimodal simultaneous acquisition of positron emission tomography (PET), magnetic resonance imaging (MRI), and electroencephalography (EEG) has become feasible due to the development of hybrid PET-MR scanners. To capture the temporal dynamics of neuronal activation on a millisecond-by-millisecond basis, an EEG system is appended to the quantitative high resolution PET-MR imaging modality already established in our institute. One of the major difficulties associated with the development of simultaneous trimodal acquisition is that the components traditionally used in each modality can cause interferences in its counterpart. The mutual interferences of MRI components and PET components on PET and MR images, and the influence of EEG electrodes on functional MRI images have been studied and reported on. Building on this, this study aims to investigate the influence of the EEG cap on the quality and quantification of PET images acquired during simultaneous PET-MR measurements. A preliminary transmission scan study on the ECAT HR+ scanner, using an Iida phantom, showed visible attenuation effect due to the EEG cap. The BrainPET-MR emission images of the Iida phantom with [18F]Fluordeoxyglucose, as well as of human subjects with the EEG cap, did not show significant effects of the EEG cap, even though the applied attenuation correction did not take into account the attenuation of the EEG cap itself. PMID:28902890

  14. Evaluating Positron Emission Tomography Use in Differentiated Thyroid Cancer

    PubMed Central

    Esfandiari, Nazanene H.; Papaleontiou, Maria; Worden, Francis P.; Haymart, Megan R.

    2015-01-01

    Background: Using the Surveillance, Epidemiology, and End Results—Medicare database, a substantial increase was found in the use of positron emission tomography (PET) scans after 2004 in differentiated thyroid cancer (DTC) patients. The reason for the increased utilization of the PET scan was not clear based on available the data. Therefore, the indications for and outcomes of PET scans performed at an academic institution were evaluated. Methods: A retrospective cohort study was performed of DTC patients who underwent surgery at the University of Michigan Health System from 2006 to 2011. After identifying patients who underwent a PET scan, indications, rate of positive PET scans, and impact on management were evaluated. For positive scans, the location of disease was characterized, and presence of disease on other imaging was determined. Results: Of the 585 patients in the cohort, 111 (19%) patients had 200 PET scans performed for evaluation of DTC. Indications for PET scan included: elevated thyroglobulin and negative radioiodine scan in 52 scans (26.0%), thyroglobulin antibodies in 13 scans (6.5%), rising thyroglobulin in 18 scans (9.0%), evaluation of abnormality on other imaging in 22 scans (11.0%), evaluation of extent of disease in 33 scans (16.5%), follow-up of previous scan in 57 scans (28.5%), other indications in two scans (1.0%), and unclear indications in three scans (1.5%). The PET scan was positive in 124 studies (62.0%); positivity was identified in the thyroid bed on 25 scans, cervical or mediastinal lymph nodes on 105 scans, lung on 28 scans, bone on four scans, and other areas on 14 scans. Therapy following PET scan was surgery in 66 cases (33.0%), chemotherapy or radiation in 23 cases (11.5%), observation in 110 cases (55.0%), and palliative care in one case (0.5%). Disease was identifiable on other imaging in 66% of cases. PET scan results changed management in 59 cases (29.5%). Conclusions: In this academic medical center, the PET scan was

  15. Dual PET and Near-Infrared Fluorescence Imaging Probes as Tools for Imaging in Oncology

    PubMed Central

    An, Fei-Fei; Chan, Mark; Kommidi, Harikrishna; Ting, Richard

    2016-01-01

    OBJECTIVE The purpose of this article is to summarize advances in PET fluorescence resolution, agent design, and preclinical imaging that make a growing case for clinical PET fluorescence imaging. CONCLUSION Existing SPECT, PET, fluorescence, and MRI contrast imaging techniques are already deeply integrated into the management of cancer, from initial diagnosis to the observation and management of metastases. Combined positron-emitting fluorescent contrast agents can convey new or substantial benefits that improve on these proven clinical contrast agents. PMID:27223168

  16. Positron emission tomography microdosing: a new concept with application in tracer and early clinical drug development.

    PubMed

    Bergström, Mats; Grahnén, Anders; Långström, Bengt

    2003-09-01

    The realisation that new chemical entities under development as drug candidates fail in three of four cases in clinical trials, together with increased costs and increased demands of reducing preclinical animal experiments, have promoted concepts for improvement of early screening procedures in humans. Positron emission tomography (PET) is a non-invasive imaging technology, which makes it possible to determine drug distribution and concentration in vivo in man with the drug labelled with a positron-emitting radionuclide that does not change the biochemical properties. Recently, developments in the field of rapid synthesis of organic compounds labelled with positron-emitting radionuclides have allowed a substantial number of new drug candidates to be labelled and potentially used as probes in PET studies. Together, these factors led to the logical conclusion that early PET studies, performed with very low drug doses-PET-microdosing-could be included in the drug development process as one means for selection or rejection of compounds based on performance in vivo in man. Another important option of PET, to evaluate drug interaction with a target, utilising a PET tracer specific for this target, necessitates a more rapid development of such PET methodology and validations in humans. Since only very low amounts of drugs are used in PET-microdosing studies, the safety requirements should be reduced relative to the safety requirements needed for therapeutic doses. In the following, a methodological scrutinising of the concept is presented. A complete pre-clinical package including limited toxicity assessment is proposed as a base for the regulatory framework of the PET-microdosing concept.

  17. Positrons observed to originate from thunderstorms

    NASA Astrophysics Data System (ADS)

    Fishman, Gerald J.

    2011-05-01

    Thunderstorms are the result of warm, moist air moving rapidly upward, then cooling and condensing. Electrification occurs within thunderstorms (as noted by Benjamin Franklin), produced primarily by frictional processes among ice particles. This leads to lightning discharges; the types, intensities, and rates of these discharges vary greatly among thunderstorms. Even though scientists have been studying lightning since Franklin's time, new phenomena associated with thunderstorms are still being discovered. In particular, a recent finding by Briggs et al. [2011], based on observations by the Gamma-Ray Burst Monitor (GBM) instrument on NASA's satellite-based Fermi Gamma-ray Space Telescope (Fermi), shows that positrons are also generated by thunderstorms. Positrons are the antimatter form of electrons—they have the same mass and charge as an electron but are of positive rather than negative charge; hence the name positron. Observations of positrons from thunderstorms may lead to a new tool for understanding the electrification and high-energy processes occurring within thunderstorms. New theories, along with new observational techniques, are rapidly evolving in this field.

  18. Electron--positron beam--plasma experiments

    NASA Astrophysics Data System (ADS)

    Gilbert, S. J.; Kurz, C. K.; Greaves, R. G.; Surko, C. M.

    1997-11-01

    Electron-positron plasmas possess unique properties due to inherent symmetries between the charge species. The ability to accumulate large numbers of positron.html>cold positrons in Penning-Malmberg traps has made the study of such plasmas possible in the laboratory.(R.G. Greaves, M.D. Tinkle and C.M. Surko, Phys. Plas.) 1 1439 (1994) In the first experiment of this type we studied a beam-plasma system by transmitting an electron beam through a positron plasma in a Penning trap.(R.G. Greaves and C.M. Surko, Phys. Rev. Lett.), 74 3846 (1995) These earlier measurements were obtained using a hot cathode electron source, for which the large beam energy spreads ( ~ 0.5 eV) made it impossible to explore the low energy regime of this beam-plasma system, where the strongest interaction occurs. We report new growth rate measurements obtained using a novel low-energy, cold (Δ E ≈ 0.05 eV) electron beam based on the extraction of electrons stored in a Penning trap.(S.J. Gilbert et al.), Appl. Phys. Lett., 70 1944 (1997). The measured growth rates for a transit time instability are found to be in excellent agreement with a cold fluid theory by D.H.E. Dubin over the range of accessible energies (0.1--3 eV).

  19. Positron elastic scattering from alkaline earth targets

    NASA Astrophysics Data System (ADS)

    Poveda, Luis A.; Assafrão, Denise; Mohallem, José R.

    2016-07-01

    A previously reported model potential approach [Poveda et al., Phys. Rev. A 87, 052702 (2013)] was extended to study low energy positron elastic scattering from beryllium and magnesium. The cross sections were computed for energies ranging from 10-5 eV up to well above the positronium formation threshold. The present results are in good agreement with previous reports, including the prediction of a p-wave resonance in the cross section for magnesium. The emergence of this shape resonance is connected to a trend observed in the evolution of the partial wave cross section in going from Be to Mg target. This trend lead us to speculate that a sharp d-wave resonance should be observed in positron elastic scattering from calcium. The positron-target binding energies are investigated in detail, both using the scattering information and by direct computation of the bound state energies using the model potentials. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2016-70120-y

  20. Routine positron emission tomography and positron emission tomography/computed tomography in melanoma staging with positive sentinel node biopsy is of limited benefit.

    PubMed

    Constantinidou, Anastasia; Hofman, Michael; O'Doherty, Michael; Acland, Katharine M; Healy, Ciaran; Harries, Mark

    2008-02-01

    Positron emission tomography (PET) is increasingly used for the staging and management of melanoma. The aim of this study was to evaluate the role of PET or PET/ computed tomography (CT) as a routine procedure in patients with positive sentinel node biopsy (SNB). Thirty patients with melanoma of Breslow thickness greater than 1 mm who had PET or PET/CT scans performed within 100 days after a positive SNB were reviewed retrospectively. Two patients (6%) had a positive PET scan, none of which were melanoma related. The first patient had a synchronous neuroendocrine thyroid tumour and the second patient had increased uptake in the chest wall, which proved to be old trauma. Lymph node dissection was positive in five cases (16%). With a median follow-up of 24 months, 21 patients remained disease free. In none of the 30 cases did the early PET scan after a positive SNB alter subsequent melanoma management. The role of PET scanning soon after a positive sentinel node biopsy seems to be of limited benefit. It is questionable whether any imaging is beneficial at this stage. The results of this review suggest that PET scanning might not be indicated for this group of patients.

  1. PET/MRI and PET/MRI/SISCOM coregistration in the presurgical evaluation of refractory focal epilepsy.

    PubMed

    Fernández, S; Donaire, A; Serès, E; Setoain, X; Bargalló, N; Falcón, C; Sanmartí, F; Maestro, I; Rumià, J; Pintor, L; Boget, T; Aparicio, J; Carreño, M

    2015-03-01

    We aimed to investigate the usefulness of coregistration of positron emission tomography (PET) and magnetic resonance imaging (MRI) findings (PET/MRI) and of coregistration of PET/MRI with subtraction ictal single-photon emission computed tomography (SPECT) coregistered to MRI (SISCOM) (PET/MRI/SISCOM) in localizing the potential epileptogenic zone in patients with drug-resistant epilepsy. We prospectively included 35 consecutive patients with refractory focal epilepsy whose presurgical evaluation included a PET study. Separately acquired PET and structural MRI images were coregistered for each patient. When possible, ictal SPECT and SISCOM were obtained and coregistered with PET/MRI. The potential location of the epileptogenic zone determined by neuroimaging was compared with the seizure onset zone determined by long-term video-EEG monitoring and with invasive EEG studies in patients who were implanted. Structural MRI showed no lesions in 15 patients. In these patients, PET/MRI coregistration showed a hypometabolic area in 12 (80%) patients that was concordant with seizure onset zone on EEG in 9. In 7 patients without MRI lesions, PET/MRI detected a hypometabolism that was undetected on PET alone. SISCOM, obtained in 25 patients, showed an area of hyperperfusion concordant with the seizure onset zone on EEG in 7 (58%) of the 12 of these patients who had normal MRI findings. SISCOM hyperperfusion was less extensive than PET hypometabolism. A total of 19 patients underwent surgery; 11 of these underwent invasive-EEG monitoring and the seizure onset zone was concordant with PET/MRI in all cases. PET/MRI/SISCOM coregistration, performed in 4 of these patients, was concordant in 3 (75%). After epilepsy surgery, 13 (68%) patients are seizure-free after a mean follow-up of 4.5 years. PET/MRI and PET/MRI/SISCOM coregistration are useful for determining the potential epileptogenic zone and thus for planning invasive EEG studies and surgery more precisely, especially in

  2. Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Imaging in Patients With Carcinoma of the Nasopharynx: Diagnostic Accuracy and Impact on Clinical Management

    SciTech Connect

    Gordin, Arie . E-mail: ariegor@hotmail.com; Golz, Avishay; Daitzchman, Marcello; Keidar, Zohar; Bar-Shalom, Rachel; Kuten, Abraham; Israel, Ora

    2007-06-01

    Purpose: To assess the value of {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in patients with nasopharyngeal carcinoma as compared with PET and conventional imaging (CI) alone, and to assess the impact of PET/CT on further clinical management. Methods and Materials: Thirty-three patients with nasopharyngeal carcinoma had 45 PET/CT examinations. The study was a retrospective analysis. Changes in patient care resulting from the PET/CT studies were recorded. Results: Positron emission tomography/computed tomography had sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 92%, 90%, 90%, 90%, and 91%, respectively, as compared with 92%, 65%, 76%, 86%, and 80% for PET and 92%, 15%, 60%, 60%, and 60% for CI. Imaging with PET/CT altered further management of 19 patients (57%). Imaging with PET/CT eliminated the need for previously planned diagnostic procedures in 11 patients, induced a change in the planned therapeutic approach in 5 patients, and guided biopsy to a specific metabolically active area inside an edematous region in 3 patients, thus decreasing the chances for tissue sampling errors and avoiding damage to nonmalignant tissue. Conclusions: In cancer of the nasopharynx, the diagnostic performance of PET/CT is better than that of stand-alone PET or CI. Positron emission tomography/computed tomography had a major impact on further clinical management in 57% of patients.

  3. Revocation of regulation on positron emission tomography drug products--FDA. Final rule; revocation.

    PubMed

    1997-12-19

    The Food and Drug Administration (FDA) is revoking a regulation on positron emission tomography (PET) radiopharmaceutical drug products. The regulation permits FDA to approve requests from manufacturers of PET drugs for exceptions or alternatives to provisions of the current good manufacturing practice (CGMP) regulations. FDA is taking this action in accordance with provisions of the Food and Drug Administration Modernization Act of 1997 (Modernization Act). Elsewhere in this issue of the Federal Register, FDA is publishing a notice revoking two notices concerning certain guidance documents on PET drugs and the guidance documents to which the notices relate.

  4. Comparison of diffuse optical tomography of human breast with whole-body and breast-only positron emission tomography

    PubMed Central

    Konecky, Soren D.; Choe, Regine; Corlu, Alper; Lee, Kijoon; Wiener, Rony; Srinivas, Shyam M.; Saffer, Janet R.; Freifelder, Richard; Karp, Joel S.; Hajjioui, Nassim; Azar, Fred; Yodh, Arjun G.

    2008-01-01

    We acquire and compare three-dimensional tomographic breast images of three females with suspicious masses using diffuse optical tomography (DOT) and positron emission tomography (PET). Co-registration of DOT and PET images was facilitated by a mutual information maximization algorithm. We also compared DOT and whole-body PET images of 14 patients with breast abnormalities. Positive correlations were found between total hemoglobin concentration and tissue scattering measured by DOT, and fluorodeoxyglucose (18F-FDG) uptake. In light of these observations, we suggest potential benefits of combining both PET and DOT for characterization of breast lesions. PMID:18383664

  5. Comparison of diffuse optical tomography of human breast with whole-body and breast-only positron emission tomography.

    PubMed

    Konecky, Soren D; Choe, Regine; Corlu, Alper; Lee, Kijoon; Wiener, Rony; Srinivas, Shyam M; Saffer, Janet R; Freifelder, Richard; Karp, Joel S; Hajjioui, Nassim; Azar, Fred; Yodh, Arjun G

    2008-02-01

    We acquire and compare three-dimensional tomographic breast images of three females with suspicious masses using diffuse optical tomography (DOT) and positron emission tomography (PET). Co-registration of DOT and PET images was facilitated by a mutual information maximization algorithm. We also compared DOT and whole-body PET images of 14 patients with breast abnormalities. Positive correlations were found between total hemoglobin concentration and tissue scattering measured by DOT, and fluorodeoxyglucose (18F-FDG) uptake. In light of these observations, we suggest potential benefits of combining both PET and DOT for characterization of breast lesions.

  6. A 31-channel MR brain array coil compatible with positron emission tomography.

    PubMed

    Sander, Christin Y; Keil, Boris; Chonde, Daniel B; Rosen, Bruce R; Catana, Ciprian; Wald, Lawrence L

    2015-06-01

    Simultaneous acquisition of MR and positron emission tomography (PET) images requires the placement of the MR detection coil inside the PET detector ring where it absorbs and scatters photons. This constraint is the principal barrier to achieving optimum sensitivity on each modality. Here, we present a 31-channel PET-compatible brain array coil with reduced attenuation but improved MR sensitivity. A series of component tests were performed to identify tradeoffs between PET and MR performance. Aspects studied include the remote positioning of preamplifiers, coax size, coil trace size/material, and plastic housing. We then maximized PET performance at minimal cost to MR sensitivity. The coil was evaluated for MR performance (signal to noise ratio [SNR], g-factor) and PET attenuation. The coil design showed an improvement in attenuation by 190% (average) compared with conventional 32-channel arrays, and no loss in MR SNR. Moreover, the 31-channel coil displayed an SNR improvement of 230% (cortical region of interest) compared with a PET-optimized 8-channel array with similar attenuation properties. Implementing attenuation correction of the 31-channel array successfully removed PET artifacts, which were comparable to those of the 8-channel array. The design of the 31-channel PET-compatible coil enables higher sensitivity for PET/MR imaging, paving the way for novel applications in this hybrid-imaging domain. © 2014 Wiley Periodicals, Inc.

  7. Magnetic resonance-based motion correction for positron emission tomography imaging.

    PubMed

    Ouyang, Jinsong; Li, Quanzheng; El Fakhri, Georges

    2013-01-01

    Positron emission tomography (PET) image quality is limited by patient motion. Emission data are blurred owing to cardiac and/or respiratory motion. Although spatial resolution is 4 mm for standard clinical whole-body PET scanners, the effective resolution can be as low as 1 cm owing to motion. Additionally, the deformation of attenuation medium causes image artifacts. Previously, gating has been used to "freeze" the motion, but led to significantly increased noise level. Simultaneous PET/magnetic resonance (MR) modality offers a new way to perform PET motion correction. MR can be used to measure 3-dimensional motion fields, which can then be incorporated into the iterative PET reconstruction to obtain motion-corrected PET images. In this report, we present MR imaging techniques to acquire dynamic images, a nonrigid image registration algorithm to extract motion fields from acquired MR images, and a PET reconstruction algorithm with motion correction. We also present results from both phantom and in vivo animal PET/MR studies. We demonstrate that MR-based PET motion correction using simultaneous PET/MR improves image quality and lesion detectability compared with gating and no motion correction. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Contrast-enhanced fluorodeoxyglucose positron emission tomography/contrast-enhanced computed tomography in mediastinal T-cell lymphoma with superior vena cava syndrome.

    PubMed

    Santhosh, Sampath; Gorla, Arun Kumar Reddy; Bhattacharya, Anish; Varma, Subhash Chander; Mittal, Bhagwant Rai

    2016-01-01

    Positron emission tomography-computed tomography (PET/CT) is a routine investigation for the staging of lymphomas. Contrast-enhanced computed tomography is mandatory whenever parenchymal lesions, especially in the liver and spleen are suspected. We report a rare case of primary mediastinal T-cell lymphoma evaluated with contrast-enhanced PET/CT that showed features of superior vena cava syndrome.

  9. Benign metastasizing leiomyoma of the lung: PET findings.

    PubMed

    di Scioscio, Valerio; Feraco, Paola; Miglio, Laura; Toni, Francesco; Malvi, Deborah; Pacilli, Angela M G; Fasano, Luca; Fabbri, Mario; Zompatori, Maurizio

    2009-02-01

    We report the case of pulmonary benign metastasizing leiomyoma in an asymptomatic 64-year-old woman who underwent hysterectomy for a uterine leiomyoma 26 years earlier. Routine chest radiograph revealed bilateral diffuse nodular opacities within the pulmonary lobes. Thoracic computed tomography (CT) scan showed peripheral lung nodules that do not display contrast enhancement. Positron emission tomography (PET)-CT with 18F-fluorodeoxyglucose (18F-FDG PET-CT) demonstrated no significant metabolic activity of the nodules. The lesions were diagnosed as benign metastasizing leiomyoma by histopathologic examination. To our best knowledge, this is the first case studied combining CT and FDG PET-CT technique.

  10. Quantitative techniques in 18FDG PET scanning in oncology.

    PubMed

    Castell, F; Cook, G J R

    2008-05-20

    The clinical applications of (18)F-fluoro-2-deoxyglucose ((18)FDG) positron emission tomography (PET) in oncology are becoming established. While simple static scanning techniques are used for the majority of routine clinical examinations, increasing use of PET in clinical trials to monitor treatment response with (18)FDG and novel tracers reflecting different pharmacodynamic end points, often necessitates a more complex and quantitative analysis of radiopharmaceutical kinetics. A wide range of PET analysis techniques exist, ranging from simple visual analysis and semiquantitative methods to full dynamic studies with kinetic analysis. These methods are discussed, focusing particularly on the available methodologies that can be utilised in clinical trials.

  11. Noninvasive imaging of islet grafts using positron-emission tomography

    NASA Astrophysics Data System (ADS)

    Lu, Yuxin; Dang, Hoa; Middleton, Blake; Zhang, Zesong; Washburn, Lorraine; Stout, David B.; Campbell-Thompson, Martha; Atkinson, Mark A.; Phelps, Michael; Gambhir, Sanjiv Sam; Tian, Jide; Kaufman, Daniel L.

    2006-07-01

    Islet transplantation offers a potential therapy to restore glucose homeostasis in type 1 diabetes patients. However, islet transplantation is not routinely successful because most islet recipients gradually lose graft function. Furthermore, serological markers of islet function are insensitive to islet loss until the latter stages of islet graft rejection. A noninvasive method of monitoring islet grafts would aid in the assessment of islet graft survival and the evaluation of interventions designed to prolong graft survival. Here, we show that recombinant adenovirus can engineer isolated islets to express a positron-emission tomography (PET) reporter gene and that these islets can be repeatedly imaged by using microPET after transplantation into mice. The magnitude of signal from engineered islets implanted into the axillary cavity was directly related to the implanted islet mass. PET signals attenuated over the following weeks because of the transient nature of adenovirus-mediated gene expression. Because the liver is the preferred site for islet implantation in humans, we also tested whether islets could be imaged after transfusion into the mouse liver. Control studies revealed that both intrahepatic islet transplantation and hyperglycemia altered the biodistribution kinetics of the PET probe systemically. Although transplanted islets were dispersed throughout the liver, clear signals from the liver region of mice receiving PET reporter-expressing islets were detectable for several weeks. Viral transduction, PET reporter expression, and repeated microPET imaging had no apparent deleterious effects on islet function after implantation. These studies lay a foundation for noninvasive quantitative assessments of islet graft survival using PET. diabetes | transplantation

  12. 76 FR 60847 - Draft Guidance on Media Fills for Validation of Aseptic Preparations for Positron Emission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-30

    ... for the Agency's current good manufacturing practice regulations for PET drugs. DATES: Although you... HUMAN SERVICES Food and Drug Administration Draft Guidance on Media Fills for Validation of Aseptic Preparations for Positron Emission Tomography Drugs; Availability AGENCY: Food and Drug Administration,...

  13. 77 FR 11553 - Draft Guidance on Food and Drug Administration Oversight of Positron Emission Tomography Drug...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ... good manufacturing practices (CGMP) for PET drugs. The procedures were finalized and an implementation... HUMAN SERVICES Food and Drug Administration Draft Guidance on Food and Drug Administration Oversight of Positron Emission Tomography Drug Products--Questions and Answers; Availability AGENCY: Food and...

  14. Positron Emission Tomography Methods with Potential for Increased Understanding of Mental Retardation and Developmental Disabilities

    ERIC Educational Resources Information Center

    Sundaram, Senthil K.; Chugani, Harry T.; Chugani, Diane C.

    2005-01-01

    Positron emission tomography (PET) is a technique that enables imaging of the distribution of radiolabeled tracers designed to track biochemical and molecular processes in the body after intravenous injection or inhalation. New strategies for the use of radiolabeled tracers hold potential for imaging gene expression in the brain during development…

  15. Asymptomatic Emphysematous Pyelonephritis - Positron Emission Tomography Computerized Tomography Aided Diagnostic and Therapeutic Elucidation

    PubMed Central

    Pathapati, Deepti; Shinkar, Pawan Gulabrao; kumar, Satya Awadhesh; Jha; Dattatreya, Palanki Satya; Chigurupati, Namrata; Chigurupati, Mohana Vamsy; Rao, Vatturi Venkata Satya Prabhakar

    2017-01-01

    The authors report an interesting coincidental unearthing by 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) of a potentially serious medical condition of emphysematous pyelonephritis in a case of nasopharyngeal carcinoma. The management by conservative ureteric stenting and antibiotics was done with gratifying clinical outcome. PMID:28242985

  16. Positron Emission Tomography Methods with Potential for Increased Understanding of Mental Retardation and Developmental Disabilities

    ERIC Educational Resources Information Center

    Sundaram, Senthil K.; Chugani, Harry T.; Chugani, Diane C.

    2005-01-01

    Positron emission tomography (PET) is a technique that enables imaging of the distribution of radiolabeled tracers designed to track biochemical and molecular processes in the body after intravenous injection or inhalation. New strategies for the use of radiolabeled tracers hold potential for imaging gene expression in the brain during development…

  17. [A report on clinical PET activities in Germany].

    PubMed

    Tashiro, M; Kubota, K; Itoh, M; Sasaki, H; Moser, E

    1999-09-01

    Clinical diagnostic procedure using positron emission tomography (PET) requires high costs. To promote clinical use of PET, sociomedical evaluation is necessary. In this paper, sociomedical situations concerning clinical use of PET in Germany is reported. Some comparisons are made between Japan and this country putting emphases on several points such as 1) number of cyclotron and PET facilities, 2) social restriction to transportation of radioisotopes, 3) activities of satellite PET facilities, and 4) clinical indications for PET studies. Number of cyclotron was larger in Japan (29) than in Germany (17), but number of PET facilities was larger in Germany (47) than in Japan (29). The reason seems that in Germany transportation and buying of radioisotopes is less restricted. Hence, more than half of PET facilities in Germany are "satellite facilities" which do not have their own cyclotrons. Radioisotope distribution seems to serve as a backbone of "satellite concept." Additionally in Germany, list of clinical indications for PET study is almost completed and now is widely in applied to most cases. To promote clinical use of PET in Japan, the German system might serve as an important socioeconomic model in Europe instead of the United States.